
Nonlinear Micropolar Models for Composite
Materials: Theory and Computation

by

Armanj D. Hasanyan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2018

Doctoral Committee:

Professor Anthony M. Waas, Chair
Associate Professor Nakhiah C. Goulbourne
Associate Professor Veera Sundararaghavan
Professor Alan S. Wineman



Armanj D. Hasanyan

armanj@umich.edu

ORCID iD: 0000-0003-3676-9439

©Armanj D. Hasanyan 2018



To my parents and brother for their continuing support.

ii



ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Dr. Anthony Waas

for his guidance through my graduate research. Dr. Waas was always an extremely

supportive and caring advisor and I thank him for exposing me to the wonderful world

of composite materials. I have truly been inspired by his enthusiasm for research and

passion in teaching throughout these years.

I am grateful to Prof. Veera Sundararaghavan, Prof. Nakhiah C. Goulbourne,

and Prof. Alan S. Wineman for finding the time to serve on my doctoral committee.

It was a great pleasure to work with my colleagues in the Composite Structures

Laboratory. Special thanks to Royan D’Mello, Paul Davidson, Ashith Joseph, Deepak

Patel, David Singer, Shiyao Lin, Avinkrishnan Vijayachandran, Linda Leben, Minh

Nguyen, Kuo Tian, and many others I had the pleasure to work with throughout the

years. I thank you all for our numerous technical discussions, which were invaluable

to me.

Most importantly, I would like to thank my family for their unwavering support

throughout my graduate career. This thesis would not have been possible without

your love and encouragement.

iii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation for Micropolar Theory . . . . . . . . . . . . . . . . . . . . 1
1.2 Localization Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Research Objective and Thesis Outline . . . . . . . . . . . . . . . . . 13
1.4 Contribution of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Localization in Anisotropic Elastoplastic Micropolar Media: Ap-
plication to Fiber Reinforced Composites . . . . . . . . . . . . . . . 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Formulation of Nonlinear Micropolar Theory . . . . . . . . . . . . . . 20
2.3 Transversely Isotropic Constitutive Relationship . . . . . . . . . . . . 27
2.4 Anisotropic Elastoplasticity Formulation: Hill’s Micropolar Criterion . 30

2.4.1 Plastic Work Rate . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Objective Stress Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Updated Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . 38
2.7 Finite Element Discretization . . . . . . . . . . . . . . . . . . . . . . . 46
2.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Micromechanics vs Micropolar Continuum Comparison . . . . . . 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Effective Properties of a Fiber Reinforced Composite . . . . . . . . . . 60

3.2.1 Concentric Cylinder Model (CCM) . . . . . . . . . . . . . . 60
3.2.2 Micropolar Shear Properties . . . . . . . . . . . . . . . . . 61

iv



3.2.3 Couple-stress and Curvature Relation . . . . . . . . . . . . . 67
3.3 Material Nonlinear Behavior: Micropolar Elastoplasticity . . . . . . . 69
3.4 Fiber Kinking: Micromechanics and Micropolar Continuum . . . . . . 72
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Micropolar Constitutive Relations of Cellular Solids . . . . . . . . 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Micropolar Constitutive Relationship . . . . . . . . . . . . . . . . . . 89
4.4 Micropolar Homogenization Method . . . . . . . . . . . . . . . . . . . 92
4.5 Deformation Modes of RVE . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Classical Modes of Deformation . . . . . . . . . . . . . . . . 96
4.5.2 Micropolar Modes of Deformation . . . . . . . . . . . . . . . 97

4.6 Closed Form Expressions for the Macroscopic Properties . . . . . . . . 99
4.7 Verification of the Constants . . . . . . . . . . . . . . . . . . . . . . . 101
4.8 Closed Form Solution of Grid Structure and Regular Hexagon Honeycomb104
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 On the Buckling of a 2D Micropolar Strip . . . . . . . . . . . . . . . 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Finite Micropolar Theory . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Buckling Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5 1D Micropolar Beam Theory (1DMB) . . . . . . . . . . . . . . . . . . 123
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.1 Buckling Load . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.2 Buckling Modes . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Concluding Remarks and Future Work . . . . . . . . . . . . . . . . 138

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

v



LIST OF FIGURES

1.1 Continuum vs. discrete models. . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example of a size effect in macroscopic density definition [1]. . . . . . . 4
1.3 Introduction of surface moments in materials with a microstructure. . . 5
1.4 2D micropolar volume element with asymmetric stresses Σij and couple-

stresses Mi3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Kinematics of a 2D micropolar volume element. . . . . . . . . . . . . . 8
1.6 Formation of a localized deformation, or shear band, observed in mate-

rials with microstructure. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Localized deformation in fiber reinforced and honeycomb composites. . 14

2.1 Rotation of an arbitrary vector r under microrotational tensor R ∈ SO(3). 22
2.2 Deformation of a fiber reinforced composite. . . . . . . . . . . . . . . . 24
2.3 Micropolar continuum volume element with asymmetric stresses Σ and

couple-stresses M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Isoparametric representation of a 4-noded micropolar quadrilateral ele-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Schematic of the equivalent micropolar continuum boundary value prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Equivalent stress (σe) vs equivalent strain (εp) relation. . . . . . . . . 51
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ABSTRACT

Composites are attractive as lightweight materials for a variety of structural load

bearing applications, especially in the aerospace industry. To model their behavior

at the global scale (macroscale), continuum models are employed for computational

efficiency. However, classical (Cauchy) continuum models often disregard the local

structural effects, such as local bending and rotations of the constituents. For exam-

ple, fiber reinforced composites, which are generally composed of fibers surrounded

by polymer matrix material, when subjected to macroscopic loading, the fibers at the

microscale undergo local bending and rotations. Similarly, in cellular materials, such

as honeycomb structures and foams, when viewed as an assembly of beams or shells,

there is inherent bending of cell walls introduced into the continuum deformation.

The higher order micropolar continuum theory, which is an extension of a Cauchy

continuum, introduces these higher order effects with the generalization of the kine-

matic degrees of freedom. In addition to the displacement field, there is also an

additional independent rotational field introduced into the formulation. As a con-

sequence, there is couple-stress (moment stresses) tensor in addition to the classical

force-stress tensor. These correspond to the local rotations/moments present due to

the microstructure of a composite. These aspects of micropolar theory are appropri-

ate for representing the local mechanics of fiber reinforced composites and cellular

materials, which are studied in this thesis.

x



In literature, the challenge of micropolar theory has been two-fold: (1) the deter-

mination of the additional micropolar material constants that are introduced, and (2)

the analytical and numerical implementation of finite micropolar theory. In the this

thesis, physics based methods will be developed to determine the properties of fiber

reinforced composites. In addition, the classical Hill-Mandel condition from classical

micromechanics will be extended to a micropolar continuum to determine the consti-

tutive relation of a structured cellular solid. Finite micropolar theory, which accounts

for both geometric and material nonlinearities, is developed in this thesis. This is im-

plemented via an updated Lagrangian finite element framework for analyzing fiber

reinforced structures.

Micropolar theory is applied to boundary value problems where local rotations

and moments are dominant. This includes problems where the wavelength of the

deformation is comparable to the characteristic length of the microstructure. An

example of this is the formation of localized deformation in fiber-reinforced composites

(fiber kinking) under compression loading. Micropolar theory is not only a high

fidelity model that helps to quantify the local moments and rotations, but it also

prevents the loss of ellipticity of the governing equations at the onset of localization.

This is useful for analyzing the post-peak response of fiber reinforced composites.

The details regarding this are also explained in this thesis.
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CHAPTER 1

Introduction

1.1 Motivation for Micropolar Theory

Continuum theories are concerned with the macroscopic behavior of a physical sys-

tem containing large number of particles (electrons, atoms, ions, molecules, etc). A

classical example of this is thermodynamic theory, which is the study of the kine-

matic behavior of particles in a given macroscopic system. Theoretically speaking,

the direct approach of modeling can be done through a detailed, microscopic analysis

of the individual motion of the constituents (micromechanics). The micromechanics

approach could in principle yield accurate results, but due to the inherent large de-

grees of freedom, it is inefficient in terms of computational time, often beyond the

capabilities of supercomputers. This is impractical for most engineering applications,

where quick, back of the envelope estimations are preferred over detailed, accurate

results. To overcome this, macroscopic, or continuum models are employed. How-

ever, these theories are phenomenological in nature, in that they are based on a small

number of postulates, which relate measurable macroscopic quantities, independent

to the hypothesis of the constituents at the microscale. These measurable quanti-

ties are in a sense averages over the individual particles. Now, instead of describing

the system through the position and momentum of each particle, the continuum

approach presents terminologies such as temperature, heat, density, stress, etc. In

1



such approaches, an incomplete description of the constituents is obtained, where the

macroscopic behavior of the system is viewed “as through an opaque window.” As

seen in the schematic in Fig. 1.1, under the this approach, much of the information

regarding the microstructure of the system is disregarded in favor of faster computa-

tion. The efficiency of the continuum models is in solving partial differential equations

for the field functions, instead of a large number of coupled differential equations.

Discrete/MicromechanicsContinuum/Macromechanics

Faster 

computation

Increase in 

accuracy

Increase in degrees 

of freedom
Decrease in degrees 

of freedom

Particles

Figure 1.1: Continuum vs. discrete models.

For the continuum approach to be valid, the system must contain sufficient number

of particles, or constituents N , inside a given volume ∆V , enclosed within a surface

∆S. Otherwise, the macroscopic field functions become dependent on the size of the

system. As explained by Eringen in [1], an example of this is in the definition of the

density of a material, which is defined

ρ = lim
∆V→0

m(∆V )

∆V
(1.1)

2



where for a given volume ∆V , m(∆V ) is the total mass enclosed inside it. As seen in

the schematic in Fig. 1.2, the macroscopic function ρ is independent of volume size

when ∆V > ∆Vcr. In this region, the classical (Cauchy) continuum assumptions are

applicable, where the body is assumed to be composed of infinite number of particles

of infinitesimal size. This allows for operations such as spatial differentiation across

points in the volume. Next, considering an experiment, where density measurements

are recorded by progressively taking smaller volume sizes, the density is seen to be

strongly dependent on the volume size as ∆V → 0. This is because real materials

are not continua, but are composed of particles of finite size, occupying a volume

composed largely of empty space. As a result, continuum assumptions are no longer

valid when ∆V << ∆Vcr. In this region, discrete, or micromechanics models are

employed. It should be highlighted that the value of the critical volume ∆Vcr is

dependent on the geometry and the properties of the constituents. In this thesis, the

generalized, higher-order micropolar theory is discussed, which is applicable to the

intermediate region ∆V < ∆Vcr. Unlike a Cauchy continuum, where the kinematics

of a point is characterized by a displacement field, in a micropolar continuum, each

point is assumed to have both displacement and an independent rotational degrees

of freedom. This generalization treats each material point in the continuum as a

rigid body particle of infinitesimal size. With the additional kinematic degrees of

freedom, a length-scale parameter is naturally introduced in the continuum through

the constitutive relation, which is associated with the characteristic length of the

microstructure.

In addition, similar continuum approximations are used to model the macroscopic

behavior of multiple continuum-phase heterogeneous media. This includes materials

such as fiber reinforced composites, textiles, and cellular honeycomb structures, which

have often found engineering applications as lightweight materials. Similar to the

example demonstrated earlier, the direct modeling of these materials as an effective,

3



D
en

si
ty

 (
𝜌
)

Volume (Δ𝑉)

Classical 

continuum 

Higher-order 

continuum 

Micromechanics 

models

Δ𝑉𝑐𝑟

Figure 1.2: Example of a size effect in macroscopic density definition [1].

homogeneous continuum is dependent on the relations of the length scales of the

problem. The validity of the continuum representation is governed by the principle

of separation of scales, i.e. the macroscopic length of the domain is much larger

than the mesoscopic characteristic length over which homogenization is carried out

(Lmacro � Lmeso). In addition, the direct applicability of a Cauchy continuum is

dependent on the size of the microstructure Lmicro (average size of the fibers, grains,

inclusion, etc.) relative to the length of the mesoscale. For example, considering

a continuum in Fig. 1.3, the normal component of the traction at point P , on the

surface associated with the normal n is defined,

tn = lim
∆S→0

Fn(∆S)

∆S
(1.2)

In a Cauchy continuum, with the assumption that ∆S goes to zero, the force Fn

acting along the normal direction becomes uniform. Thus, the gradients of Fn acting

4



𝑃

𝒏

𝐹𝑛 Δ𝑆

Δ𝑆
𝑋1

𝑋2

𝑋3

𝑦2

𝑦1 𝑀𝑦1

𝑀𝑦2

Figure 1.3: Introduction of surface moments in materials with a microstructure.

on the surface are neglected as it is independent of ∆S. However, considering the

microstructure of the material, this limit is finite and bounded from below by the

mesoscopic length, where the nonuniformity of the force Fn acting on the surface of

a finite size ∆S induces moments,

My1 =

∫
∆S

y2dFn (1.3a)

My2 =

∫
∆S

y1dFn (1.3b)

from which couple-traction are defined by normalizing it by the surface area ∆S

Qy1 = lim
∆S→0

My1(∆S)

∆S
(1.4a)

Qy2 = lim
∆S→0

My2(∆S)

∆S
(1.4b)

Similarly, the presence of surface shear forces acting on ∆S induce a torsion Mn and

5



couple-traction Qn. While in a general micropolar theory the continuum assumption

is valid and the limits in Eqn. 1.2 and 1.4 are assumed to exist, the gradients induced

because of the microstructure are introduced phenomenologically by the presence of

the additional couple-traction. As a result, in addition to the force-stress tensor Σ,

which relates the surface traction t to the unit normal n,

t = ΣT · n (1.5)

in a generalized micropolar continuum, an additional couple-stress tensor M is in-

troduced, which relates couple-traction Q to the unit normal n

Q = MT · n (1.6)

In a generalized micropolar continuum, the stresses and couple-stresses are shown on

a 2D volume element in Fig. 1.4. In the absence of body forces and inertia effects,

𝑋1

𝑋2

Σ11

Σ22

Σ12

Σ21

M13

M23

Σ12

Σ11

Σ21

Σ22
M23

M13

Figure 1.4: 2D micropolar volume element with asymmetric stresses Σij and couple-
stresses Mi3.
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the force and moment equilibrium equations are

Σ11,1 + Σ21,2 = 0 (1.7a)

Σ12,1 + Σ22,2 = 0 (1.7b)

M13,1+M23,2 + Σ12 − Σ21 = 0 (1.7c)

It should be highlighted that the presence of couple-stresses M13 and M23 in the

moment equilibrium equation (Eqn. 1.7c) results in the stress tensor to be asymmetric

(Σ12 6= Σ21, or in general Σij 6= Σji). In classical elasticity, the symmetry of the stress

tensor is a consequence of the absence of the couple stresses.

The kinematical difference between a micropolar continuum, compared to a Cauchy

continuum, is in the additional rotational degree of freedom ϕi, which is independent

of the displacement field (ϕi 6= 1
2
εikjuj,k). Thus, the field equations of micropolar

theory are characterised by the displacement and rotational vectors u = (u1, u2, u3)

and ϕ = (ϕ1, ϕ2, ϕ3), respectively. In the case of 2D planar deformation, the nonzero

kinematic functions are u1(x1, x2), u2(x1, x2), and ϕ3(x1, x2). As shown in Fig. 1.5,

the deformation of a micropolar volume element in a 2D space is analogous to a rigid

body motion. Initially at position r = (X1, X2), it is characterized by the displace-

ment vector u = (u1, u2) and an independent rotation ϕ3.

The strains associated with these kinematics are

Γij =uj,i − εij3ϕ3 (1.8a)

Ki3 =
∂ϕ3

∂xi
(1.8b)

for i = 1, 2. Γij is referred to as the asymmetric strain tensor, εij3 is the Levi-Civita

third-order tensor, and Ki3 is the additional micropolar curvature strain. Unlike in

a Cauchy continuum, the strain Γij is no longer symmetric ( Γij 6= Γji). In the

7



𝜑3

𝒖

𝒓 = (𝑋1, 𝑋2)

𝑋1

𝑋2

Figure 1.5: Kinematics of a 2D micropolar volume element.

expression of the strain energy, these strains are work conjugate to the stresses Σij

and Mi3, respectively

U =
1

2

∫
V

(ΣijΓij)dV +
1

2

∫
V

(Mi3Ki3)dV (1.9)

The corresponding constitutive relations between the stresses and the strains are,

Σij = CijklΓkl (1.10a)

Mi3 = Di3k3Kk3 (1.10b)

where Cijkl and Di3k3 are the two stiffness tensors. They posses a major symmetry,

or

Cijkl = Cklij (1.11a)

Di3k3 = Dk3i3 (1.11b)

However, due to the asymmetry of the stress and strain tensors mentioned above, the

8



minor symmetry is no longer satisfied

Cijkl 6= Cjikl (1.12a)

Cijkl 6= Cijlk (1.12b)

Di3k3 6= D3ik3 (1.12c)

Di3k3 6= Di33k (1.12d)

For a 2D, isotropic micropolar medium, these tensors can be alternatively expressed

as

Cijkl = (µ− k)δjkδil + (µ+ k)δjlδik + λδijδkl (1.13a)

Di3k3 = γδik (1.13b)

The material constants λ, µ correspond to the Lamé constants of classical elasticity,

while k, γ are the additional micropolar constants. It should be noted, in the general

3D isotropic micropolar elasticity, 6 independent material constants are present. In

order to reduce the number of material constants introduced in the formulation, the

2D simplification will be considered throughout this thesis.

In summary, the general micropolar theory introduces

� a couple-stress tensor in addition to the force-stress tensor in a Cauchy contin-

uum,

� the stress and strain tensors are asymmetric (not symmetric),

� there are additional material constants associated with the higher order microp-

olar theory,

� and 2D planar micropolar theory has less micropolar material constants than

the corresponding general 3D theory, which will motivate us to consider 2D
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analysis for simplicity.

For reference, the complete description regarding the derivation of linear micropolar

theory can be found in [1]. Some analytical results pertaining to the solution of a

boundary value problem can be found in [5], [6], and [7] for the classical plate with

an inclusion problem. For example, it was concluded that the stress concentration

factor of a micropolar plate with a hole is below the prediction of classical elasticity.

However, such analytical solutions in the linear regime often conclude the micropolar

effects to be small and experimentally undetectable. Because of this, in the follow-

ing thesis, we are interested in extending micropolar theory to nonlinear problems.

In particular, we focus on phenomenon where the macroscopic characteristic length

(such as the deformation length) of the problem is comparable with the size of the

microstructure of the material. A classical example is localized deformation observed

in composite materials.

1.2 Localization Phenomenon

Materials with microstructure can form intense bands of deformation, also called

localization or shear banding, when under compressive loading. This is characterized

by the formation of at least one narrow region in a material, where upon further

continued loading, the deformation is limited inside these regions. This phenomenon

has been subjected to research since the early 1900’s. It has been experimentally

observed in various classes of materials with a microstructure, some of which include

geological materials such as granular media [8], [9] and metals [10]. Understanding

how localization occurs is important for predicting the integrity of a structure, as it

can lead to failure. For example, in the case of granular materials, it is crucial for

civil engineering applications, and in ductile metals, the formation of the localized

deformation (commonly called shear bands) is proceeded by fracture. Similarly, it
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has also been observed in fiber reinforced composites (fiber kinking) and honeycomb

structures (cell row collapse).

Although micromechanics models are capable of capturing this form of instability

through a detailed modeling of the microstructure, due to the increase in computa-

tional time, such an approach is impractical. In literature, macromechanics methods

have been discussed to characterize localization through a continuum approach [11],

[12], [13]. In these models, the continuous material initially undergoes a homogeneous

deformation (Fig. 1.6a), until a critical load is reached, upon which the deformation

is confined to a finite region (Fig. 1.6b).

PPP

PPP

(a) Homogenous deformation

PPP

PPP

θ

w

B1

B2

B3

(b) Localization

Figure 1.6: Formation of a localized deformation, or shear band, observed in materials
with microstructure.

From a mathematical point of view, in Fig. 1.6b, the domain in two-dimensional

space B ⊂ R2 is now represented by three subdomains (B = B1

⋃
B2

⋃
B3). The

displacement field is seen to be continuous throughout the whole domain (B), however,

the gradients (strains) are discontinuous at the boundaries where the subdomains

intersect.
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As clearly outlined by [14], such discontinuities are a characteristic of hyperbolic

partial differential equations. However, the governing equations of an initially elastic

body in an equilibrium problem are elliptical, where such discontinuities are not

permitted. As a result, these phenomena are associated with the loss of ellipticity of

the governing equations due to nonlinearities. As discussed in detail in [15], in classical

continuum theories, this transition violates the stability criterion of the constitutive

relationship, in that it has to be positive definite. This violation leads to numerical

mesh dependency due to the ill-posedness of the problem at the onset of localization.

In addition, the predictions of the localization width w and angle θ are incorrect, with

the localization width having an infinitesimal thickness (w = 0). In real materials,

the width is finite and comparable to the characteristic size of the microstructure.

Currently, there are numerous ways of overcoming this issue by preventing a loss in

ellipticity at the onset of localization. These approaches are outlined in [16], [17], [18].

These include methods such as the introduction of viscoplasticity, or by considering

higher order gradients in the strain energy density. An alternative approach is through

higher order continuum theories such as micropolar theory, which is adopted in this

thesis. This approach increases the order of the Laplacian of the governing equations

by introducing an internal length scale parameter, which in turn prevents a loss in

ellipticity. The corresponding equations are well-posed at the onset of localization.

The formation of localization is commonly observed in fiber reinforced composite

(Fig. 1.7a). It is also referred to as fiber kinking. This is developed when fiber

reinforced composites are compressed in the directions of the fibers, and upon reaching

a critical value, the fibers undergo localized kink banding inside a finite region of

the material. The study of kinking was first initiated by [19], [20], who provided

simple formulas for the compressive strength. However, later studies by [21], [22],

[23], [24], etc. showed the importance of matrix material nonlinearity and initial

fiber misalignment, in addition to geometric nonlinearity, for predicting kinking. A
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review in [25] and [26] outline the mechanism for kinking as being caused by the

continuous reduction of the shear stiffness of the matrix material in tandem with fiber

misalignment that leads to continuously increasing microscopic fiber rotations, which

evolve and increase local shear strains leading to a further reduction in shear stiffness,

ultimately culminating in a limit load type instability, leading to kink banding. A

snap-back is observed in the corresponding macroscopic stress-strain response.

Localized deformation zones are also found in polymeric cellular materials [27].

For example, this is shown for a hexagonally packed circular honeycomb structure in

Fig. 1.7b. Under compression loading, at the microscale, local buckling of the cell

walls are observed. However, macroscopically, this phenomenon can be viewed as a

weak discontinuity, in that the macroscopic displacements are continuous, but their

derivatives are discontinuous. Discussed in [28], this phenomenon is also governed by

imperfections of the cell walls and cell shapes, along with local geometric and material

nonlinearities. Early discussion of attempts to characterize this phenomenon at the

continuum scale was mentioned in [29], however significant results have not been

presented.

1.3 Research Objective and Thesis Outline

Although micropolar theory has a long history of development, there are underlying

challenges which have not been sufficiently addressed in literature, which prevent it

from further engineering applications. These include (1) the determination of the

additional micropolar material constants, and (2) the extension of the theory in the

nonlinear regime (both geometric and physical). This thesis attempts to address

these issues. It is divided in six chapters, in which approaches are proposed for

modeling fiber reinforced composites and cellular honeycomb structures. The material

presented has been published in the open literature.
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(a) Fiber kinking [30]

(b) Honeycomb cell buckling

Figure 1.7: Localized deformation in fiber reinforced and honeycomb composites.
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In Chapter 1, the motivation for the higher order micropolar theory was discussed.

The governing equations of a 2D linear medium was outlined to summarize the addi-

tional features of the theory.

In Chapter 2, a nonlinear, anisotropic micropolar theory is developed for ana-

lyzing fiber reinforced composites. Both geometric and physical nonlinearities are

considered. The material nonlinearity is based on classical elastoplasticity, with an

anisotropic yield criterion. The derivation of the theory and the definition of the

anisotropic constitutive relationship based on a micropolar objective stress rate mea-

sure is given. Using an updated Lagrangian formulation, a nonlinear finite element

code is written and implemented in a fortran based user element (UEL) subroutine

for analyzing localization phenomenon in fiber reinforced composites (fiber kinking)

using the commercial finite element software ABAQUS. The effects of the additional

material parameters on the localization features (angle and width) are studied. In

addition, it is shown that localization can be induced through the consideration of

geometric and physical nonlinearity, coupled with an initial geometric imperfection.

This is in contrast to previous studies on the subject, where a softening relation is

introduced in the constitutive model, which is in violation of Drucker criterion for a

stable continuous nonlinear medium. This work is based on the journal paper, [31].

In Chapter 3, a method for determining the micropolar material constants of

a fiber reinforced composite is proposed. Based on physics-based numerical tests,

physical meaning is assigned to the additional material parameters. These are used

for comparing the continuum predictions of fiber kinking to an exact micromechanics

model. The corresponding journal paper is [32].

In Chapter 4, the constitutive relation of structured cellular solids is determined.

These include a hexagonally packed circular honeycomb, regular hexagonal honey-

comb, and a grid structure. These recently proposed homogenization techniques are

based on classical volume averaging methods and are applicable uniquely to cellular
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media, as discussed in the thesis and also in the journal paper, [33].

In Chapter 5, the geometrically exact finite micropolar theory, with finite strain

and curvature is discussed. In this chapter, the issues of the general nonlinear the-

ory are discussed, along with the complications associated with the trigonometric

strain/curvature and displacement/rotation relation. Because of the limited ana-

lytical solutions in this area, a closed form solution is obtained for a buckling of a

micropolar strip of medium under compressive loading. In addition, 1D micropolar

beam theory is also developed, as shown in the journal paper, [34].

Chapter 6, provides a summary and recommendations for future work, based on

the findings reported in this thesis.

1.4 Contribution of Thesis

In this section, the novel contributions of this thesis are highlighted. In chapter 2,

geometric and material nonlinear micropolar theory is developed for transversely-

isotropic medium. The geometric nonlinearity is quasi-nonlinear, with the nonlinear-

ity presented in the Green-Lagrange strain only (but linear in curvature), as seen in

Eqn. 2.62. This simplification avoids the complications of the general finite microp-

olar theory. It is noted that, starting with the general finite micropolar theory, it is

not possible to reduce results to the classical theory. These issues are highlighted in

Chapter 5.

In chapter 2, material nonlinearity is implemented under the assumptions of

elastoplasticity. A new phenomenological anisotropic micropolar yield function is

introduced for the first time, which is a function of couple-stresses in addition to

force-stresses. This is a generalization of the classical Hill criterion for anisotropic

medium. In addition, the treatment of micropolar objective stress rates is discussed

for defining the constitutive relationship.
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The theoretical model is implemented in an updated Lagrangian nonlinear finite

element code. For numerical analysis, a new quadrilateral element is introduced, with

each node having both displacement and an independent rotational degree of freedom.

In order to implement this for analysis, a fortran based user element subroutine

(UEL) is developed and the commercial software ABAQUS is used for visualization.

Although these are discussed for a fiber reinforced composites, it can be applied to

any transversely-isotropic micropolar medium.

To determine the effective micropolar material constants of fiber reinforced com-

posites, new physics based micromechanics tests are introduced in chapter 3. The

moment-curvature relation is defined through the extension of the concentric cylin-

der model (CCM) and the additional shear properties are determined through newly

proposed simple shear tests.

In chapters 2 and 3, the simulation of localization, or fiber kinking is discussed.

In chapter 2, the effects of the additional micropolar material constants is analyzed,

while in chapter 3, a comparison with a micromechanics model is made for verification

of the theory. Unlike most studies in literature on localization, in this thesis, a local

material softening relation is not introduced into the constitutive relation to induce

a maximum load. Instead, a limit load type response is shown to be induced by

geometric and material nonlinearity, coupled with fiber misalignment.

In Chapter 4, closed form solutions for the material constants of 2D honeycomb

structures are reported, which are obtained through nondimensional analysis.

In Chapter 5, the general finite micropolar theory is discussed. The general theory

is then applied to obtain the closed form analytical solution for the buckling load of

a micropolar strip. In addition, micropolar beam theory is developed based on the

general equations.
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CHAPTER 2

Localization in Anisotropic Elastoplastic

Micropolar Media: Application to Fiber

Reinforced Composites

2.1 Introduction

In the recent decades, fiber reinforced composites have been applied to various in-

dustrial applications, most notably in the aerospace industry as lightweight material.

Despite the plethora of their applications, they are still limited in use because of our

limited ability to accurately predict their mechanical behavior. To overcome this,

a high fidelity nonlinear micropolar model, which includes fiber rotation, curvature,

and bending in the continuum formulation, is proposed.

In this section, an anisotropic elastoplastic constitutive model is formulated for

fiber reinforced composites, undergoing large geometric deformation. The composite

material is modeled as a micropolar continuum, which unlike a classical or a Cauchy

continuum, it takes into account the higher order fiber bending and twisting modes

of deformation. In micropolar theory, the rotational degree of freedom is independent

of the displacement field. This is utilized to express the microrotation tensor that

represents the rotation of the fibers, or the direction of anisotropy in a continuum.

In literature, numerous anisotropic yield critera have been developed and extensively
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used for these materials [35]. In the following formulation, we propose an anisotropic

micropolar yield criterion by extending the Hill’s criterion in classical elastoplasticity

and including couple-stresses in the potential function. In this chapter, the details of

the geometric and material nonlinear theoretical model is derived. The correspond-

ing updated Lagrangian (UL) finite element formulation is discussed. In the past,

micropolar theory has been successfully applied to problems associated with localized

deformation, where classical theories fail to capture this phenomenon due to the loss

of ellipticity of the governing equations. These previous analysis have been done on

isotropic micropolar medium, and in order to initiate the onset of localization, a soft-

ening relationship between the equivalent stress and strain has been introduced. Since

the introduction of material softening in the constitutive relation has been a topic of

contention in the field of continuum mechanics, it is shown to be unnecessary. Instead

it is induced by geometric and material nonlinearity, along with a global geometric

imperfection that introduces axial-shear coupling. In fiber reinforced composites, lo-

calization occurring from compression loading is representative of fiber kinking, which

is associated with a snap-back behavior in the macroscopic stress-strain response. At

the end of the chapter, we seek to simulate the this response numerically and study

the effects of the additional micropolar material constants on the global stress-strain

response and the features of the localized deformation, such as localization width and

angle.

Some notable works in this area include [36], where by studying fiber kinking,

it was shown that the governing equations correspond to the micropolar equations.

In addition, a continuum model for fiber-reinforced composites, with fiber bending

and twisting effects included, was discussed by Steigmann in [37]. More recently,

this has been extended to derive the general nonlinear continuum equations of fiber

composites based on the assumption that the fibers behave as Kirchhoff type rods

[38].
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2.2 Formulation of Nonlinear Micropolar Theory

A continuum body in its undeformed state occupies a set of material points in an

Euclidean space 0B ⊂ R3. It has a volume 0V and a boundary 0S. The coordinates

of the material points of 0B = 0V
⋃

0S are represented by X ∈ 0B. Under a set of

externally applied loads, the material points in the undeformed state deform in their

spatial position, with the new configuration n now occupying a volume nV and a

boundary nS. The coordinates of the spatial points nB = nV
⋃

nS are represented

by x ∈ nB. The position of the body at these two configurations are related by the

displacement u.

x = X + u (2.1)

In addition, an infinitesimal line element in the reference frame dX ∈ 0B is related

to its spatial configuration dx ∈ nB by

dx = F · dX (2.2)

where

F =
∂x

∂X
(2.3)

is called the deformation gradient. In order to ensure an admissible deformation

between the reference and the spatial configuration, 0 < J = det(F ) < ∞ condition

must be satisfied. An alternative form of the tensor F is in terms of a multiple of

two tensors

F = R ·U (2.4)

In a micropolar continuum, R represents an independent microrotation tensor and

U is the micropolar stretch tensor, indicating the rigid body rotation and stretch of

an arbitrary line element dX, respectively. The micropolar stretch tensor is unsym-

metric (U 6= UT ) and the microrotation tensor is represented by an orthogonal 3D
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rotational group (R ∈ SO(3)). In a Cauchy continuum, where the rotation field is

dependent on the displacement field (ϕ = 1
2
∇×u), Eqn. 2.4 corresponds to the polar

decomposition of the deformation gradient in terms of its orthogonal rotation matrix

and the symmetric stretch tensor.

In micropolar theory, the microrotation tensor R is represented in terms of SO(3)

exponential mapping

R = eΦ(ϕ) =
∞∑
n=1

Φn(ϕ)

n!
(2.5)

Considering that a line element in a micropolar continuum is rotating about the axis

of rotation of ϕ (Fig. 2.1), the exponential mapping can be simplified according to

Rodrigues’ rotation formula

R = I +
sin(θ)

θ
Φ(ϕ) +

1− cos(θ)

θ2
Φ2(ϕ) (2.6)

where Φ = −ΦT is a skew-symmetric tensor of the microrotational vector ϕ

Φ =


0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 (2.7)

and θ is the magnitude of ϕ

θ = |ϕ| =
√
ϕ2

1 + ϕ2
2 + ϕ2

3 (2.8)

For example, given an arbitrary vector r in the continuum, under a rigid body

rotation R, it transforms into r̂ (r̂ = R · r) as shown in Fig. 2.1. In the particular

case when the rotational axis corresponds to the basis vector g3, Rodrigues’ rotational

21



ggg3

ggg1

ggg2

ϕϕϕ

rrr
r̂rr

θ

Figure 2.1: Rotation of an arbitrary vector r under microrotational tensor R ∈
SO(3).

formula reduces into the well known form,

R(ϕ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.9)

In our formulation, we consider an arbitrary continuum body 0B at its reference

state, with its microstructure composed of reinforced fibers. At each material point

X, an orthonormal triad of base vectors gi is assumed to be attached to it, such that g1

is locally aligned along the fiber direction. By assuming the body is deforming under

finite local rotation, but small relative straining (isochoric plastic deformation), the

triad of base vectors in nB are ĝi, which remain orthonormal and attached to point

x, such that ĝ1 is aligned along the fiber direction. It is assumed that these base
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vectors undergo a rigid body rotation under the microrotation tensors (Fig. 2.2)

ĝi = R · gi (2.10)

As seen in Fig. 2.2b, when the body deforms, the fibers at the microscale bend and

twist locally. In a continuum modeling of fiber reinforced composites, the classical

Cauchy continuum is unable to capture the kinematics and kinetics associated with

these higher order modes of deformation. However, in a micropolar continuum, these

local fiber bending and twisting effects are introduced by considering a micropolar

volume element, where in addition to the stresses, couple-stresses are also assumed to

be transferred from one volume element to the next, as shown in Fig. 2.3. The strain

energy that takes in account these higher order deformation modes is defined as,

U =
1

2

∫
nV

(Σ : Γ)dnV +
1

2

∫
nV

(M : K)dnV (2.11)

where M is the asymmetric Cauchy, or true couple-stress (moment per area) and its

work conjugate asymmetric curvature strain is K. When considering these additional

stresses and strains, in order for the micropolar volume element in Fig. 2.3 to be in

a moment equilibrium, the classical, or true stress tensor Σ and its conjugate strain

tensor Γ are no longer symmetric (Σ 6= ΣT and Γ 6= ΓT ). In the absence of dynamic

effects, the linear and angular equilibrium equations are,

∇ ·Σ + fB = 0 or Σji,j + fBi = 0 (2.12a)

∇ ·M + ε : Σ +CB = 0 or Mji,j + εijkΣjk + CB
i = 0 (2.12b)

respectively. The derivatives and the gradients are taken with respect to the spatial

coordinates and fB and CB are the external body force and body couple. εijk is the

Levi-Civita third-order tensor. In addition, to complement Eqns. 2.12, the surface of
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(a) Homogenous continuum at the macroscale
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(b) Fiber bending and twisting at the microscale

Figure 2.2: Deformation of a fiber reinforced composite.
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Figure 2.3: Micropolar continuum volume element with asymmetric stresses Σ and
couple-stresses M .

the body can be divided in two parts from the viewpoint of boundary conditions: the

part nS1 over which boundary conditions are prescribed in terms of traction (t) and

couple-traction (Q), and the part nS2 over which boundary conditions are prescribed

in terms of displacements (u) and rotations (ϕ) (nS = nS1

⋃
nS2). On nS1,

t = ΣT · n and Q = MT · n (2.13)

where n denotes the normal to surface at x ∈ nS1.

The corresponding linear strains are defined as

Γ = (∇u)T + Φ or Γij = uj,i − εijkϕk (2.14a)
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K = (∇ϕ)T or Kij = ϕj,i (2.14b)

where Γ and K are called the asymmetric micropolar strain and curvature tensors,

respectively. The linear elastic anisotropic constitutive equations, relating the strains

to the stresses are

Σ̂ = Ĉ : Γ̂ or Σ̂ij = ĈijklΓ̂kl (2.15a)

M̂ = D̂ : K̂ or M̂ij = D̂ijklK̂kl (2.15b)

where ˆ( ) indicates the stresses, the strains, and the material properties are defined

in the fiber-aligned coordinate system ĝi. Due to the existence of U , these fourth

order stiffness tensors possess major symmetry,

Ĉijkl = Ĉklij (2.16a)

D̂ijkl = D̂klij (2.16b)

However, due to the asymmetry in the stresses and strains, the minor symmetry is

no longer satisfied

Ĉijkl 6= Ĉjikl (2.17a)

D̂ijkl 6= D̂jikl (2.17b)

The transformation of the stresses and strains from a fixed (inertial) coordinate system

to a fiber-oriented coordinate system is done through the microrotation tensor

Σ̂ = RT ·Σ ·R (2.18a)

M̂ = RT ·M ·R (2.18b)
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Γ̂ = RT · Γ ·R (2.19a)

K̂ = RT ·K ·R (2.19b)

Substituting these relations in Eqn. 2.15, the stiffness tensors transform according to

Cijkl = RimRjnRkpRlqĈmnpq (2.20a)

Dijkl = RimRjnRkpRlqD̂mnpq (2.20b)

2.3 Transversely Isotropic Constitutive Relation-

ship

The 3D transversely isotropic constitutive relation of a micropolar solid contains 18

independent material constants [39]. For the purpose of reducing the number of

material constants introduced in the theory, we will consider the 2D simplification in

the case of a planar deformation, where the nonzero displacement and rotational fields

are u = (u1, u2, 0), ϕ = (0, 0, ϕ3). In that case, the constitutive relation between the

nonzero stresses and strains, in vector form is [40]



Σ̂11

Σ̂22

Σ̂12

Σ̂21

M̂13

M̂23


=



Ĉ1111 Ĉ1112 0 0 0 0

Ĉ1112 Ĉ2222 0 0 0 0

0 0 Ĉ1212 Ĉ1221 0 0

0 0 Ĉ1221 Ĉ2121 0 0

0 0 0 0 D̂1313 0

0 0 0 0 0 D̂2323





Γ̂11

Γ̂22

Γ̂12

Γ̂21

K̂13

K̂23


(2.21)
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In addition, the out-of-plane stress is

Σ̂33 = Ĉ1112Γ̂11 + Ĉ2223Γ̂22 (2.22)

In the above 2D simplification, there are 9 independent material constants that need

to be considered. Although the proceeding analysis will focus on planar deformation

for simplicity, the extension of it to 3D is analogous.

In order to assign a physical meaning to the material constants Ĉ and D̂, it

is sometimes convenient to express the constitutive relation above in terms of the

symmetric and skew-symmetric components of Σ̂ and Γ̂. The asymmetric stress

tensor Σ̂ can be decomposed as

Σ̂ = Ŝ + T̂ (2.23a)

Ŝ =
Σ̂ + Σ̂T

2
= ŜT (2.23b)

T̂ =
Σ̂− Σ̂T

2
= −T̂ T (2.23c)

where Ŝ and T̂ are the symmetric and antisymmetric components of Σ̂, respectively.

Similarly, the decomposition of the asymmetric strain Γ̂ is

Γ̂ = ê+ Â (2.24a)

ê =
Γ̂ + Γ̂T

2
= êT =

1

2

(
∇u+ (∇u)T

)
(2.24b)

Â =
Γ̂− Γ̂T

2
= −ÂT = Φ−Ψ (2.24c)

where Ψ is a skew-symmetric tensor

Ψ =
1

2

(
∇u− (∇u)T

)
(2.25)
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corresponding to the global rotation (or macrorotation) vector ψ = 1
2
∇× u defined

in a Cauchy continuum. The constitutive relationship, in matrix form, in terms of

decomposed stress and strain tensors is



Ŝ11

Ŝ22

Ŝ12

T̂12

M̂13

M̂23


=



Ĉ11 Ĉ12 0 0 0 0

Ĉ12 Ĉ22 0 0 0 0

0 0 Ĉ33 Ĉ34 0 0

0 0 Ĉ34 Ĉ44 0 0

0 0 0 0 Ĉ55 0

0 0 0 0 0 Ĉ66





ê11

ê22

2ê12

2Â12

K̂13

K̂23


(2.26)

In addition, the out-of-plane nonzero stress is

Ŝ33 = Ĉ12ê11 + Ĉvê22 (2.27)

The material properties in Eqns. 2.26, 2.27 in terms of the constants in Eqns. 2.21,

2.22 are

Ĉ11 = Ĉ1111 (2.28a)

Ĉ22 = Ĉ2222 (2.28b)

Ĉ12 = Ĉ1122 (2.28c)

Ĉ33 =
1

4
(Ĉ1212 + 2Ĉ1221 + Ĉ2121) (2.28d)

Ĉ44 = Ĉ1212 − 2Ĉ1221 + Ĉ2121 (2.28e)

Ĉ34 =
1

4
(Ĉ1212 − Ĉ2121) (2.28f)

Ĉ55 = Ĉ1313 (2.28g)

Ĉ66 = Ĉ2323 (2.28h)

Ĉv = Ĉ2223 (2.28i)
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By assuming that the symmetric stress Ŝ11 and ê11 correspond to those in a Cauchy

continuum, the material constants relating them are

Ĉ11 =
Ê2

11(v̂23 − 1)

Λ
(2.29a)

Ĉ12 = −Ê11Ê22v̂12

Λ
(2.29b)

Ĉ22 =
Ê22(Ê22v̂

2
12 − Ê11)

Λ(1 + v̂23)
(2.29c)

Ĉv = −Ê22(Ê22v̂
2
12 + Ê11v̂23)

Λ(1 + v̂23)
(2.29d)

Ĉ33 = Ĝ12 (2.29e)

where

Λ = 2Ê22v̂
2
12 + Ê11(v̂23 − 1) (2.30)

Ĉij is written in terms of the classical Young’s modulus Êij, Poisson’s ratio v̂ij, and

the shear modulus Ĝ12, for a plane strain consideration.

2.4 Anisotropic Elastoplasticity Formulation: Hill’s

Micropolar Criterion

Fiber reinforced composites also exhibit material nonlinearity. In literature, there

have been various approaches that have been proposed to capture this. In the fol-

lowing analysis, we will proceed by considering an orthotropic elastoplastic model,

under the consideration of a flow rule. In this approach, the existence of a yield

function, which determines the elastic regime of the material, is assumed and it takes

the general form

f = f(Σ̂,M̂ , κ) (2.31)
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which is in terms of fiber-oriented Cauchy stresses and couple-stresses, Σ̂ and M̂ , re-

spectively, so that it satisfies the frame invariance requirement for anisotropic yielding.

The scalar history variable, κ, in the case of isotropic work hardening (or softening),

is expressed in terms of an equivalent stress κ = σe(εp), which is a function of an

equivalent plastic strain εp. In a general micropolar continuum, the yield function f

represents an 18-dimensional stress space (9 stress and 9 couple stress components).

The admissible stress states Σ̂ and M̂ , for a fixed history κ satisfy the condition

f ≤ 0, where the inequality defines the elastic region and the equality indicates the

elastic limit. For a 2D planar deformation, the yielding condition is simplified into a

7-dimensional stress space

f =

(
F
(

Σ̂22 − Σ̂33

)2

+G
(

Σ̂33 − Σ̂11

)2

+H
(

Σ̂11 − Σ̂22

)2

+
N

2

(
Σ̂12 + Σ̂21

)2

+ Y M̂2
13 + ZM̂2

23

)1/2

− σe(εp)

(2.32)

where the constants F ,G,H,N, Y , and Z are determined experimentally, which cor-

respond to the relative easy/difficulty of yielding in different directions due to the

anisotropy of the medium. This form is the extension of the pressure independent

Hill criterion in classical elastoplasticity for orthotropic medium. Based on these as-

sumptions, the following cases can be deduced from the generalized micropolar Hill’s

condition presented above: (1) Y = Z = 0 corresponds into Hill’s anisotropic condi-

tion in classical elastoplasticity [3], and (2) F = G = H = 1
6
, L = M = N = 1

2
, and

Y = Z = 1 corresponds to the micropolar isotropic von Mises criterion [41].

Analogous to classical elastoplasticity, the strain and curvature strain rates are

decomposed in

˙̂
Γ =

˙̂
Γ
e

+
˙̂
Γ
p

(2.33a)
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˙̂
K =

˙̂
K

e

+
˙̂
K

p

(2.33b)

where
˙̂
Γ
e

,
˙̂
K

e

are the elastic and
˙̂
Γ
p

,
˙̂
K

p

are the plastic components of the total

strains.

In this, it should be emphasized that the commonly used rate notation ˙( ) is

employed to indicate infinitesimal changes in a continuum, despite neglecting inertial

and rate-dependent effects. Under the assumption of the associative flow rule, the

plastic strains in terms of the potential function are

˙̂
Γ
p

= λ̇
∂f

∂Σ̂
= λ̇n̂Σ (2.34a)

˙̂
K

p

= λ̇
∂f

∂M̂
= λ̇n̂M (2.34b)

where n̂Σ and n̂M are the gradients of the yield surface in stress space. The plastic

multiplier λ̇ ≥ 0 is a non-negative scalar that assumes a positive value during plastic

loading, and is zero during elastic loading/unloading. Taking the constitutive relation

between the stresses and elastic strains, in rate form it reduces to

˙̂
Σ = Ĉ :

˙̂
Γ
e

= Ĉ :
(

˙̂
Γ− λ̇n̂Σ

)
(2.35a)

˙̂
M = D̂ :

˙̂
K

e

= D̂ :
(

˙̂
K − λ̇n̂M

)
(2.35b)

2.4.1 Plastic Work Rate

An important concept in the formulation of plasticity is the definition of the equivalent

stress (σe) and the plastic strain (εp), which relate the state of a material under

multiaxial loads to a uniaxial loading state. To proceed, the plastic work rate is

defined as

Ẇp = Σ̂ :
˙̂
Γ
p

+ M̂ :
˙̂
K

p

= σeε̇p (2.36)
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By defining the equivalent stress in this form,

σ2
e = F

(
Σ̂22 − Σ̂33

)2

+G
(

Σ̂33 − Σ̂11

)2

+H
(

Σ̂11 − Σ̂22

)2

+
N

2

(
Σ̂12 + Σ̂21

)2

+ Y M̂2
13 + ZM̂2

23

(2.37)

its plastic work conjugate ε̇p is determined by algebraic manipulation of Eqn. 2.36 to

be

ε̇p =
Σ̂ :

˙̂
Γ
p

+ M̂ :
˙̂
K

p

σe
=

(
Σ̂ : n̂Σ + M̂ : n̂M

σe

)
λ̇ = λ̇ (≥ 0) (2.38)

By integrating the equivalent plastic strain rate over time, the total equivalent plastic

strain is obtained

εp =

∫
ε̇pdτ =

∫
λ̇dτ (2.39)

The nonzero value of λ̇ during plastic flow is determined using the consistency con-

dition, which requires the state of stress to remain on the yield surface during plastic

loading

ḟ(Σ̂,M̂ , σe) =
∂f

∂Σ̂
:

˙̂
Σ +

∂f

∂M̂
:

˙̂
M +

dσe
dεp

ε̇p = 0

n̂Σ : (Ĉ :
˙̂
Γ + λ̇Ĉ : n̂Σ) + n̂M : (D̂ :

˙̂
K + λ̇D̂ : n̂M) + Epε̇p = 0

(2.40)

The plastic modulus Ep = dσe
dεp

is the tangent stiffness of the equivalent stress-strain

curve, which is obtained experimentally. The corresponding expression for the plastic

multiplier is simplified to

λ̇ =
ĤΣ :

˙̂
Γ + ĤM :

˙̂
K

h
(2.41)

where

ĤΣ = Ĉ : n̂Σ (2.42a)

ĤM = D̂ : n̂M (2.42b)
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h = Ep+n̂
Σ : ĤΣ + n̂M : ĤM > 0 (2.42c)

Since h is a positive scalar, the numerator of λ̇ is used to determine the loading/un-

loading conditions:

ĤΣ :
˙̂
Γ + ĤM :

˙̂
K


< 0 elastic loading

= 0 neutral loading

> 0 plastic loading

(2.43)

Next, substituting the value of λ̇ in Eqn. 2.35, the stress and couple-stress rates in

compact form are  ˙̂
Σ

˙̂
M

 =

 Ĉep B̂ep

(B̂ep)T D̂ep

 :

 ˙̂
Γ

˙̂
K

 (2.44)

where

Ĉep = Ĉ− Ĥ
Σ
⊗
ĤΣ

h
or Ĉep

ijkl = Ĉijkl −
ĤΣ
ijĤ

Σ
kl

h
(2.45a)

B̂ep = −Ĥ
Σ
⊗
ĤM

h
or B̂epijkl = −

ĤΣ
ijĤ

M
kl

h
(2.45b)

D̂ep = D̂− Ĥ
M
⊗
ĤM

h
or D̂ep

ijkl = D̂ijkl −
ĤM
ij Ĥ

M
kl

h
(2.45c)

The transpose over the fourth order tensors indicates transpose over the major in-

dices
(
B̂ep,Tijkl = (B̂epijkl)T = B̂epklij

)
. In the application of the equations above in a finite

element form, which will be discussed, it is convenient to express the elastoplastic con-

stitutive relation in terms of the symmetric and skew-symmetric stresses and strains
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defined in Eqn. 2.23 and Eqn. 2.24, which results in


˙̂
S

˙̂
T

˙̂
M

 =


L̂ep M̂ep N̂ep

(M̂ep)T Ĥep Q̂ep

(N̂ep)T (Q̂ep)T D̂ep

 :


˙̂e

˙̂
A

˙̂
K

 (2.46)

where

L̂epijkl =
(Ĉep

ijkl + Ĉep
jikl + Ĉep

ijlk + Ĉep
jilk)

4
(2.47a)

M̂ep
ijkl =

(Ĉep
ijkl + Ĉep

jikl − Ĉep
ijlk − Ĉep

jilk)

4
(2.47b)

N̂ep
ijkl =

(B̂epijkl + B̂epjikl)
2

(2.47c)

Ĥep
ijkl =

(Ĉep
ijkl − Ĉep

jikl − Ĉep
ijlk + Ĉep

jilk)

4
(2.47d)

Q̂ep
ijkl =

(B̂epijkl − B̂epjikl)
2

(2.47e)

For the 2D case, in vector form, the relevant stresses and strains are arranged in the

form

{ ˙̂σ} = [Ĉep]{ ˙̂γ} (2.48)

The components of the 6× 6 elastoplastic stiffness matrix [Ĉep] is given in Appendix

A and the stress and strain vector arrangements are

{ ˙̂σ}T = { ˙̂
S11

˙̂
S22

˙̂
S12

˙̂
T12

˙̂
M13

˙̂
M23} (2.49a)

{ ˙̂γ}T = { ˙̂e11
˙̂e22 2 ˙̂e12 2

˙̂
A12

˙̂
K13

˙̂
K23} (2.49b)

In addition, for a plane strain formulation, the out-of-plane stress rate
˙̂
S33 is nonzero,

which is also given in Appendix A.
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2.5 Objective Stress Rates

In the above formulations, the stresses, strains, and the material properties have been

defined in an orthogonal fiber-aligned corotational coordinate system. The transfor-

mation of the stresses indicated in Eqn. 2.18 cannot be extended to the stress rates

directly ( ˙̂Σ 6= RT · Σ̇ ·R, ˙̂M 6= RT · Ṁ ·R). The correct formulation is obtained

by taking the time differential of Eqn. 2.18

˙̂
Σ = ṘT ·Σ ·R + RT · Σ̇ ·R + RT ·Σ · Ṙ = RT ·ΣOG ·R (2.50a)

˙̂
M = ṘT ·M ·R + RT · Ṁ ·R + RT ·M · Ṙ = RT ·MOG ·R (2.50b)

ΣOG and MOG are new micropolar corotational stress rates, which are analogous in

definition to the objective Green-Naghdi stress rate in a Cauchy continuum.

ΣOG = Σ̇−Ω ·Σ−Σ ·ΩT (2.51a)

MOG = Ṁ−Ω ·M−M ·ΩT (2.51b)

Ω = Ṙ · RT is called the skew-symmetric gyration tensor. Using the microrotation

tensor in Eqn. 2.9 for 2D deformation, the gyration tensor results in

Ω =


0 −ϕ̇3 0

ϕ̇3 0 0

0 0 0

 (2.52)

With the equations defined above, the stress rates with respect to the global coordi-

nates are

Σ̇ = R · ˙̂
Σ ·RT + Ω ·Σ + Σ ·ΩT (2.53a)

Ṁ = R · ˙̂
M ·RT + Ω ·M + M ·ΩT (2.53b)
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The corresponding strain rates transform as

˙̂
Γ = RT · Γ̇ ·R (2.54a)

˙̂
K = RT · K̇ ·R (2.54b)

which is proven in [42]. With the constitutive relation defined in Eqn. 2.44, substi-

tuting these in Eqn. 2.53 results in

 Σ̇

Ṁ

 =

 Cep Bep

(B̂ep)T Dep

 :

 Γ̇

K̇

+ Ω ·

 Σ

M

+

 Σ

M

 ·ΩT (2.55)

where Cep
ijkl Bepijkl

Bep,Tijkl Dep
ijkl

 = RiqRjpRfkRml

Ĉep
ijkl B̂epijkl

B̂ep,Tijkl D̂ep
ijkl

 (2.56)

Similarly, in terms of the symmetric and skew-symmetric stress and strain compo-

nents, the constitutive equations are


Ṡ

Ṫ

Ṁ

 =


Lep Mep Nep

(Mep)T Hep Qep

(Nep)T (Qep)T Dep

 :


ė

Ȧ

K̇

+Ω·


S

T

M

+


S

T

M

·Ω
T (2.57)

where 
Lepijkl Mep

ijkl Nep
ijkl

Mep,T
ijkl Hep

ijkl Qep
ijkl

Nep,T
ijkl Qep,T

ijkl Dep
ijkl

 = RiqRjpRfkRml


L̂epijkl M̂ep

ijkl N̂ep
ijkl

M̂ep,T
ijkl Ĥep

ijkl Q̂ep
ijkl

N̂ep,T
ijkl Q̂ep,T

ijkl D̂ep
ijkl

 (2.58)

In a 2D finite element implementation, the preferred vector form is

{σ̇} = [Cep]{γ̇}+ ϕ̇3{σΩ} (2.59)
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where the arrangement of {σ̇} and {γ̇} are according to Eqn. 2.49 and

[Cep] = [Te]
T [Ĉep][Te] (2.60a)

{σΩ}T = {−2S12 2S12 (S11 − S22) 0 −M23 M13} (2.60b)

The 6 × 6 matrix [Cep] is the elastoplastic stiffness matrix with respect to a global

coordinate system. In addition, the transformation matrix is

[Te] =



m2 n2 mn 0 0 0

n2 m2 −mn 0 0 0

−2mn 2mn (m2 − n2) 0 0 0

0 0 0 1 0 0

0 0 0 0 m n

0 0 0 0 −n m


(2.61)

with m = cos(ϕ3) and n = sin(ϕ3).

2.6 Updated Lagrangian Formulation

In nonlinear micropolar theory, the geometric exact strain measures are the unsym-

metric stretch tensor U and the general curvature tensor, which is discussed, for

example in [42] and [43], etc. Unlike the Green-Lagrange strain in a Cauchy con-

tinuum, where the strain measure is second order nonlinear, in micropolar theory,

the higher order nonlinearity introduced are of infinite order. In the general finite

micropolar theory, the issue that is encountered is that when the additional material

constants are neglected, the strain measure does not reduce to the classical Green-

Lagrange strain tensor. Thus, results from finite classical elasticity are not deduced

from the general finite micropolar theory. This is discussed more in detail in [44],
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[45], which needs further study. In order to circumvent these complications for prac-

tical engineering application, we consider a micropolar continuum, undergoing finite

symmetric strain, while the micropolar skew-symmetric strain and the curvature are

linear in displacement and rotation. For example, this assumption was employed by

[46] for analyzing localization in granular materials, with a softening constitutive re-

lation. Due to the isotropy of the material, their yield criterion is only a function of

the invariants of the stress tensors and the consideration of the local coordinate sys-

tem is unnecessary. This assumption cannot be applied to anisotropic fiber reinforced

composites, as seen in Eqn. 2.31.

Under an updated Lagrangian (UL) formulation, where the reference frame is

taken as the previous calculated configuration at time tn, the principle of virtual

displacement for a micropolar medium, in terms of the symmetric and antisymmetric

stress and strain measures is

∫
nV

( n+1
nS : δn+1

nG+ n+1
nT : δn+1

nA+ n+1
nM : δn+1

nK)dnV = n+1R (2.62)

In this thesis, only the static response of the material is considered. Within this

context, the deformation is considered in discrete fictitious time steps, from the con-

figuration at time tn to tn+1. These time increments merely denote the load level.

nV is the volume of the body at a known configuration n, n+1
nS, n+1

nT , and n+1
nM

are the symmetric stress, micropolar skew-symmetric stress, and couple-stress at time

n + 1, referred to the configuration at time n (the second Piola-Kirchoff stresses or

PK2 stresses). The strain measures considered are the geometrically nonlinear Green-

Lagrange strain n+1
nG, the linear micropolar skew-symmetric strain n+1

nA, and the

linear curvature strain n+1
nK. In the expression above, we have used the notation

introduced by Bathe [47].
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The right hand side of Eqn. 2.62, or the external virtual work is

n+1R =

∫
n+1V

( n+1fB · δu+ n+1CB · δϕ)dn+1V

+

∫
n+1S

( n+1fS · δuS + n+1CS · δϕS)dn+1S

(2.63)

where n+1fB, n+1CB are the external body forces and body couple-forces per unit

volume at step n+ 1, and n+1fS, n+1CS are the externally applied surface traction

and couple-traction per unit surface area at step n+ 1.

In the UL formulation, the position of a point, displacement, and rotations at

step n+ 1 are expressed as the sum of the last known configuration at step n and the

incremental change

n+1x = nx+ x (2.64a)

n+1u = nu+ u (2.64b)

n+1ϕ = nϕ+ϕ (2.64c)

where u and ϕ are the incremental change in displacement and local rotation, re-

spectively, from the configuration at time n to n + 1. Consequently, the variation of

the total displacement and rotations at time n+ 1 are

δ n+1u = δ( nu+ u) = δu (2.65a)

δ n+1ϕ = δ( nϕ+ϕ) = δϕ (2.65b)

where because step n is assumed to be known, the variation of the displacements and

local rotations at frame n is δ nu = δ nϕ = 0. Similarly, the strains are

δ n+1
nGij = δ nGij = δ neij + δ nηij, neij =

1

2

(
∂ui
∂ nxj

+
∂uj
∂ nxi

)
,
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nηij =
1

2

(
∂uk
∂ nxi

∂uk
∂ nxj

)
(2.66a)

δ n+1
nAij = δ nAij = εijkδ( nψk − ϕk), nψk =

1

2
εijk

∂uj
∂ nxi

(2.66b)

δ n+1
nKij = δ nKij, nKij =

∂ϕj
∂ nxi

(2.66c)

where ne and nη are the increments of the geometrically linear and nonlinear compo-

nents of the symmetric Green-Lagrange strain, respectively, and nψ is the incremental

change in global rotation, or the rotation definition of a point in a Cauchy continuum.

Similarly, the PK2 stresses can be expressed

n+1
nS = nS + nS (2.67a)

n+1
nT = nT + nT (2.67b)

n+1
nM = nM + nM (2.67c)

where nS, nT , and nM are the Cauchy stresses (forces and moments per deformed

area) at configuration n and nS, nT , and nM are the incremental change in PK2

stresses and couple stress from the configuration at n to n+ 1. Substituting these in

the principle of virtual displacement results in

∫
nV

( nS : δ nG+ nT : δ nA+ nM : δ nK)dnV +

∫
nV

( nS : δ nη)dnV

= n+1R−
∫

nV

( nS : δne+ nT : δnA+ nM : δnK)dnV

(2.68)

In this expression, the first integral term on the left of the equality sign corresponds

to the stiffness, the second integral term to the geometrically nonlinear stiffness con-

tribution. Inside the second integral term on the right hand side of the equality sign

are the residual Cauchy stresses from the time step n. Since nS, nT , and nM

are first order linear in strain increments, and the Cauchy stresses and couple stress

are known at time n, the term corresponding to nS : δ nG is the only nonlinear

41



contribution to of incremental displacement and rotation. Linearizing in terms of u

and ϕ, the above equations can be represented as

∫
nV

{δnE δnA δnK} :


nS

nT

nM



 d nV +

∫
nV

(δ nη : nS)dnV

= n+1R−
∫

nV

{δne δnA δnK} :


nS

nT

nM



 d nV

(2.69)

In 2D, this can also be represented in simplified form as

∫
nV

(
{δnγ}T{ nσ}

)
d nV +

∫
nV

({δnη}T{ nσ}dnV = n+1R

−
∫

nV

(
{δnγ}T{ nσ}

)
d nV

(2.70)

where {δnη}T = {δnη11 δnη22 2δnη12 0 0 0} and the arrangements of stresses

and strains are according to Eqn. 2.49.

In the derivation of the elastoplastic constitutive relationship, we considered the

corotational stress and strain rates. In order to introduce the correct constitutive

relation discussed earlier, we consider the relation between the PK2 stresses and the

Cauchy stress

n+1
nS = n+1

nJ
n+1

nF
−1 · n+1S · n+1

nF
−T (2.71a)

n+1
nT = n+1

nJ
n+1

nF
−1 · n+1T · n+1

nF
−T (2.71b)

n+1
nM = n+1

nJ
n+1

nF
−1 · n+1M · n+1

nF
−T (2.71c)
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where the Jacobian from frame n to n+ 1 is

n+1
nJ = det ( n+1

nF ) > 0 (2.72)

and the deformation gradient is

n+1
nF =

∂ n+1x

∂ nx
(2.73)

Considering the following relation from continuum mechanics,

n+1
nJ̇ = n+1

nJ div( n+1L) = n+1
nJ

n+1Lkk (2.74)

where the velocity gradient n+1L is

n+1L =
∂ n+1u̇

∂ n+1x
and n+1

nḞ
−1 = − n+1

nF
−1 n+1L (2.75)

the rate form of Eqn. 2.71 results in

n+1
nṠ = n+1

nJ
n+1

nF
−1 · n+1S∇ T · n+1

nF
−T (2.76a)

n+1
nṪ = n+1

nJ
n+1

nF
−1 · n+1T∇ T · n+1

nF
−T (2.76b)

n+1
nṀ = n+1

nJ
n+1

nF
−1 · n+1M∇ T · n+1

nF
−T (2.76c)

The notation ( )∇ T indicates the Truesdell rate of Cauchy stresses

n+1S∇ T = n+1Ṡ + div( n+1L) n+1S − n+1L · n+1S − n+1S · n+1LT (2.77a)

n+1T∇ T = n+1Ṫ + div( n+1L) n+1T − n+1L · n+1T − n+1T · n+1LT (2.77b)

n+1M∇ T = n+1Ṁ + div( n+1L) n+1M − n+1L · n+1M − n+1M · n+1LT

(2.77c)
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Next we consider the constitutive relationship defined in Eqn. 2.57 to be in terms of

the corotational rate of Cauchy stresses. Substituting this into Eqn. 2.77 results in


n+1S∇ T

n+1T∇ T

n+1M∇ T

 =


Lep Mep Nep

(Mep)T Hep Qep

(Nep)T (Qep)T Dep

 :


n+1ė

n+1Ȧ

n+1K̇


+div( n+1L)


n+1S

n+1T

n+1M

− ( n+1L− n+1Ω) ·


n+1S

n+1T

n+1M


−


n+1S

n+1T

n+1M

 · (
n+1LT − n+1ΩT )

(2.78)

In the linearized principle of virtual displacement expression (Eqn. 2.69 or 2.70), the

incremental change in PK2 stresses and couple stresses can be expressed as

nS = ∆S =

∫ tn+1

tn

τ
nṠdτ =∫ tn+1

tn

(
τ
nJ

τ
nF
−1 · τS∇ T · τnF−T

)
dτ ≈ nS∇ T∆t (2.79a)

nT = ∆T =

∫ tn+1

tn

τ
nṪ dτ =∫ tn+1

tn

(
τ
nJ

τ
nF
−1 · τT∇ T · τnF−T

)
dτ ≈ nT∇ T∆t (2.79b)

nM = ∆M =

∫ tn+1

tn

τ
nṀdτ =∫ tn+1

tn

(
τ
nJ

τ
nF
−1 · τM∇ T · τnF−T

)
dτ ≈ nM∇ T∆t (2.79c)

where for a sufficiently small subinterval ∆t = tn+1−tn, the integrals are approximated
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with a single left hand integration point. Similarly,

ne = ∆e =

∫ tn+1

tn

τ
nėdt ≈ nė∆t (2.80a)

nA = ∆A =

∫ tn+1

tn

τ
nȦdt ≈ nȦ∆t (2.80b)

nK = ∆K =

∫ tn+1

tn

τ
nK̇dt ≈ nK̇∆t (2.80c)

As a result, in 2D, the incremental PK2 stresses can be represented as

{ nσ} = ([ nC
ep] + [ nC

σ]) { nγ} (2.81)

where

[ nC
σ] =



−nS11
nS11 −nS12

nS12 0 0

nS22 −nS22 −nS12 −nS12 0 0

0 0 −1
2

(nS11 +n S22) −1
2

(nS11 −n S22) 0 0

0 0 0 0 0 0

0 nM13 −1
2

n
M23

1
2

n
M23 0 0

nM23 0 −1
2

n
M13 −1

2

n
M13 0 0


(2.82)

and [ nC
ep] corresponds to the micropolar elastoplastic stiffness at time step n. The

corresponding principle of virtual displacement is

∫
nV

{δnγ}T ([ nC
ep] + [ nC

σ]) { nγ}d nV +

∫
nV

({δnη}T{ nσ}dnV = n+1R

−
∫

nV

(
{δnγ}T{ nσ}

)
d nV

(2.83)

where it will be reduced into a finite element form.
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2.7 Finite Element Discretization

In this section, the finite element discretization of the micropolar nonlinear equations

is discussed. Again, restricting our attention to a 2D deformation in the (x1, x2)

plane, the displacement and rotation increments in Eqn. 2.64b,c are expressed as

u1 =
4∑
j=1

Nju
(j)
1 (2.84a)

u2 =
4∑
j=1

Nju
(j)
2 (2.84b)

ϕ3 =
4∑
j=1

Njϕ
(j)
3 (2.84c)

where

N1(r, s) =
1

4
(1 + r)(1 + s) (2.85a)

N2(r, s) =
1

4
(1− r)(1 + s) (2.85b)

N3(r, s) =
1

4
(1− r)(1− s) (2.85c)

N4(r, s) =
1

4
(1 + r)(1− s) (2.85d)

are the element shape functions defined in the isoparametric coordinates (r, s) and

they assume a value of 1 at node (j) and a value of 0 at the remaining nodes. u
(j)
1 , u

(j)
1 ,

and ϕ
(j)
3 are the corresponding nodal displacements and rotations. In the above

representation, a 4-noded quadrilateral element, with 4 Gauss integration points is

considered, as shown in Fig. 2.4. In this formulation, each node in the micropolar

continuum has both displacement and rotational degrees of freedom.

In finite element form, the strain increment vector is defined as

{ nγ} = [ nnBL]{q} (2.86)
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Figure 2.4: Isoparametric representation of a 4-noded micropolar quadrilateral ele-
ment.

where [ nnBL], defined in Appendix B, is the transformation matrix relating the incre-

mental strains to the incremental changes in nodal displacements and the rotations

{q}, which is arranged as

{q} = {u(1)
1 u

(1)
2 ϕ

(1)
3 · · · u

(4)
1 u

(4)
2 ϕ

(4)
3 }T (2.87)

Under this discretization, the principle of virtual displacement in Eqn. 2.83 simplifies

in a finite element form

([ nnKL] + [ nnKNL]) {q} = { n+1R} − { nnF } (2.88)

where { n+1R} is the vector of externally applied nodal point loads at step n + 1

and { nnF } is the vector of nodal forces equivalent to the element stresses (or residual

stresses) at time n. In the above expressions, [ nnKL] is the incremental stiffness matrix

corresponding to the linear part of the strain {nγ} and [ nnKNL] is the contribution to
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the stiffness from the geometric nonlinear part {nη}. The expressions of each of these

stiffness matrices and force vectors defined are given in Appendix B. The solution

to the linear algebraic equations is the vector {q}. In this analysis, we assume the

micropolar continuum is subjected to a proportionally varying load. In this case, the

equations to be solved are

([ nnKL] + [ nnKNL]) {q} = n+1λ{ n+1R} − { nnF } (2.89)

where n+1λ is the load factor that describes the intensity of the reference load vector

{ n+1R} to be applied at step n+ 1. The solution scheme is based on an incremental

implicit arc-length method (Riks method) in order to capture unstable equilibrium

paths, such as a snap-back response, which is associated with fiber kinking. After

solving for {q}, the total nodal displacements and rotation are updated as

{ n+1q} = { nq}+ {q} (2.90)

where { nq} is the total nodal unknowns at step n. In addition, at the end of the

increment ∆t, the Cauchy stresses and couple-stress at step n+ 1 are updated as

n+1S ≈ nS + n+1Ṡ∆t (2.91a)

n+1T ≈ nT + n+1Ṫ∆t (2.91b)

n+1M ≈ nM + n+1Ṁ∆t (2.91c)

which are stored as state variables to be utilized in the next time increment. The

finite element formulation is implemented in a Fortran based user element (UEL)

subroutine, with the commercial software ABAQUS.
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2.8 Results and Discussion

Based on the nonlinear formulation above, the utility of the continuum model is

demonstrated by simulating the kinking behavior of a homogenized fiber reinforced

composite. In proceeding, the micromechanics boundary value problem in [48], of a

unidirectional fiber composite is considered. The homogenized boundary value prob-

lem is shown in Fig 2.5. The anisotropic domain has dimensions Lx = 2.0mm and

Ly = 0.9mm, with the fibers assumed to be aligned along the x1-direction, with an

initial geometric imperfection of 1-degree. Both geometric and material nonlinear-

ity are included in the analysis and due to the presence of the initial imperfection,

the compressive load induces an axial-shear coupling. This leads to a limit point

structural instability.

This is in contrast to previous studies of localization ([41], [46], etc.), where a

softening (negative tangent stiffness) is introduced in the constitutive relation. When

the stiffness ceases to be positive definite at the descending stress-strain curve, insta-

bilities and bifurcations arise, which lead to localization. However, this abstraction of

a material model is in violation of Drucker stability criterion (positive definite consti-

tutive relation) for a nonlinear continuous material. Although a softening relation is

sufficient for localization to be induced, it will be shown to be unnecessary. Instead,

its formation can be modeled as a structural instability at the micropolar continuum

scale.

The boundary conditions are: (a) on x1 = 0, u1 = 0 while being unconstrained

along x2-direction, (b) the inclined edges along x2 = 0, Ly are traction and couple-

traction free, or t = 0 and Q = 0, respectively, and (c) compression load u1 = −∆

is applied along the edge x1 = Lx, while unconstrained along u2-direction. (d) The

origin x1 = x2 = 0 is set u1 = u2 = 0 to avoid rigid body rotation. In literature, the

these boundary conditions have been shown to best be representative of the infinite-

domain assumption for fiber kinking, while minimizing the influence of the boundary.
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Because the topic of the this study is the effect of micropolarity and the additional

material constants that are introduced, convergence studies demonstrating the valid-

ity of the boundary conditions will not be discussed. In addition, the micromechanics

analysis and the determination of these micropolar material constants of fiber re-

inforced composites are discussed in the next section, which are presently ignored.

The classical, effective linear anisotropic material properties considered are shown in

Table 2.1, where the corresponding values of Ĉij can be found from Eqn. 2.29.

Δ

𝐿𝑥 = 2.0𝑚𝑚

𝐿𝑦 = 0.9𝑚𝑚

𝑥1

𝑥2

1𝑜misalignment

ggg2

ggg1

Figure 2.5: Schematic of the equivalent micropolar continuum boundary value prob-
lem.

Table 2.1: Effective elastic composite properties.

Ê11 Ê22 Ê33 Ĝ12 Ĝ13 Ĝ23 v̂12 v̂13 v̂23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
120.43 7.50 7.50 2.40 2.40 2.07 0.40 0.40 0.76

Because the fibers are locally aligned along the ĝ1-direction, the bending resis-

tance perpendicular to it is neglected
(
Ĉ66 = 0

)
. Since the micropolar length scale
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is introduced through the constant Ĉ55, which has a dimension of stress× length2, it

is convenient to express it as Ĉ55 = 2Ĝ12l
2, where l is the characteristic length of the

microstructure of the composite, which will be considered to be the fiber diameter.

Because in this boundary value problem the yielding is dominated by compression

and shearing, for simplicity, the relevant nonzero coefficients in the yielding criterion

Eqn. 2.32 are chosen F = 1 and N = 4.17. The hardening relation between the

equivalent stress and strain is shown in Fig. 2.6. It should be noted that a softening

relation is not introduced, which is in contrast to localization studies commonly found

in literature, such as in [41], [46], etc.
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Figure 2.6: Equivalent stress (σe) vs equivalent strain (εp) relation.

In order to clarify the effects of the micropolar constants Ĉ34, Ĉ44, Ĉ55, we will

consider the two cases: (1) Ĉ34 = Ĉ44 = 0, and Ĉ55 6= 0 for analyzing the effect

of the characteristic length l and (2) Ĉ34, Ĉ44, Ĉ55 6= 0, in order to bring about the

effect of the additional shear moduli. It should be noted that in case (1), because

the shear moduli are neglected, this corresponds to the results of the well known
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couple-stress theory, where the stress and strain tensors are symmetric [40]. Fig. 2.7

shows the results for different fiber diameter along with different mesh sizes (9 × 21

and 18 × 41). The characteristic lengths chosen are l = 0µm, which corresponds

to classical elasticity, l = 6µm, which is a realistic value of the fiber diameter that

is found in engineering manufactured fiber composites, and in the extreme case of

l = 100µm. In the macroscopic stress-strain response of the structure, it is observed

that as the fiber diameter is increased, the peak load also increases. Physically,

this is due to the local increase of the bending stiffness of the fibers, which in turn

increases the microbuckling load. This is a so-called length scale effect not captured

in the classical macroscopic models. In addition, the formation of localization of the

plastic strain εp in the snap-back region is shown in (a)-(f). In the Cauchy model

(green), in the post-peak region, the localization is mesh-dependent and the plastic

deformation is limited to only a single column of elements (localization angle is zero).

The localization width is seen to be proportional to the magnitude of the characteristic

length. As a result, the degree to which the model is mesh-independent is a function

of the characteristic length l, or Ĉ55. As mentioned earlier, this parameter increases

the order of the Laplacian operator of the governing equations, which prevents a loss

in ellipticity.

Next, the effects of the shear moduli Ĉ34 and Ĉ44 are analyzed. The values consid-

ered for them are Ĉ34 = Ĝ12/24 and Ĉ44 = Ĝ12/8. In the micropolar theory discussed

above, the presence of these moduli introduces asymmetry in the stress and strain

tensors. In an anisotropic microstructure, since the fibers are aligned along a single

direction, when a simple shear load is applied perpendicular to the fibers, the re-

sistance is expected to be stiffer compared to the shear load applied parallel to the

fibers. In a Cauchy continuum, these higher order shear effect of anisotropic materials

is not captured and further details regarding the physical meaning of these additional

moduli is discussed in the later chapter of the thesis.
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The results of localization with nonzero shear moduli is shown in Fig. 2.8. Unlike

the micropolar characteristic length l (or Ĉ55), the shear moduli have a knockdown

factor on the peak load. In addition, compared to the Cauchy continuum results in

Fig. 2.7, the localization is again not limited to a single element. These material

constants are also observed to have an effect on the localization angle.

2.9 Conclusion

This chapter focused on the development of an anisotropic nonlinear micropolar the-

ory, for application to fiber reinforced composites. Both geometric and physical non-

linearities were considered. The material nonlinearity was based on the anisotropic

elastoplastic Hill’s criterion. In addition, the nonlinear finite element formulation of

the these equations was discussed. To demonstrate the advantage of micropolar the-

ory in capturing length scale effects, it was applied towards studying localization, or

fiber kinking. Unlike previous works in this area, a softening relation in the equivalent

stress-strain relation was not introduced. The effects of the additional micropolar ma-

terial constants were analyzed. The material property Ĉ55 was shown to influence the

localization width, while the additional micropolar shear moduli had an effect on the

localization angle. In the next section, the determination of these material constants

is discussed, along with comparison of the results to an exact micromechanics based

Cauchy continuum model.
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Figure 2.7: Effects of the parameter Ĉ55, or l, on the macroscopic stress-strain re-
sponse and the formation of localization for different meshes.
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Figure 2.8: Effects of the shear moduli Ĉ34, Ĉ44 on the macroscopic stress-strain
response and the formation of localization for different meshes.
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CHAPTER 3

Micromechanics vs Micropolar

Continuum Comparison

3.1 Introduction

In general, fiber reinforced composites consist of transversely-isotropic fibers, sur-

rounded by an isotropic polymer matrix material. The interaction of these micro-

constituents exhibit complex mechanical behavior at the macroscale. The analysis

of these composites has often relied on modeling these materials by treating the

constituents as effective materials (macromechanics approach). However, in this ap-

proach, details regarding the geometric and structural features of the constituents are

lost. This becomes problematic when attempting to analyze and predict failure mech-

anisms, where the geometry of the microstructure and the imperfections associated

with them have significant effect on the load bearing capacity of the material [22]. For

accurate predictions, the most reliable models are those that explicitly consider fiber

and matrix constituents of the composite (micromechanics approach) [49]. Unlike

the macromechanics approach, these models provide more physical insight regarding

the failure of the fiber and the matrix, as well as the load transfer between the two

[50], [51]. The micromechanics approach is advantageous in accurately predicting

the behavior of the composite, but is costly in computational time due to the large

number of degrees of freedom associated with the model. Because of this, resorting to
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continuum models is often more practical. In the previous section, it was shown that

in modeling strain localization, the classical continuum approach is limited due to

the absence of an appropriate internal “length scale.” This causes a loss in ellipticity

of the governing equations at the onset of failure, which leads to results that are a

function of the mesh size. A higher order micropolar theory was shown to remedy

this.

In this chapter, we proceed with the nonlinear micropolar model developed to com-

pare the continuum predictions with the exact, micromechanics model. In literature,

one of the challenges of micropolar theory has been the determination of these ad-

ditional material constants. With the introduction of couple-stresses and curvatures,

new material properties are introduced. In this section, new physics based methods

of determining these additional constants is discussed, which provides insight to their

physical meaning.

The constitutive relationship of a 2D transversely-isotropic micropolar material is

restated below for convenience

Σ̂11

Σ̂22

Σ̂12

Σ̂21

M̂13

M̂23



=



Ĉ1111 Ĉ1122 0 0 0 0

Ĉ1122 Ĉ2222 0 0 0 0

0 0 Ĉ1212 Ĉ1221 0 0

0 0 Ĉ1221 Ĉ2121 0 0

0 0 0 0 D̂1313 0

0 0 0 0 0 D̂2323





Γ̂11

Γ̂22

Γ̂12

Γ̂21

K̂13

K̂23



(3.1)

The out-of-plane nonzero stress associated with planar deformation (plane strain) is

Σ̂33 = Ĉ1122Γ̂11 + Ĉ2233Γ̂22 (3.2)

In terms of the symmetric and skew-symmetric stress and strain components, the
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constitutive relationship is expressed as



Ŝ11

Ŝ22

Ŝ12

T̂12

M̂13

M̂23



=



Ĉ11 Ĉ12 0 0 0 0

Ĉ12 Ĉ22 0 0 0 0

0 0 Ĉ33 Ĉ34 0 0

0 0 Ĉ34 Ĉ44 0 0

0 0 0 0 Ĉ55 0

0 0 0 0 0 Ĉ66





ê11

ê22

2ê12

2Â12

K̂13

K̂23



(3.3)

with the out-of-plane stress being

Ŝ33 = Ĉ12ê11 + Ĉvê22 (3.4)

The Ĉij constants in terms of Ĉijkl and D̂ijkl are

Ĉ11 = Ĉ1111 (3.5a)

Ĉ22 = Ĉ2222 (3.5b)

Ĉ12 = Ĉ1122 (3.5c)

Ĉ33 =
1

4
(Ĉ1212 + 2Ĉ1221 + Ĉ2121) (3.5d)

Ĉ44 = Ĉ1212 − 2Ĉ1221 + Ĉ2121 (3.5e)

Ĉ34 =
1

4
(Ĉ1212 − Ĉ2121) (3.5f)

Ĉ55 = D̂1313 (3.5g)

Ĉ66 = D̂2323 (3.5h)

Ĉv = Ĉ2223 (3.5i)

As discussed, these constants can be expressed in terms of the classical Young’s moduli
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Êij, Poisson’s ratios v̂ij, and the shear modulus Ĝ12

Ĉ11 =
Ê2

11(v̂23 − 1)

Λ
(3.6a)

Ĉ12 = −Ê11Ê22v̂12

Λ
(3.6b)

Ĉ22 =
Ê22(Ê22v̂

2
12 − Ê11)

Λ(1 + v̂23)
(3.6c)

Ĉv = −Ê22(Ê22v̂
2
12 + Ê11v̂23)

Λ(1 + v̂23)
(3.6d)

Ĉ33 = Ĝ12 (3.6e)

where

Λ = 2Ê22v̂
2
12 + Ê11(v̂23 − 1) (3.7)

It should be reiterated that the material constants are defined in a fiber-aligned

coordinate system shown in Fig. 3.1. Following that, new material properties are in-

ො𝑥1

ො𝑥2

𝑥1

𝑥2

Figure 3.1: Fiber-aligned coordinates x̂i.

troduced. Unlike a classical continuum, there are 3 independent shear moduli present
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(Ĉ33, Ĉ34, Ĉ44 or Ĉ1212, Ĉ1221, Ĉ2121). Physical meaning will be provided for these

material constants and numerical tests are proposed to determine them, based on

the application of simple shear along and perpendicular to the fiber directions. This

differentiation of the shear deformation modes of a fiber reinforced composite is ab-

sent in a Cauchy continuum. In addition, 2 material constants are introduced from

the moment-curvature relation (Ĉ1313, Ĉ2323 or Ĉ55, Ĉ66), which will be determined

by generalizing the well known concentric cylinder model (CCM), by introducing the

bending mode of the fibers. The effective linear and material nonlinear properties are

determined based on the transversely-isotropic fiber and matrix properties provided

in [3]. Based on these, the fiber-matrix kinking predictions will be compared to that

of the micromechanics model.

3.2 Effective Properties of a Fiber Reinforced Com-

posite

3.2.1 Concentric Cylinder Model (CCM)

In this section, the effective properties of a carbon fiber reinforced polymer matrix

(CFRP) are discussed. The composite under consideration pertains of transversely-

isotropic fibers and an isotropic matrix. The constituent materials are assumed to

be Cauchy materials, however, the effective composite is modeled as a micropolar

continuum. The fiber and matrix elastic properties reported in [3] will be considered.

The fiber properties are given in Table 3.1.

Table 3.1: Transversely-isotropic fiber properties [3].

Êf
11 Êf

22 Êf
33 Ĝf

12 Ĝf
13 Ĝf

23 v̂f12 v̂f13 v̂f23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
276.0 8.76 8.76 12.0 12.0 3.24 0.35 0.35 0.35

The x̂1-direction is taken to be the fiber-aligned coordinate axes. The matrix
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elastic modulus and Poisson’s ratio are Em = 3.01GPa and vm = 0.48. Because

the matrix layer is isotropic (properties independent of direction), the (̂ ) notation is

disregarded.

With the given fiber and matrix properties, the effective classical properties are

evaluated using the concentric cylinder model (CCM). In this approach, the fiber

reinforced composite is assumed to be represented by concentric cylindrical fibers,

surrounded by an outer cylindrical matrix layer. The radius of the outer matrix layer

is taken so that the concentric cylinder has the same volume fraction as the composite

under consideration. Based on a set of loading conditions on the concentric cylinders,

the effective material constants are evaluated. The details of the CCM can be found

in [52], and further application of it to fiber reinforced composites, in [53], [54]. The

advantage of this approach is that it provides closed form expressions for the effective

properties in terms of the fiber and the matrix properties, and the volume fraction.

These closed form expressions are given in the Appendix C. By considering a fiber

volume fraction V f = 0.50 and the linear fiber and matrix properties mentioned

earlier, the elastic properties of the composite are given in Table 3.2.

Table 3.2: Effective elastic composite properties.

Ê11 Ê22 Ê33 Ĝ12 Ĝ13 Ĝ23 v̂12 v̂13 v̂23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
139.54 5.44 5.44 2.51 2.51 1.73 0.42 0.42 0.57

The values of Ĉij can be found by direct substitution of the properties expressed

above into Eqn. 3.6.

3.2.2 Micropolar Shear Properties

One of the challenges of higher order continuum theories, such as micropolar theory,

is the determination of the addition material constants. In the recent decades, volume

averaging methods have been developed for this purpose. For discrete cellular solids
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and two-phase micropolar continuum medium, the determination of the effective mi-

cropolar properties using the generalized Hill-Mandel condition has been discussed in

[55] and [56], respectively. However, for two-phase Cauchy continuum medium, these

methods are inapplicable due to the inability to locally enforce an independent rota-

tion degrees of freedom on the boundary of a representative volume element (RVE).

For these systems, an approach by Forest and Sab [57] was proposed for periodic,

heterogenous volume elements. As pointed out in [58], with the introduction of the

higher order deformation modes, there is a loss of direct relation between the applied

kinematic loads on the RVE and the macroscopic strains when volume averaging is

applied. In the following analysis, to avoid these issues, we propose a physics-based

approach to determining the micropolar constants of a fiber reinforced composite.

The constants Ĉ34 and Ĉ44 are found by applying simple shear loads. Because the

shear stress and strain tensors are asymmetric in a micropolar continuum, this fact

is exploited by quantifying the difference in the simple shear responses of a fibreous

volume element to determine these constants. In Eqn. 3.1, the constitutive relation

relating the shear stresses Σ̂12, Σ̂21 to the strains Γ̂12, Γ̂21, shows that there are 3 in-

dependent material constants, Ĉ1212, Ĉ1221, Ĉ2121. The shear stress-strain relation can

also be written in compliance form in terms of Ĉ33, Ĉ34, Ĉ44 Γ̂12

Γ̂21

 =

 Ĉ33−2Ĉ34+Ĉ44

4(Ĉ33Ĉ44−Ĉ2
34)

− Ĉ33−Ĉ44

4(Ĉ33Ĉ44−Ĉ2
34)

− Ĉ33−Ĉ44

4(Ĉ33Ĉ44−Ĉ2
34)

Ĉ33+2Ĉ34+Ĉ44

4(Ĉ33Ĉ44−Ĉ2
34)


 Σ̂12

Σ̂21

 (3.8)

To determine the 3 independent shear moduli, the response of the composite, under

the application of simple shear stress (a) Σ̂12 = Σ, Σ̂21 = 0, (b) Σ̂12 = 0, Σ̂21 = Σ,

and a pure shear stress (c) Σ̂12 = Σ̂21 = Σ is analyzed. Due to the presence of the

fibers and the direction at which they are aligned, the response of the composite

under the these loading cases will result in different shear responses. Numerical tests

are proposed to determine these shear moduli. Because a closed form expression
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for Ĉ33 = Ĝ12 is given by the CCM from applying a pure shear stress, only the

numerical tests (a) and (b) will be shown to determine the shear moduli Ĉ34 and Ĉ44.

These correspond to applying shear stress perpendicular and parallel to the fibers,

respectively. As shown in Fig. 3.2, under the application of identical shear stress Σ for

both cases, the angle of rotation (or shear strain) of the volume element will not be the

same. For these boundary value problems, on each surface (S1

⋃
S2

⋃
S3

⋃
S4 = S)

of the volume element, either the displacement ûSi or the force traction f̂Si = Σ̂jin̂
S
j

is specified, where n̂Sj is the surface normal.

These tests are conducted numerically using a finite element approach. The fibers

are assumed to be arranged in a hexagonal pattern in 3D-space. Under this as-

sumption, an equivalent 2D layered representation is considered for simplicity. The

representation of a 3D fiber reinforced composite as an equivalent 2D layered struc-

ture is discussed in [23], [59]. In Fig. 3.2a, the boundary conditions are: (1) on

surface S1, the displacement along x̂1 direction is constrained, or ûS1 = 0, and the

traction f̂S2 = Σ̂12 = Σ is specified, (2) on surface S3, ûS1 = 0 and the traction

f̂S2 = −Σ̂12 = −Σ is specified, and (3) surfaces S2 and S4 are traction free (f̂Si = 0)

so that Σ̂21 = 0. Similarly, in Fig. 3.2b, (1) on surface S4, the displacement along x̂2

direction is constrained, or ûS2 = 0 and the traction f̂S1 = Σ̂21 = Σ is specified, (2) on

surface S2, ûS2 = 0 and the traction f̂S1 = −Σ̂21 = −Σ is specified, and (3) surfaces

S1 and S3 are traction free (f̂Si = 0) so that Σ̂12 = 0.

In Fig. 3.2a, the volume element is more resistant to shearing because the stiffer

fibers carry the shear load, but in Fig. 3.2b the fibers are parallel to the loading

directions, in which case the soft matrix layer predominantly carries the load. As a

result, the rotation angle θ̂21 > θ̂12. In these configurations, the rotation of the volume

element is constrained (ϕ3 = 0) and under small shear deformation, the asymmetric
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෠Σ12 = Σ, ො𝑢1
𝑆 = 0

መ𝜃12

෠Σ12 = Σ, ො𝑢1
𝑆 = 0

ො𝑥1

ො𝑥2
𝑆4

𝑆1

𝑆3

𝑆2 𝑙

(a) Shear stress applied perpendicular to fibers

෠Σ21 = Σ, ො𝑢2
𝑆 = 0 መ𝜃21

෠Σ21 = Σ, ො𝑢2
𝑆 = 0

ො𝑥1

ො𝑥2

𝑆1

𝑆2

𝑆4

𝑆3𝑙

(b) Shear stress applied parallel to fibers

Figure 3.2: Schematic of an externally applied shear load on a fiber (black) and matrix
(orange) layered composite.
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shear strains defined in Eqn. 2.14 simplify in

Γ̂12 = û2,1 ≈ θ̂12 (3.9a)

Γ̂21 = û1,2 ≈ θ̂21 (3.9b)

where the shear rotation angles are defined θ̂12 = 2 û2(x̂1=l/2,x̂2=0)
l

and θ̂21 = 2 û1(x̂1=0,x̂2=l/2)
l

.

For the given applied loads in cases (a) and (b), these boundary value problems are

solved numerically using a commercial finite element software, ABAQUS, where the

corresponding angles of rotations are extracted. Using the constitutive relation in

Eqn. 3.8, the relation between the external applied shear load and the shear defor-

mation angle for case (a) is

θ̂12 =

(
Ĉ33 − 2Ĉ34 + Ĉ44

4(Ĉ33Ĉ44 − Ĉ2
34)

)
Σ (3.10)

Similarly, in case (b),

θ̂21 =

(
Ĉ33 + 2Ĉ34 + Ĉ44

4(Ĉ33Ĉ44 − Ĉ2
34)

)
Σ (3.11)

From these 2 algebraic equations, the 2 unknown properties, Ĉ34, Ĉ44 are evaluated.

In the following analysis, the layered composite is assumed with a volume fraction of

V f = 0.50, fiber layer thickness of 2ra = 6µm (ra is fiber radius), and an external

applied load Σ = 0.1GPa. Using this approach, 6 different volume element sizes are

considered to minimize domain-size effects and to obtain the best approximation of

the material properties. Square domains of length l are analyzed, with 6, 12, 18, 24,

30, and 36 fibers. The deformation modes of cases (I)-(IV) obtained numerically is

shown in Fig. 3.3. In Table 3.3, the micropolar shear properties are approximated

Ĉ34 = 0.30GPa and Ĉ44 = 0.49GPa.
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(a) Σ̂12 = Σ applied on a 6 fiber volume el-
ement

(b) Σ̂21 = Σ applied on a 6 fiber volume
element

(c) Σ̂12 = Σ applied on a 12 fiber volume
element

(d) Σ̂21 = Σ applied on a 12 fiber volume
element

(e) Σ̂12 = Σ applied on a 18 fiber volume
element

(f) Σ̂21 = Σ applied on a 18 fiber volume
element

(g) Σ̂12 = Σ applied on a 24 fiber volume
element

(h) Σ̂21 = Σ applied on a 24 fiber volume
element

Figure 3.3: Numerical results of the deformation modes of the representative volume
elements.
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Table 3.3: Volume elements under external load Σ = 0.1GPa.

Case Number of Fibers θ̂12/Σ θ̂21/Σ Ĉ34 Ĉ44

(1/GPa) (1/GPa) (GPa) (GPa)
(I) 6 0.41 0.78 0.48 0.62

(II) 12 0.48 0.79 0.36 0.53
(III) 18 0.51 0.79 0.32 0.50
(IV ) 24 0.52 0.80 0.31 0.49
(V ) 30 0.53 0.80 0.30 0.49
(V I) 36 0.53 0.80 0.30 0.49

3.2.3 Couple-stress and Curvature Relation

Next, the constants Ĉ55 and Ĉ66, relating the couple-stresses to curvatures, are ana-

lyzed. These material constants are assumed to correspond to the bending stiffness

of the fibers. To evaluate them, we refer to the concentric cylinder model and treat it

as a one-dimensional slender rod under an external bending moment M̂3 (Fig. 3.4).

෡𝑀3
෡𝑀3

ො𝑥2

ො𝑥3

ො𝑥1

𝑟𝑎

𝑟𝑏

ො𝜎11(𝑟)

ො𝑥2

ො𝑥3

𝜃

1D concentric rod model Cross-sectional area

Figure 3.4: Concentric fiber-matrix cylinder under bending moment.

Under the assumptions of Timoshenko beam theory, the kinematic relation for the

rod structure, under a bending moment M̂3 is

û1(x̂1, x̂2, x̂3) = −x̂2ϕ3(x̂1) (3.12a)

û2(x̂1, x̂2, x̂3) = û2(x̂1) (3.12b)
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ϕ3 is the independent rotational degree of freedom of the rod, which corresponds to

the local rotation field in the micropolar continuum. The relevant normal strain ε̂11

for the structure is

ε̂11 =
∂û1

∂x̂1

= −x̂2
dϕ3

dx̂1

(3.13)

From the definition of bending moment,

M̂3 =

∫
A

−x̂2σ̂11dA (3.14)

where σ̂11 is the nonuniform distribution of axial stress, on the cross-sectional area

of the cylinder. Because the properties of the fiber and the matrix cylinders are

dissimilar, the integration of Eqn. 3.14 can be expressed as

M̂3 =

∫
Af

−x̂2σ̂
f
11dA

f +

∫
Am

−x̂2σ̂
m
11dA

m (3.15)

where σ̂f11 and σ̂m11 are the stresses in the fiber and the matrix layers of the rod,

respectively, integrated over the cross sectional area of the fiber (Af ) and the matrix

(Am) layers. These stresses can be expressed in terms of strain,

σ̂f11 = Êf
11ε̂11 (3.16a)

σ̂m11 = Emε̂11 (3.16b)

By substituting the constitutive relation above into Eqn. 3.15 and integrating, it

results in

M̂3(x̂1) = −
∫ r=ra

r=0

∫ θ=2π

θ=0

(
r2 cos(θ)Êf

11ε̂11

)
dθdr −

∫ r=rb

r=ra

∫ θ=2π

θ=0

(
r2 cos(θ)Emε̂11

)
dθdr

= π
r4
a

4

(
Êf

11 − Em
(
1− (V f )−2

)) dϕ3(x̂1)

dx̂1

(3.17)
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Normalizing this by the cross-sectional area A = πr2
b , we arrive at the couple-stress

and curvature relation

M̂13 =
M̂3

A
=

1

4

(
Êf

11V
f − Em(V f − (V f )−1)

)
r2
a

dϕ3

dx̂1

(3.18)

From this, the material constant Ĉ55 is

Ĉ55 =
1

4

(
Êf

11V
f − Em(V f − (V f )−1)

)
r2
a

(3.19)

In the above expression, the fiber radius ra should be emphasized. This is the so-

called “length scale” introduced in the constitutive relation by considering micropolar

theory.

Similarly, in a general 3D deformation state, the concentric rod model can be

extended to obtain the relation of bending moment and rod twisting, along the x̂2 and

x̂1 directions, respectively, which will not be considered in the 2D planar assumption.

In addition, since the fibers are aligned along the x̂1-direction, the couple-stress M̂23

is negligible. Thus, Ĉ55 >> Ĉ66, or Ĉ66 = 0.

3.3 Material Nonlinear Behavior: Micropolar Elasto-

plasticity

The load bearing capacity of the composite under compression is recognized to be

strongly influenced by the matrix nonlinearity. At the microscale, with an increase

in external loading, the matrix stiffness degrades due to the onset of plasticity. This

causes the matrix material surrounding the fibers to loose its shear resistance with

continued macroscopic loading, until a critical point when the fibers start to rotate

locally. This is the onset of fiber kinking, as lucidly illustrated in Davidson and
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Waas [24]. Since material nonlinearity is crucial for modeling this phenomenon, the

nonlinearity at the microscale will be treated as an effective material nonlinearity

at the macroscale. This is modeled under the basis of a flow rule, generalized to a

micropolar continuum. Under the assumption of small strain, the total strain rates

are expressed in terms of their elastic and plastic components

˙̂
Γij =

˙̂
Γeij +

˙̂
Γpij (3.20a)

˙̂
Ki3 =

˙̂
Ke
i3 +

˙̂
Kp
i3 (3.20b)

where by assuming the associative flow rule, the plastic strain rates are

˙̂
Γpij = λ̇

∂f

∂Σ̂ij

(3.21a)

˙̂
Kp
i3 = λ̇

∂f

∂M̂i3

(3.21b)

The scalar λ̇ ≥ 0 is the non-negative plastic multiplier. In literature, the formula-

tion of an isotropic micropolar yield surface, based on the generalization of the von

Mises criterion, with the presence of couple-stresses has been discussed by various au-

thors, such as by de Borst [41]. Similar to Hill’s yield criterion, which generalizes the

isotropic von Mises criterion to orthotropic materials in a Cauchy continuum, the fol-

lowing pressure-independent criterion for orthotropic micropolar medium is proposed

for a plane strain condition, by generalizing the yield surface in [41]

f =

(
F
(
Ŝ22 − Ŝ33

)2

+G
(
Ŝ33 − Ŝ11

)2

+H
(
Ŝ11 − Ŝ22

)2

+ 2NŜ2
12 + Y M̂2

13 + ZM̂2
23

)1/2

− σe(εp)

(3.22)

The yield criterion in Eqn. 3.22 is simply reduced from Eqn. 2.32, by replacing the

asymmetric stresses with its symmetric and skew-symmetric decomposed components.
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The equivalent plastic strain εp and the equivalent stress σe are defined from the

definition of plastic work increment. Their relationship is determined experimentally.

The relative ease/difficulty of yielding, along the different loading directions is taken

in account by the constants F ,G,H,N, Y , and Z appearing in the plastic potential

Eqn. 3.22. For simplicity, yielding due to couple stresses will be neglected, i.e, Y =

Z = 0. In our analysis, it was determined that their effects were negligible on the

localization (kinking) boundary value problem, which has also been verified by [41].

As a result, Eqn. 3.22 reduces to Hill’s criterion. In addition, because of symmetry

of the unidirectional fiber-reinforced composite, G = H. The remaining coefficients

are obtained by performing numerical tests on a fiber-matrix layered micromechanics

model. To do this, the 36 fiber volume element is considered. The isotropic matrix

nonlinear equivalent stress-strain relation is shown in Fig. 3.5. This is the in-situ
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Figure 3.5: Isotropic matrix material nonlinearity [2].

matrix nonlinear response reported in [2]. It is implemented in the ABAQUS volume

element model for the matrix layer. The transversely-isotropic fibers are assumed to

be linear. The effective stress-strain response corresponding to the different loading

directions are shown in Fig. 3.6. These results are also verified by [3], where the same
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equivalent nonlinear responses are reported. By considering the relative yielding ratios
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Figure 3.6: Equivalent nonlinear material nonlinearity under different symmetric load-
ing conditions [3].

of each response, Hill’s anisotropic constants are determined (Table 3.4). These values

Table 3.4: Hill’s plasticity constants.

F G H N Y Z
1.0 0.0 0.0 1.67 0.0 0.0

characterize the composite yielding under macroscopic shear and compression.

3.4 Fiber Kinking: Micromechanics and Micropo-

lar Continuum

To verify the results of the homogenized micropolar continuum model, it will be

compared with a layered micromechanics model, which considers the fiber and matrix

layers, explicitly. In the micromechanics model, the transversely-isotropic fiber and

isotropic matrix material properties presented earlier will be considered. The layered

model has a volume fraction V f = 0.50, with 75 fiber layers. The schematic (not
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drawn to scale) of the boundary value problem is shown in Fig. 3.7. The horizontal

𝐿𝑥 = 2.0𝑚𝑚

𝐿𝑦 = 0.9𝑚𝑚
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Figure 3.7: Schematic of the micromechanics boundary value problem.

and vertical dimensions of the domain are Lx = 2.0mm and Ly = 0.9mm, respectively.

In the micromechanics model, the displacement uSi or the force traction fSi is specified

on each boundary (S1

⋃
S2

⋃
S3

⋃
S4 = S). The boundary conditions are: (1) on S1,

the displacement uS1 = −∆ (where ∆ > 0) is specified and fS2 = 0, (2) on S3, the

displacement uS1 = 0 is constrained and fS2 = 0, (3) and surfaces S2 and S4 are

traction free (fS1 = 0 and fS2 = 0). To prevent rigid body motion, (4) the node

at the origin (x1 = 0, x2 = 0) is constrained u2 = 0. For axial-shear coupling

to be present, a geometric imperfection is introduced by misaligning the fibers by

a 1-degree angle. Similarly, the equivalent micropolar continuum model is shown

in Fig. 3.8. The geometric dimensions of the continuum domain are the same as

the discrete model. In the micropolar continuum, the displacement uSi or the force

traction fSi , and the rotation ϕS3 or the couple traction CS
3 are specified on each

boundary (S1

⋃
S2

⋃
S3

⋃
S4 = S). The boundary conditions are: (1) on S1, the

displacement uS1 = −∆ (where ∆ > 0) is specified and fS2 = 0, CS
3 = 0, (2) on S3, the

73



displacement uS1 = 0 is constrained and fS2 = 0, CS
3 = 0, (3) and surfaces S2 and S4

are traction free (fS1 = 0, fS2 = 0, and CS
3 = 0). To prevent a rigid body translation,

(4) the node at the origin (x1 = 0, x2 = 0) is constrained u2 = 0. In addition, the

same imperfection is also considered by perturbing the configuration by a 1-degree

angle. The equivalent linear and nonlinear material properties determined earlier are

used in the micropolar continuum model. The results of 3 meshes are presented,

Δ

𝐿𝑥 = 2.0𝑚𝑚

𝐿𝑦 = 0.9𝑚𝑚

𝑥1

𝑥2

1𝑜misalignment

𝑆1

𝑆2

𝑆3

𝑆4

Figure 3.8: Schematic of the equivalent micropolar continuum boundary value prob-
lem.

a coarse mesh of 9 × 21 elements, an intermediate mesh of 14 × 31 elements, and

a fine mesh of 18 × 41 elements. In obtaining the numerical solution for both the

micromechanics and the equivalent micropolar models, an implicit arc-length solution

scheme (Riks method) is used to capture the unstable equilibrium path of the snap-

back response. This is shown in Fig. 3.9. The response of the problems is characterized

by 4 regions, (a) a linear region, where the macroscopic stress-strain response of the

structure is linear, (b) a limit-load, where the load bearing capability of the structure

starts to drop, (c) the unstable unloading region, where localization develops, and

74



0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Micropolar Continuum, 9x21 elements

Micropolar Continuum, 14x31 elements

Micropolar Continuum, 18x41 elements

Micromechanics model

limit load

unstable unloading

stable post-collapse region

% Strain 100 ×
Δ

𝐿𝑥

S
tr

e
s
s
 (

M
P

a
),

 
𝐹
𝑜
𝑟
𝑐
𝑒

𝐿
𝑦

Figure 3.9: Stress response of the micromechanics and micropolar continuum models.

(d) continual stable loading of the structure. In this comparison, the micromechanics

model is used to determine the validity of the micropolar continuum results. The

response of the micromechanics and the continuum models are comparable up to the

limit load. In the micromechanics model, the limit load is σcr = 791MPa. In the

micropolar continuum, the limit load predictions are σcr = 737MPa, σcr = 724MPa,

and σcr = 721MPa for the 9× 21, 14× 31, and 18× 41 element meshes, respectively.

These predictions are within 9.7% error.

In the continuum model, as the mesh size is refined, the results tend to converge.

In the coarse 9x21 element mesh, due to the element size being larger than the

localization width, there is a discrepancy with the 18x41 element mesh in the unstable

region (c), where localization starts to develop. However, in the stable region (d),

the results of the responses of the 3 mesh sizes converge as the magnitude of the

macroscopic load increases. At 1% strain, the difference between the three meshes

is within 6% error. The length of time of the computations were 23min, 48min, and
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86min for the 9× 21, 14× 31, and 18× 41 element meshes, respectively, as apposed

to 205min for the micromechanics simulation. In the stable post-collapse region, the

load increases with applied compression in the continuum models, as apposed to the

micromechanics model. This is attributed to the smearing of the fiber-matrix layers,

which cause the elements to stiffen as they rotate.

In addition, and more importantly, the width of the localized band is captured

in the continuum model. The deformation history of the micromechanics model is

shown in Fig. 3.10. The contours show the accumulation of an equivalent plastic

strain in the localized region. Based on geometry, the width of the kink band in the

micromechanics model is about w = 31.7df , where df is the fiber diameter. Similarly,

the deformation history of the continuum simulations are shown in Fig. 3.11, Fig. 3.12,

and Fig. 3.13 for the 9 × 21, 14 × 31, and 18 × 41 element meshes, respectively. In

the 18× 41 element model, where the mesh size is much smaller than the localization

width of the micromechanics model, the width of the kink band is w = 33.6df , which

is in a very good agreement with the micromechanics model. From literature, it is

reported that the width of the kink-band in typical carbon fiber composites is on the

order of about w = 10df to 30df [25], which is comparable to the continuum results.

The micropolar model also gives the ability to analyze the details of the mi-

crostructure of the composite from a continuum view. For example, Fig. 3.14a, b

shows the micropolar couple-stress and curvature strain contours, respectively. These

are representative of the local fiber bending and curvature at the microscale. As seen,

the magnitudes of couple stress M̂13 and the curvature strain K̂13 are maximum at

the horizontal edges of the boundaries of the localized region. From experimental

observation, due to the presence of large fiber bending and curvature, at the onset of

localization, the brittle fibers are observed to break at these locations, which corre-

spond to the failure of the composite material. The details of fiber breakage due to

localization and the empirical observation of it is discussed by Schultheisz and Waas
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[25].

In Fig. 3.15a the contour plots of the micropolar rotation degrees of freedom is

displayed. This corresponds to the local rotations of the fibers at the microscale.

In a finite element analysis, the rotation ϕ3 is a nodal degrees of freedom, which is

a maximum at the center of the localized region. This characterizes the localization

angle, which is 20.1-degree. As stated earlier, this is an independent kinematic degrees

of freedom, which is in contrast to the classical definition of rotation in a Cauchy

continuum, where it is dependent on the displacement field. For 2D finite deformation,

this is defined

ψ3 =

∫
ψ̇3dt, ψ̇3 =

1

2

(
∂ ˙̂u2

∂x̂1

− ∂ ˙̂u1

∂x̂2

)
(3.23)

which is approximated using time integration. As shown in Fig. 3.15b, this corre-

sponds to 18.3-degree.

3.5 Conclusion

In this chapter, the nonlinear micropolar model for fiber reinforced composites was

used to compare the predictions of fiber kinking with an exact micromechanics model.

For these composites, physical meaning was first assigned to the anisotropic mi-

cropolar shear moduli, and virtual micromechanics tests were proposed to calibrate

them. In addition, a closed form solution was determined for the couple stress-

curvature relation. The linear and material nonlinear properties were used in the

updated Lagrangian nonlinear micropolar finite element model to compute the com-

pressive strength and kink band width of a fiber reinforced composite. In order to

verify the continuum results, a discrete micromechanics model was also studied. The

continuum model was seen to be within 9.7% agreement for the peak load, while

predicting the details of kink band formation and the width of the localized band.

The differences between the continuum model and the discrete model are also hinged
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on the choice of the yield function adopted. In addition, information regarding the

microstructure of the material, such as local fiber bending, curvature, and rotation,

are a natural outcome of the theory.
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Figure 3.10: Deformation history of the micromechanics model.
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Figure 3.11: Deformation history of the 9×21 element mesh of the continuum model.
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Figure 3.12: Deformation history of the 14×31 element mesh of the continuum model.
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Figure 3.13: Deformation history of the 18×41 element mesh of the continuum model.
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෡𝑀13 (𝑀𝑃𝑎 ∗ 𝑚𝑚 )

(a) Couple stress M̂13.

෡𝐾13 (𝑚𝑚
−1)

(b) Curvature strain K̂13.

Figure 3.14: Contour plots of (a) the micropolar couple-stress and (b) curvature strain
at 1% strain (frame 5), for 18× 41 element mesh.
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rotation: 𝜑3 (𝑟𝑎𝑑)

(a) Micropolar rotation ϕ3.

rotation: 𝜓3 (𝑟𝑎𝑑)

(b) Curvature strain ψ3.

Figure 3.15: Contour plots of (a) micropolar rotation and (b) classical rotation in a
Cauchy continuum, at 1% strain (frame 5), for 18× 41 element mesh.
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CHAPTER 4

Micropolar Constitutive Relations of

Cellular Solids

4.1 Introduction

In the design of lightweight materials, a variety of cellular microstructures have

emerged as a cost effective means of replacing traditional bulk solids. Among many

examples, these cellular solids are used as the core of sandwich structures, energy

absorbing devices, and acoustic barriers. Regular hexagonal cell honeycomb struc-

tures have been the most popular choice for sandwich structure applications, mainly

because of the relative ease of production and simplicity in analyzing and determining

their properties. With the advent of 3D printing, the field is wide open to optimize

the design of cellular solids for specific applications. Early research on the mechanical

response of cellular solids can be found in [27], where a strength of materials approach

was used to determine the constitutive relation of a homogenized solid. However, past

research studies have shown the possibility of enhancing the material properties of a

regular hexagonal honeycomb by re-configuring its topology. For example, the stiff-

ness, the brittle crushing strength, and the plastic yielding strength of circular cell

honeycombs are higher than those of the same relative-density, regular hexagonal cell

honeycombs [60]. Because of this, various experimental investigations have been done

in [61], [62], and [63] to better understand these materials for application purposes.
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In order to model this structure analytically, a strength of materials approach has

been applied, similar to [27], for a regular hexagonal cell honeycomb to determine

the constitutive relationship. This attempt was first initiated by [63], which used

the modeling done in [64] on circular pipe bundles, to estimate the elastic moduli

of a hexagonally packed circular honeycomb, and later [65] extended this approach

to obtain the full constitutive relationship for this material in addition to the pre-

stressed (elliptical honeycomb) properties. In literature, this method has been further

extended to approximate the material properties based on the inclusion of axial and

transverse shear deformation for circular [60] and elliptical cell honeycombs [66].

Despite the effort to determine the classical properties of these cellular solids, the

analytical modeling of the deformation of these materials is not complete without

the consideration of higher order effects. These include the higher order bending and

rotation of the beam-like microstructure, which is crucial for modeling localization.

In the following chapter, the determination of the additional micropolar material

constants of these structures will be discussed.

One of the present challenges of micropolar theory has been the determination

of the additional material constants in the constitutive relationship. This has been

a subject of much research since the 1950’s, as shown by the analytical methods

reported in [67] for grid structures, and later extensions, [68], [69] to other simple

beam structures. These methods also present a paradox in the calculation of the

material constants, where an application of a Taylor series to approximate discrete

displacement and rotation fields as a continuum, leads to non-convergent values of

the constitutive relationship when higher order terms are kept in the expansion. A

simple analytical approach was developed in [70], which is based on applying traction

on a volume element in order to estimate the compliance matrix. However, this

approach has also been limited to simple structures, and its extension to circular

celled honeycomb has been found to pose a challenge.
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Numerical estimates of the micropolar material constants have also been reported.

For circular cell honeycombs, early attempts were initiated by [71]. In this work, the

micropolar constants were determined numerically based on the analytical solution

of a micropolar solid with a rigid inclusion. Later, [72] attempted to obtain simple

closed form expressions for these constants through nondimensional analysis after

numerically analyzing the deformation modes of a repeat unit of the material’s mi-

crostructure. This micromechanics approach, however, resulted in symmetric stress

and strain tensors and the moment and curvature relation displayed an anisotropy,

which for a hexagonally packed honeycomb cell, has been proven to be isotropic

by [70]. These discrepancies resulted from incorrectly incorporating the micropolar

modes of deformation. First, the application of the asymmetric strains were incor-

rect by ignoring the local rotation, which resulted in a pseudo-Cosserat assumption

(local rotation is equal to the global rotation). Second, when subjecting the repeat-

ing microstructure (or the representative volume element (RVE)) to a pure bending

condition to obtain the curvature-couple stress relationship, its deformation was re-

stricted to a classical-beam bending (Euler-Bernoulli assumptions). This assumption

produced an anisotropy in the constitutive relationship.

To resolve this, [55] has proposed the correct way to incorporate the micropolar

modes of deformation on a volume element in order to approximate the micropolar

constitutive relationship. This method uses the generalization of Hill-Mandel condi-

tion for a micropolar continuum in order to approximate the constitutive relationship

as an average over the RVE. It has been applied by [73] and [58] to estimate the

material constants for foams and masonry structures, respectively. [56] has also gen-

eralized this method to model a random two-phase micropolar composite, with a

random distribution of inclusion on matrix. Further details of this homogenization

method can also be found in [40]. However, the application of this method has not

yet been applied to periodic cellular materials, which is the subject of the present
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analysis.

In this chapter, we will first present the micromechanics homogenization method

for micropolar medium, based on the Hill-Mandel condition. This will then be applied

to evaluate the constitutive relationship of a hexagonally packed circular honeycomb

and the closed form solution will be determined using nondimensional analysis. These

closed form guessed expressions for the material constants will then be verified by

comparing them to numerical predictions of the material constants, which will be used

as a benchmark. In addition, this method will also be applied to a grid structure and

a regular hexagon honeycomb with uniform as well as non-uniform thickness. Our

evaluated material constants will them be compared with various reported values in

literature.

4.2 Problem Formulation

Our main goal is to determine the micropolar constitutive relationship of a hexag-

onally packed circular celled honeycomb shown in Fig. 4.1a. This structure has 3

different length scales present, some global length L describing the size of the mate-

rial, the radius R of each circular cell, and their thickness t. These will correspond

to the macroscopic, mesoscopic (intermediate), and microscopic length scales, respec-

tively, described by [40]. It is important to identify these length scales, since their

relative magnitude shows the best approach to apply to model a material. For a

sample with relatively small number of cells (L comparable to R), the deformation of

the structure can be analyzed by modeling each cell discretely. However, this can be

cumbersome for structures with large number of cells (L >> R). A common approach

to overcome this is to approximate (homogenize) the structure as a continuum. In

such a case, each material point on the continuum corresponds to a representative

volume element (RVE), whose dimensions are in the same order as the mesoscale.
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For the circular honeycomb, the RVE is shown in Fig. 4.1b.

When resorting to homogenization of the RVE as a classical continuum, it is

assumed that the fluctuation of stresses and strains about their mean values across the

RVE are small, and they are approximated to be uniform. This is indeed the case when

the microscale of the structure is much smaller than the mesoscale (L >> R >> t).

In most cases, this is not always true and these two length scales can be comparable

(L >> R > t), such as in the cases where local deformations occur. In such situations,

the non-uniformity of stresses and strains in the RVE are accounted for by modeling

these materials using higher order theories. Micropolar theory is the most popular

due to its relative simplicity [74]. In addition, in micropolar theory, the interaction

between neighboring material points (RVE) are governed not only by a force vector

from classical continuum theory, but also through a moment vector. Because many

cellular materials, (Fig. 4.1a for example), are modeled as a connection of beams or

arches, bending is often a prominent deformation mechanism, and at the microscale,

both displacements and rotations need to be present [55].

4.3 Micropolar Constitutive Relationship

Because of the limitations of classical elasticity, micropolar theory is the ideal con-

tinuum theory to represent cellular materials. In this generalization, a material point

is not only characterized by a displacement vector, but also through an independent

microrotational vector ϕi, which is different from the global rotation, Ωi = 1
2
eikjuj,k

(i = 1, 2, 3 and eikj is the permutation tensor). For a 2D micropolar solid, with the

3-direction corresponding to the out of plane direction, the constitutive relationship
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(a) In-plane view of a hexagonally packed circular cell honey-
comb

(b) Diamond shape RVE of the honeycomb

Figure 4.1: Configuration of a honeycomb at the global and local scales.
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for a linear, isotropic solid is represented as



Σ11

Σ22

Σ12

Σ21

M13

M23


=



2µE + λE + kE λE 0 0 0 0

λE 2µE + λE + kE 0 0 0 0

0 0 µE + kE µE 0 0

0 0 µE µE + kE 0 0

0 0 0 0 γE 0

0 0 0 0 0 γE





Γ11

Γ22

Γ12

Γ21

K13

K23


(4.1)

where µE, kE, λE, and γE are the in plane micropolar material constants, expressed in

Eringen’s notation [74], Σji, Mj3 are the asymmetric stress and couple-stress, and Γji

Kj3 are the asymmetric strain and curvature tensors (i, j = 1, 2), which are related

to the displacements and rotation by

Γji = ui,j − eji3ϕ3 (4.2a)

Kj3 = ϕ3,j (4.2b)

For simplicity, it is often convenient to decompose the asymmetric stress and strain

tensors in their symmetric and antisymmetric components

Σij = Sij + Tij (4.3a)

Γij = Eij + Aij (4.3b)

where

Sij =
1

2
(Σij + Σji) = Sji (4.4a)

Tij =
1

2
(Σij − Σji) = −Tji (4.4b)

Eij =
1

2
(Γij + Γji) =

1

2
(ui,j + uj,i) = Eji (4.4c)
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Aij =
1

2
(Γij − Γji) = eij3(Ω3 − ϕ3) = −Aji (4.4d)

Using these simplifications, Eqn. 4.1 reduces to



S11

S22

S12

T12

M13

M23


=



2µ+ λ λ 0 0 0 0

λ 2µ+ λ 0 0 0 0

0 0 2µ 0 0 0

0 0 0 2µc 0 0

0 0 0 0 γc 0

0 0 0 0 0 γc





E11

E22

E12

A12

K13

K23


(4.5)

The relationship between the constants in Eqn. 4.1 and 4.5 are

µE = µ− µc (4.6a)

kE = 2µc (4.6b)

λE = λ (4.6c)

γE = γc (4.6d)

This form of the constitutive relationship is desired, because Sij and Eij correspond

to the symmetric stresses and strains in classical elasticity, with µ and λ being the

Lamé constants. The remaining two material constants (µc, γc) are the additional

micropolar constants.

4.4 Micropolar Homogenization Method

In order to determine the material constants for a circular honeycomb structure,

the micromechanical method by [55] will be applied. This homogenization method

considers the principal of virtual work in terms of the the stresses and strains defined
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in Eqn. 4.5

∫
V

(SjiδEji + TjiδAji +Mj3δKj3)dV =

∫
S

(Tiδui +Q3δϕ3)dS (4.7)

where i, j = 1, 2 in 2D, V is the volume, and S is the surface at which surface traction

Ti and surface couple Q3 are acted on. The goal of this approach is to approximate the

constitutive relationship of a composite sample by expressing the principal of virtual

work in Eqn. 4.7, averaged over the RVE. This is done by applying the Hill-Mandel

condition for micropolar continuum [55]

∫
V

(SjiδEji + TjiδAji +Mj3δKj3)dV = V (SjiδEji + T jiδAji +M j3δkj3) (4.8)

The overbars on the right hand side of Eqn. 4.8 denote the averaged quantities over

the RVE. In addition to the simplification done to the left hand side of Eqn. 4.7, a

similar simplification can be applied on the right hand side

∫
S

(Tiδui +Q3δϕ3)dS =
n∑
k=1

(f
(k)
i δu

(k)
i + µ

(k)
3 δϕ

(k)
3 ) (4.9)

fki and µk3 are the force and moment acting on the kth cell wall on the surface of the

RVE. By substituting the above averaged expressions into Eqn. 4.7, the principal of

virtual work simplifies to

SjiδEji + T jiδAji +M j3δKj3 =
1

V

n∑
k=1

(f
(k)
i δu

(k)
i + µ

(k)
3 δϕ

(k)
3 ) (4.10)

It should also be noted that the Hill-Mandel condition in Eqn. 4.8 is valid if and

only if the correct admissible RVE boundary conditions are applied. For the present
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analysis, kinematic boundary conditions will be considered

u
(k)
i = Ejix

(k)
j + eji3Ω3x

(k)
j (4.11a)

ϕ
(k)
3 = Ω3 +

1

2
eij3Aji +Kj3x

(k)
j (4.11b)

where Eji,Ω3, Aji, Kj3 are arbitrary constant numbers and x
(k)
j are the coordinates

of the cell walls on the surface of the RVE. For reference, the proof of Hill’s lemma

along with the Hill-Mandel condition for micropolar continuum is shown in [75].

By substituting the boundary conditions in Eqn. 4.11 into Eqn. 4.10 and collecting

the coefficients of δEji, δΩ3, δAji, and δM j3, the following is obtained

(
Sji −

1

V

n∑
k=1

(f
(k)
i x

(k)
j )

)
δEji +

(
T ji −

1

2V

n∑
k=1

(eij3µ
(k)
3 )

)
δAji+(

M j3 −
1

V

n∑
k=1

(x
(k)
j µ

(k)
3 )

)
δKj3 −

1

V

n∑
k=1

(eji3f
(k)
i x

(k)
j + µ

(k)
3 )δΩ3 = 0

(4.12)

In the above expression, the δ() and () are interchangeable since they are linear

operators. For different displacement and rotation fields applied on the surface of the

RVE, the constants Eji,Ω3, Aji, Kj3 need to be specified in such a way that Eqn. 4.12

is satisfied exactly. As a result, for each term

Sji =
1

2V

n∑
k=1

(f
(k)
j x

(k)
i + f

(k)
i x

(k)
j ) OR δEji = 0 (4.13a)

T ji =
1

2V

n∑
k=1

(eij3µ
(k)
3 ) OR δAji = 0 (4.13b)

M j3 =
1

V

n∑
k=1

(µ
(k)
3 x

(k)
j ) OR δKj3 = 0 (4.13c)

n∑
k=1

(eji3f
(j)
i x

(k)
j + µ

(k)
3 ) = 0 OR δΩ3 = 0 (4.13d)

In Eqn 4.12, it should be highlighted that the variation of the strains or the global
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rotation are zero only when these terms are specified on the boundary. They are

non-zero if and only if they are not specified, in which case, their coefficients must

be equal to zero. It should also be noted that the coefficient of δΩ3 is the balance of

angular momentum of the RVE. If this equilibrium condition is not satisfied, the RVE

will not achieve equilibrium. If this is the case, δΩ3 must be set to zero by specifying

Ω3 at the boundary.

4.5 Deformation Modes of RVE

The idea of the current homogenization method is to determine the average con-

stitutive relationship of a structure by applying the boundary conditions specified in

Eqn. 4.11 and calculating the average stresses and couple stresses defined by Eqn. 4.13,

while the condition in Eqn. 4.12 is always satisfied. In doing this, the constitutive

relationship is determined in an averaged sense. For a 2D, isotropic solid, this will be

in form 

S11

S22

S12

T 12

M13

M23


=



C11 C12 0 0 0 0

C21 C22 0 0 0 0

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





E11

E22

E12

A12

K13

K23


(4.14)

where C12 = C21, C11 = C22, C33 = C11 − C12 and C55 = C66. To determine the

stiffness matrix Cij, the strains Eij, Aij, and Ki3 will be considered one at a time on

the RVE, and their responses Sij, T ij, and M i3 will be calculated to determine the

stiffness matrix Cij. In 2D, the boundary conditions (Eqn. 4.14) being applied on the
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surface of the RVE will be of the form

u
(k)
1 = E11x

(k)
1 + E21x

(k)
2 − Ω3x

(k)
2 (4.15a)

u
(k)
2 = E12x

(k)
1 + E22x

(k)
2 + Ω3x

(k)
1 (4.15b)

ϕ
(k)
3 = Ω3 − A12 +K13x

(k)
1 +K23x

(k)
2 (4.15c)

In Eqn. 4.14, it should be noted that the symmetric stresses are decoupled from the

asymmetric strain (A12) and the curvatures (K13, K23) due to the centrosymmetry

(non-chiral) of a material. Because of this, we can consider the classical and microp-

olar modes of deformation separately.

4.5.1 Classical Modes of Deformation

Because of the centrosymmetry of the material under consideration, the symmetric

stress-strain relationship can be decoupled in the form


S11

S22

S12

 =


C11 C12 0

C21 C22 0

0 0 C33



E11

E22

E12

 (4.16)

To evaluate the constants C11, C12, and C33, which correspond to the stiffness of a

material in classical elasticity, a single strain E11, E22, and E12 will be applied on the

RVE, one at a time. These strains can be any constant real numbers. The boundary

conditions that need to be considered on the RVE analysis are:

(1) Apply E11:

u
(k)
1 = E11x

(k)
1 (4.17a)

u
(k)
2 = 0 (4.17b)

96



ϕ
(k)
3 = free (4.17c)

(2) Apply E22:

u
(k)
1 = 0 (4.18a)

u
(k)
2 = E22x

(k)
2 (4.18b)

ϕ
(k)
3 = free (4.18c)

(3) Apply E12 = E21:

u
(k)
1 = E21x

(k)
2 (4.19a)

u
(k)
2 = E12x

(k)
1 (4.19b)

ϕ
(k)
3 = free (4.19c)

With these set of displacement and rotations defined above, the first there columns

of Cij can be evaluated one at a time. Also, because of isotropy, not all of them are

independent (C12 = C21 and C33 = C11−C12), but for generality, all three cases will

be considered to verify their dependence.

4.5.2 Micropolar Modes of Deformation

Similarly, the micropolar asymmetrical stress-strain and couple stress-curvature rela-

tionship can be reduced to


T 12

M13

M23

 =


C44 0 0

0 C55 0

0 0 C66



A12

K13

K23

 (4.20)
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(4) Apply A12 = −A21:

u
(k)
1 = −Ω3x

(k)
2 (4.21a)

u
(k)
2 = Ω3x

(k)
1 (4.21b)

ϕ
(k)
3 = Ω3 − A12 (4.21c)

(5) Apply K13:

u
(k)
1 = free (4.22a)

u
(k)
2 = free (4.22b)

ϕ
(k)
3 = K13x

(k)
1 (4.22c)

(6) Apply K23:

u
(k)
1 = free (4.23a)

u
(k)
2 = free (4.23b)

ϕ
(k)
3 = K23x

(k)
2 (4.23c)

It should be emphasized that the deformation modes considered above are not

unique. As discussed by [73], a different choice of boundary conditions will result in

different approximation of the stiffness matrix. For our present analysis, the boundary

conditions in [56] are considered. The only requirement in selecting the displacement

and rotation fields, however, is for conditions in Eqn 4.13 to be satisfied. Because of

this, in Eqns. 4.21, the global rotation Ω3 is required to be specified, otherwise the

balance of angular momentum will not be satisfied (Eqn 4.13d).
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4.6 Closed Form Expressions for the Macroscopic

Properties

The homogenization method considered will be applied to a hexagonally packed,

circular cell honeycomb shown in Fig. 4.1. For the analysis of the RVE with the

kinematic boundary conditions given in Eqns. 4.17- 4.23, a commercial finite element

code, ABAQUS, will be used. In the analysis, the structural members will be modeled

as uniform linear elastic Euler-Bernoulli arc beams. Because of this, we know that

the material properties will depend on the Young’s modulus E, cell wall thickness t,

and arc radius R, with a unit thickness. The deformation of the cell walls will be

dominated by bending. Because of this, for thin arc beams (t/R) << 0.1, we can

guess the analytical or closed form solution to be in the form

µ = αµE

(
t

R

)3

(4.24a)

λ = αλE

(
t

R

)3

(4.24b)

µc = αµcE

(
t

R

)3

(4.24c)

γc = αγcE

(
t

R

)
t2 (4.24d)

The above expressions are inspired through nondimensional analysis, where αµ, αλ, αµc ,

and αγc are constants that are found through a single numerical experiment. For a

given set of local material properties and geometries (E, t, R), the macroscopic mate-

rial constants can be numerically evaluated. From this, the constant coefficients can

be directly determined, which are

αµ ≈ 2.3060 (4.25a)

αλ ≈ 19.1496 (4.25b)
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αµc ≈ 0.3112 (4.25c)

αγc ≈ 0.1001 (4.25d)

It should be noted the results above are valid for when bending is dominant in the

case when (t/R) << 0.1. In such a case, axial and transverse effects can be neglected.

However, when (t/R) < 0.1, axial deformations must be considered in Eqns. 4.24. In

such a case, we can guess the form of the material constants to be of the form

µ =

(
1

αµE
(
t
R

)3 +
1

βµE
(
t
R

))−1

(4.26a)

λ =

(
1

αλE
(
t
R

)3 +
1

βλE
(
t
R

))−1

(4.26b)

µc =

(
1

αµcE
(
t
R

)3 +
1

βµcE
(
t
R

))−1

(4.26c)

γc = αγcE

(
t

R

)
t2 (4.26d)

In the above expressions, βµ, βλ, βµc , and βγc are nondimensional constant numbers.

Similar to before, by assigning the local properties E, t, R and numerically evaluating

the macroscopic properties µ, λ, µc, and γc, these constants can be calculated by

considering the values found in Eqns. 4.25.

βµ ≈ 0.1447 (4.27a)

βλ ≈ 0.2436 (4.27b)

βµc ≈ 0.0345 (4.27c)

In Eqn. 4.26d, axial deformation was determined not to influence γc. This will also

be discussed in the next section. Also, the closed form solutions above are for the

structure in Fig. 4.1a where the arc beams are in a state of plane stress in the out
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of plane direction. Plain strain results can be determined by replacing E → E
(1−v2)

,

where v is the Poisson’s ratio.

4.7 Verification of the Constants

As discussed earlier, the constants µ and λ correspond to the Lamé constants of

classical elasticity. These can be compared with results obtained in [65], where the

macroscopic Young’s modulus and Poisson’s ratio were determined by neglecting axial

and transverse shear deformations. Using Eqns. 4.24a,b, we evaluate the Young’s

modulus and Poisson’s ratio, respectively

E =
4µ(λ+ µ)

2µ+ λ
= 8.329E

(
t

R

)3

(4.28a)

v =
λ

2µ+ λ
= 0.806 (4.28b)

which are exactly the values reported by [65].

The closed form solutions in Eqns. 4.24 and 4.26 are validated by comparing them

to the numerical predictions for different sets of local properties for the arc beams

(E,R and t). In table 4.1, we consider 4 sets of local properties ((I) − (IV )) and

evaluate the global material constants µ, λ, µc, and γc. In the numerical solution,

the material constants are based upon the inclusion of bending, axial, and transverse

shear deformations of the arc beams of the circular honeycomb structure. As stated

earlier, in Eqn. 4.24 only bending is considered and in Eqn. 4.26 transverse shear

deformation is neglected, while bending and axial deformations are present. As a

result, the numerical calculations of the material constants are used as a benchmark

when evaluating the error of the closed form solutions.

In the first two sets, the local properties of the arc beams are E = 33MPa and

R = 2.6mm, while the value of the thickness is t = R/8 and t = R/38 for set (I)
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Table 4.1: Comparison of closed form solutions with numerical calculations.

Local
Properties

Micropolar
Constant

Numerical
Calcula-

tions
Eqn.4.24 Eqn.4.26

Closed
Form

% Error
Closed
Form

% Error

(I)
E=33MPa
R=2.6mm
t=R/8

µ (MPa) 0.1190 0.1486 24.9 0.1190 0.0

λ (MPa) 0.6067 1.2343 103.4 0.5539 8.7
µc (MPa) 0.0176 0.0201 14.2 0.0176 0.0

γc (MPa×mm2) 0.0430 0.0436 1.4 - -

(II)
E=33MPa
R=2.6mm
t=R/38

µ (MPa)
1.3715×

10−3

1.3868×
10−3 1.1

1.3717×
10−3 0.0

λ (MPa)
11.0341×

10−3

11.5166×
10−3 4.4

10.9220×
10−3 1.0

µc (MPa)
0.1858×

10−3

0.1872×
10−3 0.8

0.1860×
10−3 0.1

γc (MPa×mm2)
0.4068×

10−3

0.4070×
10−3 0.0 - -

(III)
E=70MPa
R=4.2mm
t=R/8

µ (MPa) 0.2524 0.3153 24.9 0.2524 0.0

λ (MPa) 1.2869 2.6181 103.4 1.1749 8.7
µc (MPa) 0.0373 0.04255 14.1 0.0373 0.0

γc (MPa×mm2) 0.2379 0.2414 1.5 - -

(IV)
E=70MPa
R=4.2mm
t=R/38

µ (MPa)
2.9091×

10−3

2.9418×
10−3 1.1

2.9096×
10−3 0.0

λ (MPa)
23.4051×

10−3

24.4291×
10−3 4.4

23.1678×
10−3 1.0

µc (MPa)
0.3941×

10−3

0.3970×
10−3 0.7

0.3945×
10−3 0.1

γc (MPa×mm2)
2.2517×

10−3

2.2526×
10−3 0.0 - -
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and (II), respectively. We see that for a thick arc in set (I), the error of Eqn. 4.24

is significantly high, especially for the value of λ, which is 103.4%. This is expected,

since for thick arcs, higher order thickness effects need to be considered. Because of

this, Eqn. 4.26 gives much more accurate estimation. The error of λ in this closed

form solution is 8.7%. Despite this error due to the transverse shear effects, this is a

relatively accurate estimation for most engineering applications. In addition, it is seen

that the closed form solution Eqn. 4.24 gives accurate estimation of the micropolar

constant, γc, from which we conclude that axial deformation does not influence its

approximation.

In set (II), we see that the error of both closed form solutions decrease as the

thickness of the arcs are smaller. In such a case, we see that Eqn. 4.24 gives an accurate

estimation of the material constants, which are less than 5%, while Eqn. 4.26’s error

is less than 1%. The above conclusions are also made for sets (III) and (IV ).

Next, we analyze the effect of changing the remaining local arc beam properties,

E and R, while the thickness t is held fixed, by comparing set (I) with (III) or set

(II) with (IV ). It is seen that the % error does not change when comparing these

sets. From this, we can conclude that the validity of Eqn. 4.24 and Eqn. 4.26 depend

upon the thickness of the arcs (relative to the arc radius R). For slender arc beams

(R/t >> 1), Eqn. 4.24 can be applied to estimate the material constants, while for

thick beams (R/t > 1), Eqn. 4.24 applies since axial deformation is considered.

The plots of the macroscopic material properties, µ, λ, µc, and γc against the

thickness of the arcs, or R/t, is shown in Fig. 4.2, for E = 70MPa and R = 4.2mm.

We see that for large values of R/t (thin arcs) the material constants decrease, but

for small values of R/t (thick arcs), the material properties are much larger. Thus,

the structure at the global scale is much stiffer when the cells are thick. In addition,

it is also observed from Fig. 4.2a,b,c that the closed form solutions in Eqn. 4.24 and

Eqn. 4.26 diverge when the thickness increases. This divergence is more significant
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for the Lamé constants, µ and λ, but the micropolar constants, µc and γc are not

sensitive to thickness effects.

4.8 Closed Form Solution of Grid Structure and

Regular Hexagon Honeycomb

Next, the above analysis is applied to 2 structures most commonly analyzed in lit-

erature, which are the square grid structure and the regular hexagon honeycomb

shown in Fig. 4.3. Unlike the circular honeycomb, where bending of the cell walls

always dominate when
(
t
`

)
<< 1, for these structures, the bending moments yield

to axial deformations when the structure is under global strains E11 and E22. Also,

attempting to express the constitutive relation Eqn. 4.5 in terms of the constants µ

and λ presents an ambiguity. To avoid this, we will simply present the constitutive

relationship in terms of Cij in Eqn. 4.14. First, we will consider the grid structure

shown in Fig 4.3a. An interesting property of this structure is that it has a Poisson’s

ratio equivalent to zero at the global scale. The estimations of the stiffness matrix

of this structure available in literature is shown in table 4.2. The classical elasticity

properties are given by [27]. In this analysis, the material properties show that when

this structure is under a tension/compression loading, the deformation is dictated by

the axial deformation of the beam members. This results in the the dependence of

C11 = C22 being proportional to
(
t
`

)
. In addition, because the grid members are mod-

eled as beams, there is no lateral deformation, from which we obtain C12 = C21 = 0

or Poisson’s ratio is zero. For the structure under shear loading, the shear modulus,

C33, is dependent on
(
t
`

)3
because the grid members are bent.

In literature, a popular method of determining the micropolar constants has been

to extend the Born-Von Karmon model of characterizing a classical continuum with

linear springs to modeling a lattice with beams as a micropolar continuum [69].
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Figure 4.2: Effect of thickness t on material constants (a) µ, (b) λ, (c) µc, and (d) γc.
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(a)

(b)

Figure 4.3: (a) grid and (b) regular hexagon structures along with their RVE under
consideration.
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Table 4.2: Stiffness matrix of a grid structure when t
`
<< 1.

Nondimensional analysis

Material Constants
Gibson and
Ashby [27]

Chen et al.
[69]

Closed Form
% Error:

(E=70MPa, ` =
4.2mm, t = `/8)

C11 = C22 E
(
t
`

)
E
(
t
`

)
E
(
t
`

)
0.0

C12 = C21 0 0 0 0.0

C33 E
(
t
`

)3
E
(
t
`

)3
E
(
t
`

)3
3.7

C44 ∗ E
(
t
`

)3
E
(
t
`

)3
3.7

C55 = C66 ∗ 1
3
E
(
t
`

)
t2 1

12
E
(
t
`

)
t2 0.0

Through this, it is possible to express the constitutive relationship of the structure in

terms of the local beam properties. However, this method has often been criticized,

because the approximations of the material properties only retain first order terms

when applying a Taylor series to express the discrete lattice as a continuum [67] and

by considering higher order terms, the material constants C55 = C66 do not converge.

Despite this, in literature, this paradox is often ignored and only first order terms are

considered, as in table 4.2. In the third column, the values reported by [69] using this

method are shown.

In the last column, the same method used on the circular honeycomb to determine

the closed form solution of the material constants is applied to the grid structure. The

closed form solution, along with the % error when t
`

= 1
8

is shown. In determining

% error, the closed form solution is compared with the numerical evaluation of the

material properties, where axial, bending, and transverse shear deformation are all

simultaneously considered. Because the error of the closed form solution is small

(3.7% for C33, C44), it is validated that only axial deformation dominates the material

constants C11 = C22 and only bending dominates C33, C44, and C55 = C66.

The same analysis is applied to the regular hexagon honeycomb. For this structure,

we will consider two different cases, where 1) cell wall thickness is uniform (d = t)
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and 2) thickness of the vertical walls are twice the thickness of the inclined walls

(d = 2t). The latter case is considered because it is easier to produced a hexagonal

honeycomb by partially bonding sheets and expanding them to form the structure

seen above [76]. Because of this manufacturing method, the double wall honeycomb

is a much more common structure. However, with the recent advances in 3D printing,

the manufacturing of a single wall honeycomb is also becoming more practical.

The reported values of a single wall honeycomb structure are shown in table 4.3 for

t
`
<< 1. The elasticity constants have previously been given by [27]. Similar to before,

the dependence of C11 = C22 and C12 = C21 on
(
t
`

)
is due to axial deformations

dominating these material constants when t
`
<< 1, while C33 is proportional to

(
t
`

)3

because of bending of the beams. These values have been extensively analyzed and

validated by numerous experimental results. Due to this, the validity of the Taylor

series approach is in question, because the elasticity constants reported by [69] does

not match with [27]. In addition, the material constant C33 is proportional to
(
t
`

)
.

For this structure, the micropolar material constants proposed by [70] has often

been accepted as the norm. In this method, the RVE under consideration is shown

in Fig. 4.3b. The elasticity constants of this approach match with [27]. However,

in this method, the authors have assumed that the rigid joints of the honeycomb

are restricted from rotating, which influences the evaluation of the material constant,

C44. In our present analysis, we relax this assumption, which allows us to obtain a

softer value of C44. As it is seen, the remaining material constants of our approach

match exactly with [70].

Next, we seek to determine the validity of the closed form solutions for a thick

beam lattice
(
t
`

= 1
8

)
. Similar to the previous structures, we compare the closed form

solution with the numerical evaluation of these constants when axial, bending, and

transverse shear deformations are all present. From table 4.3, we see that higher order

effects are present for thick beams, but they cause the highest influence on the material
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constant, C44, which has an error of 6.7%. For most engineering applications, this

amount of error is acceptable considering the simplicity of the closed form solution

for a thick beam lattice.

Next, we determine the material constants of the double walled honeycomb. The

classical elasticity constants for this structure have been summarized by [76]. In this

work, they report that this material is in fact anisotropic, C11 6= C22, but as the

thickness of the walls decreases, ( t
`
<< 1), these two constants approach each other.

The elasticity constants of this material is summarized in table 4.4, in addition to

the closed form solution determined by using nondimensional analysis. As it is seen,

the classical elasticity constants match, however, there is a discrepancy between the

reported values of C33. After considering this, it was determined that the shear

modulus reported is based off the assumption that the moment of inertia of the double

walled region is twice the moment of inertia of the single walled inclined beams, which

is incorrect. Because of this, our value of C33 is correct. In addition, it is seen that for

this structure, the anisotropy in C55 and C66 is significant. It should be stated that

the micropolar constants of a double wall honeycomb reported here are expressed for

the first time.

In addition, we verify the error in the closed form solution produced by thickness

effects. Again, we consider a thick beam with t
`

= 1
8
. The error is mostly significant

in the material constant C44, which is 11.3%. In addition, the error calculated in the

classical elasticity constants C11 and C22 also takes in account the assumption that

these two values are equal and the classical elasticity constants are isotropic. These

errors are less than 4%, which indicates that the classical elasticity constants can be

approximated to be isotropic even for thick beams.
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Table 4.3: Stiffness matrix of a regular hexagon honeycomb when t
`
<< 1 and d = t.

Nondimensional analysis

Material Constants
Gibson and
Ashby [27]

Chen et al. [69]
Wang and

Stronge [70]
Closed Form

% Error:
(E=70MPa, ` =
4.2mm, t = `/8)

C11 = C22 0.29E
(
t
`

)
0.4330E

(
t
`

)
0.2887E

(
t
`

)
0.2887E

(
t
`

)
2.9

C12 = C21 0.29E
(
t
`

)
0.4330E

(
t
`

)
0.2887E

(
t
`

)
0.2887E

(
t
`

)
3.1

C33 1.15E
(
t
`

)3
0.2887E

(
t
`

)
1.1547E

(
t
`

)3
1.1547E

(
t
`

)3
5.2

C44 ∗ 0.5774E
(
t
`

)3
0.5774E

(
t
`

)3
0.4199E

(
t
`

)3
6.7

C55 = C66 ∗ 0.1925E
(
t
`

)
t2 0.0481E

(
t
`

)
t2 0.0481E

(
t
`

)
t2 0.0

Table 4.4: Stiffness matrix of a regular hexagon honeycomb when t
`
<< 1 and d = 2t.

Nondimensional analysis

Material Constants Hohe and Becker [76] Closed Form
% Error:

(E=70MPa, ` =
4.2mm, t = `/8)

C11 0.35E
(
t
`

)
0.3466E

(
t
`

)
1.5

C11 0.35E
(
t
`

)
0.3466E

(
t
`

)
1.5

C22 0.35E
(
t
`

)
0.3466E

(
t
`

)
3.4

C12 = C21 0.35E
(
t
`

)
0.3460E

(
t
`

)
2.3

C33 1.15E
(
t
`

)3
2.7595E

(
t
`

)3
9.2

C44 ∗ 0.4784E
(
t
`

)3
11.3

C55 ∗ 0.0481E
(
t
`

)
t2 0.0

C66 ∗ 0.1155E
(
t
`

)
t2 0.0
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4.9 Conclusions

In this chapter, we discussed a recent micromechanics approach proposed by [55] and

applied it to determine the micropolar constants of a hexagonally packed circular

cell honeycomb, a grid structure, and a regular hexagon honeycomb with uniform as

well as non-uniform wall thickness. In order to determine the closed form solution

of the constitutive relation, we resorted to nondimensional analysis, were we first

assumed the form of these expressions and used numerical analysis to determine

the one unknown multiplicative constant. It should be noted that these expressions

could have been derived analytically by solving the governing equations, but in order

to simplify our analysis, we resorted to nondimensional analysis. It has been shown

that the numerical error in our closed form solutions were negligible. They are only

sensitive to the slenderness of the cell walls. This is due to higher order shear effects

which develop in thick and short beams. However, for most engineering applications,

our closed form solutions are practical, since it has been demonstrated for extreme

cases of t = R/8 (or t = `/8) the error produced by these higher order shear effects

are approximately 10.0%. In addition, we compared our expressions of the material

constants to those available in literature. It is concluded that the methods applied

can effectively determine the classical and micropolar properties of cellular solids.
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CHAPTER 5

On the Buckling of a 2D Micropolar Strip

5.1 Introduction

In literature, various analytical solutions have been produced for linear micropo-

lar theory [5], [6], [7], [77], [78], etc. However, analytical solutions pertaining to

the geometric nonlinear region is limited. The challenge lies in the finite microp-

olar strain/curvature and displacement/rotation relation. Unlike in classical finite

elasticity, where the Green-Lagrange strain measure is second order nonlinear in dis-

placement, the proposed finite micropolar theory will be shown to be of infinite order

because of trigonometric relation in the kinematics. In addition, in finite micropolar

theory, by neglecting the length scales in the constitutive relation, the theory does

not always reduce to finite elasticity. As a result, classical solutions cannot always be

extracted from the general micropolar theory [45], [44]. In the previous chapters, in

order to avoid such complications, geometric nonlinearity was introduced by assum-

ing only the symmetric component of the strain tensor is nonlinear (Eqn. 2.62). This

chapter instead examines the geometrically exact micropolar theory. An analytical

solution of a 2D micropolar strip, under compression is obtained, which leads to a

closed-form solution for buckling. In doing so, the effects of the additional micropolar

material constants on the buckling load are analyzed. In the limiting case, when

the thickness of the 2D strip becomes small in comparison to the overall length of
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the structure, the micropolar beam equations are obtained. In the following chapter,

the micropolar beam theory is also developed based on the geometric exact strain

measures. In literature, simple micropolar beam theories have been proposed, for

example in [79], [80], [81]. These beam theories have potential applications to micro-

electromechanical systems (MEMS), where the relative size of the microstructure to

the overall size of the structure is comparable.

5.2 Finite Micropolar Theory

The formulation of the finite micropolar theory can be found in [42], [43], [82], [83].

In considering the asymmetric stress (Σ) and couple-stress (M ) tensors, conjugate

asymmetric strains need to be defined. For this, we refer to the deformation gradient

defined earlier

F =
∂x

∂X
(5.1)

which can also be expressed in terms of the asymmetric stretch tensor U and the

kinematically independent microrotation tensor R (R ∈ SO(3))

F = R ·U (5.2)

In solving for the stretch tensor,

U = R−1 · F (5.3)

or, by considering Rodrigues rotation formula in Eqn. 2.6, it simplifies to

UKL = xk,K

(
cos θδkL + (1− cos θ)

ϕkϕl
θ2

δlL − sin θεklm
ϕm
θ
δlL

)
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In addition, the wryness tensor is defined

ΥKL = θ,L
ϕk
θ
δkK + sin θ

(ϕk
θ

)
,L
δkK − (1− cos θ)εKMN

ϕk
θ

(ϕl
θ

)
,L
δkMδlN

In the above equations, xk = XKδKk + uk, θ = (ϕ2
1 + ϕ2

2 + ϕ2
3)1/2, where XK and

xk are the coordinates of a point in the material in the undeformed and deformed

configuration, respectively, uk and ϕk are the displacement and rotation vectors,

respectively. For notational consistency with the previous chapters, we will use Γ

to notate the stretch tensor U (or Γ = U). In addition, the wryness tensor is

related to the curvature tensor by K = ΥT . It should be highlighted that these

strain measures are trigonometric functions of dispacements/rotations, thus highly

nonlinear. In proceeding, through a Taylor series expansion, they reduce in

ΓKL = uL,K − εKLMϕM −
1

2
θ2δKL +

1

2
ϕKϕL − εFLMϕMuF,K +O(3) (5.4a)

ΥKL = ϕK,L −
1

2
εKMNϕMϕN,L +O(3) (5.4b)

In applying perturbation method to obtain the linearized equations for buckling, it

will be shown that only second order nonlinear terms are of relevance. Thus, finite

micropolar theory is solvable for these classes of problems.

According to [82], [83], the micropolar strain energy density is defined as U(Γ,Υ).

For a general (3D) isotropic micropolar material, it is expressed in terms of the

invariants

U(Γ,Υ) =
λ

2
I2

1 + µI2 + (µ+ k)I3 +
α

2
I2

4 + βI5 + γI6 (5.5)

λ, µ, k, α, β, and γ are material constants and the invariants are

I1 = Γii (5.6a)

I2 =
1

2
ΓijΓji (5.6b)
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I3 =
1

2
ΓijΓij (5.6c)

I4 = Υii (5.6d)

I5 =
1

2
ΥijΥji (5.6e)

I6 =
1

2
ΥijΥij (5.6f)

The total potential energy of a micropolar system is defined as

Π = U −W (5.7)

where U =
∫
V
UdV is the total strain energy and W is the external work.

5.3 Problem Formulation

The geometry of the problem under consideration is shown in Fig. 5.1. A strip of

material is subjected to uniaxial compression stress σ along the x1 direction and

deforms in the x1-x2 plane. A plane strain condition is assumed. For a 2D solid,

the significant displacement components take the form, u1 = u1(x1, x2), and u2 =

u2(x1, x2). In addition, the local rotation of the material has the form, ϕ3 = ϕ3(x1, x2).

The strip thickness is 2h and its length is a. For mathematical simplicity, the range

of the solid in the x1 direction will be −∞ < x1 <∞, but the deformation is assumed

to be periodic with a wavelength L = 2a. This facilitates, as shown in [4], for the

corresponding classical elasticity solution with thickness effects. In this boundary

value problem, for equilibrium, the potential energy must be stationary (δΠ = 0), or

δΠ = 0 = δU − δW =

∫
V

[((2µ+ λ+ k)Υ11 + λΥ22)δΥ11+ (5.8)

((2µ+ λ+ k)Υ22 + λΥ11)δΥ22 + (µΥ21 + (µ+ k)Υ12)δΥ12+

(µΥ12 + (µ+ k)Υ21)δΥ21 + γK13δK13 + γK23δK23]dV −
∫
A

σδu1`dS

116



𝑎

2ℎ

𝜎 𝜎
𝑥2, 𝑧

𝑥1, 𝑥

Figure 5.1: Configuration of the problem studied.

Following the procedure of the variational approach, the nonlinear equilibrium equa-

tions result in

∂(Σ11 − ϕ3Σ12)

∂x1

+
∂(Σ21 − ϕ3Σ22)

∂x2

= 0 (5.9a)

∂(Σ12 + ϕ3Σ11)

∂x1

+
∂(Σ22 + ϕ3Σ21)

∂x2

= 0 (5.9b)

∂M13

∂x1

+
∂M23

∂x2

+ (Σ12 + ϕ3Σ11)− (Σ21 − ϕ3Σ22)+ (5.9c)

∂u1

∂x1

Σ12 +
∂u1

∂x2

Σ22 −
∂u2

∂x1

Σ11 −
∂u2

∂x2

Σ21 = 0

Eqn. 5.9a,b correspond to the conservation of linear momentum and Eqn. 5.9c to the

conservation of angular momentum. The corresponding boundary conditions are

(Σ11 − ϕ3Σ12 − σ)`+ (Σ21 − ϕ3Σ22)m = 0 (5.10a)

(Σ12 + ϕ3Σ11)`+ (Σ22 + ϕ3Σ21)m = 0 (5.10b)

M13`+M23m = 0 (5.10c)

In Eqn. 5.8 and 5.10, ` = cos(~n, x1), m = cos(~n, x2) are directional cosines between

the normal vector ~n corresponding to a surface and the basis vector along the coor-

dinate axis xi. From Eqn. 5.4, the 2D strains in terms of displacements and local
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rotation are

Γ11 = u1,1 −
ϕ2

3

2
+ ϕ3u2,1 +O(3) (5.11a)

Γ22 = u2,2 −
ϕ2

3

2
− ϕ3u1,2 +O(3) (5.11b)

Γ12 = u2,1 − ϕ3 − ϕ3u1,1 +O(3) (5.11c)

Γ21 = u1,2 + ϕ3 + ϕ3u2,2 +O(3) (5.11d)

K13 = ϕ3,1 +O(3) (5.11e)

K23 = ϕ3,2 +O(3) (5.11f)

For a linear, isotropic micropolar solid, the constitutive relations between the stresses

and the strains are,

Σ11 = (2µ+ λ+ k)Γ11 + λΓ22 (5.12a)

Σ22 = (2µ+ λ+ k)Γ22 + λΓ11 (5.12b)

Σ12 = (µ+ k)Γ12 + µΓ21 (5.12c)

Σ21 = (µ+ k)Γ21 + µΓ12 (5.12d)

M13 = γK13 (5.12e)

M23 = γK23 (5.12f)

Because of the principle of nonnegative internal energy, the micropolar constants

λ, µ, k, γ in the constitutive relation must satisfy the inequalities,

0 ≤ 3λ+ 2µ+ k (5.13a)

0 ≤ 2µ+ k (5.13b)

0 ≤ k (5.13c)

0 ≤ γ (5.13d)
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In Eqn. 5.12, 5.13, it is seen that in 2D, a micropolar material is characterized by 4

material constants instead of 2 as in classical elasticity, and by setting the micropolar

constants, γ, k to zero, the constitutive relation reduces to that of classical elasticity

and λ, µ correspond to the Lamé constants. This fact will be used to recover the

classical elasticity solution from the general micropolar solution for comparison of the

two continuum theories.

5.4 Buckling Equations

In deriving the buckling equations of a micropolar solid, the equilibrium equations

are first expressed in terms of displacements by using Eqns. 5.9, 5.11, and 5.12.

(2µ+ λ+ k)
∂2u1

∂x2
1

+ (µ+ λ)
∂2u2

∂x1∂x2

+ (µ+ k)
∂2u1

∂x2
2

+ k
∂ϕ3

∂x2

− 2

(
µ+ λ− k

2

)
ϕ3
∂ϕ3

∂x1

+ (µ+ λ)
∂ϕ3

∂x1

(
∂u2

∂x1

− ∂u1

∂x2

)
(5.14a)

+ (µ+ λ)ϕ3

(
∂2u2

∂x2
1

− ∂2u2

∂x2
2

− 2
∂2u1

∂x1x2

)
−

(µ+ λ)
∂ϕ3

∂x2

(
∂u1

∂x1

+
∂u2

∂x2

)
+O(3) = 0

(µ+ λ)
∂2u1

∂x1∂x2

+ (µ+ k)
∂2u2

∂x2
1

+ (2µ+ λ+ k)
∂2u2

∂x2
2

− k∂ϕ3

∂x1

− 2

(
µ+ λ− k

2

)
ϕ3
∂ϕ3

∂x2

+ (µ+ λ)
∂ϕ3

∂x1

(
∂u1

∂x1

+
∂u2

∂x2

)
+ (5.14b)

(µ+ λ)ϕ3

(
∂2u1

∂x2
1

− ∂2u1

∂x2
2

+ 2
∂2u2

∂x1∂x2

)
− (µ+ λ)

∂ϕ3

∂x2

(
∂u1

∂x2

− ∂u2

∂x1

)
+O(3) = 0

γ

(
∂2ϕ3

∂x2
1

+
∂2ϕ3

∂x2
2

)
+ k

(
∂u2

∂x1

− ∂u1

∂x2

− 2ϕ3

)
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+ 2

(
µ+ λ− k

2

)
ϕ3

(
∂u1

∂x1

+
∂u2

∂x2

)
+ (5.14c)

(µ+ λ)

(
∂u1

∂x1

∂u1

∂x2

+
∂u2

∂x2

∂u1

∂x2

− ∂u1

∂x1

∂u2

∂x1

− ∂u2

∂x1

∂u2

∂x2

)
+O(3) = 0

Next, the displacement and rotational fields are perturbed: u1 = u0
1 + λ̄u′1, u2 =

u0
2+λ̄u′2, and ϕ3 = ϕ0

3+λ̄ϕ′3, where λ̄ identifies the buckled state and u0
1, u0

2, ϕ0
3 are the

known linear prebuckled displacement and rotational solutions. The equations above

are linearized by substituting the perturbed kinematics into the equations above. To

linearize, only first order terms of λ̄ are kept. Thus, the higher order polynomial

terms associated with O(3) are irrelevant.

In the prebuckled state, the only nonzero stress in Fig. 5.1 is Σ0
11 = −σ. From

this, the displacement and rotation fields are,

u0
1 = − (2µ+ λ+ k)σ

(2µ+ λ+ k)2 − λ2
x1 = −(1− v2

m)σ

Em
x1 (5.15a)

u0
2 =

λσ

(2µ+ λ+ k)2 − λ2
x2 =

vm(1 + vm)σ

Em
x2 (5.15b)

ϕ0
3 = 0 (5.15c)

In Eqn. 5.15, Em = (2µ+ k)(3λ+ 2µ+ k)(2λ+ 2µ+ k)−1 and vm = λ(2µ+ 2λ+ k)−1,

which represent the micropolar Young’s modulus and Poisson’s ratio, [84], respec-

tively.

Introducing the perturbations in Eqn. 5.14, and considering Eqn. 5.15, the buck-

ling equations are,

(2µ+ λ+ k)
∂2u

∂x2
+ (µ+ λ)

∂2w

∂x∂z
+ (µ+ k)

∂2u

∂z2
+ A1

∂ϕ

∂z
= 0 (5.16a)

(µ+ λ)
∂2u

∂x∂z
+ (2µ+ λ+ k)

∂2w

∂z2
+ (µ+ k)

∂2w

∂x2
− A1

∂ϕ

∂x
= 0 (5.16b)

γ
∂2ϕ

∂x2
+ γ

∂2ϕ

∂z2
− A1

∂u

∂z
+ A1

∂w

∂x
− A2ϕ = 0 (5.16c)
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where,

A1 = k +
σ(µ+ λ)(2µ+ k)

(2µ+ λ+ k)2 − λ2
(5.17a)

A2 =
2k2 + 2σ(µ+ λ) + k(4λ+ 4µ− σ)

2µ+ 2λ+ k
(5.17b)

In Eqn. 5.16, x1, x2, u
′
1, u
′
2 and ϕ′3 are replaced by x, z, u, w, and ϕ, respectively. The

solution of the displacement and rotation fields are assumed to be of the form,

u(x, z) = ψ(z) cos(ηx) (5.18a)

w(x, z) = φ(z) sin(ηx) (5.18b)

ϕ(x, z) = θ(z) cos(ηx) (5.18c)

where η = 2π
L

(L is the wavelength of the deformation mode). This solution is valid

due to the assumption that the deformation mode is periodic in the x1 direction as

stated earlier. Substituting Eqn. 5.18 into Eqn. 5.16, a linear system of ordinary

differential equations in terms of the functions ψ(z), φ(z), and θ(z) are obtained.

Solving them results in,

ψ(z) = ψ1 sinh(ηz) + ψ2 cosh(ηz) + ψ3z sinh(ηz) (5.19a)

+ ψ4z cosh(ηz) + ψ5 sinh(ηm̃z) + ψ6 cosh(ηm̃z)

φ(z) =

(
ψ2 +

k̃3

η
ψ3

)
sinh(ηz)+ (5.19b)(

ψ1 +
k̃3

η
ψ4

)
cosh(ηz) + ψ4z sinh(ηz)+

ψ3z cosh(ηz) +
ψ6

m̃
sinh(ηm̃z) +

ψ5

m̃
cosh(ηm̃z)

θ(z) = k̃1ψ3 sinh(ηz) + k̃1ψ4 cosh(ηz)+ (5.19c)

η
k̃2

m̃
ψ6 sinh(ηm̃z) + η

k̃2

m̃
ψ5 cosh(ηm̃z)
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In Eqns. 5.19, k̃1, k̃2, k̃3, and m̃2 are nondimensional,

k̃1 = − 2Ã1(2 + λ̃+ k̃)

Ã2
1 + Ã2(λ̃+ 1)

(5.20a)

k̃2 =
Ã2

1 − (1 + k̃)Ã2

γ̃Ã1

(5.20b)

k̃3 =
Ã2

1 − (3 + 2k̃ + λ̃)Ã2

Ã2
1 + (1 + λ̃)Ã2

(5.20c)

m̃2 =
(1 + k̃)(Ã2 + γ̃)− Ã2

1

γ̃(1 + k̃)
(5.20d)

where

k̃ =
k

µ
(5.21a)

λ̃ =
λ

µ
(5.21b)

γ̃ =
γη2

µ
(5.21c)

s̃ =
σ

2µ
(5.21d)

Ã1 = k̃ +
2s̃(1 + λ̃)(2 + k̃)

(2 + λ̃+ k̃)2 − λ̃2
(5.21e)

Ã2 =
2k̃2 + 4s̃(1 + λ̃) + k̃(4λ̃+ 4− 2s̃)

2 + 2λ̃+ k̃
(5.21f)

Eqns. 5.21a,b,c, are the nondimensionalized material properties and Eqn. 5.21d is the

nondimensional applied stress. After solving the displacement and rotation fields in

Eqn. 5.18, the critical buckling load is determined by applying the boundary condi-

tions, at z = ±h.

Σ′21 = Σ′22 = M ′
23 = 0 at z = ±h (5.22)

where the primes indicate the perturbed stresses (Σ21 = Σ0
21 + λ̄Σ′21,Σ22 = Σ0

22 +

λ̄Σ′22,M23 = M0
23 + λ̄M ′

23). Applying the boundary conditions, we obtain a homoge-
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neous linear system of 6 equations with 6 unknowns (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6). Taking

the determinant of this linear system of equations, the transcendental equation, ∆, is

obtained, which is a function of the nondimensional material parameters k̃, λ̃, γ̃, and

the applied load s̃. Setting ∆ = ∆(k̃, λ̃, γ̃, s̃) = 0, the critical value of s̃ is determined

numerically, and this corresponds to the buckling load.

5.5 1D Micropolar Beam Theory (1DMB)

In classical elasticity, the thickness effects in Fig. 5.1 disappear as the length over

height ratio becomes large, in which case, 1D theories such as the Euler-Bernoulli

beam theory can be recovered. Similarly, 1D micropolar beam theory (1DMB) is

derived using an asymptotic series expansion of the displacement and rotation fields,

[85].

u(x, z) ' u0(x) + zχ(x) (5.23a)

w(x, z) ' w(x) (5.23b)

ϕ3 ' ϕ(x) (5.23c)

The corresponding non-zero strains are,

Γ11 =
du0(x)

dx
+ z

dχ(x)

dx
(5.24a)

Γ12 =
dw(x)

dx
− ϕ(x) (5.24b)

Γ21 = χ(x) + ϕ(x) (5.24c)

K13 =
dϕ(x)

dx
(5.24d)
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Assuming Σ22 = 0, the stresses are,

Σ11 =
Em

1− v2
m

(
du0(x)

dx
+ z

dχ(x)

dx

)
(5.25a)

Σ12 = µ

(
χ(x) +

dw(x)

dx

)
+ k

(
dw(x)

dx
− ϕ(x)

)
(5.25b)

Σ21 = µ

(
χ(x) +

dw(x)

dx

)
+ k (χ(x) + ϕ(x)) (5.25c)

M13 = γ
dϕ(x)

dx
(5.25d)

Em and vm are the micropolar Young’s modulus and Poisson’s ratio defined earlier.

The 1DMB equilibrium equations are derived using the variational method. The

external work W is determined by assuming the beam to be inextensible or Γ11 = 0.

From this assumption, u(x = a) =
∫ a

0
ϕ(ϕ

2
− dw

dx
)dx (a is the length of the beam) and

the external work is,

W =

∫ a

0

Pϕ

(
dw

dx
− ϕ

2

)
dx (5.26)

P is the external compressive load applied on the beam. Note, in classical elasticity,

the local and global rotations are equal, i.e. ϕ = dw
dx

. This is obtained when consider-

ing the micropolar material constants to be zero, as discussed in Appendix D. From

this, the external work reduces to W =
∫ a

0
P
(
dw
dx

)2
dx, which is the expression for

inextensible classical beams under compression. Using the variational method, the

equilibrium equations are obtained

− dN

dx
= 0 (5.27a)

− d(Σ12A)

dx
+ P

dϕ(x)

dx
= 0 (5.27b)

− d

dx

(
Dm

dχ(x)

dx

)
+ Σ21A = 0 (5.27c)

Σ21A− Σ12A−
d(M13A)

dx
+ P

(
ϕ− dw

dx

)
= 0 (5.27d)
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N(x) = EmA
1−v2m

du0(x)
dx

is the axial force, A is the beam cross sectional area, and Dm =

EmI
1−v2m

is the rigidity, I = 1
12
A(2h)2 is the area moment of inertia of a beam with a

rectangular cross section. The general boundary conditions for a micropolar beam

are,

Nδu0(x)|a0 = 0 (5.28a)

(Σ12A− Pϕ) δw(x)|a0 = 0 (5.28b)(
Dm

dχ(x)

dx

)
δχ(x)|a0 = 0 (5.28c)

(M13A)δϕ(x)|a0 = 0 (5.28d)

Assuming A and Dm are constant along the length of the beam, and the boundary

conditions are simply-supported, the equilibrium equations, in terms of displacements

are,

(µ+ k)
d2w(x)

dx2
+ µ

dχ(x)

dx
−
(
k +

P

A

)
dϕ(x)

dx
=0 (5.29a)

−Dm

A

d2χ(x)

dx2
+ µ

dw(x)

dx
+ (µ+ k)χ(x) + kϕ =0 (5.29b)

γ
d2ϕ

dx2
− 2

(
k +

P

A

)
ϕ+

(
k +

P

A

)
dw

dx
− kχ(x) =0 (5.29c)

with boundary conditions,

w(0) = w(a) =0 (5.30a)

dχ(0)

dx
=
dχ(a)

dx
=0 (5.30b)

dϕ(0)

dx
=
dϕ(a)

dx
=0 (5.30c)

125



The solution to Eqn. 5.29, results in,

w(x) = w sin
(πx
a

)
(5.31a)

χ(x) = χ cos
(πx
a

)
(5.31b)

ϕ(x) = ϕ sin
(πx
a

)
(5.31c)

The coefficients, w, χ, and ϕ, are constant. The critical load for the beam is deter-

mined by substituting Eqns. 5.31 into Eqns. 5.29 to obtain a linear set of equations.

Taking the determinant of this, the critical buckling load is obtained as,

s̃1DMB
cr =

1

4(1 + k̃ + D̃mh̃2)
{D̃mh̃

2(1− k̃)− k̃(2 + k̃) (5.32)

+ {(D̃mh̃
2(1 + k̃) + k̃(2 + k̃))(k̃(2 + k̃)

+ 4γ̃(1 + D̃mh̃
2 + k̃) + D̃mh̃

2(1 + 5k̃))}1/2}

where h̃ = hη, D̃m = Ẽm

3(1−ṽ2m)
, Ẽm = (2+k̃)(3λ̃+k̃+2)

2λ̃+k̃+2
, and ṽm = λ̃

2λ̃+k̃+2
. Taking the

micropolar constants γ̃ = k̃ = 0, s̃1DMB
cr reduces to the Timoshenko critical load

s̃1DMB
cr = s̃Tcr (Appendix E).

5.6 Results

5.6.1 Buckling Load

In order to establish the predictions of 2D micropolar theory, the results are compared

against the classical elasticity solution for the case of γ̃ = k̃ = 0 and λ̃ = 2.0. As stated

in Appendix E, by setting γ̃ = k̃ = 0, the stress and strain tensors become symmetric

and the microstructure of the solid is neglected. As a result, the 2D micropolar

theory can be compared with classical elasticity. This is shown in Fig. 5.2, where

the buckling load is plotted against the ratio of length to thickness of the strip. The
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discrepancy between the micropolar solution and the elasticity solution is due to the

Von-Karman type assumption made in [4], where linear strains are assumed to be

insignificant in comparison with rotations. This assumption has been relaxed in the

present derivation of 2D micropolar theory, which provides more accurate results

in comparison to [4]. In the limiting case when the thickness of the layer becomes

small, the critical loads of the 2D elasticity and 2D micropolar theories converge.

In addition, 1D theories such as Euler-Bernoulli and Timoshenko beam theories are

recovered when the length to thickness ratio becomes large. The Euler-Bernoulli beam

theory is shown to provide an upper bound for the buckling load, while Timoshenko

beam theory is seen to approach the 1DMB solution from below.

The effects of the micropolar constants (of the 2D micropolar theory, γ̃ and k̃) are

analyzed in order to see their effect on the buckling load. For simplicity, the ratio of

the Lamé constants is λ̃ = 2.0 and in Fig. 5.3, the buckling load is plotted against

length to thickness ratio of the strip. Fig. 5.3a, the effect of the micropolar constant k̃

is analyzed when γ̃ = 0. When k̃ = 0, the stress and strain tensors become symmetric

(Appendix D). It is observed that the buckling load monotonically increases as k̃ is

increased. Similarly, in Fig. 5.3b, the effect of the nondimensional characteristic

length of the microstructure, γ̃, on the critical load is analyzed when taking k̃ = 0. It

is seen that as γ̃ is increased, the critical load is again monotonically increasing. The

effect of nonzero k̃ and γ̃ is analyzed in Fig. 5.3c. The coupling of these constants in

the transcendental equation again gives rise to an increase in the critical load.

The 1DMB critical load in Eqn. 5.32 is validated by comparing it to the 2D

micropolar solution in Fig. 5.4. These two theories are compared for different values

of the micropolar constants k̃ and γ̃ when λ̃ = 2.0. First, k̃ = γ̃ = 0 in Fig. 5.4a. In

this case, the 2D micropolar solution reduces to the elasticity solution and the 1DMB

critical load given in Eqns. 5.29 reduces to the Timoshenko critical load as stated

earlier. Next, the micropolar constants k̃ and γ̃ are increased. Figure 5.4b shows
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the effect of nonzero k̃ when γ̃ = 0. For large values of L
2πh

, the 1DMB converges

to the micropolar solution from below. Similarly, the effect of nonzero γ̃ is analyzed

when k̃ = 0 (Fig. 5.4c). 1DMB solution again converges to the micropolar solution.

The effect of nonzero k̃ and γ̃ is seen in Fig. 5.4d. Similar to the previous cases,

the 1DMB solution again approaches the micropolar solution from below for a large

value of length to thickness ratio. As expected, the 1DMB approximation is seen to

be valid when the length to thickness ratio is large.

5.6.2 Buckling Modes

The global buckling modes of a micropolar material are also analyzed. In this section,

the modes will be shown for the cases when the length to thickness ratio is small

( L
2πh

= 0.6) and large ( L
2πh

= 6.0). The effect of the micropolar constants on the

buckling modes will be considered by first analyzing the mode shapes when k̃ = γ̃ = 0

in Fig. 5.5 and when k̃, γ̃ are nonzero in Fig. 5.6. In Fig. 5.5a,b, the transverse

deflection of the solid is first analyzed when k̃ = γ̃ = 0. The terminal position, or the

buckled state, is shown with solid lines and the initial (prebuckled) state is in dashed

lines. As seen, the deformation mode of w(x, z) is symmetric for when ( L
2πh

= 0.6) and

( L
2πh

= 6.0). Next, the mode of u(x, z) is shown in Fig. 5.5c,d. Because this function

is harmonic in the x-direction, as seen in Eqn. 5.18a, the function ψ(z) will be plotted

across the z-axes. When L
2πh

= 0.6, ψ(z) varies nonlinearly across the thickness of

the solid. This is induced by the shear effects which are present when the thickness

becomes comparable with the wavelength of the structure. As the slenderness is

increased ( L
2πh

= 6.0), these effects become negligible and the displacement u becomes

linear across the cross section of the solid. Because of this, Kirchhoff’s hypothesis

becomes valid and Euler-Bernoulli beam theory can be applied. The variation of the

rotation across the thickness of the solid is shown in a similar fashion (Fig. 5.5e,f).

Because the value of k̃ = 0 in this case, this local rotation becomes the global rotation
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(macrorotation) of the solid’s cross section (Appendix D). The magnitude of this is

minimum at the center and it is maximum at the top and the bottom surfaces. For

L
2πh

= 0.6, the difference between the center of the solid and the surfaces is much

larger than for L
2πh

= 6.0. As the value of L
2πh

increases (or thickness of the solid

decreases), the ϕ becomes constant across the z-direction.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Figure 5.2: Comparison between Timoshenko theory (red), elasticity solution accord-
ing to [4] (blue), micropolar theory (green), Euler-Bernoulli beam theory (black) when
k̃ = γ̃ = 0 and λ̃ = 2.0.

The deformation modes in Fig. 5.6 show the effect of micropolarity when k̃ = 0.4

and γ̃ = 0.2. In Fig. 5.6a,b, the mode shape of the transverse deflection is again

symmetric for both L
2πh

= 0.6 and L
2πh

= 6.0. In Fig. 5.6c, the variation of u across

the thickness of the solid is ”more” linear than in Fig. 5.5c. This is because of the

interaction of the shear and couple-stresses. Unlike in classical elasticity, the local

rotations across the z-axes induce u to vary ”more” linearly across the thickness.

Increasing the slenderness of the solid ( L
2πh

= 6.0), u becomes ”more” linear. The

mode shape of the rotation across the z-axes is shown in Fig. 5.6e,f. Unlike classical
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elasticity, this rotational field represents the local rotation (microrotation) of the

solid. It is seen that the local rotation is minimum at the center and approaches a

maximum value at the top and bottom surfaces of the solid. When the slenderness

increases, the variation of the local rotation across the z-direction becomes negligible,

as seen in Fig. 5.6f. This has been tacitly assumed in 1DMB for slender beams in

Eqn. 5.31c.

5.7 Conclusions

The effect of a material’s microstructure on the buckling of a solid material was

captured using micropolar theory. In doing so, the nonlinear micropolar buckling

equations were derived. In order to verify the results, the micropolar buckling solution

was compared with the elasticity solution by setting the micropolar constants k̃ =

γ̃ = 0. By increasing the micropolar constants k̃ and γ̃, the buckling load was

shown to increase. For slender solids, the 1D micropolar beam theory (1DMB) was

developed and this theory was shown to be in good agreement with the micropolar

exact solution in the limit, L
2πh
→∞. In addition, the buckling modes were analyzed.

The micropolar constants, k̃ and γ̃ were seen to have no effect on the transverse

deflection, w(x, z), which displayed a symmetric mode at the critical load. The local

rotation distribution across the thickness of the solid, corresponding to the buckling

load, was also analyzed. As seen, the local rotation was a minimum at the center of

the solid and had a maximum value at the top and bottom surfaces. As the thickness

of the solid decreases, it was shown that the local rotation has little variation across

the cross section (independent of z-coordinate).
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(a) k̃ 6= 0, γ̃ = 0, and λ̃ = 2.0
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(c) k̃ 6= 0, γ̃ 6= 0, and λ̃ = 2.0

Figure 5.3: The effect of the micropolar constant (a) k̃, (b) γ̃, and (c) their coupling
effect on the buckling load s̃ = σ

2µ
.
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(a) γ̃ = 0, k̃ = 0
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(b) γ̃ = 0, k̃ = 0.4
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(c) γ̃ = 0.2, k̃ = 0
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(d) γ̃ = 0.2, k̃ = 0.4

Figure 5.4: Comparison of 1DMB theory (red) with the micropolar solution (blue).
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Figure 5.5: Deformation modes for an elastic solid (k̃ = γ̃ = 0) for low and high
values of L

2πh
.
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Figure 5.6: Deformation modes for a micropolar solid (k̃ = 0.4, γ̃ = 0.2) for low and
high values of L

2πh
.
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CHAPTER 6

Concluding Remarks and Future Work

In this dissertation, geometrically and materially nonlinear micropolar theory was de-

veloped. In Chapter 2, the continuum model, with local rotational degrees of freedom

and internal couple-stresses was applied to analyze fiber reinforced composites. In this

high fidelity model, the effects of the local fiber rotation/moments were incorporated

in the continuum formulation. Following this, an updated Lagrangian nonlinear fi-

nite element method was applied for numerical analysis. It was done using a fortran

based user element (UEL) subroutine with the commercial software ABAQUS. The

utility of the higher order micropolar theory and the introduction of the length scale

parameters was demonstrated in understanding localization phenomenon observed in

fiber reinforced composites. Unlike previous studies in this area, it was shown that

localization can be induced as a structural instability of the homogeneous micropolar

continuum, instead of a material instability with a softening relation in the consti-

tutive model, which is in violation of the Drucker stability criterion. In addition,

the localization width was shown to be a function of the micropolar length scale pa-

rameter, while the localization angle is influenced by the additional micropolar shear

modulus. In this study, only 2D analysis was done for simplicity. In the future, the

corresponding 3D nonlinear finite element formulation will be beneficial for predicting

localization in 3D structures, such as fiber tows in textile composites.

In Chapter 3, physics based numerical tests were proposed for predicting the
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additional material constants of 2D fiber reinforced composites. Similar tests can

be done on 3D structures, which incorporate the twisting deformation modes of the

fibers. This mode of deformation introduces an additional length scale parameter

associated with the torsion of the fibers. Its effects on the localization width and

angle was not considered in the 2D analysis, but should be studied for 3D fiber tows.

In Chapter 4, volume averaging methods were used to determine the micropolar

properties of cellular solids. Using nondimensional analysis, closed form expressions

were obtained for the material constants. Similar to fiber kinking in fiber reinforced

solids, when under compression, weak discontinuities (continuous macroscopic dis-

placement, discontinuous gradients) have also been observed in polymeric cellular

medium. One challenge has been the prediction of localization in these class of materi-

als at the continuum scale. In the future, similar micropolar models will be considered

for cellular solids.

With respect to the homogenization method in Chapter 4, one of the current chal-

lenges pertains to extending similar micromechanics methods to determining the effec-

tive micropolar properties of multi-phase Cauchy medium. The difficulty is presently

in enforcing local rotation on the boundary of a heterogenous microstructure, which is

discussed in Appendix F. Currently, more research is needed in developing microme-

chanics methods for this purpose.

In the nonlinear micropolar model considered in Chapter 2, the symmetric compo-

nent of the strain tensor was assumed to be nonlinear, however, its skew-symmetric

and curvature strains were assumed to be linear. In Chapter 5, the general finite

micropolar theory was discussed. The strain energy was assumed to be a function

of an asymmetric strain and curvature strains, from which classical results are irre-

ducible. In the future, correct (admissible) strain measures are necessary which meet

this requirement. As a result, a possible area of research is in defining asymmetric

strain measures, from which Green-Lagrange strain is obtained in the absence of the
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micropolar constants in the constitutive relation.
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APPENDIX A

2D Micropolar Elastoplastic Stiffness

Matrix

In this appendix, the 2D elastoplastic stiffness introduced in Eqn. 2.48 is derived.

Considering the micropolar Hill’s yield surface, the gradients of the plastic potential

are

n̂Σ
11 =

1

σe

(
G(Ŝ11 − Ŝ33) +H(Ŝ11 − Ŝ22)

)
(A.1a)

n̂Σ
22 =

1

σe

(
F (Ŝ22 − Ŝ33) +H(Ŝ22 − Ŝ11)

)
(A.1b)

n̂Σ
33 =

1

σe

(
F (Ŝ33 − Ŝ22) +G(Ŝ33 − Ŝ11)

)
(A.1c)

n̂Σ
12 = n̂Σ

21 =
1

σe
NŜ12 (A.1d)

n̂M13 =
1

σe
Y M̂13 (A.1e)

n̂M23 =
1

σe
ZM̂23 (A.1f)

The corresponding values of ĤΣ and ĤM are

ĤΣ
11 = Ĉ11n̂

Σ
11 + Ĉ12n̂

Σ
22 + Ĉ12n̂

Σ
33 (A.2a)

ĤΣ
22 = Ĉ12n̂

Σ
11 + Ĉ22n̂

Σ
22 + Ĉvn̂

Σ
33 (A.2b)

ĤΣ
33 = Ĉ12n̂

Σ
11 + Ĉvn̂

Σ
22 + Ĉ22n̂

Σ
33 (A.2c)
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ĤΣ
12 = 2

(
Ĉ33 + Ĉ34

)
n̂Σ

12 (A.2d)

ĤΣ
21 = 2

(
Ĉ33 − Ĉ34

)
n̂Σ

12 (A.2e)

ĤM
13 = Ĉ55n̂

M
13 (A.2f)

ĤM
23 = Ĉ66n̂

M
23 (A.2g)

Next, by defining the vector {Ĥ}

{Ĥ}T = {ĤΣ
11 ĤΣ

22

ĤΣ
12 + ĤΣ

21

2

ĤΣ
12 − ĤΣ

21

2
ĤM

13 ĤM
23 } (A.3)

the plastic multiplier is

λ̇ =
{Ĥ}T{ ˙̂γ}

h
(A.4)

where the numerator corresponds to the loading/unloading condition defined in Eqn. 2.43

and the denominator is

h = Ep + ĤΣ
11n̂

Σ
11 + ĤΣ

22n̂
Σ
22 + ĤΣ

33n̂
Σ
33 + (ĤΣ

12 + ĤΣ
21)n̂Σ

12 + ĤM
13 n̂

M
13 + ĤM

23 n̂
M
23 > 0 (A.5)

The elastoplastic constitutive relation defined in Eqn. 2.48 results in

{ ˙̂σ} = [Ĉep]{ ˙̂γ} =

(
[Ĉe]− 1

h
{Ĥ}{Ĥ}T

)
{ ˙̂γ} (A.6)

where the arrangements of the vectors { ˙̂σ} and { ˙̂γ} are given in Eqn. 2.49 and the

elastic stiffness [Ĉe] was defined in Eqn. 2.26. Also, the out-of-plane nonzero stress
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rate is

˙̂
S33 =

(
Ĉe

12 −
ĤΣ

33Ĥ
Σ
11

h

)
˙̂e11 +

(
Ĉe
v −

ĤΣ
33Ĥ

Σ
22

h

)
˙̂e22 +

(
−Ĥ

Σ
33(ĤΣ

12 + ĤΣ
21)

2h

)
(2 ˙̂e12)+(

−Ĥ
Σ
33(ĤΣ

12 − ĤΣ
21)

2h

)
(2

˙̂
A12) +

(
−Ĥ

Σ
33Ĥ

Σ
13

h

)
˙̂
K13 +

(
−Ĥ

Σ
33Ĥ

Σ
23

h

)
˙̂
K23

(A.7)
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APPENDIX B

Nonlinear Micropolar Finite Element

Matrices

In the finite element algebraic equations presented in Eqn. 2.88, the matrices are

defined for a 4-noded quadrilateral element (Fig. 2.4). The stiffness matrices and the

nodal residual force vector are

[ nnKL] =

∫
nV

[ nnBL]T ([ nC
ep] + [ nC

σ]) [ nnBL]d nV (B.1a)

[ nnKNL] =

∫
nV

[ nnBNL]T [ nτ ][ nnBNL]d nV (B.1b)

{ nnF } =

∫
nV

[ nnBL]T{ nτ̃}d nV (B.1c)

Based on the arrangement of the nodal displacements and rotations according to

Eqn. 2.87, the B-matrices above are defined in terms of the shape functions

[ nnBL] =



nN1,1 0 0 nN4,1 0 0

0 nN1,2 0 0 nN4,2 0

nN1,2 nN1,1 0 nN4,2 nN4,1 0

− nN1,2 nN1,1 − 2 nN1 · · · − nN4,2 nN4,1 − 2 nN4

0 0 nN1,1 0 0 nN4,1

0 0 nN1,2 0 0 nN4,2


(B.2)
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[ nnBNL] =


nN1,1 0 0 nN4,1 0 0

nN1,2 0 0 . . . nN4,2 0 0

0 nN1,1 0 0 nN4,1 0

0 nN1,2 0 0 nN4,2 0


(B.3)

Also, the residual Cauchy stresses and couple-stresses, are arranged in [ nτ ] and { nτ̃}

as

[ nτ ] =



nS11
nS12 0 0

nS12
nS22 0 0

0 0 nS11
nS12

0 0 nS12
nS22


(B.4)

{ nτ̃} =

{
nS11

nS22
nS12

nT12
nM13

nM23

}T
(B.5)
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APPENDIX C

Concentric Cylinder Model (CCM)

In obtaining the effective elastic properties, relating the symmetric stresses to the

symmetric strains, the concentric cylinder model (CCM) is considered. The composite

material is represented by 2 layered concentric cylinders, as seen in Fig. C.1. The

radius of the inner and the outer cylinders, ra and rb, respectively, are chosen such

that the volume fraction of the concentric cylinders are the same as the composite

under consideration (V f = r2a
r2b

). The elastic properties are obtained by solving a set

of boundary value problems and relating the external loads to the deformation of

the concentric cylinders. The effective transversely-isotropic composite properties in

terms of the transversely-isotropic fiber, isotropic matrix, and a specified fiber volume

fraction V f are

Ê11 = Êf
11(1 + γ)V f + Em(1 + δ)(1− V f ) (C.1a)

Ê22 = Ê33 =

(
ηfV f

Êf
22

+
ηm(1− V f )

Em

)−1

(C.1b)

v̂12 =
(1− V f )(1− v̂f23 − 2v̂f12v̂

f
21)vmEm

Em(1− V f )(1− v̂f23 − 2v̂f12v̂
f
21) + Êf

22(1 + V f + (1− V f )vm − 2V f (vm)2)
+

(C.1c)(
vm + V f (2v̂f12 − vm) + (vm)2(1− 2V f v̂f12 − V f )

)
Êf

22

Em(1− V f )(1− v̂f23 − 2v̂f12v̂
f
21) + Êf

22(1 + V f + (1− V f )vm − 2V f (vm)2)

Ĝ12 = Ĝ13 = Gm

(
(Gm + Ĝf

12)− V f (Gm − Ĝf
12)

(Gm + Ĝf
12) + V f (Gm − Ĝf

12)

)
(C.1d)
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Ĝ23 =
V f + η4(1− V f )

(V f/Ĝf
23) + η4(1− V f )/Gm

(C.1e)

where

γ =
2v̂f21E

m(1− v̂f23 − 2v̂f12v̂
f
21)(v̂f12 − vm)V f

Êf
22(1 + vm)(1 + V f (1− 2vm)) + Em(1− v̂f23 − 2v̂f12v̂

f
21)(1− V f )

(C.2a)

δ =
2Êf

22v
mV f (vm − v̂f12)

Êf
22(1 + vm)(1 + V f (1− 2vm)) + Em(1− v̂f23 − 2v̂f12v̂

f
21)(1− V f )

(C.2b)

ηf =
Êf

11V
f + ((1− v̂f12v̂

f
21)Em + vmv̂f21Ê

f
11)(1− V f )

Êf
11V

f + Em(1− V f )
(C.2c)

ηm =
((1− (vm)2)Êf

11 − (1− vmv̂f12)Em)V f + Em(1− V f )

Êf
11V

f + Em(1− V f )
(C.2d)

η4 =
3− 4vm +Gm/Ĝf

23

4(1− vm)
(C.2e)

v̂f21 = v̂f12

Êf
22

Êf
11

(C.2f)

The fiber properties are indicated by the superscript f and the isotropic matrix

properties by m. E,G, v are the Youngs modulus, shear modulus, and Poisson’s ratio,

respectively. The transversely-isotropic fiber properties, indicated by (̂ ) in order to

highlight the anisotropy of the fibers, are specified in a fiber-aligned coordinate system

x̂i.
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Figure C.1: Concentric cylinder representation of a fiber reinforced composite.
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APPENDIX D

Material Constants

Because of the principle of nonnegative internal energy in Eqn. 5.13, the micropolar

constants k and γ will be assumed to be positive. In Eqn. 5.21, the nondimensional

micropolar constants, k̃ = k
µ

and γ̃ = γη2

µ
, will also be taken to be positive by

assuming µ > 0. By setting these constants to zero, the classical elasticity results will

be recovered. The equilibrium, strain-displacement, and the constitutive equations

will reduce to the classical elasticity equations and the two constants, λ and µ, will

correspond to the two Lamé constants for an isotropic, elastic solid. In this case, the

nondimensional constant λ̃ in Eqn. 5.21b will depend on the Poisson’s ratio (v).

λ̃ =
λ

µ
=

Ev
(1+v)(1−2v)

E
2(1+v)

=
2v

1− 2v
(D.1)

For the numerical simulations in the results section, the Poisson’s ratio v will be taken

to be v = 1
3
, which is common for most engineering materials. For simplicity, this

value will also be used for cases when k̃ and γ̃ are nonzero.

The physical meaning of the parameter γ̃ is related to the characteristic length

of the microstructure. The dimension of γ
µ

is length squared, which represents the

microstructure’s characteristic length. Multiplying the characteristic length squared

by η2 results in the ratio of the microstructure characteristic length squared and the

global length of the structure squared multiplied by (2π)2 constant (γ̃ = (2π)2γ
µL2 ). In

applications, γ̃ � 1, but in our analysis, we will assume that it can approach to values
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as large as 0.6.

The material constant k̃ represents the asymmetry of stresses and strains of the

material. Looking at the constitutive relations, Eqn. 5.12c,d, when k = 0, T12 = T21.

From this, it can be shown that Γ12 = Γ21. It can also be proven that the local

rotation is equal to the global rotation (ϕ3 = 1
2

(
∂u2
∂x1
− ∂u1

∂x2

)
) by expressing Γ12 and

Γ21 in terms of displacement and setting these strains to be equal.
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APPENDIX E

Buckling Load Predictions of Classical

Beam Theories

The Euler-Bernoulli and Timoshenko theories were mentioned for comparison with the

derived critical loads. In this section, these loads and their nondimensional forms,

which were used in Fig. 5.2, will be stated. The generalized plane strain Euler-

Bernoulli critical load (PE
cr) for a simply-supported beam is,

PE
cr =

EI

1− v2

π2

a2
(E.1)

where E is Young’s modulus, v is Poisson’s ratio, and I = 1
12
A(2h)2 is the area

moment of inertia, with A being the cross section area at which the stress σ is applied

and h, a are half the total height of the cross section and the length of the beam,

respectively, as shown in Fig. 5.1. Next, Pcr is set in a nondimensional form;

PE
cr =

EI

1− v2

π2

a2
=

E(2h)2A

12(1 + v)(1− v)

(
2π

L

)2

=
2µA

3(1− v)

(
2πh

L

)2

(E.2a)

s̃Ecr =
σEcr
2µ

=
PE
cr

2Aµ
=

1

3(1− v)

(
2πh

L

)2

(E.2b)

where µ = E
2(1+v)

is the shear modulus and v = λ̃
2(λ̃+1)

.
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In Timoshenko beam theory, the critical buckling load is

P T
cr =

PE
cr

1 + PE
cr

µA

(E.3)

In nondimensional form, Eqn. E.3 simplifies to

s̃Tcr =
σTcr
2µ

=
P T
cr

2Aµ
=

σE
cr

2µ

1 + σE
cr

mµ

=

σE
cr

2µ

1 + 2
m

(
σE
cr

2µ

) (E.4)

It was also stated in the development of Eqn. 5.32, that the 1DMB buckling load,

s̃1DMB
cr , reduces to the Timoshenko critical load s̃Tcr when γ̃ = k̃ = 0 (s̃1DMB

cr =s̃Tcr).
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APPENDIX F

Homogenization Approaches

In Chapter 4, the micromechanics approach for obtaining the effective properties

of cellular microstructure was discussed. In this appendix, the extension of such

micromechanics methods to modeling a multi-phase continuous medium as a homo-

geneous micropolar continuum is discussed and the limitations of such approaches are

highlighted. The problem is posed as follows: given a heterogeneous microstructure

of N-phases (Fig. F.1), what is the corresponding effective stiffness of the homoge-

nized micropolar material such that the strain energy stored in the heterogeneous

composite (Uc) and the homogeneous micropolar material (Uh) equate, or

Uc = Uh (F.1)

The heterogeneous domain is selected such that it is a representative volume element

(RVE) of the composite. The domain of the RVE is denoted B, with its boundary

∂B. The geometry of the homogenized domain is assumed to correspond to the

heterogeneous domain, with lengths l1 and l2, and a volume V as shown in Fig. F.1.

Because we are interested in replacing the heterogeneous medium with a homogeneous

micropolar medium, Uh is defined as,

Uh =
V

2
(SjiδEji + T jiδAji +M j3δkj3) (F.2)
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Figure F.1: Representation of a heterogeneous (left) microstructure with an equivalent
homogenized medium (right).

An arbitrary displacement loading on the boundary ∂B does not always result in

the assumption in Eqn. F.1. Employing the Hill-Mandel condition as discussed in

Chapter 4 for cellular solids, the kinematic boundary conditions that are required to

satisfy this for a N-phased micropolar continuum are

u1 = E11x1 + E12x2 − Ω3x2 (F.3a)

u2 = E12x1 + E22x2 + Ω3x1 (F.3b)

ϕ3 = Ω3 − A12 +K13x1 +K23x2 (F.3c)
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where the kinematics and coordinates are specified on ∂B. Given the general consti-

tutive model between the effective stresses and strains,



S11

S22

S12

T 12

M13

M23


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





E11

E22

E12

A12

K13

K23


(F.4)

to obtain the material constants Cij, a single strain is applied one at a time, while

the remaining strain components are set to zero. The corresponding stress measures

are obtained through

Sij =
1

2V

∫
∂B

(tixj + tjxi)dA (F.5a)

T 12 =
1

2V
εji3

∫
∂B
Q3dA (F.5b)

M i3 =
1

V

∫
∂B
Q3xidA (F.5c)

where ti and Q3 are the traction and couple-traction, respectively. For example, to

determine the material constants Ci5, the nonzero curvature K13 is specified, while

the other strain components are set to zero. The corresponding displacements on ∂B

are

u1 = 0 (F.6a)

u2 = 0 (F.6b)

ϕ3 = K13x1 (F.6c)
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Next, evaluating the macroscopic stresses with Eqn. F.5, the material constants Ci5

are determined. The remaining material constants are obtained by applying the

remaining strains. The limitation of the foregoing approach should be highlighted.

In order for the rotational degrees of freedom to be specified on ∂B, the heterogeneous

medium must be such that rotation is kinematically admissible. This is possible for

medium consisting of micropolar constituents or cellular beam/shell structures with

rotational degrees of freedom. The extension of the micromechanics approach to

obtain the effective micropolar properties of a heterogeneous N-phase Cauchy medium

does not apply because of the inability to enforce rotations on the boundary of such

constituents. As a result, micromechanics methods which are geared for this purpose

need to be yet developed.
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