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ABSTRACT 
 
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological  

mechanism underlying sudden cardiac arrest is not well understood. Recent studies from our 

laboratory demonstrate that asphyxia-induced sudden cardiac arrest leads to a surge of brain-

heart coupling, a novel form of neurophysiological activity measured by corticocardiac 

coherence (CCCoh) and directional connectivity (CCCon), prior to sudden death. In addition, 

surgical blockade of efferent signaling from the brain to the heart significantly delayed the death 

of both the heart and the brain during asphyxic cardiac arrest. We hypothesized that the 

stimulated brain functions to resuscitate the heart via activation of the sympathetic nervous 

system and that the surge of brain-heart coupling may be a potential biomarker for sudden 

cardiac arrest. In current thesis project, we tested our hypothesis in 3 different cardiac arrest 

models. 

In the first study, we tested the effectiveness of adrenergic blockers, phentolamine and 

atenolol, individually or combined, in prolonging functionality of the vital organs in asphyxic 

cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus 

atenolol, 30 minutes before the onset of asphyxia. Electrocardiogram (ECG) and 

electroencephalogram (EEG) signals were simultaneously collected and investigated. We found 

that adrenergic blockade significantly (1) suppressed the initial decline of cardiac output, (2) 

prolonged electrical activities of both the brain and heart, and (3) altered CCCoh and CCCon bi-

directionally and hemispherically. The protective effects of adrenergic blockers paralleled the 

suppression of brain and heart electrical connectivity, especially in the right hemisphere 
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associated with central regulation of sympathetic function. In the second study, we investigated 

corticocardiac coupling in a patient died from cardiac arrest. Consistent with previous findings 

from rats, there was a marked increase of CCCoh and CCCon in the dying patient. However, 

different from rat model, CCCoh and CCCon in human patient showed changes unique to 

individual cortical channels and limited to particular frequency ranges. We also identified a surge 

of cardiac event-related potential at near-death in the right prefrontal and left occipital cortical 

region, which have been shown to play a role in autonomic control of the heart. In studies 1 and 

2, we investigated corticocardiac coupling in sudden death induced by asphyxia that affects both 

the heart and the brain, or cardiac abnormalities. In the third project, we investigated 

corticocardiac coupling in forebrain ischemic stroke-induced sudden cardiac arrest rat model. 

EEG and ECG signals were simultaneously collected from 9 spontaneously hypertensive stroke-

prone rats (SHRSP) and 8 Wistar-Kyoto (WKY) rats. Forebrain ischemic stroke resulted in 

100% mortality in SHRSP rats within 14 hours, whereas no mortality was observed in control 

WKY rats. The functionality of both the brain and the heart were significantly altered in SHRSP 

compared to WKY rats after forebrain ischemia. In contrast to WKY rats, SHRSP rats exhibited 

intermittent surge of CCCoh, which was in parallel with elevated CCCon and reduced heart rate 

variability before sudden death, suggesting that an elevated brain-heart coupling is consistently 

associated with the disruption of the autonomic nervous system and the risk of sudden death. 

Results from these three studies suggest that strong corticocardiac coupling may be a 

shared mechanism for sudden cardiac arrest in both rat models and human patients. This study 

could improve our understanding on the mechanism underlying sudden cardiac arrest, and may 

provide important information for prevention of sudden death. 
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Chapter 1 Introduction 
 

1.1 Sudden cardiac arrest 

Sudden cardiac death is defined as the unexpected natural death due to cardiac causes, heralded 

by abrupt loss of consciousness within 1 hour of the onset of acute symptoms or, if unwitnessed, 

within 24 hours of last being seen alive, in patients with or without preexisting heart diseases 

[Zipes, et al., 2006; Myerburg and Castellanos, 2015]. Sudden cardiac arrest is a leading cause of 

death in the United States and other countries. The overall survival rate of sudden cardiac arrest 

was found to be 4.6% in a North American analysis [Nichol et al., 2008]. In the United States 

alone, about 300,000 to 400,000 people of all ages experience sudden cardiac death each year, 

which accounts for approximately 5.6% of all causes of deaths [Stecker et al., 2014]. The 

incidence of sudden cardiac death is higher in male (76 per 100,000 population) than female (45 

per 100,000 population) [Stecker et al., 2014]. In male, the incidence of sudden cardiac death 

exceeds many other causes of death, which includes lung cancer, prostate cancer, colorectal 

cancer, accidents, chronic lower respiratory disease, cerebrovascular disease, and diabetes 

mellitus (Table 1.1) [Stecker et al., 2014]. The incidence of sudden cardiac death in female is 

similar to lung cancer, cerebrovascular disease, and chronic lower respiratory disease, and is 

higher than that of many other causes of death, including breast cancer, colorectal cancer, 

Alzheimer disease, and accidents (Table 1.1) [Stecker et al., 2014]. The high incidence and 

mortality of sudden cardiac arrest among a variety of common diseases and cancers suggest that 

it remains a major public health problem.   
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Table 1.1 Mortality for sudden cardiac death, cancers, and common diseases. [modified from Stecker et 
al., 2014] 
Disease Male Female 
 No. of death Death rate No. of death Death rate 
Sudden cardiac death 114,948  

(99,722-131,505) 
76  

(66-87) 
69,524 

(58,152-82,294) 
45 

(37-53) 
Lung cancer 88,527 59 70,040 45 
Prostate*/Breast cancer# 28,464 19 40,576 26 
Colorectal cancer 26,923 18 25,918 17 
Cerebrovascular disease 52,073 35 79,769 49 
Chronic lower respiratory disease 65,119 43 72,234 46 
Diabetes mellitus*/ 
Alzheimer disease# 

35,054 23 54,916 35 

Accidents 75,022 50 42,999 28 
*Only applicable to male, #only applicable to female, death rates are expressed per 100,000 national male 
or female population, parenthesis shows 95% confidence intervals. 

Sudden cardiac death has a multitude of potential etiologies. It has been estimated that 

nearly 50% of people with sudden cardiac arrest has no previously diagnosed heart diseases 

[Stecker et al., 2014]. In patients aged 50 years and above, coronary artery disease and ischemic 

cardiomyopathy are the predominant causes of sudden cardiac death [Israel, 2014]. However, 

study in young patients (< 35 years) showed that sudden cardiac death may occur in patients with 

structurally normal heart (Figure 1.1) [Papadakis et al., 2009]. Central nervous system disorders 

including epilepsy, ischemic stroke, intracranial bleeding, and traumatic head injury can result in 

sudden cardiac death [Finsterer and Wahbi, 2014]. Although the detailed physiological 

mechanism is unknown, it has been speculated that these cerebral abnormalities induce 

catastrophic cardiac events like severe bradycardia, ventricular tachycardia (VT), and ventricular 

fibrillation (VF), and eventually lead to sudden cardiac death through the disruption of the 

autonomic nervous system [Finsterer and Wahbi, 2014]. In addition to neurological disorders, 

asphyxia induced by drowning, abnormalities of breathing/statues asthmatics, or choking could 

also lead to sudden cardiac death [Papadakis et al., 2009]. The multifactorial properties of 

sudden cardiac death make its prediction, prevention, and management a challenging task.  
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Figure 1.1 Causes of sudden cardiac death expressed as percentage of the total number of possible 
cardiac death in 433 young people. SIDS: sudden infant death syndrome. [Papadakis et al., 2009] 

1.2 Conventional view on the mechanism of sudden cardiac arrest 

As cardiac arrhythmias, including VT, VF, pulseless electrical activity (PEA), and asystole, are 

frequently the last events before death, the mechanisms causing these arrhythmias are often 

considered as the predominant mechanisms underlying sudden cardiac arrest [Israel, 2014]. 

Consequently, many current pharmacological treatments which include anti-ischemic 

interventions and heart failure therapies are targeting on the electrophysiological substrate or 

mechanisms that cause these detrimental arrhythmias. Although beneficial to patients who had 

advanced chronic heart diseases [Israel, 2014], these therapies have proven unsuccessful when 

applied to high or moderate risk patients without prior documented clinical arrhythmias 

[Fishman et al., 2010]. In addition, there is also no effective strategies for the prevention of 

sudden cardiac death. The combination of implantable cardioverter-defibrillator (ICD) with heart 

failure drug therapy is the main approach for sudden cardiac death prevention [Moss et al., 2002; 

Bardy et al., 2005], but is likely to benefit only the small population who can be identified at 

high risk for sudden cardiac arrest [de Vreede-Swagemakers et al., 1997; Stecker et al., 2006]. 
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For low-risk individuals without established heart disease, which comprise the largest proportion 

of sudden cardia death, there is no effective preventive strategies available [Cupples et al., 1992; 

Albert et al., 2003; Gorgels et al., 2003].  

The lack of effective methodologies for the prediction and prevention of sudden cardiac 

arrest may due to two major gaps with current research on sudden cardiac arrest: 1) The lack of 

clear understanding on the mechanism of sudden cardiac arrest. As sudden cardiac arrest could 

be induced by either abnormality with the heart (cardiovascular diseases), the brain (neurological 

disorders), or both the brain and the heart (asphyxia), it is possible that these detrimental cardiac 

arrhythmias are the indirect cause of sudden cardiac death. Simply focusing on these terminal 

arrhythmias may prevent us from identifying the most fundamental causes of sudden cardiac 

death. 2) The lack of novel research tools to investigate the mechanism underlying sudden 

cardiac arrest. Most current studies are investigating molecular and cellular events that happen 

on large time scale, like hours or days. To study sudden death events that occur within minutes 

or seconds, more advanced tools that could measure electrophysiological processes that happen 

on short time scale are needed.  

1.3 New hypothesis on the mechanism of sudden cardiac arrest 

1.3.1 The concept of brain-heart connection 

A growing body of evidence from both psychological studies in healthy subjects and studies on 

neurocardiological diseases suggest that there might be a tight connection between the brain and 

the heart. The bidirectional brain-heart connection could be conceptualized from two 

perspectives: 1) The heart’s effects on the brain. In normal physiological conditions, heartbeat 

evoked potential has been consistently detected in the cortical signals of subjects when 
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performing behavioral tasks [Gray et al., 2007; Baranauskas et al., 2017]. In disease conditions, 

cardiac arrhythmias could trigger neurological response, such as the sensation of cardiac pain. 2) 

The brain’s effects on the heart. In normal conditions, activities such as yoga and meditation 

could lead to decrease in heart rate via activation of the vagus nerve [Kubota et al., 2001; Vinay 

et al., 2016]. In addition, fearful visual images, processed centrally, are well known to impact 

cardiac functions by elevating heart rate [Hagenaars et al., 2015]. In disease conditions, brain 

disorders such as stroke could induce cardiac arrhythmias or myocardial injury, and lead to 

sudden death via autonomic imbalance [Oppenheimer et al., 1991; Soros and Hachinski, 2012; 

Finsterer and Wahbi, 2014]. Through transneuronal labeling, functional magnetic resonance 

imaging (fMRI), and cortical stimulation studies, several forebrain regions, including the 

prefrontal cortex, insular cortex, cingulate cortex, and other subcortical and brainstem nuclei 

have been showed to send projections to cardioregulatory center and may be involved in 

moment-to-moment modulation of cardiac functions (Figure 1.2) [Palma and Benarroch, 2014].  

 
Figure 1.2 Efferent and afferent control of cardiac function. ACC: anterior cingulate cortex, PAG: 
periaqueductal gray, DVN: dorsal vagal nucleus, IML: intermediolateral, LC: locus ceruleus, PG: petrosal 
ganglion, NG: nodose ganglion, DRG: dorsal root ganglia. [Palma and Benarroch, 2014] 
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Though the concept of brain-heart connection has been brought up for years and 

abnormal brain-heart connection has been associated with many diseases like neurogenic heart 

diseases, cardiac source embolic stroke, and neurocardiac syndromes [Samuels, 2007], 

mechanism by which cortical neural circuitry affects cardiac function in normal and disease 

conditions remains unclear. In sudden cardiac arrest models, brain-heart connection has not been 

investigated comprehensively. It is generally believed that the brain does not play an active role 

during sudden cardiac arrest. This is partially due to several early studies in cardiac arrest animal 

models, which showed that EEG activity disappeared earlier than ECG signals during cardiac 

arrest (Figure 1.3) [Komura and Fujimura, 1974]. As a measurement of the electrical activity of 

the brain, the early termination of EEG than ECG was interpreted as the cessation of cortical 

functional activity before the devastating cardiac events. Thus, the brain was not considered to be 

involved in the dying process. Similar results have been obtained in several other sudden cardiac 

arrest animal models [Tisherman et al., 1985; Eshel et al., 1990; Coenen et al., 1995]. These data 

further strengthen the concept that brain damage occurs more rapidly than cardiac asystole and 

should not play a role in mediating sudden death. 

 
Figure 1.3 EEG and ECG from rabbits suffered from asphyxia by respiratory arrest. Cm: cortex 
sensitivo-motorius, surface EEG; RF: reticular formation, deep EEG. [Komura and Fujimura, 1974] 
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1.3.2 A well-organized series of high-frequency activity discovered in the brain after 

cardiac arrest 

To systematically investigate the neurophysiological state of the brain following cardiac arrest, 

we performed continuous EEG and ECG recording in rats undergoing experimental cardiac 

arrest induced by intracardiac injection of KCl [Borjigin et al., 2013]. We identified a well-

organized series of high-frequency activity in the brain after the heart stops (Figure 1.4). As 

shown in panel A, all signals seem to be isoelectric immediately after cardiac arrest. However, if 

we zoom in a 40-second-long epoch before and after cardiac arrest, as shown in panel B, we 

found that ECG signals stopped right after cardiac arrest, whereas EEG signals maintained 

normal amplitude for 3 seconds before transitioning to low-amplitude oscillations that lasted for 

about 30 seconds. According to its features, this cardiac arrest (CA) period was divided into 4 

sequential and distinctive stages: CAS1, CAS2, CAS3, and CAS4. Further zoom in of these 4 

representative stages after cardiac arrest revealed unique features associated with EEG signals. 

As shown in panel C, EEG signals showed marked increase in gamma oscillations in all 6 

channels in CAS1. CAS2 displayed theta oscillations coupled with high-frequency gamma  

Figure 1.4 EEG displays a well-organized series of high-frequency activity following cardiac arrest. RF: 
right frontal, LF: left frontal, RP: right parietal, LP: left parietal, RO: right occipital, LO: left occipital, 
CAS: cardiac arrest stage. [Borjigin et al., 2013] 
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oscillations across all 6 channels. CAS3 is dominated by low-gamma oscillations that were 

highly synchronous. In CAS4, EEG signals become isoelectric. It is known that gamma signals 

are associated with waking consciousness, altered states of consciousness during meditation, and 

rapid eye movement (REM) sleep [Llinas and Ribary, 1993; Lutz et al., 2004; Fries, 2009; Cahn 

et al., 2010; Buzsaki and Wang, 2012]. Theta oscillations are important for synaptic plasticity, 

information coding, and working memory [Benchenane et al., 2010; Molter et al., 2012]. The 

significant increase in theta and gamma oscillations indicates that there are internally highly 

activated functional activities in the brain, even after the heart stops beating. Further analysis of 

EEG signals using advanced signal processing techniques, which include functional connectivity 

(coherence), effective (directional) connectivity, and cross-frequency coupling, demonstrates that 

there are high level of interregional coherence and feedback connectivity as well as cross-

frequency coupling within the brain at near-death. In contrast to the conventional view that the 

brain is extremely quiet in the dying process, our data strongly suggest that the brain is highly 

aroused during cardiac arrest.  

This study showed for the first time that the brain is highly activated during cardiac 

arrest. To future investigate the role of a highly activated brain in the dying process and its 

potential interaction with the heart, we performed a follow-up study [Li et al., 2015]. In that 

study, EEG and ECG signals were collected and analyzed in an asphyxic cardiac arrest model 

induced by CO2 inhalation, which is the most common method of euthanasia for rats, mice, and 

many other small rodents. Different from KCl injection-induced cardiac arrest model used in 

previous study, in which the activity of the brain was measured when the cardiac activity was 

stopped, asphyxic cardiac arrest model allowed us to study the time-dependent deterioration of 

the brain and the heart at the same time. By simultaneous recording of EEG and ECG signals in 
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rats before and after asphyxia, possible interactions between the brain and the heart during 

cardiac arrest could be investigated. 

1.3.3 A surge of corticocardiac coupling during asphyxia-induced sudden cardiac arrest 

The electrical signal coupling and communication both within the brain and between the brain 

and the heart during asphyxic cardiac arrest were studied using coherence and directional 

connectivity analysis. While coherence is a well-established method to study the synchronization 

between electrical signals from two different brain loci, directional connectivity is widely used to 

investigate the causal information flow between two or more signals [Lee et al., 2009; Borjigin et 

al., 2013; Li et al., 2015]. We found that asphyxia stimulated a marked surge of coherence and 

directional connectivity both within the brain and between the brain and the heart during 

asphyxic cardiac arrest (Figure 1.5). As shown in panel A, heart rate changes exhibited four 

distinct phases A1, A2, A3, and A4 after CO2 administrated at time 0. Immediately following 

Figure 1.5 A surge of 
coherence and connectivity 
both within the brain and 
between the brain and the 
heart during asphyxic cardiac 
arrest. RRI: RR interval (A), 
CCoh: cortical coherence (B), 
CCon: cortical directional 
connectivity (C), CCCoh: 
corticocardiac coherence (D), 
CCCon: corticocardiac 
directional connectivity (E), 
NSTE: normalized symbolic 
transfer entropy, red trace in 
panel C: frontal to 
parietal/occipital, blue trace in 
panel C: occipital/parietal to 
frontal, red trace in panel E: 
brain to heart, blue trace in 
panel E: heart to brain, alpha: 
10-15Hz. [modified from Li et 
al., 2015] 
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asphyxia, there is a rapid increase of RR interval (RRI) followed by a complete recovery in A1 

and a second surge of RRI followed by an incomplete recovery in A2. In parallel with the 

response of the heart to asphyxic challenge, the brain displayed intense coherent patterns (CCoh) 

in A1 and A2, especially for high frequency gamma rhythms, which are often associated with 

cognition and conscious perception (Figure 1.5B) [Panagiotaropoulos et al., 2012; Cavinato et 

al., 2015]. The lack of corticocardiac coherence (CCCoh) and corticocardiac directional 

connectivity (CCCon) during earlier stages of A1 and A2 suggest that there is no signal 

communication between the cortex and the heart in these early phases (Figure 1.5D and 1.5E). 

The immediate surge of high frequency CCoh and the dramatic fluctuations of RRI in A1 and A2 

may be regulated by subcortical mechanisms. After this early phase of asphyxia, severe 

bradycardia with mild fluctuation of RRI is observed in A3 (Figure 1.5A). Interestingly, strong 

CCCoh, indicator for intense brain and heart electrical signal synchronization, appeared during 

this stage (Figure 1.5D). In addition, increased CCCon was also identified in A3, with the 

information flow from the brain to the heart dominants (Figure 1.5E). Based on these results, we 

postulated the following hypotheses: (1) Immediately after asphyxia onset, the heart may strive 

to restore its normal function using autonomic feedback loop; (2) When the autonomic feedback 

is insufficient to restore the normal function of the heart, as shown by the incomplete recovery of 

RRI in A2, the brain suspends all non-essential functions, and focuses on restoring basic cardiac 

function that is more fundamental for survival; (3) The ineffective restoration of RRI in A3 

subsequently stimulated a more robust activation of the brain and corticocardiac coupling at 

higher frequency, which then triggered the onset of VT and VF in A4. The sequential changes of 

RRI, CCon, CCoh, CCCon, and CCCoh demonstrate that asphyxia activates a programmed surge 

of cortical activity and coupling between the brain and the heart during asphyxic cardiac arrest.  
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1.3.4 A dramatic release of cortical neurotransmitters during asphyxia-induced sudden 

cardiac arrest 

To investigate the neurochemical basis of the increased cortical activities during cardiac arrest, 

microdialysis was performed in the frontal and occipital lobes of the rats before and after 

asphyxia. The results of 6 chemicals are shown in Figure 1.6. As expected, levels of glucose 

dropped rapidly within 2 minutes of asphyxia. A significant surge of secretion was detected for 

all 5 neurotransmitters, which includes adenosine, dopamine, norepinephrine, serotonin, and 

GABA. These neurotransmitters are known to be involved in the regulation of brain functional 

activities, such as arousal, attention, cognition, and hallucination [Inada et al., 1996; Espana et 

al., 2016; Carr et al., 2017]. Some of them are also involved in the regulation of cardiac  

functions. For example, elevated central norepinephrine is thought to act within the brainstem to  

 

 

 

 

 

 

 

 

Figure 1.6 Asphyxia stimulated an immediate and marked surge of cortical neurotransmitter. Red tracing: 
frontal lobe, blue tracing: occipital lobe, star: significant increase over baseline, pound: significant 
difference between frontal and occipital lobes. [Li et al., 2015] 

inhibit parasympathetic cardiac vagal neurons [Boychuk et al., 2011]. Serotonin plays an 

important role in the regulation of cardiovascular reflexes [Ramage and Villalon, 2008]. It has 
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been shown that overexpression of serotonin auto-receptor in the raphe complex results in 

autonomic dysregulation [Audero et al., 2008]. GABA release is known to be associated with the 

increased sympathetic tone and the inhibition of parasympathetic vagal neurons projecting to the 

heart [Zhong et al., 2008; Wang et al., 2010; Bowman and Goodchild, 2015]. The dramatically 

increased release of cortical neurotransmitters that are involved in the regulation of cardiac 

function suggests that the brain may play an important role in the regulation of the heart during 

asphyxic cardiac arrest. Although the detailed mechanisms of how the marked increase of 

neurotransmitter release after asphyxia mediates sudden cardiac arrest are still unknown, these 

data at least provide the neurochemical evidence to support that the brain actively participates in 

the regulation of cardiac functions during asphyxic cardiac arrest.  

1.3.5 Cutting brain-heart connection prolongs survival after asphyxic cardiac arrest 

Based on results from Figure 1.5 and Figure 1.6 that there is increased cortical functional activity 

and surge of key cortical neurotransmitters during asphyxic cardiac arrest, we hypothesize that 

the brain may play an important role in the dying process. To test this hypothesis, we studied the 

survival time for both the heart and the brain after disconnecting the heart from the brain using 

two approaches: 1) C7 transaction (C7X), which is spinal cord transection at cervical level 7. 

This surgery terminates all the sympathetic outflows traveling down the spinal cord. 2) Blockade 

of parasympathetic action using atropine. In this experiment, rats received C7X or sham surgery 

were treated without or with atropine 30 minutes before the onset of asphyxia. We found 

significantly longer survival time of both the heart (increased duration of ECG signal) and the 

brain (increased duration of CCoh) in rats received C7X, but this effect was not significantly 

affected by the injection of atropine (Figure 1.7) [Li et al., 2015]. These data indicate that 

asphyxia-stimulated brain-heart signaling during cardiac arrest is mediated mainly by the 



13 
 

sympathetic nervous system and the blockade of sympathetic nerves may be an effective 

approach to delay the death of both the heart and the brain.  

 
Figure 1.7 C7 transection prolongs the survival of both the heart and the brain during asphyxia cardiac 
arrest. C7X: C7 transection, **p < 0.01. [Li et al., 2015] 

In contrast, sympathetic agonist epinephrine is currently the primary drug administered 

during cardiopulmonary resuscitation to reverse cardiac arrest [Hermreck, 1988; Field et al., 

2010]. Epinephrine has been used to resuscitate patients for 120 years and is recommended in 

American Heart Association (AHA) guidelines for advanced cardiovascular life support 

[Morrison et al., 2010; Neumar et al., 2010]. The addition of epinephrine into the guideline 

dramatically increases the number of patients who were given epinephrine. However, despite its 

long time use and incorporation into guidelines, epinephrine suffers from a lack of evidence 

regarding its effects on survival. A recent paper, reviewing 6 studies investigating whether 

epinephrine provides any overall benefits for patients, demonstrates that epinephrine 

administered during cardiac arrest has no benefit or even harmful effects for improving cardiac 

outcomes [Callaway, 2013]. There are also studies that showed that the use of epinephrine is 

significantly associated with decreased chance of survival and negative neurological outcomes 

[Herlitz et al., 1995; Stiell et al., 2004; Ohshige et al., 2005; Olasveengen et al., 2009; Hagihara 

et al., 2012]. These studies led us to conclude that stimulating the sympathetic nervous system 
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does not improve, but harm both the brain and the heart. Blockade of sympathetic nervous 

system may be the right approach to save the heart and the brain.  

1.3.6 New hypothesis: corticocardiac coupling as a mechanism for sudden cardiac arrest 

Based on the above discussion, we proposed a new mechanism for sudden cardiac arrest. 

Different from the conventional view that the brain is hypoactive during sudden cardiac arrest, 

our data strongly suggest that the brain plays an active role in mediating the dying process. This 

is supported by the robust and sustained activation of functional and effective connectivity within 

the brain, immediate and marked surge of a set of cortical neurotransmitters, and delayed 

activation of functional coupling and electrical signal communication between the brain and the 

heart at near-death. Instead of playing a passive role, we proposed that the brain plays an active 

role in mediating the dying process by sending strong electrical signals to resuscitate the heart, 

which unintentionally causes premature and rapid deterioration of the cardiac function via the 

over-activated sympathetic nervous system. Blockade of sympathetic signaling significantly 

delayed the death of both the heart and the brain and may become a promising approach for 

preventing sudden cardiac arrest and extending survival. 

1.4 Overview of thesis project 

As a follow-up of two previous studies [Borjigin et al., 2013; Li et al., 2015], the current thesis 

continued to investigate the mechanism of corticocardiac coupling in different sudden cardiac 

arrest models using advanced signal processing approaches. In Li et al., 2015, using C7X, we 

showed for the first time that activated brain sends harmful signals to the heart via the over-

activated sympathetic nervous system. Since C7X is an invasive surgery, in Chapter 2, we tested 

if pharmacological blockade of sympathetic nervous system using alpha and beta blockers could 
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reproduce the results obtained from C7X in the same asphyxic cardiac arrest rat model (Figure 

1.8). As sudden cardiac arrest could also be induced by abnormalities in the heart or neurological 

diseases, in addition to KCl injection-induced cardiac arrest rat model [Borjigin et al., 2013] and 

asphyxia-induced cardiac arrest rat model [Li et al., 2015], we studied corticocardiac coupling in 

two other models. In Chapter 3, we tested if corticocardiac coupling exist in human patient 

suffered from cardiac arrest. In Chapter 4, we investigated corticocardiac coupling in forebrain 

ischemic stroke-induced sudden cardiac arrest rat model. The understanding on the mechanism 

of corticocardiac coupling during sudden cardiac arrest is still in its early stage. Through this 

thesis project, we hope to establish that elevated corticocardiac coupling may be a basic common 

mechanism for sudden cardiac arrest induced by different causes and that the blockade of 

efferent sympathetic signaling is a potential effective strategy to prevent sudden cardiac arrest. 

This study is expected to have significant clinical impact, because it would build a new 

framework for understanding sudden cardiac arrest associated with different causes and for the 

development of effective strategies to prevent sudden cardiac arrest.  

 
Figure 1.8 Overview of thesis project. Chapter 2: corticocardiac coupling in asphyxia-induced sudden 
cardiac arrest rat model. Chapter 3: corticocardiac coupling in a human patient died from cardiac arrest. 
Chapter 4: corticocardiac coupling in forebrain ischemic stroke-induced sudden cardiac arrest rat model.  
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Chapter 2 Adrenergic blockade bi-directionally and asymmetrically alters functional 

brain-heart communication and prolongs electrical activities of the brain and heart during 

asphyxic cardiac arrest 

2.1 Introduction 

Fatal cardiac arrest affects more than 400,000 Americans each year [Chugh et al., 2008; Stecker 

et al., 2014]. Despite decades of intensive research efforts, survival rate from cardiac arrest is 

only about 5% [Nolan et al., 2012; Stecker et al., 2014]. Sudden death occurs in patients with 

cardiovascular disease as well as those with no known history of heart disease, including 

individuals with ischemic stroke, traumatic brain injury, epilepsy, chronic obstructive pulmonary 

disease, and asphyxia [Samuels, 2007; Sörös and Hachinski, 2012; Israel, 2014; Lahousse et al., 

2015]. Unfortunately, current studies of cardiac arrest are largely focused on the cardiovascular 

pathology and methods of cardiac resuscitation; very little attention has been given to the role of 

the brain prior to the arrest of the heart.  

Recent studies from our laboratory demonstrate that the brain plays a key role in cardiac 

arrest. Experimental cardiac arrest [Borjigin et al., 2013] and asphyxic cardiac arrest [Li et al., 

2015a] both lead to a rapid surge of functional connectivity (coherence) and effective 

connectivity in the dying brain. The marked surge of cortical coherence (CCoh) and directional 

cortical connectivity  (CCon) paralleled dramatically increased release of a set of core 

neurotransmitters in the brain [Li et al., 2015a]. Importantly, asphyxia activates a delayed surge 

of cortex-heart coupling, a novel form of communication measured by corticocardiac coherence 
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(CCCoh) and directional corticocardiac connectivity (CCCon) [Li et al., 2015a]. We 

hypothesized that the stimulated brain functions to resuscitate the heart internally by activating 

the sympathetic nervous system [Li et al., 2015a], the main mechanism thought to lead to sudden 

cardiac arrest in high risk patients [Samuels, 2007; Dhalla et al., 2010]. Past studies have shown 

that experimental cardiac arrest stimulates excessive neural release of catecholamines leading to 

fatal ventricular arrhythmias [Foley et al., 1987; Borovsky et al., 1998; Dhalla et al., 2010]. 

Consistent with these reports, a marked surge of cardiac sympathetic activity was reported in 

patients with sustained ventricular arrhythmias [Meredith et al., 1991]. These data demonstrate 

that increased cardiac sympathetic activity is causally linked with cardiac failures [Samuels, 

2007; Taggart et al., 2011; Silvani et al., 2016]. 

Beta blockers (blockers of beta-adrenergic receptors) are widely used to manage cardiac 

arrhythmias and to prevent a second myocardial infarction in heart attack patients [Yusuf et al., 

1985; Freemantle et al., 1999; Bourque et al., 2007] and are shown to reduce the incidence of 

ventricular fibrillation (VF) after acute myocardial infarction [Rydén et al., 1983; Norris et al., 

1984]. Despite the mounting evidence for the positive effects of beta blockers to protect diseased 

hearts, the mechanism by which beta-blockers prevent ventricular arrhythmias is not well 

understood [Yusuf et al., 1985; Bourque et al., 2007].  

In our earlier study [Li et al., 2015a], surgical blockade of efferent neuronal outflows 

travelling down the spinal cord below the cervical level 7 (C7) significantly extends the electrical 

activities of both the heart and the brain in the dying rats. Since sympathetic signals exit the 

spinal cord below C7 in rats, the beneficial effects of the C7 transection procedure is likely 

mediated by the blockade of sympathetic impact on the heart. The present study is designed to 

test if and how pharmacological blockade of the adrenergic receptors of the heart influences the 
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cortical oscillations and changes the dynamics of the brain-heart electrical coupling in CO2-

mediated asphyxic cardiac arrest model. 

The sympathetic nervous system regulates the cardiovascular function via both alpha- 

and beta-adrenergic receptors. While alpha- and beta-adrenergic receptor blockers are used 

together to increase efficacy of hypertension treatment [Ram and Kaplan, 1979; Wong et al., 

2015], their combined impact on delaying the onset of cardiac arrest has not been evaluated. In 

this study, we tested the impact of phentolamine (non-selective alpha adrenergic receptor 

blocker) and atenolol (selective beta-1 adrenergic receptor blocker), alone or combined, on the 

duration of cortical and cardiac electrical activity, CCoh, CCCoh, and CCCon in asphyxic rats. 

2.2 Materials and methods 

2.2.1 Animals 

Inbred male Fischer 344 rats from Harlan were acclimatized in our housing facility for at least 1 

week before surgical implantation of electrodes. After implantation, rats were allowed to recover 

for at least 1 week before online recording. All experiments were conducted using adult rats 

(300-400 g) maintained on a light: dark cycle of 12: 12 hour and provided with ad libitum food 

and water. This study was carried out in accordance with the recommendations of the University 

of Michigan Committee on Use and Care of Animals. The protocol was approved by the 

University of Michigan Committee on Use and Care of Animals.  

2.2.2 Electrode implantation and configuration 

Rats were implanted with electrodes for ECG and EEG recording under surgical anesthesia 

[1.8% (vol/vol) isoflurane]. ECG was recorded through flexible and insulated multi-stranded 

wires (Cooner Wire) inserted into the subcutaneous muscles flanking the heart. EEG was 
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recorded through screw electrodes implanted bilaterally on the frontal [anteroposterior (AP): + 

3.0 mm; mediolateral (ML): ± 2.5 mm, bregma], parietal (AP: -3.0 mm; ML ± 2.5 mm, bregma), 

and occipital (AP: -8.0 mm; ML: ± 2.5 mm, bregma) cortices. A nose electrode was used as the 

EEG reference (Borjigin et al., 2013). The ECG and EEG electrodes were interfaced with two 

six-pin pedestals (Plastics One) and secured on the skull with dental acrylic. 

2.2.3 Signal acquisition 

Before data collection, rats were acclimatized overnight in the recording chamber. ECG and 

EEG were recorded using Grass Model 15LT physiodata amplifier system (15A54 Quad 

amplifiers, Astro-Med, Inc.) interfaced with BIOPAC MP-150 data acquisition unit and 

AcqKnowledge software (version 4.1.1, BIOPAC Systems, Inc.). Signals were filtered between 

0.1 and 300 Hz and sampled at 1,000 Hz. ECG and EEG recordings were initiated consistently at 

10:00 am to control for circadian factors. The rats were divided into 4 groups. Baseline signals 

were recorded for at least 30 minutes for all the rats. Then each group of rats received either 

saline (n=10), phentolamine (10mg/kg, n=7), atenolol (10mg/kg, n=8), or phentolamine plus 

atenolol (10mg/kg, 10mg/kg, n=11). Thirty minutes after drug injection, cardiac arrest was 

induced by inhalation of CO2 (30%) for 2 minutes. Recording was continued for another 30 

minutes after asphyxia. 

2.2.4 Analysis of RR interval (RRI) and cardiac arrhythmias 

To analyze the RRI (the time intervals between the R-peaks of two adjacent heartbeats), baseline 

drift correction was first implemented using second-order Butterworth high-pass filtering with a 

cutoff frequency at 1 Hz (butter.m and filtfilt.m in Matlab Signal Processing Toolbox; 

MathWorks Inc.). R-peak of ECG signals was then detected using variable threshold method 

[Kew and Jeong, 2011]. Specifically, an amplitude threshold in each nonoverlapping 1 s epoch 
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was applied to select the candidates for R peaks, which can be verified only if the RRI value 

exceeds a predefined threshold. In this study, the interval threshold was selected as half of the 

median value of the RRI values in the last 1 s epoch. The automatically detected R peaks were 

manually validated through a custom user interface developed in Matlab (MathWorks Inc.). To 

analyze the number and types of cardiac arrhythmias, ECG signals were examined and cardiac 

arrhythmias were manually labeled using a custom user interface developed in Matlab 

(MathWorks Inc.). 

2.2.5 Construction of electrocardiomatrix (ECM) 

The ECM is designed to facilitate the visualization of RRI, the amplitude, and the morphology of 

ECG signals. For construction of ECM [Li et al., 2015b], a window centered on the detected 

ECG R peaks (for example, from - 0.1 s to 0.3 s, with 0 corresponding to the time of R-peak) 

was extracted from the ECG signal after baseline drift correction. All ECG windows were sorted 

according to the order of R-peak time and then plotted as parallel colored lines to form a colored 

rectangular image. The intensity of ECG signal was denoted on z-axis, with warmer color 

indicates positive peaks with higher voltage, while cooler color indicates negative peaks with 

lower voltage. The color scheme could be adjusted according to the need. 

2.2.6 Analysis of CCoh and CCCoh 

The coherence between six EEG channels (CCoh) or between one ECG and each of the six EEG 

channels (CCCoh) were measured by amplitude squared coherence (𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓)) (mscohere.m in 

Matlab Signal Processing Toolbox; MathWorks Inc.), which is a coherence estimate of the input 

signals x and y using Welch’s averaged, modified periodogram method. The magnitude squared 
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coherence 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) is a function of frequency with values between 0 and 1 that indicates how well 

signal x corresponds to signal y at each frequency.  

𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) = �𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)�
2

𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓)
, 0 ≤ 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) ≤ 1   (1) 

where 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) and 𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓) are the power spectral density of x and y, and 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) is the cross power 

spectrum spectral density. 

In current study, electrophysiological signals were first segmented into 2 s epochs with 1 

s overlap. The magnitude squared coherence was then calculated at each epoch and frequency 

bin (from 0.5 to 250 Hz). Before coherence analysis, a notch filter was used to remove the 60 Hz 

artifact and its possible super-harmonics. For each rat, the mean coherence among 15 pairs of six 

EEG channels (Figure 2.2A), the mean coherence among one ECG and six EEG channels 

(Figure 2.5A), as well as the coherence between one ECG and each of the six EEG channels (6 

pairs; Figure 2.6A) were calculated and plotted for frequencies from 0.5 to 250 Hz. The mean 

and standard deviation (SD) of coherence between one ECG and six EEG channels (Figure 2.5B) 

and the coherence between one ECG and each of the six EEG channels (Figure 2.6B) were 

calculated for frequencies from theta to gamma 1 (theta: 5-10 Hz, alpha: 10-15 Hz, beta: 15-25 

Hz, and gamma 1: 25-55 Hz). 

2.2.7 Analysis of CCCon 

The directional connectivity between the heart and brain (or between one ECG and each of the 

six EEG channels, CCCon) was measured by a modified [Li et al., 2015a] Normalized Symbolic 

Transfer Entropy (NSTE) method [Lee et al., 2009], which is a nonlinear and model-free 

estimation of directional functional connection based on information theory. STE denotes the 

amount of information provided by the additional knowledge from the past of the source signal 
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X (𝑋𝑋𝑃𝑃) in the model describing the information between the past Y (𝑌𝑌𝑃𝑃) and the future Y (𝑌𝑌𝐹𝐹) of 

the target signal Y, which is defined as follows: 

𝑆𝑆𝑇𝑇𝑇𝑇𝑋𝑋→𝑌𝑌 = 𝐼𝐼(𝑌𝑌𝐹𝐹;𝑋𝑋𝑃𝑃|𝑌𝑌𝑃𝑃) = 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) − 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑋𝑋𝑃𝑃,𝑌𝑌𝑃𝑃)   (2) 

where 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) is the entropy of the process 𝑌𝑌𝐹𝐹conditional on its past. Each vector for 

𝑌𝑌𝐹𝐹 ,𝑋𝑋𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑃𝑃is a symbolized vector point. The potential bias of STE was removed with a 

shuffled data, and the unbiased STE is normalized as follows:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋→𝑌𝑌 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌−𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌

𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 

𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌  )
∈ [0, 1]   (3) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌
𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) − 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑋𝑋𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃 ,𝑌𝑌𝑃𝑃). 𝑋𝑋𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃  is a shuffled data created by 

dividing the data into sections and rearranging them at random. Therefore, NSTE is normalized 

STE (dimensionless), in which the bias of STE is subtracted from the original STE and then 

divided by the entropy within the target signal, 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃). 

For CCCon, the feedback (FB) connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) was calculated by averaging 

NSTE over six pairs of EEG channels to ECG channel, which are defined as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖→𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸
𝑖𝑖=1    (4) 

where 𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸 = 6. The feedforward (FF) connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) from the ECG to six EEG 

channels is vice versa. 

Specifically, we first filtered EEG and ECG signals into 4 frequency bands (theta, alpha, 

beta, and gamma 1) and then segmented the filtered signals into 2 s long epochs with 1 s 

overlapping. The mean CCCon (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸  and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) were sequentially calculated 

for each epoch and each frequency band. Three parameters: embedding dimension (𝑑𝑑𝐸𝐸), time 

delay (τ), and prediction time (𝛿𝛿), were required in the calculation. In this study, we selected the 

parameter setting that could yield maximum 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋→𝑌𝑌  by fixing the embedding dimension (𝑑𝑑𝐸𝐸) 
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at 3, and optimizing prediction time 𝛿𝛿 (from 1 to 50, corresponding to 1-50 ms with the sampling 

frequency of 1,000 Hz) and time delay 𝜏𝜏 (1-300 ms). The same procedure was used to 

calculate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌→𝑋𝑋 , provided that the information between two signals is transferred through 

different neuronal pathway. The mean and SD of the averaged CCCon for all 4 frequencies 

among six EEG channels (Figure 2.8) and that for each of the six EEG channels (6 pairs; Figure 

2.9) were calculated and plotted.  

2.2.8 Statistical analysis 

For all of the statistical analyses, Shapiro-Wilk normality test was first implemented to determine 

if the data was normally distributed. To test the differences of ECG duration (defined as the 

duration from the asphyxia onset at time 0 until the onset of isoelectric activity; Figure 2.1B), 

CCoh duration (Figure 2.2B), mean CCoh during A3 phase (Figure 2.3C), RRI change (Figure 

2.5Ab), mean CCCoh (Figure 2.6B) and mean CCCon (Figure 2.8B) among 4 groups of rats, as 

well as the mean CCCoh (Figure 2.6B) and CCCon (Figure 2.8B) among six EEG channels, one 

way ANOVA with Bonferroni post hoc comparisons (for normally distributed data) or Kruskal-

Wallis Test with Mann-Whitney post hoc comparisons (for non-normally distributed data) were 

used. To analyze the correlation between ECG duration and CCoh duration (Figure 2.4), between 

RRI change and ECG duration (Figure 2.5Ba), and between RRI change and CCoh duration 

(Figure 2.5Bb), Pearson (for normally distributed data) or Spearman (for non-normally 

distributed data) correlation analysis was performed. For all the comparisons, p < 0.05 was 

considered as statistically significant. Statistical analyses were carried out in consultation with 

the Center for Statistical Consultation and Research at the University of Michigan. Statistical 

analyses were performed using the software SPSS (version 19.0; IBM SPSS Statistics). 
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2.3 Results 

2.3.1 Adrenergic blockade prolongs cardiac electrical activity during asphyxia 

Cardiac electrical activity was investigated using ECM to facilitate the visualization of dynamic 

temporal changes of RRI and cardiac arrhythmias before and after asphyxia (Figure 2.1A). Raw 

ECG traces of representative rats were also included for traditional viewing (Supplement Figure 

1 in Appendix). Before asphyxia, all 4 groups of rats had relatively stable RRI of about 0.2 sec 

with no cardiac arrhythmias. Following the onset of asphyxia, the RRI exhibited dramatic and 

distinct changes in the four groups of rats. We divided the changes of RRI and cardiac 

arrhythmias into 5 stages (A1 to A5) according to their cardiac features. Immediately following 

the asphyxia onset in saline treated rats (Figure 2.1Aa), RRI began to expand rapidly, from 0.2 

sec at baseline to 0.6 sec at the peak within 10 sec (A1 stage), indicating a rapid onset of 

bradycardia. PR interval lengthened, suggestive of first-degree heart block. Furthermore, T-

waves increased in peak height, and remained high for the entire bradycardia period in all rats. 

The A1 stage was followed by a transient recovery of RRI that lasted for about 20 sec (A2 

stage). During this period, two cardiac features are worth noting: elevated T-wave peak height 

and peak duration and gradually lengthened PR interval. Stages A1 and A2 show similar 

durations among four groups of rats. The rapid increase of RRI at A1 was reproducibly observed 

in rats injected with saline (Figure 2.1Aa) and phentolamine (Figure 2.1Ab), but was less 

prominent in rats received atenolol (Figure 2.1Ac) and phentolamine plus atenolol (Figure 

2.1Ad). T wave elevation was also noted in all 4 groups of rats during the A2 period, but no 

statistical significance was found between the groups. During this early phase of asphyxia, a 

variety of cardiac arrhythmias was identified in all rats, which includes premature atrial 
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contraction, premature junctional contraction, premature ventricular contraction, junctional 

rhythm, and sinus arrhythmias.  

 
Figure 2.1 Adrenergic blockade prolongs cardiac survival. (A) Electrocardiomatrix (ECM) display of 
ECG signals before (50 sec) and after asphyxia in four groups of rats: (a) saline, (b) phentolamine, (c) 
atenolol, and (d) phentolamine plus atenolol. x axis shows time in seconds, y axis shows RR interval 
(RRI; in seconds), and z axis shows signal strength. Warmer color represents higher signal strength. 
Asphyxia was induced by CO2 infusion at time 0 sec. (B) The mean and SD of ECG signal duration after 
asphyxia in four groups of rats: S (saline, n = 10), P (phentolamine, n = 7), A (atenolol, n = 8), and P+A 
(phentolamine plus atenolol, n = 11). Significant differences of ECG signal duration among 4 groups of 
rats are indicated using asterisks. Error bars denote SD (*p < 0.05, **p < 0.01, ***p < 0.001).  

In contrast to the A1A2 period, the duration and cardiac arrhythmias in stages A3 and A4 

varied significantly. During A3, all rats suffered bradycardia due to 2rd or 3rd degree 

atrioventricular blocks with sequential junctional and ventricular escape rhythms. RRI was 

expanded to as long as 1.4 sec (Figure 2.1Ab, stage A3), a 7-fold increase from the baseline 

values of 0.2 sec. This bradycardia period ended in sustained ventricular tachycardia (VT) during 
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A4 and VF during A5 period (not shown in ECM) in rats injected with saline and phentolamine. 

Interestingly, VT and VF were identified in only 1 of the 8 rats (12.5%) injected with atenolol 

and 2 of the 11 rats (18.2%) received phentolamine plus atenolol (Table 2.1). When VT and VF 

were blocked by these drugs, rats entered an isoelectric stage directly from the A3 stage, 

exhibiting 3rd degree heart block with ventricular escape beats. This result is consistent with the 

reported ability of beta blocker to reduce the incidence of ventricular arrhythmias in human 

patients [Patterson and Lucchesi, 1984; Bourque et al., 2007]. 

Table 2.1 Summary of ventricular tachycardia and ventricular fibrillation in four groups of asphyxic rats. 
 

Saline 
(n=10) 

Phentolamine 
(n=7) 

Atenolol 
(n=8) 

Phentolamine  
+ Atenolol (n=11) 

V. Tachycardia 10/10 (100%) 7/7 (100%) 1/8 (12.5%) 2/11 (18.2%) 

V. Fibrillation 10/10 (100%) 7/7 (100%) 1/8 (12.5%) 2/11 (18.2%) 

To investigate the effects of adrenergic blockade on cardiac electrical activity, we 

compared the duration of ECG signals (that begins from the asphyxia onset to the beginning of 

the isoelectric state) in four groups of rats: saline (305 ± 45 sec; mean ± SD), phentolamine (389 

± 72 sec), atenolol (532 ± 145 sec), and phentolamine plus atenolol (723 ± 304 sec). We found a 

significant increase in the duration of ECG signals in rats received drugs (Figure 2.1B). 

Remarkably, rats received phentolamine plus atenolol had the most significant increase in the 

duration of ECG signals (p < 0.001). 

2.3.2 Adrenergic blockade prolongs cortical functional connectivity  

Cortical coherence (CCoh) was calculated before and after asphyxia (Figure 2.2). In all rats, 

EEG signals displayed intense coherence immediately after asphyxia for high gamma waves (> 

150 Hz) and for theta waves. In addition, three distinct coherence clusters were noted in all rats: 
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gamma 3 (125-175 Hz), gamma 2 (65-115 Hz), and gamma 1 (25-55 Hz). Of these clusters, 

gamma 2 and 3 clusters occurred at the transitions between A1 and A2 stages, whereas the 

gamma 1 cluster occurred at the junction between the A2 and A3 states. The intensity and 

duration of these coherence clusters did not show significant differences among 4 groups of rats. 

During the bradycardia period (A3), EEG signals showed intense coherent activity at lower 

frequency ranges (5-55 Hz) with varying duration and intensity. In rats injected with saline and 

phentolamine, CCoh was intense and continuous. However, in rats injected with atenolol and 

phentolamine plus atenolol, CCoh was weaker and intermittent. 

 
Figure 2.2 Adrenergic blockade prolongs cortical coherence (CCoh) duration. (A) CCoh (averaged over 
six EEG channels) before (50 sec) and after asphyxia in four groups of rats: (a) saline, (b) phentolamine, 
(c) atenolol, and (d) phentolamine plus atenolol. x axis shows time, y axis shows frequency, and z axis 
shows CCoh. Warmer color represents stronger CCoh. Asphyxia was induced at time 0 sec. (B) The mean 
and SD of CCoh duration after asphyxia in four groups of rats: S (saline, n = 10), P (phentolamine, n = 7), 
A (atenolol, n = 8), and P+A (phentolamine plus atenolol, n = 11). Significant differences of CCoh 
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duration among 4 groups of rats are indicated using asterisks. Error bars denote SD (*p < 0.05, **p < 
0.01, ***p < 0.001). 

To investigate the effects of adrenergic blockade on the length of functional activities of 

the brain, we compared the duration of CCoh in four groups of rats (Figure 2.2B): saline (314 ± 

45 sec), phentolamine (394 ± 61 sec), atenolol (492 ± 86 sec), and phentolamine plus atenolol 

(608 ± 127 sec). We found significant increase in the duration of CCoh in all three drug groups 

from the saline treatment. Remarkably, rats received phentolamine plus atenolol had the most 

significant increase in the duration of CCoh (p < 0.001). 

2.3.3 Adrenergic blockade abolishes cardiac event related potentials and cortical coherence 

during A3 specifically in the right hemisphere 

To define the impact of the adrenergic drugs on local neuronal synchrony within the cortex, we 

analyzed cardiac event related potentials (CERP) [Li et al., 2015a] (Figure 2.3). EEG potentials 

(CERP) associated with ECG signals were seen in all rats during A3 phase of asphyxia, although 

they were undetectable in baseline or at early phase of asphyxia. CERP appeared evenly 

distributed among the 6 EEG electrodes in the saline treated rats, with slightly higher potential in 

the occipital lobes compared to the frontal lobes (Figure 2.3Aa). In the rat treated with both 

phentolamine and atenolol (Figure 2.3Ba), however, CERP was severely suppressed in all three 

electrodes specifically in the right hemisphere. This data demonstrates that adrenergic signaling 

underlies the CERP and its impact is dominant in the right cerebral hemisphere.  
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Figure 2.3 Adrenergic blockade leads to a marked hemispheric asymmetry of cardiac event related potential (CERP) and cortical coherence 
(CCoh). Raw ECG and EEG data (200-205 sec in A3), as well as CCoh raw data (50 sec before and 800 sec after asphyxia), for each hemispheric 
channel or channel-pair among the six EEG channels, is shown for one representative control rat (A) and a rat received phentolamine plus atenolol 
(B). The blockers inhibit cardiac event related EEG potentials (Ba) and CCoh (Bb) specifically on the right hemisphere and the effects are more 
significant when phentolamine plus atenolol were used together (C). Significant differences of mean pairs of CCoh, calculated for A3 at 5-55 Hz, 
are indicated using asterisks in panel C. LF: left frontal; RF: right frontal; LP: left parietal; RP: right parietal; LO: left occipital; RO: right 
occipital. Error bars denote SD (*p < 0.05, ***p < 0.001)
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We also separated the coherence pairs formed between electrodes on the left hemisphere 

from those on the right hemisphere for both control and drug injected rats. Cortical coherence 

(CCoh) on the left cortex and the right cortex showed similar levels during A3 period (the white 

dashed boxes in Figure 2.3Ab) in a control rat. In a marked contrast, the CCoh on the right 

hemisphere was nearly abolished by the injected adrenergic blockers (Figure 2.3Bb). The drug-

induced hemispheric asymmetry of CCoh during A3 was significant for rats when either atenolol 

or atenolol and phentolamine was used (Figure 2.3C). Importantly, when both phentolamine and 

atenolol were used together, the left and right asymmetry was more significant, compared to 

when either drug was used alone (Figure 2.3C). This data indicates that the drugs that do not 

penetrate the blood-brain-barrier can exert a major impact on the functional connectivity within 

the cerebral cortex during asphyxic cardiac arrest. 

2.3.4 Brain functional connectivity parallels with cardiac electrical activity 

Adrenergic blockade significantly prolonged both cardiac activity (Figure 2.1) and functional 

cortical connectivity (Figure 2.2) and longer survival was observed when both beta1- and alpha-

adrenergic receptors were simultaneously inhibited. When ECG duration was compared with 

CCoh duration (Figure 2.4), a significance correlation between CCoh duration and ECG duration 

was found for each group of rats (saline: r2 = 0.974, p < 0.001; phentolalamine: r2 = 0.969, p < 

0.001; atenolol: r2 = 0.731, p < 0.05; phentolamine plus atenolol: r2 = 0.878, p < 0.01). A 

significant correlation was found between CCoh duration and ECG duration (r2 = 0.983, p < 

0.001). Thus, the longer the brain was functioning, the longer the heart was signaling, despite a 

continued lack of oxygen supplies.    
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Figure 2.4 Cardiac survival parallels with cortical coherence (CCoh) duration. Each circle represents data 
from one rat. Linear regression line was plotted to show the correlation between ECG signal duration and 
CCoh duration for all four groups of rats. Significant correlations between ECG signal duration and CCoh 
duration are indicated using asterisks. Different color circles represent different treatment groups: saline 
control in black, phentolamine in green, atenolol in red and phentolamine plus atenolol in blue.  The 
magenta color represents values obtained with all four groups of rats (n = 35). (*p < 0.05, **p < 0.01, 
***p < 0.001). 

2.3.5 Adrenergic blockade suppresses the initial heart-rate reduction induced by asphyxia 

In Figure 2.1A, we noticed that during A1 and A2, the transient lengthening of RRI (i.e., 

reduction of heartrate) was less obvious in rats received atenolol and phentolamine plus atenolol 

than saline and phentolamine. To quantify these changes, we compared the initial rise of RRI in 

4 groups of rats (Figure 2.5). Baseline RRI (RRI-CO2) was obtained by averaging the RRI for 100 

sec-long ECG data before asphyxia induction. RRI after asphyxia (RRI+CO2) was defined by the 

first peak value of RRI after asphyxia. The RRI changes were expressed as percent changes of 

RRI after asphyxia versus baseline (RRI+CO2*100/RRI-CO2). We found that the initial increase of 

RRI was significantly suppressed by each drug (panel Ab), and that rats received both 

phentolamine and atenolol had the most significant suppression for RRI. When the extent of the 

RRI changes was compared with drug-dependent changes of ECG duration (Figure 2.5Ba) and 

CCoh duration (Figure 2.5Bb), significant correlations were found between RRI changes and 
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ECG duration (r2 = -0.689, p < 0.01), and between RRI changes and CCoh duration (r2 = -0.747, 

p < 0.01). These data demonstrate that a larger initial RRI expansion (thus a larger reduction of 

heart rate) was significantly associated with a shorter ECG duration and a shorter period of brain 

function.   

 
Figure 2.5 Adrenergic blockade suppresses the initial rise of RR interval (RRI), which negatively 
correlates with cardiac survival and cortical coherence (CCoh) duration. (A) Electrocardiomatrix (ECM) 
display of ECG signals -15 sec before and 30 sec after asphyxia for one control rat (panel a). RRI-CO2 

represents the averaged baseline RRI (100 sec before asphyxia); RRI+CO2 indicates the peak amplitude of 
the first increase of RRI after asphyxia. The mean and SD of RRI change (RRI+CO2×100/RRI-CO2) shows 
drug-specific changes (panel b). Significant differences of RRI among the rats are indicated using 
asterisks. Error bars denote SD (*p < 0.05, **p < 0.01, ***p < 0.001). (B) RRI changes are correlated 
with the survival times of both the heart (panel a) and the brain (panel b). Each circle represents data from 
one rat. Linear regression lines were plotted to show the correlation between RRI change and ECG 
duration (panel a), and between RRI change and CCoh duration (panel b) for all four groups of rats. 
Significant correlations between RRI change and ECG duration, or between RRI change and CCoh 
duration are indicated using asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). 
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2.3.6 Adrenergic blockers suppress brain-heart communication 

To explore the effects of adrenergic blockade on functional coupling between the brain and 

heart, we examined corticocardiac coherence (CCCoh) before and after asphyxia for all four 

groups of rats (Figure 2.6), a method developed in our previous study [Li et al., 2015a]. CCCoh 

was not detectable before asphyxia and during stages A1 and A2 in any of the rats. During 

bradycardia phase (A3), strong CCCoh at lower frequency (5-55 Hz) emerged with a delay, 

surged to its peak within 2 minutes of asphyxia, and persisted for as long as the ECG signal was 

detectable (Figure 2.6A). Similar to the CCoh examined earlier (Figure 2.2), CCCoh displayed 

different durations and distinct patterns among the different drug groups. In rats injected with 

saline and phentolamine, the duration of CCCoh was short, but the CCCoh was strong and 

continuous. However, in rats injected with atenolol and phentolamine plus atenolol, the duration 

of CCCoh was longer, but the CCCoh was weaker and intermittent.     

To quantify the effects of adrenergic blockade on the functional coupling between the 

brain and the heart after asphyxia, we compared the mean intensity of CCCoh in four groups of 

rats (Figure 2.6B): saline (0.52 ± 0.068), phentolamine (0.55 ± 0.075), atenolol (0.38 ± 0.095), 

and phentolamine plus atenolol (0.41 ± 0.063). Since only a few of the rats treated with atenolol 

or atenolol with phentolamine exhibited ventricular tachycardia/fibrillation at the end of their 

lives (Table 1), we focused on the A3 period in all subsequent analysis. We found that the mean 

CCCoh levels was significantly lower in rats received either atenolol or phentolamine plus 

atenolol than saline or phentolamine alone. This data suggests that beta-adrenergic signaling 

plays a major role in mediating the brain and heart functional connectivity during asphyxic 

cardiac arrest. Interestingly, drug-dependent suppression of CCCoh was significantly higher on 
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the right hemisphere, compared to the left when rats received both alpha and beta-blockers 

(Figure 2.6C).    

 
Figure 2.6 Adrenergic blockade decreases corticocardiac coherence (CCCoh). (A) CCCoh (averaged over 
all channel pairs) before (50 sec) and after asphyxia in four groups of rats: (a) saline, (b) phentolamine, 
(c) atenolol, and (d) phentolamine and atenolol. (B) The mean and SD of mean CCCoh (5-55Hz) after 
asphyxia in four groups of rats. (C) Impact of drugs on hemispheric asymmetry of CCCoh in four groups 
of rats. Significant differences of mean CCCoh among 4 groups of rats (B) or between the left and right 
side of the brain (C) are indicated using asterisks. Error bars denote SD (*p < 0.05, **p < 0.01, ***p < 
0.001). 
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2.3.7 Adrenergic blockade results in marked asymmetry and regional specificity of heart-

brain coupling 

To further investigate the impact of adrenergic blockers on electrical coupling of the heart with 

the 6 different regions of the cortex, we examined the coherence between ECG signals and each 

of the six cortical signals (Figure 2.7). In rats received saline (panel Aa), CCCoh appeared 

equally strong at all brain sites and there were no apparent differences between the six cortical 

regions. In contrast, however, in rats received both phentolamine and atenolol (panel Ab), the 

right side of the cortex displayed marked reduction of CCCoh compared with the left side. 

Furthermore, there appeared to be a front-to-back gradient of CCCoh within the cortex, with 

frontal lobes exhibiting much weaker coupling with the heart than the occipital lobes (Figure 

2.7A). 

We quantified the differences in CCCoh among six cortical channels for each of the four 

groups of rats in A3 phase (Figure 2.7B). In general, the left side of the cortex appeared to have a 

stronger coupling with the heart than the right side of the brain, and the frontal lobes displaying 

lower coupling with the heart than the parietal and occipital lobes. In control rats, the CCCoh in 

occipital lobes was significantly higher than ipsilateral frontal lobes on both left and right 

hemispheres. In rats received atenolol, left frontal lobe shows higher CCCoh than the right 

frontal lobe, which shows lower CCCoh than both the parietal and occipital lobes of the same 

side. Remarkably, in rats received both phentolamine and atenolol, the CCCoh on the right side 

of the brain was significantly weaker than the left side of the brain, and the frontal lobe was 

significantly lower than parietal lobe, which was significantly lower than the occipital lobe. We 

also compared the CCCoh at each locus between the 4 groups of rats (Figure 2.7C). Significant 

differences on the left hemisphere between drug groups were identified only between rats treated 
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with phentolamine and atenolol. This effect appears to result from a slight increase of CCCoh by 

phentolamine and slight decrease by atenolol, though none of the drug treated groups had 

significant difference when compared with the control group (upper panels in Figure 2.7C). On 

the right hemisphere (lower panels in Figure 2.7C), however, beta-blockade significantly 

suppressed CCCoh compared to both control as well as alpha blocker-treated rats. The group 

treated with both alpha and beta blockers showed identical results with those treated with beta 

blocker alone, suggesting that alpha blocker had no effect for brain-heart coherence on the right 

hemisphere.  Thus beta-blocker suppresses brain-heart coherence specifically and significantly 

on the right hemisphere of the brain.  

 
Figure 2.7 Adrenergic blockade leads to asymmetric corticocardiac coherence (CCCoh). (A) CCCoh raw 
data for each of the six EEG channels before (50 sec) and after asphyxia is shown for one representative 
control rat (panel a) and a rat received phentolamine plus atenolol (panel b). LF: left frontal; RF: right 
frontal; LP: left parietal; RP: right parietal; LO: left occipital; RO: right occipital. (B) CCCoh displays 
hemispheric asymmetry in rats treated with drugs. The mean and SD of CCCoh (5-55Hz) after asphyxia 
for each of the six EEG channels in four groups of rats. (C) Beta blocker inhibits CCCoh specifically on 
the right hemisphere. Significant differences of mean CCCoh among 6 EEG channels are indicated using 
asterisks in both panels B and C. Error bars denote SD (*p < 0.05, **p < 0.01, ***p < 0.001). 
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2.3.8 Beta blocker suppresses bi-directional effective communications between the brain 

and the heart 

To explore the impact of adrenergic blockade on bi-directional brain-heart information transfer, 

we examined effective connectivity between the brain and heart (CCCon) in the four groups of 

rats (Figure 2.8). In all rats (panels Aa-Ad), connectivity remained at baseline levels during 

stages A1 and A2, the early phase of asphyxia. During bradycardia (A3), there was a delayed 

surge of connectivity in both afferent (feedforward or FF, from the heart to the brain) and 

efferent (feedback or FB, from the brain to the heart) directions, with efferent connectivity 

dominated in all rats (Figure 2.8A).   

To quantify the effects of adrenergic blockade on directional information transfer 

between the brain and the heart following asphyxia, we examined brain-heart effective 

connectivity in both directions (Figure 2.8B). The mean CCCon was calculated in four groups of 

rats in both directions: saline (FF: 0.0159 ± 0.0020; FB: 0.0215 ± 0.0078), phentolamine (FF: 

0.0148 ± 0.0017; FB: 0.0250 ± 0.0057), atenolol (FF: 0.0083 ± 0.0009; FB: 0.0101 ± 0.0029), 

and phentolamine plus atenolol (FF: 0.0090 ± 0.0012; FB: 0.0121 ± 0.0025). We found that the 

mean CCCon in both directions was significantly lower in rats received atenolol or both 

phentolamine plus atenolol than saline or phentolamine alone, indicating that blockade of beta-

adrenergic signaling significantly decreased the brain and heart bi-directional information 

transfer during asphyxic cardiac arrest. Furthermore, phentolamine, when combined with 

atenolol, increased the efferent connectivity, but had no impact on the afferent connectivity, 

compared with atenolol alone where there was no feedback dominance of the brain-heart 

connectivity. Further analysis identified the impact of adrenergic drugs on the hemispheric 

asymmetry of brain-heart connectivity (Figure 2.8C): In rats treated with atenolol, afferent 
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connectivity (FF-CCCon) is stronger on the left side than on the right side, while in rats treated 

with phentolamine and phentolamine plus atenolol, efferent connectivity (FB-CCCon) on the 

right side of the brain is significantly suppressed than on the left side. Moreover, efferent 

connectivity was significantly stronger than afferent connectivity for control rats as well as rats 

injected with phentolamine or phentolamine plus atenolol and this effect is significant only on 

the left hemisphere. The alpha blocker elevated the efferent connectivity specifically on the left 

hemisphere when injected together with atenolol.   
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Figure 2.8 Adrenergic blockade decreases corticocardiac directional connectivity (CCCon). (A) CCCon, 
measured by the Normalized Symbolic Transfer Entropy (NSTE), shows high levels of feedback (from 
the brain to the heart or efferent) connectivity directed from the brain to the heart in 4 representative rats. 
CCCon (averaged over six EEG channels) before (50 sec) and after asphyxia in four representative rats: 
(a) saline, (b) phentolamine, (c) atenolol, and (d) phentolamine and atenolol. Red trace shows feedforward 
(from the brain to the heart) CCCon and blue trace shows feedback (from the heart to the brain) CCCon. 
(B) The mean and SD of CCCon (5-55Hz) during A3 phase (see panel A) in four groups of rats. Solid 
bars represent afferent CCCon and patterned bars represent efferent CCCon. Significant differences of 
afferent CCCon among 4 groups of rats are indicated using blue asterisks, and that of efferent CCCon 
among 4 groups are indicated using red asterisks. (C) Left and right asymmetry of afferent and efferent 
brain-heart connection in different drug groups. Significant differences between afferent and efferent 
CCCon are marked by pound signs. Error bars denote SD (*/#p < 0.05, **/##p < 0.01, ***p < 0.001). 
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2.3.9 Adrenergic blockade leads to marked hemispheric asymmetry and regional specificity 

of heart-brain effective connectivity 

To investigate if adrenergic blockers affected brain-heart directional information transfer equally 

at the left and right, and at the front and back of the brain, we examined the effective 

connectivity between the heart and each of the six cortical loci (Figure 2.9). In rats received 

saline, the connectivity with the heart appeared slightly lower on the right side than the left side 

of the brain (panel Aa). However, in rats received both phentolamine and atenolol, the 

connectivity on the right side of the cortex was markedly reduced (panel Ab). Moreover, the 

connectivity in the frontal lobe appeared lower compared to the parietal and occipital lobes. In 

both rats, efferent connectivity (red tracings) appeared stronger than afferent connectivity (blue 

tracings).  

Examination of the differences of brain-heart connectivity among six cortical channels 

for all four groups of rats revealed that the connectivity was affected by the drugs differentially 

at left and right side, and at the frontal and occipital regions of the brain (Figure 2.9B). Within 

each drug group and at each cortical location, connectivity is higher in the efferent direction from 

the left hemisphere than in the afferent direction, except the atenolol group. There was no 

directional asymmetry on the right hemisphere at any of the three cortical loci and within any of 

the 4 groups. Interestingly, no directional asymmetry was found in rats injected with atenolol at 

any of the 6 cortical regions. These data suggest that efferent signaling to the heart is more robust 

than afferent communication during asphyxia. Robust and significant efferent dominance over 

afferent connection was found at left frontal, left parietal, and left occipital lobes in saline, 

phentolamine, and phentolamine/atenolol treated rats (p < 0.05). In addition, all 4 groups of rats 

exhibited higher levels of afferent connectivity at occipital lobes than at the frontal lobes. In rats 
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treated with both phentolamine and atenolol, both afferent (p < 0.05) and efferent (p < 0.01) 

brain-heart connectivity was suppressed on the right side of the brain. 

 
Figure 2.9 Adrenergic blockade affects corticocardiac connectivity (CCCon) with left and right 
hemispheric asymmetry, directional asymmetry, and regional specificity. (A) CCCon for each of the six 
EEG channels before (50 sec) and after asphyxia in one representative control rat (panel a) and a rat 
received phentolamine plus atenolol (panel b). Red trace shows afferent CCCon and blue trace shows 
efferent CCCon. (B) Regional differences on the effect of drugs on CCCon within each drug group. (C) 
Impact of drugs on hemispheric asymmetry, directional asymmetry, and regional specificity of CCCon 
compared between different drug groups. Solid bars represent afferent CCCon and patterned bars 
represent efferent CCCon. Significant differences in afferent CCCon among 4 groups of rats are indicated 
using blue asterisks, while that of efferent CCCon are indicated by the red asterisks. Significant 
differences between FF and FB CCCon are marked by pound signs. Error bars denote SD (*/#p < 0.05, 
**/##p < 0.01, ***p < 0.001). 

The adrenergic blockers resulted in directional asymmetry (afferent vs. efferent), 

hemispheric asymmetry (left vs. right), and regional specificity (frontal vs. parietal vs. occipital) 

of brain-heart connectivity in the dying rats; and the effect was drug-specific. In each of the 6 
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cortical locations, atenolol significantly reduced the afferent brain-heart connectivity on both left 

(p < 0.01) and right (p < 0.001) hemisphere (panel Ca). Phentolamine had no effects on afferent 

connectivity to any of the 6 cortical loci. In addition, atenolol significantly suppressed efferent 

brain-heart connectivity in all 6 cortical regions (p < 0.01), while phentolamine displayed no 

significant impact on efferent connectivity on either hemisphere by itself (panel Cb). In rats 

treated with both atenolol and phentolamine, however, the efferent connectivity was significantly 

higher in rats treated with both alpha- and beta-blockers than in rats treated with the beta-blocker 

alone. Importantly this effect of phentolamine on brain-heart connectivity was limited to the 

efferent direction and exclusive to the left hemisphere (panel Cb).  

2.3.10 Summary of the findings 

Our data demonstrate that (1) simultaneous blockade of alpha- and beta-adrenergic signaling 

extends durations of both cardiac and cortical functional electrical activities and (2) beta-blocker 

suppresses bi-directional electrical communications between the heart and all regions of the 

cerebral cortex during asphyxic cardiac arrest. More specifically, beta blocker (1) nearly 

eliminated the occurrence of ventricular tachycardia and ventricular fibrillation induced by 

asphyxia, (2) significantly (p < 0.01) suppressed the initial and rapid decline of heart rate, (3) 

reduced the brain-heart coherence, significantly (p < 0.01) only on the right hemisphere, and (4) 

blocked both the efferent/feedback (brain-heart; p < 0.01) and afferent/feedforward (heart-brain; 

p < 0.001) signaling. Alpha blocker, on the other hand, (1) reduced the initial decline of heart 

rate (p < 0.01), (2) prolonged the duration of both cardiac (p < 0.05) and cortical (p < 0.05) 

functional electrical activities, and (3) when used in combination with beta blocker, reversed beta 

blocker-mediated significant suppression of efferent/feedback signaling significantly only on the 

left hemisphere. Importantly, when both alpha- and beta-adrenergic receptors were 
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simultaneously suppressed, ECG duration as well as cortical coherence duration were both 

lengthened and the combined drug effects were significantly higher than either drug used alone. 

Furthermore, the combined blockade of alpha and beta-receptors markedly suppressed cortical 

coherence, specifically on the right hemisphere. 

 
Figure 2.10 Adrenergic blockers bi-directionally and asymmetrically affect functional brain-heart 
communication. (A) Beta-adrenergic blockade markedly suppresses functional corticocardiac coherence 
(CCCoh) on the right hemisphere. (B) Beta-adrenergic blockade significantly suppresses both the afferent 
and efferent corticocardiac connectivity (CCCon), especially on the right hemisphere. Alpha-adrenergic 
blockade increases the efferent CCCon on the left hemisphere in the presence of atenolol. [--: decrease, p 
< 0.01; ---: decrease, p < 0.001; (+): significant increase only when atenolol was present; L: left; R: right]. 
The colored curved arrows indicate the direction of brain-heart communication. 

The key findings on corticocardiac connectivity are illustrated in Figure 2.10. The beta 

blocker atenolol markedly suppressed brain-heart communications in asphyxic rats, by reducing 

the functional corticocardiac coherence (panel A) and effective corticocardiac connectivity 

(panel B). It is worth to note that atenolol’s inhibitory actions on the brain-heart loop are 

significantly stronger on the right hemisphere for both coherence (panel A) and connectivity 
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(panel B) measures and that atenolol markedly suppresses both afferent (left panel in B) and 

efferent (right panel in B) communications between the cortex and the heart. Alpha blocker 

phentolamine, on the other hand, had no significant effect by itself for brain-heart 

communication. However, when used together with atenolol, phentolamine reversed the 

suppressive effects of atenolol on brain-heart connectivity. Importantly, this effect was limited to 

efferent signaling and unique to the left hemisphere (right panel in B). Taken together, these data 

suggest that beta blocker exerts its beneficial effects by reducing both afferent (feedforward) and 

efferent (feedback) communications with stronger impact on the right hemisphere.    

2.4 Discussion 

In this manuscript, we examined the impact of sympathetic blockers on the functional activities 

of the heart and the brain and functional interaction between the two vital organs in rats during 

asphyxic cardiac arrest. The results support our hypothesis [Li et al., 2015a] that the rapid 

cardiac demise by asphyxia stems from the sympathetic insult actively imposed by aroused brain.   

2.4.1 Role of the brain during asphyxic cardiac arrest 

Currently, very few studies have focused on the impact of the brain on the heart during cardiac 

arrest. We have shown that the brain is immediately aroused when rats are exposed to CO2 [(Li 

et al., 2015a]; this study]. The brain activation, reflected by increased cortical coherence at high 

gamma and theta waves, was associated with an increased RRI (decreased heart rate) and a 

subsequent brief recovery of RRI within the first minute. Interestingly, there was no detectable 

electrical communication between the heart and the cortex during this period. A further increase 

of RRI was followed by a marked surge of brain-heart coherence and connectivity that lasted for 

the entire duration of ECG signals. These data lead to the following hypotheses: (1) asphyxia-
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stimulated cortical signaling promotes autonomic activation during early phase of cardiac arrest 

via a homeostatic survival circuit, and the events in this early phase is likely mediated by 

subcortical players; (2) when the early rescue efforts fail, the brain mounts an intensive and 

sustained sympathetic activation, as reflected by the marked surge of corticocardiac coherence 

and bi-directional corticocardiac connectivity at later phase of cardiac arrest. The fact that 

adrenergic blockers suppressed the expansion of RRI during the early phase (Figure 2.5) 

supports the hypothesis #1 above. The data demonstrating reduced cortex-heart communication 

by beta-blocker atenolol during the later phase (Figures 2.7 and 2.9) supports the hypothesis #2. 

These data suggest that the rapid death by asphyxia is mediated by the overstimulation of the 

sympathetic system of the brain.          

2.4.2 Animal models for cardiac arrest 

Cardiac arrest kills more than 300,000 Americans each year and < 5% of out-of-hospital victims 

of cardiac arrest survive [Nolan et al., 2012]. Initial triggers that lead to cardiac arrest include 

sudden failures of cardiovascular, neurological, and pulmonary functions, accidents (drowning, 

choking, automobile accidents, etc), or drug overdose [Israel, 2014]. Most, if not all, of these 

sudden death occur in the absence of anesthesia. Of the various animal models used for cardiac 

arrest studies (intra-cardiac injection of toxins, electrical fibrillations, trachea occlusion, and non-

oxygen gases induced asphyxiation), however, very few could be performed ethically in the 

absence of anesthesia. This issue is important, as anesthesia is well known to induce marked 

changes in autonomic functions [Farber et al., 1995] and can confound the interpretation of 

studies. Unlike other animal models, CO2-mediated asphyxic cardiac arrest can be conducted 

easily in the absence of anesthesia and has been widely used to euthanize small laboratory 

rodents. This model has been used successfully to investigate brain-heart interactions during 
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asphyxia [Borovsky et al., 1998; Borjigin et al., 2013; Li et al., 2015a] and was the model of 

choice for our investigation of brain-heart communications in the present work. In future studies, 

non-oxygen gases, such as nitrogen [Borovsky et al., 1998], can be tested side-by-side with CO2 

to examine the impact of hypercapnea on brain-heart coupling. We also plan to monitor 

additional physiological parameters, such as blood pressure, pulse, and sympathetic nerve 

activity, in animal models of cardiac arrest.    

2.4.3 Sympathetic toxicity and sudden death 

Sudden death is associated with elevated sympathetic activities [Samuels, 2007; Sörös and 

Hachinski, 2012; Israel, 2014]. Elevated efferent sympathetic activity, measured by increased 

release of plasma norepinephrine, was detected in patients with sleep apnea [Baylor et al., 1995], 

myocardial damage [Mueller and Ayres, 1980], sustained ventricular arrhythmias [Meredith et 

al., 1991], and in rats dying from CO2 inhalation [Borovsky et al., 1998]. Beta blockers reduce 

incidence of sudden cardiac death, cardiovascular death, and all-cause mortality [Yusuf et al., 

1985; Al-Gobari et al., 2013]. Atenolol, a blocker of beta-adrenoceptor that does not pass 

through the blood-brain barrier, is used in human patients to treat a number of conditions 

including hypertension, angina, acute myocardial infarction, supraventricular tachycardia, and 

ventricular tachycardia [Patterson and Lucchesi, 1984; Draper et al., 1992]. Mechanisms for the 

beneficial effects of beta-blockers including atenolol, however, remain unclear [Yusuf et al., 

1985; Bourque et al., 2007].  

 CO2 results in cardiac arrest in less than five minutes [Coenen et al., 1995; Li et al., 

2015a]. When the efferent neuronal signaling was blocked by cord transection, however, the 

duration of ECG and EEG signals was extended to more than 15 minutes in asphyxic rats, 

despite the continued absence of oxygen; and this effect was independent of atropine [Li et al., 



52 
 

2015a]. This data suggests that the blockade of sympathetic action may be beneficial for 

prolonging the survival of both heart and brain in dying individuals, an idea tested in a rat model 

in the present work. Elevated sympathetic activity was reported in rats dying from CO2-mediated 

asphyxiation [Borovsky et al., 1998]. Importantly the effect of CO2 on norepinephrine release 

was shown to result from hypoxic rather than hypercapnic action of the gas and is independent of 

adrenally released epinephrine [Borovsky et al., 1998]. In our studies [Li et al., 2015a; this 

study], asphyxia induced a delayed surge of corticocardiac coherence and bi-directional 

connectivity between the brain and the heart. Atenolol, administered prior to asphyxia, 

significantly suppressed the brain-heart communication (Figures 2.7-2.9). In fact, the beta-

blocker inhibits both efferent signaling from the brain to the heart and afferent signaling from the 

heart to the brain and extended the functional activity of both vital organs. In support of our 

finding, beta-blockers were shown to lower norepinephrine release in human subjects [Mueller 

and Ayres, 1980; Vincent et al., 1984; Packer, 1998] and rats [Berg, 2014]. Thus peripherally 

acting beta-blocker alters the feedback/efferent effective corticocardiac connectivity by 

inhibition of norepinephrine release at the presynaptic beta1-adrenoceptors [Berg, 2014]. These 

data indicate that the cerebral cortex is an essential part of a survival feedback loop and support 

the notion that sympathetic storm stimulated by a sudden drop of cardiovascular functions is the 

root cause of most, if not all, sudden cardiac arrest cases.  

2.4.4 Cerebral asymmetry in autonomic control of the heart 

Brain control of cardiac activity is lateralized, with left hemisphere associated with 

parasympathetic and right hemisphere with sympathetic functions [Wittling et al., 1998a; 

Wittling et al., 1998b; Critchley et al., 2005; Foster and Harrison, 2006]. Consistent with the 

right hemisphere predominance in sympathetically mediated cardiac control [Wittling, 1998b], 
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the beta-blocker specifically and significantly inhibited cortical coherence (Figure 2.3; in 

combination with phentolamine) and corticocardiac coherence (Figures 2.6 and 2.7) only on the 

right cerebral loci and inhibition of feedforward (afferent) corticocardiac directed connectivity 

by atenolol was more significant on the right hemisphere (p < 0.001) than the left hemisphere (p 

< 0.01) (Figure 2.9C). Interestingly, atenolol’s suppressive effect on brain-heart coupling was not 

limited to the right hemisphere (Figure 2.9C); a significant (p < 0.01) inhibition of bi-directional 

effective brain-heart connectivity was detected on the left cortex. This data suggests that 

blockade of peripheral beta1-adrenergic receptors leads to downregulation of central sympathetic 

as well as parasympathetic signaling. These data are consistent with known mechanisms of 

autonomic regulation of the heart [Wehrwein et al., 2016]. Furthermore, they support the validity 

of our new approach for pharmacological dissection of signaling mechanisms within the cardiac 

survival circuit, to which the cerebral cortex is an essential player.      

2.4.5 Dual alpha and beta blockers for lengthening the functional brain and heart activity 

The two branches of the autonomic nervous system regulate cardiac functions through 

norepinephrine released by the sympathetic nerves and acetylcholine secreted by the vagal 

nerves. An extensive and reciprocal interaction, reflected by a prejunctional cholinergic 

modulation of adrenergic [Vanhoutte and Levy, 1980] and prejunctional adrenergic modulation 

of cholinergic [Akiyama and Yamazaki, 2000] neurotransmissions, exists between the two 

systems [Vizi, 1974; Vanhoutte and Levy, 1980; Wehrwein et al., 2016]. Specifically, 

norepinephrine, acting on the presynaptic adrenergic receptors inhibits acetylcholine release on 

postganglionic vagal nerve terminals, and this effect is abolished with phentolamine [Akiyama 

and Yamazaki, 2000]. In the present study, phentolamine, when used together with atenolol, had 

significantly more beneficial effects in prolonging functional activities of the brain and heart 
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than either drug alone (Figures 2.1 and 2.2). The dual blockers significantly (p < 0.001) 

increased the duration of functional activities of both the brain and the heart, and suppressed the 

initial expansion of RRI. Interestingly, the effect of the alpha blocker on brain-heart coupling 

was limited to the left cerebral hemisphere, in contrast to the right dominance of atenolol’s 

effect. Furthermore, phentolamine’s effect was more significant when both drugs were used 

together (Figures 2.3B, 2.3C, 2.6C, 2.7B, and 2.9B), and phentolamine significantly reversed the 

suppressive effect of atenolol on efferent corticocardiac connectivity, specifically on the left 

hemisphere (Figure 2.9Cb). These data suggest that phentolamine acts on the prejunctional alpha 

adrenoceptors to elevate the release of acetylcholine from cholinergic terminals in the 

myocardium, when beta1-adrenoceptors are blocked by atenolol.  

2.4.6 Peripheral sympathetic blockade alters cortical and corticocardiac connectivity  

Drugs used in this study, atenolol and phentolamine, are well known to affect cardiac functions. 

Consistent with their roles in the heart, the blockers (1) suppressed occurrence of VT/VF (Table 

1 and Supplement Figure 1 in Appendix), (2) suppressed the initial drop of heart rate (Figure 

2.5Ab), and (3) extended cardiac survival time (or the ECG duration; Figure 2.1B). More 

importantly, although having a minimum blood-brain barrier penetration [Neil-Dwyer et al., 

1981; Nordling et al., 1981], they exerted marked impact on the dynamics of cortical functional 

connectivity (Figure 2.3) and corticocardiac coupling (Figures 2.6-2.9). We believe that this 

effect is due to the existence of a powerful corticocardiac loop (CCL), an extension of the 

autonomic nervous system that connects the heart with the cerebral cortex. Changes at either end 

of the CCL, in the heart or the cortex, can functionally influence the outcome at the other end. 

Thus, emotional trauma, a largely cerebral event, can precipitate a sudden arrest of the heart 

[Kassim et al., 2008; Sharkey et al., 2011], possibly via the efferent branch of this interconnected 
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CCL. Our data in this study provide evidence for the existence of the afferent branch of the 

CCL: blocking adrenergic receptors of the heart with drugs that do not penetrate the blood-brain 

barrier can powerfully alter the functional dynamics of cortical and corticocardiac connectivity. 

Further investigation of this intriguing loop may help elucidate (1) the role of the brain in cardiac 

diseases and (2) the impact of cardiac events on brain function. It should be noted that our 

finding that the functional connectivity within the brain and between the brain and heart is 

pharmacologically sensitive and hemispherically asymmetric alleviates the concern that ECG 

signals were artifactually detected in cortical electrodes. 

2.4.7 A new tool for non-invasive investigation of brain-heart communications 

Functional communications within the brain between two or more neuronal networks have been 

studied successfully using coherence [Sakkalis, 2011; Fries, 2015; Harris and Gordon, 2015] and 

connectivity metrics [Lee et al., 2009; Lee et al., 2015; Li et al., 2015a]. Similar methods have 

been developed for analysis of electrical signals encoding different forms of information.  

Coherence between EMG and EEG signals, for instance, has been analyzed as a measure for 

neural control of locomotion [Enders and Nigg, 2016]. We have pioneered the use of functional 

and effective connectivity measures to investigate neural control of cardiovascular functions [Li 

et al., 2015a]. Using this method, we have analyzed coherence and connectivity between heart 

and brain electrical signals and successfully demonstrated a surprisingly tight electrical 

communication between the heart and the cortex in dying rats [Li et al., 2015a]. While this mode 

of communication was undetected in healthy rats from the 6 cortical loci, it should be detectable 

in normal individuals when EEG electrodes are placed directly within brain regions with known 

involvement in the autonomic control of cardiac functions such as insular cortex, paraventricular 

nucleus, etc. Our ongoing research in human patients also identified a surge of corticocardiac 



56 
 

coherence and connectivity when their cardiac functions failed suddenly (manuscript in 

preparation). In the present manuscript, we have further expanded the utility of this novel 

approach to probing the signaling mechanisms of bi-directional brain-heart communication. We 

plan to apply this approach extensively in future studies to probe the mechanisms of various 

cardiogenic drugs currently used in clinic.  
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Chapter 3 Corticocardiac coupling in dying human patients  

3.1 Introduction 

Sudden cardiac death remains a major public health problem, accounting for 300,000-400,000 

deaths in the United States annually [Stecker et al., 2014]. A recent North American analysis 

showed that the overall survival rate of sudden cardiac arrest was 4.6% [Nichol et al., 2008]. 

Sudden cardiac death is often the first manifestation of coronary heart disease or other structural 

heart disease, and is responsible for about 50% of the mortality from cardiovascular diseases in 

the United States and other developed countries [Myerburg and Castellanos, 2015]. However, 

sudden cardiac arrest could also be induced by non-cardiac causes, which include epilepsy, 

ischemic stroke, intracranial bleeding, traumatic heard injury, and asphyxia [Papadakis et al., 

2009; Finsterer and Wahbi, 2014]. The multi-factorial properties of sudden cardiac death make 

its prediction, prevention, and management a challenging task. Given the high incidence and low 

survival rate of sudden cardiac arrest, a better understanding on the mechanism underlying 

sudden cardiac arrest is in urgent need.  

Recent studies from our laboratory demonstrate that asphyxia induced sudden cardiac 

arrest lead to a rapid surge of functional connectivity (CCoh) and effective connectivity (CCon) 

in the dying brain [Li et al., 2015a]. In addition, asphyxia activates a surge of brain-heart 

coupling, a novel form of communication, between the brain and heart, measured by 

corticocardiac coherence (CCCoh) and directional corticocardiac connectivity (CCCon), prior to 

sudden death [Li et al., 2015a]. A dramatic release of a set of key cortical transmitters that are 
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important for the regulation of cardiovascular system is also identified during the dying process 

[Li et al., 2015a]. Based on these data, we hypothesized that the stimulated brain functions to 

resuscitate the heart during cardiac arrest, and the strong brain-heart coupling may be a potential 

biomarker to predict sudden death. However, this hypothesis has never been tested in human 

patients that suffered from sudden cardiac arrest.  

The objective of current study is to investigate the dynamic changes and functional 

interactions between the brain and the heart in patients died from cardiac arrest using the same 

signal processing approach we developed in previous studies [Brojigin et al., 2013; Li et al., 

2015a]. This study is expected to improve our understanding on how the brain and the heart 

interact during cardiac arrest in human. 

3.2 Materials and method 

3.2.1 Patient information and data collection 

This 25-year-old woman had generalized epilepsy for 1 year and long QT syndrome for 2 years. 

The patient was admitted to the intensive care unit (ICU) at the University of Michigan and was 

treated with hypothermia with long-term video, EEG (19 channels, Fpz was used as reference), 

and ECG (2 channels, lead II was used for data analysis) monitoring. The sampling frequency for 

both EEG and ECG signal was 512 Hz. Cardiac arrest was revealed to be the cause of death for 

the patient.  

3.2.2 Construction of electrocardiomatrix (ECM) and EEG matrix 

(electroencephalomatrix, EEM) 

The construction of ECM and EEM (Figure 3.1B and 3.5) begins with R-peak detection in ECG 

signal. To avoid the influence of baseline wandering, baseline drift correction was first 
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performed using second-order Butterworth high-pass filtering with a cutoff frequency of 0.5 Hz 

(butter.m and filtfilt.m in Matlab signal processing toolbox; MathWorks Inc., Natick, MA). R 

peaks of ECG signals were then detected using variable threshold method [Kew and Jeong, 

2011]. Specifically, an amplitude threshold in each nonoverlapping 1 second epoch was applied 

to select the candidates for R peaks, which can be verified only if the RRI value exceeds a 

predefined threshold. In this study, the interval threshold was selected as half of the median 

value of the RR interval (RRI) values in the last 1 second epoch. The automatically detected R 

peaks were manually validated through a custom user interface developed in Matlab 

(MathWorks Inc., Natick, MA).  

For construction of ECM [Li et al., 2015b] , a window centered on the detected R peaks 

was extracted from the ECG signal after baseline drift correction. All ECG windows were then 

sorted in the order of R-peak time and plotted as parallel colored lines to form a colored 

rectangular image. To construct EEM, a window centered on the ECG R peaks was extracted 

from the EEG signal. All EEG epochs were then sorted according to R-peak time and plotted as 

parallel colored lines. For both ECM and EEM, the intensity of signals was denoted on z axis, 

with warmer color indicating positive peaks with higher voltage, and cooler colors indicating 

lower-voltage peaks. The color scheme can be adjusted as needed. 

3.2.3 Analysis of power spectrum 

EEG power was analyzed using short time Fourier transform based on discrete Fourier transform 

with 10-second segment size and no overlapping (spectrogram.m in Matlab signal processing 

toolbox; MathWorks Inc., Natick, MA). Each segment was windowed with a Hamming window. 

The absolute power was expressed in log scale (Figure 3.2A). The averaged power for each stage 

was calculated for five frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta 
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(13-25 Hz), and gamma (25-55 Hz). The scalp power distribution was calculated using the 

topoplot function in EEGLAB (Figure 3.2B) [Delorme and Makeig, 2004]. 

3.2.4 Analysis of CCoh and CCCoh 

To measure the CCoh among 19 EEG channels and the CCCoh between 1 ECG and each of the 

19 EEG channels, EEG and ECG signals were first segmented into non-overlapping 10-second 

epochs. For each 10-second epoch, mean coherence was calculated based on magnitude squared 

coherence estimate using Welch’s averaged periodogram method with 0.5 Hz frequency bin 

(mscohere.m in Matlab signal processing toolbox; MathWorks Inc., Natick, MA). The magnitude 

squared coherence estimate 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) is a function of frequency with values between 0 and 1 that 

indicates how well signal x corresponds to signal y at each frequency: 

𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) = �𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)�
2

𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓)
, 0 ≤ 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) ≤ 1   (1) 

where 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) and 𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓) are the power spectral density of x and y, and 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) is the cross power 

spectral density.   

The coherence between every two EEG channels (Figure 3.3A) or between 1 EEG and 1 

ECG channel (Figure 3.6A) was plotted for frequencies from 0-55Hz. The averaged coherence 

for each studied stage was calculated at five frequency bands: delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-25 Hz), and gamma (25-55 Hz). The topographical distribution of 

CCoh was represented in graph, with the width of edge indicating the level of coherence (Figure 

3.3B). The scalp distribution of CCCoh was plotted using the topoplot function in EEGLAB 

(Figure 3.6B) [Delorme and Makeig, 2004]. 
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3.2.5 Analysis of CCon and CCCon 

Twelve EEG channels and 1 ECG channel were selected for connectivity calculation. The 12 

EEG channels were divided into 4 clusters: left frontal (LF: Fp1, F7, and F3), right frontal (RF: 

F8, Fp2, and F4), left posterior (LP: T5, P3, and O1), and right posterior (RP: T6, P4, and O2). 

The CCon between the 3 pairs of channels in LF and RP, as well as the 3 pairs of channels 

between RF and LP was calculated. For CCCon, the bidirectional information flow between each 

of the 12 EEG channels and ECG signal was calculated. Both CCon and CCCon were measured 

by modified [Li et al., 2015a] Normalized Symbolic Transfer Entropy (NSTE) [Lee et al., 2009], 

which is a nonlinear and model-free estimation of directional functional connection based on 

information theory. STE measures the amount of information provided by the additional 

knowledge from the past of the source signal X(𝑋𝑋𝑃𝑃) in the model describing the information 

between the past Y(𝑌𝑌𝑃𝑃) and the future Y(𝑌𝑌𝐹𝐹) of the target signal Y, which is defined as 

following: 

𝑆𝑆𝑇𝑇𝑇𝑇𝑋𝑋→𝑌𝑌 = 𝐼𝐼(𝑌𝑌𝐹𝐹;𝑋𝑋𝑃𝑃|𝑌𝑌𝑃𝑃) = 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) − 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑋𝑋𝑃𝑃,𝑌𝑌𝑃𝑃)   (2) 

where 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) is the entropy of the process 𝑌𝑌𝐹𝐹conditional on its past. Each vector for 

𝑌𝑌𝐹𝐹 ,𝑋𝑋𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑃𝑃is a symbolized vector point. The potential bias of STE was removed with a 

shuffled data, and the unbiased STE is normalized as follows:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋→𝑌𝑌 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌−𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌

𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 

𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌  )
∈ [0, 1]   (3) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌
𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) − 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑋𝑋𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃 ,𝑌𝑌𝑃𝑃).   𝑋𝑋𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃  is a shuffled data created by 

dividing the data into sections and rearranging them at random. Therefore, NSTE is normalized 

STE (dimensionless), in which the bias of STE is subtracted from the original STE and then 

divided by the entropy within the target signal, 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃). 
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For CCoh, the feedback connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐹𝐹𝐹𝐹) was calculated over the 3 pairs of EEG 

channels from the frontal (𝑓𝑓) channels (LF/RF cluster) to the parietal (p) and occipital (o) 

channels (RP/LP cluster), which are defined as following: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐹𝐹𝐹𝐹 = 1
𝑛𝑛𝑓𝑓∙𝑛𝑛𝑝𝑝,𝑜𝑜

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖→𝑗𝑗
𝑛𝑛𝑓𝑓,𝑛𝑛𝑝𝑝,𝑜𝑜
(𝑖𝑖,𝑗𝑗)=1    (4) 

where 𝑛𝑛𝑓𝑓 = 3 and 𝑛𝑛𝑝𝑝,𝑜𝑜 = 3.  The feedforward connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐹𝐹𝐹𝐹) from the parietal and 

occipital channels (LP/RP cluster) to the frontal channels (RF/LF cluster) is vice versa.   

For CCCon, the feedback connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) was calculated by averaging 

NSTE over 12 pairs of EEG channels to ECG channel, which are defined as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖→𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸
𝑖𝑖=1    (5) 

where 𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸 = 12. The feedforward connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) from the ECG to 12 EEG 

channels is vice versa. 

EEG and ECG signals were first filtered into five frequency bands, delta (1-4 Hz), theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-25 Hz), and gamma (25-55 Hz), and then segmented into 10-

second long epochs with 5-second long overlapping. The feedback and feedforward CCon and 

CCCon were sequentially calculated for each epoch. Three parameters: embedding dimension 

(𝑑𝑑𝐸𝐸), time delay (τ), and prediction time (𝛿𝛿), are required for calculation. In this study, we 

selected the parameter setting that could yield maximum 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋→𝑌𝑌  by fixing the embedding 

dimension (𝑑𝑑𝐸𝐸) at 3, and optimizing prediction time 𝛿𝛿 (from 1 to 30, corresponding to 2-60 ms 

with the sampling frequency of 512 Hz) and time delay 𝜏𝜏 (from 1 to 125, 1-250 ms). The same 

procedure was used to calculate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌→𝑋𝑋 , provided that the information between two signals is 

transferred through different neuronal pathways. The averaged CCon (Figure 3.4) and CCCon 

(Figure 3.7) for each stage were calculated and plotted for five frequency bands.  
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3.3 Results 

3.3.1 EEG and ECG displayed series of activity with distinct features during the dying 

process  

To explore the electrophysiological state of the brain and the heart during the dying process, raw 

EEG and ECG signals were first analyzed. Unprocessed EEG signals from 19 cortical channels 

(Figure 3.1C) and ECG data (lead II), as well as the RRI for the last hour are shown in Figure 

3.1A. According to the features of signals, six representative stages were selected for detailed 

analysis. Stage 1 (S1: 700-800 second) is characterized by normal EEG, ECG, and RRI and is 

considered as baseline. Stage 2 (S2: 2760-2890 second) is comprised of high amplitude EEG 

signal and normal ECG signal. In stage 3 (S3: 2890-2990 second), EEG activity became weaker 

and both the EEG and ECG signals exhibited relatively normal morphology. Stage 4 (S4: 3050-

3160 second) is marked by a reduction in the amplitude of EEG signals. During this stage, 

cardiac pacing rhythm dominated ECG. Interestingly, despite the pacing, the RRI jumped from 

0.81 second to 1.62 second in the middle of pacing (3115 seconds), which ended at 15.62 second 

as soon as the pacing stopped (3160 seconds). Stage 5 (S5: 3160-3260 second) is consisted of 

further reduced amplitude of EEG and ECG signals that were associated with third-degree heart 

blocks. During this phase, P-waves were undetectable. In stage 6 (S6: 3260-3420 second), there 

is a further attenuation of EEG signal and a partial recovery of heart rate from the stage 5 in ECG 

signal. It is worth mentioning that, the patient already had multiple episodes of cardiac arrest and 

was on life support by the end of S4 in this terminal cardiac arrest. The subtle increase of RRI 

between S3 and S4 was associated with the activation of cardiac pacemakers, which stopped 

momentarily. An additional mild increase of RRI preceding S4 was followed by a much longer 

duration of cardiac pacemaker activity during S4. The life support was removed at the end of S4,  



68 
 

Figure 3.1 EEG and ECG displayed series of activity with distinct features during the dying process. (A) 
EEG (from 19 cortical locations), ECG (lead II), and RR interval (RRI) during 1-hour terminal stage in 
the patient. The whole dying process was divided into 6 stages: stage 1 (S1: 700-800 sec), stage 2 (S2: 
2760-2890 sec), stage 3 (S3: 2890-2990 sec), stage 4 (S4: 3050-3160 sec), stage 5 (S5: 3160-3260 sec), 
and stage 6 (S6: 3260-3420 sec). (B) ECG and ECM display of raw signal from S3 to S6 (upper panels) 
and representative cardiac arrhythmias (middle panels) for each stage (lower panels). (C) Placement of 19 
EEG electrodes and classification of 12 channels into 4 clusters. LF: left frontal, RF: right frontal, LP: left 
posterior, RP: right posterior. 

which was associated with a sudden onset of bradycardia, with RRI rising from 1.62 seconds to 

15.62 seconds (see bottom panel in Figure 3.1A). From S5 onward, this patient was no longer on 

life support. Because the internal interactions between the brain and the heart is the focus of 

current study, S5 and S6 are the stages of major interests. To facilitate visualization, ECG signal 

from S3 to S6 was enlarged and aligned together with its corresponding ECM (Figure 3.1B). The 
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ECM for each stage (S3, S4, S5, and S6) is displayed in the lower panel of Figure 3.1B. 

Representative cardiac rhythms, which include peaked T wave in S3, cardiac pacing rhythm in 

S4, third-degree heart blocks in S5, and bradycardia in S6, were plotted and placed above the 

ECM (4 middle panels, Figure 3.1B). 

3.3.2 Recovery of EEG power at near-death 

EEG power analysis was conducted to investigate the dynamic changes of electrical activity in 

19 different cortical regions during the dying process. The temporal changes of EEG power from 

S2 to S6 for 4 representative channels F8, T5, Pz, and T6 are shown in Figure 3.2A. In S2, high 

level of EEG power was detected in right frontal channel F8, whereas relatively low level of 

EEG power was detected in left and right posterior channels T5 and T6. The EEG power for 

channel Pz located in the posterior midline is the lowest in S2. From S3 to S6, there was a large 

decrease of overall EEG power for all 4 channels compared to S2. For channel F8, there was a 

modest recovery of EEG power during the late S5 at high frequency ranges, as well as during S6 

for low frequencies. The EEG power for both T5 and T6 showed mild reduction in S3, and a 

transient recovery at late S4, and the early phase of S5 compared to S2. The EEG power showed 

further decline from the mid-S5 for high frequency rhythm for both channels, while the EEG 

power for low frequency showed a slight increase than previous stages. The EEG power for 

channel Pz was maintained at lowest level from S3 until asystole.  

To obtain a comprehensive understanding on the changes of EEG power for all 19 

channels during cardiac arrest, EEG power topography was plotted for each of the 6 stages 

(Figure 3.2B). As shown in the figure, during S1 and S2, high level of EEG power was detected 

for all 5 frequencies. The left and right frontal regions displayed higher EEG power than other 

regions. From S3 to S6, there was a dramatic decrease of overall EEG power for all frequencies. 
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Interestedly, on S4, there was still detectable EEG power on the left parietal and the right frontal 

regions for all frequency bands. On S5 and S6, EEG power was nearly undetectable for all 

channels at all frequencies except for S6 at theta rhythm, which showed an increase of EEG 

power on the left posterior and right frontal regions.  

 
Figure 3.2 Recovery of EEG power at near-death. (A) The spectrogram of EEG power for 4 
representative channels (F8, T5, Pz, and T6) from S2 to S6. (B) Topographic distribution of EEG power 
for 6 stages at 5 different frequency bands: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-25Hz), 
and gamma (25-55 Hz). 
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3.3.3 Increase of interhemispheric CCoh during cardiac arrest  

To investigate the functional synchronization between different cortical regions during cardiac 

arrest, CCoh analysis was performed for every 2 cortical channels. Figure 3.3A shows the 

temporal changes of CCoh for 4 representative cortical channel pairs during cardiac arrest. 

Functional connectivity in the dying brain exhibited clear spatial distribution. At lower frequency 

range (<30 Hz), the CCoh between F8 and Fp2 increases from S2 to S3, which further increases 

in S4 and S6. CCoh surge at higher range (30-65 Hz) in S4 coincided with the cardiac pacing. 

Intriguingly, the disappearance of this high frequency CCoh between F8 and Fp2 preceded the 

transition of ECG from sinus rhythms to 2nd degree heart block (Fig. 3.1B). The right posterior 

CCoh between T6 and P4 channels demonstrated a pattern nearly complementary to the right 

frontal CCoh, with much weaker CCoh at lower frequency (<25 Hz) in stages 4-6 and a stronger 

CCoh at higher frequency (>25 Hz) during S3 and the second half of S4 (Fig. 3.3A). In contrast, 

the left posterior CCoh between T5 and P3 channels, hemispherically symmetric to the CCoh 

between T6 and P4, demonstrated highest values at all five (S2-S6) stages. It is worth noticing 

that high levels of CCoh is not universally found in all regions of the brain, as the CCoh between 

right frontal channel F8 and posterior midline channel Pz was nearly undetectable during the 

entire process (Fig. 3.3A). These data demonstrate that functional connectivity within the 

cerebral cortex displays temporal and spatial specificity in dying human brain.  

To obtain a global view of the dynamic changes of CCoh during cardiac arrest, the mean 

coherence between every two of the 19 cortical channels was plotted for each of the 6 stages at 5 

frequencies. The CCoh displayed channel, frequency, and stage dependent changes. As shown in 

Figure 3.3B, from S1 to S3 at delta, theta, and alpha frequencies, the CCoh between adjacent 

channels was stronger than from distant channels, and the CCoh for lateral channels was stronger 
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than central channels. However, from S4 to S6, this ring-shaped coherence transformed into 

strong interhemispheric coupling between 3 channels in right frontal (F8, Fp2, and F4) and 3 

channels in left posterior regions (T5, O1, and P3). The 3 channels within each cluster also 

exhibited intense synchronization with each other. The interhemispheric coherence during S4-S6 

stages was stronger at theta and alpha frequencies and weaker at beta and gamma frequencies. 

 
Figure 3.3 Increase of interhemispheric cortical coherence (CCoh) at dear-death. (A) CCoh for 4 pairs of 
cortical channels (F8/Fp2, T5/P3, Pz/F8, and T6/P4) from S2 to S6. (B) Topographic distribution of CCoh 
for 6 stages at 5 different frequency bands: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-25Hz), 
and gamma (25-55 Hz). The width of edge indicates the level of coherence (0.4-0.9). 
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3.3.4 Increase of CCon at near-death 

To investigate how different cortical region communicates with each other during the dying 

process, feedforward (FF, from occipital/parietal to frontal regions) and feedback (FB, from 

frontal to parietal/occipital regions) CCon was measured for 12 pairs of cortical channels. The 12 

channels were first divided into 4 clusters (LF, RF, LP, and RP), each of which contains 3 

channels (Figure 3.1C). The FF and FB CCon between the 3 channels in LF and RP, as well as 

between the 3 channels in RF and LP was calculated. Figure 3.4A shows the FF and FB CCon 

for 2 representative cortical channel pairs. As shown in the left panel (F8/T5), there was increase 

during S6 in both FF and FB CCon between F8 and left posterior channel T5 during S6 for delta, 

theta, and gamma rhythm. In alpha frequency, the stage that showed high level of CCon was S4, 

whereas CCon for beta rhythm showed elevated levels only during S2 phase, which remained 

rather flat for the remainder of the recording. For gamma rhythms, however, even though 

coherence value was relatively low between F8 and T5, the causal connectivity (CCoh) reached 

the highest levels in stage S6, immediately before cardiac arrest. The FB and FF CCon for right 

frontal channel F8 and left posterior channel O1 exhibited similar dynamic as F8 and T5.  

FF and FB CCon between every 2 channels from diagonal clusters for each stage exhibit 

dynamic changes in the dying brain (Fig. 3.4B). At delta frequency, FF and FB CCon were 

maintained at low level with small fluctuations from S1 to S6. For theta and alpha bands, there 

were active FF and FB communications between the 4 clusters in S1, S2 (only alpha), S4, and 

S6. During other stages, only sporadic activity was detected in a few channels, including Fp1/T6, 

O2/F7 (FB), F8/T5 (FF), and Fp1/P4 (FF). In addition, the CCon surge in S1, S2, and S6 

demonstrated distinct patterns. In S1 and S2, the most active channels are O1/F8 (FB), F8/T5 

(FF), Fp1/O2 (FF), Fp1/T6 (FF), F7/O2 (FF), P3/F4, and T5/F4. In S6, the most active channels 
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are F8/T5 (FF), T6/Fp1 (FB), F3/P4 (FF), F3/T6 (FF), Fp1/P4 (FF), and Fp1/T6 (FF). For beta 

and gamma oscillations, FF and FB CCon between F4 and 3 channels in LP clusters was high 

during S1 and S2. The CCon for all the channels at beta frequency then declined from S3 to S6. 

At gamma band, the CCon was low from S3 until S5. However, at S6, there was a marked surge 

of FB CCon between LP and RF clusters. 

 
Figure 3.4 Increase of cortical directional connectivity (CCon) at near-death. (A) CCon for 2 pairs of 
cortical channels (F8/T5 and F8/O1) from S2 to S6 at 5 different frequencies: delta (1-4Hz), theta (4-
8Hz), alpha (8-13Hz), beta (13-25Hz), and gamma (25-55 Hz). FF: feedforward (occipital/parietal to 
frontal regions). FB: feedback (frontal to parietal/occipital regions). (B) The CCon between 12 EEG 
channels for 6 stages at 5 different frequencies. 
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3.3.5 Surge of cardiac event-related potential (CERP) at near-death 

To investigate the possible interactions between the brain and the heart during cardiac arrest, raw 

EEG and ECG signals were first converted into matrix format (Li et al., 2015a; 2015b) and 

aligned together. Figure 3.5A shows the ECM and EEM for 4 representative cortical channels, 

F8, T5, Pz, and T6, from S2 to S6. No obvious phase relationships were identified between ECM 

and EEM for all 4 cortical channels during S2 and S3. From S4 to S6, however, signals from 

right frontal channel F8 and left posterior channel T5 synchronized with ECG signal and showed 

cardiac event-related potential (CERP), which was strongest during S6. In contrast, CERP was 

undetectable for channel Pz located in posterior midline from S4 to S6 and was only identifiable 

for right posterior channel T6 during S6. To make a clearer comparison between the CERP from 

F8 and T5, two 40-second-long epochs were selected from S4 and S6 (red bars in Figure 3.5A) 

and placed side by side with the ECM (Figure 3.5B). As shown in the figure, ECG and F8 

displayed positive peaks with similar amplitude during S4. However, during S6, the R-peak of 

F8 was much more positive than the corresponding ECG signal. For both S4 and S6, left 

posterior channel T5 exhibited strong negative peaks. When the raw ECG and EEG signals were 

averaged over the 40 sec epoch and plotted together (right panels in Figure 3.5B), similar 

amplitude relationship among ECG, F8, and T5 were found for both S4 (top graph) and S6 

(bottom graph). Interestingly, ECG and EEG signals demonstrated distinctive phase relationship 

at two different stages. During S4, very little time delay was found for peak potentials from F8 

and T5 channels compared to the peak of heartbeat, whereas an 18-ms time delay was identified 

for peak potentials from both F8 and T5 during S6. EEM for all 19 EEG channels arranged 

according to their locations on the skull during S4 and S6 is shown in Supplement Figure 2 and 

Supplement Figure 3 in Appendix.   



76 
 

 
Figure 3.5 Surge of cardiac event-related potential (CERP) at near-death. (A) ECM and EEM for ECG 
and 4 representative cortical channels (F8, T5, Pz, and T6) from S2 to S6. (B) Alignment of ECM (left 
panel) with EEM for 2 cortical channels, F8 (middle left) and T5 (middle right), for 2 epochs (red bars in 
A, S4: 3060-3100 sec, S6: 3330-3370 sec). CERP for F8 (blue trace) and T5 (black trace) was averaged 
and displayed along with the averaged heartbeat (red trace) in right panel.  
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3.3.6 Surge of CCCoh at near-death 

The detection of CERP stimulated the investigation on the functional coupling between the brain 

and the heart at near-death. CCCoh was calculated between each of the 19 EEG channels and the 

ECG signal. Figure 3.6A shows the temporal dynamics of the functional connectivity between 

ECG and 4 representative EEG channels F8, T5, Pz, and T6. In S2 and S3, very little CCCoh 

was detected between the 4 cortical channels and the ECG. From S4 until cardiac asystole, there 

is a dramatic surge of CCCoh at low frequencies (<30 Hz) for both right frontal channel F8 and 

left posterior channel T5, with higher frequency (>30 Hz) CCCoh seen during S4 for both 

channels. For channel Pz located in the posterior midline, no CCCoh was identified during the 

entire process. A weak CCCoh was detected for right posterior channel T6 at S4 and S6 at low 

frequency ranges. To obtain a comprehensive understanding on the dynamic changes of CCCoh 

between 19 cortical regions and the heart during the dying process, CCCoh for 19 channels was 

calculated for each of the 6 stages and plotted in a topographic format for 5 frequencies (Figure 

3.6B). No detectable or marginal level of CCCoh was identified for all the channels from S1 to 

S3. Remarkable level of CCCoh was identified at 3 near-death stages: S4, S5, and S6. Among all 

19 cortical regions, the left parietal, left occipital, and right frontal lobes are the main cortical 

regions that synchronize with the cardiac signals during cardiac arrest. In addition of exhibiting 

temporal (S1-S6) and spatial (channels 1-19) specificity, CCCoh is also frequency specific. In 

high frequency bands (beta and gamma), only low level of CCCoh was detected for a few 

channels (F8/ECG and T5/ECG) during S4. High level of CCCoh was clustered mainly at theta 

and alpha frequencies. 
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Figure 3.6 Surge of corticocardiac coherence (CCCoh) at near-death. (A) CCCoh between 4 cortical 
channels (F8, T5, Pz, and T6) and ECG from S2 to S6. (B) Topographic distribution of CCCoh for 6 
stages at 5 different frequency bands: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-25Hz), and 
gamma (25-55 Hz). 

3.3.7 Surge of CCCon at near-death 

To investigate the directional information flow between the brain and the heart during the dying 

process, CCCon analysis was conducted between each of the 12 EEG channels and ECG signal. 

Figure 3.7A shows the CCCon between representative cortical channels (F8 and T5) and the 

ECG signal. Afferent connectivity (from the heart to the brain, or feedforward, or FF) to the right 

frontal cortex (F8) from the heart is strong at both delta and theta frequency bands specifically at 

the terminal S6 stage, and is evident for alpha and beta bands only during the early phase of S4  
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Figure 3.7 Surge of corticocardiac directional connectivity (CCCon) at near-death. (A) CCCon between 2 
cortical channels (F8 and T5) and ECG from S2 to S6 at 5 different frequencies: delta (1-4Hz), theta (4-
8Hz), alpha (8-13Hz), beta (13-25Hz), and gamma (25-55 Hz). FF: feedforward (heart to brain). FB: 
feedback (brain to heart). (B) The CCCon between 12 EEG channels and ECG for 6 stages at 5 different 
frequency bands. 

prior to the onset of 2nd degree heart block. Efferent connectivity (from the brain to the heart, or 

feedback, or FB) is elevated during stage 6 for multiple frequency bands below alpha bands and 

uniquely seen for beta bands in S1 and for gamma band at multiple time points (S3-S6). Afferent 

signaling from the heart to the left posterior cortex at T5 (Figure 3.7A, right panels) exhibited a 

pattern similar to that of F8. Notable exception was the temporal distribution of CCCoh at 



80 
 

gamma frequency, which is specific for S6 states in both directions at T5 locus, whereas a wider 

distribution of gamma connectivity across stages S3-S6 is found at F8 locus (Figure 3.7A, left 

panels). Additional notable feature includes that (1) efferent brain-heart connectivity dominates 

over afferent heart-brain connectivity for gamma band and (2) at lower frequency bands (lower 

than beta frequency), opposite appears to be true: afferent connectivity is more dominant. The 

CCCon between each of the 12 cortical channels and the heart were calculated for each stage at 5 

frequencies (Figure 3.7B). FF and FB CCCon exhibited stage-, frequency-, and channel-

dependent changes during cardiac arrest. As shown in the figure, marked surge of CCCon was 

detected at S6 for delta and theta bands, S4 for alpha band, S1 and S2 for beta band, and S4, S5, 

S6 for gamma frequency. From S1 to S2, CCCon on both directions was maintained at similar 

basal level for all the channels at delta, theta, alpha, and gamma frequencies. On beta band, the 

FB CCCon was higher for right frontal and left posterior channel F4, T5, O1, and O2 than other 

channels. During S3, the FF CCCon for left posterior channels T5 and O1 was higher than other 

channels from theta to beta rhythm. The CCCon on delta and gamma bands remained at low 

level for all channels. From S4 to S6, there was a gradual decline of CCCon for all the channels 

at beta rhythm. In contrast, there is a dramatic surge of CCCon for delta, theta, and alpha 

oscillations occur at S6, S6, and S4, respectively, with FF CCCon domination. The most active 

channels are right frontal and left posterior channel F8, T5, and O1 for FF CCCon and left 

frontal and posterior channel F7, T5, and O1 for FB CCCon. However, for high frequency 

gamma rhythm, the surge of CCCon was identified during S4, S5, and S6 with FB domination. 

The most active FB channels are right frontal and left posterior channel F4, F8, and O1, whereas 

the most active FF channels are right frontal and right posterior channel F4, T5, and O2.  
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3.3.8 Summary of findings 

During cardiac arrest, there are ordered change of RRI and decrease of EEG power. A marked 

surge of coherence and connectivity both within the brain and between the brain and the heart are 

identified at near-death stages. Marked increase of cortical coherence and connectivity indicates 

that the brain is internally highly activated. Marked increase of corticocardiac coherence and 

connectivity indicates that there are strong electrical signal coupling and communication 

between the brain and the heart in the dying phase. The brain regions that are mainly responsible 

for cortical control of cardiac function during sudden cardiac arrest appear to include the right 

frontal and left parietal lobes.  

 
Figure 3.8 Summary of findings. RRI: RR interval, NSTE: normalized symbolic transfer entropy. 
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3.4 Discussion 

In this study, we investigated the dynamic changes of electrical activities of the brain, the heart, 

and the functional electrical interactions between the brain and the heart in a human patient 

before and after sudden cardiac failure. Consistent with previous findings in asphyxia cardiac 

arrest rat model, a marked surge of coherence and connectivity was identified both within the 

brain and between the brain and the heart in this human patient at near-death. However, different 

from the rat model, coherence and connectivity in human patient showed changes unique to 

particular frequency ranges and cortical areas, especially the low frequencies in right frontal and 

left posterior lobes, suggesting that the low frequency oscillations in these two brain regions may 

play an important role in cortical control of the cardiac function during sudden cardiac arrest. 

This result indicates that strong brain-heart connection might be a common mechanism for 

sudden cardiac arrest in both rats and human.  

3.4.1 Deterioration of the heart and activation of the brain at near-death 

Many previous studies suggest that the abnormal interactions between the brain and the heart 

may be the mechanism underlying sudden cardiac arrest [Samuels, 2007; Dorrance and Fink, 

2015; Gonzales-Portillo et al., 2016]. However, the dynamic changes of the brain, the heart, and 

interactions between the two vital organs have not been studied in any human cardiac arrest 

cases before. In current study, we monitored the electrical activity of the brain and the heart 

simultaneously during sudden cardiac failure in a human patient, and investigated the functional 

changes as well as the potential interactions between the brain and the heart during the dying 

process. Analysis of the RRI and cardiac arrhythmias revealed that the heart underwent similar 

changes at near-death in human patients as in asphyxic cardiac arrest rat models.  
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EEG signals of this patient displayed a series of dynamic functional changes before 

asystole. The functional coupling and directional information transfer between different cortical 

region was investigated. Consistent with earlier findings from KCl injection and asphyxia-

induced cardiac arrest rat model [Borjigin et al., 2013; Li et al., 2015a], a marked surge of 

coherence and directional connectivity was identified within the brain at near-death. Unlike rat 

studies, however, the CCoh and CCon in the human patient showed a remarkable spatial 

specificity. Upon progressing to S4 from S3, the CCoh transitioned from intra-hemispheric to 

strong interhemispheric patterns of coherence between left posterior and right frontal regions at 

delta, theta, and alpha frequency. During the same transition, the CCon also showed a surge 

between left and right frontal region at delta, theta, alpha, and gamma oscillations. In contrast, in 

KCl injection-induced cardiac arrest model, the surge of CCoh and CCon was only identified in 

theta and gamma frequency band. In addition, in asphyxic cardiac arrest model, there is a 

dramatic increase of CCoh and CCon from theta to gamma rhythm. Currently, it is still unknown 

how the cortical signal communication switched from a diffused pattern to strong 

interhemispheric coherence and connectivity. Nevertheless, the recovery of EEG power, and 

marked surge of CCoh and CCon indicates that a highly-activated brain at near-death is 

conserved between rats and human.  

3.4.2 Asymmetrical distribution of CERP during sudden cardiac arrest  

To investigate the coupling between the brain and the heart, raw EEG and ECG signals were 

converted into a matrix format and aligned together to facilitate identification of interesting 

patterns. We found a surge of CERP at near-death stages. Interestingly, the CERP demonstrated 

asymmetrical patterns over the cerebral cortex. On the right side of the brain, the CERP 

displayed positive relationship with ECM, whereas on the left side of the brain, the CERP 
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showed negative relationship with ECM. And the right frontal and left parietal regions showed 

the most positive and negative CERPs. The asymmetrical distribution of CERP among the cortex 

may be associated with the hemisphere asymmetry in autonomic control of the heart. It is known 

that neural control of the heart is mediated by the sympathetic and parasympathetic nervous 

pathways innervating the heart [Schwartz and De Ferrari, 2011]. Evidence suggests that the right 

hemisphere of the brain is predominantly concerned with sympathetic activity, whereas the left 

hemisphere is predominantly concerned with parasympathetic activity [Lane and Jennings, 1995; 

Wittling et al., 1998]. Autonomic nerves from the brain to the heart are mostly symmetrical 

[Levy et al., 1966; Yanowitz et al., 1966; Randall and Ardell, 1990]. These form the basis for the 

laterality hypothesis whereby central neural processes may be represented asymmetrically on the 

heart [Lane and Jennings, 1995; Lane et al., in press]. However, in rat models, CERP did not 

display asymmetrical distribution among the cortex. The spatial specificity of CERP in human 

brain may due to the fact that the human brain is more evolved than rats, so that different cortical 

regions in human brain may be specialized to exert limited functions or perform specific tasks, 

which include the regulation of cardiac function through the autonomic nervous pathways. 

Except for hemispheric specificity, CERP also demonstrated distinct temporal patterns at 

different stages. A 18-ms time delay was identified for the CERP from both right frontal channel 

F8 and left posterior channel T5 in middle cardiac arrest S4 than later cardiac arrest S6. Based on 

these results, we made the hypothesize that the afferent information from the heart may be first 

received by the right side of the brain, and the efferent information to the heart may be sent out 

from the left side of the brain. The strong coherence and directional connectivity between the left 

posterior and right frontal region may be explained by that the brain is integrating and processing 

the cardiac information in order to perform internal resuscitation to save the heart. With the 
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progression of cardiac arrest, the brain-heart communicating is becoming less effective, which is 

indicated by a longer time-delay in later cardiac arrest S6. 

3.4.3 Role of left posterior and right frontal regions in cortical control of cardiac function 

Using the same signal processing approaches in rat models, we identified a dramatic increase of 

coherence and directional connectivity between the brain and the heart at near-death in human 

patient. The consistency of current study with previous study indicates that corticocardiac 

coupling may be a common mechanism underlying sudden cardiac arrest in human and rats. 

However, there are differences of CCCoh and CCCon between asphyxic cardiac arrest rat model 

and human patient. While no hemispheric specificity was identified for CCCoh and CCCon in rat 

models, CCCoh and CCCon in human patient is clustered in left posterior and right frontal 

regions. In addition, the surge of CCCoh and CCCon was detectable from delta to gamma 

frequencies in rat models. However, in human patient, CCCoh and CCCon mainly appeared at 

theta and alpha frequencies. The asymmetrical topographic distribution and frequency specificity 

of CCCoh and CCCon suggest a different and potentially more complex mode of interaction 

between the brain and the heart in humans than in rats. Till now, it is unclear how the right 

frontal and left posterior regions communicate with the heart at near-death. But these two brain 

regions are close to the insular cortex and prefrontal cortex, which have been shown to be 

involved in the cortical control of the cardiac function using fMRI or cortical stimulation 

[Napadow et al., 2008; Oppenheimer et al., 1990; Critchley et al., 2003; Palma and Benarroch, 

2014; Thayer and Lane, 2009; Gianaros and Sheu; 2009]. More recently, another study 

demonstrated that in humans, neural events locked to heartbeats before stimulus onset predict the 

detection of visual grating in the posterior right inferior parietal lobule and the ventral anterior 

cingulate cortex [Park et al., 2014], which is near to the right frontal region in our study. Another 
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study measuring the changes in cardiac response in patients with established ventricular 

dysfunction demonstrated that the amplitude of heart-beat-evoked potential at left temporal and 

lateral frontal regions correlated with stress-induced changes in cardiac output, which is 

consistent with the two super-activated cortical regions we identified at near-death. In addition, 

the amplitude of the heart-beat-evoked potential in the left temporal region reflected the pro-

arrhythmic status of the heart [Gray et al., 2007]. Results from the above studies suggest that left 

posterior and right frontal regions may play an important role for cortical control of the heart. 

Future studies with multiple electrodes implanted in cortical and subcortical regions, as well as 

brainstem may provide a more precise estimation of key regions or pathways that mediate brain-

heart connection during the dying process. 

3.4.4 Corticocardiac coupling as a conserved mechanism for sudden cardiac arrest 

In previous studies, we showed that both experimental cardiac arrest and ischemic cardiac arrest 

stimulated a marked surge of coherence and connectivity in the brain as well as between the 

brain and the heart before sudden death in rat models [Borjigin et al., 2013; Li et al., 2015a]. 

Combined with the microdialysis results, we proposed that during the asphyxic cardiac arrest, the 

right hemisphere of the brain sends strong electrical signals to the heart and causes premature 

and rapid deterioration of the cardiac function via the activated sympathetic nervous system. In 

human patient, we found that there are ordered change of RRI and decrease of EEG power in the 

dying process. A recovery of EEG power and marked surge of coherence and connectivity both 

within the brain and between the brain and the heart are identified at near-death. Marked increase 

of CCoh and CCon indicates that the brain is internally highly activated. Marked increase of 

CCCoh and CCCon indicates that there are strong electrical signal coupling and communication 

between the brain and the heart in the dying process. The brain regions that are mainly 
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responsible for cortical control of cardiac function during sudden cardiac arrest are the right 

frontal and left parietal lobes. Current study in human patient successfully reproduced the results 

obtained in rat models, suggesting that corticocardiac coupling may be a conserved mechanism 

for sudden cardiac arrest induced by different causes. Nevertheless, the asymmetrical 

topographic distribution of CCCoh and CCCon suggest a potentially more complex mode of 

interaction between the brain and the heart in humans than in rats. As the next step, we plan to 

perform signal analysis for more human patients to further validate our hypothesis.  
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Chapter 4 Intermittent surge of corticocardiac coupling preceding to sudden death in 
ischemic rats  

 

4.1 Introduction 

Sudden death is an important but under-recognized consequence of stroke [Sörös and Hachinski, 

2012]. Despite major improvements in stroke diagnosis and treatment, 2-6% of patients suffer 

from sudden, unexpected death within the first 3 months after ischemic stroke [Prosser et al., 

2007; Sörös and Hachinski, 2012]. In addition, about 19% of patients have fatal or serious non-

fatal cardiac events, such as ventricular arrhythmias, which greatly increase the risk of sudden 

death [Prosser et al., 2007; Frangiskakis et al., 2009; Sörös and Hachinski, 2012]. The 

mechanisms of ischemic stroke-induced sudden death remain unclear. As a consequence, 

identification of patients at risk and prevention of stroke-induced sudden death present a major 

challenge.  

Our laboratory has discovered that the brain is highly activated immediately following 

global ischemia induced by experimental cardiac arrest [Borjigin et al., 2013]. More recently, we 

reported a marked surge of functional connectivity (cortical coherence, CCoh) and directional 

connectivity (CCon) in the dying brain of rats following asphyxia, which paralleled with 

excessive cortical release of a set of core neurotransmitters [Li et al., 2015a]. In addition to the 

changes within the brain, a surge of corticocardiac coherence (CCCoh) and directional 

connectivity (CCCon), indicator for strong brain-heart connection, emerged after the onset of 

asphyxia with a reliable time delay [Li et al., 2015a]. These data suggest that sudden death in rats 
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that suffered global ischemia is tightly associated with the surge of functional connectivity 

within the cortex as well as between the cortices and the heart. Whether this association exists in 

dying rats with forebrain ischemia is unknown.  

Bilateral common carotid artery ligation (BCCAL) in stroke-prone spontaneously 

hypertensive rat (SHRSP) is a well-established model for forebrain ischemia [Kakihana et al., 

1983; Lobanova et al., 2008]. The cerebrovascular architecture and risk factors in SHRSP 

resemble with stroke in human patients, which makes SHRSP, derived from the normotensive 

Wistar-Kyoto (WKY) rat, a suitable model for studying ischemic stroke in rats [Yamori et al., 

1976]. Compared to asphyxic cardiac arrest rat model used in our previous studies, in which the 

entire body, including the brain and heart, is globally affected, the forebrain ischemia model 

(BCCAL) tests the direct influence of brain ischemia on cortical/cardiac functions, and permits 

the dissection of functional communication between the two vital organs. In this study, we use 

advanced signal processing techniques to functionally characterize the brain and the heart in the 

BCCAL model. Our goal is to understand how neurological injuries lead to abnormal brain-heart 

connection, autonomic dysfunction, cardiac damage, and sudden death. Ultimately, we hope this 

line of investigation will contribute to better understanding of the dying brain and the 

development of novel non-invasive biomarkers for prediction of risk for sudden death. 

4.2 Materials and methods 

4.2.1 Animals  

Inbred SHRSP and WKY rats were acclimatized in our housing facility for at least 1 week before 

implantation of electrodes. Following electrode implantation, rats were allowed to recover for 1 

week before online recording. The experimental procedures were approved by the University of 
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Michigan Committee on Use and Care of Animals. All experiments were conducted using adult 

rats (300-400 g) maintained on a light: dark cycle of 12: 12 hour (lights on at 6:00 am) and 

provided with ad libitum food and water.  

4.2.2 Electrode implantation and configuration 

Rats were implanted with electrodes for EEG signal recording under surgical anesthesia [1.8% 

(vol/vol) isoflurane]. The EEG signals were recorded through screw electrodes implanted 

bilaterally on the frontal [anteroposterior (AP): + 3.0 mm; mediolateral (ML): ± 2.5 mm, 

bregma], parietal (AP: -3.0 mm; ML ± 2.5 mm, bregma), and occipital (AP: -8.0 mm; ML: ± 2.5 

mm, bregma) cortices. The ECG signals were recorded through flexible and insulated (except at 

the tip) multi-stranded wires (Cooner Wires, Chatsworth, CA) inserted into subcutaneous 

muscles flanking the heart. The EEG and ECG electrodes were interfaced with two six-pin 

pedestals (Plastics One, Roanoke, VA), and the entire assembly was secured on the skull using 

dental acrylic.   

4.2.3 Signal acquisition and stroke surgeries 

Prior to data collection, rats were acclimatized in the recording chamber. EEG and ECG signals 

were recorded using Grass Model 15LT physiodata amplifier (15A54 Quad amplifiers) system 

(Astro-Med, Inc., Quincy, MA) interfaced with BIOPAC MP-150 data acquisition unit and 

AcqKnowledge software (version 4.1.1, BIOPAC systems, Inc., Goleta, CA). The signals were 

filtered between 0.1 and 300 Hz and sampled at 1,000 Hz. EEG and ECG recordings were 

initiated consistently at 10:00 am to control for circadian factors. Baseline signals were recorded 

for 1 hour. At the end of this baseline recording, permanent BCCAL was performed for SHRPS 

and WKY rats under surgical anesthesia [Ogata et al., 1976]. After BCCAL, recording was 

continued until sudden death for SHRSP rats and for at most 24 hours for WKY rats. 
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4.2.4 Analysis of RR interval (RRI), cardiac arrhythmias, and heart rate variability (HRV)  

To analyze the RRI, baseline drift correction was first implemented using second-order 

Butterworth high-pass filtering with a cutoff frequency at 1 Hz (butter.m and filtfilt.m in Matlab 

Signal Processing Toolbox; MathWorks Inc., Natick, MA). R peaks of ECG signals were then 

detected using variable threshold method [Kew and Jeong, 2011]. Specifically, an amplitude 

threshold in each nonoverlapping 1 second epoch was applied to select the candidates for R 

peaks, which can be verified only if the RRI value exceeds a predefined threshold. In this study, 

the interval threshold was selected as half of the median value of the RRI values in the last 1 

second epoch. The automatically detected R peaks were manually validated through a custom 

user interface developed in Matlab (MathWorks Inc., Natick, MA). As the next step, outliers 

were removed from the validated RRI using threshold and sliding window averaged filter. RRI 

was then interpolated using linear interpolation for every 1 minute and plotted for SHRSP and 

WKY rats (Figure 4.1B). The mean and standard deviation of RRI during baseline (1 hour before 

BCCAL), first hour (1st hour after BCCAL), and last hour (1.5-0.5 hour before death) were 

calculated for all SHRPS (n=9) and WKY (n=8) rats (Figure 4.1C). To analyze the number and 

types of cardiac arrhythmias, ECG signals were examined and cardiac arrhythmias were 

manually labeled and counted using a custom user interface developed in Matlab (MathWorks 

Inc., Natick, MA). 

HRV was analyzed to study the interactions between the sympathetic and 

parasympathetic nervous system. While high frequency (HF) is considered to reflect 

parasympathetic activity, low frequency (LF) is thought to be affected by both the sympathetic 

and parasympathetic activity [Kuwahara et al., 1994]. The ratio between LF and HF (LF/HF) 

reflects the relative balance of sympatho-vagal influences on the heart. Frequency domain 
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analysis of HRV was performed using Fast Fourier transform for LF (0.25-0.8 Hz) and HF (0.8-3 

Hz). Frequency selection was based on previous works in rats [Fauchier et al., 2006; Barbosa et 

al., 2013]. The power spectrum of HRV was calculated and expressed in log scale for SHRSP 

and WKY rats (Figure 4.6A). The mean and standard deviation of power spectral density for LF, 

HF, and LF/HF during baseline (1 hour before BCCAL), first hour (1st hour after BCCAL), and 

last hour (1.5-0.5 hour before death) were calculated for all SHRPS (n=9) and WKY rats (n=8) 

(Figure 4.6B).  

4.2.5 Construction of electrocardiomatrix (ECM) 

The ECM is designed to facilitate the visualization of RRI, the amplitude, and the morphology of 

ECG signals. For construction of ECM [Li et al., 2015b] , a window centered on the detected 

ECG R peaks (for example, from -0.1 second to 0.3 second, with 0 corresponding to the time of 

R-peak) was extracted from the ECG signal after baseline drift correction. All ECG windows 

were sorted according to the order of R-peak time and then plotted as parallel colored lines to 

form a colored rectangular image. The intensity of ECG signal was denoted on z-axis, with 

warmer color indicates positive peaks with higher voltage, while cooler color indicates negative 

peaks with lower voltage. The color scheme could be adjusted according to the need.  

4.2.6 Analysis of EEG power 

The original sampling frequency of 1,000 Hz was first down-sampled to 500 Hz to reduce 

computing time. A notch filter was used to remove the 60 Hz artifact and its possible super-

harmonics. Then EEG power was analyzed using short time Fourier transform based on discrete 

Fourier transform with 2-second segment size and 1 second overlapping for each frequency bin 

(0.5-250 Hz with 0.5 Hz bin size; spectrogram.m in Matlab Signal Processing Toolbox, 
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MathWorks Inc., Natick, MA). Each segment was windowed with a Hamming window. The 

absolute EEG power was expressed on a log scale for SHRSP and WKY rats (Figure 4.2A). The 

absolute EEG power on gamma 1 frequency was summed up and plotted for SHRSP and WKY 

rats (Figure 4.2B). The mean and standard deviation of absolute EEG power during baseline (1 

hour before BCCAL), first hour (1st hour after BCCAL), and last hour (1.5-0.5 hour before 

death) was calculated for six frequency bands: delta (0.5-5 Hz), theta (5-10 Hz), alpha (10-15 

Hz), beta (15-25 Hz), gamma 1 (25-55 Hz), and gamma 2 (65-115 Hz) for all SHRPS (n=9) and 

WKY (n=8) rats (Figure 4.2C).  

4.2.7 Analysis of CCoh and CCCoh 

The coherence between 6 EEG channels (CCoh), or between 1 ECG and 6 EEG channels 

(CCCoh) was measured by amplitude squared coherence (𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓)) (mscohere.m in Matlab Signal 

Processing Toolbox, MathWorks Inc., Natick, MA), which is a coherence estimate of the input 

signals x and y using Welch’s averaged, modified periodogram method. The magnitude squared 

coherence estimate 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) is a function of frequency with values between 0 and 1 that indicates 

how well signal x corresponds to signal y at each frequency: 

𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) = �𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)�
2

𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓)𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓)
, 0 ≤ 𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) ≤ 1   (1) 

where 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) and 𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓) are the power spectral density of x and y, and 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) is the cross power 

spectral density.   

In current study, a notch filter was used to remove the 60 Hz artifact and its possible 

super-harmonics. EEG or ECG signals were then segmented into 2-second epochs with 1-second 

overlap. The magnitude squared coherence was calculated at each epoch and frequency bin (0.5-

250 Hz with 0.5 Hz bin size). The mean coherence between 6 EEG channels (Figure 4.3A) and 
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among 1 ECG and 6 EEG channels (Figure 4.4A) were calculated and plotted for frequencies 

from 0.5 to 250 Hz for SHRSP and WKY rats. The mean CCoh (Figure 4.3B) and CCCoh 

(Figure 4.4B) for gamma 1 frequency band were also plotted for SHRSP and WKY rats. The 

mean and the standard deviation of coherence among 15 pairs of 6 EEG channels during baseline 

(1 hour before BCCAL), first hour (1st hour after BCCAL), and last hour (1.5-0.5 hour before 

death) were calculated for frequencies from delta to gamma 2 for all SHRPS (n=9) and WKY 

(n=8) rats (Figure 4.3C). The mean and the standard deviation of percent changes on the 

amplitude of CCCoh over baseline were calculated for each hour after BCCAL and compared 

between SHRSP (n=9) and WKY (n=8) rats (Figure 4.4C, left panel). The duration of epochs 

with CCCoh 2 times higher than baseline was summed up for each rat and expressed as a 

percentage of the total duration for that rat. Comparison was then made between SHRSP (n=9) 

and WKY (n=8) rats for all 6 frequencies (from delta to gamma 2) (Figure 4.4C, right panel). 

4.2.8 Analysis of CCCon 

The directional connectivity between EEG and ECG signals was measured by modified [Li et al., 

2015a] Normalized Symbolic Transfer Entropy (NSTE) [Lee et al., 2009], which is a nonlinear 

and model-free estimation of directional functional connection based on information theory. STE 

measures the amount of information provided by the additional knowledge from the past of the 

source signal X(𝑋𝑋𝑃𝑃) in the model describing the information between the past Y(𝑌𝑌𝑃𝑃) and the 

future Y(𝑌𝑌𝐹𝐹) of the target signal Y, which is defined as following: 

𝑆𝑆𝑇𝑇𝑇𝑇𝑋𝑋→𝑌𝑌 = 𝐼𝐼(𝑌𝑌𝐹𝐹;𝑋𝑋𝑃𝑃|𝑌𝑌𝑃𝑃) = 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) − 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑋𝑋𝑃𝑃,𝑌𝑌𝑃𝑃)   (2) 

where 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) is the entropy of the process 𝑌𝑌𝐹𝐹conditional on its past. Each vector for 

𝑌𝑌𝐹𝐹 ,𝑋𝑋𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑃𝑃is a symbolized vector point. The potential bias of STE was removed with a 

shuffled data, and the unbiased STE is normalized as follows:  
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋→𝑌𝑌 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌−𝑆𝑆𝑆𝑆𝐸𝐸𝑋𝑋→𝑌𝑌

𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 

𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌  )
∈ [0, 1]   (3) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋→𝑌𝑌
𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃) − 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑋𝑋𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃 ,𝑌𝑌𝑃𝑃).   𝑋𝑋𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃  is a shuffled data created by 

dividing the data into sections and rearranging them at random. Therefore, NSTE is normalized 

STE (dimensionless), in which the bias of STE is subtracted from the original STE and then 

divided by the entropy within the target signal, 𝐻𝐻(𝑌𝑌𝐹𝐹|𝑌𝑌𝑃𝑃). 

For CCCon, the feedback connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) was calculated by averaging 

NSTE over 6 pairs of EEG channels to ECG channel, which are defined as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖→𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸
𝑖𝑖=1    (4) 

where 𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸 = 6. The feedforward connectivity (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) from the ECG to 6 EEG 

channels is vice versa. 

Specifically, we first filtered EEG and ECG signals into 6 frequency bands (from delta to 

gamma 2), and then segmented the filtered signals into 2-second long epochs with 1-second 

overlapping. The mean CCCon (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸  and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��������𝐸𝐸𝐸𝐸𝐸𝐸→𝐸𝐸𝐸𝐸𝐸𝐸) were sequentially calculated 

for each epoch and each frequency band. Three parameters: embedding dimension (𝑑𝑑𝐸𝐸), time 

delay (τ), and prediction time (𝛿𝛿), were required in the calculation. In this study, we selected the 

parameter setting that could yield maximum 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋→𝑌𝑌  by fixing the embedding dimension (𝑑𝑑𝐸𝐸) 

at 3, and optimizing prediction time 𝛿𝛿 (from 1 to 50, corresponding to 1-50 ms with the sampling 

frequency of 1,000 Hz) and time delay 𝜏𝜏 (1-300 ms). The same procedure was used to 

calculate 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑌𝑌→𝑋𝑋 , provided that the information between two signals is transferred through 

different neuronal pathway. The feedback and feedforward CCCon were plotted for theta and 

gamma 1 frequency for a sample epoch that shows a surge of CCCoh (Figure 4.5A). The mean 

and standard deviation of CCCon epochs during baseline (1 hour before BCCAL), first hour (1st 
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hour after BCCAL), and last hour (1.5-0.5 hour before death) was calculated for six frequency 

bands for all SHRPS (n=9) rats (Figure 4.5B).  

4.2.9 Statistical analysis 

For all the statistical analyses, Shapiro-Wilk normality test was first implemented to determine if 

the data was normally distributed. To test the differences of RRI (Figure 4.1C), EEG power 

(Figure 4.2C), CCoh (Figure 4.3C), CCCon (Figure 4.5B), and HRV (Figure 4.6C) among 

baseline, first hour, and last hour, repeated measures ANOVA with post hoc Pair-Sample T-test 

(for normally distributed data) or Friedman Test with Wilcoxon post hoc comparisons (for non-

normally distributed data) were conducted. To analyze the differences of CCCoh between 

SHRSP and WKY (Figure 4.4C), and the differences between feedback and feedforward CCCon 

(Figure 4.5B), independent-sample T-test (for normally distributed data) or Mann-Whitney (for 

non-normally distributed data) test was used. For all the comparisons, p < 0.05 was considered as 

statistically significant. Statistical analyses were performed using the software SPSS (version 

19.0; IBM SPSS Statistics). 

4.3 Results 

4.3.1 Forebrain ischemia claimed 100% mortality in SHRSP rats within 14 hours 

A total of 9 SHRSP and 8 WKY rats underwent BCCAL procedure, which caused 100% 

mortality in SHRSP rats within 14 hours. In contrast, no mortality was observed in WKY control 

rats. The survival length of SHRSP rats ranged from 2.89 hours to 13.92 hours, with a mean 

length of 8.13 hours.  
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4.3.2 SHRSP rats suffering from forebrain ischemia exhibited a marked decrease in RRI 

and increase in cardiac arrhythmias 

The effects of forebrain ischemia on cardiac function was investigated. ECM was first generated 

to facilitate a comprehensive understanding on the dynamic changes of RRI and cardiac 

arrhythmias before and after BCCAL procedure in representative SHRSP and WKY rats (Figure 

4.1A). Figure 4.1B shows the RRI plot for the same pair of SHRSP and WKY rats. As we can 

see in Figure 4.1A and 4.1B, during baseline (-1-0 hour) condition, SHRSP and WKY rats 

displayed similar RRI of about 0.2 seconds [heart rate of 300 beats/minute (bpm)]. After 

BCCAL, RRI for SHRSP rat continued to decline until the sudden collapse of cardiac function at 

7th hour after ischemic stroke, as indicated by the large increase of RRI in the ending phase. In 

sharp contrast, RRI for WKY rat showed mild fluctuations during the entire process. These 

features are conserved for all SHRSP and WKY rats (Figure 4.1C). As shown in the left panel of 

Figure 4.1C, the RRI for SHRSP rats was significantly lower in first hour after ischemia 

(0.17±0.02 second [353 bpm]) than the baseline (0.19±0.01 second [316 bpm]). Moreover, 

SHRSP rats showed a further significant reduction of RRI in the last hour (1.5-0.5 hour before 

sudden death) (0.13±0.01 second [462 bpm]) compared to baseline and first hour after BCCAL. 

However, no significant differences on RRI were found for WKY rats among baseline, first hour 

after BCCAL, and last hour before sudden death (right panel in Figure 4.1C). 

Cardiac arrhythmias before and after forebrain ischemia are summarized in Table 4.1. A 

total of 9 common arrhythmias were identified. Among them, the average hourly occurrence of 

premature ventricular contraction (PVC), sinus pause (SP), junctional rhythm (JR), and second-

degree heart block (2HB) significantly increased after ischemic stroke for both SHRSP and 

WKY rats. However, significant increase in average hourly occurrence for premature atria 
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contraction (PAC), third-degree heart block (3HB), junctional escape beat (JEB), ventricular 

escape beat (VEB), and marked sinus bradycardia (MSB) over baseline was only observed in 

SHRSP rats. In addition, during the last 30 minutes (ending phase) before death, agonal signals 

including 2HB, 3HB, JEB, VEB, and MSB remarkably increased for SHRSP rats, but were not 

identified in any WKY rats. 

 
Figure 4.1 BCCAL results in marked reduction of RRI in SHRSP rats. (A) Electrocardiomatrix (ECM) 
display of ECG signals before and after BCCAL (time 0 sec) for representative rats. (B) RRI before and 
after BCCAL for representative rats. (C) RRI during baseline (-1-0 hour), first hour (0-1 hour), and last 
hour (1.5-0.5 hour before death) for all SHRSP (n=9) and WKY (n=8) rats. Data expressed as mean±SD. 
*Significant differences over baseline, ##significant differences between first and last hour (*/#p < 0.05, 
**/##p < 0.01, ***/###p < 0.001).  
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Table 4.1 Hourly occurrence of cardiac arrhythmias per rat. 

 Time PAC PVC SP JR 2HB 3HB JEB VEB MSB 

SH
R

SP
 

Baseline 
 

1.4±0.4 
 

0.2±0.1 
 

0.7±0.4 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

1.9±1.9 
 

0.0 
 

First Hour 4.4±1.1 
 

17.0±5.9 
** 

0.3±0.2 
 

35.1±26.2 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

Last Hour 1.2±0.6 
 

5.2±2.6 
* 

6.3±3.6 
 

17.4±15.1 
 

5.9±5.9 
 

0.0 
 

11.7±8.9 
 

24.9±19.1 
 

0.2±0.2 
 

Ending 
Phase  

6.2±4.5 
 

6.0±3.0 
 

56.4±48.8 
# 

66.9±48.5 
 

60.7±33.4 
*# 

28.0±15.1 
*#^ 

260.4±69.8 
**##^^ 

106.2±22.5 
**##^ 

255.6±90.1 
*#^ 

Average 5.2±1.4 
** 

13.8±2.7 
** 

14.0±8.4 
** 

42.6±16.5 
* 

3.6±1.4 
* 

1.5±0.7 
* 

25.2±12.1 
** 

23.5±7.2 
* 

23.8±10.1 
* 

W
K

Y
 

Baseline 
 

0.4±0.4 
 

0.3±0.2 
 

0.0 
 

9.0±4.8 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

First Hour 1.6±0.6 
 

3.4±1.1 
* 

2.9±1.3 
 

18.9±8.2 
 

1.4±0.8 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

Last Hour 0.5±0.4 
 

1.5±0.4 
* 

5.8±2.6 
 

118.3±96.2 
 

0.4±0.3 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

Ending 
Phase 

2.0±1.5 
 

0.8±0.4 
 

10.0±5.1 
 

195.3±152.6
* 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

Average 1.2±0.3 
 

2.0±0.4 
* 

6.9±3.1 
* 

131.0±110.5
* 

0.8±0.3 
* 

0.0 
 

0.0 
 

0.0 
 

0.0 
 

PAC: premature atria contraction, PVC: premature ventricular contraction, SP: sinus pause, JR: junctional rhythm, 2HB: second-degree heart 
block, 3HB: third-degree heart block, JEB: junctional escape beat, VEB: ventricular escape beat, MSB: marked sinus bradycardia, baseline: 1 hour 
before BCCAL, first hour: 1st hour after BCCAL, last hour: 1.5-0.5 hour before death, ending phase: 0.5-0 hour before death. Data expressed as 
mean±SDE. *Significant differences over baseline, #significant differences over first hour, ^significant differences over last hour (*/#/^p < 0.05, 
**/##/^^p < 0.01). 
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4.3.3 SHRSP rats exhibited a marked reduction of EEG power following forebrain 

ischemia 

To explore the influence of forebrain ischemia on the electrical activity of the brain, average 

EEG power across all 6 cortical channels before and after BCCAL was analyzed. Figure 4.2A 

shows the EEG power spectrum for all frequencies (0-250 Hz) in representative SHRSP and 

WKY rats. As shown in the figure, EEG power was dramatic reduced for SHRSP rat 

immediately after BCCAL and maintained at low levels until sudden death for all frequency 

bands (upper panel in Figure 4.2A). However, EEG power for WKY rat did not exhibit obvious 

changes over the entire process (lower panel in Figure 4.2A). Figure 4.2B displays the changes 

of EEG power at gamma 1 frequency before and after BCCAL for the same pair of SHRSP and 

WKY rats. In contrast to the nearly stable EEG power in control WKY rat, EEG power for 

SHRSP rat demonstrated a dramatic reduction immediately following forebrain ischemia, which 

then continued to decline until sudden death. Statistical analyses were conducted to compare the 

changes of EEG power among baseline, first hour after BCCAL, and last hour (0.5-1.5 hour 

before sudden death) in all SHRSP and WKY rats. As shown in Figure 4.2C, the significant 

reduction of EEG power in both first hour after BCCAL and last hour before sudden death 

compared to baseline are consistent for all SHRSP rats across all 6 frequencies, which include 

delta, theta, alpha, beta, gamma 1, and gamma 2 (left panel in Figure 4.2C). Additionally, the 

EEG power for last hour was also significantly lower than first hour for delta, theta, alpha, beta, 

and gamma 1 frequencies. In contrast, while showing significant reduction of EEG power in the 

first hour after forebrain ischemic stroke in most frequencies (delta, theta, alpha, beta, and 

gamma 1), WKY rats demonstrated a rebound increase of EEG power in the last hour for all 

frequencies (right panel in Figure 4.2C). EEG power changes for each channel during baseline, 
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first hour, and last hour for all frequencies in SHRSP and WKY rats are shown in Supplement 

Figure 4 in Appendix. 

 
Figure 4.2 BCCAL results in marked reduction of EEG power in SHRSP rats. (A) EEG power spectrum 
before and after BCCAL (at time 0) for all frequencies in representative rats. (B) EEG power before and 
after BCCAL at gamma 1 frequency in representative rats. (C) EEG power during baseline (-1-0 hour), 
first hour (0-1 hour), and last hour (1.5-0.5 hour before death) for all SHRSP (n=9) and WKY (n=8) rats. 
Data expressed as mean±SD. *Significant differences over baseline, ##significant differences between 
first and last hour (*/#p < 0.05, **/##p < 0.01, ***/###p < 0.001). 
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4.3.4 SHRSP rats exhibited a significant increase of CCoh following forebrain ischemia 

To explore the influence of forebrain ischemia on functional connectivity (coherence) of the 

brain, CCoh before and after BCCAL was analyzed. Figure 4.3A shows the CCoh before and 

after BCCAL for all frequencies in representative SHRSP and WKY rats. As shown in the 

figure, there is a marked decrease of CCoh at low frequencies (0-55 Hz) and increase of CCoh 

for high frequencies (65-250 Hz) within 1 hour after BCCAL in SHRSP rat (upper panel in 

Figure 4.3A). After this early phase reduction of low frequency CCoh, CCoh for all frequencies 

demonstrated a dramatic and sustained increase until sudden death. However, for WKY rats, 

while the CCoh at high frequency (65-250 Hz) showed sporadic increases after BCCAL, the 

CCoh for low frequency bands (0-55 Hz) decreased after ischemic stroke (lower panel in Figure 

4.3A). Figure 4.3B displays the CCoh at gamma 1 frequency for the same pair of SHRSP and 

WKY rats. In SHRSP rat, the CCoh for gamma 1 frequency showed a marked reduction within 

the first hour of ischemia, which immediately increased to values that are greater than the 

baseline and persisted for the rest of the recording. In contrast, WKY rat showed a small 

reduction of CCoh after BCCAL and remained at low values for the remaining of the ischemic 

period. Statistical analyses were conducted to compare the CCoh changes among baseline, first 

hour after BCCAL, and last hour (0.5-1.5 hour before sudden death) for both SHRSP and WKY 

rats. As shown in Figure 4.3C, in both SHRSP (left panel) and WKY (right panel) rats, there was 

a dramatic reduction of CCoh in first hour after forebrain ischemic stroke than baseline for 5 

frequencies (delta to gamma 1). In last hour, however, CCoh increased to a level that was 

significantly greater than baseline for SHRSP rats (delta to gamma 1), whereas in WKY rats, 

CCoh in last hour was recovered to a level that is higher than first hour but lower than baseline 
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level. CCoh between each of the 6 cortical channels during baseline, first hour, and last hour for 

all frequencies was shown in Supplement Figure 5 in Appendix. 

 
Figure 4.3 BCCAL results in marked increase of CCoh in SHRSP rats. (A) CCoh before and after 
BCCAL (at time 0) for all frequencies in representative SHRSP and WKY rats. (B) CCoh before and after 
BCCAL for gamma 1 frequency in representative SHRSP and WKY rats. (C) CCoh during baseline (-1-0 
hour), first hour (0-1 hour), and last hour (0.5-1.5 hour before death) all SHRSP (n=9) and WKY (n=8) 
rats. Data expressed as mean±SD. *Significant differences over baseline, ##significant differences 
between first and last hour (*/#p < 0.05, **/##p < 0.01, ***/###p < 0.001). 
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4.3.5 Intermittent surge of functional connectivity between the heart and the brain in 

SHRSP rats following forebrain ischemia 

To investigate the impact of forebrain ischemia on the electrical signal synchronization between 

the brain and the heart, CCCoh before and after BCCAL was calculated. Figure 4.4A shows the 

CCCoh for all frequencies in representative SHRSP and WKY rats. Intermittent surge of CCCoh 

was observed for SHRSP rats after BCCAL (upper panel in Figure 4.4A). However, the CCCoh 

for WKY rats was nearly undetectable in both baseline and after BCCAL procedure (lower panel 

in Figure 4.4A). Figure 4.4B displays the CCCoh at gamma 1 frequency for the same pair of 

SHRSP and WKY rats. In contrast to WKY rat, which demonstrated no obvious changes in 

CCCoh before and after BCCAL, SHRSP rat showed a dramatic surge of CCCoh at gamma 1 

frequency within the first hour of ischemic injury, and a continued and intermittent surge of 

CCCoh throughout the remainder of the recorded period. Statistical analyses were conducted to 

compare the changes on the amplitude of CCCoh and the duration of high CCCoh epochs after 

BCCAL between SHRPS and WKY rats (Figure 4.4C). As shown in figure, a large increase in 

the amplitude of CCCoh after BCCAL over baseline (0.50-1.21-fold increase) was identified for 

SHRSP rats for all frequencies, but was not observed for WKY rats, as indicated by the 0.01-

0.11-fold change of CCCoh amplitude before and after BCCAL among all frequencies (left panel 

in Figure 4.4C). Statistical analysis suggests that the increase of CCCoh amplitude after BCCAL 

was significantly higher in SHRSP than WKY rats. Right panel shows the percentage of signal 

duration with CCCoh amplitude 2 times higher than baseline level over the total duration of the 

signal in all SHRSP and WKY rats. While 13-32% of signals after BCCAL had CCCoh that is 2 

times higher than baseline in SHRSP rats, the CCCoh for WKY maintain at low level after 

BCCAL, with less than 5% of the signals that has CCCoh that is 2 times higher than baseline. 
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Statistical analysis suggests that the percentage of CCCoh epochs that are 2 times larger than 

baseline after BCCAL was significantly larger in SHRSP than WKY rats (right panel in Figure 

4.4C). CCCoh between each of the 6 cortical channels and the heart during baseline, first hour, 

and last hour for all frequencies was shown in Supplement Figure 6 in Appendix. 

 
Figure 4.4 BCCAL results in intermittent surge of CCCoh in SHRSP rats. (A) CCCoh before and after 
BCCAL (at time 0) for all frequencies in representative SHRSP and WKY rats. (B) CCCoh before and 
after BCCAL at gamma 1 frequency in representative rats. (C) Percent changes on the amplitude of 
CCCoh over baseline between all SHRSP (n=9) and WKY (n=8) rats (left panel), percent of signal 
duration with 2 times higher than baseline CCCoh between all SHRSP (n=9) and WKY (n=8) rats (right 
panel). Data expressed as mean±SD. *Significant differences between SHRSP and WKY rats (*p < 0.05, 
**p < 0.01, ***p < 0.001). 
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4.3.6 Intermittent surge of directional connectivity between the heart and the brain in 

SHRSP rats following forebrain ischemia  

To examine the impact of forebrain ischemia on the directional communication between the 

brain and the heart, CCCon before and after forebrain ischemia was analyzed. Figure 4.5A shows 

the feedback (from the brain to the heart or efferent) and feedforward (from the heart to brain or 

afferent) CCCon in a sample epoch that has high CCCoh (corresponding to the shaded region in 

Figure 4.4A) within the first hour after BCCAL in representative SHRSP rat. As shown in the 

figure, a marked surge of connectivity in both theta and gamma 1 frequencies was detected in 

feedforward as well as feedback directions when CCCoh was elevated. However, when the 

CCCoh was low, the heart-brain connectivity was low in both directions for both theta and 

gamma 1 frequencies. Statistical analyses were conducted to compare the changes of 

feedforward and feedback CCCoh for all frequencies among epochs selected from baseline, first 

hour (0-1 hour or first few hours after BCCAL), and last hour (0-0.5 hour before sudden death) 

(Figure 4.5B). As shown in the figure, the significant increase of CCCon after forebrain ischemia 

over baseline values was found in all SHRSP rats, both immediately following ischemia (first 

hour) or during near-death stage (last hour), for all tested frequencies. Additional increase at the 

late stage of ischemia (last hour) over the early stage of ischemia (first hour) was observed for 

delta (feedback), theta (both feedback and feedforward), alpha (both feedback and feedforward), 

and beta (feedforward) frequencies. Directional asymmetry was also detected for theta and beta 

frequencies at the early stage of ischemia, with feedback connectivity dominated over 

feedforward connectivity. CCCon between each of the 6 cortical channels and the heart during 

baseline, first hour, and last hour at all frequencies was shown in Supplement Figure 7 in 

Appendix. 
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Figure 4.5 BCCAL results in increase of CCCon in SHRSP rats. (A) CCCon at theta and gamma 1 
frequencies for one representative epoch that shows high CCCoh. (B) CCCon for selected epochs during 
baseline (-1-0 hour), first hour (0-1 hour or first few hours after BCCAL), and last hour (0-1 hour before 
sudden death). Data expressed as mean±SD. *Significant differences over baseline, #significant 
differences between first and last hour, ^significant differences between feedforward and feedback 
CCCon (*/#/^p < 0.05, **/##/^^p < 0.01, ***/###/^^^p < 0.001). 

4.3.7 SHRSP rats displayed a marked reduction of HRV following forebrain ischemia 

To understand the impact of forebrain ischemia on autonomic regulation of cardiac function 

during ischemic stroke-induced sudden cardiac arrest, HRV analysis was conducted for all the 

rats. The HRV before and after BCCAL in representative SHRSP and WKY rats was shown in 

Figure 4.6A. In SHRSP rat, HRV exhibited reduction at both frequency domain and time 

domain, showing precipitous decline especially at its last hour (upper panel in Figure 4.6A). In 

contrast, WKY rat showed an early reduction of HRV in first and second hour following BCCAL 

procedure, which was then recovered to normal levels in the following hours (lower panel in 

Figure 4.6A). These changes of HRV are conserved in all SHRSP and WKY rats. As shown in 



111 
 

Figure 4.6B, in SHRSP rats, both low frequency (LF, 0.25-0.8 Hz) and high frequency (HF, 0.8-

3 Hz) components as well as the ratio of low and high frequency (LF/HF) displayed a reduction 

in first hour after BCCAL and last hour (0.5-1.5 hour before sudden death) than baseline 

condition (left panel in Figure 4.6B). Remarkably, the LF, HF, and LF/HF at last hour are 

significant lower compared to both baseline and first hour. In contrast, WKY rats showed an 

initial decline of LF and LF/HF in first hour after BCCAL, which was followed by a recovery of 

LF, HF, and LF/HF in last hour before sudden death. Different from SHRSP rats, these changes 

of HRV in WKY rats are not significant (right panel in Figure 4.6B).  

 
Figure 4.6 BCCAL results in marked reduction of HRV for SHRSP rats. (A) HRV before and after 
BCCAL (at time 0) for representative SHRSP and WKY rats. z axis represents power spectral density 
(PSD). Warmer color represents stronger PSD. (B) PSD of low frequency (LF), high frequency (HF), and 
LF/HF during baseline (-1-0 hour), first hour (0-1 hour), and last hour (0.5-1.5 hour before death) for all 
SHRSP (n=9) and WKY (n=8) rats. Data expressed as mean±SD. *Significant differences over baseline, 
#significant differences between first and last hour (*p < 0.05, **p < 0.01, ***p < 0.001).  
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4.4 Discussion  

This is the first study to examine the dynamic changes of the brain, the heart, and the functional 

interactions between the brain and the heart in forebrain ischemic stroke-induced sudden cardiac 

arrest rat models. Our data demonstrated that there is a dramatic decline of cardiac functionality 

(increase of RRI and cardiac arrhythmias), disruption of the autonomic nervous system (decrease 

of HRV), and reduction of cortical electrical activity (EEG power) during forebrain ischemic 

cardiac arrest. Importantly, we identified a global increase of functional synchronization within 

the brain (CCoh), as well as a marked and intermittent surge of brain-heart coupling, indicated 

by high level of CCCoh and CCCon, from the onset of ischemia until death in rats that suffered 

from sudden cardiac arrest. These results suggest that abnormal brain-heart connection may be 

the mechanism for forebrain ischemic stroke-induced sudden cardiac arrest and the surge of 

CCCoh may be used as a biomarker to predict the risk of sudden death.  

4.4.1 Animal model for sudden cardiac arrest 

Unlike our previous studies [Borjigin et al., 2013; Li et al., 2015a; Tian et al., 2018] where rats 

experienced global ischemia (asphyxia) that affects the brain and the heart simultaneously, in the 

current model, we investigated brain-heart connection in sudden cardiac arrest induced by 

forebrain ischemic stroke. Comparatively speaking, forebrain ischemia model is scientifically 

more impactful than asphyxia model because it tests the direct influence of cortical ischemia on 

the function of the brain and the heart. In contrast, in asphyxia models, the cortex, brainstem, 

spinal cord, and the heart are globally affected by the experimental insult, making it difficult to 

test the role of the brain during the dying process. BCCAL in SHRSP rats is a well-established 

model for forebrain ischemia [Katayama et al., 1984; Lobanava et al., 2008]. One previous study 

showed that occlusion of the bilateral carotid artery caused the death of SHRSP rats within 6 
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hours, whereas the control WKY rats died within 8 hours after the occlusion [Kakihana and 

Nagaoka, 1983]. In our experiment, BCCAL successfully induced 100% death for SHRSP rats 

within 14 hours. However, no mortality was observed in WKY rats. The high mortality in 

previous study compared to our study may due to the genetic variations for outbred animals, as 

well as the high salt Japanese diet (4% sodium chloride in Japanese diet vs. 0.4% sodium 

chloride in standard chow), which accelerates the development of hypertension in SHRSP rats 

[Matsuo and Nagaoka, 1981; Stier et al., 1988; Schmidlin et al., 2005]. Nevertheless, large 

similarities in mitochondria abnormalities and cerebral blood vessel deficits during the 

development of stroke have been identified between SHRSP rats and humans, making BCCAL 

in SHRSP rats one of the most relevant model for studying sudden cardiac arrest induced by 

forebrain cerebral ischemia [Lobanava et al., 2008]. 

4.4.2 Deterioration of cardiac function and autonomic nervous system functionality during 

forebrain ischemic stroke-induced sudden cardiac arrest 

Cardiac arrhythmias and ECG abnormalities are commonly observed after acute cerebrovascular 

events, such as ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage 

[Goldstein, 1979; Daniele et al., 2002]. In stroke patients, cardiac arrhythmias, especially the 

malignant ventricular arrhythmias triggered by the impairment of the central autonomic nervous 

system structures and catecholamine storm, are highly prevalent [Myers et al., 1982; Mäkikallio 

et al., 2004]. It is also known that ventricular tachycardia (VT), ventricular fibrillation (VF), and 

asystole, are often the fatal cardiac arrhythmias right before sudden death [Bayes de Luna et al., 

1989]. However, none of previous studies have characterized the number and types of cardiac 

arrhythmias with the progression of cardiac arrest in forebrain ischemic stroke-induced sudden 

cardiac arrest rat model, except for one earlier study which reported the disturbance of cardiac 
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rhythm and increase in the number of PVC in SHRSP rats after BCCAL [Kakihana et al., 1983]. 

In our study, we showed that common arrhythmias including PVC, PAC, SP, JR and 2HB 

significantly increased after the surgery in both SHRSP and WKY rats, although on average 

more arrhythmias were found in SHRSP rats than WKY rats. The occurrences of those 

arrhythmias are sporadic and irregular in both strains. In contrast, in last 30 minutes before death, 

there is a sudden increase of cardiac arrhythmias only in SHRSP rats, suggesting that the 

disruption of cardiac function is essentially very sudden, which further proves the validity of 

current model for investigating the mechanism of sudden cardiac death. Interestingly, different 

from asphyxic cardiac arrest model, in which 3HB, JEB, VEB, VT, and VF are the last cardiac 

arrhythmias before sudden death [Tian et al., 2018], in forebrain ischemic cardiac arrest model, 

VT and VF are not identified. Instead a significant increase of MSB was observed in SHRPS rats 

right before sudden death.  

HRV has been widely used for studying the autonomous nervous system control of 

cardiovascular function [Task force et al., 1996]. Reduced HRV has been associated with the risk 

of myocardial infarction [Lombardi et al., 1987; Buchanan et al., 1993], congestive heart failure 

[Saul et al., 1988], and sudden cardiac death [Politano et al., 2008; Wu et al., 2014]. Parallel with 

previous findings, our study demonstrated a significant reduction of LF, HF, and the ratio of 

LF/HF in SHRSP rats that suffered from sudden cardiac death, whereas the HRV in control 

WKY rats did not display significant changes during the entire process. These results indicate 

that forebrain ischemia leads to reduced level of activity for both the sympathetic and 

parasympathetic nervous system, with more severe suppression to the parasympathetic nervous 

system at near-death. The reduction of the autonomic nervous system functionality may be the 

cause for the dramatic increase of MSB during the ending phase of forebrain ischemic sudden 
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death. In contrast, in asphyxic cardiac arrest, the sympathetic nervous system is over-activated 

since the blockade of sympathetic nervous system via either spinal cord transection or adrenergic 

blockers prolongs the electrical activities of both the brain and the heart [Li et al., 2015a; Tian et 

al., 2018]. The cardiac arrhythmias observed in the ending phase are therefore VT and VF. The 

differences of cardiac arrhythmias and autonomic nervous system functionality indicate that 

global ischemia (asphyxia) and forebrain ischemia induced very different autonomic responses 

and cardiac pathological consequences. 

4.4.3 Decrease of cortical power and increase of cortical coherence during forebrain 

ischemic stroke-induced sudden cardiac arrest 

Consistent with previous studies in mice and rats that suffered from cardiac arrest induced by 

injection of potassium chloride [Borjigin et al., 2013; Weitzel et al., 2016], severe and sustained 

reduction in EEG power was identified in SHRSP rats after forebrain ischemic stroke. As 

expected, an initial decline and a subsequent recovery of EEG power was found in WKY rats 

that survived. Another study investigating the EEG power changes in spontaneously 

hypertensive rats (SHR has elevated blood pressure but rarely shows signs of stroke [Okamoto 

and Aoki, 1963]) and WKY rats after forebrain ischemia demonstrated that 20-minute BCCAL 

plus hypotension produces dramatic increase in delta power and decrease in theta, beta, and 

alpha activities [Mariucci et al., 2003], which is comparable to what we found in SHRSP and 

WKY rats that EEG power for all frequencies significantly decreased after permanent BCCAL. 

In addition, similar to what we found for SHRSP and WKY rats, EEG activity also recovered to 

normal values more quickly in WKY rats than in SHR rats, in which alpha and beta power did 

not recover even at 6 days of reperfusion [Mariucci et al., 2003]. The irreversible influence of 

forebrain ischemic stroke on brain electrical activity in SHRSP and SHR rats but not WKY rats 
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may due to the abnormal cerebral vascular structure, hypertension, and altered hemodynamics of 

spontaneous hypertensive rats, which makes SHRSP and SHR rats more susceptible to ischemic 

insult than normotensive rats [Ogata et al., 1976; Fujishima et al., 1980; Kakihana et al., 1983; 

Coyle, 1986; Brint et al., 1988; Duverger and MacKenzie, 1988; Lobanova et al., 2008].  

Immediately after BCCAL, the functional synchronization (CCoh) between different 

cortical regions in SHRSP rats significantly decreased. This is possibly due to the dysfunction or 

death of a considerable number of cortical neurons that severely impairs the information 

transmission in cortical connection after forebrain ischemia. This result was consistent with 

findings from previous studies in Wistar rats undergoing BCCAL and in patients with acute 

thalamic ischemic stroke, both of which showed a decrease of cortical coherence or functional 

connectivity within the brain after ischemia [Kozhechkin et al., 2009; Liu et al., 2016]. 

Interestingly, within 1 hour after BCCAL, CCoh in SHRSP rats recovered to a level that was 

even greater than baseline, indicating that the brain is internally super-activated at near-death. 

The neurophysiological mechanisms underlying the marked surge of the functional coupling 

within the brain after ischemia is still unknown. Nevertheless, the large increase of brain 

functional synchronization after forebrain ischemic stroke until sudden death is consistent with 

our earlier findings in both potassium chloride injection- and asphyxia-induced cardiac arrest 

models, in which a dramatic increase of both functional and effective connectivity was identified 

within the brain before sudden death [Borjigin et al., 2013; Li et al., 2015a]. The identification of 

dramatic surge of CCoh exclusively in rats that suffered from sudden cardiac arrest provides 

further evidence to support our central hypothesis that the brain may play an active role in 

mediating the dying process. 
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4.4.4 Increase of brain-heart connection during forebrain ischemic stroke-induced sudden 

cardiac arrest 

Despite growing evidence suggesting that abnormal interaction between the brain and the heart is 

the major cause of sudden death, the dynamical changes of brain-heart connection have not been 

characterized in any neurogenic sudden death models before due to the lack of effective study 

tools [Samuels, 2007; Dorrance and Fink, 2015; Gonzales-Portillo et al., 2016]. In previous 

study, we developed novel analysis methodologies, CCCoh and CCCon, to investigate the 

synchronization and bi-directional signal communication between the brain and the heart in 

asphyxic cardiac arrest models [Li et al., 2015a]. Consistent with our findings from that study [Li 

et al., 2015a], a surge of coherence (CCCoh) was identified between the brain and the heart in 

SHRSP rats that died after forebrain ischemia and the surge was absent in WKY rats as well as in 

SHRSP rats survived a milder form of stroke. In addition, strong bi-directional information 

transfer between the brain and the heart (CCCon) was also found in SHRSP rats whenever there 

was increased brain-heart coupling. However, there are two differences of CCCoh and CCCon 

between asphyxia- and forebrain ischemic stroke-induced sudden cardiac arrest models: 1) high 

level of CCCoh and CCCon was detected for all frequencies (0-250Hz) in forebrain ischemic 

cardiac arrest model, whereas in asphyxic cardiac arrest model, CCCoh was clustered at low 

frequency ranges (0-55 Hz); 2) The CCCoh in SHRSP rats after forebrain ischemic stroke is 

intermittent and unevenly distributed, however, in asphyxic cardiac arrest model, CCCoh 

displays homogeneous and continuous pattern. As the detailed biophysical mechanism 

underlying CCCoh and CCCon remain to be discovered, it still unknown what are the causes of 

the distinct frequency and temporal patterns in two different models. Results from this study and 

our previous study suggest that there are strong functional and directional connectivity between 



118 
 

the brain and the heart in the dying process, and the brain and the heart displays different modes 

of interaction during global (asphyxia) and forebrain ischemic sudden cardiac arrest. 

4.4.5 Conclusion 

In conclusion, this study demonstrated that during forebrain ischemic stroke-induced sudden 

cardiac arrest, elevated brain-heart electrical signal coupling and communication are highly 

associated with the increase of cardiac arrhythmias, disruption of the autonomic nervous system, 

and the risk of sudden death, and may be used a potential biomarker to predict sudden death. 

This study could improve our understanding on the mechanism of how the brain and the heart 

interact during forebrain ischemic sudden cardiac arrest. Based on results from this study and 

previous studies, we hypothesis that under normal condition, the brain and the heart 

communicate indirectly via the autonomic nervous system to ensure the homeostasis of 

fundamental physiological systems. However, when this homeostasis is disrupted by the external 

perturbations, either asphyxia [Li et al., 2015a; Tian et al., 2018], neurological diseases (current 

study), or cardiac abnormalities (Chapter 3), the regulation from the autonomic nervous system 

fails. The brain starts intense interaction with the heart via other unknown mechanisms, which 

are detected and quantified by the dramatic surge of CCCoh and CCCon. Till now, it is unknown 

what mediates the strong brain-heart interaction during sudden death. We hypothesize that it may 

be mediated by the vascular system as CCCoh is still detectable after spinal transection, but this 

needs to be tested in further studies. Our results may also provide important information for 

predicting and preventing sudden death after ischemic stroke. Since the bi-directional electrical 

signal coupling (CCCoh) and communication (CCCon) between the brain and the heart are only 

identified in dying animals, they could be used as potential biomarkers to predict the risk of 

sudden death. The diminishment of CCCoh and CCCon may also be used as parameters to 



119 
 

evaluate the effectiveness of drugs in preventing sudden death. In addition, this study further 

corroborates the possibility of functional investigation on brain and heart connection using 

advance signal processing techniques. Areas of future interests would include testing whether 

CCCoh is also detectable in other types of neurological injury-induced sudden death animal 

model or human patients.  
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Chapter 5 Conclusions 

5.1 Significance of thesis project 

Through this thesis project, we established a novel mechanism for sudden cardiac arrest. 

Different from the conventional view that the brain is hypoactive during sudden cardiac arrest, 

our data strongly suggest that the brain plays an active role in mediating the deterioration of 

cardiac function at near-death, and that corticocardiac coupling may be a common mechanism 

underlying sudden cardiac death induced by different causes, which include asphyxia that affects 

both the heart and the brain, cardiac abnormalities, and neurological diseases.  

This thesis project is significant scientifically, clinically, and technically because: 1) It 

provides new insights into the neurophysiological mechanisms underlying sudden cardiac arrest. 

The bidirectional corticocardiac coupling has never been described in any sudden cardiac arrest 

animal models or human patients before. This is the first study demonstrating the existence of 

significant level of functional coupling and directional communication between the brain and the 

heart at near-death stage in different models. Interestingly, the functional and directional 

connectivity displays hemispheric asymmetry, frequency specificities, and different temporal 

dynamics in different models, suggesting the existence of diverse modes of communication 

between the brain and the heart in sudden death triggered by different factors or in different 

species. 2) Investigating the mechanism of how the brain and the heart interact during sudden 

cardiac arrest could contribute to the development of novel therapeutic approaches to predict and 

prevent sudden death. This project established that corticocardiac coupling may be used as a new 

non-invasive method to assess the risk for sudden death since corticocardiac coupling is 
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exclusively identified in rats or human undergoing sudden death. This study also validated the 

effectiveness of pharmacological interventions for prolonging the survival after cardiac arrest in 

experimental animal models. 3) This study successfully applied advanced signal processing 

technique to study the dynamic changes of brain-heart connection in rats and human patients 

suffering from sudden cardiac arrest. Although signal processing techniques have been widely 

used to explore the features associated with brain signals, no published studies have applied it to 

the investigation of the functional coupling and directional communication between cortical and 

cardiac signals in any human or animal models. Our study is among the first to use advanced 

analytical techniques to functionally characterize the dynamic interactions of the brain and the 

heart, and is expected to provide a new framework for functional investigation of both 

neurogenic as well as cardiogenic sudden death and many other diseases caused by abnormal 

brain-heart connection. Successful validation of this powerful new technology in probing the 

dynamics of corticocardiac network could also contribute to the understanding of the 

neurophysiological connections between the brain and other peripheral organs in normal and 

disease conditions.  

5.2 Future directions 

The understanding of the functional connection between the cerebral cortex and the heart is still 

in its early stage. Based on current finding, we think there are two future directions worth 

pursuing: 1) Further investigation on the biophysical nature of corticocardiac coupling. Although 

we identified consistent surge of corticocardiac coupling in different sudden cardiac arrest 

models, the neurophysiological pathways by which the heart and the brain communicate or the 

biophysical nature of corticocardiac coupling is still unknown. Understanding the biophysical 

nature of corticocardiac coupling and the way that the brain communicates with the heart will 
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provide important information for the development of novel strategies for predicting and 

preventing sudden death. We hypothesize that the corticocardiac coupling may be mediated by 

the vascular system though gap-junctions because corticocardiac coupling was still detectable in 

rats with spinal nerve transection, but this hypothesis needs to be tested in future studies. 2) Test 

the brain-heart connection in focal ischemic stroke model. Focal ischemic stroke is one of the 

major causes of mortality and morbidity around the world and is responsible for the leading 

health care costs of all diseases. Focal stroke can trigger cardiac autonomic imbalance, which 

may put susceptible patients at increased risk of cardiac arrhythmias and sudden death. In the 

current thesis project, we established the role of the brain in sudden cardiac death. To further test 

specific cortical regions that are important for cortical control of cardiac function, we plan to 

investigate the brain-heart connection in focal ischemic stroke model with 10 EEG electrodes 

implanted on the cerebral cortex. Questions of interest include how the injured cortical region 

interacts with the healthy region of the brain, and how different cortical region communicate 

with the heart during the development of focal ischemic stroke. This study is expected to 

contribute to our understanding on the temporal dynamics of cortical activity and key brain 

regions that may be involved in the regulation of cardiac function during focal ischemic stroke.
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Appendix 

 
Supplement Figure 1 ECG signals with representative cardiac arrhythmias in each stage of asphyxic 
cardiac arrest for 4 groups of rats. (A) Saline group. A1: 1 premature atria contraction (green arrow) and 1 
first-degree heart block (red arrow); A3: 3 junctional escape beat (green arrow) and 2 ventricular escape 
beat (red arrow) in a background of third-degree heart block; A4a: ventricular tachycardia; A4b: 
ventricular fibrillation. (B) Phentolamine group. A2: second-degree heart block type II; A3: 1 junctional 
escape beat (green arrow) and 3 ventricular escape beat (red arrow) in a background of third-degree heart 
block; A4a: ventricular tachycardia; A4b: ventricular fibrillation. (C) Atenolol group. A1: 1 premature 
junctional contraction (red arrow) in a background of junctional rhythm; A2: 1 premature ventricular 
contraction (red arrow); A3a: junctional escape beat in a background of third-degree heart block; A3b: 
ventricular escape beat in a background of third-degree heart block. (D) Phentolamine plus atenolol 
group. A1: 1 premature ventricular contraction (green arrow) and 1 ventricular couplet (red arrow) in a 
background of peaked T waves; A2: 3 second-degree heart block type II (red arrow); A3a: junctional 
escape beat in a background of third-degree heart block; A3b: ventricular escape beat in a background of 
third-degree heart block. 
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Supplement Figure 2 ECM and EEM for 19 EEG channels (arranged according to their locations on the 
skull) for a 40-second long epoch during S4. 
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Supplement Figure 3 ECM and EEM for 19 EEG channels (arranged according to their locations on the 
skull) for a 40-second long epoch during S6.  
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Supplement Figure 4 EEG power for each of the 6 cortical channels during baseline, first hour, and last 
hour in all SHRSP (n=9). (A) and WKY (n=8) (B) rats for 6 frequencies. LF: left frontal, RF: right 
frontal, LP: left parietal, RP: right parietal, LO: left occipital, RO: right occipital. Data expressed as 
mean±SD. *Significant differences between two channels (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Supplement Figure 5 Cortical coherence (CCoh) between every 2 of the 6 cortical channels during 
baseline, first hour, and last hour in all SHRSP (n=9). (A) and WKY (n=8) (B) rats for 6 frequencies. LF: 
left frontal, RF: right frontal, LP: left parietal, RP: right parietal, LO: left occipital, RO: right occipital.  
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Supplement Figure 6 CCCoh for each of the 6 cortical channels during baseline, first hour, and last hour 
for in all SHRSP rats (n=9) at 6 frequencies. LF: left frontal, RF: right frontal, LP: left parietal, RP: right 
parietal, LO: left occipital, RO: right occipital. Data expressed as mean±SD. *Significant differences 
between two channels (*p < 0.05, **p < 0.01, ***p < 0.001).  
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Supplement Figure 7 Feedback (A) and feedforward (B) CCCon for each of the cortical channels during 
baseline, first hour, and last hour in all SHRSP rats (n=9) for 6 frequencies. LF: left frontal, RF: right 
frontal, LP: left parietal, RP: right parietal, LO: left occipital, RO: right occipital. Data expressed as 
mean±SD. *Significant differences between two channels (*p < 0.05, **p < 0.01, ***p < 0.001).  
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