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ABSTRACT

Previous studies report rapid perennial Arctic sea ice-cover decline over the last

few decades, but decadal-scale temporal variability of Earth’s albedo feedback has

not been fully assessed in future climate simulations. Without a complete dynamic

treatment of albedo feedback on these timescales, a question that motivates the re-

search presented here is how does the strength in albedo feedback vary on decadal

timescales in transient climate? The answers to when the strength in albedo feedback

might peak and start to decline in future transient climate simulations is the topic of

Chapter 2. On smaller scales, snow internal albedo feedback is a poorly understood

source of instability in snowpacks that can affect the surface energy budget. Mech-

anisms for both positive and negative snow metamorphosis-driven albedo feedback

have been proposed, but due to the delicate nature of snowpacks, it can be difficult

to study these mechanisms in nature. Chapters 3 and 4 seek to better understand

the snow internal albedo feedback on hourly timescales.

Data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-

model ensemble of simulations of historical and future transient climate is applied to

assess global scale surface albedo feedback (SAF) in 36 global climate models. Time

evolving SAF in multiple decades are calculated from surface albedo and temperature

linear regressions. Results are meaningful when temperature change exceeds 0.5K.

Decadal scale SAF is strongly correlated with century scale SAF during the 21st

century. Throughout the 21st century, multi-model ensemble mean SAF increases

from 0.37 to 0.42 watts per square meter Kelvin. These results suggest models’ mean

decadal scale SAFs are good estimates of their century scale SAFs if there is at least

xiii



0.5K temperature change. Persistent SAF into the late 21st century indicates ongoing

capacity for Arctic albedo decline despite there being less sea-ice.

To examine the snow internal albedo feedback, first, an instrument designed to

measure snow specific surface area (SSA) is engineered to operate in situ during

subfreezing conditions. To calibrate the Near-Infrared Emitting and Reflectance-

Monitoring Dome (NERD), measured bidirectional reflectance factors (BRFs) are

compared to snow SSA estimates derived from X-ray microcomputed tomography (X-

CT) scans. This comparison contains multiple snow samples of various morphological

quantities including snow density, porosity, and SSA ranging from 10 to 70 square

meters per kilogram. In general, there is an exponential relationship between 1.30

micro-meter BRFs and snow SSA. These results provide experimental validation of

measuring 1.30 micro-meter BRFs to obtain approximate snow SSA.

Second, two NERDs are deployed to measure 1.30 and 1.55 micro-meter BRFs of

natural snow and experimental snow plots with added dust and BC. Snow 1.30 (1.55)

micro-meter BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamor-

phosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from X-CT

reveal more rapid infrared darkening and snow metamorphosis in contaminated versus

natural plots. These findings verify experimentally that dust and BC deposition can

accelerate snow metamorphosis and enhance positive snow internal albedo feedback

in sunny, calm weather conditions.
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CHAPTER I

Introduction: From Climate and Radiative

Transfer Models to Engineering and Snow Science

1.1 Background

1.1.1 Reflectance Terminology

The most elementary definition of the term reflectance describes the percentage

of incident radiative energy that is redirected back into the hemisphere from where

it originated. It is purely a ratio of the light a surface reflects and has nothing to

do with light emission. Therefore, conservation of energy requires that reflectance

values range from 0 to 1. More precisely, this description of reflectance is better

defined as biconical reflectance. Because of the highly directionally dependent nature

of radiative energy transfer, reflectance definitions and measurements are inherently

complicated. Biconical reflectance of an infinitesimal surface element with area dA

and with negligible subsurface scattering is defined as the ratio of the amount of

reflected radiant energy into an arbitrarily large solid angle to that of the incident

radiant energy on the surface from another arbitrarily large solid angle. When these

solid angles increase to 2π steradians, or the total solid angle of a hemisphere, the

percentage of reflected radiant energy from the infinitesimal surface element is called

bi-hemispherical reflectance. Bi-hemispherical reflectance is a convenient description
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of a surface in the plane-parallel context. It is defined as the percentage of radiant

energy incident from an entire hemisphere reflected back into the hemisphere. In

radiative transfer modeling using the two-stream approximation, bi-hemispherical

reflectance sufficiently describes the reflectance of a plane-parallel layer. On the other

hand, when the biconical reflectance solid angles become infinitesimally small, instead

of defining the percentage of total radiation that is reflected to and from the entire

hemisphere, bidirectional reflectance then fully describes the angular dependence of

reflectance of light from the surface element (F.E. Nicodemus et al., 1977; Painter

et al., 2009; Hudson et al., 2006; Dumont et al., 2010).

Bidirectional reflectance, defined by both incident and reflected angles, is a more

complete description for the reflective properties of a surface. The most complete

description of the reflectance of a surface element, however, is known as the bidirec-

tional reflectance distribution function. Accounting for subsurface scattering of light

beneath the surface element, the bidirectional scattering-surface distribution function

gives the entire description of the reflectance of light from any arbitrary surface. These

full descriptions of reflectance, however, are almost purely theoretical and extremely

difficult to measure. Measuring absolute reflectance is also challenging. Because of

these challenges, observationalists often find it convenient to measure reflectance fac-

tors (F.E. Nicodemus et al., 1977; Painter et al., 2009; Hudson et al., 2006; Dumont

et al., 2010).

Hemispherical-, conical- and directional- prefixes that define different types of re-

flectances are also valid in specific descriptions of reflectance factors. For all of these

prefixes, a reflectance factor defines the ratio of reflected light into an entire hemi-

sphere, arbitrarily large solid angle, or infinitesimally small solid angle with precise

angular dependence, compared to that of a perfect Lambertian surface with constant

bidirectional reflectance for all incident and viewing angles of 1. This ideal surface re-

flects all light from all directions perfectly isotropically according to Lambert’s cosine
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law. This implies that this idealized surface is equally bright for all viewing angles.

These surfaces, though rare in nature, are used as calibration standards in reflectance

factor measurements. Observationalists measure reflectance factors by dividing radi-

ant energy fluxes measured over surfaces of interest by radiant energy fluxes measured

over an idealized Lambertian surface. Unlike reflectance values, reflectance factors

range from 0 to infinity. In contrast to Lambertian reflection, where incident light

is reflected perfectly isotropically, specular reflection yields reflectance factors higher

than 1 as reflected light is contained within a single direction. In the event that a

Lambertian surface is not a perfectly lossless (i.e., has a bidirectional reflectance of

less than 1), measuring reflectance factors then requires knowledge of the Lambertian

surface reflectance to scale the quotients accordingly (F.E. Nicodemus et al., 1977;

Painter et al., 2009; Hudson et al., 2006; Dumont et al., 2010).

The following sections and later chapters make frequent use of the following

terms: albedo, directional-hemispherical reflectance, and bidirectional reflectance

factors (BRFs). In the case of albedo feedback, almost all mentions of the term

albedo on the global scale refer to directional-hemispherical reflectance. Directional-

hemispherical reflectance (also known as black-sky albedo) refers to the percentage

of directionally dependent incident radiation that is reflected back into the upward

facing hemisphere. In the context of planetary albedo, for example, black-sky albedo

is appropriate as the sun represents the primary light source from a specific direc-

tion. Directional-hemispherical reflectance then best describes the planetary albedo

as light from other directions (space) is minimal and solar radiation is reflected by

Earth into all directions in the hemisphere. Earth’s surface albedo, however, is slightly

more complicated. In a cloud free atmosphere, Rayleigh scattering of blue light by

Earth’s atmosphere is responsible for diffuse illumination of the surface. In this case,

surface albedo is best described by the combination of its directional-hemispherical re-

flectance, angularly defined by the solar zenith angle, and bi-hemispherical reflectance

3



of blue light. Under overcast, multiple-scattering of light within clouds results in

surface illumination that is nearly isotropic. In this case surface albedo is well ap-

proximated by bi-hemispherical reflectance, hence the name white-sky albedo.

Finally, in chapters 3 and 4, understanding of the term BRF is paramount. To re-

iterate, BRFs must have angularly dependent light sources and viewing angles. They

also must be related to Lambertian surfaces as they are a comparative quantity. Com-

parative quantities are usually easier to obtain through measurements than absolute

quantities and will be useful throughout this dissertation.

1.1.2 Earth’s Planetary Energy Budget

The law of conservation of energy states that in an isolated system, energy is

neither created nor destroyed. This implies that the transfer of energy into and

out of the system determines the total energy budget. The transfer of energy can

occur through conduction, convection, phase changes, and through the propagation

of electromagnetic waves. The propagation of electromagnetic waves, i.e., radiative

transfer, is the primary form of energy transfer in a vacuum. Because the planet Earth

is surrounded by a vacuum, negligible mass transfer from extraterrestrial objects

implies that nearly all of the energy exchange into and out of the Earth system is

through radiative transfer.

Applying the law of conservation of energy to the Earth system as an isolated

object in space, the primary source of energy into the Earth system is absorbed solar

radiation. Absorbed solar radiation by the Earth is represented mathematically in

terms of the solar luminosity L0, planetary albedo αp, and Earth’s radius rp and

distance from the sun d, such that

apQ =
L0

4d2
(1− αp)r2p, (1.1)
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where apQ represents the total solar energy flux incident at the top of the atmosphere

(TOA) times the planetary absorptivity (co-albedo) with ap = 1−αp. L0 is essentially

the radiative power output of the sun and is approximately 3.9× 1026 W. The sun’s

radiative power output through a finite surface element defines the solar irradiance

and is well approximated by blackbody radiation laws for an emission temperature of

5800K. Dividing L0 by 4πd2 gives the solar irradiance at a distance d in a vacuum. At

a mean distance from the sun of 1.496× 1011m, this quotient gives the solar constant

Sd relevant to Earth for which Kopp and Lean (2011) report a recent estimate of

1360.8 +/- 0.5 Wm−2. Multiplying the solar constant by the projected area of the

Earth (πr2p) gives the total solar energy flux incident at the Earth’s TOA (Q). Finally,

Earth’s planetary albedo αp is defined as the ratio of the total absorbed solar energy

to the total solar energy incident at the TOA. The planetary co-albedo ap thus scales

the total solar energy flux to give the absorbed solar energy flux as in equation 1.1

(North and Kim, 2015).

Because the solar luminosity and Earth’s mean distance from the sun, radius,

and planetary albedo are all relatively constant, the law of conservation of energy

implies that the Earth system in equilibrium must emit radiation equal in total power

output to that of the total absorbed solar radiation given by equation 1.1. Stefan-

Boltzmann’s law then gives Earth’s energy balance equation in terms of its brightness

temperature TB and emissivity ε such that

apSd
4

= εσT 4
B, (1.2)

where σ is the Stefan-Boltzmann constant equal to 5.67 × 10−8 Wm−2K−4. Budyko

(1969) and Sellers (1969) apply these principles of Earth’s energy balance in a class of

simple global climate models to assess glaciation and climate change sensitive to subtle

variations in absorbed solar radiation. In these models, absorbed solar radiation varies
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as volcanic eruptions and changes in the solar constant allow for changes in Earth’s

planetary energy budget. Donohoe and Battisti (2011) demonstrate that Earth’s

planetary albedo is primarily dependent on atmospheric attenuation of solar radiation.

Clouds are responsible for reflecting a significant portion of the TOA solar irradiance

back to space. This cloud masking of the surface minimizes the dependency of Earth’s

planetary albedo on its surface albedo. At high latitudes, however, Earth’s highly

reflective ice covered polar regions enable a stronger contribution of surface albedo on

the planetary albedo. High latitude surface albedo contribution to planetary albedo

can enhance climate change via the snow and ice albedo feedback.

1.1.3 Ice Albedo Feedback and Arctic Climate Change

The ice albedo feedback is a positive feedback mechanism operating in transient

climate. In global warming, for example, increasing surface temperature at the ice

boundary latitude results in the removal of snow and ice covered surfaces as tem-

peratures exceed zero degrees Celsius (◦C) (Held and Suarez , 1974; North, 1975).

Because ice cover is most often much more reflective in the solar spectrum than its

underlying surface, large scale changes from ice cover to ice free surfaces result in a

large decrease in the surface albedo. Depending on the atmospheric conditions relat-

ing to cloud masking of the surface, these changes in surface albedo are propagated

to the TOA. When these changes occur on large scales, as is the case in recent sum-

mer Arctic sea-ice area trends (Cohen et al., 2014), the planetary albedo is affected

negatively. This directly increases the absorbed solar radiation. Because the total

energy content of the planet cannot grow boundlessly, the equilibrium response to in-

creased absorbed solar energy results in an increase in the Earth’s blackbody emission

temperature. The change in Earth’s equilibrium global mean surface temperature in

response to a radiative forcing is determined by Earth’s climate sensitivity. Earth’s

climate sensitivity is a function of its fundamental climate feedbacks. These include
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temperature, albedo, water vapor, and cloud feedbacks (Dessler , 2013; Soden and

Held , 2006). Stronger temperature and albedo feedbacks at higher latitudes are pri-

mary contributors of amplified Arctic climate change (Pithan and Mauritsen, 2014).

Highly reflective sea-ice cover characterizes Earth’s polar regions’ surface energy

budget. In transient climate, ice albedo feedback is a likely contributor of the widely

reported amplification of Arctic climate change. Amplification of Arctic climate

change is the more rapid increase of surface temperatures in northern high latitudes

compared to the global mean. In addition to the rapid reduction of perennial Arctic

sea-ice cover, amplification of Arctic climate change is evidenced by surface temper-

atures warming at a rate three times faster than that of the global average since

1980 (Comiso, 2012). Perennial Arctic sea-ice cover consists of multi-year ice that

persists throughout the entire annual cycle. Minimum Arctic sea-ice extent occurs

during the month of September as the North polar region transitions from late sum-

mer to complete darkness during the winter months. Stroeve et al. (2007) show that

global climate models from the Intergovernmental Panel on Climate Change Fourth

Assessment Report underestimate on average September Arctic sea ice decline since

1950. Comiso et al. (2008) and Cavalieri and Parkinson (2012) apply microwave

satellite observations to confirm the rapid reduction in perennial Arctic sea-ice cover

since 1980. In addition to the rapid reduction of perennial Arctic sea-ice, submarine

based sonar data and laser altimetry from the Ice, Cloud, and and Elevation Satellite

(ICESat) suggest sea-ice thickness in various regions of the Arctic is also declining

rapidly since 1958 (Kwok and Rothrock , 2009).

Modern advances in satellite and remote sensing technology enables observational

determination and verification of Arctic climate change. Pistone et al. (2014), for

example, apply The Clouds and Earth’s Radiant Energy System (CERES) satellite

data to directly link diminishing Arctic sea-ice cover to decreasing Arctic planetary

(TOA) albedo. They also conclude that changes in cloud cover have a minimal im-
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pact on the albedo decline. This finding highlights the importance of the diminishing

surface albedo in the Arctic energy budget. Furthermore, Flanner et al. (2011) apply

data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and deter-

mine that the instantaneous net TOA radiative energy perturbation caused by the

presence of snow and / or ice (also known as the cryosphere radiative effect (Perket

et al., 2014)) declined by an average of 0.45 Wm−2 in the northern hemisphere from

1979-2008. This decline represents an increase in absorbed solar radiation directly

resulting from decreasing snow and ice cover over the 30 year measurement period.

The dramatic negative trend in Arctic perennial sea-ice cover is certainly notable.

Recent studies demonstrate its consequential effect on Arctic climate. Addition-

ally, from a global climate perspective, the vast Arctic sea-ice coverage potentiates a

large climate change response. Another source of albedo feedback in modern climate

change, however, is decreasing snow cover extent (SCE).

Dery and Brown (2007) show declining trends in northern hemisphere spring-

time SCE over the period of 1972-2006. Like in ice albedo feedback, earlier onset

of springtime snow melt over broad regions increases absorbed solar energy through

the reduction of surface albedo. Reduced surface albedo due to these trends enables

positive snow albedo feedback in both climate change and seasonal cycle contexts.

Hall and Qu (2006) show in climate models that the strength in northern hemisphere

springtime snow albedo feedback is highly correlated across seasonal and climate

change contexts. In the seasonal cycle, snow albedo feedback affects the timing of

snowmelt especially over northern hemisphere extra-tropical land masses (Qu and

Hall , 2014). This periodically occurring feedback that accelerates snowmelt during

spring also accelerates climate change on decadal timescales.

Recent review articles highlight the important role SCE has in Arctic and high

altitude regional climate (Cohen et al., 2014; Mountain Research Initiative EDW

Working Group, 2015). Because of its high reflectivity, like ice, snow cover has a large
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impact on the surface energy budget. Direct solar irradiance can initiate powerful

positive snow albedo feedback through enhanced energy absorption at the surface.

Furthermore, light absorbing impurities (LAI) within snowpacks can amplify albedo

feedback resulting in enhanced snow metamorphosis. This internal feedback can

increase snowmelt rates in regions with high concentrations of LAI. In the Colorado

river basin, for example, episodic dust deposition directly reduces snow albedo (Skiles

and Painter , 2017) . Indirectly, enhanced absorption by LAI at the snow surface

triggers positive albedo feedback, enhances snow metamorphosis, and increases melt

rates which can affect water resource management. Furthermore, as snow cover is

removed through these processes, darker surfaces with lower reflectances are exposed.

Uncovered surfaces of lower albedo further enhances absorbed solar irradiance and

drives positive albedo feedback.

1.2 Research Objectives and Theses

Due to the significant discrepancy in observable Arctic sea-ice cover decline and

that predicted in global climate models there is an ongoing demand for decadal-scale

climate modeling evaluation. Wang and Overland (2012) evaluate Arctic sea-ice de-

cline in seven climate models participating in the CMIP5 and find that summer Arctic

sea-ice nearly vanishes by 2030 in future climate simulations under the RCP8.5. It

is unclear how the rapid diminishing Arctic sea-ice extent will affect surface albedo

feedback. With there being less perennial sea-ice cover in the models, we expect

SAF to decrease throughout the twenty-first century and beyond. Until now, with-

out decadal-scale evaluation of this feedback, it is unclear when the strength of the

feedback will peak, decline, and eventually vanish as all snow cover and Arctic sea-

ice is melted out of models. The Coupled Model Inter-comparison Project Phase

5 (CMIP5) provides a class of coupled global climate models capable of simulating

transient future climate with various greenhouse gas emissions scenarios known as the
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Representative Concentration Pathways (RCPs). Greenhouse gas concentration ra-

diative forcings of 2.6, 4.5, 6.0, and 8.5 Wm−2 by the year 2100 define these scenarios.

These radiative forcings are estimated based on a wide range of possible emissions

scenarios with the RCP8.5 considered the ”business as usual” case, where little to no

significant intervention of greenhouse gas emissions results in minimal climate change

mitigation throughout the 21st century.

To inform decadal-scale climate projections from global climate models, chapter

2 evaluates surface albedo feedback (SAF) on decadal timescales to explore vari-

ability in the strength of feedback. To our surprise, CMIP5 simulations under the

RCP8.5 scenario show no signs of systematic SAF weakening throughout the 21st cen-

tury. Instead, multi-model mean SAF significantly, though marginally, strengthens

throughout the 21st century. Extended simulations carried out through 2300 suggest

SAF peaks in the 22nd century, after which it declines monotonically as it approaches

zero.

Another desirable improvement in current global climate modeling is better rep-

resentations of LAI in snow processes that enrich the snow aging process. Because of

the strong dependence of snow albedo (especially in the infrared) on snow grain size,

snow aging processes that result in increasing snow grain size can initiate positive

albedo feedback within the snow. While the direct darkening effects of LAI on snow

are well-represented in todays snow albedo models (e.g. SNICAR), indirect darkening

via positive albedo feedback through snow aging is crudely approximated.

To help inform on the effects of LAI on snow metamorphosis, we first engineer

an instrument capable of obtaining approximate snow specific surface area (SSA) in

the field. In designing a light-weight, portable instrument operational down to -20◦

Celsius, we are able to study hourly scale snow metamorphosis in the field. Chapter 3

details the design principles and instrument validation of the Near-Infrared Emitting

Reflectance and Monitoring Dome (NERD) used to measure snow SSA. In Chapter
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4, we then apply the NERD in LAI-in-snow experiments to study the enhancement

of snow metamorphosis due to the presence of LAI. As expected, we find that under

direct solar illumination of the snow in near, but below, freezing surface tempera-

tures, added LAI in snow rapidly initiates positive internal snow albedo feedback.

Just a small amount (<1 to 30g) of added LAI is needed to drive visibly apparent

changes in the snow surface state. These experiments represent some of the first of

its kind demonstrating in situ the powerful indirect effects of LAI in snow on hourly

timescales.

11



CHAPTER II

Multidecadal Variability in Surface Albedo

Feedback Across CMIP5 Models

As published in:

Schneider, A., M. Flanner, and J. Perket (2018), Multidecadal Variability in

Surface Albedo Feedback Across CMIP5 Models, Geophysical Research Letters,

45 (4), 1972−1980, doi:10.1002/2017GL076293.

Abstract:

Previous studies quantify surface albedo feedback (SAF) in climate change, but

few assess its variability on decadal timescales. Using the Coupled Model Intercom-

parison Project Version 5 (CMIP5) multi-model ensemble dataset, we calculate time

evolving SAF in multiple decades from surface albedo and temperature linear re-

gressions. Results are meaningful when temperature change exceeds 0.5K. Decadal

scale SAF is strongly correlated with century scale SAF during the 21st century.

Throughout the 21st century, multi-model ensemble mean SAF increases from 0.37

to 0.42 Wm−2K−1. These results suggest models’ mean decadal scale SAFs are good

estimates of their century scale SAFs if there is at least 0.5K temperature change.

Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo

decline despite there being less sea-ice. If the CMIP5 multi-model ensemble results

are representative of the Earth, we cannot expect decreasing Arctic sea-ice extent to
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suppress SAF in the 21st century.

2.1 Introduction

Radiative transfer is the primary phenomenon governing energy exchange between

Earth and the surrounding vacuum. Therefore, Earth’s total energy budget is well

approximated by the difference in absorbed solar and emitted terrestrial radiation at

the top of the atmosphere (TOA). Simple energy balance models use the TOA approx-

imation to demonstrate enhanced climate sensitivity from surface albedo feedbacks.

Budyko (1969) and Sellers (1969), for example, find that relatively small changes in

incident solar radiation coupled with changes in planetary albedo can cause glacia-

tion or deglaciation of the planet in climate models, identifying snow and ice albedo

feedback as a possible mechanism for instability in the climate state. The snow and

ice albedo feedback is a positive feedback that accelerates climate change when in-

creasing (decreasing) temperature causes snow and ice cover to decrease (increase),

reducing (enhancing) albedo and further enhancing surface warming (cooling). Be-

cause snow and ice are often much brighter than their underlying surfaces, the high

albedo contrast potentiates snow and ice albedo feedbacks to amplify Arctic climate

change where increasing temperatures reduce surface albedo and accelerate melt.

Qu and Hall (2014) examine Northern Hemisphere snow albedo feedback in Cou-

pled Model Inter-comparison Project Version 5 (CMIP5) models and show a strong

correlation between feedback in the spring time melting season and feedback in cli-

mate change. This correlation suggests the seasonal cycle Northern Hemisphere snow

albedo feedback derived from remote sensing observations can constrain the climate

change feedback in models. Crook and Forster (2014), however, find discrepancies

between Northern Hemisphere surface albedo feedback (SAF) in the climate change

and seasonal cycle contexts when comparing observations to models. These results

cast doubt on the predictive capability of the seasonal cycle SAF as it relates to
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the climate change feedback. Constraining SAF in climate models is important for

improving the accuracy of climate change predictions from inter-comparison projects

cited frequently by the Intergovernmental Panel of Climate Change (IPCC) reports.

The IPCC fifth assessment report (Flato et al., 2014), for example, cites numerous

studies showing drastic reductions in summer Arctic sea ice extent by 2100 in CMIP5

models. This reduction in Arctic sea-ice impacts Earth’s total energy budget and

amplifies climate change via the SAF.

Pistone et al. (2014) and Cao et al. (2015), for example, relate the recent decline

in observed planetary albedo directly to the loss of Arctic sea-ice cover. Rapid Arc-

tic sea-ice loss and rising surface temperatures are characteristic of transient future

climate simulations under the 8.5 Wm−2 greenhouse gas radiative forcing Represen-

tative Concentration Pathway (RCP8.5). Hall (2004) demonstrates in a coupled

atmosphere-ocean model simulation that SAF enhances both polar amplification of

surface temperature anomalies and surface temperature at all latitudes in the equilib-

rium response to CO2 doubling. Winton (2006a) and Pithan and Mauritsen (2014)

find SAF to be a secondary driver of polar amplification, however, citing temperature

feedbacks as the primary contributor. In a consistent evaluation of global climate

feedbacks in coupled atmosphere-ocean climate models, Soden and Held (2006) find

SAF the third strongest positive feedback in current climate after water vapor and

cloud feedbacks. Winton (2006b) reports a multi-mean SAF of 0.3 Wm−2K−1 in the

IPCC fourth assessment climate models. Other studies quantify snow and SAF in

global climate models (Qu and Hall , 2006, 2007; Fletcher et al., 2012; Vial et al.,

2013; Crook and Forster , 2014; Qu and Hall , 2014; Andry et al., 2017) and from re-

mote sensing observations (Hall and Qu, 2006; Fernandes et al., 2009; Flanner et al.,

2011; Hudson, 2011; Fletcher et al., 2012; Qu and Hall , 2014; Fletcher et al., 2015).

Andry et al. (2017) examine time dependent variations in SAF in six CMIP5 models

using a moving window technique. Here, we use a similar technique to expand on
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previous analyses in 36 CMIP5 models to address the following.

As Arctic sea-ice continues to melt, we expect SAF to weaken as less highly re-

flective snow and ice remains to allow large changes in albedo. The onset of 21st

century SAF weakening is unclear, however, as nearly all previous studies do not

resolve the time-dependency of SAF. In calculating climate change SAF on multi-

ple decadal timescales, we evaluate its temporal evolution and identify when and if

weakening occurs. Allowing SAF to vary on decadal time scales also allows for test-

ing its predicative capability of models’ longer, century-scale feedback. In comparing

multiple models’ decadal timescale feedbacks to their century-scale feedbacks, we can

also evaluate how well remote sensing products, limited in duration by the satellite

era, may be able to constrain longer timescale climate change SAF. In this paper, we

present a new technique for calculating time evolving SAF in 36 CMIP5 models in

transient historical and future climate simulations ranging from 1850-2300. Contrary

to our initial expectations, we discover small but significant strengthening of SAF

throughout the 21st century in most CMIP5 climate models.

2.2 Methods and Data

SAF is defined as the change in global mean net TOA shortwave irradiance caused

by the change in surface albedo per global mean surface temperature change. It can be

expressed mathematically in the following form (Hall , 2004; Winton, 2006b; Colman,

2013; Crook and Forster , 2014),

SAF =
∂Qnet

∂αS

∆αS
∆TS

, (2.1)

where ∂Qnet/∂αS is the radiative kernel and ∆αS and ∆TS are surface albedo and

surface temperature changes, respectively. Global mean temperature change is used

in this study instead of hemispheric or zonal means enabling direct comparisons to
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other climate feedbacks.

SAF is calculated over separate 11, 23, 47, and 94-year time periods within the

CMIP5 multi-model ensemble simulations in transient historical and future climate

under the RCP8.5. These time periods are selected to maximize the number of

samples within the 21st century for decadal, quarter century, half century, and full

century scale SAF between 2006 and 2099. The CMIP5 multi-model ensemble dataset

contains monthly mean surface upwelling and downwelling irradiance used to calculate

grid-cell albedo and annual global mean surface temperature (Taylor et al., 2012).

Monthly grid-cell albedo and annual global mean temperature are used to compute 11,

23, 47, and 94-year changes in grid-cell albedo by month and global mean temperature

using least squares regressions.

Because least squares regressions are particularly sensitive to outliers, yearly grid-

cell albedo by month and global mean temperature time series are first run forwards

and backwards through a low-pass Butterworth filter using the convolution theorem.

The low-pass Butterworth filter is defined by the power gain in terms of its transfer

function (Roberts and Roberts , 1978),

|HB(jω)|2 =

[
1 +

tan(ωT/2)

tan(ωcT/2)

]−2n

. (2.2)

The discrete transfer function HB gives the complex frequency domain response and

is specified by the sampling interval T , corner-frequency ωc, and order of the filter n.

With T = 1 year, n = 1 and ωc = 1/11 years−1 are selected to damp high frequency

signals associated with dynamical modes in the climate system. The El Nino / La

Nina Southern Oscillation, for example, can cause short term fluctuations in both

albedo and temperature output that obscure long term trends and needlessly affect

least squares regressions. After filtering, least squares regressions are computed on

filtered grid-cell albedo by month and global mean temperature time series to give
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the 11, 23, 47, and 94-year changes.

Grid-cell albedo changes for each month are then multiplied by two monthly re-

solved radiative kernels to give the TOA change in net irradiance caused by the

albedo change. This method is introduced by Shell et al. (2008) and Soden et al.

(2008) and enables the quantification of SAF in transient climate for a fixed cloud

field. Using a fixed cloud field invariant in time is useful here as it allows for direct

comparisons of SAF across models independent of their transient atmospheric condi-

tions and cloud feedbacks. The two radiative kernels used in this study are calculated

from the Geophysical Fluid Dynamics Laboratory (GFDL) Atmosphere Model (AM2)

(Soden et al., 2008) and the Community Earth System Model (CESM1) Community

Atmosphere Model (CAM5).

Finally, annual global means are calculated from the 11, 23, 47, and 94-year

changes in grid-cell TOA net irradiance. These changes are divided by the respective

11, 23, 47, and 94-year changes in global mean temperature. The resulting quotients

give the 11, 23, 47, and 94-year global mean SAF as defined in equation 1. SAF

is calculated in this manner for the 36 models listed in Table 1 using the CMIP5

multi-model ensemble output.

2.3 Results and Discussion

Equation 1 shows there is no limit to SAF as the change in global mean surface

temperature approaches zero. Figure 1 demonstrates the consequences of this limitless

behavior in the calculation of SAF. We scatter SAF against the change in global mean

surface temperature in 11, 23, 47, and 94-year windows across all historical and future

simulations from models listed in Table 1 using both the CAM5 and AM2 radiative

kernels. SAF is noisy when temperature change is less than roughly 0.5K. This

temperature change threshold exists for all window lengths, suggesting that at least

0.5K warming (or cooling) is necessary to calculate meaningful SAF in climate change.
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CMIP5 21st century- and decadal- scale SAF (Wm−2K−1)

Model Name 2006-2099 2006-2028 2075-2097 23-yr. STD

ACCESS1.0 0.39 0.51 0.44 0.07
ACCESS1.3 0.36 0.14 0.44 0.13
BCC-CSM1.1 0.40 – 0.51 0.11
BCC-CSM1.1(m) 0.29 0.27 0.48 0.12
BNU-ESM 0.61 0.60 0.48 0.09
CanCM4∗ – – – –
CanESM2 0.36 0.35 0.40 0.02
CCSM4 0.47 0.38 0.49 0.05
SP-CCSM4 0.45 0.35 0.45 0.07
CESM1(BGC) 0.47 0.43 0.49 0.03
CESM1(CAM5) 0.45 0.47 0.40 0.05
CESM1(WACCM) 0.43 0.37 0.48 0.06
CMCC-CESM 0.34 0.26 0.52 0.13
CMCC-CM 0.41 0.40 0.43 0.10
CMCC-CMS 0.41 0.50 0.43 0.06
CNRM-CM5 0.50 0.60 0.43 0.07
CSIRO-Mk3.6.0 0.29 0.21 0.38 0.08
FGOALS-g2 0.46 0.40 0.58 0.15
GFDL-CM3 0.44 0.30 0.50 0.11
GFDL-ESM2G 0.31 – 0.30 0.15
GFDL-ESM2M 0.30 – 0.35 0.13
GISS-E2-H 0.31 0.30 0.28 0.03
GISS-E2-R 0.23 – 0.24 0.04
INM-CM4 0.45 – 0.42 0.12
IPSL-CM5A-LR 0.25 0.21 0.19 0.04
IPSL-CM5A-MR 0.19 0.16 0.17 0.07
IPSL-CM5B-LR 0.23 0.13 0.14 0.07
MIROC-ESM 0.62 0.71 0.45 0.14
MIROC-ESM-CHEM 0.62 0.79 0.52 0.11
MIROC4h∗ – – – –
MIROC5 0.47 0.31 0.62 0.13
MPI-ESM-LR 0.36 0.21 0.35 0.09
MPI-ESM-MR 0.39 0.41 0.48 0.09
MRI-CGCM3 0.44 0.24 0.58 0.15
NorESM1-M 0.39 0.40 0.53 0.11
NorESM1-ME 0.43 0.17 0.36 0.12

Multi-model mean (STD): 0.40 (0.10) 0.37 (0.17) 0.42 (0.12) 0.09

Table 2.1: Model-mean century-scale SAF from 2006-2099 and decadal-scale SAF from
2006-2028 and 2075-2097 using the CAM5 all-sky kernel. The final column
shows models’ internal variability in 21st century SAF via their standard
deviation of 21st century mean 23-year SAF. Bold font highlights models
showing significant SAF increases from 2006-2028 to 2075-2097. Asterisks
denote models with historical data (included in Figure 1) but without 21st
century data. Other “–” denote models that have no simulations with more
than 0.5K temperature change over the respective time period.
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Figure 2.1: Surface albedo feedback (SAF) vs. change in global mean surface tem-
perature (∆Ts). SAF and ∆Ts are derived from the CMIP5 multi-model
ensemble of simulations across 11, 23, 47, and 94-year windows (by col-
umn) within historical and RCP8.5 experiments. Results are displayed
for two all-sky radiative kernels (by row). Different colors represent dif-
ferent models and conform to those assigned by the key in Figure 2.
Black lines bound data selected for further analysis (∆Ts > 0.5 K &
SAF > 0Wm−2K−1).
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We hereafter use the 0.5K temperature change threshold as a cutoff to remove noisy

SAF calculations and restrict the following analysis to only meaningful SAF in climate

change. Use of different radiative kernels generally results in different scaling of the

global SAF but does not result in significant relative changes between different models.

Because the primary focus of this study is on the temporal variability of SAF across

the CMIP5 models, we hereafter present results using primarily the CAM5 radiative

kernel. Narrowing the remaining analysis to just one kernel minimally impacts our

main findings while also reducing the study’s dimensionality. Furthermore, because

the following results are mostly independent of window length, we present our findings

from only 23-year and 94-year calculations.

Similar to the considerable spread in the strength of snow albedo feedback reported

by Qu and Hall (2014), the strength of SAF in the CMIP5 models is also highly vari-

able, ranging from 0.1 to 0.8 Wm−2K−1. Figure 2 shows the decadal-scale (23-year)

temporal evolution of model- and multi-model mean (black) SAF using the CAM5

radiative kernel spanning three centuries. The temporal evolution of the multi-model

mean decadal-scale SAF is dynamic, beginning above 0.7 in historical simulations,

settling around 0.4 in the 21st century, and finally decreasing to below 0.1 Wm−2K−1

after 2200. In the 21st century, multi-model mean SAF increases from 0.37 to 0.42

Wm−2K−1. Using the AM2 radiative kernel yields lower values, where 21st century

SAF increases from 0.27 to 0.33 Wm−2K−1. SAF calculated from the CAM5 kernel

is generally higher than when calculated from the AM2 kernel. This is likely due

to improved cloud properties in the CAM5 resulting in reduced cloud masking over

the Arctic (Kay et al., 2012). Century-scale SAF calculated from the AM2 kernel in

the 21st century is nearly identical to estimates reported by Vial et al. (2013) (0.3

Wm−2K−1) in four times CO2 experiments. Results from historical simulations are

few after applying the 0.5K temperature change cutoff, while simulations extending

beyond 2100 are fewer altogether in the CMIP5 multi-model ensemble dataset. In
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Figure 2.2: Temporal evolution of surface albedo feedback (SAF) in CMIP5 models
calculated using the CESM1-CAM5 radiative kernel. Horizontal line seg-
ments mark 23-year ensemble mean SAFs in individual models (colors)
calculated from multiple ensemble members. Black (connected) horizontal
line segments mark multi-model mean 23-year SAF. Vertical error bars on
individual model means represent ensemble member standard deviations.
Black vertical error bars on multi-model means represent model standard
deviations. Data displayed are calculated only from 23-year periods with
at least 0.5 K global mean surface temperature change.
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these extended simulations, multi-model mean SAF decreases monotonically after

2150, decreasing from just under 0.4 to below 0.1 Wm−2K−1 by 2250.

The relatively large multi-model variability obscures the small but statistically

significant (p-value = 0.04) increase in 21st century model-mean decadal-scale SAF.

Using the 2006-2028 and 2075-2097 values from Table 1, where we show each model’s

mean early and late 21st-century decadal-scale SAF, respectively, we apply a paired

difference test to determine the significance of this apparent increase. The results

reveal a statistically significant increase in the models’ mean 21st century decadal-

scale SAF of 0.07 Wm−2K−1, about the same as the 0.06 Wm−2K−1 increase in the

multi-model mean SAF over the same period. Because of the relatively large statistical

uncertainty (+/- 0.06 Wm−2K−1; 95% C.I.), however, we must only interpret these

results as positive but small change and most likely not negative change in 21st

century SAF.

Finally, we regress each model’s 21st century (94-year) ensemble-mean SAF, shown

in Table 1 (2006-2099) against its corresponding 21st-century mean decadal-scale (23-

year) SAF in Figure 3 (left). Encouragingly, model-mean 21st century 94-year SAF

is strongly correlated (r2 = 0.90) with 21st century model-mean 23-year SAF. This

strong correlation (standard error of regression = 0.05 Wm−2K−1) demonstrates that

in general, 23-year SAF calculations are well representative of their century time-scale

SAF. When we regress 23-year SAFs from only the first 23-year window (2006-2028)

onto the 94-year SAFs (Figure 3, right), however, the correlation weakens (r2 = 0.65).

The weaker correlation (standard error of regression = 0.07 Wm−2K−1) indicates that

23-year estimates of SAF from any one period are not strong predictors of century-

scale SAF in transient climate. This finding is somewhat intuitive, as a single 23-year

estimate of SAF cannot predict how SAF will evolve in a changing climate. Because

21st century mean 23-year SAF is strongly correlated with 21st century 94-year SAF,

however, 23-year estimates of SAF can accurately quantify sub-century scale SAF
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Figure 2.3: 21st century 94-year model mean SAFs vs. 21st century 23-year model
mean SAFs. Scattered data are displayed with their linear regressions
plotted in black. On the left, 23-year model means are calculated from
all four 23-year windows within the 21st century. Horizontal error bars
represent standard error of ensemble member 23-year means. On the
right, 23-year means are calculated from ensemble members with only
the 2006-2028 period. Horizontal error bars represent ensemble member
standard deviations. As in Figure 2, data displayed are calculated only
from periods with at least 0.5 K global mean surface temperature change.
Colors are assigned by model accordingly to the key in Figure 2.
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as long as there is at least 0.5K temperature change. This is useful for examination

of the temporal variability within a longer timescale. These findings justify using

23-year SAF to quantify time evolving decadal-scale SAF, but using a temporally

limited dataset to derive accurate estimates of long-term SAF in climate change is

subject to considerable uncertainty.

With multiple decadal-scale SAF estimates in 21st century climate simulations,

we conclude that SAF does not decrease about its multi-model mean of 0.4 (+/-

0.1) Wm−2K−1 and possibly strengthens throughout the 21st century. Of the 29

models with both early (2006-2028) and late (2075-2097) 21st century 23-year SAF

in Table 1, 16 (55%) show significant strengthening of SAF. With most CMIP5 models

showing significant strengthening in SAF, multi-model mean SAF increasing, and a

significant increase from the paired difference test, the CMIP5 multi-model ensemble

results suggest SAF does not weaken in the 21st century. This finding is contrary to

our initial expectations in simulations where diminishing Arctic sea-ice is common.

Further investigation into the spatial distribution of the changing TOA net irradiance

reveals more rapid Arctic albedo decline in late spring and early summer months

toward the end of the 21st century. Figure 4 gives a glimpse into this more rapid Arctic

albedo decline in June, where we show the 23-year change in TOA net irradiance in the

early versus late 21st century in the CanESM2 and CESM1(WACCM) models. We

select simulations from these two models because they have increasing 21st century

SAF, relatively small 23-year standard deviations, and values similar to multi-model

means in Table 1. In both simulations, June Arctic albedo decreases more rapidly

in the late versus early 21st century. The increasing Arctic albedo decline is typical

among other models as well, suggesting that sea-ice decline is a key driver of persistent

SAF strength throughout the 21st century. Increasing Antarctic albedo decline is also

evident in Southern Hemisphere summer months.
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Figure 2.4: June 23-year change in net TOA irradiance caused by surface albedo
changes in the early (left) versus late (right) 21st century. Filled contours
map results from single ensemble member simulations in CanESM2 (top)
and CESM1-WACCM (bottom) for northern latitudes (> 45 degrees N).
Positive (red) values indicate increasing net TOA irradiance from decreas-
ing surface albedo.
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2.4 Conclusions

This study examined decadal-scale variability of SAF using 36 climate models in

the CMIP5 multi-model ensemble archive. After identifying asymptotic behavior in

its calculation, we removed noisy SAF contributions by selecting only estimates from

time periods exhibiting global mean temperature change of at least 0.5K for analysis.

This allowed for better interpretation of model and multi-model mean statistics from

which we identified a relatively small but significant (p-value = 0.04) 18% increase

(+/- 16%; 95% confidence interval) in SAF strength from 2017 to 2086. We regressed

century-scale against decadal-scale SAF and verified that multiple shorter time-scale

estimates are good predictors of their longer time-scale counterparts, while single 23-

year estimates have limited utility. Finally, we investigated the spatial distribution

of the changing TOA net irradiance and determined that late spring to early sum-

mer Arctic albedo declined more rapidly in late versus early 21st century years in

most models. We found evidence of dominant sea-ice contribution to persistent SAF

strength late into 21st century simulations.

The main implications of these findings follow. First, that decadal-scale SAF

is correlated with century-scale SAF provides justification for using decadal-scale

estimates to evaluate time-dependent variability of SAF. Extending SAF derived from

remote sensing observations, (e.g., Flanner et al. (2011), Pistone et al. (2014), Cao

et al. (2015)) that are limited in their temporal domain by the satellite era, onto

longer time scales, however, is feasible but with limited accuracy. These results are

of course restricted to time periods with sufficient climate change (> 0.5 K), and also

predicated on model behavior exhibiting similar multi-decadal characteristics as the

real climate system. Second, that CMIP5 multi-model ensemble mean SAF increases

in the 21st century despite rapid seasonal snow and sea-ice cover loss demonstrates a

persistent capacity for global surface albedo change extending through the end of the

century. A closer look at the spatial distribution of albedo trends revealed a poleward
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shift in maximal albedo decline as well as late-spring to early summer prevalence in

Arctic and Antarctic sea-ice melt.

27



CHAPTER III

Measuring Snow Specific Surface Area with 1.30

and 1.55µm Bidirectional Reflectance Factors

Abstract:

Snow specific surface area (SSA) is an important physical property that directly

affects solar absorption of snow cover. Previous instrumentation to measure snow

SSA is commercially available for purchase, but these instruments are costly and /

or remove and destroy snow samples during data collection. To obtain rapid, re-

peatable, and in situ surface snow SSA measurements, we mounted infrared light

emitting- and photo-diodes into a 17cm diameter black styrene dome. By flashing

light emitting diodes and measuring photodiode currents, we obtain accurate 1.30

and 1.55µm bidirectional reflectance factors (BRFs). We compare measured snow

BRFs with X-ray micro-computed tomography scans and Monte Carlo photon mod-

eling to approximate snow SSA. These comparisons show an exponential relationship

between snow 1.30µm BRFs and SSA from which we calculate calibration functions

to approximate snow SSA. Mapping measured snow 1.30µm BRFs to SSA enables

rapid retrieval of snow SSA by a new instrument called the Near-Infrared Emitting

and Reflectance-Monitoring Dome.
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3.1 Introduction

Earth’s surface albedo is a primary component of the planetary energy budget. Of

the vast natural surface types that determine Earth’s fundamental radiative proper-

ties, snow cover is the most reflective. Fresh snow cover is especially reflective in the

visible and less so in the near-infrared spectra, reflecting as much as 90 percent of the

direct solar irradiance into the upward facing hemisphere. Snow cover is also a highly

dynamic, unstable surface type in the Earth system. Changes in snow albedo, for ex-

ample, drive positive albedo feedback and other nonlinear processes that can enhance

snow melt and surface temperature anomalies (Fletcher et al., 2012; Qu and Hall ,

2007; Winton, 2006a; Hall , 2004). Positive snow internal albedo feedback occurs due

to the strong dependence of snow infrared reflectance on snow specific surface area

(SSA). The Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner et al., 2007)

demonstrates this dependence and is applied here to simulate the spectral black-sky

albedo of nadir illuminated snow in Figure 1.

Snow SSA is defined as the total ice surface area to mass ratio, such that

SSA = S/M =
S

ρiceV
, (3.1)

where S is the total surface area of a massM of snow particles occupying an ice volume

V and ρice is the density of ice (917 kg/m3) (Legagneux et al., 2002; Gallet et al., 2009).

Domine et al. (2006) and Gallet et al. (2009) demonstrate the strong dependence of

snow infrared reflectance on snow SSA. Modeling studies, such as Wiscombe and

Warren (1980) and Flanner et al. (2007), also demonstrate this strong dependence

using sphere effective radius as an optical metric for snow grain size. Gallet et al.

(2009) also quantify snow SSA by its sphere effective radius (reff ), defined by the

radius of a sphere having the same surface area to volume ratio as the particles, such
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Figure 3.1: Black-sky spectral snow albedo under nadir illumination simulated using
the Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner et al.,
2007). Solid curves represent clean snow of medium-high SSA (60m2/kg,
blue) and medium-low SSA (20m2/kg, red) to show the dependence of
snow albedo on snow SSA. Dashed lines represent contaminated snow
with uncoated black carbon (BC) particulate concentrations of 100 ng/g.
100 ng/g of BC in snow directly reduces visible but not infrared albedo.
The dependence of snow albedo on SSA but not on BC concentration at
1.30 and 1.55µm motivates the use of these wavelengths for measurement
of snow grain size.

that

SSA =
3

ρicereff
. (3.2)

Other studies (e.g., Jin et al. (2008)) quantify snow grain size by its sphere effective
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radius (RE) as it relates to the projected area of a particle, so that

RE =
3

4
(V/A), (3.3)

where A is the particle projected area. These expressions of sphere effective radii,

reff and RE, defined by ice particle surface area S versus ice particle projected area

A, respectively, are equivalent for convex bodies (see Appendix B).

As surface temperatures increase, snow albedo generally decreases as snow SSA

decreases. Recent studies verify this process of natural snow metamorphosis on sea-

sonal timescales in Antarctica (Libois et al., 2015), New Hampshire (Adolph et al.,

2017), and Colorado (Skiles and Painter , 2017). Libois et al. (2015) observe relatively

slow SSA evolution in the extremely cold Antarctic environment. Adolph et al. (2017)

monitor the evolution of snow albedo across three winter seasons in New Hampshire

and discover a strong dependence of snow broad-band albedo on optically derived

snow grain size (reff ). These observational studies inform us on snow albedo mea-

surements conducted on clean snow, with small concentrations of light absorbing

impurities (LAI) such as dust and black carbon (BC). Skiles and Painter (2017) also

observe seasonal scale snow albedo decline in springtime Colorado. In contrast, how-

ever, they find that snow albedo is primarily related to dust concentration. LAI can

directly reduce snow albedo, but also indirectly darkens snow during metamorphosis.

Hadley and Kirchstetter (2012), for example, demonstrates that the albedo reduction

due to the presence of BC in snow is amplified in snow of lower SSA. This enhance-

ment of snow albedo reduction is another source of instability in the snow pack that

increases the strength of snow internal albedo feedback.

When snow SSA decreases, a positive albedo feedback exists where solar heat-

ing induces grain growth, further decreases SSA, and causes the snow surface to

absorb additional solar radiation. Surface warming can reduce snow grain growth
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rates, however, if growth processes from vapor diffusion and strong temperature gra-

dients are affected negatively (Flanner and Zender , 2006). Recent studies use X-ray

computed microtomography (X-CT) to monitor the evolution of snow SSA in a high-

temperature gradient (Wang and Baker , 2014) and in isothermal snow metamorphosis

(Ebner et al., 2015). In Ebner et al. (2015), measurements of snow SSA evolution in

isothermal snow agree with the isothermal snow metamorphosis modeling framework

developed by Legagneux et al. (2004) and Legagneux and Domine (2005). These stud-

ies express snow SSA in isothermal metamorphosis as function of time t as follows,

SSA = SSA0

(
τ

τ + t

)1/n

, (3.4)

for initial snow SSA0 at t = 0 and adjustable parameters τ and n.

Previous studies establish techniques to accurately obtain snow SSA using methane

gas absorption (Legagneux et al., 2002), contact spectroscopy (Painter et al., 2007),

infrared hemispherical reflectance (Gallet et al., 2009; Picard et al., 2009; Gallet et al.,

2014; Gergely et al., 2014), and X-CT in cold rooms (Pinzer and Schneebeli , 2009;

Wang and Baker , 2014; Ebner et al., 2015), but these methods require expensive,

heavy equipment and measurements can be time consuming. Further, previous meth-

ods require that snow samples are collected and possibly even destroyed during mea-

surements, preventing in situ snow observations over the span of just several hours.

Because of the strong dependence of snow albedo on snow SSA (Adolph et al., 2017),

the ability to obtain rapid, repeatable measurements that can describe the snow sur-

face in basic physical terms is widely sought after.

Here, we introduce a new technique to measure snow-SSA in a non-destructive

manner using 1.30 and 1.55 µm directional reflectance. By gently placing the Near-

Infrared Emitting and Reflectance-monitoring Dome (NERD) onto the snow surface,

multiple 1.30 and 1.55µm bidirectional reflectance factors (BRFs) are obtained in just
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minutes with minimal alteration of the snow surface. To calibrate with respect to

snow SSA, we compare snow BRFs with X-CT derived SSA to identify the exponential

relationship between SSA and snow 1.30µm BRFs.

3.2 Instrumentation and Methods

3.2.1 The Near-Infrared Emitting and Reflectance-Monitoring Dome

The NERD is designed to measure 1.30 and 1.55 µm BRFs. Four light emitting

diodes (LEDs) and four photodiodes are mounted into a 17cm black styrene half-

sphere (see Figure 2). Two LEDs with peak emission wavelengths of 1.30µm are

mounted at nadir and 10 degrees relative to zenith while two LEDs with peak emission

wavelengths of 1.55µm are mounted at 15 degrees off nadir. 1.30µm LEDs have

spectral line half widths of 85nm and half intensity beam angles of 10 degrees, while

1.55µm LEDs have half-maximum bandwidths of 130nm and 20 degree beam angles.

These high-powered infrared LEDs are selected to illuminate a small oval of the

experimental surface to maximize the reflected radiance signal. The reflected radiance

signal is measured using four InGaAs photodiodes mounted in two different azimuthal

planes; two each at 30 and 60 degrees relative to zenith. Photodiodes highly sensitive

to light ranging from 800 to 1750nm and relatively large active areas (1mm) are

selected to maximize sensitivity.

The NERD is similar to that of the DUal Frequency Integrating Sphere for Snow

SSA measurements (DUFISSS) (Gallet et al., 2009) in that it uses 1.30 (1.31 in

DUFISSS) and 1.55 µm emitters to illuminate the snow surface from nadir (15 de-

grees off nadir for 1.55 µm in NERD). LEDs are toggled using a Ruggeduino-ET

(Extended temperature, operational down to -40 degrees C.; https://www.rugged-

circuits.com/microcontroller-boards/ruggeduino-et-extended-temperature-40c-85c) con-

nected to a LED driver. The LED driver drives an 80mA square wave through each
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Figure 3.2: Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD)
schematic, photograph, and transimpedance amplifier circuit diagram.
Two instruments are engineered with different photodiode responsivities.
Photodiode responsivities are determined by the feedback resistance (R1)
in the transimpedance amplifier circuits. Using feedback resistances of as
low as four mega-Ohms in a low responsivity NERD and as high as fif-
teen mega-Ohms in a high responsivity NERD yield dynamic reflectance
factor responses over the range of 0 to 0.95 at 1.30 and 1.55µm.

LED individually with a pulse width of two seconds (20% duty cycle). The main

distinction between the DUFISSS and the NERD is the type of reflectance measured.

Gallet et al. (2009) use an integrating sphere to measure hemispherical reflectance.

Here, rather, we direct photodiodes toward the illuminated surface in a black dome

to measure BRFs. The interior of the dome is painted with a flat black paint to

increase absorptivity and minimize internal reflections between the dome and snow
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surface. To detect reflected radiance signals, photodiodes are reverse biased to induce

currents linearly related to the amount of light incident on its active region. Because

these light signals are reflected from the experimental surface, the currents induced

by the photodiodes are very small (nano- to micro-Amps). To measure the small

currents, the photodiodes are connected to transimpedance amplifiers (as in Figure

2). The transimpedance amplifier circuits convert and amplify the small photodiode

currents into measurable voltage signals. Finally, an active low pass filter is installed

between the amplifier and the analog-to-digital converter (ADC) and reduces noise.

This filter is designed to have a time constant of less than 0.5 seconds to achieve

balance between adequate noise reduction and speed. Waiting 0.75 seconds after

toggling the LED allows for enough time for the photodiode current to stabilize. Af-

ter these currents stabilize, 100 voltage samples (ranging from 0.1 to 1.0 Volts) are

then rapidly collected using the Ruggeduino-ET’s ADCs. Average voltage obtained

during active illumination is differenced from average dark current voltage output to

derive reflectance factors. Because the orientation of LEDs and photodiodes are fixed,

reflectance factors can be obtained after calibration using two diffuse reflectance tar-

gets in a manner similar to that used by Gallet et al. (2009), Gergely et al. (2014),

and Dumont et al. (2010). These Lambertian targets reflect incident light accord-

ing to Lambert’s cosine law and appear equally bright at all viewing angles. The

reflectance of the targets are measured with high precision across a broad spectrum.

At 1.30 (1.55) µm, the white and gray targets have calibrated reflectances of 0.95073

(0.94426) and 0.42170 (0.41343), respectively, as reported by the manufacturer. By

comparing the measured voltage signal from the experimental (snow) surface to that

measured from the reflectance targets, two BRFs at both 30 and 60 degree view-

ing angles are obtained for each light source. This procedure enables simultaneous

measurements of multiple BRFs at 1.30 and 1.55 µm.

To validate NERD reflectance measurements, we assess its measurement accu-
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Table 3.1: NERD Lambertian Reflectance Measurements
λ = 1.30µm Median BRF (RMS error)

n ρL R(0◦; 30◦) R(0◦; 60◦) R(10◦; 30◦) R(10◦; 60◦)

10 0.422 0.399 (0.021) 0.422 (0.016) 0.415 (0.015) 0.434 (0.015)

10 0.951 0.939 (0.013) 0.944 (0.015) 0.958 (0.018) 0.952 (0.010)

N Linear regression; R̂(ρL) = AρL +B

20 R̂ = {1.023ρL - 0.028, 0.987ρL + 0.007, 1.031ρL - 0.024, 0.980ρL - 0.018}
λ = 1.55µm Median BRF (RMS error)

n ρL R(15◦a; 30
◦) R(15◦a; 60

◦) R(15◦b ; 30
◦) R(15◦b ; 60

◦)

10 0.413 0.410 (0.009) 0.420 (0.017) 0.411 (0.008) 0.420 (0.021)

6 0.944 0.959 (0.012) 0.963 (0.019) 0.960 (0.013) 0.964 (0.020)

N Linear regression; R̂(ρL) = AρL +B

16 R̂ = {1.028ρL - 0.016, 1.016ρL + 0.003, 1.026ρL - 0.014, 1.011ρL + 0.009}

racy, precision, and responsivity by measuring BRFs of reflectance standards after

calibration. Using both reflectance standards, we record ten BRF (R) measurements

for each LED / photodiode viewing zenith angle (θi; θr) combination during outdoor

temperatures between -20◦ and +2◦ Celsius (C.). In general, NERD BRFs of the

Lambertian reflectance standards are accurate to within +/- 2%. We quantify instru-

ment precision (2%) by computing root mean squared (RMS) errors from repeated

measurements (see Table 1). Linear regressions quantify the linear responsivity (A)

over the reflectance range of 0.41 to 0.95. Responsivity error ranges from -2% to +3%

and from +1% to +3% at 1.30 and 1.55 µm, respectively. These results validate the

NERD’s ability to obtain precise BRFs with a measurement uncertainty of 1-2%.

3.2.2 X-ray Microcomputed Tomography

Snow BRFs measured by the NERD are complemented by X-CT scans. X-CT

scans of snow are conducted at the U.S. Army’s Cold Regions Research Engineering

Laboratory (CRREL) in Hanover, New Hampshire. The machine is housed in a cold

lab kept below 0◦C. allowing for X-CT of snow without significant melt.
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Small samples of snow are collected in roughly 10cm tall cylindrical plastic sam-

ple holders and placed into the machine. An X-ray source is emitted at 40-45kV and

177-200 micro-Amps. X-ray transmittance is measured as the machine rotates the

sample. Setting the exposure time to 340ms at a pixel resolution of 14.9µm with ro-

tation steps at 0.3-0.4 degrees allow for fast scan times of roughly 15 minutes. These

short scan times are necessary to complete the scan without too much absorbed ra-

diation melting the snow. Processing software allows for samples to be reconstructed

while computing physical properties of which SSA are derived (Pinzer and Schnee-

beli , 2009). 3-dimensional visualization software is used to generate images shown in

Figure 3.

3.2.3 Snow Samples

Snow samples for NERD snow SSA calibration were collected over the span of three

years (winters 2015-2017). Measurements of these samples were conducted during the

months of February and March in 2016 and 2017 in Hanover, New Hampshire.

3.2.3.1 Fresh samples from 2016

Fresh snow samples were collected during a late winter snow fall event in 2016

just outside of Hanover, New Hampshire. Fresh snow from two different locations

were scooped into coolers and then transported to the CRREL for analysis. Visual

inspection of these samples revealed snow that appeared softer and less dense than

the class of old samples. Because the surface temperature was close to 0◦C., the

samples appeared to be wet. X-CT scans (Figure 3a.) confirmed snow that was of

relatively medium density (350 kg/m3), medium porosity (62%), and medium SSA

(19 m2/kg).

37



a.

b.

d.

e.

c. f.

Figure 3.3: X-ray microcomputed tomography (X-CT) images of snow samples
(15mm diameter) collected across three winters (2015-2017) in Hanover,
New Hampshire. Snow samples shown on the left (a., b., c.) were scanned
during 2016, while those on the right (d., e., f.) were scanned in 2017.
Generally (except for b.), snow specific surface area, derived from X-CT
analysis software, decreases as snow grains appear more rounded.
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3.2.3.2 Artificial ice crystals grown in a cold lab

One of the snow samples included in the NERD snow SSA calibration was grown

inside a cold lab at -20◦ C. using a forced temperature gradient. Analysis on this

sample was conducted during winter of 2016. Visual inspection revealed a hardened

ice medium with a well defined crystalline structure. X-CT scans (Figure 3b.) showed

jagged ice micro-features of relatively medium density (320 kg/m3), medium porosity

(65%), and low SSA (9 m2/kg).

3.2.3.3 Old sintered samples from 2015

The oldest class of snow samples used for the NERD calibration were collected

during the 2015 winter season in Hanover, New Hampshire. These samples were

then stored in a cold laboratory for a year at the CRREL at approximately -20◦ C.

During February of 2016, visual inspection revealed snow that was highly sintered. As

expected, X-CT scans (Figure 3c.) confirmed that these two samples, distinguishable

only by the container they were stored in, were of relatively high density (610 kg/m3),

low porosity (33%), and low SSA (9 m2/kg).

3.2.3.4 Fresh needles collected during the March 14 snow storm

On March 14, 2017, a heavy daytime snow fall event in Hanover, New Hampshire

enabled rapid collection and analysis of snow samples. Cylindrical X-CT sample con-

tainers were placed in snow already on the ground. Snow fall filled sample containers

in just a couple hours. Sample containers were carefully moved (with gloves) into

coolers. Coolers were then rushed directly into the nearby lab for X-CT analysis.

X-CT scans (Figure 3d.) confirmed needle like ice structures. These structures pre-

sented a snow pack of relatively low density (110 kg/m3), high porosity (88%), and

high SSA (66 m2/kg).
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3.2.3.5 Fresh samples collected shortly after February (10-16) 2017 snow

fall events

Moderately fresh snow samples were collected in the first couple days following

snow storms in February 2017 in Hanover, New Hampshire. A few of these samples

include snow with small amounts of added dust and BC. All samples with added LAI

included in the NERD SSA calibration dataset were first screened to remove samples

with heavy LAI loads that caused direct snow darkening at 1.30 and 1.55 µm. Snow

samples were shoveled into coolers and transported to the CRREL for X-CT analysis.

X-CT scans (Figure 3e.) revealed snow of relatively low density (170 kg/m3), high

porosity (82%) and medium-high SSA (54 m2/kg).

3.2.3.6 Samples collected after apparent metamorphosis on February 17

2017

After visibly apparent snow metamorphosis, partially aged snow from Hanover,

New Hampshire was collected and transported to the CRREL for X-CT analysis.

Some of these samples include snow with added LAI. Samples with added LAI had

shown visible signs of dramatic metamorphosis. X-CT scans (Figure 3f.) confirmed

these observations, revealing snow of relatively medium density (310 kg/m3), medium

porosity (66 %), and medium SSA (23 m2/kg).

3.2.4 Monte Carlo Modeling of Bidirectional Reflectance Factors

The Monte Carlo method for photon transport is used to model three-dimensional

light scattering within a snow pack. NERD LEDs are modeled as photon emitters

according to their placement within the dome. An array of photons with wavelengths

generated at random using a Gaussian distribution are used to mimic the 85 and

130nm full width at half-maximum spectral emission characteristics of the narrow-

band LEDs. Photons are initiated downward into the snow medium as in Kaempfer
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et al. (2007) and propagated in optical depth space. Photon particle interactions are

determined using random number generators and can either be absorbed or scattered

with the probability determined by the particle single scatter albedo. Photons are

terminated upon absorption, but the overwhelmingly likely event is scattering because

of the relatively high single scatter albedo of ice at these wavelengths. When the

photon is scattered, its new direction cosines are determined by the specific particle

scattering phase function.

To generate theoretical calibration curves mapping snow BRFs to snow SSA,

we run multiple simulations for various particle SSA ranging from 10 to 90 m2/kg.

At least 105 photons per simulation are propagated and followed through the snow

medium until they are absorbed or exit the medium. The snow medium is modeled

as a homogenous matrix of suspended particles with input data containing the par-

ticle mass absorption cross section, asymmetry parameter, single scattering albedo,

projected area, volume, and scattering matrix from Yang et al. (2013). Ice particle

shape habits include spheres, droxtals, solid hexagonal columns, and solid hexagonal

plates. We select these subset of shape habits from the larger dataset provided by

Yang et al. (2013) because they are purely convex solid ice particles. Because they

are convex bodies, their SSAs can be computed from the projected area and volume.

To generate theoretical calibration curves mapping snow BRFs to snow SSA, we run

multiple simulations for various particle SSA ranging from 10 to 90 m2/kg.

Reflected light from Lambertian surfaces is simulated using the Monte Carlo model

to test its statistical uncertainty. To this end, azimuthal-mean BRFs are calculated

according to the reflectance definitions presented by Dumont et al. (2010); Hudson

et al. (2006); F.E. Nicodemus et al. (1977). Accordingly, photon exit angles are

grouped into 30 exit zenith angle (θr) bins at 3 degree resolution. Azimuthal-mean
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BRFs are calculated by zenith angle θr from the total incident photon flux dΦi by

R(θi; θr) =

2π∫
0

dΦr

2 sin θr cos θrdΦi

dφr (3.5)

where Φr represents the azimuthally integrated photon flux through each θr bin. In

the denominator, the cos θr factor satisfies Lambert’s cosine law while sin θr accounts

for the zenith angular dependence of the azimuthally integrated projected solid angle.

Finally, the factor 2 is necessary to normalize the resulting weighting function w(θr) =

sin θr cos θr, as
π/2∫
0

sin θr cos θrdθr =
1

2
. (3.6)

Equation (5) is applied to Monte Carlo simulations of 75,000 photons reflected by

Lambertian surfaces having reflectances of 0 to 1. At 3-degree resolution, 30 and

60 degree BRFs of Lambertian surfaces are simulated accurately to within +/- 2%.

Monte Carlo noise from 75,000 photons are quantified by computing RMS errors

across the full range of Lambertian reflectances. Across this range, RMS errors at

30 and 60 degrees are generally less than 0.01. These relatively small RMS errors

computed from just 75,000 simulated photons justify computing accurate BRFs at

3-degree resolution.

3.3 Results and Discussion

To examine the relationship between snow SSA and 1.30 and 1.55 µm BRFs, we

compare X-CT derived snow SSA with NERD snow measurements. To this end, we

conduct side-by-side X-CT and NERD analysis of all snow samples described in the

preceding section. In general, NERD BRFs are directly related to snow SSA (Figure

4). At 1.30 µm, NERD snow BRFs are slightly higher at 60 degrees than at 30 degrees.

Despite the direct relationships between NERD snow BRFs and X-CT derived snow

42



Figure 3.4: 1.30 (top) and 1.55 (bottom) µm 30 (left) and 60 (right) degree bidirec-
tional reflectance factors (BRFs) versus snow specific surface area (SSA).
Black line segments connect BRFs calculated from Monte Carlo simula-
tions of photon pathways through snow mediums comprised of spheres
(circles, dashed lines), droxtals (stars), solid hexagonal columns (trian-
gles), and hexagonal plates (hexagons). Measured BRFs with the NERD
are scattered against X-CT derived snow SSA (colored squares). Snow
samples labeled in the key relate directly to those described in the pre-
vious section. Vertical error bars on NERD BRFs represent standard
deviations calculated from multiple azimuthal samples. Horizontal error
bars on X-CT derived SSA, where present, represent standard deviations
from multiple scans on similar snow samples.

SSA, there exists considerable spread in measurements at both wavelengths and at

both viewing angles. The spread in measurements results in considerable uncertainty

in the ability to retrieve snow SSA from NERD BRFs. In the following subsections,
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we discuss NERD reflectance measurement validation and results from Monte Carlo

simulations in the context of previous studies. Finally, we synthesize our findings in a

subsection that gives an analytical calibration function relating NERD BRFs to snow

SSA and discuss measurement uncertainty.

3.3.1 Reflectance Measurement Validation

Using the NERD, we can obtain relatively accurate snow BRF measurements in

nature without drastically affecting the snow. By recording measurements across two

view azimuth angles and additional scattering planes by rotating the dome, we can as-

sess azimuthal anisotropy in just a few minutes. Furthermore, by measuring multiple

BRFs across multiple locations of a snow surface, we obtain numerous samples span-

ning multiple azimuthal planes that also enables easy characterization of the spatial

variability in snow BRFs. Repeating rapid measurements in this manner allows us to

obtain relatively accurate snow BRFs. Multiple precise measurements allow quantify-

ing relatively large BRF variations associated with azimuthal anisotropy and spatial

heterogeneity. Median BRFs reported across a unique wavelength, LED position, and

photodiode zenith angle give a second-order approximation of the snow azimuthal-

mean BRF. Computing RMS errors from these uniquely defined wavelength-BRF

combinations quantifies measurement uncertainty. To this end, we first test NERD

accuracy, precision, and responsivity by testing with idealized Lambertian surfaces

before obtaining snow BRFs. Results in Table 1 indicate that any single NERD

reading is subject to measurement uncertainty of about +/-2%. Although measure-

ment uncertainty prevents us from using the NERD to obtain highly accurate BRFs,

NERD BRF measurements are accurate and precise enough to observe relatively large

variations in snow BRFs that are of particular interest in this study.

Compared to the Infrasnow (Gergely et al., 2014), NERD BRF measurements of

Lambertian surfaces are slightly less accurate. In a similar validation experiment,
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Gergely et al. (2014) measure the reflectance of 0.25, 0.50, and 0.99 reflectance stan-

dards accurately to within less than 1%. In Gergely et al. (2014), an integrating sphere

enables directional-hemispherical reflectance factor measurements at 950nm in con-

trast to the 1.30 and 1.55µm BRFs measured by the NERD. Both instruments make

use of Lambertian reflectance standards for calibration and testing. Although each

instrument uses a different wavelength and measures a different type of reflectance

factor, testing on Lambertian reflectance standards with constant bidirectional re-

flectance distribution functions (BRDFs) allows for easy comparison of measurement

uncertainty across multiple measurement techniques.

Dumont et al. (2010), for example, also use Lambertian reflectors and report a

BRF measurement accuracy of better than 1% using a high angular resolution spectro-

gonioradiometer. Gallet et al. (2009) also make use of similar Lambertian standards

to calibrate 1.31 and 1.55µm directional-hemispherical reflectance factor measure-

ments. Using six standards, Gallet et al. (2009) parametrically fit signal voltages to

reflectance values to account for nonlinear responsivity due to re-illumination of the

standards through multiple scattering within the integrating sphere. While NERD

responsivity is not perfectly linear, we expect re-illumination of the surface through

multiple scattering within the black dome to be minimal.

Although photodiode responsivity varies with temperature, frequent calibration

minimizes these errors. Therefore, the main source of NERD responsivity error is

likely due to small deviations in light output from the LEDs. Like almost all elec-

tronic circuit elements, LED performance is also a function of its temperature. In

its operational mode, the NERD drives the user-selected active LED with a current

pulse width of two seconds. When the duty cycle is increased to 50% (two seconds on,

two seconds off), we observe drift in the photodiode response. This responsivity drift

is mitigated, but not completely eliminated, when the duty cycle is decreased to 20%

(two seconds on, eight seconds off). Because we observe these responsivity errors in
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testing shortly after calibration, we speculate that changing LED temperatures can

affect the the light output enough to cause a one to two percent measurement error.

3.3.2 Monte Carlo Results

At 1.30 µm, 30 degree snow BRFs measured with the NERD for various snow SSA

fall within the envelope of shape habits derived from Monte Carlo simulations. Monte

Carlo simulations of spheres, droxtals, and hexagonal columns accurately predict 30

degree BRFs measured by the NERD for snow SSA ranging from 10 to 70 m2/kg.

Monte Carlo simulations predict lower BRF values at 60 degrees than at 30 degrees.

These results provide an estimate of the uncertainty associated with deriving snow

SSA from NERD BRFs across various shape habits and snow samples.

At 1.55 µm snow SSA values ranging from 10 to 70 m2/kg yield lower Monte Carlo

simulated BRFs than what is measured by the NERD. Comparing 30 and 60 degree

viewing zenith angles, Monte Carlo results are more similar at 1.55 µm than at 1.30

µm. The relationships between 1.55 µm BRFs and snow SSA are also more linear than

those at 1.30 µm. Stronger linearity at 1.55 µm, however, does not necessarily imply

more accurate snow SSA retrieval. Obtaining snow SSA at 1.55 µm is more difficult

due to the lesser span and lower responsivity of snow BRFs at this wavelength.

3.3.3 NERD Snow SSA Calibration

In general, snow SSA results from X-CT scans are related to NERD 1.30 µm

nadir illuminated BRFs via an exponential relationship. This relationship exists at

both the 30 and 60 degree viewing zenith angles. At 1.55 µm, snow SSA results

from X-CT scans are related to NERD 15 degree, off-nadir illuminated BRFs via

linear relationships. The relationship between snow SSA and NERD measurements

is most clear and robust at 1.30 µm. Nadir illumination at 1.30 µm results in the

best snow SSA agreement across NERD observations and Monte Carlo modeling at
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the 30 degree viewing angle.

Our finding of the exponential relationship between snow SSA and 1.30 µm BRFs

is consistent with previous studies. Picard et al. (2009) and Gallet et al. (2009),

for example, also find exponential relationships between 1.31 µm reflectance and

snow SSA. Likewise, Gallet et al. (2009) also identify a linear relationship between

1.55 µm reflectance and snow SSA. These studies, however, quantify snow SSA from

hemispherical reflectances instead of BRFs. Hemispherical reflectance measurements

theoretically reduce measurement variations associated with grain shapes. Picard

et al. (2009) conclude that obtaining snow SSA from snow albedo measurements are

subject to as much as 20 percent error when grain shape is unknown. This relatively

large source of error due to grain shape is further explored here in Monte Carlo derived

albedo calculations for snow surface of spheres, droxtals, solid hexagonal columns, and

hexagonal plates (Figure 5).

As expected, snow modeled as spherical ice particles, simulated in the Monte Carlo

model using the Henyey-Greenstein phase function

PHG(cos θ; g) =
1− g2

(1 + g2 − 2g cos θ)3/2
, (3.7)

where θ is the scattering angle and g is the relevant asymmetry parameter, most

closely agrees with 1.30 and 1.55 µm narrow band black-sky snow albedo calculated

from the Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner et al., 2007).

Snow albedo dependence on grain shape is consistent at both wavelengths. In general,

droxtals yield higher reflectances. Reflectances of solid hexagonal columns agree

closely with spheres and SNICAR at both wavelengths for snow SSA lower than

40 m2/kg, after which they tend toward reflectances similar to droxtals. Finally,

hexagonal plates yield low reflectances. Low reflectances at both wavelengths are

due to the extremely sharp forward scattering peak of these plates. Although highly
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Figure 3.5: Modeled 1.30µm nadir (top) and 1.55µm 15 degree (bottom) directional-
hemispherical reflectance for various snow SSA. Blue line segments con-
nect albedo calculations from Monte Carlo simulations of photon path-
ways through snow mediums of spheres (circles, dashed lines), drox-
tals (stars), solid hexagonal columns (triangles), and hexagonal plates
(hexagons). Red line segments connect albedo calculations from the Snow,
Ice, and Aerosol Radiation (SNICAR) model (Flanner et al., 2007).

idealized and perfectly smooth, these shape habits demonstrate the relatively large

hemispherical reflectance variations across snow grain shape. These large variations

in reflectance across grain shape are the largest source of uncertainty in snow SSA

measurements using infrared reflectance. Monte Carlo modeling of BRFs in Figure 4

also suggest these uncertainties exist for directional reflectance measurements. These
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uncertainties associated with unknown grain shape limit accuracy of NERD SSA

retrieval.

Surprisingly, 1.55 µm BRFs measured by the NERD are higher than predicted by

Monte Carlo modeling. Using the NERD, we observe 1.55 µm snow BRFs as high

as 0.2. We measure the highest 1.55 µm snow BRFs at 60 degrees for particularly

fresh snow, but high 1.55 µm BRFs are higher than models for all SSA. Because

of its relatively high instrument precision (Table 1), these seemingly high BRFs are

probably accurate. The primary contributor for the discrepancies against models at

this wavelength is possibly due to the broad spectral emission characteristics of the

1.55µm LEDs. With full width at half maximums of 130nm, non-negligible light

emission at wavelengths much lower, toward the near-infrared, is a likely cause of

higher than expected reflectances. Although the spectral emission characteristics of

NERD LEDs are simulated in Monte Carlo simulations using Gaussian photon wave-

length distributions, and in SNICAR using a simple normalized Gaussian weighting

function, non-negligible light emission from the tails of these distributions is possibly

under estimated. Because of the expected sharp increase in snow reflectance as wave-

length decreases from 1.55 to 1.30µm (Wiscombe and Warren, 1980; Flanner et al.,

2007), it is possible that even a small amount of light emission at wavelengths toward

the near-infrared can have a measurable effect on snow BRF observations. This effect

is further explored in Monte Carlo simulations by broadening the Gaussian distribu-

tion of photon wavelengths and in SNICAR by broadening the Gaussian weighting

function applied to narrow-band albedo calculations. These calculations confirm this

hypothesis, as 1.55 µm narrow band albedo with a full width at half maximums of

0.26 µm (doubled from 0.13 µm) closely agree with NERD BRF measurements. This

finding suggests light emission from the 1.55 µm LEDs is non-negligible at lower,

more absorptive wavelengths.

Notwithstanding the limitations associated with retrieving precise snow SSA from
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BRFs, we generate an analytical calibration function relating snow SSA to NERD

BRFs. To this end, we propose the general exponential form for 1.30 µm snow BRFs,

such that

SSA = α exp(R1.30) + β (3.8)

for predicted snow SSA and 1.30 µm snow BRF R1.30. Using least squares regression

analysis, we compute parameters α and β for both 30 and 60 degree viewing zenith

angles. At 30 degrees, setting α = 88.7 and β = -103 minimizes residuals and results

in a snow SSA RMS error of 7.05 m2/kg (Figure 6, left). At 60 degrees, setting α =

91.7 and β = -113 minimizes residuals and results in a snow SSA RMS error of 7.23

m2/kg (Figure 6, right).

This margin of uncertainty regarding SSA retrieval from snow infrared reflectance

measurements falls within the expected range reported in previous studies (Picard

et al., 2009; Gallet et al., 2009). This analysis complements previous studies and

indicates that retrieval of highly precise snow SSA using NERD measurements is

unlikely. Obtaining approximate estimates of snow SSA using NERD measurements

across a wide variety of snow types, however, is highly likely. Because of its non-

destructive nature, rapid, repeatable retrieval of approximate snow SSA using the

NERD will be useful for studying hourly-scale snow metamorphosis (Figure 7). While

the 1.30 µm, 30 degree viewing zenith angle BRF combination most closely agrees

with modeled BRFs, a similar margin of error at the 60 degree viewing zenith angle

can provide a second estimate of snow SSA. Reporting two snow SSA values using

both view angles can ultimately give observationalists an idea of the variability in

SSA retrieval resulting from the angular dependence of the snow BRDF in the near-

infrared.

While these results minimize the usefulness of obtaining snow SSA from 1.55

µm snow BRFs, it is worth noting that Gallet et al. (2009) recommend using this

wavelength in their DUFISSS to obtain snow of large SSA (> 60m2/kg). Here, nearly
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Figure 3.6: Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD) snow
specific surface area (SSA) calibration. Markers represent scattered X-CT
derived snow SSA against nadir 1.30µm 30 (left) and 60 (right) degree
bidirectional reflectance factors (BRFs) measured by the NERD (also
plotted in Figure 4). Curves show center (solid), top and bottom (dashed)
estimates of the analytical expression in equation 8. These are calculated
from three α parameters (88.7+/- 9.50 m2/kg at 30 degrees; 91.7+/- 10.13
m2/kg at 60 degrees) using least squares regressions and their associated
standard errors of the gradients (i.e., slopes).

all snow samples used in the NERD SSA calibration were lower than this threshold.

A possible follow on study would include snow of higher SSA to determine the utility

of 1.55 µm snow BRFs in measuring fresh snow of extremely high SSA particularly

common in the extremely cold Arctic and Antarctic environments (Legagneux et al.,

2002; Libois et al., 2015).
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Figure 3.7: Snow specific surface area (SSA) measured throughout the day on Febru-
ary 14, 2017. Morning (9AM) and afternoon (5PM) samples were trans-
ported to the nearby Cold Regions Research Engineering Laboratory (CR-
REL) in Hanover, New Hampshire for X-ray microcomputed tomography
(X-CT) analysis. SSA measurements derived from X-CT scans are shown
in red. In blue, NERD SSA estimates derived from 1.30µm 60 degree
BRFs (equation (8)) depict hourly-scale snow metamorphosis. Dashed
line segments connect evolving snow SSA estimates of snow samples with
added dust to induce rapid snow metamorphosis. Vertical error bars on
NERD SSA estimates represent margin of uncertainty associated with
calibration error plus measurement standard deviations. These results
contain the first measurement data obtained by the NERD used to de-
termine snow SSA. Because of its non-destructive nature, this technique
enables the study of snow metamorphosis in situ on hourly time scales.

3.4 Conclusions

To obtain quick, accurate, reliable, and repeatable measurements of snow SSA,

we engineered an instrument that measures snow 1.30 and 1.55µm BRFs. By flash-

ing narrow band LEDs centered around these wavelengths, light reflected by exper-

imental snow surfaces is measured using photodiodes mounted at 30 and 60 degrees

relative to nadir. Photodiode currents are converted into measurable voltage signals

enabling calibrated BRF calculations using Lambertian reflectance targets. Monte

Carlo modeling and X-CT derived snow SSA help to demonstrate the relationship
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between snow BRFs and SSA. Generally, we found an exponential relationship be-

tween 1.30µm BRFs and snow SSA. These results demonstrate the NERDs ability

to obtain estimates of snow SSA to within +/- 7 m2/kg without destroying snow

samples. This non-destructive technique for snow SSA retrieval will be useful in sci-

ence applications that investigate hourly-scale monitoring of snow SSA. Applying the

NERD will be especially useful in experiments designed to learn about the effects of

LAI on snow metamorphosis and to explore the spatial heterogeneity of snow SSA.

Because it can operate quickly, NERD measurements will also complement satellite

borne observations during narrow sampling windows.
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CHAPTER IV

In Situ Observations of Snow Metamorphosis

Acceleration Induced by Dust and Black Carbon

Abstract:

Snow metamorphosis directly affects solar absorption at the Earth surface. Fur-

thermore, light absorbing impurities (LAI) within the snow (e.g., dust and black

carbon particles) can dramatically alter snow albedo through direct and indirect

darkening of the surface. The extent to which these LAI can accelerate snow meta-

morphosis, however, is challenging to assess in situ as common measurement tech-

niques are destructive or require expensive, heavy equipment. To further investigate

how LAI influence snow metamorphosis, we deployed two Near-Infrared Emitting

and Reflectance-Monitoring Domes to monitor hourly-scale snow SSA in a series of

LAI-in-snow experiments during a field campaign in Hanover, New Hampshire. Our

results show more rapid decreasing snow SSA in snow with added LAI compared

to natural (clean) snow. These results indicate that LAI deposition can accelerate

snow metamorphosis and enhance positive snow internal albedo feedback, especially

during cloud free, calm weather conditions when surface air temperatures are just

below freezing. Although a complete understanding of the effects of LAI on snow

metamorphosis requires further surface temperature, solar irradiance, and impurity

concentration measurements, these results suggest that enhanced solar absorption
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within the snow due to the presence of LAI drives positive albedo feedback conducive

to accelerating snow metamorphosis.

4.1 Introduction

The cryosphere contains Earth’s most reflective surfaces in snow and sea-ice cover.

Fresh, dry snow, for example, reflects up to 90 percent of incident solar energy. In

contrast, the Earth reflects on average roughly 30 percent of incident solar energy

back to space. This sharp contrast between Earth’s average planetary albedo and

the more reflective cryosphere causes the presence of snow and ice cover to have a

large effect on the Earth’s total energy budget. Flanner et al. (2011) estimate that

the presence of cryosphere surface elements, i.e., snow and sea-ice cover, reduces

the absorbed solar energy flux by an average of 2.2 to 4.6 Wm−2 in the Northern

Hemisphere. They also report a 30-year decrease in this cryosphere radiative effect of

0.45 Wm−2, suggesting that the rapid loss of Arctic sea-ice cover (Stroeve et al., 2012)

and reduced Northern Hemisphere snow extent (Dery and Brown, 2007; Derksen and

Brown, 2012) are increasing solar absorption. Increasing absorbed solar energy warms

the Earth’s surface which further reduces snow and sea-ice extent in a process known

as the snow and ice albedo feedback.

As snow ages, its physical structure changes. This process of snow metamorphosis

alters the snow specific surface area (SSA) (Flanner and Zender , 2006; Wang and

Baker , 2014; Ebner et al., 2015). Snow SSA is the total ice surface area S to mass m

ratio, expressed in terms of its total ice volume V such that,

SSA = S/m =
S

ρiV
, (4.1)

where ρi is the density of pure ice (917 kg/m3 at 0◦ C). Snow SSA is an important

physical property that strongly affects absorption of infrared radiation. Studies that
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model the relationship between snow SSA and infrared reflectance (Wiscombe and

Warren, 1980; Flanner et al., 2007) typically refer to snow effective radius RE, where

spheres of radii RE represent spherical snow grains with SSA = 3/(ρiRE). These

studies demonstrate a strong dependence of near and shortwave infrared reflectance on

snow grain RE, a relationship that is also observed in snow reflectance measurements

(Domine et al., 2006; Gallet et al., 2009). Generally, as snow SSA decreases, near and

shortwave infrared reflectance decreases. Previous studies monitor isothermal snow

(Ebner et al., 2015) and high temperature gradient (Pinzer and Schneebeli , 2009)

snow metamorphosis, shedding light on the natural physical processes that drive

decreasing snow SSA. In isothermal snow, highly faceted snow grains with relatively

high SSA and low radii of curvature undergo coarsening in a process driven by the

Kelvin effect. The diffusion of vapor in snowpacks with high temperature gradients

can also drive snow metamorphosis that causes snow SSA to decrease. Domine et al.

(2009), however, observe increasing snow SSA due to the fragmentation of surface

snow grains mobilized by wind.

While snow metamorphosis relating to snow SSA effects near-infrared absorption

most strongly, numerous studies verify the direct darkening of snow by the presence

of light absorbing impurities (LAI) apparent in the visible spectrum (Warren and

Wiscombe, 1980; Flanner et al., 2007, 2009; Hadley and Kirchstetter , 2012; Skiles and

Painter , 2017). Common LAI in snow include black / elemental carbon (BC), brown

carbon, and dust, all of which play an important role in the climate system. These

LAI have powerful direct and indirect effects that are large sources of uncertainty

in the Intergovernmental Panel on Climate Change fifth assessment report climate

change projections (Ramanathan and Carmichael , 2008; Bond et al., 2013; Qian et al.,

2015). Bond et al. (2013) extensively review the role of BC in the climate system

and estimate emission totals by region and source, identifying three major source

categories: open biomass burning, especially prevalent in African grass and woodland
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burning, residential solid fuel burning, used especially throughout Asia and Africa for

cooking, and diesel fuel burning used worldwide. Other sources include residential

and industrial coal burning power and forest fires. 100ppb BC in snow is enough

to reduce snow albedo by up to 10 percent depending on snow RE (Warren and

Wiscombe, 1980; Flanner et al., 2007, 2009; Hadley and Kirchstetter , 2012). Hadley

and Kirchstetter (2012) verify what Warren and Wiscombe (1980) and the widely

used Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner et al., 2007, 2009)

predict in that snow albedo reduction by BC is enhanced for larger snow RE. The

enhancement of snow darkening by BC for larger snow RE is a source of positive

albedo feedback in cases when the LAI accelerate snow metamorphosis. This positive

snow metamorphosis / albedo feedback, however, is not verified experimentally and

it is unclear how solar heating of snow by LAI affect other metamorphosis processes

studied by Flanner and Zender (2006), Wang and Baker (2014), and Ebner et al.

(2015).

Positive snow metamorphosis / albedo feedback is initiated by LAI when enhanced

absorption of solar radiation results in decreasing snow SSA. Decreasing snow SSA

directly increases the absorbed solar radiation and indirectly increases the albedo

reduction attributable to LAI. If further warming is conducive to further decreasing

snow SSA, then positive feedback will drive unstable snow metamorphosis. With-

out compensating negative feedback mechanisms, snow metamorphosis can lead to

melting at the surface which can redistribute LAI and completely change the snow

surface structure. In theory, however, surface warming weakens the snow temperature

gradient and suppresses grain growth processes explained by (Flanner and Zender ,

2006). The net effect of these competing feedback mechanisms is unknown and dif-

ficult to study in nature because measurement techniques easily disturb the natural

snow structure.

The purpose of this study is to demonstrate rapid snow metamorphosis caused by
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LAI deposition. After depositing LAI on freshly fallen snow, rapid snow metamor-

phosis of decreasing snow SSA is indicative of dominant positive snow metamorphosis

/ albedo feedback. In this study, we observe snow metamorphosis from freshly fallen

snow of relatively high SSA to aged snow of low SSA. Using our Near-Infrared Emit-

ting and Reflectance-Monitoring Dome (NERD), we measure hourly-scale temporally

evolving 1.30 and 1.55µm snow bidirectional reflectance factors (BRF) during LAI

induced metamorphosis. We supplement NERD BRF measurements using X-ray mi-

crocomputed tomography (X-CT) to calculate snow SSA. We measure snow BRFs of

natural snow (control) and manually deposited LAI-contaminated snow (experimen-

tal) plots and evaluate the effect of added LAI on snow metamorphosis. Experimental

plots undergo rapid metamorphosis while control plots remain mostly unchanged. Ex-

perimentally induced snow metamorphosis by heavy BC and dust loading is evident

from decreasing snow infrared reflectance throughout the day and a decrease of snow

SSA confirmed by X-CT. We hypothesize that LAI induces positive feedback and

accelerates snow metamorphosis. Generally, our experiments confirm this hypothe-

sis. Atmospheric conditions, however, including cloudiness, wind speeds, and surface

temperature can obscure these effects. This study demonstrates conditions for which

snow metamorphosis can be enhanced by the presence of LAI.

4.2 Materials and Methods

Snow 1.30µm, nadir illuminated BRFs are measured at 30 and 60 degrees rel-

ative to zenith. These BRFs are obtained using the Near-Infrared Emitting and

Reflectance-Monitoring Dome (NERD), an instrument designed to quickly and accu-

rately retrieve snow grain size (Chapter 3). Snow grain size is monitored throughout

the day in a series of dust- and soot-in-snow experiments. Two types of LAI are

deposited onto experimental snow plots in an open field in Hanover, New Hampshire

during February 10 and February 17 experiments. On February 10, surface temper-
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atures ranged from -14 to -9 ◦C. Low to moderate wind speeds were observed from

the early morning hours through the afternoon. During the day, partly to mostly

cloudy conditions were observed. On February 17, surface temperatures ranged from

-4 to +2 ◦C. Wind speeds and cloud cover were minimal making way for calm, clear

sky conditions. LAI deposited onto experimental snow included hydrophobic black

carbon and sand particles, which are sifted multiple times to filter out larger particles.

After sifting, filtered BC and sand particles are sprinkled onto plots to mimic large

deposition events.

In each experiment, snow BRFs are measured multiple times throughout the day.

Monitoring hourly-scale BRFs of snow during the day enables the observation of

solar-heating induced snow metamorphosis. For each experiment, one square meter

plots of snow are designated as natural (control) or contaminated (experimental). In

experiment one (February 10), contaminated plots are loaded with BC until visible

darkening is apparent. In experiment two (February 17), just a pinch of BC and 30g

of sand are applied to each experimental plot. These values are selected to mimic

extreme LAI deposition events observed by Skiles and Painter (2017).

In the February 10 experiment, BC is deposited onto the experimental plot af-

ter snow accumulation the previous day. Beginning at midnight, measurements are

conducted at about 12:00am, 3:00am, and 6:00am to monitor snow metamorphosis

without solar heating. After sunrise, measurements are continued into the daytime

hours. For each set of measurements, 30 degree and 60 degree BRFs are both recorded

four times. BRFs are measured over two different locations within each experimental

plot with two photodiodes at each viewing angle (30 and 60 degrees). Thus, each

datum represents the mean of four samples which also gives an idea of the variability

across each set of measurements.

The February 17 experiment is set up in a similar manner. After fresh snow

accumulation on February 15, BC and dust is deposited onto experimental plots. On
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February 16, data collection is difficult due to high wind speeds, so the experiment

is set up again on the morning of February 17. Measurements are conducted on four

experimental plots, two that are set up on February 16, and two that are set up on

February 17.

4.3 Results and Discussion

Added BC and dust accelerate the process of snow metamorphosis from fresh snow

of relatively high SSA to snow of lower SSA. Snow metamorphosis in experimental

plots containing added LAI is apparent under direct solar irradiance at surface tem-

peratures just below freezing. Measurements collected at initial application of LAI

show minimal direct darkening of snow from LAI at 1.30 and 1.55µm (Fig. 1, top).

Decreasing 1.30 and 1.55µm BRFs soon after solar heating in experimental plots

but not in natural snow demonstrates the indirect effect of LAI on snow through

more rapid snow metamorphosis. X-CT measurements verify that snow SSA also

decreases (bottom) which directly reduces the solar broadband albedo of the snow.

The reduction of snow broadband albedo has larger consequences in the total surface

energy budget as increasing absorbed solar radiation within the snow itself can lead

to additional surface melting via the snow albedo feedback.

We use the February 17 experiment to monitor snow metamorphosis occurring

after forced large BC and dust deposition events. Typical BC deposition events are

very small, so it is difficult to reproduce natural BC concentrations when adding any

BC to a one square meter plot. We attempt to make measurements on February

16, but windy, cloudy conditions obstruct data collection. It is difficult to obtain

NERD measurements during the daytime in cloudy, diffuse lighting conditions. This

is because subsurface scattering of diffuse light is difficult to block. The photodi-

ode amplifiers on the NERD saturate when there is too much background lighting.

More importantly, cloudy conditions completely obscure enhanced snow SSA meta-
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Figure 4.1: Evolution of snow BRFs (top) and SSA (bottom) throughout the Febru-
ary 17 experiment. Solid lines connect measurement data from natural
snow. Dashed lines connect measurement data from experimental plots
contaminated with added BC. Dotted lines connect measurements from
contaminated plots with added sand. In the top figure, blue (green) curves
represent 1.30µm (1.55µm) BRFs at 30 (left) and 60 (right) degrees. In
the bottom figure, blue curves represent NERD-estimated SSA while red
curves represent SSA derived from X-CT. In all cases, experimental snow
plots with added LAI, especially 30g of sand (dotted), evolve more quickly
under direct solar irradiance than natural snow plots (solid).
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morphosis (Figure 2). This is apparent in the February 10 control experiment, where

minimal metamorphosis occurs despite heavy BC loading. The lack of metamorphosis

on February 10 is a direct consequence of windy, cloudy conditions that mobilize BC

particles off the experimental plot and also block direct solar illumination. The Febru-

ary 10 experiments are also in a well shaded location, where tall trees block much of

the direct solar irradiance from being absorbed by BC. On the morning of February

17, two additional experimental plots are set up in the exact same manner as the

February 16 plots. Under a calm, clear atmosphere, conditions are ideal to observe

LAI induced metamorphosis and collect data with the NERD. As expected, rapid

metamorphosis begins in all four experimental plots after 10:00am local time, but not

in natural snow. These results suggest that LAI deposition induces net positive snow

metamorphosis / albedo feedback.

Positive snow metamorphosis / albedo feedback is evident by rapidly decreasing

snow BRFs at two infrared wavelengths in experimental versus control plots. The

fastest metamorphosis occurs in the heavy dust loaded plot, suggesting that extreme,

but realistic dust deposition events can quickly alter the snow state. The February

17 experiment is indicative of enhanced solar heating inducing snow metamorphosis,

as BRFs decrease most rapidly during hours of peak insolation.

These results verify what is hypothesized from previous studies. Few studies

examine hourly-scale snow metamorphosis in the presence of LAI in situ like this

one, but positive snow metamorphosis / albedo feedback can be inferred from Skiles

and Painter (2017) and Adolph et al. (2017) where they find that Colorado and

New Hampshire snow albedo is dominated by dust concentration and snow grain

size, respectively. Although these studies find different dominant influences on snow

albedo (i.e., dust concentration versus snow grain size), both of these relationships

enable positive albedo feedback within snow.

Because snow albedo is directly related to snow SSA and dust concentration, pos-
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Figure 4.2: Evolution of snow BRFs (top) and SSA (bottom) throughout the Febru-
ary 10 experiment. As in figure 1, solid lines connect measurement data
from natural snow while dashed lines connect measurement data from
experimental plots contaminated with added BC. In the top figure, blue
(green) curves represent 1.30µm (1.55µm) BRFs at 30 (left) and 60 (right)
degrees. In the bottom figure, blue curves represent NERD-estimated
SSA while red curves represent SSA derived from X-CT. Cloudy, windy
conditions prevent observable LAI induced snow metamorphosis. Over-
night measurements and cloud cover make for a good control experiment
with minimal snow aging.
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itive surface albedo feedback initiated due to the presence of LAI occurs when solar

heating of the surface induces snow melt. In these experiments, LAI enhances solar

absorption at the surface which warms the snowpack. As the snow surface begins

to melt, near-infrared reflectance decreases rapidly. Rapidly decreasing near-infrared

reflectance is indicative of either the accumulation of liquid water from melting snow

or decreasing snow SSA. In the former case, the presence of liquid water at the sur-

face enhances near-infrared absorption which further warms the surface and drives

additional snow melt. In the latter case, decreasing snow SSA enhances near-infrared

absorption and decreases snow broad-band albedo which also enhances the absorbed

energy content of the snow surface. X-CT scans confirm that snow SSA decreases

more rapidly in contaminated snow versus natural snow. These scans verify that

SSA decreases from morning to afternoon, but cannot determine whether or not the

presence of liquid water played a major role in the metamorphic process. Visual

inspection of the snow, guided with a gentle touch with a gloved hand, provide quali-

tative evidence of liquid water present in contaminated snow during peak insolation.

In either case, decreased snow SSA toward the end of the day, as evidenced by NERD

measurements and X-CT scans, indicate that adding LAI to the snow surface acceler-

ates positive snow metamorphosis / albedo feedback. This accelerated feedback due

to the presence of dust and BC demonstrates the important, delicate role LAIs have

in snow melt and snow albedo.

The other important influence on the strength of the snow metamorphosis / albedo

feedback is the surface air temperature. LAI induced snow metamorphosis has the

strongest effect in clear sky conditions when the surface air temperature is close to

but not exceeding 0◦ C. When surface air temperatures are just below freezing, clean

fresh snow is still reflective enough to limit melting which could otherwise induce

positive albedo feedback. LAI-contaminated snow, however, absorbs enough solar

radiation to initiate the rapid metamorphosis observed in this study. The divergence
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of snow surface behavior between control and experimental plots in these conditions

demonstrates the powerful effects of LAI in snow in sunny, warm, sub-freezing con-

ditions. To better determine surface air temperature regimes for which these effects

are most pronounced, a follow on study would reproduce these experiments across a

broader range of conditions. Expanding this study for lower temperatures, coupled

with incident radiation measurements, would provide results that could further our

understanding of positive snow metamorphosis /albedo feedback in snow with more

extreme temperature gradients. Determining conditions for which a weakened tem-

perature gradient, due to enhanced solar absorption at the snow surface, could inhibit

snow metamorphosis via negative feedback, for example, would be of high value to

the snow modeling community.

4.4 Conclusions

These experiments demonstrate snow metamorphosis induced by LAI. Snow meta-

morphosis occurs in naturally aging snow, but the indirect radiative effects from LAI

have unknown consequences. Here, we used the NERD to measure BRFs to monitor

the evolution of snow SSA under different LAI loads. We learned that LAI induced

snow metamorphosis occurs rapidly under ideal conditions. That is, a cloud free

atmosphere with surface temperatures near, but not above, freezing yields apparent

divergence in the snow surface state. In these conditions, clean snow maintains rel-

atively high SSA compared to the rapid reduction of snow SSA when LAI absorbs

direct sunlight. Snow BRFs measured by the NERD demonstrate the rapid change

in the snow state, an observation that was also visibly apparent to the naked eye.

These experiments confirm what has been hypothesized previously. That is, the

deposition of LAI has potential to accelerate snow metamorphosis through positive

snow albedo feedback. Until now, it has only been speculated that positive feedback

would be the dominant feedback mechanism relative to possible negative feedbacks
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that could occur due to weakening temperature gradients. These experiments provide

verification of positive feedback accelerating snow metamorphosis in outdoor snow.

This conclusion will help microphysical snow modeling efforts, but future experimen-

tation will expand on the environmental conditions. Repeating similar experiments in

different conditions, including a wide range of surface temperature and incident light

conditions, will be helpful in expanding the utility of our findings. Additionally, us-

ing smaller amounts of LAI will further our understanding of these processes through

sensitivity testing. We demonstrated the effects of extreme LAI contamination on

snow in ideal conditions to observe rapid snow metamorphosis. Using smaller LAI

loads in various conditions, however, will increase the utility because it will inform

on the indirect effects of LAI in snow for a wider range of conditions.
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CHAPTER V

Conclusion: Earth’s Cryosphere Albedo Feedback

This dissertation investigates snow and ice albedo feedback from the global scale

down to the micro-scale. On the global scale, surface albedo feedback operates in

transient climate as Earth’s ice cover adjusts to an external forcing. In todays cli-

mate, this external forcing is a radiative forcing due to the increasing greenhouse gas

concentrations primarily from carbon dioxide and methane. The buildup of these

gases reduces Earth’s outgoing long-wave radiation. The equilibrium response to this

forcing is an increase in Earth’s effective emission temperature. This response con-

tinues until Earth’s energy balance equation (1.1) is satisfied. At the surface, this

translates to an increase in global mean temperature. Increasing surface temperatures

near ice cover boundaries eventually lead to long term decreases in global ice cover.

Recent studies, for example, confirm the rapid decline in Arctic perennial sea-ice cover

over the last 30-50 years. Because ice is particularly reflective in the solar spectrum,

these large scale declines in sea-ice cover directly reduce Earth’s surface albedo. The

reduction of Earth’s surface albedo is propagated to the TOA, though this affect is

somewhat mitigated by cloud cover. Nevertheless, it is confirmed that the rapid re-

duction in Arctic sea-ice cover over the last three decades resulted in a decline of the

planetary albedo observed at the TOA. Finally, the reduction in planetary albedo

directly enhances Earth’s absorption of solar energy. This destabilizes the planetary
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energy budget resulting in further equilibrium climate response. Independently, this

positive feedback, known as the ice albedo feedback, operates until Earth’s surface

albedo stabilizes. This positive feedback mechanism results in removal of perennial

Arctic (and Antarctic) ice cover in a warming climate.

5.1 Research Summary

The research presented here picks up on this discussion of ice albedo feedback

and seeks to identify when and if run-away albedo feedback occurs in future tran-

sient climate simulations. To this end, we developed a new framework for quantifying

time-dependent surface albedo feedback (SAF) on decadal timescales. In summary,

we find that SAF strengthens in 16 of 29 climate models during 21st century RCP8.5

transient future climate simulations. Quantifying SAF on decadal timescales enables

assessing time-dependent variations in the strength of this feedback within 21st cen-

tury simulations across a wide set of climate models. To our surprise, multi-model

results show no apparent weakening in SAF strength despite a reduction in the mean

Arctic sea-ice extent as the 21st century progresses. With there being less sea-ice

in the models, we expected SAF strength to lessen toward the end of the century

as less overall capacity for SAF persists on the global scale. On the contrary, how-

ever, the rapid reduction in Arctic sea-ice extent, as simulated by almost all CMIP5

models under the extreme RCP8.5, does not result in a reduction in the global SAF.

Extended simulations through 2300 show a peak in the strength of global scale SAF

around 2150, after which it monotonically decreases to near zero by 2300 (Schneider

et al., 2018).

Next, we zoom in from the global scale down to the micro scale to explore micro-

physical albedo feedback within snowpacks. We found that positive SAF also happens

on micro-physical scales. Light interaction within the snowpack changes substantially

as snow ages (Flanner and Zender , 2006). To study this process of snow metamorpho-
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sis, we developed an instrument capable of measuring snow specific surface area (SSA)

called the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD). Puls-

ing light emitting diodes mounted in a black dome enables bidirectional reflectance

factor measurements at 1.30 and 1.55 µm using photodiode amplifier circuits. Because

of its light weight, 9V-battery powered design, the NERD is especially portable and

rugged, making it a useful tool for studying hourly-scale snow metamorphosis. Fur-

thermore, because of its non-destructive nature, we applied the NERD to study snow

metamorphosis in a series of LAI in snow experiments. In comparing natural snow to

experimental snow plots with added LAI, we identified rapid snow metamorphosis in

experimental snow plots. Using the NERD, we discovered time evolving, decreasing

snow SSA throughout a series of day time experiments in snow with added LAI, but

not in natural snow. This divergence in physical snow properties is indicative of the

indirect darkening effect LAI have on snow. Dynamic snow SSA throughout direct

sun exposure demonstrated positive albedo feedback induced by LAI.

5.2 Future Direction

Moving forward, further study is necessary to ultimately improve the representa-

tion of the snow metamorphosis albedo feedback in global climate models. In par-

ticular, similar LAI-in-snow studies carried out with known impurity concentrations

would be helpful in quantifying the non-linear processes driving LAI induced snow

metamorphosis. Furthermore, extending measurements beneath the surface, through

the use of snow pits, would give snow SSA profiles to better our understanding of

the entire snowpack evolution. Reproducing similar studies with added LAI more

representative of that occurring in nature would more similarly represent natural

snow aging. Finally, a complete description of LAI particle size distributions and

species would provide experimental case studies applicable to a broad range of envi-

ronments. Future studies carried out with these added measurements across several
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environments, ranging from those in polar regions to those in high altitude regions,

is a complete approach from the in situ measurement perspective. Ultimately, results

from these studies should be compared with simultaneous satellite borne observa-

tions. The coupling of in situ measurement campaigns, made possible with use of the

NERD, and remote sensing observations would be useful for measurement validation

and would provide scientific knowledge helpful to the modeling community.
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APPENDIX A

CESM1-CAM5 Radiative Kernel

In Schneider et al. (2018), a new radiative kernel from the CESM1-CAM5 con-

figuration is generated using a similar approach presented by Perket et al. (2014).

The fully coupled (active land, atmosphere, ocean and river models with prognostic

sea ice) CESM1-CAM5 configuration is run for two years with a finite volume grid.

For each model timestep, the radiative transfer scheme is conducted twice: once nor-

mally and once with a perturbed albedo. The radiative kernel is then obtained by

dividing the difference in radiative fluxes by the difference in albedos. To regrid the

native resolution of each radiative kernel to each model’s resolution, a bivariate spline

approximation is used to linearly interpolate the kernels. After interpolation, the ra-

diative kernels represent the monthly estimate of each model grid-cell’s net effect on

the TOA irradiance caused by a one percent change in surface albedo.
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APPENDIX B

Effective radii equivalence for convex bodies

The objective of this appendix is to show that for convex bodies, sphere effective

radii reff , as defined in (3.2), and RE, as defined in (3.3), are equivalent. Vouk (1948)

shows that for convex bodies,

S = 4Ā, (B.1)

where Ā is the average projected area of the convex body. Substituting (B.1) into

(3.1) then gives

SSA =
4Ā

ρiceV
. (B.2)

Equating (3.2) and (B.2) and simplifying,

3/reff =
4Ā

V
. (B.3)

Finally, solving (B.3) for reff gives

reff =
3

4
(V/Ā), (B.4)

which is equivalent to the expression for RE given in (3.3), thus concluding the proof.
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