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Abstract 

When a reaction occurs at the surface of a metal electrode, as in metal-anode batteries or 

corrosion, it is often accompanied by a change in the morphology of the interface between that 

electrode and its surrounding environment, typically an ionically conductive electrolyte. 

However, there is a complex interplay between the reaction kinetics and transport in the 

electrolyte that influences the observed morphologies, such as dendrites on lithium metal anodes 

or corrosion pits in structural alloys. In this dissertation, the effects of ionic transport in the 

electrolyte and variable reaction kinetics along the electrode/electrolyte interface on the 

morphological evolution of the electrode are examined via continuum-scale modeling at a variety 

of length scales and dimensionalities. Two applications are studied: the electrodeposition and 

electrodissolution of metal battery anodes, and the corrosion of structural metals. Preliminary 

studies are also included for a reduced-order model of lithium symmetric cells and a diffuse-

interface model of the mechanical response of decomposed mixed-conducting protection layers 

for lithium anodes. 

For the electrodeposition and electrodissolution of metal anodes, a one-dimensional 

model that considers electrochemistry is developed for two-electrode (i.e., a coin cell) and 

pseudo-three-electrode (i.e., a beaker cell) systems. The model employs existing mean-field 

approximations of charge transport and electrostatics in the electrolyte, but a novel, morphology-

aware expression is developed to capture the coarse-grained effects of nucleation and surface 

morphology on the reaction kinetics. The model implementation is heavily optimized to allow 

high-throughput determination of the physical parameters associated with electrodes and 



 xvii 

electrolytes. The model is first demonstrated for the parameterization of the kinetic and transport 

properties of the Mg(BH4)2 electrolyte against an experimental cyclic voltammogram. The model 

is then validated by comparing the predicted voltammetric behavior to experimental results for 

different potential scan rates. Next, the model is extended to study dendrite formation on lithium 

anodes. The simulation results indicate that the morphological evolution due to preferential 

deposition and dissolution of dendrites affects the galvanostatic polarization of a lithium 

symmetric cell. Combined, the studies of magnesium and lithium anodes demonstrate that the 

proposed coarse-grained model captures key features of the morphological evolution on the 

anode surface without the computational cost associated with multidimensional simulations. The 

final study considers corrosion of structural metals such as stainless steel and aluminum. A 

multidimensional phase-field approach is coupled with a multicomponent diffusion model and a 

new microscopic expression for the limiting reaction kinetics to study the evolving 

microstructure during corrosion. Simulations are performed to examine how the interfacial 

electrolyte composition, electrostatic potential, and local reaction kinetics influence the evolution 

of morphological features such as pitting on the metal surface. The new model allows for regions 

of the electrode surface to experience different kinetic regimes and exhibits improved agreement 

against experimental data as compared to previous models. Additionally, preliminary results are 

presented for a reduced-order implementation of the morphology-aware electrode/electrolyte 

model as well as an examination of the chemo-mechanical behavior of protection layers for 

lithium-metal anodes. The models developed in this dissertation are flexible and extensible and 

can be utilized to design and optimize other emerging electrochemical systems and contribute to 

a quantitative understanding of the behavior of electrode/electrolyte interfaces. 
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Introduction 

 

Context and Motivation 

Electrochemical processes are ubiquitous in the world around us and directly impact our daily 

lives. Some electrochemical processes enable technological applications; for example, many of 

us have devices powered by a lithium-ion battery (LIB), and rechargeable batteries have allowed 

society to move toward more renewable energy sources. As of 2016, cumulative global sales of 

electric vehicles had surpassed two million and could exceed 220 million by 2030.1 Additionally, 

the decreasing cost of battery energy storage systems will allow them to become highly 

competitive with pumped hydro and compressed air energy storage for grid applications without 

their associated geographic limitations.2 

However, there are many electrochemical processes that are deleterious in nature. Most 

notably, the corrosion of materials and the associated cost to replace degraded components is 

estimated to consume $2.5 trillion annually, or about 3.4% of global gross domestic product.3 If 

already-existing corrosion controls were uniformly implemented, a savings of up to $875 billion 

could be realized, but further development is needed to drive this figure even higher.3 Corrosion 

poses a safety risk in structural applications, as the associated loss of material can reduce the 

mechanical integrity to a point where failure can occur, such as in the 2007 collapse of the I-35W 

bridge in Minneapolis.4 Safety is also a key concern in LIBs; under adverse environmental 

conditions or during overcharge, lithium metal dendrites can form on the surface of the graphite 
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anode typically employed in the battery.5 Dendrites can potentially penetrate the polymer 

separator in the cell and short the battery, possibly causing a fire. 

Beyond safety, there are areas where improvements could be implemented to increase the 

practicality of batteries as an energy storage medium. For electric vehicles (EVs), battery packs 

are typically assembled from hundreds or thousands of individual cells; for example, the 85 kWh 

pack in a Tesla Model S is composed of around 7,100 cells.6 Each cell, which has the 18650 

form-factor, weighs about 46.5 g and has a volume of about 70 cm3,7 and thus the entire pack 

contains about 330 kg of batteries that occupy 0.5 m3 of space. Neglecting the remaining pack 

components, this represents a significant amount of volume and weight in the overall vehicle. 

Part of this considerable size of the cell arises from the use of a graphite anode in LIBs. Graphite 

anodes have theoretical capacities of about 370 mAh/g or 760 mAh/cm3;8 in practice, the usable 

capacity is significantly less.9 Replacing the graphite with a metallic anode—such as lithium 

metal—could lead to tenfold and threefold improvements in the theoretical specific and 

volumetric capacities of the anode, respectively.8 This could lead to a significant reduction in the 

size and weight of battery packs. However, long-term sustainability is a key concern for lithium-

based battery technologies; electrifying 800 million vehicles with 15 kWh battery packs (smaller 

than many EV packs currently available) would consume around 30% of the known worldwide 

supply of lithium.10 Therefore, significant research has been performed to study other metal 

anode materials that offer competitive capacities while being more earth-abundant, such as 

sodium, magnesium, zinc, and other mono- and multivalent metals.11,12 

Fundamentally, one of the key factors in the electrochemical behavior behind metal 

anodes and corrosion is that, over time, the morphology of the metal surface evolves. For metal-

anode batteries, metal is deposited on the anode surface during charging and dissolved during 
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discharge. Lithium has a tendency to form dendrites during deposition,13,14 while magnesium 

exhibits widely-varying morphologies due to local passivation of the anode surface.15 Examples 

of observed metal-anode microstructures are shown in Figure 1.1. Beyond the previously-

mentioned safety concerns, the constant formation of additional surface area on the anode leads 

to breakdown of the liquid electrolyte to form a solid-electrolyte interphase (SEI) layer on the 

anode.11,16 While the SEI is believed to help stabilize the deposition and dissolution processes on 

the anode, over time its formation can consume all of the electrolyte in the battery, reducing the 

battery lifetime.11 For corrosion, the formation of pits and other flaws on the metal surface 

influence the lifetime over which a component can be safely used, as the pits act as stress 

concentrators and initiation sites for cracks.17 The rate at which corrosion occurs depends on 

multiple factors, including the conditions of the operating environment as well as the 

composition and morphology of the metal alloy. Typical artificially grown corrosion pits in 304 

stainless steel as observed by Ghahari et al.18 are presented in Figure 1.2. 

 

Figure 1.1. Examples of morphologies observed during cycling of metal battery anodes. Left: formation of “mossy” 
dendrites on a lithium anode during galvanostatic deposition. Adapted with permission from K.N. Wood et al., ACS 
Cent. Sci., 2, 790–801 (2016). Copyright 2016 American Chemical Society.14 Right: surface structures on a 
magnesium anode after 20 potentiostatic deposition/dissolution cycles. Adapted with permission from D.J. Wetzel et 
al., ACS Appl. Mater. Interfaces, 7, 18406-18414 (2015). Copyright 2015 American Chemical Society.15 



 4 

 

Figure 1.2. Corrosion pits in foils of 304 stainless steel observed by synchrotron X-ray radiography under (a) 
potentiostatic conditions of 600 mV vs. Ag/AgCl and (b) galvanostatic conditions of 10 µA. Reproduced with 
permission from M. Gahahari et al., Corrosion Sci., 100, 23-35 (2015). Copyright 2015 the Authors.18 

Unfortunately, for physical and practical reasons it is not always possible to directly 

observe the evolution of the electrode morphology. First, the length scales involved in these 

electrochemical systems are diverse. The surface features that have been described thus far range 

in size from tens of nanometers to a few microns. The active area of the electrode could have 

dimensions in the millimeter range, and in turn it could be part of a larger cell or structural 

component that is on the order of centimeters or even larger. Second, there is a similarly wide 

range of relevant time scales. A battery may be charged and discharged over a few minutes to 

many hours. Conversely, a structural component may be in service for many years or decades 

because corrosion rates are slow under open-circuit conditions. Third, there are multiple 

concurrent processes that may occur in an electrochemical system. In addition to the deposition 
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and dissolution reactions, there will be a net flux of metal ions to and from the electrode surface 

into the electrolyte. The movement of these charged species in the electrolyte can induce 

gradients in the electrostatic potential, which further influences the rate of the overall reactions. 

Additionally, mechanical stresses may form in the system due to applied loads or misfit strains in 

the microstructure. If there is a significant amount of flow in the electrolyte, convection and 

hydrodynamic effects may become significant. 

Thus, the interplay of physical processes that influence the time-dependent behavior of 

the electrode morphology form a richly complex physical problem with many degrees of 

freedom. Therefore, it is quite common to study these systems via a wide range of simulation and 

modeling techniques. These approaches can include atomistic-level tools such as density 

functional theory (DFT) and molecular dynamics (MD),19–24 stochastic techniques such as Monte 

Carlo (MC),25,26 and continuum-scale methods,27 each of which have associated advantages for 

electrochemical studies. In this dissertation, the primary focus will be continuum-scale 

techniques, which can be applied to a broad range of systems with a large range of time and 

length scales, but neglect the behavior of individual atoms and particles.27,28 Instead, these 

techniques capture the average response of the system, and therefore coarse-grained descriptions 

of the behavior at lower time and length scales are employed to enable efficient simulations of a 

given system. Consequently, models typically have to be tailored for specific applications. 

Dissertation Overview 

In this dissertation two examples of electrochemical systems are considered where the electrode 

morphology evolves over time: deposition and dissolution for metal battery anodes and the 

pitting corrosion of metal alloys. To study these systems, two distinct continuum-scale modeling 

frameworks will be presented. The first is a one-dimensional (1D) sharp-interface model that 
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employs a novel coarse-grained approach to incorporate surface morphologies into a high-

throughput framework for simulating voltammetric behaviors of metal anode materials. The 

second is a two-dimensional (2D) diffuse-interface model that combines the phase-field and 

smoothed boundary methods to study how variations in morphology, concentrations, potentials, 

and reaction kinetics impact the evolution of a metal surface undergoing pitting corrosion. These 

models are validated against experimental results and are employed to develop a deeper 

understanding of how metal-electrode/electrolyte interfaces evolve over time. Additionally, the 

preliminary results are presented for two other studies: a reduced-order version of the 1D 

framework that examines the overall importance of considering transport in the electrolyte, and a 

model of the mechanical interactions between lithium anodes and decomposed anode protection 

layers. 

The dissertation is divided into eight chapters: (1) Introduction, (2) Background, (3) a 

Computational Model of Magnesium Deposition and Dissolution for Property Determination via 

Cyclic Voltammetry, (4) One-Dimensional Model of Lithium Symmetric Cells Under 

Galvanostatic Conditions, (5) Numerical Modeling of Localized Corrosion Using Phase-Field 

and Smoothed Boundary Methods, (6) Preliminary Work: Reduced-Order Modeling of Lithium 

Symmetric Cells, (7) Preliminary Work: Mechanical Interactions Between Decomposed 

Protection Layers and Lithium Anodes, and (8) Summary and Future Work. Throughout the 

following chapters, the goal will be to answer the following open questions: 

1. For the 1D model, when an electrode has multiple possible deposition and dissolution 

reactions occurring simultaneously, can the overall current through the electrode be 

described as a combination of the average behaviors of each reaction? 
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2. Does the kinetic behavior predicted by this coarse-grained approximation agree with 

experimentally-obtained voltammetric data? 

3. Can the simulation results provide insight into how the kinetic pathways on the electrode 

surface are changing over time as the surface evolves? 

4. For novel anode and electrolyte combinations, can the 1D model quantify the kinetic and 

transport properties of the system, even with limited experimental input? 

5. For the 1D and 2D models, how do the operating conditions of an electrode/electrolyte 

system affect the morphological evolution and the observed reaction kinetics? 

6. How strongly do variations in the diffusion and migration within an electrolyte affect the 

reaction kinetics along a metal electrode surface? 

7. Can generalized modeling frameworks be developed that answer these questions in an 

efficient manner? 

Chapter 2 describes relevant background material for understanding the models 

developed in this dissertation, including fundamentals of electrochemical transport and kinetics, 

and an overview of existing numerical models for deposition, dissolution, corrosion, and the 

effects of mechanics. 

Next, Chapter 3 presents the initial derivation and implementation of the 1D morphology-

aware modeling framework. This includes the theoretical development of the coarse-grained 

approximation of the electrode surface and how it is incorporated into a Butler-Volmer-type 

kinetic model,29–32 which is frequently employed to describe electrochemical-reaction kinetics. 

The framework is then applied to study the cyclic voltammetry of magnesium deposition and 

dissolution from a Mg(BH4)2/DME electrolyte on a noble working electrode. The model is 

validated by first parameterizing the unknown kinetic and transport properties of the system 
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against a single experimentally obtained voltammogram. Then, the behavior under different 

potential scan rates is predicted and compared to other experimental data. The model accuracy is 

compared against available literature data and the importance of the experimental geometry in 

accurately applying the model is discussed. 

Chapter 4 extends the model of Chapter 3 to consider the behavior of symmetric 

lithium/lithium cells. This requires including the moving electrode boundaries over time. 

Additionally, the morphology-aware kinetic model is modified to consider deposition of lithium 

on a lithium anode. The model is fitted to experimentally obtained galvanostatic voltage traces 

and a parametric study is performed. Combined, the simulation results provide insight into how 

the preferred reaction pathway on the electrode surface changes over time and what parameters 

determine the shape of characteristic features in the cell polarization behavior. 

Chapter 5 presents a phase-field/smoothed boundary method (PF/SBM) framework for 

simulating pitting corrosion by extending a modeling framework that was developed for 

microstructural simulation of battery electrodes during charge and discharge.33,34 Within this 

chapter, a generalized polycrystalline phase-field method is developed so that the microstructure 

of a metal evolves due to the presence of a source term at the metal/electrolyte interface. This 

source term is coupled to the reaction kinetics along the interface by employing the smoothed 

boundary method to solve for ionic transport in the electrolyte. The model is then demonstrated 

by directly simulating the effects of IR-controlled reaction kinetics on the corrosion of the metal, 

which has not been extensively examined by previous modeling efforts. Additional applications 

of the model are demonstrated for the consideration of anisotropic, polycrystalline 

microstructures. 
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Chapter 6 describes preliminary work for a reduced-order model that couples the 

morphology-aware kinetic model to a semi-analytical solution of transport in the electrolyte to 

further reduce the computational cost of the framework. 

Chapter 7 presents preliminary results for a model with a smoothed boundary formulation 

of linear elasticity to enable simulations of mechanical interactions between mixed-ionic 

conducting protection layer materials and lithium metal anodes. 

Finally, in Chapter 8 an overall summary of the dissertation is presented along with 

possible future extensions of the modeling frameworks. 
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Background 

 

In this chapter,* we provide a general overview of the governing equations employed in typical 

models of electrochemical systems. We also discuss existing models that have been described in 

the literature for studying deposition and dissolution for batteries and corrosion as well as for 

including the effects of mechanical behavior. 

In Chapter 1, we discussed how electrochemical reactions have fundamentally different 

consequences for metal battery anodes and corrosion, but there are many similarities in the 

physical behavior of these systems. At a minimum, an electrochemical cell consists of two 

electrodes which are separated by an ionically conductive electrolyte and are connected by an 

electronically conductive circuit.35 For a rechargeable metal anode battery, during discharge 

metal cations and electrons are formed at the anode surface.9 The cations are then transported 

across the electrolyte, where they then intercalate into the cathode’s crystal structure or undergo 

a conversion reaction with species present in the cathode. The electrons flow through the device 

that is being powered by the battery and are then consumed at the cathode. For aqueous 

corrosion, the anode, cathode, and electronic pathway are typically all the same continuous piece 

                                                
*Portions of the material in this chapter are adapted from A.F. Chadwick, G. Vardar, S. DeWitt, A.E.S. 
Sleightholme, C.W. Monroe, D.J. Siegel, and K. Thornton, “Computational Model of Magnesium Deposition and 
Dissolution for Property Determination via Cyclic Voltammetry,” J. Electrochem. Soc., 163 (2016) A1813; K.N. 
Wood, E. Kazyak, A.F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton, and N.P. Dasgupta, “Dendrites and Pits: 
Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy,” ACS Cent. Sci., 
2 (2016) 790; and A.F. Chadwick, J.A. Stewart, R.A. Enrique, S. Du, and K. Thornton, “Numerical Modeling of 
Localized Corrosion Using Phase-Field and Smoothed Boundary Methods,” J. Electrochem. Soc., 165 (2018) C633. 
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of metal, and the aqueous solution in contact with the metal serves as the ionically conductive 

electrolyte.36 The anode and cathode may be completely dissimilar metals that are connected 

together, or in metal alloys they can be different phases of the given alloy system with different 

equilibrium reaction potentials. Unlike a rechargeable battery, the reactions at the cathodic 

surface often do not involve the cationic species produced at the anode. Instead, hydrogen ions 

can be reduced to produce hydrogen gas or oxygen gas can be reduced to produce hydroxide 

ions. Due to the similarities between these processes, many models of batteries and corrosion 

share similar features. 

Governing Equations 

For a solution of ions in an electrolyte, each species has an associated electrochemical 

potential:35,37 

�̅�𝜇J = 𝜇𝜇J
K + 𝑅𝑅𝑅𝑅 ln 𝑖𝑖J + 𝐴𝐴J𝐹𝐹Φ, (2.1) 

where �̅�𝜇J is the electrochemical potential of species 𝜙𝜙, 𝜇𝜇J
K is the chemical potential at a standard 

reference state, 𝑅𝑅 is the ideal gas constant, 𝑅𝑅 is the absolute temperature, 𝑖𝑖J is the activity of the 

species, 𝐴𝐴J is its charge, 𝐹𝐹 is Faraday’s constant, and Φ is the local electrostatic potential in the 

electrolyte. When there is a gradient in the activity of a species or in the electrostatic potential, 

the corresponding gradient in �̅�𝜇J will lead to an overall flux of the 𝜙𝜙-th species:35,37 

𝐍𝐍J = −𝑢𝑢J𝑐𝑐J∇�̅�𝜇J, (2.2) 

where 𝐍𝐍J is the vector flux of the species, 𝑢𝑢J is its electrochemical mobility, and 𝑐𝑐J is its 

concentration. When there is an imbalance in the flux at a given point, there will be an evolution 

in the concentration of the species over time: 

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 = −∇ ⋅ 𝐍𝐍J = ∇ ⋅ (𝑢𝑢J𝑐𝑐J∇�̅�𝜇J), (2.3) 
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where 𝑡𝑡 is time. Equation 2.3 represents the fundamental equation by which much of 

electrochemical transport can be described. As written, Eq. 2.3 is applicable to so-called 

moderately dilute solutions.35 In the limit of a dilute solution, the activity of a species is roughly 

equal to its concentration, which when combined with the Nernst-Einstein relationship35,37 allows 

for Eq. 2.2 to be rewritten as: 

𝐍𝐍J = −𝐷𝐷J∇𝑐𝑐J − 𝐴𝐴J
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷J𝑐𝑐J∇Φ, (2.4) 

which is the Nernst-Planck equation. 38–40 The two terms on the right-hand side correspond to the 

diffusion and migration contributions to the species flux. Equation 2.3 then becomes: 

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 = −∇ ⋅ 𝐍𝐍J = ∇ ⋅ Y𝐷𝐷J∇𝑐𝑐J + 𝐴𝐴J
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷J𝑐𝑐J∇ΦZ. (2.5) 

For neutral species, Eqs. 2.4 and 2.5 reduce to Fick’s first and second laws of diffusion. 

 To fully solve Eq. 2.5, it is necessary to describe the electrostatic potential. From a 

fundamental level, this can be achieved with the Poisson equation:35 

∇[Φ = −
𝜌𝜌

𝜖𝜖^𝜖𝜖K
, (2.6) 

where 𝜌𝜌 = 𝐹𝐹∑𝐴𝐴J𝑐𝑐J is the local charge density, 𝜖𝜖^ is the dielectric constant of the solvent, and 𝜖𝜖K 

is the vacuum permittivity. Together, Eqs. 2.4 and 2.6 are frequently referred to as the Poisson-

Nernst-Planck (PNP) system of equations. The total current can be obtained by summing the 

product of the species’ charge and flux:  

𝐢𝐢 = 𝐹𝐹 a 𝐴𝐴J𝐍𝐍J

b

Jcd

= −𝐹𝐹 a 𝐴𝐴J𝐷𝐷J∇𝑐𝑐J

b

Jcd

−
𝐹𝐹[

𝑅𝑅𝑅𝑅 a 𝐴𝐴J
[𝐷𝐷J𝑐𝑐J∇Φ

b

Jcd

, (2.7) 

where 𝐢𝐢 is the vector current density in the electrolyte, 𝑛𝑛 is the number of species in the 

electrolyte, and the first term on the right-hand side of Eq. 2.7 is commonly referred to as the 



 13 

diffusion current.35 Similarly, the rate of change of the charge density can be obtained by 

summing the product of the species’ charge and the rate of change for their concentration: 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡 = 𝐹𝐹 a Y𝐴𝐴J

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 Z
b

Jcd

= ∇ ⋅ f𝐹𝐹 a 𝐴𝐴J𝐷𝐷J∇𝑐𝑐J

b

Jcd

+
𝐹𝐹[

𝑅𝑅𝑅𝑅 a 𝐴𝐴J
[𝐷𝐷J𝑐𝑐J∇Φ

b

Jcd

g. (2.8) 

 Various simplifications have been made in order to solve the PNP equations. In analytical 

electrochemical studies, supporting species are added to the electrolyte to increase the ionic 

conductivity, as then the reacting species only caries a fraction of the overall current.37 This 

allows for Eq. 2.4 and 2.5 to be replaced with Fick’s laws, which has permitted well-known 

analytical solutions such as Cottrell’s equation for chronoamperometry41 and Nicholson and 

Shain’s methodology for cyclic voltammetry.42,43 However, these methodologies do not account 

for the mass transfer to and from the electrode surface that is inherent to deposition and 

dissolution, and battery electrolytes do not employ supporting electrolytes. Thus, such 

approaches violate our requirement for generality and are not considered in the remaining 

portions of this dissertation. 

In their early work, both Nernst44 and Planck38,39 introduced what has come to be known 

as the electroneutrality approximation. This approximation assumes that the small permittivities 

of typical solvents cause any charge separation that occurs to be screened over a vanishingly thin 

Debye length when compared to typical experimental length scales.45 Therefore Eq. 2.6 can be 

replaced by: 

𝜌𝜌 = a 𝐴𝐴J𝑐𝑐J

b

Jcd

= 0. (2.9) 

The electroneutrality approximation, when inserted into Eqs. 2.6 through 2.8, implies that Φ 

satisfies Laplace’s equation and that the current density is divergence-free. However, directly 

solving Laplace’s equation is not guaranteed to converge due to the degeneracy of possible 
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solutions.35 Instead, Eq. 2.9 is employed to solve for one charged species concentration in terms 

of the remaining concentrations, and Φ can be obtained by solving: 

∇ ⋅ f𝐹𝐹 a 𝐴𝐴J(𝐷𝐷J − 𝐷𝐷b)	∇𝑐𝑐J

bhd

Jcd

+
𝐹𝐹[

𝑅𝑅𝑅𝑅 a 𝐴𝐴J(𝐴𝐴J𝐷𝐷J − 𝐴𝐴b𝐷𝐷b)	𝑐𝑐J∇Φ
bhd

Jcd

g = 0, (2.10) 

where the concentration of the 𝑛𝑛-th species has been eliminated by electroneutrality, reducing the 

degrees of freedom by one. 

At the electrode surface, some species in the electrolyte will react, and charge and mass 

will be transferred between the electrolyte and the electrode. Multiple models have been 

proposed for the rate of this reaction, but the most commonly employed description is perhaps 

the Butler-Volmer equation:29–32,35,37 

𝜙𝜙 = 𝜙𝜙K iexp Y
𝛼𝛼n𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂Z − exp Y−

𝛼𝛼p𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂Zq, (2.11) 

where 𝜙𝜙 is the current density, 𝜙𝜙K is the exchange current density, 𝛼𝛼n and 𝛼𝛼p are the charge 

transfer coefficients of the anodic and cathodic reactions, respectively, and 𝜂𝜂 is the overpotential 

that drives the reaction. The exact values of 𝜙𝜙K, 𝛼𝛼n, and 𝛼𝛼p are typically assumed to be constants 

for a given reaction and system, but they frequently depend upon the concentrations of the 

reactants. The overpotential can be expressed as 𝜂𝜂 = 𝑉𝑉n − 𝐸𝐸Kt − ΦK, where 𝑉𝑉n  is the applied 

potential at the electrode surface, 𝐸𝐸Kt  is the formal potential, and ΦK is the electrostatic potential 

in the electrolyte immediately adjacent to the electrode surface. When the magnitude of the 

overpotential is large, either the anodic or cathodic reaction will be dominant. For 𝜂𝜂 ≫ 0, Eq. 

2.11 can be rewritten as: 

ln 𝜙𝜙 = ln 𝜙𝜙K +
𝛼𝛼n𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂, (2.12) 

and when 𝜂𝜂 ≪ 0: 
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ln(−𝜙𝜙) = ln 𝜙𝜙K −
𝛼𝛼p𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂. (2.13) 

Respectively, Eqs. 2.12 and 2.13 are known as the anodic and cathodic Tafel equations.35–37 

Existing Modeling Approaches 

Models of Transport and Kinetics Without Deposition or Dissolution 

As opposed to the analytical solutions described above, there has been more of an interest to 

directly simulate the effects of migration in theoretical electrochemistry, particularly in open 

channels of electrolyte. Early attempts by Cohen and Cooley46 and Sandifer and Buck47 

described models that replaced the Poisson equation with a current expression that included a 

displacement current: 

𝐢𝐢 = 𝐹𝐹 a 𝐴𝐴J𝐍𝐍J

b

Jcd

+ 𝜖𝜖^𝜖𝜖K
𝜕𝜕𝐄𝐄
𝜕𝜕𝑡𝑡 , (2.14) 

where 𝐄𝐄 = ∇Φ is the electric field. The reason for this approach was that Eq. 2.14 was more 

practical to simulate with computational resources available at the time. The limitation of these 

models46,47 is that they employed explicit finite difference methods (FDMs), which due to the 

mathematical stiffness of the governing equations restricted the models to small time step sizes. 

Brumleve and Buck48 noted that the limitation to small time steps made simulations expensive 

and implemented a fully implicit FDM to allow larger time steps, using Newton-Raphson 

iteration to solve the Nernst-Planck and displacement-current equations simultaneously. Implicit 

methods are now implemented in many models of analytical electrochemistry. Streeter and 

Compton49 and Dickinson et al.50 employed a similar method to study weakly supported 

potential-step experiments and cyclic voltammetry (CV), respectively. The results from these 

two models led Dickinson et al.45 to perform an examination of why the electrochemical 
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modeling community would preferentially choose either the Poisson equation or 

electroneutrality. Their chief conclusion was that both approaches usually produce identical 

results, and that on modern computer hardware there are no significant differences in the 

numerical cost of one versus the other, nor does one confer an increased level of numerical 

stability. 

Early models of transport in corrosion typically employed the electroneutrality to solve 

for the pseudo-steady-state current in artificial corrosion pits under diffusion-limited conditions. 

Tester and Isaacs51 developed a model to examine common-ion effects on measured currents in 

corrosion pits but assumed that the effects of migration could be accounted for in an effective 

diffusivity of the electrolyte species. Galvele52 employed a similar approach when modeling the 

effect of transport on the stability of corrosion pits. Sharland and Tasker53,54 developed a model 

to directly consider the effects of migration on the local solution chemistry in a corrosion pit. 

However, as will be discussed below, more recent models of corrosion have been focused on 

including the effects of the moving corrosion boundary. 

 Models have also been developed to describe the coupled effects of transport and kinetics 

without considering the effects of deposition and dissolution, but within porous media instead of 

open channels. One of the most significant models is porous electrode theory (PET), which was 

initially developed by Euler and Nonnenmacher55 and then generalized by Newman and 

Tobias.56 PET was subsequently extended to consider impedance studies by de Levie.57 In PET, 

the transport of electrolyte species and the resulting current distribution are described through a 

volume-averaged approach that considers two separate current distributions for the transport and 

reaction kinetics. Newman and Tiedemann58 subsequently developed PET for applications to 

battery electrodes. Further extension of Newman and Tiedemann’s method led to the 
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development of what is perhaps the most well-known modeling approach for batteries, and in 

particular LIBs, the pseudo-two-dimensional (P2D) model59–61 described by Newman and 

coauthors. The P2D model’s contributions to understanding LIB behavior have been dramatic, 

and the initial version of the model described by Doyle et al.59 is one of the most-cited papers in 

the battery modeling field. The P2D model assumes electroneutrality and employs what is known 

as concentrated solution theory,35 specifically a Stefan-Maxwell approach for multicomponent 

diffusion. However, when activity coefficients and transference numbers remain constant, the 

P2D model essentially reproduces dilute solution theory. Thus, when developing the models 

presented in Chapter 3 and Chapter 4 we will employ transport descriptions in the dilute solution 

limit. Typically, applications of PET and the P2D model have neglected the effects of deposition 

and dissolution. 

In this dissertation, some of the developed models will employ electroneutrality, while 

others solve the Poisson equation. None of the models presented here consider transport in 

porous media. It should be noted, though, that as a mean field approximation the Poisson 

equation fails when applied to one-dimensional (1D) studies of transport in porous, tortuous 

media.62 Instead, a rigorous homogenization must be performed that results in a tensorial 

description of the permittivity. However, the electroneutrality approximation is not subject to this 

limitation, and thus any future extensions of the 1D model in this dissertation to study porous 

media will need to change from the Poisson equation to electroneutrality. 

Models of Deposition and Dissolution 

Several models have been proposed to primarily simulate the kinetics of electrodeposition of 

metals. Wheeler et al.63 employed the level-set method in two dimensions to examine the 

deposition of copper and to track the location of the metal/electrolyte interface, the movement of 
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which was governed by Butler-Volmer kinetics. Guyer et al.64,65 first derived a fully variational, 

thermodynamically consistent phase-field model of electrodeposition that recovered nonlinear 

Butler-Volmer kinetics and the Gouy-Chapman-Stern model of the electrochemical double layer. 

However, this required very fine resolution in the numerical mesh and small simulation time step 

sizes, which made the model impractically expensive beyond one-dimensional studies. A 

modification of this approach by Deng et al.66 was proposed to study the formation of surface 

layers in lithium-ion batteries, but it was similarly limited to a single dimension due to 

computational cost. 

Other variationally derived phase-field models of deposition and dissolution, such as 

Shibuta et al.,67 Liang et al.68 and Liang and Chen,69 have improved computational efficiency by 

simplifying the physics, typically by neglecting the effects of charge separation, the double layer, 

the diffusion potential, and/or the formation of concentration gradients. Cogswell70 achieved a 

significant improvement in computational efficiency by employing a nonvariational approach 

within the thin-interface limit to enable efficient simulations of dendritic deposition of zinc. 

Cogswell’s model also incorporated nonlinear Marcus-Hush-Chidsey kinetics. Ely et al.71 

derived a phase-field model for lithium deposition where the phase-field and electrostatic 

potential evolved via coupling of the fields through source terms at the solid/electrolyte interface. 

However, the effects of evolving non-uniform concentrations of ions in the electrolyte were 

neglected. DeWitt et al.33 implemented a phase-field method of faceted magnesium 

electrodeposition and electrodissolution where the solid was represented by an order parameter 

that evolved according to Cahn-Hilliard72 (i.e., conserved) dynamics. The interfacial velocity 

was given by a source term at the solid/liquid interface that coupled the reaction kinetics with 

electrochemical transport in the electrolyte, which was solved using the smoothed boundary 
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method.73 This allowed for facile inclusion of anisotropic, spatially varying reaction kinetics in a 

computationally efficient framework. Enrique et al.34 generalized the method of DeWitt et al.33 

to study the morphological evolution of lithium-metal electrode during electrodeposition. An 

additional order parameter, evolved by Allen-Cahn74 (nonconserved) dynamics, was used to 

represent the electrolyte. An example of the microstructures considered by Enrique et al. is 

shown in Figure 2.1. 

 

Figure 2.1. Simulated morphologies of dendritic lithium features, demonstrating how increased reaction kinetics 
along the deposit surfaces leads to morphological instability. Reproduced with permission from R.A. Enrique et al., 
MRS Commun., 7, 658-663 (2017). Copyright 2017 Materials Research Society.34 

Models of Corrosion 

Scheiner and Hellmich75,76 developed a moving-boundary finite volume method (FVM) model 

for pitting corrosion in stainless steel that solved the diffusion equation for an effective ion 

within the electrolyte. Their model produced generally good agreement with experimental data 

by considering Tafel kinetics to describe the interfacial velocity at a constant overpotential. 

However, as the authors point out, the lack of electrostatic migration in the electrolyte produced 

an abrupt transition between activation- and diffusion-controlled conditions that is not observed 

experimentally. Other models have also employed the approximations of only considering 
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diffusion in the Tafel regime with a variety of numerical methods. These include Duddu,77 who 

employed an extended finite element method (XFEM), Chen and Bobaru,78 who employed a 

peridynamic model, and Mai et al.,79 who proposed a model based on the Kim-Kim-Suzuki 

(KKS) phase-field formulation. Notably, the latter two of these models78,79 were able to smoothly 

capture the transition between activation- and diffusion-controlled conditions. The peridynamic 

approach has also been utilized by Chen et al.80 to simulate the effects of new diffusion pathways 

through the cover over the corrosion pit as it becomes increasingly perforated. However, the 

models from Mai et al.79 and Chen et al.78,80 did not consider orientation-dependent kinetics, as 

demonstrated in Figure 2.2. 
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Figure 2.2. A simulation of pitting corrosion in a stainless steel microstructure performed by Mai et al. While the 
model included variations in corrosion kinetics arising from varying crystallographic orientation, this was 
implemented by assigning different corrosion current densities to three orientations and each grain was assigned one 
of these orientations and its corresponding current density to the entirety of the grain. Thus, their model did not 
include true orientation-dependent reaction kinetics, and faceting of the microstructure was therefore not observed. 
Reproduced with permission from W. Mai et al., Corrosion Sci., 110, 157-166 (2016). Copyright 2016 Elsevier.79 

Other models have been proposed to include the effects of electrostatic migration. 

Laycock and White81 developed a finite element method (FEM) approach to simulate pit 

propagation in a stainless steel that qualitatively agreed with experimental results but only 

examined short time scales. Deshpande82 employed an arbitrary Lagrangian-Eulerian finite 

element moving mesh method (ALE-FEM) to simulate preferential corrosion in a Mg-Al alloy 

where the interfacial kinetics was parameterized with experimental polarization data. However, 
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the electrolyte was assumed to be well-stirred and only Laplace’s equation was solved to 

determine the electrostatic potential and current density. This simplification neglects the effects 

that concentration variations can have on both the ionic conductivity in the electrolyte and the 

reaction rates. Yin et al.83 implemented a similar ALE-FEM framework to simulate corrosion of 

Al near a cathodic particle with and without blocking effects from compound formation on the 

corroding pit interface. Their model employed experimental polarization data to calculate the 

electrode potential and the overall current density through the metal surface, but the simulations 

were performed in two dimensions and were limited to one cathodic particle. Duddu et al.84 

added the ability to solve for the electrostatic potential in the electrolyte to Duddu’s77 XFEM 

model, however this work neglected the effects of the moving boundary, which represents a 

significant simplification of the system. More recently, Mai and Soghrati85 modified their phase-

field model to include the effects of the electrostatic potential. This study considered the 

transport of multiple species, but the influence of varying conductivity within the pit solution 

was only considered for small cell polarizations. Furthermore, polarization was only accounted 

for at stationary interfaces (i.e., cathodic surfaces) and neglected along the corroding 

metal/electrolyte interface. Jafarzadeh et al.86 considered the effects of the potential by including 

a correction for the applied potential based on estimates of the bulk solution resistance. The 

correction to the potential was obtained in a previous study87 by fitting a function to an FEM 

simulation result based on the experimental cell geometry. While this approach improved 

agreement with experimental results, the decoupling of the potential from the corrosion physics 

introduces an additional step where the phenomenological relationship must be obtained for any 

given experimental geometry prior to simulation, and it also requires an assumption of constant 

conductivity. 
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Models of Mechanical Behavior 

Modeling of the effects of mechanical behavior for both battery materials and corrosion has 

attracted a fair amount of interest recently. For batteries, multiple models have been proposed to 

examine how dendrite growth may be affected by the presence of a mechanically stiff region in 

contact with the lithium anode, such as a protection layer or a polymer separator. The initial 

work of Monroe and Newman88 examined the effect of mechanics on the stability of the lithium 

anode surface during deposition, determining that the dendritic instability can be suppressed 

when the separator shear modulus is approximately twice that of lithium. This model has since 

been examined and extended upon, such as in the work of Ahmad and Viswanathan,89 which 

found that the mechanical protection effect strongly depends on the orientation of the anode and 

protective layers when they are anisotropic. Additionally, Barai et al.90 found that the initial 

morphology of the lithium surface is critical for exploiting the mechanical protection effect, as 

when the interface is pre-stressed the shear modulus must be significantly higher to prevent 

dendrite formation. Studies have also been performed to include effects of mechanical behavior 

within models derived from the P2D model, such as the work of Ferrese and Newman.91 Models 

have also been proposed to study the effects of induced eigenstrains in cathode materials92,93 and 

composite silicon anodes.94 In these models, the formation of a concentration gradient induces a 

gradient in the inelastic eigenstrain due to changes in the local crystal structure and lattice 

constants;95 as the system relaxes, elastic strains form in the cathode. Additionally, the formation 

of stress has an impact on the long-term microstructural evolution. Particularly in cathode 

materials, at some critical C-rate the eigenstrain becomes large enough to cause fracture of the 

material, an event known as electrochemical shock.96 However, models have not yet been 

developed to consider how concentration-induced eigenstrains may form in an anode protection 
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layer and lead to stress in the lithium anode. For corrosion, mechanical behavior is important in 

understanding stress corrosion cracking and has recently been incorporated into numerical 

models such as in an extension to the phase-field model of Mai and Soghrati.97 

Chapter Summary 

In this chapter, we presented a brief introduction of the fundamental equations that are 

considered when modeling the transport of ionic species that is inherent to electrochemical 

deposition and dissolution as well as corrosion processes. This discussion included descriptions 

of typical regimes for which solutions are described and the variations in typical approaches for 

solving the electrostatic potential. Additionally, we presented a review of the literature to discuss 

existing models of deposition and dissolution, corrosion, and how mechanical behavior is 

becoming a growing area of interest when simulating these processes for batteries and corrosion. 
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Computational Model of Magnesium Deposition and Dissolution for Property 
Determination via Cyclic Voltammetry 

 

Introduction 

In this chapter,* a one-dimensional continuum-scale model is developed to simulate the 

voltammetry of an electrode/electrolyte system for magnesium metal-anode battery applications. 

A rechargeable magnesium battery was first demonstrated 25 years ago when Gregory et al.98 

showed that magnesium could be reversibly deposited onto and dissolved from a magnesium-

metal surface, as well as intercalated into and deintercalated from various host cathodes. Further 

interest in secondary magnesium batteries arose following the work of Aurbach et al.,99 which 

demonstrated a highly efficient organohaloaluminate electrolyte using a magnesium anode and a 

Mo6S8 Chevrel-phase cathode. As a battery anode, magnesium metal offers important advantages 

over both intercalation compounds and lithium metal, including a higher theoretical volumetric 

energy capacity (3833 mAh/cm3 vs. 2046 mAh/cm3 for lithium metal and 760 mAh/cm3 for 

graphite-based lithium-ion anodes), as well as a higher abundance in the earth’s crust.8 

Additionally, magnesium is less prone to dendrite formation than lithium when electrodeposited 

and therefore offers potential for improved battery cycle life and safety.100 

                                                
*Adapted from A.F. Chadwick, G. Vardar, S. DeWitt, A.E.S. Sleightholme, C.W. Monroe, D.J. Siegel, and K. 
Thornton, “Computational Model of Magnesium Deposition and Dissolution for Property Determination via Cyclic 
Voltammetry,” J. Electrochem. Soc., 163 (2016) A1813. 
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In addition to high-capacity electrode materials, a practical magnesium battery will also 

require an efficient electrolyte that is compatible with (i.e., chemically stable in contact with) 

these electrodes. Compared to lithium electrolytes, magnesium electrolytes remain in a relatively 

early developmental stage.8,21,22,33,98–122 Electrolytes formulated from Grignard reagents have 

been widely studied both in the battery and general electrochemistry communities.98,119,121,123–128 

The speciation of these electrolytes is complex because, in addition to ionic dissociation, the 

reagents also undergo the Schlenk equilibrium process (a type of ligand exchange) and form 

multimeric species in many solvents. Both organohaloaluminates and the so-called magnesium 

aluminum chloride complex (MACC) are electrolyte classes that relate closely to Grignard 

reagents; both include a Lewis acid, such as AlCl3, to facilitate dissociation and shift the Schlenk 

equilibrium. Organohaloaluminates are typically of the form RMgX + AlCl3, and MACC is 

typically of the form MgCl2 + AlCl3.99,101,104,105,118,122 Due to their halide content, Grignards, 

organohaloaluminates, and MACC are corrosive to non-noble metal substrates, which presents a 

challenge to their practical application in batteries.107 To avoid this problem, inorganic salts such 

as Mg(TFSI)2 and Mg(BH4)2 in solutions based on traditional solvents22,103,108–110,112,113 or ionic 

liquids114–117 have also been explored.  

Despite the recent growth in efforts to develop efficient magnesium electrolytes, many 

challenges remain. For example, formation of ion-blocking passivation films on magnesium 

surfaces and compatibility with cathode materials (allowing reversible intercalation of Mg2+) 

both remain challenges.8,15,104,106,112 Development of accurate electrochemical models of 

magnesium electrolytes, including how they interact with electrodes, could provide the insight 

needed to guide a search for the optimal electrolyte. 
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The electrochemical performance of any electrolyte depends strongly on its properties. 

Pinpointing which parameters most strongly impact performance can be a challenge, however. 

To date, only limited property values are available in the literature. For example, diffusivities 

have been reported for an organohaloaluminate in THF101 and for Mg(TFSI)2, Mg(BF4)2, and 

Mg(BH4)2 in a small number of solvents.113 Estimates of the nucleation overpotential for 

magnesium deposition on different metal substrates100,129,130 have also been presented. 

Development of a computational model for the plating and stripping of magnesium may be 

helpful, both to identify currently unexplored properties and to examine how these properties 

influence performance. If a computationally efficient model was available, it could be employed 

to obtain the unknown properties of the electrode/electrolyte system by reproducing the 

experimentally observed voltammetric behavior of the system. While the electrodeposition and 

electrodissolution models described in Chapter 2 have increased the scientific understanding of 

the phenomena observed during deposition and dissolution processes, they are commonly limited 

by high computational cost. This high cost reduces the ability of these models to quickly 

determine multiple physical properties of the system. 

This chapter therefore presents a new continuum-scale model that is computationally 

inexpensive and can be employed to determine parameters describing both transport dynamics in 

the liquid electrolyte and interfacial reactions. The model is developed from non-electroneutral 

dilute-solution theory, using Nernst-Planck equations for the mass flux and Poisson’s equation 

for the electrostatic potential. The electrochemical reaction is modeled with multistep Butler-

Volmer kinetics, with a modified current/overpotential relationship that accounts for the portions 

of the current responsible for nucleating new deposits and growth or dissolution of existing ones. 

The model is used to simulate cyclic voltammetry of a magnesium borohydride/dimethoxyethane 
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(Mg(BH4)2/DME) electrolyte on a gold substrate. In the following sections, we formulate the 

model's governing equations, outline the numerical methods by which these equations are 

solved, and describe the batch data-processing procedure employed to fit simulated CV curves to 

experimentally obtained results.131 Several key properties such as ion diffusivities, heterogeneous 

rate constants, charge-transfer symmetry factors, nucleation overpotentials, and formal reaction 

potentials are determined through the fitting process. The fitted model parameters are provided in 

comparison with available literature data along with a discussion of the general utility of the 

model. This work demonstrates the model’s applicability in parameterizing the electrode and 

electrolyte properties.  

Theory 

One common approach to modeling electrochemical systems is to apply dilute solution theory to 

describe the electrolyte. Generally, this approach involves treating the solvent as a species in 

great excess and solving the set of equations that govern the material balances for each solute 

species i, 

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 = −∇ ⋅ 𝐍𝐍J, (3.1) 

where 𝑐𝑐J is the concentration, 𝐍𝐍J the total molar flux (a vector quantity), and 𝑡𝑡 is time. Nernst-

Planck equations are adopted as constitutive laws for mass transport,38–40 

𝐍𝐍J = −𝐷𝐷J∇𝑐𝑐J − 𝐴𝐴J
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷J𝑐𝑐J∇Φ, (3.2) 

where Di is the diffusion coefficient, zi is the charge, F is Faraday's constant, R is the ideal gas 

constant, T is the absolute temperature, and ϕ is the local electrostatic potential. We note that the 

Nernst-Einstein relationship35 has also been employed to eliminate the electrochemical mobility 

as a degree of freedom here. The two terms on the right-hand side of Eq. 3.2 correspond to 
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contributions from diffusion and migration, respectively; it is assumed that convection is 

negligible in the overall mass transport. Poisson’s equation relates the electrostatic potential in 

the electrolyte to the local charge density, 𝜌𝜌 = 𝐹𝐹∑𝐴𝐴J𝑐𝑐J, as 

∇[Φ = −
𝜌𝜌

𝜖𝜖K𝜖𝜖^
, (3.3) 

where 𝜖𝜖K is the permittivity of free space and 𝜖𝜖^ is the dielectric constant of the electrolyte.35 

When combined, Eqs. 3.1 through 3.3 form the Poisson-Nernst-Planck (PNP) system of 

equations. 

This work builds upon the methodology of Dickinson et al.50 by extending the interfacial 

reaction model to account for the nucleation, growth, and dissolution of metal deposits, as well 

as the experimental Coulombic efficiency. The utility of the model is demonstrated by 

identifying parameter sets that are consistent with experimentally obtained CV data. With this 

validation, the model could be employed in the future to determine how parameters may differ 

between different electrolyte systems that are under consideration for metal-anode battery 

applications. 

Model Formulation 

The present methodology derives from the work of Dickinson et al.50 with several modifications, 

listed below. First, the electrolyte is taken to be unsupported. Second, the overall redox reaction 

is taken to comprise a sequence of two single-electron transfers, each governed by Butler-

Volmer kinetics. Third, mass exchange between the electrolyte and electrode surface is allowed. 

Fourth, the model includes a description of both the nucleation behavior of magnesium as well as 

the Coulombic efficiency. Finally, the cell geometry is taken to be planar; this has an advantage 

in that it makes the ohmic loss between the working and reference electrode more precise, but a 

disadvantage in that the diffusion boundary layer may extend well into the electrolyte.35 Within 



 30 

the present 1D model, the counter electrode is assumed to be sufficiently far away from the 

reference electrode that the diffusion boundary layer extending from it does not impact the 

concentration field at the reference electrode during the duration of a CV sweep. In practice, 

experimental cells must be carefully designed so that these approximations are satisfied. 

Since a planar cell was not available, experiments were performed in a standard three-

compartment electrochemical cell, and the resulting data were used to parameterize the model. 

Fitting of data from the three-compartment cell serves to demonstrate the methodology as a 

proof-of-concept. These promising results will hopefully stimulate interest in performing 

experiments that correspond to the geometry assumed in simulations. 

Model Electrochemical Half-Cell 

The model describes an electrochemical half-cell comprising a working electrode (WE), a 

reference electrode (RE), and a region of electrolyte between them. A 1D model geometry is 

assumed, which approximates flat planar electrodes separated by a distance that is small in 

comparison to the size of the electrode surface. This model geometry is similar to those used in 

many experimental cells for battery material testing, such as coin cells or Swagelok cells. 

However, such cells would typically not include a reference electrode and would likely have a 

smaller spacing between the working and counter electrodes than is assumed here. 

Magnesium is deposited and dissolved from the WE, which is assumed to be an ideal 

noble metal that does not participate in the reaction. Initially, we assume that there is no 

magnesium deposited upon the surface of the WE. A schematic representation of the model 

system is presented in Figure 3.1. The origin (x = 0) of the coordinate system is defined as the 

interface between the WE or deposited layer and the electrolyte. The surface of the reference 

electrode (RE) is defined to reside at position x = L. The counter electrode is not explicitly 
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considered in the model; it is assumed that the counter electrode is far enough away from the WE 

and RE such that it does not influence the response at either electrode. In cases where this 

assumption is not valid, the model can be modified to account for the counter electrode.  

 

Figure 3.1. A schematic representation of the model domain (not to scale). Within the electrolyte, the concentrations 
of each electrolyte species are tracked along with the local electrostatic potential. The surface of the working 
electrode (WE), which is a combination of the substrate and deposited magnesium layer, is at x = 0, while the 
surface of the reference electrode (RE) is at x = L. 

The electrolyte is assumed to be Mg(BH4)2 in dimethoxyethane (DME), a member of the 

glyme series. According to Mohtadi et al.,108 dissociation of the salt in solution is governed by 

the equilibrium reactions 

Mg(BH|)[ ⇌ Mg(BH|)~ + BH|
h, (3.4) 

Mg(BH|)~ ⇌ Mg[~ + BH|
h, (3.5) 

where the equilibrium concentration of each species is determined by Kd1 and Kd2, the respective 

dissociation constants of Eqs. 3.4 and 3.5. Both Kd1 and Kd2, and therefore the exact species 

concentrations, are unknown. It is generally believed that other metal borohydride salts exist in 

solution as a combination of solvated ions as well as solvated ion pairs.132,133 In addition, 

Mohtadi et al.108 determined via IR and NMR spectroscopy that while further dissociation occurs 

in DME than in THF, it is still unlikely that complete dissociation of Mg(BH4)2 occurs in 

solution. Here, it is assumed that the salt is mostly dissociated to its constituent ions, but if the 

actual speciation differs, the approach may require corresponding modifications. It is assumed 

that the redox couple for the electrodeposition and electrodissolution reaction is composed of 

two sequential single-electron transfers involving the Mg[~ ion produced by Eq. 3.5,  
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Mg[~ + eh → MgÄ
~, (3.6) 

MgÄ
~ + eh → Mg, (3.7) 

where MgÄ
~ is an unstable intermediate. The overall half-reaction is 

Mg[~ + 2eh → Mg, (3.8) 

where metallic magnesium is deposited upon the WE. 

Electrolyte Species Concentration and Electrostatic Potential 

The model physics are described by the 1D Cartesian forms of Eqs. 3.1 through 3.3. To fully 

specify the solution of the boundary value problem, it is necessary to define boundary conditions 

on these equations. At the boundary between the WE and the electrolyte (at x = 0), it is assumed 

that the eventual thickness of the deposited magnesium layer is significantly smaller than the 

WE/RE separation, and thus it is assumed to be stationary in time. No reactions occur at the 

boundary between the electrolyte and RE (at x = L). The system size, 𝐿𝐿, is sufficiently large such 

that the combined diffusion/migration front does not reach the RE at the end of the simulation 

time. Therefore, rather than assuming a no-flux boundary condition, the concentration of each 

species can be set to its nominal bulk concentration for simplicity, 

𝑐𝑐J|ÉcÑ = 𝑐𝑐J,ÖÜáà. (3.9) 

The boundary condition at the WE surface (x = 0) is dependent upon whether or not a given 

species is involved in the electron transfer reaction. For inert species, a no-flux boundary 

condition is imposed: 

𝑁𝑁J|ÉcK = 0, (3.10) 

while for Mg2+, the current is proportional to the current density, 𝜙𝜙: 

𝑁𝑁äãåç é
ÉcK

=
𝜙𝜙

2𝐹𝐹. (3.11) 
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The zero-field approximation49,134 is taken to govern the electrostatic potential at the WE surface, 

𝜕𝜕Φ
𝜕𝜕𝑥𝑥 è

ÉcK
= 0, (3.12) 

which assumes that the thickness of the double layer is negligible in comparison to the extent of 

the diffusion layer in the electrolyte, and thus the potential drop across the double layer does not 

substantially contribute to the potential difference between the WE and zero-field plane. For 

sufficiently large time and length scales, Streeter and Compton49 concluded that the zero-field 

approximation was in agreement with a previously described dynamic double layer model.135 

The potential is set to a constant at the RE surface (x = L), and we choose the value to be zero for 

convenience: 

Φ|ÉcÑ = 0. (3.13) 

Choosing this as the reference potential may introduce some amount of error in the calculated 

formal reaction potential, but this error is on the order of 10 mV, which is small compared to the 

uncertainties introduced by the differences between the model geometry and the experimental 

geometry.  

Reaction Kinetics 

The current density is taken to relate to the total (surface and concentration) overpotential 

through a reaction rate law. To account for the multistep reaction, Butler-Volmer equations are 

written for both reaction steps in Eqs. 3.6 and 3.7 in the form employed by Dickinson et al..50 

We then employ an approach similar to that described by Newman and Thomas-Alyea,35 where 

the intermediate species formed in Eq. 3.6 does not accumulate, and thus the current associated 

with the reaction in Eq. 3.6 must equal the current associated with the reaction in Eq. 3.7. If the 

heterogeneous rate constant associated with Eq. 3.7 is much greater than the rate constant 

associated with Eq. 3.6, the resulting current-overpotential relation may be written as  
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𝜙𝜙 = 2𝐹𝐹𝑘𝑘K ê𝑐𝑐äãexp ë
(2 − 𝛽𝛽)𝐹𝐹

𝑅𝑅𝑅𝑅 𝜂𝜂ì − 𝑐𝑐äãåç exp i−
𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂qî, (3.14) 

where 𝜙𝜙 is the current density, 𝑘𝑘K is the standard heterogeneous rate constant for the multistep 

reaction, 𝛽𝛽 is the symmetry factor, and 𝜂𝜂 = 𝐸𝐸 − ΦK − 𝐸𝐸Kt  is the overpotential; where 𝐸𝐸 is the 

potential of the WE (as compared to the RE), ΦK is the electrostatic potential in the electrolyte 

immediately adjacent to the electrode, and 𝐸𝐸Kt is the formal potential of the redox reaction at the 

equilibrium electrolyte concentration. 

The kinetic rate law presented above is insufficient for capturing all of the essential 

features of the electrodeposition and electrodissolution of magnesium within the 1D model. 

Experimentally obtained CV curves for the electrodeposition and electrodissolution of 

magnesium to and from non-magnesium electrodes exhibit a hysteresis in the current 

density.99,108,109,119,136 Towards the more reducing potentials of the voltammogram, the onset of 

measurable current occurs later than would be expected, which is attributed to the effect of a 

nucleation overpotential associated with a free energy barrier for deposition.100,136 In the 

oxidative region of the voltammogram, the current density increases until it abruptly drops to 

zero once all of the available magnesium has been dissolved from the WE. Experimentally, this 

drop-off occurs sooner than would be expected from the amount of magnesium deposited119 

because of Coulombic inefficiency. The following sections describe how both the nucleation 

overpotential and the Coulombic efficiency of the reaction process may be incorporated to 

supplement the kinetic rate law. 

Nucleation 

As mentioned, there is an overpotential associated with the nucleation of magnesium deposits 

upon the WE surface, and this overpotential may be observed experimentally. In the kinetic rate 
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law, the nucleation overpotential may be included as an additional term in the exponential. 

Experimental observations suggest that once a deposit has nucleated, no extra overpotential is 

necessary for its continued growth.130 At any point during electrodeposition, nucleated deposits 

comprise a portion of the WE’s surface area, with the balance being bare. The further nucleation 

and growth of deposits may both contribute to the measured current response, and as such, the 

kinetic rate law can be extended to represent a combination of the processes of deposit 

nucleation and subsequent growth: 

𝜙𝜙 = 2𝐹𝐹𝑘𝑘K ê𝑐𝑐äã𝜃𝜃 exp ë
(2 − 𝛽𝛽)𝐹𝐹

𝑅𝑅𝑅𝑅 𝜂𝜂ì

− 𝑐𝑐äãåç Y𝜃𝜃 exp i−
𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂q + (1 − 𝜃𝜃) exp i−

𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅

(𝜂𝜂 − 𝜂𝜂ïÜñ)qZî, 

(3.15) 

where 𝜃𝜃 is the fractional coverage of the bare WE surface by deposits and 𝜂𝜂ïÜñ is the nucleation 

overpotential. 

In organohaloaluminate electrolytes, it has been observed experimentally that magnesium 

nucleates in a hexagonal plate morphology.33,100 Unfortunately, the available micrographs for 

Mg(BH4)2 in tetraglyme only show the deposit morphology well after the initial nucleation 

process has completed.116 Thus we assume that that in Mg(BH4)2/DME, the deposits also 

nucleate as hexagonal plates with a constant ratio between the height and the deposit spacing; as 

these plates grow, they increasingly cover the WE surface and eventually merge. In this case, the 

value of 𝜃𝜃 is directly proportional to the average surface concentration of deposited magnesium, 

Γòôö, until the deposits fully cover the WE and the fractional coverage reaches unity: 

𝜃𝜃 = õú
Γòôö(𝑡𝑡)

Γùôû
ü

[
†

Γòôö(𝑡𝑡) ≤ Γùôû

1 Γòôö(𝑡𝑡) > Γùôû

. (3.16) 
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Here, Γùôû = 𝑟𝑟𝑟𝑟/Ω represents the surface concentration of magnesium at which the surface is 

fully covered, where 𝑟𝑟 is the ratio between the deposit’s height and the reference deposit edge 

length, 𝑟𝑟, and Ω is the molar volume of magnesium. The surface concentration of deposited 

magnesium relates to the current density through  

Γòôö(𝑡𝑡) = − ¶
𝜙𝜙(𝑡𝑡)
2𝐹𝐹 𝑟𝑟𝑡𝑡

ß

K
. (3.17) 

Alternative assumptions can be made for the relationship between 𝜃𝜃 and Γòôö to account 

for different deposit morphologies, which could be described in terms of their size, shape, and 

average spacing on the electrode surface. In future studies, it may also be desirable to account for 

the increased surface area of the electrode that would occur from the nucleation and growth of 

deposits; at present, it is assumed that this effect can be neglected. 

Coulombic Efficiency 

The 1D model also includes a phenomenological parameter that allows incorporation of the 

experimentally determined Coulombic efficiency, CE. This is defined as108,109,137 

CE =
𝑞𝑞òÄ´´

¨≠¨

𝑞𝑞òôö
¨≠¨ , (3.18) 

where 𝑞𝑞òÄ´´
¨≠¨  is the total charge that passes across the WE during electrodissolution and 𝑞𝑞òôö

¨≠¨  is the 

total charge that passes across the WE during electrodeposition. Since the charge is related to the 

integral of the current, Eq. 3.18 can be rewritten as follows: 

CE =
∫ 𝜙𝜙òÄ´´(𝑡𝑡)𝑟𝑟𝑡𝑡ß

K

∫ 𝜙𝜙òôö(𝑡𝑡)𝑟𝑟𝑡𝑡ß
K

=
∫ 𝑁𝑁òÄ´´

äãåç
(𝑡𝑡)𝑟𝑟𝑡𝑡ß

K

∫ 	𝑁𝑁òôö
äãåç

(𝑡𝑡)𝑟𝑟𝑡𝑡ß
K

, (3.19) 

where 𝜙𝜙òÄ´´(𝑡𝑡) is the electrodissolution current, 𝜙𝜙òôö(𝑡𝑡) is the electrodeposition current, and 

𝑁𝑁òÄ´´
äãåç

(𝑡𝑡) and 𝑁𝑁òôö
äãåç

(𝑡𝑡) are the fluxes of Mg2+ from and to the WE, respectively. These fluxes 
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are obtained by splitting Eq. 3.15 into its electrodeposition and electrodissolution components 

and applying Faraday's Law: 

𝑁𝑁òÄ´´
äãåç

(𝑡𝑡) = 𝑘𝑘K𝐶𝐶äã𝜃𝜃 exp ë
(2 − 𝛽𝛽)𝐹𝐹

𝑅𝑅𝑅𝑅 𝜂𝜂ì, (3.20) 

𝑁𝑁òôö
äãåç

(𝑡𝑡) = 𝑘𝑘K𝐶𝐶äãåç ∞𝜃𝜃 exp i−
𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂q + (1 − 𝜃𝜃) exp i−

𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅

(𝜂𝜂 − 𝜂𝜂ïÜñ)q±. (3.21) 

A CE less than 1 (cf. Eq. 3.18) may arise from one or more processes in the cell that occur 

concurrently with the electrodeposition and electrodissolution of magnesium. In the experimental 

CV curves and electrochemical quartz crystal microbalance (EQCM) data presented by Lu et 

al.,119 it seems reasonable to propose that these processes may be broadly categorized as one of 

two types. The first is a non-electrochemically active process that causes magnesium to be 

dissolved more quickly than expected (for example, magnesium becoming electronically isolated 

from the surface). The second is an electrochemically active process (such as a side reaction) 

during deposition that would contribute to the measured current, which would appear as if more 

magnesium was being deposited than in actuality. For our model, we assume a dominant process 

of the former type. Under the assumption that all deposited magnesium is subsequently dissolved 

from the WE, the following equation must hold: 

¶ 𝑁𝑁òôö
äãåç

(𝑡𝑡)𝑟𝑟𝑡𝑡
ß

K
= ¶ Y𝑁𝑁òÄ´´

äãåç
(𝑡𝑡) + 𝑁𝑁´Äòô

äãåç
(𝑡𝑡)Z 𝑟𝑟𝑡𝑡

ß

K
. (3.22) 

Further, we assume that the flux of Mg2+ due to processes not included in the redox 

couple, 𝑁𝑁´Äòô
äãåç

, is directly proportional to the electrodissolution flux, 𝑁𝑁òÄ´´
äãåç

, with a 

proportionality constant 𝜔𝜔. This allows Eq. 3.22 to be rewritten as: 

¶ 𝑁𝑁òôö
äãåç

(𝑡𝑡)𝑟𝑟𝑡𝑡
ß

K
= ¶ Y𝑁𝑁òÄ´´

äãåç
(𝑡𝑡) + 𝜔𝜔𝑁𝑁òÄ´´

äãåç
(𝑡𝑡)Z 𝑟𝑟𝑡𝑡

ß

K
= 𝑀𝑀 + 𝜔𝜔𝑀𝑀. (3.23) 

Equations 3.18 and 3.23 can be combined to determine the value of 𝜔𝜔: 
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𝜔𝜔 =
1

CE − 1. (3.24) 

Finally, 𝜙𝜙(𝑡𝑡) in Eq. 3.17 is split into its components, 𝜙𝜙òÄ´´(𝑡𝑡) and 𝜙𝜙òôö(𝑡𝑡), and 𝜙𝜙òÄ´´(𝑡𝑡) is 

multiplied by (1 + 𝜔𝜔): 

Γòôö(𝑡𝑡) = − ¶
(1 + 𝜔𝜔)𝜙𝜙òÄ´´(𝑡𝑡) − 𝜙𝜙òôö(𝑡𝑡)

𝑛𝑛𝐹𝐹 𝑟𝑟𝑡𝑡
ß

K
, (3.25) 

which results in an expression of Γòôö that is corrected for the effects of the Coulombic 

efficiency. Alternatively, if an additional electrochemically active process during deposition is 

dominant, one could still arrive at 𝜔𝜔 as described by Eq. 3.24, but Γòôö would revert to Eq. 3.17, 

and the total measured current would be greater by a factor of 1 + 𝜔𝜔 than the actual deposition 

current. 

Numerical Methods 

Equations 3.1 through 3.3 are coupled nonlinear partial differential equations that are 

numerically stiff,48–50,138 requiring small time step size if an explicit time stepping scheme were 

employed. Therefore, the equations are discretized using a semi-implicit Crank-Nicolson scheme 

that is second order in space and second order in time. The spatial grid is composed of 100 points 

whose positions are given by: 

𝑥𝑥¥ = 𝑥𝑥¥hd Y
𝐿𝐿

Δ𝑥𝑥K
Z

d
∂h[

, (3.26) 

where 𝑥𝑥¥ is the j-th grid point position, Δ𝑥𝑥K = 1	Å is the minimum grid spacing, and 𝑁𝑁 is the 

number of grid points. The grid point 𝑥𝑥d is at – Δ𝑥𝑥K and the grid point 𝑥𝑥[ is at Δ𝑥𝑥K. This 

generates a grid that has high resolution near the WE and lower resolution toward the RE, which 

ensures good numerical accuracy without sacrificing computational efficiency. At each grid 

point, five unknown quantities are defined: the concentrations of the four species (Mg2+, 
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Mg(BH4)+, BH4-, and undissociated Mg(BH4)2) in the electrolyte and the local electrostatic 

potential, Φ. All of the unknown quantities are solved simultaneously using the Newton-

Raphson method, as described by Brumleve and Buck48 and Streeter and Compton.49 The linear 

system for the Newton-Raphson iteration is solved using Gaussian Elimination with partial 

pivoting. 

A dimensionless scheme similar to those in the literature48,50,139 was implemented to both 

improve the numerical accuracy and simplify the governing equations. The scheme is based upon 

four parameters: the nominal electrolyte concentration, 𝑐𝑐ï≠π, the thermal voltage, 𝑅𝑅𝑅𝑅/𝐹𝐹, the 

diffusivity of the magnesium cation, 𝐷𝐷äãåç , and the total cycle time, 𝑡𝑡π∫ª. The resulting 

expressions for each dimensionless quantity are shown in Table 3.1. For this model, the relevant 

dimensionless quantities are the species concentrations, 𝐶𝐶J, the electrostatic potential, 𝜓𝜓, the 

position, 𝜁𝜁, time, 𝜏𝜏, the species diffusivity, 𝛿𝛿J, the standard heterogeneous rate constant, 𝐾𝐾K, and 

a scale parameter, 𝜉𝜉, that relates the diffusion length of the electrolyte to the Debye length. 

Applying the dimensionless scheme, the time evolution of the dimensionless Nernst-

Planck equation is: 

𝜕𝜕𝐶𝐶J

𝜕𝜕𝜏𝜏 = 𝛿𝛿J ë
𝜕𝜕[𝐶𝐶J

𝜕𝜕𝜁𝜁[ + 𝐴𝐴J
𝜕𝜕

𝜕𝜕𝜁𝜁 Y𝐶𝐶J
𝜕𝜕𝜓𝜓
𝜕𝜕𝜁𝜁 Zì, (3.27) 

and the dimensionless Poisson equation is: 

𝜕𝜕[𝜓𝜓
𝜕𝜕𝜁𝜁[ = −𝜉𝜉[ a 𝐴𝐴J𝐶𝐶J. (3.28) 

The overpotential, applied electrode potential, and formal potential are also normalized by the 

thermal voltage, yielding the dimensionless surface flux of Mg2+: 

𝑁𝑁äãåç
∗ = 𝐾𝐾K𝐶𝐶äã𝜃𝜃 exp[(2 − 𝛽𝛽)𝜂𝜂∂ƒ]

− 𝐾𝐾K𝐶𝐶äãåç(𝜃𝜃 exp[−𝛽𝛽𝜂𝜂∂ƒ] + (1 − 𝜃𝜃) exp[−𝛽𝛽(𝜂𝜂∂ƒ − 𝜂𝜂ïÜñ
∂ƒ )]). 

(3.29) 
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Here, 𝜂𝜂ïÜñ
∂ƒ  is the dimensionless nucleation overpotential and 𝜂𝜂∂ƒ = 𝐸𝐸∂ƒ − 𝜓𝜓K − 𝐸𝐸∂ƒ

Kt  is the 

dimensionless overpotential, where 𝐸𝐸∂ƒ  is the dimensionless applied electrode potential and 𝐸𝐸∂ƒ
Kt  

is the dimensionless formal potential. 

Table 3.1. Expressions for the dimensionless quantities of the model. 

Dimensional Quantity Dimensionless Quantity 
𝑐𝑐J 𝐶𝐶J = 𝑐𝑐J/𝑐𝑐ï≠π 
Φ 𝜓𝜓 = Φ𝐹𝐹/𝑅𝑅𝑅𝑅 
𝑥𝑥 𝜁𝜁 = 𝑥𝑥	∆𝐷𝐷äãåç𝑡𝑡π∫ª«hd [⁄

 
𝑡𝑡 𝜏𝜏 = 𝑡𝑡/𝑡𝑡π∫ª 
𝐷𝐷J 𝛿𝛿J = 𝐷𝐷J/𝐷𝐷äãåç 

𝑘𝑘K 𝐾𝐾K = 𝑘𝑘K∆𝑡𝑡π∫ª 𝐷𝐷äãåç⁄ «
d [⁄

 

 𝜉𝜉 = ∆𝑐𝑐ï≠π
[ 𝐹𝐹[𝐷𝐷äãåç𝑡𝑡π∫ª 𝑅𝑅𝑅𝑅𝜖𝜖K𝜖𝜖^⁄ «

d [⁄
 

Fitting Procedure 

The model described in the previous section is applied to construct a series of simulated CV 

curves. A semiautomatic procedure is adopted to determine the best-fitting parameters for the 

model. For each unknown parameter in the system, a batch-processing routine tests all possible 

combinations of parameters that are uniformly sampled from a discrete set within a range of 

values. For each simulated CV curve, the sum of squares of the difference with respect to the 

experimental data within a relevant portion of the voltage scan is calculated as a measure of the 

absolute error, which is minimized. For this study, the model simulates the CV curve between ± 

1 V applied potentials, and for the calculation of the error we consider the voltage range starting 

at 0 V (where the experimental sweep started), to the lower bound of -1 V, and then back to 0.2 

V (just before the peak during electrodissolution). This voltage range was chosen for the error 

calculation because the model is unable to capture the observed dissolution behavior past 0.2 V, 

which is likely due to changes in the deposit morphology that are not considered by the present 

approximations. To reduce the number of degrees of freedom within the parameter space, all of 
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the species arising from the dissociation of Mg(BH4)2 are taken to have equal diffusivity, 𝐷𝐷 

(consistent with the data reported by Rajput et al.113). In addition to 𝐷𝐷, the fitting procedure is 

used to obtain the values of the standard heterogeneous rate constant, 𝑘𝑘K, the symmetry factor, 𝛽𝛽, 

the formal reaction potential, 𝐸𝐸Kt , and the nucleation overpotential, 𝜂𝜂ïÜñ, which appear in Eqs. 

3.8 and 3.17. 

This fitting procedure is applied to the first cycle of the experimentally obtained CV 

curve with a 20 mV/s voltage scan rate. An exploratory parameter sweep is performed to find the 

initial search range for subsequent parameter sweeps. A coarse parameter sweep is performed, 

and a histogram is generated of the parameter combinations whose sum of squared error (SSE) is 

less than 7 × 10-7 A2/cm4. This threshold value is chosen because it both encompasses the range 

of space where the likely parameters exist and results in voltammograms that are in good visual 

agreement with the experimental data. If a smaller tolerance is chosen, the histograms exhibit 

gaps in the peaks, which is due to an insufficient number of parameter sets that satisfy the 

tolerance at the coarse sampling resolution. The coarse histogram is then used to determine the 

bounds of a finer parameter sweep. To validate the model, we employ the resulting best-fit 

parameters to predict the behavior at the faster scan rates, which is then compared to the 

experimental data at the corresponding rates. 

Results and Discussion 

Parameter Fitting and CV Curve Prediction 

The parameter spaces sampled and the numbers of sampling steps for the coarse and fine sweeps 

are summarized in Table 3.2, and additional parameters required for the simulation are 

summarized in Table 3.3. The sampling step size is equal for a given parameter and a given 

sweep. The coarse parameter sweep resulted in 38,880 combinations, the histogram of which is 
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shown as Figure 3.2. At the coarse level, the parameters exhibit unresolved peaks due to the low 

sampling resolution. Therefore, a fine parameter sweep was performed with 136,890 possible 

combinations, of which 145 (or 0.11% of tested combinations) met the SSE threshold of 7 × 10-7 

A2/cm4. The histograms of the distributions of parameters for these calculations are shown in 

Figure 3.3. Compared to the coarse parameter sweep, the histograms in Figure 3.3 exhibit well-

defined peaks due to their finer resolution. The voltammograms are shown in Figure 3.4 for the 

parameter sets that had the lowest overall SSE value as well as the highest value that was below 

the threshold. The SSE values and the parameter sets for these calculations are shown in Table 

3.4. The experimental CV curve and the simulated CV curve with the best-fit parameter set are in 

good agreement except toward the end of dissolution, where the experimental data shows non-

ideality, likely due to more complex deposit morphologies that are not accounted for in the 

model. 

Using the best-fit parameter set, we predicted the voltammograms at the 50 and 100 mV/s 

voltage scan rates (shown in Figure 3.5). The predicted curves are again in good agreement with 

the experimental data for most of the voltage scan. In these cases, however, the slope of the 

simulated CV curves during electrodissolution better matched the experimental curves. In 

general, the predicted curves also show agreement with both the onset and cessation of 

deposition, although the peak deposition current is higher for the predicted curves than the 

experimentally observed peak current. 
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Table 3.2. Parameter spaces examined by the coarse and fine sweeps. 

 Coarse  Fine 
Parameter Low High # steps  Low High # steps 
β 0.15 0.55 9  0.225 0.425 9 
k0 (cm/s) 1.78 × 10-8 1 × 10-6 8†  1.78 × 10-8 5.62 × 10-7 13† 
D (cm2/s) 0.9 × 10-5 1.7 × 10-5 9  1.0 × 10-5 1.6 × 10-5 13 
E0’ (V) -0.02 0.08 6  -0.01 0.07 9 
ηnuc (V) -0.65 -0.2 10  -0.65 -0.2 10 
†Indicates logarithmic step sizes were used. 

 

Table 3.3. Additional simulation parameters. 

Parameter Value 
𝜖𝜖^ 7.2† 
T 298 K 
L 5 cm 
Δt 0.1 s 
Kd1 4.77 × 10-5 mol/cm3 

Kd2 4.77 × 10-3 mol/cm3 

cMg 7.14 × 10-2 mol/cm3 

Ω 14 cm3/mol 
r 0.125 
d 160 nm 
†Value taken from Ref. 140. 

 

Table 3.4. Parameters describing the lowest and highest SSE fits. 

 Parameter Values 
Parameter Lowest SSE Highest SSE 
SSE (A2/cm4) 5.32 × 10-7 6.99 × 10-7 

β 0.3 0.375 
k0 (cm /s) 1.33 × 10-7 5.62 × 10-8 

D (cm2/s) 1.3 × 10-5 1.2 × 10-5 

E0’ (V) 0.03 0.01 
ηnuc (V) -0.3 -0.5 

 

Table 3.5. Average parameter values fitted by model. 

Parameter Average Value 
β 0.31 ± 0.04 
k0 (cm/s) 1.3 ± 0.4 × 10-7 

D (cm2/s) 1.3 ± 0.1 × 10-5 

E0’ (V) 0.030 ± 0.015 
ηnuc (V) -0.34 ± 0.07 
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Figure 3.2. A histogram showing the distribution of parameters that result in simulated voltammograms with an 
SSE value below 7 × 10-7 A2/cm4 for 75 mM Mg(BH4)2 at 20 mV/s after the coarse parameter sweep. The dashed 
lines indicate the bounds of the parameter space. 

 

Figure 3.3. A histogram showing the distribution of parameters that result in simulated voltammograms with an 
SSE value below 7 × 10-7 A2/cm4 for 75 mM Mg(BH4)2 at 20 mV/s after the fine parameter sweep. The black dashed 
lines indicate the bounds of the parameter space. The solid red line indicates the best-fit value of the parameter, and 
the dash-dot blue line indicates the mean value of the parameter. 
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Figure 3.4. A comparison of the experimental (solid red) and simulated (dashed black) cyclic voltammograms for 
the 75 mM concentration at 20 mV/s for the combinations of the parameters that resulted in (a) the lowest sum of 
squared error and (b) the highest sum of squared error below the threshold of 7 × 10-7 A2/cm4. The parameters for 
each curve are reported in Table 3.4.  
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Figure 3.5. A comparison of the experimental (solid red) and simulated (dashed black) cyclic voltammograms for 
the 75 mM concentration at (a) 50 mV/s, and (b) 100 mV/s. The best-fit values in Table 3.4 that were obtained by 
fitting the 20 mV/s curve were then used to predict the behavior at higher sweep rates. 

To estimate the uncertainties of the fitted parameters, the mean and standard deviation 

was calculated for each parameter, the values of which are summarized in Table 3.5. It is 

observed that the best-fit parameter set is within one standard deviation of the mean values. 

Comparison of the fitted parameters with experimental data is difficult because, as was 

mentioned previously, many of these parameters do not have reported values in the literature. 

However, we may make comparisons for both 𝐷𝐷 and 𝜂𝜂ïÜñ. For 𝐷𝐷, the fitted value of 1.3 × 10-5 

cm2/s is about six times larger than the value of approximately 2 × 10-6 cm2/s reported by Rajput 

et al.113 While a value of 𝜂𝜂ïÜñ is not available for nucleating magnesium upon a gold substrate, 

literature values upon copper, platinum, nickel, and silver range from -240 mV to -850 
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mV,100,129,130 and our fitted value of -300 mV is within the range. It should be noted that the 

predicted values of 𝑘𝑘K and 𝜂𝜂ïÜñ would depend on the assumed deposit geometry, as well as the 

cell geometry. 

For the symmetry factor, 𝛽𝛽, the fitted value of 0.31 is lower than the value of 0.5 that has 

been measured previously for lithium deposition.141 It is well-known that the charge transfer 

coefficient, and consequently the symmetry factor, depends upon the overall reaction 

mechanism.142,143 Although the model is capable of isolating a likely value of 𝛽𝛽, the fitted value 

depends on the assumed reaction mechanism. Therefore, if the actual mechanisms differ from the 

assumed mechanism, the fitted value of 𝛽𝛽 may not be representative. However, this does lead to 

the possibility of future investigations that could be performed with the described model to 

determine whether or not the calculated value of 𝛽𝛽 is a consistent trend in magnesium 

electrochemistry. 

Overall, the results demonstrate that while it is feasible to determine the parameters using 

the described fitting procedure, there is a moderate degree of uncertainty in the calculated 

parameters. However, the uncertainties would be reduced if one or more of the parameters—

particularly the deposit morphology throughout the cycle—could be accurately determined 

experimentally. It should also be noted that there is an inherent error in the values summarized in 

Table 3.5 because of the fact that the simulated cell geometry does not exactly correspond to the 

one used in the experiments reported in this work. However, the data is sufficient for the 

demonstration of the approach. 

Effect of Sweep Rate on Peak Current 

Generally, an increase in the sweep rate is expected to lead to an increase in the magnitude of the 

peak currents in the voltammogram from non-Faradaic processes.37,50 However, both the 
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experimental and simulated results in Figure 3.4 and Figure 3.5 exhibit a decrease in the 

magnitude of the peak current with increasing scan rate. We propose that the decrease in peak 

current is due to a smaller amount of electrochemically active magnesium and not non-Faradaic 

behavior of the electrolyte. In Figure 3.6, it is observed that as the sweep rate increases, there is a 

corresponding decrease in the simulated value of 𝜃𝜃 at the peak deposition current. This is 

primarily a result of the shorter duration of the cycle at higher voltage scan rates within the same 

fixed voltage range. As stated in Eq. 3.25, the total amount of deposited magnesium is related to 

the time integral of the current. Thus, at higher rates, less magnesium is deposited even if the 

current at a given voltage is otherwise the same. 

 

Figure 3.6. A plot of the fraction of the surface area covered by magnesium, θ, at the peak deposition current as a 
function of the sweep rate. At higher sweep rates, less material can be deposited due to the shorter duration of the 
cycle, reducing the coverage by magnesium. 

While the model agrees with the experimentally observed trend of a decreasing peak 

current with increasing sweep rate, the model predicts a smaller magnitude of decrease than is 

experimentally observed. The likely cause of this discrepancy is that the actual deposit 

morphology is more complex than that assumed in the model. By inspection of Eq. 3.15, the 

deposition behavior may be split into two limiting cases: deposition purely by growth of existing 

deposits or by nucleation of new deposits. The nucleation overpotential lowers the formal 
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potential of the reaction, which shifts the voltammetric behavior to more negative applied 

potentials. Thus, at a given negative applied potential, deposition by nucleation would yield a 

lower current than deposition by growth. It can be observed from the simulation that 𝜃𝜃 serves to 

shift the deposition curve in between these two extremes. Therefore, we conclude that the 

assumed nucleation model overestimates the active amount of magnesium, and consequently the 

current is predicted to be higher than is observed experimentally. Future experimental work may 

be able to inform the model regarding more realistic morphology of the magnesium deposits, 

which may depend on the voltage scan rate. 

Considerations of Experimental Geometry 

Using the parameters predicted by the model, we also predict the response of the voltammogram 

to changes in the spacing between the WE and the RE. For this test, we calculated the 

voltammogram for a 75 mM electrolyte at a voltage scan rate of 20 mV/s, assuming spacings of 

2.5 cm, 5 cm (the actual experimental spacing), and 10 cm using the parameters given in Table 

3.4. The resulting curves are plotted in Figure 3.7, where the magnitude of the measured current 

decreases as the electrode spacing increases. This relationship is of the form 𝜙𝜙 ∝ 1/𝐿𝐿, where 𝐿𝐿 is 

the WE/RE spacing; halving the electrode spacing roughly doubles the measured current density 

at a given point and doubling the spacing halves the measured current density. Therefore, the 

model indicates that when using electrodes that are large as compared to the separation between 

them, the spacing between the WE and RE must be known in order to accurately determine the 

dynamics of the system. This behavior arises from the uncompensated resistance of the poorly 

conductive unsupported electrolyte. This is in agreement with the report by Myland and 

Oldham,144 which concluded that, for a weakly conductive electrolyte, the uncompensated 

resistance will always have an effect on the measured cell behavior unless the separation 



 50 

between the WE and RE becomes infinitesimally small. Thus, the cell geometry should always 

be reported for experimental measurements of voltammetry with unsupported electrolytes. 

 

Figure 3.7. The impact of the spacing between the WE and RE in the model. As the spacing increases, the measured 
current response to the voltage sweep decreases. These curves were calculated using the parameters for the 75 mM 
electrolyte at 20 mV/s. 

Summary and Conclusions 

A 1D model was developed to simulate the cyclic voltammetry of a Mg(BH4)2/DME electrolyte 

with a gold WE and a magnesium RE by simultaneously solving the Nernst-Planck and Poisson 

equations for the mass transport and electrostatic potential, respectively. Additional 

modifications were made to the governing equations to account for the nucleation behavior of 

magnesium upon the WE and the experimentally determined Coulombic efficiency. This model 

was parameterized by batch fitting to the first cycle of experimentally obtained voltammograms 

for 75 mM concentration of electrolyte at 20 mV/s. The fitted parameters were employed to 

predict the voltammetric behavior at 50 and 100 mV/s. Histograms of the parameter sets that 

produce a good fit to the experimental voltammogram over a large parameter space were 

generated. The results show that the model is able to predict a likely range of the parameters that 

describe the system. The best-fit values of the parameters produce cyclic voltammograms that 
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are overall similar to the experimental curves against which they were fit, and the predicted 

voltammograms at higher sweep rates also exhibit good agreement with the experimental data. 

The model, combined with the fitting procedure, allowed for the determination of kinetic 

information of the Mg(BH4)2/DME electrolyte, but this was made possible by employing several 

assumptions to minimize degrees of freedom in the system of equations. First, it was assumed 

that the electrolyte was mostly dissociated into solvated ions and the electroactive species was 

Mg2+. Second, convection was assumed not to contribute to mass transport. Third, a simple 

deposit morphology was assumed to describe the surface of the WE due to a lack of available 

experimental data. Fourth, the Coulombic efficiency below unity was assumed to arise from a 

non-electrochemical process that occurs during dissolution. Fifth, all solute diffusivities were 

assumed to be equal. Finally, experimental data with a planar cell geometry were not available, 

and thus a data set obtained with a disk microelectrode and comparatively larger counter and 

reference electrodes was utilized. Based on the present simulation results, an experimental setup 

with a planar electrode geometry where the electrodes are large with respect to the separation 

between them appears to be a viable scheme for extracting the parameters governing reaction 

kinetics and mass transport. In addition, the electrode separation must be accurately measured 

and reported for such a setup because it plays a key role in the dynamic behavior captured by the 

voltammogram. There are also moderate uncertainties in the average values of some of the fitted 

parameters, which are likely due to interplay between the surface deposit morphology, nucleation 

overpotential, and standard heterogeneous rate constant. With experimental work to accurately 

measure values of even one or two parameters, the uncertainties in the remaining parameters 

should decrease greatly. 
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One-Dimensional Model of Lithium Symmetric Cells Under Galvanostatic Conditions 

 

Introduction 

In this chapter,* the one-dimensional framework developed in Chapter 3 is adapted and extended 

for the study of lithium/lithium symmetric cells. Like magnesium, lithium metal is an attractive 

material for next-generation secondary battery anodes due to its improved theoretical energy 

density as compared to existing lithium-ion technologies.145 However, the use of lithium as an 

anode is complicated by the tendency of lithium to form dendritic features during 

electrodeposition.13,14,146–150 The formation of these dendrites is accompanied by a rapid increase 

in electrode surface area and consumption of the electrolyte due to the growth of the solid 

electrolyte interphase (SEI) on the dendrite. Previous studies have attempted to suppress dendrite 

growth, such as through depositing thin layers of alumina on the anode,148 co-deposition of 

cesium or rubidium,150 or using highly concentrated electrolytes and ionic liquids.151,152 

However, there has not been a general consensus on the reaction pathways involved during 

lithium deposition and how they affect dendrite formation.153 

Here, the one-dimensional model is combined with results from an experimental study14 

to gain further insight into how morphological evolution of the lithium surface due to preferential 

                                                
*Adapted from K.N. Wood, E. Kazyak, A.F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton, and N.P. Dasgupta, 
“Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video 
Microscopy,” ACS Cent. Sci., 2 (2016) 790. This is an unofficial adaptation of an article that appeared in an ACS 
publication. ACS has not endorsed the content of this adaptation or the context of its use. 
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deposition and dissolution of dendrites affects the time-dependent cell behavior. As detailed in 

Ref. 14, a lithium/lithium symmetric cell with a planar geometry was fabricated such that it 

could be observed in operando via optical video microscopy. The morphology of the lithium 

electrodes is observed while galvanostatic voltage traces are recorded, which allows for real-time 

correlation between features in the voltage trace and the electrode surface morphology. An 

example galvanostatic voltage trace and the corresponding optical micrographs for the electrode 

that initially undergoes deposition (referred to as EL-b) are presented in Figure 4.1. Here it is 

observed that, as dendritic deposition occurs on EL-b, there is an initial decrease in the 

magnitude of the cell polarization (a and b). The sign of the applied current is reversed, inducing 

dissolution of EL-b, during which the magnitude of the polarization decreases (c) until the 

previously deposited dendrites are removed, at which point the polarization is at a local 

maximum (d). Pits then nucleate on the electrode surface, which correspond to another decrease 

in the magnitude of the cell polarization (e). During the next deposition half-cycle, new dendritic 

material nucleates and grows on the electrode surface, including in the pits (f). Additionally, the 

galvanostatic voltage trace demonstrates the characteristic “peaking” behavior of the symmetric 

cell. In the subsequent sections of this chapter, the 1D model is employed to determine how 

transport in the electrolyte, the deposition/dissolution reaction kinetics, and the time-dependent 

electrode morphology all contribute to this observed behavior. 
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Figure 4.1. Experimentally observed electrode morphologies and the corresponding galvanostatic voltage trace for a 
lithium/lithium symmetric cell cycled at 5 mA/cm2, reproduced from Ref. 14. The morphology is shown for the 
electrode that initially undergoes deposition (EL-b in subsequent experimental data) at times (a) before cycling; (b) 
after first half-cycle (deposition at EL-b); (c) at cell polarization minimum (dissolution at EL-b); (d) at cell 
polarization maximum; pitting not yet evident; (e) morphology at end of half-cycle; pitting observed (examples 
highlighted in yellow circles); (f) morphology at end of third half-cycle (deposition at EL-b); new dendrites are 
deposited in the pits which formed at the end of the previous half-cycle (yellow circles). 

Governing Equations 

To provide a theoretical description of the cell behavior, a one-dimensional (1D) numerical 

continuum-scale model is developed by extending the model in Chapter 3. The mass fluxes of 

the electrolyte species are described by the 1D Nernst-Planck equation38–40 

𝑁𝑁J = −𝐷𝐷J
∂𝑐𝑐J

𝜕𝜕𝑥𝑥 − 𝐴𝐴J
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷J𝑐𝑐J
∂Φ
𝜕𝜕𝑥𝑥 , (4.1) 

where 𝑁𝑁J is the scalar flux and the remaining quantities have the same meaning as in Chapter 3. 

This mass flux includes contributions from diffusion and migration. The diffusivity is dependent 
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upon the concentration of the electrolyte species, and the values are taken from the experimental 

data obtained by Valøen and Reimers.154 The time-dependent evolution of the concentration of 

each species follows the 1D continuity equation 

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 = −
∂𝑁𝑁J

𝜕𝜕𝑥𝑥 . (4.2) 

There are several approaches that have been employed in the literature to describe the 

electrostatic potential, including electroneutrality,35,155,156 continuity of the current,33,35,156 the 

displacement current equation,46–48 and the Poisson equation,20,49,50 which is the approach 

adapted for this model. The 1D Poisson equation is 

𝜕𝜕[Φ
∂𝑥𝑥[ = −

𝜌𝜌
𝜖𝜖K𝜖𝜖^

. (4.3) 

For this work, the model uses a 1D domain (depicted in Figure 4.2) where the boundaries 

correspond to the surfaces of the lithium electrodes, initially located at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿. These 

interfaces are allowed to move independently, and the velocity of each electrode surface may be 

calculated by Faraday’s law: 

𝑣𝑣ôá =
𝜙𝜙ΩÃÄ

𝐹𝐹 , (4.4) 

where 𝑣𝑣ôá is the electrode surface velocity, 𝜙𝜙 is the current density (as measured per unit 

projected area of the electrode), and ΩÃÄ is the molar volume of metallic lithium.33 Over the 

course of a half-cycle, the electrode surfaces only move a small distance relative to the electrode 

separation, and we therefore neglect convection in the electrolyte and its effect on Eq. 4.1. The 

boundary conditions for the species concentrations and the electrostatic potential are given in 

Table 4.1, with the extra boundary condition on the electrostatic potential at 𝑥𝑥 = 𝐿𝐿, which is 

necessary to prevent the PNP equations from becoming ill-posed. 
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Figure 4.2. A schematic representation of the geometry employed by the model, not necessarily to scale. 

 

Table 4.1. Boundary conditions for the PNP equations. The extra boundary condition on the electrostatic potential 
prevents the equations from becoming ill-posed. 

Quantity 𝒙𝒙 = 𝟎𝟎 (Left) 𝒙𝒙 = 𝑳𝑳 (Right) 
𝑐𝑐ÃÄç  𝑁𝑁ÃÄç = 𝜙𝜙 𝐹𝐹⁄  𝑁𝑁ÃÄç = 𝜙𝜙 𝐹𝐹⁄  
𝑐𝑐–—“

”  𝑁𝑁–—“
” = 0 𝑁𝑁–—“

” = 0 

Φ 
𝜕𝜕Φ
𝜕𝜕𝑥𝑥 = 0 

𝜕𝜕Φ
𝜕𝜕𝑥𝑥 = 0, Φ(𝐿𝐿) = 0 

 

At each electrode, the applied current is assumed to be governed by Butler-Volmer 

kinetics, for which the current-overpotential relationship may be written as:35,37,49,50  

𝜙𝜙 = 𝐹𝐹𝑘𝑘K ë𝑐𝑐ÃÄ exp ú
(1 − 𝛽𝛽)𝐹𝐹

𝑅𝑅𝑅𝑅 𝜂𝜂ü − 𝑐𝑐ÃÄç exp Y−
𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂Zì, (4.5) 

where 𝑘𝑘K is the standard heterogeneous rate constant, 𝛽𝛽 is the charge transfer symmetry 

coefficient, 𝑐𝑐ÃÄ = 1/ΩÃÄ is the surface concentration of metallic lithium, and 𝑐𝑐ÃÄç is the surface 

concentration of lithium ions. The overpotential, 𝜂𝜂, may be further rewritten as: 

𝜂𝜂 = 𝐸𝐸ôá − ΦK − 𝐸𝐸Kt , (4.6) 

where 𝐸𝐸ôá is the electrode potential, ΦK is the electrostatic potential at the electrode/electrolyte 

interface, and 𝐸𝐸Kt  is the formal potential of the electron transfer reaction.49,50,157 

To capture the effects of the electrode morphology and the SEI layer, two modifications 

are made to Eq. 4.5 that are consistent with the approach in Chapter 3.20 First, the right-hand side 

is multiplied by 𝛾𝛾, which is a measure of the roughness of the electrode surface. This coefficient 

is calculated as the ratio of the total surface area including deposits relative to the surface area of 
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the electrode if it was perfectly flat. The second modification is that 𝑘𝑘K becomes dependent upon 

the extent to which the electrode is covered in deposits. In this model, we assume that the 

reaction kinetics is faster on the deposits than on the bulk electrode, which may be attributed to 

differences in the SEI layer. The SEI layer on the deposits may be thinner and/or more defective 

than that on the bulk electrode, or it may have an entirely different chemical composition, 

leading to the higher reaction rate.9 The assumption of different kinetics between the deposit and 

the bulk may be expressed as: 

𝑘𝑘ôûû
K = 𝜃𝜃û∫´¨𝑘𝑘û∫´¨

K + (1 − 𝜃𝜃û∫´¨)𝑘𝑘´á≠’
K , (4.7) 

where 𝜃𝜃û∫´¨  is the fraction of the surface area with fast kinetics, and 𝑘𝑘û∫´¨
K  and 𝑘𝑘´á≠’

K  are the rate 

constants for the deposit surface and the bulk electrode surface, respectively. The modified 

current-overpotential relationship is therefore: 

𝜙𝜙 = 𝛾𝛾𝐹𝐹𝑘𝑘ôûû
K ë𝑐𝑐ÃÄ exp ú

(1 − 𝛽𝛽)𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂ü − 𝑐𝑐ÃÄç exp Y−

𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂Zì, (4.8) 

which accounts for the effects of the electrode morphology and the SEI layer. Note that this 

current density is defined per nominal area of the electrode (i.e., the area if the electrode were 

flat). This form of the modified current-overpotential relationship is similar to the one defined 

for the electrodeposition and electrodissolution of magnesium20 in Chapter 3. Integrating Eq. 4.8 

in time results in the deposited charge per nominal area, Γòôö: 

Γòôö(𝑡𝑡) = − ¶
𝜙𝜙(𝑡𝑡)

𝐹𝐹 𝑟𝑟𝑡𝑡
ß

K
. (4.9) 

 

 

Figure 4.3. Schematic showing the modeled approximation of lithium deposits as a uniform square array of 
hemispheres that grow and eventually impinge during electrodeposition and that contract and separate during 
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electrodissolution. In reality, the dendritic growth result in porous structure, which behaves similarly to the model 
due to screening. 

To mathematically describe the values of both 𝛾𝛾 and 𝜃𝜃û∫´¨, it is necessary to make some 

assumptions about the geometry of the lithium deposits. We assume that the deposits grow as an 

array of uniform hemispheres, and that the hemispheres may begin to impinge and then 

eventually merge, which is depicted schematically in Figure 4.3. This assumption is consistent 

with the observations of Stark et al.158 The volume of the hemispherical deposit (with radius 𝑟𝑟), 

𝑉𝑉÷, may be calculated by solving the following integral in the x-y plane: 

𝑉𝑉ò = ◊(𝑟𝑟[ − 𝑥𝑥[ − 𝑦𝑦[)d/[	𝑟𝑟𝑥𝑥	𝑟𝑟𝑦𝑦. (4.10) 

The surface area of the deposit, 𝐴𝐴÷ may be calculated by solving: 

𝐴𝐴ò = ◊ ú
𝑟𝑟[

(𝑟𝑟[ − 𝑥𝑥[ − 𝑦𝑦[)ü
d [⁄

	𝑟𝑟𝑥𝑥	𝑟𝑟𝑦𝑦, (4.11) 

and the uncovered area of the electrode, 𝐴𝐴Ÿ
⁄ may be calculated by solving: 

𝐴𝐴ô
Ü = 𝐴𝐴ô

ï − ¶(𝑟𝑟[ − 𝑥𝑥[)d/[	𝑟𝑟𝑥𝑥, (4.12) 

where 𝐴𝐴Ÿ
b is the nominal area of the electrode. The bounds of the integrals depend upon the 

extent of the hemispherical deposit and whether it has impinged on its neighbors. The volume 

per nominal area of the electrode is then related to Γòôö. With Eqs. 4.11 and 4.12, it is possible to 

calculate both 𝛾𝛾 and 𝜃𝜃û∫´¨: 

𝛾𝛾 =
𝐴𝐴ò + 𝐴𝐴ô

Ü

𝐴𝐴ô
ï , 

(4.13) 

𝜃𝜃û∫´¨ =
𝐴𝐴ò

𝐴𝐴ò + 𝐴𝐴ô
Ü, (4.14) 

and the values of these two quantities may be related to the deposited charge per nominal area 

via Eq. 4.10. 
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To include its effect in the model, it is necessary to define the effective Coulombic 

efficiency. We follow a definition similar to those in the literature:137  

CE =
mass	of	dissolved	Li	from	prev. deposits

mass	of	deposited	Li	to	prev. deposits . (4.15) 

In the visualization cell, it was clearly observed that electrochemically dead lithium forms during 

dissolution.14 However, for simplicity, the model does not explicitly track the amount of dead 

lithium that has formed. Instead, we assume that a less-than-unity Coulombic efficiency would 

result in an apparently faster dissolution of the deposited lithium as some lithium is converted to 

dead lithium and does not contribute to the current. Thus, the Coulombic efficiency is 

incorporated as an effective multiplier of the applied current density during electrodissolution: 

𝜙𝜙ôûû = 𝜙𝜙
1

CE, (4.16) 

where 𝜙𝜙ôûû is the effective applied current density during electrodissolution. This increased 

current only occurs at the electrode that is currently being dissolved. In addition, we assume that 

lithium may only be dissolved from the bulk electrode once the deposited lithium layer has been 

removed. The effective velocity of the electrode/electrolyte interface during electrodissolution is 

then given by: 

𝑣𝑣ôá
ôûû = 𝑣𝑣ôá

1
CE, (4.17) 

where 𝑣𝑣ôá
ôûû is the effective velocity of the electrode/electrolyte interface, which is greater than the 

theoretical velocity when the Coulombic efficiency is less than unity. 

Numerical Methods 

For this study, a backward-implicit finite difference method (FDM) was employed to discretize 

and solve the governing equations. A typical backward-implicit stencil was found to not 
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conserve the mass of the system, and thus the following discretization159 was employed for 

equation (S2): 

𝑐𝑐¥
b~d𝛥𝛥𝑥𝑥¥

·,b~d + 𝛥𝛥𝑡𝑡∆𝑁𝑁¥
~,b~d − 𝑁𝑁¥

h,b~d« = 𝑐𝑐¥
b𝛥𝛥𝑥𝑥¥

·,b, (4.18) 

where the superscript 𝑛𝑛 refers to the current time step, the subscript 𝑥𝑥 refers to the grid point, 

𝛥𝛥𝑥𝑥¥
· = 𝑥𝑥¥

· − 𝑥𝑥¥hd
·  is the difference in the cell boundary positions of the grid point, 𝛥𝛥𝑡𝑡 is the time 

step size, and 𝑁𝑁¥
~ and 𝑁𝑁¥

h are the fluxes in and out of the cell at positions 𝑥𝑥¥
· and 𝑥𝑥¥hd

· , 

respectively. The overall FDM was second order in space and first order in time. Note that 

explicit forward Euler time stepping can also be described with a stencil similar to Eq. 4.18, but 

second-order schemes such as Crank-Nicolson and DuFort-Frankel were found to not conserve 

mass in the system. 

The model domain is initially discretized using a cell-centered grid of 100 grid points that 

are evenly spaced between the electrodes. An additional ghost point is placed outside each edge 

of the computational domain to ensure centering of the boundary conditions. A detailed 

schematic of a portion of the grid is shown in Figure 4.4. The boundaries are allowed to move 

over time with the velocities 𝑣𝑣ôá
áôû¨ and 𝑣𝑣ôá

ùÄã‚¨. To ensure that the edge of the computational 

domain (excluding the ghost zone) remains at the midpoint between the ghost point and the first 

point within the computational domain, these points are moved at the same velocity. As a result, 

the size of the second cell from the edge cell changes as deposition or dissolution occurs. To 

prevent this cell from becoming too large, it was divided into two if it became larger than 

1.5𝛥𝛥𝑥𝑥K, where 𝛥𝛥𝑥𝑥K is the initial grid spacing. Likewise, if a cell became smaller than 0.5𝛥𝛥𝑥𝑥K, it 

was merged with its neighbor to maintain numerical accuracy.  
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Figure 4.4. A schematic depiction of the cell-centered grid used for the finite difference discretization employed by 
the model. The variable 𝑥𝑥¥  denotes the locations of the cell center for grid point 𝑥𝑥, and 𝑥𝑥¥

· denotes the location of the 
boundary between grid points 𝑥𝑥 and 𝑥𝑥 + 1. 

The discretization of Eqs. 4.1 through 4.3 with N grid points in the computational domain 

results in a system of 3(N+2) nonlinear equations with 3(N+2) unknown variables, 𝑐𝑐ÃÄç , 𝑐𝑐–—“
” , 

and 𝜙𝜙, associated with each grid point (including the ghost points). The system of equations may 

be solved simultaneously using the Newton-Raphson method, the details of which may be found 

in Refs. 48 and 49. The Newton-Raphson method is also employed when adding a grid point in 

the refinement scheme. The values of the concentrations and electrostatic potentials are known 

on either side of the refined cells, and the remaining unknown quantities may be calculated by 

assuming that mass is conserved and that the mass flux at one of the boundaries of the cell to be 

refined remains constant during the refinement process. When two cells are merged, the 

concentration of the new cell is calculated from the conservation of mass alone. The electric 

potential of each electrode is calculated separately from the PNP equations by solving Eq. 4.8. 

The difference between 𝐸𝐸ôá
áôû¨ and 𝐸𝐸ôá

ùÄã‚¨ is the cell voltage. The deposited charge per unit surface 

area, Γòôö, is calculated by integrating the applied current density with respect to time. To 

improve the computational performance, a lookup table was used to interpolate 𝛾𝛾 and 𝜃𝜃û∫´¨  for a 

given value of Γòôö. This lookup table was generated by numerically evaluating Eqs. 4.9-4.14 

from a lower radius bound of 𝑟𝑟 = 0 to an upper bound of 𝑟𝑟 = 𝑅𝑅òôö
π∫ª in increments of 𝛥𝛥𝑟𝑟. The 

nominal electrode area was calculated based on a center-to-center deposit spacing, 𝑟𝑟òôö≠´Ä¨. For 
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all portions of the model that use the Newton-Raphson method, the iteration was performed until 

the residuals were less than a tolerance 10„𝜖𝜖‰ (2.22 × 10hdK), where 𝜖𝜖‰ is machine precision 

for double precision floating point arithmetic. Decreasing the tolerances beyond this value did 

not change the final simulation result. To avoid instances where the residual never reached the 

tolerance, the grid refinement scheme employed an adaptive tolerance that would increase by one 

order of magnitude if the Newton-Raphson method failed to converge within 10,000 iterations. 

 
Table 4.2. Parameter values used for simulation of potentiometric behavior in the visualization cell. 

Parameter Value Ref. 
𝑐𝑐ï≠πÄï∫á 1.0	 × 	10h† mol cm†⁄   
𝑐𝑐ÃÄç

ÄïÄ¨ = 𝑐𝑐–—“
”ÄïÄ¨  0.5	 × 	10h† mol cm†⁄  154 

𝐷𝐷ï≠πÄï∫á 3.208	 × 	10h„ cm[ s⁄  154 
ΩÃÄ 13.0 cm† mol⁄   
𝜖𝜖^ 16.8 160–162 
𝑅𝑅 300	K  
𝜙𝜙 5.0 mA cm[⁄   
𝑡𝑡≠ï

~ = 𝑡𝑡≠ï
h  900	s  

𝑡𝑡≠ûû 30	s  
𝑛𝑛ñÁñ 5  
𝛽𝛽 0.5 141 
𝐸𝐸Kt 0.0	V  
𝑘𝑘û∫´¨

K  3.5	 × 	10h„ cm s⁄   
𝑘𝑘´á≠’

K  9.0	 × 	10hÈ cm s⁄   
CE 80	%  
𝐿𝐿 7.5	 × 	10h[	cm  
𝑥𝑥Äï¨ 1.0	 × 	10hÈ	cm  
𝛥𝛥𝑡𝑡 1.0	 × 	10h[	s  
Δ𝑟𝑟 1.0	 × 	10h„	cm  
𝑟𝑟òôö≠´Ä¨ 2.4	 × 	10h†	cm 14 
𝜖𝜖‰ 2.22	 × 	10hd„  

 

Model Results and Discussion 

Table 4.2 contains values of the parameters that were used for the simulation of the visualization 

cell. The initial concentrations of Li~ and PF„
h (𝑐𝑐ÃÄç

ÄïÄ¨ and 𝑐𝑐–—“
”ÄïÄ¨ ), the nominal diffusivity, the 

solvent dielectric constant, and the charge transfer symmetry coefficient were parameterized 
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from available data.141,154,160–162 The deposit spacing is chosen such that it is consistent with what 

is observed in the video data14 and with observations by Stark et al.158 The rate constants and 

effective Coulombic efficiency were determined by visually fitting the simulated voltage trace to 

the experimental data, with the resulting voltage traces plotted in Figure 4.5. For each cycle from 

1 to 𝑛𝑛ñÁñ, the applied current density was first held positive for 𝑡𝑡≠ï
~ , followed by a rest period 𝑡𝑡≠ûû, 

then held negative for 𝑡𝑡≠ï
h , and lastly a final rest for 𝑡𝑡≠ûû. To compare with the experimental data, 

the simulation results are plotted without the rest period. 

 

Figure 4.5. Simulated galvanostatic trace of the total cell polarization as a function of cycle number, shown in 
comparison with the experimental data14 to which it was fitted. 

From Figure 4.5, it is observed that overall there is very good agreement between the 

experimental and simulated voltage traces, and both exhibit a characteristic “peaking” voltage 

profile. In both cases, the cell voltage exhibits a sharp peak at the start of each half-cycle, 

followed by an asymmetric trough and a subsequent sharp increase leading to a blunted peak 

before the end of the half-cycle. We note that the model does not fully capture the 

experimentally observed behavior of the first cycle. This is expected because the model is 

parametrized for a system that has already been cycled once, which exhibits fundamentally 

different physical properties than the initial system. During the first half-cycle, the left electrode 

would experience the formation of pits in the anode surface, rather than the bulk dissolution 



 64 

assumed by the model.14 Pitting would also occur during the second peak of subsequent half-

cycles, which is why there is a slight difference in the slope of the voltage trace in these regions 

between the model and experiment. 

 

Figure 4.6. The time-dependent behavior of 𝜃𝜃û∫´¨ as a function of cycle number over the course of the simulation. 
When the left electrode is at a maximum value of 𝜃𝜃û∫´¨, the right electrode is at a minimum value, and vice versa. 

The behavior of 𝜃𝜃û∫´¨ is shown in Figure 4.6, where it is observed that when one electrode 

is at a maximum value for the fractional surface area, the other electrode is at a value of zero. In 

the first half-cycle, the left electrode undergoes uniform dissolution as there are initially no 

dendrites on the surface. Simultaneously, lithium begins to deposit on the right electrode, 

increasing the value of 𝜃𝜃û∫´¨ until a maximum is achieved. In all subsequent half-cycles, the 

electrode that was previously deposited upon will have its lithium dendrites dissolved until they 

have all been removed, at which point bulk dissolution will occur as pitting effects are neglected. 

Concurrently, the electrode which was previously dissolved will undergo lithium deposition. 

This parallel process where one electrode is undergoing deposition and the other dissolution can 

be correlated with the features of the double peak in Figure 4.5. The first peak occurs when one 

electrode is free of dendrites and the other is mostly covered with dendrites. The bottom of the 

trough in the voltage trace occurs when each electrode has significant amounts of lithium 

dendrites on the surface. Finally, the second peak begins once the electrode undergoing 

dissolution has been fully depleted of dendrites. These initial results strongly suggest that the 
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behavior of the galvanostatic voltage trace arises from a change in preferred kinetic pathway on 

the electrode surfaces during cycling. 

Additionally, the concentration profile of lithium cations in the electrolyte across the 

entire simulation domain is plotted for 14 different times in Figure 4.7. It is observed that the 

concentration of lithium cations is never depleted at either electrode surface. Thus, it is expected 

that transport-limited behavior is not dominant in the observed voltage trace. The small electrode 

separation and the lack of separator in the visualization cell likely contribute to this result. 

 

Figure 4.7. Simulated concentration profiles of lithium cations across the visualization cell during (left) the first 
half-cycle, (center) the first rest cycle, and (right) the second half-cycle, demonstrating the transient and pseudo 
steady-state behavior of the mass transport. The concentration is never depleted at either electrode surface (the edges 
of the domain in each plot), and thus the observed voltage trace is not expected to be dominated by transport-limited 
behavior. 

Parametric Response of Model Behavior 

To support the result of the previous subsection, a parametric sweep was performed for the 

values of 𝑘𝑘Ôn^ß
K  and 𝐶𝐶𝐸𝐸. For each of these two parameters, the remaining model parameters were 

held constant with their values in Table 4.2. First, two additional simulations were performed for 

𝑘𝑘Ôn^ß
K : one with 𝑘𝑘û∫´¨

K = 9.0	 × 	 10hÈcm/s and one with 𝑘𝑘û∫´¨
K = 3.5	 × 	10hcm/s. The results of 

these two simulations are plotted in Figure 4.8 along with the first two cycles of the simulation 

from Table 4.2. It is observed that as 𝑘𝑘û∫´¨
K  is reduced from the fitted value, the trough between 
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the first and second voltage peak becomes shallower. The model therefore predicts that the size 

and shape of the trough between the double peaks in the voltage depends upon the effects of the 

SEI layer and the electrode morphology. When 𝑘𝑘û∫´¨
K = 𝑘𝑘´á≠’

K = 9.0	 × 	10hÈ	cm/s, the cell 

voltage is nearly uniform throughout the half-cycle; the small variation is due to the change in 𝛾𝛾 

as the surface morphologies evolve.  

 

Figure 4.8. Parametric simulations with values of 𝑘𝑘û∫´¨
K  from 9.0	 ×	 10hÈ	cm/s (equal in value to 𝑘𝑘´á≠’

K ) to 
3.5	 × 10h„	cm/s (the fitted value). As the value of 𝑘𝑘û∫´¨

K  decreases, the depth of the trough between the double 
peaks in the cell voltage becomes shallower until it disappears completely. 

Next, two additional simulations were performed for the effective Coulombic efficiency: 

one with CE = 60% and one with	CE = 100%. These two simulations are plotted along with the 

fitted voltage trace in Figure 4.9. It is observed that in the first half-cycle there is no difference 

between the different effective Coulombic efficiencies, as there are no existing dendrites on the 

electrode surfaces during dissolution. However, during the subsequent half-cycles there is a clear 

trend that as the effective Coulombic efficiency decreases, the onset of the second blunted peak 

occurs earlier, and the width of this peak increases. Conversely, when the effective Coulombic 

efficiency is 100%, there is no blunting of the second peak. As such, it appears that the width of 

the second peak is purely dependent upon the effective Coulombic efficiency of the system. 
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Figure 4.9. Parametric simulations with effective Coulombic efficiencies of 60%, 80%, and 100%. As the 
Coulombic efficiency falls below 100%, it can be observed that the onset of the second voltage peak occurs earlier 
in each half-cycle and that the width of the peak increases. Additionally, at 100% efficiency, the second peak is very 
sharp and has no plateau. 

Isolated Electrode Overpotentials 

With the numerical model, it is possible to explicitly track the overpotentials associated with 

each electrode as well as the potential drop across the electrolyte. Such a test is qualitatively 

similar to experimental three-electrode measurements in that it is possible to correlate changes in 

the overpotential of each electrode with the changes in the overall cell voltage. The results from 

the numerical model are displayed in Figure 4.10 along with an experimental three-electrode 

voltage trace (not identical to the voltage trace employed for the model fitting, refer to Ref. 14 

for additional details). It can be observed that the electrode undergoing deposition (initially the 

right electrode in the simulation and EL-b in the experiment) in a given half-cycle features the 

initial voltage peak, and the electrode undergoing dissolution (initially the left electrode in the 

simulation and EL-a in the experiment) is the source of the second voltage peak, confirming our 

interpretation of Figure 4.5 and Figure 4.6. By contrast, the potential drop across the electrolyte 

remains relatively constant throughout a given simulation half-cycle, indicating that it is not a 

dominant feature in the total voltage trace. Qualitatively, the simulated overpotentials are in 

agreement with the experimental results, as well as the behavior of other published experimental 
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three-electrode measurements.163 The only significant difference is that the simulated dissolution 

behavior does not exhibit a decrease in overpotential after the peak of the dissolution half-cycles, 

which is attributed to the fact that the model does not specifically consider pitting of the 

electrode surface. 

 

Figure 4.10. Left: the simulated overpotentials of the left and right electrodes, as well as the simulated potential 
drop across the electrolyte for the first two cycles. Right: an experimentally obtained three-electrode voltage trace. 
In a given half-cycle, the electrode undergoing deposition (initially the right electrode/EL-b) is the source of the 
initial voltage peak, while the electrode undergoing dissolution (initially the left electrode/EL-a) is the source of the 
second voltage peak. Note that the sign of the voltage trace for EL-b has been reversed from what was actually 
measured. 

It is observed in Figure 4.10 that the simulated overpotential at each electrode is not 

centered about 0 V as might initially be expected. However, this offset can be readily explained 

by examining the governing equations. If Eq. 4.8 is solved for when there is no net current 

density, the resting electrode potential is obtained: 

𝐸𝐸ŸÒ =
𝑅𝑅𝑅𝑅
𝐹𝐹 ln Y

𝑐𝑐ÑJç

𝑐𝑐ÑJ
Z + ΦK + 𝐸𝐸Kt, (4.19) 

which can be recognized as a modified form of the Nernst equation.35,37 As an example, we first 

consider the behavior of the right electrode. The formal potential is 0 V for all of the simulations, 

and at 𝑥𝑥 = 𝐿𝐿 the electrolyte potential has been pinned to 0 V. From the data presented in Figure 
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4.9, the lithium cation concentration ranges from around 0.3 × 10-3 mol/cm3 at the end of 

deposition to around 0.7 × 10-3 mol/cm3 at the end of dissolution. Within this concentration 

range, the electrode potentials at zero current range from approximately -143 mV after 

deposition to -121 mV after dissolution, which correspond to the observed offsets. Because both 

electrodes are offset by roughly equal potential values, their individual contributions are negated 

in the total voltage trace. If a reference electrode were explicitly included in the numerical 

model, then it would also have an offset potential within this range. Therefore, the simulated 

electrode overpotentials relative to a reference electrode would be approximately centered 

around 0 V. 

Summary and Conclusions 

The numerical model developed in Chapter 3 was extended to simulate the galvanostatic cycling 

of lithium/lithium symmetric cells. This required discretization of the time-dependent Poisson-

Nernst-Planck equations with a mass-conserving moving-boundary method. A simplified kinetic 

model was derived and implemented for an idealized description of dendrite growth on the 

lithium electrodes. Within this model, the lithium surface was assumed to consist of kinetically 

fast and slow regions, with the former representing lithium dendrites that had been recently 

deposited and were consequently lacking a thick SEI or other passivating layer, and the latter 

representing lithium with a thick SEI that reduced the reaction rate. As lithium was deposited, 

allowing dendrite formation, the evolution of the electrode surface area led to a change in the 

preferred reaction kinetic pathway. When parameterized by fitting to experimental galvanostatic 

voltage traces, the model achieved excellent agreement with the measured cell polarization. 

Particularly, the model captured the characteristic double-peak behavior in the voltage trace as 

well as the blunting of the second peak. Additional simulations confirmed that the observed 
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behavior was due to a combination of the evolving surface morphology, a change in reaction 

kinetic pathways, and the effective Coulombic efficiency of the half-cell. Overall, the results 

further demonstrate the power of the morphology-aware Butler-Volmer kinetic model developed 

in Chapter 3 and its ability to consider evolution of the electrode morphology via coarse-grained 

approximations of the deposited morphology. 
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Numerical Modeling of Localized Corrosion Using  
Phase-Field and Smoothed Boundary Methods 

 

Introduction 

In this chapter,* a modeling framework is presented for localized corrosion of metals. Corrosion 

is the destructive degradation of a material due to chemical reactions occurring at its surface as a 

consequence of its surrounding environment. Prominent engineering materials, such as stainless 

steels and aluminum alloys are resistant to corrosive attack due to the formation of a passive, 

protective oxide layer on the metal’s surface.17,164–167 However, when exposed to an environment 

containing aggressive anions such as chlorides, these oxide layers are susceptible to partial 

breakdown along the surface. This leads to contact between the underlying metal and the 

electrolyte where dissolution of the metal, given by the anodic reaction M → Mï~ + neh, can 

occur at an increased rate.17,75,77–79,84,164–167 This exposure causes pitting corrosion, a localized 

form of corrosion where the chemical reactions occurring within the pit (acting as the anode) 

provide a current that flows to a more noble metal surface (acting as the cathode). The formation 

and growth of these corrosion pits can accelerate degradation and lead to sudden mechanical 

failure of engineering materials by acting as nucleation sites for severe crack formation.17,75,77–

79,84,164,167,168 As such, predictive modeling of materials performance in corrosive operating 

                                                
*Adapted from A.F. Chadwick, J.A. Stewart, R.A. Enrique, S. Du, and K. Thornton, “Numerical Modeling of 
Localized Corrosion Using Phase-Field and Smoothed Boundary Methods,” J. Electrochem. Soc., 165 (2018) C633. 
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conditions is useful in understanding corrosion pit evolution and in developing methods to 

mitigate its growth and impact. 

In developing a physics-based model for corrosion, several underlying physical and 

electrochemical processes must be considered. The metal/electrolyte interface during corrosion is 

inherently dynamic, and its morphological evolution can be complex due to the coupling of 

transport kinetics, electrochemistry, and material microstructures. Specifically, corrosion pits can 

be narrow and deep, wide and shallow, or mostly subsurface.164,165,169 The velocity of this 

interface, or equivalently the corrosion rate of the metal, depends on local microstructural 

features (e.g., grains, grain boundaries, precipitates, accumulation of corrosion products) as well 

as the properties of the given electrolyte (e.g., pH, molarity, fluid flow).17,164,168,170–172 

Pitting corrosion occurs in three stages: passive layer breakdown, metastable pitting, and 

stable pit growth, each of which proceed by their own mechanism.17,77,84,168 Many numerical 

modeling efforts solely focus on the stable growth stage of pitting corrosion.53,54,75–80,82–86,172,173 

As discussed in Chapter 1, these models typically employ simplified descriptions of the transport 

in the electrolyte and the interfacial kinetics. 

In this chapter, the models of DeWitt et al.33 and Enrique et al.34 are adapted to develop a 

new smoothed-boundary-method/phase-field modeling framework to simulate pitting corrosion. 

This framework captures the effects of spatially varying reaction kinetics due to microstructural 

features as well as the effects of local variations of the concentration and electrostatic potential in 

the electrolyte. In order to accurately solve for the coupling between the electrochemistry and 

morphological evolution, we apply the smoothed boundary method (SBM),73 which enables the 

enforcement of internal boundary conditions on evolving and/or complex interfaces within the 

computational domain. The SBM/phase-field approach automatically couples the ionic transport 
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and electrostatic potential in the electrolyte with the electrochemical reactions at the pit surface 

without any a priori assumption of the pit morphology or the need to maintain a conformal mesh 

in the simulation domain. Using the SBM, the electrostatic potential and concentrations are 

consistently solved for, including the effects of the spatially and temporally varying conductivity 

and of the diffusion potential. 

To provide the diffuse interface description of the system required by the SBM, the 

phase-field method is employed to follow the moving metal/electrolyte interface and to 

distinguish the different regions of the domain (e.g., electrolyte, individual grains, or 

precipitates) and their interfaces. Two different approaches are employed for the phase-field 

model. For the first, an advective Cahn-Hilliard equation to describe the metal phase is coupled 

with an equilibrium Allen-Cahn equation to describe the electrolyte phase. In the second, 

advective Cahn-Hilliard equations are employed for both metal and electrolyte phases. The 

former is computationally efficient, while the latter is necessary for simulating polycrystalline 

systems. The velocity of the metal/electrolyte interface is calculated by Butler-Volmer reaction 

kinetics, which is coupled to the concentration and potential fields that are solved by the SBM. 

Additionally, a microscopic expression is derived and implemented for the transient evolution of 

the maximum possible corrosion current density at the diffuse interface. This expression allows 

for a smooth transition between activation-, IR-, and transport-controlled kinetic regimes. At 

saturation, it recovers the typical macroscopic approximation for the pseudo-steady-state limiting 

current.  

The model is first validated against experimental results from Ernst and Newman169 and 

Ghahari et al.18 through simulations of corrosion for a one-dimensional (1D) pencil-type 

electrode and a two-dimensional (2D) foil-type electrode. For the latter case, examples are 
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considered both with and without an artificial inert pit cover that influences concentration 

diffusion paths. To consider a well-studied example,18,75,77,79,166,169 the developed framework is 

initially applied to the propagation of an existing corrosion pit in 304 stainless steel that is 

exposed to a 1M NaCl solution under potentiostatic conditions. The capabilities and versatility of 

the model are further demonstrated through simulations of (i) a polycrystalline microstructure 

with orientation-dependent reaction kinetics and (ii) a synthetic microstructure containing 

secondary phases along a grain boundary (e.g., intermetallic precipitate particles). Note that this 

latter example is purely a demonstration of how a wide range of varying morphologies and 

reaction kinetics can be readily incorporated into the model and is not meant to reflect any 

specific stainless steel microstructure. 

Model Formulation 

Phase-Field Model for Interface Evolution 

The phase-field method is a modeling technique that has been employed to simulate a variety of 

complex physical processes, including dendrite growth during solidification,174,175 

electrodeposition and physical vapor deposition,33,34,176 grain growth,177,178 dislocation 

dynamics,179 and oxidation.180 In this work, the evolution of the combined metal and electrolyte 

system is modeled using an approach similar to those of DeWitt et al.33 and Enrique et al.34 that 

were employed to simulate electrodeposition and dissolution. For this approach, the phase-field 

method is utilized as a tool to track the positions of the moving metal/electrolyte boundary as 

well as interfaces at grain boundaries or between phases within the microstructure. Following the 

phase-field models for electrodeposition34 and grain growth in polycrystalline materials,177,181,182 

the microstructure is defined by a set of field variables known as order parameters, denoted by 

𝜙𝜙J and 𝜓𝜓. Here, 𝜙𝜙J represents the 𝜙𝜙-th physical domain of the metal (e.g., the metal matrix, 
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secondary phase particles, or grains) and 𝜓𝜓 represents the liquid electrolyte. These order 

parameters have a value of 1 within the region they represent, i.e., an order parameter 

representing the metal matrix would equal 1 within that domain and 0 elsewhere. The free energy 

functional for this system is constructed using the order parameters and their gradients:34,182  

ℱ = 	 ¶ Û𝑊𝑊𝑓𝑓K({𝜙𝜙J}, 𝜓𝜓) +
𝜖𝜖[
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Here, 𝑊𝑊 is the well height of the free energy, 𝜖𝜖 is the interfacial gradient energy coefficient, and 

𝛾𝛾 is a phenomenological parameter that leads to an increase in the free energy at overlapping 

interfaces.  

The evolution equations for this system are determined through reduction of this free 

energy functional.174,183 The 𝜙𝜙J variables are evolved according to the advective Cahn-Hilliard 

equation72,184 

𝜕𝜕𝜙𝜙J

𝜕𝜕𝑡𝑡 = ∇ ∙ i𝑀𝑀(𝜓𝜓)∇
𝛿𝛿ℱ
𝛿𝛿𝜙𝜙J

q + 𝑣𝑣|𝛻𝛻𝜓𝜓|, (5.2) 

where 𝑀𝑀 is the Cahn-Hilliard mobility coefficient and 𝑣𝑣 is the velocity of the interface normal to 

the surface.33,182,185 The variational derivative in Eq. 5.2 is given by: 

𝛿𝛿ℱ
𝛿𝛿𝜙𝜙J

= 𝑊𝑊 ˝𝜙𝜙J
† − 𝜙𝜙J + 2𝛾𝛾𝜙𝜙J a 𝜙𝜙¥

[
∂

¥˛J

+ 2𝛾𝛾𝜙𝜙J𝜓𝜓[ˇ − 𝜖𝜖[𝛻𝛻[𝜙𝜙J. (5.3) 

The use of Cahn-Hilliard dynamics ensures conservation of mass in the bulk of each phase. 

However, at the metal/electrolyte interface, a source term is added to account for dissolution due 

to corrosion, corresponding to the second term on the right-hand side of Eq. 5.2. The normal 
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velocity of the interface is related to the reaction current density, 𝜙𝜙!Éb, by Faraday’s law of 

electrolysis,75,77  

𝑣𝑣 = −
𝑉𝑉"𝜙𝜙!Éb

𝐴𝐴"𝐹𝐹 , (5.4) 

where 𝑉𝑉"  is the molar volume of the metal, 𝐴𝐴" is the dissolved metal cation charge number, and 

𝐹𝐹 is Faraday’s constant. Note that the velocity of the interface has the opposite sign of the 

reaction current, in accordance with the convention that corrosion corresponds to positive current 

densities. 

As the metal dissolves, the electrolyte is displaced to fill the regions where dissolution 

has occurred. In the present work, there are two different sets of governing equations that are 

examined for describing this displacement, which is represented by the evolution of 𝜓𝜓. The first 

approach describes the evolution of 𝜓𝜓 using the Allen-Cahn equation:34,74 

𝜕𝜕𝜓𝜓
𝜕𝜕𝑡𝑡 = −𝐿𝐿

𝛿𝛿ℱ
𝛿𝛿𝜓𝜓, (5.5) 

where 𝐿𝐿 is the Allen-Cahn mobility coefficient. For the first approach, it is assumed that the 

displacement of the electrolyte occurs sufficiently quickly such that the liquid order parameter is 

always in equilibrium for the given values of 𝜙𝜙J. This equilibrium is described by 

𝛿𝛿ℱ
𝛿𝛿𝜓𝜓 = 𝑊𝑊 Û𝜓𝜓† − 𝜓𝜓 + 2𝛾𝛾𝜓𝜓 a 𝜙𝜙J

[
∂

Jcd

¯ − 𝜖𝜖[𝛻𝛻[𝜓𝜓 = 0. (5.6) 

The second approach for simulating the evolution of 𝜓𝜓 employs the advective Cahn-Hilliard 

equation, but with the opposite sign of the advective source term in Eq. 5.2 to account for the 

correct direction of the interfacial movement: 

𝜕𝜕𝜓𝜓
𝜕𝜕𝑡𝑡 = ∇ ∙ i𝑀𝑀(𝜓𝜓)∇

𝛿𝛿ℱ
𝛿𝛿𝜓𝜓q − 𝑣𝑣|𝛻𝛻𝜓𝜓|, (5.7) 
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where the variational derivative of ℱ with respect to 𝜓𝜓 is again given by Eq. 5.6, but it is no 

longer assumed to be zero. 

To ensure that the behavior of Eqs. 5.2 and 5.7 never enters a regime where the equations 

become essentially hyperbolic or one where the evolution is dominated by the Mullins-Sekerka 

problem,186 the interfacial mobility, 𝑀𝑀, is set as a function of the local current density. This 

scaling is achieved by requiring the dimensionless Peclet number, 𝑣𝑣𝑙𝑙/𝑀𝑀, of Eq. 5.2 to be unity, 

where 𝑙𝑙 is a characteristic length scale chosen here to be the equilibrium interfacial thickness. For 

the free energy defined in Eq. 5.1, the interfacial thickness, 2𝛿𝛿, is given by:182 

2𝛿𝛿 = 2	$
2𝜖𝜖[

𝑊𝑊 , (5.8) 

which, when combined with Eq. 5.4 and the definition of the Peclet number, provides the scaling 

relationship for the interfacial mobility: 

𝑀𝑀(𝜓𝜓) = 𝑣𝑣𝑙𝑙𝜓𝜓 = 2
𝑉𝑉"|𝜙𝜙!Éb|𝜓𝜓

𝐴𝐴"𝐹𝐹
$2𝜖𝜖[

𝑊𝑊 . (5.9) 

which localizes the mobility to the metal/electrolyte interface to prevent coarsening of the 

microstructure away from the interface. 

 Collectively, the equations employed for the coupled Cahn-Hilliard/Allen-Cahn 

description of the phase-field kinetics, Eqs. 5.1-5.6, 5.8, and 5.9 are referred to as Model I. The 

equations for the all-Cahn-Hilliard description, Eqs. 5.1-5.4 and 5.6-5.9, are collectively referred 

to as Model II. The implementation of Model I is numerically less expensive than Model II. The 

accuracy of each approach is comparable when there is only a single solid phase present in the 

system, but Model I exhibits significant numerical artifacts at grain boundaries that are not 

observed with Model II. However, at high reaction current densities the diffuse interface in 
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Model II can become sharp enough such that numerical convergence of the model is 

prohibitively expensive. In the present work Model I is employed for all simulated systems with 

a single solid phase, while Model II is employed for all polycrystalline systems. 

Ionic Transport Within the Electrolyte 

As the metal dissolves, cations are released into the liquid electrolyte and diffuse out of the pit 

towards the bulk solution. The change in local concentration of charged species leads to non-

uniformity of the conductivity and diffusion potential in the electrolyte, which in turn alters the 

electrostatic potential.35 The spatial variation of the electrostatic potential therefore causes 

varying overpotentials along the metal/electrolyte interface. In this work, the electrolyte is 

assumed to be composed of three ionic species; an effective cation species for the dissolved 

metal that forms at the metal/electrolyte interface,166 a supporting cation, and a supporting anion. 

The presence of hydrogen ions in the pit is neglected, as are the effects of hydrolysis on the 

dissolved cation concentration. It is assumed that the transport may be represented by dilute 

solution theory, thus the flux of each electrolyte species, 𝐍𝐍J, is described by the Nernst-Planck 

equation:35,40 

𝐍𝐍J = −𝐷𝐷J∇𝑐𝑐J −
𝐴𝐴J𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷J𝑐𝑐J∇Φ, (5.10) 

where 𝑐𝑐J is the concentration of the 𝜙𝜙-th species, 𝐷𝐷J is its diffusivity, 𝐴𝐴J is its charge state,	𝑅𝑅 is the 

ideal gas constant, 𝑅𝑅 is the absolute temperature, and Φ is the electrostatic potential in the 

electrolyte. The evolution of the concentration of each species in the electrolyte is described by 

the continuity equation: 

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 = −∇ ⋅ 𝐍𝐍J. (5.11) 

Additionally, the electrolyte is assumed to be electroneutral:  
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a 𝐴𝐴J𝑐𝑐J

b

Jcd

= 0, (5.12) 

where the upper limit of 𝑛𝑛 is the number of species in the electrolyte. Equation 5.12 allows the 

concentration evolution to be described with one less equation, as the concentration of a single 

reference species in Eqs. 5.10 and 5.11 can be expressed in terms of the concentrations of the 

remaining species. The current density is then calculated by summing the fluxes of all species:35 

𝐢𝐢 = −𝜅𝜅∇Φ − 𝐹𝐹 a 𝐴𝐴¥𝐷𝐷¥∇𝑐𝑐¥
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¥cd
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bhd

¥cd

, (5.13) 

where 𝜅𝜅 is the local conductivity of the electrolyte, and the 𝑛𝑛-th species of the electrolyte is the 

reference species. The conductivity is given by: 

𝜅𝜅 =
𝐹𝐹[

𝑅𝑅𝑅𝑅 a 𝐴𝐴¥𝑐𝑐¥∆𝐴𝐴¥𝐷𝐷¥ − 𝐴𝐴b𝐷𝐷b«
bhd

¥cd

, (5.14) 

which is once again calculated relative to the reference species. Lastly, the electrostatic potential 

needs to be determined from ∇ ⋅ 𝐢𝐢 = 0, which follows from electroneutrality and charge 

conservation,35 allowing Eq. 5.13 to be rewritten as: 

0 = −∇ ⋅ (𝜅𝜅∇Φ) + 𝐹𝐹∇ ⋅ &a 𝐴𝐴¥∆𝐷𝐷b − 𝐷𝐷¥«∇𝑐𝑐¥

bhd

¥cd

'. (5.15) 

In this model, the electrolyte is composed of the effective metal cations, a supporting cation, and 

a supporting anion (i.e., 𝑛𝑛 = 3). The anion is eliminated via Eq. 5.12, and thus only the 

concentrations of the effective metal cations and the supporting electrolyte cations (abbreviated 

𝑐𝑐" and 𝑐𝑐~, respectively) need to be directly solved. 
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Smoothed Boundary Method Formulation 

As in Refs. 33,34,73, and 187, the transport in the electrolyte is coupled with the phase-field 

method via the SBM so that transport only occurs within the electrolyte where 𝜓𝜓 > 0. The SBM 

is a mathematical technique that reformulates a given equation such that it is solved in an 

arbitrarily shaped domain represented by a phase-field-like order parameter.73 The SBM is a 

relatively recent technique, but it has been successfully utilized to study problems involving 

moving boundaries, such as quantum dot growth,188,189 nanopore formation during 

anodization,190 template-directed eutectic solidification,191 and, as previously mentioned, 

electrodeposition.33,34 Furthermore, the SBM formulations of the governing equations (Eqs. 5.11 

and 5.15) automatically incorporate the boundary conditions at the metal/electrolyte interface. 

This presents an advantage over other methods, as the potentially complex interfacial geometry 

can be embedded in a regularly shaped computational domain (e.g., a cube) that is more easily 

discretized. The SBM reformulated governing equations are: 

𝜕𝜕𝑐𝑐J

𝜕𝜕𝑡𝑡 =
1
𝜓𝜓 ∇ ∙ (𝜓𝜓𝐷𝐷J∇𝑐𝑐J) +

1
𝜓𝜓 ú

	𝐴𝐴J𝐹𝐹
𝑅𝑅𝑅𝑅 ∇ ⋅ (𝜓𝜓𝐷𝐷J𝑐𝑐J∇Φ)ü +
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𝐴𝐴J𝐹𝐹 Z, 5.16) 
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bhd

¥cd

'+ |∇𝜓𝜓|𝜙𝜙!Éb, 
5.17) 

from which the ionic concentrations and the electrostatic potential are solved in the electrolyte. 

Note that, in Eq. 5.16, 𝜙𝜙!Éb is only nonzero for the corroding metal; thus, there is an implied no-

flux boundary condition for supporting electrolyte species at the metal/electrolyte interface. 

Electrochemical Kinetics at the Interface 

Anodic reactions can occur within the corrosion pit and on the surrounding metal surface. In 

stainless steels, at high applied potentials the corrosion reaction proceeds fast enough such that 
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the solubility of the salts of the alloying elements is exceeded, causing the precipitation of a 

resistive salt layer.192 Once this occurs, the salt layer prevents the reaction from occurring faster 

than ions can be transported away from its surface, keeping the metal ion concentration at 

saturation at the interface. Within the present model, the effect of saturation is included by 

defining a Butler-Volmer-type kinetic expression for 𝜙𝜙!Éb that incorporates a maximum corrosion 

current density:35,37  

𝜙𝜙!Éb

𝜙𝜙p(!!
= ú1 −

𝜙𝜙!Éb

𝜙𝜙‰nÉ,p
ü exp ú

𝐴𝐴"(1 − 𝛽𝛽)𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂ü, (5.18) 

where 𝜙𝜙p(!! is the corrosion current density, 𝜙𝜙‰nÉ,p is the maximum possible reaction current 

density, 𝐴𝐴" is the charge of the metal cation, 𝛽𝛽 is the charge transfer symmetry factor, and 𝜂𝜂 is 

the overpotential. Here, the overpotential is defined as 𝜂𝜂 = 𝑉𝑉 − 𝐸𝐸p(!! − Φ, where 𝑉𝑉  is the 

applied potential and 𝐸𝐸p(!! is the corrosion potential of the metal. The value of 𝜙𝜙‰nÉ,p is a time-

dependent, spatially varying quantity defined by: 

𝜙𝜙‰nÉ,p = Y
𝐴𝐴"𝐹𝐹

1 − 𝑐𝑐"𝑉𝑉"
Z i
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𝑅𝑅𝑅𝑅 𝐷𝐷"𝑐𝑐"∇ΦZ ⋅ 𝐧𝐧q, (5.19) 

where 𝑐𝑐",^nß is the saturation concentration of the metal ions in solution and 2𝛿𝛿/𝜏𝜏 is a 

characteristic velocity of ion transport across the diffuse interface. The bracketed terms represent 

the contributions to the maximum current density from both how far the electrolyte is from 

saturation at a point in time as well as the rate of transport of ions into the electrolyte. The value 

of 2𝛿𝛿/𝜏𝜏 depends upon which transport process has the smallest characteristic time scale, and 

hence the largest characteristic velocity: 

2𝛿𝛿
𝜏𝜏 = max ú

𝐷𝐷"

2𝛿𝛿 , *
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*ü. (5.20) 
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With the terms in parentheses corresponding to the characteristic velocities of diffusion and 

migration, respectively. A detailed derivation of Eqs. 5.19 and 5.20 is presented in Appendix A. 

At saturation, the first term on the right hand side of Eq. 5.19 vanishes and the equation 

recovers the Rankine-Hugoniot jump condition employed by other studies.75,193 The maximum 

current must then correspondingly decrease until it matches the rate at which ions are able to 

diffuse away from the metal surface.36,37 When the potential gradient becomes negligible, Eq. 

5.19 recovers the typical expression for the macroscopic limiting current at saturation.18,36 Thus, 

the reaction current density defined by Eqs. 5.18 through 5.20 allow the model to smoothly 

transition between activation-, IR-, and transport-controlled kinetic regimes. As a benefit, a 

Dirichlet boundary condition is no longer required for Eq. 5.16 in order to capture saturation. 

Instead, the condition is indirectly imposed through the flux boundary condition. It should be 

noted that Eq. 5.19 includes contributions to the flux from both migration and diffusion even at 

saturation. Thus, we describe the reaction kinetics as being transport-controlled. If the gradient of 

the electrostatic potential is negligible, the limiting kinetics will be identical to typical 

descriptions of diffusion-controlled behavior.17,166  

 Although the reaction current is defined as a continuous field throughout the entire 

domain, its effect is localized to the metal/electrolyte interface by the value of |∇𝜓𝜓|, which is 

only nonzero at the interface. In a system with multiple metallic phases, each order parameter 

has its own set of kinetic constants and, by extension, its own reaction current defined by Eq. 

5.18. However, to solve the electrostatic potential and the metal cation concentration, it is 

necessary to combine the individual reaction currents into a single spatially dependent field. This 

is achieved by defining a weighting parameter with respect to the individual order parameters 
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(similar to those used in Refs. 194 and 195 in the context of spatially varying dislocation 

densities for studies of recrystallization), 

𝜉𝜉J =
𝜙𝜙J

∑ 𝜙𝜙¥
∂
¥cd

, (5.21) 

which is then employed to define the effective reaction rate:  

𝜙𝜙!Éb = a 𝜉𝜉¥ 𝜙𝜙!Éb,¥

∂

¥cd

, 
5.22) 

where 𝜙𝜙!Éb,¥ is the reaction current defined according to Eq. 5.18 with the kinetic constants that 

correspond to order parameter 𝑥𝑥. 

It is also possible to include the effects of anisotropy in the reaction kinetics. 

Experimentally, it has been observed that crystallographic orientation has a measurable effect on 

the corrosion behavior of stainless steels, with the densely packed {111} planes corroding 

roughly three times more slowly than {100} and {110} planes.196 Thus, in polycrystalline 

systems, some grains experience slower corrosion kinetics than others. This effect can be 

included by introducing an anisotropic function for the corrosion current density that varies with 

the orientation of the crystal, which must be defined for each of the grains: 

𝜙𝜙p(!!,¥
ŸÔÔ = 𝜙𝜙p(!!,¥𝑓𝑓∆𝜃𝜃¥,𝐧𝐧«, (5.23) 

where 𝑓𝑓(𝜃𝜃¥,𝐧𝐧) is a function that modifies the magnitude of the corrosion current density 

depending on the angle between the [01] direction of the 𝑥𝑥-th crystal and the vertical simulation 

axis, 𝜃𝜃¥, and the inward unit normal vector with respect to the electrolyte at the metal/electrolyte 

interface, 𝐧𝐧 = ∇𝜓𝜓/|∇𝜓𝜓|. We employ the following form of 𝑓𝑓(𝜃𝜃¥,𝐧𝐧): 

𝑓𝑓(𝜃𝜃¥,𝐧𝐧) =
1
2 cos +4∆𝜃𝜃𝐧𝐧 − 𝜃𝜃¥«,+ 1, (5.24) 
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where 𝜃𝜃𝐧𝐧 is the angle between 𝐧𝐧 and the vertical simulation axis. This function represents a 

fourfold symmetry with maxima and minima at the <11> and <10> directions of a 2D crystal, 

respectively. The distribution of 𝜃𝜃¥ depends on the texture of the grains; in this study it is 

assumed that they are randomly oriented. Therefore, the values of 𝜃𝜃¥ for each order parameter 

(equivalently, each grain) are randomly assigned between ±𝜋𝜋/2. The values of 𝜃𝜃𝐧𝐧 are calculated 

locally along the metal/electrolyte interface by: 

𝜃𝜃𝐧𝐧 = coshd∆𝒆𝒆𝐲𝐲 ⋅ 𝐧𝐧«, (5.25) 

where 𝒆𝒆𝐲𝐲 is the unit normal vector parallel to the vertical axis of the Cartesian coordinate system. 

To prevent the corners of the kinetically preferred morphology from becoming infinitely sharp, a 

cutoff is implemented based on the mean curvature, 𝐻𝐻, of the electrolyte order parameter in a 

similar manner as Refs. 33 and 188: 

𝐻𝐻 = ∇ ⋅ Y
∇𝜓𝜓

|∇𝜓𝜓|Z. (5.26) 

In the present work, the formation of sharp corners occurs where the value of 𝐻𝐻 is strongly 

negative. Therefore, when 𝐻𝐻 < 𝐻𝐻3 , where 𝐻𝐻3  is the critical curvature for the cutoff, the 

corrosion reaction is disabled and 𝜙𝜙!Éb is locally set to zero.  
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Figure 5.1. A flowchart of the general structure of the transport and phase-field solvers employed by the model. At 
the start of a time step, the model enters a coupled, self-consistent loop. During each subiteration, all quantities 
associated with transport in the electrolyte (the reaction rates, concentrations, conductivity, and electrostatic 
potential) are solved. The self-consistent loop is exited once all residuals have converged for the transport quantities, 
at which point the order parameters are evolved and the time step is advanced. 

Numerical Methods and Model Parameters 

The governing equations, Eqs. 5.2, 5.5, 5.7, and 5.16-19, are solved using the finite difference 

method with second-order central differences for all spatial derivatives. The temporal derivatives 

in Eqs. 5.2, 5.7, and 5.16 are discretized with implicit backward Euler time stepping, due to its 

inherent stability.197 Equations 5.2 and 5.5 (Model I) or 5.2 and 5.7 (Model II) are 

simultaneously solved in a coupled fashion with point-wise successive over-relaxation (SOR).198 

The phase-field solver is iterated until the order parameter residual is 10h4. Equations 5.16-19 

are also solved simultaneously, with Eqs. 5.16 and 5.17 using pointwise SOR. At the beginning 

of every time step, the values of the concentrations, potential, conductivity, maximum current 

densities, and reaction current densities are initialized from the previous time step. Within each 

iteration of the pointwise solver, the new estimate of one field is calculated based on the current 
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values of the remaining quantities, which is repeated for all fields. The residuals for each field 

solved are then calculated with all of the updated values. This iterative process is repeated until 

the maximum residuals are less than 1 µM in concentrations and 1 µV in potential. Decreasing 

these tolerances had a minimal effect on the final solution. A flowchart summarizing the coupled 

process for solving the transport equations is presented in Figure 5.1. The SBM governing 

equations are solved everywhere in the domain. However, the values of the concentration and the 

electrostatic potential outside of the electrolyte, while numerically necessary to satisfy the 

continuity of the solution to the governing equations, do not have a specific physical meaning 

and are discarded during analysis.  

The model was programmed in Fortran 2008, and the code was parallelized using the 

Message Passing Interface (MPI) standard to increase performance. On a quad-core MacBook 

Pro laptop, typical 1D simulations ran for 15 to 40 minutes, depending on the applied potential. 

For the 2D simulations, the typical runtime was 1 to 3 hours on a single Intel Xeon-based node 

with 24 Haswell architecture cores operating at 2.50 GHz. Due to larger domain sizes and longer 

simulated times, the simulations for experimental comparison were significantly more expensive, 

with the large uncoated and coated pits respectively requiring approximately 55 hours and 96 

hours on 12 Intel Xeon-based nodes, each with 48 Skylake architecture cores operating at 2.10 

GHz. This expense could in principal be reduced by modifying the over-relaxation parameters 

and using an adaptive time step size, but such optimization was not pursued in this work. 

The 1D simulations in this work employ a uniform mesh of 900 grid points (physical 

domain size of 180 µm) and most of the 2D simulations employ a uniform mesh of 512 ´ 256 

grid points (102.4 µm ´ 51.2 µm). The simulations for experimental comparison employed a 

mesh of 2560 ´ 1280 grid points (512 µm ´ 256 µm). The parameters employed in these 
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simulations are summarized in Table 5.1. The Butler-Volmer kinetic parameters and the 

saturation concentration correspond to 304 stainless steel in a neutral 1M NaCl solution and are 

obtained from previous experimental studies.166,192 For the diffusivity, charge, and molar volume 

of the dissolving metal species, the single effective species is defined for the main elements of 

304 stainless steel (Fe, 10 wt% Ni, 19 wt% Cr, and 1 wt% Mn).76,166 The effective diffusivity and 

molar volume are calculated from handbook data199 via a weighted average of the mass fractions 

of the constituent species. The diffusivity values employed in this calculation are for the 

constituent ions at infinite dilution, thus, it is likely that they are an overestimation at higher 

concentrations. An effective charge number is determined via a weighted average of their mole 

fractions.76 Furthermore, it is assumed that the main ions in the supporting electrolyte are Na~ 

and Clh. All potentials are defined relative to a saturated calomel electrode (SCE). 

For the phase-field method, the coefficients 𝑊𝑊 and 𝛾𝛾 are taken to be 1 and 1.5, 

respectively, which ensures that overlapping interfaces are appropriately penalized while 

maintaining the sum of the field variables to be approximately unity.34,182 The gradient energy 

coefficient, 𝜖𝜖[, is chosen to ensure the diffuse interfaces remain 4-6 grid points wide throughout 

the simulation. 
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Table 5.1. Numerical and physical parameters used in this chapter. * Indicates values calculated as weighted 
average from values found in reference. 

Parameter Value Units Reference 

𝛥𝛥𝑡𝑡 1D: 5 × 10h† s  
2D: 5 × 10h| s  

𝜖𝜖 200 nm  
𝐷𝐷" 6.90	 × 	10h„ cm[/s 199* 
𝐷𝐷~ 13.32	 × 	10h„ cm[/s	 199 
𝐷𝐷h 20.32	 × 	10h„ cm[/s 199 
𝐴𝐴" 2.20  199* 
𝐴𝐴~ 1.0  199 
𝐴𝐴h −1.0  199 
𝑉𝑉"  6.92 cm†/mol 199* 
𝑐𝑐",´∫¨ 5.1 M 192 
𝑅𝑅 298 K  
𝐸𝐸p(!! −0.24 V	vs. SCE 166 
𝜙𝜙p(!!  9.90 × 10h| A/cm[ 166 
𝛽𝛽 0.35  166 

 

Simulation Results and Discussion 

Pencil Electrode 

The modeling framework (with Model I for the phase-field kinetics) described in the previous 

section is first utilized to simulate corrosion of a so-called pencil electrode, where a thin wire has 

been coated on all sides to only expose a small tip, making it essentially a 1D problem. The 

behavior of the corrosion pit depth and current density over time are examined for various 

applied potentials. To describe the corroding metallic phase, only one 𝜙𝜙J variable is required. 

No-flux boundary conditions are imposed on both 𝜙𝜙J as well as 𝜓𝜓. At the edge of the domain 

corresponding to the bulk electrolyte, Dirichlet boundary conditions of 𝑐𝑐" = 0	M, 𝑐𝑐~ = 1	M, and 

Φ = 0	V vs. SCE are applied, and no-flux boundaries are enforced at the opposite edge of the 

computational domain. For the initial condition, 176 µm is initialized as the metal and 4 µm is 

initialized to be the electrolyte. All concentrations are initialized to their bulk electrolyte values, 

and the potential is initialized to 0 V vs. SCE. With this geometry, corrosion simulations are 
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performed for a total simulated evolution time of 150 s with applied potentials of -150, -100, -60, 

-20, and 100 mV vs. SCE. 

 

Figure 5.2. Simulation results for (a) current density vs. time behavior and (b) corrosion pit depth vs. time behavior 
at various applied potentials against an SCE reference for a 1D pencil electrode. 

The pencil electrode simulation results are presented in Figure 5.2, with the interfacial 

current density and the corrosion pit depth shown in Figure 5.2a and Figure 5.2b, respectively. 

From this series of simulations, several observations are made. As the applied potential 

increases, so does the depth of the corrosion pit at a given time, which is expected. Additionally, 

at higher potentials, a Cottrell-like transient in the current density is observed where an initial 

spike in the current decays towards a steady-state response due to the increased overpotential at 

the surface. This same response has been observed experimentally for both 304 stainless steel 

and the aluminum alloy 7004-T6.169,200 Increasing the applied potential beyond 100 mV vs. SCE 
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negligibly affected the simulated current density and pit depth, indicating that a transport-

controlled kinetic regime has been achieved during the simulated time. If longer times were 

examined for the lower applied potentials, it is likely they would also become transport-limited. 

At the lowest applied potential (-150 mV vs. SCE), the pit depth generally increases 

linearly as a function of time, although a large overall increase is not observed. As higher 

potentials are applied, the pit depth becomes larger, with an increasing amount of sublinearity as 

a function of time. To gain insight into whether the behavior is due to an activation-, IR-, or 

transport-controlled regime,166 the concentration and the electrostatic potential at the 

metal/electrolyte interface are plotted in Figure 5.3. At -150 mV vs. SCE, it is observed that the 

potential at the interface is negligibly small, which is indicative of the corrosion process being 

almost entirely activation-controlled.166 For the intermediate applied potentials of -100 and -60 

mV vs. SCE, the potential at the interface changes significantly over time. However, the 

concentration remains far from saturation; thus, the system is predominantly IR-controlled over 

the examined time scale. At -20 mV vs. SCE, over the first 50 seconds of simulated time the 

kinetics is strongly IR-controlled, as evidenced by the sharp transient in the potential at the 

interface. However, around 50 seconds the concentration transient begins to level off and 

asymptotically approach saturation, indicating that the reaction kinetics is beginning to become 

transport-controlled. At 100 mV vs. SCE, the concentration almost immediately approaches 

saturation, confirming the existence of a transport-controlled regime. 
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Figure 5.3. Simulation results for (a) the concentration and (b) the potential at the metal/electrolyte interface as a 
function of time for various applied potentials against an SCE reference for a 1D pencil electrode. After a rapid 
initial increase, the concentration continues to increase over time, approaching saturation for the higher applied 
potentials. However, the potential at the interface has not yet reached a constant value. 

According to Frankel,17 both IR- and diffusion-controlled kinetics lead to a current 

density with a 𝑡𝑡hd/[ dependence, but the slopes are not necessarily the same. Figure 5.4 shows 

the inverse current density as a function of the square root of the time for the -20 mV vs. SCE 

applied potential. Here, there are two distinct regimes where the response is linear with a 

noticeable change in slope between them. The first and second regimes correspond to IR-

controlled and transport-controlled regimes, respectively, with the transition occurring when the 

concentration in Figure 5.3 begins to approach saturation. In Figure 5.5, which shows the inverse 

current density as a function of the square root of time for the case with 100 mV vs. SCE applied 

potential, there is no discernable change in slope, indicating that the kinetic response almost 
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immediately becomes transport-controlled. The overall transition from activation- to transport-

controlled behavior with increasing applied potentials is qualitatively similar to previous 

simulation results.75,77–79 As in Mai et al.79 and Chen and Bobaru,78 the transition observed here 

is smooth. On the other hand, such a smooth transition was not observed by Scheiner and 

Hellmich75 and Duddu,77 which is likely due to the change in concentration boundary conditions 

employed in their models at saturation. However, Mai et al.79 neglected the effects of migration 

and Chen and Bobaru78 assumed its effects were described by an overall effective diffusivity of 

the ionic species. Thus, these models essentially proceed directly from activation to diffusion 

control. In comparison, the model presented here directly considers migration and its effects on 

the overpotential at the metal/electrolyte interface, which allows for the appearance of an IR-

controlled kinetic regime between activation- and transport-controlled regimes. 

 

Figure 5.4. The inverse current density as a function of the square root of time for the pencil electrode at an applied 
potential of -20 mV vs. SCE. After a brief activation-controlled region, there are distinct IR-controlled regime (black 
curve overlapping with red dotted line) and transport-controlled regime (overlapping with blue dashed line). A clear 
inflection point exists around 7.7 s1/2. 
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Figure 5.5. The inverse current density as a function of the square root of time for the pencil electrode at an applied 
potential of 100 mV vs. SCE. Unlike in Fig. 4, there is no obvious inflection point, indicating that the kinetics 
almost immediately become transport-controlled (blue dashed line). 

 

Figure 5.6. The corrosion pit depth as a function of the square root of time for the 1D electrode at an applied 
potential of 600 mV vs. SCE. The solid black and dash-dot blue lines are simulated, with the latter assuming a 
constant potential of 0 V in the electrolyte. The experimental results (red dashed line) are from Ernst and 
Newman.169 

The model is also compared against experimental data. Figure 5.6 shows a comparison of the 

model at an applied potential of 600 mV vs. SCE against experimental results for a pencil 

electrode from the work of Ernst and Newman.169 The solid black line represents the pit depth 

predicted by the full model, the dash-dot blue line is predicted when migration is neglected, and 

the dashed red line is the experimental result. It is observed that both of the simulated conditions 

have a linear response as a function of the square root of time that is indicative of transport-

controlled kinetics.17,51 If a linear trend is fitted to the data in Figure 5.6, the full simulation, 

diffusion only, and experimental results have slopes of 11.91, 6.02, and 7.74 µm s-1/2, 
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respectively. When migration is considered, the slope of the simulated line is 54% greater than 

that of the experiment, which indicates that transport in the electrolyte is overpredicted. 

Conversely, without migration the slope of the simulation is 22% smaller than that of the 

experiment, indicating that transport is underpredicted. These differences can be attributed to 

multiple factors. First, the effective diffusivity in the model was calculated from data at infinite 

dilution, and thus the diffusivities of the ions would likely be lower at higher concentrations. 

Gaudet et al.166 calculated the effective diffusivity of the metal ions both with and without 

consideration of migration, finding that they were able to achieve reasonable fits by including the 

effect of migration in a form of an effective diffusivity. Compared to their effective diffusivity 

value of 8.24 × 10-6 cm2/s, the diffusivity in Table 5.1 is 16% smaller for the diffusion-only case. 

When migration was explicitly considered, Gaudet et al.166 fitted a diffusivity of 4.98 × 10-6 

cm2/s, for which the diffusivity in Table 5.1 is 38% greater. The differences in diffusivities are 

comparable to the differences in the slopes. Additionally, previous experimental studies51,192,201 

have indicated that a resistive salt layer precipitates on the pit surface that has a strong effect on 

the limiting current and is responsible for a large portion of the electrostatic potential drop near 

the interface. The treatment of the salt layer is implicitly embedded in Eqs. 5.18-5.20, where the 

primary effect of any precipitation is to prevent the metal ion concentration from exceeding its 

saturation condition. However, this treatment is likely insufficient to capture the effect of the salt 

layer quantitatively, and thus may be a source of discrepancy between the model and 

experimental results. Finally, the exact geometry of the experimental setup was not available in 

the literature. By having a boundary condition of Φ = 0 V at the pit opening, the model assumes 

that the reference electrode is in near-intimate contact with the metal surface, which may not be 

representative of the actual cell geometry. This may lead to an overestimation of the potential 
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gradient, which is consistent with the fact that transport proceeds more rapidly in the simulation 

than is observed experimentally. Experimental studies87,202 and modeling studies85,86 of pitting 

corrosion have indicated that a well-characterized cell geometry is essential in understanding the 

effects of migration. Beyond corrosion, the geometry has also been demonstrated to have a 

strong impact on the measured kinetic behavior in other models of electrodeposition and 

electrodissolution.131 

Single Pit Growth With and Without a Protective Surface Layer 

Next, 2D simulations are performed to study the morphological evolution of a single corrosion 

pit for the cases where (i) the metal surface is completely exposed to the electrolyte and (ii) a 

protective layer is present on the metal surface, but a pinhole exists above the center of the pit. 

The initial condition of the 2D simulation domain is presented in Figure 5.7. Applied potentials 

of -75 mV vs. SCE and 600 mV vs. SCE with an initial corrosion pit with a radius of 4 µm are 

considered. The simulation of case (ii) at 600 mV vs. SCE is intended to replicate the 

experimental results of Ernst and Newman,169 who studied the behavior of a foil electrode that 

was coated with a protective lacquer except for a small pinhole. This also serves as a benchmark 

of the predicted corrosion behavior against the work of Duddu77 and Mai et al.,79 who each 

simulated the same condition with their respective models. All of the examples in this section 

employ Model I for the phase-field kinetics. 
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Figure 5.7. The initial condition of the 2D simulation domain, (a) depicting the entire geometry and (b) depicting 
the vicinity of the pit in the dotted box at higher magnification. The domain is initialized with a small semicircular 
pit in the surrounding metal. It is always assumed that the ion concentrations and electrostatic potential are fixed 
along the initial pit opening. If there is no protective layer, the ions are free to diffuse towards the bulk of electrolyte 
as the pit grows outwards. Otherwise, the ion flux outside of the initial pit to the bulk electrolyte is set to zero. 

For both cases (i) and (ii), a single 𝜙𝜙J variable is used to describe the metal; no-flux 

boundary conditions are applied to 𝜙𝜙J and 𝜓𝜓 on all sides of the rectangular computational 

domain. For the concentrations and the electrostatic potential, no-flux boundary conditions are 

applied where the domain is not contacting the corroding surface (left, right, and bottom in 

Figure 5.7). Along the initial opening of the pit, boundary conditions of 𝑐𝑐" = 0	M, 𝑐𝑐~ = 1	M, 

and Φ = 0	V	vs. SCE are enforced, and the remaining boundary conditions depend on whether a 

protective layer is included in the model. When there is no protection layer, these boundary 

conditions extend along the entire top of the computational domain. If a protective layer is on the 

electrode, no-flux boundary conditions are enforced outside of the initial pit opening. In the latter 

case, the electrolyte is only able to diffuse into the bulk solution through the pinhole. It is 
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assumed that the protective layer remains intact throughout the simulation; even though metal 

corrodes beneath the protective layer, no additional diffusion pathways form between the pit and 

the bulk electrolyte. As in the 1D examples, the pit cavity concentrations are initialized to their 

bulk electrolyte values and the potential is initialized to 0 V vs. SCE. 

 

Figure 5.8. Simulated pit morphology with (left) the concentration profile and (right) electrostatic potential at 30 s 
for a -75 mV vs. SCE applied potential with (a) no protective layer and (b) a protective layer covering all of the top 
surface except a central 8 µm pinhole. The dotted red lines indicate the location of the metal/electrolyte interface, 
and the solid magenta line in (b) indicates the location of the inert coating. The profiles are symmetric around the 
vertical centerline. Note that the bottom portion of the computational domain has been removed to show the pit more 
clearly. 

The resulting corrosion pit morphology and electrolyte concentration profile for both 

cases at the -75 mV vs. SCE applied potential are presented in Figure 5.8, where the 

metal/electrolyte boundary is denoted by a dotted red line. Both pits start with the same initial 

semicircular geometry as shown in Figure 5.7. However, once the metal is partially dissolved, 

the morphology differs between the two cases. The uncoated pit evolves into a wide, 

comparatively shallow trench (Figure 5.8a) while the coated pit remains a semicircle (Figure 

5.8b). The differences in morphologies can be directly attributed to a change in the overall 

transport within the pit, as explained below. 
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For the uncoated case, the dissolved metal cation concentration is higher at the bottom of 

the pit than along the side, but it is far from saturation. As in the coated case, the entirety of the 

metal/electrolyte interface is in an IR-controlled kinetic regime, but the strength of this regime 

varies from the pit opening to the bottom of the pit due to variations in the electrostatic potential. 

The electrostatic potential is approximately 35 mV higher at the bottom than at the pit opening, 

which corresponds to an overpotential that is about 21% lower. Additionally, material that 

dissolves near the pit opening can rapidly diffuse into the bulk electrolyte. This results in higher 

current near the pit opening than at the bottom that in turn causes the pit to grow outward into the 

wide, shallow shape that exposes new diffusion pathways for the dissolved cations. With the 

protective coating, but otherwise identical simulation conditions, the concentration is both higher 

and more uniform along the metal/electrolyte interface than in the uncoated example. Although 

the concentration still has not reached saturation, the coating restricts the diffusion pathways 

such that the dissolved cations can only reach the bulk electrolyte through the initial pinhole. The 

restricted access leads to a higher electrostatic potential and a smaller overpotential around the 

entire pit. This results in a stronger—but uniform—IR-controlled condition in the coated case 

with a lower overall corrosion rate as compared to the uncoated case. The uniformity of the 

corrosion rate leads to the semicircular geometry being preserved. 

 



 99 

 

Figure 5.9. (a-d) Simulated pit morphology for an uncoated foil at 600 mV vs. SCE for a pit that fails to form a lacy 
cover during corrosion. The initial pit (a) rapidly corrodes outward to form a wide, shallow pit (b and c), with the pit 
eventually becoming an essentially 1D pit (d). The pit depth over the square root of time (e) is also shown in 
comparison to a similar pit observed by Ghahari et al.18 Note that the bottom portion of the computational domain 
has been removed to more clearly show the corroding region. 

The behavior of the model for 2D pits can also be examined at higher applied potentials. 

Figure 5.9 shows the evolution of the pit morphology for an uncoated pit at an applied potential 

of 600 mV vs. SCE. The initial pit (Figure 5.9a) rapidly corrodes near the pit opening as there is 

no barrier for a cation to be transported into the bulk electrolyte. This causes a very wide but 

shallow pit to form (Figure 5.9b) that after about eight seconds reaches the edge of the 

computational domain (Figure 5.9c). At this point, the pit continues to corrode, but the curvature 
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of the interface decreases until the pit essentially becomes 1D (Figure 5.9d). The overall pit 

depth is linear with respect to the square root of time throughout the regime where the 1D 

condition exists, indicating that the kinetics is transport-controlled. Ghahari et al.18 observed 

similar behavior for a pit that failed to form a lacy cover. The linear trend for their results is 

included in Figure 5.9e along with the simulated pit depth; the simulation overpredicts the 

corrosion rate overall and yields a higher slope in the transport-controlled regime as compared to 

experiment.  

For the coated pit at an applied potential of 600 mV vs. SCE, which is analogous to the 

coated pit examined experimentally by Ernst and Newman,169 the final morphology and the pit 

depth over the square root of time are shown in Figure 5.10. Here, it is observed that the initial 

pit (cf. Figure 5.7 and Figure 5.9a) grows into a large semicircular shape, just as in the result for 

the -75 mV vs. SCE applied potential. Additionally, at the higher potential, the kinetics is 

transport-controlled, which is confirmed by the linear trend in the pit depth as a function of the 

square root of time. For the coated pit observed by Ernst and Newman,169 the pit had a radius of 

about 190-200 µm after 720 seconds at a 600 mV vs. SCE applied potential. This point is 

included for comparison in Figure 5.10b. Here, the coated pit is predicted to be smaller than in 

the experimental result, with a depth of 157 µm. However, this is better agreement than observed 

by Duddu77 and Mai et al.,79 whose models both predicted a pit depth of about 120 µm at 720 

seconds. The result from Duddu77 is also included in Figure 5.10b. The results from Mai et al.79 

are omitted because they would overlap with the result from Duddu.77 
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Figure 5.10. (a) The simulated pit morphology for a coated pit (coating indicated by magenta line) after 720 s at 600 
mV vs. SCE, with (b) a comparison against the experimental result of Ernst and Newman169 (red circle) and the 
XFEM-LSM simulation of Duddu77 (dotted blue line) for the pit depth over the square root of time. The simulation 
result from Mai et al.79 would directly overlap Duddu’s77 result and is omitted for clarity. 

Qualitatively, the model is in general agreement with the pit morphologies observed 

experimentally18,87,169,202 as well as in previous models.75,77–81,86 These previous studies observed 

that pits in uncoated foils grow with a characteristically wide but shallow morphology as 

additional pathways form for diffusion into the bulk electrolyte.18,75,77–80,86,87,169,202 Likewise, 

coated foils lead to semicircular pits where the growth is constrained due to a lack of new 

diffusion pathways.18,75,77,79,80,169 However, the present work demonstrates a clear influence of 

IR-controlled kinetics at lower applied potentials that reduces the corrosion rate of the metal 

surface, which has not been extensively considered in previous modeling efforts. Additionally, 

the simulation results for the coated pit at 600 mV vs. SCE are in good quantitative agreement 
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with the experimental results of Ernst and Newman,169 predicting a comparable pit depth over 

the examined time range.  

The model could be modified to improve the quantitative accuracy of the results for both 

uncoated pit examples and the coated pit at -75 mV vs. SCE. As with the pencil electrode, the 

simulation geometry essentially places the reference electrode in close proximity to the metal 

surface, which likely does not perfect match experimental cells. Without the explicit 

consideration of the salt layer formation, the magnitude of the potential gradient within the pit is 

likely overpredicted. Additionally, experimental studies166,203 indicate that the reaction kinetics 

depend on the local cation concentration, with passivation occurring on the surface where the 

concentration is below a critical value. The variation in the passivation of the surface directly 

influences the formation of the lacy cover over the pit, which the model currently neglect but has 

been considered in the previous modeling studies.75–77,80,81,86 The lacy cover also affects the long-

term stability of any pits that form.52,204,205 However, the above effects should not have as strong 

of an impact on the coated pit at 600 mV vs. SCE. As the reaction is transport-controlled at this 

potential, the entire surface should be free of a passive film, although explicit consideration of 

salt layer formation would likely allow for further improvement in the model’s agreement.  

Single Pit Growth Within a Polycrystalline Microstructure 

The previous simulations in this chapter demonstrate pitting corrosion without explicit 

consideration of microstructural features such as grains, grain orientation, or grain boundaries. 

These characteristics have been shown to influence local corrosion rates.165,196,200,206 For 

example, previous studies of 316 stainless steel found that grain orientations with a higher 

atomic density exhibited lower corrosion rates than orientations with a lower atomic 

density.196,206 Additionally, some alloy systems exhibit increased corrosion rates at the grain 
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boundaries.165,200 Here, an example is introduced to illustrate how this modeling framework can 

describe the effects of polycrystalline microstructures on pit propagation during corrosion. As in 

the previous example, 2D simulations are considered, but now 16 𝜙𝜙J order parameters are 

employed to describe individual grains within the metallic phase. A random microstructure is 

generated with these field variables by Voronoi tessellation without consideration of grain size 

distribution. Additionally, in this section, Model II is employed for the phase-field kinetics with 

grain coarsening in the bulk driven by the Cahn-Hilliard equation (Eqs. 5.2 and 5.7) eliminated 

by taking the mobility coefficient to be 𝑀𝑀 ∙ 𝜓𝜓 so that motion only occurs near the 

metal/electrolyte interface. The boundary conditions and initial condition are the same as in the 

coated single crystal pitting example. 

For the first part of this example, we assume isotropic, constant kinetics to examine the 

possible diffuse-interface artifacts of the phase-field approach in the interfacial movement when 

multiple interfaces are present. The evolution of this scenario is displayed in Figure 5.11. Here, 

the corrosion pit is initialized to be located within a single grain. Since there is a protective 

surface layer, the pit growth is a semicircular throughout the simulated timespan, as observed 

from the coated single crystal simulation results discussed above. As the pit continues to 

propagate, it encounters the additional grains in the microstructure and their associated 

boundaries. Other than a slight opening of the grain boundary at triple points with the electrolyte, 

the dissolution front remains much the same as in the coated single grain simulation. The triple 

point behavior is attributable to the underlying kinetics of the phase-field model, where there is a 

driving force to make all angles equal at triple points when interfacial energies are equal.182 At 

the dissolution front, 𝑀𝑀 ⋅ 𝜓𝜓 is nonzero, and therefore evolution proceeds. However, the presence 
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of grain boundaries in the microstructure alone does not introduce significant artifacts in the 

overall time-dependent behavior of Model II. 

For the second part of this example, the same polycrystalline microstructure will be 

considered, but now anisotropic kinetics will be introduced to the system. Each of the 16 grains 

is assigned a random orientation, and throughout the simulation the anisotropic kinetics is 

evaluated according to Eqs. 5.23-5.25. The evolution of the microstructure is then simulated 

under the same conditions as in the first part of the example. The results for this simulation are 

presented in Figure 5.12 for the same elapsed times as Figure 5.11. Whereas before the corrosion 

front generally retained its semicircular symmetry, with the anisotropic kinetics it is observed 

that the corrosion leads to the formation of mostly flat, sharply defined facets. The effect of the 

anisotropy is pronounced, such that by the first snapshot there remains little evidence of the 

semicircular initial condition. At 𝑡𝑡 = 60	s, there is an observable artifact in the upper left region 

of the microstructure where the electrolyte somewhat infiltrates the metal, leading to ∑ 𝜙𝜙J
[∂

Jcd <

1 several gridpoints away from the interface. This artifact is likely due to a rapidly changing 

inward normal vector along the metal/electrolyte interface, which leads to a correspondingly 

sharp change in the mobility near the corner of the grains that are exposed to the electrolyte. Due 

to the rapid change in the current and mobility, the Peclet number may also be deviating away 

from unity, causing local changes in the characteristic behavior of the Cahn-Hilliard equation 

(Eqs. 5.2 and 5.7). Overall, the result in Figure 5.12 is in direct qualitative agreement with 

experimental results from Lindell and Pettersson,196 who observed the formation of such faceted 

pits. This is in contrast to the model of Mai et al.,79 which did not predict faceting. The 

difference may lay in the treatment of anisotropic corrosion kinetics by Mai et al.,79 which was 

implemented by a modification of the isotropic corrosion current density of each grain. 
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Figure 5.11. Simulated pit morphology evolution within a polycrystalline microstructure with isotropic reaction 
kinetics at (a) 0, (b) 20, (c) 40, and (d) 60 s with an applied potential of -75 mV vs. SCE and a protective lacquer 
covering the surface (magenta line). 

 

 



 106 

 

Figure 5.12. Simulated pit morphology evolution within a randomly oriented polycrystalline microstructure with 
orientation-dependent reaction kinetics at (a) 0, (b) 20, (c) 40, and (d) 60 s with an applied potential of -75 mV vs. 
SCE and a protective lacquer covering the surface (magenta line). Unlike in Figure 5.11, faceting of the grains is 
observed. 
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Single Pit Growth With Secondary Phases 

The previous case focused on the presence of a polycrystalline microstructure during corrosion. 

However, the localized corrosion rate also depends significantly on the composition of the 

constituent solid that can vary due to the presence of solute depleted zones, grain boundary 

segregation, and precipitate particles.17,165 The majority of existing models tend to neglect these 

effects for simplicity. As a final example to explicitly address these factors, the present model is 

applied to the corrosion of an arbitrary alloy with secondary phases (e.g., intermetallic 

precipitates). It should be noted that this example is intended to demonstrate the modeling 

framework’s capability to handle such microstructures, and the example is not meant to represent 

any specific material. To demonstrate this scenario, 2D simulations are performed using two 𝜙𝜙J 

order parameters to describe a bicrystal matrix with an initial corrosion pit located on the grain 

boundary. Furthermore, an additional 𝜙𝜙J order parameter is used to describe a pair of precipitate 

particles located along the boundary below the corrosion pit. As in the previous example, Model 

II is employed to describe the phase-field kinetics of the polycrystalline system. 

In general, the secondary phase particles would likely have kinetic properties or involve 

reaction species that differ from the matrix phase (see Eqs. 5.10 through 5.19). However, for 

simplicity, in this example all input parameters are taken to be the same as in Table 5.1 except 

for the corrosion current density, 𝜙𝜙p(!!, which is assumed to be the dominant factor controlling 

corrosion. Within the matrix phase, 𝜙𝜙p(!! is taken to be 9.90 × 10h|	A/cm[ (equal to the value in 

Table 5.1), while it is taken to be 9.90 × 10h†	A/cm[ (ten times faster than the value in Table 

5.1) for the secondary phase particles. This corresponds to a secondary phase that is more 

susceptible to corrosion relative to the matrix phase. For this example, the applied potential is -
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75 mV vs. SCE, and the remaining boundary conditions are the same as for the polycrystalline 

case, including the presence of an inert coating on the surface. 

 

Figure 5.13. Simulated pit morphology evolution for a microstructure with precipitates located along a grain 
boundary, showing the (left) dissolved metal concentration and (right) electrostatic potential at (a) 0, (b) 3, (c) 11, 
and (d) 17 s with a -75 mV vs. SCE applied potential and an inert layer covering the surface (indicated by a magenta 
line). The dotted red line indicates the exact location of the interfaces as given by 𝜙𝜙J = 0.5. 

The simulation results for this example are presented in Figure 5.13. Initially, the pit 

grows uniformly, and because it is uncoated, new diffusion pathways can form. As the pit 

propagates, it eventually encounters the secondary phase particles. The first particle rapidly 
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dissolves, as expected, because its corrosion current density is ten times larger than that of the 

matrix phase. As observed in both the 1D and single-crystal simulations, the quick increase in 

concentration at the interface leads to a decreased overpotential that slows the corrosion reaction 

due to IR-controlled kinetics. Once the first particle dissolves, a deeper and narrow pit is created 

within the matrix phase. 

When the corrosion front reaches the second particle, the corrosion rates vary throughout 

the pit. Towards the top, it can be observed that the pit opening is widening, suggesting that the 

cusp between the original pit and the first particle will eventually disappear. As in the coated 

single crystal, the transport pathway toward the bottom becomes more restricted and the ions 

must diffuse through a narrow opening into the electrolyte where the first particle dissolved. This 

constrained transport leads to a higher metal ion concentration and electrostatic potential at the 

surface where the second particle is corroding. The increased electrostatic potential in turn 

decreases the overpotential in Eq. 5.18, leading to stronger IR-controlled kinetics that cause the 

second particle to dissolve more slowly. This is confirmed in Figure 5.14, where it is observed 

that when the corrosion front encounters the first particle, there is a sharp increase in the velocity 

of the center of the pit. After the first particle dissolves, the pit growth rate returns to a slower 

value and more of the crystal matrix is removed. Upon encountering the second particle, the pit 

growth rate increases again. However, the second particle has a reduced interfacial velocity and 

takes longer to dissolve than the first particle. 
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Figure 5.14. The velocity of the center of the corrosion pit as a function of time. Upon encountering the precipitate 
particles, the velocity of the interface increases sharply until the first particle dissolves. The second particle corrodes 
more slowly than the first due to a longer, more restricted diffusion pathway and an accompanying lower 
overpotential. 

Note that the initial geometry used in this example is only one of many microstructures 

that can be investigated with this model. Other constructions can include particles within the 

matrix phase away from grain boundaries and particles with varying shape, size, and distribution. 

Therefore, this modeling approach enables the explicit study of secondary phases and their 

influences on corrosion rates and pit morphology evolution in alloys, provided that the 

electrochemical properties of the constituent phases are properly characterized. 

Summary and Conclusions 

A general modeling framework was presented for simulating localized corrosion in metallic 

materials. This model utilized the smoothed boundary method to couple mass transport processes 

and electrochemical kinetics within the electrolyte to a phase-field model describing evolution of 

the metallic phases and their interfaces in a straightforward manner. A microscopic expression 

was derived for the diffuse-interface formulation to allow simulation of activation-, IR-, and 

transport-controlled reaction kinetics. Two alternative approaches for describing the phase-field 

model were presented: a coupled Cahn-Hilliard/equilibrium Allen-Cahn approach and an all-

Cahn-Hillard approach, each with variable mobility. The former was found to have better 
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computational performance but was unsuitable for polycrystalline systems due to an artifact, 

while the latter captured the behavior of a polycrystalline metal accurately. The combination of 

the phase-field model with the smoothed boundary method allowed for straightforward coupling 

of the reaction kinetics along the moving boundary with the ionic concentrations and the 

electrostatic potential. This permitted the inclusion of varying overpotentials and reaction rates 

along the metal/electrolyte interface. 

Simulations with one-dimensional wire and two-dimensional foil electrodes were 

performed to validate the model behavior for 304 stainless steel in 1M NaCl, which showed good 

agreement with the experimental results of Ernst and Newman.169 As in the models of Mai et 

al.79 and Chen and Bobaru,78 the transition between activation-controlled kinetics at low applied 

potentials to a transport-controlled regime at higher applied potentials occurred smoothly. In 

contrast to these previous models, the presented work explicitly included the electrostatic 

potential and its effects on ionic transport, allowing for the direct consideration of IR-controlled 

kinetics without coarse-grained approximations. The simulations demonstrated that the potential 

gradient has a significant effect on the limiting reaction kinetics. However, as has been 

previously indicated,86,87,131,202 accurate quantification of this effect requires detailed knowledge 

of the cell geometry and surface morphology. Additionally, accuracy could be improved by 

directly considering the precipitation of a salt layer as well as the formation of a lacy pit cover. 

Further simulations were performed to demonstrate the model’s capability by considering the 

effects of spatially varying and/or anisotropic reaction kinetics in synthetic polycrystalline 

microstructures. Overall, the model presented is suitable for simulating the morphological 

evolution associated with corrosion while taking into account the effects of grain orientation and 
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different electrochemical properties of phases in polycrystalline and/or multiphase metallic 

alloys. 
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Preliminary Work: Reduced-Order Modeling of Lithium Symmetric Cells 

 

Introduction 

In this chapter,* we present preliminary work for a reduced-order version of the morphology-

aware 1D model as implemented in Chapter 3 and Chapter 4. As demonstrated, the framework is 

an effective tool that leverages coarse-grained descriptions of the anode surface morphology in 

order to quickly and efficiently simulate the time-dependent behavior of the system. However, 

while the model has provided mechanistic insight into the behavior of both magnesium and 

lithium metal deposition and dissolution, there are areas where the model could potentially be 

simplified to further reduce the computational cost. Particular optimizations will be examined 

specifically for the application of the model to lithium symmetric cells. 

Within the full model as described in Chapter 4, one of the largest computational costs is 

associated with solving for the electrolyte species concentrations and the electrostatic potential in 

the electrolyte. Additionally, there is a significant cost to refine the computational domain due to 

the moving electrolyte boundary. As such, the ability to simplify the description of electrolyte 

transport within a moving domain would permit significant computational savings, provided that 

the model still accurately represented the parametric behavior of the system. In the simulation 

results of Chapter 4,14 we observed that the overall potential drop in the electrolyte was small in 

                                                
*Derived from the manuscript currently in preparation: V.W.L. Chan, A.F. Chadwick, and K. Thornton, 
“Parametrically-Informed Reduced-Order Model of Lithium Deposition and Dissolution in Symmetric Cells,” in 
preparation. 
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comparison to the overpotentials associated with the reactions at each electrode (cf. Figure 4.10). 

Additionally, this potential drop was relatively constant throughout the course of cycling. These 

results imply that the transport in the electrolyte can be described as an average set of behaviors 

in the cell, and the model can therefore be further simplified.  

Governing Equations 

We assume that the concentration of lithium will be uniform across the cell because of the 

observed behavior that the potential drop across the cell does not appreciably change during a 

half-cycle despite changes in the concentration profile. Therefore, instead of solving the 

complete PNP system of equations, the time-dependent behavior of the potential drop across the 

electrolyte, Δ𝑉𝑉78(𝑡𝑡), can be described by Ohm’s law: 

𝛥𝛥𝑉𝑉78(𝑡𝑡) = 𝜙𝜙
𝐿𝐿(𝑡𝑡)
𝜅𝜅(𝑡𝑡), 

(6.1) 

where 𝜙𝜙 is the current density through the cell, 𝜅𝜅(𝑡𝑡) is the average electrolyte conductivity and 

𝐿𝐿(𝑡𝑡) is the time-dependent electrode separation. The conductivity is related to the bulk 

concentration of the electroactive species by35 

𝜅𝜅(𝑡𝑡) =
𝐹𝐹[

𝑅𝑅𝑅𝑅 a 𝐴𝐴J
[𝐷𝐷J𝑐𝑐J̅(𝑡𝑡)

J

, 
(6.2) 

where 𝐹𝐹 is Faraday’s constant, 𝑅𝑅 is the ideal gas constant, 𝑅𝑅 is the absolute temperature, 𝐴𝐴J is the 

charge of the 𝜙𝜙-th electrolyte species, 𝐷𝐷J is its diffusivity, which may or may not be dependent on 

concentration, and 𝑐𝑐J̅(𝑡𝑡) is its bulk concentration. The electrode separation can be calculated by 

integrating the magnitude of the current over time: 

𝐿𝐿(𝑡𝑡) = 	 𝐿𝐿K + Y
1

𝐶𝐶𝐸𝐸 − 1Z
ΩÑJ

𝐹𝐹
¶ |𝜙𝜙|	𝑟𝑟𝑡𝑡

ß

K
, 

(6.3) 
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where 𝐿𝐿K is the initial separation, ΩÑJ is the molar volume of lithium metal, and 𝐶𝐶𝐸𝐸 is the 

Coulombic efficiency of the system. We assume that the growth of any morphological features 

such as dendrites does not significantly affect the effective electrode separation. 

To describe the concentration of lithium in the electrolyte, we will examine two different 

sets of approximations. The first set assumes, as implied by the Coulombic efficiency model in 

Chapter 4, that the total number of ions produced from the lithium salt remains constant 

throughout cycling and that there is an essentially infinite supply of solvent. The bulk 

concentrations of each species in the electrolyte can then be obtained by 

𝑐𝑐J̅(𝑡𝑡) =
𝐿𝐿K

𝐿𝐿(𝑡𝑡) 𝑐𝑐J̅,K, (6.4) 

where 𝑐𝑐J̅,K is the initial bulk concentration of a given species. The second set of approximations 

assumes that there is either an effectively infinite volume of electrolyte or that the total charge 

deposited on or dissolved from the electrode surface is small. The bulk concentrations of each 

electrolyte species can then be assumed to remain constant: 

𝑐𝑐J̅(𝑡𝑡) = 𝑐𝑐J̅,K. (6.5) 

Both assumptions would likely fail once a significant amount of electrolyte decomposition has 

occurred or when the total volume of electrolyte is small. In both of these regimes, the volume of 

the electrolyte, and by extension the concentration of the electrolyte species, would need to be 

calculated from the total amount of each species and their partial molar volumes. 

The overpotentials at the electrodes are calculated from the modified Butler-Volmer 

equation presented in Chapter 4,14 but now the concentrations at the electrode surface are 

replaced with uniform concentrations: 

𝜙𝜙 = 𝛾𝛾𝐹𝐹𝑘𝑘ôûû
K ë𝑐𝑐ÑJexp ú

(1 − 𝛽𝛽)𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂ü − 𝑐𝑐Ñ̅Jç(𝑡𝑡) exp Y−

𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂Z

	
ì, 

(6.6) 
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where 𝛾𝛾 is the relative increase in electrode surface area, 𝑘𝑘ôûû
K = 𝜃𝜃û∫´¨𝑘𝑘û∫´¨

K + (1 − 𝜃𝜃û∫´¨)𝑘𝑘´á≠’
K  is 

the effective rate constant as a function of the relative fraction of the electrode surface area with 

fast kinetics, 𝜃𝜃û∫´¨, 𝑐𝑐ÑJ is the concentration of lithium metal, and 𝜂𝜂 is the overpotential. The 

implementation of the surface model that defines 𝛾𝛾 and 𝜃𝜃û∫´¨  is the same as described by Eqs. 

4.9-4.14. The total cell voltage can be calculated by summing the potential drop across the 

electrolyte and the overpotential at each electrode:  

𝑉𝑉pŸÒÒ (𝑡𝑡) = 𝜂𝜂ÑŸÔß(𝑡𝑡) + 𝛥𝛥𝑉𝑉78(𝑡𝑡) + 𝜂𝜂8J9:ß(𝑡𝑡). (6.7) 

Unlike the full model, which is represented by a system of coupled partial differential 

equations, with the reduced-order approach we have simplified the model to contain only a 

single ordinary differential equation, Eq. 6.3. For a given value of 𝐿𝐿K, 𝐶𝐶𝐸𝐸, and 𝜙𝜙, Eq. 6.3 can be 

solved over the desired simulation time range, and the remaining quantities can be calculated 

based on this solution. As such, a significant computational savings can be realized over the full 

model, which could be further exploited when combined with a more efficient method to 

parameterize the model, such as Latin hypercube sampling207 or the Levenberg-Marquardt 

algorithm.208,209 This would have multiple benefits. First, the reduced cost could allow for end-

users to quickly determine an initial estimate of the model parameters, the values of which could 

then be refined with the full model. Second, a computationally inexpensive model could enable 

real-time feedback between simulation and experiment or, when combined with models of 

cathode materials, serve as a diagnostic algorithm for monitoring the health of metal-anode 

batteries in EV battery packs. 

Preliminary Results 

To demonstrate the model, two simulations are performed for the full model, the reduced-

order model with variable concentration, and the reduced-order model with constant 
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concentration, for a total of six simulations. The two simulations for each model employ 

identical model parameters as in Table 4.2 of Chapter 4 except for the following. For the first 

simulation, we ignore the effect of the rest in between half-cycles. The second simulation 

considers two full cycles using a time step of 10-1 s (ten times larger than the time step used in 

Chapter 4) to examine a parameter set that may be employed in initial coarse-time-resolution 

simulations of the system. For performance comparison purposes, the reduced-order model is 

implemented as a separate subroutine within the same overall Fortran 2008 framework as the full 

model. Selecting either the full or reduced-order models is accomplished by changing a single 

flag within the model input file that, after performing the same initialization for each model, 

launches the subroutine(s) for the selected model. All simulations are performed on a 2017 

MacBook Pro with a 2.3 GHz Intel Core i5 processor running version 8.1.0 of the GNU 

Compiler Collection (GCC). 

The performance results, including the run time for the full and reduced-order models and 

the relative speedup, are presented in Table 6.1. The assumption of constant or variable 

concentration in the reduced-order model did not significantly affect the run time; thus, Table 6.1 

only includes the result for the model when assuming variable concentration. All of the reported 

run times are obtained from the best of three runs of the respective models; the worst runs were 

at most about a second slower. The speedup was calculated as 𝑆𝑆 = 𝑡𝑡ûÜáá/𝑡𝑡ùôòÜñôò, where 𝑆𝑆 is the 

speedup, 𝑡𝑡ûÜáá is the run time of the full model, and 𝑡𝑡ùôòÜñôò is the run time of the reduced-order 

model. A large improvement in run time is realized with the reduced-order model over the full 

model, with a speedup of 7.6 and 70.9 for the coarser and finer simulations, respectively. The 

insensitivity of the reduced-order model to the simulation time step size is likely due to the 

significantly reduced computational complexity of the model. The reduced-order model does not 
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require any linear algebra computations, unlike the full model. Additionally, the amount of 

memory required by the reduced-order model may be small enough to fit in the cache of the 

processor. The largest remaining expense in the reduced-order model is the calculation of the 

lookup table for the electrode morphology, which does not depend on the time step size. 

Table 6.1. The test matrix of system size, time step size, and number of simulated charge/discharge cycles, 
along with the performance comparisons between the full and reduced-order models. 

System Size (µm) 𝚫𝚫𝒕𝒕 (s) 𝒏𝒏𝒄𝒄𝒄𝒄𝒄𝒄 Full Model Reduced Model Speedup 

750 10-1 2 15.9 s 2.1 s 7.6 

750 10-2 5 205.5 s 2.9 s 70.9 

 

 While the reduced-order model offers a dramatic improvement in performance, it is only 

worthwhile to employ the model if it yields similar simulation results as the full model. Figure 

6.1 plots the overall cell potential, 𝜂𝜂ÑŸÔß , 𝜂𝜂8J9:ß , and Δ𝑉𝑉78  as a function of time for the 750 µm 

initial electrode separation. We observe that the overall agreement between the full model and 

the reduced-order model both with and without constant concentration is excellent. There is a 

slight discrepancy amongst the models during deposition (half-cycles with peak values of 𝜂𝜂 at 

the end of the half-cycle) and in the potential drop, which combined cause the reduced-order 

model to somewhat under-predict the overall polarization as compared to the full model, 

typically by 15-20 mV. These quantities depend upon the concentration gradient across the cell, 

which we know is non-negligible at this larger electrode separation from Figure 4.7. However, 

within the assumed model conditions the reduced order model produces nearly identical results 

regardless of whether the concentration is held constant, with the total polarization decreasing by 

a maximum of 1 mV when the concentration is constant. 
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Summary 

In this chapter, we presented a reduced-order version of the morphology-aware voltammetry 

model described in Chapter 3 and Chapter 4. This reduced-order model neglects the variation in 

the electrolyte species’ concentrations across the simulated cell, and by extension also neglects 

any spatial variation in properties that depend upon the concentrations. The simplification of the 

concentration profiles allows the model to solve Ohm’s law instead of the PNP equations 

employed in the full model. Preliminary examinations were performed to understand the relative 

accuracy and computational performance of the reduced-order model. Overall, the results 

presented in this chapter indicate that assuming a homogenous concentration profile across a 

planar cell geometry is an effective way to dramatically reduce the computational cost of the 1D 

modeling framework. Despite this seemingly drastic simplification of the model physics, overall 

agreement between the full and reduced-order models remains excellent. While some 

discrepancies are present, these may well be within the statistical uncertainty resulting from the 

variations in the experimental systems and measurements with which the parameters are fitted; 

further examination of the models will determine whether this is indeed the case. Additionally, 

the differences in the simulation results were negligible when the average concentration was held 

constant instead of being allowed to vary as in Chapter 4. However, further analysis is needed to 

determine when the model and its approximations can be applied without a loss of accuracy. 

Overall, these preliminary results appear to confirm that the morphological evolution, which is 

incorporated in the morphology-aware Butler-Volmer kinetic model, is the dominant 

contribution to the overall cell polarization, and that concentration gradients play a 

comparatively minor role. 



 120 

 

Figure 6.1. The simulated curves for (a) the total cell polarization, (b) the overpotential of the left electrode, (c) the 
overpotential of the right electrode, and (d) the potential drop in the electrolyte as a function of time for an initial 
electrode separation of 750 µm. Each plot contains the curves for the reduced-order model with both variable 
concentration (solid green line) and constant concentration (dotted black line), as well as the full model (dashed red 
line). The largest discrepancy is visible in the electrode overpotentials during deposition half-cycles, as the 
concentration gradient across the cell is non-negligible. A slight deviation is also visible in the IR drop throughout 
each cycle. 
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Preliminary Work: Mechanical Interactions Between Decomposed  
Protection Layers and Lithium Anodes 

 

Introduction 

In this chapter,* we present preliminary work for a diffuse-interface model that couples the 

transport solver developed in Chapter 5 with a smoothed boundary formulation of linear 

elasticity. This model is developed to simulate the mechanical interactions between a lithium 

anode and a decomposed, mixed-ionic conducting protection layer. This work is still ongoing; as 

such, only selected results are shown. 

Significant progress has been made towards developing long-life lithium metal anodes 

for Li-S and Li-air chemistries. However, degradation of the anode surface remains a significant 

barrier to the success of lithium metal batteries, whether it be the formation of dendrites on the 

lithium anode14,163,210 or passivation of the anode surface.211–214 One possible approach to extend 

the lifetime of the anode is to apply a protection layer that isolates the anode from the electrolyte. 

The protection layer can consist of a variety of materials. For example, they may be standalone 

polymer or ceramic membranes laminated on the anode,215,216 ceramic layers deposited via 

atomic layer deposition (ALD),148,217,218 or thin layers of alloyed metals.219 While protection 

layers have shown marked improvement in the lifespan of a lithium metal anode, some solid-
                                                
*Derived from the manuscript currently in preparation: A.F Chadwick and K. Thornton, “Effect of Material and 
System Anisotropy on the Mechanical Response of Mixed Ionic Conducting Thin Films for Lithium Anode 
Protection,” in preparation. 
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state materials such as LiPON,220 NASICON-type ceramics,221 Li7P3S11,222 and Li10GeP2S12 

(LGPS)223 are unstable in contact with lithium metal. The materials mentioned above are 

essentially single-ion conductors (i.e., they have a lithium transference number that is near 

unity), and therefore transport should occur almost entirely by lithium cation migration.224 

However, some protection layer materials have less-than-unity transference numbers for lithium. 

For instance, graphene oxide membranes have been found to have a transference number of 

0.93,216 and spinel-type materials show evidence of concentration gradients during cycling, 

indicative of a transference number less than one.225 Additionally, some solid electrolytes break 

down upon contact with lithium to form mixed ionic/electronic conducting interphases223,226 in 

which species other than lithium can carry some portion of the current in the layer. Lastly, 

several examples of potential protection layer materials exhibit phase changes with varying 

lithium concentrations.225,227–232 The lithium cation concentration gradient in either a pristine 

mixed-conducting or a decomposed region of a single-ion-conducting protection layer material 

would lead to eigenstrains during cycling due to the lattice-size dependence on concentration. 

The resulting stresses may not necessarily be large enough to cause catastrophic failure of the 

protection layer such as electrochemical shock as observed in cathode materials.95 However, 

given the intimate contact between lithium and the protection layer, the induced eigenstrain 

could produce stress in the anode and at the anode-protection layer interface that may lead to 

degradation, such as delamination, which would alter the effectiveness of the protection layer. 
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Figure 7.1. Two-dimensional schematic of the model geometry simulated in this study, consisting of the lithium 
metal anode, the protection layer, and a thin numerical boundary layer necessary for the traction-free boundary 
condition in the smoothed boundary method. The anode is assumed to be a single isotropic domain, but the 
protection layer’s exact properties and morphology depend upon the specific example being considered. 

Model Formulation 

In this chapter, we consider a half-cell that consists of a lithium-metal anode and a protection 

layer that is directly bonded to the anode surface. We assume that the counter electrode acts as an 

ideal source or sink of lithium ions that enforces a constant lithium ion concentration in the 

undecomposed region of the protection layer, but its exact composition, geometry, and reaction 

kinetics are not explicitly considered. The lithium anode is assumed to have isotropic properties, 

while the protection layer can be either isotropic, an anisotropic single crystal, or a 

polycrystalline aggregate of anisotropic crystals. The anode has a thickness, 𝐿𝐿A, and the 

protection layer has an overall thickness, 𝐿𝐿BÑ. We examine a system in which a portion of the 

protection layer has decomposed to form a mixed-ionic conductor, with the decomposed region 

having a thickness 𝐿𝐿BÑ
ƒ . We also assume that the protection layer does not further decompose, 

i.e., the thickness of the decomposed region is static over the course of the simulation. A 2D 

schematic representation of the model geometry is presented in Figure 7.1. In addition to the 

anode and protection layer, a thin numerical boundary layer is included in the computational 

domain, the necessity of which is described in the Numerical Methods section. 
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Here, we assume that both the lithium electrode and the protection layer exhibit linear 

elastic behavior and that the system is in mechanical equilibrium. In the Einstein notation, 

mechanical equilibrium is expressed as:233  

𝜕𝜕𝜎𝜎J¥

𝜕𝜕𝑥𝑥¥
=

𝜕𝜕
𝜕𝜕𝑥𝑥¥

D𝐶𝐶J¥EÒ ∆𝜖𝜖EÒ − 𝜖𝜖EÒ
ôÄã«F = 0, (7.1) 

where	𝜎𝜎J¥ is the stress tensor, 𝑥𝑥J is the position along the 𝜙𝜙-th axis, 𝐶𝐶J¥EÒ  is the stiffness tensor, 

𝜖𝜖J¥ = 	 ∆𝜕𝜕𝑢𝑢J 𝜕𝜕𝑥𝑥¥⁄ + 𝜕𝜕𝑢𝑢¥ 𝜕𝜕𝑥𝑥J⁄ «/2 is the elastic strain tensor, 𝜖𝜖J¥
ôÄã is the eigenstrain tensor, and 𝑢𝑢J is 

the displacement in the 𝜙𝜙-th direction. All indices in Eq. 7.1 range from one to three, representing 

three spatial coordinates. The eigenstrain arises from a tensorial form of Vegard’s law234 and can 

be expressed as  

𝜖𝜖J¥
ôÄã = 𝛽𝛽J¥(𝑐𝑐~ − 𝑐𝑐~̅), (7.2) 

where 𝛽𝛽J¥ is the chemical expansion tensor given below,92,235,236 𝑐𝑐~ is the local concentration of 

lithium, and 𝑐𝑐~̅ is the constant, initial lithium concentration in the decomposed protection layer. 

This form of eigenstrain has been employed in models of volumetric expansion in cathode 

materials.92,235,236 The chemical expansion tensor has the form: 

𝛽𝛽J¥ =
1

𝑐𝑐~ − 𝑐𝑐~̅

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑖𝑖d(𝑐𝑐~) − 𝑖𝑖d(𝑐𝑐~̅)

𝑖𝑖d(𝑐𝑐~̅) 0 0

0
𝑖𝑖[(𝑐𝑐~) − 𝑖𝑖[(𝑐𝑐~̅)

𝑖𝑖[(𝑐𝑐~̅) 0

0 0
𝑖𝑖†(𝑐𝑐~) − 𝑖𝑖†(𝑐𝑐~̅)

𝑖𝑖†(𝑐𝑐~̅) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (7.3) 

where 𝑖𝑖d, 𝑖𝑖[, and 𝑖𝑖† are the concentration-dependent lattice parameters of the crystal.  

 Once Eq. 7.1 has been solved, the stress tensor can be evaluated throughout the material, 

and the hydrostatic (𝜎𝜎M) and von Mises (𝜎𝜎N") stresses may be calculated via233 

𝜎𝜎M =
1
3

(𝜎𝜎d + 𝜎𝜎[ + 𝜎𝜎†), (7.4) 
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𝜎𝜎N" =
1
√2

[(𝜎𝜎d − 𝜎𝜎[)[ + (𝜎𝜎[ − 𝜎𝜎†)[ + (𝜎𝜎d − 𝜎𝜎†)[ + 6(𝜎𝜎|
[ + 𝜎𝜎P[ + 𝜎𝜎„

[)]d/[. (7.5) 

The hydrostatic stress describes whether a material is in tension or compression and the von 

Mises stress is often employed as a diagnostic of when materials may yield or fail.233 

The transport of ionic species and the resulting current distribution are solved for within 

the protection layer. We assume that the protection layer material contains three relevant ionic 

species: lithium cations, a fixed anion, and a mobile anion, with each species having 

concentrations 𝑐𝑐~, 𝑐𝑐h
Q, and 𝑐𝑐h

", respectively. The protection layer may have additional species 

that are assumed to be inert and thus are not explicitly considered in the present model. We 

assume that electroneutrality is enforced throughout the entire protection layer, 

𝑐𝑐~ − 𝑐𝑐h
Q − 𝑐𝑐h

" = 0, (7.6) 

where we have further assumed that the anions have a charge number of -1. To calculate the 

initial concentrations of the anionic species in the protection layer material, we employ the 

definition of the transference number of lithium,35,37 𝑡𝑡~: 

𝑡𝑡~ =
𝐷𝐷~𝑐𝑐~̅

𝐷𝐷~𝑐𝑐~̅ + 𝐷𝐷h
Q𝑐𝑐h̅

Q + 𝐷𝐷h
"𝑐𝑐h̅

" , (7.7) 

where 𝐷𝐷~ is the diffusivity of lithium, 𝐷𝐷h
Q  is the diffusivity of the fixed anion, 𝐷𝐷h

" is the 

diffusivity of the mobile anion, and the bar over each concentration refers to the initial 

concentration of each species in the protection layer within the decomposed region. For the fixed 

anion, 𝐷𝐷h
Q  is zero, and thus the fixed anion is unable to carry any portion of the current. The 

current is thus carried by either lithium or the mobile anion, which, to simplify the analysis, we 

assume have equal diffusivities. Therefore, we can calculate the initial concentration of the 

mobile anion by 

𝑐𝑐h̅
" = 𝑐𝑐~̅

1 − 𝑡𝑡~

𝑡𝑡~
	. (7.8) 
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To ensure electroneutrality, 𝑐𝑐h̅
Q must therefore satisfy 

𝑐𝑐h̅
Q = 𝑐𝑐~̅ − 𝑐𝑐h̅

" = 𝑐𝑐~̅
2𝑡𝑡~ − 1

𝑡𝑡~
	. (7.9) 

By inspection of Eqs. 7.6-7.9, we observe that, when 𝑡𝑡~ = 1, 𝑐𝑐h̅
" is zero. To satisfy 

electroneutrality throughout the protection layer, 𝑐𝑐~ must be constant and equal to 𝑐𝑐h
Q = 𝑐𝑐h̅

Q, 

which is consistent with the expected behavior of single-ion conductors.224 We also observe that 

𝑡𝑡~ must always be greater than 0.5, as otherwise 𝑐𝑐h̅
Q would be negative, which is unphysical. 

When 0.5 < 𝑡𝑡~ < 1, the 𝑐𝑐~ must always be greater than or equal to 𝑐𝑐h
Q, as in order for 𝑐𝑐~ < 𝑐𝑐h

Q to 

be true, 𝑐𝑐h
" would have to be negative to satisfy electroneutrality. From the observed behavior of 

Eqs. 7.6-7.9, we therefore conclude that the total lithium concentration can be expressed as the 

sum of two effective lithium cation concentrations. The first effective concentration is a portion 

that counteracts the charge of the fixed anions, 𝑐𝑐~̅
Q, which must equal 𝑐𝑐h̅

Q. The second effective 

concentration is the remainder that counteracts the charge of the mobile anions, with an initial 

concentration 𝑐𝑐~̅
" = 𝑐𝑐h̅

". 

When current flows through the protection layer, there will be an induced flux of ions. 

The flux due to 𝑐𝑐~
Q, 𝐍𝐍~

Q , only contains a contribution from migration due to the presence of an 

electric field, as 𝑐𝑐~
Q is constant:35,37 

𝐍𝐍~
Q = −

𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~

Q∇Φ, (7.10) 

where 𝐹𝐹 is Faraday’s constant, 𝑅𝑅 is the ideal gas constant, 𝑅𝑅 is the absolute temperature, and Φ is 

the electrostatic potential. On the other hand, the flux due to 𝑐𝑐~
", 𝐍𝐍~

", contains contributions from 

both diffusion and migration, as 𝑐𝑐~
" is able to vary across the protection layer. We assume that 

there are no interactions between the lithium cations and the mobile anions, and therefore 𝐍𝐍~
" 

can be described by the Nernst-Planck equation:35,37–40,44 
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𝐍𝐍~
" = −𝐷𝐷~∇𝑐𝑐~

" −
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~
"∇Φ. (7.11) 

The fixed anion is assumed to have a diffusivity of zero; therefore, its flux satisfies 

𝐍𝐍h
Q = 0 (7.12) 

throughout the protection layer. Lastly, we assume that the flux of the mobile anion, 𝐍𝐍h
", can 

also be described by the Nernst-Planck equation: 

𝐍𝐍h
" = −𝐷𝐷h

"∇𝑐𝑐h
" +

𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷h

"𝑐𝑐h
"∇Φ. (7.13) 

Through our assumptions of electroneutrality and equal diffusivities among all mobile species, 

we can rewrite Eq. 7.13 as  

𝐍𝐍h
" = −𝐷𝐷~∇𝑐𝑐~

" +
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~
"∇Φ. (7.14) 

 If there is an imbalance between its incoming and outgoing flux in any given volume, 𝑐𝑐~
" 

will evolve over time according to the continuity equation, 

𝜕𝜕𝑐𝑐~
"

𝜕𝜕𝑡𝑡 = −∇ ⋅ 𝐍𝐍~
" , (7.15) 

where 𝑡𝑡 is time. The values of 𝑐𝑐~
Q and 𝑐𝑐h

Q are constant over time because we assume that 

decomposition is not ongoing in the protection layer, and the value of 𝑐𝑐h
" can be calculated 

through electroneutrality; therefore only Eq. 7.15 is required to describe the evolution of the 

concentrations. The electrostatic potential distribution in the electrolyte is needed in order to 

solve for the individual fluxes. The electrostatic potential can be calculated via the current 

continuity equation. The current density in the protection layer is obtained from the net flux 

given by the sum of the fluxes described by Eqs. 7.10-7.14: 

𝐢𝐢 = 𝐹𝐹(𝐍𝐍~
Q + 𝐍𝐍~

" − 𝐍𝐍h
Q − 𝐍𝐍h

") = −
𝐹𝐹[

𝑅𝑅𝑅𝑅 𝐷𝐷~(𝑐𝑐~
Q + 2𝑐𝑐~

")∇Φ = −κ∇Φ, (7.16) 
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where 𝐢𝐢 is the current density and 𝜅𝜅 is the local conductivity of the protection layer. If we assume 

that the current density is divergence-free, which follows from electroneutrality and charge 

conservation,35 then the electrostatic potential is determined by 

∇ ⋅ 𝐢𝐢 = −∇ ⋅ (𝜅𝜅∇Φ) = 0. (7.17) 

At the protection layer/anode interface, a reaction will occur that causes ions to enter or 

exit the protection layer. We assume that the interface is blocking to the anionic species and only 

lithium will be involved in the interfacial reaction. The total flux of lithium ions at the interface 

is 

𝜙𝜙!Éb

𝐹𝐹 = 𝐍𝐍~ ⋅ 𝐧𝐧BÑ = (𝐍𝐍~
𝐅𝐅 + 𝐍𝐍~

𝐌𝐌) ⋅ 𝐧𝐧BÑ = − i𝐷𝐷~∇𝑐𝑐~
" +

𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷~(𝑐𝑐~

Q + 𝑐𝑐~
")∇Φq ⋅ 𝐧𝐧BÑ, (7.18) 

where 𝜙𝜙!Éb is the reaction current normal to the interface and 𝐧𝐧BÑ is the inward unit normal 

vector at the interface with respect to the protection layer. We have assumed that 𝑐𝑐~
Q is constant; 

therefore, the boundary condition of Eq. 7.15 is obtained by rearranging Eq. 7.18: 

−
𝜙𝜙!Éb

𝐹𝐹 − Y
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~
Q∇ΦZ ⋅ 𝐧𝐧BÑ = Y𝐷𝐷~∇𝑐𝑐~

" +
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~
"∇ΦZ ⋅ 𝐧𝐧BÑ. (7.19) 

The reaction current density, 𝜙𝜙!Éb, is calculated via Butler-Volmer kinetics:35,37 

𝜙𝜙!Éb = 𝜙𝜙K êexp ë
(1 − 𝛽𝛽)𝐹𝐹

𝑅𝑅𝑅𝑅 𝜂𝜂ì − exp i−
𝛽𝛽𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂qî, (7.20) 

where 𝜙𝜙K is the exchange current density and 𝛽𝛽 is the charge transfer symmetry coefficient. The 

overpotential, 𝜂𝜂, is given by 𝜂𝜂 = 𝑉𝑉n − 𝐸𝐸Kt − Φ, where 𝑉𝑉n  is the voltage applied to the lithium 

anode and 𝐸𝐸Kt  is the formal potential of lithium reduction. In this chapter, all simulations are 

performed assuming galvanostatic conditions. Therefore, the value of 𝑉𝑉n  is allowed to vary over 

time such that the average current density along the interface is always equal to a desired applied 

current density, 𝜙𝜙nUU, and the reference potential can be chosen arbitrarily. At 𝐿𝐿BÑ
ƒ , we assume 
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that there is no discontinuity in the total lithium concentration between the pristine and 

decomposed regions of the protection layer. Therefore, the concentration of each species is fixed 

at its initial value. When solving for the electrostatic potential, the reaction current density 

defined by Eq. 7.20 is also the value of the current density at the protection layer/anode interface, 

which leads to one of the boundary conditions for Eq. 7.17: 

𝐢𝐢 ⋅ 𝐧𝐧BÑ = −𝜅𝜅∇Φ ⋅ 𝐧𝐧BÑ = 	 𝜙𝜙!Éb. (7.21) 

At the interface between the protection layer and the boundary layer, the electrostatic potential is 

set such that the current density normal to that interface is equal to 𝜙𝜙nUU. 

Numerical Methods 

For this study, we employ a numerical approach based on the smoothed boundary method73 

(SBM) to solve Eqs. 7.1, 7.15, and 7.17. The SBM is a diffuse-interface technique that solves the 

governing equations on a domain that is defined by mathematically smooth functions and that 

automatically enforces boundary conditions along the edge of that domain. When applied to 

linear elasticity, the SBM allows for a traction-free boundary condition to be applied on the 

diffuse interface, which in our case is the interface between the protection layer and a liquid 

electrolyte. Using the formalism of Yu et al.,73 Eq. 7.1 may be rewritten as: 

𝜕𝜕
𝜕𝜕𝑥𝑥¥

ë𝜓𝜓VQ𝐶𝐶J¥EÒ
1
2 ú

𝜕𝜕𝑢𝑢J

𝜕𝜕𝑥𝑥¥
+

𝜕𝜕𝑢𝑢¥

𝜕𝜕𝑥𝑥J
üì + |𝛻𝛻𝜓𝜓VQ|𝑁𝑁J =

𝜕𝜕
𝜕𝜕𝑥𝑥¥

D𝜓𝜓VQ𝐶𝐶J¥EÒ 𝛽𝛽EÒ(𝑐𝑐~ − 𝑐𝑐~̅)F, (7.22) 

where 𝜓𝜓VQ  is a phase-field-like domain parameter, and 𝑁𝑁J is the applied surface traction, which 

for a traction-free boundary is zero. The value of 𝜓𝜓VQ  is one in the solid (anode and the 

protection layer), zero outside the solid, and smoothly transitions between from one to zero at the 

traction-free surface located at the protection layer/boundary layer interface in Figure 7.1 A 
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hyperbolic tangent function is employed to describe 𝜓𝜓VQ  as a function of the vertical position, 

which is given by the expression: 

𝜓𝜓VQ =
1
2 i1 − tanh Y

𝐴𝐴 − 𝐴𝐴VQ
𝜁𝜁 Zq, (7.23) 

where 𝐴𝐴 is the position along the vertical axis, 𝐴𝐴VQ  is the location of the traction-free boundary 

between the protection layer and the boundary layer, and 𝜁𝜁 is the half thickness of the diffuse 

interface. 

In order to apply the SBM to Eqs. 7.15 and 7.17, we first define a diffuse-interface 

representation of the model geometry in Figure 7.1. To obtain the continuous functions that 

define the boundaries, we employ the phase-field method to smooth an initial voxel-based 

representation of the anode and protection layer, where the protection layer contains 𝑁𝑁 grains. 

The anode and each grain are assigned to an order parameter, 𝜙𝜙J, with values of one inside the 

anode or corresponding grain and zero elsewhere prior to the smoothing operation based on the 

phase-field approach. A free energy functional is defined with these order parameters according 

to the polycrystalline phase-field model of Fan and Chen:237 

ℱ = 	 ¶ Û𝑊𝑊𝑓𝑓K({𝜙𝜙J}) +
𝜖𝜖[

2 a(∇𝜙𝜙J)[
∂

JcK

¯ 𝑟𝑟Ω
˘

, (7.24a) 
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|
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𝜙𝜙J

[

2 ü
∂

JcK

+ 𝛾𝛾 a a 𝜙𝜙J
[𝜙𝜙¥

[
∂

¥˙J

∂

JcK

. (7.24b) 

Here, 𝑊𝑊 is the well height of the free energy, 𝜖𝜖 is the gradient energy coefficient associated with 

an energy penalty for large gradients, and 𝛾𝛾 is a parameter that controls the barrier in the free 

energy for overlapping interfaces. In Eq. 7.24, 𝜙𝜙K corresponds to the lithium anode and 𝜙𝜙J for 

1 ≤ 𝜙𝜙 ≤ 𝑁𝑁 corresponds to the individual grains of the protection layer. This initial microstructure 

is smoothed with the Allen-Cahn equation:74 
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𝜕𝜕𝜙𝜙J

𝜕𝜕𝑡𝑡 = −𝐿𝐿
𝛿𝛿ℱ
𝛿𝛿𝜙𝜙J

, (7.25a) 

𝛿𝛿ℱ
𝛿𝛿𝜙𝜙J

= 𝑊𝑊 ˝𝜙𝜙J
† − 𝜙𝜙J + 2𝛾𝛾𝜙𝜙J a 𝜙𝜙¥

[
∂

¥˛J

ˇ − 𝜖𝜖[𝛻𝛻[𝜙𝜙J, (7.25b) 

where 𝐿𝐿 is the Allen-Cahn mobility coefficient. The microstructure is smoothed until all of the 

interfacial thicknesses are approximately equal to 2𝜁𝜁. 

To solve Eqs. 7.15 and 7.17 via the SBM, we define a domain parameter corresponding 

to the protection layer, 𝜓𝜓BÑ, as  

𝜓𝜓BÑ = 1 − 𝜙𝜙K. (7.26) 

Equations 7.15 and 7.17 can now be reformulated by the SBM. The SBM form of Eq. 7.15 is 

𝜕𝜕𝑐𝑐~
"

𝜕𝜕𝑡𝑡 =
𝐷𝐷~

𝜓𝜓BÑ
∇ ⋅ Y𝜓𝜓BÑ i∇𝑐𝑐~

" +
𝐹𝐹

𝑅𝑅𝑅𝑅 𝑐𝑐~
"∇ΦqZ +

|∇𝜓𝜓BÑ|
𝜓𝜓BÑ

i
𝜙𝜙!Éb

𝐹𝐹 + Y
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~̅
X∇ΦZ ⋅ 𝐧𝐧BÑ	q, (7.27) 

and the SBM form of Eq. 7.17 is 

∇ ⋅ (𝜓𝜓BÑ𝜓𝜓VQ𝜅𝜅∇Φ) = |∇𝜓𝜓BÑ|𝜙𝜙!Éb − |∇𝜓𝜓VQ|𝜙𝜙nUU. (7.28) 

For the slab geometry in Figure 7.1, Eq. 7.28 may also be written as 

𝐻𝐻Y3∇ ⋅ (𝜓𝜓BÑ𝜅𝜅∇Φ) + (1 −𝐻𝐻Y3)∇ ⋅ (𝜓𝜓VQ𝜅𝜅∇Φ)

= 𝐻𝐻Y3 |∇𝜓𝜓BÑ|𝜙𝜙!Éb − (1 −𝐻𝐻Y3)|∇𝜓𝜓VQ|𝜙𝜙nUU, 
(7.29) 

where 𝐻𝐻Y3  is a Heaviside function with a value of one near the anode that sharply switches to 

zero halfway across the protection layer towards the traction-free surface. Equation 7.29 is 

employed for the simulations presented in this chapter. The value of 𝐧𝐧BÑ in Eq. 7.27 is calculated 

from the order parameter by: 

𝐧𝐧BÑ = ∇𝜓𝜓BÑ/|∇𝜓𝜓BÑ|. (7.30) 

The overall governing equations, Eqs. 7.22, 7.27, and 7.29, are solved using the Fortran-

2008-based SBM framework developed in Chapter using the finite difference method. All spatial 
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derivatives are discretized with second-order centered differences, and Eq. 7.27 is solved until 

the steady state is achieved using an implicit pseudo time-stepping scheme. The resulting system 

of equations is solved using point-wise SOR198 with a red-black ordering scheme that allows for 

vectorized execution of the relaxation. 

Model Parameters 

The kinetic, transport, and mechanical parameters employed in this preliminary study are 

summarized in Table 7.1. All components of the stiffness tensor are calculated from the Young’s 

modulus, 𝐸𝐸, Poisson’s ratio, 𝜈𝜈, and the Zener anisotropy, 𝐴𝐴[,238 using the Voigt-Reuss-Hill 

(VRH) formalism.239 We restrict the present model to only consider either isotropic are cubic 

materials, which in the material coordinate system only have nonzero values of 𝐶𝐶dd = 𝐶𝐶[[ = 𝐶𝐶††, 

𝐶𝐶d[ = 𝐶𝐶d† = 𝐶𝐶[†, and 𝐶𝐶|| = 𝐶𝐶PP = 𝐶𝐶„„. With the VRH formalism, the values of the elastic 

constants are: 

𝐶𝐶dd =
𝐸𝐸(11 + 13𝐴𝐴[ + 𝐴𝐴[

[ − 19𝜈𝜈 − 7𝐴𝐴[𝜈𝜈 + 𝐴𝐴[
[𝜈𝜈)

(3 + 19𝐴𝐴[ + 3𝐴𝐴[
[)(1 − 𝜈𝜈 − 2𝜈𝜈[) , (7.31) 

𝐶𝐶d[ =
𝐸𝐸(−4 + 3𝐴𝐴[ + 𝐴𝐴[

[ + 11𝜈𝜈 + 13𝐴𝐴[𝜈𝜈 + 𝐴𝐴[
[𝜈𝜈)

(3 + 19𝐴𝐴[ + 3𝐴𝐴[
[)(1 − 𝜈𝜈 − 2𝜈𝜈[) , (7.32) 

𝐶𝐶|| =
1
2 𝐴𝐴[(𝐶𝐶dd − 𝐶𝐶d[). (7.33) 

The elastic constants are set locally as a function of position and crystallographic 

orientation: 

𝐶𝐶J¥EÒ = a 𝜙𝜙‰𝐶𝐶J¥EÒ
‰ (𝜃𝜃d

‰,Θπ, 𝜃𝜃[
‰)

∂

‰cK

, (7.34) 
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, (7.35) 
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 The crystallographic orientations are represented by a set of rotations described with extrinsic z-

x-z Euler angles,240 where a given grain is first rotated by angle 𝜃𝜃d around the z axis, then by 

angle Θ around the x axis, and finally by 𝜃𝜃[ around the z axis. In the unrotated case, it is assumed 

that the [100] axis is parallel with the x axis, the [010] axis is parallel with the y axis, and the 

[001] axis is parallel with the z axis and the direction of the current. 

 
Table 7.1. The values of the material properties and operating conditions of the protection layer/anode half-cell 
examined in this preliminary study. All of the protection layer properties are chosen to be comparable to typical 
protection layer materials but are not meant to represent a specific material. The lithium mechanical properties are 
taken from a literature DFT study.24 

Parameter Description Default Value Source 

𝜙𝜙nUU Average applied current density -1 mA/cm2  

𝜙𝜙K Exchange current density 1 mA/cm2  

𝛽𝛽 Charge transfer symmetry coefficient 0.5  

𝐸𝐸Kt Formal potential 0 V vs. Li/Li+  

𝑐𝑐~̅ Initial lithium concentration 10 M  

𝑡𝑡~ Li+ transference number 0.9  

𝐷𝐷~ Li+ diffusivity 10-8 cm2/s  

𝐿𝐿BÑ Protection layer thickness 6.4 µm  

𝐿𝐿ÑJ Lithium anode thickness 6.4 µm  

𝐸𝐸BÑ Protection layer Young’s modulus 100 GPa  

𝜈𝜈BÑ  Protection layer Poisson ratio 0.34  

𝛽𝛽dd = 𝛽𝛽[[ = 𝛽𝛽†† Chemical expansion coefficient 1 cm3/mol  

𝐸𝐸ÑJ Lithium metal Young’s modulus 13 GPa 24 

𝜈𝜈ÑJ Lithium metal Poisson ratio 0.34 24 
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Preliminary Results 

The model is first validated against the analytical solution described by Eqs. B.4 and B.11 in 

Appendix B. For these validation simulations, a thin 3D geometry is employed with a resolution 

of 128 × 16 × 144 in the x, y, and z directions, respectively. Of the 144 grid points in the z 

direction, 16 are used to represent the thickness of the numerical boundary layer required for the 

SBM mechanical equilibrium model. For the results presented here, we assumed that the entire 

thickness of the protection layer had decomposed, i.e., 𝐿𝐿BÑ
ƒ = 𝐿𝐿BÑ. Initial simulations indicated 

that, for a constant value of 𝐿𝐿BÑ
ƒ , increasing 𝐿𝐿BÑ negligibly affected the stress distributions. Two 

trends are examined for the validation: the peak hydrostatic stress in the protection layer as a 

function of the lithium transference number in an isotropic material (i.e., 𝐴𝐴[ = 1), and the peak 

hydrostatic stress as a function of crystallographic orientation in a cubic material with 𝐴𝐴[ = 2.  

 

Figure 7.2. The comparison between the analytical model in Appendix B and the numerical model presented in this 
chapter for the trend in the peak hydrostatic stress in the protection layer as a function of the lithium transference 
number in an isotropic material. 

To examine the effect of the transference number, 𝑡𝑡~ is varied between 0.7 and 1 for an 

isotropic protection layer. The resulting trends for the numerical and analytical models are 

presented in Figure 7.2. We observe that the overall agreement between both models is generally 

good. Both models correctly predict that there should be no concentration-induced stress when 

𝑡𝑡~ = 1, as should be the case for single-ion conducting materials. The analytical model slightly 



 135 

overpredicts the peak stress at smaller transference numbers, which is due to the assumption of a 

constant potential gradient across the protection layer in the analytical model. As the transference 

number is decreased, the potential gradient increasingly varies across the protection layer in the 

simulations. If we were to relax the assumption of a constant gradient in the analytical model, the 

agreement would be improved. 

To examine the effect of the crystallographic orientation, we consider a single crystal 

with cubic anisotropy and 𝑡𝑡~ = 0.9 (as in Table 7.1). The crystallographic orientation is rotated 

away from its initial orientation, with each Euler angle in Eqs. 7.33 and 7.34 having an identical 

value between 0 and 𝜋𝜋 radians. The resulting trend for the peak hydrostatic stress as a function of 

this rotation is present in Figure 7.3. Here, we observe that the numerical and analytical models 

are in excellent agreement. The results indicate that the presence of anisotropy in the crystal 

structure leads to crystallographic orientations that experience higher levels of stress than others. 

Combined, the results in Figure 7.2 and Figure 7.3 demonstrate that the numerical model 

accurately represents the mechanical response of the mixed-conducting protection layer. 

 

Figure 7.3. The comparison between the analytical model in Appendix B and the numerical model presented in this 
chapter for the trend of the peak hydrostatic stress in the protection layer as a function of the crystallographic 
orientation of a cubic material with 𝐴𝐴[ = 2 and 𝑡𝑡~ = 0.9. 
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Figure 7.4. The synthetic microstructure of the anode/protection layer half-cell considered in the preliminary study. 
The numerical boundary layer on top of the protection layer and the lithium anode have been removed to clearly 
show the protection layer. 

Next, the model is employed to simulate the stress distribution in an anode and a 

polycrystalline protection layer with 32 randomly oriented cubic grains with 𝐴𝐴[ = 3.52. This 

simulation is performed with a resolution of 256 × 256 × 144. The initial crystal structure, shown 

in Figure 7.4 with the boundary layer and lithium anode removed, was generated via Voronoi 

tessellation and then smoothed using the Allen-Cahn dynamics described earlier. 

The results for the simulation are presented in Figure 7.5, including the concentration 

profile in the protection layer, the hydrostatic and von Mises stresses in the protection layer, and 

the von Mises stress in the lithium anode. We observe that, due to the random orientation of the 

grains in the protection layer, there is a wide variation in the stress distributions of the protection 

layer. Due to the anisotropy of the mechanical response, the protection layer induces stress in the 

lithium anode. Regions near grain boundaries in the protection layer tend to experience increased 

levels of stress. Additionally, much of the anode that is near the grain boundaries is at or above 

the yield stress of lithium, which is about 560 kPa.241 Thus, in a time-dependent simulation we 
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would expect the lithium to plastically deform and the distribution in stress would lead to 

variations in the local deposition rate across the anode surface.242  

While plastic deformation is beyond the scope of the present model’s capability, we can 

examine the pseudo-steady-state displacement of the anode surface. A quiver plot of the 

displacement field along the lithium anode isosurface is plotted in Figure 7.6. The length of each 

quiver is 50,000 times the magnitude of the displacement vector. Although the resulting 

displacements are on the order of a few angstroms, we observe that some regions of the lithium 

anode are pulled into the protection layer while others are compressed towards the base of the 

anode. In some areas of the anode this change in displacement direction occurs over short 

distances near the highly stressed grain boundaries, thus it is possible that a significant amount of 

plastic deformation could occur. Additionally, experimental studies have observed a viscoplastic 

response in lithium metal,243 and therefore variations in the deposition rate would alter the local 

strain rate of the material and lead to strain hardening. Over time, plastic deformation might lead 

to areas of the anode separating from the protection layer, leading to hotspots of deposition. 

 These results demonstrate that, even for relatively high transference numbers, the 

presence of anisotropy in the mechanical properties or the microstructure of a protection layer 

directly leads to deformation of the lithium anode. Further studies on systems with only a small 

number of grains are being analyzed to gain mechanistic understanding of how the anisotropy 

affects the lithium anode. 
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Figure 7.5. The simulated (a) concentration profile in the protection layer, (b) hydrostatic stress in the protection 
layer, (c) von Mises stress in the protection layer, and (d) von Mises stress in the lithium anode. Despite a generally 
linear concentration profile, there is a wide variation in the stress distributions in the protection layer due to the 
randomly oriented anisotropic grains. Additionally, the von Mises stress in the anode is comparable to the yield 
stress of lithium. 

 



 139 

 

Figure 7.6. A quiver plot of the displacement field along the lithium anode isosurface. The length of each quiver is 
equal to 50,000 times the magnitude of the displacement vector at a given point. The small axes in the lower left 
corner of the plot indicate the scale of the displacement quivers in each direction. 

Summary 

In this chapter, we presented the formulation of a diffuse-interface mechanical equilibrium 

model using the smoothed boundary method. This was combined with to a model of transport to 

enable simulations of the coupled chemo-mechanical response of protected lithium-metal anodes 

where the protection layer had decomposed from a pristine, single-ion conducting condition to 

form mixed-ionic conductors. Preliminary results were presented to validate the model against an 

approximate analytical solution of the governing equations. The peak hydrostatic stress in the 

protection layer was evaluated both as a function of the lithium transference number in an 

isotropic material and as a function of the orientation of a cubic single-crystalline protection 

layer. Additional simulations were presented to examine the effect of anisotropy in the 

microstructure of the protection layer for a polycrystalline protection layer with randomly 

oriented cubic grains. These results indicate that presence of anisotropy in the protection layer 

leads to significant stress along the anode surface, which over time could lead to deformation of 

the anode. 
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Summary and Future Work 

 

Dissertation Summary 

In this dissertation, we investigated the coupled effects of ionic transport, the electrostatic 

potential, reaction kinetics, and morphological evolution on the resulting time-dependent 

behaviors of electrode and electrolyte systems. Three systems were examined: the deposition and 

dissolution of magnesium on gold via cyclic voltammetry, the galvanostatic cycling of lithium 

symmetric cells, and pitting corrosion of stainless steel. Chapter 3 presented the development of 

a new 1D modeling framework that employed a coarse-grained description of the electrode 

morphology to enable efficient simulations of magnesium deposition and dissolution. This model 

described transport and the electrostatic potential in the electrolyte using dilute solution theory. 

We proposed that at any point in time the electrode surface could be described in terms of a 

combination of existing magnesium deposits that could grow or dissolve and the remaining 

electrode area where nucleation of new deposits could occur. This assumption was implemented 

within a morphology-aware modification to the Butler-Volmer equation to capture the 

morphological evolution of the working electrode. The power of this approach was demonstrated 

by determining the unknown kinetic and transport properties of a Mg(BH4)2 electrolyte via 

fitting to an experimental voltammogram. Even with this limited input, the model determined 

estimates of the parameters that were comparable to available data in the literature, and the fitted 
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parameters predicted voltammograms at different experimental conditions that matched actual 

results. 

In Chapter 4, we extended the 1D model to consider the behavior of a lithium symmetric 

cell over the early cycles of galvanostatic cycling. Specifically, the model was employed to gain 

insight into the sources of the characteristic double-peak behavior that is commonly observed in 

such cells. This application required the addition of moving boundaries to the model. Further, the 

morphology-aware Butler-Volmer model was generalized to consider a regime where parts of the 

lithium electrodes were covered in a thick SEI or other passivating layer while regions that had 

been freshly deposited upon (such as dendritic features) had a comparatively thin surface layer. 

We proposed that the regions with thinner layers would have faster reaction kinetics and that, as 

their relative surface area increased, there would be an attendant shift in the preferred reaction 

pathway. The model was fitted to an experimental voltage trace and we observed that the model 

was able to accurately capture the double-peak behavior. Analysis of the model agreed with 

visual observations14 in that, when the electrodes were both “covered” in dendrite-like features, 

the cell polarization was at the minimum value for a given half-cycle. A parametric study of the 

model confirmed that these dendritic regions should have faster reaction kinetics because the 

surface area increase of the electrode alone was insufficient to produce the double peak. 

Additionally, the width of the second peak was found to directly correlate to the overall 

Coulombic efficiency of the reaction. 

In Chapter 5, we presented the development of a combined phase-field/smoothed 

boundary method (PF/SBM) framework to simulate the microstructural evolution of stainless 

steels under artificial pitting corrosion conditions. To do so, we extended earlier versions of this 

method as introduced by DeWitt et al.33 and Enrique et al.34 to enable consideration of multiple 
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electrolyte species and grains/phases in the alloy microstructure in predicting concentration 

gradients, potential gradients, and microstructural evolution. We also developed an approach to 

capture IR- and transport-controlled kinetic regimes within the phase-field/smoothed boundary 

paradigm. Overall, resulting simulations produced predictions for the evolution of the corrosion 

pit morphology that agreed with experimental data in the literature. Additionally, the model 

directly considered the variation in IR-controlled kinetics along the metal/electrolyte interface 

and correctly captured the phenomenon where kinetic faceting of the microstructure only 

occurred below the transport-limited regime. Neither of these aspects of pitting corrosion have 

been extensively considered in previous modeling studies. 

In addition, we presented the preliminary results of two other studies. In Chapter 6, we 

introduced a reduced-order version of the lithium symmetric cell model presented in Chapter 4. 

In this simplified model, we assume that the concentration profile of lithium in the electrolyte is 

essentially homogenous. Therefore, the electrolyte can be described by a resistor obeying Ohm’s 

law. Preliminary results indicated that dramatic decreases in computational cost could be realized 

through this approach. Additionally, there does not appear to be a significant loss of accuracy by 

employing the reduced-order model, either with constant or variable concentration of the 

electrolyte salt, although further analysis will be performed to determine when such 

approximations can be made without loss of accuracy. 

In Chapter 7, we presented initial results for a pseudo-steady-state diffuse-interface 

model to examine how the formation of concentration gradients in decomposed protection layer 

materials for lithium metal anodes can induce stress in the protection layer and anode. When 

anisotropy is present in the mechanical properties and morphology of the protection layer, there 

are spatial variations in the mechanical response. This leads to deformation of the lithium anode 
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and the formation of significant volumes of material near the protection layer grain boundaries 

that are above the yield stress of lithium. These results indicate that decomposition may in turn 

lead to variations in the lithium deposition behavior due to the distribution of stresses along the 

anode/protection layer interface. Further analysis will be performed to gain a deeper mechanistic 

understanding of the mechanical behavior of decomposed protection-layer materials resulting 

from the interplay between the anode/protection layer morphology and anisotropy in the 

mechanical properties. 

In total, the models and results presented in this dissertation provide an understanding of 

the effects of morphological evolution at metal-electrode/electrolyte interfaces. There is a 

complex interplay amongst transport, electrostatics, reaction kinetics, and microstructural 

morphology that contributes to the time-dependent behavior of these systems. In regard to the 

open questions posed in Chapter 1, we determined that coarse-grained approximations of 

electrode morphologies are an effective tool in developing efficient numerical models of the 

electrode/electrolyte system. The model based on these approximations proved useful in 

determining multiple system parameters and gaining mechanistic insight into the surface 

reactions with limited amounts of experimental input. Additionally, we developed the capability 

to directly consider the effects of varying electrostatic potentials along a metal-

electrode/electrolyte interface and examined how this variation affects the corrosion behavior of 

the metal under different experimental conditions. 

Future Work 

Beyond the preliminary studies that will be completed in the near future, there are multiple 

avenues for how the models in this dissertation could be extended and applied to new 
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applications. Extensions of the 1D high-throughput model and the 2D PF/SBM model will be 

discussed, along with applications where they could be combined in a multiscale approach. 

One of the chief attractions of the 1D modeling framework is that it is heavily optimized 

for computational efficiency and can be parameterized with a variety of electrochemical 

measurements. With a large set of experimental results, the model could be applied to 

statistically obtain estimates of the kinetic and transport properties for a given combination of 

anode, cathode, and electrolyte. If the resulting database of fitted parameters was sufficiently 

large, data mining could be performed to search for parametric trends across a class of battery 

materials. This could potentially reveal what properties of the materials are most associated with 

long battery cycle life, fast discharge rates, low self-discharge, or other desirable battery 

benchmarks. As described in Chapter 3, the cell geometry would need to be accurately 

characterized to obtain the best parameter estimates, such as by employing a standardized form 

factor like a coin cell. Incorporating the model into a data-based workflow could also be 

performed in conjunction with atomistic modeling efforts instead of experimental studies. For 

example, one of the goals of the Electrolyte Genome Project19 is to create a large database of 

candidate materials to enable next-generation batteries. The 1D model could be combined with 

such a database to calculate theoretical voltammetric behaviors of a candidate material. These 

simulated voltammograms could be compared against experimental results as an additional 

measure of the validity and accuracy of the parameters predicted through ab initio studies. 

From a physics standpoint, the 1D model could be extended to a concentrated solution 

regime to improve its agreement in predicting the behavior of highly concentrated electrolytes 

such as those being developed for sparingly solvating electrolytes.214 However, other than binary 

electrolytes as in the P2D model,59 changing to concentrated solution theory introduces 
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significantly larger degrees of freedom to the mathematical description of the model.35 Thus, 

there may be an associated tradeoff: the model may be theoretically more accurate within a given 

regime, but an increase in the number of degenerate solutions may increase the uncertainty in 

fitted parameters. Employing the reduced-order model may improve the accuracy of initial 

parameter estimates as it has fewer degrees of freedom. With the reduced-order model, the 

parameters associated with the reaction kinetics and morphological evolution could be 

determined while employing an initial set of volume-averaged transport properties. Then, the 

kinetic and morphology parameters could be held constant while the transport properties are 

refined with the full model. 

One of the main limitations of the 1D modeling framework is that assumptions must be 

employed to construct the piecewise functions that describe the electrode surface morphology. 

For heavily faceted, potentially porous electrode morphologies, such functions may not be 

immediately attainable. However, experimental measurements could be employed to construct 

the mathematical functions with real microstructural observations, such as through image 

analysis of the data obtained with a visualization cell as in the work of Wood et al.14 or 

tomographic data obtained via transmission x-ray microscopy. Constructing the morphology 

model could also be an application of the PF/SBM framework. A series of simulations could be 

performed to predict the evolution of the anode microstructure during deposition for a variety of 

initial conditions. Then, the surface areas and volumes required to generate the constitutive 

relationship in the 1D model could be calculated through post-processing of the data. For very 

large surface morphologies that may develop, the behavior after long-term deposition would 

perhaps need to be extrapolated from shorter time scales. 
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For the 2D PF/SBM framework, there are two areas where the existing model could be 

improved. With the addition of the maximum current density to the reaction kinetics (cf. Eqs. 

5.19 and 5.20), the computational performance of the model noticeably decreased. It is possible 

that, due to this portion of the model being a more recent addition, the resulting code is not as 

well optimized as other parts of the code. However, there is also a possibility that improvements 

are needed in the numerical methods to increase the rate of convergence, such as by linearizing 

the governing equations and employing the Newton-Raphson method. Similarly to the decreased 

performance incurred by Eqs. 5.19 and 5.20, the code has not performed well on emerging 

highly threaded computing architectures such as the Intel Xeon Phi. Typically, the code runs 

three to four times more slowly on Xeon Phi as compared to typical Xeon-based hardware. 

Profiling of the code did not pinpoint an exact cause for this performance loss. Employing a 

hybrid MPI/OpenMP-based parallelization scheme may improve performance, although the 

existing codebase would likely need to be restructured to minimize the cost associated with 

creating teams of threads in OpenMP. Alternatively, the code may need to be redeveloped within 

frameworks and programming languages that have inherently embedded parallelism, such as the 

Kokkos framework244 from Sandia National Laboratories or Chapel245 from Cray. 

An impactful application of the 2D PF/SBM framework would be to study the effects of 

microstructure on the observed corrosion of additively manufactured materials. In additively 

manufactured metals, it has recently been reported that the corrosion behavior of commercially 

important alloys such as 316L stainless steel and Ti-6Al-4V is significantly altered as compared 

to traditional processing techniques.246–248 Some of these alloys exhibit a different degree of 

susceptibility to pitting corrosion, intergranular corrosion, and stress-enhanced corrosion than 

their traditionally processed equivalents. It is hypothesized that this difference arises due to 
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changes in the microstructure that occur with the additive manufacturing process.248 Given that 

additively manufactured components are being examined for applications in corrosive 

environments under stress, such as for biomaterials249 and nuclear materials,250 it is critical that 

models be developed to understand how the microstructures and stresses evolve over the life of 

the component. 
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Appendix A.  
 

Derivation of the Maximum Reaction Current Density 

 

Here, the derivation of the expression for the maximum corrosion current density, 𝜙𝜙‰nÉ,p, 

appearing in Eq. 5.19 in Chapter 5 is presented. As in previous models,75–77,79 we assume that the 

rate of formation of the salt layer is assumed to be fast enough such that no supersaturation can 

occur in solution, and the exact thickness and morphology of the salt layer is neglected. 

We consider a control volume at the metal/electrolyte interface in the plane of the 

interface with a thickness of 2𝛿𝛿 and a cross-sectional area 𝐴𝐴. At any point in time, the metal ion 

concentration in this volume will be at or below its saturation limit, 𝑐𝑐",^nß. For given values of 

the metal ion concentration gradient and the electrostatic potential gradient, there can be an 

imbalance between the inward flux of ions into the volume due to the corrosion reaction and the 

outward flux of ions into the electrolyte. Additionally, the corrosion reaction will cause 

movement of the diffuse interface, which increases the size of the control volume and therefore 

reduces the effective flux of metal ions due to the reaction. Over a characteristic time scale, 𝜏𝜏, 

the concentration of metal ions in the control volume will evolve due to this imbalance:  

𝛿𝛿𝑐𝑐"𝛿𝛿𝑉𝑉 = ë
𝜙𝜙!Éb(1 − 𝑐𝑐"𝑉𝑉")

𝐴𝐴"𝐹𝐹 − Y𝐷𝐷"∇𝑐𝑐" + 𝐴𝐴"
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷"𝑐𝑐"∇ΦZ ⋅ 𝐧𝐧ì 𝐴𝐴𝜏𝜏, (A1) 

where 𝛿𝛿𝑐𝑐"  is the change in concentration in the control volume, 𝛿𝛿𝑉𝑉 = 2𝛿𝛿 ⋅ 𝐴𝐴, and the term 

(1 − 𝑐𝑐"𝑉𝑉") arises from the movement of the diffuse interface and the conservation of mass.75,193 

Under our assumption that saturation cannot be exceeded, there is a maximum value of 𝜙𝜙!Éb that, 
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when included in Eq. A1, will lead to saturation. Equation A1 can therefore be rewritten for this 

case as 

𝑐𝑐",^nß − 𝑐𝑐"
𝜏𝜏 =

1
2𝛿𝛿

ë
𝜙𝜙‰nÉ,p(1 − 𝑐𝑐"𝑉𝑉")

𝐴𝐴"𝐹𝐹 − Y𝐷𝐷"∇𝑐𝑐" + 𝐴𝐴"
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷"𝑐𝑐"∇ΦZ ⋅ 𝐧𝐧ì, (A2) 

where 𝜙𝜙‰nÉ,p is the maximum possible reaction current density. From Eq. A2, the maximum 

possible current density can be defined such that, over the characteristic time scale, 𝜏𝜏, the current 

density would lead 𝑐𝑐" to reach 𝑐𝑐",^nß, or equivalently 𝑐𝑐",^nß − 𝑐𝑐" becomes zero (i.e. the 

electrolyte becomes saturated with the metal ion). If the reaction current density is any higher, 

the concentration would exceed the saturation value. By rearranging Eq. A2, one obtains: 

𝜙𝜙‰nÉ,p = Y
𝐴𝐴"𝐹𝐹

1 − 𝑐𝑐"𝑉𝑉"
Z i

2𝛿𝛿
𝜏𝜏

∆𝑐𝑐",^nß − 𝑐𝑐"« + Y𝐷𝐷"∇𝑐𝑐" + 𝐴𝐴"
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷"𝑐𝑐"∇ΦZ ⋅ 𝐧𝐧q. (A3) 

The first term on the right-hand side of Eq. A3 quantifies how far the metal ion concentration is 

from its saturation value; the larger this difference is, the greater 𝜙𝜙‰nÉ,p is. The second term 

quantifies the portion of 𝜙𝜙‰nÉ,p that is due to the rate of transport of metal ions to and from the 

electrolyte. When the direction of the concentration and potential gradients is such that metal 

ions are transported into the electrolyte, stronger magnitudes of these gradients increase 𝜙𝜙‰nÉ,p. 

When the direction of the gradients would lead to ions being transported towards the 

metal/electrolyte interface, stronger gradients would reduce the value of 𝜙𝜙‰nÉ,p. 

Below saturation, the magnitude of the first term on the right-hand side of Eq. A3 varies 

with a characteristic velocity of the ionic transport across the interface, 2𝛿𝛿/𝜏𝜏, whose value in 

turn depends upon the dominant transport process at the interface 

2𝛿𝛿
𝜏𝜏 = max ú

2𝛿𝛿
𝜏𝜏÷JÔÔ

,
2𝛿𝛿

𝜏𝜏‰J9!
ü, (A4) 
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where the two terms inside parentheses correspond to the characteristic velocities of diffusion 

and migration, respectively. The characteristic velocity for diffusion is 

2𝛿𝛿
𝜏𝜏÷JÔÔ

=
𝐷𝐷"

2𝛿𝛿 , (A5) 

and for migration, it is 

2𝛿𝛿
𝜏𝜏‰J9!

=
𝐴𝐴"𝐷𝐷"𝐹𝐹

𝑅𝑅𝑅𝑅
|∇Φ ⋅ 𝐧𝐧|. (A6) 

When migration is the dominant process according to Eq. A6, then the thickness of the diffuse 

interface is eliminated from Eq. A3. However, when diffusion is dominant, the value of the 

diffuse interface thickness will affect Eq. A3. Choosing the smaller value of the characteristic 

velocity, rather than the greater value as in Eq. A4, would reduce the limiting current below what 

the present conditions of the electrolyte could sustain. For example, in the model initial 

conditions, the metal ion concentration and the electrostatic potential are initially zero 

everywhere. If Eq. A6 was always chosen for the characteristic velocity, then the initial 

maximum current would be zero; no current would be able to flow throughout the simulation. 

Near saturation, when the current would approach its limiting value, the term (𝑐𝑐",^nß − 𝑐𝑐")/𝜏𝜏 

becomes small and only the transport portion of the maximum current is significant, and thus the 

exact value of 𝜏𝜏 should have a minimal effect on the result. Equations A3 through A6 are 

implemented within the main loop of the simultaneous solver that is described in the numerical 

methods subsection. Therefore, the value of 𝜙𝜙‰nÉ,p is always calculated with the newest estimates 

of the metal cation concentration at the next time step, which prevents the concentration from 

ever exceeding saturation. 

Figure A1 plots the behavior of 𝜙𝜙‰nÉ,p over time and the individual components due to 

saturation (𝜙𝜙‰nÉ,p
^ , the first term in Eq. A3), diffusion (𝜙𝜙‰nÉ,p

÷ , the term containing ∇𝑐𝑐"), and 
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migration (𝜙𝜙‰nÉ,p
‰ , the term containing ∇Φ) for -60 mV vs. SCE and 100 mV vs. SCE applied 

potentials. For the -60 mV vs. SCE case, the concentration (cf. Fig. 3a) is far from saturation 

throughout the simulation, and thus the maximum current is dominated by 𝜙𝜙‰nÉ,p
^ . However, the 

maximum value of 𝜙𝜙!Éb/𝜙𝜙‰nÉ,p is about 0.052; thus the maximum current has a minimal impact 

on the observed current density. In comparison, for the 100 mV vs. SCE case, the concentration 

is asymptotically approaching saturation and 𝜙𝜙‰nÉ,p
‰  is the dominant component of the maximum 

current density. The minimum value of 𝜙𝜙!Éb/𝜙𝜙‰nÉ,p is 0.889 and the maximum value is 0.999, 

therefore the current density is strongly transport-controlled. 

 

Figure A.1. The contributions of the individual components of Eq. A3 to the value of 𝜙𝜙‰nÉ,p over time for (a) -60 
mV vs. SCE and (b) 100 mV vs. SCE. In (a), the metal ion concentration remains far from saturation and thus the 
maximum current density is dominated by 𝜙𝜙‰nÉ,p

^ , whereas in (b) the concentration is asymptotically approaching 
saturation and the largest component is 𝜙𝜙‰nÉ,p

‰ . 
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Appendix B.  
 

Derivation of the Analytical Expression for the Stress in the Protection Layer 

 

In this appendix, an analytical solution is provided for the protection layer mechanical behavior 

model in Chapter 7. We derive a pseudo-one-dimensional model of the stress in the protection 

layer by finding an analytical solution to Eq. 7.1. First, we assume that the protection layer has 

uniform, but not necessarily isotropic, material properties. Furthermore, we only consider an 

infinitesimally small portion of the protection layer along the z-axis, and we assume that this 

sliver of material is uniform within the x-y plane. Within these assumptions, any derivatives in 

the x and y directions have a value of zero by necessity, and therefore Eq. 7.1 may be simplified: 

⎩
⎪
⎨

⎪
⎧

𝑟𝑟𝜎𝜎†

𝑟𝑟𝐴𝐴 = 0

𝑟𝑟𝜎𝜎|

𝑟𝑟𝐴𝐴 = 0

𝑟𝑟𝜎𝜎P
𝑟𝑟𝐴𝐴 = 0

, (B.1) 

Equation B.1 implies that 𝜎𝜎†, 𝜎𝜎|, and 𝜎𝜎P are all constant throughout the protection layer in this 

pseudo-one-dimensional solution. The value of this constant stress is obtained through the 

boundary condition. Here, we assume that the surface of the protection layer in contact with a 

liquid electrolyte experiences no traction, which mathematically may be expressed as 

𝐓𝐓 = 𝐧𝐧 ⋅ 𝝈𝝈 = 0, (B.2) 

where 𝐓𝐓 is the traction vector and 𝐧𝐧 is the unit normal vector of the surface. Equation B.2 may 

be further expanded in terms of its components: 
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c
𝜎𝜎d𝐧𝐧É + 𝜎𝜎„𝐧𝐧d + 𝜎𝜎P𝐧𝐧[ = 0
𝜎𝜎„𝐧𝐧É + 𝜎𝜎[𝐧𝐧d + 𝜎𝜎|𝐧𝐧[ = 0
𝜎𝜎P𝐧𝐧É + 𝜎𝜎|𝐧𝐧d + 𝜎𝜎†𝐧𝐧[ = 0

, (B.3) 

where 𝐧𝐧É, 𝐧𝐧d, and 𝐧𝐧[ are the x, y, and z components of the normal vector. At the protection layer 

surface, 𝐧𝐧É = 𝐧𝐧d = 0, and 𝐧𝐧[ = 1. Thus, in addition to being constant, we conclude that 𝜎𝜎† =

𝜎𝜎| = 𝜎𝜎P = 0 throughout the protection layer. The presented analytical solution will therefore 

satisfy the assumption of plane stress, which is often applicable in thin films.233 As a 

consequence of assuming that the interface between the protection layer and the electrolyte is 

traction-free, the analytical model requires that the interface between the layer and the lithium 

substrate also be traction-free. Lithium is a soft metal,241,251 and as such this should be a 

reasonable approximation for comparatively stiffer protection layer materials. 

With the knowledge that the protection layer is in plane stress, it is now possible to solve 

for the displacements in the protection layer. Within the assumption of uniformity in the x-y 

plane, as in the stress tensor, all partial derivatives with respect to x and y are also zero in the 

strain tensor. This allows the equation for a given stress component to be reformulated as: 

𝜎𝜎J = 𝐶𝐶JP
𝑟𝑟𝑢𝑢
𝑟𝑟𝐴𝐴 + 𝐶𝐶J|

𝑟𝑟𝑣𝑣
𝑟𝑟𝐴𝐴 + 𝐶𝐶J†

𝑟𝑟𝑤𝑤
𝑟𝑟𝐴𝐴

− (𝑐𝑐~ − 𝑐𝑐~̅)[𝐶𝐶Jd𝛽𝛽d + 𝐶𝐶J[𝛽𝛽[ + 𝐶𝐶J†𝛽𝛽† + 2(𝐶𝐶J|𝛽𝛽| + 𝐶𝐶JP𝛽𝛽P + 𝐶𝐶J„𝛽𝛽„)], 

(B.4) 

where the subscript 𝜙𝜙 represents one of the six individual components of the tensor. Having 

established that 𝜎𝜎† = 𝜎𝜎| = 𝜎𝜎P = 0, Eq. B.4 can explicitly be expanded for these three 

components of the tensor. This expansion represents a linear system of equations with at most 

three unknowns (𝜖𝜖P = 𝑟𝑟𝑢𝑢/𝑟𝑟𝐴𝐴, 𝜖𝜖| = 𝑟𝑟𝑣𝑣/𝑟𝑟𝐴𝐴, and 𝜖𝜖† = 𝑟𝑟𝑤𝑤/𝑟𝑟𝐴𝐴) that is significantly simpler than 

the original system of coupled partial differential equations, and the spatially-dependent solution 

can be solved analytically at each point in the protection layer. The only remaining component 

required for this solution is the lithium concentration as a function of position, which we describe 
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in the following section. With the solutions to Eq. B.4, the remaining components of the stress 

tensor may be evaluated at each point, and the analytical von Mises and hydrostatic stresses can 

be calculated. Depending upon the symmetry properties of the protection layer material, 

simplifications are possible for the analytical solution. 

Concentration Profile Across the Protection Layer 

To calculate the stress across the protection layer, we need to know the spatially varying 

concentration of lithium ions. Using Eqs. 7.10-7.14 and 7.16 and applying the approximation 

described above that allows for a 1D treatment, the overall fluxes at the protection layer/anode 

interface can be written as: 

𝜙𝜙
𝐹𝐹 +

𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~

Q 𝑟𝑟Φ
𝑟𝑟𝐴𝐴 = −

𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~

" 𝑟𝑟Φ
𝑟𝑟𝐴𝐴 − 𝐷𝐷~

𝑟𝑟𝑐𝑐~
"

𝑟𝑟𝐴𝐴 , (B.5a) 

0 =
𝐹𝐹

𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~
" 𝑟𝑟Φ

𝑟𝑟𝐴𝐴 − 𝐷𝐷~
𝑟𝑟𝑐𝑐~

"

𝑟𝑟𝐴𝐴 , (B.5b) 

where 𝜙𝜙 is the current density at the interface, 𝐹𝐹 is Faraday’s constant, 𝑅𝑅 is the ideal gas constant, 

𝑅𝑅 is the absolute temperature, 𝐷𝐷~ is the lithium cation diffusivity, and Φ is the electrostatic 

potential.35 Equation B.5b can be employed to eliminate the effects of electrostatic migration 

upon 𝑐𝑐~
" in the right-hand side of Eq. B.5a: 

𝜙𝜙
𝐹𝐹 +

𝐹𝐹
𝑅𝑅𝑅𝑅 𝐷𝐷~𝑐𝑐~

Q 𝑟𝑟Φ
𝑟𝑟𝐴𝐴 = −2𝐷𝐷~

𝑟𝑟𝑐𝑐~
"

𝑟𝑟𝐴𝐴 . (B.6) 

From Eq. B.6, we observe that 𝑐𝑐"~  and 𝑐𝑐"h  behave much like a binary electrolyte. At steady-state, 

the transport of lithium ions in the protection layer therefore satisfies the condition35 

𝑟𝑟[𝑐𝑐~
"

𝑟𝑟𝐴𝐴[ = 0. (B.7) 

To solve Eq. B.7, we assume that 𝑟𝑟Φ/𝑟𝑟𝐴𝐴 is constant throughout the protection layer and that at 

the edge of the decomposed region with thickness 𝐿𝐿BÑ
ƒ , 𝑐𝑐~

" = 𝑐𝑐~̅
". Additionally, the charge in the 
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protection layer is locally conserved, which implies 𝑟𝑟𝜙𝜙/𝑟𝑟𝐴𝐴 = 0.35 Under these assumptions, an 

analytical solution of Eq. B.7 can be obtained: 

𝑐𝑐~
"(𝐴𝐴) = 𝑐𝑐~̅

" −
1
2 i

𝐹𝐹
𝑅𝑅𝑅𝑅 𝑐𝑐~

Q 𝑟𝑟Φ
𝑟𝑟𝐴𝐴 +

𝜙𝜙
𝐷𝐷~𝐹𝐹q (𝐴𝐴 − 𝐿𝐿BÑ). (B.8) 

To determine the value of 𝑟𝑟Φ/𝑟𝑟𝐴𝐴, as a first approximation, we assume that the protection layer 

obeys Ohm’s law: 

𝑟𝑟Φ
𝑟𝑟𝐴𝐴 = −

𝜙𝜙
�̅�𝜅 = −

𝜙𝜙𝑅𝑅𝑅𝑅
𝐹𝐹[𝐷𝐷~(𝑐𝑐~̅

Q + 2𝑐𝑐~̅
") = −

𝜙𝜙𝑅𝑅𝑅𝑅𝑡𝑡~

𝐹𝐹[𝐷𝐷~𝑐𝑐~̅
, (B.9) 

where �̅�𝜅 is the bulk conductivity calculated from the initial concentrations of each species.35 

Equation B.11 can now be simplified as: 

𝑐𝑐~
"(𝐴𝐴) = 𝑐𝑐~̅

" − 𝜙𝜙
(1 − 𝑡𝑡~)

𝐷𝐷~𝐹𝐹 ⋅ (𝐴𝐴 − 𝐿𝐿BÑ). (B.10) 

The total lithium concentration at any point will be the sum of 𝑐𝑐~
" and the constant value 

of 𝑐𝑐~
Q, and thus we obtain the ansatz of the lithium concentration in the protection layer: 

𝑐𝑐~(𝐴𝐴) = 𝑐𝑐~̅ − 𝜙𝜙
(1 − 𝑡𝑡~)

𝐷𝐷~𝐹𝐹 ⋅ (𝐴𝐴 − 𝐿𝐿BÑ), (B.11) 

which, when combined with Eq. B.4, forms the complete analytical solution for the stress in the 

protection layer. When the transference number is unity, Eq. B.11 correctly captures a constant 

cation concentration, and the largest concentration differences would occur as 𝑡𝑡~ approaches 0.5. 

During charging (negative current densities), the concentration will decrease at the interface (𝐴𝐴 =

0). The magnitude of this decrease is bounded, however; at a strong enough current density, 𝑐𝑐~
" 

will approach zero at the interface and the overall lithium concentration should not decrease 

further.
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