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ABSTRACT

Hydrothermal liquefaction (HTL) is a sustainable-energy technology used to convert mi-

croalgae into an energy-dense biofuel precursor known as biocrude oil. This dissertation

illuminates myriad effects of HTL process inputs on product distribution and composition

that provide the foundation for advancing new quantitative models of HTL. Employing fast-

heating reactors with measured temperature profiles for the HTL of Nannochloropsis oculata

enabled kinetic modeling over significantly shorter timescales (10 s – 10 min) than previously

established. This improved model demonstrated that the kinetics of biocrude and aqueous

co-product (ACP) formation at 300 °C occur on the timescale of just seconds, significantly

shorter than previously thought. Regression models of biocrude properties as functions of

feedstock characteristics enabled quantification of species-identity effects for the first time,

which ranged from 11 to 40 % of those of biochemical composition.

The aforementioned insights, along with identified gaps in the literature, informed a

more comprehensive and rigorous design of experiments probing the effects of temperature,

reaction time, slurry concentration, biochemical composition, and species identity on HTL

product yields and elemental compositions. All examined factors affected the yield and

makeup of the biocrude, aqueous, solid, and gas products, especially temperature and bio-

chemical composition. The data suggested that increased slurry concentration promotes

Maillard reactions between amino acids and saccharides that result in increased biocrude

yield, C content, and N content and the inhibition of aqueous ammonium recovery (a nu-

trient for recycling). Fast HTL (300 °C, 3.2 min) of high-lipid, low-concentration slurries

xx



provided recoveries of high-value saturated, monounsaturated, and polyunsaturated fatty

acids in the biocrude of up to 89, 80, and 65 wt%, respectively. The same slurries reacted

at 200 °C for 31.6 min maximized ACP recyclability while limiting N and S recovery in the

biocrude to less than 5 and 8 %, respectively.

These empirical results enabled the development of a novel gravimetric, elemental, and

multiphase kinetic model for microalgal HTL. This model leverages known classes of reac-

tions that occur during HTL, such as hydrolysis, Maillard reactions, and deamination, to

construct a reaction network with 16 unique pathways. These pathways established a system

of coupled rate equations governing the temporal evolution of total, carbon, and nitrogen

yields for 22 unique lumped-product fractions. The model captures many empirical trends

over a broad range of reaction conditions and feedstock biochemical profiles. In particular,

slurry concentration and Maillard-reaction effects are quantified for the first time. Agree-

ment between calculated and observed quantities was particularly high for the biocrude and

ammonia fractions, substantiating the utility of the model for optimizing important HTL

process metrics that will ultimately enhance overall process sustainability and energy return

on investment.
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CHAPTER I

Introduction

1.1 Motivation

In 2016, the transportation sector produced 1.86 billion metric tons of CO2-equivalent

emissions, or about 28.5 % of total United States greenhouse gas emissions [1]. 90 % of

those emissions originated from petroleum-based sources, contributing toward the rise of at-

mospheric carbon dioxide concentrations and associated effects of climate change. Thus, the

engineering of viable sustainable energy technologies to curtail these anthropogenic emissions

is one of the greatest global challenges of the 21st century.

Algal biomass has emerged as a compelling feedstock for renewable fuel production due

to its high photosynthetic efficiency, ability to grow on non-arable land, and comparatively

high energy density [2, 3]. Algae can also provide supplementary environmental benefits

via wastewater treatment and nutrient recovery from agricultural systems [4, 5]. Different

species of microalgae can also be grown together as polycultures to achieve enhanced process

sustainability, for example through more stable biomass production over time [6], improved

resource use efficiency [7], and improved multifunctionality [8]. Given that algae grow in

aqueous media to concentrations of 0.01 to 0.04 wt % [6], processing technologies that avoid

drying the biomass have the potential for higher overall energy return on investment (EROI).
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1.2 Hydrothermal liquefaction

One such technology is hydrothermal liquefaction (HTL), which employs hot (150 < T <

400 °C), compressed (5 < P < 250 bar) water as the reaction medium to convert whole algal

biomass into an energy-dense biocrude oil, a nutrient-rich aqueous co-product (ACP), a solid

by-product, and gases [9, 10]. HTL exploits the properties of subcritical, high-temperature

water, including an increased ion product to facilitate acid- and base-catalyzed reactions and

decreased dielectric constant to solvate significantly less polar compounds than possible at

ambient conditions [11]. These properties enable water to degrade the lipid, protein, and

carbohydrate biomolecules in microalgae into smaller compounds that further react with

water or each other to form the biocrude, aqueous, solid, and gas products [12].

The lumped HTL product fractions can contain tens of thousands of compounds span-

ning a variety of chemical classes that impact their quality. For example, the biocrude

fraction contains fatty acids derived from the biomass lipid fraction that represent some of

the highest-quality fuel components in microalgae due to their long-methylene-chain struc-

ture. The biomass protein fraction hydrolyzes into peptides and amino acids that further

react into secondary products that significantly contribute to the quantity of biocrude and

ACP yielded [13]; however, the nitrogen content introduced by those compounds is detri-

mental to biocrude quality but desired in the ACP for subsequent nutrient recycling. Finally,

biomass carbohydrates contribute the least to biocrude formation [13] and largely degrade

into aqueous-phase soluble sugars, aldehydes, ketones, and organic acids that eventually

gasify, or convert to biochar in the solid fraction [14, 15].

Due to the variability in the composition of the compounds in biocrude oil and the

prevalence of undesired heteroatoms such as nitrogen, oxygen, and sulfur, catalytic upgrading

is required to improve biocrude quality before it can be processed in existing refineries [16, 17].

This catalytic upgrading step is also energy intensive, potentially costly, and imposes its

own environmental impacts. Furthermore, the nutrient-rich ACP can be recycled whole

for algal cultivation [18, 19] or gasified to obtain fuel gases [20], both of which are crucial
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for overall process sustainability. It is therefore desirable to engineer HTL in a way that

maximizes carbon and hydrogen recovery in the biocrude to increase energy density and

recovery (instead of in the ACP, where it would need to be hydrothermally gasified), while

also maximizing nitrogen, phosphorus, and sulfur recoveries in the ACP for recycling (instead

of in the biocrude, which requires catalytic removal).

1.3 Factors affecting hydrothermal liquefaction

The reactivity of the algal biomass during HTL and the yield and properties of the differ-

ent reaction products are affected by a host of factors. The most prominent input variables

include temperature and time [21–37], slurry concentration [21, 23, 24, 32, 37, 38], biochem-

ical composition (e.g., lipids, proteins, and carbohydrates) [13, 15, 28, 29, 36, 39–44], and

the identity of the species employed (e.g., via differing cellular morphology) [28, 39, 42].

Many previous studies of these factors have various limitations, however. Long heat-up

times (> 3 min) frequently observed in previous studies [21–23, 27, 28, 31, 32] obfuscated

the independent effects of temperature and time. Concentration is typically viewed as a less

significant factor than temperature and time, despite being examined generally only at one

or two reaction conditions [21, 23, 24, 37, 38]; without a holistic exploration of concentra-

tion effects over a wide range of reaction conditions, any deductions about its impacts are

tentative. Biochemical composition has been a subject of scrutiny at high reaction severity

(i.e., temperature and time), but often only for one or two reaction conditions [13, 15, 39–

45]. This factor remains relatively unexplored at low and mild reaction severities, which are

regions of interest for kinetic analysis. A more complete examination of the effects of slurry

concentration and biochemical composition over a broad range of temperatures and times

using fast-heating reactors could illuminate previously unobserved effects on product yield

and distribution that may have been missed by previous studies.

Prior efforts showed that any differences in product distribution between different species

of microalgae at high reaction severity can be largely explained by proximate biochemical
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composition (lipids, proteins, carbohydrates) [13, 15, 41]. Variability in biocrude and ACP

properties between different species after controlling for proximate biochemical composition

has received little attention to date [28, 39]. In the hydrothermal environment, especially at

low to moderate reaction severities conducive to hydrolysis, differences in cell morphology

(e.g., cell wall strength and surface-area-to-volume ratio) may affect microalgal reactivity, in-

dependent of proximate biochemical composition. Even at high reaction severity, proximate

biochemical composition may be insufficient for adequately correlating product characteris-

tics, and more detailed information about biochemical composition (e.g., DNA, RNA, and

unsaponifiable lipid contents) may be important for explaining product yield and property

variation.

Although the aforementioned variables are typically only examined individually, they can

be coupled during HTL. As an example, different types of biomolecules exhibit different rates

of hydrolysis as a function of reaction severity, yielding myriad degradation products [12].

Increased slurry concentration can promote interactions between these degradation products

through reaction pathways such as the Maillard reaction between reducing sugars and amino

acids [46, 47]. Furthermore, even with the same biochemical composition, differences in

cell wall resiliency to hydrothermal degradation [39] and possibly cell morphology between

different microalgal species may affect their reactivity during HTL, depending on slurry

concentration (decreased concentration increases exposure to high-temperature water) and

reaction severity (increased severity increases rate of degradation). No previous study has

probed all of these factors together when examining HTL product yield and properties.

There could, therefore, be previously unexamined synergistic or antagonistic effects between

different feedstock characteristics and reaction conditions. Generally only a few of these

variables are considered over relatively narrow ranges, which limits the ability of the field

to holistically understand and ultimately model HTL kinetics and may miss sets of HTL

parameters that offer improved biocrude yield and quality and/or improved nutrient recovery

in the ACP. This dissertation aims to address many of these shortcomings exhibited by
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prior studies in the literature to provide an empirical basis for developing new mathematical

models for microalgal HTL.

1.4 Quantitative models for hydrothermal liquefaction

There have been several previous attempts to model microalgal HTL product yields and

properties via multiple linear regression of biochemical composition at fixed HTL reaction

conditions [13, 15, 40, 41, 48, 49] or multiple linear regression of reaction conditions for

a fixed microalgal species and biochemical profile [32, 50]. These models are useful for

understanding the effects of continuously varying specific HTL inputs; however, they are

limited to certain regions of the reaction domain, often ≥ 300 °C and ≥ 30 min, or a

specific type of microalgae. A mathematical model of HTL product composition and yield

that allows for both reaction conditions and feedstock conditions to be varied has yet to

be developed, but would significantly increase the capacity for HTL process optimization of

biocrude production and ACP nutrient recycling. A chemical-kinetics approach is well suited

for the development of such a model because it enables tracking of the components of the

system governed by a reaction network and associated rates of reaction. Such components,

including their yield and elemental properties, could be tracked as functions of temperature,

time, concentration, and biochemical composition.

One “bottom-up” method for this approach is to assemble the behavior of microalgae

during HTL through the amalgamation of microkinetic models describing the behavior of

individual components or classes of biomolecules in the microalgae. For example, such models

could describe the individual hydrothermal reaction pathways for specific amino acids, such

as alanine, glycine, phenylalanine, and cysteine, or the broader behavior of amino acids

in general. Indeed, there have been myriad examinations of hydrothermal reactions for

various biochemical components of microalgae, including lipids, proteins, carbohydrates, and

their associated degradation products [12], including one such study of cholesterol by the

author of this dissertation [51]. One issue with such an approach is that reactions between
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biomolecule degradation products, such as the Maillard reaction between sugars and amino

acids [46, 47, 52], are difficult to account for in their entirety without testing all possible

binary interactions. Another issue is that such models, which could contain hundreds or

thousands of rate equations, may be inaccessible without sufficient computing power and

time.

Conversely, a “top-down” approach instead attempts to quantitatively describe product

yield and composition evolution through experimental data of microalgae themselves [53].

As an example, one such model describes the time-dependent evolution of the HTL product

fractions as functions of the biochemical profile of the microalgae and temperature [54]. These

models have several clear advantages over the bottom-up approach. Critically, top-down

models are constructed using real microalgal experimental data, and thus are more likely

to predict HTL product distribution with higher fidelity. Additionally, they may be more

tractable than otherwise unwieldy bottom-up models comprising a collection of microkinetic

models. To date, there have been relatively few attempts to model microalgal HTL using

this approach, and none have considered slurry concentration or attempted to correlate the

elemental content of the product fractions. A more comprehensive kinetic model that fills

gaps in our understanding of how the HTL product distribution responds to different inputs

would have tremendous value for optimization of biocrude production and ACP recycling.

1.5 Summary of research motivation

The objective of this dissertation is to illuminate many of the areas that were previously

unexplored in the literature through comprehensive experiments that provide the basis for

developing more advanced mathematical models for HTL. In Chapter II, we explore HTL

for the microalga Nannochloropsis oculata over a broader range of temperatures and times

to establish a kinetic model valid over shorter timescales than previous models. We consider

the effects of using algal polycultures on the quality of biocrude oil produced by HTL in

Chapter III, and, for the first time, quantitatively decouple the effects of biochemical com-
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position and species identity on biocrude properties. These two studies, along with insights

from the literature, inform a comprehensive examination of the effects of temperature, time,

slurry concentration, biochemical composition, and species identity on the biocrude and

aqueous product fractions in Chapter IV and Chapter V, respectively. Finally, we use these

data and documented reaction pathways from the literature to create the most advanced ki-

netic model of microalgal HTL to date in Chapter VI. For the first time, we employ known,

molecular-scale reaction pathways to establish a reaction network and governing system of

rate equations to predict the total mass, carbon, and nitrogen yields for the solid, biocrude,

aqueous, and gas products. This model pioneers a new approach for HTL reaction engi-

neering that allows for much more holistic optimization than previously possible, ultimately

enabling improved process sustainability and EROI.
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CHAPTER II

A quantitative kinetic model for the fast and isothermal

hydrothermal liquefaction of Nannochloropsis oculata

This chapter contains results that were originally published in Bioresource Technology

written along with co-authors Julia L. Faeth and Phillip E. Savage [34]. To elucidate the

underlying kinetics for this process, we conducted isothermal and non-isothermal reactions

over a broad range of holding times (10 s – 60 min), temperatures (100 – 400 °C), and

average heating rates (110 – 350 °C min-1). Biocrude reached high yields (≥ 37 wt %)

within 2 min for set-point temperatures of 350 °C or higher. We developed a microalgal

HTL kinetic model valid from 10 s – 60 min, including significantly shorter timescales (10

s – 10 min) than any previous model. The model predicts that up to 46 wt % biocrude

yields are achievable at 400 °C and 1 min, reaffirming the utility of short holding times and

“fast” HTL. We highlight potential trade-offs between maximizing biocrude quantity and

facilitating aqueous phase recovery, which may improve biocrude quality. The illumination

of the relevant timescales for HTL kinetics at different temperatures via the quantitative

model presented herein informed the expanded design of HTL experiments described in

Chapters IV and V.
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2.1 Introduction

Numerous studies have examined the effects of temperature and holding time on the

product distribution created by isothermal HTL of microalgae [21, 22, 24, 27]. These studies

all concluded that temperature has a much greater effect on product distribution than holding

time; however the holding times employed were long (10 – 120 min) and reactions were

generally quenched well after most algal solids had reacted to form products at temperatures

relevant to HTL (T ≥ 250 °C).

Compared to prior work on isothermal HTL, far fewer studies have examined non-

isothermal HTL with rapid heating (fast HTL). Faeth et al. [25] used average heating

rates of 170 – 350 °C min-1 and obtained comparable or higher biocrude yields than from

isothermal conditions but over much shorter timescales (1 – 5 min). The results suggest that

microalgal HTL occurs on timescales much shorter than previously thought. Others have

demonstrated similar results for fast HTL in batch reactors of corn stover [55], bacteria and

yeast [56], and macroalgae [57], and for continuous HTL of microalgae (200 – 990 °C min-1)

[38, 58]. Moreover, recently Cheng et al. [59] developed a glass- and silicon-based chip to

achieve even more rapid heating rates (∼900 °C min-1). They observed appreciable biocrude

formation (38 % of maximum fluorescence intensity) at 1 min for at set-point temperature

of 300 °C, further demonstrating the short timescales of algal HTL kinetics.

Despite this recent shift toward shorter holding times (1 – 5 min) [25, 38, 58, 59], the

field currently lacks a comprehensive examination of HTL product fraction evolution with

respect to time, temperature, and heating rate over timescales short enough to elucidate

reaction kinetics. This gap in the literature presents an opportunity to explore these process

variables in a more systematic manner. Additionally, few attempts have been made to

quantitatively model microalgal HTL kinetics. There have been several attempts to model

HTL product distribution at specific isothermal HTL conditions based on the biochemical

composition of the microalgae [13, 40, 48], but none of those models attempt to predict

kinetic behavior. Valdez and Savage [53] developed a reaction network and posited the
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first kinetic model for the (isothermal) HTL of Nannochloropsis oculata, a marine species of

microalgae, encompassing a wide range of temperatures (250 – 400 °C) and holding times (10

– 90 min). This model successfully correlated the yields of solid, biocrude, aqueous-phase,

and gas products for the reaction conditions within the scope of the study. However, the

data used to develop the model only included experiments with holding times of 10 min

or longer, with no data at low solids conversion and little variation in product distribution

by 20 min. This restriction on reaction times was imposed such that all reactions operated

under predominantly isothermal conditions (reactor heat-up contributed to ≤ 50 % of the

holding time).

It is essential that a microalgal HTL kinetic model incorporates data collected on the same

timescale over which reactions occur and that the actual temperature profile experienced

inside the reactor is known if the heat-up time is comparable to the holding time. In this

chapter, we sought to investigate and decouple the effects of time, temperature, and heating

rate on HTL product yields. We then used this database to develop a modified reaction

network and quantitative kinetic model to calculate HTL product yields over a broad range

of temperatures (200 – 400 °C), holding times (10 s – 60 min), and average heating rates

(110 – 350 °C min-1). This is the first kinetic model for fast HTL.

2.2 Materials and Methods

2.2.1 Experimental

A preservative-free slurry of 31 ± 1 wt % (standard deviation, SD) Nannochloropsis

oculata and water was purchased from Reed Mariculture, who reported its composition to

be 59 wt % proteins, 14 wt % lipids, and 20 wt % carbohydrates. The ash content was

previously reported to be 6 wt % [25]. We constructed 1.67 mL batch reactors from a 3/8 in.

Swagelok® port connector and two caps, all of 316 stainless-steel construction. We loaded

each reactor with enough algae slurry (0.309 – 0.589 g) and deionized water (0.353 – 0.673
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g) to constitute a 15 wt % slurry of algae in water. We calculated reactor loadings such that

reactor pressures would not exceed 400 bar at the final temperature. After loading, reactors

were sealed to 45 ft-lbs. using a torque wrench.

Additional 1.50 mL proxy reactors for temperature measurements were constructed using

a 3/8-in. port connector, a cap, and a bored-through reducing union (reducing the internal

diameter from 3/8 in. to 1/8 in.). An Omega Engineering, Inc. 1/8-in.-diameter 18-in.-long

stainless-steel-clad K-type thermocouple was inserted into the 1/8-in. end of the reducing

union such that the tip of the thermocouple resided in the middle of the reactor body when

closed. We loaded each proxy reactor with enough deionized water to match approximately

the total density in the HTL reactors. An Omega Engineering, Inc. UWBT-TC-UST-NA

Datalogger recorded the temperature measured by the thermocouples in the proxy reactors

every 0.1 s.

The loaded, sealed reactors were submerged in a Techne IFB-51 fluidized sand bath

preheated to the specified set-point temperature. We define holding time as the time from

the instant the reactor begins to heat up to the instant the reactor starts to cool down. At

the end of the holding time, reactors were removed from the fluidized sand bath and quickly

quenched in cold water. After about 3 min, the exterior of the reactors was dried with paper

towels. For reactions with holding times less than 1 min, we placed proxy reactors in the sand

bath simultaneously with the reaction vessels, and for all other reactions (t > 1 min) we used

temperature profiles previously recorded at the same set-point temperature, averaged over

at least two independent trials. Typically, reactors immersed at set-point temperatures of

200, 300, 400, 500, and 600 °C exhibited average heating rates of 110, 170, 230, 290, and 350

°C min-1, respectively. These heating rates were calculated as linear averages over the time

it took reactors to reach within 95 % of the maximum temperature change, typically about

95 s. For example, this threshold for a set-point temperature of 300 °C would occur when

the temperature is about 286 °C (0.95 = (286−25)/(300−25)). Representative temperature

profiles are listed in Table A.1 in Appendix A.
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Within 2 h after quenching and drying, reactors were weighed, tapped forcefully on the

benchtop three times, opened to release gases, and weighed again. We calculated the mass

of gas evolved as the difference between these two reactor masses. Biocrude, aqueous-phase,

and solid products were recovered according to the procedure described previously [24]. This

procedure involves pouring the reactor contents into a glass conical centrifuge tube, rinsing

the reactor with 9 mL of dichloromethane (DCM) (> 95 % optima grade, Fisher Scientific)

in small aliquots, and collecting these rinsings in the same glass tube. This tube was then

mixed using a vortex mixer and centrifuged to facilitate phase separation.

Following centrifugation, the organic (DCM-soluble) phase was manually collected using

a pipette and transferred to a pre-weighed glass tube. The remaining aqueous phase and

solid products were again mixed using a vortex mixer and centrifuged. The aqueous phase

was transferred to a pre-weighed vial via pipette and the residual solids were left in the

original glass tube. Tubes containing the DCM-dissolved organics, remaining solids, and wet

aqueous phase were each dried under nitrogen (99.998 %, MetroWelding Supply Corp.), using

a Labconco® RapidVap® Vertex™ Dry Evaporator with a solid aluminum heating block at

35, 35, and 70 °C, respectively, and weighed until two consecutive cycles of drying and

weighing produced tube masses varying by < 2 mg. The dried organic, solid, and aqueous

phases are what we term the biocrude, solid, and aqueous-phase products, respectively.

Furthermore, we define the volatiles fraction to be the compounds primarily dissolved in the

aqueous phase but lost due to evaporation upon drying at 70 °C [24]. We also report the

sum of the aqueous-phase and volatile product fractions, which is an estimate of the total

material in the aqueous phase immediately post HTL [21]. Product yields were calculated by

dividing the mass of product collected by the initial mass of dry algae for a given reaction.

The yield of volatiles was calculated by difference. In a few cases we observed gas yields that

were higher than expected based on other data collected under similar reaction conditions.

In these rare cases we used interpolation to estimate the gas yields. For some reactions

conducted below 250 °C, the insolubility of unreacted algae in DCM made it difficult to

12



recover all of the material. In these cases we scaled the solid and aqueous-phase product

yields to close the mass balance. Details about the procedure used for adjustment along

with both the unadjusted and adjusted yields appear in Appendix A.

2.3 Results and Discussion

This section reports the product yields from HTL of Nannochloropsis oculata at temper-

atures of 100 – 400 °C, holding times of 10 s – 60 min, and average heating rates of 110 –

350 °C min-1. Following the experimental results, we propose a reaction network and kinetic

model.

2.3.1 Product fraction yields

Figure 2.1 depicts the yields of product fraction i (xi) from HTL of Nannochloropsis

oculata. The black lines on the plots represent typical reactor temperature profiles resulting

from set-point temperatures of 200, 300, 400, and 500 °C. Each individual point represents

a single HTL reaction shaded to show the product fraction yield and plotted at the holding

time and final reactor temperature reached. Table A.2 in Appendix A lists the exact product

yields used in Figure 2.1.

Figure 2.1a depicts solid yields. To the best of our knowledge, this is the first study to

capture the shift from low conversion (< 30 %) at short holding times (t < 1 min) and low

temperatures (T < 250 °C) to high conversion (∼100 %) at typical isothermal HTL conditions

(t > 20 min, T > 300 °C). As expected, solid yields are highest at short holding times and

low temperatures (bottom left) and lowest at long holding times and high temperatures (top

right). Solid yields decrease monotonically with increasing reaction severity throughout the

entire range of HTL reaction conditions examined until a lower bound (on the order of the

ash content) is reached. At a set-point temperature of 300 °C, for example, this lower bound

is observed for t > 3 min, and this time decreases with increasing temperature. At t > 3 min,

and T = 200 °C, solid product yields decrease with increasing holding times, though complete
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(d) Aqueous-phase products
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(f) Aqueous-phase and volatile products

Figure 2.1: Product fraction yields from the hydrothermal liquefaction of Nannochloropsis oculata as func-
tions of final reactor temperature and holding time. Solid lines represent typical temperature profiles based
on sand-bath set-point temperatures of 200, 300, 400, and 500 °C.

14



conversion is not observed within the range of reaction times examined at this temperature.

Above 200 °C, solids yields decrease dramatically with increasing temperature; moreover,

solids conversion at 200 °C is remarkably slower than at 250 °C, compared to other 50

°C increments (e.g., 250 °C compared to 300 °C). This may indicate that hydrolysis of algal

biomolecules becomes much more kinetically favorable in the range of 200 – 250 °C, which

is consistent with temperatures reported in the literature [22, 60, 61].

Figure 2.1b displays biocrude yields. The trends in biocrude yield were of comparable

magnitude and opposite to those of solid yields, with yields generally increasing as a function

of temperature and time. At short holding times, a maximum yield was reached at around

300 – 400 °C and 3 – 7 min. At longer times characteristic of isothermal HTL, this maximum

yield shifts to a lower range of 250 – 350 °C, with little variation in yields after 5 min. This

temperature range for maximizing biocrude yield and these trends are in agreement with

myriad studies for isothermal HTL [24, 27, 62–64]. At 400 °C, biocrude yields show a slight,

yet non-negligible decrease with increasing reaction time. Decreasing biocrude yields with

increasing time at temperatures above 350 °C has also been observed previously [21, 24].

Figure 2.1c shows that gas yields generally increase with increasing temperature and

time. Although the trend at long reaction times is consistent with previous studies [21,

22, 24, 27], the gas yields in the present work are higher than those reported previously

for Nannochloropsis oculata [24] but on the same magnitude as those for other microalgae

[21, 22]. This difference in observed gas product yields may be a consequence of measurement

technique. In this study, we measured the mass of gas evolved shortly after the reaction by

the difference in mass of vented and unvented reactors, however Valdez et al. [24] employed

reactors equipped with gas valves to measure gas by gas chromatography (GC) analysis. We

took care to ensure that the mass of gas evolved was measured within 2 h after reactions

were quenched to limit the extent that carbon dioxide, the principal component of the gas

phase [10, 21, 22], dissolves in the aqueous phase. The dissolution kinetics of carbon dioxide

from the gas phase into the aqueous phase are fast, with a forward rate constant of 1× 1010
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s−1 [65]. However, diffusion of dissolved carbon dioxide in water is slow, with a diffusion

coefficient of D = 2.233× 10−9 m2/s [66]. Our analysis shows that < 25 % of the carbon

dioxide would have dissolved in the aqueous phase within 2 h of time between quenching

a reaction and gas measurement. Moreover, we agitated the reactors by forcefully tapping

them on the benchtop three times before opening to further liberate carbon dioxide back into

the gas phase. See Section A.6 in Appendix A for an extensive analysis of this phenomenon.

Figure 2.1d depicts aqueous-phase product yields. At every set-point temperature except

200 °C, aqueous-phase product yields increase initially to a maximum value at moderate

reaction severity, then decrease at high reaction severity. At short times, they reach a

maximum at about 320 – 380 °C and 45 s – 2 min. We postulate that rapid heating (175 – 375

°C min-1) could be facilitating protein and amino acid recovery in the aqueous phase. Garcia-

Moscoso et al. [67] developed a similar, yet more rapid process they refer to as flash hydrolysis

(240 – 320 °C, 6 – 12 s) with essentially instantaneous heating achieved by mixing pre-heated,

pressurized water with algal slurry in a continuous reaction system. These conditions allowed

peptides and arginine, among other protein-derived co-products, to be readily recovered while

simultaneously preserving the lipid content of the algal solids. Rapidly heating reaction

mixtures to elevated temperatures seems to favor protein-derived product recovery in the

aqueous-phase while also apparently minimizing cross-reactions between lipids and protein

[67].

At longer times and isothermal conditions, aqueous-phase product yields monotonically

decrease with increasing temperature and reaction time (for set-point temperatures above

200 °C only), reaching a minimum at 400 °C and 40 min and a maximum at 200 °C and

40 min. These trends are consistent with those reported previously for yields of aqueous-

phase products [21, 22, 24, 27]. Moreover, a number of recent studies have explored low-

temperature (125 – 225 °C) pre-treatment steps, usually as a means of reducing the nitrogen

content of the algal solids thereby improving the quality of the resulting biocrude oil pro-

duced from a subsequent HTL reaction [23, 30, 31] or transesterification reaction [68, 69]
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while simultaneously producing a nutrient-enriched aqueous phase. In terms of the solid

and aqueous-phase product yields, our results at 200 °C are consistent with the findings of

those studies. Moreover, Costanzo et al. [31] and Jazrawi et al. [30] showed that reactions

responsible for nitrogen recovery in the aqueous phase are acid catalyzed with rates that

increase with reaction severity.

Figure 2.1e illustrates the volatile product yields. Volatile yields are essentially zero for

T < 250 °C, and very low at short holding times (t < 2 min). At high reaction severity,

volatile yields increase substantially, especially at T ≥ 350 °C and t ≥ 2 min. These values

for volatile yields and the aforementioned trends are consistent with those reported by Valdez

et al. [24] and Christensen et al. [27] (through the difference between their mass recovery and

unity in the latter case). Moreover, these trends are nearly equal and opposite of those for

aqueous-phase products, suggesting that aqueous-phase components are degrading to form

smaller, more volatile compounds in this region. The aqueous phase was dried at 70 °C, and

it is likely that some of these compounds become volatile in the range of 25 < T < 70 °C.

Increases in volatile yields also occur simultaneously with small decreases in biocrude at high

reaction temperature (T ≥ 300 °C) and long reaction times (t ≥ 40 min). These concurrent

phenomena suggest that aqueous-phase product degradation is the primary reaction pathway

to produce volatiles, but that some degradation of biocrude at elevated temperatures and

long reaction times cannot be ruled out.

Given the results in Figures 2.1d and 2.1e, along with previous studies indicating that

volatile products are produced primarily from aqueous-phase products [24], we also plot

aqueous-phase product and volatile yields combined in Figure 2.1f. The trends for the com-

bined volatile and aqueous-phase products match those of just the aqueous-phase products in

Figure 2.1d at low reaction severity and those of the volatiles in Figure 2.1e at high reaction

severity. Some experiments at extended holding time (t ≥ 20 min) show decreased volatile

and aqueous-phase product yields and increased gas yields, suggesting that gasification of

aqueous-phase products occurs at those conditions. We expect these values to show more
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variability than the other products because, like volatile yields, these values were calculated

by difference rather than by direct measurement.

2.3.2 Kinetic model development

We sought to derive a reaction network and develop a corresponding kinetic model that

accurately describes the behavior of microalgal HTL over the entire range of reaction condi-

tions employed. We began with the kinetic model and associated reaction network developed

by Valdez and Savage [53], which was corroborated both by isothermal algal HTL reactions

[24] and additional isothermal reactions of the individual product fractions (solid, biocrude,

and aqueous-phase products) [53]. Using their model to predict the results discussed in

Section 2.3.1 resulted in the parity plots shown in Figure A.1. This model reasonably cal-

culates biocrude yields from HTL at the conditions employed in that study (Figure A.1b),

although the aqueous-phase and volatile product yields were over-calculated and gas yields

were under-calculated, likely due to the differences in gas quantification discussed in Sec-

tion 2.3.1. However, the model breaks down (σ = 17 wt %) at holding times shorter than

10 min (Figure A.1a), clearly demonstrating the need for a model that describes fast HTL.

In general, the results discussed in Section 2.3.1 support the reaction network developed

by Valdez and Savage [53]. The exception is that our results do not immediately suggest that

a biocrude to gas pathway exists. Given that small but appreciable gas formation occurs at

low reaction severity conditions, where no biocrude is present, we instead employ a direct

solids to gas pathway instead of biocrude to gas. Moreover we add an aqueous-product

to volatile pathway to describe that transition shown in Figures 2.1d and 2.1e. Figure 2.2

presents this modified reaction network with pathways that lead to biocrude (B), aqueous-

phase product (A), gas (G), and volatile (V) formation from algal solids (S).

We assume each reaction pathway in Figure 2.2 to be psuedo-first-order and follow Ar-

rhenius kinetics:
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Figure 2.2: Reaction network for the fast and isothermal hydrothermal liquefaction of Nannochloropsis ocu-
lata. S, B, A, G, and V represent solids, biocrude, aqueous-phase products, gases, and volatiles, respectively.

kij(t) = Aij exp

(
−Eij
RT (t)

)
(2.1)

Here, kij(t) is the rate constant for the reaction pathway from reactant i to product

fraction j, Aij is the pre-exponential factor, Eij is the activation energy, R is the gas constant,

and T (t) is the temperature, which is time-dependent during the non-isothermal part of each

experiment. Applying Equation (2.1) and the batch reactor design equation to the reaction

network in Figure 2.2 yields the following system of first-order ordinary differential equations

(ODEs) for the temporal evolution of the product fraction yields, xi:

dx∗S
dt

= −(kSB + kSA + kSG)x∗S (2.2)

dxB
dt

= kSBx
∗
S + kABx

∗
A − kBAxB (2.3)

dxG
dt

= kSGx
∗
S + kAGx

∗
A (2.4)

dx∗A
dt

= kSAx
∗
S + kBAxB − (kAB + kAG + kAV )x∗A (2.5)

dxV
dt

= kAV x
∗
A (2.6)

Given that solids and aqueous-phase product yields approach steady nonzero values at

the highest reaction severities explored herein, we also employed the following change of

variables:
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xS = x∞S + x∗S (2.7)
xA = x∞A + x∗A (2.8)

xS and xA are measured directly (Figures 2.1a and 2.1d, respectively) and we calculated

x∞S = 4± 1 wt % and x∞A = 12± 4 wt % based on the average values of xS and xA for all

experiments above 300 °C with holding times longer than 8 min. x∞S represents the average

amount of unreacted (primarily ash) and repolymerized solids remaining at high reaction

severity, and our reported value is consistent with reported solid yields in the literature for

HTL of Desmodesmus sp. [22], Nannochloropsis oculata [24], Phaeodactylum tricornutum

[27], and Spirulina platensis [21] at these conditions. x∞A represents the average amount

of aqueous-phase compounds remaining at high reaction severity, and our reported value is

consistent with reported aqueous-phase product yields for Desmodesmus sp. [22] at these

conditions (also dried at 70 °C). Incorporating x∞S and x∞A in the model ensured that it would

always calculate reasonable yields for those product fractions.

We performed three control experiments, following the same procedure outlined in Sec-

tion 2.2 at room temperature (25 °C) and a holding time of 60 min, to determine the initial

condition for the model to be xS,0 = 84± 2 wt % (x∗S,0 = 80± 3 wt %), xA,0 = 15± 2 wt %

(x∗A,0 = 3± 4 wt %), xB,0 = 1± 0 wt %, xG,0 = 0 wt %, and xV,0 = 0 wt %. Using the tem-

perature profiles and product yield data from each experiment, we calculated values for all

kinetic parameters by simultaneously solving the system of first-order, ODEs in MATLAB®

with the function ode23s. We then used lsqnonlin to minimize the objective function,

which consisted of a 45 (experiment) by 5 (product) matrix of differences between the ob-

served and calculated weight fractions. Confidence intervals for parameters were calculated

using the function nlparci.
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2.3.3 Kinetic model results

Table 2.1 displays the Arrhenius parameters for the chemical reaction pathways, with

confidence intervals representing the SD. These parameters are valid on the temperature,

holding-time, and average-heating-rate ranges of 100 – 400 °C, 10 s – 60 min, and 110 – 350

°C min-1, respectively.

Pathway log(A) [log(s-1)] Ea [kJ mol-1]
S → B 5.0± 0.6 74± 6

S → A 4.0± 0.5 65± 6

S → G 3.9± 0.7 68± 8

B → A 3.8± 1.0 99± 19

A → B 1.7± 0.5 59± 8

A → G 2.3± 0.5 64± 7

A → V 7.6± 1.5 119± 17

Table 2.1: Arrhenius parameters for reaction pathways in Figure 2.2.

The activation energies for the solids conversion pathways (S → B, S → A, and

S → G) are comparable to those reported for the hydrolysis of various compounds in high-

temperature water, including proteins to amino acids (46 – 191 kJ mol-1) and acylglycerides

to free fatty acids (50 – 105 kJ mol-1) [12]. The values are lower than those reported for car-

bohydrate conversion, including cellulose, starch, and mono- and disaccharides (92 – 164 kJ

mol-1) [12], perhaps because carbohydrates constituted just 20 wt % of the initial biomass.

Moreover, carbohydrate conversion has been demonstrated to be slower than the conver-

sion of proteins and lipids [13, 48]. The activation energies in Table 2.1 for gas formation

pathways (S → G and A → G) are comparable to those reported by Guan et al. [70] for

hydrothermal gasification of algae, when the reported rate constants for individual gaseous

species are lumped together [53]. In general, our model features pre-exponential factors and

activation energies higher than those reported by Valdez and Savage [53]. This translates to

calculated values for kSB and kSA that are about an order of magnitude higher than those

calculated using the Valdez and Savage [53] model.

Figure 2.3a shows the instantaneous selectivity, SSj = kSj/kS,T , of solids conversion
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reactions S → j, where j = A,B,G, with respect to temperature. Here kS,T = kSA +

kSB + kSG is the total rate constant for disappearance of solids. The selectivities of solids to

aqueous-phase products and biocrude decrease and increase monotonically, respectively, with

increasing reaction temperature, with the rate of biocrude formation from solids exceeding

that of aqueous-phase product formation at around 275 °C. This trend suggests that rapidly

heating the reaction mixture to 275 °C or higher would maximize biocrude production from

algal solids.
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Figure 2.3: Instantaneous (a) solids and (b) aqueous-phase product conversion selectivities with respect
to temperature. SSj = kSj/kS,T and SAj = kAj/kA,T , where kS,T = kSB + kSA + kSG and kA,T =
kAB +kAG +kAV , respectively. Dark gold, brown, gray-blue, and dark magenta lines correspond to aqueous-
phase products (A), biocrude (B), gas (G), and volatiles (V), respectively.

Figure 2.3b depicts the instantaneous selectivity, SAj = kAj/kA,T , of aqueous-phase prod-

uct conversion reactions A → j, where j = B,G, V , with respect to temperature. Here

kA,T = kAB+kAG+kAV is the total rate constant of disappearance of aqueous-phase products.

The selectivity of aqueous-phase products to biocrude follows that of aqueous-phase prod-

ucts to gas closely throughout the entire range of temperatures plotted, although biocrude

is slightly favored below 170 °C, and gas is slightly favored for 170 – 270 °C. The selectiv-

ity of volatile product formation, SAV , increases substantially with reaction temperature,

rendering volatiles the favored product fraction above 270 °C.

Figure 2.4 depicts observed product fraction yields and model solutions calculated us-
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ing representative temperature profiles for each set-point temperature. Several data also

show dashed-line error bars (SD) obtained from replicate reactions (dotted lines); these ex-

perimental uncertainties are comparable to those reported by Valdez and Savage [53] and

Faeth et al. [25]. Figures 2.4d and e show that the model correlates the data very well at

set-point temperatures of 350 and 400 °C, respectively. The model solutions at 250 and

300 °C (Fig. 2.4b and 2.4c, respectively) are generally good, with the exception of an

over-prediction of aqueous-phase product yields at intermediate holding times. Model cal-

culations for solid, biocrude, and gas yields remain well correlated in this region, however.

The model exhibits the lowest accuracy in Figure 2.4a for a set-point temperature of 200 °C.

Here, the model under-predicts solid yields (over-predicts conversion) and correspondingly

over-predicts aqueous-phase product, biocrude, and gas yields.
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Figure 2.4: Model solutions (solid lines) and experimentally observed yields (xi) over time at different set-
point temperatures (Tsp) for solids (green circles), aqueous-phase products (gold triangles), biocrude (brown
squares), gas (pale blue pentagons), and volatiles (purple hexagons). Dotted lines show SD for selected
experiments.
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One possible explanation for the reduced accuracy in Fig. 2.4a and 2.4b is that the

non-homogeneity of the algal slurry causes the reaction mixture to deviate from pseudo-

first-order and/or Arrhenius kinetics behavior, with the cell walls potentially imposing an

energy threshold for liberating the intracellular components of the algae. Garcia Alba et al.

[22] examined scanning-electron-microscope images of the solids product fraction before and

after conducting hydrothermal liquefaction of Desmodesmus sp. at temperatures in the range

of 200 – 275 °C. They found that there were significant morphological differences in the solids

fraction in this region, with major degradation observed between 225 and 250 °C [22]. The

reduced model accuracy at Tsp ≤ 250 °C and the results presented by Garcia Alba et al.

[22] demonstrate that further studies of hydrothermal conversion at low temperatures of

microalgae with different types of cell walls may be required to improve model accuracy

in that region. In general, however, the quality of the agreement between observed and

calculated product yields at Tsp ≥ 300 °C demonstrates the utility of the present kinetic

parameters and reaction network at calculating yields for both non-isothermal and isothermal

HTL conditions.

Figure A.2 shows residual plots for each product fraction. The model over-calculates

solid yields (Figure A.2a) at moderate reaction severity; above 280 °C the residuals are

significantly smaller. The residual plots highlight that, at low to moderate reaction severity

(T < 280 °C, 20 s < t < 3 min), the model tends to deviate from observed product fraction

yields by a larger magnitude than at moderate to high reaction severity, with the exception

of volatile yields. This observation reaffirms a need to further elucidate reaction kinetics in

this low-to-moderate severity region, which we address in Chapters IV and V.

Figure 2.5 depicts parity plots of the observed and calculated biocrude yields, for several

previous studies [13, 24, 25, 39, 40]. The specific data points that were selected appear in

Table A.3 in Appendix A. We chose data within the scope of our model limits, including

experiments conducted at 400 °C or lower for microalgae of the genus Nannochloropsis.

Moreover, due to limited availability of temperature profile information, we assumed an
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isothermal temperature for data from the López Barreiro et al. [39], Biller and Ross [13],

and [40] studies and assumed temperature profiles typical for this study for data from the [25]

and [24] studies. The SD was 5 wt %, which is comparable to the experimental uncertainties

shown in Figure 2.4 and demonstrated in studies with a similar experimental procedure

[25, 53]. Figure 2.5 demonstrates that the model can be successfully applied for biocrude

prediction to microalgae within the Nannochloropsis genus and of a similar biochemical

composition over a broad range of reaction conditions. Comparison of model-predicted

yields to literature data for other products is much less meaningful, due to differences in

experimental procedures. See Section A.5 in Appendix A for further explanation on model

validation for other product fractions.
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Figure 2.5: Parity plot of observed vs. calculated biocrude yields for literature data [13, 24, 25, 39, 40].

2.3.4 Calculated yields

With the establishment of a kinetic model that can describe algal HTL as a function

of temperature and time, irrespective of heating rate, we now use it to improve our under-

standing of the kinetics that govern this process. Figure 2.6 depicts density plots of product

fraction yields as functions of temperature and time for isothermal HTL. Dashed lines corre-

spond to the maximum aqueous-phase product (xmaxA ) and biocrude (xmaxB ) yields achievable
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as a function of isothermal HTL temperature.

Figure 2.6a illustrates the change in the calculated solids yields, xcalcS , over time for

different temperatures. At short times (t < 30 s) and low temperature (T < 250 °C), little

solids conversion occurs. Beyond this region, solids react readily with increasing temperature

and time, and complete solids conversion can be achieved for all temperatures examined. The

curve for the maximum aqueous-phase product yield, xmaxA , coincides with the region where

the solids completely disappear (i.e., xcalcS ≈ x∞S ), which seems reasonable if the algal solids

are the main producers of aqueous-phase products. Moreover, the curve for the maximum

biocrude yield, xmaxB , always occurs well beyond the point of solids depletion, indicating that

secondary reactions contribute significantly to biocrude production.

Figure 2.6b shows the calculated biocrude yields. Biocrude formation increases substan-

tially with reaction temperature at short times, coinciding with the corresponding decrease

in solids (Figure 2.6a). Biocrude yields as high as 46 wt % are achievable after 1 min at 400

°C. Once solids completely disappear, the biocrude yield is much less sensitive to reaction

severity. This trend of little variation also holds over a fairly wide region of temperature and

times, but shifts downward with increasing reaction time, from a range of 325 – 400 °C at

1 min to a range of 225 – 350 °C at 60 min, for example. In general, the biocrude yield

increases with reaction severity, but the existence of maxima indicates that it does decrease

at elevated temperatures (T > 350 °C) and long reaction times (t > 20 min). At times of

10 – 60 min, these maximum yields occur between 300 – 350 °C. This range of tempera-

tures is in excellent agreement with numerous previous studies conducted under isothermal

conditions for various microalgae, including 375 °C for Desmodesmus sp. [22], 300 – 350

°C for Nannochloropsis oculata [10, 24], 350 °C for Phaeodactylum tricornutum [27], and 350

°C for Spirulina platensis [21]. The maximum biocrude yield ranged only from 45 – 46 wt

% regardless of temperature (T ≥ 300 °C). This modest variation is within the uncertainty

in the data, and it indicates that HTL is a very robust process in that it can achieve nearly

the same maximum biocrude yields over a very wide range of temperatures and times. This
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Figure 2.6: (a) Solid, (b) biocrude, (c) gas, (d) aqueous-phase, (e) volatile, and (f) aqueous-phase and
volatile product yields calculated as functions of time, t, and isothermal temperature, T . Solid black lines
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B ) yields at each temperature.
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robustness may provide opportunities to select HTL conditions that provide high biocrude

yields and also optimize some other desired outcome (e.g., biocrude quality, nitrogen recovery

in the aqueous phase, etc.).

Figure 2.6c displays gas yields, xcalcG , calculated over time for several temperature profiles.

Gas yields are fairly low at low reaction severity, but increase with increasing temperature

and time beyond the point of solids depletion (Figure 2.6a). At longer reaction times (t >

30 min), gas formation is favored at moderate temperatures (250 – 350 °C). The global

maximum calculated gas yield of 20 wt % occurs at T = 280 °C and t = 60 min.

Figure 2.6d depicts the calculated yields of aqueous-phase products, xcalcA . At low reaction

severity, aqueous-phase product yields increase significantly with increasing temperature and

time until solids are depleted and then decrease with further increases in reaction severity.

Moreover, the maximum aqueous-phase product yield itself, xmaxA , decreases monotonically

with increasing temperature, from a global maximum of 52 wt % at T = 200 °C and t = 50

min, to 35 wt % at T = 400 °C and t = 10 s. Notably, the temperature range that maximum

aqueous-phase products are produced at long times is consistent with those reported in the

literature, including 225 – 250 °C for Desmodesmus sp. [22], 250 °C for Nannochloropsis

oculata [24], and 200 °C for Spirulina platensis [21]. Similar to xmaxA occurring at the point

of solids depletion (Figure 2.6a), the maximum biocrude yield, xmaxB , always occurs when the

yield of aqueous-phase products reaches approximately 20 wt % or less.

Figure 2.6e shows xcalcV , the calculated volatile yields. At short times, volatile formation

only occurs at T > 300 °C, increasing rapidly in the range of 350 – 450 °C. At longer times,

volatile yields become appreciable only at T > 275 °C. Similarly to gas yields, the volatiles

yield increases monotonically with increasing reaction time, due to the irreversibility imposed

by the reaction network in Figure 2.2. The global maximum is 44 wt % at T = 400 °C and

t = 60 min, the most severe reaction condition shown. Volatiles are also the most favored

product at elevated temperatures (T > 350 °C), given the high values of the Arrhenius

parameters for the rate constant for the A→ V reaction pathway. For completeness, we also
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show aqueous-phase and volatile product yields together in Figure 2.6f.

Examined together, the plots in Figure 2.6 illustrate that one can decouple effects of

temperature and time on the HTL product distribution. Above 250 °C and 30 s, biocrude

and aqueous-phase product yields increase dramatically with increasing reaction severity

until solids are depleted. Aqueous-phase product yields reach a maximum at that region

and decrease with increasing reaction severity while biocrude yields increase modestly and

volatile yields become appreciable. At extreme reaction severities, biocrude yields begin to

decrease modestly and volatile yields increase substantially. Examination of longer reaction

times in Figure 2.6 shows that temperature plays a larger role than time in determining

product distribution; aqueous-phase products, biocrude and gas (collectively), and volatiles

are favored below 225 °C, between 225 – 350 °C, and above 350 °C, respectively.

Examining Figure 2.6 also demonstrates an interplay between aqueous-phase products

and biocrude. For a given reaction time, the maximum biocrude yield generally occurs

at temperatures about 100 °C higher than the maximum aqueous-phase product yield.

As previously discussed, the increase in biocrude yield observed between xmaxA and xmaxB

can be entirely attributed to aqueous-phase products reacting to from DCM-soluble prod-

ucts (biocrude) because solids are essentially depleted in that region (xcalcS is of order x∞S ).

Aqueous-phase products are rich in nitrogen, and it has been demonstrated that nitrogen

incorporation in the biocrude increases with reaction time and temperature in this range

[21, 22, 24, 25, 38, 59]. Therefore, it seems plausible that this increase in biocrude yield

with holding time is the result of nitrogen-containing aqueous-phase compounds reacting to

become less polar or incorporating themselves with larger organic molecules through mech-

anisms like the Maillard reaction [12, 48, 71]. We speculate that maximizing aqueous-phase

product formation either through short reaction times and rapid heating or longer reaction

times at lower temperatures (200 – 225 °C) may be desirable from a biocrude quality and

energy input standpoint. Doing so may lower nitrogen incorporation into the biocrude (and

maximize nitrogen recovery into the aqueous phase for recycling), reducing the burden of
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downstream catalytic hydrodenitrogenation reactions necessary for biocrude refinement [71].

2.4 Conclusion

We elucidated algal HTL kinetics through a comprehensive study of the coupled effects

of temperature, reaction time, and heating rate on algal HTL product yields. We used these

data to develop a reaction network and kinetic model valid over a broad range of holding

times (10 s – 60 min), including much shorter timescales (10 s – 10 min) than previously

established. Calculated yields correlate well with observed yields, and the model shows that

biocrude yields as high as 46 wt % are achievable at 400 °C and 1 min. The model highlights

potential trade-offs between biocrude quantity and quality.
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CHAPTER III

Influence of biodiversity, biochemical composition, and

species identity on the quality of biomass and biocrude

oil produced via hydrothermal liquefaction

This chapter contains results that were originally published in Algal Research written

along with co-authors Cristina K. Koss, Anita Narwani, Aubrey R. Lashaway, Casey M.

Godwin, Bradley J. Cardinale, and Phillip E. Savage [42]. Herein, our objective was to

characterize the extent that multi-species cultures of microalgae, or polycultures, could im-

prove HTL process sustainability and illuminate differences in biocrude properties arising

from feedstock characteristics (e.g., biochemical composition and species identity). More

specifically, we compared several measures of quality for biomass and biocrude oil produced

via HTL for monocultures and polycultures of the freshwater microalgae Ankistrodesmus

falcatus, Chlorella sorokiniana, Pediastrum duplex, Scenedesmus acuminatus, Scenedesmus

ecornis, and Selenastrum capricornutum. On average, the 2-species cultures provided prod-

uct quality comparable to that of the monocultures, while that of the average 4- and 6-species

polycultures was lower. No single monoculture or polyculture performed the best with re-

spect to all quality metrics considered, including biomass fatty acid content and biocrude

elemental content and higher heating value. However, for each measure of quality, some poly-

cultures did outperform or match the performance of the best monoculture for each respective
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metric. Numerous polycultures performed outside the range of product quality exhibited by

their constituent species (transgressive overyielding), and polycultures with Chlorella did so

to the greatest extent. We highlight several polycultures that offer potentially compelling

trade-offs between product quantity and quality compared to the most productive mono-

culture; such trade-offs contribute to the portfolio of polyculture attributes that could be

employed to improve overall sustainability of algal biofuel production. Microalgal biochemi-

cal composition was correlated with biocrude properties, however including species identity

as an additional correlation variable further explained the observed variation. A regression

model incorporating these variables helped inform the design of the more expansive set of

HTL experiments presented in Chapters IV and V.

3.1 Introduction

The vast majority of current research on the production of renewable fuels from algal

biomass focuses on the growth of monocultures of highly productive species. These species

can either be highly productive in nature [3] or engineered to improve disease and invader

resistance, lipid productivity, photosynthetic efficiency, or tolerance to abiotic environmen-

tal factors [72, 73]. These design goals have drawbacks from an ecological and sustainability

perspective, however. The use of intensive farming practices to support engineered mono-

cultures in agriculture, for example, has led to biodiversity losses that in some cases result

in impacts to ecosystems that rival the effects of climate change and eutrophication [74, 75].

Moreover, such monocultures require more maintenance in terms of fertilizers and biocides

and cannot be sustained in open ponds indefinitely due to continuous environmental pertur-

bations (e.g., changes in weather), outbreak of disease, and invasion by undesirable species

[76].

A more sustainable approach to algal biomass production may involve designing com-

munities containing multiple species of microalgae, with each performing a separate set of

functions that are complementary to one another [77, 78]. For example, resource-use effi-
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ciency and disease resistance would mitigate the need for fertilizers and pesticides, thereby

reducing their impact on the surrounding environment. Several studies have examined how

algal biodiversity affects different metrics of interest for biofuel production, although the

results to date have been highly variable. Some of these studies have shown that algal bio-

diversity may help stabilize biomass production over time [76, 79], increase lipid content in

freshwater algae communities via competition-induced nutrient stress [80, 81], and increase

the total biovolume of algal communities [78]. Meanwhile, other studies have shown that

monocultures may be more stable and resistant to invaders when growing in wastewater [82]

and that there is no stabilization effect achieved with polycultures [83].

Although several studies have examined how algal biodiversity can improve biomass yield,

biomass stability, and lipid content, the recent work from our collaboration marked the

beginning of efforts to directly examine how algal biodiversity affects the products from

biomass conversion technologies, including HTL [6]. We probed the impact of biodiversity

on the total biocrude production (mass biocrude produced per unit growth volume) and

its temporal stability (biocrude production temporal mean divided by SD) as measured by

HTL. On average, biodiversity did not lead to an increase in total biocrude production but

did lead to more stable biocrude production over time. Only a small number of the species

combinations could match the biocrude production and stability for the best monoculture,

Selenastrum capricornutum. Moreover, some follow-up studies found that polycultures were

able to grow in the presence of aqueous co-product from HTL to a much greater extent than

monocultures [84], that polycultures exhibit more balance nutrient resource use efficiency

between nitrogen and phosphorus than do monocultures [7], and that when grown outdoors,

polycultures demonstrate enhanced multifunctionality for long-term production compared

to monocultures [8].

The impact of algal biodiversity on the quality of biocrude oil produced via HTL has yet

to be explored; however inter-species interactions, including competition for nutrients for

example, can induce changes in biochemical composition and cell morphology, both of which
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have been shown to affect biomass reactivity in high-temperature water and by extension

the properties of the resulting biocrude [22, 39, 40]. Phytoplankton species vary on aver-

age in their biochemical quality, for example in terms of their elemental stoichiometry, but

they also vary in response to abiotic environmental variation [85, 86]. Many species increase

their cellular carbon content (relative to nitrogen and phosphorus), and specifically their

lipid content when stressed, including in response to nutrient limitation [87]. Some species

also increase their cellular lipid content when mixotrophic growth is stimulated by the ad-

dition of organic carbon [88]. As a result, biodiversity may enhance biochemical quality of

polycultures via a few mechanisms. First, it may increase the likelihood of the polyculture

containing a species whose biochemical properties are desirable for HTL production on aver-

age (known as a “sampling effect” in the biodiversity literature [89]). Second, it may induce

a shift in metabolism resulting in high cellular carbon or lipid content via stress response

to nutrient limitation due to competition for resources. Last, excretion of organic waste or

other exudates by interspecific neighbors may stimulate mixotrophic metabolism, enhancing

lipid production.

In this chapter, we elucidate how algal biodiversity, and by extension biochemical com-

position and species identity, affects the quality of the biomass (i.e., fatty acid content) and

resulting biocrude oil produced via HTL. To the authors’ knowledge, this is the first study

to directly evaluate quality by measuring the elemental composition of the biocrude and by

quantifying the fatty acid content of the algal biomass via acid-catalyzed in situ transester-

ification to fatty acid methyl esters (FAMEs) in the context of microalgal polycultures. To

determine whether or not polycultures simply act as additive mixtures of their component

species, we compare the performance of specific species combinations to expected values

based on the performance of the monocultures of the species constituting those combina-

tions. We also contrast the performance of average polycultures at each level of species

richness to that of the component monocultures. Moreover we elucidate the relative extent

to which biochemical composition and species identity affect the properties of the resulting
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biocrude oil. The relative influence of these feedstock characteristics on biocrude properties

has not been previously quantified and may be important for understanding the underlying

mechanisms governing product quality evolution during HTL.

3.2 Materials and methods

3.2.1 Microalgae cultivation

For a detailed description of cultivation procedures, see Narwani et al. [6]. To sum-

marize briefly, we selected the freshwater microalgae Ankistrodesmus falcatus (A), Chlorella

sorokiniana (B), Pediastrum duplex (C), Scenedesmus acuminatus (D), Scenedesmus ecornis

(E), and Selenastrum capricornutum (F) and occasionally refer to them by a letter identifier,

shown in Table 3.1. We chose these species for several reasons [6]; in short, they were part

of the U.S. Department of Energy’s Aquatic species program, included in the Solar Energy

Research Program’s collection, and/or highlighted as species of interest for biofuel produc-

tion [90–92]. Moreover, they are all common in lakes across North America and as a result

would not pose a risk of introducing non-native taxa into surrounding natural ecosystems if

cultivated at scale. We grew these species in all possible 1-, 2-, 4-, and 6-species combinations

in replication with the temperature set to vary from 17 to 27 °C from week to week once the

cultures reached steady state. This temperature profile was intended to simulate real-world

temperature fluctuations that might be caused by weather fronts in open environments. We

note that additional replicates were grown under a constant temperature of 22 °C, but were

not the focus of the present study; the constant-temperature analogues of the data and fig-

ures presented in the main text can be found in Appendix B. We sampled cultures weekly for

seven weeks once they reached steady state. Cell counts (cell mL-1) were performed on all

1-, 2-, and 6-species cultures in addition to a single replicate of each 4-species combination.

We removed a small number of aquaria from consideration that showed at least one time

point in which a contaminant species (i.e., not part of the inoculated community) made up
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5 % or more of the community biovolume. We calculated average cell volumes of 30.9, 39.0,

680.9, 122.0, 143.1, and 57.0 µm3 cell-1 for A. falcatus, C. sorokiniana, P. duplex, S. acumi-

natus, S. ecornis, and S. capricornutum, respectively, according to the procedure outlined

by Hillebrand et al. [93]. We then used a cell density equivalent to that of water, 1 g mL-1,

to convert cell counts into species abundance weight percentages.

Identifier Scientific name
A Ankistrodesmus falcatus
B Chlorella sorokiniana
C Pediastrum duplex
D Scenedesmus acuminatus
E Scenedesmus ecornis
F Selenastrum capricornutum

Table 3.1: Scientific names and identifiers of species employed.

3.2.2 Fatty acid esterification

The procedure used to extract, esterify, and quantify the microalgal fatty acids was

adapted from the method used by Levine et al. [94]. We typically prepared an acidified

methanol stock solution for a set of ten esterification reactions by adding 1.5 mL of acetyl

chloride (ACROS Organics, ACS reagent grade) to 30 mL of methanol (Fisher Scientific,

HPLC grade). We then combined 50 mg of algal biomass, a Teflon coated stir bar, and 2 mL

of the acidified methanol solution in each round-bottom vial and securely tightened them

with Teflon-lined caps to prevent evaporation.

All vials were placed on a preheated Fisher Scientific Isotemp Dynabloc® stirring hotplate

maintained at 100 °C and 800 revolutions per minute (rpm) for 90 min. Every 30 min, the

vials were agitated to ensure that all solids remained in contact with the solution. After 90

min, the vials were removed from the hot plate and allowed to cool to room temperature.

An internal standard stock solution of tricosanoic methyl ester (C23:0) in n-heptane was

prepared by combining 10 mg of tricosanoic methyl ester (Sigma-Aldrich, ≥99.0%) with 40

mL of n-heptane (ACROS Organics, ≥99.0%). Once the vials reached room temperature, 1
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mL of deionized water and 3 mL of internal standard was added to each vial. The vials were

then vortexed for 4 min and centrifuged at 2000 relative centrifugal force (rcf) for 10 min.

2 mL of each heptane layer were then transferred by pipette into GC vials and promptly

sealed.

We used an Agilent 7890A gas chromatograph with flame ionization detector (GC-FID)

and an Agilent Biodiesel GC column (1909BD-113) to quantify FAMEs. Helium served as

the carrier gas at a flow rate of 1 mL min-1. The oven temperature was initially held at

150 °C for 3 min, after which it ramped to the final temperature of 260 °C at a rate of 6

°C min-1. The final temperature was held for 9 min for a total run time of 30.3 min. The

FID temperature was 300 °C and N2 was the make-up gas. We identified compounds by

comparing retention times to those of a Supelco 37 Component FAME mix. We quantified

compound yields by relating each peak area to the known concentration and peak area of

the internal standard, adjusting for carbon number and molar mass, and normalizing by the

mass of dry biomass used for the analysis. We converted FAME yields into fatty acid (FA)

yields (mass fatty acid / mass dry biomass) and report values grouped by saturation as

SAFAs, MUFAs, and PUFAs. We report the total fatty acid content as lipid content with

the understanding that minor components derived from the “backbone” of lipids, such as

phosphate and glycerol, will be neglected.

We performed this analysis on all samples from the seventh week of steady-state sampling

(see Section 3.2.1). In cases where there was not enough sample mass and we had fewer

than two replicates of a given species combination and temperature treatment, we analyzed

samples from earlier sampling weeks.

3.2.3 Ash content

We ground each biomass sample into a fine powder and measured 25 mg into a small

aluminum weigh boat. We then incinerated the samples in a Ney Vulcan 3-130 muffle furnace

with an initial ramp of 10 °C min-1 to 250 °C with a hold time of 30 min, followed by a ramp of
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20 °C min-1 to 550 °C with a hold time of 30 h. Upon cooling we transferred the weigh boats

to a desiccator for 1 h before measuring the final weigh boat masses. We then calculated

the ash content as the difference in weigh boat mass divided by the mass of dry biomass

incinerated.

3.2.4 Protein and carbohydrate estimation

We measured biomass nitrogen content in all of the available samples from the sixth

and seventh weeks of steady-state sampling. We used a wet persulfate oxidation step [95]

to convert the biomass nitrogen to nitrate. We then measured the nitrate by neutralizing

the digests with phosphate buffer (100 mM, pH 7.4), reducing the nitrate to nitrite using

the enzyme nitrate reductase (Nitrate Elimination Company AtNAR-RPK), then measur-

ing the nitrite using the sulfanilamide-naphthyl (ethylene) diamine method [96, 97]. In

each set of persulfate digestions, we checked for complete recovery of organic nitrogen us-

ing cyanocobalamin as a recovery standard. We estimated protein content (mass protein /

mass dry biomass) by multiplying the nitrogen content for each combination by 6.25, which

assumes that the majority of the nitrogen in algal biomass is present as amino acids [98].

We estimated carbohydrate content as the difference between unity and the sum of protein,

lipid, and ash content, with the understanding that this group will also contain other minor

compounds (e.g., sterols and DNA).

3.2.5 Hydrothermal liquefaction

We describe the full procedure for HTL reactions in previous work [6]. In brief, all

reactions occurred in 1.67 mL (internal volume) batch reactors built using 3/8-in. 316-

stainless-steel Swagelok tube fittings (one port connector and two caps). We loaded all

reactors with 48 mg of dry algae and 910 mg of deionized water. These loadings correspond

to a concentration of 5 wt % algae and enough liquid water to occupy 95 % of the reactor

volume at 350 °C, based on the density of pure, saturated liquid water at that temperature.
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We placed loaded reactors in a fluidized sand bath, preheated to 350 °C, for 20 min. The

reactor heat-up time is about 2 min [34], which is short relative to the batch holding time

employed in this study.

We opened the reactors and poured their contents into glass conical tubes. We used 9

mL DCM to further rinse the reactor walls and collect remaining products. We vortexed the

conical tubes at 3000 rpm for 10 s and then centrifuged them at 500 rcf for 1 min. After

transferring the organic phases to separate glass vials by pipette, we centrifuged the original

glass conical tubes again at 1500 rcf for 3 min. We then transferred the aqueous phases from

the conical tubes to small plastic vials, leaving only the solid phase behind in the conical

tubes (albeit with small amounts of organic and aqueous phase). We dried the organic and

solid phases using a Labconco® RapidVap® VertexTM evaporator set to a block temperature

of 35 °C with a N2 pressure of 25 psi for 65 and 30 min, respectively. We measured and

recorded the mass of each phase, with the biocrude defined as the product remaining in

the glass vial after solvent removal. We calculated biocrude yields as the mass of biocrude

divided by the mass of initial dry algal biomass. Atlantic Microlabs, Inc. analyzed biocrude

samples for C, H, and N content. We calculated O content by difference and estimated the

higher-heating value (HHV) using the correlation developed by Channiwala and Parikh [99].

HTL reactions were performed on all aquaria and each sampling week outlined in our

previous study [6]. CHN analyses were generally conducted in at least duplicate on samples

from the seventh week of steady-state sampling. In rare cases where not enough sample was

produced for a given combination in the seventh week, we instead used samples from other

weeks with preference given to weeks closer to the seventh week.
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Figure 3.1: Species distribution (wt %) within each species combination. Ankistrodesmus falcatus (A),
Chlorella sorokiniana (B), Pediastrum duplex (C), Scenedesmus acuminatus (D), Scenedesmus ecornis (E),
and Selenastrum capricornutum (F) are indicated as red, blue, green, purple, orange, and yellow, respectively.
Only single estimates for species distribution available for 4-species polycultures. Error bars represent SE.

3.3 Results and Discussion

3.3.1 Species distribution

By week seven of steady-state sampling, each species follows a general trend of “dom-

inance” when part of a polyculture in the order of C. sorokiniana (B) > S. acuminatus

(D) > S. capricornutum (F) > S. ecornis (E) > A. falcatus (A) > P. duplex (C) (Fig-

ure 3.1). In other words, when present in a polyculture, C. sorokiniana generally constitutes

the single largest share of the species distribution. S. acuminatus follows similarly and is

the second largest in cases where C. sorokiniana is present. Moreover, A. falcatus and P.

duplex are generally present in only trace amounts (excluding the AC biculture).

3.3.2 Biomass properties

Figures Figure 3.2a–c summarize the fatty acid content data grouped by degree of satu-

ration into SAFAs, MUFAs, and PUFAs, with each class possessing different attributes from

a quality perspective (see Table B.3 in Appendix B for exact values). For example, fatty

acids with higher degrees of unsaturation (more double bonds) possess less hydrothermal

[100] and oxidative [101, 102] stability. However, they also enable cracking, oligomerization,

isomerization, aromatization, and addition reactions during the refinement step [103], each

of which could be individually and selectively targeted by different catalysts depending on
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the desired product composition.

No one monoculture produced the highest yields for a given class of fatty acids, with S.

capricornutum (F), A. falcatus (A), and C. sorokiniana (B) producing the highest saturated

fatty acid (SAFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid

(PUFA) yields, respectively. A few polycultures produced yields that were statistically

equivalent to these monocultures, including CF and ACEF for SAFA content, AC for MUFA

content, and BCDE, BC, ABCE, BD, and CE for PUFA content. Notably A and AC pro-

duced MUFA yields that were at least 35 % higher than all other cultures. On average across

each level of species richness, SAFA and PUFA yields remained relatively constant (perhaps

increasing slightly) up to four species present and then decreased thereafter, while MUFA

yields decreased monotonically.

The biochemical composition of the different species combinations varied considerably,

from 6.1 to 14.2 wt % for lipid, 22.9 to 48.6 wt % for protein, and from 34.6 to 59.3 wt% for

carbohydrate content, respectively, shown in Figures 3.2d–f. The monocultures of A. falcatus,

C. sorokiniana, and S. capricornutum contained the highest lipid, protein, and carbohydrate

content, respectively, while S. ecornis, S. capricornutum, and C. sorokiniana contained the

lowest, respectively. Only one polyculture, BCDE, contained higher lipid content than the

monoculture of A. falcatus (Fig. Figure 3.2d). A few polycultures contained lower protein

content than the S. capricornutum monoculture, including CF and CE (Figure 3.2e), and

several contained lower carbohydrate content than the C. sorokiniana monoculture, includ-

ing ABCD, BC, and ABEF (Figure 3.2f). From one to four species present, on average, lipid

content remained relatively constant, protein content increased significantly, and carbohy-

drate content decreased significantly.

Notably C. sorokiniana was present in four of the top-5 bicultures and nine of the top-10

4-species polycultures for PUFA and protein content (Figure 3.2c and e). Examining the

species distribution data in Figure 3.1 highlights that when C. sorokiniana is present in a

polyculture, it represents at least half of the total biomass, with the exception of ABDE
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Figure 3.2: (a) SAFA, (b) MUFA, and (c) PUFA yields (wt %) and (d) lipid, (e) protein, and (f) carbohy-
drate content for 1-, 2-, 4-, and 6-species combinations of Ankistrodesmus falcatus (A), Chlorella sorokiniana
(B), Pediastrum duplex (C), Scenedesmus acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capri-
cornutum (F). Values measured in at least duplicate, unless otherwise noted by *. Error bars represent SE.
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and BCEF. Given that C. sorokiniana produced the highest PUFA and protein content of

the monocultures, we suspect that the presence and abundance of C. sorokiniana in the

top polycultures is the reason for the higher PUFA and protein production. PUFA and

protein content both increase with increasing species richness, with the exception of the

6-species polyculture, although this is likely due to the increased weighting of cultures with

C. sorokiniana present (i.e., 1/6, 5/15, and 10/15 of the 1-, 2-, and 4-species cultures contain

C. sorokiniana, respectively). There are alternative designs of experiment that target the

decoupling of species-specific effects by probing only a subset of the complete array of species

combinations, thus maintaining a constant weighting of each species with respect to varying

species richness [104]. However, those approaches are more amenable to species pools wherein

a full factorial design is tedious. In the present study and our previous study [6], we instead

sought to examine the complete set of all possible 2-, 4-, and 6-species polycultures.

3.3.3 Biocrude properties

Figure 3.3 shows the yield (mass biocrude per unit dry mass algae), H/C ratio, N content,

O content, and HHV of biocrude oils produced from HTL of each monoculture and polycul-

ture (see Table B.4 in Appendix B for exact values). The ideal biocrude oil would exhibit

low N and O content and high H/C; for comparison, typical petroleum crudes have N and O

contents of 0.001 to 0.53 and 0.47 to 1.62 wt %, respectively, H/C ratios of 1.72 to 2.27 [105],

and HHVs of 41.9 to 47.0 MJ kg-1 (calculated using the correlation posed by Channiwala

and Parikh [99]). The values for biocrude oil produced from microalgal HTL typically fall

outside these ranges [13, 22, 24]. The present results fit this trend, with biocrude H/C, N

content, O content, and HHV ranging from 1.41 to 1.54, 4.8 to 6.3 wt %, 11.4 to 13.4 wt %,

and 34.1 to 35.7 MJ kg-1, respectively. Recall that catalytic upgrading will be required to

improve the quality of the biocrude oil before traditional refining processes can be employed,

however improvements in H/C and HHV and reductions in N and O content in the direct

HTL product will lower the energy and catalyst requirements for the upgrading step.
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Figure 3.3: Biocrude (a) yield, (b) H/C, (c) N content, (d) O content, and (e) HHV of 1-, 2-, 4-, and 6-species
combinations of Ankistrodesmus falcatus (A), Chlorella sorokiniana (B), Pediastrum duplex (C), Scenedesmus
acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capricornutum (F). N and O contents are sorted
from low to high for readability (lower N and O content is more desirable). Values measured in at least
duplicate, unless otherwise noted by *. Error bars represent SE.

Similar to the results for biochemical composition, no single monoculture produced

biocrude with the highest yield (mass biocrude per unit mass dry algae), and overall qual-

ity, by all measures considered. The monocultures of C. sorokiniana (B), A. falcatus (A), S.

capricornutum (F), and S. acuminatus (D) produced biocrude with the highest yield, highest

H/C ratio, lowest N content, and lowest O content (in addition to highest HHV), respec-

tively. Only a few polycultures gave higher biocrude yields (AB) or biocrude with higher

H/C (AC and CE), while several produced biocrude with lower N content (CE, AF, and
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CF), lower O content (ACDF, ABCDEF, EF, and CE), and higher HHV (CE, EF, ACDF,

AE, and CF). Although these differences were not statistically significant (calculated here

and henceforth by comparing the difference in means using LocationTest in Mathematica

10.4), they show that some polycultures were at worst equivalent to the top monocultures

for each respective property. Moreover, these data show that different monocultures and

polycultures provide certain advantages from a product quality standpoint.

On average across each level of species richness, biocrude yield increased with species rich-

ness up to the 4-species cultures. Biocrude H/C and O content was insensitive to changes

in species richness on average, with the exception of the 6-species culture for the latter.

Biocrude N content remained constant between the 1- and 2-species cultures and then in-

creased monotonically with increasing species richness. Biocrude HHV similarly did not

change on average between the 1- and 2-species cultures; it did, however, decrease for the

4-species cultures and increase for the 6-species cultures.

Notably, the high biocrude H/C exhibited by the A and AC cultures is interesting because

these were the same top cultures for MUFA content in Figure 3.2b, suggesting that higher

biomass MUFA content may be translating directly into higher biocrude H/C. We further

note that the fifteen cultures with the highest biocrude N content were all inoculated with

C. sorokiniana (B). As discussed in Section 3.3.2, Figure 3.1 shows that when C. sorokini-

ana is present in a polyculture, it generally represents the majority of the biomass. Given

that the C. sorokiniana monoculture produced biocrude with the highest N content of the

monocultures by far, it follows reasonably that polycultures containing C. sorokiniana would

also produce biocrude with higher N content.

3.3.4 Polyculture performance relative to monocultures

We use three statistics to evaluate the performance of polycultures relative to the mono-

cultures of their constituent species. The first is the abundance-weighted average (AWA),

which for a given quality metric is calculated as the average for the monocultures of the
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species constituting a given polyculture, weighted by the mass percentage of each respective

species in that polyculture (see Figure 3.1). transgressive overyielding (TO) is the thresh-

old represented by the highest-yielding monoculture of the different species constituting a

polyculture. transgressive underyielding (TU) follows similarly for the lowest-yielding mono-

cultures. The concepts of TO and TU are conventionally applied to biomass productivity

and lipid production [76], however this terminology is useful for comparing the additional

metrics of interest presented in this study, such as biocrude H/C and N content. We can

represent the three statistics (AWA, TO, and TU) by Equations (3.1) to (3.3), which can be

applied to any metric of interest:

Y AWA
i =

∑
j ∈ i

wijYj (3.1)

Y TO
i = max

j ∈ i
Yj (3.2)

Y TU
i = min

j ∈ i
Yj (3.3)

∆max = max
{

max
i

(
Yi − Y TO

i

)
, max

i

(
Y TU
i − Yi

)}
(3.4)

Here Y AWA
i , Y TO

i , and Y TU
i are the AWA, TO, and TU thresholds, respectively, for the

polyculture with species composition i, wij is the weight fraction of species j in polyculture

i, Yi and Yj are the values for the culture with species composition i or species identity j,

respectively, and ∆max is the maximum deviation above or below the TO or TU threshold,

respectively, among all species combinations. The summation and max and min functions

operate over all monoculture species j in a given polyculture species composition i. We note

that generally TO is the desired outcome, although for some metrics we wish to minimize,

like biocrude N content, TU is desired. Figure 3.4 summarizes the performance of each

polyculture relative to AWA, TO, and TU thresholds for each biochemical class and biocrude

property. Areas where overyielding or underyielding are desirable for improving quality and

quantity are highlighted as goals at the bottom (gray cells indicate no clear preference).
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Figure 3.4: Polyculture performance relative to thresholds for TO (maize, bold-outline cells), AWA (gray),
and TU (blue, bold-outline cells) for SAFA, MUFA, PUFA yields, lipid, protein, and carbohydrate contents,
and biocrude yield, H/C, N content, O content, and HHV. Polycultures comprised 2-, 4-, and 6-species
combinations of Ankistrodesmus falcatus (A), Chlorella sorokiniana (B), Pediastrum duplex (C), Scenedesmus
acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capricornutum (F). ? and • indicate statistically
significant differences with α = 0.05 and 0.15, respectively. ∆max defined in Equation (3.4). aDenotes goal
not applicable for this metric.
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Examining biculture fatty acid production, one sees that each culture inoculated with

P. duplex (C) demonstrated TO (maize shading) of at least one class of fatty acids, and in

several cases, including BC, CE, and CF, this resulted in overyielding of the overall lipid

content of the biomass. This outcome is especially interesting given that Chlorella was

largely absent in cell counts after seven weeks of steady state (see Figure 3.1). Several of

the bicultures with C. sorokiniana (B), including BC, BD, and BE, showed higher levels

of fatty acids than expected by the AWA (lighter gray shading), especially with respect to

SAFAs. These cultures largely consisted of C. sorokiniana (> 90 wt %) by week 7. Several

bicultures showed overyielding of biocrude yield, including AB and AD, with DE and EF

demonstrating marginal overyielding as well. Interestingly, the increase observed with AB

and AD was not accompanied by increases in lipid or protein content and only by a slight

increase in carbohydrate content (AB only). This observation suggests the biochemical

content alone might not control biocrude yield for a given set of HTL conditions. The

composition within the biochemical classes (e.g., neutral and polar lipids) and/or species

identity, as examples, may be playing a role. We note, however, that the aforementioned

increases were not statistically significant and all explanations should be viewed as tentative.

Numerous bicultures, including AC, AE, AF, CE, CF, and EF, produced biocrude oil with

higher H/C, lower N content, and lower O content than expected based on the abundance-

weighted averages. The biocrude N contents for AC (8 % less, p = 0.07) and AF (3 % less,

p = 0.13) were both lower than the TU threshold, but just outside of statistical significance.

Six bicultures met or exceeded the threshold for biocrude HHV overyielding, including AC,

AE, CE, CF, and EF. Notably, none of the aforementioned bicultures included C. sorokini-

ana (B) or S. acuminatus (D). Moreover, the biculture EF uniquely demonstrated both

slight overyielding of biocrude yield, a metric of quantity, in addition to biocrude O content

underyielding (p = 0.09) and HHV overyielding, both metrics of quality.

There were significantly fewer instances of overyielding and underyielding for the 4- and

6-species polycultures compared to the bicultures; however, it is important to recall that the
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thresholds in these cases are inherently more stringent given that a polyculture would need

to exceed the best monoculture of four or six constituent species, rather than just two, to

surpass the overyielding threshold. BCDE (p = 0.07), BCDF, BCEF, and BDEF (p = 0.11)

all demonstrated overyielding of lipid content. This set notably contains all polycultures

without A. falcatus (A) but with C. sorokiniana (B). Note that ABDF essentially met but

did not exceed the overyielding threshold for SAFA, MUFA, and lipid content as well. One

4-species polyculture, ACDF, also produced biocrude with higher HHV than the A, C, D,

or F monocultures.

3.3.5 Extent of overyielding and underyielding by species in bicultures

Another aspect of polyculture performance to consider is the relative extent that each

species is involved with community-wide overyielding or underyielding in bicultures. To

examine this, we calculated the extent of TO (ξTO
j ) for each response variable and constituent

species j:

δTO
i =


Yi − Y TO

i Yi > Y TO
i

0 Y TU
i ≤ Yi ≤ Y TO

i

Yi − Y TU
i Yi < Y TU

i

(3.5)

ηTO
j =

∑
i with j

δTO
i (3.6)

ξTO
j =

ηTO
j

maxSj |ηTO
j |

(3.7)

Here, δTO
i is the net TO for species combination i (which will be positive or negative

for net overyielding or underyielding, respectively), ηTO
j is the sum of net TO of all species

combinations i with species j, and ξTO
j is the extent of overyielding and underyielding,

normalized to fall between 1 (maximum overyielding) and -1 (maximum underyielding).

Figure 3.5 depicts ξTO
j for each species and quality metric.

Bicultures with P. duplex (C) demonstrated the greatest extent of deviations above

overyielding and below underyielding thresholds in favorable directions with respect to prod-
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Figure 3.5: Relative extent (ξTO) of net TO (maize) and TU (blue) in bicultures as a function of species
inclusion of Ankistrodesmus falcatus (A), Chlorella sorokiniana (B), Pediastrum duplex (C), Scenedesmus
acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capricornutum (F) for SAFA, MUFA, and PUFA
yields, lipid, protein, and carbohydrate contents, and biocrude yield, H/C, N content, O content, and HHV.
aDenotes goal not applicable for this metric.

uct quality; these trends include net overyielding for all three groups of fatty acids, net

overyielding of biocrude H/C, and net underyielding of biocrude N content. This is espe-

cially interesting considering that Chlorella represented only 0 to 10 wt % of the biomass

in the AC, BC, CD, CE, and CF bicultures by week seven of steady-state sampling. This

observation suggests that the aforementioned trends are unlikely to be explained by the

Chlorella biomass itself. One potential explanation is that the inoculation of Chlorella in-

duced shifts in the biochemical composition (particularly the lipid content) of many if not

all of the other species. This could be due to the presence of the Chlorella microalgal

biomass itself, the non-algal microbial communities that coexist with Chlorella in its inocu-

lum, and/or changes in the medium induced by Chlorella (e.g., organic compounds used for

mixotrophy). Future studies of the interactions between Chlorella, its associated microbes,

and other species of microalgae are necessary to elucidate the underlying mechanism behind

the observed overyielding and underyielding effects. Bicultures with S. ecornis (E) also con-

sistently showed benefits from a quality perspective, including net overyielding of biocrude

H/C and HHV and underyielding of biocrude N and O content. To a lesser extent, bicultures

with A. falcatus (A) also underyielded biocrude N content and those with S. capricornutum

(F) showed net underyielding of biocrude O content.
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3.3.6 Effect of species identity and biochemical composition

The results presented in the previous sections show that some polycultures produce

biomass and biocrude with properties comparable to those of the best monocultures for

each metric and that some polycultures performed differently than expected based on AWA,

TO, and TU thresholds. The goal of the following exercise is to determine whether or not

the observed variation in biocrude H/C, N and O content, HHV, and yield can be explained

solely by changes in biochemical composition induced by the presence of certain species, or

whether these effects are due to specific species themselves after controlling for changes in

biochemical composition. The latter could indicate that differences in cellular morphology

between species (e.g., surface-area-to-volume ratio, geometry, and cell wall thickness) may

affect reactivity during HTL and as a result the distribution and composition of the reaction

products. Previous studies have employed biochemical composition as a means for predicting

the properties of biocrude oil produced from HTL [13, 15, 40, 48]. Biller and Ross [13] were

the first to model biocrude by a first order polynomial of biochemical composition (lipid,

protein, carbohydrate):

Y B =
∑
i

βiBi (3.8)

Here Y B is biocrude yield (mass/mass) and Bi is the content (mass/mass) of biochemical

component i. This model assumed that each biochemical class reacts differently, indepen-

dently, and additively to form biocrude. As such, they approximated the model coefficients

βi by using the biocrude yields obtained from conducting HTL on pure model compounds for

lipids, proteins, and carbohydrates. This approach predicted the biocrude yields for some

algal species (Chlorella vulgaris and Nannochloropsis oculata), but not all (Spirulina sp.

and Porphyridium cruentum). Teri et al. [48] expanded this concept to account for cross

reactions between biochemical components:

Y B =
∑
i

βiBi +
∑
ij

εijBiBj (3.9)
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They approximated the model coefficients βi similar to Biller and Ross [13] and approxi-

mated the model coefficients εij by using the biocrude yields obtained from conducting HTL

on binary mixtures of model compounds for lipids, protein, and carbohydrates. They found

this model with cross terms accurately predicted the yield of some ternary mixtures of model

compounds better than the simpler first order model, while for other mixtures it produced

a poorer prediction. Leow et al. [40] and Li et al. [15] also adopted this approach used

in Equation (3.8) but instead used multiple linear regression on HTL data generated from

samples of microalgae with varying biochemical composition. Moreover, they used similar

approaches to correlate biocrude elemental content based on lipid content, protein content,

or the average oxidation state of feedstock carbon.

The present dataset of 37 species combinations featuring six different species of microal-

gae is well suited for this multiple linear regression approach (for these analyses we also

include the constant-growth-temperature results reported in Appendix B for a total of 74

biomass types). Moreover, because the biomass samples comprise all 1-, 2-, 4-, and 6-species

combinations, these data are ideal for elucidating species-specific effects that exist, if any, in

addition to those related to biochemical composition. Species identity has been suggested

as a parameter that affects the properties of biocrude produced from HTL, for example via

differences in cellular morphology that affect reactivity [22, 31, 39, 56]; however, no previous

study has attempted to decouple the effects of biochemical composition and species identity.

To apply the multiple linear regression method to the data in the present study to account

for both biochemical composition and species identity, we considered the twelve different

model types listed in Table 3.2.

Each of these types comprises a set of five models, each correlating biocrude H/C, N

content, O content, HHV, and yield, respectively. These models apply different polynomial

orders, biochemical terms, and species terms, including:

• First order (similar to Biller and Ross [13]; Sets 1–6) and second order (similar to

Teri et al. [48] but including squared terms; Sets 7–12). The former assumes each
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Model
Model Form

Biochemical Species
Set Terms (B) Terms (S)
1

Y = β0 +
∑

i βiBi

Lip, Pro, Car

-
2

+
∑

i βiSi

bk
3 wk

4
Sat,Mon, Pol,

-
5

Pro,Car
bk

6 wk

7
Y = β0 +

∑
i βiBi Lip, Pro, Car

-
8

+
∑

i βiSi

bk
9

+
∑

i γiB
2
i

wk

10
+
∑

ij εijBiBj
Sat,Mon, Pol,

-
11

Pro,Car
bk

12 wk

Table 3.2: Model types considered for correlating biocrude property Y . β, γ, and ε denote model coefficients.
Lip, Pro, and Car represent biomass lipid, protein, and carbohydrate content, respectively. Sat,Mon, and
Pol represent biomass SAFA, MUFA, and PUFA content, respectively. bk and wk denote binary presence
(true or false) and weight percentage of species k, respectively (k ∈ A,B,C,D,E, F ).

biochemical class contributes independently, while the latter allows for second order

interactions between the classes.

• Biochemical composition based on proximate analysis (i.e., lipid, protein, carbohy-

drate; Sets 1–3, 7–9) and proximate analysis with fatty acid classes (i.e., SAFA, MUFA,

PUFA, protein, carbohydrate; Sets 4–6, 10–12).

• No species identity (Sets 1, 4, 7, 10), species identity as nominal variables (i.e., species

are either present or absent; Sets 2, 5, 8, 11), and weight percentages of each species

(see Figures B.1 and 3.1; sets 3, 6, 9, 12).

We used LinearModelFit in Mathematica 10.4 to obtain the parameters in the 60 dif-

ferent models (5 properties x 12 types). Note that we included the intercept (β0) rather

than forcing the models to intersect with the origin because a value of zero for any biocrude

property would be aphysical for microalgae. The intention for these models was to provide

a statistical basis for quantifying how much of the variation in biocrude properties could

be explained by only biochemical composition and by the inclusion of species identity. As

such, we do not necessarily expect the correlations to be predictive outside of the range of
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lipid (6.1 to 14.2 wt %), protein (22.9 to 48.6 wt %), and carbohydrate (34.6 to 59.3 wt %)

contents in this study. For each model describing each biocrude property, we calculated the

Akaike Information Criterion with correction for finite sample size (AICc) for each model

using the AICc model property in Mathematica. AICc is a measure of goodness of fit that

takes into account model complexity [106], with lower values representing better models.

We recursively tested whether removing any one term improved the AICc for the model;

this procedure allowed us to ensure that simpler models did not provide as proportionally

adequate of a fit with fewer parameters.

Set 10
Set 11 (Biochemical + Species)

Biocrude (Biochemical)
Property

R2
adj

ESS
R2

adj

ESS PSS % Model Sensitivities
% % Biochemical Species Biochemical Species

H/C 0.62 67 0.76 80 70 30 0.40 n/n 0.05 n/n
N 0.87 88 0.90 90 71 29 1.1 wt% 0.4 wt %
O 0.68 71 0.77 80 58 42 4.2 wt% 1.7 wt%

HHV 0.46 50 0.50 55 86 14 1.8 MJ kg-1 0.2 MJ kg-1

Yield 0.97 97 0.98 98 86 14 12.6 wt% 1.9 wt%

Table 3.3: Summary of the best models for correlating biocrude properties based on only biochemical com-
position (Set 10) and based on biochemical composition and species identity (Set 11). Model Sensitivities
show the differences between the maximum and minimum possible model-predicted values due to either
biochemical composition or species identity terms.

Out of the twelve model types considered, Set 11, comprising the second-order models

based on biochemical composition with fatty acid subgroups and species identity as nomi-

nal variables, was always the type with the lowest AICc for all biocrude properties, shown

in Table 3.3. Moreover, Set 10, comprising the second-order models based on biochemical

composition with fatty acid subgroups, was always the best variant with no species incor-

poration for all biocrude properties, shown in Table 3.3. Set 11 also had a higher explained

sum of squares (ESS) than Set 10, although by varying degrees for each biocrude property;

N content, HHV, and yield all saw marginal improvement in ESS for models in Set 11, while

H/C and O content saw at least 9 % (absolute) improvement in ESS. The partial sum of

squares (PSS) owed to species identity terms in Set 11 models ranged from minimally (HHV

and yield) to moderately (H/C and N content) to significantly contributing (O content).
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All of the Set 10 and 11 models showed at least 50 % ESS, however only the models for

biocrude N content and yield explained enough variation to be considered to be reasonable

correlations, with R2
adj of at least 0.87. The two right-most columns in Table 3.3 quantify

how sensitive the Set 11 models are to either biochemical content or species identity. More

specifically, we determined the two biochemical profiles that maximized and minimized each

biocrude property, respectively, and calculated the sensitivity to biochemical composition

as the difference between those values; this procedure followed similarly for species identity.

The Set 11 models were all less sensitive to species identity than biochemical composition,

ranging from 60 to 89 % lower. The calculated Set 10 and 11 model coefficients are listed in

Tables C.1 to C.5 in Appendix C.

Based on this analysis, we conclude that biochemical composition best correlates biocrude

H/C, N and O content, HHV, and yield, as previous studies have suggested [13, 40, 48]. How-

ever, we also show that the inclusion of species identity as nominal variables provides more

information than biochemical composition alone, even after adjusting for the increase in

parameters via AICc. Moreover, for the first time, we have quantified the effect of species

identity on biocrude properties and compared it to that of biochemical composition. The

sensitivity of the models with respect to biochemical composition and species identity sug-

gests that, in terms of feedstock characteristic considerations, the former should be the focus

of any process modeling efforts; however, the latter should be considered as well for the

highest model accuracy.

The effects of species identity could very well be linked to cell morphology, which varied

considerably between each species in the present study. That of A. falcatus is thin and rod-

like, while that of C. sorokiniana is fairly spherical. Chlorella exists in colonies of dozens

or more cells with “tooth-like” morphologies. S. acuminatus and S. ecornis both exist in

small (4 to 10) clusters of rod-like cells, with the former exhibiting cells with much thinner

and narrower morphology. Finally, the cells of S. capricornutum are crescent-shaped. These

different morphologies likely influence the reactivity of the cells during HTL, which could
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ultimately affect the yield and quality of the biocrude produced. Future studies designed to

decouple the effects of biochemical composition and species identity are necessary to further

substantiate the results presented here.

3.3.7 Trade-offs between product quality and quantity
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Figure 3.6: Quality (top half of each circle) vs. quantity (bottom half of each circle) sector charts for selected
species combinations of Ankistrodesmus falcatus (A), Chlorella sorokiniana (B), Pediastrum duplex (C),
Scenedesmus acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capricornutum (F). Combinations
on the right exhibited higher product quality but lower quantity; the reverse is true for the left. Wedge lengths
indicate number of SDs ((xi − x̄)/σi) away from the mean (averaged over all 37 species combinations) for
each metric. SAFA, MUFA, and PUFA represent yields present in microalgal feedstocks. H/C, Na, Oa,
HHV, Yield, Prod., and Stab. represent biocrude hydrogen-to-carbon atomic ratio, nitrogen content, oxygen
content, higher heating value, yield, productivity, and stability, respectively. aDenotes metrics multiplied by
-1 so that larger wedges correspond to more favorable outcomes.

In evaluating which polycultures were the top performers with respect to product quality,

it becomes clear that any gains in quality are at the direct expense of quantity. As an

example, across all species combinations, biocrude yield and HHV were significantly, strongly,

and negatively correlated (ρ = −0.57, p = 0.0001). In our earlier study [6], we found that the

monoculture of S. capricornutum (F) was the single most productive and stable culture. As

a result, the present discussion of the best species combinations for product quality should

include comparisons against this monoculture. Figure 3.6 presents these comparisons as a
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summary of the performance of the top species combinations for product quality (sector

charts for every species combination can be found in Figure B.5 in Appendix B). Each sector

chart is divided such that the top half shows metrics related to product quality (SAFA,

MUFA, PUFA, H/C, N, O, and HHV), while the bottom half shows those related to product

quantity (Stability, Production, and Yield). Recall that we define biocrude yield as the

mass of biocrude produced per unit mass dry algae, production as the mass of dry algae per

unit volume growth media multiplied by biocrude yield, and stability as the mean biocrude

production (averaged over all seven sampling weeks) divided by the SD. Each combination

lies along a spectrum of higher production (but lower quality) to lower production (but

higher quality), with the monoculture of S. capricornutum representing the extreme of high

production.

From left to right, each polyculture sacrifices incrementally more biocrude production and

stability in exchange for more favorable biocrude properties compared to the monoculture

of S. capricornutum, including higher biomass fatty acid content and higher H/C, lower N

and O content, and higher HHV in the biocrude. These trade-offs show that there is no

single species combination that performed the best for all metrics of interest, in contrast to

the conclusion from our earlier study, which only considered aspects of biocrude quantity

and not quality [6]. Based on these results, the addition of another species, such as A.

falcatus, Chlorella, or S. ecornis, to a culture of the most productive and stable species,

S. capricornutum, may be the most optimal trade-off due to the enhanced quality afforded

by a modest decrease in production. Ultimately a quantitative optimization function that

appropriately weights each of the quality and quantity metrics will be necessary to evaluate

the holistic performance of each species combination. For example, the 3 % lower N content

and 5 % lower O content afforded by the AF polyculture could represent significant cost

savings for catalytic upgrading that may or may not outweigh the cost of additional raceway

ponds necessary to reach the same level of total biocrude production.
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3.4 Conclusion

In this chapter, we examined the performance of algal polycultures and monocultures

in terms of feedstock characteristics and quality of biocrude oil produced from HTL. We

found that, on average, the 2-species cultures produced biomass and biocrude of a qual-

ity that matched the average monoculture, while the 4- and 6-species cultures were worse

on average. Specific species combinations met or exceeded the best monoculture for each

metric presented; however, no one species combination was the best for all metrics con-

sidered. Several species, including Chlorella in particular, as well as A. falcatus and S.

ecornis were present in 2-species combinations that demonstrated the greatest extent of fa-

vorable instances of TO and TU with respect to product quality. When considered together,

biochemical composition and species identity best explained the variation in biocrude proper-

ties compared to biochemical composition alone. We also quantify this species identity effect

for the first time and show that its maximum effect on modeled biocrude properties is 11 to

40 % of that of biochemical composition. We suggest that biocrude productivity is inversely

related to product quality by comparing the most productive monoculture (S. capricornu-

tum) to the polycultures producing the highest quality products. These polycultures may

offer potentially compelling advantages, including higher lipid content and lower biocrude N

and O content, over their monoculture counterparts at the direct expense of quantity. Such

advantages, however, will likely be found only on a combination-specific basis, rather than

as a general trend with respect to species richness.
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CHAPTER IV

The effects of biochemical composition, microalgal

species, concentration, temperature, and time on

biocrude production by hydrothermal liquefaction

This chapter contains results that were submitted for publication in Applied Energy writ-

ten along with co-authors Casey M. Godwin, Bradley J. Cardinale, and Phillip E. Savage

[107]. Herein, we sought to examine the effects of HTL reaction conditions and feedstock

characteristics on biocrude production in a more comprehensive and systematic manner

based on observations from results presented in Chapters II and III and including previously

unexplored variable combinations. Specifically, we examined the effects of temperature (150

to 350 °C), reaction time (1 to 100 min), slurry concentration (30 and 120 g L−1rxn), bio-

chemical composition (5.2 to 28.5 wt% lipid, 14.7 to 50.9 wt% protein), and species identity

(Nannochloropsis, Chlorella, and Spirulina) on biocrude oil properties. Measured properties

included gravimetric yield, elemental (CHNSOP) composition and recovery, HHV, energy

recovery (ER), and fatty-acid profile, content, and recovery. All examined factors affect the

yield and composition of the biocrude, with biochemical composition and temperature ex-

hibiting the greatest impacts. The effects of slurry concentration and species identity were of

the same order of magnitude as reaction time and have not been scrutinized in detail in the

literature until now. We show evidence of increased slurry concentration promoting Maillard

59



reactions that result in increased biocrude yield, C content, and N content and decreased O

content. Moreover, the extent of these Maillard reactions appears to be affected by the ratio

of proteins to carbohydrates, with carbohydrates serving as the limiting reactant. High-lipid,

30 g L−1rxn slurries reacted at 300 °C for 3.2 min (including 1 min heat-up) generally yielded

more biocrude with higher C and H content and lower N, S, and O content than did their

high-protein, 120 g L−1rxn, 200 °C, or 31.6 min counterparts. This condition also provided

recoveries of saturated, monounsaturated, and polyunsaturated fatty acids in the biocrude

of up to 89.3, 80.1, and 64.7 wt%, respectively. These novel findings and expansive experi-

mental data further expand our understanding of microalgal HTL and provide the basis for

developing a new quantitative kinetic model in Chapter VI.

4.1 Introduction

Biocrude yield and the extent of catalytic upgrading required depend on factors such as

temperature and time [21–25, 27, 29, 34], concentration [21, 23, 24, 38], biochemical com-

position [13, 15, 29, 39, 40, 42–44], and species identity [39, 42]. Many previous studies

of these factors have various limitations. Generally no more than one or two factors are

considered at a time, and there are regions of the reaction domain that are relatively unex-

plored, particularly at low and mild reaction severities. Furthermore, factors such as slurry

concentration [21, 23, 24, 38] and species identity [39] have received little scrutiny to date,

especially in terms of actually quantifying their effects in the context of other factors. No

previous study has examined all of these factors together and how they may dynamically

synergize or antagonize over regions of the reaction domain. There may be unexplored yet

desirable relationships between these variables that reduce the extent of catalytic upgrading

required downstream, thus improving overall process EROI and sustainability.

In this study, we employ fast-heating batch reactors (1-min heat-up) to establish a wide-

ranging set of experimental data for microalgal HTL that establish and corroborate the

individual and dynamic impacts of several types of reaction conditions and feedstock charac-
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teristics. These experiments span reaction times logarithmically (100.0, 100.5, 101.0, 101.5, and

102.0 min) over a large range of temperatures (150, 200, 250, 300, and 350 °C) for six biomass

types with different biochemical profiles (5.2 to 28.5 wt% lipid, 14.7 to 50.9 wt% protein)

at two different slurry concentrations (30 and 120 g L−1rxn). We chose three of these biomass

feedstocks, including a high-lipid Nannochloropsis, high-lipid Chlorella, and high-protein

Spirulina, to exhibit different proximate biochemical compositions to assess the effects of

different lipid, protein, and carbohydrate contents at different reaction severities and slurry

concentrations. We chose the other three, including a high-protein Nannochloropsis, a high-

protein Chlorella, and a mixture of high-protein Spirulina and high-lipid Chlorella, to exhibit

similar proximate biochemical composition, allowing assessment of the variability between

different species over different reaction conditions and slurry concentrations while controlling

for biochemical composition. Similarly, the two variants of Nannochloropsis and Chlorella al-

low evaluation of the effects of biochemical composition while controlling for species identity.

We also compare and contrast the measured and predicted effects of the two-species mixture,

respectively, to help illuminate how the different proportions of biochemical components in

high-protein Spirulina and high-lipid, high-carbohydrate Chlorella interact with each other

over different reaction severities and slurry concentrations, compared to how they react in-

dividually. We report herein on the impact of these inputs on the yield and composition of

the biocrude oil, with that of the ACP, solid, and gas fractions documented in Chapter V,

Appendix F, and Appendix G, respectively. These data serve as the foundation for the

creation of a unique, quantitative kinetic model for the HTL of microalgae in Chapter VI.

4.2 Materials and methods

4.2.1 Microalgae feedstocks

We obtained preservative-free high-protein Nannochloropsis oculata (Nan-1) as a slurry,

high-lipid Nannochloropsis salina (Nan-2) as a dry powder, and Spirulina platensis (Spi-1)
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as a dry powder from commercial sources. We grew Chlorella sorokiniana as 12-L batch

cultures in a temperature-controlled room (20 °C). We cultivated algae in Bold-3N medium

(Bold 1949), containing either replete nitrogen (8.82 mmol L-1 as nitrate) or limiting nitro-

gen (0.882 mmol L-1 as nitrate). We chose these conditions based on preliminary growth

experiments showing that the replete- and limiting-nitrogen treatments produced a high-

protein Chlorella (Chl-1) and a high-lipid Chlorella (Chl-2), respectively. We maintained

cultures in polyethylene buckets with a capacity of 20 L and fluorescent lights delivered 300

µmol photon m-2 s-1 at the surface of the water (18 h light and 6 h dark). A single air

diffuser continuously mixed and aerated the cultures. We monitored algal growth using in

vivo fluorescence of chlorophyll a as a proxy for algal biomass. We measured fluorescence in

microtiter plates using a Biotek Synergy H1 plate reader (excitation at 435 nm and emission

at 685 nm). We computed the maximum exponential growth rate of each culture using all

consecutive fluorescence measurements in a similar manner as our previous work [84]. We

harvested the algae after 19 days by centrifuge and decanting. Upon harvest, we measured

the algal biomass by collecting samples onto pre-weighed filters (Millipore AP40), drying the

biomass at 60 °C for 48 h, then weighing the filters again [6]. These measurements demon-

strate N-limitation for high lipid production and are presented in Figure D.1 in Appendix D.

While it is widely recognized that even mild N-limitation can lead to increased lipid content

in algae [91, 108], balancing the benefits of increased lipid content against the costs of lower

biomass density and growth rate remains an area of interest, including for this study. Severe

N-limitation may lead to even greater lipid content in biomass, but, by definition, the total

amount of biomass and the rate at which it is produced will decrease further with the severity

of N-limitation.

4.2.2 Slurry preparation

We diluted and pre-mixed each biomass type with deionized water to prepare slurries at

a variety of mass percentages such that their concentrations were either 30 or 120 g L−1rxn at
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reaction conditions (150 to 350 °C), calculated based on the density of pure, saturated, liquid

water at those conditions. The solids content of those slurries ranged from 3.2 to 5.0 wt%

and 11.6 to 17.3 wt%, respectively; see Table D.1 in Appendix D for exact solids contents

used. We chose a mass per volume-at-reaction-condition basis for slurry concentration to

allow for orthogonal comparison of temperature effects holding all else constant, which would

not be possible using a wt% basis due to the expansion of water with increasing tempera-

ture. Moreover, a mass-per-volume basis is more relevant for characterizing reaction systems

that deviate from first-order behavior. We note that all references to concentration herein,

including those from the literature, are on this mass per volume-at-reaction-condition basis,

not at ambient conditions. We prepared the two-species mixture slurries (Mix-m) by mixing

roughly three parts low-protein Chlorella (Chl-2) with seven parts Spirulina (Spi-1) for an

average Chl-2 content of 30.1 wt%. We calculated the predicted two-species mixture slurry

(Mix-p) behavior based on the weighed average of the behavior of Spi-1 (69.9 wt%) and

Chl-2 (30.1 wt%).

We re-measured the solids content of slurries each instance they were used for reactions

to control for any possible evaporative losses of water during storage. We accomplished this

by pre-weighing four aluminum weigh boats, filling two of them with roughly 500 mg of

slurry each, and leaving the other two to serve as controls. We placed all four into an oven

set to 70 °C for 24 h and then placed them inside a dessicator for approximately 1 h. We

then re-weighed each weigh boat and calculated the solids content as the mass of dry algae

(subtracting out the average loss in mass from drying the control weigh boats) divided by

the initial mass of slurry and then averaged across both replicates.

4.2.3 Hydrothermal liquefaction

We reacted slurries of all biomass types at 200 and 300 °C for 3.2 (100.5) and 31.6 min

(101.5), a subtotal of 24 conditions. We also reacted slurries of Nan-1 and Chl-2 at 150, 250,

and 350 °C for 100.0, 101.0, and 102.0 min, a subtotal of 18 reaction conditions. Moreover, we
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reacted slurries of Nan-2 and Spi-1 at 150 °C for 1 min and at 350 °C for 100 min, a subtotal

of 4 reaction conditions. Finally, all reactions were run for both 30 and 120 g L−1rxn loadings

with the exception of Spi-1 at 350 °C, 100 min, which would have required a slurry that was

too viscous to pipette for the 120 g L−1rxn concentration. We conducted HTL at a total of 91

unique sets of reaction conditions in at least duplicate, and in some cases triplicate or more

to generate enough product mass for subsequent analysis. All reactions were conducted in a

completely random order.

We built each 1.30 mL batch reactor using 1/4-in. o.d., 0.049 in. thick Swagelok tubing

cut to 10.5 cm lengths and two caps, all made of 316 stainless steel. We loaded each reactor

with enough of the appropriate pre-mixed slurry such that the entire control volume would

be occupied at reaction conditions from thermal expansion under autogenous pressure. We

sealed reactors to 20 ft-lbs. using a torque wrench.

We constructed additional 1.16 mL proxy reactors for temperature measurements using

the same 10.5 cm lengths of tubing as the main reactors, a cap, and a 1/4-in.-to-1/16-in.

bored-through reducing union. We fitted the reactors with an Omega Engineering 1/16-in.-

diameter 18-in.-long stainless-steel-clad K-type thermocouple (TJ36-CASS-18U-18-CC-SB)

such that the tip of the thermocouple resided 6 cm away from the opening of the tubing.

We bent the thermocouple in a 90° angle at a 1/4-in. rounding radius so that reactors

could be oriented flat for maximum heat transfer, relative to the thermocouple wire which

extended upward. We loaded proxy reactors with enough deionized water to match the same

ratio of total-loaded-mass to-control-volume as the primary reactors. We used an Omega

Engineering UWBT-TC-UST-NA Datalogger to record the temperature measured by the

proxy reactor thermocouples every 1 s.

We conducted reactions individually by immersing both a slurry-loaded reactor and proxy

reactor horizontally into a metal basket residing within a Techne IFB-51 fluidized sand bath,

preheated to the specified temperature. Usually, set-point temperatures of 150, 200, 250,

300, and 350 °C resulted in average heating rates of 155, 250, 300, 365, and 450 °C min-1,

64



respectively. We calculated these rates as linear averages over the time it took reactors to

achieve 95% of the maximum temperature change relative to ambient conditions, on average

about 43 s. It typically took reactors about 58 s to achieve 98% of the maximum temperature

change. At a set-point temperature of 250 °C, for example, this is a temperature change

of change of 220.5 °C, or when the reactor reaches 245.5 °C. See Table D.2 in Appendix D

for average temperature profiles. At the end of the holding time (100.0, 100.5, 101.0, 101.5, or

102.0 min), we quenched the reactors in a cold water bath. We define this holding time as

the time from the moment the reactor starts to heat up to the moment the reactor starts to

cool down. After about 1 min, we dried the exterior of the reactors with paper towels and

placed the primary reactor into an acetone bath for 10 min to displace any residual water.

We then briefly air dried the reactor to evaporate the acetone and allowed it to equilibrate

at room temperature for 10 min.

We weighed the reactor and tapped it forcefully on the benchtop three times before slowly

opening the reactor in a vice grip to release gas. Once the gas escaped, we re-weighed the

reactor to estimate the mass of gas evolved by difference from the pre-opened mass of the

reactor. We note that in some instances, especially for the 120 g L−1rxn slurries at high reaction

severity, gas bubbled out so vigorously that a small aliquot of reaction mixture escaped. In

these instances, we omitted the gas measurement and instead recovered the escaped mixture.

We measured 5.5 mL of DCM (>99.9% optima grade, Fisher Scientific) and enough deionized

water (4.3 to 4.9 mL) such that the total volume of water (in the reaction mixture and

added water) was approximately 5.5 mL to facilitate product collection. We then used a

glass pipette to collect as much of the reaction mixture as possible into a glass conical tube,

washing the reactor walls using aliquots of solvent. For low-severity reactions (250 °C, 10

min and lower) we used the water first and then the DCM; for more severe reactions, we

reversed the order. This was done to more effectively recover products by matching the

polarity of the solvent with the more dominant polarity in the reaction mixture. In some

instances, particularly with both types of Chlorella, the total 11 mL of solvent was insufficient
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to collect all of the reaction mixture. In those situations, we washed the reactor walls with

aliquots of additional solvent, primarily acetone and sometimes including additional DCM

or deionized water (depending on reaction severity), into a secondary glass conical tube kept

out of contact with the first. This procedure continued until the reactor was clean (rinsings

were clear and colorless).

Following product recovery, we vortexed the primary-reaction-mixture conical tube at

3000 rpm for 15 s. We then centrifuged this conical tube at 1000 rcf for 1 min and sub-

sequently collected the organic (DCM-soluble) phase into a separate glass tube. We once

again vortexed and centrifuged (1500 rcf, 3 min) the remaining mixture of ACP and solid

products, and then collected the ACP into an additional glass tube, with the solid phase

remaining in the original conical tube. Generally the separation between phases during these

steps was excellent for reactions at moderate to high reaction severity, although for milder

reactions, sometimes additional centrifugation at higher rcf for longer amounts of time was

required to fully separate the phases.

We dried the tubes containing the DCM-dissolved organics, remaining solids, ACP, and

additional acetone-dissolved products (if present) under nitrogen (99.998%, Metro Welding

Supply Corp.) using a Labconco RapidVap Vertex Dry Evaporator with a solid aluminum

heating block at 35 °C for 1 h. We then capped tubes containing the dried organic phase, or

biocrude oil, and allowed them to cool overnight before weighing them. This process of drying

at 35 °C for 1 h, cooling, and weighing continued cyclically until consecutive measurements

differed by less than 1.5 % of the initial dry algae mass loaded. We dried the other tubes

containing the solids, ACP, and acetone-dissolved products under nitrogen at 70 °C for 1

h or until phases appeared dried. We similarly followed a cycle of allowing tubes to cool

overnight, reweighing, and re-drying for 1 h until measurements differed by less than 1.5 %

of the initial dry algae mass loaded. Note that we used a set of four empty, capped glass

tubes as a control for mass change due to temperature and humidity, among other possible

environmental factors, which was factored into this 1.5 % difference threshold.
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In cases where acetone was used to collect additional reaction products, we added the

same 11 mL of 1:1 DCM/water mixture to the dried tubes and followed the same steps

as above, including vortexing, centrifuging, collecting products into additional glass tubes,

drying, and weighing. We calculated the biocrude mass as the total dried masses of the

DCM-soluble phase(s) and calculated the solid and aqueous-phase product masses similarly.

In all cases, we set aside only the original, non-acetone-exposed fractions for further char-

acterization and assumed those analyses are representative of each total product fraction.

In this manner, each characterized fraction from each set of experimental conditions under-

went roughly the same conditions during product collection. We combined and homogenized

replicate non-acetone-exposed solid and biocrude product fractions before measuring their

fatty-acid profile and elemental content.

4.2.4 Fatty-acid esterification

We adapted the procedure used to extract, esterify, and quantify fatty acids from the

method developed by Levine et al. [94]. We pre-weighed approximately 10 mg of dried

biocrude, algal biomass, or solid residue into 10-mL glass round-bottom tubes and added a

Teflon-coated micro-stir bar and 2 mL of acidified methanol (Fisher Scientific, HPLC grade)

containing 5 % acetyl chloride (ACROS Organics, ACS reagent grade) by volume into each

tube. We capped all vials tightly and placed them in a preheated Fisher Scientific Isotemp

Dynabloc on a hot plate maintained at 100 °C and 800 rpm for 90 min. Every 30 min,

we agitated the vials to ensure sample remained immersed in solution. After 90 min, we

removed the vials and allowed them to cool to room temperature for about 10 min. Once

the vials reached room temperature, we added 1 mL of deionized water and 3 mL of a 250

mg L−1 solution of tricosanoic methyl ester (C23:0, Sigma-Aldrich, ≥99.0%) in n-heptane

(ACROS Organics, ≥99.0%) to each vial. We then vortexed each vial for 2 min, centrifuged

at 2000 rcf for 10 min, and then transferred the heptane layers into GC vials for subsequent

analysis.
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We quantified FAMEs using an Agilent 7890A GC-FID and an Agilent Biodiesel GC

column (1909BD-113). Helium was the carrier gas at a flow rate of 1 mL min-1. We held the

oven temperature at 150 °C for 3 min, then ramped at 4 °C min-1 to 240 °C, ramped at 2

°C min-1 to 260 °C, and finally held at 260 °C for 10 min for a total run time of 45.5 min. The

FID temperature was 300 °C with nitrogen as the make-up gas. We identified compounds

by comparing retention times with those produced by a Supelco 37 Component FAME mix.

We identified an additional four compounds not present in this standard mixture by running

representative samples on the same column through an Agilent 6890N gas chromatograph

with mass spectrophotometer (GC-MS) and the same column. These compounds were iden-

tified either by high-quality (> 97%) matches with known compounds from the Wiley mass

spectral library or by comparing the m/z ratio of the parent ion to other fatty acids. We

quantified compound masses by two methods to control for injection-volume variability and

ensure calibration linearity. The first was through relating each peak area to the known con-

centration and peak area of the internal standard, adjusting for carbon number and molar

mass. The second was through comparing peak areas to an external standard calibration

curve, also adjusting for carbon number and molar mass. We averaged these two calculations

together, converted FAME masses into fatty-acid masses, and normalized by the mass of dry

sample used.

Although acid-catalyzed transesterification is advantageous for quantifying total fatty-

acid content in the biomass because of its ability to capture free fatty acids, we confirmed

experimentally that this method is also capable of converting fatty-acid amides to FAMEs.

Therefore the values reported herein may include both fatty acids and their derivatives,

such as fatty-acid amides and alkanoamides, which still retain the same chain structure and

terminating carbonyl group as their fatty-acid counterparts.
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4.2.5 Elemental content

Elemental Microanalysis Ltd measured C, H, N, and S content via the Dumas combustion

method in duplicate on dry biomass feedstocks and as a single replicate on all other samples,

as mass permitted. Elemental Microanalysis Ltd also directly measured biomass feedstocks

for O content in duplicate via the Unterzaucher pyrolysis method, and we calculated O

content for all other samples by difference. We used the reported measurement uncertainties

for biomass C, H, N, S, and O content. For all other samples, given that replicate samples

were mixed together, we assumed the uncertainties in elemental contents were equivalent to

the standard, reported uncertainties of 0.25, 0.05, and 0.1 wt% for C, H, and N, respectively.

We assumed a 1.5 % relative error for S content based on the average relative error for biomass

S measurements. We measured total P in the algal biomass using persulfate digestion and the

ascorbic acid molybdenum method [7, 96]. We measured P content in the solids and biocrude

by combusting the samples at 550 °C for 4 h, dissolving the ash in hot 0.5 normal sulfuric

acid for 8 h, and then using the ascorbic acid molybdenum method [109]. We measured

absorbance using a Biotek Synergy H1 plate reader. We used a relative error of 3.3 %

for solids and biocrude P content based on the average relative error for P measurements.

Biomass and biocrude HHV calculations followed the formula developed by Channiwala and

Parikh [99].

4.2.6 Biomass biochemical content

We estimated biomass lipid content as the total fatty-acid content of the biomass (see

Section 4.2.4) averaged over five replicates, with the acknowledgement that unsaponifiable

lipids and minor components derived from the lipid structures, such as phosphate and glyc-

erol, will be neglected. We estimated biomass protein content by multiplying biomass N

content by 4.78, a standard multiplication factor averaged over all growth phases for a wide

variety of types of microalgae [110]. We measured biomass ash content by combusting the

samples at 550 °C for 30 h and calculating the percentage of mass retained, minus biomass
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P content, averaged over five replicates. We calculated biomass carbohydrate content by

difference from unity and the sum of lipid, protein, and ash content.

4.2.7 Statistical analysis

All statistical analyses on subsets of the data used the function LocationTest in Math-

ematica 11.1, which chooses the most powerful test to apply among the following: t-test,

paired t-test, z-test, paired z-test, sign test, signed-rank test, and Mann-Whitney U test.

When comparing two sets of data spanning two or more sets of reaction conditions, this

tested the null hypothesis that the difference in those two sets had a true population mean

or median of zero, and alternative hypothesis that they are nonzero. When comparing data

collected at just two different sets of reaction conditions, this tested whether the means or

medians of the two sets of replicate data (which could be unequal in length if more than

two replicates were run) were equal. All comparisons between subsets of the data are on an

absolute deviation basis, not relative, unless otherwise stated.

4.3 Results and discussion

Table 4.1 summarizes the microalgal species and their biochemical profiles, shorthand

identifiers, and symbols used in figures. Ternary diagrams (Figure 4.1) show these biochem-

ical profiles (dry, ash-free basis) color-coded with red, green, and blue intensity mapped to

lipid, protein, and carbohydrate contents, respectively. We use this color scheme for each

type of biomass throughout this dissertation to facilitate evaluation of biochemical compo-

sition effects. Tables D.3 and D.4 in Appendix D also enumerate the elemental composition

and fatty-acid profile for each biomass sample.

4.3.1 Biocrude yield

Herein we describe the effects of temperature, time, slurry concentration, biochemical

composition, and species identity in addition to observations about the measured and pre-
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ID Symbol Genus
Biochemical Composition [wt%]

Lipid Protein Carb. Ash
Nan-1

Nannochloropsis
11.6± 0.1 41.8 43.7 2.8± 0.6

Nan-2 28.5± 0.5 20.1 44.7 6.7± 0.9

Chl-1
Chlorella

9.4± 0.3 43.3 42.5 4.8± 0.9

Chl-2 19.9± 0.1 14.7 61.9 3.4± 0.5

Spi-1 Spirulina 5.2± 0.1 50.9 31.4 12.5± 1.3

Mix-m
Mixture

9.6± 0.1 40.0 40.6 9.7± 1.1

Mix-p 9.6± 0.1 40.0 40.6 9.7± 1.1

Table 4.1: Biomass type legend. Mix-m and Mix-p represent the measured and predicted values for the
two-species mixture, respectively, and were calculated as an abundance-weighted average of Chl-2 and Spi-1.
Uncertainty denotes SE.
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Figure 4.1: Biochemical profile ternary diagrams (dry, ash-free basis) of six different microalgal feedstocks
presented in Table 4.1. L (red), P (green), and C (blue) denote color-shaded profile of lipids, proteins, and
carbohydrates, respectively.

dicted biocrude yields of the two-species mixture.

4.3.1.1 Temperature and time

Biocrude yield generally increased monotonically with increasing temperature and time,

shown in Figure 4.2, consistent with a vast number of previous findings [21–25, 27, 29, 34].

Nonetheless, this trend plateaued or reversed from 10 to 100 min at 350 °C; over this range,

the biocrude yield from both concentrations of Chl-2 decreased by on average 3.3 wt% (p <

0.06), and that of the 120 g L−1rxn slurry of Nan-1 decreased by 4.1 wt% (p < 0.09). Several

studies have shown similar decreases in biocrude yield at high severity [25, 34, 111], suggesting

that 350 °C and 100 min is around the point at which hydrothermal gasification begins to

occur to a significant extent.
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Figure 4.2: Biocrude yield versus reaction time grouped by temperature and initial concentration. See
Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus the second row (120
g L−1

rxn). Error bars indicate SE.

4.3.1.2 Slurry concentration

At several low-severity conditions (from 150 °C, 100 min to 250 °C, 1 min), the 30

g L−1rxn slurries of Chl-2 yielded on average 5.8 wt% (p < 0.02) more biocrude than the

120 g L−1rxn slurries. Moreover, this difference in biocrude yield was not accompanied by

a statistically significant difference in mass closure, which varied by only 2.5 wt% (p <

0.45) on average. To the authors’ knowledge, this effect of increased biocrude yield with

decreasing concentration has not been demonstrated previously for microalgae, likely because

it occurs at much lower reaction severities than those used by previous concentration studies

[21, 23, 24, 38]. One possible explanation is that during product recovery, centrifugation

extracted fatty acids from the degraded algal solids more efficiently for the less concentrated

slurries. However, biocrude fatty-acid yields in that range were only on average 1.8 % higher

(p < 0.06) for 30 g L−1rxn slurries, so the increase in biocrude yield cannot be explained by

fatty-acid yield alone. All elemental recoveries were higher, including N and S, suggesting

that protein contributed as well, and perhaps carbohydrates. Given that Chl-1 did not
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experience the same magnitude of effect, it seems to be a result of biochemical differences

rather than cell morphology.

At temperatures of 300 °C and higher, all biomass types generally trend toward signif-

icantly increased biocrude yield with increasing initial concentration, a finding which has

been documented previously at these reaction conditions [21, 24, 38]. The absolute magni-

tude of this effect from 30 to 120 g L−1rxn is on average (across all species) about 3.4 wt% (p <

0.006) at 300 °C and 5.6 wt% (p < 0.0007) at 350 °C, with increases of up to 8.8 ± 2.1 wt%

(Nan-2, 300 °C, 31.6 min).

4.3.1.3 Biochemical composition

Increases in biomass lipid content generally were associated with increased biocrude yield

(color-coded in Figure 4.2; see Figure E.1 in Appendix E for explicit yield vs. lipid content

plots), which has been widely documented [13, 15, 29, 39, 40, 42, 44]. Controlling for reaction

conditions and species identity, this was an increase of 11.1 wt% (p < 10-6) on average

(i.e., comparing the average difference in Nan-1 vs. Nan-2 and Chl-1 vs. Chl-2 across all

reaction conditions). However, in several instances, the biocrude yields from the high-protein

Nan-1 and Chl-1 matched or exceeded those of the low-protein Chl-2. Although the latter

contained more lipids than the other two, it also contained more carbohydrates as well,

which individually contributes much less to biocrude formation than the other biochemical

fractions [13, 48].

4.3.1.4 Species identity

Despite featuring similar biochemical compositions, Mix-m, Nan-1, and Chl-1 yielded sig-

nificantly different amounts of biocrude after controlling for reaction conditions (Figure 4.2).

Even at high severity (300 °C and 31.6 min), where biocrude yield tends to plateau, the

variability in yields from these biomass samples was on average ± 3.7 wt% across both

concentrations. López Barreiro et al. [39] found that biochemical composition alone was
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insufficient for correlating the biocrude yield from HTL of eight different types of microalgae

at two sets of reaction conditions similar to those employed in this study. They proposed

that species identity played a nontrivial role in affecting biocrude yield predictability. The

information presented here supports the claim that species identity induces variability, how-

ever we demonstrate that biochemical composition could predict biocrude yield to within ±

3.7 wt% at high severity. It is expected that morphological differences between species would

play less of a role at high reaction severity, so the source of the variation would most likely be

explained by more granular differences in biochemical composition, such as polar, non-polar,

and unsaponifiable lipids for example. In Chapter III we quantified the relative effects of

species identity and biochemical composition on biocrude yield to be at most 1.9 and 12.6

wt%, respectively, for the HTL of 30 g L−1rxn slurries of six different species of microalgae at

350 °C, 20 min. At 300 °C and 31.6 min in the present study, variability in biocrude due to

species identity (± 3.7 wt%) is about twice as large that the value presented in Chapter III,

while the variability due to biochemical composition in the present study is on average ±

11.8 wt%, similar to our previous results.

4.3.1.5 Two-species mixture interactions

The measured (Mix-m) and predicted (Mix-p) biocrude yields for the 30 g L−1rxn two-

species mixture agreed across all four reaction conditions (Figure 4.2). However, the mea-

sured biocrude yields for the 120 g L−1rxn slurry were on average 3.8 wt% higher than predicted

(p < 0.03) for all but the 200 °C and 3.2 min condition. This was especially the case at 300

°C and 31.6 min, with a measured biocrude yield of 31.7 ± 1.2 wt% compared to a predicted

value of 26.8 ± 1.8 wt%. These data suggest that reactions between the biochemical compo-

nents of the two different species form additional and/or higher-molecular-weight biocrude

components in the bulk high-temperature water; moreover, these reactions are likely oc-

curring between the relatively higher concentration of lipids and/or carbohydrates in Chl-2

and the relatively higher concentration of protein in Spi-1. Higher-than-predicted biocrude
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yield from mixtures of feedstocks (including various biomass types and model compounds)

with differing biochemical composition has been reported previously [43, 48, 112] and will

be discussed further in Section 4.3.4.

4.3.2 Carbon content and recovery

4.3.2.1 Temperature, time, slurry concentration, and biochemical composition

C content in the biocrude ranged from 62.4 to 76.8 wt%, shown in Figure 4.3a. It

monotonically increased with increasing reaction severities at temperatures of 250 °C and

higher, consistent with findings from previous studies at comparable reaction conditions

[22–24, 27, 39]. Slurry concentration affected biocrude C content only on reaction-condition-

and feedstock-specific bases. C content generally increased with increasing lipid content (and

decreasing protein content), consistent with previous work [15, 40]. Controlling for species

identity, the C content in the biocrude from higher-lipid microalgae was on average 3.8 wt%

higher (p < 0.0005) than that of the lower-lipid microalgae in the 200 to 300 °C range, for all

holding times and slurry concentrations. Notably, at 350 °C and 100 min, the C content of

Nan-1, Nan-2, and Chl-1 varied by only only 1.3 wt%, despite differing initial concentrations

and biochemical compositions (in the case of Nan-2); this result is in line with some previous

results [39]. In contrast, Biller and Ross [13] found that biocrude C content decreased

from 73.3 to 68.1 wt % with increasing lipid content for 64 g L−1rxn slurries of four different

species of microalgae (including Nannochloropsis, Chlorella, and Spirulina) at 350 °C and

approximately 90 min total holding time. The Nannochloropsis and Chlorella in that study

contained significantly less carbohydrate content than the four types used in this study, which

could explain the differences, although we note that they measured carbohydrates directly

while in the present study we estimated them by difference. However, the biochemical

compositions for Spirulina in both studies were very similar and so were the C contents

in the biocrude at those reaction conditions (73.3 vs. 73.2 wt%). These results together

suggest that biochemical composition affects C content at all reaction conditions and that

75



(�) �������� � ������� [��%]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

��

��

��

��

�
�
�
�
�
��
�

-
�

��

��

��

��

���-�
���-�
���-�
���-�
���-�
���-�
���-�

Δ
�
�
-
�
�
�

� � �� �� ���

-�

�

�

� � �� �� ��� � � �� �� ��� � � �� �� ��� � � �� �� ���

� [���]

(�) �������� �/� [�/�]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

���

���

���

���

���

�
�
�
�
�
��
�

-
�

���

���

���

���

���

���-�
���-�
���-�
���-�
���-�
���-�
���-�

Δ
�
�
-
�
�
�

� � �� �� ���

-���

��

���

� � �� �� ��� � � �� �� ��� � � �� �� ��� � � �� �� ���

� [���]

Figure 4.3: Biocrude (a) carbon content and (b) H/C ratio versus reaction time grouped by temperature
and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g
L−1
rxn) minus the second row (120 g L−1

rxn). Error bars indicate SE.

the magnitude of this effect changes at different reaction conditions depending on the relative

proportions of each biochemical class.

4.3.2.2 Species identity and two-species mixture interactions

Biocrude C content varied significantly between Nan-1, Chl-1, and Mix-m—the three

biomass types with similar biochemical composition—for low-severity (200 °C, 3.2 min) and

high-severity (300 °C) conditions. At 300 °C across both reaction times and concentrations,

the two-species mixture produced biocrude with C content that was on average 2.5 wt%

higher (p < 0.12) than expected. This was especially true for the 120 g L−1rxn slurry, which

produced biocrude with C content that was on average 3.6 wt% higher (p < 0.10) than that

of the 30 g L−1rxn slurry. Remarkably, the 120 g L−1rxn slurry featured biocrude C recovery,

shown in Figure E.2, which was 8.1 % higher (p < 0.08) than predicted and 11.0 % higher

(p < 0.04) than that of the 30 g L−1rxn slurry. These observations together suggest that re-

actions between the different biochemical components (and their degradation products) of
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the lipid- and carbohydrate-rich Chlorella and protein-rich Spirulina are actually improving

carbon partitioning into the biocrude oil by forming more and/or higher-molecular-weight,

carbon-containing, organic-phase-soluble compounds than predicted by reacting the equiv-

alent proportion of both species individually. Madsen et al. [43] also observed increased

biocrude C content for several 64 g L−1rxn biomass mixtures at 350 °C, 20 min, including a

mixture of high-protein Spirulina and high-carbohydrate poplar wood with roughly the same

overall biochemical composition as the mixture employed in this study.

4.3.3 Hydrogen content and recovery

H content in the biocrude, shown in Figure E.3a, did not follow any global trends with

respect to changing temperature, time, and concentration. However, biocrude H recovery

did generally increase with increasing temperature and time, shown in Figure E.3b, following

the same general trends reported for biocrude yield in Section 4.3.1. Controlling for species

identity and reaction conditions, increased biomass lipid content (and decreased protein

content) resulted in an average of 1.1 wt% higher (p < 0.0002) H content across all reaction

conditions, a trend similar to ones reported previously [15, 40]. Similar to C content, the

120 g L−1rxn two-species mixture produced biocrude with 0.5 wt % higher H content (p < 0.1)

than expected at 300 °C.

Biocrude H/C (molar ratio of H to C), depicted in Figure 4.3b, generally decreased with

increasing temperature and time, similar to previous reports [22]. Given that C and H

recovery (Figure E.2 and E.3a) both increase with increasing reaction severity, the decrease

in H/C suggests that the ratio of the net rates of partitioning of H and C into the biocrude

also decreases with increasing reaction severity. This could be due to an increase in H

leaving the biocrude and/or a decrease in H entering the biocrude, relative to the rate of C

flux. There were no global effects of initial concentration on biocrude H/C, although it did

increase on average by 0.09 (p < 10-9) with increasing biomass lipid content, after controlling

for species identity and reaction conditions, which corroborates prior findings [15, 40].
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4.3.4 Nitrogen content

4.3.4.1 Temperature and time

Across the entire data set, biocrude N content varied from 0.3 to 8.4 wt%, shown in Fig-

ure 4.4a. It generally increased with increasing temperature and time, which is consistent

with previous reports [21–24, 38]. Although at 300 °C and higher, there was no overall trend

with respect to temperature and time, but there were trends within different biochemical

profiles (see Section 4.3.4.3). Regardless of biomass type, at 200 °C and higher, the 120 g

L−1rxn slurries produced biocrude with on average 0.47 wt% higher (p < 10-9) N content than

their 30 g L−1rxn counterparts. From 200 °C, 3.2 min to 300 °C, 3.2 min, this effect was only

significant for the higher-protein biomass types and not the higher-lipid biomass samples, on

average 0.64 (p < 0.00003) and 0.07 wt% (p < 0.17) higher, respectively. However, at 300 °C,

31.6 min and higher, the average effects were the same regardless of biochemical composition,

at 0.56 (p < 0.004) and 0.55 wt% (p < 0.001) for higher-protein and higher-lipid biomass,

respectively. It is not immediately clear why increased concentration promotes N partition-

ing into the biocrude, however one possibility is that it promotes the formation of DCM-

soluble N-containing compounds via Maillard reactions, or reactions between carbohydrate

and protein degradation products. Maillard reactions have been demonstrated to occur in

high-temperature water [46, 52] and increase biocrude nitrogen content [43, 112, 113]. These

reactions could be first order in both amino acids and saccharides (second order overall), so

concentration increases would increase their selectivity during HTL.

4.3.4.2 Slurry concentration

To the authors’ knowledge there is only one previous study that presented elemental

content of biocrude oils as a function of slurry concentration [38]. It showed that at 300

°C and 3 min, biocrude N content increased from 7.2 to 7.8 wt% with an increase in slurry

concentration from 37 to 79 g L−1rxn for a high-protein Chlorella, which is in line with the
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Figure 4.4: Biocrude nitrogen (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.

average increase observed in our study. However, at 350 °C they reported a slight decrease

in biocrude N of 7.9 to 7.7 wt% with concentration increasing from 30 to 64 g L−1rxn, which

we did not observe. We note however that at that temperature, our concentration change

was approximately double that of theirs (30 to 120 vs. 30 to 64 g L−1rxn), so it is possible that

a fourfold increase in concentration, as was the case in our study, is necessary to observe a

significant concentration effect at 350 °C.

4.3.4.3 Biochemical composition

Biomass biochemical composition significantly affected biocrude N content (color-coded

in Figure 4.4a; see Figure E.4a in Appendix E for explicit N content vs. protein content

plots), which for example ranged from 2.3 to 8.4 wt% for 120 g L−1rxn slurries at 300 °C and

3.2 min. Controlling for species identity and reaction conditions, biocrude N content was on

average 2.2 wt% higher (p < 10-5) for higher-protein biomass types compared to lower-protein

biomass samples at 200 °C and higher. Leow et al. [40] and Li et al. [15] showed that, when
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controlling for species identity, biocrude N content increased linearly with increasing biomass

protein content for 178 g L−1rxn slurries at 300 °C, 30 min, which is consistent with the results

presented here (Figure E.4a). The levels of reaction severity at which biocrude N content

plateaued and then decreased appears to have increased with decreasing protein content.

For example, biocrude N content for the highest-protein-content type, Spi-1, decreases with

increasing time at 300 °C; however, N content in biocrude from biomasses that are lower, but

still high in protein content, including Nan-1, Chl-1, and Mix-m, generally plateau at 300

°C, and that of the lowest in protein content, including Nan-2 and Chl-2, actually increases

with increasing time at 300 °C. Therefore the reaction conditions for maximum N content in

the biocrude appear to be a function of biochemical composition as well.

4.3.4.4 Species identity

Biocrude N content varied by as much as 2.3 wt% and as little as 0.7 wt% between

the three biomass types with similar biochemical composition after controlling for reaction

conditions. The measured two-species mixture biocrude N content was on average 0.47 wt%

higher (p < 0.10) than predicted for all times and concentrations at 300 °C. The mixture con-

tains both a high-protein Spirulina (Spi-1) and a high-carbohydrate Chlorella (Chl-2), which

suggests that Maillard reactions are likely to account for the difference between measured

and predicted values. The presence of both protein- and carbohydrate-degradation products

together has been shown to shift selectivities toward nitrogen-containing ring structures over

cyclic oxygenates [43] to the point where a 1:1 mixture of protein and carbohydrate model

compounds, the latter of which contains no N, produces biocrude with nearly the same N

content as that of pure protein. These cross reactions can also form N- and O-containing

structures that are unique from those present in biocrude from pure feedstocks [112].
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4.3.5 Nitrogen recovery

N recovery in the biocrude, shown in Figure 4.4b, followed trends with respect to tem-

perature, time, and concentration that are similar to those of N content, consistent with

previous reports [63, 114]. We observed a maximum biocrude N recovery of 43.4 % for

the 120 g L−1rxn slurry of Chl-2 at 350 °C and 10 min. At 250 °C and higher, biocrude N

recovery was on average 4.6 % higher (absolute, p < 10-5) for the 120 g L−1rxn slurries than

the 30 g L−1rxn slurries; the largest absolute increase in biocrude N recovery due to increasing

concentration was 15.1 %, in the case of Nan-2 at 300 °C and 31.6 min. The more highly

concentrated (120 g L−1rxn) slurries of Mix-m at 300 °C also recovered 5.0 % (p < 0.21) more

N in the biocrude than predicted; whereas this effect was absent or significantly reduced

for the 30 g L−1rxn slurries. Given that Maillard reactions between sugars and amino acids

likely proceed by an overall second order reaction mechanism, we propose that the four-fold

increase in concentration likely promoted these reactions and the higher biocrude N recovery

observed or the 120 g L−1rxn.

Notably, the trends in N recovery in the biocrude due to changing biochemical composi-

tion are the opposite of those of N content (color-coded in Figure 4.4b; see Figure E.4b in

Appendix E for explicit N recovery vs. protein content plots). In fact, after controlling for

species identity, biocrude N recovery increased by 5.8 % (absolute, p < 0.0005) on average

with decreasing protein content (and increasing lipid content) at 200 °C and higher. This is

to say that although the mass percentage of N in biocrude is lower for lower-protein species,

that N constitutes a higher percentage of the total N in the starting biomass than does the

N from higher-protein species, an effect previously observed at 300 °C [40, 115]. This is sig-

nificant because higher N recovery in the biocrude directly translates to lower N recovery in

the ACP for recycling. Amide derivatives have also been reported to increase with increasing

lipid content and were in the range of 1.4 to 3.0 wt% of the biocrude [115, 116], which likely

explains at least part of the increase in biocrude N recovery.

Another explanation is that the protein concentrations in slurries of Nan-1, Chl-1, Spi-1,
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and Mix-m are high enough to be in excess compared to carbohydrate concentrations for

Maillard reactions, or, in other words, that carbohydrates could be the limiting reactant. In

fact, Peterson et al. [46] found exactly that when examining hydrothermal degradation of

glycine (an amino acid) and glucose (a sugar) alone and together; when glycine was in excess,

increases in initial glucose concentration led to proportionally greater glycine destruction.

Such behavior in the present study would lead to a less-than-expected increase in the rate

of N-cyclic formation from Maillard reactions due to increased protein content, allowing a

greater proportion of the N in the protein to degrade to ammonium compared to the more

protein-deficient and/or carbohydrate-rich biomass samples (Nan-2 and Chl-2). In fact, we

observe such differences in ammonium liberation later in Chapter V. A third possibility is

that the proportion of biomass N representing protein changes with increasing N-limitation

(decreasing proteins and increasing lipids), which would obfuscate whether the changes in

biocrude N recovery are due to protein or other, generally less abundant sources of N such

as DNA and RNA. Regardless of the biochemical source, biocrude N recovery increases with

decreasing biomass N content.

4.3.6 Sulfur content

4.3.6.1 Temperature, time, and slurry concentration

S content in the biocrude, depicted in Figure 4.5a, increases with increasing temperature

and time until 300 °C and 3.2 min, at which point it plateaus (in the case of the higher-lipid

species) or decreases, similar to the trends for N content and consistent with previous reports

[21, 24, 27, 38]. There was no apparent global effect of initial concentration; however at 300

°C, 120 g L−1rxn slurries of Spi-1, Chl-1, and Chl-2 on average produced biocrude with 0.10

wt% (p < 0.03) lower S content than the 30 g L−1rxn slurries, while those of Nan-1 and Nan-2

showed no effect or in some cases a slight increase for the 120 g L−1rxn slurries.
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Figure 4.5: Biocrude sulfur (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.

4.3.6.2 Biochemical composition and species identity

Similar to N content, S content is a strong function of biochemical composition, with

high-protein biomass producing biocrude with higher S content (color-coded in Figure 4.5a;

see Figure E.5a in Appendix E for S content vs. protein content plots). Controlling for

species identity, biocrude S content was on average 0.37 wt% (p < 10-5) higher for higher-

protein biomass than their lower-protein counterparts, an effect demonstrated previously

[43]. The three feedstocks with similar biochemical composition, Nan-1, Chl-1, and Mix-m,

produced biocrude with significantly varied S content at low-to-moderate reaction severities,

although at 300 °C, 31.6 min, these differences reduced to no more than 0.11 and 0.07 wt%

for the 30 and 120 g L−1rxn slurries, respectively. This suggests that biochemical composition

is a good predictor of biocrude S content at high reaction severity and that species identity

is a significant factor at low severity only, which could be due to morphological differences

between biomass types affecting the rate of S partitioning to the biocrude.
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4.3.6.3 Two-species mixture interactions

At 200 °C, 31.6 min and higher reaction severities, measured S content was always lower

than predicted in the two-species mixture by 0.10 wt% (p < 0.002) on average across those

six different sets of conditions. It is not immediately clear why this would occur, but this

effect was also previously observed by Madsen et al. [43] in various mixtures of biomass

feedstocks, some of which similarly featured a high-protein feedstock paired with a high-

carbohydrate feedstock. The trend points to reactions occurring in the bulk high-temperature

water between compounds originating from both the high-protein Spirulina and high-lipid,

high-carbohydrate Chlorella that inhibit some of the S from partitioning into the biocrude.

4.3.7 Sulfur recovery

S recovery in the biocrude usually increased with increasing temperature and time, shown

in Figure 4.5b, similar to S content. However, on average S recovery did decrease by 8.8 %

(p < 0.03) from 10 to 100 min at 350 °C for both initial concentrations of Nan-1 and Chl-

2. There were no consistent global trends as a function of initial concentration, although

certain types of biomass in particular showed consistent differences; for example, biocrude

S recovery for the 30 g L−1rxn slurry of Chl-2 was on average 8.0 % (p < 0.05) higher than

the 120 g L−1rxn slurry for 300 °C, 3.2 min and milder reaction severities. In contrast to N

recovery, there were also no globally consistent trends with respect to biochemical composi-

tion (Figure E.5b); however, when controlling for species identity, we did observe an average

increase in biocrude S recovery of 10 % (p < 0.04) as a function of increasing protein content

across both initial concentrations at 300 °C and 31.6 min. The variability in biocrude S

recovery due to species identity was at least 8.5 % and at most 21.3 % at 300 °C. This wide

range in S recoveries suggests that more information, such as the abundance of specifically

S-containing amino acids, is required to adequately predict S partitioning into the biocrude.

The predicted S recoveries for the two-species mixture matched the measured values for the

120 g L−1rxn across all conditions, but were predicted on average 5.5 % (p < 0.09) higher than
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measured for the 30 g L−1rxn slurry.

4.3.8 Oxygen content and recovery

4.3.8.1 Temperature and time

Biocrude O content ranged from 8.1 to 29.2 wt%, shown in Figure 4.6a. Starting at

200 °C, increasing reaction severity decreased biocrude O content, consistent with prior

studies [21, 22, 24, 27, 38]. From 200 °C, 3.2 min to 300 °C, 31.6 min, for example, this

reduction was on average about 10.6 wt% (p < 10-6), a relative decrease of about 47 %. We

note however that over this same range of conditions, the recovery of O in the biocrude,

depicted in Figure 4.6b, increases on average by 5.7 % (p < 0.02), indicating that there

is actually a net influx of O into the biocrude over these conditions, but that the higher

influx of other elements, primarily C and H, is diluting the overall O content. At higher

reaction severities however, the average decrease in O content of 6.1 wt% (p < 0.009) is

accompanied by a significant average reduction in O recovery of 7.3 % (p < 0.03), suggesting

that deoxygenation is occurring.

4.3.8.2 Slurry concentration

We did not observe a global effect of slurry concentration on O content, however there

was a small, yet statistically significant average decrease in O recovery of 1.9 % (p < 0.01)

with increasing slurry concentration at 200 °C for both reaction times. There is little infor-

mation in the literature about the effect of concentration on biocrude O content, however

Jazrawi et al. [38] found that increasing concentration (7 to 79 g L−1rxn) of a high-protein

Chlorella slurry decreased biocrude O content at 300 and 350 °C for 3 min reaction time.

In the present study, at 300 °C and 3.2 min, all four high-protein biomass types produced

biocrude with on average 2.5 wt% (p < 0.13) lower O content with increasing initial concen-

tration, which is comparable in magnitude to the study by Jazrawi et al. [38]. Jena et al.

[21] also showed a slight decrease in biocrude O content from 64 to 144 g L−1rxn at 350 °C and
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Figure 4.6: Biocrude oxygen (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.

60 min holding time.

4.3.8.3 Biochemical composition and species identity

There similarly was no consistent overall trend in O content with respect to changing

biochemical composition, although for specifically the two Nannochloropsis feedstocks, O

content was on average 6.6 wt% higher (p < 0.0002) in the higher-protein strain (Nan-1)

than the lower-protein strain (Nan-2) for reaction severities of 300 °C, 31.6 min and lower.

Li et al. [15] showed a relatively weak trend of increasing biocrude O content with increasing

biomass carbohydrate content, however we did not observe this trend (Figure E.6a). Nan-1,

Chl-1, and Mix-m produced biocrude with widely varying O content and recovery despite

their similar biochemical profiles. After controlling for reaction conditions, the differences in

O content and recovery ranged from 1.9 to 9.8 wt% and 3.3 to 17.0 %, respectively. These

differences highlight the limit of proximate biochemical composition as a predictor for O

partitioning in the biocrude.
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4.3.8.4 Two-species mixture interactions

At 300 °C across both reaction times, the measured two-species mixture biocrude O

contents and recoveries were on average 5.0 wt% higher (p < 0.07) and 2.4 % higher (p <

0.08), respectively, for the 30 g L−1rxn slurry compared to the 120 g L−1rxn slurry. Moreover,

biocrude O contents for the 120 g L−1rxn slurry were actually lower than those of the component

species with the lowest O content (i.e., Chl-2 at 3.2 min and Spi-1 at 31.6 min) by on average

at least 4.3 wt%, and the same was true for O recovery, which was 2.6 % lower (absolute).

These observations for a single initial concentration across two time points were not enough to

demonstrate statistical significance, however at these conditions across both concentrations,

the measured two-species mixture O contents and recoveries were lower than predicted by

an average of 3.1 wt% (p < 0.10) and 2.3 wt% (p < 0.11), respectively. In other words, we

measured lower O content in the biocrude from the two-species mixture than expected at

300 °C (possibly even lower than any component species), and this effect is magnified by

increasing initial concentration. This finding corroborates the results of Madsen et al. [43],

which found that mixtures of high-protein and high-carbohydrate feedstocks led to decreased

O content and increased N content in the biocrude oil. Increased N content was also observed

in this study, discussed in Section 4.3.4. The reaction mechanism identified in that study,

whereby nitrogen degradation products shift reaction selectivities toward nitrogen-containing

ring structures away from cyclic oxygenates, is therefore very likely to be occurring in the

present study as well.

4.3.9 Phosphorus content and recovery

At a temperature of 300 °C and lower, biocrude P content and recovery, (Figure E.7),

stayed below 0.10 wt% and 2.3 %, respectively, for all samples measured; however, we note

that these measurements were over a smaller subset of conditions than the other elemental

analyses due to sample mass constraints. At 350 °C, some of the higher-lipid biomass samples

produced biocrude with higher P content and recovery, although the highest observed were
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only 0.20 wt% and 8.3 %, respectively, in the case of Nan-2 at 100 min, 30 g L−1rxn. These

values were lower than reported by Valdez et al. [24] for similar experimental conditions but

comparable to that of Jiang and Savage [37]. These data confirm that the majority of the

phosphorus does not partition into the biocrude, especially at 300 °C and below; however, at

350 °C, a non-trivial amount of P (relative to the biomass P) may partition into the biocrude.

4.3.10 Higher-heating value

Biocrude HHV varied from 29.3 to 38.4 MJ kg-1 across all reaction conditions and feed-

stock characteristics, shown in Figure 4.7a. HHV increased monotonically with increasing

reaction severity at 250 °C and higher for all biomass types, consistent with previous stud-

ies [21, 22, 24, 27]. There were no significant global trends in HHV with respect to initial

concentration. Controlling for species identity and reaction conditions, biocrude HHV was

on average 3.0 MJ kg-1 higher (p < 0.00003) for the higher-lipid strains compared to the

lower-lipid strains, across all reaction conditions (color-coded in Figure 4.7a; see Figure E.8a

in Appendix E for explicit HHV vs. lipid content plots). Even without controlling for species

identity, biocrude HHV generally increased with increasing biomass lipid content, although

at high reaction severities, the low-lipid Nan-1 matched or exceed the HHV of the high-

lipid Chl-2. Li et al. [15] similarly found that biocrude HHV increased with increasing lipid

content, but there was no clear association with protein content.

Biocrude HHV varied widely among Nan-1, Chl-1, and Mix-m, although the average

spread in values, across all reaction conditions, for the 30 g L−1rxn slurries (± 1.0 MJ kg-1) was

lower than that of the 120 g L−1rxn slurries (± 1.8 MJ kg-1). At 300 °C across both reaction

times, biocrude HHV for the two-species mixture was substantially higher for the 120 g

L−1rxn slurry than the 30 g L−1rxn slurry, on average by about 2.3 MJ kg-1 (p < 0.07). Moreover,

the HHV for the 120 g L−1rxn slurry of the two-species mixture was 0.6 MJ kg-1 higher (p <

0.02) than that of Chl-2, the highest of the two component species, which follows a similar

observation for O content in Section 4.3.8. These deviations from the expected values for
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Figure 4.7: Biocrude (a) HHV and (b) ER versus reaction time grouped by temperature and initial concen-
tration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus the
second row (120 g L−1

rxn). Error bars indicate SE.

HHV were largely due to significant increases in C content and decreases in O content.

4.3.11 Energy recovery

Biocrude ER, or the percentage of energy in the biocrude (biocrude HHV multiplied

by yield) relative to the biomass HHV, followed the same general trends as biocrude yield

(Figures 4.7b and E.8b). Notably, the higher-lipid 30 g L−1rxn slurries reached a maximum

ER at just 300 °C and 3.2 min, while the higher-protein slurries continued to increase in

ER with increasing reaction severity. The 120 g L−1rxn slurries, however, exhibited largely the

same trends with changing reaction severity, regardless of biochemical composition. For each

biomass type at 300 °C and higher, the maximum ER achievable was always higher for the

120 g L−1rxn slurries than their 30 g L−1rxn counterparts due to increased C recovery (Figure E.2)

and H recovery (Figure E.3a).
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4.3.12 Mass balances, solid characteristics, and gas yield

The total mass balances, including the biocrude, solid, and aqueous fractions, are reported

both without and with gas yields in Figures D.2a and b, respectively, in Appendix D. Mass

closure was generally very good at 150 and 200 °C, but decreases with increasing reaction

severity. We expect that a large portion of the lost mass is comprised of volatile compounds

in the ACP. At high reaction severity (300 to 350 °C), some of the lost mass may be

due to coke formation on the reactor walls as well. Data for solid yields and elemental

content and recoveries are presented in Appendix F. Data for gas yields are presented in

Appendix G. These data were not the primary focus of this dissertation but we report them

in the Appendices because they are important for quantifying the distribution of elements

between the different phases produced during HTL. Moreover, those data are integral for

the development of the kinetic model presented in Chapter VI.

4.3.13 Fatty-acid recovery

Figure 4.8 depicts SAFA, MUFA, and PUFA recoveries in the solid (green, bottom) and

biocrude (brown, top) phases as functions of reaction temperature and time for the 120 g

L−1rxn slurries of Nan-1 and Chl-2. As described in Section 4.2.4, these recoveries comprise fatty

acids and their derivatives, such as fatty-acid amides, that retain the same chain structure

and terminating carbonyl group. Plots for the 120 g L−1rxn slurries of other biomass types as

well as data for the 30 g L−1rxn slurries are shown in Figures E.9 and F.8. Fatty-acid recoveries

in the biocrude and solids are shown in Figures E.9 and F.8, respectively.

4.3.13.1 Saturated fatty acids

SAFAs begin partitioning into the biocrude at conditions as mild as 150 °C and 10 min,

and possibly even lower than that (there was insufficient biocrude generated by the 150 °C,

1 min reactions for analysis). In the case of the 120 g L−1rxn slurry of Nan-1, SAFA recovery

reaches a maximum of 93.8 wt% at 250 °C and 10 min (with similar recovery at comparable
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Figure 4.8: SAFA, MUFA, and PUFA recoveries in the biocrude (brown, top) and solids (green, bot-
tom) as functions of temperature and time for (a) low-lipid Nannochloropsis (Nan-1) and (b) high-lipid
Chlorella (Chl-2). § and ‡ denote insufficient biocrude and solid mass for FAMEs analysis, respectively.
Error bars indicate SE.

reaction severities), but then decreases with increasing reaction time. From 10 to 100 min

at 350 °C, however, it actually increases back up to a recovery comparable to the maximum.

In fact, when considering the 30 g L−1rxn slurries of Nan-1 and Chl-2 shown in Figure E.9a,

SAFA recovery increased by on average 16.2 wt% (p < 0.053) from 10 to 100 min at 350 °C.

Closer inspection reveals that this increase was partially due to an average absolute increase

of 140 % (p < 0.05) in C18:0 recovery in the biocrude, shown in Figure E.10a, far more

C18:0 than measured in the starting biomasses. Relative to all C18 fatty acids (including

unsaturated), its recovery is still no greater than 12 wt%, shown in Figure E.10b. This

suggests that unsaturated C18 fatty acids are hydrogenating to form C18:0 at 350 °C on the

order of tens of minutes. This phenomenon has been suggested previously for similar HTL

reaction conditions [117] due to the ability of high-temperature water to facilitate hydrogen

production [11]. The extent of this hydrogenation of unsaturated C18 fatty acids to C18:0
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increased with increasing slurry concentration as well, with C18:0 recovery increasing on

average by about 78 % (absolute, p < 0.02). We also note that there was a large increase in

C16:0 recovery at 350 °C, 100 min as well, but it was generally not enough to exceed 100 %,

possibly because C16:0 is much more abundant in the original biomass.

4.3.13.2 Unsaturated fatty acids

In contrast, MUFAs and PUFAs were measured in the biocrude to a significant extent

only at 250 °C, 10 min and higher reaction severities, significantly more severe than the

mildest conditions for appreciable SAFA detection. Moreover, at mild reaction severities

(below 250 °C, 10 min), these classes of fatty acids were not measured in either the solids or

the biocrude phases; however, at higher reaction severities we measured appreciable amounts

of both which were higher than the total sum of their presence in the solids and biocrude at

mild reaction severity. There are two possible explanations for this phenomenon.

The first explanation is that MUFAs and PUFAs enjoy more stability in biocrude oil

generated at reaction severities of at least 250 °C and 10 min than they do in the solid

phase or in biocrude generated at milder temperatures. This hypothesis is supported by

the reduction of MUFAs and PUFAs measured in the control experiments (left-most group

of bars in Figure 4.8), which were performed along with the actual reactions, but with no

temperature treatment, and subsequently measured for fatty-acid content with the rest of the

reaction products. This reduction highlights that some of the MUFAs and PUFAs degrade

in the solids naturally over time, rather than purely through hydrothermal treatment. It is

possible that this trend holds for the biocrude perhaps as a function of the amount of other

light-absorbing molecules in the oil which could protect the light-sensitive unsaturated fatty

acids [118] from degrading as quickly. An additional explanation is that an intermediate

reaction product is formed at mild conditions which reverts back to the original unsaturated

fatty acid at moderate conditions. In our view, the former explanation is more likely than the

latter, and further studies focusing on characterizing fatty-acid kinetics in high-temperature
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water would be needed to qualify the existence of an intermediate reaction product.

Notably, we observed MUFA and PUFA recoveries as high as 80.1 and 64.7 wt%, re-

spectively, at 300 °C and 3.2 min for Nan-2 and Chl-2, shown in Figures E.9b and c, which

includes Chl-2 in Figure 4.8b. At this reaction condition, across both slurry concentrations

for both the high-lipid Nan-2 and Chl-2, these recoveries were on average 76.4 and 53.3 wt%

for MUFAs and PUFAs, respectively. To the authors’ knowledge, no study of microalgal

HTL has demonstrated such high recovery of both MUFAs and PUFAs in the biocrude at

those conditions.

Several recent studies reported MUFA and PUFA recovery in the biocrude at temper-

atures in the range of 225 to 240 °C and 20 to 30 min holding time (not including heat

up), but they were not reported in excess of 35 wt% [36, 119]. Another showed appreciable

MUFA (14.1 wt%) and PUFA (20.7 wt%) content in the biocrude produced from a high-lipid

Chlorella at 260 °C, 60 min holding time which was comparable to that at similar conditions

presented herein [116]; however, initial biomass MUFA and PUFA content were not provided

for determination of recovery. Several other studies conducted at higher reaction severity,

including 300 °C (or higher) and at least 30 min total reaction time (including heat up),

observed MUFA and PUFA recoveries of up to 85 and 9 wt%, respectively [40, 120, 121].

The MUFA recoveries reported therein are comparable to those presented here, but the re-

ported PUFA recoveries were all significantly lower. We believe this is a result of longer total

reaction times employed in these studies, either by design or necessity due to longer heat

up times, because our own PUFA recoveries at 300 °C and 31.6 min are substantially lower

than at 3.2 min.

Our results show that high PUFA recoveries are only achievable with higher-lipid microal-

gae. These findings suggest that fast HTL (300 °C and 3.2 min total reaction time) is an

effective method for extracting all types of fatty acids without significantly degrading their

structure, especially for high-lipid microalgae. Preserving the structure of the unsaturated

fatty acids is of particular interest for downstream upgrading (more double bonds allows for
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more types of upgrading chemistries) as well for sale as high-value nutraceutical compounds,

particularly omega-3 PUFAs [122].

At reaction times longer than 3.2 and 1 min at temperatures of 300 °C and 350°C, re-

spectively, MUFA recovery generally decreased and PUFA recovery monotonically decreased

for all biomass types and concentrations (Figures 4.8 and E.9). Fatty acids exhibit lower

hydrothermal stability with increasing degrees of unsaturation, due to the increase in reac-

tivity afforded by the additional double bonds [100]. Johnson and Tester [123] calculated

kinetic parameters for triglyceride hydrolysis and subsequent unsaturated-fatty-acid degra-

dation at comparable HTL conditions; they proposed that the time scale for degradation

suggests reaction times of 30 min or less at temperature of 300 to 350 °C are optimal for

maximizing unsaturated-fatty-acid yields. In the present study, reaction severities above the

range of 300 °C, 3.2 min and 350 °C, 1 min resulted in lower MUFA and especially lower

PUFA recoveries in the biocrude. Therefore we can conclude that the timescale is actually

on the order of just minutes, much shorter than proposed by Johnson and Tester [123] and

a novel finding arising from the use of reactors that fully heat up in just 1 min.

4.3.13.3 Total fatty acids

Total fatty-acid recovery, depicted in Figure E.9d, followed the same trends with respect

to temperature and time reported above for all biomass types, and was not globally affected

by initial concentration. It did however increase on average by 26.2 wt% (p < 10-5) with

increasing lipid content, across all reaction conditions after controlling for species identity.

This trend was true for each class of fatty acid as well, with an increase of 8.1 wt% (p <

0.04), 28.5 wt% (p < 0.0004), and 14.0 wt% (p < 0.007) for SAFA, MUFA, and PUFA

recoveries, respectively. Those trends highlight that not only do higher-lipid biomass samples

produce biocrude oil with higher fatty-acid content, but actually recover higher percentages

of all classes of fatty acids than their higher-protein counterparts. This could be due to an

increased prevalence of side reactions between protein degradation products and the fatty
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acids in the high-protein strains. The higher magnitudes of increases for MUFA and PUFA

recoveries suggests it could be due to the inhibition of side reactions with the double bonds,

likely in addition to reactions with the carboxyl group.

4.4 Further discussion and conclusion

Table 4.2 presents a summary of the impacts of changing reaction time, slurry concen-

tration, lipid content, protein content, species, and reaction temperature on the yield and

properties of the biocrude oil. These changes control for all other factors and occur from two

reference points at 200 and 300 °C, respectively, for 30 g L−1rxn slurries and 3.2 min reaction

time.

4.4.1 Mild-reaction-severity reference point

At the 200 °C, 3.2 min, and 30 g L−1rxn reference point, biocrude properties are most

sensitive to changing lipid content and temperature. In fact, an average increase from 10.5 to

24.2 wt% lipid content resulted in very similar increases in biocrude yield, C recovery, and ER

as did an increase in temperature from 200 to 300 °C, all of which were statistically significant.

Linear approximation reveals that a 1 wt% increase in lipid content produces an equivalent

increase in biocrude C recovery (+1.5 %) as does a 5.8 °C increase in reaction temperature.

Notably however, increasing temperature also resulted in statistically significant increases

in N content (+3.1 wt%) and N recovery (+17 %) in the biocrude whereas increasing lipid

content decreased N content (-0.7 wt%) and slightly increased N recovery (+3 %).

The effect of increasing protein content was (necessarily) of equal magnitude but opposite

sign of that of increasing lipid content, but over about twice as wide of a range in protein

content (25.2 wt%) than lipid content (13.7 wt%). In general, increasing protein content

negatively affected the yield and composition of the biocrude oil at this reference point,

however it did decrease both N (-3%) and O (-12%) recovery. The variabilities in biocrude

properties induced by different microalgae species were similar in magnitude to the effects of
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Table 4.2: Summary of differences in biocrude properties as a result of changing six different independent
variables from two different reference points. Sensitivity Scale qualitatively denotes the sensitivity of biocrude
properties to each independent variable at a given reference point. SA, MU, PU, and TF indicate SAFA,
MUFA, PUFA, and total FA recovery in the biocrude, respectively. Yellow and blue intensity denote increases
and decreases in the associated property, respectively. Changes in temperature, time, and concentration are
the average of the differences in the six different types of biomass (see Table 4.1). Changes in biochemical
composition show the average of differences in the two different types of Nannochloropsis and Chlorella,
respectively. Changes in species denote the SD of values from Nan-1, Chl-1, and Mix-m. aDenotes no data
available. *Denotes statistically significant difference at the 0.05 level.

increasing reaction time from 3.1 to 31.6 min. Finally, a four-fold increase in concentration

at this reference point did not affect biocrude properties to a significant extent.

4.4.2 High-reaction-severity reference point

At the 300 °C, 3.2 min, and 30 g L−1rxn reference point, the characteristics of the biocrude

are most sensitive to changing biochemical composition. Increased lipid content produced

similar trends in biocrude properties as at 200 °C; however, the increases to yield, C content

and recovery, H content and recovery, and ER were lower, and the decreases to N and O

content were higher. Increased protein content was again detrimental to the yield and com-

position of the biocrude, although it decreased N recovery (-8%) to a statistically significant

extent, greater than that at 200 °C.

Species identity, reaction time, and slurry concentration demonstrated around the same

magnitude of effects on biocrude yield and properties. Increased time and concentration both

induced similar changes in biocrude yield and elemental content and recovery; although, in-

creased time substantially reduced fatty-acid recovery while increased concentration slightly

increased it.
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4.4.3 Additional conclusions

In addition to the aforementioned effects, there were several other key takeaways from this

chapter. Maillard reactions explained observed increases in biocrude yield, C recovery, and N

recovery and associated decreases in O recovery. Moreover, the selectivity of these reactions

were promoted by increases in concentration, as evidenced by the differences between the

measured and observed values for a two-species mixture of a high-protein biomass (Spi-1) and

a high-carbohydrate biomass (Chl-2). Furthermore, carbohydrates may act as the limiting

reactant in an excess of protein for these reactions, causing a greater proportion of N recovery

in the biocrude for biomass samples with higher carbohydrate-to-protein ratios (e.g., Chl-2

and Nan-1). Additionally, we found that fast HTL (300 °C, 3.2 min) of more dilute slurries

of high-lipid biomass is an effective method for recovering up to 89.3, 80.1, and 64.7 wt% of

SAFAs, MUFAs, and PUFAs, respectively. These results together suggest that high-lipid and

low-carbohydrate biomass may be optimal for producing high-quality biocrude and limiting

the extent of Maillard reactions, although future work is needed to optimize the relative

proportions of proteins and carbohydrates for the minimization of Maillard reactions during

HTL.
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CHAPTER V

The impacts of temperature, time, concentration,

biochemical composition, and microalgal species on the

aqueous co-product from hydrothermal liquefaction

This chapter contains results that were in preparation for submission to Applied Energy

written along with co-authors Casey M. Godwin, Bradley J. Cardinale, and Phillip E. Sav-

age [124]. In this chapter, we expand on the work presented in Chapter IV to include the

individual and dynamic impacts of reaction conditions and feedstock characteristics on the

ACP. Explicitly, we measured the effects of temperature (150 to 350 °C), reaction time (1 to

100 min), slurry concentration (30 and 120 g L−1rxn), biochemical composition (5.2 to 28.5 wt%

lipid, 14.7 to 50.9 wt% protein), and species identity (Nannochloropsis, Chlorella, and Spir-

ulina) on ACP characteristics. Measured properties included gravimetric yield, elemental

(CHNSOP) recovery, NH4
+ –N and PO4

3– –P recovery, and pH. The impacts of slurry con-

centration and species identity on ACP properties are examined in depth for the first time,

with all probed variables affecting ACP yield and composition. Temperature exhibited the

most influence, followed by microalgal species (at 200 °C) and biochemical composition (at

300 °C). Lower slurry concentration led to increased ACP yields and recovery of NH4
+ –N,

total nitrogen, PO4
3– –P, total phosphorus, and sulfur; in fact, we report evidence that in-

creased slurry concentration promotes Maillard reactions that inhibit NH4
+ –N recovery in
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the ACP and promote N recovery in the biocrude. Low-protein biomass liberated nitrogen

as ammonium more efficiently at lower temperature (200 °C); however, high-protein biomass

did so more efficiently at higher temperature (300 °C) and with significantly higher NH4
+ –N

recovery. We identified high-lipid, 30 g L−1rxn slurries reacted at 200 °C for 31.6 min as ideal

for both maximizing ACP recyclability while limiting N and S recovery in the biocrude to

less than 5 and 8 %, respectively. The unique results and expansive experimental data re-

ported herein expand our understanding of microalgal HTL and provide the foundation for

constructing a new quantitative kinetic model in Chapter VI.

5.1 Introduction

The ACP is of great importance for overall process sustainability because it contains high

concentrations of nutrients required for microalgal growth, including N, P, and S [18, 19] and

their bioavailable forms NH4
+ –N, PO4

3– –P, and SO4
2– –S [3], all of which enhance ACP

recyclability. ACP can be directly recycled both with or without dilution to grow microal-

gae with positive, synergistic effects on algal growth rates and biomass productivity, most

notably with polycultures [84], although also with some monocultures under certain condi-

tions [33, 125]. In addition to high nutrient abundance, there are also organic compounds in

the ACP that inhibit growth [47] (thus lowering recyclability). These compounds represent

up to 38 % of the biomass C [24, 27] and possess energy content that could be recovered.

Therefore, another route of ACP utilization is through hydrothermal gasification to convert

these organics to fuel gases, such as methane, before recycling the N, P, and S for algal

growth [20]. The most optimal process in terms of maximizing EROI and minimizing envi-

ronmental impacts likely requires a combination of direct recycling and indirect recycling via

hydrothermal gasification that balances nutrient recycling with energy recovery via methane

formation from aqueous C.

Aqueous-phase-product yield and recyclability depend on variables such as HTL tem-

perature and time [22, 24, 26–28, 30–37], concentration [32, 37, 38], feedstock biochemical
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composition [15, 28, 36, 40, 41, 44, 45], and microalgal species [28, 39]. Previous examina-

tions of the impacts of these variables have various shortcomings, however. Often only one or

two variables are examined, and there are some combinations of variables that are yet to be

scrutinized in detail, particularly at low to mild reaction severities. Often overlooked factors,

such as slurry concentration and species identity have yet to be rigorously quantified in terms

of their impact on ACP yield and properties. Furthermore, no previous study has probed

all of these factors together when examining the ACP. There could, therefore, be previously

unexamined synergistic or antagonistic effects between different feedstock characteristics and

reaction conditions.

In this study, we use fast-heating batch reactors (1-min heat-up) to conduct a broad

set of microalgal HTL experiments that establish and corroborate the individual and dy-

namic effects of a variety of reaction conditions and feedstock characteristics. We probe

reaction times logarithmically (100.0, 100.5, 101.0, 101.5, and 102.0 min) over a large range of

temperatures (150, 200, 250, 300, and 350 °C) for six microalgal feedstocks with different

biomolecule distributions (5.2 to 28.5 wt% lipid, 14.7 to 50.9 wt% protein) at two different

slurry concentrations (30 and 120 g L−1rxn). We chose three of these microalgae, including a

high-lipid Nannochloropsis, high-lipid Chlorella, and high-protein Spirulina, to contain differ-

ent proximate biochemical compositions to evaluable the impacts of different lipid, protein,

and carbohydrate contents at different reaction severities and slurry concentrations. We

selected the other three, including a high-protein Nannochloropsis, a high-protein Chlorella,

and a mixture of high-protein Spirulina and high-lipid Chlorella, to contain a similar prox-

imate biomolecule distribution, enabling quantification of the variability between different

species over different reaction conditions and slurry concentrations after controlling for bio-

chemical composition. Likewise, the two variants of Nannochloropsis and Chlorella enable

examination of the effects of biochemical composition while controlling for microalgal species.

Additionally, we juxtapose the two-species-mixture measured and predicted effects to eluci-

date how the different allotments of biomolecule components in high-protein Spirulina and

100



high-lipid, high-carbohydrate Chlorella react dynamically at different reaction severities and

slurry concentrations, compared to how they react alone. These experimental results, along

with those presented in Chapter IV, provide the basis for developing a novel mathematical

model of microalgal HTL in Chapter VI.

5.2 Materials and methods

We describe experimental methods in great detail in Chapter IV and therefore limit the

information presented here to the most important details, many of which are reproduced

from earlier.

5.2.1 Microalgae feedstocks and slurry preparation

Microalgal species for this study include a high-protein Nannochloropsis oculata (Nan-1),

high-lipid Nannochloropsis salina (Nan-2), high-protein Spirulina platensis (Spi-1), high-

protein Chlorella sorokiniana (Chl-1), and high-lipid Chlorella sorokiniana (Chl-2). We pre-

mixed slurries of each biomass type such that their concentrations were either 30 or 120 g

L−1rxn at reaction conditions (150 to 350 °C) and froze them prior to each reaction (upon which

they were thawed at room temperature). See Appendix D for the equivalent solids contents

and calculation of the concentrations on a g L−1rxn basis. We prepared the two-species mixture

slurries (Mix-m) by combining roughly three parts low-protein Chlorella (Chl-2) with seven

parts Spirulina (Spi-1) for an average Chl-2 content of 30.1 wt%.

5.2.2 Hydrothermal liquefaction

We conducted HTL in 1.30 mL stainless-steel batch reactors using 1/4-in. o.d., 0.049

in. thick Swagelok tubing. We constructed additional 1.16 mL proxy reactors fitted with

a K-type thermocouple for temperature measurements. Individual reactions proceeded by

immersing both a slurry-loaded reactor and proxy reactor into a Techne IFB-51 fluidized

sand bath, preheated to the specified temperature. It typically took reactors about 58 s to
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achieve 98% of the maximum temperature change relative to ambient conditions. At the end

of the holding time (100.0, 100.5, 101.0, 101.5, or 102.0 min), we quenched the reactors in a cold

water bath. We define this holding time as the time from the moment the reactor starts to

heat up to the moment the reactor starts to cool down.

We measured 5.5 mL of DCM (>99.9% optima grade, Fisher Scientific) and enough

deionized water (4.3 to 4.9 mL) such that the total volume of water was approximately 5.5

mL to facilitate product collection via pipette. Following product recovery, we vortexed

and centrifuged the product mixture twice to separate out the biocrude (DCM-soluble prod-

ucts), aqueous phase, and solid products into separate glass tubes. We transfered a 500 µL

aliquot of aqueous phase into a small plastic vial to be frozen for subsequent ammonium

and phosphate analyses. We measured the pH of the aqueous phase using a Fisher Scientific

accumet 0.25-in. diameter electrode calibrated using pH 4, 7, and 10 buffer solutions. We

dried the ACP under nitrogen at 70 °C for 1 h or until dry. We calculated the ACP mass

as the measured dried mass, adjusted to account for the 500 µL aliquot set aside for further

characterization.

5.2.3 Elemental content, ammonium, and phosphate

We report elemental contents (C, H, N, O, S, and P) for biomass samples in Table D.3.

We combined and homogenized replicate dried ACP fractions before Elemental Microanal-

ysis Ltd measured their C, H, N, and S content. We measured total P in the ACP using

persulfate digestion and the ascorbic acid molybdenum method [7, 96]. We measured ACP

ammonium and phosphate also using this ascorbic acid molybdenum method. To quantify

any ammonium that may not have evaporated from the ACP during the drying step, we also

rehydrated an aliquot of dried sample with deionized water and measured ammonium that

remained in the ACP after initially drying (likely as a salt). We subtracted the yield and

N content of this residual ammonium from the dried aqueous phase yield and N content,

respectively, to obtain the ammonia-free aqueous yield and organic N content, respectively.
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We previously showed that other forms of aqueous N, such as NO2
– and NO3

– , are below

detection limits for ACP generated at 350 °C, and 20 min, so we assume them to be negligible

here [7].

5.2.4 Biomass biochemical content

We approximated biomass lipid content as the total fatty acid content of the biomass

averaged over five replicates, with the acknowledgement that unsaponifiable lipids and mi-

nor components derived from the lipid structures, such as phosphate and glycerol, will be

neglected. We estimated biomass protein content by multiplying biomass N content by 4.78

[110]. We measured biomass ash content by combusting the samples at 550 °C for 30 h and

calculating the percentage of mass retained, minus biomass P content, averaged over five

replicates. We calculated biomass carbohydrate content by difference from unity and the

sum of lipid, protein, and ash content.

5.2.5 Statistical analysis

We performed all statistical analyses on subsets of the data using the function LocationTest

in Mathematica 11.1. All comparisons between subsets of the data are on an absolute devi-

ation basis, not relative, unless otherwise stated.

5.3 Results and discussion

Table 4.1 summarizes the microalgal species and their biochemical profiles, shorthand

identifiers, and symbols used in figures. Ternary diagrams (Figure 4.1) show these biochem-

ical profiles (dry, ash-free basis) color-coded with red, green, and blue intensity mapped to

lipid, protein, and carbohydrate contents, respectively. We use this color scheme for each type

of biomass throughout this dissertation to facilitate evaluation of biochemical composition

effects. We report data for aqueous-phase elemental recoveries graphically in the following

sections and refer the reader to Appendix H for supplemental figures and information.
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5.3.1 Aqueous-phase-product yield

5.3.1.1 Temperature and time

The yield of non-volatile aqueous-phase products (hereafter referred to as aqueous yield)

is shown in Figure 5.1 and includes ammonia-free products retained after drying under

nitrogen at 70 °C. Aqueous yield increased with increasing temperature and time until a

maximum was reached at low-to-moderate reaction severity (200 °C, 31.6 min to 250 °C,

10 min). Other studies have shown a maximum to occur at similar conditions [22, 34, 36].

This maximum appears to be a function of biochemical composition, with the high-protein

Nan-1 reaching a maximum later than the low-protein Chl-2 at 250 °C. Beyond this point,

aqueous yield decreased monotonically with increasing reaction severity, a trend consistent

with numerous previous studies [22, 24, 27, 28, 34, 36]. The magnitudes of aqueous yields

in the present study were also generally consistent with these studies form the literature,

with some variability due to differences in drying conditions for the aqueous phase (e.g.,

temperature).

5.3.1.2 Slurry concentration

Across all temperatures and times, decreasing slurry concentration led to an average

increase in aqueous yield of 3.9 wt% (p < 10-8). This effect is largest between 200 and 300

°C (4.9 wt%, p < 10-5), and is lower but still statistically significant at 350 °C, 10 min and

higher (1.4 wt%, p < 0.02). One explanation for this effect is that the more dilute slurry

facilitates hydrolysis of proteins and carbohydrates into smaller peptides/amino acids and

saccharides, respectively, which as a general rule become increasingly soluble in water with

decreasing size. We posit that this hydrolysis facilitation could occur due to shifts in the

relative proportions of conjugate acids and bases of compounds in solution owed to the four-

fold difference in slurry concentration that in turn affect the relative amounts of H+ and OH–

ions that catalyze hydrolysis. This explanation is supported by the variability in aqueous
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Figure 5.1: Non-volatile aqueous-phase-product yield versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.

pH as a function of slurry concentration discussed later in Section 5.3.6, which shows that

at room temperature, the ACP is significantly more basic for the 30 g L−1rxn slurries than the

120 g L−1rxn slurries. This may suggest that the perceived increase in hydrolysis rate is due

to base-catalysis, however without knowing the pH of the mixture at reaction temperature

this categorization is tentative. Another possibility is that the more concentrated slurry

significantly increases the rates of reaction between biomolecule-degradation products at the

expense of hydrolysis with the bulk high-temperature water.

It is also possible that the 120 g L−1rxn slurries produced ACP that was saturated with cer-

tain compounds that possess limited solubility in water. All product mixtures were dissolved

in approximately the same volume of water (including fresh DI-water diluent to facilitate

with product recovery), so theoretically, a solubility limitation for the more concentrated

slurries would result in higher per-unit-biomass yields for the lower concentrations. How-

ever, we would expect to see this concentration effect predominantly at the points of maxi-
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mum aqueous yield, where the amount of dissolved material is the greatest, but instead we

see it throughout the dataset. This suggests that solubility limitations are unlikely to be

systematically affecting this trend.

5.3.1.3 Biochemical composition

Aqueous yield generally increased with increasing protein content (color-coded in Fig-

ure 5.1; see Figure H.1 in Appendix H for explicit yield vs. protein plots); however, there

were several exceptions at temperatures of 250 °C and lower. This trend was more consis-

tent at 300 °C and higher, a finding that has been seen previously [15, 36, 40] and would

be expected due to the high aqueous solubility of protein-degradation products, including

most peptides and amino acids. Controlling for species identity (i.e., comparing effects of

biochemical composition between Nannochloropsis and Chlorella, respectively) at 300 °C,

higher biomass-protein content led to an average aqueous yield increase of 9.9 wt% (p <

0.0004).

5.3.1.4 Species identity

Despite comparable biochemical profiles, the aqueous yields of Nan-1, Chl-1, and Mix-m

varied considerably due to species identity at 200 °C. However, complete separation of the

solid and aqueous phase for samples produced from Spi-1 (the primary constituent of the

two-species mixture Mix-m) was difficult at 200 °C and lower, so aqueous yields for those

samples (which were generally higher than other biomass types at those temperatures) may

contain solids. Excluding Mix-m, the average difference between Nan-1 and Chl-1 was only

significant at 3.2 min (9.2 wt%, p < 0.01) rather than at 31.6 min (1.2 wt%, p < 0.78). At

300 °C, variability due to species identity between Nan-1, Chl-1, and Mix-m was on average

only ± 1.0 wt% for the 30 g L−1rxn slurries, whereas it was ± 3.3 wt% for the 120 g L−1rxn slurries.

López Barreiro et al. [39] reported aqueous yield variabilities of ± 6.2 and ± 2.4 wt % for 50

g L−1rxn slurries at 250 °C, 9 min and for 30 g L−1rxn slurries at 375 °C, 11 min, respectively, for
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five different species with similar biochemical composition (52 ± 2 wt % protein content, dry

ash-free basis). Those variabilities are comparable in magnitude and trend with increasing

temperature as those of the present study. Both the data in the present study and that of

López Barreiro et al. [39] demonstrate that biochemical composition is a reasonable predictor

of aqueous yield at reaction severities of 300 °C and higher, especially for dilute slurries.

5.3.1.5 Two-species mixture interactions

The measured aqueous yield for the two-species mixture (Mix-m) only deviated from

predicted (Mix-p) at 200 °C, 3.2 min (−6.2 wt%, p < 0.14), although not with statistical

significance. There was no difference at all other reaction conditions (0.3 wt%, p < 0.52),

suggesting that there are no significant interactions between the protein-degradation prod-

ucts of Spi-1 and carbohydrate- and lipid-degradation products of Chl-2 affecting aqueous

yield.

5.3.2 Nitrogen recovery

5.3.2.1 Temperature and time

NH4
+ –N recovery (Figure 5.2a), or the percentage of biomass N recovered as aqueous

NH4
+, monotonically increased with increasing reaction severity for all biomass types and

slurry concentrations, reaching a maximum of 81.2% (30 g L−1rxn slurry of Spi-1 at 350 °C, 100

min). In contrast, organic N recovery (Figure 5.2b) followed a similar trend as that of aqueous

yield, increasing to a maximum at moderate severity (200 °C, 31.6 min to 250 °C, 10 min)

before decreasing thereafter. Total N recovery (Figure 5.2c) shows that at 300 °C and above,

any decrease in organic N recovery with increasing severity is matched with an approximately

equivalent increase in NH4
+ –N recovery. Magnitudes and trends with respect to reaction

severity for total N recoveries are comparable to other reports [22, 24, 26, 28, 30, 33, 35],

with some variation due to differences in measurement technique (namely dry oxidation

versus digestion, the latter of which can underestimate organic N content). The percentage
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of ACP N as NH4
+ (Figure 5.2d) followed the same trend as NH4

+ –N recovery, reaching

a maximum of 97.0 %. At high reaction severity, these percentages were somewhat higher

than some other studies [24, 36, 40] but equivalent to others [28, 35], although less severe

conditions were more comparable. At high reaction severity, other sources of volatile N, such

as methylamine and ethylamine, have been reported as degradation products of amino acids

[126]; however, most of these compounds are likely lost during the drying step and would

be unaccounted for in the aqueous total N, which may explain the higher percentages of

aqueous N as ammonium. We note that with the exception of Chl-2, N mass closure (from

all products) was 80 % or higher at 300 °C and higher (Figure 5.7, discussed in Section 5.3.7).

Notably, the ACP total N recovery produced by Chl-2 reaches a maximum at 200 °C and

31.6 min before decreasing at higher reaction severity, while all other biomass types continue

to increase or plateau in N recovery through 300 °C and 31.6 min. In Chapter IV, we showed

that, for Chl-2, this N is recovered in both the biocrude (Figure 4.4) and solid (Figure F.4)

phases to a greater extent than the other biomass types; however, the N recovery in the solid

fraction monotonically decreased with reaction severity (albeit slowly), so the decrease in

ACP total N recovery corresponds directly with an increase in biocrude N recovery.

At 350 °C for Nan-1, aqueous total N recovery increased by 9.2 % (p < 0.03) from 10

to 100 min despite having decreased from 1 to 10 min by 6.3 % (p < 0.18). Figure 5.2a

and 5.2b show that this increase is entirely due to increasing NH4
+ –N recovery. Moreover,

we previously found that biocrude N recovery for Nan-1 decreases in this range as well

(Figure 4.4). Therefore we conclude that at these reaction conditions (350 °C, 10 to 100

min), N-containing biocrude-soluble compounds are losing N to the ACP in the form of

ammonium, possibly through deamination reactions. This result suggests that for higher-

protein biomass, extended reaction times at 350 °C could both improve ACP recyclability

and reduce biocrude heteroatom content, a trend demonstrated previously [24].
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Figure 5.2: Aqueous-phase-product nitrogen recovery (a) as ammonium (NH4
+ –N), (b) as organic nitrogen,

(c) in total, and (d) as ammonium relative to total aqueous nitrogen versus reaction time grouped by
temperature and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first
row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.

5.3.2.2 Slurry concentration

At 200 °C and higher, regardless of biomass type, the 30 g L−1rxn slurries led to on average

3.3 % higher (p < 0.0001) NH4
+ –N recovery, 3.9 % higher (p < 10-6) organic N recovery, and
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as a result 7.3 % higher (p < 10-5) total N recovery. This trend coincides with a previously

reported 4.6 % decrease in biocrude N recovery at 250 °C and higher for the 30 g L−1rxn slurries

relative to that of the 120 g L−1rxn slurries (Figure 4.4). The data in Figure 5.2 reveal that

this decrease in biocrude N recovery directly benefits both NH4
+ –N and organic N recovery

in the ACP.

5.3.2.3 Biochemical composition

NH4
+ –N recovery (Figure 5.2a) is a strong function of biochemical composition at 250

°C and higher; for example, it increases by on average 13.0 % (p < 0.001) with increasing

protein content at 300 °C (see Figure H.3 in Appendix H for explicit N recovery vs. protein

plots). These data support the assertion in Chapter IV that carbohydrates are the limiting

reactant in the Maillard reaction. A greater proportion of proteins to carbohydrates would

enable more of the protein fraction to degrade autogenously into products such as ammonium,

as is observed here with the more protein-rich biomass samples. In contrast, for the biomass

samples with higher proportions of carbohydrates to proteins, such as Chl-2 and Nan-2,

relatively more protein-degradation products, such as amino acids, would participate in

Maillard reactions rather than undergo deamination.

Organic N recovery (Figure 5.2b) generally increased with increasing protein content at

all reaction conditions but not universally and to a lesser extent than that of NH4
+ –N. This

effect was low and statistically insignificant (+1.8 %, p < 0.3) at 200 °C, but greater and

statistically significant (+5.3 %, p < 0.01) at 300 °C. As a result, total N recovery generally

increased with increasing biomass protein content at 200 °C and lower. This trend was more

significant at 250 °C and higher, a result corroborated by previous work [40, 41, 44, 45].

Notably, the proportion of total N owed to ammonium (Figure 5.2d) was on average 4.3 %

lower (p < 0.01) with increasing protein content at 200 °C, but 4.6 % higher (p < 0.07)

with increasing protein content at 300 °C. This suggests that low-protein biomass liberates

ammonium more efficiently (per unit biomass N) at low severity (200 °C) than high-protein
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biomass, while the opposite is true at high severity (300 °C). Shakya et al. [44] showed similar

trends at high reaction severity, albeit with even larger increases than we observed; however

in contrast, Leow et al. [40] found no clear trend in the percentage of total N as ammonium

with increasing protein content at 300 °C.

5.3.2.4 Species identity

Between Nan-1, Chl-1, and Mix-m, NH4
+ –N recovery varied by ± 1.0 % and ± 4.3 %

at 200 and 300 °C, respectively. Previous work has demonstrated similar NH4
+ –N recovery

variability due to species identity [28], indicating that biochemical composition is a reason-

able predictor of NH4
+ –N within those uncertainties. Variability in organic (± 2.1 %) and

total N (± 4.8 %) recoveries were similarly low at 300 °C for these three biomass types with

similar biochemical composition.

5.3.2.5 Two-species mixture interactions

At 300 °C, the measured (Mix-m) NH4
+ –N recovery in the 120 g L−1rxn slurries was 7.4 %

(p < 0.06) lower than predicted (Mix-p). This trend is partially explained in Section 4.3.4,

where we showed that biocrude N recovery at these conditions was on average 5.0 % (p <

0.21) higher than predicted (Figure 4.4). We proposed that Maillard reactions between the

degradation products from the carbohydrate-rich Chl-2 and protein-rich Spi-1 in the two-

species mixture were the most likely explanation for the increased N recovery. The data

presented here suggest that this increased N recovery in the biocrude is directly related to

reduced NH4
+ –N recovery in the aqueous phase. We note that although the increase in

biocrude N recovery was not statistically significant, the associated decrease in NH4
+ –N

recovery was statistically significant. This effect was absent or significantly reduced at 200

°C and/or for the 30 g L−1rxn slurries. These data demonstrate that the Maillard reactions are

favored by concentration increases and likely proceed by an overall reaction order greater

than one.
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5.3.3 Phosphorus recovery

5.3.3.1 Temperature and time

Increasing temperature and time increased PO4
3– –P recovery (Figure 5.3a) until a max-

imum was reached at moderate reaction severity (around 250 °C, 10 min). Notably the

reaction conditions that maximized PO4
3– –P recovery were essentially the same for all

biomass types, similar to NH4
+ –N recovery. We do however report significantly higher total

P recovery (Figure 5.3c) at this maximum than one previous study [35]. Further increases in

temperature and time led to decreasing PO4
3– –P recovery, in some cases down to single-digit

recoveries by 350 °C, 100 min. This reduction in P recovery has been documented before

[22, 24, 27, 33, 35, 37], and is likely due to the formation of highly insoluble phosphate

precipitates in the solid phase [27], including calcium phosphates like hydroxyapatite [127].

In Appendix F, we showed an increase in P recovery in the solid phase at these conditions

(Figure F.7). These precipitates likely form as a function of pH, which itself is a function of

reaction conditions and feedstock characteristics (discussed later in Section 5.3.6); pH and

PO4
3– –P recovery were strongly and significantly correlated (ρ = -0.47, p < 10-10).

Non-phosphate P recovery (Figure 5.3b) was significant at low reaction severities, similar

to that of Ekpo et al. [35], but generally decreased with increasing reaction severity. At

250 °C, 10 min and above, the vast majority of P was present as phosphate (Figure 5.3d),

consistent with some prior findings [22, 24] although others showed 15 to 35 % non-phosphate

P recovery at these conditions for a strain of Chlorella vulgaris [35]. We also observed non-

phosphate P recoveries as high as 18.3 % at 300 °C, 31.6 min and 350 °C, 10 min for our

high-lipid Chlorella (Chl-2), but only for the 30 g L−1rxn slurries. The absolute concentrations

of non-phosphate were comparable between the two different slurry concentrations, however,

so this discrepancy in non-phosphate P recovery may be attributed to solubility limitations

and also possibly equililbria between phosphate and other soluble phosphorus forms such as

polyphosphate. Ekpo et al. [35] proposed that phospholipids in the aqueous phase could be
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the reason, however they are unlikely to remain unhydrolyzed at those conditions.

5.3.3.2 Slurry concentration

At moderate reaction severity (200 to 300 °C), decreased slurry concentration (30 g

L−1rxn) led to on average 10.2 % higher (p < 10-7) PO4
3– –P recovery and 10.3 % higher

(p < 10-6) total P recovery, but no difference in non-phosphate P recovery. This effect

was significant enough to increase PO4
3– –P recovery to >95 % for Chl-2 in two separate

instances (Figure 5.3a). This trend was previously shown to hold for even higher ranges of

slurry concentrations (126 to 422 g L−1rxn) [32]. One explanation is that algal slurries in the

range of 30 to 120 g L−1rxn may produce ACP that quickly saturates with PO4
3– , which would

allow a greater proportion of the PO4
3– from the 30 g L−1rxn slurry to dissolve, thus increasing

its recovery. If solubility is the limiting factor, pH would be the dominant factor controlling

PO4
3– –P recovery. Given that hydrolysis is the mechanism by which PO4

3– is liberated

from the phospholipids, DNA, and RNA (the three main phosphate-containing compounds

in microalgae [108]), it is also possible that the 30 g L−1rxn slurries experience improved rates

of hydrolysis compared to those of the 120 g L−1rxn slurries through the same mechanism we

suggested in Section 5.3.1 for aqueous yields. Notably, at 350 °C and 100 min, PO4
3– and

total P recovery are higher for the 120 g L−1rxn slurries than those of the 30 g L−1rxn slurries.

Slurries of both concentrations experience decreasing P recovery with increasing reaction

time at 350 °C, but it appears that the 30 g L−1rxn slurries precipitate P in the solids faster

than the 120 g L−1rxn slurries, again possibly due to differences in pH.

5.3.3.3 Biochemical composition

PO4
3– –P and total P recoveries generally decreased with increasing ash content (Figures

H.4b and d in Appendix H) and generally increased with increasing lipid content (color-coded

in Figure 5.3a and c; explicitly in Figure H.4a and c). The concentration of metal cations

in solution (originating from the ash fraction), is known to affect phosphate recovery due
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Figure 5.3: Aqueous-phase-product phosphorus recovery (a) as phosphate (PO4
3– –P), (b) as non-phosphate,

(c) in total, and (d) phosphate relative to total aqueous phosphorus versus reaction time grouped by tem-
perature and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row
(30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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to precipitation into the solid phase [128]. The data reported herein support this notion,

especially at 300 °C. Between the two types of Chlorella, the higher-lipid sample (Chl-

2) demonstrated 21.9 % higher PO4
3– –P recovery (p < 0.001) at 300 °C, 3.2 min and

milder severities compared to Chl-1. Non-phosphate recovery showed the opposite effect

(Figure 5.3b), decreasing with increasing lipid content by on average 20.7 % (p < 0.0001) at

200 °C and lower severities, for both types of Nannochloropsis and Chlorella.

5.3.3.4 Species identity and two-species mixture interactions

Variability in PO4
3– –P recovery due to species identity was on average ± 6.4 % and

± 15.3 % at 200 and 300 °C, respectively. Although the proximate biochemical composi-

tions of Nan-1, Chl-1, and Mix-m were similar, their P contents were relatively different

(Table D.3; 0.94, 1.03, and 1.21 wt %, respectively). Additional information, such as phos-

pholipid and/or DNA content, may be necessary to correlate PO4
3– –P recovery with greater

precision. There was no significant difference between the measured (Mix-m) and predicted

(Mix-p) P recoveries for the two-species mixture. This suggests that there are likely no signif-

icant interactions between degradation products of the composite Chl-2 and Spi-1 affecting

P recovery in the aqueous phase.

5.3.4 Sulfur recovery

5.3.4.1 Temperature and time

S recovery in the aqueous phase ranged from 7.7 to 75.5 %, shown in Figure 5.4. It

generally increased with increasing reaction severity to a maximum between 200 °C, 31.6

min and 250 °C, 10 min. At 250 °C, this maximum occurred at 1 min for Chl-2, but at

10 min for Nan-1, the same conditions maximizing aqueous yield and organic N recovery

for those respective biomass types. Beyond this maximum, S recovery generally decreased

with increasing reaction severity, as has been reported previously [27]. In contrast, Jiang

and Savage [37] did not observe a monotonic decrease in aqueous S recovery at 350 °C with
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Figure 5.4: Aqueous-phase-product sulfur recovery versus reaction time grouped by temperature and initial
concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus
the second row (120 g L−1

rxn). Error bars indicate SE.

increasing time for a 101 g L−1rxn slurry of Nannochloropsis ; instead it decreased from an

initial maximum and varied by only ± 3 % from 2 to 60 min reaction time. Crucially, they

did not analyze the elemental content of the dried aqueous phase, but rather of the undried

aqueous phase via inductively coupled plasma optical emission spectrometry (ICP-OES).

This suggests that volatile forms of S, for example hydrogen sulfide or methanethiol, could

be formed at these conditions and would be lost during the drying of the aqueous phase at

70 °C.

5.3.4.2 Slurry concentration

At reaction conditions preceding the maximum aqueous S recovery, decreasing slurry

concentration led to an average of 5.4 % higher S recovery (p < 10-5). Beyond that point,

there was no universal trend with respect to changing concentration, however certain biomass

types showed large, but statistically insignificant differences with decreasing slurry concen-
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tration, such as Chl-1 (+10.5 %, p < 0.09) and Chl-2 (−9.0 %, p < 0.26) at 300 °C. At

350 °C, 30 min for a strain of Nannochloropsis, Jiang and Savage [37] observed a decrease in

aqueous S recovery of 8 % from 30 to 64 g L−1rxn, but no change from 64 to 101 g L−1rxn, which

is comparable in magnitude to the differences reported herein at similar reaction severities.

5.3.4.3 Biochemical composition and species identity

There were no clear trends in aqueous S recovery with respect to changing biochemical

composition. Additionally, the three biomass types with comparable biochemical composi-

tion demonstrated high variability in aqueous S recovery at both 200 °C (± 10.7 %) and 300

°C (± 5.7 %) López Barreiro et al. [28] presented similar variability (± 6.9 %) from 300 to

350 °C. Moreover, there were no clear trends with respect to changing biomass S content

(Figure H.5). The reason for the variability could therefore lie with sulfates precipitating in

the solids phase as a function of aqueous pH and cation availability. Additionally, further

study of the behavior of S-containing compounds in microalgae, such as the amino acids

methionine and cysteine [129], as well as some lipids [108] could be useful for understanding

S partitioning.

5.3.4.4 Two-species mixture interactions

Similar to aqueous P recoveries, the measured and predicted two-species mixture aqueous

S recoveries were in agreement at both 200 and 300 °C. These data provide no evidence of

any reactions between the protein-degradation products (some of which contain S) of Spi-1

and the carbohydrate-degradation products of Chl-2.

5.3.5 Carbon recovery

5.3.5.1 Temperature and time

Aqueous C recovery ranged from 1.3 to 60.8 % (Figure 5.5a). Trends with changing

reaction severity were similar to those of S recovery. C recovery increased with increasing

117



(�) ������� � �������� [%]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

�

��

��

��

��

��

��

��

��

��

���
���-�
���-�
���-�
���-�
���-�
���-�
���-�

�
�
�
�
�
��
�

-
�

�

��

��

��

��

��

��

��

��

��

���

Δ
�
�
-
�
�
�

� � �� �� ���
-��

-��

�

��

��

� � �� �� ��� � � �� �� ��� � � �� �� ��� � � �� �� ���

� [���]

(�) ������� � �������� [%]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

�

��

��

��

��

��

��

��

��

��

���
���-�
���-�
���-�
���-�
���-�
���-�
���-�

�
�
�
�
�
��
�

-
�

�

��

��

��

��

��

��

��

��

��

���

Δ
�
�
-
�
�
�

� �� ��
-��

-��

�

��

��

� �� �� � �� �� � �� �� � �� ��

������� ������� [��%]

Figure 5.5: Aqueous-phase-product carbon recovery (a) versus reaction time and (b) versus protein content
grouped by temperature and initial concentration. Gray, pink, red, dark red, and black lines represent 1.0,
3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. See Table 4.1 for microalgae types. The bottom
row depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.

temperature and time, reaching a maximum at moderate reaction severity (200 °C, 31.6 min

to 250 °C, 10 min) before decreasing with further increases in severity. Both the initial in-

creases [30] and subsequent decreases [24, 27, 28, 32, 35] in aqueous C recovery are consistent

with prior studies. We note that Garcia-Moscoso et al. [26] demonstrated that with just 9 s

of residence time, aqueous total organic carbon generally increases with increasing temper-

ature from 205 to 325 °C, so it is likely that at temperatures above 250 °C, the maximum is

achieved on the order of seconds rather than minutes.

5.3.5.2 Slurry concentration

The ACP of the 30 g L−1rxn slurries recovered on average 2.9 % more C (p < 10-6) than

the 120 g L−1rxn slurries at HTL temperatures of 200 °C and higher. This effect was more pro-

nounced at lower temperature (e.g., 200 °C, +4.5 %, p < 0.001) than at higher temperature

(e.g., 300 °C, +2.3 %, p < 0.01). Other studies have shown this trend over both relatively

dilute (7 to 70 g L−1rxn) [38] and concentrated ranges (126 to 422 g L−1rxn) [32], respectively.

118



Jazrawi et al. [38] posed that equilibrium limitations, particularly carbon solubility in the

aqueous phase, could be a factor. Given that organic N recovery (Figure 5.2b) and S re-

covery (Figure 5.4) are also higher for the 30 g L−1rxn slurries, we suspect that this increased

C recovery is due to higher concentrations of peptides and amino acids liberated from the

protein fraction via hydrolysis.

5.3.5.3 Biochemical composition

At 250 °C and lower, higher protein content resulted in generally higher aqueous C

recovery, however with a significant amount of variability (Figure 5.5b). However, at 300

°C, there was a strong, positive correlation between C recovery and biomass protein content.

For example, the correlation coefficient, ρ, was 0.98 for the 30 g L−1rxn slurries at 3.2 min

(p < 10-4), similar to the data for 120 g L−1rxn slurries and at 31.6 min. This correlation

provides strong evidence that the protein fraction of the biomass is the primary source of

C in the aqueous phase at temperatures of 300 °C and higher, corroborating similar results

from previous studies at these conditions [15, 40, 41, 44, 45].

5.3.5.4 Species identity

Variability in aqueous C recovery between Nan-1 and Chl-1 was ± 3.0 % at 200 °C. At

300 °C, variability between Nan-1, Chl-1, and Mix-m was slightly lower at ± 1.9 % (we

excluded Mix-m at 200 °C for the reasons discussed in Section 5.3.1). López Barreiro et al.

[28] similarly found that C recovery variability due to species identity was ± 2.4 % from

300 to 350 °C. Collectively, these data demonstrate that biochemical composition predicts

aqueous C recovery with reasonable precision.

5.3.5.5 Two-species mixture interactions

The two-species mixture measured and predicted aqueous C recoveries were generally in

agreement. One exception was on average 6.2 % lower C recovery (p < 0.10) at 200 °C, 3.2
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Figure 5.6: Aqueous phase pH (a) versus reaction time and (b) versus protein content grouped by temperature
and initial concentration. Gray, pink, red, dark red, and black lines represent 1.0, 3.2, 10.0, 31.6, and 100.0
min reaction time, respectively. See Table 4.1 for microalgae types. The bottom row depicts the first row
(30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.

min. Given that total N recovery measured and predicted values were equivalent here, this

suggests that the carbohydrate fraction may be the source of this discrepancy.

5.3.6 pH

Aqueous-phase pH (Figure 5.6) varied dramatically depending on biomass type and re-

action conditions, ranging from 3.90 to 8.24. We note that this pH measurement occurred

after the addition of deionized water during product recovery, which represents a 4.7x to

9.1x dilution factor, depending on reaction temperature and concentration.

5.3.6.1 Temperature and time

Aqueous pH decreased (became more acidic) with increased reaction severity to a mini-

mum in the range of 200 °C, 31.6 min to 250 °C, 10 min (Figure 5.6a). Garcia-Moscoso et al.

[26] similarly observed this minimum to be at 240 °C, 9 s over a temperature range of 205

to 325 °C. Beyond this maximum acidity, the aqueous phase becomes monotonically more
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basic with increasing reaction severity, a trend demonstrated previously [21, 26, 31, 35].

5.3.6.2 Slurry concentration

At reaction severities of 250 °C, 1 min and lower, the ACP was more basic for the 30

g L−1rxn slurries than the 120 g L−1rxn slurries by an average of 0.22 (p < 10-6). This could

be explained by the increased NH4
+ –N recovery (Section 5.3.2) at those conditions. At

300 °C and higher however, the trend reversed with the less concentrated slurries producing

more acidic aqueous phase by an average of 0.52 (p < 0.01). At these conditions, NH4
+ –N

is generally still favored with decreasing slurry concentration, and would push the pH in the

opposite direction of this trend (toward more basic). This suggests that compounds other

than the ammonium seem to be responsible for this pH trend. Previous studies have shown

these increases in basicity with increasing slurry concentration at high reaction severity

[21, 32].

5.3.6.3 Biochemical composition

In general, pH significantly increased (became more basic) with increasing biomass pro-

tein content (Figure 5.6b), a trend also observed previously [41, 44, 45, 130]. Between the

two types of both Nannochloropsis and Chlorella, higher protein content led to an average

increase of 2.91 (p < 0.01) across all reaction conditions. The increased ammonia (Kb = 1.8

x 10-5) generated from deamination of amino acids liberated from protein likely explains this

sharp increase in pH.

5.3.6.4 Species identity

Nan-1 and Mix-m produced aqueous phases with nearly identical pH values regardless of

concentration, temperature, or time, an average difference of just 0.03 (p < 0.47). However,

the pH for Chl-1 was on average 0.64 lower (p < 0.03) than that of Nan-1 and Mix-m at

200 °C. It is not immediately clear why the Chl-1 aqueous phase was more acidic, given that
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ammonium and phosphate recoveries were similar to at least one of the other two biomass

types. However, at 300 °C, variability between the three species was just ± 0.09, indicating

that at high reaction severity, biochemical composition is a strong predictor of aqueous-phase

pH.

5.3.6.5 Two-species mixture interactions

There was a small but significant decrease in pH (-0.16, p < 0.01) for Mix-m compared to

Mix-p across all reaction conditions. This difference was largest (-0.33, p < 0.07) at 200 °C,

31.6 min. We demonstrated earlier (Section 5.3.2) that at 300 °C, there was less ammonium

recovery than expected in the aqueous phase from Mix-m, which could explain why its pH

is lower (more acidic) than expected. At 200 °C however, there was no such difference in

ammonium recovery and there are no other trends concurrent with the increase in pH there.

5.3.7 Engineering nutrient recovery and recycling

In this section, we describe particular sets of reaction conditions and feedstock character-

istics that tend to maximize aqueous phase recyclability, while also considering other factors

such as the minimization of heteroatoms in the biocrude (discussed in Chapter IV). We

remind the reader that, in general, the most optimal aqueous phase is one that maximizes

recovery of key elements required for microalgal growth, such as N, P, and S [18, 19], while

minimizing recovery of C. In addition, bioavailable forms of these elements, such as NH4
+

and PO4
3– , are preferred to other forms, as they can be directly used during growth [3, 84].

Figure 5.7 demonstrates how these key elements partition into the different product fractions

with respect to changing reaction conditions for the 120 g L−1rxn slurries of Nan-1 and Chl-2.

We chose these two biomass types because we analyzed them over the most temperatures

and times and the 120 g L−1rxn slurries provided sufficient mass for characterizing most product

fractions. We note that not only are N, P, and S beneficial to the ACP for recycling, they

are also undesirable in the biocrude, as they must be removed through catalytic upgrading
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prior to traditional refining processes [16].

Figures 5.7a and b show that there is a trade-off between maximizing NH4
+ –N recovery

(at 350 °C, 100 min), and limiting biocrude N recovery, for example to less than 5 % (around

200 °C, 31.6 min or 250 °C, 1 min). PO4
3– –P recovery (Figures 5.7c and d) tends to

be maximized at moderate reaction severity (e.g., 200 °C, 31.6 min or 300 °C, 3.2 min),

although total P recovery in the ACP decreases with increasing reaction severity thereafter;

at such high severities, P is either precipitated as a solid or incorporated into the biocrude

phase. Aqueous S recovery (Figures 5.7e and f) is maximized at several moderately severe

conditions; however, at 200 °C, 31.6 min, biocrude S recovery is additionally limited to less

than 8 % and further increases to reaction severity dramatically increase S partitioning to

the biocrude. Aqueous C recovery (Figures 5.7g and h) is maximized at moderate reaction

severity and minimized at the highest reaction severity examined (350 °C, 100 min), whereas

biocrude C recovery is maximized at 300 °C, and changes very little with increasing reaction

severity.

In terms of maximizing aqueous phase recyclability while minimizing heteroatom incor-

poration into the biocrude, a reaction condition such as 200 °C and 31.6 min appears to

achieve both. This condition generally maximizes aqueous PO4
3– –P, total P, and S recov-

eries while limiting biocrude N and S recoveries to less than 5 and 8 %, respectively. This

condition does, however, only recover 50 to 60 % of the N in the aqueous phase, with just

20 % of that in the bioavailable form of NH4
+. In practice, if the aqueous phase at this

reaction condition were recycled continuously, a steady-state amount of organic N in the

aqueous phase would be achieved [131]. This steady-state amount will also depend on the

extent that algae or heterotrophic bacteria can directly consume the organic C or use ex-

tracellular enzymes to liberate the amine groups; such a phenomenon occurs frequently in

aquatic environments [132]. Further research and process modeling would be necessary to

determine the approximate amount of organic N in this theoretical recycle loop [133]. It is

possible that at steady-state, enough ammonium would be liberated to fully replenish the
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Figure 5.7: (a,b) Nitrogen, (c,d) phosphorus, (e,f) sulfur, and (g,h) carbon recoveries in the aqueous (AQ),
biocrude (BC), and solid (SO) phases versus reaction severities. Control represents the same experimental
procedure applied with no reaction time. Org N and Oth P represent organic nitrogen and other phosphorus,
respectively. See Table 4.1 for microalgae types. Error bars indicate SE.
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spent media for each cycle. The solids remaining at this condition could also be recycled

or reacted at higher severity conditions; this latter scenario has been referred to as two-step

HTL, and is a subject of ongoing research [30, 119, 134].

Another possibility is to operate HTL at very high reaction severity, such as 350 °C,

100 min or higher. This condition maximized ammonium recovery, and higher reaction

severities approaching hydrothermal gasification are likely to liberate N from the biocrude

(Section 4.3.4). P at these conditions has been demonstrated to form solid precipitates

[27, 127], and could be a side product used as fertilizer for other applications. It is not

immediately clear where the rest of the P partitions, however there are a few possibilities. The

most plausible one is that the remaining P exists as a solid precipitate lost during the product

recovery step. We believe that the majority of solids were recovered at these conditions, but

because P content in the solid phase is high at high reaction severity (Figure F.7), small

losses in solids result in relatively larger losses in P. Another possibility is that our method

for total P measurement in the aqueous phase is not sensitive to certain forms of P. A final

possibility is that some of the P is present in more volatile forms, such as phosphine, which

could be lost in the gas phase. High-temperature water at those conditions can serve as a

hydrogen source [11], for example for reduction of phosphate to phosphine. S recovery at

high severity is similarly low, and it is possible that hydrogen sulfide or similarly volatile

compounds are similarly unaccounted for there, as we suggested earlier in Section 5.3.4.

Further research at higher reaction severities aimed at fully recovering and characterizing

the more volatile components produced during HTL is necessary to compare the aqueous

phase recyclability at these conditions.

5.4 Further discussion and conclusion

Table 5.1 summarizes how the yield, elemental recoveries, and pH of the ACP are affected

by manipulating reaction time, slurry concentration, lipid content, protein content, microal-

gal species, and reaction temperature. These changes each occur with all other factors fixed
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Table 5.1: Summary of differences in ACP properties as a result of changing six different independent vari-
ables from two different reference points. Sensitivity Scale qualitatively denotes the sensitivity of aqueous
phase properties to each independent variable at a given reference point. ON, TN, OP, and TP represent
organic nitrogen, total nitrogen, other phosphorus, and total phosphorus recoveries, respectively. Yellow and
blue intensity denote increases and decreases in the associated property, respectively. Changes in temper-
ature, time, and concentration are the average of the differences in the six different types of biomass (see
Table 4.1). Changes in biochemical composition show the average of differences in the two different types
of Nannochloropsis and Chlorella, respectively. Changes in species denote the standard deviation of values
from Nan-1, Chl-1, and Mix-m. *Denotes statistically significant difference at the 0.05 level.

from two reference points at 200 and 300 °C, respectively, for 30 g L−1rxn slurries and 3.2 min

reaction time.

5.4.1 Mild-reaction-severity reference point

At the 200 °C, 3.2 min, and 30 g L−1rxn reference point, temperature is the most influential

input variable affecting ACP properties. An increase of 100 °C led to significantly higher

NH4
+ –N (+23 %) and total N (+16 %) recoveries in addition to 7 % higher PO4

3– –P

recovery and 7 % lower C recovery, all of which are improvements in recyclability. However,

at the same time, total P and S recoveries decreased by 10 and 11 %, respectively. Reaction

time was nearly as broadly significant as temperature and species identity at this mild

reference point, although crucially, increased time led to nearly universal improvements

in aqueous phase recyclability. The recoveries of NH4
+ –N (+10 %), organic N (+8 %),

P–PO4
3– (+13 %), and S (+12 %) all increased with increasing time, albeit with a 9 %

increase in C recovery. Increased biomass lipid content only affected PO4
3– –P recovery
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(+21 %), S recovery (+11 %), and pH (−1.2) to a significant extent at this reference point,

although it did also provide a small (+3 %) but statistically significant boost to NH4
+ –N

recovery. Notably, higher lipid content improved ACP recyclability unilaterally, albeit to a

slightly lesser extent than did reaction time, but also without increasing C recovery. We

previously showed that at this reference point, increased lipid content also increases C and

H recovery to the biocrude by 21 % (Section 4.4). HTL of high-lipid microalgae at this

reference point is a “win-win,” improving nutrient partitioning to the aqueous phase while

also increasing yield of high-quality biocrude.

Slurry concentration was less influential than the aforementioned independent variables

at this reference point; however, increased concentration led to universal decreases in nutri-

ent recovery to the aqueous phase, likely through promotion of Maillard reactions between

protein- and carbohydrate-degradation products discussed in Section 5.3.2. Variability due

to species identity was generally the least influential variable, although aqueous yields and

organic N recoveries varied by ± 7 wt% and ± 6 %, respectively. We assumed that all

biomass N resided in the protein fraction, although it is possible that these differences in

aqueous yield and organic N recovery could be explained by the true distribution of N be-

tween biomass protein and DNA in each of the microalgae. The incorporation of N on a

molecular level is generally different in protein and DNA, for example within an amino-

acid-linking peptide bond for the former and within a cyclic or polycyclic nitrogenous base

structure for the latter. Therefore the total rate of liberation of the N into the aqueous phase

could be expected to be different based on the relative abundances of those two biochemical

classes. A more granular accounting of biochemical composition may be required to reduce

this variability between microalgae that are expected to behave similarly during HTL on

these grounds.

127



5.4.2 High-reaction-severity reference point

At the 300 °C, 3.2 min, and 30 g L−1rxn reference point, biochemical composition is the most

influential variable, with approximately as much influence as that of temperature from 200 to

300 °C. Increased protein content improved some key recyclability metrics, such as NH4
+ –N

(+7 %), total N (+14 %), and S (+14 %) recoveries; however, it also decreased PO4
3– –P

(−10 %) and total P (−8 %) recoveries and increased C recovery (+14 %). Increasing lipid

content (necessarily) demonstrated the opposite effect.

Aqueous phase characteristics and elemental recoveries were nearly as sensitive to in-

creasing reaction time as biochemical composition. Increasing time at this reference point

had mixed effects on aqueous phase recyclability, with decreases to PO4
3– –P (−12 %), to-

tal P (−11 %), and S (−11 %) recoveries, but increases to NH4
+ –N recovery (18 %) and

decreases to C recovery (−12 %). Notably, reaction time, lipid content, and protein content

all demonstrated different combinations of effects on N, P and S recoveries. These different

combinations could enable optimization of specific nutrient recycling metrics at the expense

of others. For example, if N recovery were prioritized, followed by P and S, then high lipid

content and longer reaction times could be used together to improve NH4
+ –N recovery (net

+11 %) and maintain PO4
3– –P recovery (net −2 %) at the expense of S recovery (net −25

%).

Increased slurry concentration led to widespread reductions in aqueous-phase-recyclability

metrics which were comparable in magnitude to those at the previous reference point. At

the high-reaction-severity reference point, species identity did not affect ACP properties or

elemental recovery, with the lone exception of PO4
3– –P recovery (± 13 %), and as a result

total P recovery, indicating that proximate biochemical composition is a reasonable predictor

of ACP properties around this reference point.
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5.4.3 Additional conclusions

In addition to the aforementioned effects, there were several other key takeaways from

this chapter. The tendency for higher protein-to-carbohydrate biomass to produce ACP with

higher NH4
+ –N recovery corroborated the claim in Chapter IV that carbohydrates are the

limiting reactant for Maillard reactions. More dilute slurries also tended to recover more

N as NH4
+ (plausibly due to less Maillard reaction products formed), suggesting that the

overall reaction order for the Maillard reaction is greater than one. We illuminated additional

benefits of employing dilute slurries of high-lipid biomass for HTL, including enhanced ACP

recyclability. These results demonstrate that high-lipid and low-carbohydrate biomass could

be ideal for maximizing ACP recyclability in addition to maximizing biocrude yield and

quality, as discussed in Chapter IV.
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CHAPTER VI

A gravimetric, elemental, and multiphase kinetic model

for the hydrothermal liquefaction of microalgae

In this chapter, we leverage the vast experimental dataset presented in Chapters IV

and V to build a novel gravimetric, elemental, and multiphase kinetic model for microalgal

HTL. Specifically, we proposed a reaction network comprising 16 reaction pathways based

on known classes of reactions that occur during HTL, including hydrolysis, repolymerization,

cyclodehydration, retro-aldol condensation, Maillard reactions, deamination, and decarboxy-

lation. We utilize these pathways with 22 unique lumped-product components to construct

a system of coupled, first-order ODEs governing the rate of evolution of each total, carbon,

and nitrogen yield. We evaluate the accuracy of model solutions over the entire range of

experimental conditions, including over specific subsets therein, highlighting their relative

strengths and areas to expand upon for future iterations. The model describes many em-

pirical trends from Chapters IV and V, including the effects of slurry concentration and

Maillard reactions, which until now were never modeled for this system. The model cap-

tures the biocrude and ammonia quantities most accurately, substantiating the utility of

the model for optimizing important HTL process metrics, such as biocrude C recovery and

aqueous ammonia recovery, that could help enhance overall process sustainability and EROI.
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6.1 Introduction

Herein we use the results presented in Chapters IV and V to develop a comprehensive

kinetic model capable of quantifying yields and elemental contents for a variety of HTL prod-

ucts. We propose a reaction network that merges the complexity of molecular reaction path-

ways that were previously documented from model compound reactions with the tractability

afforded by lumped products. These pathways enable proximate biochemical components,

including lipids, proteins, and carbohydrates, to degrade into their respective secondary

products, such as fatty acids, peptides, and smaller polysaccharides. These products can

then further degrade into tertiary products, including amino acids and saccharides, that also

degrade into ammonia and gases, as well as additional ACP and biocrude compounds. The

objective is to produce a sophisticated microalgal HTL kinetic model that enables optimiza-

tion of key process metrics, such as biocrude C recovery and aqueous ammonium recovery,

with respect to reaction temperature, time, slurry concentration, and microalgal biochemi-

cal composition. Such a model would significantly advance the state of quantitative kinetic

modeling for HTL, ultimately facilitating improvement of algal biorefining sustainability and

EROI.

6.2 Methods and model development

6.2.1 Reaction network development

The kinetic model calculates the temporal evolution of 40 unique quantities, including

22 total yields, 6 carbon yields, 6 nitrogen yields, and 6 average molar masses. The carbon

contents, nitrogen contents, and molar masses of the other 16 components are assumed to

be constant, obviating the need to calculate their rates of change explicitly. The following

sections introduce those components and their reaction pathways, with summaries of them

appearing in Tables 6.1 and 6.2. We note that each pathway and associated rate equations

are modeled on a per-mole-reaction basis; however, all components are calculated in units
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of g L−1rxn, or grams of component per liter at reaction conditions. We use square brackets,

[ ], to denote this g L−1rxn basis. This conversion is possible only through incorporation of

the average molar mass of each component and is discussed further below. We describe the

contribution of each pathway toward the total rate of change of each component, which is

calculated as the sum of the contributing pathways.

6.2.1.1 Hydrolysis and repolymerization

Hydrolysis is the first major reaction pathway involved during microalgal HTL and is

the primary means by which the large biomacromolecules degrade into smaller polymers and

monomers [12]. This class of reaction affects all three major biochemical classes, including

lipids, proteins, and carbohydrates. We describe each hydrolysis pathway and associated

equations, starting with lipids.

Pathway 1: Lipid (Lip) hydrolysis to fatty acid (FA) We model the hydrolysis of

Lip to FA using the following reaction pathway:

Lip + H2O
1−−→ FA (6.1)

Assuming a constant-volume, well-mixed, closed system, and that this pathway follows

pseudo-first-order kinetics, we model the rate of reaction due to Pathway 1, r1 (g L−1rxn s
-1),

as follows:

r1 = k1[Lip] (6.2)

Here k1 (s-1) is the temperature-dependent rate constant for Pathway 1. Given that

we define this rate on a mass-per-volume-per-time basis, we introduce a mass-conversion

factor, f1, which represents the mass fraction of the total rate, r1, attributed to the rate of

consumption of Lip. Similarly, (1− f1) represents the mass fraction of r1 attributed to the

rate of consumption of H2O. Given that FA is the only product formed via this pathway, its

rate of formation is equal to r1, with no mass-conversion factor needed. We can then write

the rates of change for Lip, H2O, and FA with respect to Pathway 1 (denoted using |1) using
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the following equations:

d[Lip]

dt

∣∣∣
1

= −f1k1[Lip] (6.3)

d[H2O]

dt

∣∣∣
1

= −(1− f1)k1[Lip] (6.4)

d[FA]

dt

∣∣∣
1

= k1[Lip] (6.5)

To calculate f1, we introduce the average molar mass of lipids, MLip. For the purposes

of this model, we treat MLip as the average unhydrolyzed molar mass of a fatty acid, rather

than as the molar mass of an entire lipid compound, such as a phospholipid. For the lipid

profiles of the six biomass types presented in Table 4.1, this average molar mass was 269.3

± 2.1 g mol-1 (SD). Constants such as this one are listed in Table I.1 in Appendix I. We

assume this value to be representative for the purposes of allocating mass within the kinetic

model and use it as a fixed constant henceforth. Using MLip with MH2O and employing an

implicit per-mole-reaction basis, we can calculate f1 as follows:

f1 =
MLip

MLip +MH2O

(6.6)

Pathways 2 and 3: Protein (Pro) and polypeptide (PPe) hydrolysis to peptide

(Pep) and Pep repolymerization to PPe We model the hydrolysis of Pro to Pep

similar to that of Lip; however, we allow Pep to repolymerize to insoluble polypeptides

(PPe), based on empirical results from a recent study [54]. We then enable PPe to subse-

quently hydrolyze according to the same reaction kinetics as Pro. These reactions can be

modeled according to the following reaction pathways:

Pro/PPe + H2O
2−−→ Pep (6.7)

Pep 3−−→ PPe + H2O (6.8)
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The associated equations for Pathway 2 are similar to those of Pathway 1, assuming that

Pro and PPe hydrolyze additively:

d[Pro]

dt

∣∣∣
2

= −f2k2[Pro] (6.9)

d[PPe]

dt

∣∣∣
2

= −f2k2[PPe] (6.10)

d[H2O]

dt

∣∣∣
2

= −(1− f2)k2
(
[Pro] + [PPe]

)
(6.11)

d[Pep]

dt

∣∣∣
2

= k2
(
[Pro] + [PPe]

)
(6.12)

f2 =
MPep −MH2O

MPep
(6.13)

Here, we again assume a representative average molar mass of a peptide, MPep, to be

that of a typical dipeptide (two amino acids linked by a peptide bond) in microalgae based

on an average of reported amino acid profiles [110, 129, 135]. We model this component as

a dipeptide to allow it to undergo cyclodehydration, presented later in Section 6.2.1.3. We

found that Pep repolymerization to PPe followed first-order kinetics, which can be described

by the following sets of equations that use the same mass conversion factor, f2, as the last

pathway:

d[Pep]

dt

∣∣∣
3

= −k3[Pep] (6.14)

d[PPe]

dt

∣∣∣
3

= f2k3[Pep] (6.15)

d[H2O]

dt

∣∣∣
3

= (1− f2)k3[Pep] (6.16)

Pathway 4: Peptide (Pep) hydrolysis to amino acid (AA) Pep can continue to

hydrolyze into AA:

Pep + H2O
4−−→ 2AA (6.17)

These amino acids feature at least one amine group and one carboxyl group, which can
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be subsequently liberated through deamination and decarboxylation reactions presented in

Sections 6.2.1.6 and 6.2.1.7. However, some of the amino acids in microalgae feature more

than one amine or carboxyl group. To account for these functional groups, we introduce

a new notation for amino acids, AAi, where i indicates the number of amine groups in

the amino acid. We have grouped the various microalgal amino acids into two subclasses,

including AA1 and AA2, and a summary of the types of amino acids in those classes can

be found in Table I.3. The hydrolysis of peptides can then be modeled according to the

following equations:

d[Pep]

dt

∣∣∣
4

= −f4k4[Pep] (6.18)

d[H2O]

dt

∣∣∣
4

= −(1− f4)k4[Pep] (6.19)

d[AAi]

dt

∣∣∣
4

= wAAi
k4[Pep] (6.20)

f4 =
MPep

MPep +MH2O

(6.21)

Here wAAi
is the weight fraction abundance of each subclass of amino acid in microalgae,

a constant calculated based on an average of reported amino acid profiles [110, 129, 135].

Values for these abundances are listed in Table I.2 in Appendix I.

Pathways 5, 6, and 7: Carbohydrate (Car) and biochar (BCh) hydrolysis to

polysaccharide (PSa), PSa repolymerization to BCh, and PSa hydrolysis to

saccharide (Sac) The pathways for the degradation of carbohydrates (Car) and assump-

tions therein are analogous to those of Pro. In summary, carbohydrates (Car) hydrolyze

into PSas, which can repolymerize to insoluble BCh via a second-order reaction rate or fur-

ther hydrolyze into Sac. The BCh is also capable of hydrolyzing back to PSa via the same

rate constant governing Car hydrolysis. The following equations describe those reaction

pathways:
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Car/BCh + H2O
5−−→ PSa (6.22)

d[Car]

dt

∣∣∣
5

= −k5[Car] (6.23)

d[BCh]

dt

∣∣∣
5

= −k5[BCh] (6.24)

d[PSa]

dt

∣∣∣
5

= k5
(
[Car] + [BCh]

)
(6.25)

(6.26)

PSa 6−−→ BCh + H2O (6.27)
d[PSa]

dt

∣∣∣
6

= −k6[PSa]2 (6.28)

d[BCh]

dt

∣∣∣
6

= k6[PSa]2 (6.29)

(6.30)

PSa + H2O
7−−→ Sac (6.31)

d[PSa]

dt

∣∣∣
7

= −f7k7[PSa] (6.32)

d[H2O]

dt

∣∣∣
7

= −(1− f7)k7[PSa] (6.33)

d[Sac]

dt

∣∣∣
7

= k7[PSa] (6.34)

f7 =
MSac −MH2O

MSac
(6.35)

We note that, although water participates in Pathways 5 and 6, we do not involve it

in those calculations to avoid making assumptions about their average molar masses that

would govern the rates of mass of water consumed. Instead, we account for the consumption

of water in Pathway 7, so that, overall, water loss remains accounted for as each monomer

saccharide is liberated from the polysaccharides.
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6.2.1.2 Dissolution

Pathway 8: Ash (Ash) dissolution to dissolved ash (DAs) Previous kinetic models

have assumed that the ash fraction of the microalgae resides primarily in the solid phase;

however, at high reaction severity, the observed solid yields (Figure F.1) were often lower

than the biomass ash content (Table 4.1). Therefore, we introduce a first-order pathway for

the solid ash fraction to dissolve into the aqueous phase:

Ash 8−−→ DAs (6.36)
d[Ash]

dt

∣∣∣
8

= −k8[Ash] (6.37)

d[DAs]

dt

∣∣∣
8

= k8[Ash] (6.38)

6.2.1.3 Cyclodehydration

Pathway 9: Peptide (Pep) cyclodehydration to biocrude (BC) Recently, Sheehan

and Savage [54] demonstrated that cyclodipeptides, a specific class of diketopiperazines, are

a significant reaction product from the HTL of bovine serum albumin, a model compound

for microalgal protein. In fact, these compounds represented over half of the GC-elutable

components in the biocrude formed via HTL at 350 °C and 10 min. The formation of

cyclodipeptides proceeds via the cylodehydration of dipeptides [136–138]:

Pep 9−−→ BC + H2O (6.39)

We assume that the abundance of each type of dipeptide, wPepi , follows a random dis-

tribution of amino acid pairs, weighted by the abundances of amino acids, wAAi
. We note

that for wPepi , the subscript i refers to the number of amine groups featured in the resulting

cyclodipeptide. Values for these abundances are listed in Table I.2 in Appendix I. We model

the cylcodipeptides from this pathway as general biocrude compounds that fall into each of

the different biocrude subclasses, BCi. These subclasses also use an i subscript to account
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for amine groups able to be subsequently removed. With these quantities, we can readily

write the rate equations governing Pathway 9:

d[Pep]

dt

∣∣∣
9

= −k9[Pep] (6.40)

d[BCi]

dt

∣∣∣
9

= wPepif2k9[Pep] (6.41)

d[H2O]

dt

∣∣∣
9

= (1− f2)k9[Pep] (6.42)

Note that these use the same mass conversion factor, f2, as the Pep hydrolysis pathway.

We can also obtain the rates of partitioning of carbon and nitrogen into each biocrude

subcomponent by multiplying the right-hand side of Equation (6.41) by the weight fraction

of carbon (wC
Pep) and nitrogen (wN

Pep) in the average peptide, respectively:

d[BCC
i ]

dt

∣∣∣
9

= wC
PepwPepik9[Pep] (6.43)

d[BCN
i ]

dt

∣∣∣
9

= wN
PepwPepik9[Pep] (6.44)

(6.45)

Finally, given that each BCi will contain a variety of types of compounds, it is necessary

to introduce the average molar mass for each biocrude subclass, MBCi
. MBCi

changes as a

function of the amount of new BCi formed, relative to the amount of existing BCi and the

difference between the molar mass of the new components, MPep −MH2O, and that of the

existing biocrude, MBCi
:

dMBCi

dt

∣∣∣
9
=

(MPep −MH2O −MBCi
)

[BCi]

d[BCi]

dt

∣∣∣
9

(6.46)

6.2.1.4 Retro-aldol condensation

Pathways 10 and 11: Saccharide (Sac) retro-aldol condensation to aqueous-phase

products (AQ) and biocrude (BC) There are several major pathways for saccharide
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degradation in the hydrothermal environment, including retro-aldol condensation to alde-

hydes and ketones and dehydration to furans and their derivatives. Without more detailed

information about the composition of the biocrude and aqueous phase, it is difficult to deter-

mine which pathway is more prevalent. We therefore chose retro-aldol condensation reactions

as a basis for modeling the degradation of individual saccharides:

Sac 10−−→ 2AQ0 (6.47)

Sac 11−−→ 2BC0 (6.48)

The products are grouped as either AQ0 or BC0 because many of these compounds are

capable of subsequent decarboxylation and decarbonylation. Given that the majority of gas

formed during HTL is CO2, either directly or through the water-gas shift reaction, we model

these subsequent reactions as decarboxylation. The following equations describe the rates

of reaction, partitioning of carbon and nitrogen, and rate of change of the average molar

masses of AQ0 and BC0:

d[Sac]

dt

∣∣∣
10

= −k10[Sac] (6.49)

d[AQ0]

dt

∣∣∣
10

= k10[Sac] (6.50)

d[AQC
0 ]

dt

∣∣∣
10

= wC
Sack10[Sac] (6.51)

dMAQ0

dt

∣∣∣
10

=
(1
2
MSac −MAQ0

)

[AQ0]

d[AQ0]

dt

∣∣∣
10

(6.52)

d[Sac]

dt

∣∣∣
11

= −k11[Sac] (6.53)

d[BC0]

dt

∣∣∣
11

= k11[Sac] (6.54)

d[BCC
0 ]

dt

∣∣∣
11

= wC
Sack11[Sac] (6.55)

dMBC0

dt

∣∣∣
11

=
(1
2
MSac −MBC0)

[BC0]

d[BC0]

dt

∣∣∣
11

(6.56)
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6.2.1.5 Maillard

Pathway 12: Amino acid (AA) and saccharide (Sac) Maillard reaction to biocrude

(BC) The Maillard reaction between amino acids and reducing sugars is a major reaction

pathway affecting the HTL product distribution, especially biocrude and aqueous yields, C

recovery, and N recovery. There are a couple of linear regression models of biocrude yield

that incorporate interaction pathways between proteins and carbohydrates [48, 139]; how-

ever, the coefficients for those terms were either negative (i.e., suggesting that they suppress

biocrude formation) or insignificant (i.e., the uncertainty in the coefficient overlapped with

zero). In Chapter IV, we showed that the Maillard reaction likely led to increased biocrude

yield with increased C and N recovery, and in Chapter V we showed that these effects led to

reduced NH4
+ –N recovery in the aqueous phase. Moreover we observed that this effect was

more pronounced for the higher concentration slurries. Therefore, we propose the follow-

ing reaction pathway which is first order in both AAi and Sac, for an overall second-order

mechanism:

AAi + Sac 12−−→ BC(i−1) + H2O (6.57)

We assume that all Maillard reaction products are DCM-phase soluble (biocrude); how-

ever, in practice they could be aqueous-phase soluble depending on functional groups. This

reaction is modeled such that one free amine group is “consumed” and unable to undergo

subsequent deamination, which follows our experimental observations in Chapter V. This

pathway is governed by the following sets of equations:
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d[AAi]

dt

∣∣∣
12

= −f12,ik12[AAi][Sac] (6.58)

d[Sac]

dt

∣∣∣
12

= −(1− f12,i)k12[AAi][Sac] (6.59)

d[BC(i−1)]

dt

∣∣∣
12

= f ′12,ik12[AAi][Sac] (6.60)

d[H2O]

dt

∣∣∣
12

= (1− f ′12,i)k12[AAi][Sac] (6.61)

f12,i =
MAAi

MAAi
+MSac

(6.62)

f ′12,i =
MAAi

+MSac −MH2O

MAAi
+MSac

(6.63)

d[BCC
(i−1)]

dt

∣∣∣
12

=
(
f12,iw

C
AAi

+ (1− f12,i)wC
Sac

)
k12[AAi][Sac] (6.64)

d[BCN
(i−1)]

dt

∣∣∣
12

= f12,iw
N
AAi

k12[AAi][Sac] (6.65)

dMBC(i−1)

dt

∣∣∣
12

=
(MAAi

+MSac −MH2O −MBC(i−1)
)

[BC(i−1)]

d[BC(i−1)]

dt

∣∣∣
13

(6.66)

6.2.1.6 Deamination

Pathways 13, 14, and 15: Deamination of amino acid (AA) to aqueous-phase

product (AQ) and NH3, AQ to AQ and NH3, and biocrude (BC) to BC and

NH3 The liberation of ammonium from amino acids and associated degradation products

is of great importance because ammonium is a bioavailable source of nitrogen for algal

cultivation. To accurately model this product, we incorporated the i subscript notation to

track amine groups across each component. The following pathways enable AA, AQ, and

BC components to undergo deamination:

AAi
13−−→ AQ(i−1) + NH3 (6.67)

AQi
14−−→ AQ(i−1) + NH3 (6.68)

BCi
15−−→ BC(i−1) + NH3 (6.69)

Here we assume that the removal of an amine group does not change the lumped product
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solubility for the compound. In practice, some deamination of AQ compounds may yield

relatively more non-polar components that are DCM-soluble, but for simplicity we ignore

those situations. These pathways follow the following sets of equations that follow a similar

notation and style as those presented earlier:

d[AAi]

dt

∣∣∣
13

= −k13[AAi] (6.70)

d[AQ(i−1)]

dt

∣∣∣
13

= f13,ik13[AAi] (6.71)

d[NH3]

dt

∣∣∣
13

= (1− f13,i)k13[AAi] (6.72)

f13,i =
MAAi

−MNH3

MAAi

(6.73)

d[AQC
(i−1)]

dt

∣∣∣
13

= wC
AAi

k13[AAi] (6.74)

d[AQN
(i−1)]

dt

∣∣∣
13

=
(
wN

AAi
− wN

NH3
(1− f13,i)

)
k13[AAi] (6.75)

dMAQ(i−1)

dt

∣∣∣
13

=
(MAAi

−MNH3 −MAQ(i−1)
)

[AQ(i−1)]

d[AQ(i−1)]

dt

∣∣∣
13

(6.76)
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d[AQi]

dt

∣∣∣
14

= −k14[AQi] (6.77)

d[AQ(i−1)]

dt

∣∣∣
14

= f14,ik14[AQi] (6.78)

d[NH3]

dt

∣∣∣
14

= (1− f14,i)k14[AQi] (6.79)

f14,i =
MAQi

−MNH3

MAQi

(6.80)

d[AQC
i ]

dt

∣∣∣
14

= −k14[AQC
i ] (6.81)

d[AQC
(i−1)]

dt

∣∣∣
14

= k14[AQC
i ] (6.82)

d[AQN
i ]

dt

∣∣∣
14

= −k14[AQN
i ] (6.83)

d[AQN
(i−1)]

dt

∣∣∣
14

= k14

(
[AQN

i ]− wN
NH3

(1− f14,i)[AQi]
)

(6.84)

dMAQ(i−1)

dt

∣∣∣
14

=
(MAQi

−MNH3 −MAQ(i−1)
)

[AQ(i−1)]

d[AQ(i−1)]

dt

∣∣∣
14

(6.85)

d[BCi]

dt

∣∣∣
15

= −k15[BCi] (6.86)

d[BC(i−1)]

dt

∣∣∣
15

= f15,ik15[BCi] (6.87)

d[NH3]

dt

∣∣∣
15

= (1− f15,i)k15[BCi] (6.88)

f15,i =
MBCi

−MNH3

MBCi

(6.89)

d[BCC
i ]

dt

∣∣∣
15

= −k15[BCC
i ] (6.90)

d[BCC
(i−1)]

dt

∣∣∣
15

= k15[BCC
i ] (6.91)

d[BCN
i ]

dt

∣∣∣
15

= −k15[BCN
i ] (6.92)

d[BCN
(i−1)]

dt

∣∣∣
15

= k15

(
[BCN

i ]− wN
NH3

(1− f15,i)[BCi]
)

(6.93)

dMBC(i−1)

dt

∣∣∣
15

=
(MBCi

−MNH3 −MBC(i−1)
)

[BC(i−1)]

d[BC(i−1)]

dt

∣∣∣
15

(6.94)
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6.2.1.7 Decarboxylation

Pathway 16: Decarboxylation of amino acid (AA) to aqueous-phase product

(AQ) and CO2 The final class of reaction incorporated in the model is decarboxylation,

which we model using the following reaction pathway that is analogous to that of deamina-

tion:

AAi
16−−→ AQi + CO2 (6.95)

We assume that the entire gas phase produced by HTL is CO2, which in practice has

been reported to represent about 90 % of the gas produced by HTL at 300 °C and lower [10].

Moreover we only consider the gas produced through decarboxylation of AA; there are also

significant gas contributions from decarbonylation and decarboxylation of Sac degradation

products, however those reactions were out of scope for the purposes of the present model.

d[AAi]

dt

∣∣∣
16

= −k16[AAi] (6.96)

d[AQi]

dt

∣∣∣
16

= f16,ik16[AAi] (6.97)

d[CO2]

dt

∣∣∣
16

= (1− f16,i)k16[AAi] (6.98)

f16,i =
MAAi

−MCO2

MAAi

(6.99)

d[AQC
i ]

dt

∣∣∣
16

=
(
wC

AAi
− wC

CO2
(1− f16,i)

)
k16[AAi] (6.100)

d[AQN
i ]

dt

∣∣∣
16

= wN
AAi

k16[AAi] (6.101)

dMAQi

dt

∣∣∣
16

=
(MAAi

−MCO2 −MAQi
)

[AQi]

d[AQi]

dt

∣∣∣
16

(6.102)

6.2.2 Summary of governing equations and system components

The full equation for the rate of change of each component sums all of the contributions

from each pathway (Table 6.1). For example, the rate of change of AA1 is explicitly affected
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Path Reaction Reactant(s) Product(s)

(1) Hydrolysis Lip, H2O FA

(2) Hydrolysis Pro, PPe, H2O Pep

(3) Repolymerization Pep PPe, H2O

(4) Hydrolysis Pep, H2O AA

(5) Hydrolysis Car, BCh, H2O PSa

(6) Repolymerization PSa BCh, H2O

(7) Hydrolysis PSa, H2O Sac

(8) Dissolution Ash DAs

(9) Cyclodehydration Pep BC, H2O

(10) Retro-aldol Condensation Sac AQ

(11) Retro-aldol Condensation Sac BC

(12) Maillard Sac, AA BC, H2O

(13) Deamination AA AQ, NH3

(14) Deamination AQ AQ, NH3

(15) Deamination BC BC, NH3

(16) Decarboxylation AA AQ, CO2

Table 6.1: Reaction pathways incorporated in the kinetic model.

by Pathways 4, 12, 13, and 16 as follows:

d[AA1]

dt
=
d[AA1]

dt

∣∣∣
4

+
d[AA1]

dt

∣∣∣
12

+
d[AA1]

dt

∣∣∣
13

+
d[AA1]

dt

∣∣∣
16

= wAA1k4[Pep]− f12,1k12[AA1][Sac]− k13[AA1]− k16[AA1]

The total rates of change for the other components follow similarly. We refer the reader

to Tables 6.1 and 6.2 for summaries of the reaction pathways and components in the system.

Each of the rate constants, kp, presented in Section 6.2.1 follows Arrhenius kinetics, where

p is the pathway number:

kp(t) = Ap exp

(
−Ep
RT (t)

)
(6.103)

Here, Ap is the pre-exponential factor, Ep is the activation energy, R is the gas constant,
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ID Component Product Fraction Pathways Involved
AA Amino acid Aqueous 4, 12, 13, 16
AQ Aqueous-phase product Aqueous 10, 13, 14, 16
Ash Ash Solid 8
BC Biocrude Biocrude 9, 11, 12, 15
BCh Biochar Solid 5, 6
Car Carbohydrate Solid, Aqueous 5
CO2 Carbon dioxide Gas, Volatile 16
DAs Dissolved ash Aqueous 8
H2O Water Water 1, 2, 3, 4, 7, 9, 12
FA Fatty acid Biocrude 1
Lip Lipid Solid, Biocrude 1
NH3 Ammonia Gas, Volatile 13, 14, 15
Pep Peptide Aqueous 2, 3, 4, 9
PPe Polypeptide Solid 2, 3
Pro Protein Solid, Aqueous 2
PSa Polysaccharide Solid 5, 6, 7
Sac Saccharide Aqueous 7, 10, 11, 12

Table 6.2: Component names, product fractions, and participating pathways in the kinetic model.

and T (t) is the time-dependent temperature. In general, each rate constant and reaction

pathway use a unique set of Ap and Ep to govern their behavior; however, to simplify the

model, we allow some of the pathways within the same type of reaction (e.g., hydrolysis)

to share the same activation energy. This simplification greatly reduced computation time

required to optimize the kinetic parameters, and we are confident that it was not accompanied

by a significant loss in precision or accuracy. The following equations highlight the pathways

using this simplification:

E2 = E4 (6.104)
E5 = E7 (6.105)
E10 = E11 (6.106)
E14 = E15 (6.107)

These equations reduce the number of free parameters governing the system, bringing the

total to (16 pathways)(2 Arrhenius parameters) − (4 equations) = 28 total free parameters.
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6.2.3 Model development in MATLAB

We developed the kinetic model using MATLAB R2017a. We first calculated polynomial

coefficients for each empirical temperature profile. We used these polynomials to calculate the

time-dependent temperature during heat-up and assumed an isothermal temperature after

the first 90 s (we previously reported the heat-up to be on average 58 s in Chapter IV). We

used ode23s to solve the system of coupled, first-order ODEs listed in Section 6.2.1 using the

aforementioned temperature polynomials, subject to a trial set of kinetic parameters, Ap and

Ep. We used these solutions to calculate the objective function, which consisted of the sum

of squared errors (SSE) between calculated and observed values for the components listed

in Table 6.3. In general, to obtain the calculated lumped-product quantities (e.g., biocrude

N yield), which can consist of multiple individual components in the model, we summed

the quantities of all of the model components residing in that fraction based on solubility

assumptions (e.g., BCN
0 , BCN

1 , BCN
2 ). This SSE compares 1,067 individual measurements to

calculated values, for a data-to-parameter ratio of 1067
28

= 38.1.

To obtain appropriate trial sets of Arrhenius parameters, we initially started with only

a few pathways in the model and chose broad, yet reasonable boundaries. We randomly

chose starting points within those boundaries and calculated the objective function for each

trial set. These sets often consisted of 104 to 107 subsets of points, so we used FLUX, the

high-performance computing cluster at the University of Michigan, to calculate the objective

function on hundreds of cores in parallel. We then sorted these points by objective function,

and ran fmincon on the trial sets with the lowest SSE. We used the AICc metric (discussed

in Section 3.3.6) to evaluate the likelihood that different values for the kinetic parameters

were better than one another at the α = 0.05 level. These AICc comparisons allowed us

to refine the boundaries for the parameters and repeat this process until each boundary

contained all solutions with at least a 5 % probability of being optimal. We then added

additional pathways to the model and repeated this process until all pathways were added.

The optimized kinetic parameters for each pathway are presented in Table 6.4.
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Product Fraction Quantity Observed, Y Calculated, Y = f(Γi) Constraint

Solid

Lipid YLip YLip = ΓSO
Lip YLip > YLip

Total YSO
YSO = ΓSO

Lip + ΓSO
Pro + ΓPPe

+ ΓSO
Car + ΓPSa + ΓAsh

-

Carbon Y C
SO

YC
SO = wC

LipΓSO
Lip + wC

Pro(ΓSO
Pro + ΓPPe)

+wC
Car(ΓSO

Car + ΓPSa)
-

Nitrogen Y N
SO YN

SO = wN
Pro(ΓSO

Pro + ΓPPe) -

Biocrude

Fatty acid YFA YFA = ΓBC
Lip + ΓFA YFA > YFA

Total YBC YBC = ΓBC
Lip + ΓFA + ΓBC -

Carbon Y C
BC YC

BC = wC
Lip(ΓBC

Lip + ΓFA) + ΓC
BC -

Nitrogen Y N
BC YN

BC = ΓN
BC -

Aqueous

Total YAQ

YAQ = ΓAQ
Pro + ΓPep + ΓAA + ΓAQ

Car

+ ΓSac + ΓPSa + ΓDAs
YAQ < YAQ

(non-volatile)

Carbon Y C
AQ

YC
AQ = wC

ProΓAQ
Pro + wC

PepΓPep

+wC
AAΓAA + wC

CarΓAQ
Car

+wC
SacΓSac + wC

PSaΓPSa

Y C
AQ < YC

AQ

Nitrogen Y N
AQ

YN
AQ = wN

ProΓAQ
Pro + wN

PepΓPep

+wN
AAΓAA

Y N
AQ < YN

AQ

Total YAQ YAQ+ = YAQ + ΓAQ YAQ > YAQ+

Carbon Y C
AQ YC

AQ+ = YC
AQ + ΓC

AQ Y C
AQ > YC

AQ+

Nitrogen Y N
AQ YN

AQ+ = YN
AQ + ΓN

AQ Y N
AQ > YN

AQ+

Volatile NH3 YNH3 YNH3 = ΓNH3 -

Gas CO2 YCO2
YCO2

= ΓCO2
YCO2

< YCO2

Aqueous, Gas,
Total YAGV YAQ++ = YAQ+ + ΓH2O + ΓNH3

+ ΓCO2
-

and Volatile
Carbon Y C

AGV YC
AQ++ = YC

AQ+ + wC
CO2

ΓCO2
-

Nitrogen Y N
AGV YN

AQ++ = YN
AQ+ + wN

NH3
ΓNH3

-

Table 6.3: Types of residuals between observed (Y ) and calculated (Γ) yields used in calculation of model
objective function. All values on a per-unit-algal-mass basis. “Constraint” shows the criteria for calculating
the residual, which is otherwise set to zero.

6.3 Results and discussion

Herein we evaluate the accuracy of the model relative to observed values documented

in Chapters IV and V and Appendix F. We remind the reader that the abbreviations and

biochemical profiles for each microalgal feedstock are listed in Table 4.1 in Chapter IV.
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Pathway
log(Ap) Ep

Value Units [kJ mol-1]

Lip+H2O
1−−→ FA 1010.5 s−1 114

Pro/PPe+H2O
2−−→ Pep 1011.2 s−1 125

Pep 3−−→ PPe 1013.7 s−1 151

Pep+H2O
4−−→ 2AA 1010.1 s−1 125

Car/BCh+H2O
5−−→ PSa 1019.8 s−1 187

PSa 6−−→ BCh 1018.2 Lrxng−1s−1 184

PSa+H2O
7−−→ Sac 1014.9 s−1 187

Ash 8−−→ DAs 1025.8 s−1 254

Pep 9−−→ BC+H2O 105.7 s−1 92

Sac 10−−→ 2AQ0 1020.0 s−1 193

Sac 11−−→ 2BC0 1019.2 s−1 193

AAi + Sac 12−−→ BC(i –1) +H2O 1020.5 Lrxng−1s−1 160

AAi
13−−→ AQ(i –1) +NH3 1016.6 s−1 159

AQi
14−−→ AQ(i –1) +NH3 1012.8 s−1 175

BCi
15−−→ BC(i –1) +NH3 1017.5 s−1 175

AAi
16−−→ AQi +CO2 1017.8 s−1 175

Table 6.4: Arrhenius parameters for each pathway in the kinetic model.
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6.3.1 Parity plots

In this section we discuss the general accuracy of the model for the nine major residuals

in Figure 6.1 (listed in Table 6.3) used for calculating the SSE objective function. We

discuss each of these in greater detail in Sections 6.3.2 to 6.3.4. Between the solid, biocrude,

and the collective aqueous, volatile, and gas products, the model captured biocrude yield

most accurately (Figure 6.1b), with a root-mean-square deviation (RMSD) of just ± 4.0 wt%

across all feedstock characteristics and reaction conditions. Notably there were no systematic

biases above or below the parity line for any particular biomass type or range of observed

biocrude yields, indicating that the model predictions for biocrude yield are fairly robust

throughout the reaction domain. Solid yields and the collective aqueous, volatile, and gas

yields (Figures 6.1a and c, respectively) were less accurate, but still very reasonable, with

RMSDs of ± 6.7 and 6.3 wt%, respectively. A substantial portion of this error originated

from the inability to capture the solid yields from Chl-2 at moderate-to-high reaction severity,

as discussed later in Section 6.3.2.

About 83 % of the biocrude-yield RMSD can be attributed to error in biocrude C yield

(Figure 6.1e). Contrary to biocrude total yield, there were a few systemic biases for biocrude

C yield, which tended to be overpredicted for low observed values and underpredicted for

high observed values. Moreover, biocrude C yields for high-protein biomass types, such as

Nan-1, tended to be underpredicted relative to high-lipid sources, including Chl-2. Despite

these biases, the RMSD was just ± 3.3 wt%. Roughly 57 and 65 % of the RMSD for solids

and the aggregate aqueous, volatile, and gas product yields, respectively, is due to C yields,

which themselves were both around ± 4 wt%. The lower attribution of error to C yield for

the solid, aqueous, volatile, and gas products compared to that of the biocrude is consistent

with their typical elemental compositions; the former contain significant amounts of other

heteroatoms, such as N, O, S, and P, whereas the biocrude is predominantly composed of C

and H.

The model calculated the N yields of each product fraction generally without systematic
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Figure 6.1: Parity plots of observed vs. calculated (a,b,c) total, (d,e,f) carbon, and (g,h,i) nitrogen yields
(wt %, dry-algal-mass basis) for (a,d,g) solid, (b,e,h) biocrude, and (c,f,i) the collective aqueous, volatile,
and gas products. Dashed (N yields only), dot-dashed, and dotted lines represent residuals of ± 1.5, 5, and
10 wt%, respectively. The “±” value in the bottom right corner of each panel represents the RMSD for that
component.

biases with respect to biomass source or range of observed yields. One exception is solid N

yield (Figure 6.1g) at high observed values, which tended to be overpredicted by about 1

wt%. Given that product N yields were low in general, due to the lower abundance of N

compared to C, the RMSD values were proportionally lower as well, ranging from ± 0.2 to
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± 0.6 wt%. However, even relative to the respective maximum observed N yields for solid,

biocrude, and collective aqueous, volatile, and gas products, the RMSD values were fairly

low, at ±0.6
8.7

= 7 %, ±0.2
2.4

= 7 %, and ±0.5
9.6

= 5 %, respectively.

These parity plots demonstrate that the kinetic model captures a wide variety of trends

in total, carbon, and nitrogen yields for solid, biocrude, and the aggregate aqueous, volatile,

and gas products with relatively high fidelity. Moreover, there were relatively few systematic

biases toward over- or underprediction of yields, suggesting that the model is robust over a

wide range of reaction conditions and feedstock characteristics. With the precision of the

model in the aggregate established, we can examine specific subsets of reaction conditions

and feedstock characteristics where the model performs well and where the model could be

improved in future iterations.

6.3.2 Product yields

We superimposed model solutions onto various product fraction yields previously reported

in Chapters IV and V and Appendix F with RMSD values for each specific subplot to

evaluate the utility of the model over different regions of the reaction domain (Figure 6.2).

Solid yield accuracy was generally good at 150, 300, and 350 °C, but appreciably lower at

moderate reaction severity. As we indicated earlier, the model does not accurately capture

solid degradation for Chl-2 in the 200 to 250 °C range, especially for the 120 g L−1rxn slurries.

Additional data from other biomass sources at 250 °C, including additional high-carbohydrate

sources would facilitate parameter optimization with respect to solid degradation for future

attempts. We do however note that the model captures the trends of lower solid yields

with decreasing initial concentration, as seen in the third row in Figure 6.2a. This effect

was previously undocumented and thus not considered for previous mathematical models of

HTL.

Calculated biocrude yields matched observed values with generally high precision across

reaction conditions, capturing many of the empirical trends with respect to biochemical
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Figure 6.2: Model solutions for HTL product total yields (wt %, dry-algal-mass basis) versus reaction time
grouped by temperature and initial concentration. See Table 4.1 for microalgae types. The bottom row
depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). The “±” value in each panel represents

the RMSD for that component and subset of reaction conditions. Error bars indicate SE.

composition. The model correlates biocrude yield with high fidelity at 300 °C and at low

reaction severity (≤ 200 °C), a first for any HTL kinetic model. The transition from low

to high severity is less accurate, which is coupled with some of the error in solid yields in

that region. The calculated yields at 350 °C do not account for some of the gasification
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occurring after extended reaction time. Those reaction pathways are an area of ongoing

optimization; however, it is likely that additional data at even longer reaction times would

be necessary to accurately calibrate rate constants for that region. Notably, the trend of

increased biocrude yield with increasing concentration at 300 °C and higher is captured well

via primarily the Maillard reaction (Pathway 12), which we modeled as second order overall.

It appears that such a pathway is sufficient for explaining the observed concentration effect,

lending credibility to the usefulness of the model for optimizing biocrude yield with respect

to slurry concentration.

The model captured most of the general trends in aqueous, volatile, and gas yields (Fig-

ure 6.2c) with respect to changing reaction severity, biochemical composition, and slurry

concentration. Calculated yields were also less accurate in the 200 to 250 °C region, but

were very accurate at 300 °C and higher. Predictions for the higher-protein biomass types

were generally better than those of the higher-lipid biomass at low severity, especially Chl-2

which also contained high carbohydrate content.

Within the aqueous, volatile, and gas group of compounds, we also depict model-calculated

ammonia yields (Figure 6.2d), which include both NH3 and NH4
+ measured in the ACP. The

model does an outstanding job of calculating ammonia yields across all biomass types and

reaction conditions, with the lone exception of 350 °C, 100 min for the high-protein biomass

types. Moreover, the trend of increased ammonia yield with decreasing concentration is also

captured at 300 °C and higher. The high fidelity in ammonia yields demonstrates that the

amine-group accounting approach we used to develop the model (e.g., AAi notation) is an

excellent method for calculating ammonia yields up to 350 °C, 10 min. Beyond that point,

it is likely that the cyclc dipeptides (via Pathway 9) and Maillard reaction products (via

Pathway 12) degrade to an extent where ammonia begins to be liberated; therefore, addi-

tional degradation pathways would need to be incorporated for those severities. Similar to

our observation for biocrude yield in this region, additional experimental data for extended

reaction times at 350 °C would likely be needed to accurately model those types of reactions.
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Figure 6.3: Carbon recovery residual versus total yield residual for (a) solid, (b) biocrude, and (c) the
collective aqueous, volatile, and gas products. Residuals calculated as the observed minus calculated values.
See Table 4.1 for microalgae types. ρ indicates correlation coefficient.

6.3.3 Carbon distribution

The trends in accuracies of calculated C recoveries over different regions of the reaction

domain generally mirrored those of yields, shown in Figure I.1. However, it is also worth-

while to understand the extent to which the model faithfully captures product yields and C

recoveries simultaneously, or whether there are antagonistic biases affecting one versus the

other (i.e., one is overpredicted while the other is underpredicted). Comparing the residuals

of C recovery to those of total yield for the solid product fraction (Figure 6.3a), we see that

there were only a few instances where solid yields were overpredicted but C recoveries were

underpredicted (top left quadrant). For the solid products in general, the residuals (i.e.,

errors) between yield and C recovery were highly correlated (ρ = 0.880).

Although the general trends for biocrude yield (Figure 6.2b) and C recovery (Figure I.1b)

are captured well, there were a significant number of points where biocrude yield was overpre-

dicted but C recovery was underpredicted (Figure 6.3b, top left quadrant), but relatively few

points vice versa. We remind the reader that the rates of total and carbon mass flows due to

reaction were alloted based on assumptions about the molar masses of different components.

It is possible that more precise estimates of the various component molar masses would im-

prove the correlation between biocrude yield and C recovery; however, additional data from
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analyses such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS),

which provides measured distributions of molar masses coupled with elemental contents, may

be necessary to further improve this relationship. Aside from those points, there was a mod-

erate correlation between biocrude yield residuals and C recovery residuals (ρ = 0.384).

The overall patterns for aqueous, volatile, and gas C recoveries (Figure I.1c) were also

captured to a reasonable extent, matching many of the trends in yields (Figure 6.2c). Yields

and C recoveries were strongly correlated (ρ = 0.743), although there were a small of number

of points where aqueous, volatile, and gas yields were underpredicted but C recoveries were

overpredicted.

6.3.4 Nitrogen distribution

Model solutions for solid N recovery (Figure 6.4a) captured experimental trends suffi-

ciently for most biomass types, although recoveries tended to be overpredicted at 150 °C and

underpredicted at 200 °C, 31.6 min. Chl-2 was a notable exception, with a significantly

slower rate of solid N loss from compared to other biomass types. Notably, Chl-2 possessed

a relatively high carbohydrate-to-protein ratio, suggesting that Maillard reactions producing

N-containing solid products could be the source of sustained N recovery in the solid fraction.

Attempts to incorporate such a pathway in the model were unsuccessful (not including the

Maillard reaction pathway to produce biocrude, which was generally successful). It is likely

that additional studies of biomass types or model compounds with comparable biochemical

profiles are necessary to determine the associated reaction mechanism.

Calculated biocrude N recoveries described observed trends with respect to reaction sever-

ity, slurry concentration, and biochemical composition with high fidelity (Figure 6.4b). The

effects of increasing reaction severity are captured well, with the exception of decreases ob-

served at 350 °C, 100 min. Moreover, the empirically observed effect of increased biocrude

N recovery with increasing slurry concentration is well described via the Maillard reaction

(Pathway 12). We proposed in Section 4.3.4 that the prevalence of Maillard reactions could
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Figure 6.4: Model solutions for HTL product (a,b,c) nitrogen recoveries (%, dry-algal-nitrogen-mass basis)
and (d) biocrude nitrogen content (wt %, biocrude-mass basis) versus reaction time grouped by temperature
and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30
g L−1

rxn) minus the second row (120 g L−1
rxn). The “±” value in each panel represents the RMSD for that

component and subset of reaction conditions. Error bars indicate SE.

explain the trend of increasing biocrude N recovery with decreasing protein content, as such

reactions may selectively consume free amino acids before they can deaminate. The present
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model reflects exactly this sort of behavior, lending credibility to our earlier explanation.

Calculated biocrude N recoveries for Chl-2 tended to be overpredicted at 250 °C and un-

derpredicted at 350 °C. Future experimental efforts aimed at further illuminating Maillard

reaction kinetics are likely necessary to increase the precision for such biomass types with

carbohydrate-to-protein ratios.

The solutions for aqueous, volatile, and gas N recoveries were generally in excellent

agreement with observed values for high-protein biomass types. Agreement was relatively

good for the 30 g L−1rxn slurries of Nan-2, although less so for the 120 g L−1rxn slurries. Similar

to the N recoveries for other product fractions, the model did not capture aqueous, volatile,

and gas N recoveries well for Chl-2 for reasons described earlier. Across different reaction

severities, model predictions were most accurate at 300 °C, followed by 350 and 150 °C. Slurry

concentration effects enabled by the Maillard reaction (Pathway 12) matched reasonably well

with experimental data at 300 °C and higher; however, no effects were predicted at 250 °C and

lower, even though we generally observed higher N recoveries with lower initial concentration

there. Additional or modified reaction pathways with non-unity overall reaction orders would

be necessary to capture those effects.

Given the importance of biocrude N content for subsequent catalytic upgrading, we also

include model solutions versus experimental data for this dependent variable in Figure 6.4d.

At 250 °C and higher, agreement between calculated and observed values was very reasonable.

Key trends with respect to biochemical composition and slurry concentration are captured by

the model solutions as well, including increased biocrude N content with increasing biomass

protein content and increasing slurry concentration. The mathematical descriptions of these

trends afforded by the kinetic model demonstrate its utility for the minimization of biocrude

N content, a key process metric for optimization.
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6.4 Conclusion

In this chapter, we proposed an entirely new approach for modeling microalgal HTL via

chemical kinetics that blends known molecular reaction pathways with lumped products.

The resulting kinetic model is capable of calculating reaction-condition- and biochemical-

composition-dependent, gravimetric and elemental yields for the major HTL product frac-

tions with broadly acceptable fidelity. Model calculations for the biocrude and ammonia

fractions are particularly accurate, demonstrating the utility of the model for optimization

of key metrics like biocrude C recovery and aqueous ammonium recovery. Moreover, the

model successfully captures trends with respect to slurry concentration for the first time in

addition to expanding predictive capability with changing reaction severity and biochemical

composition beyond the scope of previous kinetic models. Such features represent a signifi-

cant improvement in quantitative models for microalgal HTL that will ultimately facilitate

optimization of process sustainability and EROI.
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CHAPTER VII

Conclusion and recommendations

7.1 Significance of results in algal biofuel production

The viability of renewable fuel production from microalgae via HTL hinges on the mini-

mization of energy and material inputs and costs required for five major process units: (A)

algal cultivation and (B) dewatering, (C) HTL, (D) catalytic upgrading, and (E) nutrient

recycling. We present hypothetical, yet reasonable, strategies for operating these process

units using either a low- or a high-input strategy in Table 7.1, where “input” refers to the

amalgamation of energy, materials, and costs. These strategies either minimize the inputs

for a process unit locally (assuming that this unit has high input requirements relative to the

total process inputs) or employ relatively more inputs locally to reduce inputs for other pro-

cess units, and thus the process overall (assuming that this unit has lower input requirements

relative to the total process inputs.)

An approach often described in the field is to (A) maximize biomass productivity while

Step Process unit Low-input strategy High-input strategy
A Algal growth Maximize biomass (high-protein content) Maximize lipid content (less biomass)
B Dewatering Concentrate by 200 to 800x to 4 wt% Concentrate by 800 to 3200x to 16 wt%
C Hydrothermal liquefaction Mild reaction severity (200 °C, 31.6 min) High reaction severity (350 °C, 100 min)
D Catalytic upgrading Upgrade from <3 wt% N content Upgrade from >5 wt% N content
E Nutrient recycling ACP with less fresh media Upgrading effluent with more fresh media

Table 7.1: Examples for strategies to either minimize process unit inputs locally (low-input strategy; as-
suming large or many input requirements relative to total process inputs) or employ relatively more inputs
locally to reduce inputs of other process units (high-input strategy; assuming small or few input requirements
relative to total process inputs). Values chosen represent reasonable examples but are not comprehensive.
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minimizing inputs (generating high-protein biomass [91]) and (B) concentrate to high levels

(e.g., 16 wt%) to reduce energy spent heating water during (C) HTL at high reaction severity

to maximize biocrude yield. Due to the high microalgal-protein content, biocrude N content

at these severe reaction conditions is > 5 wt% and must be (D) reduced to lower levels (<

0.5 wt%) via catalytic upgrading before conventional refining [105], thereby (E) liberating

nitrogen for nutrient recycling which can be supplemented with fresh media to compensate

for losses during upgrading. The crux of this collective approach is the minimization of

the inputs for Step A, on a per-unit-biomass basis, while choosing parameters for Steps B

and C that maximize biocrude yield, assuming that inputs required in Step D to remove

the resulting high-heteroatom content are relatively small, and assuming that most of the

nitrogen recovered in the upgrading effluent can be recycled and any deficit met by added

fresh media in Step E.

This dissertation provides empirical, quantitative evidence of some of the effects that

this approach has on biocrude and ACP yield and properties, enabling quantitative compar-

ison for competing approaches. In Chapter IV, we show that both higher protein content

(resulting from low-input growth strategy for Step A) and higher concentration (resulting

from biocrude yield-maximizing strategy for Step B) independently lead to higher biocrude

N content at nearly all reaction severities (Step C). At 300 °C, these effects are +2.8 wt%

and +0.6 wt%, respectively, for a total of +3.4 wt% N content, all of which must be removed

via catalytic upgrading (Step D) to produce a viable fuel. It is important to stress that

N can be a difficult heteroatom to remove [140] and is often incorporated in heterocyclic

saturated or aromatic compounds [43], which themselves are difficult to refine into more

useful compounds without expending a relatively large amount of energy. Moreover, higher

protein content and higher concentration also result in universal decreases in ACP quality

for recycling (Step E) from HTL at 200 °C (Chapter V). For example, increased protein

content and slurry concentration lead to −6 and −7 % total N recovery, −3 and −10 % total

P recovery, and −11 and −7 % S recovery, respectively. At 300 °C, increased concentration
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still negatively affects ACP properties, including −9 % total N recovery, −13 % total P

recovery, and −1 % S recovery; however, as stated in Section 5.4.2, biochemical composition

could be manipulated to optimize specific nutrient recoveries.

Another strategy is to maximize biomass lipid content (Step A), which requires more time

to cultivate and with decreased biomass productivity and protein content compared to high-

protein biomass [40, 91]. Per unit biomass, this approach needs additional raceway ponds to

compensate for reduced productivity, thus requiring additional inputs beyond those needed

for the previous approach. However, we show in this dissertation that high-lipid biomass

reacted using a lower slurry concentration (Step B) produces comparatively higher biocrude

yields (20 to 35 wt%) with up to 3.4 wt% less N content, higher energy density, and up

to 50 % higher fatty acid recovery. When reacted at 200 °C for 31.6 min, these slurries

produce ACP with across-the-board boosts to its recyclability (Step E), including up to +13

% NH4
+ –N, +31 % total N, +42 % PO4

3– , +14 % total P, and +30 % S recoveries. These

shifts in elemental contents benefit the ease of upgrading the biocrude (Step D) to a more

reasonable petroleum substitute, given that the initial heteroatom contents are far lower,

while simultaneously bolstering ACP nutrient recovery for direct recycling (Step E).

Approaches for optimizing an algal biorefinery (i.e., maximizing productivity vs. lipid

content) are rooted in assumptions about algal growth (Step A), catalytic upgrading (Step

D), and nutrient recycling (Step E). The additional inputs needed to grow high-lipid biomass

to enable more direct ACP recycling and simultaneously reduce catalytic upgrading inputs

must be rigorously evaluated alongside the fewer inputs needed to cultivate high-protein

biomass with enhanced productivity but with significantly more inputs required for nutri-

ent recycling and catalytic upgrading. In this dissertation, we further characterize the HTL

process unit, and how upstream parameters (algal growth and dewatering) can impact down-

stream parameters (catalytic upgrading and nutrient recycling). These effects are manifested

within a quantitative tool for comparing different HTL approaches in Chapter VI. Our results

suggest that modest reductions in biomass productivity in favor of enhanced lipid content
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could be more than offset by increases in aqueous nutrient recovery, decreases in biocrude

heteroatom content, and increases in biocrude energy density.

7.2 Conclusion

This dissertation elucidated many novel individual and dynamic effects of reaction con-

ditions and feedstock characteristics for the hydrothermal liquefaction (HTL) of microalgae.

These results served as the foundation for several new mathematical models that quantify

the effects of slurry concentration and species identity for the first time while expanding

modeling capability for temperature, time, and biochemical composition.

We first quantified the kinetics for algal HTL in Chapter II through an in-depth study of

the impacts of reaction conditions, such as temperature, reaction time, and heating rate, on

product yields from the HTL of Nannochloropsis oculata. These data informed the develop-

ment of a reaction network and kinetic model valid over a wide range of temperatures (100 –

400 °C) and holding times (10 s – 60 min), including much shorter timescales (10 s – 10 min)

than previously established. The incorporation of recorded temperature profiles allowed this

model to decouple reactor heat-up from kinetic analysis, enabling more accurate character-

ization of temperature and time relationships. Calculated yields for this model correlated

reasonably well with observed yields, with biocrude yields as high as 46 wt % predicted at

400 °C and 1 min. This model also highlighted possible trade-offs between biocrude quantity

and quality via about a 100 °C difference in the conditions maximizing biocrude yields and

aqueous-phase product yields, respectively.

In Chapter III we examined the quality of biomass and biocrude oil from the HTL of

algal monocultures and polycultures. We sought to determine if there were any advantages

for using polycultures in terms of sustainability metrics, as well as whether the identity of

the species present in the polycultures affected biocrude quality beyond the effects of bio-

chemical composition. We found that, on average, the 2-species cultures produced biomass

and biocrude of a quality that matched the average monoculture, while the 4- and 6-species

163



cultures were worse on average. Specific combinations of species met or exceeded the best

monoculture for each quality metric, offering potentially compelling advantages, although

no individual combination of species was superior for all metrics of quality. We posited that

biocrude productivity was inversely related to product quality by comparing the most pro-

ductive monoculture (S. capricornutum) to the polycultures producing the highest quality

products. Multiple linear regression models of biocrude yield and composition that consid-

ered both biochemical composition and species identity explained a greater extent of the

variation between samples compared to those employing only biochemical composition. We

also quantified this effect of species identity for the first time, showing that its maximum

effect on modeled biocrude properties is 11 to 40 % of that of biochemical composition.

These insights into the effects of reaction conditions and feedstock characteristics from

Chapters II and III, respectively, along with results from the literature, led to a far more

comprehensive study of the effects of temperature, time, slurry concentration, biochemical

composition, and species identity on the biocrude and aqueous product fractions in Chap-

ter IV and Chapter V, respectively. Temperature and biochemical composition were the

most important factors governing HTL product yields and composition, and we quantified

the effects of slurry concentration and species identity in depth for the first time. Increased

concentration promoted Maillard reactions between protein- and carbohydrate-degradation

products that increased biocrude yield and C content, but also decreased its quality via in-

creased N content. This increase in N corresponded with a decrease in aqueous ammonium

recovery, thus decreasing the recyclability of the ACP. We found that less concentrated slur-

ries (30 g L−1rxn) of high-lipid microalgae consistently produced higher yields of high-quality

biocrude. At 200 °C, 31.6 min, these slurries also maximized nutrients for ACP recycling, in-

cluding NH4
+, total N, PO4

3– , total P, and S while limiting N and S recovery in the biocrude

to less than 5 and 8 %, respectively. At a higher temperature (300 °C) but with less reaction

time (3.2 min), these slurries produced biocrude with high fatty acid recoveries, including

89.3, 80.1, and 64.7 wt% of SAFA, MUFA, and PUFA. Such high recoveries of unsaturated
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fatty acids had not been demonstrated before at such severe conditions, suggesting that fast

HTL may be an effective means of extracting and preserving unsaturated fatty acids. The

trade-offs between high ACP recycling at moderate severity and high biocrude fatty-acid

recovery at high severity presented an excellent opportunity for quantitative modeling to

maximize both of these metrics.

The empirical observations from previous chapters then led to the development of a

gravimetric, elemental, multiphase kinetic model in Chapter VI. The model pioneers a new

methodology for modeling HTL via chemical kinetics that combines the sophistication of

molecular-level reaction pathways for model compounds with the tractability of lumped prod-

uct fractions powered by the vast experimental data we presented in Chapters IV and V. This

novel quantitative model is capable of calculating total, carbon, and nitrogen yields for the

solid, biocrude, ammonia, and collective aqueous, volatile, and gas products as functions of

HTL process variables such as temperature, time, concentration, and microalgal biochemical

composition. This effort marks the first time that slurry concentration, Maillard reactions,

and elemental information have been incorporated into a kinetic model for HTL, in addition

to expanding the domain of reaction severities and biochemical profiles beyond the ranges of

applicability for previous models. We found that the kinetic model broadly predicts a variety

of dependent measurements with reasonable accuracy, and calculations for the biocrude and

ammonia fractions are exceptionally accurate. The fidelity of model calculations substanti-

ate the usefulness of the model for optimization of target metrics like biocrude C recovery

and aqueous ammonium recovery, which will ultimately help improve the sustainability and

EROI for algal biorefining processes.

7.3 Recommendations for future research

In Chapters III to V, we observed some variability in product yields and compositions

between different microalgal species even after controlling for proximate biochemical com-

position (i.e., lipid, protein, and carbohydrate). A significant extent of the variability for
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some product characteristics may adequately be explained by a more detailed accounting

of the biochemical components. For example, we found significant variability in PO4
3– –P

that was not explained by similar overall lipid content in Section 5.3.3; however, detailed

information about the relative amounts of phospholipids and DNA, for example (among

other P-containing biomolecules), could reveal trends explaining these differences in phos-

phate recovery. Another example was S recovery in the biocrude, which varied significantly

between biochemically comparable species, even at high reaction severity (Section 4.3.7).

In this case, an accounting of the specific S-containing amino acids, as well as perhaps sul-

folipids, may be necessary to explain differences in S recovery. Future studies aimed at

understanding how the distributions P, S, and other low-abundance elements are affected by

specific biochemical subgroups would help illuminate the discrepancies we observed at the

proximate-biochemical-composition level. Such experiments would be necessary to produce

an accurate kinetic model describing the partitioning of these elements during HTL.

We presented evidence that the Maillard reaction between sugars and amino acids pro-

duced components that increased biocrude yield, C recovery, and N recovery at the expense

of aqueous yield and NH4
+ –N recovery. Moreover, increased concentration appeared to pro-

mote this reaction. Peterson et al. [46] showed that when glycine, a model amino acid, was

in excess compared to glucose, a model sugar, the destruction of glycine always increased

proportionally with increasing initial concentrations of glucose. However, when glucose was

in excess compared to glycine, glucose destruction could be either be increased or decreased

by the presence of glycine depending on reaction time and the initial glucose concentration.

These results suggest that microalgae with high carbohydrate content relative to protein

content may promote Maillard-reaction-product selectivity, as amino acids appear to pref-

erentially participate in the Maillard reaction instead of self-degrading. More interestingly,

they also suggest that there may be an optimal ratio of proteins and carbohydrates that

inhibits the Maillard reaction, depending on reaction conditions. This dissertation found

significant evidence that the Maillard reaction negatively affects the quality of the biocrude
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(Section 4.3.4) and the recyclability of the ACP (Section 5.3.2); therefore, the elucidation of

an ideal proportion of carbohydrates and proteins, slurry concentration, and reaction condi-

tions that minimizes this Maillard reaction, thereby allowing the amino acids and sugars to

break down without reacting together, would be tremendously valuable in advancing the fea-

sibility of producing biofuel from microalgae via HTL. Furthermore, a kinetic analysis that

proposes reaction mechanisms and associated Arrhenius parameters would enable the devel-

opment of more sophisticated quantitative models. These models would greatly facilitate

the discovery of optimal conditions for minimizing the extent of the Maillard reaction.

Future HTL modeling efforts that incorporate other feedstocks, such as bacteria, yeast,

and food waste, would further expand the applicability and scope of such models. Further-

more, models that account for the distribution of additional elements such as H, S, O, and

P, as well as some metals would enable even deeper process optimization. Such models likely

would require more granular biochemical data for the biomass, as we explain earlier, in ad-

dition to more detailed experimental data. These data could include, among many other

possibilities: measured abundances of amino acids and saccharides in the ACP, ash con-

tent and/or ICP-OES measurements of the product fractions to reveal metal contents, and

high-performance liquid chromatography (HPLC) characterization of the biocrude and ACP

to estimate the yield of oligomerization products. However, as we describe in the previous

section, quantitative models for HTL are merely one step in the algal biorefinery process.

The field currently lacks mathematical models for some important steps in the process, in-

cluding the effects of steady-state ACP recycling on algal growth and HTL products, as well

as the catalytic upgrading of the biocrude. Such steps are important for the overall sustain-

ability of biofuel production from microalgae via HTL, as they dictate the extent of fresh

nutrients required for algal growth and the limit of EROI, respectively. Quantitative models

for those steps, among others, are needed to characterize the viability of microalgae-based

fuels as a competitor to those of conventional petroleum and thus as a driver for reducing

anthropogenic emissions of greenhouse gases.
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APPENDIX A

Additional figures and calculations for Chapter II
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A.1 Representative 1.67-mL reactor heat-up temperature profiles

Time Set-point temperature [℃]
[s] 200 250 300 350 400 450 500 550 600
0 40.5 40.8 40.3 40.5 40.7 41.7 41.7 41.5 40.5
3 52.8 58.3 56.5 64.9 73.0 85.3 107.7 98.1 107.2
6 66.0 76.5 74.6 98.7 129.0 117.4 163.0 160.9 185.3
9 77.0 93.5 92.2 133.3 164.1 139.7 196.2 211.0 231.8
12 88.1 109.2 110.4 161.8 191.4 175.3 225.6 255.6 272.2
15 96.8 123.9 128.1 181.4 212.3 202.5 249.5 287.5 304.3
18 106.0 136.8 144.8 199.2 231.4 227.0 272.4 316.8 334.4
21 113.8 148.0 157.5 213.1 247.1 246.2 292.2 340.7 358.1
24 121.8 157.5 169.6 226.6 262.3 265.0 310.4 362.7 381.5
27 126.4 166.9 180.7 237.7 275.4 280.7 327.4 381.5 -
30 130.6 175.1 191.3 249.0 286.9 296.3 342.2 398.9 -
33 136.2 183.5 200.2 258.5 297.4 309.4 355.7 - -
36 142.0 188.0 208.7 267.6 306.8 322.4 368.9 - -
39 147.0 191.8 215.6 275.0 315.2 333.3 382.3 - -
42 151.7 197.5 222.3 281.4 322.3 343.9 - - -
45 156.0 202.9 227.4 286.2 327.8 353.1 - - -
48 160.0 207.5 232.4 291.0 331.1 361.7 - - -
51 163.5 211.9 238.6 296.2 338.3 369.4 - - -
54 166.9 215.7 242.5 301.5 342.4 375.9 - - -
57 169.8 219.3 246.9 305.9 347.3 381.1 - - -
60 172.6 222.4 251.6 310.2 352.0 386.1 - - -
63 175.0 225.3 255.3 313.9 355.9 392.6 - - -
66 177.4 227.8 259.1 317.5 359.9 - - - -
69 179.3 230.1 262.4 320.6 363.2 - - - -
72 181.3 232.2 265.6 323.6 366.6 - - - -
75 182.9 234.1 268.4 326.1 369.5 - - - -
78 184.6 235.8 271.1 328.5 372.4 - - - -
81 185.8 237.4 273.4 330.6 374.8 - - - -
84 187.2 238.7 275.7 332.7 377.3 - - - -
87 188.3 240.0 277.7 334.5 379.2 - - - -
90 189.4 241.1 279.6 336.0 381.2 - - - -
93 190.3 242.1 281.2 337.4 382.8 - - - -
96 191.2 243.1 282.8 338.7 384.4 - - - -
99 192.0 243.9 284.1 339.8 385.8 - - - -
102 192.7 244.7 285.4 340.8 387.1 - - - -
105 193.4 245.4 286.6 341.7 388.2 - - - -
108 194.0 246.0 287.6 342.6 389.3 - - - -
111 194.5 246.5 288.6 343.3 390.2 - - - -
114 195.1 247.0 289.5 344.0 390.9 - - - -
117 195.6 247.5 290.4 344.6 391.7 - - - -
120 196.0 247.8 291.2 345.2 392.3 - - - -
123 196.3 248.2 291.8 345.7 393.0 - - - -
126 196.7 248.5 292.5 346.2 393.6 - - - -
129 197.0 248.8 293.1 346.6 394.1 - - - -
132 197.4 249.1 293.6 347.0 394.6 - - - -
135 197.6 249.3 294.1 347.3 395.1 - - - -
138 197.8 249.5 294.5 347.6 395.5 - - - -
141 198.1 249.7 294.9 347.9 395.9 - - - -
144 198.3 249.9 295.2 348.2 396.2 - - - -
147 198.4 250.1 295.6 348.4 396.5 - - - -
150 198.6 250.3 295.9 348.7 396.8 - - - -
153 198.8 250.4 296.1 348.8 397.0 - - - -
156 199.0 250.5 296.4 349.0 397.2 - - - -
159 199.1 250.5 296.6 349.1 397.4 - - - -
162 199.2 250.7 296.8 349.3 397.6 - - - -
165 199.3 250.7 296.9 349.4 397.7 - - - -

Table A.1: Representative heat-up temperature profiles for 1.67 mL stainless-steel batch reactors filled with
deionized water at different set-point temperatures.
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A.2 Applying the Valdez and Savage (2013) model
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Figure A.1: Parity plots of observed vs. Valdez and Savage [53] model-calculated yields for solids (green
circles), aqueous-phase and volatile products (purple heptagons), biocrude (brown squares), and gas (pale
blue pentagons).

A.3 Product fraction yield adjustments

In some instances, we employed corrections to obtain more physically meaningful results

for an experiment. Given that we measured the mass of gas evolved by weighing a cooled

reactor before and after venting the gas, there was always a possibility of losing small amounts

of other material along with the gas. Along with random error, this occasional loss of non-

gaseous products led to some “gas” yields being higher than expected based on the data from

experiments with similar reaction conditions. In those rare cases, we recalculated the mass

of gas evolved by linear interpolation of data points at equivalent set-point temperatures and

with holding times immediately preceding and following the one of interest.

For reactions quenched at temperatures above 280 °C, the mass of aqueous phase recov-

ered from the reactor was at least 80 % of the initial water loading. For reactions where the

final temperature was below 280 °C, this recovery was sometimes less than 80 wt %, possibly

due to the presence of wet, unreacted algae. To close the mass balance for these reactions,

we assumed that the “lost” mass was distributed between the solids and wet aqueous phases

in a 2:1 ratio. More specifically, we calculated correction factors (z) and corrected yields of
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product fraction i (xi) according to Equations (A.1) to (A.4):

z =
(m0 −mT )

2mS +mA

(A.1)

xS =
mS(1 + 2z)

m0

(A.2)

xA =
mA(1 + z)

m0

(A.3)

xWA =
mWA(1 + z)

mW,0

(A.4)

Here m0 and mW,0 are the initial masses of dry algae and water, mi is the recovered

mass of product i, mWA is the mass of aqueous phase (before drying), and mT =
∑

imi

is the total mass of dried recovered products, (i = G, S, B, A). Furthermore, if applying

Equations (A.1) and (A.4) resulted in xWA > 80 wt %, we instead used Equation (A.5) to

set z such that xWA = 80 wt % and recalculated all yields accordingly.

z = 0.8
mW,0

mWA

− 1 (A.5)

This cutoff was implemented to avoid over-allocating unrecovered product to the solid

and aqueous phase once recoveries reached those observed typically for reactions above 280

°C; above that threshold, the lost mass was attributed to volatiles. Table A.2 lists both the

original and adjusted product yields for all experiments conducted in this study.
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Set-point Holding Solids Aqueous-phase products Biocrude Gas Volatiles
T [°C] time [s] Original Adjusted Original Adjusted Original Adjusted

50 91 -a 12 - 0 15 0 0
165 50 63 26 30 7 0 - 0

200 410 54 56 30 31 12 1 - 0
880 38 41 37 39 18 2 - 0
2380 28 29 43 44 23 2 - 1
80 43 57 24 28 12 3 - 0
135 46 - 35 - 17 0 - 3

250 290 24 - 39 - 24 5 - 7
1185 7 - 36 - 33 12 - 13
3590 6 - 35 - 41 22 - 0
15 94 - 11 - 2 10 1 0
25 87 - 10 - 2 3 - 0
35 83 - 17 - 2 7 - 0
60 46 57 27 30 13 0 - 0

300 75 40 - 32 - 18 4 - 6
105 30 - 32 - 26 6 - 5
190 10 - 34 - 39 17 9 8
480 7 - 33 - 42 11 - 7
890 5 - 28 - 43 11 - 13
2380 11 - 23 - 38 13 - 16
10 76 85 13 14 2 9 0 0
70 24 - 40 - 27 6 - 4
125 10 - 35 - 37 13 - 5

350 260 4 - 23 - 42 18 - 13
400 5 - 18 - 40 6 - 31
540 4 - 19 - 43 7 - 26
1480 3 - 12 - 42 26 - 17
3585 7 - 12 - 39 24 - 19
15 87 - 8 - 2 6 - 0
25 61 72 18 19 2 8 - 0
50 29 - 41 - 25 4 - 0
90 11 - 38 - 38 11 - 1

400 125 7 - 17 - 40 20 11 26
205 4 - 18 - 45 10 - 23
350 3 - 14 - 40 7 - 36
490 4 - 10 - 43 13 - 31
890 3 - 9 - 36 13 - 39
2390 3 - 10 - 33 16 - 38

450 35 42 - 32 - 20 1 - 6
55 15 - 39 - 33 9 - 4
10 82 - 13 - 1 8 - 0

500 15 78 83 10 11 1 5 - 0
25 47 - 33 - 20 13 - 0

600 5 81 - 15 - 2 8 - 0
15 60 72 15 17 4 8 - 0

Table A.2: Original and adjusted product yields (wt %) obtained after hydrothermal liquefaction of Nan-
nochloropsis oculata. aIndicates no change from original.
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A.4 Product fraction residuals
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(b) Biocrude
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(c) Gas
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(d) Aqueous-phase products
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(e) Volatile products
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(f) Aqueous-phase and volatile products

Figure A.2: Product fraction residuals (xobsi − xcalci ) from the HTL of Nannochloropsis oculata plotted as
functions of final reactor temperature and holding time. Solid lines represent typical temperature profiles
based on set-point temperatures of 200, 300, 400, and 500 °C. Red and blue represent values were under-
calculated and over-calculated, respectively.
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A.5 Model validation

Table A.3 shows the data used in Figure 2.5 for model validation of biocrude yields.

Due to differences in experimental procedures, such as aqueous drying temperature or gas

measurement technique, we believe that comparisons of the other product yields are not

meaningful.

Study
Isothermal Set-point Holding Yields [wt %]

or T time Solid Aqueous-phase Biocrude Gas VolatileProfile [℃] [min] product

Profile

250 20 20 50 33 0 0
250 30 12 53 34 1 1
250 60 8 52 42 0 0
250 90 6 55 33 1 6
250 120 5 50 34 2 10
250 180 5 45 44 1 6
300 10 5 51 50 1 0
300 20 4 48 50 1 0
300 40 3 38 48 7 4

Valdez et al. 300 60 3 39 40 2 17

(2012) 300 90 2 40 40 3 15
300 120 3 39 49 4 5
350 10 5 32 42 2 17
350 20 2 28 39 2 26
350 40 4 26 43 3 26
350 60 2 19 41 6 31
350 90 2 21 42 0 34
400 10 4 19 38 11 27
400 20 3 16 38 10 32
400 30 2 15 34 9 40
400 40 2 13 32 13 40

Profile

300 1 62 -a 12 - -
300 3 14 - 36 - -
300 5 7 - 41 - -
300 60 - - 43 - -
350 1 67 - 22 - -

Faeth et al. 350 3 6 - 47 - -

(2013) 350 5 5 - 47 - -
350 60 - - 38 - -
400 1 35 - 30 - -
400 3 4 - 47 - -
400 5 4 - 40 - -
400 60 - - 32 - -
450 1 9 - 49 - -

Biller and Ross Isothermal 350 60 3 58 35 4 -(2011)
López Barreiro Isothermal 250 5 25 36 34 7 -
et al. (2013) 375 5 6 19 54 20 -
Leow et al. Isothermal 300 30 3 29 54 14 -(2015)

Table A.3: Product fraction yields used for model validation (reported on a dry wt % basis) [13, 24, 25, 39, 40].
All microalgae used were Nannochloropsis oculata or Nannochloropsis gaditana. “Isothermal” or “Profile”
denote that an isothermal temperature or a temperature profile was used in the calculations, respectively.
aDenotes datum not provided.
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A.6 Modeling carbon dioxide dissolution into the aqueous phase

In this section we show that measuring the mass of gas evolved during reactions within

about 2 h after the reaction was quenched sufficiently limited the extent that CO2, the

overwhelmingly principal component of the gas produced from microalgal HTL [10, 21, 22],

redissolves into the aqueous phase compared to 24 h.

A.6.1 Kinetic limitations

To begin this analysis, we first consider the kinetics of the dissolution of CO2 into the

aqueous phase:

CO2(g) 
 CO2(aq) (A.6)

Once dissolved, CO2(aq) dissociates to form H2CO3, HCO3
– , and CO3

2– . However, the

forward and reverse rate constants are reported to both be 1× 1010 s−1 [65]. This would lead

to instantaneous dissolution kinetics for any reaction condition in our system, therefore we

rule out any kinetic limitations of our system.

A.6.2 Thermodynamic limitations

We next examine the saturation limit of CO2(aq) in our system to determine the fraction

of CO2(g) that could dissolve into the aqueous phase. We measured up to 42 mg of gas

evolved out of all reactions conducted; we approximate this to be entirely CO2(g). We

filled our 1.67 mL reactors with a range of 0.836 g to 1.076 g of water (assuming the algae

contributes a negligible increase to the solution volume), which translates to a headspace

range of 0.59 mL to 0.83 mL at 20 °C. Applying the ideal gas law translates the observed

mass of gas to a maximum pressure of 3.9 MPa. At 20 °C, the solubility of CO2(aq) is 1.72,

36.33 and 59.40 g CO2(g) (kg water)-1 at pressures of 0.10 MPa, 2.53 MPa and 5.07 MPa,

respectively (some values linearly interpolated) [141, 142]. These solubilities allow for a

range of saturated CO2(aq) masses of 2 mg to 64 mg, depending upon the amount of water
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loaded and the pressure of CO2(g) produced from the reaction. Our maximum observed mass

of gas evolved of 42 mg is well within this range of expected saturated solubilities of CO2(aq),

so we therefore rule out any thermodynamic limitations of our system.

A.6.3 Mass transfer limitations

The final limitation to consider is mass transfer limitations by diffusion. We know that in

this system, CO2(g) instantaneously dissolves into CO2(aq), and that our reaction conditions

and experimental apparatus do not impose an appreciable CO2(aq) saturation limit. However,

we have not considered how long it takes CO2(aq) to diffuse from the vapor-liquid interface.

To model CO2(aq) diffusion in the aqueous phase of this system, we enlist a few assumptions:

• Aqueous phase may be modeled as pure water.

• The concentration of CO2(g) in the headspace, cH , can be approximated as constant.

In reality, it will decrease as CO2(aq) diffuses away from the vapor-liquid interface,

thus decreasing the driving force for diffusion. However, we show that diffusion is slow

enough that this assumption is reasonable.

• The concentration of CO2(g) in the headspace is less than the saturation limit of the pure

water. If it were greater, the concentration of CO2(aq) would approach the saturation

limit rather than the concentration of CO2(g) in the headspace.

• The concentration of CO2(aq) is c0 initially.

Applying Fick’s Second Law to the geometry of a cylindrical reactor for transient, 1-D

diffusion yields the following general equation, initial condition, and boundary conditions:
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∂c

∂t
= D ∂

2c

∂z2
(A.7)

c(0, z) = c0 (A.8)
c(t, 0) = cH (A.9)
∂c

∂z

∣∣∣
t,L

= 0 (A.10)

Here c is the concentration of CO2(aq) in pure water, D is the diffusivity of CO2(aq) in

water, and L is the height of the liquid phase in the reactor. We assume the cylinder is

positioned vertically and define z = 0 to be the vapor-liquid interface, with the positive

direction pointing down. Non-dimensionalization of the system by Θ = (c − c0)/(cH − c0),

ξ = z/L, and τ = Dt/L2 transforms Equations (A.7) to (A.10) into the following:

∂Θ

∂τ
=
∂2Θ

∂ξ2
(A.11)

Θ(0, ξ) = 0 (A.12)
Θ(τ, 0) = 1 (A.13)
∂Θ

∂ξ

∣∣∣
τ,1

= 0 (A.14)

Applying superposition allows separation of the solution into transient and steady-state

components:

Θ(τ, ξ) = Θss(ξ) + Θt(τ, ξ) (A.15)

Applying Equation (A.15) to Equations (A.11), (A.13) and (A.14) leads to the following

set of equations for the steady-state solution:

0 =
d2Θss

dξ2
(A.16)

Θss(0) = 1 (A.17)
dΘss

dξ

∣∣∣
1

= 0 (A.18)
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Equations (A.16) to (A.18) can be readily solved to provide the steady-state solution:

Θss(ξ) = 1 (A.19)

Applying Equation (A.15) to Equations (A.11) to (A.14) and (A.19) leads to the following

set of equations for the transient solution:

∂Θt

∂τ
=
∂2Θt

∂ξ2
(A.20)

Θt(0, ξ) = −1 (A.21)
Θt(τ, 0) = 0 (A.22)
∂Θt

∂ξ

∣∣∣
τ,1

= 0 (A.23)

Applying separation of variables by Θt(τ, ξ) = T(τ) Ξ(ξ) to Equation (A.20) and rear-

ranging terms by independent variable leads to the following general equation:

1

T

dT

dτ
=

1

Ξ

d2Ξ

dξ2
= −λ2 (A.24)

Equation (A.24) implies:

T(τ) ∝ exp (−λ2τ) (A.25)

Equations (A.22) to (A.24) allow the spatial component to be recast into the following

simplified system of equations:

d2Ξ

dξ2
+ λ2Ξ(ξ) = 0 (A.26)

Ξ(0) = 0 (A.27)
dΞ

dξ

∣∣∣
1

= 0 (A.28)

The general solution to Equation (A.26) is Ξ(ξ) = A sin (λξ) + B cos (λξ). Applying

Equation (A.27) leads to B = 0. Applying Equation (A.28) leads to Aλ cos (λ) = 0, which

provides the constraint on eigenvalues for this system, cos (λn) = 0, and implies:
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Ξ(ξ) ∝ sin (λξ) (A.29)

Examining the eigenvalue constraint leads to the solution for the eigenvalues:

λn = nπ − π/2 n = 1, 2, 3... (A.30)

The transient solution may then be composed from Equations (A.25) and (A.29):

Θt(τ, ξ) =
∞∑
n=1

An sin (λnξ) exp
(
−λ2nτ

)
(A.31)

Applying Equation (A.21) to Equation (A.31) yields:

Θt(0, ξ) =
∞∑
n=1

An sin (λnξ) = −1 (A.32)

The spatial eigenfunction sin (λnξ) is orthogonal with respect to the inner product with

weight function 1. Multiplication by sin (λmξ) and integration over the domain leads to:

∞∑
n=1

An

∫ 1

0

sin (λnξ) sin (λmξ)dξ = −
∫ 1

0

sin (λmξ)dξ (A.33)

Orthogonality allows removal of all components where n 6= m by the Dirac delta:

∞∑
n=1

Anδnm

∫ 1

0

sin2 (λmξ)dξ = −
∫ 1

0

sin (λmξ)dξ (A.34)

The Dirac delta removes the summation and allows for direct computation of the Fourier

coefficients:

An = −
∫ 1

0
sin (λnξ)dξ∫ 1

0
sin2 (λnξ)dξ

=

(cos (λn)−1)
λn

1
2
− sin (2λn)

4λn

(A.35)

Inspection of the eigenvalue constraint in Equation (A.30) shows that sin (2λn) = 0 for

all n = 1, 2, 3..., which simplifies Equation (A.35) to:

An =
2

λn

(
cos (λn)− 1

)
(A.36)
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The full non-dimensional solution may then be written by combining Equations (A.15),

(A.19), (A.30), (A.31) and (A.36):

Θ(τ, ξ) = 1 + 2
∞∑
n=1

cos (nπ − π/2)− 1

nπ − π/2
sin
[

(nπ − π/2) ξ
]

exp
[
− (nπ − π/2)2 τ

]
(A.37)

The full dimensional solution follows from Equation (A.37):

c(t, z)− c0
cH − c0

= 1 + 2
∞∑
n=1

cos (nπ − π/2)− 1

nπ − π/2
sin
[
(nπ − π/2)

z

L

]
exp

[
− (nπ − π/2)2

Dt
L2

]

(A.38)

Finally, the fractional uptake of CO2 in the aqueous phase as a function of time, F(t),

may be calculated as:

F(t) =

∫ L

0

c(t, z)

cH
dz (A.39)

To apply Equations (A.37) to (A.39) to our system, we employ a diffusion coefficient

(at 25 °C and 14.0 MPa) of D = 2.233× 10−9 m2/s [66] and a minimum and maximum

depth of aqueous phase of L = 2.6 cm and 3.4 cm, respectively (based on values presented

in Section A.6.2 and an inner reactor diameter of 0.64 cm). Cadogan et al. [66] demonstrate

that the diffusion coefficient of CO2(aq) in water is insensitive to higher pressures at 25 ◦C, so

we expect this value to be close to that in the range of 0.10 MPa to 5.07 MPa. Moreover we

also assume that the concentration of CO2(aq) initially is 10 % of the initial concentration of

CO2(g), or c0 = 0.1cH . This assumes that upon quenching the reaction, 90 % of the carbon

dioxide exists in the vapor phase, which is reasonable on the basis that rapid quenching

significantly perturbs the system from equilibrium. This assumption leads to an initial

fractional uptake of F(0) = 0.12. Figure A.3 shows plots of c(t, z)/cH at 2 h and 24 h for

L = 2.6 cm and 3.4 cm. Comparing Figures A.3a and A.3b (t = 2 h) to Figures A.3c and

A.3d (t = 24 h) shows that, for this reaction system, the fractional uptake of CO2 in the
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aqueous phase, F , more than doubles from 0.25 and 0.22 to 0.63 and 0.52, for aqueous phase

depths of 2.6 cm and 3.4 cm, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z / L

c(
t,z

)
/
c H

(a) t = 2 hours, L = 2.6 cm

ℱ = 0.25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z / L

c(
t,z

)
/
c H

(b) t = 2 hours, L = 3.4 cm

ℱ = 0.22

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z / L

c(
t,z

)
/
c H

(c) t = 24 hours, L = 2.6 cm

ℱ = 0.63

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z / L

c(
t,z

)
/
c H

(d) t = 24 hours, L = 3.4 cm

ℱ = 0.52

Figure A.3: Relative concentration profiles, c(t, z)/cH , of dissolved CO2(aq) with respect to depth of aqueous
phase (z = 0 is the vapor-liquid interface) at different times. F is the fractional uptake of CO2 in the aqueous
phase at a given time.

This problem of mitigating CO2(g) dissolution into the aqueous phase to produce a more

accurate measurement of gas evolved during the reaction is clearly diffusion limited. Short-

ening the time from the moment the reaction is quenched to the moment gas is measured

to 2 h or less, compared to 24 h, will decrease the fractional uptake of CO2 by over a factor

of about 2.5. Moreover re-agitating reactors prior to gas measurement may help liberate

CO2(aq) back into the vapor phase.

182



APPENDIX B

Constant-growth-temperature figures and tabular data

for Chapter III

B.1 Figures with constant-growth-temperature data
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Figure B.1: Species abundance (wt %) for constant-growth-temperature species combinations.
Ankistrodesmus falcatus (A), Chlorella sorokiniana (B), Pediastrum duplex (C), Scenedesmus acuminatus
(D), Scenedesmus ecornis (E), and Selenastrum capricornutum (F) are indicated as red, blue, green, pur-
ple, orange, and yellow, respectively. Only single estimates for species abundance available for 4-species
polycultures. Error bars represent SE.
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Figure B.2: Polyculture performance relative to thresholds for TO (maize, bold-outline cells), AWA (gray),
and TU (blue, bold-outline cells) for SAFA, MUFA, and PUFA yields, lipid, protein, and carbohydrate
contents, and biocrude yield, H/C, N content, O content, and HHV under constant growth temperature.
Polycultures comprised 2-, 4-, and 6-species combinations of Ankistrodesmus falcatus (A), Chlorella sorokini-
ana (B), Pediastrum duplex (C), Scenedesmus acuminatus (D), Scenedesmus ecornis (E), and Selenastrum
capricornutum (F). ? and • indicate statistically significant differences with α = 0.05 and 0.15, respectively.
∆max corresponds to the highest absolute difference between the value for the polyculture and the threshold
for TO or TU for each dependent variable.
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Figure B.3: Relative extent (ξTO) of net TO (maize) and TU (blue) in bicultures as a function of species
inclusion of Ankistrodesmus falcatus (A), Chlorella sorokiniana (B), Pediastrum duplex (C), Scenedesmus
acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capricornutum (F) for SAFA, MUFA, and PUFA
yields, lipid, protein, and carbohydrate contents, and biocrude yield, H/C, N content, O content, and HHV
for constant growth temperature. aDenotes goal not applicable for this metric.

185



B.2 Properties of biomass and biocrude for constant- and variable-

growth-temperature cultures

Species SAFA MUFA PUFA Lipid Protein Carb.
Combination [wt%] [wt%] [wt%] [wt%] [wt%] [wt%]

A 3.91± 1.43 3.46± 0.43 3.62± 0.01 11.0± 1.9 32.7± 3.9 48.7± 4.2

B 4.77± 1.08 0.68± 0.32 6.74± 1.12 12.2± 2.5 48.4± 1.3 34.8± 2.9

C 2.68± 0.28 1.85± 0.09 4.84± 0.82 9.4± 1.2 38.4± 4.3 48.6± 3.7

D 2.91± 0.46 1.14± 0.37 3.61± 0.53 7.7± 1.2 32.1± 1.8 52.6± 2.2

E 1.10 0.65 2.7 4.5 30.3± 2.3 47.0

F 4.94± 0.42 3.69± 0.76 2.76± 0.19 11.4± 0.8 27.1± 1.2 50.8± 1.8

AB 4.04± 0.68 1.05± 0.35 6.07± 1.00 11.2± 1.4 46.6± 1.3 39.1± 2.0

AC 3.61± 0.13 2.82± 0.13 3.14± 0.60 9.6± 0.9 36.3± 2.8 47.8± 2.3

AD 3.13± 0.75 1.43± 0.23 3.65± 0.60 8.2± 1.4 31.5± 1.3 53.7± 2.7

AE 1.25± 0.04 1.07± 0.18 3.12± 0.20 5.5± 0.0 31.2± 3.6 55.1± 3.6

AF 6.62± 1.48 2.37± 1.53 3.02± 0.60 12.0± 2.7 26.0± 1.9 50.3± 2.2

BC 2.92± 0.21 0.36± 0.05 5.19± 0.46 8.5± 0.7 46.7± 1.0 41.4± 1.1

BD 4.34± 0.67 1.25± 0.30 5.49± 0.48 11.1± 1.4 38.6± 1.7 43.5± 3.0

BE 4.64± 0.49 1.21± 0.08 6.21± 0.32 12.1± 0.8 46.3± 1.5 38.3± 1.7

BF 4.53± 1.05 0.86± 0.22 6.41± 1.01 11.8± 2.3 46.7± 0.6 37.9± 1.7

CD 3.52± 0.48 1.53± 0.42 3.40± 0.28 8.5± 1.1 36.0± 1.1 47.8± 0.2

CE 3.11± 0.06 1.16± 0.01 4.73± 1.27 9.0± 1.3 32.5± 6.9 36.6± 7.5

CF 5.88± 1.10 4.10± 1.56 3.78± 0.73 13.8± 3.2 29.8± 2.5 49.7± 4.6

DE 3.26± 0.37 1.99± 0.06 3.89± 0.73 9.1± 1.1 34.3± 2.3 48.4± 1.9

DF 3.82± 0.54 1.17± 0.50 3.13± 0.42 8.1± 0.1 30.0± 1.0 55.1± 0.9

EF 5.43± 1.49 2.18± 1.77 2.63± 0.05 10.2± 0.2 33.4± 2.6 48.6± 2.6

ABCD 4.27± 0.29 1.48± 0.24 5.31± 0.83 11.1± 1.4 42.9± 5.0 40.4± 4.7

ABCE 3.52± 0.29 0.92± 0.00 5.59± 0.94 10.0± 0.7 43.0± 2.7 43.7± 2.4

ABCF 4.83± 0.96 1.20± 0.37 6.35± 0.98 12.4± 2.0 44.0± 4.7 40.0± 5.0

ABDE 4.00± 0.58 0.94± 0.30 5.42± 0.27 10.4± 0.9 41.1± 2.9 45.7± 2.9

ABDF 5.19± 1.06 1.52± 0.34 6.01± 1.61 12.7± 2.3 37.9± 4.7 47.8± 4.4

ABEF 5.09± 0.80 0.75± 0.19 4.98± 1.20 10.8± 1.0 44.5± 2.2 35.4± 2.1

ACDE 3.22± 0.35 0.49± 0.07 4.14± 0.50 7.8± 0.9 34.5± 1.8 51.2± 1.5

ACDF 3.04± 0.70 1.97± 0.10 3.12± 0.68 8.1± 1.4 33.1± 3.0 52.3± 3.9

ACEF 3.66± 0.28 3.24± 0.22 2.44± 0.13 9.4± 0.6 27.7± 0.8 54.1± 0.6

ADEF 3.52± 0.12 1.68± 0.69 2.54± 0.51 7.7± 1.0 30.8± 0.6 53.2± 1.4

BCDE 4.62± 0.53 1.51± 0.21 5.46± 0.42 11.6± 1.2 41.8± 3.2 41.0± 3.4

BCDF 3.54± 1.96 0.90± 0.64 5.08± 1.73 9.5± 4.3 39.3± 0.5 49.8± 0.9

BCEF 3.08± 0.94 0.79± 0.26 5.00± 0.25 8.9± 0.9 41.3± 1.5 44.6± 1.8

BDEF 4.37± 1.06 1.25± 0.53 5.66± 0.73 11.3± 2.3 43.7± 2.1 41.0± 1.6

CDEF 2.89± 0.09 0.99± 0.60 2.88± 0.69 6.8± 1.4 29.4± 2.1 56.0± 2.6

ABCDEF 3.50± 0.62 1.67± 0.10 4.17± 0.66 9.3± 1.2 39.6± 0.9 45.0± 0.9

Table B.1: Biochemical composition of constant-growth-temperature species combinations. Uncertainty
represents SE.
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Species H/C N O HHV Yield Productiona Stabilitya

Combination [n/n] [wt%] [wt%] [MJ/kg] [wt%] [mg/L] (µ/σ)
A 1.52± 0.03 4.74± 0.07 12.5± 1.1 35.3± 0.5 29.6 ± 2.2 13.5± 3.4 1.58± 0.28

B 1.44± 0.03 6.14± 0.08 12.2± 0.6 34.5± 0.4 36.8 ± 0.3 78.3± 15.3 3.00± 0.51

C 1.50± 0.05 5.36± 0.27 13.7± 1.0 34.3± 0.2 36.3 ± 2.2 28.7± 12.3 2.07

D 1.40± 0.02 5.36± 0.13 12.0± 0.5 34.8± 0.3 34.8 ± 1.0 77.1± 8.2 2.42± 0.57

E 1.46± 0.02 5.41± 0.12 12.4± 0.5 34.7± 0.3 34.4 ± 4.1 12.5± 3.8 1.07± 0.19

F 1.48± 0.00 4.88± 0.16 12.6± 0.9 35.0± 0.5 33.5 ± 0.8 141.0± 20.5 1.98± 0.65

AB 1.44± 0.02 5.94± 0.06 12.2± 0.1 34.5± 0.0 38.1 ± 0.8 81.8± 10.1 2.61± 0.19

AC 1.53± 0.02 4.95± 0.23 11.9± 0.6 35.6± 0.4 33.9 ± 0.7 26.3± 4.7 1.40± 0.21

AD 1.37± 0.02 5.42± 0.08 11.8± 0.3 34.7± 0.2 36.7 ± 0.2 74.7± 11.1 2.30± 0.41

AE 1.47 5.11 13.1 34.6 30.6 1.4± 1.1 3.41± 0.92

AF 1.42± 0.03 5.27± 0.10 11.9± 0.2 34.9± 0.2 33.0 ± 0.7 113.0± 12.8 2.41± 0.24

BC 1.48± 0.02 5.92± 0.04 12.4± 1.4 34.6± 0.7 35.6 ± 0.9 56.1± 14.4 2.29± 0.69

BD 1.45± 0.01 5.75± 0.09 12.0± 0.4 34.8± 0.3 36.7 ± 0.6 49.7± 11.6 2.11± 0.41

BE 1.47± 0.01 6.22± 0.03 13.4± 1.0 33.9± 0.6 37.1 ± 0.3 50.1± 3.4 2.64± 0.33

BF 1.46± 0.01 6.06± 0.03 12.5± 0.9 34.5± 0.6 36.3 ± 0.7 59.3± 4.6 1.90± 0.24

CD 1.42± 0.01 5.46± 0.07 11.3± 0.4 35.2± 0.3 36.0 ± 1.0 47.1± 10.0 1.90± 0.29

CE 1.47± 0.02 5.31± 0.55 12.8± 0.0 34.7± 0.4 31.1 ± 0.7 15.4± 1.6 0.99± 0.35

CF 1.46± 0.02 5.20± 0.19 12.5± 0.1 34.8± 0.2 33.3 ± 0.9 92.3± 6.2 3.05± 0.97

DE 1.39± 0.02 5.79± 0.14 11.8± 0.2 34.6± 0.2 35.6 ± 1.1 29.8± 12.6 1.74± 0.48

DF 1.43± 0.03 5.41± 0.13 13.4± 0.7 34.1± 0.2 34.6 ± 1.0 100.0± 21.8 2.52± 0.31

EF 1.43± 0.01 5.33± 0.17 12.2± 0.4 34.8± 0.2 33.2 ± 0.8 46.9± 10.3 2.03± 0.64

ABCD 1.45± 0.02 5.85± 0.06 13.0± 1.0 34.2± 0.5 37.8 ± 0.6 53.2± 9.1 2.38± 0.69

ABCE 1.47± 0.01 6.00± 0.09 13.1± 0.9 34.2± 0.5 35.6 ± 0.6 32.6± 5.4 1.55± 0.31

ABCF 1.46± 0.01 6.11± 0.07 12.6± 0.6 34.3± 0.4 37.5 ± 0.2 57.8± 13.0 2.33± 0.27

ABDE 1.48± 0.01 6.12± 0.15 13.3± 0.9 34.0± 0.4 37.0 ± 0.7 40.5± 11.3 2.27± 0.21

ABDF 1.45± 0.01 5.81± 0.07 11.6± 0.4 35.0± 0.1 36.7 ± 1.1 52.9± 9.5 2.31± 0.71

ABEF 1.45± 0.02 5.97± 0.24 13.2± 0.1 34.0± 0.2 36.7 ± 0.6 42.2± 4.3 2.69± 0.24

ACDE 1.45± 0.02 5.47± 0.07 13.0± 0.4 34.4± 0.1 36.8 ± 0.8 36.8± 11.8 1.92± 0.30

ACDF 1.41± 0.02 5.36± 0.17 12.2± 0.3 34.7± 0.3 35.7 ± 0.8 63.2± 4.7 1.72± 0.27

ACEF 1.44± 0.03 5.00± 0.25 11.8± 0.3 35.2± 0.4 33.6 ± 0.4 38.4± 5.1 2.17± 0.34

ADEF 1.43± 0.01 5.33± 0.07 12.3± 0.1 34.7± 0.1 35.2 ± 0.6 37.2± 3.7 2.53± 0.49

BCDE 1.45± 0.02 5.78± 0.11 12.9± 0.6 34.3± 0.3 36.7 ± 0.6 25.7± 5.6 1.68± 0.20

BCDF 1.42± 0.02 5.99± 0.10 12.2± 0.7 34.4± 0.4 38.4 ± 0.3 49.0± 3.8 1.87± 0.46

BCEF 1.46± 0.02 5.84± 0.08 12.5± 0.3 34.5± 0.3 36.0 ± 0.8 38.3± 8.3 2.45± 0.43

BDEF 1.43± 0.01 5.68± 0.10 12.0± 0.4 34.7± 0.3 37.2 ± 0.4 40.7± 3.0 1.72± 0.68

CDEF 1.44± 0.01 5.33± 0.04 12.1± 0.1 34.9± 0.0 34.9 ± 1.2 40.8± 6.0 2.47± 0.39

ABCDEF 1.41± 0.01 5.77± 0.19 12.8± 0.3 34.2± 0.2 36.1 ± 0.3 36.1± 4.1 1.70± 0.13

Table B.2: Biocrude properties of constant-growth-temperature species combinations. aReproduced from
Narwani et al. [6]. Uncertainty represents SE.
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Species SAFA MUFA PUFA Lipid Protein Carb.
Combination [wt%] [wt%] [wt%] [wt%] [wt%] [wt%]

A 5.11± 0.79 3.36± 0.55 4.17± 1.43 12.6± 1.7 30.2± 2.5 50.3± 2.4

B 3.32± 0.25 0.49± 0.08 5.68± 0.23 9.5± 0.3 48.6± 0.8 39.2± 0.9

C 3.41± 1.01 1.18± 0.04 4.32± 1.22 8.9± 2.3 32.7± 3.8 52.7± 3.8

D 3.78± 0.26 1.19± 0.29 3.58± 0.21 8.5± 0.6 31.9± 0.8 54.1± 1.1

E 1.87± 0.65 2.05± 0.91 3.35± 0.25 7.3± 1.8 29.7± 2.8 43.6± 2.6

F 5.41± 0.79 2.01± 0.83 2.06± 0.24 9.5± 0.9 22.9± 1.1 59.3± 0.6

AB 3.98± 1.10 1.06± 0.24 5.09± 1.45 10.1± 2.7 44.0± 2.6 45.7± 1.7

AC 3.74± 0.66 3.74± 0.58 4.34± 0.60 11.8± 1.4 31.7± 0.9 50.2± 3.3

AD 3.55± 0.79 1.86± 0.35 3.95± 0.45 9.4± 1.6 30.6± 2.7 54.2± 3.1

AE 2.78 1.38 3.40 7.6 27.5 41.6

AF 5.27± 1.45 1.51± 0.85 2.35± 0.40 9.1± 1.3 25.5± 0.4 58.6± 2.2

BC 4.69± 1.50 1.25± 0.12 6.20± 1.36 12.1± 3.0 47.3± 0.1 37.5± 1.0

BD 3.90± 0.39 0.98± 0.21 5.78± 0.90 10.7± 1.3 39.2± 3.2 45.3± 4.1

BE 3.57± 0.39 0.66± 0.11 5.62± 0.48 9.9± 0.6 46.4± 1.2 40.6± 1.5

BF 4.71± 1.17 0.56± 0.25 3.91± 0.97 9.2± 0.0 38.8± 3.0 49.4± 3.0

CD 3.03± 0.78 1.69± 0.44 3.23± 0.20 8.0± 1.4 38.6± 5.9 47.9± 7.1

CE 4.14 1.70 5.77 11.6 22.9± 5.7 44.2

CF 5.95± 0.95 2.35± 1.36 2.36± 0.09 10.7± 1.1 23.1± 0.2 57.1± 1.2

DE 3.10± 0.63 1.26± 0.23 3.86± 0.36 8.2± 1.1 39.9± 2.0 46.1± 1.6

DF 4.33± 1.15 2.17± 1.06 2.90± 0.79 9.4± 2.7 26.9± 1.2 54.6± 2.9

EF 4.61± 0.62 1.54± 0.71 2.74± 0.36 8.9± 0.6 31.5± 3.3 50.8± 3.3

ABCD 3.76± 1.11 1.89± 1.20 4.86± 0.58 10.5± 2.9 48.0± 2.2 38.1± 1.4

ABCE 3.81± 0.42 0.66± 0.11 5.83± 0.54 10.3± 1.1 45.5± 1.6 39.4± 1.6

ABCF 3.08± 0.79 0.70± 0.22 2.27± 0.89 6.1± 1.3 40.4± 4.0 47.2± 4.6

ABDE 3.29± 0.04 1.22± 0.26 4.07± 0.48 8.6± 0.2 39.0± 3.1 46.8± 3.2

ABDF 5.01± 0.84 2.49± 0.71 5.10± 1.09 12.6± 2.2 38.5± 2.1 45.6± 1.7

ABEF 3.76± 1.32 1.14± 0.94 3.38± 2.27 8.3± 4.5 44.2± 4.2 34.6± 5.2

ACDE 4.11± 0.40 2.18± 0.97 4.55± 0.31 10.8± 0.9 36.4± 2.6 44.5± 2.2

ACDF 3.72± 0.24 1.53± 0.71 2.60± 0.27 7.9± 0.4 30.8± 0.6 53.5± 0.5

ACEF 5.87± 0.14 0.37± 0.02 2.44± 0.08 8.7± 0.0 31.4± 2.2 53.5± 2.2

ADEF 3.96± 0.30 1.49± 0.64 2.46± 0.11 7.9± 0.3 30.3± 1.7 53.5± 1.6

BCDE 5.16± 0.54 2.34± 0.28 6.72± 0.72 14.2± 1.4 36.3± 4.1 43.8± 4.3

BCDF 4.00± 0.79 2.09± 1.10 4.37± 0.42 10.5± 1.4 44.9± 2.1 43.1± 2.5

BCEF 5.08± 2.68 1.61± 0.25 5.66± 3.57 12.3± 6.5 38.7± 4.5 41.5± 6.0

BDEF 4.18± 0.78 1.24± 0.15 5.45± 0.00 10.9± 0.9 38.1± 2.2 46.7± 2.4

CDEF 4.46± 0.64 0.96± 0.37 2.59± 0.23 8.0± 0.2 30.7± 0.8 52.9± 0.8

ABCDEF 3.51± 0.28 0.88± 0.18 3.53± 0.41 7.9± 0.5 38.0± 1.7 48.9± 1.8

Table B.3: Biochemical composition of variable-growth-temperature species combinations. Uncertainty rep-
resents SE.
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Species H/C N O HHV Yield Productiona Stabilitya

Combination [n/n] [wt%] [wt%] [MJ/kg] [wt%] [mg/L] (µ/σ)
A 1.50± 0.02 5.48± 0.20 12.4± 0.3 34.9± 0.3 32.2 ± 1.4 24.2± 7.2 1.38± 0.45

B 1.45± 0.00 6.08± 0.05 12.5± 0.2 34.4± 0.2 37.2 ± 0.3 80.6± 12.2 1.74± 0.52

C 1.47± 0.02 5.46± 0.04 12.1± 0.2 34.9± 0.2 34.4 ± 1.5 16.0± 3.0 1.86± 0.84

D 1.43± 0.01 5.39± 0.03 11.7± 0.2 35.0± 0.1 36.2 ± 0.5 77.0± 9.6 1.67± 0.20

E 1.42± 0.04 5.32± 0.06 12.9± 0.7 34.4± 0.2 31.4 ± 0.1 5.8± 2.6 2.21± 0.65

F 1.47± 0.02 5.01± 0.04 12.4± 0.3 35.0± 0.3 32.2 ± 0.6 140.0± 9.9 3.94± 0.35

AB 1.46± 0.01 6.32± 0.23 12.7± 0.4 34.2± 0.1 38.1 ± 1.1 92.8± 4.0 2.91± 0.50

AC 1.54± 0.04 5.01± 0.18 13.0± 0.7 35.0± 0.2 33.2 ± 0.9 23.9± 1.3 1.38± 0.53

AD 1.41± 0.02 5.40± 0.02 12.5± 0.7 34.5± 0.4 37.1 ± 0.6 86.3± 32.4 1.92± 0.26

AE 1.42 5.04 11.7 35.1 27.9 33.8 0.57

AF 1.48± 0.04 4.86± 0.07 11.8± 0.6 35.4± 0.5 32.0 ± 0.6 94.5± 17.8 3.04± 0.43

BC 1.45± 0.02 5.79± 0.03 12.6± 0.9 34.4± 0.6 35.7 ± 0.5 51.3± 20.2 1.77± 0.34

BD 1.46± 0.02 6.03± 0.19 12.4± 0.7 34.5± 0.5 36.4 ± 0.8 61.0± 9.4 1.41± 0.24

BE 1.45± 0.03 5.90± 0.04 12.6± 0.3 34.4± 0.3 36.2 ± 0.1 34.9± 7.1 1.94± 0.67

BF 1.45± 0.02 5.89± 0.04 12.2± 0.9 34.6± 0.6 35.9 ± 1.2 87.8± 24.4 2.77± 0.49

CD 1.42± 0.03 5.58± 0.28 13.2± 1.4 34.1± 0.5 36.5 ± 0.9 40.8± 9.2 2.76± 0.45

CE 1.51 4.84 11.6 35.7 29.2 14.7 1.00

CF 1.45± 0.03 4.95± 0.10 12.1± 0.6 35.1± 0.5 32.5 ± 0.4 102.0± 11.5 2.56± 0.70

DE 1.42± 0.02 5.46± 0.07 12.7± 0.7 34.4± 0.4 36.5 ± 0.3 32.5± 7.9 1.80± 0.69

DF 1.43± 0.02 5.17± 0.13 12.4± 0.6 34.7± 0.3 33.1 ± 0.8 112.0± 14.7 2.62± 0.90

EF 1.45± 0.00 5.11± 0.11 11.6± 0.2 35.3± 0.1 32.3 ± 0.4 48.2± 6.0 2.39± 0.23

ABCD 1.48± 0.04 5.91± 0.08 13.4± 0.7 34.1± 0.5 36.8 ± 0.4 40.5± 9.0 2.29± 0.36

ABCE 1.45± 0.02 5.97± 0.04 12.4± 0.7 34.5± 0.3 35.6 ± 1.0 34.6± 9.3 6.18

ABCF 1.43± 0.01 5.79± 0.32 12.7± 0.5 34.3± 0.5 35.3 ± 0.6 54.4± 12.8 2.62± 0.80

ABDE 1.45± 0.01 5.95± 0.21 12.4± 0.4 34.5± 0.2 36.9 ± 0.3 45.7± 8.5 2.08± 0.30

ABDF 1.42± 0.02 5.76± 0.63 12.0± 1.2 34.7± 0.4 36.6 ± 0.4 86.8± 22.9 1.77± 0.28

ABEF 1.42± 0.01 5.56± 0.11 11.9± 0.5 34.8± 0.3 35.6 ± 0.3 43.1± 7.3 2.84± 0.64

ACDE 1.50± 0.02 5.60± 0.19 13.4± 1.2 34.3± 0.6 34.5 ± 0.7 21.5± 8.5 1.84± 0.43

ACDF 1.43± 0.02 5.29± 0.14 11.4± 0.2 35.2± 0.2 36.3 ± 0.7 70.7± 9.0 2.46± 0.33

ACEF 1.48± 0.03 5.15± 0.04 13.2± 0.5 34.6± 0.1 33.8 ± 1.0 45.9± 9.9 2.49± 0.32

ADEF 1.44± 0.01 5.40± 0.07 12.4± 0.7 34.7± 0.4 33.0 ± 0.6 56.4± 5.3 2.85± 0.21

BCDE 1.44± 0.02 5.82± 0.14 12.9± 0.3 34.3± 0.1 36.0 ± 0.6 31.9± 2.5 2.09± 0.09

BCDF 1.42± 0.01 5.76± 0.18 12.5± 0.5 34.4± 0.3 36.6 ± 1.1 56.2± 7.9 1.50± 0.25

BCEF 1.43± 0.02 5.73± 0.11 12.1± 0.4 34.7± 0.3 36.0 ± 0.5 42.2± 10.0 1.51± 0.40

BDEF 1.45± 0.01 5.73± 0.07 12.8± 0.4 34.4± 0.2 36.6 ± 0.7 46.8± 7.7 1.98± 0.36

CDEF 1.44± 0.03 5.35± 0.03 12.1± 0.8 34.8± 0.5 35.5 ± 1.2 48.9± 6.6 1.63± 0.64

ABCDEF 1.46± 0.03 5.88± 0.10 11.4± 0.1 35.1± 0.2 35.7 ± 0.4 36.9± 3.1 2.15± 0.37

Table B.4: Biocrude properties of variable-growth-temperature species combinations. aReproduced from
Narwani et al. [6]. Uncertainty represents SE.
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B.3 Additional quality vs. quantity sector charts
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Figure B.4: Quality (top half of each circle) vs. quantity (bottom half of each circle) sector charts for
constant-growth-temperature species combinations of Ankistrodesmus falcatus (A), Chlorella sorokiniana
(B), Pediastrum duplex (C), Scenedesmus acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capri-
cornutum (F). Wedge lengths indicate number of SDs ((xi − x̄)/σi) away from the mean (averaged over all
37 species combinations) for each metric. SAFA, MUFA, and PUFA represent yields present in microalgal
feedstocks. H/C, Na, Oa, Prod., and Stab. represent biocrude hydrogen-to-carbon atomic ratio, nitrogen
content, oxygen content, productivity, and stability, respectively. aDenotes metrics multiplied by -1 so that
larger wedges correspond to more favorable outcomes.
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Figure B.5: Quality (top half of each circle) vs. quantity (bottom half of each circle) sector charts for
variable-growth-temperature species combinations of Ankistrodesmus falcatus (A), Chlorella sorokiniana (B),
Pediastrum duplex (C), Scenedesmus acuminatus (D), Scenedesmus ecornis (E), and Selenastrum capricor-
nutum (F). Wedge lengths indicate number of SDs ((xi − x̄)/σi) away from the mean (averaged over all
37 species combinations) for each metric. SAFA, MUFA, and PUFA represent yields present in microalgal
feedstocks. H/C, Na, Oa, Prod., and Stab. represent biocrude hydrogen-to-carbon atomic ratio, nitrogen
content, oxygen content, productivity, and stability, respectively. aDenotes metrics multiplied by -1 so that
larger wedges correspond to more favorable outcomes.
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APPENDIX C

Parameters for multiple linear regression models in

Chapter III

C.1 Coefficients for Set 10 and 11 models

Model Biocrude Property β0 βSat βMon βPol βPro βCar

Set 10

H/C [n/n] 1.43± 0.01 - - - - -
N content [wt %] 4.16± 0.19 - 87.2± 11.4 - - -
O content [wt %] 18.6 ± 0.8 - −761 ± 129 - - -
HHV [MJkg−1] 35.8 ± 0.4 49.3± 17.0 - −82.8± 14.9 - -
Yield [wt %] 10.7 ± 0.9 575 ± 46 - - - -

Set 11

H/C [n/n] 1.43± 0.02 - - - - -
N content [wt %] 5.11± 0.15 - - - - -
O content [wt %] 7.58± 0.97 - - 156 ± 35 - -
HHV [MJkg−1] 37.2 ± 0.4 - - −99.3± 17.7 - -
Yield [wt %] 10.8 ± 2.4 468 ± 64 525 ± 132 −265 ± 51 38.5± 4.3 -

Table C.1: Coefficients for Set 10 and 11 models in Table 3.2 (part 1). BSat, BMon, BPol, BPro, and BCar

input as weight fractions.

Model Biocrude Property γSat2 γMon2 γPol2 γPro2 γCar2

Set 10

H/C [n/n] - 148± 21 - - −0.198± 0.039

N content [wt %] - −1070± 150 - - −3.08 ± 0.40

O content [wt %] - 2140± 0 - - -
HHV [MJkg−1] −642± 200 - - −14.5± 2.8 -
Yield [wt %] - −4130± 1070 - 65.0± 3.8 51.2 ± 5.0

Set 11

H/C [n/n] - 194± 34 - - -
N content [wt %] - −348± 47 - - -
O content [wt %] - 387± 77 - 48.7± 9.1 15.3 ± 2.9

HHV [MJkg−1] −320± 87 - - −10.7± 2.9 -
Yield [wt %] - −4500± 1410 - - 29.0 ± 6.1

Table C.2: Coefficients for Set 10 and 11 models in Table 3.2 (part 2). BSat, BMon, BPol, BPro, and BCar

input as weight fractions.
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Model Biocrude Property εSatMon εSatPol εSatPro εSatCar εMonPol

Set 10

H/C [n/n] −134± 22 - - 5.70± 0.90 -
N content [wt %] - 195 ± 26 - −11.3 ± 2.8 -
O content [wt %] - - - - -
HHV [MJkg−1] - - - - -
Yield [wt %] 223± 77 - - −1170 ± 100 -

Set 11

H/C [n/n] −124± 29 64.3± 16.3−11.2± 3.1 7.18± 1.42 −120± 45

N content [wt %] - 146 ± 19 - −17.5 ± 1.7 -
O content [wt %] - - - - -
HHV [MJkg−1] - 767 ± 209 - - -
Yield [wt %] - - - −928 ± 132 -

Table C.3: Coefficients for Set 10 and 11 models in Table 3.2 (part 3). BSat, BMon, BPol, BPro, and BCar

input as weight fractions.

Model Biocrude Property εMonPro εMonCar εPolPro εPolCar εProCar

Set 10

H/C [n/n] - - - - -
N content [wt %] −183 ± 24 - - - 11.4 ± 1.1

O content [wt %] 912 ± 167 765 ± 143 33.2± 9.9 - −37.5 ± 4.9

HHV [MJkg−1] - - 208 ± 41 - -
Yield [wt %] - 316 ± 92 −514 ± 49 547± 44 -

Set 11

H/C [n/n] 25.2± 7.5 −12.1± 4.7 - - -
N content [wt %] - - - - 3.13± 0.81

O content [wt %] - - −338 ± 93 - −40.3 ± 6.7

HHV [MJkg−1] - - 154 ± 42 - -
Yield [wt %] −1100 ± 250 - - 662± 108 -

Table C.4: Coefficients for Set 10 and 11 models in Table 3.2 (part 4). BSat, BMon, BPol, BPro, and BCar

input as weight fractions.

Biocrude Property βA βB βC βD βE βF
H/C [n/n] - - - −0.024± 0.004 0.012± 0.004 −0.013± 0.004

N content [wt %] - 0.275± 0.032 −0.077± 0.015 - - -
O content [wt %] 0.275± 0.067 −0.885± 0.134 - - 0.547± 0.078 -
HHV [MJkg−1] - - - - −0.187± 0.050 -
Yield [wt %] 0.376± 0.140 - - 1.00 ± 0.20 −0.526± 0.128 -

Table C.5: Coefficients for Set 11 models in Table 3.2 (part 5). SA, SB , SC , SD, SE , and SF input as weight
fractions.
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APPENDIX D

Additional biomass data and figures, calculations,

temperature profiles, and mass balances for Chapter IV

D.1 Materials and methods

We converted solids contents to slurry concentrations on a g L−1rxn basis using the following

equation, which assumes that only water contributes to the volume expansion:

c(T ) =
xs

1− xs
ρw(T ) (D.1)

Here c(T ) is the slurry concentration (g L−1rxn), xs is the solids content (wt%), and ρw(T )

is the temperature-dependent density of pure, saturated liquid water. The solids contents of

the 30 and 120 g L−1rxn slurries at various temperatures are presented in Table D.1.

Conc. Set-point temperature [°C]
[g L−1

rxn] 150 200 250 300 350
30 3.2 3.4 3.6 4.0 5.0
120 11.6 12.2 13.1 14.4 17.3

Table D.1: Target solids content (wt%) for different initial slurry concentrations (g L−1
rxn) as functions of

reaction temperature (°C).
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Figure D.1: Maximum growth rate (h-1) and biomass productivity (mg L-1) for nitrogen-replete and limited
cultures of Chlorella sorokiniana.
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Time Set-point temperature [°C]
[s] 150 200 250 300 350
0 44.8 46.6 45.9 52.6 58.3
2 58.2 70.6 78.0 100.2 119.9
4 69.4 92.4 107.6 142.5 168.7
6 79.2 110.5 132.4 171.1 204.5
8 87.2 125.5 152.6 192.8 228.7
10 94.6 138.8 167.6 209.2 247.6
12 101.2 148.1 181.0 220.8 260.9
14 107.1 155.6 191.1 230.4 275.1
16 111.5 161.7 199.0 238.8 284.5
18 115.4 166.4 205.3 246.6 292.1
20 118.6 170.5 211.5 252.3 298.4
22 121.7 173.9 215.6 258.2 304.3
24 124.4 176.6 219.9 262.0 308.9
26 127.5 179.5 222.2 265.4 312.9
28 130.3 182.0 224.6 268.8 315.5
30 132.5 184.1 227.2 271.7 318.7
32 135.4 186.1 229.7 274.7 321.9
34 137.1 187.7 231.7 277.2 324.8
36 138.4 189.3 233.6 279.7 327.8
38 139.8 190.6 235.5 282.0 330.3
40 141.0 191.7 237.0 284.0 332.9
42 142.0 192.7 238.3 285.8 335.3
44 143.0 193.6 239.5 287.4 337.2
46 143.7 194.3 240.5 288.8 338.7
48 144.3 195.0 241.5 290.1 340.0
50 145.0 195.5 242.4 291.2 341.3
52 145.6 195.9 243.2 292.2 342.2
54 146.0 196.4 243.9 293.1 343.2
56 146.6 196.8 244.5 293.9 344.0
58 146.9 197.1 245.0 294.6 344.7
60 147.3 197.4 245.5 295.2 345.3
62 147.6 197.7 245.9 295.8 345.8
64 147.8 198.0 246.2 296.3 346.3
66 148.0 198.1 246.4 296.7 346.7
68 148.2 198.4 246.7 297.1 347.0
70 148.4 198.5 246.9 297.5 347.3
72 148.5 198.6 247.2 297.8 347.6
74 148.7 198.8 247.4 298.0 347.8

Table D.2: Average heat-up temperature profiles for stainless-steel batch reactors (1.30 mL, 386-mm i.d.)
filled with deionized water at different set-point temperatures. Underline and Bold indicate points where
95 and 98% of maximum temperature change is achieved relative to 25 °C, respectively.

ID
Elemental Composition [wt%]

C H N S O P
Nan-1 51.9± 0.3 7.3± 0.1 8.8± 0.1 0.70± 0.01 24.0± 0.4 0.94± 0.01

Nan-2 56.2± 0.3 8.0± 0.1 4.2± 0.0 0.51± 0.00 22.4± 0.3 0.97± 0.01

Chl-1 51.0± 0.2 7.2± 0.1 9.1± 0.1 0.53± 0.01 26.5± 0.4 1.03± 0.03

Chl-2 49.9± 0.2 7.5± 0.1 3.1± 0.0 0.22± 0.01 34.6± 0.5 1.11± 0.01

Spi-1 45.6± 0.2 6.7± 0.1 10.7± 0.1 0.69± 0.02 25.2± 0.4 1.22± 0.02

Mix-m 46.9± 0.2 6.9± 0.1 8.4± 0.1 0.52± 0.00 28.0± 0.4 1.21± 0.04

Table D.3: Biomass elemental contents (dry-algal-mass basis). Uncertainty denotes SE.
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ID

Content [wt%] Distribution [wt%]

C
14
:0

C
16
:0

C
16
:1
n9

C
16
:1
n7

C
16
:2
n6

C
17
:1
n7

C
18
:0

C
18
1n

9

C
18
:1

C
18
:2
n6

C
18
:3
n6

C
18
:3
n3

C
20
:4
n6

C
20
:5
n3

SA
FA

M
U
FA

P
U
FA

Nan-1 0.49 2.51 0.04 1.35 0.47 0.81 0.14 0.33 0.08 1.62 0.03 1.63 0.26 1.86 3.1 2.6 5.9

Nan-2 0.77 8.43 0.13 5.71 0.27 0.95 0.45 5.63 0.34 1.16 0.05 2.42 0.50 1.70 9.6 12.8 6.1

Chl-1 0.25 1.46 0.08 0.07 0.70 1.94 0.05 0.11 0.09 1.38 0.00 3.29 0.00 0.00 1.8 2.3 5.4

Chl-2 0.14 4.26 0.94 0.05 1.08 2.02 0.37 3.10 0.13 4.79 0.00 3.06 0.00 0.00 4.8 6.2 8.9

Spi-1 0.08 2.53 0.09 0.21 0.00 0.00 0.14 0.15 0.04 1.10 0.83 0.00 0.00 0.00 2.8 0.5 1.9

Mix-m 0.10 3.05 0.34 0.17 0.32 0.61 0.21 1.04 0.06 2.21 0.58 0.92 0.00 0.00 3.4 2.2 4.0

Table D.4: Biomass fatty acid contents and class distributions (dry-algal-mass basis).
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D.2 Mass balance
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Figure D.2: Mass balances from direct measurements, including (a) solid, biocrude, aqueous, and ammonia
yields, and (b) total mass balance, including gas yields, versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.
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APPENDIX E

Additional biocrude property figures for Chapter IV

E.1 Biocrude elemental properties
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Figure E.1: Biocrude yield versus lipid content grouped by temperature and initial concentration. See
Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines represent 1.0, 3.2, 10.0, 31.6, and
100.0 min reaction time, respectively. The bottom row depicts the first row (30 g L−1

rxn) minus the second
row (120 g L−1

rxn). Error bars indicate SE.
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Figure E.2: Biocrude carbon recovery versus reaction time grouped by temperature and initial concentration.
See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus the second row
(120 g L−1

rxn). Error bars indicate SE.
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Figure E.3: Biocrude hydrogen (a) content and (b) recovery versus reaction time grouped by temperature
and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g
L−1
rxn) minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure E.4: Biocrude nitrogen (a) content and (b) recovery versus protein content grouped by temperature
and initial concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines
represent 1.0, 3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the first
row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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Figure E.5: Biocrude sulfur content (a) and recovery (b) versus protein content grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines represent
1.0, 3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the first row (30 g
L−1
rxn) minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure E.6: Biocrude oxygen (a) content and (b) recovery versus carbohydrate content grouped by tempera-
ture and initial concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines
represent 1.0, 3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the first
row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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Figure E.7: Biocrude phosphorus (a) content and (b) recovery versus reaction time grouped by temperature
and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g
L−1
rxn) minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure E.8: Biocrude (a) HHV and (b) ER versus lipid content grouped by temperature and initial concen-
tration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines represent 1.0, 3.2,
10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the first row (30 g L−1

rxn) minus
the second row (120 g L−1

rxn). Error bars indicate SE.
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E.2 Biocrude fatty acid data
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Figure E.9: Biocrude (a) SAFA, (b) MUFA, (c) PUFA, and (d) total FA recovery versus reaction time
grouped by temperature and initial concentration. See Table 4.1 for microalgae types. The bottom row
depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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Figure E.10: Biocrude C18:0 recovery relative to (a) biomass C18:0 and (b) total biomass C18 FAs versus
reaction time grouped by temperature and initial concentration. See Table 4.1 for microalgae types. The
bottom row depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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APPENDIX F

Additional solid property data and figures for Chapter IV

F.1 Solid yield and elemental properties
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Figure F.1: Solid yields versus reaction time grouped by temperature and initial concentration. See Table 4.1
for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn).

Error bars indicate SE.
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Figure F.2: Solid carbon (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure F.3: Solid hydrogen (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure F.4: Solid nitrogen (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure F.5: Solid sulfur (a) content and (b) recovery versus reaction time grouped by temperature and initial
concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus
the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure F.6: Solid oxygen (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.

(�) ����� � ������� [��%]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

�

�

��

��

�� ���-�
���-�
���-�
���-�
���-�
���-�

�
�
�
�
�
��
�

-
�

�

�

��

��

��

Δ
�
�
-
�
�
�

� � �� �� ���

-��

-�

�

�

��

� � �� �� ��� � � �� �� ��� � � �� �� ��� � � �� �� ���

� [���]

(�) ����� � �������� [%]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

�

��

��

��

��

���

���
���-�
���-�
���-�
���-�
���-�
���-�

�
�
�
�
�
��
�

-
�

�

��

��

��

��

���

���

Δ
�
�
-
�
�
�

� � �� �� ���
-��

-��

-��

�

��

��

��

� � �� �� ��� � � �� �� ��� � � �� �� ��� � � �� �� ���

� [���]

Figure F.7: Solid phosphorus (a) content and (b) recovery versus reaction time grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the first row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.
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F.2 Solid fatty acid data
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Figure F.8: Solid (a) SAFA, (b) MUFA, (c) PUFA, and (d) total FA recovery versus reaction time grouped
by temperature and initial concentration. See Table 4.1 for microalgae types. The bottom row depicts the
first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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APPENDIX G

Additional gas data and figure for Chapter IV

G.1 Gas yield
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Figure G.1: Gas yields versus reaction time grouped by temperature and initial concentration. See Table 4.1
for microalgae types. The bottom row depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn).

Error bars indicate SE.
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APPENDIX H

Additional aqueous property figures for Chapter V

H.1 Aqueous yield
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Figure H.1: Non-volatile aqueous-phase-product yield versus protein content grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines represent
1.0, 3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the top row (30 g
L−1
rxn) minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure H.2: Ammonia yield (including NH3 and NH4
+) versus (a) reaction time and (b) protein content

grouped by temperature and initial concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark
red, and black lines represent 1.0, 3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row
depicts the top row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). Error bars indicate SE.
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H.2 Aqueous elemental properties
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Figure H.3: Aqueous nitrogen recovery (a) as ammonium (N–NH4
+), (b) as organic nitrogen, (c) in total,

and (d) as ammonium relative to total aqueous nitrogen versus protein content grouped by temperature and
initial concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines represent
1.0, 3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the top row (30 g
L−1
rxn) minus the second row (120 g L−1

rxn). Error bars indicate SE.
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Figure H.4: Aqueous phosphorus recovery (a,b) as phosphate (P–PO4
3– ) and (c,d) in total versus (a,c)

lipid content and (b,d) ash content grouped by temperature and initial concentration. See Table 4.1 for
microalgae types. Gray, pink, red, dark red, and black lines represent 1.0, 3.2, 10.0, 31.6, and 100.0 min
reaction time, respectively. The bottom row depicts the top row (30 g L−1

rxn) minus the second row (120 g
L−1
rxn). Error bars indicate SE.

215



������� � �������� [%]
��� °� ��� °� ��� °� ��� °� ��� °�

�
�
�
�
��
�

-
�

�

��

��

��

��

��

��

��

��

��

���

�
�
�
�
�
��
�

-
�

�

��

��

��

��

��

��

��

��

��

���
���-�
���-�
���-�
���-�
���-�
���-�
���-�

Δ
�
�
-
�
�
�

�� ��� ��� ��� ���

-��

-��

-��

�

��

��

��

�� ��� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ��� ��� ���

������� � ������� [��%]

Figure H.5: Aqueous sulfur recovery versus biomass sulfur content grouped by temperature and initial
concentration. See Table 4.1 for microalgae types. Gray, pink, red, dark red, and black lines represent 1.0,
3.2, 10.0, 31.6, and 100.0 min reaction time, respectively. The bottom row depicts the top row (30 g L−1

rxn)
minus the second row (120 g L−1

rxn). Error bars indicate SE.
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APPENDIX I

Constants and additional figures for Chapter VI

I.1 Kinetic model constants and designations

Component
M wC wN

[g mol-1] [wt frac] [wt frac]
AA1 128.1 0.460 0.121

AA2 159.7 0.449 0.262

CO2 44.0 0.273 -
Car 157.6 0.451 -
H2O 18.0 - -
FA 269.3 0.762 -
Lip 251.3 0.817 -
NH3 17.0 - 0.822

Pep 246.8 0.491 0.194

Pro 228.8 0.530 0.209

Sac 175.6 0.405 -

Table I.1: Molar mass, carbon content, and nitrogen constants employed in the kinetic model. Values
represent abundance-weighted averages across typical distributions of molecules residing within each lumped-
product fraction [110, 129, 135].
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Constant
Value

[wt frac]
wAA1 0.850

wAA2
0.150

wPep0 0.722

wPep1
0.256

wPep2
0.023

Table I.2: Abundances of amino acids and dipeptides employed in the kinetic model. Values represent
abundance-weighted averages of typical amino acid profiles [110, 129, 135].

Lumped product Constituent amino acids

AA1

Alanine, Γ-aminobutyric acid, Aspartic acid, Cystine, Glutamic acid, Glycine,
Histidine, Hydroxyproline, Isoleucine, Leucine, Methionine,

Phenylalanine, Proline, Serine, Threonine, Tryptophan, Tyrosine, Valine
AA2 Arginine, Lysine, Ornithine

Table I.3: Group designations for different amino acids present in microalgae.
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I.2 Carbon distribution solutions
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Figure I.1: Model solutions for HTL product carbon recoveries (%, dry-algal-carbon-mass basis) versus
reaction time grouped by temperature and initial concentration. See Table 4.1 for microalgae types. The
bottom row depicts the first row (30 g L−1

rxn) minus the second row (120 g L−1
rxn). The “±” value in each panel

represents the RMSD for that component and subset of reaction conditions. Error bars indicate SE.
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