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ABSTRACT 

Post-traumatic stress disorder (PTSD) is a severe and debilitating disorder that can 

emerge following exposure to a traumatic event. The development of effective rehabilitation 

strategies requires identification of specific and modifiable targets that can ease the burden of 

PTSD symptomatology. Functionally, prefrontal cortex (PFC)–hippocampus (Hpc) circuitry is 

critical for extinction retention (ER) and contextual processing, and PTSD patients have been 

shown to have impairments in these functions. PTSD patients have been shown to have smaller 

Hpc and PFC and show lower activation in these areas during ER compared to controls. We have 

developed and extensively studied an animal model of PTSD - Single Prolonged Stress (SPS) – 

characterized by context-dependent extinction retention and fear renewal deficits. My research 

focused on two possible cellular mechanisms that may underlie SPS-induced extinction retention 

deficit within contextual processing neuro-circuitry. Specifically, I investigated a possible role of 

adult hippocampal neurogenesis in contributing to SPS induced extinction retention deficits in 

chapter 2. In chapter 3, I investigated if SPS would change gene expression of a selected number 

of synaptic markers within key brain regions involved in contextual processing and fear 

responding: mPFC, Hpc and Amyg (amygdala). I found several lines of evidence supporting a role 

for adult hippocampal neurogenesis in extinction retention deficits. Specifically, elimination of 

neurogenesis through irradiation resulted in extinction retention deficit, SPS exposure decreased 

the numbers of proliferating dentate gyrus cells, immature neurons and surviving dentate gyrus 
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cells, and an intervention aimed at promoting neuronal cell survival rescued SPS-induced 

extinction retention deficit. I also found that expression of some synaptic markers was altered by 

SPS exposure. Specifically, several proteins involved in synaptic structure were decreased while 

several proteins associated with synaptic signaling and function were increased, suggesting 

possible changes in synaptic morphology accompanied by a functional compensation within 

these regions that could mediate extinction retention deficits.   
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CHAPTER 1 

Introduction 

 

Posttraumatic Stress Disorder 

According to the American Psychiatric Association’s Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5), for a diagnosis of PTSD, a person must meet one or more 

requirements from 5 major criteria. Criterion A states that the person was exposed to death, 

threatened death, actual or threatened serious injury, or actual or threatened sexual violence by 

direct exposure, witnessing the trauma, learning that a relative or close friend was exposed to a 

trauma, or indirect exposure to aversive details of the trauma. For Criterion B, the traumatic 

event must be persistently re-experienced as intrusive thoughts, nightmares, flashbacks, 

emotional distress after exposure to traumatic reminders, or physical reactivity after exposure 

to traumatic reminders. For Criterion C, the person must avoid trauma-related stimuli, trauma-

related thoughts or feelings and/or trauma-related reminders. The person must meet two 

requirements from Criterion D, which states that negative thoughts or feelings began or 

worsened after the trauma in the following ways: inability to recall key features of the trauma, 

overly negative thoughts and assumptions about oneself or the world, exaggerated blame of self 

or others for causing the trauma, negative affect, decreased interest in activities, feeling isolated, 
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or difficulty experiencing positive affect. Finally, the person must meet two requirements from 

Criterion E, which states that trauma-related arousal and reactivity began or worsened after the 

trauma in the following ways: irritability or aggression, risky or destructive behavior, 

hypervigilance, heightened startle reaction, difficulty concentrating, or difficulty sleeping. These 

symptoms must be present for more than a month, they must result in distress or functional 

impairment and the symptoms must not be due to medication, substance use or other illnesses 

[1]. Clinician-Administered PTSD Scale (CAPS) is the gold standard for diagnosing PTSD. The PTSD 

checklist (PCL) is a self-report and can be used as a provisional tool for PTSD diagnosis.    

Nationally, PTSD is estimated to affect 3.5% of the U.S. adult population [2] and, of those, 

36.6% (or 1.3% of U.S. adult population) are considered severe [3]. Between 12 and 20% of 

military personnel meets criteria for PTSD diagnosis at some point in their lives [4]; a more recent 

estimate puts the actual number closer to 23% [5]. For example, the prevalence of PTSD among 

Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) U.S. military personnel is 

estimated to be 5-17% [6, 7]. With such high prevalence, it is no surprise that a significant portion 

of veteran’s health-related costs goes to treating PTSD. The Congressional Budget Office (CBO) 

reports that as of September 2011, mental health diagnoses were the second largest diagnostic 

category among Overseas Contingency Operations (OCO) for those who seek medical treatment 

at Veteran Health Administration (VHA), affecting 52%. More specifically, a PTSD diagnosis 

represents four to six times the average cost for first year medical treatment compared to non-

PTSD veterans. As reference, the overall cost of first year PTSD treatment for OCO is estimated 

to be about $2 billion per year [8]. The high prevalence and cost associated with PTSD necessitate 
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significant efforts towards improved understanding of the pathophysiology of PTSD and better 

strategies for preventing and treating this debilitating psychiatric disorder.  

 Even with our current costly treatments, PTSD patients have a high rate of symptoms 

relapse and others are treatment resistant. Of the various therapeutic strategies for treating 

PTSD, psychological interventions are considered first-line approaches by most mental health 

professionals [9]. Of these, cognitive behavioral therapy (CBT) has been shown to be the most 

effective type of psychotherapy for treating PTSD [10]. Within CBT, cognitive processing therapy 

(CPT) and prolonged exposure (PE) therapy are the most studied and preferred by therapists [9]. 

CPT focuses on the impact of trauma by helping the patient understand why trauma-related 

negative thoughts are stressful, then encourages patients to replace those thoughts and to cope 

with the negative feelings [11]. In contrast, PE therapy entails revisiting the trauma in a safe 

clinical setting while patients try to change their reaction to memories of the trauma. For 

reference, PE has a 60% efficacy treating combat-related PTSD [12]. Both of these CBT therapies 

aim to help the patient re-contextualize the trauma memory as less threatening by focusing on 

changing how the patient experiences trauma recollection.  For PTSD patients who are non-

responsive to CBT, medication is often their second option. From this second line of PTSD 

treatment, antidepressants are the most prescribed: with a large body of evidence indicating 

selective serotonin reuptake inhibitors (SSRIs) being most effective [13]. Interestingly, SSRIs 

match PE with 60% efficacy, however, fewer patients achieve full symptoms remission with the 

former [14]. Other drug treatments include non-classical (non-SSRIs) anti-depressants and mood 

stabilizers [11]. With increased prevalence and a high rate of treatment resistant PTSD patients 

and high probability of symptom relapse, there is a grave need for PTSD treatment 
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improvements. Consequently, this need has fueled research efforts into understanding the 

psychopathology of PTSD, with the specific aim of identifying better therapeutic brain targets in 

hopes of filling treatment gaps and minimizing or eliminating relapse.   

 Early studies into the pathophysiology of PTSD focused on indirectly assessing brain 

function-related biomarkers. Initially, the focus was primarily on assessing autonomic nervous 

system dysfunction by measuring stress hormones and catecholamine levels in the blood, saliva 

and urine. Of these early studies, two reliably replicated findings emerged and are still relevant 

to our understanding of PTSD today: hypothalamic-pituitary adrenal (HPA)- axis dysfunction [15] 

and abnormalities within the noradrenergic system [16]. Even with inconsistent findings, there is 

a high level of consensus that PTSD is most likely related to HPA-axis dysregulation and not 

hypercortisolemia [17]. Specifically, using dexamethasome suppression test, patients suffering 

from PTSD consistently show enhanced negative feedback sensitivity of the HPA-axis [18]. 

Dexamethasone suppression test involves measuring plasma cortisol concentration before and 

after injecting a low dose of this cortisol-derivative that acts as a glucocorticoid receptor (GR) 

agonist. Repeated studies using this test have consistently revealed that PTSD patients showed 

greater suppression of cortisol compared to controls [15, 18]. Although, mechanistically, this 

response is thought to be GR mediated [15], the specific mechanistic role of the dysregulated 

HPA-axis in the development of the disorder’s specific symptom profile is yet to be understood. 

These and other, yet to be discovered, neural circuits underlie key PTSD dysfunctions and 

contribute to the development of better models.   
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Additional peripheral markers associated with PTSD include exaggerated catecholamine 

concentrations in response to trauma cues [18] and high norepinephrine concentration in urine 

[19]. However, categorizing catecholamine dysfunction as a relevant measure of PTSD pathology 

has been more complicated, highlighting the limitations of characterizing PTSD by measuring 

peripheral markers as a way of assessing brain dysfunction. Peripheral measures of brain function 

lack sufficient insight for understanding the mechanisms by which they emerge and their exact 

contribution to PTSD symptomology. Thanks to human neuro-imagining techniques, in 

conjunction with animal research, investigation into the pathophysiology of PTSD can begin to 

include direct assessments of brain structure/function abnormalities that may bear significance 

to understanding the disorder. For example, although the amygdala (Amyg) is a key region for 

fear processing, there is a growing body of evidence emerging from fMRI studies in humans 

supporting the hypothesis that fear learning and the Amyg might be unaffected in PTSD [20, 26-

28], with some verification emerging from animal models of the disorder (e.g. single-prolonged 

stress; SPS) [29, 30]. From these studies emerges a new theory seeking to integrate what is known 

about PTSD-relevant brain functions during different functional tasks and PTSD symptomology.  

Deficient contextual processing (CP) is an alternative model for PTSD that emerges from 

the overlapping neurocircuitry involved in context-dependent extinction retention/recall (ER) 

shown to be reduced or dysfunctional in PTSD [20]. Although some evidence suggests aberrant 

encoding of fear memories during conditioning [23] or abnormal safety learning during extinction 

[24, 25], the CP model suggests that PTSD fear processing deficits most likely emerge from faulty 

contextual processing [20], which normally assists in disambiguating neuronal patterns that share 

many overlapping features (i.e. pattern separation) [31]. Evidence for the CP model comes 
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primarily from studies of context-dependent processes like ER and fear renewal (FR) -- shown to 

be deficient in both PTSD patients [26, 27, 32] and in the Single Prolonged Stress (SPS) PTSD 

rodent model [29]. More specifically, in humans, appropriate ER requires uninterrupted 

communication between the ventromedial prefrontal cortex (vmPFC) and the Amyg [33], while 

intact FE (i.e. safety learning) requires intact connection between vmPFC and Hpc [34].  From 

animal research, these brain regions (mPFC and Hpc) have been identified as key players in CP 

[35, 36]. In rats, different parts of mPFC connect to the Amyg to modulate fear expression via 

efferent connections from the prelimbic (PL) to increase fear or the infralimbic (IL) to reduce it 

[37]. Brain circuits involved in contextual processing functions, shown to be abnormal in PTSD, 

include mPFC, Hpc, thalamus and locus coeruleus [19]. Further cellular and molecular inquiry into 

brain regions involved in CP (PFC-Hpc) related to modulation of fear response seems to be the 

best candidates for understanding key PTSD symptoms. Interestingly, PFC and Hpc have been 

shown to be dysfunctional among other psychiatric disorders (e.g. major depression disorder, 

bipolar disorder and schizophrenia) suggesting a possible common mechanistic role resulting in 

their shared symptomology with PTSD [39]. Additional brain regions shown to be abnormal in 

PTSD, specifically associated with exaggerated threat detection and part of the salience network, 

are the dorsal anterior cingulate cortex (dACC), insula and amygdala [20] as well as regions 

involved in executive function (mPFC and dorsal  and ventral lateral PFC [21]).  

 

 

Single Prolonged Stress  
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Single-prolonged stress (SPS) is a rodent model of PTSD originally designed with the 

primary objective of replicating PTSD-characteristic dysregulation of the HPA axis as evidenced 

by exaggerated dexamathosome suppression test, with the hopes of then studying resulting 

PTSD-relevant behavioral deficits and their underlying neuromechanisms [15, 18, 22]. SPS 

consists of serial exposure to three stressors: 2 hours of restraint, 20-minute forced-swim, and 

loss of consciousness with ether exposure -- during a single continuous session, with a 15-minute 

rest post swim. These stressors were originally chosen to cause a robust stress response through 

three different pathways – psychological (restraint), physiological (forced group swim), and 

pharmacological (ether). Interestingly, SPS exposure seems to require an 

incubation/sensitization period in order to observe HPA axis dysregulation [23] as well as the 

extinction retention deficit [24, 25]. In addition to the incubation time being important in order 

to observe SPS’s effects, it has been shown that ommitting any one of the three stressor 

components will not result in PTSD-like phenotypes [25]. In the past two decades since its 

development, SPS has been widely used to study adaptations following a severe traumatic 

stressor, with great emphasis placed on characterizing behavioral changes following SPS and their 

relationship to underlying neurobiological processes.  

The effects of SPS on PTSD-relevant fear and safety learning/processing can be studied 

during fear memory acquisition, retrieval of fear memory, acquisition of extinction memory, the 

retention/recall of the extinction memory, and the retrieval of the extinguished fear response 

through spontaneous recovery, reinstatement, or renewal [26]. Like with PTSD [27], SPS exposure 

leads to increased responses during testing for extinction recall and fear renewal [24] (Figure 

1.1). The validity of SPS for modeling PTSD goes further than fear/safety learning and regulation. 
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Several studies have also shown that SPS exposure results in marked cognitive dysfunctions, such 

as memory impairment [28], deficits in mental processing speed [29], and inattention [30]. 

However, it is not yet known whether these cognitive impairments are predisposing factors for 

PTSD or part of the symptomology resulting from the disorder. In addition, sleep disturbances 

contribute to the development and maintenance of PTSD in humans [31], and is associated with 

diverse aspects of PTSD pathology, including sustained fear responses to trauma cues [32], 

hyperarousal [33], and suicidality [34]. Mirroring findings on disrupted sleep architecture in 

patients with PTSD [35], SPS causes increased wakefulness and REM sleep disturbances [36-38]. 

Importantly, the degree of sleep disruption predicted SPS-induced extinction retention deficits 

[37], which suggest that traumatic stress-induced sleep alterations likely contribute to 

development of other PTSD symptoms. 

SPS has been a useful tool for investigating the mechanisms underlying PTSD-relevant 

deficits. Dysregulated HPA-axis seen in both PTSD patients and SPS exposed rats may correlate 

well with altered function and/or expression of glucocorticoid receptors like GR and 

mineralocorticoid receptor (MR). It is thought that a high GR/MR ratio leads to increased 

sensitivity to the stress-related effects of increases in circulating CORT, including negative 

feedback of the HPA axis [39]. Additionally, PTSD symptoms involve alterations of excitatory and 

inhibitory neurotransmission [40]. Interestingly, SPS has been shown to decrease glutamate 

(Glut) and its precursor in the mPFC, but not in the Amyg or Hpc [41, 42]. Less is known about 

SPS’s effects on inhibitory neurotransmission. However, decreased GABA levels in the Hpc have 

been reported [43]. Alterations in serotonin have been linked to behavioral changes seen 

following SPS; for example, markers of serotonin turnover in the dorsal Hpc have been correlated 



9 
 

with increased fear generalization in mice exposed to SPS [44]. The behavioral effects of SPS can 

be ameliorated by a variety of SSRIs, including escitalopram [45], fluoxetine [46], and paroxetine 

[47-49]. SPS also regulates 5-HT receptor expression and signaling across diverse brain regions. 

For example, SPS increases expression of 5-HT2C receptors in the Amyg [50], where these 

receptors have been shown to regulate contextual fear and responses to anxiogenic stimuli [51]. 

In contrast, SPS decreases hippocampal expression of 5-HT3A receptors, which are thought to be 

involved in neurogenesis and antidepressant effects [52].  

There is evidence suggesting that in SPS, neuropeptide-Y (NPY) interacts with brain 

monoamine systems and the HPA axis to orchestrate post-SPS behavioral changes. 

Neuropeptides like oxytocin and NPY have been implicated in stress responses and many are 

known to regulate HPA axis function. SPS exposure increases oxytocin receptor in the Amyg, 

hypothalamus, and Hpc [23]. SPS decreases NPY receptor subtype 2 within the central nucleus of 

the Amyg [53]. Intranasal NPY administration shortly after SPS can prevent these changes as well 

as rescue SPS-induced increases in hippocampal GR and SPS-induced behavioral dysfunctions [54-

56]. Molecularly, MAPK signaling has been shown to play a role in coordinating transcriptional 

responses to SPS via activation of cFos [57], in regulating neuronal apoptosis [58], and in the 

behavioral effects of SPS including hyperalgesia [59] and increased anxiety-like behavior [60]. SPS 

increased levels of phosphorylation (activation) of Akt in the Hpc concurrently with increases in 

GR [61]. Both the MAPK and PI3K/Akt/mTOR pathways are involved in regulating synaptic 

plasticity and cellular morphology, changes underlying fear learning [62]. 
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The SPS model of exposing animals to potentially traumatic stress has strong content 

validity as demonstrated by its ability to produce PTSD-relevant behavioral and neuro-hormonal 

syndrome, impairment of extinction recall and fear renewal, hyperarousal, changes in 

neurotransmitter and neuropeptide systems, and altered responsivity of the HPA axis. However, 

although SPS is a complex, multimodal stressor, it does not account for many of the complex 

features of trauma experienced by humans that may influence the development of PTSD. 

Nonetheless, in concert with other preclinical and clinical approaches to the study of traumatic 

stress and PTSD, SPS holds great potential to expand our basic knowledge of the relevant 

mechanisms, thereby potentially contributing to the discovery of better drug targets that will 

lead to treatment improvement and new treatment development. 

 

SPS, as a rodent model of PTSD, makes for a power tool to study the underlying neuro-

mechanisms for PTSD-relevant behavioral deficits. Adult hippocampal neurogenesis and synaptic 

changes are two such possible neuro-mechanisms that may underlie SPS-induced extinction 

retention deficit.  

 

Adult Hippocampal Neurogenesis and Psychiatric Disorders 

It is widely accepted that in mammals, including humans, adult neurogenesis occurs in 

the sub-granular zone (SGZ) of the dentate gyrus (DG) of the hippocampus (Hpc) [63], among 

other brain regions (Figure 1.3).  These neural stem cells (NSCs) have astrocyte characteristics, 
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though in adulthood, only a fraction of specialized brain astrocytes function as stem cells and 

express glial fibrillary acidic protein (GFAP) [64, 65]. These GFAP expressing NSC give rise to new 

neurons by going through a multistep process involving proliferation, differentiation, maturation, 

survival and integration of new neurons from precursors (Figure 1.4). While these newly divided 

NSC remain immature (i.e. neuroblasts), they transiently express the microtubule binding protein 

– doublecortin (DCX) – making it a good marker for identifying young neurons [66]. As neurons 

mature, they stop expressing DCX and newly adult neurons can be identified by their expression 

of the neuronal marker NeuN [67]. These maturation steps are tightly regulated by both extrinsic 

and intrinsic factors, and by the existing neuronal network activity [65]. Interestingly, most newly 

divided NSCs die shortly after they are born while only a fraction become functionally integrated 

[63]. It is estimated that approximately seven hundred new neurons are incorporated into the 

human Hpc each day [68]. The exact roles these adult-born hippocampus neurons play in 

un/healthy brain function are not under consensus agreement. However, it is widely believed 

that these adult-born neurons play a role in learning and memory and that changes to normal 

rate of birth of these cells are associated with several psychiatric disorders [69]. Interestingly, a 

recent study raises questions of whether adult neurogenesis plays any role at all. They report 

that adult hippocampal neurogenesis drops to undetectable levels after early childhood [70]. 

More postmortem studies are necessary to validate these findings.     

Because the hippocampus’s central role in the process of pattern separation [70] -- 

required for proper contextual processing to facilitate information encoding and retrieval (i.e. 

learning and memory) [71] -- it is no wonder that Hpc has been identified as a potential key player 

in the pathophysiology of several psychiatric disorders [72], some of which share PTSD-relevant 
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symptoms (e.g. major depressive disorder: MDD) [73]. Furthermore, the fact that 

antidepressants are the most common pharmaceutical intervention for treating PTSD [9] and that 

their ameliorative effects are mediated, at least in part, by neurogenesis [74, 75] suggest that 

this may be a potential mechanism linking shared physiology and emergent symptomology 

between PTSD and MDD [73].  

Of possible mechanistic relevance to PTSD, research in animals show that prolonged 

exposure to stress or stress hormones (e.g. cortisol/corticosterone), mediated by GR, reduces 

adult Hpc neurogenesis [76]. Interestingly, our animal model of PTSD – single-prolonged stress 

(SPS) – replicates PTSD-like context-dependent extinction retention deficit accompanied by 

increased GR/MR expression ratio in Hpc, including in the dentate gyrus [24, 25] – where Hpc 

neurogenesis takes place. Furthermore, SPS was designed with the aim of replicating PTSD 

characteristic HPA-axis dysregulation in order to study emergent PTSD-relevant fear processing 

deficits [77]. The confluence of evidence strongly suggests a possible role of adult Hpc 

neurogenesis as a contributing factor for PTSD-like SPS-induced ER deficit.  

 

Synaptic Plasticity and Psychiatric Disorders 

Synaptic remodeling/formation is another form of brain plasticity that could lead to 

susceptibility for development of psychiatric disorders [78], which therefore, has obvious 

relevance to PTSD [79]. At the cellular level, long-term potentiation (LTP) and long-term 

depression (LTD) are the substrates for learning [80]. LTP results from synaptic strengthening 

including long-lasting changes in the architecture of synapses while reduced/unsynchronized 
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synaptic activity and spine pruning characterize LTD [81]. These synaptic changes require 

coordination of gene expression related to all domains of synapse formation and function, many 

still unknown [82, 83]. Interestingly, synaptic remodeling can be induced with exposure to stress 

or stress hormones [84]. Acute cortisone treatment has been shown to result in dendritic atrophy 

in mPFC and hypertrophy within the amygdalae of rats. These neuronal changes were paralleled 

with heightened anxiety-like behavior in elevated plus maze [84]. Additionally, length of stress 

exposure was shown to modulate spatiotemporal patterns of spine formation within the 

amygdala [85]. Interestingly, MDD postmortem studies found fewer dendritic branching and 

reduced expression of synaptic markers within the PFC [86]. Additionally, fast-acting 

antidepressants’ ameliorative action are thought to be mediated by increased synaptic 

remodeling [87]. Consequently, changes in synapses within mPFC-Hipp-Amyg circuitry 

(contextual processing to influence fear expression) could be a possible mechanism by which 

stress exposure, mediated by stress hormones, could alter the function of these brain regions 

and how they communicate with one another. In fact, the need to research synaptic plasticity as 

a possible contributor of PTSD has been proposed [88], yet not seriously addressed. The work 

contained in this thesis aims to investigate if two forms of brain plasticity – adult Hpc 

neurogenesis and synaptic changes – could play a mediating role in the PTSD-like extinction 

retention deficit in SPS. 
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Figure 1.1 Fear/safety behavioral assessments: white/open circles represent animals that 

underwent an extinction session, while black/closed circles represent a group of animals that did 

not. All graphs depict mean (-/+ SEM) percentage freezing on the y- axis against tone trials on the 

x-axis.  On day 1, fear conditioning (FC) consists of five trials presentations of 10-second tones 

co-terminating with a 1-second foot-shock every minute (1min10sec per trial) within context A. 

On day 2, fear extinction (FE) or safety learning, the same 10-second tone is presented for 30 

trials with no shock reinforcement within context B. On day 3, rats are exposed to the same tone 

for 10 trials in either context A for fear renewal (FR) or Context B for extinction retention/recall 

(ER) test. Each behavioral paradigm has a three-minute baseline before the first trial starts.  
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Figure 1.2 Effects of SPS on extinction retention and fear renewal. SPS (black) vs. Controls 

(white) average percent (+/- SEM) freezing is presented for each behavioral assessment. A) Fear 

conditioning and extinction occur on consecutive days are plotted together. There is no 

statistically significant difference between groups during these memory acquisitions days. B) 

Graphs depict bar graph of first five trials averaged for group means (+/- SEM). Extinction recall 

or fear renewal occurred on day three. SPS rats showed exaggerated fear (higher freezing) during 

both tests compared to controls. As expected controls showed higher freezing during fear 

renewal compared to extinction recall. Figure adapted from Knox et al., 2012 [24].    
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Figure 1.3 Niches of adult neurogenesis. Adult hippocampal neurogenesis takes place in the 

subgranular zone of the rat dentate gyrus.  Newly divided neural stem cells in the sub-ventricular 

zone migrate via the rostral migratory stream to the olfactory bulb.  
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Figure 1.4 A schematic summary of the neuronal differentiation cascade in the dentate gyrus. 

“Quiescent neural progenitors generate, through asymmetric divisions, the amplifying neural 

progenitors that, after several rounds of symmetric divisions, exit the cell cycle within 1–3 days 

and become post-mitotic neuroblast-1 cells. Within next 15–21 days, neuroblast-1 cells mature 

into neuroblast-2 and then into immature neurons with apical processes and basal axons and the 

soma located in the granular cell layer. After an additional 10–15 days, immature neurons acquire 

the characteristics of mature granule neurons, develop extensive branching, and send long 

axonal processes, forming the mossy fiber.” Figure taken from Encinas et al., 2006 [89].  
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Chapter 2 

Role of Neurogenesis in SPS-Induced Extinction Retention Deficit  

 

Abstract 

 Posttraumatic stress disorder (PTSD) has been functionally linked to impairments 

in context-dependent fear extinction retention (ER), a process that requires intact prefrontal 

cortex - hippocampal (Hpc) circuitry. PTSD patients show abnormalities in Hpc volume and 

function, and in contextual processing, generally. At the cellular level, adult Hpc neurogenesis 

plays a role in key Hpc functions, like pattern separation, and is sensitive to stress, but has not 

been examined in PTSD. Here we use an animal model of PTSD – single prolonged stress (SPS) – 

to examine adult Hpc neurogenesis and its involvement in context-dependent ER.  We first 

demonstrated impaired ER in irradiated animals, associated with reduced Hpc neurogenesis (by 

70%). Irradiated rats showed normal fear conditioning and fear extinction, but impaired ER 

(increased freezing) associated with the degree of immature cell loss within Hpc. Secondly, we 

examined the effects of SPS on neurogenesis, demonstrating decreased number of immature 

neurons in Hpc of SPS animals. To determine whether this effect was due to cell proliferation or 

survival, we injected BrdU (synthetic thymidine nucleoside, 5-bromo-2'-deoxyuridine) three 
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weeks before SPS (cell survival) or one day after SPS (cell proliferation).  In both cases, SPS 

reduced the number of BrdU+ adult-born dentate gyrus granule cells. Finally, we rescued SPS ER 

effects by enhancing Hpc neuronal survival – via environmental enrichment. Together, these data 

strongly support a role for adult Hpc neurogenesis in mediating an SPS-induced extinction 

retention deficit. These results identify neurogenesis as a potential mechanism underlying PTSD 

contextual processing deficits. 

 

Introduction 

Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition characterized 

by increased fearfulness and heightened arousal [1] . Deficient contextual processing (CP) is a 

relatively novel hypothesis linking PTSD symptoms development to underlying neurobiology of 

hippocampal-prefrontal circuitry [2]. In PTSD, trauma-related memories incongruently intrude in 

“safe” contexts – a loud noise, for example, can elicit a trauma-related reaction even when heard 

in a “safe” home. This may result from an inability to use contextual information to regulate 

recollection of trauma memories [3]. In fear memory paradigms, extinction retention (ER) and 

fear renewal (FR) are context-dependent processes that require intact connections between 

medial pre-frontal cortex (mPFC) and hippocampus [4]. Consistent with CP hypothesis, PTSD 

patients demonstrate abnormalities in both ER and FR, and also display abnormalities in mPFC 

and Hpc [5, 6] suggesting that a CP neural circuit disruption could play a role in PTSD behavioral 

dysfunction.        
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Animal models of PTSD are required to elucidate specific neural circuit disruption on the 

cellular and molecular levels and identify possible therapeutic targets. Single prolonged stress 

(SPS) - a validated animal model of PTSD - produces alterations in physiology and behavior that 

mimic key features of PTSD. Specifically, it enhances fast negative feedback in the hypothalamic-

pituitary-adrenal (HPA) axis [7] – a neuroendocrinological hallmark of PTSD [8] involving the Hpc 

[9]. Like PTSD patients, SPS-exposed rats also show inappropriate fear associated learning with 

abnormal ER and FR [10, 11]. They also have reduced mPFC glutamate and glutamate precursors 

[12], suggestive of altered mPFC activity. Dysfunctional PFC-Hpc neurocircuitry can disrupt 

regulation of amygdala activity, contributing to inappropriate fear responses in PTSD [13]. Both 

Hpc and mPFC are altered by SPS, adding to the model’s utility for studying the neuronal basis of 

a PTSD-relevant CP deficit.  

Human and animal studies demonstrate a critical role of the Hpc in CP [14, 15]. During 

memory acquisition, the Hpc helps develop memory representations that avoid overlap with old 

ones in a process known as pattern separation (PS). It also facilitates pattern completion (PC) – 

retrieval of old memories based on partial cues [16]. Cellularly, PS and PC require neurogenesis 

within the Hpc’s dentate gyrus (DG). Eliminating adult Hpc neurogenesis produces PS 

impairments [17]. Conversely, mice with more functionally integrated adult-born dentate gyrus 

cells (DGCs) can better distinguish between two similar contexts [18, 19]. Appropriate behavioral 

responses to threat cues require an ability to differentiate a safe context from a dangerous one 

with overlapping features. This raises the possibility that diminished CP in PTSD is contributed at 

least partially by diminished Hpc neurogenesis. 
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Interestingly, Hpc, in general, and neurogenesis, in particular, are very sensitive to stress 

exposure. The Hpc is densely populated with glucocorticoid receptors [9], and stress and 

heightened circulating cortisol impact performance on Hpc-dependent tasks [20]. Stress and 

cortisol can alter synaptic plasticity and firing properties of Hpc neurons and can reduce adult 

Hpc neurogenesis [20]. Glucocorticoid (GC) blockade within Hpc can prevent reduction in adult 

neurogenesis from social defeat stress and rescue exaggerated anxiety-like responses [21]. 

Cortisol-induced neurogenesis reduction is likely mediated by low-affinity GC receptors (GR), 

while activation of high affinity mineralocorticoid receptors (MR) has opposing effects [22]. 

Interestingly, the SPS-induced ER deficit is uniquely associated with elevated Hpc GR/MR 

expression ratios [11], suggesting a potential mechanistic link between altered adult Hpc 

neurogenesis and ER deficits.  

Together, the accumulating evidence suggests that impaired Hpc neurogenesis could play 

a mechanistic role in contributing to core CP deficits in PTSD. We herein report on a set of animal 

experiments designed to explore this possibility.  

 

 

Methods 

Overall design: In Experiment I, we first tested whether hippocampal neurogenesis is essential 

for the extinction retention (ER), and whether preventing neurogenesis by means of focal x-

irradiation leads to an ER deficit, mimicking the SPS-induced ER deficit. In Experiment II, we 

sought to establish whether SPS exerts an effect on adult hippocampus neurogenesis. We first 

investigated if doublecortin (DCX) RNA expression was altered within the hippocampus following 
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SPS exposure. DCX is a neuronal migration microtubule-associated protein expressed almost 

exclusively by neuronal precursor and immature neurons [23]. Consequently, a change in the 

number of immature neurons would likely be reflected in the levels of DCX RNA expression. To 

this end, rats were randomly assigned to either SPS or control, their hippocampi dissected and 

processed for RT-qPCR. The experiment was repeated and DCX+ cells within the DG quantified. 

In Experiment III, we were particularly interested in investigating a possible effect of SPS on the 

survival of adult-born DG cells due to the timeline of the SPS-induced ER deficit. We have 

previously shown that SPS results in ER deficit ten days post SPS exposure (Knox et al., 2012). 

Newly born neurons do not show synaptic connectivity and functionality until approximately 

21days after neurogenesis [24]. Therefore, SPS effects on neuronal proliferation could not explain 

the presence of behavioral deficits manifesting as early as 10 days following the SPS. To 

investigate whether SPS affects survival of adult-born DGCs (i.e. survival of neurons that were 

born prior to SPS exposure), rats were administered 5-bromo-2'-deoxyuridine (BrdU) - a synthetic 

nucleotide for tracking recently divided cells- for four days. Twenty-one days after the last 

injection, rats were exposed to either SPS or control. In Experiment IV, we investigated whether 

promoting proliferation of adult hippocampal neurogenesis through voluntary exercise would 

counter the effects of SPS on reduced proliferation, thereby rescuing SPS ER deficit. In Experiment 

V, we investigated whether adult Hpc neurogenesis plays a role in extinction retention (ER) by 

attempting to rescue ER in SPS-exposed animals by enhancing survival of adult Hpc neurogenesis. 

We exposed rats to environmental enrichment (EE) as a neurogenesis enhancing intervention 

following SPS-exposure, as EE has been previously shown to selectively promote neuronal 

survival [25]. 
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Subjects: the subjects were 164 adult male Sprague Dawley rats (42 – 45days old; 150 g), 

obtained from Charles River (Wilmington, MA). Upon arrival, all rats were pair-housed for a 

minimum of 3 days and were then individually housed after exposure to stress or a control 

procedure. All rats had ad libitum access to water and standard rat chow. All experimental 

procedures were approved by the Veteran Affairs Institutional Animal Care Usage Committee. 

 

Experiment I Does reducing adult hippocampal neurogenesis through irradiation lead to 

extinction retention deficits? 

Irradiation: 20 animals (10 Sham and 10 Irradiated) were deeply anesthetized in a vented 

anesthesia chamber using 3-5% isoflurane. After 3-5minutes, the depth of anesthesia and 

analgesia was monitored by checking the following parameters: regular and relaxed respiratory 

rate, absent withdrawal reflex upon foot pinch, and no response to external stimuli. Rats were 

placed laterally on a treatment table, and the eyes, oropharynx and body shielded with lead. Rats 

received 9 Gy total irradiation split in 3 fractions of 3 Gy given over 3 days; each delivered at a 

rate of approximately 175 cGy per minute using a Phillips 250 kV orthovoltage unit. Half of each 

treatment was given, and then the animal was turned over and the remainder of the dose 

delivered to the other side of the head to reduce potential adverse effects. Sham-irradiated rats 

were handled and anesthetized, but not irradiated. All rats remained undisturbed for 28 days 

after the last exposure. After this quiescent period, all rats underwent fear learning (FL; Figure 

2A).  
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Chambers: All FL sessions were conducted in identical rodent observation chambers constructed 

of aluminum and Plexiglas (30×24× 21 cm; MED Associates), situated in sound-attenuating 

chambers and located in an isolated room. The floor of each chamber consisted of 19 stainless 

steel rods (4 mm in diameter) spaced 1.5 cm apart (center to center). The grid floor was 

connected to a shock source and a solid-state grid scrambler (MED Associates) which delivered 

the foot-shock unconditioned stimulus (UCS). Mounted on one wall of the chamber was a speaker 

to provide a distinct auditory CS; on the opposite wall was a 15-W house light and a fan, which 

provided background noise (65 dB). Cameras mounted to the ceiling of the sound-attenuating 

chambers were used to record behavior, which was scored offline. Two unique contexts were 

created by manipulating auditory, visual, and olfactory cues: Context A comprised an odor- 1% 

acetic acid solution placed in trays at the bottom of the chambers, the house light on, chamber 

doors closed, and sound of fans on in the chambers; Context B comprised an odor- 1% ammonium 

hydroxide solution in chambers, red light on, chamber doors open, and fans off.  

Fear learning paradigm: On the first day of FL, rats were placed in their individual chambers for 

fear conditioning in Context A and received five paired presentations of a tone (10 sec, 2 kHz, 80 

dB) that co-terminated with a footshock (1.0 mA, 1 sec) beginning 180 sec after being placed in 

Context A. There was a 60-sec inter-trial-interval (ITI), and the rats remained in the chambers for 

60 sec after the last foot-shock presentation. One day after conditioning, rats were placed into a 

novel context (Context-B) and were presented with 30 tone presentations (10 sec, 2 kHz, 80 dB, 

60-sec ITI), in the absence of foot-shock, beginning 180 sec after being placed into the chambers 

in order to extinguish fear responding to the tone (i.e., extinction training). Two days after 
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conditioning, rats were placed back into Context-B and were presented with 10 tones beginning 

180 sec after being placed into the chambers in order to assess extinction retention.  

Brain collection and processing: The day following extinction retention testing, rats were deeply 

anesthetized with sodium pentobarbital and perfusion-fixed with saline followed by 4% 

paraformaldehyde (PFA). Brains were removed and post-fixed in 4% PFA overnight, then 

cryoprotected in 30% sucrose. Coronal serial sections were cut at 50 µm on a cryostat, every 

fourth section was collected into 24 well-plates containing tris-buffered saline (TBS, pH = 7.4), 

resulting in four sets of sectioned brain containing the Hpc (from bregma −2.30 to −5.20 mm). 

Ventral (v) and dorsal (d) hippocampus (Hpc) were defined here as the first and last 5 brain 

sections, respectively, within each set. The sets not immediately processed by 

immunohistochemistry (IHC) were transferred into cryoprotectant and stored at −20°C for later 

use.  

Immunohistochemistry: To assess neurogenesis reduction, we quantified immature neurons 

expressing doublecortin (DCX). Diaminobenzidine IHC was performed with antibodies against 

DCX using previously published protocols [26]. Briefly, sections were rinsed in TBS, blocked with 

10% normal horse serum (Invitrogen, Carlsbad, CA), and incubated overnight at 4°C with rabbit 

DCX antibody (1:1000, Roche Applied Science, Indianapolis, IN). The following day sections were 

rinsed, incubated in secondary antibody (1:200 biotinylated goat anti-rabbit IgG, Vector Labs, 

Burlingame, CA) for 1 hour, rinsed, signal amplified with Vector ABC kit, developed with stable 

diaminobenzidine (Invitrogen), mounted onto slides, dehydrated and cleared in ethanol and 

xylenes, then coverslipped using Permount (Sigma-Aldrich).  
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Imagining and analysis: Images were captured with an Olympus CX41 microscope equipped with 

INFINITY 1 camera (Lumenera; Ottowa, ON) using INFINITY ANALYZE software (Lumenera). 

Images were standardized by adjusting the minimum and maximum brightness to the ends of the 

optical density distribution (levels function, PHOTOSHOP; Adobe Systems, Mountain View, CA, 

USA). The hippocampus was identified by anatomical landmarks and both hemispheres were 

included in analysis. For DCX+ cell counts, three micrographs were taken within each dentate 

gyrus (DG) at a 100x magnification (Figure 1A). For BrdU-expressing cell counts, 

photomicrographs were captured at 10x and the granular cell layer was identified as a dark band 

of densely packed cells within the DG. Dark brown circular stainings were counted as BrdU-

expressing cells only if directly underneath this cell layer in the SGZ (Figure 1B). All 

Photomicrographs were overlaid and counted using Adobe PHOTOSHOP by two observers blind 

to experimental group. Inter-rater reliability was assessed by Pearson correlation (R = 0.96).  

Data analysis: Freezing behavior was manually scored by two observers blind to experimental 

conditions.  All videos were first recorded and stored on a digital hard-drive, then copied to be 

viewed on the computer and scored using a stopwatch. Freezing was defined as the absence of 

movement, except that necessary for breathing, for >2 sec and quantified as a percentage of the 

total time recorded (i.e. Tone + ISI or 70sec). For fear extinction, freezing across three extinction 

trials were averaged into a block (baseline, blocks 1– 10 are graphed). For extinction 

retention/recall, freezing across five trials were averaged into a block (baseline, blocks 1 and 2 

are graphed).  
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Statistical analysis: FC and ER were analyzed using repeated measures ANOVA for all 

experiments. Independent sample’s t-Tests were used to compare effects of SPS where 

appropriate. The criterion for significance was set at P<0.05. Two rats that did not show a 

conditioned freezing response >30% at the start of a fear extinction session or exhibited freezing 

levels +/- 2 standard deviations from a group mean and were, therefore, excluded from final 

analyses. All data are represented as means +/- SEM.

 

Figure 2.1 Methodological depiction of cell counts. All cell counts were done in the sub-granular 

zone (SGZ) of the dentate gyrus (DG) of the hippocampus (Hpc). (A) The blue boxes (top right 

micrograph) delineate the areas chosen for DCX counting (bottom row captured at 100x). Scale 
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bars = 15um and 150nm. (B) Micrographs were captured at 10x magnification (Left micrograph) 

and only BrdU+ cells immediately under the SGZ were counted (green arrows) while all staining 

outside of this area was excluded from analysis (red arrows). Scale bars = 15 um 

 

Experiment II Does single-prolonged stress affect adult hippocampal neurogenesis? 

SPS procedures were performed as previously described [27]. Briefly, animals in the SPS group 

were exposed to restraint for 2 h, followed immediately by 20 min of forced swim in a plastic tub 

(55.6-cm diameter, 45.4-cm height) filled two-thirds from the bottom with water (20–24 ̊C). 

Fifteen minutes after the forced swim, rats were exposed to ether vapors in a glass desiccator 

until fully anesthetized displaying no toe or tail pinch response (5 min of ether exposure). 

Immediately after the induction of general anesthesia, rats were removed from the desiccator, 

housed singly, and left undisturbed for 7 days. Rats assigned to the control group were housed 

singly, left undisturbed and remained in the housing colony until euthanized along with SPS 

animals after 7 days undisturbed post SPS. their brains immediately flash frozen and later 

processed for RNA-isolation and real-time quantitative PCR (RT-qPCR). Briefly, brains were cut 

into 500um sections and ventral and dorsal hippocampi were identified using anatomical 

landmarks, dissected on both hemispheres and dorsal and ventral Hpc were processed separately 

(biological duplicates): homogenized, RNA was extracted and transcribed into cDNA using 

SuperScript III (Invitrogen) and random hexamer primers. cDNA was thereafter amplified on a 

Roche 96 light cycler using SYBR Green PCR Master Mix kits (Roche) and analyzed using the 

accompanying software (LightCycler 96 SW 1.1). Primer pairs were designed using Primer Blast. 

Doublecortin: Fwrd 5’- CAG TCA GCT CTC AAC ACC TAA G-3’ REV 5’- CAT CTT TCA CAT GGA ATC 
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GCC-3’. Data were normalized by housekeeping transcript hypoxanthine-guanine 

phosphoribosyltransferase (Hprt): Fwrd 5’- GCG AAA GTG GAA AAG CCA AGT- 3’ REV 5’- GCC ACA 

TCA ACA GGA CTC TTG TAG -3’ 

To verify that the decrease in DCX RNA expression was due to a decrease in the number of 

immature neurons and not due to an independent decrease in DCX RNA expression, this 

experiment was replicated changing how the animals’ brains were processed; brains were fixed 

by cardiac perfusion of 4%paraformaldehyde, sectioned and processed for 

immunohistochemistry for DCX. The micrographs were analyzed and the number of immature 

neurons quantified as described in Experiment I.   

 

Experiment III Does single-prolonged stress affect proliferation and/or survival of adult-born 

hippocampal neurons?   

To test SPS’s effect on proliferation, rats were randomly assigned to SPS or control (n = 12/group). 

After exposure to SPS or control condition as described in Experiment II, rats were all injected 

with 50mg/Kg of the synthetic nucleotide 5-bromo-2'-deoxyuridine (BrdU; Sigma Aldrich) 

intraperitoneally (IP) for seven days starting on day 9. All rats were euthanized on day 17 (Figure 

2A). To assess SPS’s effects on cell survival, all rats were injected with BrdU twice per day for four 

days then randomly assigned to SPS or control.  23 days after the first BrdU injection (Day 24) 

rats were exposed to SPS or the control condition and then euthanized on day 35 (Figure 3A). For 

both proliferation and survival, all brains were 4% PFA-fixed through cardiac perfusion and later 

processed for IHC, as described in Experiment 1, and probed for BrdU. For BrdU staining sections 

were rinsed in TBS, denatured in 2N HCl at 37°C for 30 min, neutralized in 0.1M boric acid for 10 
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min, rinsed, blocked with 10% normal goat serum (Invitrogen, Carlsbad, CA), and incubated 

overnight at 4°C with anti-BrdU antibody (1:1000 dilution; mouse monoclonal, Roche Applied 

Science, Indianapolis, IN). The next day, sections were rinsed in TBS then incubated for two hours 

in secondary antibody (1:200 biotinylated goat anti-mouse IgG, Vector Labs) and processed as 

with DCX IHC. The micrographs were captured at 10x magnification. The number of BrdU+ cells 

in the sub-granular layer (SGZ) of the DG was quantified as described above. 

 

Experiment IV Does promoting proliferation of adult-born hippocampal cells through voluntary 

exercise rescue single-prolonged stress-induced extinction retention deficits?  

After two days of acclimation to the locked wheel (14.0in or 35.6 cm diameter), half the wheels 

were unlocked and revolutions recorded using a bicycle speedometer (Wolfride Co., China) from 

day 3 to 42. Half of those (quarter overall) and another half of the group with the locked wheel 

were assigned to either SPS or Control on day 31 resulting in four experimental groups (2x2 

design: Control, Control-VE, SPS and SPS-VE; n=8/group). SPS and control procedures were done 

as described in Experiment II. Fear learning took place day 43 through 45 as described in 

Experiment I. On day 46 all animals were euthanized, their brains harvested and prepared for 

BrdU IHC as described in Experiment III (see experimental design Figure 3.6A).   

 

Experiment V Does promoting survival of adult-born hippocampal cells through environmental 

enrichment rescue single-prolonged stress-induced extinction retention deficits?  

After acclimation, all rats were injected with BrdU twice per day for four days. 21 days after the 

last injection, the 32 rats were randomly assigned and underwent SPS or control procedure. On 
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day 35, half of each group was then randomly assigned to environmental enrichment (EE) or 

control, resulting in four experimental groups (two by two design with n = 8/group): Control, 

Control+EE, SPS, and SPS+EE. Rats in the EE conditions randomly received one of two versions of 

EE elements sequence (Table 1) in which EE elements were replaced every two days for a total 

of eight days. Control rats were left singly housed and undisturbed during this time. The day after 

the last EE exposure all rats went through fear learning as previously described (Figure 6A). After, 

all animals were euthanized, their brains fixed and processed for BrdU IHC as described above.  

Statistical analysis: FC and ER were analyzed using repeated measures ANOVA for all 

experiments, and post hoc comparisons were done by creating four treatment groups by 

combining SPS and environmental enrichment (EE) exposure (e.g. Control-Control, Control-EE, 

SPS-Control, SPS-EE) for that experiment only. Additionally, a repeated measures ANCOVA with 

freezing scores for the last block from FE as a covariate was used to analyze SPS and EE effects 

on ER. Independent sample’s t-Tests were used to compare effects of SPS where appropriate. 

The criterion for significance was set at P<0.05. Four rats that did not show a conditioned freezing 

response >30% at the start of a fear extinction session or exhibited freezing levels +/- 2 standard 

deviations from a group mean and were, therefore, excluded from final analyses. All data are 

represented as means +/- SEM. 
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Table 2.1 Environmental enrichment element sequences. Details the order in which different 

enrichment component were introduced and replaced during the eight days. 

 

Results 

Hippocampal Irradiation mimics single prolonged stress-induced extinction retention deficit 

Initially, to establish the functional link between effects of adult Hpc neurogenesis and the 

behavioral ER deficit independent of SPS exposure, we reduced Hpc cellular proliferation by x-

ray irradiation and later tested for fear learning (FL) and processing deficits (Figure 2A). 

Irradiation resulted in a 70% average reduction of DG DCX+ immature neurons 28 days after the 

last irradiation treatment (independent sample’s t-Test; t(18) = 15.17, p< 0.0001; Figure 2C). This 

decrease in the number of neurons was accompanied by higher percentage of freezing during ER 

(Repeated measures ANOVA; F(1, 18) = 6.71, p = 0.019), but not during FC or FE (Figure 2B), 

demonstrating significant reduction in extinction retention, with no effects on fear and extinction 

learning. These results mimic SPS’s effects on FL, FE and ER reported by our group in earlier 

studies [10, 11]. Additionally, the number of Hpc immature neurons was negatively correlated to 

the percentage of time spent freezing during ER (Pearson’s correlation; r(19) = -0.58, p =0 .009; 

Figure 2D). In other words, greater decrease the adult Hpc neurogenesis was associated with 

greater deficit in the extinction retention - supporting the mediating role of decreased adult 

neurogenesis in the development of ER deficit.  
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Figure 2.2. Neuronal irradiation mimics SPS- induced extinction retention deficit. (A) Illustration 

of the experimental design. (B) Averaged freezing percentages +/- SEM during FC, FE and ER are 

plotted in light (Irradiated) and dark (Sham) gray lines. Irradiated rats showed higher freezing 

percentage during ER (T(17)= -2.73, p= 0.014), but not FC or FE. (C) Average plus SEM of total 

number of DCX+ DG neurons were graphed for Sham (white) and Irradiated (gray) rats with 

corresponding micrographs showing DCX expression in dark brown staining. Irradiation resulted 

in a significant reduction of DCX+ neurons (t(18) = 15.17, p< 0.0001). (D) Percent freezing during 

Block 1 of ER was negatively correlated to the number of immature neurons in the Hpc (r(19) = -

0.58, p =0 .009).   
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Single prolonged stress exposure decreases the number of immature neurons in the dentate 

gyrus of adult rats 

To explore whether SPS exposure influences adult Hpc neurogenesis, we first measured the 

relative DCX RNA expression within the Hpc of rats. We found that SPS resulted in an average 

15% reduction in the relative (normalized to housekeeping gene HPRT) DCX RNA expression level 

as compared to Control group (independent sample’s t-Test; t(13) = 2.91, p = 0.012; Figure 3B). To 

verify that the decrease in DCX was due to a decrease in the number of immature neurons and 

not a decrease in RNA expression only, we replicated this experiment, substituting processing 

the brains for DCX immunohistochemistry instead of RT-qPCR. SPS exposure resulted in an 

average reduction in the number of DCX-expressing dentate gyrus cells (DGCs) of about 18% as 

compared to Control animals (t(12) = 2.7, p = 0.017; Figure 3C). The decrease of immature neurons 

was found in both dorsal (d) and ventral (v) Hpc (t(12) = 2.26, p = 0.04 and t(12) = 2.5, p = 0.025, 

respectively; Figure 3C).  This confirmed that the SPS decrease in DCX RNA was due to the 

decrease in the number of DCX-positive Hpc neurons. 
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Figure 2.3 SPS decreases premature neurons in the dentate gyrus of adult rats. All bars 

represent the group average + SEM. (A) Illustration of the experimental design. In all panels: SPS 

(Grey) are compared to Controls (White). (B) Shows the relative percentage to Controls: where 

SPS had 85% of Control’s DCX RNA expression (t(13) = 2.91, p = 0.012). (C) In a different set of rats, 

the number of DCX expressing cells was counted. SPS significantly decrease the number of DG 

DCX+ neurons (t(12) = 2.7, p = 0.017). The decrease was also seen in the dorsal and ventral Hpc 

(t(12) = 2.26, p = 0.04 and t(12) = 2.5, p = 0.025, respectively).  
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Single prolonged stress exposure decreases cellular proliferation in the sub-granular zone of 

the dentate gyrus of adult rats 

To test if SPS affects adult hippocampal cellular proliferation, we exposed rats to SPS prior to 

BrdU injections (Figure 4A). We found that rats exposed to SPS had statistically significantly fewer 

total number of BrdU+ DGCs compared to Control animals (independent sample’s t-Test; t(21) = 

2.43, p = 0.024; Figure 4B). Furthermore, SPS resulted in fewer BrdU+ DGCs in the ventral 

(independent sample’s t-Test; t(21) = 2.26, p= 0.035), but not dorsal Hpc compared to controls 

(Figure 4B). 

 

Figure 2.4. SPS decreases proliferation of cells in the dentate gyrus of adult rats. (A) Illustration 

of the experimental design. (B) Number of BrdU+ DGCs were counted and further divided into 

dorsal and ventral areas of the Hpc. The group’s average + SEM are graphed here; SPS (Grey) are 
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compared to Controls (White).  SPS reduced the number of BrdU+ cells in the Hpc and vHpc [(t(21) 

= 2.43, p = 0.024) and (t(21) = 2.26, p= 0.035), respectively],  but not the dHpc (P > 0.05).   

Single prolonged stress exposure decreases survival of cells in the sub-granular zone of the 

dentate gyrus of adult rats 

We found that rats that underwent SPS 21 days after the last BrdU injection had statistically 

significantly fewer total BrdU-stained DGCs as compared to non-exposed controls (independent 

sample’s t-Test; t(22) = 2.72, p = 0.013). SPS rats also showed fewer BrdU positive cells in DG in 

vHpc, and a trending decrease in the dHpc compared to controls (independent sample’s t-Test; 

t(22) = 2.53, p= 0.019 and t(22) = 1.76, p= 0.092, respectively; Figure 5B).  

 

Figure 2.5. SPS decreases survival of adult-born dentate gyrus cells of adult rats. (A) Illustration 

of the experimental design. The group’s average + SEM are graphed here; SPS (Grey) are 

compared to Controls (White). (B) Number of BrdU+ DGCs were counted and further divided into 
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dorsal and ventral areas of the Hpc. SPS reduced the number of BrdU+ cells in the Hpc and vHpc 

[(t(22) = 2.72, p = 0.013) and (t(22) = 2.53, p= 0.019) respectively],  and a trend level reduction in 

the dHpc (#0.1>P>0.05).  

 

Voluntary exercise had no effects on neurogenesis or fear learning 

In concert with previous findings, SPS had a significant effect on total and dHipp DGCs [ANOVA; 

F(1,29) = 11.41, P= 0.002; F(1,29) = 20.67, P= 0.00001]. Voluntary exercise had a trending effect 

on vHipp DGCs (ANOVA; F(1,28) = 3.26, P= 0.083). There was no interaction effect of SPS and VE 

(P> 0.05; Figure 3.6C). There were no effects of VE or SPS on fear learning (P> 0.05; Figure 3.6B). 

There was no difference in the amount of voluntary exercise between the two VE groups (P> 

0.05; Figure 3.6D). Lastly, there was no difference in their body weights (P> 0.05; Figure 3.6E). 
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Figure 2.6 Voluntary exercise had no effects on any measures. (A) Illustration of the 

experimental design. (B) Averaged freezing percentages +/- SEM during FC, FE and ER are plotted 

for Controls (solid black), VE (dashed black), SPS (solid gray), and SPS plus VE (dashed gray). There 

were no statistically significant effects of SPS, VE or their combination. (C) Bar graph of average 

number of BrdU+ DGCs plus SEM are plotted for Controls (white), SPS (Gray), VE (checkered 

white), and SPS + VE (checkered gray). SPS had a significant effect on total and dHipp DGCs 
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[F(1,29) = 11.41, P= 0.002; F(1,29) = 20.67, P= 0.00001]. Voluntary exercise had a trending effect 

on vHipp DGCs ( F(1,28) = 3.26, P= 0.083). There was no interaction effect of SPS and VE (P> 0.05). 

There were no statistically significant effects (P> 0.05). (D) Bar graph of average number of total 

daily revolutions. (E) Bar graph of average body weight per group. There were no statistically 

significant effects (P> 0.05). 

 

Environmental enrichment promotes cell survival and reverses single prolonged stress-induced 

extinction retention deficits 

In concert with previous findings, SPS exposure significantly decreased the total number of BrdU+ 

DGCs (ANOVA; F(1, 23) = 10.04, p = 0.004). Furthermore, SPS reduced BrdU+ DGCs in vHpc and had 

a trend-level reduction in dHpc (ANOVA; F(1, 23) = 5.13, p = 0.033 and F(1, 23) = 3.74, p = 0.066, 

respectively). Environmental enrichment rescued these effects; there were statistically 

significant SPS by EE interaction effects on the number of BrdU+ DGCs in Hpc (ANOVA; F(1, 27) = 

18.87, p < 0.0001), dHpc (F(1, 27) = 19.80, p < 0.0001), and vHpc (ANOVA; F(1, 27) = 6.47, p = 0.018). 

There was no main effect of EE alone (Figure 6C). Behaviorally, there was no main effect of SPS 

or EE during fear conditioning (P>0.05, Figure 2.7B). Test of between-subjects effects revealed an 

interaction effect of SPS by EE during fear extinction (repeated measures ANOVA; F(1, 27) = 6.20, p 

= 0.022), but no main effect of SPS or EE alone (p > 0.05). Post-hoc analysis among the four 

resulting groups revealed no significant differences between any of the groups compared 

(P>0.05). During ER, multivariate test in ANCOVA with the last FE block as a covariate revealed 

main effect of group (SPS) and main effect of EE (F(1, 27) = 4.58, p = 0.043 and F(1, 27) = 7.19, p = 

0.013, respectively), while between-subjects effects analysis revealed a statistically significant 
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contribution from the covariate (F(1, 27) = 4.8, p = 0.038), main effect of EE and interaction effect 

of group by EE (F(1, 27) = 5.32, p = 0.03 and F(1, 27) = 5.65, p = 0.026, respectively), but no main effect 

of group alone (P>0.05). Repeated measures ANOVA analysis among the four resulting groups 

revealed statistically significant differences among the groups (F(3, 27) = 6.16, p = 0.003). Post-hoc 

Benferroni analysis revealed significant differences between Control-Control vs. SPS-Control (P = 

0.008) and between SPS-Control vs. SPS-EE (P = 0.006).  In this experiment, the number of BrdU 

positive cells in the DG was also negatively correlated to the percentage of time spent freezing 

during Block 1 of ER (r(27) = -0.634, p =0 .001; Figure 6D).   
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Figure 2.7 Environmental enrichment restored single prolonged stress reduction of adult-born 

dentate gyrus cells and rescued single prolonged stress -induced extinction retention deficit. 

(A) Illustration of the experimental design. (B) Averaged freezing percentages +/- SEM during FC, 

FE and ER are plotted for Controls (solid black), EE (dashed black), SPS (solid gray), and SPS plus 

EE (dashed gray). There was a statistically significant effect of SPS and an interaction effect of SPS 

by EE during FE [(F(1, 27) = 7.22, p= 0.013) and (F(1, 27) = 10.0, p= 0.005), respectively], but not EE 

alone (P>0.05). There were statistically significant effects of SPS (F(1, 27) = 4.99, p= 0.037), EE (F(1, 

27) = 5.00, p= 0.036) and interaction effect of the two (F(1, 27) = 19.59, p< 0.0001) during ER. These 

effects were no seen during FC (P>0.05). (C) Bar graph of average number of BrdU+ DGCs plus 

SEM are plotted for Controls (white), SPS (Gray), EE (checkered white), and SPS + EE (checkered 

gray). SPS had main effects on the number of BrdU+ DGCs (F(1, 27) = 10.04, p= 0.004) and vHpc (F(1, 

27) = 5.13, p< 0.033), and a trending effect on dHpc (F(1, 27) = 3.74, p= 0.06). There were SPS by EE 

interaction effects on the number of BrdU+ DGCs (F(1, 27) = 18.87, p< 0.0001), dHpc (F(1, 27) = 

19.801, p< 0.0001), and vHpc (F(1, 27) = 6.47, p= 0.018). (D) Percent freezing during Block 1 of ER 

was negatively correlated to the total number of BrdU+ DGCs (r(27) = -0.634, p =0 .001).   

 

Discussion  

Deficient contextual processing (CP) is a relatively new theoretical model seeking to link PTSD 

symptoms to underlying neurobiology [2]. Extinction recall (ER) is a context-dependent memory 

process that requires intact connections between medial pre-frontal cortex (mPFC) and 

hippocampus (Hpc) [4]. PTSD patients exhibit ER deficits accompanied by Hpc abnormalities in 

size and function [4-6]. Single prolonged stress (SPS) - a validated rodent model of PTSD mimics 
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key features of PTSD including  extinction recall deficit [10, 11]. However, the exact molecular 

substrate of this deficit is not known. In a set of experiments utilizing adult Sprague Dawley rats, 

we have demonstrated that: 1) irradiation-induced decrease in neurogenesis  correlates with ER 

deficits, while leaving intact fear learning and extinction learning capacity (similar to what we 

found in SPS model),(see Experiment I); 2) as hypothesized , animals exposed to SPS paradigm, 

(previously characterized to show deficient contextual processing and diminished ER [10]) 

demonstrate decreased hippocampal cellular proliferation, maturation and survival (cell loss 

shown in the Experiments II and III); 3) A behavioral intervention EE known to promote neuronal 

survival [25] rescued SPS-induced extinction retention deficits and the number of surviving young 

cells was inversely correlated with ER deficits. Taken altogether, our findings suggest that 

decreased adult hippocampal neurogenesis could mediate the effect of single prolonged stress 

exposure on extinction retention.  These results thus implicate decreased neurogenesis as a 

potential mechanism underlying the extinction retention deficit seen in PTSD [6], and perhaps as 

a possible mechanism for the more general deficit in contextual processing that may play a critical 

role in the pathophysiology of the disorder [2]. Interventions aimed at enhancing survival of 

adult-born hippocampal neurons should be explored as a way to combat PTSD fear processing 

deficits. 

Other psychiatric disorders, often comorbid with PTSD (e.g. depression), implicate 

decreased adult hippocampal neurogenesis [28], though the developmental stage of these 

targeted neuronal populations is not yet known. However, different psychiatric drugs and 

treatments have been shown to affect neurogenesis by promoting different stages of the cell 

cycle. For example, antidepressants promote increased neurogenesis by targeting all three 
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stages, while antipsychotics promote maturation and survival, but do not increase proliferation 

[28]. It is possible that neurogenesis is affected through unique mechanism depending on the 

disorder. In other words, depression may affect all stages while disorders involving psychosis may 

affect neurogenesis at the maturation and survival stages. In PTSD, sufferers often exhibit smaller 

Hpc volume [5]. If adult neurogenesis is part of the underlying etiology, it would be difficult to 

determine if decreased volume is attributed to decreased cell division (proliferation) or cell death 

(targeting maturation and cell survival). However, in this study, extinction retention deficit could 

only be explained by a decrease in neuronal survival.  

Even though SPS exposure affected all stages of neurogenesis tested here - proliferation 

(Experiment III), maturation (Experiment II), and survival (Experiment III), SPS-induced behavioral 

deficits that manifest within 2 weeks of SPS exposure [10, 11]- could likely be explained by SPS’s 

effects on the last stages of maturation and survival. Interestingly, this maturing neuronal 

population has unique properties compared to long matured DG neurons, especially during the 

last stages of maturation (4-6wks old). The effects of radiation-decreased Hpc neurogenesis in 

ER-deficits were observed around four weeks post treatment (Experiment I)- a time when these 

immature neurons would have been most active. In parallel, environmental enrichment (EE)’s 

rescuing effects on cell survival and ER deficits also occurred within this timeline (Experiment IV). 

During this developmental time, these young neurons are more prone to long-term potentiation 

(LTP), likely due to their higher probability to fire [29]. As they mature, they become more 

strongly inhibited resulting in their mature characteristic of low firing rate [30]. It is these unique 

properties that are theorized to give rise to two key Hpc cognitive functions: pattern completion 

(PC) and pattern separation (PS), which might be critical for contextual processing. Activation of 
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Hpc young neurons results in greater inhibition of mature granule neurons making it less 

probable for mature neurons to fire [31]. It is the mature granule neurons’ very selective firing 

that upon partial activation of a neuronal ensemble, a memory can be quickly recalled (i.e. 

pattern completion). Therefore, a decrease in adult neurogenesis could result in lower inhibition 

and higher probably of firing in mature DG neurons leading to inappropriate pattern completion. 

On the other hand, higher firing probability of immature DG neurons leads to greater diversity of 

neuronal ensemble activation resulting in unambiguous encoding of similar yet novel cues 

presentations (i.e. pattern separation) [24]. A decrease in adult Hpc neurogenesis would also 

affect PS by limiting the diversity of neuronal encoding and possibly resulting in generalizations. 

Given the key role of adult Hpc neurogenesis in pattern separation and pattern completion and 

their key role in disambiguating similar contexts, the SPS-induced ER might result from decreased 

hippocampal neurogenesis.  

Most of the reduction in the number of BrdU positive dentate gyrus cells (BrdU+ DGCs) 

was contributed by reduction in ventral and sometimes dorsal Hpc. In animals studies, the vHpc 

has been implicated in regulating anxiety-like behaviors; vHpc lesions decreased avoidance of 

open arms in elevated plus maze [32] and decreased freezing during exposure to predator odor 

[33]. Interestingly, neurons born within both location of the dorsoventral axis of the dentate 

gyrus have been shown to be functionally heterogenous. Specifically, adult-born cells within the 

dHpc have been shown to be important for discriminating contexts while vHpc were shown to be 

necessary for the ameliorative effects of fluoxetine [34]. However, appropriate responding, 

especially during challenging situations, requires both areas to act in concert.     
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Surprisingly, voluntary exercise failed to increase cellular proliferation or rescue  

SPS-induced reduction in the number of BrdU+ DGCs. Additionally, SPS did not result in fear 

learning deficits at any of the stages tested. Elsewhere, VE has been shown to increase 

proliferation of adult-born DGCs after as few as 12 days of access to the running wheel [35]. 

Additionally, the amount of daily exercise (average of 3.2 km/day) of our animals was comparable 

to other publications reporting high cap at 4 km/day [25]. Though rescuing of behavioral effects 

was not expected since these neurons would have been too young to contribute to Hpc function 

[29], we expected SPS to result in ER deficit as previously reported [10, 11]. However, it is possible 

that the presence of the locked running wheel in this experiments, which was supposed to serve 

as a control, may have actually served as EE and, therefore, prevented SPS effects on extinction 

retention [25].   

In the EE experiment, during fear extinction, SPS-Control (i.e. SPS alone) animals appear 

to differ from other groups (Figure 2.7B) and that perhaps this could account for the elevated 

freezing during extinction retention test the following day. However, upon statistical scrutiny, 

repeated measures ANOVA during FE only revealed an interaction effect of SPS by EE, but no 

main effects of either intervention alone. Furthermore, the four resulting groups (e.g. Control-

Control, Control-EE, SPS-Control and SPS-EE) were analyzed using repeated measures ANOVA, 

revealing no effect of group and no statistically significant difference between the pair-wise 

comparisons among the four groups in post-hoc tests. More importantly, when freezing 

percentage during the last FE block was used as a covariate to account for effects during ER, this 

measure could only partially account for some, but not all of the statistically significant 

differences. Furthermore, post-hoc Benferroni analysis of the four groups revealed statistically 
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significant differences when SPS alone was compared to controls and SPS that underwent EE (i.e. 

SPS-control vs. control-control and SPS-control vs. SPS-EE). These results support the conclusion 

that there was a SPS-induced ER deficit, which was rescued by EE exposure.  

Taken all together, this body of evidence suggests a role for adult hippocampal 

neurogenesis in mediating extinction retention deficits in single-prolonged stress model of PTSD. 

Because of the key function of Hpc neurogenesis in pattern completion and pattern separation, 

it is likely that ER deficit is due to deficient contextual processing. Although this evidence 

contributes to understanding of the disorder and could eventually lead to better treatment, there 

is still much work to be done. For example, anti-depressants-- whose ameliorative actions depend 

on increased adult hippocampal neurogenesis [36], do not always result in symptoms 

improvement for PTSD patients [37]. It is likely that increased neurogenesis without being 

accompanied by other interventions, such as behavioral and cognitive therapies, limits the drugs’ 

efficacy. Understanding the exact role adult neurogenesis plays in psychiatric disorders like PTSD 

still necessitates further scientific investigation. Nevertheless, studies like this one bring the field 

closer to being able to identify better and more precise therapeutic targets for treating and 

perhaps eventually curing PTSD.   
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CHAPTER 3 

Effects of SPS on Expressions of Synapse-Related Genes 

 

Abstract 

Post-traumatic stress disorder (PTSD) is characterized by overexpression of fear originally 

thought to result from exaggerated fear learning or the excessive encoding of fear memories (i.e. 

trauma memory ) [1]. However, emerging work has begun to focus on core deficits that also 

include extinction retention (safety learning) and contextual processing (fear modulation) 

abnormalities [2, 3]. We have replicated some of these abnormalities in a rodent model of PTSD 

– Single Prolonged Stress (SPS) [4], however the specific cellular/molecular mechanisms leading 

to these abnormalities in SPS (and PTSD) remain unexplored. In the previous Chapter, I examined 

the potential contribution of adult hippocampal neurogenesis to these abnormalities, and in this 

chapter, I explored an alternative mechanism – synaptogenesis and synaptic remodeling. 

Synapses are the cellular substrates of learning and memory and are, therefore, highly plastic. 

Specifically, learning and memory require gene expression of many molecules involved in the 

formation of new synapses or the modification of existing ones [5, 6]. This level of brain plasticity 

creates opportunities for synaptic modifications/disruptions, which could potentially contribute 

to altered memory aspects of PTSD.  Of relevance, prolonged exposure to stress or stress 

hormones leads to synaptic atrophy [7]. Interestingly, depression – a disorder highly comorbid 

with PTSD that shares some of its symptomology – has been associated with marked decreases 

in dendritic arborization, synapse numbers and synaptic genes expression, suggesting synaptic 
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changes could be a possible etiological factor the two disorders might share [8]. In this 

preliminary study, I investigated whether the expression of various synaptic markers within 

relevant fear processing/regulatory brain regions could be altered by our rodent model of PTSD 

(SPS). I found that SPS exposure altered mRNA levels of several important synaptic molecules 

within each fear processing region assessed. Specifically, SPS tended to decrease expression of 

markers related to synaptic morphology while increasing those related to function/signaling. 

These results suggest that synaptic remodeling within fear processing brain regions could play a 

role in the emergence of PTSD-like symptoms and might represent a modifiable therapeutic 

target for treating this disorder. However, more focused and comprehensive research into these 

possible synaptic changes is needed.  

 

Introduction 

The brain’s sustained ability to adapt to extreme challenges requires the capacity for 

neurobiological changes (i.e. plasticity) that might also carry a potential cost in susceptibility to 

develop disruptions in cognition and affect that could contribute to psychopathology. A key 

feature of brain plasticity is the formation of new synapses and the modification of previously 

established ones.  These synaptic changes are key molecular components in learning and memory 

[9-11], and they involve long-lasting changes in the efficacy of synaptic connections between two 

neurons: strengthening of connections via long-term potentiation (LTP) and weakening via long-

term depression (LTD) [12]. For example, synaptic changes associated with early phases of LTP 

involve activation of effector molecules which phosphorylate several targets, including existing 
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receptors, thereby increasing their activity, as well as modulating insertion of new ready-made 

receptors into functional circuits [12]. Transitioning between the early- to late-phase LTP seems 

to be facilitated by transcription of brain-derived neurotrophic factor (BDNF), likely involved in 

the promotion of synapse-related genes expression [5]. Unlike early-LTP, late-LTP induction and 

maintenance require gene transcription and protein synthesis [13, 14]. Specifically, late LTP 

induction involves activation of effector molecules like MAPKs [15-18] leading to signaling 

cascades involving CaMKII and PKC which, in turn, activate the ERK pathway resulting in protein 

synthesis and morphological synaptic changes [15, 16]. Although the identities of all the proteins 

and molecules synthesized during LTP are not known, they contribute to the increase in dendritic 

spine numbers, cellular membrane size and altered morphology, as well as changes in 

neurotransmitter sensitivity post-synaptically [17].  All of these are of relevance to cognitive, 

affective and behavioral adaptations and of potential relevance to psychopathology due to the 

central role synapses play in learning and memory.  

Synaptic changes within fear processing/regulatory neurocircuitry, including the medial 

prefrontal cortex (mPFC), hippocampus (Hpc) and amygdala (Amyg), provide an intriguing 

potential mechanism by which stress exposure, possibly mediated by stress hormones, could 

alter their internal circuitry and how they communicate with one another. Exposure to either 

stress or stress hormones has, in fact, been shown to result in reduction of dendritic branching 

and the number of synapses within these regions. Specifically, acute corticosterone treatment of 

rats can produce dendritic atrophy in the mPFC and hypertrophy within the Amyg, and these 

morphological changes were paralleled by heightened anxiety-like behavior in an elevated plus 

maze [19]. Additionally, length of stress exposure has been shown to modulate spatiotemporal 
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patterns of spine formation within the Amyg [20]. Accordingly, at the cellular level, exposure to 

various stressor types can impede ensuing induction of LTP in the Hpc [21].  

Exposure to stress and altered activity in stress response systems (e.g. altered 

hypothalamic-pituitary-adrenal – HPA axis) thus appear to be able to change synaptic function 

and produce anxiety-like behavior. This has important potential relevance to psychopathology, 

and particularly to PTSD, a disorder that involves stress exposure and distinctive changes in HPA 

axis activity and in learning/memory processes. Specifically, although hypercortisolemia is not a 

feature of PTSD, the disorder is characterized by distinct dysregulation of the HPA axis, thought 

to be rooted in the disproportionally heightened expression of low-affinity glucocorticoid 

receptor (GR) compared to high affinity mineralocorticoid receptor (MR) in areas like the Hpc [22, 

23].  Along with this HPA axis dysregulation [24], our animal model of PTSD has also replicated a 

distinguishing behavioral feature of PTSD: an extinction retention (ER) deficit [4], that is 

dependent on glucocorticoid receptor changes. We do not yet know how these are connected. 

However, partial SPS that does not produce increased Hpc GR expression also does not lead to 

extinction retention deficits that are normally seen in SPS exposure [25].  It is possible that SPS 

exposure and ER deficit are linked through increased GR thereby inducing synaptic changes, even 

in the absence of elevated circulating stress hormones [26].   

Furthermore, disruption of mnemonic processes and synaptic indices are seen in a variety 

of stress-associated disorders that share some core symptomology, and perhaps some 

pathophysiology, with PTSD. Postmortem studies of major depressive disorder (MDD), for 

example, have revealed reduction in the size and cortical thickness of dorsolateral PFC (dlPFC) [7] 
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and the Hpc [27]. At the cellular level, dlPFC size reduction is accompanied by a decrease in the 

size and density of neurons [7] and post-mortem studies document decreased expression of 

synaptic function-related genes within this region, as well as increased expression of a 

transcriptional repressor of key synaptic genes [8]. The fact that antidepressants are the most 

common pharmacological treatment for PTSD [28] supports potential relevance of these 

depression findings to PTSD’s pathophysiology. A recent randomized clinical trial with ketamine 

– a fast acting antidepressant whose effects are thought to be mediated via synaptic changes [29] 

– resulted in significant and rapid reduction of PTSD symptom severity [30]. Fast-acting 

antidepressants like ketamine and scopolamine increase expression of the growth factor, BDNF, 

accompanied by increased number and function of spine synapses in the mPFC of rats [29]. 

Interestingly, a recent study suggested that a polymorphism in the BDNF gene might be a risk 

factor for PTSD [31]. Altogether, these data suggest that synaptic changes could be a shared 

pathophysiological feature of depression and PTSD [32]. 

The examination of synaptic structure and function in PTSD is just beginning and further 

research is clearly needed. Early studies using animal models of the disorder have revealed some 

support for the hypothesis that synaptic changes leading to circuit disruption could be an 

important mechanistic pathway to PTSD symptoms in response to stress/trauma exposure. Our 

SPS model provides some support in that disruption in mPFC-Hpc connectivity may be critical to 

production of the FR (fear renewal) and ER deficits seen in this model [3, 4, 25]. Others have 

shown that SPS can also reduce BDNF mRNA levels in the Hpc [33] and increase activation of key 

molecules involved in MAPK and the mTOR cellular pathways – important for neuroplasticity – in 

the mPFC and Amyg [34-36]. SPS has also led to enhanced hippocampal LTD one day after 
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exposure and impaired LTP in the Hpc and Amyg seven days after [37]. Though these data are 

encouraging, more direct evidence is needed to clearly demonstrate that PTSD-relevant animal 

models produce synaptic changes. The resulting data, in turn, will lay the necessary foundation 

for a mechanistic link of stress/trauma exposure to specific synaptic function alterations and the 

associated PTSD-like behavioral abnormalities.   

As a first step in our investigation of the possible role that synaptic changes within fear 

processing brain regions might potentially play in mediating SPS-induced fear processing deficits 

[4, 25], I tested whether SPS could alter the expression of synapse-related genes in the mPFC, 

Hpc and Amyg using real-time quantitative PCR (RT-qPCR). The synaptic functional categories 

assessed here included: 1) regulation of synaptic vesicles (CALM2, SYN1, SYN3, RAB3A, and 

SNAP25) [38-43]; 2) markers of dendritic formation (RAB4B, MAP2, and GAP43) [44-47]; 3) 

membrane-associated guanylate kinases (MAGUKs) involved in receptor scaffolding (PSD-95, 

DLG2, and DLG3) [48-50]; and 4) subunits of major excitatory and inhibitory neurotransmitter: 

GABAa receptor subunits (GABRA2, GABRB2), and glutamatergic AMPA (GluR1) and NMDA 

receptors (GluN1 and GluN2). I also assessed expression of a key promoter of synaptic plasticity 

(BDNF) [51, 52].  

 

Methods 

Overall design: We compared synaptic markers in various brain regions of SPS exposed and 

control animals using real time quantitative polymerase chain reaction (RT-qPCR) to test the 

effects of SPS on the expression of synapse-related genes. More specifically, we measured 

whether molecules involved in synaptic plasticity, synaptic maintenance, neuronal arborization, 



63 
 

as well as those associated with growth are altered in the medial prefrontal cortex (mPFC), 

hippocampus (Hpc) and amygdalae (Amyg) – brain regions essential for fear and extinction 

learning – as a result of SPS exposure.  

Animals: After acclimatization, 48 male Sprague Dawley rats were randomly assigned to the 

single-prolonged stress (SPS) or control groups (n = 24/group) and underwent their respective 

procedure as described in Chapter 2. Half the animals of each group were randomly assigned to 

fear learning (FL), resulting in four experimental groups: Control-Control, Control-FL, SPS-Control, 

and SPS-FL. FL consisted of fear conditioning on day 8, fear extinction and extinction recall the 

next two consecutive days. All rats were then euthanized the following day, their brains flash 

frozen and later processed for real-time quantitative PCR (RT-qPCR). Due to time constraints, 

only animals that did not undergo FL were assessed for gene expression changes. However, 

effects of SPS on FL are reported here. Assessment of relative gene expressions were done 

against the housekeeping gene, Hprt. Additionally, SPS-induced differential expressions are 

reported relative to controls (i.e. a percentage of expression level of the Control group, where 

Control average is reported as 100%).    

Real time quantitative PCR (RT-qPCR): Briefly, 24 brains were cut into 500um sections and medial 

prefrontal cortex (mPFC: infra-limbic and pre-limbic combined), whole amygdalae, ventral and 

dorsal hippocampi were identified using anatomical landmarks and dissected out on both 

hemispheres and combined; results were not different between dorsal and ventral Hpc 

subregions (i.e. biological duplicates), therefore their values were combined (averaged). Using 

PureLink RNA Mini Kit (ThermoFisher Scientific, New York), the samples were homogenized in 
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Lysis buffer and 2-mercaptoethanol (1% of final volume), equal volume of 70% ethanol was added 

and mixed, and then the sample was transferred into spin cartridge with a collection tube, spun 

at 12kg for 15 seconds and washed three times in Wash Buffer I.. RNA was quickly stored at -20c 

until processed to make cDNA using 2uL SuperScript III (Invitrogen), 4uL 5x Vilo mix, varying 

amounts of nuclease free water and RNA sample for resulting 20ng of RNA in 14uL (20uL total 

volume). For RT- (no superscript) controls, 20ng sample RNA diluted in 14uL of water or 20uL 

total volume with RNA concentration of 1ng/1uL. The plates were then placed in the PCR machine 

for cDNA synthesis with the following program: 15min at 25c, 45min at 42c and 5min at 85c. For 

RT-qPCR, cDNA was thereafter amplified on a Roche 96 light cycler using SYBR Green PCR Master 

Mix kits (Roche) consisting of 2uL of nuclease-free water, 1uL of 2uM primer(see Table 3.1 for list 

of primers used), 5uL of cyber-green and 2uL of 1:10 diluted cDNA stock solution (1ng/10ul). 

Melt-curve and relative concentrations were analyzed using the accompanying software 

(LightCycler 96 SW 1.1). Primer pairs were designed using Primer Blast choosing those whose 

sequence expanded more than one exon and no introns with a product length between 90 and 

200 nucleotides. Refer to Table 4.1 for the list of primer sequences used. 
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Table 3.1 List of primer sequences  

Data analysis and statistics: Freezing behavior was manually scored by two observers blind to 

experimental conditions.  All videos were first recorded and stored on a digital hard-drive, then 

copied to be viewed on the computer and scored using a stopwatch. Freezing was defined as 

the absence of movement, except that necessary for breathing, for >2 sec and quantified as a 

percentage of the total time recorded (i.e. Tone + ISI or 70sec). For fear extinction, freezing 

across three extinction trials were averaged into a block (baseline, blocks 1– 10 are graphed). 

For extinction retention/recall, freezing across five trials were averaged into a block (baseline, 

blocks 1 and 2 are graphed). FC, FE and ER were analyzed using repeated measures ANOVA. 

Effects of group (SPS) on gene expression were analyzed in three different ways: independent 

samples’ T-test with and without Bonferroni correction (P = 0.05 divided by the number of 
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comparisons within a gene category), and repeated measures three factors (i.e. group, genes 

within a category and region) ANOVA.  

Results 

As in previous experiments, exposure to SPS resulted in extinction retention deficit (F(1, 23) = 3.92, 

p = 0.036, Figure 3.1) while sparing fear conditioning and fear extinction (P > 0.05). 

 

Figure 3.1 Fear Learning. Average +/- SEM percentage freezing for Controls (Black) and SPS (Gray) 

animals are plotted across three components of the behavioral paradigm.  *P<0.05   

Single-prolonged stress exposure leads to changes in synaptic markers mRNA levles in fear 

processing neural-network  

 

In an effort to investigate a possible mechanistic link between SPS-induced extinction 

retention deficit and synaptic changes within contextual and fear processing brain regions, we 

first investigated changes in expression of genes with synaptic functions. In the medial prefrontal 
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cortex (mPFC), SPS exposure resulted in significantly decreased expression of the growth factor 

– BDNF (T(20) = 2.97, p = 0.008, Fig 3.1) and a trend-level decrease in arborization marker – MAP2 

(T(20) = 1.88, p = 0.075, Fig 3.1), while increasing expression of vesicle regulator – Calm2 (T(20) = -

2.25, p = 0.036, Fig 3.1). In the hippocampus (Hpc), SPS exposure resulted in statistically 

significantly decreased mRNA expression of two arborization markers – GAP43 and MAP2 (T(22) = 

2.14, P = 0.044 and T(21) = 2.72, P = 0.013, respectively, Fig 3.1) while increasing expression of two 

vesicle regulators Syn1 (T(19) = -2.41, p = 0.027, Fig 3.1) and Calm2 (T(21) = -2.31, p = 0.031, Fig 3.1). 

In the amygdala, SPS resulted in opposing effects on expression of dendritic formation markers; 

SPS statistically significantly decreased expression of MAP2 (T(18) = 2.76, P = 0.013, Fig 3.1) while 

increasing Rab4B (T(19) = -2.70, P = 0.014, Fig 3.1). Additionally, SPS statistically significantly 

increased mRNA expression of receptor scaffolding protein (MAGUK) – DLG2 (T(20) = 3.70, P = 

0.001, Fig 3.1). Similar to the two other regions assessed, in the Amyg, SPS significantly increased 

mRNA levels of vesicle regulator – Calm2 (T(19) = -2.68, P = 0.015, Fig 3.1). Interestingly, of the 

three regions assessed, SPS affected receptor  expression only within the Amyg; SPS significantly 

increased expression of the GABAa receptor subunit B2 (GABRB2; T(19) = -3.83, P = 0.001, Fig 3.1) 

accompanied by a trend level decrease in AMPA receptor subunit A1 (GluR1; T(18) = 1.86, P = 

0.079, Fig 3.1). After Bonferroni correction SPS effects on some of the gene expression remained 

statistically significant: 1) BDNF in the mPFC (P < 0.013); 2) MAP2 (P < 0.017) in the Hpc; 3) RAB4B, 

MAP2, DLG2 (P < 0.017), and GABRB2 (P < 0.01) expression within the Amyg. Repeated measures 

three factors ANOVA revealed statistically significant interaction effects of SPS by gene when 

looking at dendritic genes (F(2,9) = 9.16, P = 0.005),  but no significant effects in any of the other 

gene categories (P>0.05).   
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Figure 3.2 Bar graphs of average percentages relative to Controls plus standard error bars 

representing Controls (white) and SPS (gray). Here are only graphed the statistically significant 

differences of synaptic markers for medial-prefrontal context (A), hippocampus (B) and 

amygdalae (C). Independent samples t-Tests without Bonferroni correction, where *P<0.05 

**P<0.01 and #0.1>P>0.05 (approaching significance).  

mPFC Hpc 

Amyg 
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Table 3.2 Comprehensive list of P-values for all independent samples t-Tests comparing 

Controls and SPS for relative RNA expressions of the listed genes without Bonferroni correction. 

Statistically significant percentage expression increase listed in green and decrease in red. 

 

Discussion 

In this preliminary study, I investigated if SPS exposure produces changes in synaptic 

marker expression within fear processing brain regions thought to mediate SPS-induced ER 
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deficits [3, 4, 25]. Although SPS did not affect a large number of the synaptic markers assessed, 

there were some consistent changes across the brain regions examined; results suggests a 

tendency for SPS-exposure to reduce expression of markers related to synaptic 

growth/morphology while increasing synaptic markers related to function. For dendritic 

formation, SPS tended to decrease gene expression of MAP2 across all regions and GAP-43 in the 

Hpc and BDNF in the mPFC, with the exception of an increase of Rab4B within the Amyg. Of these, 

MAP2 is considered a key microtubule stabilizing protein [53]. Interestingly, SPS tended to 

increase expression of markers related to synaptic function and transmission: vesicle regulators, 

CALM2 (calmodulin 2) across all regions and Syn1 in the Hpc as well as a MAGUK (DLG2) within 

the Amyg. Pre-synaptically, calmodulin (e.g. CALM2) – a calcium-dependent effector protein 

[54]– has been shown to be an important component in synaptic neurotransmission and an 

effector in the establishment of LTP [49, 55]. Additionally, in the Amyg, SPS differentially changed 

expression of receptor subunits; SPS increased expression of GABAa receptor subunit GABRB2 

and had a trend level decrease of the AMPA receptor subunit GluR1 suggesting a possible shift in 

input sensitivity from excitatory (glutamatergic) to inhibitory (GABAergic).  

The amygdala is an essential fear processing brain structure with obvious significance to 

the study of PTSD [1, 56], and our experiment revealed the largest and most complex set of pre- 

and post- synaptic changes in this region, potentially reflecting its enhanced plasticity. Pre-

synaptically, CALM2 (calmodulin 2) was the only molecule whose expression was increased by 

SPS exposure in the Amyg. Calmodulin dramatically accelerates replenishment of releasable 

vesicles pools [43]. Interestingly, at the same time MAP2 – a molecule that is so ubiquitous and 

essential to the structural integrity and formation of dendritic synapses that it is utilized as a way 
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to assess dendritic morphology [8, 45, 53] – was decreased within this region after SPS exposure. 

If MAP2 decrease, indeed, reflects decrease in synaptic integrity following SPS, the increase of 

CALM2 could represent compensatory increase in vesicle pools to maintain synaptic 

transmission. In the same region, expression of RAB4B, DLG2 and GABRB2 was increased by SPS 

exposure, while GluR1 expression was decreased. Post-synaptically, RAB4B regulates endosomal 

recycling required for spine maintenance and neurotransmitter receptor recycling [46], and in 

concert with increase in CALM2 pre-synaptically, increase in RAB4B might maintain synaptic 

transmission post-synaptically. It thus appears that SPS increased a number of synaptic markers 

associated with function while decreasing one related to structure. Related to 

excitatory/inhibitory neurotransmission, SPS exposure increased expression of inhibitory GABAa 

beta 2 sub-unit (GABRB2) -- involved in high affinity binding [57] -- and simultaneously decreased 

expression of excitatory GLuR1 (GluA1) in the amygdala. Interestingly, phosphorylation of this 

AMPA receptor subunit is important for LTP [38, 58, 59]. DLG2 (PSD-93) is an important MAGUK 

shown to mediate the insertion of a significant percentage of all synaptic AMPA receptors in the 

brain [48] and whose global deletion in mice results in learning impairments [60]. Altogether, 

these changes might suggest a potential shift toward enhanced inhibitory signaling after SPS 

exposure, which might also reflect a compensatory adaptation in SPS exposed animals.    

 

mPFC and Hpc are key regions in the neurocircuitry that regulates fear expression [3] and 

are thought to be important for the psychopathology of PTSD and other stress related disorders 

[8, 29]. SPS exposure dampened mPFC BDNF expression. Interestingly, a BDNF polymorphism has 
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been linked to PTSD risk [31], and PTSD patients have lower levels of circulating peripheral plasma 

BDNF [61]. In rodents, infusing BDNF into the mPFC resulted in reduced fear expression after FC, 

even in the absence of extinction training. Additionally, animals with impaired extinction showed 

less mPFC BDNF expression, and infusing BDNF into mPFC prevented extinction failure [1]. The 

SPS-induced decrease in BDNF expression within the mPFC, thus has a potential relevance to the 

extinction retention deficit seen in PTSD, warranting further studies into BDNF-mediated synaptic 

plasticity.  In the Hpc, SPS decreased two important components involved in transducing intra- 

and extracellular signals regulating cytoskeletal organization of axon terminals (GAP-43 and 

MAP2).  Specifically, while GAP-43 overexpression leads to formation of new synapses and 

enhanced sprouting after injury, its null mutation disrupts axonal pathfinding and is generally 

lethal shortly after birth [45]. Thus, the SPS-related GAP-43 expression decrease observed in this 

study might be indicative of a reduction of Hpc synaptogenesis. By contrast, SPS-exposure 

increased expression of vesicle associated proteins (synapsin I and calmodulin 2). Taken all 

together, decreased expression of genes related to synapse morphology (GAP-43, MAP2 and 

BDNF) accompanied by increase expression of genes related to synaptic function/signaling 

(CALM2 and SYN1) within the mPFC and Hpc, similarly to amygdala, might suggest a possible 

functional compensation accompanied by a possible decrease in size or number of synapse. 

However, further research into synaptic morphological and functional changes is required to 

obtain more conclusive evidence to support this hypothesis.  

This preliminary assessment of synaptic gene expression does suggest that there are 

possible synaptic changes in fear-relevant brain regions as consequence of exposure to SPS. 

Furthermore, decreased BDNF expression in the mPFC along with decreased expression of genes 
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shown to be essential to synaptic formation (GAP-43 and MAP2) within the Hpc are important 

indications that follow-up studies of SPS-exposed animals should include direct assessment of 

synapse numbers and synaptic morphology within these regions. Additional future studies will 

also need to include assessment of the influence SPS may have on the synaptic changes related 

to fear and extinction learning as well as extinction recall, separately. It is possible that SPS 

behavioral deficits may result from disruption of normal synaptic changes associated with each 

of these learning and behavioral processes. For instance, FC is associated with decreased 

inhibitory-excitatory (i.e. less inhibitory and more excitatory) connections between mPFC (PL) – 

Amyg (BLA) thereby promoting higher fear response when the conditioned stimulus is later 

encountered [62]. By contrast, FE is associated with increased disynaptic projections from mPFC 

(IL) to the inhibitory ITCs (intercalated cell masses in the Amyg) via the BLA [63]. However, these 

preliminary data hint at SPS possibly disrupting normal synaptic changes underlying each of these 

learning processes (FC and ER), leading to PTSD-like deficits. However, further work is worth 

pursuing to begin to establish a mechanistic link between SPS and PTSD-like deficits via 

disruption/alterations of synapses. Importantly, further research into these synaptic changes will 

contribute to possible development of interventions that promote synaptic formation and/or 

increased synaptic function. The prospect of which represents an exciting novel viable 

therapeutic target for treating PTSD [28, 30, 32, 64].  
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General Discussion and Future Directions 
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Result Summary and Discussion   

An extensive body of work, including numerous studies emerging from the Liberzon 

laboratory at University of Michigan, has been reshaping research into the psychopathology of 

posttraumatic stress disorder (PTSD). Specifically, the focus has been shifting from fear learning 

and the amygdala (Amyg) to regulatory neural circuits that are critical in more complex 

processing of threat-related stimuli.  The emerging circuits of central interest connect amygdala, 

prefrontal cortex, and hippocampus.  This shifting neural focus has been shaped by growing 

awareness that replicable, fear-related processing deficits in PTSD primarily involve context 

dependent processes (e.g. extinction retention), leading to a context processing (CP) deficit 

model of PTSD [1]. This model highlights the central role of the Hpc and mPFC in this complex 

circuit as well as in PTSD, by focusing on their role in the contextualization processes.  With the 

development of this model, and growing evidence of Hpc abnormalities in PTSD [1, 2], it becomes 

imperative to look at ways in which Hpc dysfunction could mechanistically contribute to PTSD 

biology and behavior.  To this end, in Chapter II of this dissertation, I examined whether adult 

hippocampal neurogenesis might play a role in mediating the PTSD-like extinction retention 

deficit seen in the Liberzon lab’s Single Prolonged Stress (SPS) animal model of PTSD. Additionally, 

the formation, strengthening and weakening of new synapses within brain circuits also play a 

role in learning and memory, and synaptic changes within the fear-related learning circuitry 

implicated in PTSD could provide an alternative or additional mechanism through which SPS 

produces PTSD-like biology or behavior. Therefore, in Chapter III, I preliminarily explored whether 

changes in the expression of genes involved in synaptic structure and function can be altered by 
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SPS exposure in order to determine whether they warranted further study as potential 

mechanisms in PTSD’s pathophysiology.  

In Chapter II, I demonstrated that: 1) irradiation-induced decreases in Hpc neurogenesis 

correlated with ER deficits, while leaving intact fear and extinction learning capacities; 2) animals 

exposed to SPS, which produces deficient contextual processing [1] and diminished ER [3, 4], 

show decreased hippocampal cellular proliferation, maturation and survival; 3) A behavioral 

intervention known to promote neuronal survival [5] rescued SPS-induced extinction retention 

deficits, and that higher numbers of surviving cells were associated with smaller ER deficits. Taken 

together, these findings support the hypothesis that reduced adult hippocampal neurogenesis 

could mediate the effect of single prolonged stress exposure on extinction retention.  These 

results thus implicate neurogenesis as a potential mechanism underlying the extinction retention 

deficit seen in PTSD [6], and perhaps as a possible mechanism for the more general deficit in 

contextual processing that has been hypothesized to play a critical role in the pathophysiology of 

the disorder [1].  

Though the collective evidence presented in Chapter II makes the fairly compelling case 

that neurogenesis may contribute to SPS-induced ER deficit, there are limitations to each 

experiment and follow-up work is, therefore, needed. To start, externally applied radiation to the 

head produces a global decrease in cellular proliferation, so reductions in cell populations other 

than neurons could mediate the ER-deficit observed. For one, glia cells have been shown to play 

different roles in brain functions related to learning and cognition [7]. Therefore, to circumvent 

the issues of specificity, repeating this experiment by directly targeting dentate gyrus’ (DG) GFAP-
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expressing progenitor neurons for elimination by targeting GFAP progenitor neurons using 

transgenic rats [8, 9] would provide more conclusive evidence into the role of adult hippocampal 

neurogenesis in possibly mediating ER deficits. Specifically, transgenic rats expressing the human 

herpes simplex virus thymidine kinase gene (HSV-TK, or TK rats) under the promotor for GFAP, 

thereby ensuring GFAP expressing cells are exclusively targeted for elimination with 

administration of antiviral drug valganciclovir – enzymatically converted to the active ganciclovir 

[9]. For this experiment, TK rats would be given valganciclovir for two weeks – this length of 

treatment has shown a 93% reduction in Hpc neuronal proliferation. After drug treatment to 

eliminate neurogenesis, they would be left undisturbed for four weeks and then assessed for 

extinction retention deficit.  

Quantification of BrdU-containing cells within the sub-granular zone (SGZ) of the DG is 

not an exclusive measure of neurogenesis. Generally, GFAP-expressing progenitor cells of the 

SGZ can commit to either the neuronal or astrocytic cell-fate [10]. Because BrdU can incorporate 

into the DNA of any dividing cells, it is not possible to exclude other cell populations from being 

counted when BrdU is visualized alone [11]. For this reason, quantification of BrdU-containing 

cells does not provide the most accurate quantification of neuronal populations. However, in 

rats, most Hpc proliferating GFAP progenitor cells (over 70%) commit to the neuronal fate over 

glia [12, 13], making quantification of BrdU containing cells a reasonable estimation into the state 

of adult hippocampal neurogenesis. However, decreases in the number of astrocytes, their 

percentage of SGZ proliferating cells notwithstanding, could still mediate the assessed behavioral 

deficit. Therefore, as a future step, assessment into the role of adult hippocampal neurogenesis’ 
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contribution to behavior should include BrdU co-localization with a mature neuronal marker like 

NeuN [14].  

Behavioral interventions aimed at promoting neurogenesis, by themselves, do not 

provide conclusive evidence for a mediating role of neurogenesis. Here, I showed that 

environmental enrichment (EE) – shown to increase neurogenesis by promoting survival [15] –

elevated the number of surviving SGZ BrdU+ cells and ameliorated the SPS-induced ER deficit. 

However, these results do not exclude other mechanisms by which EE could result in improved 

behavior. For example, EE could lead to ER deficit improvement through increases in synaptic 

plasticity and BDNF concentrations [16, 17]. Therefore, future studies should combine behavioral 

interventions with neurogenesis blockade (e.g. TK-GFAP rat). The resulting evidence would more 

conclusively support that it is neurogenesis and not another possible mechanism that mediates 

this behavioral improvement, and more strongly suggest a role of adult hippocampal 

neurogenesis in mediating SPS-induced ER deficits. 

 In Chapter III, I investigated the possibility that SPS could be linked to fewer synapses or 

decreased synaptic function within key brain regions in the CP neurocircuit: mPFC, Hpc and Amyg. 

In this exploratory experiment, I quantified expression of synaptic markers linked to synapse 

formation and function within these regions using real-time quantitative PCR. I found that SPS 

exposure altered mRNA levels of several important synaptic molecules within each fear 

processing region assessed. There were two markers that consistently changed across regions: 

the cytoskeleton stabilizing MAP2 [18] was decreased while CALM2 -- key effector molecule for 

neurotransmission [19, 20] -- was increased across regions. Of all the synaptic markers assessed 
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here, SPS exposure lead to the most marker expression changes in the Amyg. Interestingly, 

however, in all three regions, the expression of structural-related synaptic markers went down, 

while those involved in function and neurotransmission went up, hinting at a possible decrease 

in the number of synapses accompanied by a compensatory increase in function. However, the 

list of synaptic markers assessed here was qute small and only served to gauge whether we could 

find some evidence that further investigation into the role of synaptic changes resulting from SPS 

exposure is warranted. Though not extensive, the changes seen and the hint of a differential 

pattern regarding structure and function related markers, do support further investigation using 

synaptic markers and direct morphological and functional analysis of synapses within fear 

processing/regulatory brain regions.  

 Like most animal models used to study human disorders, SPS comes with limitations. 

PTSD can result from many different types of trauma, and no particular trauma always leads to 

the development of PTSD in those exposed to it.  However, the primary focus in developing SPS 

was to maximally impact the HPA axis [21] in order to replicate PTSD’s characteristic 

dysregulated/hyper-sensitive HPA axis function [22, 23], with the hope to then expand 

investigation into associated behavior and physiology. It has become a frequently used model 

because it does replicate the unique HPA biology of PTSD [21], and its utility has increased as it 

has been shown to also replicate context dependent learning abnormalities seen in PTSD (e.g., 

extinction retention and fear renewal abnormalities) [3, 4].  The confluence of neuroendocrine 

and behavioral abnormalities, and the fact that both involve mPFC-Hpc circuits, make it a 

particularly useful model for exploring Hpc-related mechanisms that might be relevant to the 

investigation of PTSD behavioral abnormalities. My data suggest that hippocampal neurogenesis 
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could, in fact, play a role in the PTSD-like behavioral abnormalities seen is PTSD.  They also 

provide preliminary support for some ongoing examination of synaptic changes as a potential 

additional participating mechanism. 

Future Directions 

In light of the extensive body of evidence supporting the role of adult hippocampal 

neurogenesis in non-pathological key Hpc function (e.g. contextual processing) [10, 24-26], but 

especially because of neurogenesis’ likely role in modulating stress response [27, 28] as well as 

possibly contributing to the psychopathology of various psychiatric disorders (e.g. depression and 

schizophrenia) [29-32] and their treatment with antidepressants [33], my results make a 

compelling case for a role of neurogenesis in mediating PTSD-like SPS-induced ER deficit. 

However, this conclusion needs to be balanced against new finding suggesting drastic decrease 

in hippocampal neurogenesis in humans after childhood [70]. This latest publication highlights 

the importance of human postmortem brain tissue assessment, especially those of former 

psychiatric patients. Nevertheless, neurogenesis will remain relevant until higher scientific 

consensus to the contrary is reached.  Therefore, in addition to addressing the caveats of each of 

the experiments conducted, an important future step would be to investigate the mechanisms 

by which SPS-exposure dampens adult hippocampal neurogenesis. One possible mechanism 

worth exploring is the role stress hormones, possibly via glucocorticoid receptor (GR) action [34], 

might play in mediating SPS’s effect on neurogenesis and behavior. Interestingly, SPS exposed 

rats show elevated expression of GR compared to MR (mineralocorticoid receptor; i.e. increased 

GR/MR ratio) in all areas of the Hpc, including DG [4]. It has been shown that cortisol leads to 
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opposing effects on neurogenesis depending on the receptor involved: GR decreases while MR 

increases neurogenesis [34]. Therefore, SPS’ GR expression increase could mediate SPS’s 

neurogenesis decrease I investigated here.  

Further research is required to establish a mechanistic link by which stress hormones 

mediate decreased hippocampal neurogenesis from SPS exposure, thereby resulting in ER deficit. 

As a first step, one could selectively block GR during SPS exposure with intrahippocampal infusion 

of a GR antagonist (e.g. ru-43044), then assess if in the absence of GR action during SPS, exposure 

will still result in decreased neurogenesis and ER deficit. However, it is worth noting that GR-

mediated dampening of neurogenesis is not the only mechanism by which SPS may result in 

decreased hippocampal neurogenesis. Other possible mechanisms include epigenetics influences 

on a variety of relevant genes [35], BDNF action [36], and neurotransmitters-regulation [37] of 

adult hippocampal neurogenesis.  

Even in the face of overwhelming uniformity in mRNA expression changes of the synaptic 

markers assessed, it would remain necessary to investigate changes in dendritic morphology and 

synapse numbers by visualizing these structures and directly assessing them. As a future first step 

protein levels would need to be quantified to verified PCR results. More importantly, ER deficits 

likely result from changes in specific connections among brain regions within the neurocircuitry 

involving mPFC-Hpc-Amyg [1]. Therefore, assessment of changes in the expression of synaptic 

markers using whole-brain-structures is inadequate to address questions regarding possible 

changes in connectivity among these regions. Questions regarding synapses among neurons from 

one of these regions to another (e.g. mPFC-Hpc or Hpc-Amyg) would require the use of 



85 
 

anterograde tracers combined with visualization of tracer containing neurons. One such 

technique that has been garnering wider use in the study of morphology of connection between 

brain structures is the use of anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) [38]. 

This type of techniques is a valuable tool for the study of anatomical mapping with specific 

advantages in the detection of circuit-based dendritic architecture, including spines [39]. As a 

future step in the study of synaptic changes resulting from SPS, these types of morphological and 

functional assessments are necessary to fully understand how they may underlie/mediate 

resulting behavioral deficits.  

 Very few studies investigate PTSD postmortem brain tissues. Even though this grave need 

was outlined over a decade ago [40], I could not find any studies directly assessing neurogenesis 

or dendritic morphology in these tissues. Like in depression, PTSD patients tend to have 

prefrontal cortex and hippocampal shrinkage [41]. Evidence from MDD postmortem studies 

reveals decreases in dendritic arborization and synaptic marker expression in the PFC [42, 43]. 

However, there is less consensus on the implications of decreased neurogenesis as a mechanism 

for why several psychiatric disorders are often accompanied by Hpc shrinkage (e.g. MDD, PTSD 

and schizophrenia). A study assessing Hpc Ki-67 expressing (proliferating) cells revealed no 

difference between MDD and controls [44], while another study showed that this cell population 

was decreased in schizophrenia [45]. Comparable direct assessment of hippocampal 

neurogenesis has not been conducted in PTSD, however. At present, the evidence for decreased 

neurogenesis as being a pathological feature of PTSD needs much more investigation. Although 

antidepressants are the most effective drug intervention for treating PTSD [46], the role of 

increased neurogenesis in mediating antidepressant effects [33] is not conclusive evidence for 
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decreased neurogenesis as part of PTSD pathology. Alternatively, it is possible for the promotion 

of neurogenesis by antidepressants to ameliorate symptoms as compensation for another, yet 

to be determined, mechanism [44]. Therefore, though PTSD shares features with other 

psychiatric disorders, direct assessment of PTSD postmortem brain tissues remains necessary. 

Interestingly, a new tool for measuring human hippocampal neurogenesis in vivo has been 

proposed [47]. However, this method remains in its early stages of implementation. Measures of 

neurogenesis with this tool will need to be verified by assessing neurogenesis of in postmortem 

brain tissue from a large percentage of the in-vivo neurogenesis participants -- further indication 

of the grave need to study PTSD in postmortem brain tissues, especially in light of the recent 

findings suggesting that human adult hippocampal neurogenesis may not occur [70]. 

In conclusion, understanding the pathophysiology of PTSD and the identification of 

modifiable therapeutic targets should include more research into adult hippocampal 

neurogenesis and synaptic changes within relevant brain regions. It is possible that limitations of 

existing pharmacological treatments known to target these processes do not lead to symptom 

improvement because it is not yet known how these drug-induced brain changes contribute to 

behavior and cognition in an individual whose brain has already been shaped by trauma. 

Therefore, further research can help better tailor treatment strategies to address gaps in 

treatment efficacy and to improve treatment outcomes, in general. The work contained in this 

thesis represents a very small contribution towards this end.  
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