
Computationally Efficient
Relational Reinforcement Learning

by

Mitchell Keith Bloch

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2018

Doctoral Committee:

Professor John E. Laird, Chair
Professor Satinder Singh Baveja
Professor Edmund H. Durfee
Professor Richard L. Lewis

Baby at Play by Thomas Eakins, 1876, is currently on display at the National Gallery of Art, West Main Floor
Gallery 65. [Commons, 2016]

Mitchell Keith Bloch

bazald@umich.edu

ORCID iD: 0000-0002-7219-4786

© Mitchell Keith Bloch 2018

mailto:bazald@umich.edu
https://orcid.org/0000-0002-7219-4786

This thesis is dedicated to compassion. It is only through the
compassion of others that I have made it this far. It is my intention
that I too will always have compassion for others.

“Be pitiful, for every man [sic] is fighting a hard battle.”
-Ian Maclaren (1897)

ii

ACKNOWLEDGMENTS

I wish to thank the Computer Science and Engineering department and the
University of Michigan at large for providing a stimulating and supportive en-
vironment for me to pursue my studies. I’m very grateful to my adviser and
committee chair, John E. Laird, for his many years of kindness, patience, and
support, and to my committee members, Satinder S. Baveja, Edmund H. Dur-
fee, and Richard L. Lewis, for their help and guidance. Additionally, thank you
to my friends and family who have supported me over the years. I appreciate
you all.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Appendices . vii

List of Algorithms . viii

List of Figures . ix

List of Tables . xiii

List of Research Questions . xiv

List of Hypotheses . xv

List of Abbreviations . xvi

List of Acronyms . xvii

List of Symbols . xix

Abstract . xx

Chapter .

1 Introduction . 1

1.1 Reinforcement Learning Fundamentals . 2
1.1.1 Markov Decision Process . 2
1.1.2 Temporal Difference Methods . 3
1.1.3 Exploration . 4

1.2 Evaluation Criteria . 5
1.2.1 Computational Efficiency: WCTPS . 5
1.2.2 Learning Efficiency: ARgPE and ARtPE 5

1.3 Value Function Representations . 11
1.3.1 Blocks World . 11
1.3.2 Tabular Reinforcement Learning . 14
1.3.3 Linear Function Approximation . 17
1.3.4 Tile Codings . 20
1.3.5 Relational Reinforcement Learning . 27

iv

1.4 Related Work and Computational Efficiency . 30
1.5 Discussion . 32

2 Exploration of Hierarchical Tile Coding . 34

2.1 Prototype Architecture (2012) . 34
2.1.1 Execution Cycle . 34
2.1.2 Refinement Functionality . 35
2.1.3 Refinement Criteria . 37

2.2 Exploratory Experiments . 39
2.2.1 Blocks World – Proof of Concept . 39
2.2.2 Puddle World – Proof of Efficacy . 41

2.3 Discussion . 44

3 Computationally Efficient Adaptive Hierarchical Tile Coding 46

3.1 Carli for Propositional Representations (Carli-Prop) 46
3.1.1 A k-Dimensional Trie Value Function Implementation 47
3.1.2 Fringe Nodes . 47

3.2 Evaluation of Carli-Prop . 48
3.2.1 Non-Adaptive Hierarchical Tile Coding vs Traditional CMACs 49
3.2.2 Adaptive Hierarchical Tile Coding vs Non-Adaptive HTC 51
3.2.3 Adaptive Hierarchical Tile Coding vs Adaptive Tile Coding 53
3.2.4 Computational Efficiency . 53

3.3 Discussion . 54

4 Computationally Efficient Relational Reinforcement Learning 55

4.1 Limitations of Carli for Propositional Representations 55
4.2 Rete . 57

4.2.1 Carli-RRL Representations and Syntax 60
4.2.2 Alpha Nodes . 63
4.2.3 Beta Nodes . 65
4.2.4 Discussion . 75

4.3 Hierarchical Tile Coding Grammar for Rete . 75
4.3.1 Feature Extraction . 76
4.3.2 :feature Directives . 80
4.3.3 Refinement and Rerefinement . 81

4.4 Discussion . 83

5 Relational Reinforcement Learning Evaluation . 85

5.1 Learning Efficiency Experiments . 85
5.1.1 Refinement Experiments . 87
5.1.2 Rerefinement Experiments . 89
5.1.3 Rerefinement with Blacklisting Experiments 92
5.1.4 Boost . 94
5.1.5 Rerefinement with Boost and Concrete Experiments 94
5.1.6 Discussion . 96

5.2 Computational Efficiency Comparisons . 100

v

5.2.1 Computational Efficiency Compared to Soar and Carli-Prop 100
5.2.2 Computational Efficiency vs Džeroski et al. 101

5.3 Exact Policy Scalability . 103
5.4 Online Transfer Experiments . 107

5.4.1 Transfer for Blocks World . 107
5.4.2 Transfer for Taxicab . 108

5.5 Average Return Per Episode (ARtPE) Evaluation 112
5.6 Discussion . 114

6 Higher Complexity, Higher Order Grammar . 115

6.1 Implementation . 116
6.1.1 Tractability . 119

6.2 Null Higher Order Grammar Rules . 120
6.3 Blocks World, Exact Objective – A HOG Stress Test 121
6.4 Advent – A Challenging Task . 124

7 Summary and Future Work . 129

7.1 Summary . 129
7.2 Contributions . 131
7.3 Future Work . 132

7.3.1 Higher Order Grammar . 132
7.3.2 Hierarchical Reinforcement Learning 132
7.3.3 Lazy Join Subnetworks for Rete . 133
7.3.4 Refinement Criteria . 135
7.3.5 Domains . 135

Appendices . 136

Bibliography . 141

vi

LIST OF APPENDICES

A Temporal Difference Methods . 136

A.1 Eligibility Traces–Q(λ) . 136
A.2 Greedy-GQ(λ) . 136

B Incremental Calculation of a Mean and Standard Deviation 138

B.1 Incremental Mean Calculation . 138
B.2 Incremental Variance Calculation . 139

vii

LIST OF ALGORITHMS

1 Exact Average Regret Per Episode (ARgPE), valid at episode boundaries only. 8
2 Average Regret Per Episode (ARgPE) linearly interpolated for all steps. 8
3 Exact Average Return Per Episode (ARtPE), valid at episode boundaries only. 10
4 Average Return Per Episode (ARtPE) linearly interpolated for all steps. 10
5 Q(λ) and Sarsa(λ). 136
6 Greedy-GQ(λ). 137
7 Incremental variance insertion. 139
8 Incremental variance update. 139
9 Incremental variance removal. 139

viii

LIST OF FIGURES

1.1 Several regret-based plots . 8
1.2 ARgPE and ARtPE plots for analysis . 9
1.3 Several return-based plots . 10
1.4 Blocks World configurations illustrated for an instance with n = 5. 13
1.5 A state or configuration is unreachable if it requires passing through a state that satis-

fies the objective. 14
1.6 Two labeled states in a tabular representation. 15
1.7 Three features in a linear function approximation representation. 17
1.8 An 8x8, 2-dimensional tiling . 20
1.9 Two tile codings or Cerebellar Model Arithmetic Computers (CMACs) consisting of

different overlapping tilings, from which the Q-function can be computed as a sum of
the weights for tiles that cover a given state . 21

1.10 A non-adaptive Hierarchical Tile Coding (naHTC) consisting of 3 tilings. 22
1.11 A two-dimensional Adaptive Tile Coding (ATC) . 24
1.12 An Adaptive Tile Coding (ATC) for Blocks World refined stage by stage, incorporat-

ing Relational Reinforcement Learning (RRL) (Section 1.3.5) using what I engineer
in Chapter 4. 24

1.13 An adaptive Hierarchical Tile Coding (aHTC) for Blocks World refined stage by stage,
incorporating Relational Reinforcement Learning (RRL) (Section 1.3.5) using what I
engineer in Chapter 4. 26

1.14 Three features in a Relational Reinforcement Learning (RRL) representation. 28

2.1 Flat and Hierarchical Adaptive Tile Codings . 36
2.2 An imperfectly hierarchical adaptive Hierarchical Tile Coding (aHTC) for Blocks

World refined stage by stage, incorporating Relational Reinforcement Learning (RRL)
(Section 1.3.5) using what I engineer in Chapter 4. 37

2.3 Optimal solution to fixed Blocks World (Section 2.2.1) 39
2.4 Average Return Per Episode (ARtPE) of a prototype agent in Blocks World using

an adaptive Hierarchical Tile Coding (aHTC) with Cumulative Absolute Temporal
Difference Error (CATDE) – agents were trained with z = 0.84155 and tile refinement
inhibited until no updates have been experienced for 3 steps within a single episode in
this early result. 40

2.5 Puddle World . 41
2.6 Average Return Per Episode (ARtPE) of my prototype agents in Puddle World with

non-adaptive Hierarchical Tile Codings (naHTCs) with all tilings from 1×1 to 16×16
(i.e. all tilings present from step 1) . 42

ix

2.7 Average Return Per Episode (ARtPE) of my prototype agents in Puddle World with
adaptive Hierarchical Tile Coding (aHTC) with tilings from 1 × 1 up to 16 × 16 –
trained using z = 0.84155, α = 0.2, Temporal Difference Updates (TDU) 44

2.8 Tile refinement inhibited until no updates have been experienced for 20 steps within a
single episode . 45

3.1 k-dimensional trie (k-d trie) value function refinement with fringe nodes 48
3.2 Mountain Car . 49
3.3 Average Return Per Episode (ARtPE) averages over 20 runs with single tilings, tradi-

tional Cerebellar Model Arithmetic Computers (CMACs), and a non-adaptive Hierar-
chical Tile Coding (naHTC) (labeled “static even” for even credit assignment between
the different levels of the hierarchy). 50

3.4 Average Return Per Episode (ARtPE) averages for 20 runs of agents using adaptive
Hierarchical Tile Codings (aHTCs) (incremental) with various credit assignment strate-
gies and non-adaptive Hierarchical Tile Codings (naHTCs) (static) 52

3.5 Average Return Per Episode (ARtPE) averages for 20 runs of agents using adaptive
Hierarchical Tile Codings (aHTCs) and adaptive Hierarchical Tile Codings (aHTCs)
using “specific” credit assignment to simulate non-hierarchical Adaptive Tile Codings
(ATCs) . 53

4.1 An RL trie value function representation for Puddle World, with weights that con-
tribute to the value function in black and weights in the fringe in gray 58

4.2 Rete value function representations with filter nodes at the top, left inputs in black,
and right inputs in blue, with weights that contribute to the value function in black
and weights in the fringe in gray . 59

4.3 A minimal Carli-RRL description of an initial state of the version of Blocks World
from Section 2.2.1 and the actions possible from that state (move block B to the table,
block B to block C, . . .) . 62

4.4 Paired Carli-RRL features for the version of Blocks World from Section 2.2.1 62
4.5 Filter Node Functioning . 65
4.6 Predicate Node Functioning . 67
4.7 An Existential Node . 68
4.8 A Negation Node . 69
4.9 Join Node Functioning . 70
4.10 Existential_Join Node Functioning . 72
4.11 Join Negation_Node Functioning . 73
4.12 An Action Node . 74
4.13 The root rule for the version of Blocks World from Section 2.2.1 76
4.14 An initial fringe rule for the version of Blocks World from Section 2.2.1 77
4.15 Paired Boolean features for Blocks World from Section 2.2.1 79
4.16 Two multivalued features for Puddle World from Section 2.2.2 79
4.17 Two ranged features for Puddle World from Section 2.2.2 79
4.18 Two refined ranged features for Puddle World from Section 2.2.2. The additional

values to the right of the = and the weight of the tile are contributions to mean and
variance calculations, a secondary weight for Greedy-GQ(λ), and an update count. . . 82

x

5.1 ARtPE for agents learning the exact objective in Blocks World. In the legend, “R”
indicates that refinement is enabled, “N” indicates that unrefinement is not enabled,
and “D” and “N” indicate whether distractors are enabled or not. The policy criterion
performs too poorly to appear in the lower graph. 88

5.2 Average Return Per Episode (ARtPE) for exact using (unrefinement and) rerefine-
ment. In the legend, “R” indicates that refinement is enabled, “U” indicates that un-
refinement is enabled, and “D” and “N” indicate whether distractors are enabled or
not. 91

5.3 Average Return Per Episode (ARtPE) for exact using rerefinement and blacklists. In
the legend, “R” indicates that refinement is enabled, “B” indicates that blacklists are
enabled for unrefinement, and “D” and “N” indicate whether distractors are enabled
or not. 93

5.4 Average Return Per Episode (ARtPE) for exact using rerefinement and boost. In the
legend, “R” indicates that refinement is enabled, “O” indicates that boost is enabled
for unrefinement, and “D” and “N” indicate whether distractors are enabled or not.
The policy criterion performs too poorly to appear in the lower graph. 95

5.5 Average Return Per Episode (ARtPE) for exact using rerefinement and boost with
concrete. In the legend, “R” indicates that refinement is enabled, “C” indicates that
concrete is enabled for unrefinement with boost, and “D” and “N” indicate whether
distractors are enabled or not. The policy criterion performs too poorly to appear in
the lower graph. 97

5.6 Zoomed in Average Return Per Episode (ARtPE) for exact using the value crite-
rion. In the legend, “N” indicates that unrefinement is not enabled, “U” indicates that
unrefinement is enabled, “B” indicates that blacklists are enabled for unrefinement,
“O” indicates that boost is enabled for unrefinement, and “C” indicates that concrete
is enabled for unrefinement with boost. 98

5.7 Average Return Per Episode (ARtPE) for exact using the value criterion. In the leg-
end, “N” indicates that unrefinement is not enabled, “U” indicates that unrefinement
is enabled, “B” indicates that blacklists are enabled for unrefinement, “O” indicates
that boost is enabled for unrefinement, and “C” indicates that concrete is enabled for
unrefinement with boost. 99

5.8 Comparison of percent optimality over the course of training between Q-RRL [Džeroski
et al., 2001] and Carli-RRL. 104

5.9 A graph of the number of steps taken by my agents with a general solution to exact
with variable target configurations when compared to optimal. Each point in this
graph represents one run. I additionally present an expected number of steps for a
policy moving all blocks to the table and then into place for a rough upper bound. . . . 105

5.10 Computational performance for agents using adaptive Hierarchical Tile Codings (aHTCs).
Variance is a little high since each data point in these graphs represents only one run
for each number of blocks rather than an average. For Figure 5.10b in particular, the
number of stacks of blocks at the start of a run is somewhat random. 106

5.11 Transfer experiments with agents with (red) no pretraining, (green) 1000 steps of pre-
training on 3 blocks, (blue) 1000 steps of pretraining on 3 blocks and an additional
2000 steps of pretraining on 4 blocks, or (orange) 3000 steps of pretraining on 5 blocks
– the number of blocks I evaluate the agents on in these graphs. 108

xi

5.12 Taxicab . 110
5.13 A transfer experiment for Taxicab with agents with (red) no pretraining, (green) 10000

steps of pretraining on 2 filling stations with 6 destinations, (blue) 10000 steps of
pretraining on 2 filling stations with 6 destinations and an additional 10000 steps of
pretraining on 3 filling stations with 8 destinations, or (orange) 20000 steps of pre-
training on 4 filling stations with 10 destinations – the scenario I evaluate the agents
on in these graphs. 112

5.14 ARtPE for agents learning the exact objective in Blocks World plotted against
episodes and against steps. 113

6.1 Higher Order Grammar (HOG) rules for Blocks World from Section 1.3.1 118
6.2 Rules implementing Higher Order Grammar (HOG) features from Figure 6.1 can be

simplified once <block-3> has been introduced. 118
6.3 Unary Higher Order Grammar (HOG) successor for 6.1a 118
6.4 Binary Higher Order Grammar (HOG) successors for 6.1b 119
6.5 Null-HOG rule for <block-3> . 121
6.6 ARtPE and weights for 20 HOG agents trained on 3-5 blocks under different transfer

scenarios. 123
6.7 Advent . 124
6.8 Average Return Per Episode (ARtPE) for Advent . 127

7.1 A (standard) Join Node . 133
7.2 A lazy Join subnetwork, right unlinking equivalent 134

xii

LIST OF TABLES

1.1 A list of the number of different partitionings (p(n)), states, and state-action pairs for
Blocks World instances with between 2 and 40 blocks. Here I ignore how different ob-
jectives can increase the complexity of the state space and/or decrease the accessibility
of certain states. 16

1.2 A list of the number of different partitionings (p(n)), non-isomorphic states, and corre-
sponding state-action pairs for Blocks World instances with between 2 and 40 blocks.
Unlike in Table 1.1 on page 16, here I ignore states that differ in block labels but are
structurally identical. These numbers result from equation 1.11 instead of equation 1.6. 29

1.3 Runtimes for 100 episodes of training for Blocks World (Section 2.2.1) with 3-5 blocks 31

3.1 Time per step for Blocks World (Section 2.2.1) and Puddle World (Section 2.2.2) . . . 54

5.1 Agent performance solving exact Blocks World (Section 4.1) 88
5.2 Agent performance solving exact Blocks World (Section 4.1) with distractors 88
5.3 Agent performance for exact using (unrefinement and) rerefinement 91
5.4 Agent performance for exact with distractors using rerefinement 91
5.5 Agent performance for exact using rerefinement and blacklists 93
5.6 Agent performance for exact with distractors using rerefinement and blacklists . . . 93
5.7 Agent performance for exact using rerefinement and boost 95
5.8 Agent performance for exact with distractors using rerefinement and boost 95
5.9 Agent performance for exact using rerefinement and boost with concrete 97
5.10 Agent performance for exact with distractors using boost with concrete 97
5.11 Agent statistics for exact with no distractors . 99
5.12 Agent statistics for exact with distractors . 99
5.13 Time per step for Blocks World (Section 2.2.1) and Puddle World (Section 2.2.2) . . . 101
5.14 Runtimes for 45 episodes of training for Blocks World (Section 2.2.1) with 3-5 blocks

averaged over 10 runs . 104

6.1 HOG agent performance for exact using different training schedules. 123
6.2 Agent performance for Advent with no rerefinement 127
6.3 Agent performance for Advent using boost with concrete 127

xiii

LIST OF RESEARCH QUESTIONS

Research Question 1 ARtPE of aHTC vs Flat ATC . 36
Research Question 2 Credit Assignment for HTC . 42
Research Question 3 Efficient Algorithm for RRL . 56

xiv

LIST OF HYPOTHESES

Hypothesis 1 aHTC Faster Than ATC . 51
Hypothesis 2 Adaptive HTC Superior to Non-Adaptive HTC 51
Hypothesis 3 Rerefinement Potentially Useful with Adaptive HTC 52
Hypothesis 4 Rete for RRL . 57
Hypothesis 5 Boost Instead of Blacklisting . 94
Hypothesis 6 Make Refinements Concrete Eventually 94

xv

LIST OF ABBREVIATIONS

ε-greedy Epsilon-greedy

k-d tree k-dimensional tree

k-d trie k-dimensional trie

xvi

LIST OF ACRONYMS

aHTC adaptive Hierarchical Tile Coding

AI Artificial Intelligence

ARgPE Average Regret Per Episode

ARtPE Average Return Per Episode

ATC Adaptive Tile Coding

Carli-Prop Carli for Propositional Representations

Carli-RRL Carli for Relational Reinforcement Learning

CATDE Cumulative Absolute Temporal Difference Error

CMAC Cerebellar Model Arithmetic Computer

CPU Central Processing Unit

DAG Directed Acyclic Graph

FELSC Feature Encoded in the Last Scope Convention

FOL First Order Logic

FOLDT First Order Logical Decision Tree

GVF Generalized Value Function

HAM Hierarchies of Abstract Machines

HOG Higher Order Grammar

HRL Hierarchical Reinforcement Learning

HTC Hierarchical Tile Coding

IOC Identical Ordering Convention

LALR Look-Ahead Left-to-Right

xvii

LR Left-to-Right

MDP Markov Decision Process

MSPBE Mean-Square Projected Bellman Error

naHTC non-adaptive Hierarchical Tile Coding

POMDP Partially Observable Markov Decision Process

RAM Random Access Memory

RBF Radial Basis Function

RL Reinforcement Learning

RRL Relational Reinforcement Learning

TD Temporal Difference

TDIDT Top-Down Induction of Decision Trees

TDU Temporal Difference Updates

TILDE Top-down Induction of Logical DEcision trees

VEC Value Estimate Contributions

WCTPS Wall-Clock Time Per Step

WME Working Memory Element

XOR Exclusive OR

xviii

LIST OF SYMBOLS

α learning rate

a current action

a∗ best action

A action space

δ Temporal Difference (TD) Error

γ discount rate

Pa(s, s
′) state transition function

r immediate reward

Ra(s, s
′) reward function

s current state

s′ successor state

S state space

Q(s, a) Q-function

xix

ABSTRACT

Relational Reinforcement Learning (RRL) is a technique that enables Reinforcement Learn-
ing (RL) agents to generalize from their experience, allowing them to learn over large or potentially
infinite state spaces, to learn context sensitive behaviors, and to learn to solve variable goals and to
transfer knowledge between similar situations. Prior RRL architectures are not sufficiently compu-
tationally efficient to see use outside of small, niche roles within larger Artificial Intelligence (AI)
architectures. I present a novel online, incremental RRL architecture and an implementation that is
orders of magnitude faster than its predecessors. The first aspect of this architecture that I explore
is a computationally efficient implementation of an adaptive Hierarchical Tile Coding (aHTC), a
kind of Adaptive Tile Coding (ATC) in which more general tiles which cover larger portions of
the state-action space are kept as ones that cover smaller portions of the state-action space are in-
troduced, using k-dimensional tries (k-d tries) to implement the value function for non-relational
Temporal Difference (TD) methods. In order to achieve comparable performance for RRL, I im-
plement the Rete algorithm to replace my k-d tries due to its efficient handling of both the variable
binding problem and variable numbers of actions. Tying aHTCs and Rete together, I present a
rule grammar that both maps aHTCs onto Rete and allows the architecture to automatically extract
relational features in order to support adaptation of the value function over time. I experiment with
several refinement criteria and additional functionality with which my agents attempt to determine
if rerefinement using different features might allow them to better learn a near optimal policy.
I present optimal results using a value criterion for several variants of Blocks World. I provide
transfer results for Blocks World and a scalable Taxicab domain. I additionally introduce a Higher
Order Grammar (HOG) that grants online, incremental RRL agents additional flexibility to intro-
duce additional variables and corresponding relations as needed in order to learn effective value
functions. I evaluate agents that use the HOG on a version of Blocks World and on an Adventure
task. In summary, I present a new online, incremental RRL architecture, a grammar to map aHTCs
onto the Rete, and an implementation that is orders of magnitude faster than its predecessors.

xx

CHAPTER 1

Introduction

An important challenge in the area of Artificial Intelligence (AI) can be cast as the combined
problem of describing problems, tasks, or environments [Bellman, 1957a; Sondik, 1971; Aero-
nautiques et al., 1998] and enabling agents to learn policies to solve these problems, perform
these tasks, or behave optimally (or at least very well) in these environments [Bellman, 1957b;
Sutton, 1988]. The problem of learning policies that define an agent’s behavior as a function of
the state of the environment and a reward signal defines a Reinforcement Learning (RL) problem.
The RL problem is generally applicable to everything from simple games, to industrial process
automation, to modeling of human thought processes.

I concern myself with RL agents that learn to predict value estimates for actions by updating
a value function over time and that derive their policies from those value estimates by choosing
greedily (selecting actions that have the highest value estimates) or greedily with some chance of
exploration. I am additionally interested in agents that learn online (meaning that one cares about
performance during the learning process) and efficiently (meaning that one cares about how much
time or processing is required) and that are capable of pursuing goals that differ from episode
to episode. These interests inform many of the choices I make, including my evaluation criteria
(Section 1.2), my choice of value function representation (Section 1.3), and my approaches to
manipulating the value function representations of my agents over time (Section 1.3.4.3).

Different value function representations ranging from tabular representations
(Section 1.3.2), to linear combinations of features (Section 1.3.3), to tile codings (Section 1.3.4),
to relational representations (Section 1.3.5) vary significantly in learning efficiency and computa-
tional efficiency (Section 1.2). Moving from tabular representations to more sophisticated repre-
sentations involving linear function approximation, tiling coding, and/or relational representations
enables RL agents to learn policies that generalize, allowing them to learn over larger or potentially
infinite state spaces, which is important for many environments that are infinite, simply large, or
continuously valued and difficult or impossible to perfectly discretize.

Relational Reinforcement Learning (RRL), in which an agent’s value function or policy is
defined over a set of conjunctions of relations about objects in the environment (Section 1.3.5),

1

enables agents to learn policies that are context sensitive. This allows them to learn to address
variable goals and to transfer knowledge between similar situations.

Unfortunately, preceding RRL architectures, such as the one pioneered by Džeroski et al.
[2001], are not sufficiently computationally efficient to see use outside of small, niche roles in
larger AI architectures [Lang et al., 2012a; Sridharan et al., 2016a; Sridharan and Meadows, 2016a;
Sridharan et al., 2017; Martínez et al., 2017]. I present a novel RRL implementation that is orders
of magnitude faster than its predecessors, potentially paving the way for more widespread adoption
of RRL.

My computationally efficient RRL architecture supports not only relational representations
but also adaptive (and non-adaptive) value function representations (Section 1.3.4) and the abil-
ity for agents to refine and unrefine (Section 1.3.4.3) the value function online and incrementally.
These extensions further enhance the generality and speed of learning of RRL architectures. It
additionally supports the automatic introduction of additional variables as part of a Higher Order
Grammar (HOG) (Chapter 6), allowing agents to solve problems where the agent must be capa-
ble of attending to varying numbers of objects and relations in the world. I evaluate its efficacy
and efficiency when functioning both non-adaptively and adaptively using several value function
refinement and unrefinement criteria.

In the remainder of this introduction, I present some fundamentals of Reinforcement Learn-
ing (RL) in Section 1.1. I present my evaluation criteria in Section 1.2. I then discuss different
value functions in Section 1.3, starting with my primary testbed, the Blocks World environment,
in Section 1.3.1 and tabular RL in Section 1.3.2. I present more advanced forms of RL: linear
function approximation in Section 1.3.3, tile codings in Section 1.3.4, and Relational Reinforce-
ment Learning (RRL) in Section 1.3.5. I discuss additional related work in Section 1.4. And I
conclude the introduction with discussion of my goals, what I will cover in the rest of the thesis,
and a summary of my contributions in Section 1.5.

1.1 Reinforcement Learning Fundamentals

Here I present the fundamental RL concepts that are invariant regardless of the kind of knowledge
(or value function) representation I use.

1.1.1 Markov Decision Process

A Markov Decision Process (MDP) [Bellman, 1957b] is a standard model of a sequential decision-
making problem that involves a state space (S) and an action space (A). I discuss the number of
different states and actions for the Blocks World environment in detail in Section 1.3.2.

2

An MDP is additionally defined by:

1. A state transition function (Pa(s, s′)) which provides the probability of transitioning from
any state s ∈ S to any successor state s′ ∈ S for any possible action a ∈ A available in s

2. A reward function (Ra(s, s
′)) which provides the expected value of the reward for transition-

ing from any state s to any successor state s′ for any possible action a available in s.

Finally, following from the definition above, an MDP satisfies the Markov property, that the
current state (s) provides sufficient knowledge for an agent to predict the successor state (s′) and
immediate reward (r) without requiring it to have any memory of the sequence of states (s0 . . . st−1)
that led up to that state. [Sutton, 1988]

1.1.2 Temporal Difference Methods

Temporal Difference (TD) methods allow agents to learn value functions (and in turn greedy poli-
cies) model-free, without a model of either Pa(s, s′) or Ra(s, s

′). They do this by learning a value
function that I refer to as Q(s, a) – an estimate of a the expected return, or cumulative (possibly
discounted) reward for taking the best action from s, then the best action from the successor state
s′, and so on. Model-free RL agents are faced with a temporal credit assignment problem – at-
tributing credit for reward to the actions responsible for that reward, even after arbitrarily many
steps of delay between the action and the corresponding reward. Let us examine how they are able
to learn without a transition model.

Our first TD methods are Sarsa (equation 1.1) and Q-learning (equation 1.2):

Q(s, a)
α← r + γQ(s′, a′) (1.1)

Q(s, a)
α← r + γmax

a′∈A
Q(s′, a′) (1.2)

Here r is the immediate reward, γ is a discount rate [0, 1], and α is the learning rate (0, 1].

Sarsa [Sutton, 1988] and Q-learning [Watkins, 1989] are two basic TD methods designed to
solve RL problems by backing up reward to the actions responsible for them in an online, incre-
mental fashion. The use of a learning rate, α, if sufficiently small, is enough to allow an agent to
learn return estimates for taking actions from different states. The differences in expected return
for different successor states are ultimately incorporated into the value function. This is not suf-
ficient to model the environment, but it is sufficient to allow an agent to derive a greedy policy.
Q(s, a) could be represented with a simple number called a Q-value, or it could be a sum of a
number of different weights that may contribute to Q(s, a) for multiple different state-action pairs,

3

allowing an agent to share knowledge between similar states or actions using linear function ap-
proximation (Section 1.3.3). For information regarding extensions Sarsa(λ) and Q(λ) which can
accelerate learning and Greedy-GQ(λ) which additionally guarantees convergence when using lin-
ear function approximation (Section 1.3.3), see Appendix A on page 136. I use these extensions
throughout this work but they are not necessary for understanding the contributions.

1.1.3 Exploration

When learning from experience in the world, there is a question of how best to explore different
actions in the environment given what the agent currently knows. An agent must sometimes try
actions that seem to be worse than the best possible choice according toQ(s, a) in order to discover
alternatives that improve its value estimate (and in turn its policy) over time and to maximize
expected return in the future.

Epsilon-greedy (ε-greedy) exploration is one of the simplest methods of exploration1. With
ε = 0.1, an agent will take a greedy action with probability 0.9 + 0.1 |G||A| where G is the set of
greedy actions and A is all candidate actions. With the remaining 0.1 |A−G||A| probability, the agent
will choose one of the non-greedy actions.

That ε-greedy exploration is equally willing to explore all non-greedy choices, even if some
are more promising than others, might lead one to prefer an alternative exploration method such as
Boltzmann action selection which prefers exploration of slightly suboptimal actions over signifi-
cantly suboptimal ones, as used in related work [Džeroski et al., 2001; Irodova and Sloan, 2005].
I generally use ε-greedy exploration in my work, but I use Boltzmann when comparing against
related work as needed.

An agent learning on-policy will learn a value function that, when followed greedily, will
cause the agent to incorporate penalties that result from exploration into its value function, and to
thereby take actions that are optimal taking exploration into account. An agent learning off-policy
will learn a value function that, when followed greedily, will cause the agent to take actions that
are optimal for the target policy (typically strictly greedy) without regard to the additional costs of
exploration. Therefore, an agent learning on-policy should be expected to perform better during
exploration and an agent learning off-policy should be expected to have a more optimal policy
when evaluated offline. When one is concerned with online performance, learning on-policy makes
sense since the agent is going to incorporate penalties resulting from exploration into its policy.
If one is concerned solely with the optimality of the terminal policy, learning off-policy can make
more sense. In this thesis, most of my agents learn on-policy since I am concerned with online

1Sutton and Barto [1998] states that Watkins [1989] may have been the first to implement ε-greedy exploration,
but they state that “the idea is so simple that some earlier use seems likely.”

4

learning. However, for some comparisons to related work where policy optimality is evaluated
offline, learning off-policy is more suitable.

1.2 Evaluation Criteria

I evaluate my work on Relational Reinforcement Learning (RRL) in two different dimensions.

In this work, I emphasize the problem of developing algorithms for efficiently evaluating and
updating value functions at each step. For that reason, the paramount focus of this work is the
problem of computational efficiency in terms of Wall-Clock Time Per Step (WCTPS) as described
in Section 1.2.1.

Computational efficiency is interesting, of course, only if the methods are actually accomplish-
ing something. As I explain in Section 1.2.2, I am concerned with learning efficiency in terms of
either Average Regret Per Episode (ARgPE) or Average Return Per Episode (ARtPE).

1.2.1 Computational Efficiency: WCTPS

I am concerned with problems of computational efficiency, which I evaluate simply by looking
at Wall-Clock Time Per Step (WCTPS). One step refers specifically to one cycle of the agent’s
execution – taking input from the environment, choosing an action, and executing that action in the
environment. (Since my agents and environments proceed in lockstep, with the environment wait-
ing for the agent between steps, one step of the agent’s execution correlates to one step of execution
of my environments, but this would not be the case if my agents were executing in a continuous-
time environment instead.) One can restrict time measurements to code that implements agent
logic only, factoring out time spent running environment simulations, but my wall-clock time mea-
surements are nonetheless dependent on the real world constants that affect performance, such as
Central Processing Unit (CPU) and Random Access Memory (RAM) speeds, code efficiency, and
computational complexity. In some cases, I can give some analysis of computational complexity
as well, but generally speaking I am concerned directly with WCTPS only.

I concern myself to some degree with memory efficiency as well. This concern is secondary
however, as I am interested in memory only to the extent that the time taken to use it affects
WCTPS.

1.2.2 Learning Efficiency: ARgPE and ARtPE

Computational efficiency or WCTPS is important, of course, only if the methods are actually
accomplishing something from step to step. Both the amount of learning achieved and the cost of

5

exploration to achieve it can be assessed in a number of different ways. Here I discuss possible
approaches, including those used in related work, and explain the metrics that I use in this thesis:
Average Regret Per Episode (ARgPE) and Average Return Per Episode (ARtPE).

One might simply plot return (cumulative reward) per episode, evaluating whether it increases
as an agent gains experience or perhaps how much faster it increases. If optimal return can be
calculated for all initial conditions being tested, one could instead plot regret (the discrepancy
between the optimal return and actual return) per episode, evaluating whether regret decreases or
goes to zero as an agent gains experience or how quickly regret decreases. Further, one might
evaluate the performance of a snapshot of an agent’s policy on a number of different starting
conditions and provide a percent of the number of those starting conditions for which the agent
achieves precisely the optimal return. This percent-optimality is the approach taken in related
work [Džeroski et al., 2001; Irodova and Sloan, 2005].

Approaches that evaluate per-episode fail to take into account episode length, potentially mask-
ing the true cost of learning. Agents that explore chaotically with an off-policy TD method can be
expected to learn more from the same number of episodes, or potentially from even fewer episodes
since their exploration is more exhaustive within each episode. This may be desirable if the number
of episodes that can be experienced is the primary bound on an agent over the course of learning,
but I do not believe this to be a desirable way for an agent to learn under most circumstances. In
fact, this metric rewards an agent for doing worse on early episodes and masks the total cost of
learning when reported per episode.

Evaluating percent-optimality of a snapshot of an agent’s policy additionally fails to capture
the degree of suboptimality of all suboptimal episodes. In many cases, one may not care about
strict optimality. An agent that performs optimally on 30% of episodes and near-optimally on the
other 70% may be preferable to an agent that performs optimally on 90% of episodes and fails
catastrophically on the other 10%.

In order to take into account episode length and degree of suboptimality, I argue that a better
metric is to examine either return or regret at step granularity, since the number of steps provides a
more direct correlation with the amount of work and the amount of experience that have gone into
learning the task. With known optimal return, one can plot Average Regret Per Episode (ARgPE) at
step granularity (instead of plotting or otherwise examining it at episode granularity). For example,
once an agent has completed the second episode, the ARgPE at time t halfway through the second
episode can be evaluated to be the average of the regret experienced over the course of the first
two episodes. ARgPE provides a measure of suboptimality per episode which can be evaluated per
step and plotted on the y-axis only as episodes are completed. Evaluating it per step and using total
step counts on the x-axis gives a measure of total effort that exposes the impact of varied episode
lengths on learning. Wall-clock time could be used for similar effect if a combined analysis of

6

learning efficiency and computational efficiency is the sole objective.
See Figure 1.1 for a visual demonstration of how ARgPE (in Figure 1.1c) can reveal a difference

in learning that is masked when plotting regret or average regret against the number of episodes.
White is doing better based on the number of steps even if it is doing worse in terms of the number
of episodes.

I present Algorithm 1 for ARgPE.2 It directly sums regret (the difference between the expected
return for the actions taken and the expected optimal) for all episodes and divides that sum by the
number of episodes. ARgPE plotted per step (or per unit time) gives one a sense of amortized cost
of learning. There are two important observations to be made here.

First, ARgPE is well defined only at steps that represent episode boundaries. Observe that
Algorithm 1 does not depend on the number of steps. This necessitates that some method be
devised to fill in the non-terminal steps for doing comparative analyses where episode lengths
differ or when generating plots. As a simple approach, I choose to linearly interpolate between
steps that represent episode boundaries. Algorithm 2 provides the regret value for the first episode
until the second begins. From that point forward, all points at episode boundaries return values
equivalent to those provided by Algorithm 1 and values between are linear interpolations instead.

Second, comparing two agents that have taken the same number of steps involves a comparison
between agents that may have experienced different numbers of episodes. This is by design, since
it is potentially unfair to directly compare an agent that takes 10, 000 steps to complete its first 10
episodes to an agent that completes its first 10 episodes in only 500 steps. The former has more
experience to draw on after the same number of episodes, and it is not obvious from data plotted
per episode that the latter has achieved its level of performance doing one twentieth the work. This
interpolation allows one to additionally compute an average across multiple runs where episode
boundaries might occur after different numbers of steps.

If optimal returns are unknown, instead of ARgPE, one can instead evaluate agents on the basis
of return instead of regret. See Figure 1.3 for a visual demonstration of how ARtPE (in Figure 1.3c)
can reveal the same difference in learning that is masked when plotting return or average return
against the number of episodes. A plot of ARtPE is essentially equivalent to a plot of ARgPE, just
with a sign inversion and a change in y-intercept.

2One might ask why I do not look at some form of normalized return. Normalization only makes sense if there
exists a default, non-zero amount of suboptimality against which to compare an agent’s performance. Since no such
number exists, normalization is impossible in principle.

7

0 2 4 6
0

20

40

60

80

100

Episodes

R
eg

re
t

(a) Regret

0 2 4 6
0

20

40

60

80

100

Episodes

A
ve

ra
ge

R
eg

re
t

(b) Average Regret

0 20 40 60 80 100
0

20

40

60

80

100

Steps

A
R

gP
E

(c) ARgPE

Figure 1.1: Several regret-based plots

Algorithm 1 Exact ARgPE, valid at episode boundaries only.
Require: |e| provides a count of the number of episodes
Require: r provides return experienced by the agent
Require: r∗ provides return experienced by an agent following an optimal policy

1: function ARGPE(e, r, r∗)
2: return 1

|e|
∑|e|

i=1(r
∗
i − ri)

Algorithm 2 ARgPE linearly interpolated for all steps.
Require: e provides the lengths of all episodes
Require: r provides return experienced by the agent
Require: r∗ provides return experienced by an agent following an optimal policy
Require: s provides a step between 0 and the maximum number of steps experienced

1: function ARGPE≈(e, r, r∗, s)
2: i, c← EPWITHSTEP(e, s)
3: r ← ARGPE(e|i1, r, r∗)
4: if i = 1 then
5: return r
6: else
7: l← ARGPE(e|i−11 , r, r∗)
8: return ei−c

ei
l + c

ei
r

9: function EPWITHSTEP(e, s)
10: i, c← 〈0, 0〉
11: loop
12: if c >= s then
13: return 〈i, s+ ei − c〉
14: i← i+ 1
15: c← c+ ei

8

Average Return Per Episode (ARtPE) can be calculated per step as described in Algorithm 3
and Algorithm 4. Both algorithms are direct simplifications of their predecessors, structurally
identical, but with regret calculations replaced with values of return. As the number of steps or
episodes increases, the difference between ARgPE and ARtPE will converge to a constant factor,
allowing maximal ARtPE to serve as a proxy for minimal ARgPE. ARtPE is the measure I use in
most of my experiments, since I have not historically evaluated regret for my agents and return is
an adequate proxy for my purposes. Note that if I attempted to evaluate average reward per step
directly instead of plotting ARtPE per step, for any domain that provides −1 reward per step, the
plot would be a flat line from start to finish regardless of what learning is achieved. ARtPE is
meaningful for such domains and correlated to ARgPE even in the absence of knowledge of the
degree of suboptimality of any given decision.

Consider the plots of equivalent ARgPE and ARtPE in Figure 1.2. One might ask what one
can conclude about the performance of the black, blue, and orange agents on the basis of these
plots. It is correct to say that orange performs better than blue until their crossover point and
that blue performs better after that. If their performance at step 100 represents their asymptotic
performance, one can conclude that blue is to be preferred with ample training time. With harsh
limits on training time, one should instead prefer orange due to its better performance early on.
However, this is of little importance in this scenario since the performance of black dominates that
of both blue and orange, thereby making it the best of the three regardless of the amount of training
time available. In summary, one can say in this instance that black has the best learning efficiency
since it dominates blue and orange, but in lieu of a dominant agent, learning efficiency must be
compared at specific points or intervals in time.

I will do a brief empirical evaluation of the differences that result from plotting ARtPE episod-
ically or stepwise in Section 5.5.

0 20 40 60 80 100
0

20

40

Steps

A
R

gP
E

(a) ARgPE

0 20 40 60 80 100

0

−15
−30
−45
−60
−75

Steps

A
R

tP
E

(b) ARtPE

Figure 1.2: ARgPE and ARtPE plots for analysis

9

0 2 4 6

0
−20
−40
−60
−80
−100
−120

Episodes

R
et

ur
n

(a) Return

0 2 4 6

0
−20
−40
−60
−80
−100
−120

Episodes

A
ve

ra
ge

R
et

ur
n

(b) Average Return

0 20 40 60 80 100

0
−20
−40
−60
−80
−100
−120

Steps

A
R

tP
E

(c) ARtPE

Figure 1.3: Several return-based plots

Algorithm 3 Exact ARtPE, valid at episode boundaries only.
Require: |e| provides a count of the number of episodes
Require: r provides return experienced by the agent

1: function ARTPE(e, r)
2: return 1

|e|
∑|e|

i=1 ri

Algorithm 4 ARtPE linearly interpolated for all steps.
Require: e provides the lengths of all episodes
Require: r provides return experienced by the agent
Require: s provides a step between 0 and the maximum number of steps experienced

1: function ARTPE≈(e, r, s)
2: i, c← EPWITHSTEP(e, s)
3: r ← ARTPE(e|i1, r)
4: if i = 1 then
5: return r
6: else
7: l← ARGPE(e|i−11 , r)
8: return ei−c

ei
l + c

ei
r

9: function EPWITHSTEP(e, s)
10: i, c← 〈0, 0〉
11: loop
12: if c >= s then
13: return 〈i, s+ ei − c〉
14: i← i+ 1
15: c← c+ ei

10

1.3 Value Function Representations

Here I describe the different kinds of knowledge representation that I concern myself with in this
thesis. I first present the Blocks World domain in Section 1.3.1 that I will later use to discuss how
these representations relate to WCTPS and ARtPE. I then discuss tabular representations in Sec-
tion 1.3.2. I present linear function approximation in Section 1.3.3 and tile codings in Section 1.3.4.
And I introduce relational representations in Section 1.3.5.

1.3.1 Blocks World

Blocks World is a classic domain and one that I will use to illustrate tradeoffs between value
function representations throughout this thesis. It presents n labeled but otherwise identical blocks
in stacks where internal stack ordering can be important but placement of stacks relative to one
another on the table is ignored.3 The features an agent has available include [Džeroski et al., 2001]:

1. Higher-than(a, b) – True if and only if a has a higher elevation than b, regardless of
whether blocks a and b are in the same stack or different stacks

2. Above(a, b) – True if and only if a is higher than b and in the same stack

3. On(a, b) – True if and only if a is above b and ¬∃ a block x such that
(Above(x, b) ∧ ¬Above(x, a))

4. Clear(a) – True if and only if ¬∃ a block x such that On(x, a)

Each block can be in many Higher-than(a, b) and Above(a, b) relations, but in at most
one Clear(a) and at most two On(a, b) relations – as the first argument in one and the second
argument in the other. The table is special in that it can never be higher than or above any blocks,
it can have as many blocks directly on top of it as there are blocks in the environment, and it is
always clear.

An agent is tasked with rearranging blocks, by moving one clear block onto another clear block
or onto the table at each step, in order to achieve some objective. Once the objective is achieved,
the environment automatically terminates the episode. Many different classes of objectives can be
specified. The different possible objectives I will discuss include:

3There are many other variants that could be explored. Block placement on the table could be considered to be
relevant. Or block placement could be restricted in a number of ways. However, the version I describe here is what
was explored in related work [Džeroski et al., 2001; Irodova and Sloan, 2005].

11

1. The stack objective4 requires that all the blocks be rearranged into a single stack. The
order of blocks in that stack is irrelevant for this objective.
More formally: ∃!x such that Clear(x)

2. The unstack objective requires that all the blocks be rearranged to be on the table.
More formally: ∀x Clear(x)

3. The on(a,b) objective requires that a specified block, e.g. block A, be placed directly on
top of another specified block, e.g. block B. The positions of other blocks are irrelevant for
this objective.

4. The exact objective requires that the blocks be rearranged into a fully specified config-
uration of blocks. The goal configuration can be specified as a conjunction of on(a,b)
relations that ultimately connect all blocks to the table.

Objectives stack, unstack, and on(a,b) (depicted alongside an initial configuration in
Figure 1.4) were introduced and explored by Džeroski et al. [2001] and explored in later work as
well [Irodova and Sloan, 2005], but objective exact (Figure 1.4e) has not been explored in the
context of RRL prior to this point.

Taking Figure 1.4 as an example, let us explore example solutions to these objectives:

1. Stack can be reached optimally treating either stack AC or stack EB as the base since there
exists no other block higher than either block B or block C. In either case, the remaining 3
blocks must be moved in any legal order (moving only clear blocks) onto whichever stack is
selected. (3 moves)

2. Unstack can be reached optimally by moving blocks B and C to the table in any legal
order. (2 moves)

3. On(a,b) with a = E and b = A can be reached optimally by moving both blocks B and
C either above block D, to the table, or onto one another on the table (anywhere that is not
above either block A or block E) and then moving block E onto block A. (3 moves)

4. Exact can be reached by moving blocks B and C to the table in any order and then moving
block A onto block C, block E onto block B, and block D onto block E. (5 moves)

Stack and unstack have fixed (implicit) objectives, but stack has n! states that satisfy the
objective while unstack has only one. On(a,b) and exact both represent the objective to

4This objective might be better named “single-stack” since it requires that all blocks be placed in a single stack,
but “stack” is the name used in prior literature. [Džeroski et al., 2001; Irodova and Sloan, 2005]

12

Table

C

A D

B

E

(a) An initial configuration

Table

(b) The stack objective

Table

A B C D E

(c) The unstack objective

E

A

(d) An on(a,b) objective with a = E and b = A

Table

D

E

B

A

C

(e) An exact objective

Figure 1.4: Blocks World configurations illustrated for an instance with n = 5.

the agent explicitly and can change the goal on(a,b) relation or exact goal configuration from
episode to episode.

Using the features I described at the beginning of this section, unstack and stack are the
simplest to express in terms of the number of features that an agent must incorporate into its value
function. Unstack is slightly simpler than stack since whether a block is being moved to the
table can be expressed with a single relation, while whether a block is being moved to one of
the tallest stacks requires a conjunction of two relational features. On(a,b) is more complex to
express, requiring a larger number of features and more complex conjunctions of those features
in order to allow an agent to converge on an optimal policy, since an agent must be aware of
whether blocks it is considering moving are above either of the blocks in the goal configuration
in addition to being aware of whether one of the blocks being moved is one of the blocks in the
goal configuration. Exact is more complex still, requiring either primitive features that encode
more background knowledge or a drastically larger number of features for it to be solvable due to
the number of on(a,b) relations that must be incorporated into the value function, both in the
current state and in the goal configuration.

13

1.3.2 Tabular Reinforcement Learning

A tabular representation assigns a unique label, or index into a table, to each and every state of the
world (or to each and every state-action pair). Regardless of how many details define the state of
the world, the entirety of it is reduced to its label. Any change to the state results in a different
label and there is no way for an agent to determine the similarity of states based on their labels.
Therefore, there is no way for an agent naively using a tabular representation to identify or take
advantage of similarities or differences between states which it has experienced.

Let us first consider the knowledge representation problem for the current state of the world
only in Blocks World without regard for the objectives (Figure 1.4a). Given that only the ar-
rangement of blocks within stacks but not about where stacks of blocks are placed relative to one
another, there are 3 possible states of the world for 2 blocks, 13 for 3 blocks, 73 for 4 blocks, and
501 for 5 blocks. (There is 1 possible state for 0 blocks and for 1 block, but no possible actions,
so pursuing objectives in that case is not possible. It is for this reason that I start with 2 blocks.)
Not all of these states are reachable for all objectives since for some states, passing through a
state that satisfies the objective and terminates the episode would be required (e.g. as depicted in
Figure 1.5, On(A,B), on(B,TABLE), and on(C,TABLE) cannot be reached from on(C,B),
on(B,A), and on(A,TABLE) if the objective state is on(A,TABLE), on(B,TABLE), and
on(C,TABLE) since there is no way to transition between those two states without passing
through the objective state), but these numbers still give some sense of the structural complex-
ity of the world.

I now analyze how the number of states grows as the number of blocks increases in order to
illustrate the intractability of this approach as the number of blocks increases. The problem of
calculating the possible number of states in Blocks World for a given number of blocks, n, can be
reformulated as the problem of calculating the “Number of ’sets of lists’: number of partitions of
1, . . . , n into any number of lists, where a list means an ordered subset.” This can be calculated in
a number of ways, but Wieder [2005] presents an equation that gives one the number of “sets of

Table

C

B

A

(a) Initial configuration

Table

A B C

(b) Unstack objective configuration

Table

A

B C

(c) Unreachable configuration

Figure 1.5: A state or configuration is unreachable if it requires passing through a state that satisfies
the objective.

14

Table

B

A C

(a) State 8

Table

A

B

C

(b) State 11

Figure 1.6: Two labeled states in a tabular representation.

lists” as a function of the number of different partitionings, p(n), the number of differently-sized
partitions, d(i), and the counts for each size of partition, m(i, j):

p(n)∑
i=1

n!∏d(i)
j=1m(i, j)!

(1.3)

Simplifying it slightly, one can consider the numbers of partitions of all sizes 1 to n for partitioning
i, k(i, 1) . . . k(i, n), instead of considering d(i) or m(i, j)

p(n)∑
i=1

n!∏n
j=1 k(i, j)!

(1.4)

Dividing by the product of the factorials of the numbers of lists of each size is necessary because
one does not care about the ordering between these different lists. In the case of Blocks World,
each stack of blocks is a partition and one is unconcerned with where stacks of blocks are relative
to one another.

One way of representing knowledge of the state of the world is to index these possible states.
The agent might then know that it is in state 8 or in state 11. (See Figure 1.6.) Such an agent would
not know how many blocks there are or that there even are blocks. This kind of representation is
opaque, but can be learned over regardless.

Note that use of a tabular representation does not entail that a problem meets the criteria for an
MDP. However, so long as the numbers of states and actions are finite and enumerable, any MDP
can theoretically be solved using a tabular representation.

The number of possible actions, or more precisely state-action pairs is worth considering as
well. There are between 1 and n(n− 1) move actions available to an agent at any given time. This
can be calculated precisely with:

(
n∑
j=1

k(i, j))2 − k(i, 1) (1.5)

The subtrahend k1 in equation 1.5 is necessary to eliminate moves from the table to the table—

15

n p(n) States State-Action Pairs
2 2 3 4
3 3 13 30
4 5 73 240
5 7 501 2,140
6 11 4,051 21,300
7 15 37,633 235,074
8 22 394,353 2,853,760
9 30 4,596,553 37,819,800

10 42 58,941,091 543,445,380
20 5,604 3 ∗ 1020 6 ∗ 1021
30 37,338 2 ∗ 1035 6 ∗ 1036
40 204,226 3 ∗ 1051 1 ∗ 1053

Table 1.1: A list of the number of different partitionings (p(n)), states, and state-action pairs for
Blocks World instances with between 2 and 40 blocks. Here I ignore how different objectives can
increase the complexity of the state space and/or decrease the accessibility of certain states.

moves that are disallowed for my agents and no-ops in terms of the state description. Assuming
actions are represented in the form of block-destination pairs, there exist 4 state-action pairs for 2
blocks, 30 for 3 blocks, 240 for 4 blocks, and 2,140 for 5 blocks. This can be calculated precisely
with an addition to equation 1.4, resulting in the novel equation [Bloch, 2018]:

p(n)∑
i=1

 n!∏n
j=1 k(i, j)!

(n∑
j=1

k(i, j)

)2

− k(i, 1)

 (1.6)

I present values for the numbers of action (equation 1.5), the numbers of states (equation 1.4), and
the number of state-action pairs (equation 1.6) in Table 1.1.

1.3.2.1 Efficiency

The idea of representing all the states and state-action pairs as numeric indices is simple. The
WCTPS of mapping states to indices is low, so the computational efficiency of a value function
using this approach is high.

However, it becomes clear from Table 1.1 that the number of state-action pairs in Blocks World
(Section 1.3.1) grows quite large as n grows. The number of state-action pairs grows from 30 for 3
blocks to 240 for 4 blocks. There are comparable order of magnitude increase for each additional
block added to the environment.

It is clear that the naive approach of using a tabular value function with a value for each state-
action pair will make the problem of learning a value function sufficient for deriving a near optimal

16

policy intractable. Given the lack of generalization when learning over such tabular represen-
tations, and given the growth of state-action pairs as n increases in Table 1.1, some alternative
approach with the ability to generalize from experience or to transfer learning between different
states would be preferable even with a more costly approach to implementing the value function.

1.3.3 Linear Function Approximation

Having a simple one-to-one correspondence between indices and states as in a tabular representa-
tion (Section 1.3.2) does not allow for any generalization. One can instead represent states not as
single indices into a table that map to Q-values, but as sets of features that describe the state-action
space.

A feature is a statement about a state-action pair. The ith feature can be described by a basis
function, φi(s, a) that provides a degree of activity (or truth) between 0 and 1, where 1 is fully
active (or true) and 0 is not active at all (or false). In this thesis, all features are Boolean and all
basis functions are Boolean as well. (There are alternatives to Boolean basis functions such as
Radial Basis Functions (RBFs) [Broomhead and Lowe, 1988], but they are outside the scope of
this dissertation.)

A feature dimension is a set of features of which exactly one must be active for any state-action
pair. Following from this definition, a feature dimension provides a partitioning of the state-action
space. A feature dimension need not directly correspond to an actual dimension of the state space
or state action space. An eight-dimensional state-action space could be described using any number
of feature dimensions – possibly fewer than eight or possibly more. In the context of this thesis,
features are strictly organized into feature dimensions.

A feature dimension describing the state of the environment for Blocks World might include
the feature block-a-is-clear and the feature block-a-is-not-clear, or
block-a-is-on-block-b and block-a-is-not-on-block-b, or
height-of-stack-s-is-greater-than-or-equal-to-3 and
height-of-stack-s-is-less-than-3. See Figure 1.7 for more examples. A feature di-
mension could also have a higher arity and include features corresponding to several destinations an
agent must reach in a navigation problem (e.g. dest-is-red, dest-blue, dest-is-yellow,
. . .). One could also include a discretization of a continuous feature such as a measure of temper-
ature or an amount of fuel (e.g. fuel-is-1, fuel-is-2, fuel-is-3, . . .).

b-on-a
(a) Feature 18

a-not-clear
(b) Feature 22

c-height-is-3

(c) Feature 42

Figure 1.7: Three features in a linear function approximation representation.

17

Given n total features, φ1 . . . φn, and a weight wi associated with each feature, the Q-function
can be calculated by

Q(s, a) =
n∑
i=1

φi(s, a)wi (1.7)

where Q(s, a) is semantically equivalent to the Q-values used with tabular representations. When
doing TD updates using equation 1.1 or equation 1.2, all TD updates (δ) to individual weights must
be divided by the number of active features or contributing weights:

wi ← wi + α
1∑n

i=1 φi(s, a)
δ (1.8)

For a more complex TD method than Sarsa (equation 1.1, Q-learning (equation 1.2), Sarsa(λ)
(Appendix A.1), and Q(λ) (Appendix A.1) that provides asymptotic convergence guarantees when
learning off-policy, see Greedy-GQ(λ) in Appendix A.2. The majority of my agents in Chapters 5
and 6 use Greedy-GQ(λ).

Linear function approximation provides abstraction and the ability to generalize. The num-
ber of values (weights or Q-values) in an agent’s value function is no longer directly tied to the
number of different states in the world since features, such as destination-block-is-clear, no longer
depend on the size of the state space. An agent using this kind of knowledge representation has
an effective state-action space size that can be calculated as a product of the number of features
in each feature dimension, for example b-on-a or b-not-on-a, or height-of-a-is-1,
height-of-a-is-2, or
height-of-a-is-3:

D∏
i=1

Di (1.9)

If these features perfectly describe all state-action pairs, the effective number of state-action pairs
is the same as when using a tabular representation. However, now the number of features to learn
over scales with a sum instead of a product:

D∑
i=1

Di (1.10)

This reduces the effective size of the state-action space even if the features perfectly describe the
state-action space since an agent can generalize from its experience with a given feature even
as features in other feature dimensions change their degrees of activity. With carefully chosen
features, the number of features to be learned over (equation 1.10) can be significantly less than the
total number of states (equation 1.9). For example, in a grid world, if it is possible to decompose a

18

10x10 grid into distinct x and y feature dimensions of size 10 instead of addressing all 100 positions
individually, the number of features (and weights) is reduced from 100 to 20 – from multiplicative
10x10 to additive 10+10. As the number of feature dimensions increases, these savings can result
in orders of magnitude fewer features and weights and more generalization from past experience
as a result.

1.3.3.1 Deictic Representations

Linear combinations of features can be enhanced through the use of deictic representations. De-
ictic representations are similar to propositional ones, but rather than having a feature such as
block-a-on-block-b and other such features for every pair of blocks, an agent might instead
have a feature block-being-moved-on-block-b [Agre and Chapman, 1987].

In a deictic representation, there is a pointer (e.g. “block-being-moved”) present in the
propositional feature, requiring that some context-sensitive processing occur in order to evaluate
the feature from step to step. These pointers are typically (but not necessarily) relative to the
agent. Given that the agent need concern itself with only one labeled block in this case, this
can provide a significant increase in the generality of the feature, potentially increasing ARtPE.
However, these kinds of pointers are more limited than full fledged variables in that it is impos-
sible to compare the block-being-moved to any references in other features, or to see if the
block-being-moved is the same as one referred to in any other features. (Of course, since
only one block can be moved at a time, they must be the same in this particular example, but that is
not generally true.) In Section 1.4, I compare my work to related work that uses deictic represen-
tations. The ability to capture relationships between objects using variables, and to represent more
of the structure of the task as a result, forms the basis of relational representations in Section 1.3.5.

1.3.3.2 Efficiency and Discussion

The features chosen reflect the lens through which whomever creates them views the problem.
If features are chosen poorly, problematic state aliasing can result in which states that the agent
can distinguish between in its value function cannot be separated.5 This can mean that the best
policy that an agent can achieve in the limit may be suboptimal. Further, Exclusive OR (XOR)
relationships, in which certain features are situationally good or bad, depending on the values of
other features, can also limit the optimality of the policy resulting from the value function that can
be learned by an agent.

5State aliasing can result not only from knowledge representation issues but from real world sensory limitations
as well.

19

WCTPS is higher for linear function approximation than when using a simple tabular repre-
sentation, as D weights have to be processed for each state-action pair. However, this additional
computation allows the agent to decouple its learning problem from the dimensionality of the state-
action space, to share knowledge between different states, and to potentially apply that knowledge
to states not yet visited. These improvements can lead to a significant improvement in ARtPE,
although perhaps only for finite time horizons if optimality is bounded by the representation in the
limit.

1.3.4 Tile Codings

RL algorithms (such as both Sarsa and Q-learning) suffer from the curse of dimensionality, that the
amount of data or experience required for learning increases exponentially as the size of the state
space increases [Bellman, 1957b], when learning over tabular representations. Sarsa(λ) and Q(λ)

(see Appendix A.1), help speed learning, but do not reduce the dimensionality of the state space of
a problem.

Linear function approximation (Section 1.3.3) is one approach to solving the curse of dimen-
sionality. A related approach to improving generalization – to decouple learning and computa-
tional complexity from the raw size of the state space – is to use a tiling [Albus et al., 1971;
Albus, 1981]. As if placing a 2-dimensional continuously-valued world on grid paper and treating
each square as a state, a tiling can reduce an infinitely large continuous state-space to a finite num-
ber of states. Each tile has a weight associated with it (making these weights Q-values in the case
that there exists only the one tiling). An 8x8 tiling (see Figure 1.8) results in 64 distinguishable
states since all states within a given tile share the same weight. A tiling can be applied to domains
with more than two dimensions or with discrete features as well.

If discretization of continuous features is involved, this kind of generalization results in an

Figure 1.8: An 8x8, 2-dimensional tiling

20

agent’s treating all states within a given tile identically. If value estimates need to change more
gradually throughout the state space, one option is to use a more refined tiling at the expense of
losing some generalization.6 More refined tilings potentially result in lower ARtPE early on but
can continue to have non-negligible growth in ARtPE for much longer (i.e. a long tail). Therefore,
a coarse (e.g. 4x4) tiling might have high ARtPE in the beginning of an agent’s lifetime but fall
short of optimal in the limit, while a very refined (e.g. 64x64) tiling might have low ARtPE early
on but achieve a nearer optimal ARtPE in the limit.

1.3.4.1 Multiple Tilings or CMACs

Using a single tiling is simple but does not provide an agent with any knowledge sharing (or gener-
alization) in the value function for adjacent tiles. Using multiple overlapping tilings is an approach
that was originally proposed was based on a theory about how a Cerebellar Model Arithmetic
Computer (CMAC) might biologically process input [Albus, 1981; Albus et al., 1971]. It might
involve individual tilings of different sizes or with different offsets overlapping one another to form
a tile coding (or CMAC) as depicted in Figure 1.9.

Tile codings with multiple tilings have the potential to provide a combination of high ARtPE
in the beginning thanks to the coarsest tiling(s) and the ability to achieve a nearer optimal ARtPE
in the limit than could be achieved with the coarsest tiling(s) alone. The weights of a tile coding
consisting of multiple tilings can be learned over using linear function approximation as described
in Section 1.3.3.

(a) An 8x8 tiling and a 4x4 tiling (b) 3 8x8 tile codings with different offsets

Figure 1.9: Two tile codings or CMACs consisting of different overlapping tilings, from which the
Q-function can be computed as a sum of the weights for tiles that cover a given state

6Another possibility would be to use something more akin to a nearest neighbor or prototype approach, as is
attempted by Kanerva encoding ([Kanerva, 1988]) but is beyond the scope of this research.

21

∅

(a) 1x1

x >= 0.5x < 0.5

(b) 2x1

x < 0.5
∧

y ≥ 0.5

x ≥ 0.5
∧

z ≥ 0.5

x < 0.5
∧

y < 0.5

x ≥ 0.5
∧

z < 0.5

(c) 2x2

Figure 1.10: A naHTC consisting of 3 tilings.

1.3.4.2 Non-Adaptive Hierarchical Tile Coding

A non-adaptive Hierarchical Tile Coding (naHTC) imposes structural limitations on CMAC. While
similar to what is depicted in Figure 1.9a, instead of having arbitrary flexibility to overlay tilings
on top of one another:

1. There must exist a maximally general 1x1x. . . tiling that covers the entire state space with a
single tile.

2. Each tiling after the first must represent a partitioning of one or more existing tiles, using
exactly one unused feature dimension for each tile’s partitioning.

When adding a tiling that represents a partitioning of more than one existing tile, it is not
necessary that each tile use the same feature dimension for its partitioning. For example, if the
most general tiling tiles over feature dimension x, dividing it into x < 0.5 and x ≥ 0.5, the next
most general tiling could consist of a tiling over y for x < 0.5 and over z for x ≥ 0.5, resulting
in the tiles x < 0.5 ∧ y < 0.5, x < 0.5 ∧ y ≥ 0.5, x ≥ 0.5 ∧ z < 0.5, x ≥ 0.5 ∧ z ≥ 0.5. (See
Figure 1.10.) Ultimately, if there are a finite number of features, each region of the state space
could have tiles that correspond to each active feature in a full naHTC but have those features at
different levels of generality in different regions of the state-space. e.g. x < 0.5∧y < 0.5∧z < 0.5

and x ≥ 0.5 ∧ z < 0.5 ∧ y < 0.5

This approach to building a CMAC results in the values for different tilings being learned at
different levels of generality. The weights for larger, coarser tiles can converge more quickly, then
allowing the weights of more refined tiles to converge on more specific knowledge about the value
function.

22

1.3.4.3 Adaptive Tile Coding

Another approach to tile coding is to start with a coarse tile coding, and to dynamically break the
tiles into smaller, more refined tiles over time using an Adaptive Tile Coding (ATC) [Whiteson
et al., 2007; Sherstov and Stone, 2005; Reynolds, 1999; Munos and Moore, 1999b; Moore and
Atkeson, 1995]. This is a secondary learning mechanism that functions in tandem with TD meth-
ods. While TD learning is taking place for the set of weights for existing tiles, this secondary
mechanism is modifying the set of tiles and corresponding weights for TD learning to work on.

An ATC is related to a naHTC (depicted in Figure 1.10), but instead of having multiple over-
lapping tilings of different levels of generality defined from the start, tiles that appear to require
a more refined value function are replaced by more refined tiles as learning progresses. See Fig-
ure 1.11 for an abstract example and Figure 1.12 for an example of how an ATC can be used for a
relational Blocks World domain, as we will explore in Chapter 5.

As the agent refines the tile coding in different regions of the state space, it becomes capable
of learning a correspondingly more refined value function and a correspondingly better policy,
but without the full cost associated with having started with a significantly refined tiling from the
beginning. Overall, this can result in good early ARtPE but without the consistent overhead of
using linear function approximation.

Munos and Moore [Munos and Moore, 1999a; Munos and Moore, 1999b] discuss a number
of different criteria for choosing how to refine their tile codings. Ones that informed my work
include:

1. Influence, formally defined as I(ξi|ξ) =
∑∞

k=0 pk(ξi|ξ) where pk(ξi|ξ) is defined as “the
discounted cumulative k-chained probabilities” which “represent the sum of the discounted
probabilities of all sequences of k states from ξ to ξi” [Munos and Moore, 1999a], is a
measure of the degree to which a Q-value associated with one tile influences other Q-values
(associated with individual tiles) within the value function. It can be calculated by doing TD
backups without the reward component. An agent should choose to refine tiles with high
influence in order to maximize impact on other Q-values for each refinement.

2. Variance is a measure of the degree to which the discounted return experienced by an agent
differs from run to run. The average difference between the expected value, i.e. the Q-
function (Q(s, a)), and the actual discounted return experienced after s (or state-action pair
s-a) forms the basis for the variance measure. An agent should choose to refine tiles with
high variance in order to best approximate the true value function.

3. Stdev_Inf is the product of both influence and variance, I(s)σ(s) or I(s, a)σ(s, a).

23

Figure 1.11: A two-dimensional Adaptive Tile Coding (ATC)

∅

(a) 1

on(b,c)

¬on(b,c)

(b) 1x2

¬on(b,c)

on(b,c) ∧
on(a,b)

on(b,c) ∧
¬on(a,b)

(c) 2x2

¬on(b,c)

on(b,c) ∧
¬on(a,b)

on(b,c) ∧
on(a,b) ∧
clear(a)

on(b,c) ∧
on(a,b) ∧
¬clear(a)

(d) 2x2x2

Figure 1.12: An ATC for Blocks World refined stage by stage, incorporating RRL (Section 1.3.5)
using what I engineer in Chapter 4.

24

Their metrics are computed incrementally,7 but they provide no incremental method for deter-
mining which tiles should be refined. Instead they refine tiles periodically in batches, splitting the
top f % of the highest scoring tiles. Note that these metrics help an agent to decide where to refine
the value function but offer no assistance in determining when to do so. That is, no values of these
metrics directly entail that refinement ought to occur – they are purely relative.

Munos and Moore [1999b] use a k-dimensional trie (k-d trie) to store their tile codings, which
forms the basis for the first implementation of the value function in my architecture (to be intro-
duced in Section 3.1.1). A k-d trie is a variation of a k-dimensional tree (k-d tree) (which is itself
a generalization of a binary tree) in which the index into the k-d trie is comprised of the entire se-
quence of nodes leading to the leaf. Tries are commonly used for dictionaries, but are also suitable
for conjunctions of different features, or for more and more specific features.

Whiteson et al. [2007] explore other criteria that I built on:

4. The time since the most recent minimal Bellman error8 is used as their criterion for deter-
mining when to refine the value function. The underlying idea is that improvement may have
stalled when the minimal Bellman error stops declining.

5. Their value criterion for determining where to refine the value function, as a batch op-
eration, selects the tiles to split that maximize the resulting value difference between the
resulting subtiles. The objective of the value criterion is to do refinements to allow closer
approximation of the value function.

6. Their policy criterion for determining where to refine the value function, as a batch oper-
ation, selects the tiles to split that maximizes the likelihood that the resulting subtiles will
result in different policy decisions, using a running counter of expected changes to the pol-
icy that is updated for each active tile at each time step. The rationale underlying the policy
criterion is that the policy is what one really cares about, so closely approximating the value
function may needlessly refine parts of the value function where the gradient is high but the
policy is consistent nonetheless.

If the agents are to make interesting decisions about how to refine the value function once the
questions of when and where are answered (or as part of the process of making those decisions),
some information about the candidate subtiles must either be built up over time or calculated at the
time of refinement. The agents developed by McCallum [1996] store sets of examplars in the fringe

7Note, however, that in my work I settled on a different method for calculating variance as described in Ap-
pendix B.

8More correctly, this should have been called TD error since it represents the immediate update experienced by
Q(s, a) and is not a differential resulting from an incomplete solution to the Bellman equations (i.e. incompletely run
value iteration).

25

to allow them to make calculations about which subtiles to create. On the other hand, the agents
developed by Whiteson et al. [2007] store more compact statistics about possible refinements to
the value function and update them as they explore.

1.3.4.4 Adaptive Hierarchical Tile Coding

Combining naHTCs and ATCs together, I develop ATCs that, instead of removing coarser tiles as
more refined ones are added, preserve them and continue to use them for learning. An adaptive
Hierarchical Tile Coding (aHTC) must still follow my rules for the structure of a naHTC (listed in
Section 1.3.4.2), but the structure of the value function is built up dynamically using approaches
that are compatible with ATCs. See figure 1.13 for an example of how an aHTC can be used for a
relational Blocks World domain, as I will explore in Chapter 5. The darker regions in Figure 1.13
(but not present in Figure 1.12 for a non-hierarchical ATC) indicate regions where features of

∅

(a) 1

on(b,c)

¬on(b,c)

(b) 1x2

¬on(b,c)

on(b,c) ∧
on(a,b)

on(b,c) ∧
¬on(a,b)

(c) 2x2

¬on(b,c)

on(b,c) ∧
¬on(a,b)

on(b,c) ∧
on(a,b) ∧
clear(a)

on(b,c) ∧
on(a,b) ∧
¬clear(a)

(d) 2x2x2

Figure 1.13: An adaptive Hierarchical Tile Coding (aHTC) for Blocks World refined stage by
stage, incorporating RRL (Section 1.3.5) using what I engineer in Chapter 4.

26

different resolutions overlap, as defined by a Hierarchical Tile Coding (HTC). I describe this
contribution in greater detail in Chapter 3.

aHTCs potentially allow an agent to combine the advantages of naHTCs with the flexibility
of being able to learn about the world as refinement decisions are being made. For more com-
plex domains, this may allow agents using HTCs to make better decisions about how to structure
their value functions to maximize ARtPE. I test this hypothesis in Section 2.2.2.2 and throughout
Chapter 5.

1.3.4.5 Efficiency and Discussion

Single tilings are the most computationally efficient form of a tile coding for computing the value
function, mapping different portions of the state space (or state action space) onto a fixed number
of tiles (or weights). However, for some domains, there may be no single tiling that allows for
an optimal policy. Even when an optimal policy is possible, it is possible that such a tiling is so
refined that the learning problem is once again intractable and ARtPE early in an agent’s lifetime
is low, just like with a tabular representation. Additionally, single tilings are the most dependent
on the agent designer to choose a good tiling.

Multiple overlapping tilings can provide a faster increase in ARtPE early on while still allowing
an agent to achieve a nearer optimal policy in the limit, but they also increase computational costs
by a factor linear in the number of tilings. For low dimensional problems, multiple overlapping
tilings can be sufficient to get effective generalization [Sutton, 1996].

Adaptive tile codings might superficially appear to require strictly less WCTPS than multiple
overlapping tilings. However, the computational costs of deciding when, where, and how to refine
the value function could exceed the computational cost savings of having only a single tiling rather
than multiple fixed tilings. On the other hand, multiple overlapping tilings might be insufficient for
learning high dimensional problems. I will consider these possibilities and evaluate the efficacy
and efficiency of naHTCs, ATCs, and aHTCs throughout this work.

1.3.5 Relational Reinforcement Learning

Relational representations are another approach to value function representation. Rather than rep-
resenting states as either opaque indices or as independent feature dimensions, in RRL the state
is decomposed into objects and relations (relational features). Relational features contain vari-
ables which can match arbitrary objects in the environment. An RRL agent can compare variables
across different features and build up conjunctions of features where the agent requires that vari-
ables match. For example, a conjunction of clear(a) and on(a, b)9 will necessitate that a

9In this context, the variable a does not refer to the current action as defined in the list of symbols.

27

refers to the same block in both relational features, but not a specific block that must be the same
each time the conjunction is evaluated.

Conceived as a merging of RL and relational learning or inductive logic programming, Džeroski
et al. [2001] imagined that the more expressive representation of RRL could allow RL to be applied
to new learning tasks, beginning with Blocks World (which I introduced in Section 1.3.1). The so-
lution they explored, Q-RRL, is to use TILDE-RT [Blockeel and De Raedt, 1998] to generate a de-
cision tree over the relational features representing state action pairs, storing Q-values at the leaves
of the tree. They demonstrated that RRL is a powerful method for learning to solve certain Blocks
World tasks. However, as they noted, TILDE-RT is not an incremental algorithm, thus Q-RRL re-
quires extra processing to update Q-values between expensive executions of TILDE-RT. Their rep-
resentation included predicates clear(a), on(a, b), and above(a, b) (in the same stack),
as well as predicates allowing an agent to combine relations to calculate higher-than(a, b)

and lower-than(a, b) (in any stack).

Džeroski et al. [2001] describes a number of limitations of an earlier approach to RRL by Lan-
gley [1995] in which Langley propositionalized the representation by treating each set of values
within the relations as a proposition. Firstly, Langley’s solution breaks down for large or infinite
state spaces – a problem Langley resolves using an inductive learning algorithm (a neural network).
Secondly, it fails to capture the structural aspects of the task. This limitation provides contrast with
an RRL agent’s value function that develops conjunctions of relations which correspond to the
structure of the task. For example, an RRL agent can learn the value of a conjunction of both
whether a block being considered for a move is one of the blocks in the objective on(a, b) rela-
tion and whether the destination block under consideration is above a block in the objective on(a,
b) relation. See Figure 1.14 for a simple presentation of other example RRL features. Thirdly, any
change of goal requires complete retraining even if the goal is explicitly represented as part of the
state space since non-relational features can be conditioned only on fixed, individual goals once
propositionalized. Finally, some transfer of previously learned knowledge might be expected go-
ing from 3 blocks to 4, and this solution does not facilitate that kind of transfer, once again due to
the limitations imposed by propositionalization. Given that Langley presented a solution to only
the first of these four problems, Džeroski et al. emphasized the need for a learning algorithm a
relational learning algorithm, RRL, to take full advantage of relational representations.

Relational representations allow an agent to achieve a kind of generality that is not possible
with the tabular representation described in Section 1.3.2 or with a linear combination of features

on(b,a)
(a) Feature 2

clear(c)
(b) Feature 5

clear(c) ∧ ¬clear(a)
(c) Feature 8

Figure 1.14: Three features in a RRL representation.

28

n p(n) States w/out Labels State-Action Pairs w/out Labels
2 2 2 3
3 3 3 10
4 5 5 27
5 7 7 56
6 11 11 114
7 15 15 202
8 22 22 357
9 30 30 585

10 42 42 951
20 5,604 5,604 38,307
30 37,338 37,338 599,292
40 204,226 204,226 5,899,292

Table 1.2: A list of the number of different partitionings (p(n)), non-isomorphic states, and corre-
sponding state-action pairs for Blocks World instances with between 2 and 40 blocks. Unlike in
Table 1.1 on page 16, here I ignore states that differ in block labels but are structurally identical.
These numbers result from equation 1.11 instead of equation 1.6.

as described in Section 1.3.3. The use of variables in the hand-coded features provides one form of
generalization.10 For example, turning our attention back to Blocks World, isomorphic states could
be treated identically in the idealized case. As I present in Table 1.2, this reduces the number of
states in the third column to the number of partitions possible for n blocks, p(n), and equation 1.6
for state-action pairs in the fourth column to:

p(n)∑
i=1

(

n∑
j=1

kj

)2

− k1

 (1.11)

Note how much smaller these numbers are in Table 1.2 when compared to those in Table 1.1.

1.3.5.1 Efficiency and Discussion

The WCTPS cost of computing a value function based on relational representations can be higher
than the cost for tabular representations due to the multitude of features and higher than the cost
for linear combinations of features due to evaluations of variables and the use of conjunctions of
features.

Using relational representations (Section 1.3.5), conjunctions of features that share variables

10To use these features as a simpler linear combination of features requires that the variables be replaced with all
possible values, exploding the number of features in a process called propositionalization. e.g. The feature clear(a)
would be replaced by as many features as there are blocks: clear(A), clear(B), clear(C),

29

result in the need to solve 3-satisfiability problems [Karp, 1972] to determine whether a feature
is active or inactive (in the basis function for linear function approximation), resulting in NP-
hard complexity as conjunction lengths grow. Without doing something to reduce computational
complexity, as I do in Chapter 4, this could make RRL intractable.

On the other hand, it may be possible to learn from significantly less experience than is neces-
sary with tabular representations since variables support a great deal of generalization. Addition-
ally conjunctions of features allow an RRL agent to handle XOR relationships between features
since a feature, such as on(a, b) can take on a different meaning in conjunction with different
features, such as either clear(a) or ¬clear(a).

With poor WCTPS but potentially good ARtPE, we are presented with a tantalizing rep-
resentation that has been underutilized in practice. Providing efficient RRL methods to make
RRL more useful is the primary focus of this work.

1.4 Related Work and Computational Efficiency

Džeroski et al. [2001] is the baseline, full-fledged RRL implementation (implemented using
TILDE-RT – not aHTCs). Motivated by a desire to potentially avoid the complexity of RRL,
Finney et al. [2002] investigated deictic representations (Section 1.3.3.1) to see if they might be a
satisfactory alternative to Džeroski et al.’s approach for Blocks World (Section 1.3.1). Ultimately,
they concluded that “none of the approaches for converting an inherently relational problem into a
propositional one seems like it can be successful in the long run. [. . .] The deictic approach has a
seemingly fatal flaw: the inherent dramatic partial observability11 poses problems for model-free
value-based reinforcement learning algorithms.”

Regardless, Irodova and Sloan [2005] looked at Džeroski et al.’s RRL agent training times for
Blocks World (stack, unstack, and on(a,b)) and decided that they could do better. They
dropped RRL in favor of linear function approximation over propositionalized representations,
effectively creating highly tuned, hand-coded agents and thus losing the generality of the RRL
approach. As a further optimization, they were able to hide the true numbers of actions from their
agents and present up to 11 categories of action (or examplar actions) to enhance scalability.

The end result is that the agents by Irodova and Sloan can learn to solve stack, unstack,
or on(a,b) in four orders of magnitude less time than the RRL implementations existing at that
time while providing an optimal policy that is able to be efficiently executed on problem instances
of up to at least 800 blocks. See Table 1.3. For comparison, the Q-tree policies from [Džeroski
et al., 2001] converged to only 50% optimality for stack and unstack and 60% optimality for

11Partial observability refers to the problem of an agent that cannot distinguish between different states that must
be treated differently for a policy to be effective.

30

Task [Džeroski et al., 2001] [Irodova and Sloan, 2005]

Stack 13,900s* 1.7s
Unstack 36,400s* 1.7s
On(a,b) 44,600s* 2.3s

Table 1.3: Runtimes for 100 episodes of training for Blocks World (Section 2.2.1) with 3-5 blocks
and only 45 episodes for [Džeroski et al., 2001]

on(a,b). Irodova and Sloan attributed perhaps a single order of magnitude speedup from hard-
ware advances, leaving them with a three order of magnitude improvement from their approach.

One might ask how Irodova and Sloan [2005] succeeded with propositional representations
when Finney et al. [2002] were unsuccessful. Irodova and Sloan’s approach was simpler in many
respects, avoiding the need for deliberate focusing actions and eliminating any hazardous partial
observability as a result. Moreover, in their approach, they manually assigned a separate value
function to each category of action. While their features would be inadequate for deciding which
actions to take if shared between all actions, when separated by action, they provided a sufficient
signal for learning the task.

In fact, any features would be sufficient for both stack and unstack. The action categories
are themselves sufficient for making good choices for these tasks. For unstack, all an agent
must learn is that the actions that move a block to the table give the highest reward. Similarly,
for stack, all an agent must learn is that the actions that move a block to one of the highest
stacks (of which there should be more than one for only the first decision) give the highest reward.
Since these classes of actions have their own value functions, it is irrelevant what features
are contained within them. Put simply, they built the intelligence into the action selection
procedure itself12.

While the agents by Irodova and Sloan are fast and effective, their custom mapping of value
functions onto categories of actions is a level of hand-coding that goes beyond the feature design
that is required by RRL agents. Moreover, this extra level of manual action categorization is
necessary to allow an agent using linear combinations of features in lieu of RRL to learn these
Blocks World tasks. RRL is sufficiently powerful to allow an agent designer to implement agents
that are capable of discovering the necessary generalizations for themselves as long as the features
themselves are sufficient to distinguish between them. What RRL allows an agent to learn on its
own with respect to value function structure will be functionally equivalent to what Irodova and
Sloan hand-coded for their action categories.

12I assume they did this for on(a,b) as well, but details are omitted from their paper.

31

1.5 Discussion

In this chapter, I introduced the evaluation criteria for computational efficiency, WCTPS (Sec-
tion 1.2.1), and learning efficiency (Section 1.2.2), ARgPE and ARtPE both evaluated or plotted
per step. I additionally introduced MDPs (Section 1.1.1), illustrated with the Blocks World domain
(Section 1.3.1), and discussed a number of RL methods for learning value functions from which op-
timal or near optimal policies can be derived. I additionally presented related work and previewed
the kind of computational performance I will present in chapter 5 for RRL agents that learn online
and incrementally and can pursue objectives that change from episode to episode (Section 1.4).

My objectives over the course of this researched included:

1. Evaluate HTCs as a method that could be made to work incrementally for computationally
efficient, online RL.

2. Develop an architecture with implementations of HTCs and TD methods that can be shared
between agents for different environments.

3. Optimize my architecture for aHTC value function representations.

4. Apply my RL architectural methods to RRL problems.

5. Increase the expressive power of my architecture RRL to enable it to tackle problems with
either fixed or variable numbers of variables and relations.

Over the course of this thesis, I will cover the following material:

1. I explore more traditional Adaptive Tile Coding (ATC) methods, particularly a multilevel
tile coding that I refer to as an adaptive Hierarchical Tile Coding (aHTC). An aHTC stores
weights not only for the smallest tiles in the architecture but for the more general tiles that
were refined along the way. As a result, it implements linear function approximation. I
introduced the concept in sections 1.3.4.2 and 1.3.4.4 and begin my evaluation with non-
relational RL tasks in chapter 2 and continue it throughout the rest of the thesis.

2. I develop an efficient k-d trie implementation of aHTCs in which one stores weights at every
node along the way to the leaves, achieving a two orders of magnitude speedup on my
prototype architecture in chapter 3.

3. In order to support RRL, I shift to an implementation of the Rete algorithm [Forgy and
McDermott, 1977b] in Chapter 4 that implements a novel RRL grammar for HTCs, allowing
for automatic feature extraction and efficient value function refinement and unrefinement.

32

4. I explore several of the Adaptive Tile Coding (ATC) refinement criteria from Section 1.3.4.3
in the context of this new architecture both to demonstrate the flexibility of the architecture
and to verify that it is possible to achieve good ARtPE for exact, a more complex Blocks
World objective, and a taxicab domain as well. The experiments with Blocks World, pre-
sented in Chapter 5, demonstrate computational performance that is orders of magnitude
greater than that achieved by Džeroski et al. [2001].

5. Finally, I extend the capabilities of my agents to allow them to optionally create versions
of existing relations with new variables. This effectively allows them to attend to multiple
versions of a relation with new variables in order to solve more complex problems for which
a known, fixed number of variables relations may be inadequate. I present this functionality
and demonstrate its efficacy for exact and an adventure task in chapter 6.

The contributions of this thesis include are as follows.

1. The primary contribution of this dissertation is a theory and corresponding algorithms for
connecting the rule-matching power of the Rete with the needs of RRL to arrive at compu-
tationally efficient methods for implementing the first online, incremental RRL architecture.

(a) I develop aHTCs and demonstrate the efficacy of using hierarchically organized con-
junctions of features in terms of WCTPS and ARtPE.

(b) I develop a novel approach for embedding an aHTC in a data structure for rule-matching
to enable it to take advantage of the features that make it suitable for efficient RRL.

2. I provide an RRL implementation that achieves a greater than two orders of magnitude
WCTPS reduction in Blocks World tasks over prior work by Džeroski et al. [2001].

3. To support making my implementation online and incremental, I modify existing ATCs re-
finement criteria to make them fully incremental and create a new one as well.

4. I design, implement, and evaluate further extensions to aHTC refinement criteria to further
increase ARtPE when allowing unrefinement while minimizing the WCTPS cost of doing so

5. I additionally provide an advance in the theory of RRL. It allows agents that learn online and
incrementally to introduce new features with new variables while also being able to continue
learning about situations in which no objects satisfy the new variables.

33

CHAPTER 2

Exploration of Hierarchical Tile Coding

If my ultimate goal were to develop an efficient Relational Reinforcement Learning (RRL) imple-
mentation, there are two approaches that I could take. I could begin with the goal of implementing
a functional RRL architecture and attempt to see how fast I could make it run. Alternatively, I
could begin with simpler non-relational Reinforcement Learning (RL) tasks and to see what kinds
of techniques I might be able to make efficient and effective in that space first, leaving the problem
of solving RRL tasks for later1. This should work, since the underlying Temporal Difference (TD)
methods are the same regardless of whether features are propositional or relational.

2.1 Prototype Architecture (2012)

Here I describe the basic execution cycle of my agents. Additionally, I describe my prototype
architecture that I implemented to evaluate the use of Adaptive Tile Codings (ATCs) to solve RL
problems.

2.1.1 Execution Cycle

Any agent must have some kind of execution cycle. I am concerned solely with agents that base
their decisions on a value function that they learn in an online, incremental fashion. Here I as-
sume that the value function consists of weights associated with conjunctions of 0 or more binary
features and where features can be grouped by the feature dimension of the state-action space that
they describe. (i.e. x < 0.5 and x >= 0.5 might be two features in one feature dimension, or
action = move and action = pickup two features in another feature dimension, . . .) Given that
I am developing agents that can adapt their value functions over time based on data collected at
the fringe (Section 1.3.4.3), for each state one of my agents finds itself in, it will essentially (value
function representation steps in bold, RL in italics):

1I take this latter approach since the decision to pursue RRL comes at the end of Chapter 3, at which point I have
already explored efficient approaches to non-relational RL.

34

1. Generate a list of possible actions.

2. For each action, generate a set of features corresponding to the current state of the environ-
ment.

3. Look up value estimates for each action using its set of features as an index into its
value function.

4. For each action that the refinement criterion requests refinement:

(a) Add an unused feature dimension and new weights as extensions of the largest
conjunction of features currently applicable to that action.

(b) Create new fringe nodes by extracting features from the old fringe and adding
them to the new conjunctions.

5. Decide between actions using their value estimates.

6. Execute the selected action.

7. Observe the resultant reward.

8. Update the value function for the previously selected action (or actions in the case that

eligibility traces are being used) accordingly.

The focus of my work with respect to this cycle is how value estimate lookups and refinements
are performed, as listed in bold (#3 and #4). For a visual of how this applies to Blocks World
(Chapter 5), see Figure 1.13 on page 26.

2.1.2 Refinement Functionality

I extended an existing RL-capable architecture [Laird, 2012; Nason and Laird, 2004] to collect
additional metadata in order to determine when refining a tile could be expected to help the agent
learn more effectively. This must minimally answer the question of when to refine the value func-
tion but not necessarily where or how the value function must be refined. Given the design of
the base architecture, mechanisms that imply that the current tile requires refinement are the most
natural fit.

I modified the architecture to generate interrupts when, according to a refinement criterion,
the metadata suggested that refinement might be helpful for the current most-refined tile. I took
advantage of functionality in the base architecture to do the actual value function refinements.

35

Given that the functionality in the base architecture results in permanent additions to its agents,
coarser tiles are preserved when more specific tiles are added to an agent, resulting in a multilevel
ATC. This kind of ATC I shall call an adaptive Hierarchical Tile Coding (aHTC)2. Note the in-
creased number of active weights per region when using an aHTC in Figure 2.1b that correspond
to overlapping tiles as opposed to only one weight per region when using ATC in Figure 2.1a.
The use of a Hierarchical Tile Coding (HTC) results in the need to use linear function approxima-
tion (Section 1.3.3), as with any tile coding (Section 1.3.4.1) that consists of multiple overlapping
tilings. However, it is worth noting that these aHTCs are imperfectly hierarchical since the base
architecture can only create tiles that apply to the current situation and there is no guarantee that
same feature will be selected for refinement in the other portions of the state space. See Figure 2.2c
for an example of an imperfectly hierarchical aHTC. Since the refinement decision in the lower
left quadrant of the state space is performed independently of the earlier refinement decision (Fig-
ure 2.2b), it is possible for a feature to be selected that fails to perfectly partition the state space for
that level of refinement (Figure 2.2c).

My use of aHTCs raises the question:

Research Question 1 (ARtPE of aHTC vs Flat ATC): How do adaptive Hierarchical Tile Cod-

ings compare to flat Adaptive Tile Codings in terms of Average Return Per Episode (ARtPE)?

Given that I cannot not remove larger tiles from this prototype architecture as more refined tiles
are added, Research Question 1 cannot be addressed with this architecture. The architecture that I
develop in Chapter 3 will enable me to address this question.

∑n
i=1 φi = 1

∑n
i=1 φi = 1

· · · = 1

· · · = 1

1
1

1

(a) Adaptive Tile Coding (ATC) with
one weight per region

∑n
i=1 φi = 2

∑n
i=1 φi = 3

· · · = 4

· · · = 5

6
7

8

(b) adaptive Hierarchical Tile Coding
(aHTC) with increasing numbers of
weights in more refined regions

Figure 2.1: Flat and Hierarchical Adaptive Tile Codings

2I first introduced aHTCs in Section 1.3.4.4. I reintroduce them here since I developed them at this point in my
research process.

36

∅

(a) 1

∅

on(b,c)

(b) 1x2

∅

on(b,c)

on(a,b)

(c) 2x2

Figure 2.2: An imperfectly hierarchical aHTC for Blocks World refined stage by stage, incorpo-
rating RRL (Section 1.3.5) using what I engineer in Chapter 4.

2.1.3 Refinement Criteria

In order to finish my prototype, it was necessary to implement at least one criterion to allow my
agents to decide when to refine a given tile.

2.1.3.1 Influence and Variance

The first criteria I explored were the influence, variance, and Stdev_Inf criteria presented by
Munos and Moore [1999a] and described in Section 1.3.4.3. I converted their Bellman equations
to incremental TD formulations, but influence can only be approximated roughly when solving
with value iteration is not an option.

My proxy for a local influence measure is TD updates per value estimate contribution. If we
define a weight as active when the basis function φi (from equation 1.7 on page 18) is 1 rather than
0 for a given action, dividing the number of times that a particular weight is active for an action that
is selected by the target policy (for my purposes, the greedy policy) by the number of times that
same weight is active for any action at all provides an estimate of the likelihood that that weight
influences those that precede it. A weight that is active for the selected action 100% of the time
will have a local value of 1, while a weight that contributes only to actions that are not selected
will have a local value of 0. This is certainly not identical to the Bellman formulation of influence
which can have values greater than 1 to indicate probability of repeated visits to a successor state.
On the other hand, in the presence of high state aliasing (which an agent is likely to encounter in
early states of learning with ATCs and aHTCs) this measure will require less correction over time
when using TD methods.

Storing and incrementally updating a global mean and variance for the value of interest (influ-
ence, variance, . . .) allows an agent to perform a Z-test

ci > µc + zσ2
c (2.1)

37

to determine if a tile is in the top f%, assuming a normal distribution of value estimates3. Whenever
a weight contributes to a value estimate for an action, I run the corresponding Z-test to determine
if refinement is necessary. I cover the incremental mean and variance algorithms that I developed
in some detail in Appendix B on page 138.

2.1.3.2 Cumulative Absolute Temporal Difference Error

Whiteson et al. [2007] used shrinking per-state Bellman error as their measure for determining
when to refine the value function. The idea is that once Bellman error stops decreasing, the amount
of learning that the agent is capable of for the given set of tiles has plateaued.

Since I am concerned with model-free approaches and do not have access to Bellman error, I
work with a proxy: TD error for a state-action pair. The TD error, δ, is the difference between
the expected return Q(s, a) and the sum of the immediate reward and discounted future return,
r+γQ(s′, a′) (on-policy) or r+γmax

a′∈A
Q(s′, a′) (off-policy). One way of looking at TD error is that it

might be indicative of incorrect expectations. It can result from state aliasing due to an inadequately
refined state space but, unfortunately, it can also result from stochasticity of the environment.
Without knowledge of baseline stochasticity, I know of no way to distinguish between the two, so
my agents assume that TD error is indicative of the former since it is something they can attempt
to resolve.

Cumulative Absolute Temporal Difference Error (CATDE) can be defined formally for feature
φi:

CATDEtn(φi) =
tn∑
t0

∣∣∣∣ δi,t∑n
i=1 φi,t(st, at)

∣∣∣∣ (2.2)

Tracing the lowest Bellman error for a tile or TD error for a state-action pair is sensible as a
global measure of when to refine the value function, but if one wishes to be able to say something
about where to refine the value function using TD error, a different approach is required. Incre-
mentally tracking the mean and variance for CATDE for all tiles in my architecture allows my
agents to again use a Z-test to choose tiles in the top f% for refinement. Due to the cumulative
nature of CATDE, it ends up giving a combined measure of poor expectations and importance to
a critical path for the agent. I use CATDE for the majority of the experiments in this chapter and
in Chapter 3 because I observed that it performed better than my TD updates refinement criterion
once I began evaluating my agents in terms of ARtPE. The results that resulted in this observation
are lost, but I will do a brief empirical evaluation of the differences that result from plotting ARtPE
episodically or stepwise in Section 5.5.

3If the distribution is not normal, it may not be exactly f%, but it will then be some g% instead. It will still work
in essentially the same manner.

38

2.2 Exploratory Experiments

I test this prototype system on Blocks World and Puddle World.

2.2.1 Blocks World – Proof of Concept

The initial version of Blocks World – the only version of Blocks World that I explored with this
architecture – was rigidly defined. It consisted of a fixed initial configuration of 3 blocks and
an exact objective as described in Section 1.3.1 on page 11, but unchanging from episode to
episode. This objective is depicted in Figure 2.3d and the optimal sequence of actions is depicted
in Figure 2.3. Since this objective is not included among the agent’s features, it must be learned
and encoded in the value function as a result.

I used Blocks World primarily as a proof of concept and testbed while implementing value
function refinement. As depicted in Figure 2.4, my prototype agent converges to approximately
−6 ARtPE by 500 steps. Since an optimal solution results in asymptotic −3 ARtPE, this result is
not particularly impressive, but it suffices for purposes of demonstrating that the agent is capable
of learning to solve this Blocks World task.

Limitations of the architecture include the following:

1. No fringe of possible next steps receives TD updates, making it very difficult to address the
problem of how to refine the value function. This is a minor problem for environments that
present small numbers of features, but a major problem for more complex environments.

2. Though possible features (in this case clear(a) and in-place(a) relations) are de-
scribed without reference to any specific constants, the refinement mechanism as imple-
mented ultimately replaces the variables relevant to my features with the constants that they
point to at the time of refinement. This limits the ability of my architecture to implement
RRL. Notably, this limitation results in new conditions being tied to the specific action in
question, resulting in separate aHTCs for each action (i.e. moving A to B, moving C to the
TABLE, . . .).

Table

C
A B

(a) Initial

Table
A B C

(b) Optimal step 1

Table
A

B
C

(c) Optimal step 2

Table

A
B
C

(d) Final

Figure 2.3: Optimal solution to fixed Blocks World (Section 2.2.1)

39

0 100 200 300 400 500

Step Number

−80

−70

−60

−50

−40

−30

−20

−10

0

A
v
er

ag
e

R
et

u
rn

P
er

E
p
is

o
d
e

Blocks World (10 Runs)

Maximum

Average

Minimum

Figure 2.4: ARtPE of a prototype agent in Blocks World using an aHTC with CATDE – agents
were trained with z = 0.84155 and tile refinement inhibited until no updates have been experienced
for 3 steps within a single episode in this early result.

3. Additionally, this architecture can only add rules that apply to the situation that the agent
is currently experiencing. As implemented, there is no guarantee that once on(A,B), for
example, is selected as the first feature for value refinement that ¬on(A,B) will be selected
as the first feature for refinement for the other half of the state-space. This can result in an
ATC that is not strictly hierarchical and can have overlaps for a given number of features.
It might be possible to work around this, but it would be non-trivial. This limitation also
means that were my agents capable of easily eliminating more general tiles as they add more
specific tiles, that it would be unwise for them to do so regardless due to their inability to
generate all subtiles at once.

4. Finally, I did not develop a mechanism to ensure that refinement requests would cease to be
generated once all features had been exhausted. While a minor technical point, it actually
makes it difficult to generate empirical results for Blocks World averaged across many runs
since all features can be exhausted by step t with some probability, causing agents to loop
infinitely after the next request for refinement. That being said, I was able to generate results
as depicted in Figure 2.4

It is worth noting that the lack of a mechanism to address the problem of how to refine the value
function can be used as a motivation for implementing aHTCs specifically, rather than allowing ar-
bitrary conjunctions of features to be added to the value function without regard for hierarchy and
overlap as explored in iFDD [Geramifard et al., 2011]. Without said mechanism, the only guaran-
tee that adding a conjunction of features might result in a value function with increased learning
capabilities is to ensure that the conjunction is larger than all that preceded it. Computational and
memory efficiency arguments can be made for aHTCs as well, but this was another early motiva-
tion for pursuing value function representations that were strictly hierarchical.

40

Figure 2.5: Puddle World

2.2.2 Puddle World – Proof of Efficacy

Puddle World [Sutton, 1996] is an environment in which the agent’s state is described using con-
tinuous values [0, 1] in two dimensions. The environment contains two “puddles” that are capsule
shaped regions the depth of which increases from their edges to their centers. The agent can move
North, South, East, or West from its current position. The environment is fully observable, but the
agent’s steps are stochastic, resulting in real-valued step sizes between 0.04 and 0.06 units. As the
x and y positions are real-valued, the state-space is infinitely divisible, and therefore not discretiz-
able. The agent’s objective is to arrive at a goal region in the upper right corner (x + y > 1.9)
starting from a fixed starting position (0.15, 0.45) with two puddles of radius 0.1 defined by line
segments between (0.1,0.75)-(0.45,0.75) and (0.45,0.4)-(0.45-0.8) preventing the agent from mov-
ing directly toward the goal. The agent receives a penalty of −1 for each step along the way, an
additional penalty of up to 400 per puddle (proportional to the depth of each puddle at its current
location in order to encourage the agent to go around if possible), and no additional reward for
reaching the goal.

While this environment is more complex in some respects than the version of Blocks World
described in Section 2.2.1 on page 39, some of the limitations described therein are easier to
address:

1. An agent can always refine along whichever dimension is longest (i.e. has been selected less
frequently) as a heuristic to decide between refining along the x or y dimension [Moore and
Atkeson, 1995; Reynolds, 1999].

2. There are only the x and y variables to consider. Puddle World is a non-relational environ-
ment, because there is never a need to evaluate whether a variable shared between different
relations refers to the same object in the environment. Refinement is still done independently
for actions associated with each cardinal direction.

41

0 10,000 20,000 30,000 40,000 50,000

Step Number

−500

−400

−300

−200

−100

0

A
v
er

ag
e

R
et

u
rn

P
er

E
p
is

o
d
e

Even Credit Assignment in Puddle World (30 Runs)

Maximum

Average

Minimum

(a) Even

0 10,000 20,000 30,000 40,000 50,000

Step Number

−500

−400

−300

−200

−100

0

A
v
er

ag
e

R
et

u
rn

P
er

E
p
is

o
d
e

1/FC Credit Assignment in Puddle World (30 Runs)

Maximum

Average

Minimum

(b) Inverse Count of VEC

0 10,000 20,000 30,000 40,000 50,000

Step Number

−500

−400

−300

−200

−100

0

A
v
er

ag
e

R
et

u
rn

P
er

E
p
is

o
d
e

1/RL Credit Assignment in Puddle World (30 Runs)

Maximum

Average

Minimum

(c) Inverse Count of TDU

0 10,000 20,000 30,000 40,000 50,000

Step Number

−500

−400

−300

−200

−100

0

A
v
er

ag
e

R
et

u
rn

P
er

E
p
is

o
d
e

1/log(RL) Credit Assignment in Puddle World (30 Runs)

Maximum

Average

Minimum

(d) Inverse Logarithm Count of TDU

Figure 2.6: ARtPE of my prototype agents in Puddle World with non-adaptive Hierarchical Tile
Codings (naHTCs) with all tilings from 1× 1 to 16× 16 (i.e. all tilings present from step 1)

3. Limitation 3 is not resolved.

4. The agent will essentially never run out of features since the features are infinitely divisible
up until the limitations of floating point numbers.

2.2.2.1 Credit Assignment Between Overlapping Tiles

An additional question I explored was whether credit assignment between overlapping tiles ought
to be completely even, or whether smaller tiles ought to receive more credit than larger ones. The
intuition was that giving overly large, more general tiles equal credit to smaller, more refined tiles
might inhibit an agent’s ability to converge on near optimal policies in the limit and that another
credit assignment strategy might improve convergence rates.

Research Question 2 (Credit Assignment for HTC): Can one improve the ARtPE of HTC with

an alternative to even credit assignment?

Strategies I included for this architecture are:

42

1. Even – 1∑n
i=1 φi

This is the standard credit assignment strategy for linear function approximation (Section 1.3.3).

2. Inverse Count of Value Estimate Contributions (VEC) – VEC−1
i∑n

i=1 φiVEC−1
i

This gives more credit to weights which are used in decision-making.

3. Inverse Count of Temporal Difference Updates (TDU) – TDU−1
i∑n

i=1 φiTDUi

This gives more credit to weights on the actual critical path, and less to actions that are one
off the critical path.

4. Inverse Logarithm TDU – ln(TDUi)∑n
i=1 φi ln(TDUi)

This reduces the rate at which more credit is given to the weights of more refined tiles com-
pared to the previous credit assignment strategy, keeping it closer to even credit assignment
during earlier stages of learning.

Learning to solve Puddle World (Section 2.2.2) with non-adaptive Hierarchical Tile Codings
(naHTCs) and these different credit assignment strategies, I take the ARtPE and plot it per step in
Figure 2.6.

I had some success with speeding up learning using Inverse Logarithm TDU credit assign-
ment (Figure 2.6d), but the two other credit assignment strategies offered performance that is
clearly inferior to the baseline performance of Even credit assignment (Figure 2.6a). Since In-
verse Logarithm TDU is the credit assignment strategy that assigns credit the second most evenly,
it seems unlikely that significant deviation from Even credit assignment can be beneficial. Given
these results we cease exploration into alternative credit assignment strategies for the remainder of
this thesis.

2.2.2.2 Puddle World with aHTCs

Learning to solve Puddle World with aHTCs instead, performance and value function structures are
depicted in Figure 2.7. The tile codings for each action, North, South, East, and West, are depicted
in figures 2.8b-2.8e with a logical OR of all four depicted in Figure 2.8a. I present these figures
primarily as evidence that my proof of concept was functional, but one can see that the aHTC for
each cardinal direction is most refined along the critical paths that the agent is most likely to take.
Therefore, the aHTC for East (Figure 2.8c) has undergone extensive refinement while the aHTC
for West (Figure 2.8d) has been minimally refined, which is the result I had expected.

Performance of agents using the TD updates per value estimate contribution criterion is
somewhat inconsistent, as depicted in Figure 2.7. Although all seem to converge in the limit,
there is a significant gap between the convergence rates of the best and worst runs. While the
best convergence rate is in line with the best of my agents using non-adaptive Hierarchical Tile

43

0 10,000 20,000 30,000 40,000 50,000

Step Number

−500

−400

−300

−200

−100

0

A
v
er

ag
e

R
et

u
rn

P
er

E
p
is

o
d
e

TD-Error Performance in Puddle World (30 Runs)

Maximum

Average

Minimum

Figure 2.7: ARtPE of my prototype agents in Puddle World with aHTC with tilings from 1× 1 up
to 16× 16 – trained using z = 0.84155, α = 0.2, TDU

Codings (naHTCs), the worst is delayed by almost 30, 000 steps. This criterion focuses on refining
the critical path, but until the critical path points to the true end goal, it is capable of refining parts
of the state space that are unimportant. Given these results, I decided to abandon influence-based
criteria and to focus on CATDE in Chapter 3.

2.3 Discussion

While I described Average Regret Per Episode (ARgPE) and ARtPE in detail in Section 1.2.2, it
was not actually obvious from the beginning to use these measures to evaluate my agents. The
major contribution of this chapter is devising ARgPE and ARtPE for the reasons described in the
introduction and settling on their use for evaluation of my agents.

A minor contribution of this chapter is developing two measures for deciding when to refine the
value function, TD updates per value estimate contribution and CATDE, and settling on CATDE as
a baseline for the rest of this thesis. This choice resulted from observation that CATDE appeared to
perform better once I switched from a purely episodic evaluation to one based on ARtPE evaluated
per step.

Additionally, the prototype described in this chapter served as a proof of concept for a RL ar-
chitecture that uses aHTCs to represent the value function. Prior work [Reynolds, 1999; Munos
and Moore, 1999a; McCallum, 1996; Davies, 1996] was based on ATCs and not aHTCs. There-
fore, it is another minor contribution of this chapter to have verified that using aHTCs for value
function representation does not undermine the basic strategy for value function refinement that
they explored.

44

0 1

X

0

1

Y

Generated Value Function for Puddle World

(a) All Tilings

0 1

X

0

1

Y

Generated Value Function for Puddle World (North)

(b) North Tilings

0 1

X

0

1

Y

Generated Value Function for Puddle World (East)

(c) East Tilings

0 1

X

0

1

Y

Generated Value Function for Puddle World (West)

(d) West Tilings

0 1

X

0

1

Y

Generated Value Function for Puddle World (South)

(e) South Tilings

Figure 2.8: Tile refinement inhibited until no updates have been experienced for 20 steps within a
single episode

45

CHAPTER 3

Computationally Efficient Adaptive Hierarchical
Tile Coding

The prototype architecture that I developed in chapter 2 had a number of limitations as discussed in
Section 2.3. I wanted to continue to investigate refinement criteria (Section 1.3.4.3) and adaptive
Hierarchical Tile Codings (aHTCs) (Section 1.3.4.4), but experiments were slow to execute.

I had previously done some work on Hierarchical Reinforcement Learning (HRL) in a stan-
dalone architecture [Bloch, 2011] and believed that experimenting with designs in a more special-
ized architecture would be more efficient in terms of development time than attempting to optimize
my prototype. Therefore I set the development of a new, more efficient architecture as a goal. I
call this architecture Carli1 (https://github.com/bazald/carli). The version I discuss in this chapter
is Carli for Propositional Representations (Carli-Prop).

My objective in this chapter is not to resolve the functional limitations of my prototype, but
simply to speed up future work by advancing my architecture’s computational efficiency (minimiz-
ing Wall-Clock Time Per Step (WCTPS)) while maintaining existing functionality. The changes I
introduce in Chapter 4 will address the functional limitations. At that point, I will be able to revisit
Blocks world and Relational Reinforcement Learning (RRL).

3.1 Carli-Prop

It is important to remember that the efficiency of Adaptive Tile Codings (ATCs) and aHTCs de-
pends on the efficiency of weight lookups for any given state description, fringe weight (or subtile)
tracking, refinement criteria, and value function adaptation including fringe maintenance. Some
sort of hierarchical, tree-like data structure is a good fit for these tile codings since more refined
tiles depend on conjunctions of features that can correspond to nodes in a decision tree. Addition-

1The letters of Carli are taken from C++, Artificial Intelligence (AI), and Reinforcement Learning (RL) and
jumbled a bit. The architecture is cleverer than its name.

46

https://github.com/bazald/carli
https://github.com/bazald/carli

ally, manipulation of nodes at or near the fringe (or leaf) nodes of a tree are simple to manipulate
without directly modifying other parts of the data structure, allowing for small WCTPS.

I start by implementing a simpler, standalone version of the execution cycle described in Sec-
tion 2.1.1 on page 34 with the expectation that it will be more computationally efficient. Then I
proceed to develop a more efficient replacement for value function lookups and refinements, given
the high complexity of that process in my prototype architecture.

3.1.1 A k-Dimensional Trie Value Function Implementation

Using a k-dimensional trie (k-d trie) is not a novel contribution of Carli-Prop. Munos and Moore
[1999b] used a k-d trie in their ATC implementation. A k-d trie is a perfect fit for Carli-Prop since I
care about storing weights at each node along the way to the leaves (corresponding to conjunctions
of features of increasing complexity) in my implementation of an aHTC.

To index into my k-d trie-based value function, I take my features for the corresponding action
and find the one that matches the root node. I then index into the next level of the k-d trie using the
remaining features, and so on until the depth of the k-d trie is exhausted.

In Carli-Prop, I am able to better control the ordering in which features are refined, significantly
decreasing the likelihood that an imperfectly hierarchical aHTC (as depicted in Figure 1.3.5 on
page 27) will result. A k-d trie in several stages of refinement is depicted in Figure 3.1.

3.1.2 Fringe Nodes

Candidate features are stored in fringe nodes one step past the largest conjunction or, alternatively,
one step past the smallest or most refined tile for each part of the state space. The weights stored in
fringe nodes must be treated as full Q-values, independent of linear function approximation, and
they must not contribute to the value estimates used for decision-making. They allow my agents to
track metadata for each candidate successor conjunction or subtile in order to inform the decision
of how to refine the value function.

The only kinds of features supported by Carli-Prop were Boolean features and ranged, continuous-
valued features. When it came time to use fringe nodes for decision-making, I focused on ranged,
continuous-valued features only. The resultant decision procedure is:

1. Always choose the least refined feature dimension. (i.e. In Puddle World, x must be selected
if y has been selected once more than x in the feature conjunction for the most refined tile.)

2. In the case that there exist two or more features that had been selected the minimum number
of times, choose the feature dimension that gives the largest separation between the successor
values – a value criterion (Section 1.3.4.3).

47

w0,
f1.1,f1.2,
f2.1,f2.2,
f3.1,f3.2

w0

f1.1 f1.2 f2.1 f2.2 f3.1 f3.2

(a) Before any specialization

w0 + w1.1,
f2.1,f2.2,
f3.1,f3.2

w0 + w1.2,
f2.1,f2.2,
f3.1,f3.2

w0

w1.1

f2.1 f2.2 f3.1 f3.2

w1.2

f2.1 f2.2 f3.1 f3.2

(b) After one refinement

w0 + w1.1

+w3.1,
f2.1,f2.2

w0 + w1.1

+w3.2,
f2.1,f2.2

w0 + w1.2,
f2.1,f2.2,
f3.1,f3.2

w0

w1.1

w3.1

f2.1 f2.2

w3.2

f2.1 f2.2

w1.2

f2.1 f2.2 f3.1 f3.2

(c) After two refinements

Figure 3.1: k-d trie value function refinement with fringe nodes

3.2 Evaluation of Carli-Prop

Here I do my evaluation of my Hierarchical Tile Coding (HTC) implementation in Carli-Prop.
Since the introduction of Carli-Prop marks my departure from my prototype architecture to one
that is more rigorously designed, I now evaluate non-adaptive Hierarchical Tile Codings (naHTCs)
against an alternative, traditional approach to tile coding with linear function approximation (Sec-
tion 3.2.1). Building on that result, I can compare aHTCs to naHTCs and evaluate the utility of
adaptivity (Section 3.2.2). Circling back, I can evaluate how aHTCs compare to non-hierarchical
or flat ATCs as well, completing my evaluation of the utility of both hierarchy and adaptivity (Sec-
tion 3.2.3). Finally, I begin my computational efficiency analysis, comparing Carli-Prop agents to
that of agents implemented using my prototype architecture in Section 3.2.4.

48

Goal Position

Inelastic Wall

-1.2

0.5

-0.5

Figure 3.2: Mountain Car

3.2.1 Non-Adaptive Hierarchical Tile Coding vs Traditional CMACs

The first new experiment I conducted with Carli-Prop was to compare the performance of agents
using naHTCs to that of agents using individual tilings and Cerebellar Model Arithmetic Com-
puters (CMACs).2 My CMACs consist of 16 identical tilings of a specified resolution (16x16 or
32x32) where the first tiling exactly covers the state space and each subsequent tiling is offset by
a percent of the state space (1/16 or 1/32 respectively) in both the positive x and y directions (see
Figure 1.9b on page 21). I wish to compare the efficacy of HTCs to that of more traditional tile
codings that also take advantage of linear function approximation such as CMACs.

Puddle World (Section 2.2.2) is a useful task on which to evaluate my agents since it is impos-
sible to perfectly tile the state space given the circular designs of the puddles. In addition to Puddle
World, I evaluate my agents in the Mountain Car domain (Figure 3.2), which makes it similarly
impossible to perfectly tile the state space, in order to demonstrate that the efficacy of Carli-Prop
is not limited to Puddle World. The canonical Mountain Car [Moore, 1991], is a two-dimensional,
continuous valued world, where an agent can control the car’s motor (left, idle, right), and where
the goal is for the agent to move the car from the basin, at rest, to the top of the mountain on the
right. Given gravity −0.0025 cos(3x), and a car with power 0.001, the car is incapable of climbing
the mountain starting from rest. It is necessary to build up potential energy by backing up the hill
on the left before moving to the right. The agent receives a penalty of −1 for each step with no
penalty for colliding with the wall and no additional reward for achieving the goal.

In these experiments I used an Epsilon-greedy (ε-greedy) exploration strategy (ε = 0.1 for

2I had previously compared naHTC only to one another using different credit assignment strategies. (See Sec-
tion 2.2.2.1.)

49

0 10,000 20,000 30,000 40,000 50,000

Step Number

−7,000

−6,000

−5,000

−4,000

−3,000

−2,000

−1,000

0
A

ve
ra

ge
R

et
ur

n
Pe

rE
pi

so
de

1-64 static even
8x8 CMAC, 16 tilings
8x8
16x16 CMAC, 16 tilings
16x16
4x4

(a) Puddle World

0 20,000 40,000 60,000 80,000 100,000

Step Number

−7,000

−6,000

−5,000

−4,000

−3,000

−2,000

−1,000

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

1-256 static even
8x8 CMAC, 16 tilings
16x16 CMAC, 16 tilings
32x32 CMAC, 16 tilings
16x16
32x32
64x64

(b) Mountain Car

Figure 3.3: ARtPE averages over 20 runs with single tilings, traditional CMACs, and a naHTC
(labeled “static even” for even credit assignment between the different levels of the hierarchy).

Puddle World and ε = 0.01 for Mountain Car) with a random tiebreak, Q-learning with a learning
rate of 0.1 in Puddle World and 1.0 in Mountain Car, and a discount rate of 0.999, with weights
initialized to 0.

The results in Figure 3.3 represent an average of 20 runs. The Average Return Per Episode
(ARtPE) improves the fastest for the agents that use naHTCs (labeled “static even” for even credit
assignment between the different levels of the hierarchy) when compared to individual tilings and
most CMACs. Additionally, terminal policies are nearer optimal in the limit for naHTCs when
compared to individual tilings and CMACs.

I additionally ran experiments with agents using single 32x32 and 64x64 tilings for Puddle
World. However, they did not begin to converge until more than 50, 000 steps had passed, so only
smaller tilings and CMACs are included for comparison with my naHTCs in Figure 3.3a. For
Mountain Car, single 4x4 and 8x8 tilings are insufficient to learn near optimal policies and single
128x128 and 256x256 do not converge in a reasonable amount of time, so only single 16x16,
32x32, and 64x64 tilings are included alongside the CMACs for comparison with my naHTCs in
Figure 3.3b.

Using only two tilings instead of full naHTCs closely matches related work [Zheng et al., 2006;
Grzes and Kudenko, 2008; Grzes, 2010] in which their CMACs appear to be strictly hierarchical.
I additionally tested naHTCs with varying subsets of the tilings, 1x1 through 64x64, including
omitting the most specific tilings or the most general tilings, and none achieved better performance
than using the complete hierarchy. This is evidence that full naHTCs are better than these more
limited hierarchical CMAC approaches. From this I conclude that using HTCs as the basis for the
value functions in my architecture has merit.

naHTCs do significantly better than any individual tiling in both Puddle World and in Mountain
Car. This result dispels any possibility that the advantage of using a naHTC is just in hedging the

50

bet as to which level of generalization is best. From this I conclude that naHTCs are an effective
form of CMACs. This also hints at a possible answer to Research Question 1: “How do adaptive

Hierarchical Tile Codings compare to flat Adaptive Tile Codings in terms of ARtPE?”

Hypothesis 1 (aHTC Faster Than ATC): An adaptive Hierarchical Tile Coding (aHTC) will re-

sult in better Average Regret Per Episode (ARgPE) or Average Return Per Episode (ARtPE) than

an Adaptive Tile Coding (ATC) since a non-adaptive Hierarchical Tile Coding (naHTC) learns

faster than any individual tiling (such as 8x8 or 16x16).

That Hypothesis 1 holds true is not obvious, since it could be the case that there exists an in-
dividual tiling that could allow the best possible ARtPE for any given point in time. However, in
lieu of finding such a tiling if it is possible at all, it seems likely a priori that continuing general-
ization at coarser levels of the aHTC should help learning because it will allow an agent to refine
aggressively while still benefiting from broader generalization that would otherwise be terminated
by premature refinement. I will provide a comparison of the performance of agents using aHTCs
and ATCs in Section 3.2.3.

3.2.2 Adaptive Hierarchical Tile Coding vs Non-Adaptive HTC

Now I move on to aHTCs which use the Cumulative Absolute Temporal Difference Error (CATDE)
criterion (Section 2.1.3.2). Figures 3.4a and 3.4b show performance and memory usage data for the
Puddle World domain. I present data for naHTCs (static in the figures) with tilings of resolutions
1x1 through 64x64 and for aHTCs (incremental in the figures) with only tilings of resolutions
between 1x1 through 2x2 in the beginning. By 10,000 steps, the ARtPE of the aHTCs has caught
up to within 2.6% of the ARtPE of the naHTCs. However, the aHTCs use only 10.5% as many
weights as the non-incremental naHTCs.

Figures 3.4c and 3.4d present corresponding data for Mountain Car. I present data for naHTCs
with tilings of resolutions 1x1 through 256x256 and for aHTCs with only tilings of resolutions
between 1x1 through 2x2 in the beginning. At 100,000 steps the ARtPE of the aHTCs is still
27% worse than that of the naHTCs given the initial delay in learning. However, the aHTCs use
only 9.1% as many weights as the naHTCs. aHTC agents using Inverse Logarithm TDU credit
assignment (Section 2.2.2.1 on page 42) performed a bit more consistently than those using Even
credit assignment while using the same amount of memory.

From this I conclude that it is possible to build aHTCs that have ARgPE or ARtPE nearly in line
with what can be achieved using naHTCs even in domains where the problem of feature selection
is relatively unimportant. Therefore I posit:

51

0 5,000 10,000 15,000 20,000
Step Number

−4,000

−3,500

−3,000

−2,500

−2,000

−1,500

−1,000

−500

0
A

ve
ra

ge
R

et
ur

n
Pe

rE
pi

so
de

Reward: 1-64 static even
Reward: 1-64 incremental even

(a) Puddle World Performance

0 5,000 10,000 15,000 20,000
Step Number

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

N
um

be
ro

fT
ile

s
/W

ei
gh

ts

Weights: 1-64 static even
Weights: 1-64 incremental even

(b) Puddle World Memory

0 50,000 100,000 150,000 200,000
Step Number

−1,400

−1,200

−1,000

−800

−600

−400

−200

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

Reward: 1-256 static even
Reward: 1-256 incremental even
Reward: 1-256 incremental 1/ ln

(c) Mountain Car Performance

0 50,000 100,000 150,000 200,000
Step Number

0

50,000

100,000

150,000

200,000

250,000

300,000

N
um

be
ro

fT
ile

s
/W

ei
gh

ts
Weights: 1-256 static even
Weights: 1-256 incremental even
Weights: 1-256 incremental 1/ ln

(d) Mountain Car Memory

Figure 3.4: ARtPE averages for 20 runs of agents using aHTCs (incremental) with various credit
assignment strategies and naHTCs (static)

Hypothesis 2 (Adaptive HTC Superior to Non-Adaptive HTC): For problems with more diffi-

cult feature selection problems, adaptive Hierarchical Tile Codings (aHTCs) will result in better

ARgPE or ARtPE than naHTCs since they will allow better choices to be made about which fea-

tures result in earlier refinements.

aHTCs should surpass naHTCs in domains where random ordering of features will perform worse
and in which a priori good orderings are unavailable. I additionally hypothesize:

Hypothesis 3 (Rerefinement Potentially Useful with Adaptive HTC): For complex problems, not

only will Hypothesis 2 hold, but the agent may be able to do even better by undoing refinements in

favor of ones that, in retrospect, may allow more efficient Temporal Difference (TD) learning.

Considering these hypothetical advances in ARgPE or ARtPE in conjunction with the significantly
more compact value functions that result from aHTCs, it seems likely that aHTCs will be a valuable
technique as I move forward with problems with more difficult feature selection problems. It will
allow my agents to achieve good ARgPE or ARtPE while minimizing WCTPS, since WCTPS at

52

0 50,000 100,000 150,000 200,000

Step Number

−6,000

−5,000

−4,000

−3,000

−2,000

−1,000

0
A

ve
ra

ge
R

et
ur

n
Pe

rE
pi

so
de

1-64 incremental even
1-64 incremental specific

(a) Puddle World

0 50,000 100,000 150,000 200,000

Step Number

−35,000

−30,000

−25,000

−20,000

−15,000

−10,000

−5,000

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

1-256 incremental even
1-256 incremental specific

(b) Mountain Car

Figure 3.5: ARtPE averages for 20 runs of agents using aHTCs and aHTCs using “specific” credit
assignment to simulate non-hierarchical ATCs

least partially depends on the number of weights that must be evaluated each step. I will both
evaluate these hypotheses and demonstrate the connection between the number of weights and
WCTPS in my results in Chapter 5.

3.2.3 Adaptive Hierarchical Tile Coding vs Adaptive Tile Coding

I additionally compared my aHTCs against ones that give all credit to the most refined tiles. The
“specific” credit assignment strategy simulates an ATC implementation by assigning all credit to
only the most refined tiles and freezing weights associated with more general tiles as a result. This
allows us to address Research Question 1 (i.e. do aHTCs speed learning merely because they
are adaptive, or do the more general tiles help) without having to complicate my implementation
by enabling the outright removal of coarser tiles as more refined tiles are added. The results in
Figure 3.5 demonstrate that the ARtPE of the agents using aHTCs is greater than that of the agents
using ATCs.

3.2.4 Computational Efficiency

In order to compare the computational performance of my original prototype agents to that of
my agents implemented in Carli-Prop, I ran them with parameters set as close to one another as
possible.

In Section 2.3, I observed that my prototype agents took 5.926 seconds on average to execute
Blocks World for 1000 steps on a i7-7700HQ CPU. For comparison, the Carli-Prop agents take
0.049 seconds on average – a speedup factor of 120.

For Puddle World, I chose to run 50,000 steps instead. This results in an average runtime of
51.426 seconds for my prototype agents and 0.738 seconds for Carli-Prop. This is a speedup factor

53

Environment Prototype Carli-Prop Speedup
Blocks World 2.3.1 5926µs 49µs 120
Puddle World 2.3.2 1028µs 15µs 70

Table 3.1: Time per step for Blocks World (Section 2.2.1) and Puddle World (Section 2.2.2)

of 70 for Carli-Prop relative to Blocks World.
These results, presented as time per step in Table 3.1, reveal a two order of magnitude speedup

over my prototype architecture in terms of WCTPS.

3.3 Discussion

In this chapter, I introduced Carli-Prop, a new architecture that implements aHTCs using k-d tries.
Carli-Prop is able to provide guarantees of correctness for aHTCs that the prototype architecture
in Chapter 2 was unable to provide. Thanks to this advance, I presented strong evidence that
aHTCs perform better than non-hierarchical ATCs in Puddle World and Mountain Car, confirming
Hypothesis 1, that “an adaptive Hierarchical Tile Coding (aHTC) will result in better Average

Regret Per Episode (ARgPE) or Average Return Per Episode (ARtPE) than an Adaptive Tile Coding

(ATC) since a non-adaptive Hierarchical Tile Coding (naHTC) learns faster than any individual

tiling (such as 8x8 or 16x16).”

While it is only a minor contribution of this chapter since we have yet to incorporate RRL, I
provided evidence that Carli-Prop provides a two order of magnitude performance improvement
over my prototype architecture. Attempting to maintain this performance advance while incorpo-
rating RRL forms the basis for the ideas described in Chapter 4 – the major contribution of this
dissertation.

54

CHAPTER 4

Computationally Efficient Relational Reinforcement
Learning

I introduced a prototype architecture that implements Hierarchical Tile Codings (HTCs) in chap-
ter 2. Identifying a computational efficiency limitation of that architecture, I hypothesized and con-
firmed that I could do better with an architecture built from the ground up using a k-dimensional
trie (k-d trie) implementation of HTCs in Chapter 3. Moving on from non-relational Reinforcement
Learning (RL), my next goal was to bring performant HTCs to Relational Reinforcement Learn-
ing (RRL). k-d tries are less suitable for RRL than they are for propositional (or deictic) represen-
tations, leaving open a problem of finding a more suitable algorithm. I will explain the problems
with attempting to use k-d tries for RRL in Section 4.1 and introduce its replacement in Section 4.2.

4.1 Limitations of Carli for Propositional Representations

Let us again consider Blocks World (Section 1.3.1). I introduced four objectives: stack, unstack,
on(a,b), and exact (depicted in figures 1.4b-1.4e). Stack, unstack, and on(a,b) were
explored in related work [Džeroski et al., 2001; Irodova and Sloan, 2005] but I focused in on
exact, a task that would have been more difficult for Džeroski et al. and impossible for Irodova
and Sloan.

I could not see a way to allow agents implemented using my existing architecture, Carli for
Propositional Representations (Carli-Prop), to solve the exact objective with variable goal con-
figurations. Owing to my original prototype implementation and its lack of support for variables,
each action definition included block labels and was associated with its own HTC. This prevented
the implementation of RRL (Section 1.3.5) and the generalization that can be achieved through the
use of variables. If I wanted to be able to handle variable numbers of blocks, different goal con-
figurations from episode to episode, and have any chance of taking advantage of the isomorphisms
that relational representations can capture, I needed to combine my HTCs for different actions and

55

eliminate my dependence on fixed block labels in my encoding. This would have required chal-
lenging alterations to my prototype architecture, but it may have been impossible to proceed with
an implementation using a k-d trie.

My k-d trie-based value function relied on tests for each edge of the k-d trie. (Alternatively,
each node would determine which edge passes, assuming the tiles properly partition the state space,
and the value function lookup would continue down that trajectory through the k-d trie.) What
allowed these tests to be efficient (complexity linear in the number of remaining features) was the
ability to do comparisons of relations involving fixed constants. No actual variables were present
in either the set of features being used as the index into the k-d trie or in the tests themselves.

The introduction of variables results in two immediate problems for a k-d trie. First, it is
possible for a test to be multiply passed. For example, clear(a) may be true regardless of
the choice of action and test true for each candidate action. Second, it is possible for multi-
ple different tests to pass simultaneously. For example, higher-than(block,dest) and
not-higher-than(block,dest) will both test true for different choices of action. Both of
these results stem from the ability to match different constants with different variables. Some tests
will pass for multiple different actions and different actions will pass different tests.

You might ask, “why not simply process the same k-d trie separately for each action?” Unfor-
tunately, this resolves neither problem unless the only tests that result in these issues directly test
the features that distinguish one action from another. This leaves us with:

Research Question 3 (Efficient Algorithm for RRL): What algorithm will give an agent the kind

of efficiency provided by k-dimensional tries (k-d tries) but support Relational Reinforcement Learn-

ing (RRL)?

A value function for RRL must support:

1. Features that include variables. Such features enable agents to concern themselves with rela-
tions between objects without encoding specific labels or identities of objects. For example,
an agent working in Blocks World may need to test that the block it is moving is above one
of the two blocks in the goal configuration when solving on(a,b), but it need not concern
itself with whether the block has the letter “B” on it. This aspect of First Order Logic (FOL)
allows learning without encoding unnecessary details and can result in more effective gen-
eralization. Without variables, an agent is limited to propositionalized features.

2. Comparisons across features involving variables such as equality, inequality, less than,
It is these comparisons that allow an agent to build up combinations of relational features,
which in turn allows an agent to solve problems without necessarily encoding labels that
limit or eliminate generality, thereby reducing Average Return Per Episode (ARtPE).

56

3. Variable and unpredictable numbers of actions and observations about the world. This ne-
cessitates that actions share a value function. In Chapter 3, my agents for Puddle World
had separate value functions for each cardinal direction. With actions defined relationally
through the use of variables, it is unclear how to allocate separate value functions for dif-
ferent actions. Treating all actions of a given type identically regardless of variables would
be unwise under many circumstances. e.g. move(north) should probably not be treated
identically to move(south). Giving all actions of a given type completely separate value
functions results in an absolute absence of generalization between actions, which is also
undesirable. e.g. Perhaps move(north) and move(south) are equivalent under some
circumstances, such as when moving deeper into a puddle. Value function sharing in such
cases is desirable to achieve greater generality and increased ARtPE.

4. Computationally efficient refinement and unrefinement, including support for fringe-based
decision-making about refinements. This adaptation of the value function goes beyond mere
partitioning of the state space in the context of RRL. A conjunction of relational features can
form the basis of the inclusion of an important, implicit concept in the value function. For
example, once an agent is aware that block-0, the block being moved, is the lower block in
the goal of on(a,b), awareness of whether the destination block is above the upper block
in the goal or not becomes very important. An agent can then learn that placing the lower
block above the upper block is a costly move to make.

Thinking back to my prototype architecture, which used Rete internally, the only issue for
supporting RRL from a functionality standpoint was that my implementation of value function
refinement ultimately propositionalized my representation. Thus I speculated:

Hypothesis 4 (Rete for RRL): Rete can be used as an efficient algorithm for Relational Rein-

forcement Learning (RRL) given sufficient architectural support.

Next I shall explain how Rete can accomplish this.

4.2 Rete

There are important, novel aspects of my Rete implementation, but the Rete algorithm [Forgy, 1979]

is certainly not a novel contribution of this thesis in and of itself. In this section, I take care to ex-
plain not only the aspects of my Rete that are novel but to explain the Rete as a whole. I do this
since limiting the understandability of this thesis to a reader in the RL community who already has
even a passing familiarity with the Rete would greatly restrict its target audience. The novel aspects
of this Rete implementation that are critical for achieving an embedding of an adaptive Hierarchical

57

Tile Coding (aHTC) in a Rete (which I will describe how to do in Section 4.3) are Existential
Join Nodes (Section 4.2.3.5) and that this Rete implementation supports analysis and synthe-
sis of rules at the node level. If you are a Rete expert, you may wish to skim Sections 4.2.1
through 4.2.3.4 and 4.2.3.6 through 4.2.3.7.

The Rete algorithm comes from the rule-based systems community. It is designed to solve the
problem of how to efficiently match a large number of rules that may need to be executed at any
given time. There are several features of Rete that are appealing from either an efficiency or a
functionality perspective:

1. Rete uses memory to cache intermediate results to save computation time by processing only
changes from step to step.

2. It shares computational effort between rules that share conditions.

3. And most importantly, it is designed to handle multiple matches for different sets of variables
for any given condition, exactly solving the problem that it was unclear how to resolve when
using k-d tries.

Figures 4.1 and 4.2a present two different abstract depictions of value function representa-
tions for Puddle World – one in Carli-Prop and one in Carli for Relational Reinforcement Learn-
ing (Carli-RRL). In both cases, each black circle represents one feature conjunction, one corre-
sponding tile in a HTC, and the weight associated with that tile. Observe that the differences occur
primarily where new variables are introduced into the value function. Figure 4.2b depicts a more
complex value function representation for the exact objective in Blocks World.

So what is different about Rete when compared to a k-d trie? First, it is a Directed Acyclic
Graph (DAG) rather than a tree. That is not to say that working memory cannot contain cycles.
More precisely, the Rete implementation that processes working memory is a DAG. That the Rete
is a DAG means that nodes can have multiple paths in and multiple paths out, rather than being

x < 0.5

x < 0.25 x ≥ 0.25 y < 0.5 y ≥ 0.5

x ≥ 0.5

y < 0.5

x < 0.75 x ≥ 0.75 y < 0.25 y ≥ 0.25

y ≥ 0.5

x < 0.75 x ≥ 0.75 y < 0.75 y ≥ 0.75

Figure 4.1: An RL trie value function representation for Puddle World, with weights that contribute
to the value function in black and weights in the fringe in gray

58

x < 0.5 x ≥ 0.5 y < 0.5 y ≥ 0.5

Join Join

x < 0.25 x ≥ 0.5 y < 0.5 y ≥ 0.5 y < 0.5 y ≥ 0.5

y < 0.5 y ≥ 0.5 y < 0.5 y ≥ 0.5 y < 0.5 y ≥ 0.5 y < 0.5 y ≥ 0.5

(a) A Rete value function representation for Puddle World

matches(
<dest-stack>,
<goal-stack>)

matches(
<stack>,

<goal-stack>)

matches-top(
<dest-stack>)

is-table(
<dest-stack>)

∃ Join
(5,0):(2,0)

¬ Join
(5,0):(2,0)

∃ Join
(1,2):(2,0)

¬ Join
(1,2):(2,0)

∃ Join
(5,0):(2,0)

¬ Join
(5,0):(2,0)

∃ Join
(5,0):(2,0)

¬ Join
(5,0):(2,0)

∃ Join
(1,2):(2,0)

¬ Join
(1,2):(2,0)

∃ Join
(5,0):(2,0)

¬ Join
(5,0):(2,0)

∃ Join
(5,0):(2,0)

¬ Join
(5,0):(2,0)

∃ Join
(5.0):(2,0)

¬ Join
(5.0):(2,0)

∃ Join
(5,0):(2,0)

¬ Join
(5,0):(2,0)

∃ Join
(5.0):(2,0)

¬ Join
(5.0):(2,0)

(b) An RRL Rete value function representation for the exact objective of Blocks World

Figure 4.2: Rete value function representations with filter nodes at the top, left inputs in black, and
right inputs in blue, with weights that contribute to the value function in black and weights in the
fringe in gray

59

constrained to have only one path in but potentially multiple paths out. In the case of Rete, each
kind of node is restricted to one or two edges in.1

Second, nodes in a Rete do not simply implement tests that are passed or failed. The Rete
algorithm implements a token passing network, allowing it to handle variable and unpredictable
numbers of actions and observations about the world. A distinction is sometimes made between an
alpha network consisting of alpha nodes and a beta network consisting of beta nodes [Forgy and
McDermott, 1977b; Doorenbos, 1995]. Alpha nodes (the top rows in Figure 4.2) can be viewed
as implementing tests, more or less like nodes in a decision tree or k-d trie, but with support for
variables. Beta nodes (all the nodes below the top rows in Figure 4.2) on the other hand must
be designed to take in one or two tokens and to decide when to combine them (in the case that
there are two), in some cases doing comparisons involving variables, and to pass on the resultant
combined token. Alpha nodes feed forward into beta nodes but beta nodes never feed forward into
alpha nodes due to the increased expressive power required by the tokens in the beta network. That
these nodes support variables for generalization in the alpha network and variable comparisons as
constraints in the beta network gives Rete the power needed to support RRL.

Finally, in order to do comparisons involving variables, certain beta nodes are designed to solve
the variable binding problem that is introduced by supporting conjunctions of relations between
variables. Observe that the beta nodes in Figure 4.2 do not generally contain the tests themselves,
but rather contain variable bindings in the form of indices into the left and right tokens. (Tests on
variables that have already been incorporated into the value function are included directly in the
beta nodes for Puddle World in Figure 4.2a.) If a rule tests both the conditions (<block-1>
ˆon-top <block-2>) and (<block-2> ˆon-top <block-3>), care must be taken
to ensure that the variable <block-2> refers to the same constant in all tokens that make it all
the way to the leaf node that fires the rule. What happens when a rule is fired in Carli-RRL will
be explained in Section 4.2.3.7. Broadly speaking, the value function for a given action is derived
from the sum of the weights, top to bottom, for the nodes that fire for that action, using equation 1.7
on page 18.

4.2.1 Carli-RRL Representations and Syntax

I base the structure of my rules on that of the Soar cognitive architecture [Laird, 2012]. Soar defines
a rule syntax that enables agent designers to implement different agents without directly tinkering
with the underlying architecture. In fact, it encapsulates the underlying architecture to ensure that
it remains fixed while the rules and memories are allowed to differ from one agent to the next. This

1Two edges in is effectively sufficient to implement anything, as more than two edges in could be simulated by
the implementation of a node that implements an OR operation.

60

divide between architecture and rules can be traced back to Ops [Forgy and McDermott, 1977a].
Like Ops, Soar was originally implemented in Lisp and owes much of its syntax to its predecessor
[Laird and Newell, 1983]. While Carli-RRL was never implemented in Lisp, given this history, it
made sense to use a similar syntax for the rules implementing my weights to that used by Soar for
its RL-rules [Nason and Laird, 2004]. The syntax does not represent any theoretical commitment,
however.

The most basic memory elements of my working memory – the agent’s representation of the
state of the environment – are Symbols which can represent constant values (Floating point
numbers, Integers, and Strings), Identifiers, and Variables. Floats and Ints can
be compared to each other, but otherwise any comparisons between different types of Symbols
will test false. These Symbols are combined into ordered triples or 3-tuples which I refer to
as state triples. Each Symbol in a state triple can be any of the above types, but only the con-
stant values are universally appropriate. The set of state triples that make up the agent’s state
description can include Identifiers but must not include Variables. On the other hand,
the state triples that form the rules and the Rete should include Variables but must not include
Identifiers. For that reason, the only way for a rule to refer to an Identifier is with a
Variable. By convention, an agent’s state description is organized hierarchically by placing
new object Identifiers on the right and by placing existing object Identifiers on the left,
but any state triples without Variables could constitute a legal state description. See Figure 4.3
for an example of this hierarchical memory organization.

Figure 4.4a presents a rule to associate a weight with a tile with one feature. sp stands for
“source production.”2 The braces enclose the production, which follows the format: rule-name

conditions --> = value.3 The value at the end represents the initial value of the weight associated
with the tile that is associated with the rule. Comparing against working memory (Figure 4.3),
you can see that Identifiers are absent. Variables are in the place of all Identifiers
and some constants as well.4 Each condition is capable of matching one or more of the Working
Memory Elements (WMEs) represented in Figure 4.3.

2Carli-RRL supports a small number of other commands.
3The --> separates conditions from actions in Soar and can be traced back to Ops. Since there are no actual action

in Carli-RRL, it is included only to maintain similarity of form with Soar RL-rules.
4You might observe that I put Identifiers in all upper case letter and use all lower case letters for all other

Symbols. This is purely convention on my part. Identifiers are never exposed to users of Carli-RRL in typical
operation.

61

(S1 ^action move-2-0)
(S1 ^action move-2-3)
(S1 ^action move-3-0)
(S1 ^action move-3-2)
(S1 ^block A)
(S1 ^block B)
(S1 ^block C)
(S1 ^block TABLE)
(move-2-0 ^block B)
(move-2-0 ^dest TABLE)
(move-2-3 ^block B)
(move-2-3 ^dest C)
(move-3-0 ^block C)
(move-3-0 ^dest TABLE)
(move-3-2 ^block C)
(move-3-2 ^dest B)
(A ^name 1)
(B ^name 2)
(C ^name 3)
(TABLE ^in-place true)
(TABLE ^name 0)

Figure 4.3: A minimal Carli-RRL description of an initial state of the version of Blocks World
from Section 2.2.1 and the actions possible from that state (move block B to the table, block B to
block C, . . .)

sp {bw*dest-in-place
(<s> ^action <action>)
(<action> ^block <block>)
(<action> ^dest <dest>)
(<block> ^name <block-name>)
(<dest> ^name <dest-name>)
+(<dest> ^in-place true)
-->

= 0.0
}

(a) Destination in place

sp {bw*dest-not-in-place
(<s> ^action <action>)
(<action> ^block <block>)
(<action> ^dest <dest>)
(<block> ^name <block-name>)
(<dest> ^name <dest-name>)
-(<dest> ^in-place true)

-->
= 0.0

}

(b) Destination out of place

Figure 4.4: Paired Carli-RRL features for the version of Blocks World from Section 2.2.1

62

For example, (<s> ˆaction <action>) matches (S1 ˆaction move-2-3),
(S1 ˆaction move-3-0), and (S1 ˆaction move-3-2). The rule as a whole, how-
ever, only matches for (S1 ˆaction move-3-0) since the only destination that is in the
correct place is the table. The counterpart rule in Figure 4.4b is associated with the other tile and
matches both (S1 ˆaction move-2-3) and (S1 ˆaction move-3-2). Together both
rules tile the state space.

When these rules are fired, the <block-name> and <dest-name> can be extracted from
the final token by the Carli-RRL agent to determine which action the corresponding weight should
be added to. When all rules have finished firing, the list of weights associated with each action
are summed to give a value estimate for linear function approximation (Section 1.3.3), just as the
path through the k-d trie provided that set of weights in the previous version of this architecture
(Section 3.1.1).

Reading the rules in Figure 4.4, it is probably difficult for you as the reader not to assume
that the <action> in the first condition is the same as the <action> in the second and third
conditions. However, ensuring that is a non-trivial feat of the Rete algorithm. The beta nodes are
the Rete’s solution to this problem.

4.2.2 Alpha Nodes

The purpose of the alpha network is to ensure that individual conditions match exactly the WMEs
that they should.

Doorenbos [1995] implements an alpha network that has structural complexity comparable to
that of its beta network (Section 4.2.3). It is possible to implement alpha nodes that test aspects of
individual Symbols in each incoming WME before ultimately generating a Token for the beta
network to achieve greater computational efficiency within the alpha network.

However, my architecture implements a simplified alpha network where each unique condition
directly corresponds to a unique alpha node. For my use cases, passing all WMEs to each of these
alpha nodes is such a small part of the computational cost of my architecture that anything more
sophisticated is unnecessary. However, for a significantly larger architecture with many unique
conditions and a large working memory, this would need to be addressed.

4.2.2.1 Filter Node

I implement a single Filter Node to fully test a WME. One Filter Node must exist per
unique condition in the Rete. Each Filter Node passes new Tokens corresponding to incoming
WMEs on to the beta network.

A Filter Node in my architecture has the following functionality:

63

1. Symbols in the incoming WME that are being tested against a variable that appears only
once in the condition are not subjected to any tests.

i.e. A Filter consisting of three non-repeated Variables, such as (<a> ˆ <c>)

will match every WME.

2. Symbols that are tested against variables that are repeated within the condition are com-
pared against each other for equality. If any of them are not equal, they do not pass the
Filter and no Token will be generated.

i.e. (<a> ˆ <a>) requires that the first and third Symbols in the WME test equal
to each other. They must be the same type of Symbol unless one is a Float and the other
an Int.

3. Symbols that are tested against constants must be equal to those constants or they do not
pass and no Token will be generated.

i.e. (<a> ˆheight 3) requires that the second Symbol be a String containing
“height” and that the third Symbol be either a Float or an Int containing 3 as its value.

This results in an O(mn) computation time for testing all WMEs (m) against all Filter
Nodes (n).5 This does not appear to be a significant cost for any workloads in my architecture,
but you can imagine how this could be sped up by doing a hash lookup by Symbol type for the
first Symbol, proceeding to the second Symbol in a successor Node if the first passes, and again
for the third. This can get complexity down to something on the order of O(m) for testing all
WMEs. However, given the limited number of unique conditions in my agents and the signifi-
cantly higher cost of executing the beta network, the complexity of this approach did not merit its
implementation.

Figure 4.5 presents a Filter Node diagram and both a positive example and a negative
example. Observe that each Filter Node will examine each input WME as walked through in
the examples. In a more complex case, it could be necessary to verify whether two objects in the
WME are one and the same. The Filter would then be represented as (<0> ˆattr <0>)

with the wildcard <0> in two different places.

5Only changes are processed from step to step, so this cost is amortized over the duration of an agent’s lifetime.

64

WMEs

Filter

Tokens

(a) A Filter Node diagram

(S1 ˆblock A)

(S1 ˆblock <2>)

(S1 ˆblock A)

Input WME

Filter

Output Token

(b) Positive Filter Example: “A” matches the wildcard <2> (associated with some Variable) in the
Filter Node, so a new Token containing the WME is passed to all children.

(S1 ˆblock A)

(S1 ˆaction <2>)

Input WME

Filter

(c) Negative Filter Example: “block” does not match “action” in the Filter Node, so no Token
is passed.

Figure 4.5: Filter Node Functioning

4.2.3 Beta Nodes

The alpha network is restricted to testing individual WMEs. To detect whether all of the conditions
of a rule match, rather than just one, is the purpose of the beta network. In other words, the beta
network is responsible for everything that cannot be tested at the level of individual conditions.
One important responsibility of the beta nodes is ensure that variables repeated between different
conditions match one another. Additionally, tests of individual variables can exist at any point in a
rule after the first condition.

65

4.2.3.1 Predicate Node

A Predicate is a single-input Node that implements one of six tests:

1. Equality ==

2. Inequality !=

3. Greater than >

4. Greater than or equal to >=

5. Less than <

6. Less than or equal to <=

The test can compare a Variable on the left side of the Predicate to either a Variable or a
constant on the right side of the Predicate. All Variables must have appeared in preceding
conditions – be included in the existing Token – but the relative order of appearance is irrelevant
and both Variables are likely to point to different rows of the Token.

Predicate Nodes can be implemented as part of both the alpha network and the beta net-
work. Carli-RRL implements them in the beta network only since the only time they can be applied
in the alpha network is when they test variables that were introduced in the preceding condition
and it would force my code to handle WMEs that pass the Filter Nodes differently in the case
that they are followed by alpha Predicate Nodes for marginal performance gains.

Figure 4.6 presents a Predicate Node diagram and both a positive example and a negative
example. Observe that each Predicate Node can implement only one test, but that they can be
chained together to implement multiple tests. It is also possible to test two Variables against one
another, in which case a Predicate test might be represented as (0,2) == (1,2), where the
first value in the pair represents the row in the Token and the second value represents whether it
is the 0th, 1st, or 2nd value in the row.6

6Note that the first value represents the row in the Token and not the output of a particular Filter Node.
Multiple rows in the Token can correspond to output from the same Filter Node with different Variables
matching in different parts of the rule.

66

Tokens

Predicate

Subset of Tokens

(a) A Predicate Node diagram

(S1 ˆblock A)
(A ˆname 1)

(1,2) == 1

(S1 ˆblock A)
(A ˆname 1)

Input Token

Predicate

Output Token

(b) Positive Predicate Example: “1” (stored at index (1,2) in the input Token) is equal to “1” in the
Predicate Node, so the Token is passed to all children.

(S1 ˆblock A)
(A ˆname 1)

(1,2) == 2

Input Token

Predicate

(c) Negative Predicate Example: “1” (stored at index (1,2) in the input Token) is not equal to “2” in
the Predicate Node, so no Token is passed.

Figure 4.6: Predicate Node Functioning

67

Tokens

Existential

Empty Token

Figure 4.7: An Existential Node

4.2.3.2 Existential Node

An agent might care that certain conditions are satisfied, but not be concerned with either how
they are satisfied or how many times they are satisfied. The ability to verify that they are satisfied
without doing a Join (or by doing a Join with an empty Token) both reduces the number of
Tokens passing through the Rete due to multiple matches and prevents thrashing due to changes
in which WMEs satisfy the existential conditions.

Support for Existentials is one of the features of the Carli-RRL Rete implementation that
distinguishes it from the Soar Rete implementation. An Existential is a single-input Node
that passes on an empty Token – a Token that has 0 rows and which cannot be indexed into –
in the case that it receives one or more input Tokens. Empty Tokens can be joined with other
Tokens to generate output that is more meaningful than whether a rule fires or not.

An Existential can apply to one or more conditions. In the case that it applies to more
than one condition, they must be combined into a single scope (i.e. enclosed in braces):
+{(condition 1)(condition 2)} as opposed to simply +(condition 1). Furthermore, an
Existential must be first in any given scope, or it is technically an Existential_Join

which will be described in Section 4.2.3.5. Support for first scope Existentials is included
primarily for the sake of grammatical completeness, but Existential_Join Nodes will be
very important for the the implementation of HTCs in Section 4.3.

4.2.3.3 Negation Node

The ability to test conditions but not Negations potentially leaves open gaps in an agent’s ability
to reason. It is desirable for an agent to be able to respond in situations in which certain conditions
do not match at all. The ability to verify that they are not satisfied allows an agent to do logic that
hinges on the absence of certain WMEs or of certain combinations of WMEs.

Negations do the opposite of what Existentials do. A Negation is a single-input
Node that passes on an empty Token in the case that it receives no input Tokens.

A Negation can apply to one or more conditions. In the case that it applies to more than one

68

Tokens

Negation

Empty Token

Figure 4.8: A Negation Node

condition, they must be combined into a single scope (i.e. enclosed in braces):
+{(condition 1)(condition 2)} as opposed to simply +(condition 1). Furthermore, a Negation
must be first in any given scope, or it is technically an Negation_Join which will be described
in Section 4.2.3.6.

4.2.3.4 Join Node

The central purpose of the beta network is to evaluate which combinations of WMEs that satisfy
individual conditions are compatible with one another and to combine them together into a Token
to be passed to an Action. Join nodes are necessary to do tests across multiple conditions and
to combine Tokens together to form larger Tokens.

A Join is a two-input Node that passes on combined Tokens in the case that the
Variables on the left match the corresponding Variables on the right. Join nodes imple-
ment the Rete’s solution to the Variable binding problem across multiple conditions. Due to
the use of hashing as an optimization, Floats and Ints are not comparable across Joins.7

Joins are necessary wherever a condition or scope follows another condition or scope. A
Join between the first two conditions in a scope will Join the Tokens from the first condition
on the left with the Tokens from the second condition on the right. For each condition that
follows, a Join will take Tokens from the preceding Join on the left and Tokens from the new
condition on the right.

Figure 4.9 presents a Join Node diagram and both a positive example and a negative exam-
ple. Observe that each Join Node can combine only two Tokens, but that they can be chained
together to combine many Tokens together. It common to include multiple bindings in a Join
Node or none at all.

A Join can result in a mn nodes in the event that all Tokens on the left match all Tokens
on the right. Repeated Joins can result in a combinatorial explosion as a result, hurting compu-
tational performance and using a great deal of memory. It is sometimes necessary to be careful in

7This could be rectified by using the Int hash function on any Floats that could be stored in Ints, but this is
unnecessary for any of my use cases.

69

Left Tokens Right Tokens

Join

Combined Tokens

(a) A Join Node diagram

(S1 ˆblock A) (A ˆname 1)

(0,2):(0,0)

(S1 ˆblock A)
(A ˆname 1)

Left Input Token Right Input Token

Join

Output Token

(b) Positive Join Example: “A” (stored at index (0,2) in the left input Token) matches “A” (stored at
index (0,0) in the right input Token) as demanded by the binding (0,2):(0,0) in the Join Node,
so a combined Token is passed to all children.

(S1 ˆblock A) (B ˆname 2)

(0,2):(0,0)

Left Input Token Right Input Token

Join

(c) Negative Join Example: “A” (stored at index (0,2) in the left input Token) does not match “B”
(stored at index (0,0) in the right input Token) as demanded by the binding (0,2):(0,0) in the
Join Node, so no Token is passed.

Figure 4.9: Join Node Functioning

70

designing rules and corresponding working memory structures to avoid such explosions.

4.2.3.5 Existential Join Node

Existential Nodes output empty Tokens. As a result it is impossible to do any comparisons
between the conditions within an Existential and those outside the
Existential. The Existential_Join allows an agent designer to have existential condi-
tions that depend on values in conditions outside the existential by combining functionality from
Existential and Join into one Node.

An Existential_Join is a two-input Node that passes on Tokens from the left in the
case that the Variables on the left match the corresponding Variables on the right for at
least one Token from the right. Existential_Joins, like Existentials, are a feature of
the Carli-RRL Rete implementation and not of the Soar Rete implementation. I developed them
specifically for the purpose of enabling the embedding of HTCs in a Rete.

An Existential_Join can apply to arbitrarily many conditions on both the left and the
right. In the case that it applies to more than one condition, they must be combined into a single
scope (i.e. enclosed in braces): +{(condition 1)(condition 2)} as opposed to simply +(condition 1).
Furthermore, an Existential_Join cannot be first in any given scope, or it is technically an
Existential which was described in Section 4.2.3.2.

Figure 4.10 presents an Existential_Join Node diagram and both a positive example
and a negative example. Each Existential_Join will pass the left Token exactly once for
the totally of all matches on the right.

4.2.3.6 Negation Join Node

Negation Nodes output empty Tokens. As a result it is impossible to do any comparisons be-
tween the conditions within an Negation and those outside the Negation. The Negation_Join
allows an agent designer to have negated conditions that depend on values in conditions outside
the negation by combining functionality from Negation and Join into one Node.

A Negation_Join is a two-input Node that passes on Tokens from the left in the case that
the Variables on the left do not match the corresponding Variables on the right for even one
Token from the right.

A Negation_Join can apply to arbitrarily many conditions on both the left and the right. In
the case that it applies to more than one condition, they must be combined into a single scope (i.e.
enclosed in braces): +{(condition 1)(condition 2)} as opposed to simply +(condition 1). Further-
more, a Negation_Join cannot be first in any given scope, or it is technically an Negation
which was described in Section 4.2.3.3.

71

Left Tokens Right Tokens

Existential_Join

Subset of Tokens from the Left

(a) An Existential_Join Node diagram

(S1 ˆblock A) (A ˆname 1)

(0,2):(0,0)

(S1 ˆblock A)

Left Input Token Right Input Token

Existential_Join

Output Token

(b) Positive Existential_Join Example: “A” (stored at index (0,2) in the left input Token) matches
“A” (stored at index (0,0) in the right input Token) as demanded by the binding (0,2):(0,0) in the
Join Node, so if and only if this is the first match for the given left input Token, the left input Token is
passed to all children.

(S1 ˆblock A) (B ˆname 2)

(0,2):(0,0)

Left Input Token Right Input Token

Existential_Join

(c) Negative Existential_Join Example: “A” (stored at index (0,2) in the left input Token)
does not match “B” (stored at index (0,0) in the right input Token) as demanded by the binding
(0,2):(0,0) in the Join Node, so no Token is passed.

Figure 4.10: Existential_Join Node Functioning

72

Left Tokens Right Tokens

Negation_Join

Subset of Tokens from the Left

(a) A Negation_Join Node diagram

(S1 ˆblock A) (A ˆname 1)

(0,2):(0,0)

(S1 ˆblock A

Left Input Token Right Input Token

Negation_Join

Output Token

(b) Positive Negation_Join Example: “A” (stored at index (0,2) in the left input Token) matches
“A” (stored at index (0,0) in the right input Token) as demanded by the binding (0,2):(0,0) in the
Join Node, so if and only if this is the first match for the given left input Token, the left input Token is
retracted from all children.

(S1 ˆblock A) (B ˆname 2)

(0,2):(0,0)

Left Input Token Right Input Token

Negation_Join

(c) Negative Negation_Join Example: “A” (stored at index (0,2) in the left input Token) does not
match “B” (stored at index (0,0) in the right input Token) as demanded by the binding (0,2):(0,0)
in the Join Node, so no Token is retracted.

Figure 4.11: Join Negation_Node Functioning

73

Figure 4.11 presents an Negation_Join Node diagram and both a positive example and a
negative example. To understand the examples included here, it is important to recognize that in
the absence of any matching right input Tokens, a left input Token is automatically passed to
all children. The positive example in Figure 4.10b demonstrates that what happens when a right
input Token matches is the opposite of what happens for an Existential_Join Node. The
negative example in Figure 4.10c, however, demonstrates that failure to match has no effect, which
is the same as for the other Join Nodes.

4.2.3.7 Action Node

An Action corresponds to full rule. An Action can execute arbitrary code, but only one kind
of Action is implemented in Carli-RRL. When it fires for a given Token, several things will
occur:

1. It extracts any Variables it needs (i.e. block and destination names in Blocks World,
cardinal direction in Puddle World, . . .) in order to be able to generate an index for an action
in the environment.

2. It adds its weight to the list corresponding to the value estimate for that action for purposes
of linear function approximation (Section 1.3.3).

3. It adds its tile to an active set that must be evaluated for refinement from step to step. For a
tile that applies to many different actions, this is added to the active set only once.

An Action can fire for any number of different Tokens, but once it has fired, nothing changes
until the Token is retracted. Once the retraction of a WME causes a Token to be retracted the
Action undoes its work for that Token.

Variable names are actually stored with the Actions and not with the Filter Nodes
that correspond to the conditions. This may be counterintuitive, but consider the possibility of two
rules sharing the same condition structure but use different Variable names. I want to be able
to share work between them, and it turns out that the Variable binding problem can be solved
using numeric indices into the Tokens, so Variable names are unnecessary for the internal
functioning of the Rete. The Variable names are used only when printing rules and for other
textual output to users.

Tokens

Action

Figure 4.12: An Action Node

74

4.2.4 Discussion

Recognizing that the Rete algorithm would make a suitable replacement for k-d tries in order to
support RRL is a major contribution of this dissertation. A Rete is comparable to a k-d trie in com-
putation efficiency of its implementation, but token passing allows it to handle variable numbers
of objects and relations in the environment and corresponding state description.

The Rete algorithm’s support for Join Nodes and variables can be taken advantage of for im-
plementation of relational features and FOL. The Existential Join Nodes that I introduce
as a counterpart to Negation Join Nodes are essential for the implementation of Boolean
relational feature dimensions. Additionally, that the implementation allows node-level analysis
and synthesis of rules, as opposed to having to source new rules in full from a file or string buffer,
is critical for the enabling of efficient fringe-based value function refinement. I will describe how
these aspects of Carli-RRL combine to support the embedding of an aHTC in a Rete in Section 4.3.

4.3 Hierarchical Tile Coding Grammar for Rete

The Rete data structure itself and the Action I described in Section 4.2.3.7 do not fully specify
an aHTC implementation. Nor does the syntax described in Section 4.2.1 fully specify what an
agent needs to know to treat a given Rete as an aHTC.

My architecture additionally requires:

1. A standard rule structure. This structure enables the architecture to both automatically deter-
mine what feature conjunction the rule represents and to extract the outermost, most refined,
feature for possible value function refinement and fringe expansion.

2. Ordering conditions identically for as long as possible from the start of any scope so that
divergence occurs only as new features are introduced. This shared structure allows agents
to take maximal advantage of the computational efficiency of the Rete algorithm.

3. The storing of additional metadata in its nodes. This allows the architecture to directly tra-
verse the HTC in order to allow refinement and unrefinement without necessarily referencing
the entirety of any given rule of interest. This additionally enables the implementation of my
refinement and unrefinement criteria. Ideally it will be possible to write out that data with
the Rete and to read it back in alongside the rules.

4. The capability to read in the Rete from a set of rules and to write it back out again. This
allows an agent designer to implement more complex agents than is feasible when directly
creating a Rete in code. It has the additional benefits of allowing what an agent has learned
to be preserved for successor experiments or for offline analysis.

75

It is possible to manually build the Rete using C++ function calls, but it also provides a parser
implemented using using Flex8, a lexical analyzer, and Bison9, a tool for implementing Left-to-
Right (LR) and Look-Ahead Left-to-Right (LALR) parsers. I used these tools to assist in writing
C++ code to load rules corresponding to tiles and features in my HTCs. However, when I discuss
the HTC grammar for Rete, the kind of grammar used for parsing rules is not what I mean to
discuss. The grammar that defines how aHTCs map onto the Rete is far more important and was
part of the design of Carli before I ever chose to implement a rule parser.

Let us return to the root rule for Blocks World (Section 2.2.1), as described in part in Sec-
tion 4.2.1, and finish making it a complete Carli rule. See Figure 4.13 for the root rule for Blocks
World that gives the most general tile for an agent – the one that applies for the entire state-action
space. I have now partially made up for skipping the conditions in Section 4.2.3.4. The :feature
directive, which provides additional metadata (see Section 4.3.2), and my conventions for struc-
turing the conditions of the rule together form a grammar for mapping a HTC onto the Rete data
structure as described in the remainder of this section. This grammar enables one to implement
architectural mechanisms to refine the value function independent of both the environment and the
relational representation choices made for the agent.

4.3.1 Feature Extraction

Feature extraction is one problem that must be solved in order to treat a Rete as a HTC. The
architecture must be able to determine the value of the feature as well as the feature dimension,
where the feature dimension groups features that together provide one partitioning of the state
space (e.g. all values of x). Given the essentially unlimited expressive power of the conditions and
predicates that can make up a rule, this is where convention comes in.

sp {bw*general
:feature 1 unsplit nil
(<s> ^action <action>)
(<action> ^block <block>)
(<action> ^dest <dest>)
(<block> ^name <block-name>)
(<dest> ^name <dest-name>)

-->
= 0.0

}

Figure 4.13: The root rule for the version of Blocks World from Section 2.2.1

8https://github.com/westes/flex
9https://www.gnu.org/software/bison/

76

https://github.com/westes/flex
https://www.gnu.org/software/bison/

sp {bw*block-clear
:feature 2 fringe bw*general
(<s> ^action <action>)
(<action> ^block <block>)
(<action> ^dest <dest>)
(<block> ^name <block-name>)
(<dest> ^name <dest-name>)
+(<block> ^clear true)

-->
= 0.0

}

(a) Long form

sp {bw*block-clear
:feature 2 fringe bw*general
&bw*general

+(<block> ^clear true)
-->

= 0.0
}

(b) Terse form

Figure 4.14: An initial fringe rule for the version of Blocks World from Section 2.2.1

The Identical Ordering Convention (IOC) is that the conditions and their ordering must
be identical up to the current level of refinement. This means that the most general rule for
an agent defines the first conditions and their ordering for all rules in the HTC. Observe that
bw*block-clear in Figure 4.14a is a direct extension of bw*general in Figure 4.13.

Failure to ensure the IOC can be a source of errors, especially when making changes. For
example, Carli-RRL depends on the IOC in order to collect and evaluate fringe nodes when con-
sidering refinement, and rules with scrambled condition orders would make it impossible for the
architecture to correctly refine an aHTC. For that reason, I eventually added a bit of syntactic sugar
and developed the syntax in Figure 4.14b. This syntax causes the parser to take the ancestors of
Action, bw*general, in the Rete as its own and to use the same Variable names associated
with bw*general when doing so. This may appear to be redundant with the :feature direc-
tive once you familiarize yourself with Section 4.3.2, but since it serves a different purpose that
may not always be coupled to that directive, it made sense to implement it independently.10 One
important consequence of this ability to refer to another rule when writing one of its descendants
is that the rules corresponding to a complex HTC take space linear in the number of tiles in the
agent. Without this compression, rule sizes grow longer the more refined the tiles get. This comes
at the expense of some clarity when reading rules later, but the option to output the full rules is still
available. Reading the rules back into the architecture is more computationally efficient as a result
as well.

The Feature Encoded in the Last Scope Convention (FELSC) requires a new feature to
be encoded in the last scope of the rule. The root rule is a special case in that it has no feature

10Additionally, maintaining these features of the Carli-RRL parser independently allows one to support both
syntaxes.

77

associated with it, but every other tile in the HTC must be distinguished from its ancestors by the
addition of a new feature to the preceding feature conjunction. Several different kinds of features
are supported:

1. Boolean Features – Existential_Join and Negation_Join Nodes as last scopes
are interpreted as Boolean features. Rules such as those in Figure 4.15 are assumed to be
part of a pair, one Existential_Join to one Negation_Join, in which the internals
of the last scope are identical. If the assumption holds, these rules are guaranteed to partition
the preceding tile.

2. Multivalued Features – A Predicate Node or a scope ending with a Predicate Node
that does an equality (==) test of a Variable against an Int constant is interpreted to be
a multivalued feature.11 Rules such as those in Figure 4.16 are assumed to be part of a set
of two or more rules that are identical save for the Int constant. The set must collectively
partition the preceding tile.

3. Ranged Features – A Predicate Node or a scope ending with a Predicate Node that
does a less-than (<) or greater-than-or-equal-to (>=) test of a Variable against a Float
or an Int constant is interpreted to be a ranged feature.12 Rules such as those in 4.17 are
assumed to be part of a pair of two rules that are identical save for the test. If the assumption
holds, these rules are guaranteed to partition the preceding tile.

In all of these cases, the feature dimension is defined by the combination of the set of conditions
in the last scope (or simply the last condition) and the set of Variable bindings that Join
the last scope or condition to the preceding conditions.13 The value of a Boolean feature is an
interpretation of whether it is an Existential_Join (true) or a Negation_Join (false).
The value of a multivalued feature is directly extracted from the Int constant. And the values
of ranged features are distinguished on the basis of whether they implement less-than (<) or
greater-than-or-equal-to (>=) tests.

11That multivalued features must be represented as integers is an arbitrary limitation of Carli-RRL. With a little
more complexity in my Feature representation, support for other values would work just fine.

12Less-than-or-equal to (<=) and greater-than (>) are supported as well but not used in any of my experiments. I
will ignore this functionality to keep my writing simple.

13There are no Variable bindings for a lone Predicate Node since the Variable(s) in the Predicate
itself refer to specific Symbols in the Token.

78

sp {bw*block-clear
:feature 2 fringe bw*g
&bw*g
+(<block> ^clear true)

-->
= 0.0

}

(a) <block> ˆclear is true

sp {bw*block-not-clear
:feature 2 fringe bw*g
&bw*g
-(<block> ^clear true)

-->
= 0.0

}

(b) <block> ˆclear is false

Figure 4.15: Paired Boolean features for Blocks World from Section 2.2.1

sp {pw*move-north
:feature 2 fringe pw*g
&pw*g
(<move> == 0)

-->
= 0.0

}

(a) Move north

sp {pw*move-south
:feature 2 fringe pw*g
&pw*g
(<move> == 1)

-->
= 0.0

}

(b) Move south

Figure 4.16: Two multivalued features for Puddle World from Section 2.2.2

sp {pw*x-lower
:feature 2 fringe pw*g

1 0.0 0.5
&pw*g
{(<s> ^x <x>)
(<x> < 0.5)}

-->
= 0.0

}

(a) Lower x

sp {pw*x-upper
:feature 2 fringe pw*g

1 0.5 1.0
&pw*g
{(<s> ^x <x>)
(<x> >= 0.5)}

-->
= 0.0

}

(b) Upper x

Figure 4.17: Two ranged features for Puddle World from Section 2.2.2

79

4.3.2 :feature Directives

Given that all rules in my Rete are part of a HTC, each comes with a :feature directive to
provide extra metadata. This section is necessary for reproduction of my work, but not necessary
for understanding the contributions of this dissertation.

A :feature directive has several parts:

1. :feature comes at the beginning. There are no other directives currently, but it is neces-
sary regardless.

2. An integer indicates the depth of the feature in the Rete. This is equal to the number of
features in the feature conjunction plus one. So the general tile which has no features and
covers the entire state-action space has a value of 1. This could be calculated automatically,
so this is a bit superfluous. It is nice to have when printing out terse rules, however, since
they make it impossible to tell how complex the feature conjunction has become without
tracing through the parent rules.

3. The type of node: split, unsplit, or fringe. Split nodes keep track of their par-
ents, which must be split nodes, and their children, which must be either split or
unsplit nodes. Unsplit nodes keep track of their parents and their children, which
must be fringe nodes. All three node types collect metadata since I consider the possibil-
ity of rerefinement (unrefinement followed by refinement) of the value function.

4. The name of the parent. This must be “nil” for the root node, making “nil” a reserved name
that cannot be used for a rule that is part of a HTC. This allows implementation of the
pointers between nodes that I just described and allows for error checking to ensure a valid
hierarchy. This requires rules to be loaded in increasing order of refinement.

5-7 – For ranged features only since it is possible to subdivide them to generate more:

5. An integer indicating the depth of the ranged feature. This must be 1 for the original features.
Subsequently derived features that cover smaller parts of the range will increment this value.

6. An integer or a decimal number indicating the lower bound of the range covered by the
feature. The value used by the predicate should match the lower bound if it is a >= test.

7. An integer or a decimal number indicating the upper bound of the range covered by the
feature. The value used by the predicate should match the upper bound if it is a < test. The
lower bound and upper bound must both be integers or both be decimal numbers. When
generating new features, they will be accordingly integer locked or not as a result.

80

4.3.3 Refinement and Rerefinement

Part of the purpose of the grammar is to enable automatic feature extraction from rules (Sec-
tion 4.3.1). However, what I described would be overengineered if that were the sole purpose of
the HTC grammar for Rete. This section describes aspects of HTC encoding for the Rete that are
critical for implementation of aHTCs using a Rete. In conjunction with a Rete implementation that
enables efficient rule analysis and synthesis at the node level, the two conventions I describe here
make efficient refinement of an aHTC possible. This is a major contribution of this dissertation.

A Rete typically has efficient support for removing rules and adding new ones dynamically
at runtime. However, my Rete needs efficient methods for manipulating existing rules and parts
thereof. If I have an unsplit tile that is 10 feature conjunctions deep with a dozen fringe

nodes attached to it, it would be fairly inefficient to send a couple of dozen large, new rules through
the standard parser processing pipeline. And as inefficient as that would be, even that still requires
one to be able to get features out of arbitrarily complex rules and to know how to form new rules
using them.

The Identical Ordering Convention (IOC), the Feature Encoded in the Last Scope Con-
vention (FELSC), and :feature directives combine to give an agent knowledge sufficient for
efficient refinement of any unsplit tile and efficient rerefinement of any split tile. In fact, the
cost of refinement depends solely on the combination of the number of nodes being converted from
fringe to unsplit and the number of fringe nodes being copied under the new unsplit

nodes. For both refinement and rerefinement, cost is 100% independent of the complexity of what-
ever lies above the node being modified.

Boolean features are the simplest case. The FELSC guarantees not only that the architecture
can extract the feature, but in this case that the architecture knows how to take the
Existential_Join or Negation_Join of the last scope and essentially modify what the
left input points to in order to move the feature to a different conjunction. Implicitly following the
IOC, my architecture:

1. Converts the parental unsplit node to a split node.

2. Converts all fringe nodes for the feature dimension selected for refinement to split

nodes.

3. Takes all remaining Boolean features and make copies of their Existential_Join or
Negation_Join nodes modified to have the left input point to the new split nodes.

Take a moment to examine Figure 4.2 on page 59 and see how the features there were combined
over time to make more complex and deeper conjunctions of relations.

81

sp {pw*s47
:creation-time 278
:feature 4 split pw*s5

2 0.0 0.25
&pw*s5
(<x> < 0.25)

-->
= 4.3 1336.1 1.5 0.0 890

}

(a) Lower x

sp {pw*s48
:creation-time 278
:feature 4 split pw*s5

2 0.25 0.5
&pw*s5
(<x> >= 0.25)

-->
= 5.3 5442.4 3.1 0.0 1753

}

(b) Upper x

Figure 4.18: Two refined ranged features for Puddle World from Section 2.2.2. The additional
values to the right of the = and the weight of the tile are contributions to mean and variance
calculations, a secondary weight for Greedy-GQ(λ), and an update count.

Multivalued features are a bit more complex. The FELSC guarantees either a Join or a
Predicate Node as the parent of the Action for tiles corresponding to multivalued features.
In either case, it is the same principle:

4. Take all remaining multivalued features and make copies of their Join nodes modified to
have the left input point to the new split nodes or their Predicate nodes modified to
have the sole input point to the new split nodes.

Ranged features are more complex still. The FELSC Node possibilities are essentially identi-
cal to those of multivalued features, but using the :feature directive, new nodes must generally
be created that represent longer feature conjunctions. Let us modify step 4 and continue:

4. Take all remaining multivalued features and ranged features and make copies of their
Join nodes modified to have the left input point to the new split nodes or their Predicate
nodes modified to have the sole input point to the new split nodes.

5. If the feature being refined is a ranged feature, check the :feature directive to determine
if and how new subtiles should be generated. If so, add new subtile features by adding simple
Predicate Nodes, even if the original feature involved a Join. See Figure 4.18.

In all of these cases, Variable indices for any Variables introduced by the feature gen-
erally must be modified since intermediate Nodes alter the number of Nodes on the path to the
feature and the size of the Token as well. :feature directives must be updated to implement
Section 4.3.2. And old rules must be excised from the Rete.

Rerefinement involves unrefinement followed by refinement. Unrefinement depends heavily
on the IOC to gather all features below the node to be converted back into a unsplit node. It

82

depends on both the FELSC and the :feature directives to determine dependencies between
the gathered features and to discard any that were generated by subsequent refinement. Those
issues taken care of, converting the gathered nodes to fringe nodes below the new unsplit

node is virtually identical to the process of making new fringe nodes during refinement.

If immediate rerefinement is intended, it could be implemented as a more direct path than
unrefinement and refinement. This would be more efficient. However, unrefinement was originally
considered to be a decision entirely separate from the decision of rerefinement when considering
the design of Carli-RRL. The implementation still reflects the possibility of deciding to unrefine
without necessarily planning on refining again afterward. One potential motivation for doing so
might be if an agent could determine that all refinement below a certain level was unnecessary and
that the value function could be compressed with no loss of optimality.

4.4 Discussion

I began this chapter with the observation that the exact objective of Blocks World with goal
configurations that change from episode to episode, possibly even varying the numbers of blocks
in the world, was not feasible to pursue with Carli-Prop. It would have been difficult both because
Carli-Prop implemented one aHTC per action, limiting its ability to generalize as the numbers
of blocks is increased, and because k-d tries do not support the kind of variable tests required
to ensure that relational features refer to the same objects where necessary. For these reasons, I
outlined requirements for a value function for RRL and observed that the Rete algorithm would be
a good fit.

I introduced Carli-RRL and described the representations over which it operates in Section 4.2.
I presented the kinds of nodes in the Rete that enable it to process variable numbers of objects,
relations, and actions. The existential joins and negation joins are of particular importance for
implementing relational features that perform binary tests in my HTCs.

I developed a grammar for mapping aHTCs onto the Rete in Section 4.3. Using a standard rule
structure, consistent ordering of features (or clauses) within each rule, and additional metadata
associated with each rule, Carli-RRL is able to automatically extract features when reading in the
rules and to synthesize new rules at the fringe as the value function is refined. Carli-RRL can
start with a value function with a single weight that applies to the entire state space and a fringe
of candidate weights corresponding to individual relational features, and build up complex value
function structures, potentially far more complex than the one depicted in Figure 4.2 on page 59.
Automatic generation of relational value function structures such as these are only possible as a
result of the IOC and FELSC that I developed and described in Section 4.3.1. This method for
mapping an aHTC onto a Rete and the insight that this mapping is valuable for computationally

83

efficient implementation of RRL is the primary contribution of this dissertation.
The value function embedded in the Rete ultimately corresponds closely to a First Order Logi-

cal Decision Tree (FOLDT) as induced by Top-down Induction of Logical DEcision trees (TILDE)
[Džeroski et al., 2001; Blockeel and Raedt, 1998] and learned over using equation 1.7 on page 18.
In fact, if treated as an Adaptive Tile Coding (ATC) instead of an HTC, the output of TILDE could
be encoded in my Rete implementation. However, Carli-RRL supports incremental refinement and
unrefinement of its aHTCs without the use of a model, and without starting from scratch each time.
What is novel here is its model-free, fringe-based approach to the online, incremental creation of
FOLDTs in RRL, the use of HTCs rather than ATCs, and the use of the Rete algorithm and a
grammar imposed upon it to implement RRL more efficiently. I will evaluate the ARtPE and Wall-
Clock Time Per Step (WCTPS) of this RRL implementation and compare it to earlier systems in
Chapter 5.

84

CHAPTER 5

Relational Reinforcement Learning Evaluation

Here I present experiments using agents implemented with Carli for Relational Reinforcement
Learning (Carli-RRL), my Relational Reinforcement Learning (RRL) architecture implemented
using Rete (Chapter 4). The goals of this thesis are to develop a computationally efficient architec-
ture for online, incremental RRL and to additionally investigate the problem of improving learning
efficiency through RRL.

To those ends, in Section 5.1 I explore the capabilities of my architecture, demonstrating its
flexibility and computational efficiency with respect to a number of additional mechanisms that
support variations in adaptive Hierarchical Tile Codings (aHTCs) as I work to improve learn-
ing efficiency with the exact objective with variable goal configurations. I then demonstrate a
greater than two orders of magnitude computational efficiency gain for the stack, unstack, and
on(a,b) objectives of Blocks World when comparing to the agents implemented by Džeroski et

al. [2001] and I compare percent optimality between our agents in Section 5.2. I evaluate the scala-
bility of my agents for exact in terms of both optimality and Wall-Clock Time Per Step (WCTPS)
in Section 5.3. I do some additional evaluation of transfer in both Blocks World and a scalable
Taxicab environment in Section 5.4.

5.1 Learning Efficiency Experiments

My goal here is to evaluate the flexibility of Carli-RRL as an architecture for developing techniques
for improving learning, whether the evaluation metric is Average Regret Per Episode (ARgPE),
Average Return Per Episode (ARtPE), or even percent optimality (which we use in comparisons
in Section 5.2). Since my primary objective is to evaluate the WCTPS of Carli-RRL, this section
demonstrates that it can achieve a small WCTPS for RRL. However, it additionally serves the pur-
pose of demonstrating that Carli-RRL can be used to solve a more difficult Blocks World objective
than the ones investigated by Džeroski et al. [2001].

For these experiments, I investigate the exact objective of Blocks World with 3-5 blocks

85

and variable goal configurations due to its higher complexity relative to the other Blocks World
objectives (Section 4.1). My agents in this section are evaluated on an Intel Core i7-3612QM CPU
executing at 2.10 GHz. The graphs reflect averages over 20 runs. And the agents uniformly use
Epsilon-greedy (ε-greedy) exploration (Section 1.1.3) with a fixed value of ε = 0.1.

My Blocks World implementation generates instances for Blocks World by placing the blocks
in random order. The first block forms a stack of height 1. For each subsequent block placement,
existing stacks and a new stack are given an equal likelihood of receiving the new block. Therefore,
once there exist 3 stacks, the likelihood of creating a new stack is 1/4 and each existing stack has
a 1/4 chance of receiving the new block. This method is followed for both the initial configuration
and the target configuration. In the unlikely event that the generated initial configuration is identical
to the target configuration for exact (or otherwise satisfies the objective for stack, unstack,
or on(a,b) in subsequent sections) this procedure is repeated for the initial configuration until it
does not satisfy the objective.

The binary relational features available to my agents for exact include:

1. Matches(<src-stack>, <goal-stack>)

i.e. The stack a block is to be moved from matches some goal stack
(up to the height of the stack the block is to be moved from).

2. Matches(<dest-stack>, <goal-stack>)

i.e. The destination stack matches some goal stack
(up to the height of the destination stack).

3. Goes-on-top(<moving-block>, <goal-stack>)

i.e. The block to be moved goes on top of a goal stack.

4. Move(<moving-block>, TABLE)

i.e. The destination is the table.

These features come from viewing the problem as a visual reasoner might, comparing stacks of
blocks in the real world to stacks of blocks in a specified goal configuration. Additional distractor
features that I optionally include are:

5. Height-less-than(<moving-block>, 2)

i.e. The height of the block to be moved is less than 2.
(Subsequently whether the height of the block is less than 1 or 3 in subtiles.)

6. Height-less-than(<destination-block>, 2)

i.e. The height of the destination block is less than 2.
(Subsequently whether the height of the block is less than 1 or 3 in subtiles.)

86

7. Brightness-less-than(<moving-block>, 0.5)

i.e. The “brightness” (a number that randomly changes from step to step) of the block to be
moved is less than 0.5.
(Subsequently 0.25 and 0.75 in subtiles, and so on ad infinitum.)

8. Brightness-less-than(<destination-block>, 0.5)

i.e. The “brightness” of the destination block is less than 0.5.
(Subsequently 0.25 and 0.75 in subtiles, and so on ad infinitum.)

9. Glowing(<moving-block>)
i.e. The block to be moved is glowing
(equivalent to the brightness check, but not refineable).

10. Glowing(<destination-block>)
i.e. The destination block is glowing.

11. Name(<moving-block>, A), Name(<moving-block>, B),
Name(<moving-block>, C), . . .
i.e. The name of the block to be moved.

12. Name(<destination-block>, A), Name(<destination-block>, B),
Name(<destination-block>, C), . . .
i.e. The name of the destination block.

I first introduce several refinement criteria and evaluate my agents using them (Section 5.1.1). I
then evaluate how my agents function with unrefinement and rerefinement enabled (Section 5.1.2).
Then I will discuss further adjustments in the form of refinement blacklists (Section 5.1.3), a
modification to rerefinement selection I call boost (Section 5.1.4), and an optimization of boost
that I call concrete (Section 5.1.5).

5.1.1 Refinement Experiments

Value function refinement is the method by which Adaptive Tile Codings (ATCs) and aHTCs
(which I use here) expand and specialize their value functions in order to learn general knowledge
quickly and more specialized knowledge where necessary. Here I evaluate the learning efficiency
of my agents with several refinement criteria.

When Carli-RRL refines the value function, it converts one unsplit Node to a split

Node, it converts a small number of fringe Nodes to unsplit Nodes, and it creates many
new fringe Nodes for these new unsplit Nodes.

The three refinement criteria I explore in Carli-RRL are:

87

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de
CATDE RNN
Policy RNN
Value RNN

(a) No Distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RND
Policy RND
Value RND

(b) Distractors

Figure 5.1: ARtPE for agents learning the exact objective in Blocks World. In the legend, “R”
indicates that refinement is enabled, “N” indicates that unrefinement is not enabled, and “D” and
“N” indicate whether distractors are enabled or not. The policy criterion performs too poorly to
appear in the lower graph.

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −4.06 1.38ms 23.0
Policy Criterion −3.84 0.91ms 24.7
Value Criterion −3.97 1.33ms 25.6

Table 5.1: Agent performance solving exact Blocks World (Section 4.1)

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −4.93 18.8ms 1,487.8
Policy Criterion −639 21.7ms 1,318.4
Value Criterion −4.83 19.0ms 1,459.5

Table 5.2: Agent performance solving exact Blocks World (Section 4.1) with distractors

88

1. Cumulative Absolute Temporal Difference Error (CATDE) as described in Section 2.1.3.2
on page 38 – refine a tile if its CATDE is in the top f%

2. A policy criterion akin to that in Section 1.3.4.3 on page 23 – refine a tile along the feature
dimension that results in the largest change to the set of greedy actions

3. A value criterion akin to that in Section 1.3.4.3 on page 23 – refine a tile along the feature
dimension with a maximal range of corresponding weights

I selected these criteria because I was able to conceive of methods to implement them incrementally
using only summary statistics. That is not to say that other criteria, including ones that require
more than summary statistics for implementation (such as U-trees [McCallum, 1996]) or that are
more difficult to make incremental (such as Stdev_Inf [Munos and Moore, 1999a]), could not be
supported by Carli-RRL. They are simply less suitable for our goals of minimizing WCTPS while
pursuing high ARtPE. For all of these criteria, I use on-policy Greedy-GQ(λ) with α = 0.03,
ρ = 0.01, γ = 0.9, and λ = 0.3 and delay refinement decisions by 20 steps without distractors
and by 30 steps with distractors in order to reduce the likelihood of premature refinement. These
numbers are the result of a modest amount of parameter tuning on my part.

Figure 5.1 depicts ARtPE when learning the exact task using these three different refinement
criteria for refining the aHTC. I show performance when learning with relevant features only in
Figure 5.1a and with additional distractors in Figure 5.1b. Detailed results at 50, 000 steps are
listed in tables 5.1 and 5.2. With no distractors, all criteria work well with minimal WCTPS. On
the other hand, with distractors, WCTPS increases by more than an order of magnitude, the number
of weights (and the number of feature conjunctions) increases by nearly two orders of magnitude,
and learning performance suffers as well – significantly in the cases of the policy criterion. The
number of weights grows with distractors because there is no criterion for stopping refinement and
the agent lacks any ability to undo refinements when they appear to be unhelpful. Given that the
“brightness” distractor is infinitely refineable, this is especially costly.

5.1.2 Rerefinement Experiments

My work up until this point has demonstrated results with non-adaptive tile codings, ATCs, and
aHTCs. In the case of ATCs and aHTCs, refinement has been an irreversible process. This can
result in suboptimal value function structure from the perspective of learning efficiency, and exces-
sive numbers of weights as demonstrated in Table 5.2. From this point on, I explore the possibility
of unrefining and rerefining the value function.

With unrefinement disabled, after converting the selected fringe Nodes to unsplit Nodes
and using the remaining fringe Nodes as templates from which to build successor fringe

89

Nodes, one could simply destroy the old fringe Nodes. The process of refinement is described
in Section 4.3.3 on page 81. With the possibility of unrefinement and rerefinement, it is helpful
to maintain them as internal fringe Nodes for two reasons. First, the architecture can use
them to collect value estimates and metadata for comparison against those of the refined tiles.
Second, it can use them as templates for regenerating the fringe should unrefinement be necessary,
significantly simplifying the task of unrefining the value function.

My three unrefinement criteria directly correspond to my refinement criteria:

1. CATDE – Unrefine if the CATDE for the split Node is greater than that of the sum of
the CATDEs of its child fringe nodes (which partition the tile). This indicates that its fringe
nodes are doing a better job of estimating the value function than the current value function,
and therefore the selected refinement was probably suboptimal. This is unlikely to make
mistakes, and is likely to be reasonably good from a stability standpoint as unrefinement
gets less and less likely the longer a refinement is kept.

2. A policy criterion – Unrefine if the change to the set of greedy actions is larger for an
alternative feature dimension than for the extension to the value function stemming from the
refined feature dimension. One might expect a larger change to the set of greedy actions to
indicate a better option, so this could work well.

3. A value criterion – Unrefine if the maximal range of weights for an alternative feature di-
mension is greater than the range of summed weights for the extension to the value function
stemming from the refined feature dimension. This would tend to indicate that this alterna-
tive feature dimension might allow the agent to better approximate the value function with
less subsequent refinement and fewer weights, which will be good in the long run.

For all of these criteria, I delay unrefinement decisions by 50 steps without distractors and by
100 steps with distractors in order to reduce the likelihood of premature unrefinement. These
numbers are also the result of a modest amount of parameter tuning on my part. However, it makes
sense to take the values for refinement delays and to apply a small multiplier (2-4) to derive the
values for unrefinement. Given that my refinement and unrefinement criteria do not offer statistical
significance guarantees, some delay is required for decisions in both directions in order to allow
sufficient data to be collected for decision-making.

Figure 5.2 depicts agent performance when learning the exact task using these three differ-
ent rerefinement criteria. Detailed results at 50, 000 steps are listed in tables 5.3 and 5.4. In all
cases, unrestricted unrefinement significantly impairs the agents’ ability to converge to a stable
value function. CATDE comes nearest to the optimal without distractors, which is consistent with
my expectation that its unrefinement criterion is the least likely to be mistaken about choosing to

90

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de
CATDE RUN
Policy RUN
Value RUN

(a) No Distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RUD
Policy RUD
Value RUD

(b) Distractors

Figure 5.2: ARtPE for exact using (unrefinement and) rerefinement. In the legend, “R” indicates
that refinement is enabled, “U” indicates that unrefinement is enabled, and “D” and “N” indicate
whether distractors are enabled or not.

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −5.03 1.65ms 16.3
Policy Criterion −27.2 1.06ms 4.1
Value Criterion −6.13 1.10ms 5.94

Table 5.3: Agent performance for exact using (unrefinement and) rerefinement

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −37.3 3.27ms 7.58
Policy Criterion −104 1.79ms 3.15
Value Criterion −10.9 2.20ms 4.75

Table 5.4: Agent performance for exact with distractors using rerefinement

91

unrefine. Similarly, the value criterion performs better with distractors using a surprisingly small
number of weights, which is consistent with my expectation that it makes better decisions about
which refinements to do for the long run. The policy criterion does not do particularly well either
with or without distractions, which perhaps refutes the idea that a larger change to the greedy set
is a valuable measure of an effective value function refinement. In all cases, WCTPS decreases
significantly due to the small number of weights that are maintained despite the overhead of unre-
finement decisions.

Ultimately, it is clear that allowing unrestricted refinement is an ineffective strategy for allow-
ing an agent to improve its learning efficiency, at least using the criteria I consider. This requires
either refinement criteria which are guaranteed to settle on a fixed refinement at each level of the
hierarchy or additional methods that inhibit an agent’s ability to unrefine and rerefine, thereby forc-
ing settling. I explore the latter approach in the rest of this section. This will test the architectural
flexibility of Carli-RRL with respect to support for more complexity with respect to refinement
and unrefinement decision-making.

5.1.3 Rerefinement with Blacklisting Experiments

My first approach for limiting refinement in my agents is to implemented the simplest approach:
blacklists for previous refinements. Simply put, whenever a feature dimension is selected for
refinement at a given node, it will never again be selected for that same node.

Figure 5.3 depicts agent performance when learning the exact task using blacklists. Detailed
results at 50, 000 steps are listed in tables 5.5 and 5.6. Without distractors, convergence is success-
fully achieved and performance actually improves for CATDE. However, catastrophic divergence
is observed with the presence of distractor features. While perhaps difficult to anticipate, in hind-
sight it is reasonable to expect this behavior. Given that top feature axes may be difficult to choose
between, unrefinement is expected. At the same time, those top feature axes are all good choices.
When all of the features are good and the number of options is limited, maximal refinement in
even a suboptimal order is not necessarily problematic. However, in the presence of distractor
features, once unrefinement begins, the agent is restricted to worse and worse refinement options,
resulting in a poorly structured value function. With many poor feature options, good features and
their associated weights are inevitably attached to feature conjunctions that include distractors that
present a random signal, making convergence very difficult. Clearly blacklists are not a successful
approach for handling unrefinement with distractors.

92

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RBN
Policy RBN
Value RBN

(a) No Distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RBD
Policy RBD
Value RBD

(b) Distractors

Figure 5.3: ARtPE for exact using rerefinement and blacklists. In the legend, “R” indicates that
refinement is enabled, “B” indicates that blacklists are enabled for unrefinement, and “D” and “N”
indicate whether distractors are enabled or not.

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −3.94 1.51ms 26.5
Policy Criterion −4.04 1.20ms 25.9
Value Criterion −4.13 1.41ms 26.8

Table 5.5: Agent performance for exact using rerefinement and blacklists
Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −407 4.72ms 30.9
Policy Criterion −187 8.55ms 87.1
Value Criterion −159 5.55ms 44.7

Table 5.6: Agent performance for exact with distractors using rerefinement and blacklists

93

5.1.4 Boost

Given that blacklisting does not result in good outcomes when distractor features are present, what
might be a better approach? Perhaps something that does almost the opposite?

Hypothesis 5 (Boost Instead of Blacklisting): Since the early choices are likely to be good, boost-

ing the likelihood of reselecting feature axes that have been selected in the past rather than reduc-

ing that likelihood to zero will result in improved performance.

The mechanism I came up with in order to have this effect is to store a counter with each node.
Starting from zero, this counter is incremented each time its direct descendants are refined. After it
is incremented, it is added to a counter associated with the feature dimension being refined. Thus,
the first feature dimension gets a value of 1 added to its counter, the second a value of 2, the third
a value of 3, and so on. A feature dimension can be selected repeatedly, so if one were selected
first and third, it would have a value of 4 associated with it, the sum of 1 and 3. This value is
then used to augment the value of the CATDE, the change to the greedy set of actions for the
policy criterion, or the maximal range for the value criterion. Since those baseline values should
be fairly consistent over time while these boosts are likely to result in ever increasing separation
between them, convergence to one feature dimension selection is likely.

This suggests the introduction of a new parameter for how these boost values should scale
relative to the value naturally associated with the refinement criterion. I set that parameter at 0.1
and have done little in the way of tuning since. While I make no claim of convergence guarantees
from this strategy, it appears to work in practice in my experiments.

Figure 5.4 depicts agent performance when learning the exact task using boost. Detailed
results at 50, 000 steps are listed in tables 5.7 and 5.8. Without distractors, performance generally
worsens, although it actually improves for the policy criterion. The situation is not much better
with distractors, where the value criterion does best by managing to thrash between different
refinements despite the boost criterion. While longer runs going out to 200, 000 steps overcome
these limitations, boost as implemented does not appear to be sufficient to allow the agent to
effectively explore different refinements while converging quickly.

5.1.5 Rerefinement with Boost and Concrete Experiments

Looking at runs going out to 200, 000 steps (not shown) and seeing good learning performance but
poor computational performance due to the ongoing reevaluations of whether rerefinements ought
to be done, I sought to resolve the issue.

Hypothesis 6 (Make Refinements Concrete Eventually): In order to avoid indefinite inefficient

use of computational resources and to avoid discarding significant Temporal Difference (TD)

94

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de
CATDE RON
Policy RON
Value RON

(a) No Distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE ROD
Policy ROD
Value ROD

(b) Distractors

Figure 5.4: ARtPE for exact using rerefinement and boost. In the legend, “R” indicates that
refinement is enabled, “O” indicates that boost is enabled for unrefinement, and “D” and “N”
indicate whether distractors are enabled or not. The policy criterion performs too poorly to appear
in the lower graph.

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −4.14 1.77ms 22.7
Policy Criterion −3.95 2.22ms 24.8
Value Criterion −4.78 1.56ms 15.1

Table 5.7: Agent performance for exact using rerefinement and boost

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −187 12.4 ms 73.2
Policy Criterion −231 33.5 ms 218
Value Criterion −7.42 6.91ms 26.2

Table 5.8: Agent performance for exact with distractors using rerefinement and boost

95

learning, once a refinement has been used for more than some fixed number of steps, make the

refinement concrete and consider no others.

I implement this with another parameter, which I set to 500 steps for the agents without dis-
tractors and 900 steps for the agents with distractors after more extensive tuning. (The question of
when an agent ought to stick to what it knows even if an alternative value function representation
might be better in the long run is challenging when evaluating an agent in a finite number of steps.)
Once the requisite number of steps have passed, when the agent would next consider unrefining
a tile, it instead excises the child internal fringe nodes and stops considering rerefinement. This
saves computational time in the limit and prevents loss of significant TD learning provided that
boost is sufficient to stabilize the node for at least that many steps. Thus boost still has a significant
role to play in achieving some measure of stability.

Figure 5.5 depicts agent performance when learning the exact task using boost and concrete.
Detailed results at 50, 000 steps are listed in tables 5.9 and 5.10. Without distractors, performance
improves for CATDE and the value criterion and computational performance improves across
the board relative to the agents with no rerefinement. Distractors prove more difficult, but again
the value criterion is improved in terms of learning, in terms of computational performance, and
additionally in terms of the number of weights.

Thus the value criterion with rerefinement, boost, and concrete dominates the performance of
the agents using either CATDE or the policy criterion as well as any of the preceding agents
using the value criterion. This confirms Hypothesis 3, that “for complex problems [. . .] the agent

may be able to do [. . .] better by undoing refinements in favor of ones that, in retrospect, may

allow more efficient TD learning.” This in turn entails that Hypothesis 2, that “for problems with

more difficult feature selection problems, adaptive Hierarchical Tile Codings (aHTCs) will result

in better ARgPE or ARtPE than non-adaptive Hierarchical Tile Codings (naHTCs) since they will

allow better choices to be made about which features result in earlier refinements,” is likely to
be correct. If rerefinement can be useful, then clearly refinement of an aHTC can result in better
performance than a naHTC with structure of unknown optimality.

5.1.6 Discussion

Chapter 4 described the theory of how to support a computationally efficient embedding of an
aHTC in a Rete to arrive at the Carli-RRL architecture. This section provides a demonstration
that Carli-RRL can be used to learn to solve the exact objective of Blocks World with high
ARtPE and low WCTPS. I have demonstrated that one can enable and disable refinement and
rerefinement, modify the criteria for choosing to refine or unrefine, adjust the conditions under
which those criteria are tested, and layer additional mechanisms on top of those criteria. I arrived

96

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de
CATDE RCN
Policy RCN
Value RCN

(a) No Distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE RCD
Policy RCD
Value RCD

(b) Distractors

Figure 5.5: ARtPE for exact using rerefinement and boost with concrete. In the legend, “R”
indicates that refinement is enabled, “C” indicates that concrete is enabled for unrefinement with
boost, and “D” and “N” indicate whether distractors are enabled or not. The policy criterion
performs too poorly to appear in the lower graph.

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −3.99 0.605ms 23.6
Policy Criterion −3.91 0.645ms 24.0
Value Criterion −3.71 0.612ms 26.4

Table 5.9: Agent performance for exact using rerefinement and boost with concrete
Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −7.60 19.6ms 596
Policy Criterion −1,100 10.2ms 238
Value Criterion −3.97 12.3ms 284

Table 5.10: Agent performance for exact with distractors using boost with concrete

97

at the best ARtPE for exact by using refinement and rerefinement with boost and concrete for
the value criterion.

Looking at the value criterion in more detail, I take my earlier results and combine them in
Figure 5.7 and tables 5.11 and 5.12 . I additionally zoom in on the first 10, 000 steps in Figure 5.6.
Setting aside my agents that use blacklists, my agents that only refine and do not consider rerefine-
ment of the value function are the slowest to converge in the beginning. This supports my decision
to consider rerefinement in my agents. In fact, unrestricted unrefinement is the fastest to converge
on its suboptimal policy, indicating that I have yet to find an optimal strategy for limiting rerefine-
ment over time. Examining the numbers of weights for each agent is somewhat telling as to how
this might be possible. With only 4.75 weights on average, the agent with unrestricted unrefinement
is able to achieve −10.9 ARtPE in the presence of distractor features. My agent with rerefinement
with boost and concrete provides my best ARtPE, but it requires 284 weights in the presence of
distractor features. That my agents can come even close with unrestricted unrefinement and do so
faster than my other agents is compelling evidence that getting the early refinements exactly right
can significantly improve ARtPE.

0 2,000 4,000 6,000 8,000 10,000

Step Number

−50

−40

−30

−20

−10

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

Value RNN
Value RUN
Value RBN
Value RON
Value RCN

(a) No Distractors

0 2,000 4,000 6,000 8,000 10,000

Step Number

−50

−40

−30

−20

−10

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

Value RND
Value RUD
Value RBD
Value ROD
Value RCD

(b) Distractors

Figure 5.6: Zoomed in ARtPE for exact using the value criterion. In the legend, “N” indicates
that unrefinement is not enabled, “U” indicates that unrefinement is enabled, “B” indicates that
blacklists are enabled for unrefinement, “O” indicates that boost is enabled for unrefinement, and
“C” indicates that concrete is enabled for unrefinement with boost.

98

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

Value RNN
Value RUN
Value RBN
Value RON
Value RCN

(a) No Distractors

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

Value RND
Value RUD
Value RBD
Value ROD
Value RCD

(b) Distractors

Figure 5.7: ARtPE for exact using the value criterion. In the legend, “N” indicates that unrefine-
ment is not enabled, “U” indicates that unrefinement is enabled, “B” indicates that blacklists are
enabled for unrefinement, “O” indicates that boost is enabled for unrefinement, and “C” indicates
that concrete is enabled for unrefinement with boost.

Value at 50, 000 Refinement Unrefinement Blacklists Boost Concrete
ARtPE −3.97 −6.13 −4.13 −4.78 −3.71
WCTPS 1.33ms 1.10ms 1.41ms 1.56ms 0.612ms
Weights 25.6 5.94 26.8 15.1 26.4

Table 5.11: Agent statistics for exact with no distractors

Value at 50, 000 Refinement Unrefinement Blacklists Boost Concrete
ARtPE −4.83 −10.9 −159 −7.42 −3.97
WCTPS 19.0 ms 2.20ms 5.55ms 6.91ms 12.3 ms
Weights 1,459.5 4.75 44.7 26.2 284

Table 5.12: Agent statistics for exact with distractors

99

5.2 Computational Efficiency Comparisons

Here I evaluate the overall computational efficiency of agents implemented using my
RRL architecture for the stack, unstack, and on(a,b) objectives of Blocks World and com-
pare the runtimes of my experiments to those of the agents implemented by Džeroski et al. [2001]

(Section 5.2). Ideally I could compare the computational efficiency of just the value function im-
plementations and not the other costs such as TD updates, agent implementation overhead, and
environment execution. Unfortunately, only total execution time is available from related work
without any specifics of the contribution of only the value function implementation. In Carli-RRL,
overall runtimes are dominated by value function lookups and refinement, where they represent
a combined 60%-80% of the WCTPS. Given the complexity of these processes in RRL archi-
tectures, as I described in Chapter 4, and that TD methods themselves and the environments my
agents explore do not suffer from the same complexity issues, it is likely that slower implemen-
tations experience their increased costs primarily in these processes. This was certainly the case
in my prototype system (Chapter 2), which was slowed down dramatically by my value function
and refinement implementations. Given the unavailability of detailed WCTPS data for competing
systems and my analysis that these are where the costs lie, it is reasonable to use overall runtimes
as proxies for the evaluation of the computational efficiency of my value function and refinement
implementations alone.

5.2.1 Computational Efficiency Compared to Soar and Carli-Prop

I believe one of the most important contributions of this work is the computational efficiency of
my RRL architecture since it potentially paves the way for more widespread adoption of RRL. If
it costs little more than linear function approximation, then it can be applied to a wider variety of
tasks where it would not have seemed worthwhile to apply RRL before.

In Section 2.3, I observed that the Soar agents took 5.926 seconds on average to execute
Blocks World for 1000 steps on a i7-7700HQ CPU. The Carli for Propositional Representa-
tions (Carli-Prop) agents using k-dimensional tries (k-d tries) took 0.049 seconds on average – a
speedup factor of 120. Switching to Carli-RRL for full support of relational representations using
Rete, execution times increase to 0.122 seconds on average, which is still a speedup factor of 49.
Soar, Carli-Prop, and Carli-RRL are all executing with support for aHTCs for these benchmarks.

For Puddle World, executing for 50,000 steps I observed an average runtime of 51.426 seconds
for Soar and 0.738 seconds for Carli-Prop. This is a speedup factor of 70 for Carli relative to
Blocks World. Switching to Carli-RRL, execution times increase to 2.586 seconds on average,
which is still a speedup of factor of 20.

These results, presented as time per step in Table 5.13, demonstrate the computational effi-

100

Environment Soar Carli-Prop Carli-RRL
Blocks World 2.3.1 5926µs 49µs 122µs
Puddle World 2.3.2 1028µs 15µs 52µs

Table 5.13: Time per step for Blocks World (Section 2.2.1) and Puddle World (Section 2.2.2)

ciency of my RRL implementation. Using a Rete implementation, comparable to that used by
Soar, I achieve a significant speedup for the same task. This speedup is larger for the environment
with more relational structure. Additionally, my Carli-RRL agents have a great deal of relational
power at their disposal that the Soar implementation did not provide, as I demonstrated with my ex-
periments learning the exact objective with goal configurations that vary from episode to episode
in Section 5.1 on page 85 – a task that neither my Soar implementation nor Carli-Prop could have
attempted.

5.2.2 Computational Efficiency vs Džeroski et al.

I compare performance of the ultimate version of my online, incremental RRL implementation as
described in chapter 4 to the offline RRL architecture implemented by Džeroski et al. [2001] for
training on instances of 3-5 blocks for 45 episodes. Their architecture uses Top-down Induction
of Logical DEcision trees (TILDE) to include First Order Logical Decision Trees (FOLDTs) that
correspond to ATCs rather than aHTCs. They use a model that maps state-action pairs to their most
recent Q-values in order to allow TILDE to induce a tree from scratch (non-incrementally) using
standard information gain criteria.

For the experiments in this section, my agents use a variant of Boltzmann (or softmax) ex-
ploration, perhaps first used in the context of Reinforcement Learning (RL) by Watkins [1989],
that involves selecting actions with probabilities based on a version of the Boltzmann (or Gibbs)
distribution:

Pr(ai|s) =
T−Q(s,ai)∑n
i=0 T

−Q(s,ai)
(5.1)

from Džeroski et al. [2001] or alternatively

Pr(ai|s) =
TQ(s,ai)∑n
i=0 T

Q(s,ai)
(5.2)

from Irodova and Sloan [2005]. For equation 5.1, T represents a temperature that can be decayed
to near 0 to reduce exploration over time. For equation 5.2, T acts in the opposite fashion, and
increasing it over time reduces exploration. Equation 5.2 is the formulation that I implemented for
my agents for these two sections.

I use off-policy Greedy-GQ(λ) with α = 0.05, ρ = 0.03, γ = 0.8, and λ = 0.1 and the value

101

criterion (see Section 5.1.1 on page 87) with a 10 step delay for refinement, 20 for unrefinement
with boost, and 40 for concrete (which I will describe in Section 5.1). I compare against their
architecture using features that can learn any of these three tasks.

My total 14 binary relational features include:

1. On(<moving-block>, TABLE)

2. On(<destination-block>, TABLE)

3. Higher-than(<moving-block>, TABLE)

4. Higher-than(<destination-block>, TABLE)

5. Clear(<block-3>)

6. On(<block-3>, TABLE)

7. On(<moving-block>, <block-3>)

8. On(<destination-block>, <block-3>)

9. Above(<moving-block>, <block-3>)

10. Above(<destination-block>, <block-3>)

11. Higher-than(<block-3>, <moving-block>)

12. Higher-than(<block-3>, <destination-block>)

13. Higher-than(<moving-block>, <block-3>)

14. Higher-than(<destination-block>, <block-3>)

On(a,b) has two additional variables corresponding to the goals and allows for 8 additional
binary relational features that include:

15. Goal-on(<moving-block>, <goal-bottom>)

i.e. The block being moved is the top block in the goal.

16. Goal-on(<goal-top>, <moving-block>)

i.e. The block being moved is the bottom block in the goal.

17. Goal-on(<destination-block>, <goal-bottom>)

i.e. The destination block is the top block in the goal.

102

18. Goal-on(<goal-top>, <destination-block>)

i.e. The destination block is the bottom block in the goal.

19. Above(<moving-block>, <goal-top>)

20. Above(<moving-block>, <goal-bottom>)

21. Above(<destination-block>, <goal-top>)

22. Above(<destination-block>, <goal-bottom>)

My more minimal agents include only features 4 and 14 for stack, features 4, 12, and 14 for
unstack, and features 15-22 for on(a,b). It is worth noting that there is no overlap between
the features useful for on(a,b) and for the other two objectives they considered.

Džeroski et al. [2001] trained on 3 blocks for the first 5 episodes, for 4 blocks for the next 15,
and 5 blocks for the final 25 for 45 episodes total, so I follow an identical approach. Comparing
against their results, my agents achieve a speedup between 375 for on(a,b) and 543 for stack.
These numbers are from Carli-RRL compiled using GCC 5.5 for a version of Debian Sparc
and run on a Sun Ultra 5/270 – the same hardware used by Džeroski et al.. Language and
compiler differences may play a role in our performance differences, but hardware gives my agents
no advantage. These results, depicted in Table 5.14, make it clear that my agents represent a
drastically more efficient RRL implementation than that implemented by Džeroski et al.. These
results confirm Hypothesis 4 on page 57.

While the optimality of my agents does not match that of the Q-RRL agents by Džeroski et

al. [2001] for on(a,b), my agents do better than theirs for stack and unstack (Figure 5.8)
despite storing only summary statistics and operating fully online and incrementally. This speaks to
the efficacy of aHTCs and demonstrates that achieving good WCTPS does not necessarily demand
more experience to achieve the same degree of optimality.

Most importantly, I demonstrated here that the Carli-RRL architecture as implemented using
Rete for aHTCs is more computationally efficient, achieving a two orders of magnitude speed up
over the canonical RRL architecture as implemented by Džeroski et al. [2001] in Section 5.2.
These speedups are consistent for the stack, unstack, and on(a,b) objectives.

5.3 Exact Policy Scalability

Here I evaluate the scalability of an approximately suboptimal but scalable policy that was pre-
learned using Carli-RRL for Blocks World exact. (See Section 5.1.) The binary relational fea-
tures that comprise the value function for this agent’s policy include features 1-4 from Section 5.1.
The agent was trained on 3-5 blocks as described in Section 5.1.5.

103

0 5 10 15 20 25 30 35 40 45

Episode Number

0

20

40

60

80

100

Pe
rc

en
tO

pt
im

al
ity

Q-RRL
Carli-RRL

(a) Stack

0 5 10 15 20 25 30 35 40 45

Episode Number

0

20

40

60

80

100

Pe
rc

en
tO

pt
im

al
ity

Q-RRL
Carli-RRL

(b) Unstack

0 5 10 15 20 25 30 35 40 45

Episode Number

0

20

40

60

80

100

Pe
rc

en
tO

pt
im

al
ity

Carli-RRL
Q-RRL

(c) On(a,b)

Figure 5.8: Comparison of percent optimality over the course of training between Q-RRL
[Džeroski et al., 2001] and Carli-RRL.

Task Džeroski et al. Carli-RRL Speedup
Stack 13,900s 25.6s 543
Unstack 36,400s 80.1s 454
On(a,b) 44,600s 119 s 375

Table 5.14: Runtimes for 45 episodes of training for Blocks World (Section 2.2.1) with 3-5 blocks
averaged over 10 runs

104

0 10 20 30 40 50 60 70

Number of Blocks

0

20

40

60

80

100

120

140

N
um

be
ro

fS
te

ps

Table
Carli-RRL
Optimal

Figure 5.9: A graph of the number of steps taken by my agents with a general solution to exact
with variable target configurations when compared to optimal. Each point in this graph represents
one run. I additionally present an expected number of steps for a policy moving all blocks to the
table and then into place for a rough upper bound.

It is interesting to ask how an architecture scales as numbers of objects and relations increases.
If scaling up results in catastrophic slowdowns, the computational complexity of the architecture
is too high. Architectures that scale well are desirable.

While I am concerned primarily with scalability of this agent in terms of WCTPS as the number
of blocks increases, it is worthwhile to investigate the degree of optimality that is achievable with
its policy as well. Figure 5.9 presents both the number of steps it takes my 3-5 block pretrained
Carli-RRL agent to solve a single, randomly generated exact objective and the number of steps
that an optimal agent takes for that same scenario, for 3 blocks through 75 blocks. (Computation
of optimal policies becomes prohibitively expensive past 75 blocks.) It additionally includes the
expected number of steps for a given number of blocks for an agent that moves all blocks to the
table and then moves them into place as efficiently as possible, providing an upper bound for the
expected number of steps that an agent should take to solve an exact instance. Doing linear
regressions of all three plots, the slope of the optimal runs is approximately 1.30, the slope of
the Carli-RRL agent is approximately 1.51, and the slope of the “table” agent is approximately
1.75. This gives an expected overhead of 15% more steps for the Carli-RRL agent, which is
significantly less than the expected 35% overhead of the “table” agent. Considering the high cost
of calculating optimal using A∗, and that exact is actually NP-hard [CHENOWETH, 1991], a
policy learned using RRL that does not radically diverge as the number of blocks increases and
regularly outperforms the “table” agent can be viewed as a success.

The numbers that can affect the performance of my agents are the numbers of blocks and the
numbers of stacks of blocks. Figure 5.10 depicts agent computational performance for the exact

105

0 20 40 60 80 100

Number of Blocks

0.01

0.1

1

10

100

1,000

Ti
m

e
(S

ec
on

ds
)

Exact
Exact Disabled Caching
Exact Disabled Node Sharing
Exact Disabled Node Sharing and Disabled Caching

(a) For One Episode

0 20 40 60 80 100

Number of Blocks

0.01

0.10

1.00

10.00

Ti
m

e
(S

ec
on

ds
)

Exact
Exact Disabled Node Sharing

(b) For The First Step

0 10 20 30 40 50 60 70

Number of Blocks

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

A
ve

ra
ge

Ti
m

e
Pe

rS
te

p
(S

ec
on

ds
)

Exact

(c) For An Average Step

Figure 5.10: Computational performance for agents using aHTCs. Variance is a little high since
each data point in these graphs represents only one run for each number of blocks rather than an
average. For Figure 5.10b in particular, the number of stacks of blocks at the start of a run is
somewhat random.

106

objective as the number of blocks in the environment increases.

One might observe, looking at Figure 5.10a, that processing only changes from step to step
results in the vast majority of the computational savings in the exact environment. (Flushing
Working Memory Elements (WMEs) ensures that full processing is done each step instead of
processing only changes.) In fact, the benefits of node sharing in the Rete – sharing work between
different rules, tiles, or queries (to use the terminology of Driessens et al. [2001]) where they share
conditions and conjunctions of conditions – is negligible without sharing work from step to step.

5.4 Online Transfer Experiments

In this section, I explicitly evaluate the assumptions underlying the training schedules used in
Section 5.2. I matched related work in training on 3 blocks, then 4, and so on. However, the
related work did not demonstrate the benefit of doing so. Here I demonstrate that transfer occurs
in Carli-RRL as a result of this kind of training.

5.4.1 Transfer for Blocks World

The agents in these experiments use the full sets of features described in Section 5.1 (including the
distractors) and in Section 5.2.2. Figures 5.11a through 5.11d present the ARgPE for Blocks World
agents acting on 5 blocks with no pretraining, with 1,000 steps of pretraining on 3 blocks, with
1,000 steps of pretraining on 3 blocks and an additional 2,000 steps of pretraining on 4 blocks, or
with 3,000 steps of pretraining on 5 blocks.

I include agents which have pretrained on 5 blocks, the number of blocks used during the
evaluation, in order to at least partially dispel the notion that any benefit of transfer simply results
from having had more experience. Examining Figures 5.11b through 5.11d, it is clear that in
the beginning, the agents which transfer experience from having pretrained on 3 blocks and then
4 blocks have a distinct advantage over even the agents which have pretrained on the 5 block case.
Whatever the agent learns from the simpler cases results in better initial ARgPE in the 5 block
scenario. For some intuition as to why, consider that the odds of randomly solving instances in
early exploration are higher when the number of blocks is small, that the lengths of episodes is
shorter in general, allowing an agent training on fewer blocks to experience more episodes, and
that the relational features function independently of the number of blocks.

However, with the exception of on(a,b), by the end of 10,000 steps, the agents that have
trained on 5 blocks for 3,000 steps are doing better with respect to ARgPE than the agents that
pretrained on 3 blocks and then on 4 blocks, which would seem to indicate that those agents
actually converge on a more optimal policy more quickly. The overall regret experienced may be

107

0 2,000 4,000 6,000 8,000 10,000

Step Number

0

5

10

15

20

25

30

A
ve

ra
ge

R
eg

re
tP

er
E

pi
so

de
0
1000/3
1000/3 + 2000/4
3000/5

(a) Stack

0 2,000 4,000 6,000 8,000 10,000

Step Number

0

50

100

150

200

250

A
ve

ra
ge

R
eg

re
tP

er
E

pi
so

de

0
1000/3
1000/3 + 2000/4
3000/5

(b) Unstack

0 2,000 4,000 6,000 8,000 10,000

Step Number

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

R
eg

re
tP

er
E

pi
so

de

0
1000/3
1000/3 + 2000/4
3000/5

(c) On(a,b)

0 2,000 4,000 6,000 8,000 10,000

Step Number

0

500

1,000

1,500

2,000

2,500

3,000

A
ve

ra
ge

R
eg

re
tP

er
E

pi
so

de

0
1000/3
1000/3 + 2000/4
3000/5

(d) Exact

Figure 5.11: Transfer experiments with agents with (red) no pretraining, (green) 1000 steps of
pretraining on 3 blocks, (blue) 1000 steps of pretraining on 3 blocks and an additional 2000 steps
of pretraining on 4 blocks, or (orange) 3000 steps of pretraining on 5 blocks – the number of blocks
I evaluate the agents on in these graphs.

higher if one considers the pretraining, but if achieving an optimal policy as quickly as possible
is your objective, transfer may not be best. I actually had more difficulty achieving good percent
optimality when comparing against [Džeroski et al., 2001] in Figure 5.8 once I copied their training
schedule, so this conclusion is consistent with that experience.

Additionally, it is worth noting that for stack, pretraining on 5 blocks seems to be sufficient
to actually start off with better ARgPE than the transfer agents in Figure 5.11a. This illustrates the
simplicity of learning the optimal policy for stack.

5.4.2 Transfer for Taxicab

I first encountered the Taxicab problem in [Dietterich, 1998]. I present the canonical layout, minus
the walls, in Figure 5.12a. There is a taxicab with 14 maximum fuel that expends 1 fuel per move
in any cardinal direction. The agent is aware of both which possible destination, represented with
a color, a passenger is waiting at and which destination that passenger wishes to be taken to. It

108

must navigate to the passenger, execute a pickup action to collect the passenger, navigate to the
destination, and execute a drop off action to deliver the passenger. Along the way, the agent must
potentially stop at filling stations to execute a refuel action that refills the taxicab to its maximum
fuel in order to avoid running out of fuel and thereby being unable to complete its delivery. Running
out of fuel at the destination with the passenger on board is not a failure condition, nor is running
out of fuel exactly at a filling station. With -1 reward per step and a significant penalty of -100
for failure, an agent must learn to accomplish this task as efficiently as possible. For purposes of
simplicity, I do not incorporate walls, as were present in the original version.

I developed a scalable, parameterized version of the Taxicab environment. For a specified grid
size, amount of fuel, number of filling stations, and number of destinations, an instance can be
randomly generated. To ensure solvability, I enforce that all filling stations are reachable from
one another using a full tank, that all destinations are within range of at least one filling station
using only half a tank of fuel, and that the taxicab always starts with sufficient fuel to reach at least
one filling station. For large grids relative to the amount of fuel, it may be the case that multiple
refueling stops are necessary in order to move from one destination to another.

For a difficult example, let us refer to the layout in Figure 5.12b. If an agent begins with 7/14

fuel and must deliver a passenger from red to pink, it has a difficult task ahead of it. It must:

1. Navigate to the filling station in the lower right

2. Refuel

3. Navigate to the filling station in the lower left

4. Refuel

5. Navigate to either red or the refilling station in the upper right

6. Either collect the passenger or refuel

7. Navigate to the other location from Step 5

8. Either refuel or collect the passenger

9. Navigate back to the filling station in the lower left

10. Refuel

11. Navigate back to the filling station in the lower right

12. Refuel

109

(a) Canonical 5x5

(b) A 12x12 Instance

Figure 5.12: Taxicab

110

13. Navigate to pink

14. Drop off the passenger

An agent capable of succeeding at this task for arbitrary, variable instances must have capabilities
beyond those of agents that solve only a single fixed instance with a single filling station.

The relational features available to my agents include:

1. Action(MOVE), Action(REFUEL), Action(PICKUP), or
Action(DROPOFF)

2. Move-direction(NORTH), Move-direction(SOUTH),
Move-direction(EAST), Move-direction(WEST),
or Move-direction(NONE) (for non-move actions)

3. Passenger-at(SOURCE), Passenger-at(DESTINATION), or
Passenger-at(TAXICAB)

4. Fuel-for-next-stop(INSUFFICIENT),
Fuel-for-next-stop(SUFFICIENT_ONEWAY), or
Fuel-for-next-stop(SUFFICIENT_ROUNDTRIP)

5. Toward-next-stop(TRUE) or Toward-next-stop(FALSE)

6. Toward-fuel(TRUE) or Toward-fuel(FALSE)

7. Toward-fuel-for-next-stop(TRUE) or
Toward-fuel-for-next-stop(FALSE)

Features 4 through 7 might be provided by any modern navigation system. I would characterize
my agents as learning the top level problem of deciding what to do next, but not having to learn
the details of how to navigate to a particular location, or how to find filling stations. Since a move
action can be toward the next stop but still result in failure given fuel constraints and an action can
be toward fuel but in the wrong direction, there still exists some complexity to the policy that an
agent must learn to be successful in the general case.

For Taxicab, my agents use on-policy Greedy-GQ(λ) with α = 0.01, ρ = 0.1, γ = 0.99, and
λ = 0.3 and the value criterion (see Section 5.1.1 on page 87) with a 20 step delay for refinement,
50 for unrefinement with boost, and 100 for concrete (which I will describe in Section 5.1). My
agents use Boltzmann exploration with temperature initially set to 1/10 with the denominator being
incremented by 0.1 after each episode. Additionally, my agents have a 100 step cutoff to prevent

111

0 5,000 10,000 15,000 20,000 25,000 30,000

Step Number

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

R
eg

re
tP

er
E

pi
so

de

0
10000/2
10000/2 + 10000/3
20000/4

Figure 5.13: A transfer experiment for Taxicab with agents with (red) no pretraining, (green) 10000
steps of pretraining on 2 filling stations with 6 destinations, (blue) 10000 steps of pretraining on 2
filling stations with 6 destinations and an additional 10000 steps of pretraining on 3 filling stations
with 8 destinations, or (orange) 20000 steps of pretraining on 4 filling stations with 10 destinations
– the scenario I evaluate the agents on in these graphs.

them from cycling indefinitely to prevent failure, which can result in the lesson that failure is better
than trying forever.

For purposes of this transfer experiment, the objective for my agents is to operate with up
to 14 fuel in a 20x20 grid with 4 filling stations and 10 destinations. I hold fuel and the grid
size constant but decrease the number of filling stations and destinations to 2 or 3 and 6 or 8
respectively. Transfer results are presented in Figure 5.13. The agents that have 10, 000 steps of
pretraining on only 2 filling stations with 6 destinations and then 10, 000 more steps on 3 filling
stations with 8 destinations perform nearly as well as the agents that trained on 4 filling stations
from the beginning. Again, this provides further evidence that achieving a more optimal policy
more quickly through transfer is a challenging problem, but that reducing overall ARgPE through
transfer is attainable.

5.5 Average Return Per Episode (ARtPE) Evaluation

I introduced ARgPE and ARtPE early in this thesis (Section 1.2.2) and used ARtPE extensively
throughout. Let us revisit my agents for the exact objective of Blocks World and plot ARtPE
against the number of episodes (Figure 5.14a) in addition to plotting ARtPE against the number
of steps (Figure 5.14b) to allow evaluation of whether my decision to use plots of ARtPE against
steps was well informed. I plot 5, 000 episodes or 50, 000 steps since episode lengths on average
are in the neighborhood of 5 steps long.

112

0 1,000 2,000 3,000 4,000 5,000

Episode Number

−50

−40

−30

−20

−10

0
A

ve
ra

ge
R

et
ur

n
Pe

rE
pi

so
de

CATDE
Policy
Value

(a) Episodic

0 10,000 20,000 30,000 40,000 50,000

Step Number

−50

−40

−30

−20

−10

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE
Policy
Value

(b) Stepwise

Figure 5.14: ARtPE for agents learning the exact objective in Blocks World plotted against
episodes and against steps.

113

The episodic plot results in all three agents looking very similar. The value criterion appears
to be marginally better than CATDE, and both appear to be better than the policy criterion, but
the patterns of improvement appear to be identical. The stepwise plot however, such as the ones I
include throughout this thesis, illustrates the characteristic differences in the improvement of the
ARtPE of these agents. The agents using the value criterion clearly arrive at a near optimal policy
in approximately half the number of steps as those using either CATDE or the policy criterion.
Additionally, it is possible to observe that CATDE overtakes the policy criterion at around 8, 500

steps. These details are lost when plotting episodically since early episodes that are quite long
are treated as equivalent to the shorter ones experienced by the more successful agents. Plotting
stepwise makes the costs of longer episodes more explicit. This affirms that my decision to plot
ARtPE stepwise throughout this thesis was useful for doing my evaluations.

5.6 Discussion

I opened this chapter with an evaluation of the ARtPE and WCTPS achievable with Carli-RRL
for the exact objective of Blocks World (Section 5.1). As part of that process, I additionally
evaluated the efficacy of using CATDE, a policy criterion, and a value criterion for value function
refinement, and found the value criterion to be generally the most effective in terms of ARtPE.
Additionally, I explored the utility of doing unrefinement in conjunction with either blacklists, a
novel boost mechanism, or the boost mechanism in conjunction with a concrete mechanism for
eventually finalizing refinements. These are all minor contributions of this dissertation.

I then compared the WCTPS of my prototype architecture from Chapter 2, Carli-Prop, and
Carli-RRL and found Carli-RRL to be far better than the prototype and within a factor of 3-4 of
Carli-Prop even with the added functionality to support RRL. I additionally compared its perfor-
mance to that of Džeroski et al.’s [2001] Q-RRL and found significantly better percent optimality
past a small number of episodes for stack and unstack with a two orders of magnitude reduc-
tion in computation time. This demonstrates that Carli-RRL has been successful in significantly
reducing the costs of RRL without significantly reducing its learning capabilities.

Investigating the ability of my agents to transfer learning, I first evaluated the degree of opti-
mality achieved by my Carli-RRL agent for the exact objective as the number of blocks scales
up. The policy consistently achieves a level of optimality greater than that of an agent that simply
moves everything onto the table and then into place as the number of blocks scales up. I addition-
ally evaluated transfer achieved by learning first on smaller numbers of blocks and working up to
bigger problem instances, and showed that transfer is effective in reducing ARgPE.

114

CHAPTER 6

Higher Complexity, Higher Order Grammar

The grammar as defined in Section 4.3 provides methods for manipulating existing features and
for generating subtiles for ranged features. However, there is a limitation implicit in it that
might be difficult to notice without extensive consideration. That limitation is that the number
of Variables is fixed from the start, even if ranged features allow for potentially unlimited
refinement.

This limitation is less onerous that it might sound. Given that Variables can match unlimited
numbers of objects in the world, it could be considered a kind of attentional limitation for an agent
rather than a limit on the number of things that can be considered. However, if an agent must
attend to a variable or unknown number of some class of object (i.e. must include a variable or
unknown number of them in a feature conjunction) in order to be able to succeed in a task, then
this limitation poses a problem.

Consider the kinds of features used by Džeroski et al. [2001] in solving tasks in Blocks World
(Section 1.3.1). Their features, listed in Section 1.3.5 on page 27, are actually sufficient to solve
stack, unstack, and on(a,b) with a fixed number of Variables. Their agents appear to
refer to at most 3 blocks in any feature conjunction. One can consider only the block to be moved,
the destination block, and some third block and know enough to decide the next action. The
existentials and existential negations in Carli for Relational Reinforcement Learning (Carli-RRL)
provide a great deal of representational power, allowing an agent to learn a lot, even without the
ability to attend to a fourth block. For example, the questions of whether the block being moved is
higher than the destination block and whether there exists a third block that the destination block
is higher-than are sufficient to make good decisions for the stack task. One need never
consider a fourth block at the same time.

The exact task is more demanding. Without a memory or a planning method in addition to
Reinforcement Learning (RL), an RL agent is forced to attend to the entire state at once to make
good decisions using Džeroski et al.’s features. For an unknown number of blocks, the ability
to add more and more Variables is necessary if an agent is to have any chance at learning

115

to achieve all of the possible goal configurations of exact. Even then, the first time an agent
encounters a case in which it must attend to a fourth block when it has only learned to handle
three, it will have more learning to do.

Carli-RRL solved exact in Chapter 5 using a set of features that is stack-oriented rather than
block-oriented. That is, features considered whether a stack in the world matched a stack in the
goal configuration rather than considering whether individual blocks were clear or on top of one
another. Here Carli-RRL attempts to solve exact using only on-top relations between individual
blocks in the environment and in the goal configuration – a much more difficult task than any
of the ones the Relational Reinforcement Learning (RRL) agents implemented by Džeroski et al.
[2001] solved. To do this, the method I pursue is to extend Carli-RRL’s grammar for mapping
adaptive Hierarchical Tile Codings (aHTCs) onto Rete to support the derivation of new features
that test additional variables that were previously not addressed by any existing features of the
agent. At the time of refinement, this Higher Order Grammar (HOG) will require that new features
are created that correspond to existing relations but with a new variable in the place of one that
already exists. This requirement is in addition to the standard refinement requirements that features
for other feature dimensions are copied into the fringes of the new features and that new features
are created corresponding to further refinement of existing continuous variables.

This will enable an agent to consider only one relation, such as on(a,b), and to then decide to
consider on(a,c) and on(c,b) as well. This will eventually allow it to solve higher complexity
problems. This is something that Top-down Induction of Logical DEcision trees (TILDE) by
Džeroski et al. [2001] was capable of doing, but it depended on the presence of a model in the
form of a map of state-action pairs onto most recent Q-values in order to allow TILDE to generate
new First Order Logical Decision Trees (FOLDTs) offline from scratch. My goal in implementing
my HOG is to continue to allow my agents to incrementally refine its aHTCs, and without the use
of a model.

I describe the implementation of this HOG in Section 6.1. I describe an additional extension in
Section 6.2 to support the case in which the number of relevant objects in the world dips below the
number of variables used by the agent to refer to that class of object. I test its ability to solve the
exact objective in Blocks World in Section 6.3. Then I evaluate its efficacy on a new adventure
task in Section 6.4.

6.1 Implementation

My method of extending my rule grammar has one objective: to allow the creation of features
in fringe nodes that are like existing features, but have new variables in the place of old ones.
Requirements include:

116

1. A guarantee that the new variable is truly distinct from existing variables. It is easy to write
rules in which different variables can refer to the same object, but I want to avoid this to
ensure that on(A,B) tests something different from on(C,D).

2. The ability to distinguish the arity of the HOG feature. That is, should a successor to
a feature comparing <block-2> to <block-3> consider generating features compar-
ing both <block-2> to <block-4> and <block-4> to <block-3> (binary) or just
<block-2> to <block-3> (unary)?

3. The ability to distinguish features that should be part of this HOG (unary or binary) from
ones that should not be (nullary).

Consider the HOG rules in Figure 6.1. They introduce a third block Variable and ensure
that it refers to a block different from the one referred to by either of the block Variables that
preceded it. The introduction of a fourth block Variable would require an additional inequality
comparison predicate node to compare against <block-3> for a total of 3, a fifth would require
another still to compare against <block-4>, and so on. The HOG rules in Figure 6.1 can be
simplified if those features are part of a feature conjunction that already includes <block-3>, as
depicted in Figure 6.2.

It is not apparent from just the conditions whether a feature such as that depicted in Figure 6.1b
is a unary or binary HOG feature or a nullary, non-HOG feature. For that reason, I make a critical
change for these rules in the :feature directive. Between the type of node and the name of the
parent, I insert an integer specifying the arity of the HOG rule. If the feature itself refers to only
one instance of the HOG Variable, as in Figure 6.1a, then it is a unary HOG rule. If it refers to
two instances of the HOG Variable, as in Figure 6.1b, then it is a binary HOG rule.1

1<block-1> and <block-2> do not count as instances of the HOG Variable for purposes of being marked
binary since they are in the original bw*general and were not introduced by rules that are part of the HOG. Ordinary
Hierarchical Tile Coding (HTC) rules handle the cases involving only <block-1> and <block-2> separately.

117

sp {bw*block-unary-3on0-t
:feature 2 fringe 1 bw*...
&bw*general
(<blocks> ^block <block-3>)
(<block-3> != <block-1>)
(<block-3> != <block-2>)
+(<block-3> ^on <table>)

-->
= 0.0

}

(a) Unary HOG rule

sp {bw*block-binary-2on3-t
:feature 2 fringe 2 bw*...
&bw*general
(<blocks> ^block <block-3>)
(<block-3> != <block-1>)
(<block-3> != <block-2>)
+(<block-2> ^on <block-3>)

-->
= 0.0

}

(b) Binary HOG rule

Figure 6.1: Higher Order Grammar (HOG) rules for Blocks World from Section 1.3.1

sp {bw*f86
:feature 2 fringe 1 bw*...
&bw*u58
+(<block-3> ^on <table>)

-->
= 0.0

}

(a) Unary HOG rule

sp {bw*f88
:feature 2 fringe 2 bw*...
&bw*u63
+(<block-2> ^on <block-3>)

-->
= 0.0

}

(b) Binary HOG rule

Figure 6.2: Rules implementing Higher Order Grammar (HOG) features from Figure 6.1 can be
simplified once <block-3> has been introduced.

sp {blocks-world*f273
:creation-time 103
:feature 4 fringe 1 bw*u123
&bw*u123
(<blocks> ^block <block-4>)
(<block-4> != <block-1>)
(<block-4> != <block-2>)
(<block-4> != <block-3>)
+(<block-4> ^on <table>)

-->
= -2.9 63.5 0.9 0.0 0

}

Figure 6.3: Unary Higher Order Grammar (HOG) successor for 6.1a

118

sp {bw*f270
:creation-time 103
:feature 4 fringe 2 bw*u123
&bw*u123
(<blocks> ^block <block-4>)
(<block-4> != <block-1>)
(<block-4> != <block-2>)
(<block-4> != <block-3>)
+(<block-2> ^on <block-4>)

-->
= -2.9 63.5 0.9 0.0 0

}

(a) Binary HOG successor #1

sp {bw*f271
:creation-time 103
:feature 4 fringe 2 bw*u123
&bw*u123
(<blocks> ^block <block-4>)
(<block-4> != <block-1>)
(<block-4> != <block-2>)
(<block-4> != <block-3>)
+(<block-3> ^on <block-4>)

-->
= -2.9 63.5 0.9 0.0 0

}

(b) Binary HOG successor #2

Figure 6.4: Binary Higher Order Grammar (HOG) successors for 6.1b

A unary successor to the rule depicted in Figure 6.1a can be seen in Figure 6.3. It extends the
rule with the introduction of <block-4> and adds a string of negation
Predicate Nodes one longer than that required by <block-3>. The binary HOG rule in
Figure 6.1b actually has two successors, as depicted in Figure 6.4. The rule in Figure 6.4a changes
the relation between <block-2> and <block-3> to refer to <block-2> and <block-4>.
The rule in Figure 6.4b instead changes the relation between <block-2> and <block-3> to
refer to <block-3> and <block-4>. This kind of double successor is necessary for any binary
HOG feature that refers to the most recent two HOG Variables. Since any features referring
to only <block-1> through <block-3> that remain as part of the fringe post-refinement must
be copied down as successors as well. This means that with a grammar including binary HOG
features, one fringe node at a given level of refinement can translate to as many as three at the next
level of refinement.

6.1.1 Tractability

While the number of features in the fringe must monotonically decrease for non-HOG features, the
HOG changes that picture drastically and allows for explosions in the number of possible features
to consider. This cost of a HOG quickly becomes prohibitive, as each new Variable has a cost
complexity per token of

n∑
i=n−k

i (6.1)

119

where n refers to the number of blocks in the environment and k refers to the kth block Variable.
The number of tokens matching for the kth block Variable corresponds to the binomial coeffi-
cient,

(
n
k

)
, resulting in the combined complexity for Variables 1 through k:

k∑
j=1

{(
n

j

) n∑
i=n−j

i

}
(6.2)

Since that is O(n!n2) in the limit as k → n, clearly this is tractable only for small values of k and
n. The jump from 3 blocks to 4 blocks increases complexity by a factor of 7 even before new fea-
tures using those Variables are actually taken into consideration. Thanks to the Rete algorithm
(Section 4.2), fringe nodes for a given unsplit node can share this computational cost but, as
the number of new Variables grows, the O(n!n2) growth will eventually kill performance.

That being said, the HOG, even in its current form, is still potentially useful for small numbers
of Variables. For example, for an adventure environment (introduced in Section 6.4) in which
an enemy may or may not be present, rather than writing rules to awkwardly handle a null enemy,
I can use a HOG Variable for the enemy to handle whether there may be an enemy or not, and
it will automatically generalize to handle additional enemies as needed.

6.2 Null Higher Order Grammar Rules

At this point an astute reader might inquire as to how I actually handle the case of whether
<block-4> is present or not. Up until this point in my explanation of the HOG, I have actu-
ally skipped that test. More precisely, it comes bundled with tests of features dependent on the
new Variable. This is desirable for my refinement criteria, since the mere presence or absence
of a feature is unlikely to have much signal to determine whether refinement ought to occur or not,
and this is particularly true in cases where absence never occurs.

However, this is potentially quite problematic. Should the agent ever refine over a feature
referencing <block-4>, it will be impossible to incorporate new features into its value function
for cases in which no fourth block is present without unrefining past the point of inclusion of
<block-4>. By bundling the introduction of the Variable with the new features testing it, I
have inadvertently failed to fully partition the state space. The solution is to include a null path for
the case in which the Variable is not present. A null-HOG rule can be seen in Figure 6.5. With
the introduction of the null-HOG Node, testing the presence or absence of <block-4> works as
expected.

This solution is not ideal since, assuming generalization is possible from the 3-block case to
the 4-block case, once <block-4> is introduced, any further features used for learning about

120

sp {bw*block-nullhog
:feature 2 fringe 0 bw*general
&bw*general
-{(<s> ^blocks <blocks>)
(<blocks> ^block <block-1>)
(<blocks> ^block <block-2>)
(<block-2> != <block-1>)
(<blocks> ^block <block-3>)
(<block-3> != <block-1>)
(<block-3> != <block-2>)}

-->
= 0.0

}

Figure 6.5: Null-HOG rule for <block-3>

the 3-block case will have to be learned over separately for the case in which there are 4 or more
blocks. In the extreme case where a feature testing <block-4> is selected immediately after
the first feature testing <block-3>, almost all learning specifically for the 3-block case will be
redundant with learning for cases involving 4 or more blocks. However, the ability to do this
redundant learning fixes the incomplete partitioning problem introduced by the introduction of
new features and allows the 3-block case to be learned out of order with the 4-block case. It is
generally preferable to learn the 3-block case, then the 4-block case, and finally the 5-block case
to reduce the likelihood of feature refinement being necessary below null-HOG Nodes.2

6.3 Blocks World, Exact Objective – A HOG Stress Test

With a higher order grammar implemented, I chose to evaluate its capabilities using the exact
objective for Blocks World.

Here I present a stress test for my HOG, by attempting to solve Blocks World for 3-5 blocks. As
most features Džeroski et al. [2001] described would not be useful for a fully specified objective,
I restricted the features for my HOG agent to on(a,b) relations. I have two types of on(a,b)
relations: ones that describe the current state of the world (i.e. on(a,b)) and ones that describe
the objective (i.e. goal-on(a,b)). Given such a meager representation, this effectively stress
tests my architecture to see if it can learn to solve the problem.

Training my HOG agents for exact, I used off-policy Greedy-GQ(λ) with α = 0.03, ρ =

0.01, γ = 0.9, and λ = 0.3 and the value criterion with a 20 step delay for refinement, 50 for
unrefinement with boost, and 100 for concrete. The values for unrefinement delays and concrete

2Originally training strictly with this pattern, I did not initially observe the need for null-HOG Nodes.

121

were minimally tuned under the assumption that higher values would be necessary when using the
HOG, but the other values are copied straight from the non-HOG agents for exact. I additionally
impose a cutoff of 100 steps before any given episode is terminated, preventing agents from getting
stuck in situations they are incapable of solving in a reasonable about of time.

In Section 5.1, I trained my agents on 3-5 blocks from the start. Early experimentation with
the HOG suggested that this would be too difficult, so my first attempt at easing the agent into 5
blocks was to train on 3-4 blocks for 50,000 steps and to transfer that learning to another phase
of learning on 3-5 blocks for 50,000 additional steps. This training is depicted in Figure 6.6a, but
it does not tell the whole story. Ultimately, agents suffer in one of two ways under this training
schedule. Either they are not particularly successful and drag down the average Average Return
Per Episode (ARtPE), or they are successful but ultimately overrefine the value function to the
point that the number of features being tested slows down the agent too much. For one seed out of
the 20 I tested, I ultimately cut off the agent after 20,000 steps and a week of computation.

Training instead on 3 blocks for 5,000 steps, for 3-4 blocks for the following 10,000 steps,
and finally 3-5 blocks for another 35,000 steps, we arrive at a very different picture in Figure 6.6b.
Overrefinement is still an issue, but the error bars for the ARtPE of the agents are virtually invisible
by the end of 50,000 steps. They all converge to near optimal policies for 3-5 blocks. Furthermore,
as listed in Table 6.1, the average Wall-Clock Time Per Step (WCTPS) drops from 913ms (exclud-
ing the terminated agent) to 43.7ms and the average number of weights drops from 8,972 to only
817. It is safe to conclude that it is essential to train over simpler problems before more complex
ones when using a HOG.

Comparing to my approximate exact agents from Section 5.1.5 which had a WCTPS of
12.3ms, the HOG agents which have a WCTPS of 43.7ms take approximately 3.55 times as long
per step. However, given that 817 is approximately 2.88 times the 284 weights that were required
for the earlier agents and that these agents are additionally responsible for creating and evaluating
new Variables and corresponding relations, one can see that the system is scaling reasonably
well. It impossible however to directly compare the ARtPE between these agents, since the dif-
ferent conditions under which they are trained and evaluated affect expected episode lengths and
costs.

122

0 20,000 40,000 60,000 80,000100,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

0

1,000

2,000

3,000

4,000

5,000

N
um

be
ro

fT
ile

s
or

W
ei

gh
ts

(a) ARtPE and weights for 20 HOG agents training on 3-4 blocks for
50,000 steps and followed by 3-5 blocks for 100,000 steps.

0 10,000 20,000 30,000 40,000 50,000

Step Number

−250

−200

−150

−100

−50

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

0

100

200

300

400

500

600

700

800

900

N
um

be
ro

fT
ile

s
or

W
ei

gh
ts

(b) ARtPE and weights for 20 HOG agents training on 3 blocks for
5,000 steps, followed by 4 blocks 10,000 steps, and finally 5 blocks for
35,000 steps.

Figure 6.6: ARtPE and weights for 20 HOG agents trained on 3-5 blocks under different transfer
scenarios.

Training Schedule ARtPE WCTPS # Weights
3-4→ 3-5 −10.5 913 ms 8,972
3→ 3-4→ 3-5 −2.29 43.7ms 817

Table 6.1: HOG agent performance for exact using different training schedules.

123

Figure 6.7: Advent

6.4 Advent – A Challenging Task

Here I present an adventure game I call Advent3, both to present a non-pathological scenario for
HOG and to reinforce that it is not a feature that is only theoretically useful, as demonstrated in
my exact Blocks World stress test in Section 6.3. Recall that for exact, not only did the size
of feature conjunctions grow to nearly 50 features, but for each rule searching for a <block-6>,
Carli-RRL had to verify that there exists no block not already address by <block-0> through
<block-5> (something that could possibly be sped up using an optimization described in Sec-
tion 7.3.3). In Advent, there are different enemies present in the world that the agent must learn
to deal with differently based on their attributes, but there is not always an enemy present in the
tile occupied by the agent. The HOG allows the agent to refer to attributes of an enemy when it is
present and to learn how to act when there is no enemy present as well. As the number of enemies
is restricted to 0-1 and not all features are part of the HOG, this is a much easier HOG scenario for
Carli-RRL.

The rules (or features) that enable an agent to refer to attributes of an enemy are implemented
using the HOG. In Advent as currently implemented, the HOG grants the agent the ability to

3Advent is, of course, a nod to Colossal Cave Adventure.

124

incorporate multiple attributes of an enemy into its value function. The null-HOG features enable
the agent to continue to concern itself with additional features in the absence of an enemy if it has
already incorporated the existence of an enemy into its value function. Further, were I to extend
Advent to allow multiple enemies in the same room, the HOG would automatically support the
introduction of new features for the second enemy with no changes on my part.

Advent presents a 5x5 grid world with a bridge between the North and South halves of the
environment and walls on either side of the bridge. The environment presents infinite sources of
both fire and ice scrolls that replenish when the player character casts the corresponding spell,
removing the scroll from their inventory. There is a troll on the bridge that will drop a magic sword
if killed, but can only be reduced below 1 health using the firebolt spell. And there is a water
dragon that can only be slain using the magic sword or if it is turned to ice using the icebolt spell.
Slaying the dragon terminates the episode.

The player character, troll, and dragon each have 10 health. The player character can move
North, South, East, or West as long as there is no enemy present with health greater than 1. They
can pick up an item if one is present in the current room. They can attack an enemy with fists (5
damage to the troll, 0 damage to the water dragon, or 2 damage to the ice dragon) or with whatever
weapon is currently equipped. They can equip a magic sword (capable of dealing 3 damage to the
water dragon or 10 damage to the ice dragon) if it is present in the player character’s inventory.
And they can cast a healing spell (restoring 5 health) or a firebolt spell or icebolt spell if they have
the corresponding fire or ice scroll. The firebolt spell does 5 damage to the troll and is capable of
reducing its health to 0 or does 2 damage to the dragon. The icebolt spell does 5 damage to the
troll or turns the water dragon to ice.

The player character and the enemy (if present) take turns taking actions with the player char-
acter going first. The troll always attacks the player for 2 damage. The dragon always attacks the
player for 3 damage.

The actual features available to the agent (which controls the player character) include:

1. Action(MOVE), Action(ATTACK), Action(TAKE), Action(EQUIP),
or Action(CAST)

2. Move-direction(NORTH), Move-direction(SOUTH),
Move-direction(EAST), Move-direction(WEST),
or Move-direction(NONE)
(i.e. a wait or no-op).

3. Less-than(<player-x>, 3) (and subsequent refinements of [0, 3) and [3, 5]).

4. Less-than(<player-y>, 3) (and subsequent refinements of [0, 3) and [3, 5]).

125

5. Less-than(<player-health>, 5)

(and subsequent refinements of [0, 5) and [5, 10]).

6. Has(<player>, MAGIC_SWORD)

7. Has(<player>, FIREBOLT_SCROLL)

8. Has(<player>, ICEBOLT_SCROLL)

9. Equipped(<player>, FISTS) or Equipped(<player>, MAGIC_SWORD)

And if an enemy is present in the current room:

10. Less-than(<enemy-health>, 5)

(and subsequent refinements of [0, 5) and [5, 10]).

11. Type(<enemy>, SOLID) (including ice),
Type(<enemy>, TROLL), or Type(<enemy>, WATER)

This environment is much simpler than Blocks World in terms of the connectivity of the rela-
tions. However, it is interesting due to the diversity of relationships and the varied structure of the
task. The complex conjunctions of relations describing the environment are essential to allow the
agent to understand which actions are suitable for which conditions. A version of the agent that I
lesioned to use only a linear combination of features is unable to converge on a policy to solve the
task at all. Additionally, I can use my HOG to implement features that depend on the existence
of an enemy. Given the low bound of one enemy per room, the computational efficiency issues of
the HOG are essentially absent. The HOG enables an agent to reason about scenarios in which an
enemy is present and to include those features in its value function while allowing it to continue to
improve its value function for cases in which no enemy is present as well.

One way of interpreting the success of an RRL in solving this task is that it is able to make
up for the lack of Hierarchical Reinforcement Learning (HRL) since it can understand features in
different contexts differently. In conjunction with HRL, my agents would probably have had an
easier time figuring out that fire spells are effective against trolls and that ice scrolls are effective
against water creatures.

Incorporating HRL would be a relatively simple extension to Carli-RRL given its support for
independent HTCs in the Rete, but it nevertheless lies outside of the scope of this research. I
present success with Advent to demonstrate the efficacy of RRL when compared to linear function
approximation, rather than to provide the best possible Advent learner I could implement.

I train for Advent using on-policy Greedy-GQ(λ) with α = 0.03, ρ = 0.01, γ = 0.99, and λ =

0.3 and the value criterion with a 50 step delay for refinement, 100 for unrefinement with boost, and

126

0 200,000 400,000 600,000 800,0001,000,000

Step Number

−500

−400

−300

−200

−100

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE NNN
Policy NNN
Value NNN

(a) No Rerefinement

0 200,000 400,000 600,000 800,0001,000,000

Step Number

−500

−400

−300

−200

−100

0

A
ve

ra
ge

R
et

ur
n

Pe
rE

pi
so

de

CATDE SCN
Policy SCN
Value SCN

(b) Boost with Concrete

Figure 6.8: ARtPE for Advent

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −139 1.16ms 1,601
Policy Criterion −120 1.65ms 3,013
Value Criterion −48.0 1.80ms 2,745

Table 6.2: Agent performance for Advent with no rerefinement

Criterion at 50, 000 ARtPE WCTPS # Weights
CATDE −151 1.47ms 1,757
Policy Criterion −127 1.95ms 2,657
Value Criterion −41.7 2.03ms 2,105

Table 6.3: Agent performance for Advent using boost with concrete

127

200 for concrete. As you can see in Figure 6.8a, of the agents without rerefinement enabled, the
one with the value criterion does the best. With boost and concrete to possibly allow the agent to
make better decisions with respect to feature selection, depicted in Figure 6.8b, the agent with the
value criterion actually learns a bit more slowly with the parameters used. With a parameter sweep
on delays for unrefinement and concrete, perhaps this result could be improved. Nevertheless, the
agent using Cumulative Absolute Temporal Difference Error (CATDE) improves its performance
with boost and concrete while the agent using the policy criterion shows no improvement.

A strictly optimal policy is 18 actions total: collect both scrolls (5 actions), move to encounter
the troll (3 actions), attack twice and cast firebolt to kill the troll (3 actions), take and equip the
magic sword (2 actions), move to encounter the water dragon (3 steps), and finally cast icebolt
and attack to kill the water dragon (2 actions). My RRL agents rarely accomplish this level of
performance. Since long term planning and navigation problems are intertwined, my agents have
a great deal of difficulty recognizing the value of the ice scroll. By the time one of my agents
is capable of solving the task reliably, it is incapable of effectively incorporating the presence of
the ice scroll in the player character’s inventory into its value function. However, my agents are
capable of converging to a policy that achieves the optimal policy were no ice scroll present in the
environment.

In summary, my HOG implementation enables these agents to learn to solve this task even
in the presence of features that are conditional on a variable that refers to an enemy that may or
may not be present in any given room. When an enemy is not present, even after an agent has
begun to incorporate attributes of an enemy into its value function, null-HOG features enable my
agents to continue to refine its value function in an online, incremental fashion. Additionally,
were I to modify Advent to present two enemies at once, my HOG would enable my agents to
automatically create a new variable to refer to it along with new relations that refer to it. These
capabilities would have previously required complete reconstruction of the value function, as done
offline using TILDE [Džeroski et al., 2001].

128

CHAPTER 7

Summary and Future Work

In this chapter I summarize this thesis (Section 7.1) and its contributions (Section 7.2). I addition-
ally provide some possible directions of future work (Section 7.3).

7.1 Summary

This thesis began with the introduction of the Relational Reinforcement Learning (RRL) domain,
Blocks World, and several different objectives. Some of those objectives, stack, unstack, and
on(a,b), had been explored by related work [Džeroski et al., 2001; Irodova and Sloan, 2005].
However, exact had not yet been explored in the context of RRL due to the significantly higher
complexity of the task using traditional relational representations.

I discussed different kinds of knowledge representation including tabular representations, linear
combinations of features, tile codings, and of course relational representations.

I initially prototyped my adaptive Hierarchical Tile Coding (aHTC) for Temporal Difference
(TD) learning in Soar and used that prototype to explore the basic efficacy of aHTCs. With an eye
toward improving computational performance, I shifted to an independent architecture, Carli for
Propositional Representations (Carli-Prop), in which I used k-dimensional tries (k-d tries) to reduce
the Wall-Clock Time Per Step (WCTPS) of aHTC by two orders of magnitude over my prototype
architecture. Along the way I improved the Average Return Per Episode (ARtPE) in Puddle World
with better refinement criteria and a stricter aHTC implementation that appears to be superior to a
non-hierarchical Adaptive Tile Coding (ATC), confirming Hypothesis 1 and answering Research
Question 1, posed earlier in chapter 3.

Upgrading to Carli for Relational Reinforcement Learning (Carli-RRL), I examined the Blocks
World domain more closely and determined that Rete could solve many of the problems that us-
ing RRL in this domain raised. While similar in some respects to using a k-d trie, using Rete
additionally ensured that variables in different conditions matched as needed and solved problems
regarding variable numbers of actions without the need for either separate passes per action or

129

separate value functions for each action. Implementing aHTCs in Rete was significantly more
complex due to the higher complexity of the Rete algorithm itself, but also due to the need to
provide a rule-based grammar for a Hierarchical Tile Coding (HTC), the need for mechanisms to
extract features from the rules, and the significantly higher complexity of extending the value func-
tion when refining an aHTC over time. To enable these mechanisms, I devised both the Feature
Encoded in the Last Scope Convention (FELSC) and and the Identical Ordering Convention (IOC)
for all rules and their corresponding feature conjunctions.

Exploring ARtPE, I investigated Cumulative Absolute Temporal Difference Error
(CATDE), a policy criterion, and a value criterion for value function refinement in my relational
blocks world domain. These experiments involved the development of approximately optimal
policies for the exact objective and were done with fixed Epsilon-greedy (ε-greedy) exploration.
Under these conditions, I demonstrated that all three criteria did quite well with aHTCs in the ab-
sence of distractors, but learning was slowed significantly by the distractor features. Attempting
unrestricted rerefinement, I observed good ARtPE considering the low number of weights but ulti-
mately the agents did not achieve a near optimal policy. Blacklists turned out to be a poor solution
to the convergence problem with rerefinement, and I hypothesized that a boost mechanism could be
more effective (Hypothesis 5). Boost achieved better ARtPE, but both WCTPS and ARtPE could
still be improved, resulting in Hypothesis 6 that my agents could benefit from eventually ceasing
rerefinement. Using a combination of unrefinement and rerefinement, a boost mechanism for pre-
viously selected features, and a concrete mechanism to eventually disable unrefinement, I arrived
at my best results with or without distractors using the value criterion. That this agent dominates
the ARtPE of the agents any of the preceding agents confirms both 3 and Hypothesis 6.

It would be fair to criticize the unrefinement, boost, and concrete mechanisms for introducing
additional hyperparameters into Carli-RRL, but their utility is not restricted to just the exact
objective of Blocks World. Using these additional techniques has improved the performance of my
agents for other tasks in this thesis as well. A goal for future research is to develop a sound method
for analyzing both the utility of the learning that would be discarded by doing unrefinement and
of the improvement that would result from a rerefinement so that they can be compared. Then an
agent could choose to do a rerefinement only in the case that the utility makes it worthwhile. It is
unfortunate that the concrete mechanism in particular requires tuning an additional parameter for
an agent to maximally benefit from it, but in lieu of a more advanced method as I’ve described, it
is worth using.

I demonstrated a several orders of magnitude WCTPS reduction over Q-RRL by Džeroski et

al. [2001] for stack, unstack, and on(a,b) objectives in Blocks World using RRL on an
actual Sun Ultra 5/270 – the same hardware used by Džeroski et al. [2001] – (a speedup factor
between 375 and 543) confirming Hypothesis 4 that Rete could be an efficient algorithm for RRL

130

implementation.
I evaluated the optimality of my approximately optimal policies for the exact objective of

Blocks World as the number of blocks scales up. Then I did a deeper evaluation of transfer in
Blocks World and on a Taxicab environment. Using both environments, I demonstrated that learn-
ing with simpler problem instances results in effective transfer to more complex problem instances.

Then I delved into a Higher Order Grammar (HOG) for RRL, in which I explored the problem
of requiring an unknown number of variables and relations to refer to a class of object. In previ-
ous architectures employing Top-down Induction of Logical DEcision trees (TILDE) [Džeroski et

al., 2001; Blockeel and Raedt, 1998], this problem was solved implicitly by fully constructing its
First Order Logical Decision Trees (FOLDTs) from scratch offline, using a model to map state-
action pairs onto most recent Q-values. Making the problem explicit led to my implementation of
null-HOG features, enabling my agents to continue to learn about scenarios in which fewer objects
are present in the world than the maximum number of variables tested by the architecture. This
allowed Carli-RRL to refine its aHTCs in an incremental, model-free fashion even with the HOG. I
showed results for exact objectives in Blocks World using only on(a,b) and goal-on(a,b)
relations, as well as for an adventure game.

7.2 Contributions

In summary, the contributions of this thesis are as follows.

1. The primary contribution of this dissertation is a theory and corresponding algorithms for
connecting the rule-matching power of the Rete with the needs of RRL to arrive at compu-
tationally efficient methods for implementing the first online, incremental RRL architecture.

(a) I developed aHTCs, an extension of
ATCs in which weights are stored in non-leaf nodes in addition to the leaf nodes, and
demonstrated the efficacy of using hierarchically organized conjunctions of features in
terms of WCTPS and ARtPE.

(b) I developed a novel approach for embedding an aHTC in a Rete to enable it to take
advantage of the features of a Rete that make it suitable for efficient RRL.

2. I provide an implementation of Carli-RRL that achieves a greater than two orders of magni-
tude WCTPS reduction in Blocks World tasks over prior work by Džeroski et al. [2001].

3. To support making Carli-RRL online and incremental, I modified existing ATCs refinement
criteria to make them fully incremental and created a new one as well (Cumulative Absolute
Temporal Difference Error (CATDE)).

131

4. I designed, implemented, and evaluated further extensions to aHTC refinement criteria to
further increase ARtPE when allowing unrefinement while minimizing the WCTPS cost of
doing so

5. I additionally provided an advance in the theory of RRL with my Higher Order Grammar
(HOG). It allows agents that learn online and incrementally to introduce new features with
new variables while also being able to continue learning about situations in which no objects
satisfy the new variables. This is done through the introduction of null-HOG features that
represent the concept that it is possible that no ith object exists to satisfy the ith variable.

7.3 Future Work

There are many directions one could go in if one wishes to build on what has been achieved
with Carli-RRL. Here I consider several possibilities. First, my HOG implementation in Carli is
currently imperfect. I discuss correcting that in Section 7.3.1. Second, incorporating Hierarchical
Reinforcement Learning (HRL) into my RRL agents would be interesting and could certainly be
considered low hanging fruit. I consider this possibility in Section 7.3.2. Third, I have some ideas
about possibly improving the performance of the Rete for RRL, particularly when using a HOG,
and I discuss this potential optimization in Section 7.3.3. Fourth, the refinement criteria I evaluate
in this thesis are certainly not exhaustive. I consider delving into refinement criteria more deeply in
Section 7.3.4. And finally, the problems of architectural and agent evaluation and experimentation
in other tasks are unbounded. I consider additional domains in Section 7.3.5.

7.3.1 Higher Order Grammar

The HOG implementation as presented is actually imperfect in that multiple tokens will be passed
if multiple combinations of Symbols match the HOG Variables. The fix would be to enclose
all features depending on a new variable within its corresponding existential test. This is a simple
change to the grammar itself, but modifying the methods for extending conjunctions of features
over time to unwrap some number of existentials and rewrap was one correction too many to be
implemented in time for this thesis.

7.3.2 Hierarchical Reinforcement Learning

As I mentioned when discussing Advent (Section 6.4), one way of interpreting the success of my
agent is that it was able to use RRL to compensate for the lack of HRL – a technique that might
be more suitable for this task. Incorporating HRL into Carli-RRL would allow an agent designer

132

to ensure that RRL generalizes knowledge appropriately, such as fire spells being effective against
trolls and ice scrolls being effective against water creatures.

Incorporating HRL would be a relatively simple extension to Carli-RRL given its support for
independent HTCs in the Rete. my previous research [Bloch, 2009] employed the MAXQ approach
to HRL [Dietterich, 2000; Dietterich, 1998], but another framework such as Options [Sutton et

al., 1999] or Hierarchies of Abstract Machiness (HAMs) [Parr and Russell, 1997] would work just
as well.

The kind of induction of FOLDTs performed by Q-RRL using TILDE and by Carli-RRL likely
has some connection to the problem of automatically inducing hierarchies. There has been some
work already in the area of automatic hierarchy induction [Mehta et al., 2008; Ryan, 2002]. Inves-
tigating this problem and its possible connections with the automatic induction of FOLDTs would
be another interesting research problem to pursue.

7.3.3 Lazy Join Subnetworks for Rete

I made the case for using Rete to implement HTC for RRL in Section 4.2. However, it may be the
case that I can do better than using the traditional Rete algorithm.

The standard Rete structure involves alpha nodes that test only one Working Memory Element
(WME). The alpha nodes feed into the beta network that consists of join nodes that may be
followed by additional nodes that test the set of WMEs that comprise the tokens generated by the
join node.

Doorenbos [1995] is credited with having devised an optimization in which join nodes are
unlinked from one of their parents (left or right) in the case that one input or the other is emptied.
This can result in a significant reduction in traffic through the Rete in the case that there exist many
nodes that receive traffic from one side or the other but rarely both. This tends to be a common
scenario, and this optimization can result in substantial reductions in computation time.

Left Tokens Right Tokens

Join

Combined Tokens

Test Chain 1

Figure 7.1: A (standard) Join Node

133

Left Tokens

Right TokensLazy Join

Test Chain L1a

Combined Tokens

Test Chain L1b

Combined Tokens

. . .

Figure 7.2: A lazy Join subnetwork, right unlinking equivalent

I suggest a modification of Rete that was inspired by my analysis of my HOG implementation.
Consider the problem of selecting two unique blocks from 10. The Rete and rules as implemented
will generate 100 tokens that will then have 10 tokens filtered out by a subsequent test. Selecting a
third unique block will result in 900 tokens that will then have 180 tokens filtered out by subsequent
tests. This subsequent filtering is necessary since the only thing the join nodes only ensure that
variables line up correctly. However, it would be ideal if the join only occurred if the symbols on
both sides were compatible given subsequent tests.

Therefore, I propose a kind of reordering of tests to prevent this dual wasted effort of making
unnecessary tokens and then filtering them back out. What if, instead of doing any tests between
this join and the next, one could do them before? Rather than doing the tests afterward, one could
use values in the tokens on the left to generate tests that filter tokens coming from the right in
advance of a lazy join. This is analogous to right unlinking but offers the additional advantage of
reducing the number of tokens flowing through the Rete. Left unlinking could be done similarly.

While part of the beta network in the traditional view of the Rete, these intermediate nodes
would function much like an alpha network, determining which tokens are passed to the join at
all. To maximize the value of this intermediate network, their output tokens must be passed to a
node that does the join with only the matching tokens from the other input, avoiding any duplicate
checking of variable bindings.

There would be some cost to constructing test chains L1a, L2a, and so on on the basis of
inputs to the join from the left. However, as the number of them would be bounded by the number
of left tokens, the reduction in unnecessary joins can still be a win. When selecting two unique
blocks from 10, test chains L1a-L1j would filter duplicate blocks and directly pass on 90 tokens.
When selecting a third unique block, test chains L1a-L1cl would directly pass on 720 tokens. As
described, one would still have 900 tests, but no unnecessary tokens would be produced.

Collection match [Acharya and Tambe, 1993] could further improve this picture. When se-
lecting two unique blocks from 10 the lone test chain, L1a, could simply pass on 10 collections

134

of size 9. When selecting a third unique block, each of the ten nodes, L1a-L1j, could pass on 90
collections of size 8. With an ideal implementation of lazy joins with collection match, it would
appear that one could reduce the creation of 1, 000 tokens and the filtering out of 190 tokens to the
creation of 100 collections. It is still a pathological case since all HOG variables except for one
would have size 1 in each collection, but less work would be wasted at each point in the process.
With the use of the flyweight pattern, each range could be represented very efficiently, significantly
reducing memory usage as well.

7.3.4 Refinement Criteria

Over the course of this thesis, I investigated value function refinement criteria based on influence
and variance [Munos and Moore, 1999a; Munos and Moore, 1999b], value function refinement
criteria based on Bellman error and TD error, a value criterion, and a policy criterion Whiteson
et al. [2007]. These criteria were suitable for our agents due to my ability to integrate them into
online, incremental algorithms.

However, earlier, model-based work such as Q-RRL using TILDE [Džeroski et al., 2001;
Blockeel and Raedt, 1998] and U-trees [McCallum, 1996] use statistical tests such as F-tests and
the Kolmogorov-Smirnov test to determine whether there is sufficient statistical significance in
the model to merit refinements. These tests are not suitable for a model-free architecture such
as Carli-RRL, but they do provide the ability for refinement criteria to determine that refinement
is unnecessary (with some probability) – functionality not offered by the criteria I explored in
Carli-RRL in this thesis.

Online, incremental refinement criteria that can offer statistical claims about the likelihood of
refinement being beneficial would be an interesting direction for future research. Such criteria
could be used to implement methods for comparing the utilities of both unrefinement and rerefine-
ment for a more advanced, parameter-free replacement of my concrete mechanism as well.

7.3.5 Domains

It would be interesting to evaluate Carli-RRL in domains that have been explored with other
agents that use RRL such as a robotic assembly task [Lang et al., 2012b], Robot Butler [Srid-
haran and Meadows, 2016b], Simple Mario [Sridharan et al., 2016b], Infinite Mario [Mohan and
Laird, 2010], and Tetris [Driessens and Džeroski, 2004]. The agents developed in this related work
were not mere RRL agents but used RRL in the context of a larger Artificial Intelligence (AI) ar-
chitecture, depended on human guidance, or used HRL as well. Regardless, Carli-RRL could be
made to learn these tasks and it would be worthwhile to see how it performs, in terms of both
WCTPS and ARtPE.

135

APPENDIX A

Temporal Difference Methods

A.1 Eligibility Traces–Q(λ)

For longer, more complex problems, the single step updates performed by Q-learning can result
in extraordinarily long learning times. It is essential to backup temporal difference error multiple
steps in order to make these kinds of problems tractable.

Sarsa(λ) [Watkins, 1989] and Q(λ) [Peng and Williams, 1996] incorporate eligibility traces
into Sarsa and Q-learning respectively.

Algorithm 5 Q(λ) and Sarsa(λ).
1: function Q-LAMBDA(s,a,r,s′,a′)
2: δt ← rt + max

a∗

∑n
i=1(γφs′,a∗(i)θt(i)− φs,a(i)θt(i)) . Calculate Temporal Difference (TD)

error
3: UPDATE(δt)
4: if a′ 6= a∗ then CLEAR-TRACE

5: function SARSA-LAMBDA(s,a,r,s′,a′)
6: δt ← rt +

∑n
i=1(γφs′,a′(i)θt(i)− φs,a(i)θt(i)) . Calculate TD error

7: UPDATE(δt)
8: function UPDATE(δt)
9: for s ∈ S, a ∈ A do . Actual implementations are more efficient

10: et(i)← λet−1(i) +
φs,a(i)∑n
i=1 φs,a(i)

. Update eligibility
11: θt+1(i)← θt(i) + αδtet(i) . Update weights
12: function CLEAR-TRACE

13: for s ∈ S, a ∈ A do . Actual implementations are more efficient
14: et(s, a)← 0

136

Algorithm 6 Greedy-GQ(λ).
1: function GREEDY-GQ-LAMBDA(s,a,r,s′,a′)
2: ρt ← π(St,At)

b(St,At)
. Importance sampling ratio

3: I(s, a)← 1 . Interest function is 1 for flat Reinforcement Learning (RL) and initiating
states when using HRL

4: for i ∈ 1..n do . “Clear” the trace and increase eligibility for current features.
5: et(i)← ρtet−1(i) + Iφt(i)

6: u←∑n
i=1wt(i)et(i)

7: v ←∑n
i=1wt(i)φt(i)

8: δt ← rt + max
a∗

∑n
i=1(γφs′,a∗(i)θt(i)− φs,a(i)θt(i)) . Calculate TD error

9: for i ∈ 1..n do . Update
10: θt+1(i)← θt(i) + α(δet(i)− γ(1− λ)uφt+1(i))
11: wt+1(i)← wt(i) + αη(δet(i)− vφt(i))
12: et(i)← γλet(i)

A.2 Greedy-GQ(λ)

Maei and Sutton [2010] introduced a more modern version of Q(λ) called Greedy-GQ(λ). Unlike
Q(λ), Greedy-GQ(λ) provides convergence guarantees when using linear function approximation.
The computational cost of Greedy-GQ(λ) is still small compared to the total cost of a reinforcement
learning agent, and the additional tuning required for good (but not optimal performance) is minor.
In practice, it is not guaranteed to perform better than Q(λ), but it is worth using when in doubt.

The key idea of GQ(λ) is to guarantee convergence using a second weight vector in order to
minimize Mean-Square Projected Bellman Error (MSPBE) in the limit. It introduces a secondary
set of learned weights, w(i), a secondary learning rate or step-size parameter, η, an importance
sampling ratio, ρ, and an interest function for Hierarchical Reinforcement Learning (HRL), I(s, a).

137

APPENDIX B

Incremental Calculation of a Mean and Standard
Deviation

Given a set of numbers, calculating a sample mean and standard deviation as a batch is straightfor-
ward. The equation for a sample mean is:

µN =
1

N

N∑
i=1

xi (B.1)

The equation for sample variance is

σ2
N =

1

N − 1

N∑
i=1

(µN − xi)2 (B.2)

The sample standard deviation is simply a square root of the sample variance.

Incremental calculation is more involved.

B.1 Incremental Mean Calculation

The mean of an empty set is defined, µ0 = 0. To insert the nth value, xi:

µ′ ← n− 1

n
µ+

1

n
xi (B.3)

To update the mean when xi is updated to x′i:

µ′ ← µ+
1

n
(x′i − xi) (B.4)

138

To remove xi from the n values:

µ′ ← n

n− 1
µ− 1

n− 1
xi (B.5)

B.2 Incremental Variance Calculation

Welford [1962] and Knuth [1997] provide a method to incrementally calculate a sample variance
as values are added:

Algorithm 7 Incremental variance insertion.

Ensure: ν0 = 0 and σ2
0 = 0

Require: A new value xi to be inserted
1: Apply Equation B.3 for µ′ . Mean insertion
2: V ′i ← (µ′ − xi)2 . My modification for algorithms 8 and 9
3: ν ′ ← ν + V ′i
4: if n > 1 then
5: σ′2 = ν′

n−1

I provide an update method:

Algorithm 8 Incremental variance update.

Require: A new value x′i to replace xi
1: Apply Equation B.4 for µ′ . Mean update
2: V ′i ← (µ′ − x′i)2
3: ν ′ ← ν + V ′i − Vi
4: if n > 1 then
5: σ′2 = ν′

n−1

I provide a reverse method as well:

Algorithm 9 Incremental variance removal.
Require: An existing value xi to be removed

1: Apply Equation B.5 for µ′ . Mean removal – actually unused below
2: ν ′ = ν − Vi
3: if n > 1 then
4: σ′2 = ν′

n−1
5: else
6: σ′2 = 0

Note that when using these algorithms to estimate variance for weights in an architecture us-
ing linear function approximation (Section 1.3.3 on page 17), one may wish to replace line 2 of

139

Algorithm 7 and line 2 of Algorithm 8 with V ′i ← (µ′−x′i)2
c

. c should refer to an average or moving
average of the credit assignment for the weight. Without this modification, variance estimates will
incorrectly shrink as the credit assigned to a given tile decreases. This is potentially a significant
problem for an architecture employing Hierarchical Tile Coding (HTC) if it uses this variance
calculation as part of a refinement criterion.

140

BIBLIOGRAPHY

[Acharya and Tambe, 1993] Anurag Acharya and Milind Tambe. Collection oriented match. In
Proceedings of the Second International Conference on Information and Knowledge Manage-
ment, CIKM ’93, pages 516–526, New York, NY, USA, 1993. ACM. 134

[Aeronautiques et al., 1998] Constructions Aeronautiques, Adele Howe, Craig Knoblock,
ISI Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins SRI, An-
thony Barrett, Dave Christianson, et al. Pddl| the planning domain definition language. 1998.
1

[Agre and Chapman, 1987] Philip E. Agre and David Chapman. Pengi: An implementation of a
theory of activity. In Proceedings of the Sixth National Conference on Artificial Intelligence -
Volume 1, AAAI’87, pages 268–272. AAAI Press, 1987. 19

[Albus et al., 1971] James S. Albus, Datu Techltiques Branch, Communicated Donald, and
H. Perkel. A theory of cerebellar function, 1971. 20, 21

[Albus, 1981] James Sacra Albus. Brains, Behavior and Robotics. McGraw-Hill, Inc., New York,
NY, USA, 1981. 20, 21

[Bellman, 1957a] Richard Bellman. A markovian decision process. Technical report, DTIC Doc-
ument, 1957. 1

[Bellman, 1957b] Richard Ernest Bellman. Dynamic programming, 1957. 1, 2, 20

[Bloch, 2009] Mitchell Keith Bloch. Hierarchical reinforcement learning in the taxicab domain.
Technical Report CCA-TR-2009-02, Ann Arbor, MI: Center for Cognitive Architecture, Uni-
versity of Michigan, 2260 Hayward Street, 2009. 133

[Bloch, 2011] Mitchell Keith Bloch. Off-Policy hierarchical reinforcement learning.
arXiv:cs.LG/1104.5059, 2011. 46

[Bloch, 2018] Mitchell Keith Bloch. Number of ways of converting one set of lists containing
n elements to another set of lists containing n elements by removing the last element from
one of the lists and either appending it to an existing list or treating it as a new list., 2018.
https://oeis.org/A300159 accessed on 2018-3-5. 16

[Blockeel and De Raedt, 1998] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-
order logical decision trees. Artif. Intell., 101(1-2):285–297, May 1998. 28

141

[Blockeel and Raedt, 1998] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-
order logical decision trees. Artificial Intelligence, 101(1):285 – 297, 1998. 84, 131, 135

[Broomhead and Lowe, 1988] David S Broomhead and David Lowe. Radial basis functions,
multi-variable functional interpolation and adaptive networks. Technical report, Royal Signals
and Radar Establishment Malvern (United Kingdom), 1988. 17

[CHENOWETH, 1991] SV CHENOWETH. On the np-hardness of blocks world. In Proc. of
AAAI-91, 1991. 105

[Commons, 2016] Wikimedia Commons. File:thomas eakins - baby at play.jpg — wikimedia
commons, the free media repository, 2016. [Online; accessed 24-October-2017].

[Davies, 1996] Scott Davies. Multidimensional triangulation and interpolation for reinforcement
learning, 1996. 44

[Dietterich, 1998] Thomas G. Dietterich. The MAXQ method for hierarchical reinforcement
learning. In ICML, pages 118–126, 1998. 108, 133

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ
value function decomposition. J. Artif. Intell. Res. (JAIR), 13:227–303, 2000. 133

[Doorenbos, 1995] Robert B. Doorenbos. Production Matching for Large Learning Systems. PhD
thesis, Pittsburgh, PA, USA, 1995. UMI Order No. GAX95-22942. 60, 63, 133

[Driessens and Džeroski, 2004] Kurt Driessens and Sašo Džeroski. Integrating guidance into re-
lational reinforcement learning. Machine Learning, 57(3):271–304, Dec 2004. 135

[Driessens et al., 2001] Kurt Driessens, Jan Ramon, and Hendrik Blockeel. Speeding up relational
reinforcement learning through the use of an incremental first order decision tree learner. In
Machine Learning: ECML 2001, pages 97–108. Springer, 2001. 107

[Džeroski et al., 2001] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforce-
ment learning. Machine learning, 43(1-2):7–52, 2001. 2, 4, 6, 11, 12, 28, 30, 31, 33, 55, 84,
85, 100, 101, 103, 104, 108, 114, 115, 116, 121, 128, 129, 130, 131, 135

[Finney et al., 2002] Sarah Finney, Natalia H. Gardiol, Leslie Pack Kaelbling, and Tim Oates. The
thing that we tried didn’t work very well: Deictic representation in reinforcement learning. In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI’02,
pages 154–161, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. 30, 31

[Forgy and McDermott, 1977a] C. Forgy and J. McDermott. Ops: A domain-independent pro-
duction system language. In Proceedings of the 5th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’77, pages 933–939, San Francisco, CA, USA, 1977. Morgan
Kaufmann Publishers Inc. 61

[Forgy and McDermott, 1977b] Charles Forgy and John P McDermott. Ops, a domain-
independent production system language. In IJCAI, volume 5, pages 933–939, 1977. 32, 60

142

[Forgy, 1979] Charles Lanny Forgy. On the Efficient Implementation of Production Systems. PhD
thesis, Pittsburgh, PA, USA, 1979. AAI7919143. 57

[Geramifard et al., 2011] Alborz Geramifard, Finale Doshi, Josh Redding, Nicholas Roy, and
Jonathan P. How. Online discovery of feature dependencies. In Lise Getoor and Tobias Scheffer,
editors, ICML, pages 881–888. Omnipress, 2011. 40

[Grzes and Kudenko, 2008] Marek Grzes and Daniel Kudenko. Multigrid reinforcement learning
with reward shaping. In ICANN (1), pages 357–366, 2008. 50

[Grzes, 2010] M. Grzes. Improving exploration in reinforcement learning through domain knowl-
edge and parameter analysis. PhD thesis, University of York, 2010. 50

[Irodova and Sloan, 2005] Marina Irodova and Robert H Sloan. Reinforcement learning and func-
tion approximation. In FLAIRS Conference, pages 455–460, 2005. 4, 6, 11, 12, 30, 31, 55, 101,
129

[Kanerva, 1988] Pentti Kanerva. Sparse distributed memory. MIT Press, 1988. 21

[Karp, 1972] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972. 30

[Knuth, 1997] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms (3rd Edition). Addison-Wesley Professional, 3 edition, November 1997. 139

[Laird and Newell, 1983] John E. Laird and Allen Newell. A universal weak method: Summary
of results. In Proceedings of the Eighth International Joint Conference on Artificial Intelligence
- Volume 2, IJCAI’83, pages 771–773, San Francisco, CA, USA, 1983. Morgan Kaufmann
Publishers Inc. 61

[Laird, 2012] John E. Laird. The Soar Cognitive Architecture. The MIT Press, 2012. 35, 60

[Lang et al., 2012a] Tobias Lang, Marc Toussaint, and Kristian Kersting. Exploration in relational
domains for model-based reinforcement learning. J. Mach. Learn. Res., 13(1):3725–3768, De-
cember 2012. 2

[Lang et al., 2012b] Tobias Lang, Marc Toussaint, and Kristian Kersting. Exploration in rela-
tional domains for model-based reinforcement learning. Journal of Machine Learning Research,
13(Dec):3725–3768, 2012. 135

[Langley, 1995] Pat Langley. Elements of Machine Learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1995. 28

[Maei and Sutton, 2010] Hamid Reza Maei and Richard S Sutton. Gq (λ): A general gradient
algorithm for temporal-difference prediction learning with eligibility traces. In Proceedings of
the Third Conference on Artificial General Intelligence, volume 1, pages 91–96, 2010. 137

[Martínez et al., 2017] David Martínez, Guillem Alenyà, and Carme Torras. Relational reinforce-
ment learning with guided demonstrations. Artificial Intelligence, 247(Supplement C):295 –
312, 2017. Special Issue on AI and Robotics. 2

143

[McCallum, 1996] Andrew Kachites McCallum. Reinforcement learning with selective perception
and hidden state. PhD thesis, 1996. AAI9618237. 25, 44, 89, 135

[Mehta et al., 2008] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas G. Dietterich.
Automatic discovery and transfer of MAXQ hierarchies. In ICML, pages 648–655, 2008. 133

[Mohan and Laird, 2010] Shiwali Mohan and J Laird. Relational reinforcement learning in infinite
mario. Ann Arbor, 1001:48109–2121, 2010. 135

[Moore and Atkeson, 1995] Andrew W. Moore and Christopher G. Atkeson. The parti-game al-
gorithm for variable resolution reinforcement learning in multidimensional state-spaces. Mach.
Learn., 21(3):199–233, December 1995. 23, 41

[Moore, 1991] Andrew Moore. Efficient Memory-based Learning for Robot Control. PhD thesis,
Robotics Institute, Carnegie Mellon University, March 1991. 49

[Munos and Moore, 1999a] Remi Munos and Andrew Moore. Influence and variance of a markov
chain: Application to adaptive discretization in optimal control. In IEEE Conference on Deci-
sion and Control, volume 2, pages 1464 – 1469, December 1999. 23, 37, 44, 89, 135

[Munos and Moore, 1999b] Remi Munos and Andrew Moore. Variable resolution discretization
in optimal control. Machine Learning Journal, 1999. 23, 25, 47, 135

[Nason and Laird, 2004] Shelley Nason and John E. Laird. Integrating reinforcement learning
with soar. In ICCM, pages 208–213, 2004. 35, 61

[Parr and Russell, 1997] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies
of machines. In Advances in Neural Information Processing Systems 10, pages 1043–1049.
MIT Press, 1997. 133

[Peng and Williams, 1996] Jing Peng and Ronald J. Williams. Incremental multi-step q-learning.
In Machine Learning, pages 226–232. Morgan Kaufmann, 1996. 136

[Reynolds, 1999] Stuart I. Reynolds. Decision boundary partitioning: Variable resolution model-
free reinforcement learning, 1999. 23, 41, 44

[Ryan, 2002] Malcolm R. K. Ryan. Using abstract models of behaviours to automatically generate
reinforcement learning hierarchies. In Proceedings of The 19th International Conference on
Machine Learning, pages 522–529. Morgan Kaufmann, 2002. 133

[Sherstov and Stone, 2005] Alexander A. Sherstov and Peter Stone. Function approximation via
tile coding: Automating parameter choice. In J.-D. Zucker and I. Saitta, editors, SARA 2005,
volume 3607 of Lecture Notes in Artificial Intelligence, pages 194–205. Springer Verlag, Berlin,
2005. 23

[Sondik, 1971] Edward Jay Sondik. The optimal control of partially observable markov processes.
Technical report, DTIC Document, 1971. 1

144

[Sridharan and Meadows, 2016a] M. Sridharan and B. Meadows. Should i do that? using rela-
tional reinforcement learning and declarative programming to discover domain axioms. In 2016
Joint IEEE International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), pages 252–259, Sept 2016. 2

[Sridharan and Meadows, 2016b] Mohan Sridharan and Ben Meadows. Should i do that? us-
ing relational reinforcement learning and declarative programming to discover domain axioms.
pages 252–259, 09 2016. 135

[Sridharan et al., 2016a] Mohan Sridharan, Prashanth Devarakonda, and Rashmica Gupta. Can I
Do That? Discovering Domain Axioms Using Declarative Programming and Relational Rein-
forcement Learning, pages 34–49. Springer International Publishing, Cham, 2016. 2

[Sridharan et al., 2016b] Mohan Sridharan, Prashanth Devarakonda, and Rashmica Gupta. Can I
Do That? Discovering Domain Axioms Using Declarative Programming and Relational Rein-
forcement Learning, pages 34–49. Springer International Publishing, Cham, 2016. 135

[Sridharan et al., 2017] Mohan Sridharan, Ben Meadows, and Rocío Gómez. What can I not do?
towards an architecture for reasoning about and learning affordances. In Proceedings of the
Twenty-Seventh International Conference on Automated Planning and Scheduling, ICAPS 2017,
Pittsburgh, Pennsylvania, USA, June 18-23, 2017., pages 461–470, 2017. 2

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto. Reinforcement learning i: In-
troduction, 1998. 4

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs and
Semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artif. Intell.,
112(1-2):181–211, 1999. 133

[Sutton, 1988] Richard S. Sutton. Learning to predict by the methods of temporal differences. In
MACHINE LEARNING, pages 9–44. Kluwer Academic Publishers, 1988. 1, 3

[Sutton, 1996] Richard S. Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In Advances in Neural Information Processing Systems 8, pages
1038–1044. MIT Press, 1996. 27, 41

[Watkins, 1989] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge,England, 1989. 3, 4, 101, 136

[Welford, 1962] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics, 4(3):419–420, 1962. 139

[Whiteson et al., 2007] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Adaptive tile
coding for value function approximation, 2007. 23, 25, 26, 38, 135

[Wieder, 2005] Thomas Wieder. Number of "sets of lists": number of partitions of 1,...,n into any
number of lists, where a list means an ordered subset, 2005. https://oeis.org/A000262 accessed
on 2017-8-24. 14

145

[Zheng et al., 2006] Yu Zheng, Siwei Luo, and Ziang Lv. Control double inverted pendulum by
reinforcement learning with double cmac network. Pattern Recognition, International Confer-
ence on, 4:639–642, 2006. 50

146

	Dedication
	Acknowledgments
	Table of Contents
	List of Appendices
	List of Algorithms
	List of Figures
	List of Tables
	List of Research Questions
	List of Hypotheses
	List of Abbreviations
	List of Acronyms
	List of Symbols
	Abstract
	Introduction
	Reinforcement Learning Fundamentals
	Markov Decision Process
	Temporal Difference Methods
	Exploration

	Evaluation Criteria
	Computational Efficiency: WCTPS
	Learning Efficiency: ARgPE and ARtPE

	Value Function Representations
	Blocks World
	Tabular Reinforcement Learning
	Efficiency

	Linear Function Approximation
	Deictic Representations
	Efficiency and Discussion

	Tile Codings
	Multiple Tilings or CMACs
	Non-Adaptive Hierarchical Tile Coding
	Adaptive Tile Coding
	Adaptive Hierarchical Tile Coding
	Efficiency and Discussion

	Relational Reinforcement Learning
	Efficiency and Discussion

	Related Work and Computational Efficiency
	Discussion

	Exploration of Hierarchical Tile Coding
	Prototype Architecture (2012)
	Execution Cycle
	Refinement Functionality
	Refinement Criteria
	Influence and Variance
	Cumulative Absolute Temporal Difference Error

	Exploratory Experiments
	Blocks World – Proof of Concept
	Puddle World – Proof of Efficacy
	Credit Assignment Between Overlapping Tiles
	Puddle World with aHTCs

	Discussion

	Computationally Efficient Adaptive Hierarchical Tile Coding
	Carli-Prop
	A k-Dimensional Trie Value Function Implementation
	Fringe Nodes

	Evaluation of Carli-Prop
	Non-Adaptive Hierarchical Tile Coding vs Traditional CMACs
	Adaptive Hierarchical Tile Coding vs Non-Adaptive HTC
	Adaptive Hierarchical Tile Coding vs Adaptive Tile Coding
	Computational Efficiency

	Discussion

	Computationally Efficient Relational Reinforcement Learning
	Limitations of Carli for Propositional Representations
	Rete
	Carli-RRL Representations and Syntax
	Alpha Nodes
	Filter Node

	Beta Nodes
	Predicate Node
	Existential Node
	Negation Node
	Join Node
	Existential Join Node
	Negation Join Node
	Action Node

	Discussion

	Hierarchical Tile Coding Grammar for Rete
	Feature Extraction
	:feature Directives
	Refinement and Rerefinement

	Discussion

	Relational Reinforcement Learning Evaluation
	Learning Efficiency Experiments
	Refinement Experiments
	Rerefinement Experiments
	Rerefinement with Blacklisting Experiments
	Boost
	Rerefinement with Boost and Concrete Experiments
	Discussion

	Computational Efficiency Comparisons
	Computational Efficiency Compared to Soar and Carli-Prop
	Computational Efficiency vs Džeroski et al.

	Exact Policy Scalability
	Online Transfer Experiments
	Transfer for Blocks World
	Transfer for Taxicab

	Average Return Per Episode (ARtPE) Evaluation
	Discussion

	Higher Complexity, Higher Order Grammar
	Implementation
	Tractability

	Null Higher Order Grammar Rules
	Blocks World, Exact Objective – A HOG Stress Test
	Advent – A Challenging Task

	Summary and Future Work
	Summary
	Contributions
	Future Work
	Higher Order Grammar
	Hierarchical Reinforcement Learning
	Lazy Join Subnetworks for Rete
	Refinement Criteria
	Domains

	Appendices
	Temporal Difference Methods
	Incremental Calculation of a Mean and Standard Deviation
	Bibliography

