
Statistical Tools for Network Data: Prediction

and Resampling

by

Tianxi Li

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2018

Doctoral Committee:

Professor Liza Levina, Co-Chair
Professor Ji Zhu, Co-Chair
Assistant Professor Danai Koutra
Professor Kerby Shedden

Tianxi Li

tianxili@umich.edu

ORCID iD: 0000-0003-4595-1777

c© Tianxi Li 2018

ACKNOWLEDGEMENTS

I want to give my biggest thanks to my advisors Prof. Liza Levina and Ji Zhu,

for their warm and endless support, for the kindness and wisdom they passed on and

for the moments they cheered me up from depression due to academic and personal

difficulties. Five years is only a short period compared to the lifetime, but I learned

so much from them that I will benefit from for the rest of my life. I am also extremely

grateful to my wife, Meng, without whom I might need another three years to finish

the work and my two little buddies, Jensen and Arthur, without whom I might

finish the work one year earlier. Words can hardly express how happy I am with

them and how much I love them. Thanks should also be attributed to my parents

for their love and confidence in me. Their support is indispensable for everything

that I accomplish. I also want to thank Prof. Kerby Shedden and Danai Koutra

for their time to serve on the committee and their useful comments on my research.

Finally, I feel very proud to be part of the big family - the Department of Statistics at

University of Michigan. The time here is so precious and will be the most memorable

period of my life. Go Blue!

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF TABLES . vii

LIST OF APPENDICES . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Notations . 4
1.2 Loss-based prediction models . 4
1.3 Random network modeling . 6
1.4 Outline of the thesis . 9

II. Prediction model on network-linked data . 12

2.1 Introduction . 12
2.2 Regression with network cohesion . 16

2.2.1 Set-up and notation . 16
2.2.2 Linear regression with network cohesion 16
2.2.3 Network cohesion for general loss functions 20
2.2.4 A Bayesian interpretation . 22
2.2.5 Prediction and choosing the tuning parameter 23
2.2.6 An efficient computation strategy 24
2.2.7 Connection to other models . 26

2.3 Theoretical properties of the RNC estimator 30
2.4 Numerical performance evaluation . 36
2.5 Analysis of the AddHealth Data . 43

2.5.1 Predicting recreational activity in adolescents: a linear model ex-
ample . 44

2.5.2 Predicting the risk of adolescent marijuana use 49
2.6 Summary and future work . 52

III. Network cross-validation by edge-sampling . 55

3.1 Introduction . 55
3.2 The edge cross-validation (ECV) algorithm 58

3.2.1 Notation and model . 58
3.2.2 The ECV procedure . 61

iii

3.2.3 Network recovery by matrix completion 62
3.2.4 Theoretical justification . 65

3.3 Examples of ECV for model selection . 68
3.3.1 Model-free rank estimators . 68
3.3.2 Model selection for block models 69
3.3.3 Parameter tuning in regularized spectral clustering 75
3.3.4 Tuning graphon model estimation method 77
3.3.5 Stability selection . 78

3.4 Numerical performance evaluation . 78
3.4.1 Rank estimation for general directed networks 79
3.4.2 Model selection under block models 80
3.4.3 Tuning regularized spectral clustering 87
3.4.4 Tuning nonparametric graphon estimation 89

3.5 Community detection in a statistics citation network 90
3.6 Summary and future work . 93

IV. A new community model for partially observed networks from surveys . . 95

4.1 Introduction . 95
4.2 The nomination stochastic block model . 98

4.2.1 The directed stochastic block model 98
4.2.2 The nomination stochastic block model 99
4.2.3 Community detection under the NSBM 101
4.2.4 Parameter estimation under the NSBM 102
4.2.5 The conditional NSBM . 104

4.3 Consistency under the NSBM . 107
4.3.1 Consistency of community detection 107
4.3.2 Parameter estimation consistency 109

4.4 Extension to weighted networks . 110
4.5 Simulation studies . 110

4.5.1 Community detection under NSBM 111
4.5.2 NSBM as an approximation to the conditional model 113

4.6 Business faculty hiring network analysis . 116
4.7 Summary and future work . 120

APPENDICES . 122

Bibliography . 159

iv

LIST OF FIGURES

Figure

1.1 The friendship network between high school students from AddHealth study, where
the edges indicate friend nominations. The nodes are colored according to the race
information of students. 3

2.1 Mean squared prediction error E‖Ŷ − EY ‖2/n and the bias-variance trade-off of
the RNC estimator (based on the upper bound (2.14) in Theorem II.6), in the
setting of Example II.10 with σ = 0.5. 34

2.2 Linear regression with varying s and pb = 0.02. Performance is evaluated by the
MSEs of α and β, and in-sample and out-of-sample mean squared prediction errors. 39

2.3 Linear regression with varying pb and s = 0.1. Performance is evaluated by the
MSEs of α and β, and in-sample and out-of-sample mean squared prediction errors. 40

2.4 Performance logistic regression methods when varying s and fixing pb = 0.02, mea-
sured by the MSE of α, β, in-sample and out-of-sample mean squared probability
estimation errors. 41

2.5 Performance of five logistic regression methods when varying pb and fixing s =
0.1, measured by the MSE of α, β, in-sample and out-of-sample mean squared
probability estimation errors. 42

2.6 Top left: the adjacency matrix of the sparsified network for ε = 0.15 (white indicates

a nonzero entry, black is a zero entry); Top right: ‖θ̂
∗
− θ̂‖2 and the bound (2.22);

Bottom left: relative improvement of the sparsified estimator α∗ over the original
estimator α̂, that is, 1 − MSEα∗/MSEα̂; Bottom right: relative improvement of

the sparsified estimator β∗ over the original estimator β̂. 44
2.7 Histogram of the response, recreational activity level, from the data set used in the

linear regression example. The mean recreational activity is 1.22, with standard
deviation 1.23. 46

2.8 Age of first marijuana risk use shown on the friendship network. Node size repre-
sents the individual’s hazard, and node color represents the observed age of first
use. 54

3.1 The median clustering accuracy for different fixed values of τ and for DKest and
ECV tuning. The true model is DCSBM with n = 600, K = 3, λ = 5, β = 0.2 and
t = 0. 88

3.2 Parameter tuning for piecewise constant graphon estimation. 89
3.3 The core of statistician citation network. The network has 706 nodes with node

citation count (ignoring directions) ranging from 15 to 703. The nodes sizes and
colors indicate the citation counts and the nodes with larger citation counts are
larger and darker. 91

4.1 The log-log relationship between log(P1·) and log(P1·) under the conditional NSBM.
The figures indicate an approximately linear relationship in the log scale. 106

4.2 Community detection accuracy of spectral methods under NSBM as a function of
t, with β = 0.2. 112

4.3 Community detection accuracy of spectral methods under NSBM as a function of
β, with t = 1.5. 113

v

4.4 Community detection accuracy and log relative errors of estimating the probability
matrix under conditional model, for NSBM, directed SBM, directed DCSBM, and
SCBM, as a function of α0 with fixed β = 0.35. 115

4.5 Community detection accuracy and log relative errors of estimating the probability
matrix under the conditional model, for NSBM, directed SBM, directed DCSBM,
and SCBM, as a function of β with fixed α0 = 1. 116

4.6 The hiring network between 87 U.S. business schools. An edge from i to j indicates
that institution i has hired Ph.D. graduates from institution j. The node size is
proportional to the receiver degree. 117

B.1 The rate of correctly selecting between the SBM and the DCSBM as a function of
p and N . 148

B.2 The rate of correctly selecting K under the true model as a function of p and N . . 149

vi

LIST OF TABLES

Table

2.1 Root mean squared errors for predicting recreational activity, over 50 independent
data splits into test (90 samples) and training sets. All methods are compared to
RNC by a paired two-sample t-test, where ** indicates p ≤ 10−4 and * indicates
10−4 < p < 10−2. Each row adds the variable listed to the model in the previous
row, in the order determined on a separate set by forward selection with network
cohesion effects included. 49

2.2 Average integrated AUC (iAUC) for survival prediction ROC curves for age 14-17,
over 50 random splits of the data into training and test sets. All methods are
compared with RNC by a paired two-sample t-test. ** indicates p ≤ 10−4 and *
indicates 10−4 < p < 10−2. Each row adds the variable listed to the model in the
previous row, in the order determined on a separate set by forward selection with
network cohesion effects included. 51

2.3 Estimated covariate coefficients from regular Cox’s model and RNC for first age of
marijuana use prediction. 52

3.1 Ratio between pe and pn for n = 300, N = 3, and different d, where pe and pb are
the probabilities that a node with d neighbors becomes isolated in the training set
in ECV and NCV, respectively. 74

3.2 Frequency of estimated rank values in 200 replications. 80
3.3 Overall model selection by ECV and NCV (fraction correct out of 200 replications).

The true model is the DCSBM. 82
3.4 Overall model selection by ECV and NCV (fraction correct out of 200 replications).

The true model is the SBM. 84
3.5 The rate of correctly estimating the number of communities (out of 200 replications)

when varying the network average degree and fixing t = 0, β = 0.2. The true model
is the DCSBM. 85

3.6 The rate of correctly estimating the number of communities (out of 200 replications)
when varying t and fixing λ = 40, β = 0.2. The true model is the DCSBM. 86

3.7 The rate of correctly estimating the number of communities (out of 200 replications)
when varying β and fixing λ = 40, t = 0. The true model is the DCSBM. 86

3.8 The rate of correctly estimating the number of communities (out of 200 replications)
for the best variant of each method. The true model is the DCSBM. 87

3.9 The 10 authors with largest total citation numbers (ignoring the direction) within
20 communities, as well as the community interpretations. The communities are
ordered by size and authors within a community are ordered by mutual citation
count. 92

4.1 Communities of business schools found by NSBM and their average and median
rankings from US News 2012 and Clauset et al. [2015]. Up to 15 institutions with
the highest π-ranking are shown for each community. 118

4.2 Estimated strengths of connections between communities. 119
4.3 Estimated λi’s for Group 1 institutions. 120
4.4 Communities of business school institutions detected by symmetric spectral clus-

tering. 121

vii

A.1 Estimated covariate coefficients from OLS and RNC linear regression on the recre-
ational activity example. The p-values are for the OLS estimate. 134

A.2 Prediction errors of five models with missing data imputation, with varying pro-
portion of additional missing values. All other columns are compared with RNC by
a paired two-sample t-test. ** indicates a p-value ≤ 10−4 and * indicates a p-value
∈ (10−4, 10−2). 135

A.3 Average integrated AUC (iAUC) for survival prediction ROC curves for age 14-17
with artificially increased missing values (by pm). The average is taken over 50
random splits of the data into 60 test samples and 587 training samples. All values
are compared with the columns of RNC by a paired two-sample t-test. ** indicates
a p-value ≤ 10−4 and * indicates a p-value ∈ (10−4, 10−2). 136

B.1 Overall block model selection correct rate of ECV and NCV in 200 replications
when binomial deviance is used as the loss function. The underlying true model is
DCSBM. 145

B.2 Overall block model selection correct rate of ECV and NCV in 200 replications
when binomial deviance is used as the loss function. The underlying true model is
SBM. 146

B.3 The correct rate for estimating the number of communities in 200 replications from
the best variant of each method. The underlying true model is SBM. 148

C.1 Communities of business school institutions detected by symmetric spectral clus-
tering. 159

viii

LIST OF APPENDICES

Appendix

A. Appendix for Chapter II . 123

A.1 Proofs . 123
A.2 Complexity of solving RNC estimator by block elimination 132
A.3 Coefficients of recreational activity linear models 134
A.4 Sensitivity to missing data . 135

B. Appendix for Chapter III . 137

B.1 Proofs . 137
B.2 Additional simulation results for model selection under the block models . . 144

B.2.1 Using binomial deviance loss function for overall block model se-
lection . 144

B.2.2 Selecting the number of communities under the SBM 147
B.2.3 The impact of training proportion p and replication number N . . 147

C. Appendix for Chapter IV . 150

C.1 Proofs . 150
C.2 Community detection of business schools on the undirected hiring network . 158

ix

ABSTRACT

Advances in data collection and social media have led to more and more network

data appearing in diverse areas, such as social sciences, internet, transportation and

biology. This thesis develops new principled statistical tools for network analysis,

with emphasis on both appealing statistical properties and computational efficiency.

Our first project focuses on building prediction models for network-linked data.

Prediction algorithms typically assume the training data are independent samples,

but in many modern applications samples come from individuals connected by a

network. For example, in adolescent health studies of risk-taking behaviors, infor-

mation on the subjects’ social network is often available and plays an important role

through network cohesion, the empirically observed phenomenon of friends behav-

ing similarly. Taking cohesion into account in prediction models should allow us to

improve their performance. We propose a network-based penalty on individual node

effects to encourage similarity between predictions for linked nodes, and show that

incorporating it into prediction leads to improvement over traditional models both

theoretically and empirically when network cohesion is present. The penalty can be

used with many loss-based prediction methods, such as regression, generalized lin-

ear models, and Cox’s proportional hazard model. Applications to predicting levels

of recreational activity and marijuana usage among teenagers from the AddHealth

study based on both demographic covariates and friendship networks are discussed

in detail. We show that our approach to taking friendships into account can sig-

x

nificantly improve predictions of behavior while providing interpretable estimates of

covariate effects.

Resampling, data splitting, and cross-validation are powerful general strategies in

statistical inference, but resampling from a network remains a challenging problem.

Many statistical models and methods for networks need model selection and tuning

parameters, which could be done by cross-validation if we had a good method for

splitting network data; however, splitting network nodes into groups requires deleting

edges and destroys some of the structure. Here we propose a new network cross-

validation strategy based on splitting edges rather than nodes, which avoids losing

information and is applicable to a wide range of network models. We provide a

theoretical justification for our method in a general setting and demonstrate how

our method can be used in a number of specific model selection and parameter

tuning tasks, with extensive numerical results on simulated networks demonstrating

its competitiveness with task-specific methods. We also apply the method to analysis

of a citation network of statisticians and obtain meaningful research communities.

Finally, we consider the problem of community detection on partially observed net-

works. Communities are one important type of structure in networks and they have

been widely studied. However, in practice, network data are often collected through

sampling mechanisms, such as survey questionnaires, instead of direct observation.

The noise and bias introduced by such sampling mechanisms can obscure the com-

munity structure and invalidate the assumptions of standard community detection

methods. We propose a model to incorporate neighborhood sampling, through a

model reflective of survey designs, into community detection for directed networks,

since friendship networks obtained from surveys are naturally directed. We model

the edge sampling probabilities as a function of both individual preferences and com-

xi

munity parameters, and fit the model by a combination of spectral clustering and

the method of moments. The algorithm is computationally efficient and comes with

a theoretical guarantee of consistency. We evaluate the proposed model in extensive

simulation studies and applied it to a faculty hiring dataset, discovering a meaningful

hierarchy of communities among US business schools.

xii

CHAPTER I

Introduction

Advances in data collection and social media have resulted in network data being

collected in many applications and at the same time, networks have been widely

used to describe relationships between individuals or interactions between units of

complex systems in diverse fields, including but not limited to biology, computer

science, sociology and economics. There has been significant amount of work in the

past two decades on network analysis and modeling which have already provided

salient insights about many mechanisms such as gene regulation, friendship formu-

lation and eco-system evolution [Newman, 2010]. Some networks can be directly

observed, such as the social networks from online social media or road networks to

describe transportation systems, while others may be inferred from other analysis,

such as the protein-to-protein interaction networks or brain connectomes. Moreo-

ever, the network information is sometimes collected along with more traditional

covariates on each unit of analysis such as characteristics of each person, gene ex-

pressions of each patient etc. [Michell and West, 1996, Pearson and Michell, 2000,

Pearson and West, 2003, Harris, 2009, Ji et al., 2016]. One example of such network

data is the survey data from the National Longitudinal Study of Adolescent Health

(the AddHealth study) [Harris, 2009]. AddHealth was a major national longitudinal

1

2

study of students in grades 7-12 during the school year 1994-1995, after which three

further follow-ups were conducted in 1996, 2001-2002, and 2007-2008. In the Wave I

survey, all students in the sample completed in-school questionnaires, and a subsam-

ple completed a follow-up in-home interview with more detailed questions. There

are questions in both the in-school survey and the in-home interview asking students

to name their friends (up to 10) so friendship networks connecting students can be

constructed based on this information and one can analyze the network structures

to obtain insights about the friendship relation between students. In addition to the

information about friends, the survey also asked hundreds of questions about various

aspects of the students personal and school life, collecting information about age,

gender, race, socio-economic status, health, academic achievement, etc. Figure 1.1

shows the friendship network between students in one school from the AddHealth

study as well as their race information.

In general, we can represent network data in the following way: given n nodes,

indexed by i = 1, 2, · · · , n, we have a network connecting the n nodes, represented

by an adjacency matrix A ∈ Rn×n such that

Aii′ = 1{there is an edge from i to i′, denoted by i→ i′}.

More generally, the network can be weighed, in which case we will define A as a real

matrix instead where each entry represents the edge weight or when the network is

undirected, we define A to be a symmetric matrix. In some situations, we may also

observe (xi, yi), i = 1, 2 · · · , n, where xi ∈ Rp is the covariate vector and yi is the

response variable for the node i. We can denote the matrix stacking each xi as the

ith row by X and the corresponding vector stacking all yi’s by Y . When such X

and/or Y is available, we can call the triple (A,X, Y) as a network-linked data set.

3

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

White
Black
Native
Asian
Other

Figure 1.1: The friendship network between high school students from AddHealth study, where
the edges indicate friend nominations. The nodes are colored according to the race information of
students.

Many questions can be asked about analyzing a network dataset. For example,

how can one build a prediction model on a network-linked data set and what are the

benefits of the network information added to classical prediction setting? When the

target is to understand the network structures, how can we build realistic models

as well as make valid inference under a principled statistical framework? In the

next a few chapters, some recent work to answer these questions will be introduced.

However, we will first give a brief review for the classical setup of both predictive

modeling and network analysis.

4

1.1 Notations

Given a positive integer n, define [n] = {1, 2, · · · , n}. We will use the lower-case

letters such as x to denote scalars while the bold version such as x to denote vectors,

which we will treat as column vectors by default. Matrices are denoted by upper-

case letters such as X. The transpose and trace of a matrix X is denoted by XT

and tr(X) respectively. For any matrix X, we use ‖X‖ to denote its spectral norm,

which is the largest singular value of X and ‖X‖F to denote its Frobenius norm,

defined by ‖X‖2
F =

∑
ij X

2
ij. We use 1n to denote the column vector of n 1’s and In

to denote the n × n identity matrix. When it is clear in context, we may suppress

the subscript.

1.2 Loss-based prediction models

Perhaps the most basic prediction model is the linear regression model. Given

pairs of (xi, yi), i ∈ [n], where [n] := {1, 2, · · · , n}, we assume

yi = α + xTi β + εi.

In the model, β ∈ Rp measures covariate effects, α ∈ R is the intercept and εi ∈ R is

random noise, typically assumed to be i.i.d in the simple setting. The interpretation

of β as covariate effects is one of the most important advantages of the linear model,

giving a measure about how much change in the response one would expect due to

the change of one of the covariates while fixing the rest. This interpretation admits

scientific meanings and is the major target of using the model in many applications.

For example, in medical studies, when x1 is the indicator of a treatment while y is the

health condition, the covariate effect of x1 measures whether (and to what extent)

the treatment is effective in changing the health condition, after accounting for the

5

effects of other covariates.

In spite of the simplicity, the linear modeling idea is very power in the sense

that it can extended to a large class of loss-based prediction models. Given a link

function φ, a generalized linear model [Nelder and Baker, 1972] is defined through

the relationship

φ(Eyi) = xTi β + α

where is distribution of yi is assumed to from exponential family and the covariate

effects are still assumed in a linear form.

The linear forms are also widely used beyond generalized linear models. For

instance, in survival regression problems, the Cox’s proportional hazard model [Cox,

1972] assumes the hazard for ith subject is in the form of

h0(t) exp(xTi β + α)

where h0(t) is some unspecified baseline hazard function at time t. In classification

problems, there is a family of classifiers that are assumed to have the form of

C(xi) = f(xTi β)

for some function f such that we expect to observe

yi = sign(C(xi)).

One popular method in this family of classifiers is the support vector machine (SVM)

[Vapnik, 2013], which assumes f to be the identity function in its standard form.

We classify all the above models in the same family called loss-based prediction

models due to the common strategy available for model estimation - the M-estimation.

In particular, all of the above methods can be estimated by the following problem

6

minimizeβ∈T L({yi,xTi β + α}ni=1)

where L is some general loss function and T is some parameter domain. For gen-

eralized linear models, L is the log likelihood of the observation when one uses the

maximum likelihood framework for model estimation. For the Cox’s proportional

hazard model [Cox, 1972], L gives the partial likelihood function of the observations,

based on which the estimation of β can be obtained. For the SVM, the L function

is the hinge loss on all observations while the feasible region T is certain `2 ball of

β, such that the estimation is done by

minimizeβ
∑
i

[1− yi(xTi β + α)]+

such that ‖β‖2
2 ≤ λ

for some tuning parameter λ, according to the formulation in Hastie et al. [2009].

1.3 Random network modeling

Statistical methods for analyzing networks have received a lot of attention be-

cause of its wide-ranging applications in areas such as sociology, physics, biology and

medical sciences. Statistical models provide an effective way to extract structural

information about the network while filtering out noisy and uninformative details

thus become popular in understanding the network structures and formulation. Per-

haps the simplest statistical network model is the famous Erdös-Renyi model [Erds

and Rényi, 1960], after which a large body of interesting models followed, including

the stochastic block model (SBM) [Holland et al., 1983] and its variants such as

the degree-corrected stochastic block model (DCSBM) [Karrer and Newman, 2011]

or mixed membership block model (MMBM) [Airoldi et al., 2008], and the latent

space model [Hoff et al., 2002], just to name a few. In this section, we introduce a

7

generic probabilistic framework for statistical network models - the random network

modeling framework, under which a few standard models will be introduced as well.

Let V = [n] denote the node set of a network, and let A be its n × n adjacency

matrix. We view A as a single random realization of independent Bernoulli variables,

such that each entry of A is generated independently according to

Aii′ ∼ Bernoulli(Pii′)

where P = (Pii′) ∈ [0, 1]n×n. For undirected networks, we require both P and A

to be symmetric and only the upper-triangular entries of A are generated from the

defined model. In this framework, the model P admits the structural information

that one is interested in extracting while A is assumed to be a noisy version of P .

The statistical modeling procedure is then estimating (some aspects of) P from the

given noisy observation A. Many interesting statistical models have been proposed

under the random network modeling framework. Below we introduce a few popular

ones.

Erdös-Renyi model (ER) The most widely known random network model is the

Erdös-Renyi model [Erds and Rényi, 1960]. Specifically, the model assumes for some

p ∈ [0, 1]

P = p · 1n1Tn = (p)n×n.

Essentially, the model assumes all of node pairs are randomly connected in a uniform

way. However, the ER model is completely homogeneous and has no interesting

structure. In reality, there is seldom any real world networks that can be described

well by the ER model.

8

Stochastic block model One interesting generalization of the ER model for undi-

rected networks is the stochastic block model (SBM) [Holland et al., 1983]. In

the SBM, we assume each node belongs to one of the K communities. We use

c = {c1, · · · , cn} to denote the vector of membership for all nodes, such that ci ∈ [K].

Then the probability of having an edge between nodes i and j is P (Aii′ = 1) = Bcici′

for some K ×K symmetric probability matrix B. The probability matrix P can be

written as P = ZBZT where Z ∈ {0, 1}n×K has exactly one “1” in each row, with

Zik = 1 if node i belongs to community k. This model generalizes the ER model by

assuming the nodes are inhomogeneous across groups but remain the same within

the groups.

Degree-corrected stochastic block model (DCSBM) One well-known limitation of

the SBM lies in it forces equal expected degrees for all the nodes in the same com-

munity, therefore ruling out “hubs” - nodes that have abnormally large number of

connections compared to the rest in the population. The degree corrected stochastic

block model corrects this homogenous degree problem of the SBM by associating

each node i with an individual degree parameter θi. Let Θ = diag(θ1, · · · , θn). The

DCSBM then assumes P (Aii′ = 1) = θiθi′Bcici′ . Equivalently, the P matrix is as-

sumed to be P = ΘZBZTΘ (a constraint is needed on Θ to ensure identifiability,

with different authors choosing different versions; here we follow Karrer and Newman

[2011] and assume
∑

V ci=k
θi = 1, for each k ∈ [K]).

Random dot product graph (RDPG) The RDPG [Young and Scheinerman, 2007]

is another generalization of the SBM and one special class of latent space models.

In RDPG, each node i is associated with a latent K dimensional vector Zi ∈ RK ,

such that Pii′ = ZT
i Zi′ . Essentially, RDPG assumes the connectivity of the random

9

network only depends on K latent factors in a linear way through inner product.

It has been shown that RDPG has a very good embedding properties in Euclidean

space in various problems [Sussman et al., 2014, Tang et al., 2017] and its limiting

behaviors can also be studied [Tang and Priebe, 2016]. More details about the model

can be found in the review paper of Athreya et al. [2017].

Graphon model. Observe that random network model framework assumes that

the nodes are exchangeable. According to Aldous [1981], the probability matrix of

any exchangeable random graph can be represented by

Pii′ = f(ξi, ξi′)

where function f : [0, 1] × [0, 1] → [0, 1] is symmetric in its two arguments and is

called “graphon”, while ξi, i ∈ [n] are independent uniform random variables on [0, 1].

The representation is determined only up to a measure-preserving transformation

[Diaconis and Janson, 2007]. There is a substantial literature on estimating the

graphon under various assumptions [Wolfe and Olhede, 2013, Choi and Wolfe, 2014,

Gao et al., 2015].

Though in this thesis, we embed our discussion of network modeling in the theme

of exchangeable random network modeling framework introduced above, which in-

cludes most of current random network models in statistics, there are other frame-

works available, such as the one discussed by Crane and Dempsey [2015].

1.4 Outline of the thesis

The rest of the thesis is organized as follows:

Chapter II focuses on improving prediction models by incorporating network in-

formation A available from the network-linked data. The high-level questions we try

10

to answer in Chapter II are “what are the reasonable assumptions one should as-

sume for prediction models on network-linked data?” and “how can one incorporate

network information wit both computationally efficiency and statistical principles?”.

Specifically, we reply on one generic assumption called “network cohesion” to build

prediction models, an empirically observed phenomenon of friends on social networks

behaving similarly. Taking such cohesion into account in prediction models allows

us to improve prediction and modeling performance. There we propose a network-

based penalty on individual node effects to encourage similarity between predictions

for linked nodes, and show that incorporating it into prediction leads to improvement

over traditional models both theoretically and empirically when network cohesion is

present. The penalty can be used with all the loss-based prediction methods intro-

duced in this chapter. Applications to predicting levels of recreational activity and

marijuana usage among teenagers from the AddHealth study based on both demo-

graphic covariates and friendship networks are discussed in detail and show that our

approach to taking friendships into account can significantly improve predictions of

behavior while providing interpretable estimates of covariate effects.

Chapter III and IV focus on the problems under the random network modeling

framework.

While many statistical models and methods are now available for network analysis,

resampling network data remains a challenging problem. Cross-validation is a useful

general tool for model selection and parameter tuning, but is not directly applicable

to networks since splitting network nodes into groups requires deleting edges and

destroys some of the network structure. In Chapter III, we propose a new network

resampling strategy based on splitting edges rather than nodes, applicable to both

cross-validation and bootstrap for a wide range of network model selection tasks. We

11

provide a theoretical justification for our method in a general setting and examples

of how our method can be used in specific network model selection and parameter

tuning tasks. Numerical results on simulated networks and on a citation network of

statisticians show that this cross-validation approach works well for model selection.

Chapter IV addresses a commonly encountered practical difficulty in community

detection for directed networks. Communities are an important type of structure in

networks and they have been widely studied. In practice, network data are often

collected through sampling mechanisms, such as survey questionnaires, instead of

direct observation. The noise and bias introduced by such sampling mechanisms

can obscure the community structure and invalidate the assumptions of standard

community detection methods. In Chapter IV, we propose a model to incorporate

neighborhood sampling, through a model reflective of survey designs, into community

detection for directed networks, since friendship networks obtained from surveys

are naturally directed. We model the edge sampling probabilities as a function

of both individual preferences and community parameters, and fit the model by

a combination of spectral clustering and the method of moments. The algorithm

is computationally efficient and comes with a theoretical guarantee of consistency.

We evaluate the proposed model in extensive simulation studies and applied it to a

faculty hiring dataset, discovering a meaningful hierarchy of communities among US

business schools.

CHAPTER II

Prediction model on network-linked data

2.1 Introduction

There is a large body of work extending over decades on predicting a response

variable of interest from such covariates, via linear or generalized linear models,

survival analysis, classification methods, and the like, which typically assume the

training samples are independent and do not extend to situations where the samples

are connected by a network. There has not been much focus on developing a general

statistical framework for using network data in prediction, although there are meth-

ods available for specific applications [Wolf et al., 2009, Asur and Huberman, 2010,

Vogelstein et al., 2013].

In the social sciences and especially in economics, on the other hand, there has

been a lot of recent interest in causal inference on the relationship between a response

variable and both covariates and network influences; see e.g., Shalizi and Thomas

[2011] and references therein, and Manski [2013]. While in certain experimental set-

tings such inference is possible [Rand et al., 2011, Choi, 2017, Phan and Airoldi,

2015], in most observational studies on networks establishing causality is substan-

tially more difficult than in regular observational studies. While network cohesion

(a generic term by which in this chapter we mean linked nodes acting similarly) is

12

13

a well known phenomenon observed in numerous social behavior studies [Fujimoto

and Valente, 2012, Haynie, 2001, Christakis and Fowler, 2007], explaining it causally

on the basis of observational data is very challenging. An excellent analysis of this

problem can be found in Shalizi and Thomas [2011], showing that it is in general

impossible to distinguish network cohesion resulting from homophily (nodes become

connected because they act similarly) and cohesion resulting from contagion (behav-

ior spreads from node to node through the links), and to separate that from the effect

of node covariates themselves. However, making good predictions of node behavior

is an easier task than causal inference, and is often all we need for practical purposes.

Our goal in this chapter is to take advantage of the network cohesion phenomenon in

order to better predict a response variable associated with the network nodes, using

both node covariates and network information. While we do not attempt to make

causal inferences, we do focus on interpretable models where effects of individual

variables can be explicitly estimated.

Using network information in predictive models has not yet been well studied.

Most classical predictive models treat the training data as independently sampled

from one common population, and, unless explicitly modeled, network cohesion vi-

olates virtually all assumptions that provide performance guarantees. More impor-

tantly, cohesion is potentially helpful in making predictions, since it suggests pooling

information from neighboring nodes. In certain specific contexts, regression with

dependent observations has been studied. For example, in econometrics, following

the concepts initially discussed by Manski [1993], assuming some type of an auto-

regressive model on the response variables is common, such as the basic autoregres-

sive model in Bramoullé et al. [2009] and its variants including group interactions

and group fixed effects [Lee, 2007]. Such models assume specific forms of different

14

types of network effects, namely, endogenous effects, exogenous effects and corre-

lated effects, and most of this literature is focused on identifiability of such effects.

In Bramoullé et al. [2009] and Lin [2010], these ideas were applied to the AddHealth

data which we discuss in detail in Section 2.5. However, these methods have mainly

been used to identify social effects defined within a very specific and difficult to ver-

ify model, without a focus on interpretability or good prediction performance. For

instance, including neighbors’ responses as covariates in linear regression makes in-

terpretation of other covariate effects more difficult, and can make the distributional

assumptions difficult to satisfy. This has been done carefully in spatial statistics lit-

erature, for example with the conditional autoregressive model (CAR) [Besag, 1974],

but fitting these models typically requires MCMC and is very time-consuming. In

addition, these methods do not extend easily beyond linear regression (for example,

to generalized linear models and Cox’s proportional hazard model).

Our approach is to introduce network cohesion using penalties built using the

network information, and framing the problem as loss plus penalty; for simplicity,

we will present the method for regression first, and then discuss extensions to gen-

eral losses. At a high level, our network penalty parallels the ideas of fusion [Land

and Friedman, 1997, Tibshirani et al., 2005]. Fusion penalties generally shrink the

difference between either coefficients or predictions that are expected to be similar.

Fusion penalties based on a network of variables have been used in variable selection

[Li and Li, 2008, 2010, Pan et al., 2010, Kim et al., 2013], but this line of work is

not directly relevant here since we are interested in using the network of observa-

tions, not variables. However, our approach can be viewed as a regression version of

the point estimation problem discussed in Sharpnack et al. [2013] and Wang et al.

[2016b]. Alternatively, it can be viewed in a Bayesian framework, as regression with

15

a Gaussian Markov random field prior over the network.

We show that our method gives consistent estimates of covariate effects and de-

rive explicit conditions on when enforcing network cohesion in regression can be

expected to perform better than ordinary least squares. In contrast to previous

work, we assume no specific form for the cohesion effects and require no information

about potential groups. We also derive a computationally efficient algorithm for

implementing our approach, which is efficient for both sparse and dense networks,

the latter with an extra sparsification step which we prove preserves the relevant

network properties. To the best of our knowledge, this is the first proposal of a

general prediction framework with network cohesion among the observations that

is computationally feasible and can retain covariate interpretations as well as make

out-of-sample predictions.

The rest of this chapter is organized as follows. In Section 2.2, we introduce our

approach in the setting of linear regression. We frame it as a penalized least squares

problem which has a closed-form solution, and derive its Bayesian interpretation and

connection to various other models. The idea is then extended to generalized linear

models. Empirically, we show that our approach outperforms prediction without

networks as well as an earlier modification intended to incorporate information from

neighbors. Finite sample and asymptotic properties are discussed in Section 2.3.

Brief simulation results demonstrating the theoretical bounds and comparisons to

benchmarks are presented in Section 2.4. A detailed analysis and discussion of cohe-

sion in the AddHealth data is presented in Section 2.5, where we apply our method to

predict recreational activity and marijuana usage among teenagers. All algorithms

in this chapter are implemented in the R package netcoh [Li et al., 2016a], available

on CRAN.

16

2.2 Regression with network cohesion

2.2.1 Set-up and notation

We start from reviewing the setting up of the network-linked data and notations.

The data consist of n observations (x1, y1), (x2, y2), · · · , (xn, yn), where yi ∈ R is

the response variable and xi ∈ Rp is the vector of covariates for observation i.

We write Y = (y1, y2, · · · , yn)T for the response vector, and X = (x1,x2, · · · ,xn)T

for the n × p design matrix. We treat X as fixed and assume its columns have

been standardized to have mean 0 and variance 1. We also observe the network

connecting the observations, G = (V,E), where V = [n] is the node set of the graph,

and E ⊂ V × V is the edge set. We represent the graph by its adjacency matrix

A ∈ {0, 1}n×n. We assume there are no loops so Avv = 0 for all v ∈ V , and we

assume the network is undirected, i.e., Aii′ = Ai′i. The (unnormalized) Laplacian of

G is given by L = D − A, where D = diag(d1, d2, · · · , dn) is the degree matrix, with

node degree di defined by di =
∑

i′∈V Aii′ .

2.2.2 Linear regression with network cohesion

Cohesion is a vague term that can be interpreted in several ways depending on

whether it refers to the network itself or both the network and additional covari-

ates. Cohesion defined on the network alone can be reflected in various properties,

such as local density, connectivity and community structure; we refer the readers to

Chapter 4 of Kolaczyk [2009] for details. In the context of prediction on networks,

which is our focus, two types of cohesion are commonly discussed: homophily (also

known as assortative mixing) and contagion. Homophily means nodes similar in

their characteristics tend to connect, with the implication of a causal direction from

sharing individual characteristics to forming a connection. In contrast, contagion

17

means that nodes tend to behave similarly to their neighbors, with a casual direction

from having a connection to exhibiting similar characteristics. Distinguishing these

two phenomena in an observational study without additional strong assumptions

is not possible [Shalizi and Thomas, 2011]. Nonetheless, both of these indicate a

correlation between network connections and node similarities, observed empirically

by many social behavior studies [Haynie, 2001, Pearson and West, 2003, Fujimoto

and Valente, 2012], and that is all we need and assume in this chapter. We use

the generic term “cohesion” in order to cover both possibilities of homophily and

contagion, which we do not need to distinguish.

The general cohesion penalty idea is simplest to present in the context of linear

regression, so we start from this setting. Assume that

(2.1) Y = α+Xβ + ε

where α = (α1, α2, · · · , αn)T ∈ Rn is the vector of individual node effects, and

β = (β1, β2, · · · , βp)T ∈ Rp is the vector of regression coefficients. At this stage, no

assumption on the distribution of the error ε is needed, but we assume Eε = 0 and

Var(ε) = σ2In. For simplicity, we further assume that n > p and XTX is invertible.

If p > n and this is not the case, the usual penalties on β, such as a lasso and ridge,

can be applied; our focus here, however, is on regularizing the individual effects, and

so we will not focus on additional regularization on β that may be necessary.

Including the individual node effects α instead of a common shared intercept

turns out to be key to incorporating network cohesion. In general α and β, which

add up to n + p unknown parameters, cannot be estimated from n observations

without additional assumptions. One well-known example of such assumptions is

the simple fixed effects model (see e.g. Searle et al. [2009]), when n samples come

from K known groups (typically K � n), and within each group individuals share

18

a common intercept. Here, we regularize the problem through a network cohesion

penalty on α instead of making explicit assumptions about any structure in α.

The regression with network cohesion (RNC) estimator we propose is defined as

the minimizer of the objective function

(2.2) L(α,β) = ‖Y −Xβ −α‖2 + λαTLα,

where ‖ · ‖ is the L2 vector norm and λ > 0 is a tuning parameter. An equivalent

and more intuitive form of the penalty, which follows from a simple property of the

graph Laplacian, is

(2.3) αTLα =
∑

(i,i′)∈E

(αi − αi′)2.

Thus, we penalize differences between individual effects of nodes connected by an

edge in the network. We call this term the cohesion penalty on α. We assume

that the effect of covariates X is the same across the network; as with any linear

regression, two nodes with similar covariates will have similar values of xTβ, and

the cohesion penalty ensures the neighboring nodes have similar individual effects α.

Note that this is different from imposing network homophily (which would require

nodes with similar covariates to be more likely to be connected).

The minimizer of (2.2) can be computed explicitly (if it exists) as

(2.4) θ̂ = (α̂, β̂) = (X̃T X̃ + λM)−1X̃TY.

Here, X̃ = (In, X) and

M =

 L 0n×p

0p×n 0p×p


where 0a×b is an a × b matrix of all zeros. The estimator exists if X̃T X̃ + λM is

19

invertible. Note that

(2.5) X̃T X̃ + λM =

In + λL X

XT XTX

 ,
so it is positive definite if and only if the Schur complement In+λL−X(XTX)−1XT =

PX⊥ + λL is positive definite. From (2.3), we can see that L is positive semi-definite

but singular since L1n = 0 and thus in principle the estimator may not be com-

putable. In Section 2.3, we will give an interpretable theoretical condition for the

estimator to exist. In practice, a natural solution is to ensure numerical stability

by replacing L with the regularized Laplacian L + γI, where γ is a small positive

constant. Then the estimator always exists, and in fact the regularized Laplacian

may better represent certain network properties, as discussed by Chaudhuri et al.

[2012], Amini et al. [2013], Le et al. [2017] and others. The resulting penalty is

(2.6)
∑

(i,i′)∈E

(αi − αi′)2 + γ
∑
i

α2
i ,

which one can also interpret as adding a small ridge penalty on α for numerical

stability.

Remark II.1. The penalty (2.6) suggests a natural baseline comparison for our model

which can be used to assess whether cohesion is in fact present in the data. If the

graph has no edges. i.e., no information about network connections is available, the

penalty (with γ = 1) reduces to a ridge penalty on the individual effects α. The

parameter estimates are then obtained by minimizing

(2.7) Ln(α,β) = ‖Y −Xβ −α‖2 + λ‖α‖2 .

We call this the null model for RNC, as it still incorporates individual node effects

which in themselves can improve performance compared to OLS with a common

20

intercept. As discussed later in Section 2.2.4 and 2.2.7, this null model can also be

viewed as a random effects model with i.i.d Gaussian intercepts. Comparing the fit of

the null model to that of RNC can in fact provide qualitative evidence of cohesion.

For linear regression, the null model can improve the fit to training data, but it

gives exactly the same estimate of β as the OLS (Lemma A.3 in Appendix A), and

thus cannot improve predictions on test data, since without network information

individual effects on test data cannot be estimated; see more on this in Section 2.4.

Remark II.2. A possible alternative to our cohesion penalty is the network lasso

penalty,
∑

(i,i′)∈E |αi − αi′ | [Hallac et al., 2015]. However, this penalty introduces

piecewise constants on the network, a rather stronger assumption than we make

about cohesion which may not be always realistic. It is also much more computa-

tionally demanding, requiring a sophisticated algorithm and implementation even for

moderate size networks.

Remark II.3. It is also possible to assume different but cohesive covariate effects

β for each individual, which can be implemented in exactly the same way as our

idea of the individual intercepts α. As usual, there is a trade-off between including

more parameters for better fit and parsimony of the model. We set β to be shared

among all individual to represent the universal treatment effect, which seems to be

reasonable and easy to interpret in many situations.

2.2.3 Network cohesion for general loss functions

The RNC methodology extends naturally to generalized linear models and many

other regression or classification models, such as Cox’s proportional hazard model

[Cox, 1972] for survival analysis, and support vector machines [Vapnik, 2013] for

classification using the formulation of Wahba et al. [1999]. Here we will explicitly

21

write out two extensions, to generalized linear models (GLMs) and Cox’s model. For

any GLM with a link function φ(EY) = Xβ + α, where α ∈ Rn are the individual

effects, suppose the log-likelihood (or partial log-likelihood) function is `(α,β;X, Y).

Then if the observations are linked by a network, to induce network cohesion one

can fit the model by maximizing the penalized likelihood

(2.8) `(α+Xβ;Y)− λαT (L+ γI)α.

When ` is concave in α and β, which is the case for exponential families, the op-

timization problem can be solved via Newton-Raphson or another appropriate con-

vex optimization algorithm. Note that the quadratic approximation to (2.8) is the

quadratic approximation to the log-likelihood plus the penalty, and thus the problem

can be efficiently solved by iteratively reweighed linear regression with network co-

hesion, just like the GLM is fitted by iteratively reweighed least squares. The ridge

penalty term γI helps with numerical stability and for logistic regression avoids fitted

probabilities of 0 and 1 for isolated nodes, which may cause the iterative algorithm

to diverge; as discussed in the previous section, adding this term to the Laplacian

also improves its representation of the underlying network structure.

RNC can be similarly generalized to Cox’s proportional hazard model [Cox, 1972].

In this setting, we observe times until some event occurs, called survival times, which

may be censored (unobserved) if the event has not occurred for a particular node.

Cox’s model assumes the hazard function hv(y) for each individual v is

hi(y) = h0(y) exp(xTi β), i ∈ V,

where y is the survival time, xv is the vector of p observed covariates for individual

i, β ∈ Rp is the coefficient vector and h0 is an unspecified baseline hazard function.

When we have observations connected by a network, we can model the individual

22

effects and then encourage network cohesion. Thus we will assume the hazard for

each node v is given by

(2.9) hi(y) = h0(y) exp(xTi β + αi), i ∈ V,

where αi is the individual effect of node i. The appropriate loss function in terms of

the parameters θ = (α,β) is the partial log-likelihood

(2.10) `(θ; i) =
∑
i

δi

[
xTi β + αi − log

(∑
u:yi′≥yi

exp(xTi′β + αi′)
)]

where yi is the observed survival time for node i, and δi is the censoring indicator,

which is 0 if the observation is right-censored and 1 otherwise. Note that the partial

log-likelihood is invariant under a shift in α since such a shift can always be absorbed

into h0. Thus for identifiability, we require
∑
αi = 0. For fixed covariates xi, αi is

the individual deviation from the population average log-hazard. The sum-to-zero

constraint can be automatically enforced by replacing the network Laplacian L in

the network cohesion penalty with its regularized version L + γI, or equivalently

adding a ridge penalty on α’s. Thus we maximize the following objective function,

adding a regularized cohesion penalty to the partial log-likelihood:

`(θ)− λαT (L+ γI)α.

2.2.4 A Bayesian interpretation

The RNC estimator can also be framed as a Bayesian regression model. Consider

the model

Y |α,β ∼ N (α+Xβ, σ2I), β ∼ πβ(φ), α ∼ πα(Φ),

where πβ(φ) is the prior for β with hyperparameter φ, πα(Φ) is the prior for α

with hyperparameter Φ, and σ2 is assumed to be known. Suppose we take πβ(φ)

23

to be the non-informative Jeffrey’s prior, reflecting lack of prior knowledge about

the coefficients, and set πβ(φ) ∝ 1. For α, assume a Gaussian Markov random field

(GMRF) prior πα = NG(0,Φ), where Φ = Ω−1 = ζ2(L + γI)−1. Note that when

γ = 0, Ω is not invertible, and πα is an improper prior called intrinsic GMRF [Rue

and Held, 2005].

If the posterior modes are used as the estimators for α and β, then this is equiva-

lent to (2.2) with λ = σ2/ζ2 and the Laplacian replaced by the regularized Laplacian

L+γI. Thus the estimator of (2.2) is the Bayes estimator with the improper intrinsic

GMRF prior over the network on α. Note that this Bayesian interpretation is also

valid for the generalized linear models.

2.2.5 Prediction and choosing the tuning parameter

To compute fitted values on the training data (in-sample prediction), we simply

use α̂+Xβ̂. The out-of-sample prediction task in this setting is to make predictions

on a group of new subjects whose covariates as well as network connections (but

not responses) become available after the model is fitted on training data. Since we

have a different αv for each node v, predicted individual effects are needed for new

samples. Suppose we have a total of n training samples and n′ test samples, resulting

in a new network with n + n′ nodes where the first n nodes are from training and

the last n′ are the test nodes. Write the associated Laplacian as

L′ =

L11 L12

L21 L22

 ,
where L11 corresponds to the original n training samples and L22 corresponds to

the n′ test samples. Similarly write the individual effect vector as (α1,α2), where

α1 = α̂ is estimated from training data, and α2 needs to be predicted.

24

To take advantage of cohesion, we predict α2 by minimizing the overall cohesion

penalty, letting

α̂2 = arg min
α2

(α̂,α2)TL′(α̂,α2) .

This gives

α̂2 = −L−1
22 L21α̂.

This corresponds to a supervised prediction setting, our focus in this chapter,

which assumes only the training data are available at the time of fitting. Our method

can also be used in a semi-supervised setting, where the entire network is available

at the time of training. In this case, the cohesion penalty at the fitting stage can

include all the individual effects for all data points and the entire network so α1 and

α2 are jointly optimized simultaneously.

The tuning parameter λ can be selected by cross-validation. Randomly splitting

or sampling from a network is not straightforward; however, we found that the usual

“naive” cross-validation finds very good tuning parameters for our method, perhaps

because it is fundamentally a regression problem and we are not attempting to make

any inferences about the structure of the network. We tune using regular 10-fold

cross-validation, randomly splitting the samples into 10 folds, leaving each fold out

in turn, and training the model using the remaining nine folds and the corresponding

induced subnetwork. The cross-validation error is computed as the average of the

prediction errors on the fold that was left out, and the tuning parameter is picked

to minimize the cross-validation error.

2.2.6 An efficient computation strategy

Computing the estimator (2.4) involves solving a (n+ p)× (n+ p) linear system

so a naive implementation would require O((n + p)3) operations. For GLMs, such

25

a system has to be solved in each Newton step. This computational burden can be

reduced significantly by taking advantage of the fact that most networks in practice

have sparse adjacency matrices as well as sparse Laplacians, which allows for using

block elimination. A general description of this strategy can be found in many

standard texts (see e.g. Boyd and Vandenberghe [2004], Ch. 4). Here we give the

details in our setting.

The linear system we need to solve is

(X̃T X̃ + λM)a = b.

From (2.5), we can rewrite this system with the following block structure:I + λL X

XT XTX


a1

a2

 =

b1

b2

 .
The top row gives

(I + λL)a1 = (b1 −Xa2)

and substituting this into the bottom row, we have

(XTX −XT (I + λL)−1X)a2 = b2 −XT (I + λL)−1b1.

Note that I + λL is a symmetric diagonal dominant (SDD) matrix, and is sparse

most of the time in practice, so (I + λL)−1b1 and (I + λL)−1X can be efficiently

computed [Koutis et al., 2010, Cohen et al., 2014]. The cost of this step is roughly

O(p(n + 2|E|)(log n)1/2), where |E| is the number of edges in the network and c is

some absolute constant. The cost of the remaining computations is dominated by

the cost of inverting the p× p matrix XTX −XT (I + λL)−1X, which is of the same

order as the cost of solving a standard least squares problem.

When A and L are dense matrices, with |E| = O(n2), the strategy above has the

cost of O(pn2((log n)1/2), which is still better than naively solving the system, but

26

we do not gain anything from block elimination unless L is sparse. However, we can

first apply a graph sparsification algorithm to A and use the sparsified A∗ as input

for RNC. For instance, the algorithm of Spielman and Teng [2011] can find A∗ with

O(ε−2n log n) edges at the cost of O(|E| log2 n) operations such that its sparsified

Laplacian L∗ satisfies

(1− ε)L � L∗ � (1 + ε)L,

for a given constant ε > 0. After this sparsification step, the complexity of solving

the linear system reduces to to O(pn logc n) for c ≤ 3. In Section 2.3, we will provide

theoretical guarantees for the accuracy of the RNC estimator based on L∗ compared

to that based on L.

When the number of edges is on the order of O(n2), the sparsification step itself

has complexity of O(n2 logc n), which is not necessarily cheaper than directly solving

the original dense linear system using the SDD property. However, the advantage

of sparsification becomes obvious when one has to iteratively solve the linear system

for the GLM or Cox’s model, and/or compute a solution path for a sequence of λ

values. In such situations, sparsificaiton only has to be done once and the average

complexity of solving the linear system can be close to O(n logc n) for the whole

estimation procedure. Details of complexity calculations for the RNC are given in

Appendix A.2; a more comprehensive discussion of the computational trade-off of

sparsification can be found in Sadhanala et al. [2016].

2.2.7 Connection to other models

Fixed group effects models The fixed effects regression model with subjects divided

into groups is a special case of RNC. If the graph G represents the groups as cliques

(everyone within the same group is connected), there are no connections between

27

groups, and we let λ→∞, then all nodes in one group will share a common intercept.

Mixed effects models. A mixed model, like ours, has individual effects viewed as

random (α) and fixed covariate effects (β), but no network effects. Our null model

is a standard mixed model. The Bayesian interpretation of our method suggests we

are inducing correlations between the random effects, α ∼ NG(0,Φ). The estimator

(2.4) is then the mixed model equation in Henderson [1953] for estimating fixed effects

and predicting random effects simultaneously (see Searle et al. [2009]). However, the

framework of mixed models requires stronger assumptions on the form of variance

components. Moreover, (generalized) mixed models are not designed for predictions

conceptually, and we will show in the simulation study as well as theoretically in

Lemma A.3 in Appendix A that the null model is not able to improve on out-of-

sample predictions.

Spatial models In spatial statistics, data points are typically indexed by their

locations. A weight matrix A can be computed as a function of distance between

locations and can be used as a weighted analogue of our network adjacency ma-

trix. This leads to natural connections between RNC and methods used in spatial

statistics. In particular, ignoring the covariates X, RNC reduces to the Laplacian

smoothing point estimation procedure in Sharpnack et al. [2013] and Wang et al.

[2016b], which is equivalent to krigging in spatial statistics [Cressie, 1990]. It has

been shown that a class of semi-supervised learning methods based on Laplacian

smoothing can be viewed as “graph krigging” [Xu et al., 2010] . From this perspec-

tive, RNC can be viewed as a generalization of graph krigging of Xu et al. [2010]

to incorporate covariates and general loss functions. With covariates X included,

the Bayesian interpretation of RNC assumes the same Gaussian Markov random

28

field distribution for α as the conditional autoregressive model (CAR) [Besag, 1974]

and its GLM generalization (Chapter 9 of Waller and Gotway [2004]) assume for

errors in spatial regression. However, ζ2 and σ2 in our Bayesian interpretation are

treated as parameters in the CAR, while λ = σ2/ζ2 is treated as a tuning parameter

in RNC. Further, the CAR model is fitted either by maximum likelihood involving

computationally expensive integration steps, or by posterior inference via Markov

chain Monte Carlo after assuming a full Bayesian model with additional priors on β

and ζ2, etc. Both ways require much heavier computations than RNC, especially for

GLM where the Gaussian Markov random field is no longer the conjugate prior. More

importantly, CAR models cannot be applied to general loss functions that are not a

well-defined likelihood, for example, for Cox’s model and SVM. Also, CAR models

suffer from conceptual difficulties in making out-of-sample predictions [Waller and

Gotway, 2004]. In contrast, RNC provides a universal strategy under general loss

functions and comes with a natural out-of-sample predictor, discussed in Section

2.2.5.

Manifold embeddings Our Laplacian-based penalty has connections to the large

literature on manifold embeddings and semi-supervised learning. The general task

of manifold embeddings is to embed data points, typically observed in some high-

dimensional space equipped with a potentially non-Euclidean similarity measure,

into a low-dimensional Euclidean space, while preserving dissimilarity between the

points as much as possible. Finding the “right” embedding space is expected to help

with downstream analysis tasks, such as visualization [Tenenbaum et al., 2000] or

clustering [Shi and Malik, 2000]. Perhaps the algorithm most closely related to ours

is Laplacian Eigenmaps [Belkin and Niyogi, 2003], which proposed using k eigenvec-

29

tors of the constructed graph Laplacian L corresponding to the smallest eigenvalues

as the Euclidean embedding of the graph in order to obtain a low-dimensional rep-

resentation of the data, and its kernel version with a regularization penalty [Belkin

et al., 2006]. There are multiple semi-supervised learning approaches to prediction on

manifolds, where it is assumed that all the similarities (corresponding to the network

in our case) are observed but only some of the data points are labelled [Zhou et al.,

2004, 2005]. Later out-of-sample extensions [Bengio et al., 2004, Cai et al., 2007,

Vural and Guillemot, 2016] were developed by assuming the embedding coordinates

take certain specific forms as functions of the original data points, and in general

the manifold literature relies on an underlying Euclidean space where distance and

smoothness are well defined, an assumption we do not make.

Supervised manifold embeddings have also been proposed when class labels are

available in training data, including for the Laplacian Eigenmaps [Yang et al., 2011,

Raducanu and Dornaika, 2012, Vural and Guillemot, 2016]. The basic idea is to learn

a low-dimensional embedding of the data that also corresponds to a good separation

of classes, and then use the coordinates in this embedding as predictors instead of the

original variables. For general response variables instead of class labels, there is no

supervised variant of Laplacian Eigenmaps as far as we are aware. More importantly,

the embedding coordinates are typically complicated implicit functions of all the

variables, and their coefficients cannot be interpreted in any meaningful way. Our

method, on the other hand, has the original variables as predictors in the model (and

nothing else), and thus their regression coefficients are readily interpretable.

30

2.3 Theoretical properties of the RNC estimator

Recall the RNC estimator is given by

(2.11) θ̂ = (X̃T X̃ + λM)−1X̃TY,

where

M =

L 0

0 0

 .
We continue to assume that X has centered columns and full column rank. Intu-

itively, we expect the network cohesion effect to improve prediction only when the

network provides “new” information that is not already contained in the predictors

X. We formalize this intuition in the following assumption:

Assumption II.4. For any u 6= 0 in the column space of X, uTLu > 0.

This natural and fairly mild assumption is enough to ensure the existence of the

RNC estimator. Write col(X) for the linear space spanned by columns of X and

col(X)⊥ for its orthogonal complement. Then the projection matrix onto col(X)⊥

is PX⊥ = In − PX , where PX = X(XTX)−1XT . Write λmin(M) for the minimum

eigenvalue of any matrix M . Then we have the following lemma:

Proposition II.5. Whenever λ > 0, we have 0 ≤ ν = λmin(PX⊥ + λL) ≤ 1. Under

Assumption II.4 the RNC estimator (2.11) exists.

Lemma II.5 in the Appendix shows that when the network is connected and X is

centered, the RNC estimator always exists since in a connected graph, L has rank

n− 1, and an eigenvector 1.

Theorem II.6. Under Assumption II.4, the RNC estimator θ̂ = (α̂, β̂) defined by

31

(2.11) satisfies

MSE(α̂) ≤ λ2

ν2
‖Lα‖2 +

n

ν
σ2,(2.12)

MSE(β̂) ≤ λ2

ν2µ
‖Lα‖2 + σ2(

1

ν
+ 1)tr((XTX)−1),(2.13)

E‖Ŷ − EY ‖2 ≤ λ2

ν
‖Lα‖2 + σ2‖Sλ‖2

F ,(2.14)

where the minimum eigenvalue of XTX is denoted by µ and ‖Sλ‖F is the Frobenius

norm of the shrinkage matrix Sλ = X̃(X̃T X̃+λL)−1X̃T . In particular, when ‖Lα‖ =

0, and therefore α is constant over each connected component of the network, RNC

is unbiased.

The proof is given in the Appendix where the expressions for exact errors are also

available. Theorem II.6 applies to any fixed n. The asymptotic results as the size of

the network n grows are presented next in Theorem II.7. We add the subscript n to

previously defined quantities to emphasize the asymptotic nature of this result.

Theorem II.7. If Assumption II.4 holds, µn = O(n), ‖Lnαn‖2 = o(nc) for some

constant c < 1, and there exists a sequence of λn and a constant ρ > 0 such that

lim infn νn > ρ, then

MSE(β̂) ≤ O(λ2
nn
−(1−c)) +O(n−1).

Therefore if λ2
n = o(n1−c), β̂ is an L2-consistent estimator of β.

Remark II.8. Note that the quantity Lα appearing in the assumptions is the gradient

of the cohesion penalty with respect to α, ∇ααTLα = 2Lα. We call Lα the cohesion

gradient. In physics, cohesion gradient is used to measure heat diffusion on graphs

when α is a heat function:

(Lα)i = |ne(i)|

(
αi −

∑
i′∈ne(i) αi′

|ne(i)|

)
.

32

where ne(i) is the set of neighbors of i defined by the graph. Thus ‖Lα‖ represents

the difference between nodes’ individual effects and the average of their neighbors’

effects. The condition of Theorem II.7 requires that the norm of the vector Lα ∈ Rn

grows slower than O(
√
n). This condition is satisfied by a large set of n−dimensional

vectors defined on many networks; the following proposition gives an example.

Proposition II.9. Assume the network is a
√
n ×
√
n lattice. Then ‖Lα‖2 ≤ nc

as long as α is in the subspace spanned by k smallest eigenvalues of L for some

k ≤ Cn
1+c
2 , where C and c are some constants and c < 1.

It is instructive to compare the MSE of our estimator with the MSE of the ordinary

least squares (OLS) estimator, as well as the null model (which is what our estimator

gives when the network has no edges). For OLS, we have

β̂OLS = (XTX)−1XTY, α̂OLS = ȳ1,

where α̂OLS is the common intercept. Compared to OLS, the RNC estimator reduces

bias caused by the network-induced dependence among samples, and as a trade-off

increases variance; thus intuitively, one would expect that the signal-to-noise ratio

and the degree of cohesion in the network will determine which estimator performs

better. From Theorem II.6 and the basic properties of the OLS estimator (stated as

Lemma A.1 in the Appendix), it is easy to see that if

(2.15)
(n
ν
− 1
)
σ2 ≤ V (α)− λ2

ν2
‖Lα‖2

where V (α) =
∑

i(αi− ᾱ)2, then the RNC estimator of the individual effects α̂ has

a lower MSE than that of α̂OLS. The left hand side of (2.15) represents the increase

in variance induced by adding the individual effects, whereas the right hand size is

the corresponding reduction in squared bias. When α is sufficiently smooth over the

33

network, ‖Lα‖ is negligible compared to other terms, and the condition essentially

requires that the total variation of αv around its average is larger than the total noise

level. Similarly, for the coefficients β, if

(2.16) tr((XTX)−1)
σ2

ν
≤ ‖(XTX)−1XTα‖2 − λ2

µ
‖Lα‖2

then the RNC estimator β̂ has a lower MSE than β̂OLS. Again, the two sides of

the inequality represent the increase in variance and the reduction in squared bias,

respectively. The null model gives an estimate for β identical to β̂OLS, so the same

comparison applies. The null model estimate of α involves more terms and the

corresponding tuning parameter and does not result in clear comparison. However,

we demonstrate the difference numerically by the next example and by our simulation

study in Section 2.4. The exact formula for the null model estimation error is given

by Lemma A.3 in Appendix A.

Example II.10. We illustrate the bias-variance trade-off on a simple example. Sup-

pose we have a network with n = 300 nodes which consists of three disconnected

components G1, G2, G3, of 100 nodes each. Each component is generated as an

Erdos-Renyi graph, with each pair of nodes forming an edge independently with

probability 0.05. Individual effects αi are generated independently from N (ηci , 0.1
2),

where ci ∈ {1, 2, 3} is the component to which nodes i belongs, η1 = −1, η2 = 0,

η3 = 1. We set λ = 0.1. Substituting the expectation EA for A, we have ν ≈ 0.5,

‖Lα‖2 ≈ 105, and V (α) ≈ 203. Then as long as the noise variance σ < 0.57,

(2.15) will be satisfied. Similarly, XTX ≈ nI2, and ‖XTα‖2 ≈ 406 in expecta-

tion. Thus (2.16) holds and the RNC is beneficial if σ < 0.54 (approximately).

The bias-variance trade-off in the mean squared prediction errors (MSPE) can be

demonstrated explicitly when varying λ; Figure 2.1 shows this trade-off between bias

34

and variance together with the OLS baseline when σ = 0.5. The MSPEs of OLS

and the null model are also shown. Note that this calculation for RNC is based on

conservative bounds. In reality the RNC is going to be beneficial for a larger range

of σ values.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

λ

bias2 variance

RNC MSPE

OLS MSPE

null model MSPE

Figure 2.1: Mean squared prediction error E‖Ŷ − EY ‖2/n and the bias-variance trade-off of the
RNC estimator (based on the upper bound (2.14) in Theorem II.6), in the setting of Example II.10
with σ = 0.5.

Remark II.11. If we use (2.6) and are willing to make strong assumptions about

the distribution as in the Bayesian interpretation, it can be shown (see Searle et al.

[2009], Ch. 7 for details) that α̂ is the best linear unbiased predictor (BLUP) of α

and β̂ is the best linear unbiased estimator (BLUE) of β. However, these are strong

assumptions which we prefer to avoid.

35

Finally, we investigate the effects of graph sparsification, proposed in Section 2.2.6

to reduce computational cost. For any ε > 0, let L∗ be the Laplacian of a network

on the same nodes satisfying

(2.17) (1− ε)L � L∗ � (1 + ε)L.

In addition, let θ̂ be the minimizer of

(2.18) f(θ) = `(α+Xβ;Y) + λαTLα,

and θ̂
∗

be the minimizer of

(2.19) f ∗(θ) = `(α+Xβ;Y) + λαTL∗α,

where ` can be a general loss function, such as the sum of squared errors in linear

model or the negative log-likelihood in GLM.

Theorem II.12. Given two Laplacians L and L∗ satisfying (2.17) for 0 < ε < 1/2,

assume ` in (2.18) is twice differentiable and f is strongly convex with m > 0, such

that for any θ = (α,β) ∈ Rn+p,

52f(θ) � mIn+p.

Then θ̂ and θ̂
∗

minimizing (2.18) and (2.19) respectively, with the same λ, satisfy

(2.20)

‖θ̂
∗
− θ̂‖2 ≤ 2ελ

m
min

(
2α̂TLα̂+|α̂TLα̂−α̂∗TL∗α̂∗|+2εα̂∗TL∗α̂∗ ,

2ελ

m
λ1(L)2‖α̂‖2

)
.

The proof is given in the Appendix. Theorem II.12 can be seen as a generalization

of the result of Sadhanala et al. [2016] for point estimation by Laplacian smoothing

(or krigging) for Gaussian and binary data. Our bound is slightly better than that

of Sadhanala et al. [2016].

36

Remark II.13. The term α̂TLα̂ is the cohesion penalty and is expected to be small

for estimated α̂. Further, we can expect both |α̂TLα̂− α̂∗TL∗α̂∗| and εα̂∗TL∗α̂∗ to

be much smaller than α̂TLα̂, and the first bound in (2.20) is typically much smaller

than the second. Therefore, the bound is essentially

(2.21) ‖θ̂
∗
− θ̂‖2 .

4ελ

m
α̂TLα̂.

Remark II.14. The theorem shows that the squared error in estimation with an ε-

approximated Laplacian is decreasing linearly in ε. In particular, it is easy to check

that for the linear regression case, we have

52`(θ) = 2(X̃T X̃ + λM).

Strong convexity always holds whenever RNC estimate exists, and the bound be-

comes

(2.22) ‖θ̂
∗
− θ̂‖2 .

2ελα̂TLα̂

λn(X̃T X̃ + λM)
.

Remark II.15. Theorem II.12 can also be viewed as a result on network misspecifica-

tion. If the true network is observed with errors, but its Laplacian L∗ satisfies (2.17)

and is close enough to the correct L, we have the same error bound for the estimate

from the mispecified network. Another way to make the method more robust to

errors in the network is to replace L by a low-rank approximation to it, if we have

reasons to believe a low-rank structure describes the underlying network well.

2.4 Numerical performance evaluation

In this section, we investigate the effects of including network cohesion on simu-

lated data, in linear and logistic regression.

37

The simulated networks are generated from the SBM with n = 300 nodes and K =

3 blocks. Under the stochastic block model, the nodes are assigned to blocks indepen-

dently by sampling from a multinomial distribution with parameters (π1, . . . , πK).

We set π1 = π2 = π3 = 1/3, Bkk = pw = 0.2, and Bkl = pb for all k 6= l. As in

Example II.10, the individual effects αi’s are generated independently from a normal

distribution with the mean determined by the node’s block label, N (ηci , s
2), where

η1 = −1, η2 = 0, η3 = 1, and the parameter s controls how “cohesive” the αi’s within

each block are. The predictor coefficients β are drawn independently from N (1, 1).

This simulation setting is not especially favorable to RNC since it does not satisfy

the smoothness requirement of Theorem II.7 except when s = 0. Moreover, because

edges connecting different blocks give false information and edges within the same

block are all exchangeable, an edge between two nodes does not give direct evidence

of them having similar α’s (except when pb = 0). However, there is cohesion on the

network in the sense that some alphas are more similar to each other than to others,

and we can vary the strength of cohesion by varying s; varying pb allows us to test

robustness against “false” edges, meaning edges that do not indicate similarity.

We compare RNC to four other methods on these simulated networks: a baseline

(OLS for continuous response and logistic regression for binary response), the null

model, where the graph is empty and we simply add a ridge penalty on the individual

effects, a fixed effects “oracle” model which knows the true blocks and uses the

same α for all the nodes in the same block, and a mixed effects model which adds

Gaussian random effects to the fixed effect model, fitting exactly the model that

was used to generate the data. The tuning parameters are always selected by 10-fold

cross-validation; however, the linear null model always makes the same out-of-sample

predictions as OLS (Lemma A.3 in the Appendix), for any value of λ, and thus cross-

38

validation cannot be used to select the tuning parameter. This is a side effect of the

bigger problem for the null model, which is its inability to make non-trivial out-

of-sample predictions. Instead of cross-validation, we use the restricted maximum

likelihood (REML) estimate under the corresponding linear mixed model framework

for λ = σ2/ζ2. The mixed effects model is also estimated by REML.

Four performance metrics are reported: the average mean squared error (MSE) of

α and β, and in-sample and out-of-sample mean squared prediction errors (MSPEs).

Figure 2.2 shows results as the variance parameter s changes from 0 to 1 with

pb = 0.02. All methods get worse as s increases and the signal-to-noise ratio goes

down, as one would expect. The OLS is the worst on all measures since the other

models incorporate the individual effects α and thus provide a better fit. However,

incorporating α in the null model only helps with the in-sample error; for estimating

β and out-of-sample prediction, the null model is exactly the same as OLS. The

RNC and the two oracle models generally perform much better and are fairly close

to each other, with the oracle fixed effects model performing somewhat better on

the in-sample error when s is small and the oracle is close to the true model, and

both the RNC and oracle mixed effects model outperforming the oracle fixed effects

model for larger s since they can adapt to the changing amount of cohesion over

the network. Instead of using known blocks we could have also fitted them by one

of the many available community detection methods, but that would only help if

the underlying model does indeed have communities. The RNC, on the other hand,

does not require an assumption of communities and can adapt to cohesion over many

different types of underlying graphs.

Figure 2.3 shows how the four performance metrics respond to an increase in pb,

the probability of “false” edges, with fixed s = 0.1. As expected, the performance

39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

MSE of α

s

● ● ● ● ● ●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

MSE of β

s

● ●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

In−sample prediction error

s

● ● ● ● ● ●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Out−of−sample prediction error

s

● ●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

RNC
Null
Oracle−FixedEffects
OLS
Oracle−MixedEffects

Figure 2.2: Linear regression with varying s and pb = 0.02. Performance is evaluated by the MSEs
of α and β, and in-sample and out-of-sample mean squared prediction errors.

of RNC degrades as pb increases. However, even when pb = 0.05, when the ratio

of within-block “true” edge probability to between-block “false” edge probability is

only 4/3, RNC still does much better than OLS and the null model in estimating β

and out-of-sample prediction.

Next, we use the same setting for generating the network, covariates, and param-

eters, but generate Y from the Bernoulli distribution with probabilities of success

given by the logit function of XTβ+α. We then estimate the parameters by fitting

standard logistic regression and also logistic regression with our proposed network

40

cohesion penalty. We fix a small value of the ridge regularization tuning parameter,

γ = 0.01, as it is only added for numerical stability. We evaluate the methods by

computing the average MSE of α, β, and the vector of n Bernoulli probabilities

estimated as

p̂i =
exp(xTi β̂ + α̂i)

1 + exp(xTi β̂ + α̂i)
,

as well as the probabilities on 50 hold-out samples. The latter two are analogues to

in-sample and out-of-sample prediction errors in linear regression.

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

MSE of α

pb

●
●

●

●
●

● ● ● ● ● ●

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

MSE of β

pb

●
● ● ●

● ●
●

●
●

●
●

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

In−sample prediction error

pb

● ● ● ● ● ● ● ● ● ● ●

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
5

1.
0

1.
5

2.
0

Out−of−sample prediction error

pb

● ● ● ● ● ● ● ● ● ● ●

RNC
Null
Oracle−FixedEffects
OLS
Oracle−MixedEffects

Figure 2.3: Linear regression with varying pb and s = 0.1. Performance is evaluated by the MSEs
of α and β, and in-sample and out-of-sample mean squared prediction errors.

Figure 2.4 shows the average MSE of α, β, and in-sample and out-of-sample

41

probabilities as s varies. The general pattern remains similar to linear regression.

Although in this case the null model is no longer identical to regular logistic re-

gression, it still gives nearly the same out-of-sample error. The oracle mixed effects

model is the best, as it assumes the true model. In general, all methods deteriorate

with increasing s, and while the logistic RNC does not perform quite as well as the

oracle, it gets much closer to it than any other method. Figure 2.5 shows the metrics

when varying pb from 0 to 0.05 with fixed s = 0.1. Again, the RNC outperforms

regular logistic regression and the null model even when pb = 0.05.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

MSE of α

s

● ● ●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

MSE of β

s

●

● ● ●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

In−sample prediction error

s

● ● ● ●
●

●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

Out−of−sample prediction error

s

● ● ●
●

●
●

●

●

●

●

●

● ● ● ●
●

●
●

●

●

●

●

●

●

RNC
Null
Oracle−FixedEffects
Logistic
Oracle−MixedEffects

Figure 2.4: Performance logistic regression methods when varying s and fixing pb = 0.02, measured
by the MSE of α, β, in-sample and out-of-sample mean squared probability estimation errors.

42

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MSE of α

pb

0.00 0.01 0.02 0.03 0.04 0.05

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

MSE of β

pb

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

0.
04

In−sample prediction error

pb

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

0.
04

Out−of−sample prediction error

pb

RNC
Null
Oracle−FixedEffects
Logistic
Oracle−MixedEffects

Figure 2.5: Performance of five logistic regression methods when varying pb and fixing s = 0.1,
measured by the MSE of α, β, in-sample and out-of-sample mean squared probability estimation
errors.

We conclude this section with a simple example illustrating the graph sparsifica-

tion approach to dense networks. We generate a weighted network with n = 3000

nodes, divided into three blocks of 1000 nodes each. All the within-block entries of

the weighted adjacency matrix are 1 and the other entries are 0.1. Thus the network

matrix is a fully dense matrix. The other settings are the same as in the linear re-

gression simulation, and we compare the linear RNC estimator estimated using the

original Laplacian L to the one based on the sparsified L∗. Figure 2.6 shows the

43

results as a function for different values of the approximation accuracy ε’s, defined in

(2.17). The top left plot shows the the sparsified matrix corresponding to ε = 0.15,

which has around 52% of all elements set to 0. The top right plot shows the observed

approximation error ‖θ̂
∗
− θ̂‖2 and its theoretical upper bound (2.22). The theoret-

ical bound is conservative but follows the same trend. Finally, the bottom plots of

the difference in estimation errors for α and β show that the difference between the

sparsified and the original estimators goes to 0 as ε → 0, as it should, and that for

moderate values of ε the differences are small and can go in either direction, which

suggests an increase in variance but not much change in bias. Overall, in this exam-

ple sparsification provides a reliable approximation to the original RNC estimator,

and is a useful tool to save computational time for large dense networks.

2.5 Analysis of the AddHealth Data

We investigate the ability of our method to capture network effects and improve

prediction in two applications using data from the AddHealth study [Harris, 2009].

We will only use Wave I data in which both covariates and friendship networks are

available. Our first test task is predicting students’ recreational activity from their

demographic covariates and their friendship networks; this was done via a network

autoregressive model in Bramoullé et al. [2009], who used the in-school survey data.

In order to be able to compare with their results directly, we also use the in-school

data only for this task. The students were asked about friends at both in-school and

in-home interviews, and the resulting networks are somewhat different. Our second

application is predicting the age of first marijuana use, and the data on marijuana use

are only available from the in-home interviews; thus for the second task we use the

friendship network constructed from the in-home interviews. Prediction performance

44

Sparsified adjacency matrix

Figure 2.6: Top left: the adjacency matrix of the sparsified network for ε = 0.15 (white indicates

a nonzero entry, black is a zero entry); Top right: ‖θ̂
∗
− θ̂‖2 and the bound (2.22); Bottom left:

relative improvement of the sparsified estimator α∗ over the original estimator α̂, that is, 1 −
MSEα∗/MSEα̂; Bottom right: relative improvement of the sparsified estimator β∗ over the original

estimator β̂.

on these two tasks is presented in this section. Additional results on sensitivity to

missing data are presented in Appendix A.4.

2.5.1 Predicting recreational activity in adolescents: a linear model example

This exact task on the AddHealth data was considered by Bramoullé et al. [2009],

who incorporated peer effects into ordinary linear regression in via the auto-regressive

45

model

(2.23) yv =
1

|N(v)|
∑

u∈N(v)

(γyu + xTuτ) + xTv β + εv, v ∈ V ,

or, equivalently, in matrix form

(2.24) Y = (I − γD−1A)−1(D−1AXτ +Xβ + ε).

The authors called this the social interaction model (SIM), also sometimes called

a “linear-in-means” model. In econometric terminology, the local average of re-

sponses models endogenous effects, and the local averages of predictors are the ex-

ogenous effects. This model generally requires multiple additional assumptions to be

identifiable and distributionally compatible across different equations, an issue not

considered by Bramoullé et al. [2009]. It also loses the interpretation of predictor

coefficients as the change in the predicted value corresponding to a unit increase in

one predictor with all others fixed. When there are known groups in the data, fixed

effects can be added to this model [Lee, 2007]. In Bramoullé et al. [2009], SIM was

applied to the AddHealth data to predict levels of recreational activity from a num-

ber of demographic covariates as well as the friendship network. The covariates used

are age, grade, sex, race, whether born in the U.S. living with the mother, living

with the father, mother’s education, father’s education, and parents’ participation

in the labor market. For some of the categorical variables, some of the levels were

merged; refer to Bramoullé et al. [2009] for details. Recreational activity was mea-

sured by the number of clubs or organizations to which the student belongs, with “4

or more” recorded as 4. The histogram as well as the mean and standard deviation

of recreational activity are shown in Figure 2.7. We used exactly the same variables

with the same level merging.

46

Figure 2.7: Histogram of the response, recreational activity level, from the data set used in the
linear regression example. The mean recreational activity is 1.22, with standard deviation 1.23.

We compare performance of our proposed RNC method with the SIM model

(2.23) from Bramoullé et al. [2009], and to regular linear regression without network

effects implemented by ordinary least squares (OLS), with the same response and

predictors as in Bramoullé et al. [2009]. As discussed, the null model always gives

out-of-sample predictions identical to OLS, so we do not distinguish between them

in this example. As an additional comparison with SIM, we also fit RNC with local

averages of predictors as additional variables in the model (RNC-LA). We also apply

the Bayesian model from Section 2.2.4, which is equivalent to the CAR model as

discussed in Section 2.2.7. However, such a model can only make out-of-sample

predictions if the entire network, including that of the test data, is available before

training. Therefore, we implement this model as an oracle, including the entire

network connecting the test and the training data at the training stage. We call this

method “oracle-Bayes” to indicate it is using oracle information that is not available

to all the other methods, and thus is not a fair competitor. The Bayesian estimates

are computed as posterior medians from MCMC samples using the implementation

of Lee [2013].

We use the largest school in the dataset, with 2350 students. For 1223 records

47

with some missing values, we implemented conditional imputation, using random

forests trained on all the variables without missing values. In Appendix A.4, we

include a sensitivity analysis to the proportion of missing data, showing that our

analysis is very robust. To order predictors, we randomly split the network in two

connected subgraphs with similar sizes. We use one of these connected networks,

with 898 data points, to perform variable selection, and the other network with 940

points for evaluating the models. The remaining 512 samples are not connected to

either of the two networks and mostly consist of isolated nodes or isolated pairs; we

remove them from the analysis since those are not going to be able to demonstrate

peer effects.

We perform forward variable selection on the variable selection set, and then add

variables in the selected order to the model fitted on the other dataset. Doing variable

selection and model evaluation on two separate data sets avoids introducing model

selection bias into our estimated prediction error. The forward selection procedure

starts with fitting an RNC model without any covariates, obtaining an estimate of

α̂ from this model, and then running standard forward selection adding one variable

at a time to α̂ which always remains in the model with a fixed coefficient 1. This

ensures that selected variables are not acting as proxies to peer effects but are adding

as much new information as possible.

To evaluate predictive performance, we randomly hold out 90 students (about

10%) from the model evaluation dataset as test data, and fit all the models on

the rest. The variables are added to all the models one at a time in the order

determined by the variable selection procedure. The procedure is repeated for 50

independent random data splits into training and test sets. The root mean squared

errors (RMSEs) over these 50 splits are shown in Table 2.1. In each row, we report

48

the results from a paired t-test over the 50 random splits for each model compared

with RNC. It is clear that both SIM and RNC are able to improve predictions by

using information from the network, but RNC is more effective at this in all models.

Including local averages of predictors does not help RNC at all, indicating that the

network effects it picks are distinct from and perhaps more informative than the

ones reflected in local average. The oracle Bayes method does not perform as well as

RNC either, though it uses more information. A potential explanation for this may

be that the specific distribution assumptions that the Bayesian model imposes are

not satisfied for this dataset; in particular, it might be a stretch to model the 4-level

ordinal recreation activity variable as Gaussian.

None of the demographic predictors are particularly strong, and network infor-

mation is relatively more helpful: the RNC error using only network cohesion and

none of the predictors is lower than the error of any model fitted by either OLS,

SIM or oracle Bayes. As with any other prediction task, adding unhelpful covariates

tends to corrupt performance, and RNC achieves the best performance with only one

predictor in the model (father’s education). Finally, the coefficients from both OLS

and RNC regressions are reported in Table A.1 of Appendix A.3. They are generally

similar, suggesting that the network cohesion penalty does not fundamentally change

interpretation of the coefficients, but improves prediction.

Remark II.16. For fair comparison with Bramoullé et al. [2009], we formulate the

problem of predicting recreational activity level as a linear regression problem. How-

ever, given the ordinal nature of the response, an alternative option may be using

ordinal regression with network cohesion.

49

model OLS & Null SIM RNC RNC-LA oracle-Bayes
no covariates 1.217 ** 1.177 ** 1.157 1.157 1.165 *
+ father’s education 1.215 ** 1.180 ** 1.156 1.160 * 1.165
+ race 1.213 ** 1.178 ** 1.158 1.164 * 1.163
+ age 1.214 ** 1.177 ** 1.158 1.163 1.161
+ mother’s education ** 1.216 ** 1.179 1.160 1.167 1.171
+ born in the US 1.217 ** 1.179 ** 1.161 1.169 1.168
+ sex 1.211 ** 1.174 * 1.157 1.161 1.167
+ parents in labor market 1.214 ** 1.179 ** 1.159 1.165 1.172 *
+ living with mother 1.216 ** 1.182 ** 1.161 1.169 1.174 *
+ living with father 1.218 ** 1.186 ** 1.163 1.174 * 1.172
+ grade 1.219 ** 1.188 ** 1.163 1.176 * 1.175 *

Table 2.1: Root mean squared errors for predicting recreational activity, over 50 independent data
splits into test (90 samples) and training sets. All methods are compared to RNC by a paired
two-sample t-test, where ** indicates p ≤ 10−4 and * indicates 10−4 < p < 10−2. Each row adds
the variable listed to the model in the previous row, in the order determined on a separate set by
forward selection with network cohesion effects included.

2.5.2 Predicting the risk of adolescent marijuana use

While many prediction tasks can be addressed with linear or logistic regression,

there are settings where survival analysis is the only appropriate tool. In the Ad-

dHealth survey, the students were asked “How old were you when you tried marijuana

for the first time?”, and the answer can either be age (an integer up to 18) or “never”,

which is a censored observation of age of first use. A survival model is thus the ap-

propriate prediction tool. Here we apply Cox’s proportional hazard model, with

network cohesion, to the largest community in the dataset with 1862 students from

the Wave I in-home interview (this question was only asked in the in-home inter-

views). The friendship network is also based on in-home data for consistency; there

are 2820 additional covariates on each student collected from the in-home surveys.

As before, missing values are imputed with conditional imputation using random

forests, with covariates without missing values as predictors. However, we deleted

variables that had missing values due to questionnaire design, and variables with

more than half the values missing. This left us with 218 variables in total (since there

are so many variables in the in-home survey, there are many missing values). As in

50

the previous example, we split the data randomly into two connected components of

roughly equal sizes, 645 observations for variable selection and 647 observations for

model evaluation. The remaining isolated nodes or pairs are removed. The variable

selection step is implemented as in the previous example, with network cohesion

effects in the model. Five strongest predictors are selected, with the additional

requirement that each survey category (survey questions were grouped) has no more

than one variable selected. We then use a regular forward selection algorithm to

determine the order in which these five variables should be added to the model.

Given the selected variables and the order in which to add them, we fit the regular

Cox’s model, the null model, and the RNC for survival on the model evaluation data

set. The null model is numerically nearly identical to the regular Cox’s model. We

also include a naive extension of the social interaction model (SIM) (2.23) to survival

analysis, including the neighborhood averages of x’s as extra covariates. However,

the neighborhood averages of y’s cannot be computed here, since many of the y’s

are censored and it is not clear how to extend the autoregressive component of the

model to survival data. We also include “RNC-LA” again, which adds all the local

averages of predictors to the RNC model. In the survival model, RNC can be fitted

with no covariates, but this is not possible for the regular Cox’s model or SIM since

partial likelihood is not defined without covariates.

Evaluating predictive performance of survival models is not straightforward; we

use the survival ROC curve suggested by Song and Zhou [2008]. We calculate the

prediction ROC curve for each age between 14 and 17 (most age values fall into this

range), then integrate the area under curve (AUC) over age to get a measure of overall

prediction performance. We randomly select 60 nodes (about 10%) as the test set

and use the remaining nodes and their induced sub-network as the training set. This

51

is independently repeated 50 times and the average integrated AUC (iAUC) over

the 50 replications is used to evaluate performance. For simplicity of comparisons,

we fixed the tuning parameter λ = 0.005 for all models, based on validation on a

different school, and set γ = 0.1. This results in a conservative comparison of our

method to Cox’s model, since tuning each RNC fit separately can only improve its

performance.

model Cox & Null SIM RNC RNC-LA

no covariates – – 0.606 0.606
+ ever tried cigarette smoking 0.657 ** 0.663 ** 0.709 0.703 **
+ deliberately damaged others’ property 0.700 ** 0.707 ** 0.735 0.736
+ times of being jumped in past 12 months 0.713 ** 0.733 * 0.740 0.758 **
+ how often to wear seatbelt in a car 0.721 ** 0.743 0.745 0.765 **
+ received school suspension 0.727 ** 0.743 0.748 0.766 **

Table 2.2: Average integrated AUC (iAUC) for survival prediction ROC curves for age 14-17, over
50 random splits of the data into training and test sets. All methods are compared with RNC by a
paired two-sample t-test. ** indicates p ≤ 10−4 and * indicates 10−4 < p < 10−2. Each row adds
the variable listed to the model in the previous row, in the order determined on a separate set by
forward selection with network cohesion effects included.

Table 2.2 shows the average iAUC results. All models improve or stay the same

with additional predictors. All methods that use the network information always do

better than the regular Cox’s model with the same covariates. RNC always outper-

forms SIM, and RNC-LA improves upon RNC for models with more covariates, but

not for the smaller ones. This may suggest that some predictors’ local averages are

more helpful than others; however, including any local averages distorts the meaning

of the coefficients. Overall, the network cohesion effect in predicting marijuana usage

is clearly useful.

The estimated individual hazards exp(α̂i)’s are shown in Figure 2.8, represented

by node size, together with the friendship network and the observed age represented

by node color. The cohesion effect can be seen in both the data itself and in the

estimated hazards.

52

Table 2.3 shows the coefficients of the regular Cox’s model and the RNC model.

They are overall similar, though it appears that for most variables the coefficient

is slightly reduced with the addition of network effects. This makes sense since

some of the covariates are also likely cohesive Michell and West [1996], Pearson and

Michell [2000], Pearson and West [2003] and can serve as proxies to peer effects, thus

appearing to be more influential than they really are by themselves.

covariate Cox & Null RNC p-value (from Cox)
ever tried cigarette smoking 1.627 1.370 < 10−6

deliberately damaged others’ property 0.348 0.367 < 10−4

times of being jumped in past 12 months -0.122 -0.191 0.077
how often wears seatbelt 0.288 0.283 0.007
received school suspension 0.633 0.473 < 10−6

Table 2.3: Estimated covariate coefficients from regular Cox’s model and RNC for first age of
marijuana use prediction.

2.6 Summary and future work

We have proposed a general computationally efficient framework for introducing

network cohesion effects into prediction problems, without losing the interpretability

and meaning of the original predictors. For the regression setting, we also derived

conditions for when this approach outperforms regular regression and have shown the

proposed estimator is consistent. In general, we can view RNC as another example of

benefits of regularization when there are more parameters than one can estimate with

the data available. Encouraging network cohesion implicitly reduces the number of

free parameters, somewhat in the same spirit as the fused lasso penalty [Tibshirani

et al., 2005]. There are important differences, however; we have a computationally

efficient way to use the available network data whereas the fused lasso optimization

problem is hard to solve, and we can explicitly assess the trade-off in bias and variance

that results from encouraging cohesion.

53

A future direction to explore is understanding the behavior of network cohesion

on different kinds of networks. The large literature on random graph models for

networks gives many options for modeling the network as random rather than treating

it as fixed, as we did here; we would expect that some types of networks spread

cohesion over the network faster than others. While we focused on prediction in this

chapter, the cohesion penalty may also turn out to be useful in causal inference on

networks when such inference is possible. Formal inference under cohesion, such as

confidence intervals and hypothesis tests, are also left for future work.

54

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

<=10
11−12
13−14
15−16
17−18
never

Figure 2.8: Age of first marijuana risk use shown on the friendship network. Node size represents
the individual’s hazard, and node color represents the observed age of first use.

CHAPTER III

Network cross-validation by edge-sampling

3.1 Introduction

Statistical methods for analyzing networks have received a lot of attention be-

cause of their wide-ranging applications in areas such as sociology, physics, biology

and medical sciences. Statistical network models provide a principled approach to

extracting salient information about the network structure while filtering out the

noise. Perhaps the simplest statistical network model is the famous Erdös-Renyi

model [Erds and Rényi, 1960], which served as a building block for a large body of

more complex models, including the stochastic block model (SBM) [Holland et al.,

1983], its variants such as the degree-corrected stochastic block model (DCSBM)

[Karrer and Newman, 2011] or mixed membership block model (MMBM) [Airoldi

et al., 2008], and the latent space model [Hoff et al., 2002], to name a few.

While there has been plenty of work on models for networks and algorithms for

fitting them, inference frameworks for these models are commonly lacking, making

it hard to take advantage of the full power of statistical modeling. Resampling

methods provide a general and relatively model-free inference framework and are

commonly used in modern statistics, with bootstrap and cross-validation being the

tools of choice for a large number of inference tasks. Neither of these procedures are

55

56

directly applicable to network, because, while they differ in details, they both face the

challenge of sampling multiple networks which are “similar” to the observed network

but not the same; formally, they need to be sampled from the same distribution,

but the distribution is unknown and we only have one network we observed from

it. This seems an impossible problem, except there is often structure in the network

that can be estimated and exploited to create a sampling mechanism. The method

we propose in this paper is equally applicable to creating bootstrap samples or to

performing cross-validation. For simplicity of presentation, we present the method in

the context of cross-validation, but the multiple noisy version of the original network

it creates can be equally well used for bootstrap.

Cross-validation is important in most network modeling situations – while there

are plenty of models to choose from, it is a lot less clear how to select the best model

for the data, and how to choose tuning parameters for the selected model, which is

often necessary in order to fit it.

In classical settings where the data points are assumed to be an i.i.d. sample, cross-

validation (CV) is one of the most general and appealing ways for model selection

and parameter tuning. In general, cross-validation works by splitting the data into

multiple parts (folds), holding out one fold at a time as a test set, fitting the model

on the remaining folds and computing its error on the held out-fold, and finally

averaging the errors across all folds to obtain the cross-validation error. The tuning

parameter is then chosen to minimize this error. To explain the challenge of applying

this idea to networks, we first introduce a probabilistic framework.

Let V = {1, 2, · · · , n} =: [n] denote the node set of a network, and let A be its

n × n adjacency matrix, where Aij = 1 if there is an edge from node i to node

j and 0 otherwise. For undirected networks, A is a symmetric matrix. We view

57

the elements of A as realizations of independent Bernoulli variables, with EA = M ,

where M is a matrix of probabilities. For undirected networks, we further assume

M is symmetric and the unique edges Aij, i < j are independent Bernoulli variables,

and Aji = Aij. The general task is to estimate M from the data A, under various

structural assumptions we might make to address the difficulty of having a single

realization of A.

To perform cross-validation on networks, one has to decide how to split the data

contained in A, and how to treat the resulting partial data which is not a complete

network any more. To the best of our knowledge, there is little work available on

the topic. Cross-validation was used by Hoff [2008] under a particular latent space

model, and Chen and Lei [2017] propose a novel cross-validation strategy for model

selection under the stochastic block model and its variants. In this paper, we do not

assume any specific model for the network, but instead make a more general struc-

tural assumption of M being approximately low rank, which holds for most popular

network models. We propose a new general edge cross-validation (ECV) strategy

for networks, splitting node pairs rather than nodes into different folds, a natural

yet crucial choice. Treating the network after removing the entries of A for some

node pairs as a partially observed network, we apply low rank matrix completion to

“complete” the network and then fit the relevant model. This reconstructed network

has the same rate of concentration around the true model as the full network ad-

jacency matrix, allowing for valid analysis. Our method is valid for many types of

network models, including directed and undirected, binary and weighted networks.

As concrete examples, we show how ECV can be applied to determine the latent

space dimension for random dot product models, select between block model vari-

ants, tune regularization for spectral clustering, and tune neighborhood smoothing

58

for graphon models.

The rest of this chapter is organized as follows. Section 3.2 introduces the new

edge-based cross-validation algorithm (ECV) as a generic framework, as well as a

general error bound on ECV. Section 3.3 presents several specific network model

selection and parameter tuning problems and demonstrates how ECV can be used

for these tasks, including selecting rank of a generic low-rank network model, model

selection in block models, tuning regularized spectral clustering, and tuning graphon

estimation. Section 3.4 presents extensive simulation studies of ECV and its com-

petitors for the tasks introduced in Section 3.3. Section 3.5 presents an application

to a weighted statistics citation network, and Section 3.6 concludes with discussion.

The proofs and additional numerical results are given in the Appendix B.

3.2 The edge cross-validation (ECV) algorithm

3.2.1 Notation and model

For simplicity of presentation, we derive everything for binary networks, but it

will be clear that our framework is directly applicable to weighted networks, which

are prevalent in practice. In Section 3.5, we apply the method to a real weighted

network.

Recall n is the number of nodes in the network and A is its n×n adjacency matrix.

For undirected networks, A is a symmetric matrix. Let D = diag(d1, d2, · · · , dn) be

the diagonal matrix with node degrees di =
∑

j Aij on the diagonal. The (normal-

ized) Laplacian of a network is defined as L = D−1/2AD−1/2. Finally, we write In for

the n × n identity matrix and 1n for n × 1 column vector of ones, suppressing the

dependence on n when it is clear from the context. For any matrix M , we use ‖M‖

to denote its spectral norm and ‖M‖F to denote its Frobenius norm.

We follow the exchangeable random graph model framework [Aldous, 1981] which

59

includes most current random network models in statistics. Generically, all such

models assume that given a n×n matrix of probabilities M , the Aij’s are independent

Bernoulli variables with P(Aij = 1) = Mij, and the model assumptions are made on

the structure of M . As we have discussed, without any assumptions on M inference

is impossible since we only have one observation. On the other hand, we would

like to avoid assuming a specific parametric model, since one of the goals of cross-

validation is exactly to choose between models, and thus we would rather not assume

we know exactly how the network was generated. As a compromise, we make a weak

structural assumption on M , assuming it is low rank, which holds for many popular

network models. Consider the following examples:

Random dot product graph model (RDPG). The RDPG [Young and Scheinerman,

2007] is a general low-rank network model and a special case of the latent space

model. RDPG assumes each node of the network is associated with a latent K-

dimensional vector Zi ∈ RK , and Mij = ZT
i Zj. RDPG has been successfully applied

to a number of network problems [Sussman et al., 2014, Tang et al., 2017] and its

limiting behaviors can also be studied [Tang and Priebe, 2016]. More details can be

found in the review paper of Athreya et al. [2017].

Stochastic block model (SBM) and its generalizations. The SBM is perhaps

the most widely used undirected network model with communities. The SBM as-

sumes that M = ZBZT where B ∈ [0, 1]K×K is a symmetric probability matrix and

Z ∈ {0, 1}n×K has exactly one “1” in each row, with Zik = 1 if node i belongs to

community k. Let c = {c1, · · · , cn} be the vector of node membership labels ci taking

values in 1, . . . , K. The SBM assumes P (Aij = 1) = Bcicj , that is, the probability

of edge between two nodes depends only on the communities they belong to. One

60

of the commonly pointed out limitations of the SBM is that it forces equal expected

degrees for all the nodes in the same community, therefore ruling out “hubs”. The

degree corrected stochastic block model (DCSBM) corrects this by allowing nodes

to have individual “degree parameters”, θi associated with each node i, and models

P (Aij = 1) = θiθjBcicj . The DCSBM needs a constraint to ensure identifiability,

and here we enforce the constraint
∑

ci=k
θi = 1, for each k, proposed by Karrer and

Newman [2011].

Both the SBM and the DCSBM result in the probability matrix M of rank K,

and are in fact special cases of the RDPG. There are other variants of SBM that are

also low rank, for example the mixed membership block model proposed by Airoldi

et al. [2008] where P = ΓBΓ with Γ ∈ Rn×K and each row of Γi is generated from a

Dirichlet distribution. More about the recent developments on this class of models

can be found in the review paper by Abbe [2017].

Graphon models. Aldous [1981] showed the probability matrix of any exchange-

able random graph can be written as Mij = f(ξi, ξj) for a function f : [0, 1]× [0, 1]→

[0, 1] (called the graphon) symmetric in its two arguments, and ξi, i ∈ [n] are inde-

pendent uniform random variables on [0, 1]. The representation is determined only

up to a measure-preserving transformation [Diaconis and Janson, 2007]. There is

a substantial literature on estimating the graphon under various assumptions on

f [Wolfe and Olhede, 2013, Choi and Wolfe, 2014, Gao et al., 2015]. In general,

graphon models typically do not assume a low rank M . However, when the function

f is smooth in certain sense, the corresponding matrix can typically be approxi-

mated reasonably well by a low rank matrix [Chatterjee, 2015], and f is not smooth,

the sample size of 1 makes inference impossible once again. For this setting, even

61

though the low rank assumption is not strictly correct, our proposal can be viewed

as a cross-validation procedure based on the best low rank approximation (details

discussed in Section 3.4.4).

3.2.2 The ECV procedure

For notational simplicity, we only present the algorithm for directed networks;

the only modification needed for undirected networks is treating node pairs (i, j)

and (j, i) as one pair. The key insight of ECV is to split node pairs rather than

nodes, resulting in a partially observed network. We randomly sample node pairs

(regardless of the value of Aij) with a fixed probability 1 − p to be in the held-out

set. By exchangeable model assumption, the values of A corresponding to held-out

node pairs are independent of those corresponding to the rest. The leftover training

network now has missing edge values, which means many models and methods cannot

be applied to it directly. Our next step is to reconstruct a “complete” network Â

from the training node pairs. Fortunately, the missing entries are missing completely

at random by construction, and this is the classic setting for matrix completion. Any

low-rank based matrix completion algorithm can now be used to fill in the missing

entries, for example Candes and Plan [2010], Davenport et al. [2014]. We postpone

the algorithm details to Section 3.2.3.

Once we complete Â through matrix completion, we can fit the candidate models

on Â and evaluate the relevant loss on the held-out entries of A, just as in standard

cross-validation. There may be more than one way to evaluate the loss on Â if the

loss function itself is designed for binary input; we will elaborate on this in examples

in Section 3.3. The general algorithm is summarized as Algorithm III.1 below. We

present the version with many random splits into training and test pairs, but it is

obviously applicable to K-fold cross-validation if the computational cost of many

62

random splits is prohibitive.

Algorithm III.1 (The general ECV procedure). Input: an adjacency matrix A, a loss

function L, a set C of Q candidate models or parameter values to select from, the

training proportion p, and the number of replications N .

1. For m = 1, . . . , N

(a) Randomly choose a subset of node pairs Ω ⊂ V × V , selecting each pair

independently with probability p.

(b) Apply a low-rank matrix completion algorithm to (A,Ω) to obtain Â.

(c) For each of the candidate models q = 1, . . . , Q, fit the model on the Â, and

evaluate its loss L
(m)
q by averaging the loss function L with the estimated

parameters over the held-out set Aij, (i, j) ∈ Ω⊥.

2. Let Lq = 1
N

∑N
m=1 L

(m)
q and return q̂ = argminqLq (the best model from set C).

The two crucial parts of ECV are splitting node pairs at random and applying

low-rank matrix completion to obtain a full matrix A. While we focus on cross-

validation for model selection in this paper, it is clear that the exact same procedure

can be used to create a bootstrap sample from A, of networks of the same size, which

can be viewed as independent noisy versions of A.

3.2.3 Network recovery by matrix completion

There are many algorithms that can be used to recover Â from the training pairs.

Define operator PΩ : Rn×n → Rn×n by

(PΩA)ij = AijI{(i, j) ∈ Ω} ,

63

replacing held-out entries by zeros. A generic low-rank matrix completion procedure

solves the problem

min
Z

F (PΩZ, PΩA)(3.1)

subject to rank(Z) ≤ K

where K is the rank constraint and F is a loss function measuring the discrepancy

between Z and A on entries in Ω, for example, sum of squared errors or binomial

deviance. The problem is non-convex due to the rank constraint, so many compu-

tationally feasible variants of (3.1) have been proposed for use in practice, obtained

via convex relaxation and/or problem reformulation. While any such method can be

used in ECV, for concreteness we follow the singular value thresholding procedure

to construct a low rank approximation

(3.2) Â = SH

(
1

p
PΩA,K

)
,

where SH(B,K) denotes rank K truncated SVD of a matrix B. That is, if the SVD

of B is A = UDV T where D = diag(σ1, σ2, · · · , σn), σ1 ≥ σ2 · · · ≥ σn ≥ 0, then

SH(A,K) = UDKV
T , where DK = diag(σ1, σ2, · · · , σK , 0, · · · , 0).

This matrix completion procedure is similar to the universal singular value thresh-

olding (USVT) method of Chatterjee [2015], except we fix K and always use top K

eigenvalues and USVT uses a universal constant to threshold σ’s. This method is

very computationally efficient as it only requires a partial SVD of the adjacency ma-

trix with held out edges replaced by zeros, which is typically sparse. It runs easily on

a network of size 104 − 105 on a laptop. There are more involved matrix completion

algorithms, such as, for example, Keshavan et al. [2009] and Mazumder et al. [2010],

which may sometimes give better accuracy. One can choose a more sophisticated

method if the size of the network allows, but considering completion accuracy is

64

not the ultimate goal here, since we expect and in fact need noisy versions of A,

it may not be worth the extra computational cost: we tried the iterative method

which appears as a primal version of the hardImpute algorithm in Mazumder et al.

[2010], and while it improves matrix completion accuracy itself, the improvement in

the model selection task is very small.

One could also consider binary rather than general matrix completion methods,

also known as 1-bit matrix completion [Davenport et al., 2014, Cai and Zhou, 2013,

Bhaskar and Javanmard, 2015], which are in fact more appropriate since A is a

binary matrix. However, 1-bit matrix completion methods are generally much more

computationally demanding than the Frobenius norm-based completion. For the

rest of this paper, we use non-binary completion, which can also be thought of as

estimating EA, using truncated SVD (3.2) because of its low computational cost.

It remains to specify the rank K. In some situations, K itself is directly associated

with the model to be selected, and thus there is an obvious choice, as in problems in

Sections 3.3.1 and 3.3.3. In other situations, such as the graphon estimation problem

in Section 3.3.4, K is not directly available, so we simply add K as an extra model

selection parameter; see Section 3.3.1. One can also avoid selecting a K entirely

by using the universal threshold proposed for USVT by Chatterjee [2015], but in

practice we found this leads to lower model selection accuracy.

Remark III.2. If an upper bound on ‖M‖∞ is available, say ‖M‖∞ ≤ d̄/n, an im-

proved estimator Ã can be obtained by truncating the entries of Â onto the interval

[0, d̄/n], as in Chatterjee [2015]. A trivial option of truncating to the interval [0, 1]

is always available, ensuring Ã is a better estimator of M in Frobenius norm than

Â. We did not observe any substantial improvement in model selection performance

from truncation, however. In some applications, a binary adjacency matrix may be

65

required for subsequent model fitting; if that is the case, a binary matrix can be

obtained from Ã by using one of the standard link prediction methods, for example,

by thresholding at 0.5

Remark III.3. An alternative to matrix completion is to simply replace all of the

held out entries by zeros and use the resulting matrix A0 for model estimation. The

resulting model estimate M0 of the probability matrix EA0 is a biased estimator

of M , but since we know the missing probability p, we can remove this bias by

setting M∗ = M0/p as in Chatterjee [2015] and Gao et al. [2016], then use M∗ for

prediction and calculating the cross-validation error. This method is valid as long as

the adjacency matrix is binary and probably the simplest of all (though, surprisingly,

we did not find any explicit references to this in the literature). In particular, for

the stochastic block model it is equivalent to our general ECV procedure when using

(3.2) for matrix completion. However, in applications beyond block models these

two approaches will give different results, and we have empirically observed that

ECV with matrix completion works better and is much more robust to the choice

of p. Moreover, filling in zeros instead of doing matrix completion does not work

for weighted networks, since that would clearly change the weight distribution which

cannot be fixed by a simple rescaling by p. We do not pursue this version further.

3.2.4 Theoretical justification

Intuitively, ECV should be valid as long as Â reflects relevant properties of the

true underlying model. The following theorem formalizes this intuition. We make

two assumptions:

Assumption III.4. rank(M) = K.

Assumption III.5. maxijMij ≤ d/n for some positive d.

66

Assumption III.5 can be satisfied trivially by setting d = n. However, in many

network models the entries of M are assumed to be o(1) in order to avoid a dense

graph, and our bounds can be improved if additional information about d is available.

Theorem III.6. Let M be a probability matrix satisfying III.4 and III.5. Let A be an

adjacency matrix with edges sampled independently and E(A) = M . Let Ω be an index

matrix for a set of edges selected independently with probability p ≥ C1 log n/n for

some absolute constant C1, with Ωij = 1 if the edge (i, j) is selected and 0 otherwise.

If d ≥ C2 log(n) for some absolute constant C2, then with probability at least 1−3n−δ

for some δ > 0, the completed matrix Â defined in (3.2) satisfies

(3.3) ‖Â−M‖ ≤ C̃ max

(√
Kd2

np
,

√
d

p
,

√
log n

p

)

where C̃ = C̃(δ, C1, C2) is a constant that only depends on C1, C2 and δ. This also

implies

(3.4)
‖Â−M‖2

F

n2
≤ C̃2

2
max

(
K2d2

n3p
,
Kd

n2p
,
K log n

n2p2

)
.

This theorem holds for both directed and undirected networks. The Frobenius er-

ror bound (3.4) can be directly compared with other bounds in the matrix completion

literature. For binary matrix completion, Davenport et al. [2014] give

(3.5)
‖Â−M‖2

F

n2
= O

(√
K

np

)

using nuclear norm relaxation of the rank constraint. The same bound was obtained

by Chatterjee [2015] for the USVT without using a pre-defined K. Since both Dav-

enport et al. [2014] and Chatterjee [2015] assume ‖M‖∞ is bounded, for comparison

we take d = n in III.5. This gives

‖Â−M‖2
F

n2
= O

(
max

(
K2

np
,
K log n

n2p2

))
.

67

Our bound and (3.5) differ by a factor of O(max(
√

K3

np
,
√

K
np

logn
np

)), which is domi-

nated by O(
√

K3

np
)since we require p ≥ C1

logn
n

in Theorem III.6. Therefore as long as

K = o((np)1/3), our bound is better. Moreover, in ECV we control p and can treat

it as a constant, which makes our bound better as long as K = o(n1/3). The gain

comes from pre-defining K in the matrix completion procedure, as opposed to the

universal threshold used by the USVT of Chatterjee [2015]

Next, we compare Theorem III.6 with known rates for previously studied network

problems. Again, we set p to be a constant, so the spectral norm error bound (3.3),

taking into account the assumption d ≥ C2 log n, becomes

(3.6) ‖Â−M‖ ≤ C̃ max

(√
Kd

n
, 1

)
√
d .

The bound (3.6) implies the rate of concentration of M̂ around M is the same as

the concentration of the full adjacency matrix A around its expectation [Lei and

Rinaldo, 2014, Chin et al., 2015, Le et al., 2017], as long as Kd
n
≤ 1. The sparser

the network, the weaker our requirement for K. For instance, when the network

is moderately sparse with d = O(log n), we only need K ≤ (n/ log n). This may

seem counter-intuitive but this happens because the dependence on K in the bound

comes entirely from M itself. A sparse network means that most entries of M are

very small, thus replacing the missing entries in A with zeros does not contribute

much to the overall error and the requirement on K can be less stringent. While for

sparse networks the estimator is noisier, the noise bounds have the same order for

the complete and the incomplete networks (when p is a constant), and thus the two

concentration bounds still match.

Theorem III.6 essentially indicates

‖Â−M‖ ≈ ‖A−M‖

68

if we assume Kd ≤ n. Thus in the sense of concentration in spectral norm, we

can treat Â as a network sampled from the same model. Under the block models

(see Section 3.3.2), such concentration of Â is sufficient to ensure model estimation

consistency at the same rate as can be obtained from using the original matrix A.

3.3 Examples of ECV for model selection

3.3.1 Model-free rank estimators

The rank constraint for the matrix completion problem is typically unknown,

and in practice we need to choose or estimate it in order to apply ECV. When the

true model is a generic low-rank model such as RDPG, selecting K is essentially

selecting its latent space dimension. More generally, selection of K can itself be

treated as a model selection problem, since the completed matrix Â itself is a low

rank approximation to the underlying probability matrix M . Since M is of course

unknown, we will need to compare Â to A in some way in order to select K.

One natural approach is to directly compare the values of Â on the held-out entries

of A. For instance, we can use the sum of squared errors,

SSE =
∑

(i,j)∈Ω⊥

(Aij − Âij)2,

or alternatively compute the binomial deviance (when the network is unweighted)

on this set, and pick the value of K to minimize it.

Another possibility is to consider how well M̂ performs on predicting links (for

unweighted networks). We can predict Âij = I{M̂ij > c} for all entries in the hold-

out set Ω⊥ for a threshold c, and vary c from 0 to 1 to obtain a sequence of link

prediction results. A common measure of prediction performance is the area under

the ROC curve (AUC), which compares false positive rates to true positive rates

for all values of c, with perfect prediction corresponding to AUC of 1, and random

69

guessing to 0.5. We can then select the K to maximize the AUC.

In practice, we have observed that both the imputation error and the AUC work

well in general rank estimation tasks. For block models, they perform comparably

to likelihood-based methods most of the time.

3.3.2 Model selection for block models

In this example, we show how to use ECV for model selection for SBM and

DCSBM (referred to together for conciseness). The choice of fitting method is not

crucial for model selection, and many methods are now available and known to be

consistent for fitting the SBM and DCSBM [Karrer and Newman, 2011, Zhao et al.,

2012, Bickel et al., 2013, Amini et al., 2013]. Here we use one of the simplest, fastest,

and most common methods, spectral clustering on the Laplacian L = D1/2AD1/2,

where D is the diagonal matrix of node degrees. For SBM, spectral clustering takes

K leading eigenvectors of L, arranged in a n×K matrix U , and applies the K-means

clustering algorithm to the rows of U to obtain cluster assignments for the n nodes.

For DCSBM, the rows need to be normalized first.

Spectral clustering enjoys asymptotic consistency under the SBM when the aver-

age degree grows at least as fast as log n [Rohe et al., 2011, Lei and Rinaldo, 2014,

Sarkar and Bickel, 2015]. The possibility of strong consistency for spectral clustering

is recently discussed by Eldridge et al. [2017], Abbe et al. [2017] and Su et al. [2017].

Variants of spectral clustering are consistent under the DCSBM, for example, spheri-

cal spectral clustering [Qin and Rohe, 2013, Lei and Rinaldo, 2014] which normalizes

the rows of U before applying K-means and the SCORE method [Jin, 2015] that

divides each column of U by the first column of U .

Note that since both SBM and DCSBM are undirected network models, we use

the undirected variant of ECV, selecting edges at random from the set of pairs (i, j)

70

with i < j only and including the pair (j, i) whenever (i, j) is selected. Once node

memberships are estimated, the other parameters are easy to estimate by condition-

ing on node labels. Specifically, for the SBM we simply take the MLE conditional on

the node labels evaluated on the available node pairs. Let Ĉk = {i : (i, j) ∈ Ω, ĉi = k}

be the estimated member sets for each group k = 1, . . . , K. Then we can estimate

the entries of the probability matrix B as

(3.7) B̂kl =

∑
(i,j)∈ΩAij1(ĉi = k, ĉj = l)

n̂Ω
kl

where

n̂Ω
kl =


|(i, j) ∈ Ω : ĉi = k, ĉj = l| if k 6= l

|(i, j) ∈ Ω : i < j, ĉi = ĉj = k| if k = l.

Under DCSBM, the probability matrix can be estimated similarly to Karrer and

Newman [2011], Zhao et al. [2012] and Joseph and Yu [2016] via the Poisson approx-

imation, letting

(3.8) Ô∗kl =
∑

(i,j)∈Ω

Aij1(ĉi = k, ĉj = l)

and setting

(3.9) θ̂i =

∑
j:(i,j)∈ΩAij∑K
k=1 Ô

∗
ĉi,k

, P̂ij = θ̂iθ̂jÔ
∗
ĉiĉj
/p .

The probability estimate P̂ is scaled by p to reflect missing edges, which makes

it slightly different from the estimator for the fully observed DCSBM [Karrer and

Newman, 2011]. This rescaling happens automatically in the SBM estimator (3.7)

since the sums in both the numerator and the denominator range over Ω only.

Finally, we need to specify a loss function to be evaluated on the held-out set.

Natural loss functions for these models are either the squared error loss

L2(A, Â) =
∑

i<j,(i,j)∈Ω⊥

(Aij − Âij)2,

71

or, to match the maximum likelihood estimators of parameters, the binomial deviance

function

Ld(A, Â) = −
∑

i<j,(i,j)∈Ω⊥

[
Aij log(Âij)− (1− Aij) log(1− Âij)

]
.

In practice, we observed that the L2 loss works slightly better for model selection

under both SBM and DCSBM.

The model selection question for block models includes the choice of SBM vs

DCSBM and the choice of K. Suppose we want to select between SBM and DCSBM,

with the number of communities ranging from 1 to Kmax. The candidate set of models

in Algorithm III.1 is then C = {SBM-K,DCSBM-K, K = 1, . . . , Kmax} where the

number after the model name is the number of communities. The ECV algorithm

for block model selection is summarized below as Algorithm III.7.

Algorithm III.7. Input: an adjacency matrix A, the largest number of communities

to consider Kmax}, the training proportion p, and the number of replications N .

1. For m = 1, . . . , N

(a) Randomly choose a subset of node pairs Ω, selecting each pair (i, j), i < j

independently with probability p, and adding (j, i) if (i, j) is selected.

(b) For K = 1, . . . , Kmax,

i. Apply matrix completion to (A,Ω) with rank constraint K to obtain

ÂK .

ii. Run spectral clustering on ÂK to obtain the estimated SBM membership

vector ĉ
(m)
1,K , and spherical spectral clustering to obtain the estimated

DCSBM ĉ
(m)
2,K .

iii. Estimate the two models’ probability matrices Â
(m)
1,K , Â

(m)
2,K based on ĉ

(m)
1,K ,

ĉ
(m)
2,K and evaluate the corresponding losses L

(m)
q,K , q = 1, 2 by applying

72

the loss function L with the estimated parameters to Aij, (i, j) ∈ Ω⊥.

2. Let Lq,K = 1
N

∑N
m=1 L

(m)
q,K . Return (q̂, K̂) = arg minq=1,2 minK=1,...,Kmax Lq,K as

the best model (with q̂ = 1 indicating SBM and q̂ = 2 indicating DCSBM).

As a special case, one can also select just the number of communities K under

the SBM (or DCSBM), a task recently considered by Latouche et al. [2012], McDaid

et al. [2013], Bickel and Sarkar [2016], Lei [2016], Saldana et al. [2014], Wang et al.

[2017], Chen and Lei [2017], Le and Levina [2015].

Theorem III.6 can be made more informative under the SBM and DCSBM, thanks

to the many available results under these models. Specifically for SBM, we make the

following standard assumption:

Assumption III.8. The probability matrix B(n) = ρnB0, where B0 is a fixed K×K

symmetric nonsingular matrix with all entries in [0, 1] and K is a fixed number.

Therefore the expected node degree is of the order λn = nρn. Furthermore, there

exists a constant γ > 0 such that mink nk > γn where nk = |{i : ci = k}|.

Many different versions of K-means can be used in spectral clustering. Here we

state the result for the version of K-means used by Lei and Rinaldo [2014].

Proposition III.9 (Community recovery for each ECV split under the SBM). Let

A be the adjacency matrix of a network generated from a SBM satisfying III.8 with

K blocks, and M = EA. Let Â be the recovered adjacency matrix in (3.2). Assume

the expected node degree λn ≥ C log(n). Let ĉ be the output of spectral clustering on

Â. Then ĉ coincides with the true c on all but O(nλ−1
n) nodes (up to a permutation

of block labels), with probability tending to one.

To state an analogous result for the DCSBM, we need one more standard assump-

tion on the degree parameters, similar to Jin [2015], Lei and Rinaldo [2014], Chen

73

and Lei [2017].

Assumption III.10. mini θi ≥ θ0 for some constant θ0 > 0 and
∑

i:ci=k
θi = 1 for

all k ∈ [K].

Proposition III.11 (Community recovery for each ECV split under the DCSBM).

Let A be an adjacency matrix from a DCSBM satisfying III.8 and III.10 with K

blocks, and M = EA. Let Â be the recovered adjacency matrix in (3.2). Assume

the expected node degree λn ≥ C log(n). Let ĉ be the output of spherical spectral

clustering on Â. Then ĉ coincides with the true c on all but O(nλ
−1/2
n) nodes (up to

a permutation of block labels), with probability tending to one.

Comparison with cross-validation of Chen and Lei [2017]

The network cross-validation (NCV) algorithm by Chen and Lei [2017] was intro-

duced explicitly for the purpose of model selection in block models, and thus it is of

interest to compare with ours. The NCV algorithm first splits nodes at random into

two groups N1 and N2, and then trains on pairs (i, j) corresponding to i ∈ N1 and

j ∈ N1 ∪ N2 are arranged into a rectangular matrix. The right singular vectors of

this matrix are passed on to either spectral clustering for SBM or spherical spectral

clustering for DCSBM to estimate node labels, with the same theoretical guarantees

as ECV. The SBM model parameters can be estimated by standard estimators. How-

ever, standard estimators of DCSBM model parameters cannot be easily extended

to a rectangular matrix, so a modified estimator is proposed in Chen and Lei [2017].

The node pairs (i, j) corresponding to i, j ∈ N2 are then used as a test set to evaluate

the loss function and choose the best model.

The ECV is more general than the NCV, since it works with any low-rank approx-

imation and does not rely on block structure in the data, and it also works for both

74

directed and undirected networks, whereas NCV is for undirected networks only. As

NCV does not recover the adjacency matrix, it cannot be used to evaluate methods

that are based on certain transformations of the adjacency matrix, such as the prob-

lem in Section 3.3.3. Further, ECV is less likely than NCV to create isolated nodes

in the training sample, which are useless in model fitting. To see this, consider the

following simple calculation: assume that a given node i has degree d, and that all its

d neighbors also have degree d. Suppose we apply NCV by deleting n/N rows of A,

and hold out a matching number of entries at random via ECV. Let pn and pe be the

probabilities that all neighbors of the given node i are assigned to the held-out set

by NCV and ECV, respectively. Then a simple combinatorial calculation combined

with Stirling’s formula shows that for large n, the ratio of the two probabilities is

approximately

pe/pn ≈ ed/N
2

/Nd.

This ratio achieves its maximum 0.64 when N = 2 and d = 1 and can be much

smaller if N > 2, d > 1. Table 3.1 shows pe/pn when n = 300 and N = 3, for

different d.

Table 3.1: Ratio between pe and pn for n = 300, N = 3, and different d, where pe and pb are the
probabilities that a node with d neighbors becomes isolated in the training set in ECV and NCV,
respectively.

d 1 2 3 4 5
pe/pn 0.339 0.113 0.035 0.012 0.004

Although this example is a simplified calculation for one fixed node, it shows an

important advantage of ECV over NCV under the block models, since isolated nodes

are assigned to blocks randomly and decrease overall accuracy. In simulations, we

also observed that ECV is much less likely to result in isolated nodes than NCV.

75

3.3.3 Parameter tuning in regularized spectral clustering

Regularized spectral clustering has been proposed to improve performance of spec-

tral clustering in sparse networks, but regularization itself frequently depends on a

tuning parameter that has to be selected correctly in order to achieve the improve-

ment. Several different regularizations have been proposed and analyzed [Chaudhuri

et al., 2012, Amini et al., 2013]. ECV can be used to tune all of them, but for con-

creteness here we focus on the proposal by Amini et al. [2013], who replace the usual

normalized graph Laplacian L = D−1/2AD−1/2, where D is the diagonal matrix of

node degrees, by the Laplacian computed from the regularized adjacency matrix

(3.10) Aτ = A+ τ · d̂/n11T

where d̂ is the average node degree and τ is a tuning parameter, typically within [0, 1].

The scale of the multiplier is motivated by theoretical results under the SBM [Gao

et al., 2017, Le et al., 2017]. This regularization is known to improve concentration

[Le et al., 2017], but also the larger τ is, the more noise it adds, and thus we aim

to select the best value of τ that balances these two effects. Joseph and Yu [2016]

proposed a data-driven way to select τ called DKest based on theoretical bounds

obtained under the SBM and the DCSBM. Using ECV is an alternative general

data-driven way of selecting τ which does not rely on model assumptions.

Choosing a good τ is expected to give good clustering accuracy, defined as pro-

portion of correctly clustered nodes under the best cluster matching permutation,

max
ĉp∈perm(ĉ)

|{i ∈ [n], ĉpi = ci}|/n.

We can directly use Algorithm III.1 with the candidate set C being a grid of τ

values and the matrix completion procedure applied to regularized partial adjacency

76

matrices for each τ , as long as we can specify a loss function. Ideally, we would prefer

a model-free loss function, applicable even when the block model does not hold. In

general, choosing a loss function for cross-validation in clustering is difficult. While

there is some work in the classical clustering setting [Tibshirani et al., 2001, Sugar

and James, 2003, Tibshirani and Walther, 2005], it has not been discussed much

in the network setting, and the loss function we propose next, one of a number of

reasonable options, may be of independent interest.

For any cluster label vector c, the set of node pairs V × V will be divided into

K(K+1)/2 classes defined byH(i, j) = (ci, cj). We treat eachH(i, j) as an unordered

pair, since the network is undirected in spectral clustering. To compare two vectors

of labels c1 and c2, we can compare their corresponding partitions H1 and H2 by

computing co-clustering difference (CCD) or normalized mutual information (NMI)

between them [Yao, 2003]. For instance, the co-clustering matrix for H1 is defined

to be the n2 × n2 matrix G1 such that G1,(j−1)n+i,(q−1)n+p = I{H1(i, j) = H1(p, q)},

reflecting whether or not two edges are in the same partition of H1. Then the

CCD between H1 and H2 is defined as the squared Frobenius norm of the difference

between the two co-clustering matrices

CCD(H1, H2) = ‖G1 −G2‖2
F/2.

We apply this measure to choose the tuning parameter τ as follows: for each split

m = 1, 2, · · · , N of ECV and each candidate value of τ , we complete the adjacency

matrix after removing the held-out entries and estimate cluster labels ĉ
(m)
τ and the

corresponding Ĥ
(m)
τ by regularized spectral clustering on the completed matrix with

the candidate value of τ . We also compute Ĥτ , the partition corresponding to reg-

ularized spectral clustering on the full adjacency matrix with the same value of τ .

77

Then we choose τ by comparing these partitions constrained to the held-out set,

τ̂ = arg min
τ∈C

N∑
m=1

CCD(Ĥ
(m)

τ,Ω⊥m
, Ĥτ,Ω⊥m

).

Intuitively, if τ is a good value, the label vectors that generate Ĥ
(m)

τ,Ω⊥m
and Ĥτ,Ω⊥m

should both be close to the truth, and so the co-clustering matrices should be similar;

if τ is a bad choice, then both label vectors will contain more errors, likely to be non-

matching, and the corresponding CCD will be larger.

3.3.4 Tuning graphon model estimation method

Graphon (or probability matrix) estimation is another general task which often

relies on tuning parameters that can be determined by cross-validation. Zhang et al.

[2015] proposed a method called “neighborhood smoothing” to estimate M instead

of f under the assumption that f is a piecewise Lipschitz function, avoiding the

measure-preserving transformation ambiguity. They showed their method achieves

a nearly optimal rate while requiring only polynomial complexity for computation

(optimal methods are exponential). The method depends on a tuning parameter

h which controls the degree of smoothing. The theory suggests h = τ
√

logn
n

for a

constant τ .

This is a setting where we have no reason to assume a known rank of the true

probability matrix and M does not have to be low rank. However, for a smooth

graphon function a low rank matrix can approximate M reasonably well [Chatterjee,

2015]. The ECV procedure under the graphon model now has to select the best rank

for its internal matrix completion step. Specifically, in each split, we can run the

rank estimation procedure discussed in Section 3.3.1 to estimate the best rank for

approximation and the corresponding Â as the input for the neighborhood smoothing

algorithm. The selected tuning parameter is again the one minimizing the average

78

prediction error.

3.3.5 Stability selection

Stability selection [Meinshausen and Bühlmann, 2010] was proposed as a general

method to reduce noise by repeating model selection many times over random splits

of the data and keeping only the features that are selected in the majority of splits;

any cross-validation procedure can benefit from stability selection since it relies on

random data splits. An additional benefit of stability selection in our context is

increased robustness to the choice of p and N (see Appendix B.2.3). Chen and Lei

[2017] applied this idea to NCV as well, repeating the procedure multiple times and

choosing the most frequently selected model. We use the same strategy for ECV

(and NCV in comparisons), choosing the model selected most frequently out of 20

replications. When we need to select a numerical parameter rather than a model,

we can also average the values selected over the 20 replications (and round to an

integer if needed, say for the number of communities). Overall, picking the most

frequent selection is more robust to different tasks, though picking the average may

work better in some situations. More details are given in Section 3.4.

3.4 Numerical performance evaluation

In this section, we use extensive simulation studies to demonstrate the perfor-

mance of ECV for the tasks discussed in Section 3.3: estimating rank for a general

low-rank network model, model selection for block models (SBM vs DCSBM and

the choice of K), tuning regularized spectral clustering and tuning neighborhood

smoothing algorithm for graphon models.

The two internal parameters we need to set for the ECV are the selection prob-

ability p and the number of repetitions N . Our numerical experiments suggest (see

79

Appendix B.2.3) that the accuracy is stable for p ∈ (0.85, 1) and the choice of N

does not have much effect after applying stability selection, In all of our examples, we

take p = 0.9 and N = 3, as a fair comparison with the recommended configuration

for the NCV method of Chen and Lei [2017] under block models. This configuration

seems to work well in all settings.

3.4.1 Rank estimation for general directed networks

Here we demonstrate the generality of ECV on the task of selecting the best rank

for a network model for directed networks. There are no obvious competing methods

for this task, since the NCV is designed for the block model family only. Assume

P = XY T where X, Y ∈ Rn×K are such that Pij ∈ [0, 1]. This can be viewed as an

instance of a directed random dot product graph model [Young and Scheinerman,

2007], with K the dimension of its latent space. We can use the ECV with either

the AUC loos or the SSE loss for model selection in this case, again with either of

the two stability selection methods. In simulations, we generate two n×K matrices

S1 and S2 with each element drawn independently from the uniform distribution on

(0, 1), and set P = S1S
T
2 . We then normalize to [0, 1] by setting P = (maxi,j Pij)

−1P

and generate the network adjacency matrix A with independent Bernoulli edges and

EA = P .

We fix K = 3 or K = 5 in the model and vary the number of nodes n. The

candidate set is K ∈ {1, 2, · · · , 8}. Table 3.2 show the distribution of estimated

K̂ under various settings. When the sample size is sufficiently large, all versions of

ECV can estimate K well. The AUC-based ECV is always more accurate that the

SSE-based ECV, and works better at smaller sample sizes. The estimation is quite

stable for this task so stability selection does not offer much improvement.

80

K n method K̂: 1 2 3 4 5 6 7 8

3 600

ECV-AUC 42 61 97 - - - - -
ECV-AUC-mode 40 61 99 - - - - -
ECV-AUC-avg 42 61 97 - - - - -
ECV-SSE 144 42 14 - - - - -
ECV-SSE-mode 157 39 4 - - - - -
ECV-SSE-avg 144 55 1 - - - - -

3 750

ECV-AUC - 1 199 - - - - -
ECV-AUC-mode - 1 199 - - - - -
ECV-AUC-avg - 1 199 - - - - -
ECV-SSE 11 59 130 - - - - -
ECV-SSE-mode 6 52 142 - - - - -
ECV-SSE-avg 5 67 128 - - - - -

3 900

ECV-AUC - - 3 - - - - -
ECV-AUC-mode - - 3 - - - - -
ECV-AUC-avg - - 3 - - - - -
ECV-SSE - 4 196 - - - - -
ECV-SSE-mode - 2 198 - - - - -
ECV-SSE-avg - 2 198 - - - - -

5 1500

ECV-AUC 39 20 26 33 82 - - -
ECV-AUC-mode 31 20 28 33 88 - - -
ECV-AUC-avg 39 20 26 33 82 - - -
ECV-SSE 133 34 20 11 2 - - -
ECV-SSE-mode 134 39 13 10 4 - - -
ECV-SSE-avg 117 52 18 13 - - - -

5 1800

ECV-AUC - - 1 3 196 - - -
ECV-AUC-mode - - 1 3 196 - - -
ECV-AUC-avg - - 1 3 196 - - -
ECV-SSE 10 10 29 46 105 - - -
ECV-SSE-mode 9 9 31 28 123 - -
ECV-SSE-avg 4 13 30 47 106 - - -

5 2000

ECV-AUC - - - - 200 - - -
ECV-AUC-mode - - - - 200 - - -
ECV-AUC-avg - - - - 200 - - -
ECV-SSE - - 5 14 181 - - -
ECV-SSE-mode - - 6 11 183 - -
ECV-SSE-avg - - 5 17 178 - - -

Table 3.2: Frequency of estimated rank values in 200 replications.

3.4.2 Model selection under block models

This task closely follows the evaluation setting for NCV from Chen and Lei [2017].

We investigate the performance of ECV and other relevant competing methods in

two specific tasks:

1. Overall model selection: choosing the model (SBM or DCSBM) and the number

of communities K simultaneously.

2. Estimating the number of communities: choosing K when the true model type

(SBM or DCSBM) is known.

81

Overall model selection

The four methods compared on this task are ECV with L2 loss (ECV-l2), the

stable version of ECV where the most frequent selection of 20 independent repetitions

of ECV-l2 is returned (ECV-l2-mode), and the corresponding versions of the NCV

procedure (NCV-l2, NCV-l2-mode). We only show the results from using the L2

loss for model selection since we observed it works better than binomial deviance for

both ECV and NCV. The performance using binomial deviance as loss can be found

in Appendix B.2.1.

The setting for all simulated networks in this section is as follows. For the

DCSBM, we first sample 300 values from the power law distribution with the lower

bound 1 and scaling parameter 5, and then set the node degree parameters θi,

i = 1, · · · , n by randomly and independently choosing one of these 300 values. For

the SBM, we set θi = 1 for all i. Let π ∝ (1, 2t, · · · , Kt) be the proportions of nodes

in the K communities; t controls the size balance (when t = 0 the communities have

equal sizes). Let B0 = (1− β)I + β11T and B ∝ ΘB0Θ, so that β is the out-in ratio

(the ratio of between-block probability and within-block probability of edge). The

scaling is selected so that the average node degree is λ. We consider several configu-

rations of size and the number of communities: (n = 600, K = 3), (n = 600, K = 5)

and (n = 1200, K = 5). For each configuration, we then vary three aspects of the

model:

1. Sparsity: set the expected average degree λ to 15, 20, 30, or 40, fixing t = 0

and β = 0.2.

2. Community size: set t to 0, 0.25, 0.5, or 1, fixing λ = 40 and β = 0.2.

3. Out-in ratio: set β to 0, 0.25, or 0.5, fixing λ = 40 and t = 0.

82

All results are based on 200 replications.

The candidate model set contains both the SBM and the DCSBM with the number

of communities varying from 1 to 8. Following Chen and Lei [2017], we evaluate

performance on two different model selection tasks: choosing both the model (SBM

vs. DCSBM) and the number of communities K simultaneously, and choosing K

when the true model is known.

K n λ t β ECV-l2 ECV-l2-mode NCV-l2 NCV-l2-mode

3 600

15 0 0.2 0.73 0.87 0.00 0.00
20 0 0.2 0.97 0.99 0.02 0.00
30 0 0.2 1.00 1.00 0.43 0.40
40 0 0.2 1.00 1.00 0.88 0.98

5 600

15 0 0.2 0.49 0.58 0.00 0.00
20 0 0.2 0.90 0.95 0.00 0.00
30 0 0.2 0.99 1.00 0.05 0.01
40 0 0.2 0.99 1.00 0.27 0.24

5 1200

15 0 0.2 0.67 0.76 0.00 0.00
20 0 0.2 0.99 0.99 0.00 0.00
30 0 0.2 1.00 1.00 0.04 0.00
40 0 0.2 1.00 1.00 0.41 0.33

3 600

40 0 0.2 1.00 1.00 0.88 0.98
40 0.25 0.2 1.00 1.00 0.90 0.97
40 0.5 0.2 1.00 1.00 0.92 0.97
40 1 0.2 0.70 0.79 0.42 0.46

5 600

40 0 0.2 0.99 1.00 0.27 0.24
40 0.25 0.2 0.98 1.00 0.28 0.29
40 0.5 0.2 0.77 0.79 0.18 0.17
40 1 0.2 0.11 0.06 0.05 0.00

5 1200

40 0 0.2 1.00 1.00 0.41 0.33
40 0.25 0.2 1.00 1.00 0.44 0.39
40 0.5 0.2 0.81 0.83 0.21 0.16
40 1 0.2 0.10 0.06 0.00 0.06

3 600
40 0 0.1 1.00 1.00 0.99 1.00
40 0 0.2 1.00 1.00 0.88 0.98
40 0 0.5 0.95 0.97 0.00 0.00

5 600
40 0 0.1 1.00 1.00 0.79 0.96
40 0 0.2 0.99 1.00 0.27 0.24
40 0 0.5 0.00 0.00 0.00 0.00

5 1200
40 0 0.1 1.00 1.00 0.90 0.99
40 0 0.2 1.00 1.00 0.41 0.33
40 0 0.5 0.00 0.00 0.00 0.00

Table 3.3: Overall model selection by ECV and NCV (fraction correct out of 200 replications). The
true model is the DCSBM.

Table 3.3 shows the fraction (out of the 200 replications) of times the correct model

was selected when the true model is the DCSBM. Over all settings, stability selection

improves performance as long as the cross-validation itself is working reasonably

well. This is expected since stability selection is only a variance reduction step,

83

and it cannot help if the original procedure is not working. The NCV works well

in easier settings (smaller number of communities, the network is relatively dense,

communities are balanced, the out-in ratio is small). As the problem becomes harder,

the NCV quickly loses accuracy in model selection. On the other hand, the ECV

gives better selection than NCV in all cases, and in many settings the difference is

very large. For instance, when K = 5, n = 1200, λ = 30, β = 0.2 with balanced

communities, NCV completely fails (0% correct) while ECV gives the correct answer

100% of the time.

Table 3.4 shows the corresponding results when the underlying true model is the

SBM. The task is easier under the SBM as the model is simpler, but the general

pattern is very similar to the DCSBM setting. Stability selection clearly improves

performance and the ECV performs better than NCV overall.

Selecting the number of communities

When the model (SBM or DCSBM) is known or assumed, there are multiple meth-

ods available for selecting the number of communities K which can be included in

comparisons along with general cross-validation methods. For this task, we compare

the following cross-validation procedures: the previously mentioned ECV-l2, NCV-

l2, and the model-free ECV with the SSE and the AUC as loss functions, described

in Section 3.3.1 (ECV-SSE and ECV-AUC, respectively). For any cross-validation

method, we can further use stability selection by either picking the most frequent

selection or picking the closest integer to the average selection. For instance, for

ECV with the L2 loss, we call the two stabilized versions ECV-l2-mode and ECV-

l2-avg, respectively. Additionally, we include two methods specifically for choosing

K under the block models, which we would expect to be at least as accurate as

cross-validation considering that they use the true model and cross-validation does

84

K n λ t β ECV-l2 ECV-l2-mode NCV-l2 NCV-l2-mode

3 600

15 0 0.2 1.00 1.00 0.99 1.00
20 0 0.2 1.00 1.00 1.00 1.00
30 0 0.2 1.00 1.00 0.99 1.00
40 0 0.2 1.00 1.00 1.00 1.00

5 600

15 0 0.2 0.81 0.88 0.71 0.86
20 0 0.2 1.00 1.00 0.98 1.00
30 0 0.2 1.00 1.00 0.98 1.00
40 0 0.2 0.99 1.00 0.98 1.00

5 1200

15 0 0.2 0.98 0.98 0.91 0.96
20 0 0.2 1.00 1.00 0.99 1.00
30 0 0.2 1.00 1.00 0.96 1.00
40 0 0.2 1.00 1.00 0.97 1.00

3 600

40 0 0.2 1.00 1.00 1.00 1.00
40 0.25 0.2 1.00 1.00 0.99 1.00
40 0.5 0.2 1.00 1.00 0.97 1.00
40 1 0.2 0.73 0.76 0.34 0.43

5 600

40 0 0.2 0.99 1.00 0.98 1.00
40 0.25 0.2 1.00 1.00 0.95 1.00
40 0.5 0.2 0.82 0.86 0.64 0.78
40 1 0.2 0.06 0.01 0.17 0.10

5 1200

40 0 0.2 1.00 1.00 0.97 1.00
40 0.25 0.2 1.00 1.00 0.98 1.00
40 0.5 0.2 0.93 0.94 0.73 0.89
40 1 0.2 0.01 0.01 0.21 0.06

3 600
40 0 0.1 1.00 1.00 0.98 1.00
40 0 0.2 1.00 1.00 1.00 1.00
40 0 0.5 0.92 0.96 0.83 0.96

5 600
40 0 0.1 0.99 1.00 0.97 1.00
40 0 0.2 0.99 1.00 0.98 1.00
40 0 0.5 0.00 0.00 0.00 0.00

5 1200
40 0 0.1 1.00 1.00 0.98 1.00
40 0 0.2 1.00 1.00 0.97 1.00
40 0 0.5 0.00 0.00 0.00 0.00

Table 3.4: Overall model selection by ECV and NCV (fraction correct out of 200 replications). The
true model is the SBM.

not. The method of Wang et al. [2017] is a BIC-type criterion (LR-BIC) based on

an asymptotic analysis of the likelihood ratio statistic. Another BIC-type method

proposed by Saldana et al. [2014] is based on the composite likelihood (CL-BIC) but

it is computationally infeasible for networks with more than 1000 nodes (using the

implementation on the authors’ website) and it was less accurate than LR-BIC in

our experiments on smaller networks, so we omit it from comparisons. From the

class of eigenvalues-based methods proposed by Le and Levina [2015], we include the

variant based on the Bethe-Hessian matrix with moment correction (BHmc). Due

to the large number of methods, we first compare just the cross-validation methods,

ECV-l2, NCV-l2, ECV-AUC, ECV-SSE, and their stabilized versions, and then we

85

compare the best of the cross-validation methods with the other two. The results

when the true model is the DCSBM are included in this section; the corresponding

results for the SBM are given in Appendix B.2.2.

Table 3.5 shows the comparison between the cross-validation methods when we

vary the average network degree with fixed β = 0.2 and balanced communities. Both

stability selection methods improve the model selection accuracy of the ECV, and

stabilization by average is better for all versions of the ECV. On the other hand,

for the NCV the most frequently selected K is typically more accurate than the

rounded average. Further, all the variants of the ECV work as well as or better

than the NCV in all configurations. For example, when n = 1200, K = 5, λ = 15,

the ECV accuracy is in the range 0.83-0.85 (for different versions), while the NCV

completely fails. The model-free ECV-AUC has similar performance to ECV-l2 on

this task, but it cannot be used to select between the SBM and the DCSBM. The

ECV-SSE version is slightly inferior but still works much better than the NCV.

Tables 3.6 and 3.7 compare the same methods when we vary t fixing λ and β, and

vary β while fixing λ and t, respectively. The pattern is very similar to Table 3.5.

Setting ECV-l2 NCV-l2 ECV-AUC ECV-SSE
K n λ mode avg mode avg mode avg mode avg

3 600

15 0.99 1.00 1.00 0.82 0.99 0.94 0.99 1.00 1.00 0.99 1.00 1.00
20 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 600

15 0.57 0.60 0.72 0.01 0.00 0.00 0.55 0.59 0.68 0.33 0.34 0.68
20 0.92 0.95 0.96 0.43 0.67 0.36 0.93 0.96 0.99 0.86 0.91 0.99
30 0.99 1.00 1.00 0.76 0.99 0.91 1.00 1.00 1.00 1.00 1.00 1.00
40 0.99 1.00 1.00 0.76 0.98 0.89 1.00 1.00 1.00 1.00 1.00 1.00

5 1200

15 0.74 0.79 0.85 0.01 0.00 0.00 0.73 0.79 0.83 0.22 0.26 0.83
20 0.99 0.99 1.00 0.76 0.95 0.67 0.98 0.99 0.99 0.94 0.97 0.99
30 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.5: The rate of correctly estimating the number of communities (out of 200 replications)
when varying the network average degree and fixing t = 0, β = 0.2. The true model is the DCSBM.

Next, we compare the best of cross-validation methods (ECV-l2-avg, NCV-l2-

mode, ECV-AUC-avg) with the model-based methods LR-BIC and BHmc, with

86

Setting ECV-l2 NCV-l2 ECV-AUC ECV-SSE
K n t mode avg mode avg mode avg mode avg

3 600

0 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.70 0.79 0.67 0.49 0.48 0.49 0.85 0.86 0.90 0.82 0.83 0.90

5 600

0 0.99 1.00 1.00 0.76 0.98 0.89 1.00 1.00 1.00 1.00 1.00 1.00
0.25 0.98 1.00 1.00 0.64 0.95 0.84 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.77 0.80 0.80 0.36 0.55 0.70 0.80 0.80 0.83 0.74 0.77 0.83
1 0.11 0.06 0.07 0.06 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.01

5 1200

0 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.81 0.83 0.83 0.60 0.64 0.66 0.86 0.89 0.91 0.74 0.74 0.91
1 0.10 0.06 0.07 0.01 0.00 0.00 0.04 0.01 0.01 0.00 0.00 0.01

Table 3.6: The rate of correctly estimating the number of communities (out of 200 replications)
when varying t and fixing λ = 40, β = 0.2. The true model is the DCSBM.

Setting ECV-l2 NCV-l2 ECV-AUC ECV-SSE
K n β mode avg mode avg mode avg mode avg

3 600
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.96 1.00 1.00 0.00 0.00 0.00 0.96 1.00 1.00 0.12 0.16 1.00

5 600
0.1 1.00 1.00 1.00 0.85 1.00 0.99 0.98 1.00 0.99 1.00 1.00 0.99
0.2 0.99 1.00 1.00 0.76 0.98 0.89 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1200
0.1 1.00 1.00 1.00 0.95 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.7: The rate of correctly estimating the number of communities (out of 200 replications)
when varying β and fixing λ = 40, t = 0. The true model is the DCSBM.

results shown in Table 3.8. The LR-BIC and BHmc perform perfectly most of the

time, and outperform cross-validation when K is large and the network is sparse

(harder settings). This is expected since cross-validation is a general method and

the other two rely on the true model; they also cannot be applied to any other tasks.

It is also not clear how they behave under model misspecification (important given

that in the real world not many networks follow exactly the SBM or the DCSBM),

while cross-validation can still be expected to give reasonable results; in particular,

the ECV selection can be interpreted as the optimal model from the block model

family in terms of link prediction for the observed network.

87

Setting Method
K n λ t β ECV-l2-avg NCV-l2-mode ECV-AUC-avg LR-BIC BHmc

3 600

15 0 0.2 1.00 0.99 1.00 1.00 1.00
20 0 0.2 1.00 1.00 1.00 1.00 1.00
30 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00

5 600

15 0 0.2 0.72 0.00 0.59 1.00 1.00
20 0 0.2 0.96 0.67 0.96 1.00 1.00
30 0 0.2 1.00 0.99 1.00 1.00 1.00
40 0 0.2 1.00 0.98 1.00 1.00 1.00

5 1200

15 0 0.2 0.85 0.00 0.79 1.00 1.00
20 0 0.2 1.00 0.95 0.99 1.00 1.00
30 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00

3 600

40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0.25 0.2 1.00 1.00 1.00 1.00 1.00
40 0.5 0.2 1.00 1.00 1.00 1.00 1.00
40 1 0.2 0.67 0.48 0.86 1.00 1.00

5 600

40 0 0.2 1.00 0.98 1.00 1.00 1.00
40 0.25 0.2 1.00 0.95 1.00 1.00 1.00
40 0.5 0.2 0.80 0.55 0.80 1.00 0.99
40 1 0.2 0.07 0.01 0.01 0.46 0.10

5 1200

40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0.25 0.2 1.00 1.00 1.00 1.00 1.00
40 0.5 0.2 0.83 0.64 0.89 1.00 1.00
40 1 0.2 0.07 0.00 0.01 0.45 0.12

3 600
40 0 0.1 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.5 0.98 0.00 0.96 1.00 1.00

5 600
40 0 0.1 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 0.98 1.00 1.00 1.00
40 0 0.5 0.00 0.00 0.00 0.00 0.00

5 1200
40 0 0.1 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.5 0.00 0.00 0.00 0.00 0.00

Table 3.8: The rate of correctly estimating the number of communities (out of 200 replications) for
the best variant of each method. The true model is the DCSBM.

3.4.3 Tuning regularized spectral clustering

Another application of ECV discussed in Section 3.3.3 is choosing the tuning

parameter in regularized spectral clustering. Here we test the ECV on this task on

networks generated from the DCSBM under the setting described in Section 3.4.2,

with n = 600, K = 3, a power law distribution for θi, balanced community sizes π =

(1/3, 1/3, 1/3), out-in ratio β = 0.2, and average degree λ = 5, since regularization is

generally only relevant when the network is sparse. The candidate set for the tuning

parameter τ is C = {0.1, 0.2, · · · , 1.9, 2}. Without regularization, at this level of

sparsity spectral clustering works very poorly. We use the ECV procedure described

in Section 3.3.3 as well as its two stabilized versions to select τ . We also report the

88

accuracy for each fixed value of τ in C as well as the DKest estimator of τ proposed

by Joseph and Yu [2016].

In the sparse setting, spectral clustering may occasionally suffer from bad local

optima found by K-means. Thus we report the median clustering accuracy out of

200 replications, as well as its 95% confidence interval calculated by bootstrap. Fig-

ure 3.1 shows the confidences intervals for the median accuracy of regularized spectral

clustering for all tuning strategies out of 200. Without regularization, the clustering

accuracy is below 0.5 (not shown). The accuracy jumps up with regularization for

small τ values, and decreases slowly as τ increases. All data-driven methods give

close to optimal performance, with DKest and ECV-avg giving the best result, closely

followed by ECV without stability selection and ECV-mode. Again, considering that

DKest is a model-based method designed specifically for this purpose, and ECV is a

generic tuning method, this is a good result for the ECV.

●

0.74

0.76

0.78

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

D
K

es
t

E
C

V

E
C

V
−

av
g

E
C

V
−

m
od

e

τ

ac
cu

ra
cy

method

● DKest
ECV
ECV−avg
ECV−mode
Predefined

Figure 3.1: The median clustering accuracy for different fixed values of τ and for DKest and ECV
tuning. The true model is DCSBM with n = 600, K = 3, λ = 5, β = 0.2 and t = 0.

89

3.4.4 Tuning nonparametric graphon estimation

In this example, we demonstrate the performance of ECV in tuning the neighbor-

hood smoothing estimation for a graphon model. As discussed before, the theory in

Zhang et al. [2015] suggests to use h = τ
√

logn
n

for a constant τ , but does not give a

way to specify the value for τ . As we show next, the choice of the constant τ matters

in practice and the ECV can be used to pick a good value.

(a) Graphon 1 heatmap (b) Graphon 2 heatmap

●

0.1

0.2

0.3

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

E
C

V

τ

m
ed

ia
n

er
ro

r

method

● ECV
Predefined

(c) Graphon 1 errors

●

0.20

0.22

0.24

0.26

0.28

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

E
C

V

τ

m
ed

ia
n

er
ro

r

(d) Graphon 2 errors

Figure 3.2: Parameter tuning for piecewise constant graphon estimation.

The tuning procedure is very stable for the graphon problem and stability selection

is unnecessary. Figure 3.2 shows the tuning results for two graphon examples taken

from Zhang et al. [2015], both for networks with n = 500 nodes. Graphon 1 is a block

90

model (though this information is never used), which is a piecewise constant function

and P is low rank. Graphon 2 is a smoothly varying function which is not low rank;

see Zhang et al. [2015] for more details. The errors are pictured as the median

over 200 replications with a 95% confidence interval (calculated by bootstrap) of the

normalized Frobenius error ‖P̂ − P‖F/‖P‖F . For Graphon 1, which is low rank, the

ECV works perfectly and picks the best τ of the candidate set most of the time. For

Graphon 2, which is not low rank and therefore more challenging for a procedure

that uses a low-rank approximation, the ECV does not always choose the very best

τ , but still achieves a fairly competitive error rate by successfully avoiding the bad

range for τ . This example illustrates that the constant can make a big difference for

estimation error in this problem, and the ECV is successful at choosing it.

3.5 Community detection in a statistics citation network

This publicly available dataset provided by Ji et al. [2016] contains information

about all papers (title, author, year, citations and DOI) published between 2003

and 2012 in four statistics journals considered top (Annals of Statistics, Biometrika,

Journal of the American Statistical Association (Theory and Methods), and Journal

of the Royal Statistical Society (Series B). This dataset was carefully constructed to

resolve ambiguities and is relatively interpretable, at least to statisticians.

The dataset contains 3607 authors and 3248 papers. The citations of all the pa-

pers are available so we can construct the citation network between authors (as well

as papers, but here we focus on authors as we are looking for research communi-

ties of people). We thus construct a weighted undirected network between authors,

where the weight is the total number of their mutual citations. The largest con-

nected component of the network contains 2654 authors. Thresholding the weight

91

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

David Dunson

Hans−Georg Muller

Hui Zou
Jianqing Fan Peter Hall

Raymond J Carroll

Runze Li

T Tony Cai

Figure 3.3: The core of statistician citation network. The network has 706 nodes with node citation
count (ignoring directions) ranging from 15 to 703. The nodes sizes and colors indicate the citation
counts and the nodes with larger citation counts are larger and darker.

to binary resulted in all methods for estimating K selecting an unrealistically large

and uninterpretable value, suggesting the network is too complex to be adequately

described by a binary block model. Since the weights are available and contain much

more information than just the presence of an edge, we analyze the weighted net-

work instead; seamlessly switching between binary and weighted networks is another

advantage of the ECV.

Many real world networks have the core-periphery structure, and citation networks

especially are likely to have this form. We focus on analyzing the core of the citation

network, extracting it following the procedure proposed for the data set by Wang

et al. [2016a]: delete nodes with less than 15 citations (in either direction) and their

92

corresponding edges, and repeat until the network no longer changes. This results in

a network with 706 authors shown in Figure 3.3. The individual node citation count

ranges from 15 to 703 with a median 30.

Interpretation [size] Authors
1 high-dimensional inference (mul-

tiple testing, machine learning)
[57]

T Tony Cai, Jiashun Jin, Larry Wasserman, Christopher Genovese, Bradley Efron,
John D Storey, David L Donoho, Yoav Benjamini, Jonathan E Taylor, Joseph P
Romano

2 high-dimensional inference
(sparse penalties) [53]

Hui Zou, Ming Yuan, Yi Lin, Trevor J Hastie, Robert J Tibshirani, Xiaotong Shen,
Jinchi Lv, Gareth M James, Hongzhe Li, Peter Radchenko

3 functional data analysis [52] Hans-Georg Muller, Jane-Ling Wang, Fang Yao, Yehua Li, Ciprian M Crainiceanu,
Jeng-Min Chiou, Alois Kneip, Hulin Wu, Piotr Kokoszka, Tailen Hsing

4 high-dimensional inference (the-
ory and sparsity) [45]

Peter Buhlmann, Nicolai Meinshausen, Cun-Hui Zhang, Alexandre B Tsybakov,
Emmanuel J Candes, Terence Tao, Marten H Wegkamp, Bin Yu, Florentina Bunea,
Martin J Wainwright

5 high-dimensional covariance esti-
mation [43]

Peter J Bickel, Ji Zhu, Elizaveta Levina, Jianhua Z Huang, Mohsen Pourahmadi,
Clifford Lam, Wei Biao Wu, Adam J Rothman, Weidong Liu, Linxu Liu

6 Bayesian machine learning [41] David Dunson, Alan E Gelfand, Abel Rodriguez, Michael I Jordan, Peter Muller,
Gareth Roberts, Gary L Rosner, Omiros Papaspiliopoulos, Steven N MacEachern,
Ju-Hyun Park

7 spatial statistics [41] Tilmann Gneiting, Marc G Genton, Sudipto Banerjee, Adrian E Raftery, Haavard
Rue, Andrew O Finley, Bo Li, Michael L Stein, Nicolas Chopin, Hao Zhang

8 biostatistics (machine learning)
[40]

Donglin Zeng, Dan Yu Lin, Michael R Kosorok, Jason P Fine, Jing Qin, Guosheng
Yin, Guang Cheng, Yi Li, Kani Chen, Yu Shen

9 suffiicent dimension reduction
[39]

Lixing Zhu, R Dennis Cook, Bing Li, Chih-Ling Tsai, Liping Zhu, Yingcun Xia,
Lexin Li, Liqiang Ni, Francesca Chiaromonte, Liugen Xue

10 high-dimensional inference (pe-
nalized methods) [38]

Jianqing Fan, Runze Li, Hansheng Wang, Jian Huang, Heng Peng, Song Xi Chen,
Chenlei Leng, Shuangge Ma, Xuming He, Wenyang Zhang

11 Bayesian (general) [33] Jeffrey S Morris, James O Berger, Carlos M Carvalho, James G Scott, Hemant
Ishwaran, Marina Vannucci, Philip J Brown, J Sunil Rao, Mike West, Nicholas G
Polson

12 high-dimensional theory and
wavelets [33]

Iain M Johnstone, Bernard W Silverman, Felix Abramovich, Ian L Dryden, Do-
minique Picard, Richard Nickl, Holger Dette, Marianna Pensky, Piotr Fryzlewicz,
Theofanis Sapatinas

13 mixed (causality + theory +
Bayesian) [32]

James R Robins, Christian P Robert, Paul Fearnhead, Gilles Blanchard, Zhiqiang
Tan, Stijn Vansteelandt, Nancy Reid, Jae Kwang Kim, Tyler J VanderWeele, Scott
A Sisson

14 semiparametrics and nonpara-
metrics [28]

Hua Liang, Naisyin Wang, Joel L Horowitz, Xihong Lin, Enno Mammen, Arnab
Maity, Byeong U Park, Wolfgang Karl Hardle, Jianhui Zhou, Zongwu Cai

15 high-dimensional inference (ma-
chine learning) [27]

Hao Helen Zhang, J S Marron, Yufeng Liu, Yichao Wu, Jeongyoun Ahn, Wing
Hung Wong, Peter L Bartlett, Michael J Todd, Amnon Neeman, Jon D McAuliffe

16 semiparametrics [24] Peter Hall, Raymond J Carroll, Yanyuan Ma, Aurore Delaigle, Gerda Claeskens,
David Ruppert, Alexander Meister, Huixia Judy Wang, Nilanjan Chatterjee, Anas-
tasios A Tsiatis

17 mixed (causality + financial) [22] Qiwei Yao, Paul R Rosenbaum, Yacine Ait-Sahalia, Yazhen Wang, Marc Hallin,
Dylan S Small, Davy Paindaveine, Jian Zou, Per Aslak Mykland, Jean Jacod

18 biostatistics (survival, clinical
trials) [22]

L J Wei, Lu Tian, Tianxi Cai, Zhiliang Ying, Zhezhen Jin, Peter X-K Song, Hui
Li, Bin Nan, Hajime Uno, Jun S Liu

19 biostatistics - genomics [21] Joseph G Ibrahim, Hongtu Zhu, Jiahua Chen, Amy H Herring, Heping Zhang,
Ming-Hui Chen, Stuart R Lipsitz, Denis Heng-Yan Leung, Weili Lin, Armin
Schwartzman

20 Bayesian (nonparametrics) [15] Subhashis Ghosal, Igor Prunster, Antonio Lijoi, Stephen G Walker, Aad van der
Vaart, Anindya Roy, Judith Rousseau, J H van Zanten, Richard Samworth, Aad
W van der Vaart

Table 3.9: The 10 authors with largest total citation numbers (ignoring the direction) within 20
communities, as well as the community interpretations. The communities are ordered by size and
authors within a community are ordered by mutual citation count.

Block models are not defined for weighted networks, but the Laplacian is still

well-defined and so the spectral clustering algorithm for community detection can be

applied. The model-free version ECV-SSE can be used to determine the number of

communities. We apply the ECV-SSE procedure with p = 0.9 and N = 3 and repeat

93

it 200 times, with the candidate values for K from 1 to 50. The stable version ECV-

SSE-mode selects K = 20. We also used ECV to tune the regularization parameter

for spectral clustering, as described in Section 3.3.3. It turns out the regularization

does make the result more interpretable. We list the 20 communities in Table 3.9,

with each community represented by 10 authors with the largest number of citations,

along with subjective and tentative names we assigned to these communities. Note

that the names are assigned based on the majority of authors’ interests or area of con-

tributions, and that it is based exclusively on data collected in the period 2003-2012,

so people who have worked on many topics over many years tend to appear under the

topic they devoted the most attention to in that time period. Many communities can

be easily identified by their common research interests; high-dimensional inference,

a topic that many people published on in that period of time, is subdivided into

several sub-communities that are in themselves interpretable (communities 1, 2, 4,

5, 10, 12, 15). Overall, these groups are fairly easily interpretable to those familiar

with the statistical literature of this decade.

3.6 Summary and future work

We have proposed a general framework for resampling networks based on, in a

nutshell, leaving out adjacency matrix entries at random and using matrix completion

to fill them back in before proceeding with the task at hand for the training data.

While for specific problems like selecting the number of communities under the block

models there are existing methods that work well, our proposal has the advantage of

being general and competitive with specialized methods across the board. It relies

on an approximately low rank assumption which we know to be reasonable for many

real networks. However, if another structural assumption makes more sense for a

94

given dataset, one can always replace the matrix completion method with something

more appropriate for the situation, while the general principle remains the same.

Under the low rank assumption on the underlying probability matrix, we showed

that the completed matrix retains the same order of concentration around the truth

as the full adjacency matrix; in practice, we expect the method to work well for

approximately low rank structures as well.

The general scheme of leaving out entries at random followed by matrix completion

can be useful in any resampling-based method, not just cross-validation. Establishing

rigorous guarantees for bootstrap in this context is left for future work. Another

direction we leave for future work is when there are additional node features available

[Li et al., 2016c, Newman and Clauset, 2016]. The strategy we use for ECV could

be modified to include resampling node features as well as edges in this context.

Finally, the strategy may also prove useful in cross-validation on dynamic networks

changing over time [Zhang et al., 2017, Rossetti and Cazabet, 2017], and in general

any situation where one needs to create an artificial sample of networks based on a

single observed network.

CHAPTER IV

A new community model for partially observed networks
from surveys

4.1 Introduction

In this chapter, we will focus on community detection problem, which is only

briefly mentioned in previous chapters. Community detection, the task of clustering

nodes into groups with relatively homogeneous connection patterns, has been an

intensively studied topic in network analysis [Fortunato, 2010, Goldenberg et al.,

2010]. Community detection makes it possible to decompose a network into relatively

homogenous parts and in many applications, can lead to new discoveries about the

network nodes [Newman, 2006]. Many statistical network models with communities

have now been proposed, from the simple stochastic block model [Holland et al.,

1983] to complex extensions with mixed membership [Airoldi et al., 2008] or temporal

evolution [Xu and Hero, 2013, Matias and Miele, 2017]. Such models can provide a

rigorous statistical framework and theoretical performance guarantees [Rohe et al.,

2011, Zhao et al., 2012], as well as lead to improved algorithms [Joseph and Yu, 2016,

Gao et al., 2017, Le et al., 2017].

A practical difficulty in many empirical studies of networks arises from the data

collection mechanism. Here we use the term network survey to refer to any situation

where some edge information may be missing due to the data collection procedure.

95

96

This could include traditional surveys: in many social network studies, the network

information is collected from a survey in which subjects are asked to name their

friends [Michell and West, 1996, Harris, 2009]. Typically, a given number of slots is

included for these nominations, which may cut off some friends from being named.

More importantly, subjects may choose not to name all of their friends, for various

reasons, and therefore we can think of observed edges as a subset of the true edges.

More generally, a survey of a network in this general sense can result from networks

collected by internet crawlers that only follow some of the paths for technical or time

reasons, etc. In any of these situations, the missing edges may undermine validity or

efficiency of standard network models.

In a sense, missing edges in networks can also be viewed as erroneous observations

(a 0 instead of a 1), though the focus of the problem of denoising networks is slightly

different. There has been a significant amount of work on denosing networks, which

often considers both missing edges and falsely reported edges. Butts [2003] proposed

a Bayesian method to evaluate how reliable an observed network is. Newman [2018a]

proposed a link prediction framework to recover underlying networks without specific

structures. Newman [2018b] further extends this path of work to a general frame-

work to estimate networks under non-informative observational errors. For networks

with communities, Guimerà and Sales-Pardo [2009] propose a Bayesian model and

inference method to detect both missing and spurious edges. Martin et al. [2016]

take a similar modeling strategy but assumed more flexible nonparametric error dis-

tributions for the potential observations errors.

The above models for noisy networks assume the missing mechanism is not related

to the network structure, for instance communities. In some situations this assump-

tion is reasonable, for instance for recording errors, but for a network resulting from

97

a survey this assumption is hard to justify. For example, in a survey procedure,

some individuals may prefer to nominate more of their friends from the same com-

munity while some others may randomly nominate some of their friends ignoring the

community affiliations, even though the true underlying friendship distributed ac-

cording to the community information. Generally, in a surveyed network the missing

mechanism is potentially dependent on both of the communities and individual node

characteristics, which needs different models from the network denoising methods.

Recently, Le and Levina [2017] consider a related scenario where the missing mech-

anism depends on the community labels of the node pairs, but it uses a sample of

networks from the same distribution, which is common in neuroimaging applications

but not commonly available for friendship surveys.

Perhaps the most related work to ours is from Zhao et al. [2017], in which only one

snapshot of the network is available and the observed network is a partially observed

version of a true underlying network while the observation probability of an edge is

a monotonic function of the true connection probability. However, Zhao et al. [2017]

focus on the general link prediction task without specific structural assumptions such

as communities and due to the generality of their framework, the method of Zhao

et al. [2017] needs some additional node-wide similarity information on top of the

network.

In this chapter, we propose a network model with communities we call nomination

stochastic block model (NSBM) for directed networks. It can be used for community

detection on a single network and aims to better model the networks resulting from

surveys, with edge nomination mechanism driven by both communities and node-

specific parameters. We propose computationally efficient algorithms for fitting this

model, based on spectral clustering and the method of moments, and show statis-

98

tical consistency for both community recovery and parameter estimation. We also

propose a conditional surveyed network model, which can be more realistic in certain

situations but is difficult for inference. However, our empirical results show that the

proposed NSBM gives a good approximation to the conditional model. We use the

NSBM to analyze a business school faculty hiring network in U.S. universities and

obtain meaningful and interpretable results.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the

NSBM, as well as the community detection and model fitting algorithms. A con-

ditional surveyed network model is also described and we discuss why the NSBM

can be a potentially good approximation. In Section 4.3, the theoretical guarantee

of consistency for community detection and parameter estimation under the NSBM

are provided. In Section 4.4, we demonstrate how the model and model-fitting algo-

rithms can be extended to weighted networks. The simulations studies under both

NSBM and the conditional surveyed network model are included in Section 4.5 and

Section 4.6 includes a detailed example of using the NSBM to analyze a faculty hiring

network. The chapter is concluded in Section 4.7 with future work discussion.

4.2 The nomination stochastic block model

We start with a brief review of the directed extension of the standard SBM before

presenting the new nomination model. While networks constructed by asking people

about their friends are often treated as undirected by ignoring who nominated whom,

they are directed by nature and in reality are often quite far from symmetric.

4.2.1 The directed stochastic block model

The stochastic block model (SBM) [Holland et al., 1983] is one of the most widely

used and well-understood models for communities in a network. It has been shown

99

to successfully discover meaningful communities in various problems, and can serve

as a building block for more complicated models; see Abbe [2017] for a thorough

recent review.

A network of n nodes can be represented by an n × n adjacency matrix A such

that each entry Aij = 1(i → j) is 1 if there is an edge from node i to node j and 0

otherwise. The standard SBM is defined for undirected networks, where Aij = Aji.

For directed networks, a trivial extension of SBM can be defined as follows: given n

nodes, a positive integer K and a K×K matrix of probabilities B, let ci ∈ {1, . . . , K}

be the community label of node i, and c be the vector of community labels. Here

we treat c as fixed; a version with c sampled from a multinomial distribution is

defined similarly. Let Gk = {i : ci = k} be the set of nodes in community k.

The entries of the adjacency matrix A are then generated independently from the

Bernoulli distribution with

(4.1) P (Aij = 1) = Bcicj

Note that for the directed model we do not require B to be symmetric. This natural

extension serves as a building block for the new model we propose.

4.2.2 The nomination stochastic block model

As discussed in the introduction, there are often missing edges in networks, and the

pattern of missingness may be related to both community membership and individual

node characteristics. Here we propose a new model that can reflect this. Let Ã be the

adjacency matrix we observe, where Ãij = 1 indicates node i reported that there is an

edge from it to node j. In addition to previously defined c and B, we introduce two

new node-specific parameters, given by n-dimensional vectors λ = (λi) and θ = (θi).

The proposed nomination stochastic block model (NSBM) assumes the entries of Ã

100

are generated independently from the Bernoulli distribution with

(4.2) P (Ãij = 1) = P̃ij = θiB
λi
cicj
,

which allows the probability of observing an edge to depend on both nodes’ commu-

nities and the sender’s individual characteristics.

If we enforce max1≤k,l≤K Bkl ≤ 1 and maxi θi ≤ 1 (which we will show later can

always be done with proper scaling), we can equivalently rewrite model (4.2) as

a result of a generating process which takes an original network A generated from

model (4.1) and applies a binary observation “mask” matrix R with Bernoulli entries

generated independently with

P (Rij = 1) = θiB
λi−1
cicj

.

The observed matrix is then given by

Ã = A ◦R,

where ◦ is the element-wise Hadamard matrix product. We can think of the pa-

rameter θi as measuring the overall propensity of node i to nominate friends, and of

λi as a measure of their preference for nominating friends from their own or closely

connected communities; both these factors may affect data collection in friendship

surveys such as the AddHealth study [Harris, 2009].

As with any model involving products of multiple parameters, we need to ensure

identifiability by determining conditions on B, λ, θ, c that allow them to be uniquely

identified from P̃ , which controls the distribution of observed data Ã.

We need to ensure P̃ has no rows consisting entirely of zeros, and thus we require

θi > 0 for all i and that each row of B contains at least one positive entry. We also

need scaling constraints on B and λ to avoid invariance to multiplicative constants.

101

In addition, if Bkl = 0 for all l 6= k, then community k will not send edges to other

communities and it will be impossible to identify λi’s for nodes in community k. On

the other hand, if Bkl = Bkk for all l, then community k is not identifiable. Putting

all these together leads to the following identifiability conditions.

Proposition IV.1. If the following conditions hold, then model (4.2) is identifiable.

1. Bkk = 1 for all k = 1, . . . , K.

2. For each k, there exists at least one l 6= k such that Bkl ∈ (0, 1) ∪ (1,∞).

3. θi > 0 for all i = 1, . . . , n.

4. 1
nk

∑
i∈Gk λi = 1 for all k = 1, . . . , K, where nk = |Gk|.

5. If Bkl = 0, then λi > 0 for all i ∈ Gk.

The proof can be found in Appendix C.1.

4.2.3 Community detection under the NSBM

The community label vector c is typically the main quantity of interest in com-

munity detection problems. For the standard SBM and its degree corrected version

[Karrer and Newman, 2011], spectral clustering algorithms are among the most pop-

ular methods for estimating community labels [Rohe et al., 2011, Lei and Rinaldo,

2014, Jin, 2015]. Spectral methods have many advantage: easy implementation, com-

putational efficiency and good theoretical properties. Generally speaking, spectral

clustering relies on community information being represented in the eigenvectors of

the population matrix EA, and on good concentration of A around its expectation.

Under the NSBM, even though each row of the expectation of P̃ has community

information confounded with individual preferences, the following result shows that

community information can still be recovered from the columns of P̃ .

102

Proposition IV.2. Let P̃ = ŨD̃Ṽ T be the SVD of P̃ . Then there exists a matrix

X ∈ RK×K such that

Ṽ = ZX

where Z is the n×K community membership matrix, defined by Zik = 1(ci = k). In

addition, ‖Xk· −Xl·‖2 =
√
n−1
k + n−1

l for any 1 ≤ k, l ≤ K.

The proof can be found in Appendix C.1. Proposition IV.2 suggests the right

singular vectors of Ã can be used to recover communities, as long as Ã concentrates

around P̃ . This is formalized in the following algorithm, which we call Right singular

vectors Spectral Clustering (Right SC).

Algorithm IV.3 (Right SC). Given an adjacency matrix Ã of a directed network and

the number of communities K:

1. Compute the singular value decomposition Ã = ÛD̂V̂ T .

2. Set X̂ = V̂·,1:K be the K leading right singular vectors, i.e., the first K columns

of V̂ .

3. Run the K-means clustering algorithm on X̂ to assign each node to a commu-

nity.

While optimizing theK-means loss is NP-hard, there are many efficient algorithms

that find approximate solutions. For theoretical developments, we will assume the

K-means algorithm finds a value of the objective function that is at most (1 + ε)

of the global minimum; this can be found efficiently for a small positive constant ε

[Kumar et al., 2004].

4.2.4 Parameter estimation under the NSBM

Given community labels c, it is relatively straightforward to estimate other pa-

rameters in the model (4.2), under identifiability constraints of Proposition IV.1. We

103

use the method of moments to estimate the parameters. Specifically, if Bkl > 0, then

for any arbitrary i ∈ Gk and j ∈ Gl, we have

(4.3) log(P̃ij) = µil = log(θi) + λi log(Bkl).

Combining the conditions in Proposition IV.1 and (4.3), we obtain the following

identities:

θi = P̃ij for any j ∈ Gk ,(4.4)

Bkl = exp(− 1

nk

∑
i∈Gk

(µik − µil)) ,(4.5)

λi =
µik − µil∑

j∈Gk(µjk − µjl)/nk
, if Bkk 6= Bkl.(4.6)

Moreover, we also observe that

(4.7) exp(µil) =
1

nl
E
∑
j∈Gl

Ãij

Thus we can match the moment in (4.7) and estimate parameters using identities

(4.4)-(4.6), with some modifications to handle boundary cases. For simplicity, we

add the following assumption to those made in Proposition IV.1.

Assumption IV.4. Assume Bkl 6= Bkk for any 1 ≤ k 6= l ≤ K.

Under IV.4 and the conditions of Proposition IV.1, we propose the following

algorithm to estimate the parameters in NSBM.

Algorithm IV.5 (Parameter estimation by the method of moments). Given the net-

work Ã and community labels c, for k = 1, 2, · · · , K:

1. Set Til =

∑
j∈GlÃij
nl

for each i ∈ Gk and 1 ≤ l ≤ K.

2. Estimate θi by

(4.8) θ̂i = Tik .

104

3. Find set Ψk = {l : 1 ≤ l ≤ K,Til = 0 ∀i ∈ Gk}. Set B̂kl = 0 for each l ∈ Ψk.

4. (a) Define Yil = log(Til ∨ 1
nl

), where the 1
nl

is used to avoid overflow for the

pathological case of Til = 0 for some i ∈ Gk.

(b) For each l ∈ {1, 2, · · · , K}/(Ψk ∪ {k})

(4.9) B̂kl = exp(− 1

nk

∑
i∈Gk

(Yik − Yil)).

(c) Pick any l ∈ {1, 2, · · · , K}/(Ψk ∪ {k}), set

(4.10) λ̂i =
Yik − Yil∑

j∈Gk(Yjk − Yjr)/nk

Remark IV.6. It is not difficult to remove Assumption IV.4 and estimate the param-

eters under the conditions of Proposition IV.1 alone. We only need to modify the

last step (4.10) by summing up across l in both the numerator and the denominator.

However, since we will need a stronger version of IV.4 for theoretical developments,

we keep it here for the sake of conciseness.

Remark IV.7. In the current setting, the estimators are coincide with the MLE, as Til

is the MLE of exp(µil). However, in more general settings such as the ones introduced

in Section 4.2.5 and Section 4.4, the MLE may be hard to obtain while the method

of moments still remains a computationally feasible option as it only requires the

conditions on first-order moments. Therefore, we introduce our estimators from the

perspective of moment matching.

4.2.5 The conditional NSBM

One interpretation of the proposed NSBM is combining a directed SBM with an

independent edge nomination procedure. The assumption of independence between

the two can be restrictive in some applications. An alternative model would allow

nominating edges conditioning on the presence of a true edge, that is, R would depend

105

on A. Specifically, consider the following conditional NSBM (cNSBM): given the

parameters B, c, a nomination quota vector d = (di), and the nomination preference

vector α = (αi), we generate the observed network Ã as follows:

1. Generate A from the directed SBM;

2. Given A, the i-th row of the observed network Ã, denoted by Ãi·, is generated

by

• If
∑

j Aij ≤ di, set Ãi· = Ai·. That is, nominate all neighbors.

• If
∑

j Aij > di, subsample di of the existing neighbors in A sequentially

with probability proportional to Bαi
cicj

for neighbor node j. That is, the

probability of choosing the next neighbor j is proportional to the weights

Bαi
cicj

amongst the remaining neighbors.

The cNSBM defined assumes the nominating procedure depends on the realized

values of A, and that each node is limited in how many nominations they can make.

For example, if αi = 0, node i uniformly chooses di of its neighbors to nominate, and

if αi = ∞, node i nominates di neighbors with the highest connection probabilities

(or if there are more than di such neighbors, then it randomly selects di of them).

The cNSBM makes the entries of Ã dependent in a complicated way, and even the

marginal distribution of Ã is no longer readily available. As a consequence, both

fitting the model and investigating its properties becomes challenging. However, it

appears that empirically the NSBM provides a good approximation to the expecta-

tion of Ã under the cNSBM, even though it ignored dependence between entries.

Consider the following example of networks generated from the cNSBM. The

underlying network A with n = 300 nodes is generated from the directed SBM with

K = 10 communities of equal sizes. We focus on node 1 from community 1 without

106

loss of generality. Let P̃ be the marginal distribution of Ã and P be the distribution

of A, we want to learn the relation between P̃1· and P1· where P̃ is calculated by

Monte-Carlo average of 10,000 replications. We set the values in B1· to range from

0.3 to 0.05 uniformly in log scale for B1l, 1 ≤ l ≤ K.

Figure 4.1 shows the relationship between the values in log(P1·) and log(P1·) where

the α is set to be −1,−0.5, 1, 2, 5, and ∞ and the nomination quota d1 is 10 and 20

respectively. It can be seen that the log-log relationship is close to linear in all of the

configurations of α and d. Such relationship indicates that each row of the marginal

probability matrix P̃ may be approximated well by a power function of the same row

in P . Note that the power function is exactly the assumption of NSBM since

P̃ij = θiB
λi
cicj

is a power function of Bcicj . Therefore, intuitively we expect the NSBM to be a good

approximation for the conditional nomination procedure.

−3.0 −2.5 −2.0 −1.5 −1.0

−
10

−
8

−
6

−
4

−
2

d=10

log(p)

lo
g(

p~
)

●

●

●

●

●

●

●

●

●

●

●

α = ∞
α = 5
α = 2
α = 1
α = −0.5
α = −1

−3.0 −2.5 −2.0 −1.5 −1.0

−
10

−
8

−
6

−
4

−
2

d=20

log(p)

lo
g(

p~
)

●
●

●

●

●

●

●

●

●

●

●

α = ∞
α = 5
α = 2
α = 1
α = −0.5
α = −1

Figure 4.1: The log-log relationship between log(P1·) and log(P1·) under the conditional NSBM.
The figures indicate an approximately linear relationship in the log scale.

107

4.3 Consistency under the NSBM

Here we investigate asymptotic properties of community detection and parameter

estimation under the NSBM. In particular, in Section 4.3.1, we show that the Right

SC algorithm will mis-cluster at most a vanishing proportion of nodes with high

probability, as long as the network is not so sparse that it no longer concentrates. In

Section 4.3.2, we show consistency for parameter estimators of B, λ and θ.

4.3.1 Consistency of community detection

We first introduce an additional assumption we need for considering asymptotic

behavior, which is that none of the communities vanish relative to the size of others

when n grows.

Assumption IV.8. nmin := mink nk ≥ κ′n for some constant κ′ > 0. Also define

nmax = maxk nk

Assumption IV.9. There exists a constant η > 0 such that maxi |λi| ≤ η and

matrix B is a fixed matrix for all n.

Theorem IV.10 (Consistency of community detection by the Right SC algorithm).

Let ĉ be the output of the Right SC algorithm with (1 + ε) optimal solution, Tn =

σK(P̃) the Kth largest singular value of P̃ and θmax = maxi θi. Define sets Sk =

Gk/Ĝk, 1 ≤ k ≤ K. Assume identifiability assumptions of Proposition IV.1 and

IV.8=IV.9 hold while θmax ≥ C0
logn
n

for some constant C0. If there exists a constant

C1 depending on C0, ε and κ′, η, such that

Knθmax

T 2
n

≤ 1

C1

,

then with probability at least 1−n−1, there exists a permutation of labels ĉ, such that∑
k

|Sk|
nk
≤ C1

Knθmax

T 2
n

.

108

Theorem IV.10 depends on σK(P̃), a quantity without an obvious interpretation.

Under a particular parameterization, we can state a simpler form of this result.

Assumption IV.11 (Simplified Parameterization). Write θi = ρnθ̄i where θ̄i’s are

independently sampled from a fixed multinoulli distribution on m1 different positive

values of which the maximum value is 1. Also, assume the values of λi’s are obtained

by i.i.d sample from a fixed multinoulli distribution with mean value 1 on m2 values

and then rescaled to ensure the identifiability constraint in Proposition IV.1.

The above parameterization explicitly assume that essentially, ρn is the only quan-

tity whose scale varies with n. The notation θi = ρnθ̄i allows us to parameterize the

sparsity of the network by a single parameter ρn. Specifically, under IV.8 and IV.11,

we have

κ′nρnθ̄i ≤ nciρnθ̄i ≤ E(
∑
j

Ãij)

thus κ′nρn gives a lower bound on the minimum expected degree of the network as

κ′nρn ≤ min
i

E(
∑

j Ãij)

θ̄i
≤ E(

∑
j

Ãij).

We have the following corollary of Theorem IV.10:

Corollary IV.12. Let ĉ be the clustering labels found by the Right SC algorithm with

(1 + ε) optimal solution and define sets Sk = Gk/Ĝk, 1 ≤ k ≤ K. If assumptions

of Proposition IV.1, IV.8,IV.11 hold and nρn ≥ C0 log n for some constant C0, then

for sufficiently large n, with probability at least 1− 2n−1, there exists a permutation

of labels ĉ, such that

(4.11)
∑
k

|Sk|
nk
≤ C ′

1

nρn

for some constant C ′ depending on C0, κ
′, ε, η,K and the multinoulli distributions for

θ̄i’s and λi’s.

109

4.3.2 Parameter estimation consistency

Now we investigate theoretical properties of parameter estimation for B,λ and θ.

For simplicity, we assume the true community labels c are known, and we make one

additional regularity assumption.

Assumption IV.13. There exists a constant κ > 0, such that for any k 6= l, either

Bkl ≤ exp(−κ) or Bkl ≥ exp(κ) is true.

IV.13 essentially requires the connection strength from every community to a dif-

ferent community to be distinct from the connection strength within the community

itself (recall that for identifiability we assume Bkk = 1). Then we have the following

result.

Theorem IV.14. Let θ̂, λ̂ and B̂ be the estimators for θ,λ and B respectively,

obtained by Algorithm IV.5. Assume conditions of Proposition IV.1, IV.8 and IV.11

hold and mini θi ≥ c0n
−1/4. Then there exists a constant c, such that for any ρ ∈ (0, 1)

and sufficiently large n we have:

(4.12) max
i

|θ̂i − θi|
θi

≤ 1

c0

n−
1
12 ,

with probability at least 1− 2 exp(− c
2
n1/3);

(4.13) max
k,r
| log(B̂kl)− log(Bkl)| ≤ 2n−

1−ρ
4 ,

with probability at least 1− 8 exp(− cκ′c20
10
nρ/2);

(4.14) max
i∈[n]
|λ̂i − λi| ≤

2
√

2

κ

√
4 + 16(η + 1/2)2n−

1−ρ
4 ,

with probability at least 1− 16 exp(− cκ′c20
10
nρ/2).

110

4.4 Extension to weighted networks

Networks with edge weights are frequently encountered in practice, and even

though methods for binary networks can be applied to weighted networked after

thresholding edge weights, this results in substantial loss of information. For NSBM,

it turns out to be straightforward to model the weighted network directly.

Given community labels c, assume each edge weight Ãij is independently gener-

ated as

Ãij ∼ π(θiB
λi
cicj

)

where π is a probability distribution satisfying

(4.15) EπÃij = θiB
λi
cicj
.

The specific choice of π will depend on the problem at hand. For instance, the

Poisson distribution has often been used to model network edge weights, and is a

good choice for non-negative integer weights without a heavy tail Karrer and Newman

[2011]. The distribution π can depend on multiple parameters, but we only require

one constraint directly on its expectation. Similarly to the binary edge setting, we

can interpret (4.15) as a combination of generating and nominating procedures. Since

the model is specified through the expectation, we can still apply the right spectral

clustering and method of moments algorithms, and similar theoretical guarantees

can be obtained as long as the generating distribution π is sub-Gaussian.

4.5 Simulation studies

In this section, we demonstrate the effectiveness of the NSBM for community

detection and network modeling using simulation studies. We first show that under

the NSBM, the Right SC performs best on detecting communities, outperforming

111

several other natural choices of spectral clustering algorithms. Next, we generate

networks from the conditional model introduced in Section 4.2.5 and fit several com-

putationally feasible network models with communities, among which NSBM turns

out to provide the best approximation.

4.5.1 Community detection under NSBM

In this section, we evaluate several commonly used spectral clustering algorithms

for community detection under the NSBM. Treating the network as a directed net-

work, one alternative to the Right SC algorithm we proposed is to use the left singular

vectors for clustering, which we call “Left SC”. However, it is clear that under NSBM

Left SC will fail given it does not take node heterogeneity between nodes within the

same community into account. Therefore we instead consider left spherical SC (Left

SSC),which first normalizes each row of the matrix of left singular vectors before

applying the K-means algorithm. This is a standard way to deal with row hetero-

geneity [Lei and Rinaldo, 2014]. We do not consider the spherical version of Right

SC, since under our model they are very similar.

Another common approach is to treat the directed network as undirected and

transform Ã to a symmetric matrix. A commonly used transformation is the “OR”

operation, i.e., connecting two nodes in the undirected network if there is an edge in

either direction in the directed network. Applying SC and SSC to the symmetrized

network gives two more options, “Symmetric SC” and “Symmetric SSC”. This is

essentially equivalent to treating the network as generated from the SBM or the

degree-corrected SBM, respectively.

Networks are generated as follows: n = 300 nodes are randomly assigned to K = 3

communities with equal probability. The matrix B has all diagonal elements equal

to 1 and all off-diagonal elements equal to β. The parameters λi’s are generated

112

independently with log(λ) sampled uniformly from the interval (−t, t), and then

rescaled to satisfy the constraint
∑
ci=k

λi = nk for each k. Each θi is independently

set either to c or 0.05c, with probability 0.5 each, with the value c chosen so that the

resulting average degree of the network is 40.

First, we vary t from 0.2 to 2 and fix β = 0.2. Clustering accuracy measure

d by Ham(ĉ, c)/n and averaged over 100 replications is shown in Figure 4.2. For

small t, the nomination step does not change the network much, and thus spectral

clustering based on the standard SBM (or DCSBM) still works. As t increases and

the nomination preferences become more heterogeneous across nodes, ignoring the

edge direction dilutes the block structure and symmetric clustering methods fail.

The Left SSC is even worse, since it relies entirely on the senders information, where

the community structure is masked by heterogeneity in the nomination preferences.

● ● ● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

ac
cu

ra
cy

● Right SC
Symmetric SC
Symmetric SSC
Left SSC

Figure 4.2: Community detection accuracy of spectral methods under NSBM as a function of t,
with β = 0.2.

Next, we compare different methods while varying the signal-to-noise ratio. Specif-

ically, we vary β from 0.1 to 0.5 and fix t = 1.5. The average clustering accuracy is

113

shown in Figure 4.3. In this scenario, alternative clustering algorithms fail even for

small β. The Right SC is the only algorithm effective for a wide range of β values.

● ● ● ● ● ● ●
●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

ac
cu

ra
cy

● Right SC
Symmetric SC
Symmetric SSC
Left SSC

Figure 4.3: Community detection accuracy of spectral methods under NSBM as a function of β,
with t = 1.5.

4.5.2 NSBM as an approximation to the conditional model

Instead of generating networks from the NSBM, here we generate networks from

the conditional NSBM introduced in Section 4.2.5. We first generate A from the

directed SBM with n = 300 nodes and K = 3 communities, where the community

labels are uniformly assigned to the nodes. The off-diagonal values of the block con-

nection matrix are sampled uniformly from U(0.6β, 1.4β) for some β to be specified.

The average degree of A is 90, which is quite dense. However, we do not observe

A, and in generating Ã, we randomly choose 40% of the nodes to have d̄i = 5 (so

these nodes are allowed to nominate up to five connections), 40% of the nodes to

have d̄i = 10, and the rest to d̄i = 120, so the resulting network has an average

degree around 24. Given a value α0, we randomly choose 50% of the nodes to have

114

αi = α0, 10% of the nodes to have αi = 0.1α0, 10% of the nodes to have αi = 0.5α0

and 30% of the nodes to have αi = −0.8α0.This means some of the nodes prefer to

report connections from communities close to themselves, while other nodes have a

preference for reporting connections to communities they are less connected to, on

average.

Since we do not have a direct method to fit the conditional model, we set out to

see how well the NSBM approximates it. We compare its performance to three other

computationally feasible network models with communities: the directed SBM and

its degree-corrected version directed DCSBM Karrer and Newman [2011], and the

stochastic co-clustering block model (SCBM) of Rohe et al. [2016]. The SCBM is also

based on the idea of directed DCSBM but assumes different community memberships

for senders and receivers, therefore it is not directly comparable in the sense of com-

munity detection. However, it can also provide an approximation to our conditional

nomination model.

First, we compare community detection performance of the four models. The com-

munity detection step for the four models is carried out by Right SC, symmetric SC,

symmetric SSC and the co-clustering (Right+Left) SSC in Rohe et al. [2016] respec-

tively. Parameter estimation for the three competitor models is done by maximum

likelihood after community detection, as in Karrer and Newman [2011]. In addition

to community detection accuracy, we also report the relative error of estimating the

underlying probability matrix,

‖P̂ − P̃‖2
F

‖P̃‖2
F

.

Figure 4.4 shows the community detection accuracy and log relative estimation error

for α0 ranging from 0 to 5 and fixed β = 0.35. The Right SC is still effective under the

conditional model, while other clustering methods fail to detect communities. When

115

α0 becomes large, the nodes tend to only nominate from their own communities,

thus the community structure becomes stronger and the two symmetric algorithms

improve slightly. The Left SC again does not work well since it does not access the

relevant information. Neither the SBM nor the DCSBM estimate the true probability

matrix well, and the SCBM works somewhat better, due to its higher flexibility. The

NSBM approximates the probability matrix well and obtains the lowest error among

the methods compared. It also shows very little sensitivity to the value of α0.

●●●● ● ● ● ● ● ● ●

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α0

ac
cu

ra
cy

● Right SC
Symmetric SC
Symmetric SSC
Left SSC

●●●● ● ● ● ●
● ●

●

0 1 2 3 4 5

−
4

−
3

−
2

−
1

0
1

2

α0

lo
g

re
la

tiv
e

er
ro

r

● NSBM
Directed SBM
Directed DCSBM
SCBM

Figure 4.4: Community detection accuracy and log relative errors of estimating the probability
matrix under conditional model, for NSBM, directed SBM, directed DCSBM, and SCBM, as a
function of α0 with fixed β = 0.35.

Next, we fix α0 = 1 and vary the value of β to investigate the impact of signal-

to-noise ratio. The results are shown in Figures 4.5. In this setting, the Left SSC is

again not competitive, even for small β. When β < 0.3, the two symmetric methods

again work similarly to Right SC, but their accuracy drops quickly once β ≥ 0.3.

For probability matrix estimation, the NSBM is always better than the other three

for β ≤ 0.4, providing a good approximation to the general model. As β increases,

the signal-to-noise ratio becomes lower, and all methods become similar.

116

● ● ● ● ●
●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

ac
cu

ra
cy

● Right SC
Symmetric SC
Symmetric SSC
Left SSC

●
●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
4

−
3

−
2

−
1

0
1

2

β

lo
g

re
la

tiv
e

er
ro

r

● NSBM
Directed SBM
Directed DCSBM
SCBM

Figure 4.5: Community detection accuracy and log relative errors of estimating the probability
matrix under the conditional model, for NSBM, directed SBM, directed DCSBM, and SCBM, as a
function of β with fixed α0 = 1.

4.6 Business faculty hiring network analysis

Here we apply the proposed NSBM model to analyze a faculty hiring network

between US Business schools. The data were collected by Clauset et al. [2015] via web

crawling, and records information on 18,924 tenure or tenure-track faculty members,

recording the institution from which they obtained their PhD and the institution by

which they were hired. The original dataset covers faculty in the fields of business,

computer science and history; here we focus on the business hiring network.

The data from business schools covers 7856 faculty members from 112 institutions.

To reduce noise, we removed institutions with either receiver or sender degree of 3 or

less, resulting in 87 institutions remaining. We construct a network by creating an

edge from i to j with weight 1 if institution i has hired one faculty with a Ph.D. from

institution j. If institution i has hired more than one graduate of institution j, we

set the edge weight to 2. We found empirically that truncating the weights improves

117

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Stanford University
MIT

UC Berkeley

University of Chicago

Northwestern University

University of Michigan

University of Pennsylvania

University of Illinois, Urbana Champaign

Ohio State University

Figure 4.6: The hiring network between 87 U.S. business schools. An edge from i to j indicates
that institution i has hired Ph.D. graduates from institution j. The node size is proportional to
the receiver degree.

stability, whereas setting all edge weights to 0 or 1 loses too much information. The

resulting directed network with 87 nodes is shown in Figure 4.6, where the node size

is proportional to the receiver degree, i.e., the number of institutions that institution

i has sent its graduates to. We are interested in finding communities of institutions

as well as investigating whether there are hiring “inequalities” between these com-

munities. The NSBM suits the hiring network well, because we do not observe job

offers that did not result in a hire, and we can assume that most institutions made

118

some offers that were declined.

To determine the number of communities, we apply the edge cross-validation

method with average stability selection proposed by Li et al. [2016b], which has

been shown to be very effective for network model selection. The procedure suggests

K = 4 communities for this dataset. We then fit the NSBM to the network with

K = 4. Table 4.1 shows the communities as well as their average rankings from

two sources, the US NEWS graduate school rankings from 2012 (from the data set)

and the π-ranking proposed by Clauset et al. [2015]. The π-ranking is designed

to measure hiring advantage, where a higher ranked institution tends to be more

successful in hiring competitive candidates. We list up to 15 institutions with the

highest π-ranking within each community. Overall, the communities match both

ranking systems very well, showign a clear ordering, with the first community mostly

consisting of top business schools, the second one with good but slightly lower ranked

schools, and so on.

size USNews
(avg./med.)

π-ranking
(avg./med.)

Institutions

1 12 7.7/8 8.3/8 Stanford, MIT, Harvard, UC Berkeley, U Chicago, Cornell, U Michigan,
Columbia, Yale, U Penn., NYU, Duke

2 12 29.8/32.5 17.7/17.5 U Rochester, Northwestern, Carnegie Mellon, U Wisconsin Madison,
UCLA, U Minnesota-Twin Cities, UIUC, Purdue, U Florida, UT
Austin, U Washington

3 19 53.1/54 45/45 Ohio State, UNC Chapel Hill, U Pittsburgh, Penn. State, Indiana U.,
Michigan State, Georgia Tech, U Arizona, SUNY Buffalo, Texas A&M,
U Georgia, Arizona State, U South Carolina, Virginia Tech, Florida
State

4 44 63.7/63 61.4/61.5 Washington U St. Louis, U Maryland College Park, U Colorado Boul-
der, UC Irvine, U Utah, U Oregon, U Southern California, UT Dallas,
U Virginia, Boston U., UMass Amherst, Emory, Case Western, UC
Davis, Vanderbilt

Table 4.1: Communities of business schools found by NSBM and their average and median rankings
from US News 2012 and Clauset et al. [2015]. Up to 15 institutions with the highest π-ranking are
shown for each community.

The parameters of NSBM can be directly interpreted to see if we observe a hier-

archy in hiring, which was reported by Clauset et al. [2015]. Based on the weighted

119

NSBM in Section 4.4, we define connection strength from community k to commu-

nity l as the expectation of average connection weights from nodes i ∈ Gk to nodes

j ∈ Gl,

Mkl =
1

nknl

∑
i∈Gk,j∈Gl

θiB
λi
ij .

Group 1 Group 2 Group 3 Group 4
Group 1 1.86 0.93 0.15 0.06
Group 2 1.56 1.31 0.42 0.13
Group 3 0.86 1.29 0.98 0.32
Group 4 0.76 0.86 0.51 0.22

Table 4.2: Estimated strengths of connections between communities.

Table 4.2 shows the estimated connection strengths for the business hiring net-

work. It shows that Group 1 institutions tend to hire the most from their own group,

and about half as many from Group 2. They are not very likely to hire from Groups

3 and 4. Group 2 institions hire roughtly equally from Groups 1 and 2, and a fraction

from Group 3, but very few from 4. Interestingly, Group 3 institutions hire the most

from Group 2, not Group 1. Community 4 follows a similar pattern, hiring more

from groups closer to itself. The model parameters thus indicate a strong hierarchy

in hiring relationships between the groups, which is validated by the rankings in

Table 4.1,

In addition to community parameters, NSBM allows us to estimate hiring prefer-

ences of individual institutions as represented by parameters λ. Table 4.3 shows the

estimated λi’s for Group 1, indicating how strongly each institution follows the com-

munity level preferences. For instance, we see that Yale and Cornell show a stronger

preference for hiring graduates from their own group, while U Michigan and U Penn

are relatively less stringent. However, all the institutions have λ̂i > 0.5, indicating

that they all follow the community-level preference order in Table 4.2 reasonably

well.

120

Institution λ̂i USN ranking π-ranking
Yale 2.17 10 11
Cornell 1.88 16 7
Columbia 1.10 9 10
Harvard 0.97 2 3
MIT 0.96 3 2
UC Berkeley 0.85 7 4
U of Chicago 0.75 5 6
Stanford 0.74 1 1
New York U 0.70 10 16
Duke 0.69 12 19
U Michigan 0.61 14 9
U Pennsylvania 0.57 3 12

Table 4.3: Estimated λi’s for Group 1 institutions.

Overall, by fitting the proposed NSBM model to the faculty hiring network, we

discover clear hierarchical structures reflecting profound social inequalities in the

hiring relationship between institutions, which matches the observation of Clauset

et al. [2015].

We briefly report community detection results on this network obtained by spec-

tral clustering on the undirected version of the hiring network. The four communities

are shown in Table C.1 with average and median ranking by US News and π-ranking,

and up to 20 institutions with the highest π-ranking in each community. The first

group is still higher ranked even though it no longer includes universities like Yale,

Cornell, and Columbia, but the following three groups all show similar average rank-

ings, suggesting these communities are not especially interpretable and likely do not

correspond to real hiring patterns. This confirms the importance of using the correct

spectral information for obtaining meaningful results.

4.7 Summary and future work

We have proposed a directed network model that admits community structures as

well as the potential survey procedures in data-collecting stage. Computationally ef-

ficiently algorithms are available for model fitting and the theoretical guarantees are

121

size USN
(avg./med.)

π-ranking
(avg./med.)

Institutions

1 19 19.2/14 17.8/13 Stanford, MIT, Harvard, UC Berkeley, U Rochester, U Chicago, North-
western, U Michigan, U Penn., Carnegie Mellon, NYU, U Minnesota
Twin Cities, Duke, UNC Chapel Hill, U Washington St. Louis, U
Maryland, College Park, U Southern California, Case Western Reserve
U, Boston College

2 20 55.1/56.5 44.6/42 Cornell, Columbia, U Wisconsin-Madison, UIUC, Ohio State, U
Florida, U Pittsburgh, Penn State, Michigan State, SUNY Buffalo, U
Mass Amherst, Syracuse, Tulane, U Connecticut, U Cincinnati, Rut-
gers U, Temple U, SUNY Binghamton, St. Louis U, Northeastern U

3 24 52.7/40 54/49 Yale, UCLA, U Washington, U Colorado Boulder, UC Irvine, U Utah,
U Oregon, UT Dallas, U Virginia, Boston U, UC Davis, Vanderbilt,
Claremont Graduate U, U Houston, Rice U, Southern Methodist U,
George Washington U, CUNY Baruch College, U Hawaii

4 24 63.8/63 56/56.5 Purdue, U Iowa, UT Austin, Indiana U, Georgia Tech, U Arizona,
Texas A&M, U Georgia, Arizona State, U South Carolina, Virginia
Tech, Florida State, U Oklahoma, U Kansas, Louisiana State, U
Arkansas, U Tennesse, U Kentucky, U Alabama, Oklahoma State

Table 4.4: Communities of business school institutions detected by symmetric spectral clustering.

provided for these algorithms. By both simulation examples and a real world appli-

cation, we have demonstrated the effectiveness of the proposed model in discovering

communities and the underlying data generating mechanism.

Though we can use the NSBM to approximate the conditional nomination model,

it would be interesting in the future to investigate how we can directly make inference

under the model. This may involve Bayesian inference framework and rely on MCMC

methods, for which the computation efficiency for large networks might be a concern.

Another direction is to consider other structural assumptions of the network other

than communities and investigate how the potential survey procedure interacts with

the specific network structure.

APPENDICES

122

123

APPENDIX A

Appendix for Chapter II

A.1 Proofs

Proof of Proposition II.5. The first claim follows directly from the fact that 1 is an

eigenvector of PX⊥ + λL with eigenvalue 1, since 1 ∈ col(X)⊥ and L1 = 0. To show

the second claim, note that the minimum eigenvalue of PX⊥ + λL is the solution of

the optimization problem

min
‖u‖=1

uT (PX⊥ + λL)u.

Assume u = u1 + u2, where u1 ∈ col(X)⊥, u2 ∈ col(X) and ‖u1‖2 + ‖u2‖2 = 1.

Then the objective function can be rewritten as

λuTLu+ ‖u1‖2.

This is zero if and only if ‖u1‖ = 0 and uTLu = 0, but these two contradict

Assumption II.4. As discussed in Section 2.2.2, the RNC estimator exists whenever

PX⊥ + λL is invertible, which shows that the RNC estimate exists.

One formula that will be used frequently later is the decomposition of MSE for a

vector estimation:

E‖θ̂ − θ‖2 = ‖Eθ̂ − θ‖2 + tr(Var(θ̂)),

124

in which we call the second term total variance of θ̂.

We first derive the bias and variance of both the OLS and the RNC estimators.

We use b(·) to denote the bias of an estimator. The bias, variance and MSE of the

OLS estimator are standard. We state the MSE here for completeness without proof.

Lemma A.1. For the OLS estimator given by

β̂OLS = (XTX)−1XTY, α̂OLS = ȳ1,

we have

MSE(α̂OLS) = ‖ᾱ1−α‖2 +
σ2

n
,

MSE(β̂OLS) = ‖(XTX)−1XTα‖2 + σ2tr((XTX)−1),

E‖ŶOLS − EY ‖2 = ‖(1

n
11T +X(XTX)−1XT)α−α‖2+σ2‖ 1

n
11T +X(XTX)−1XT‖2

F .

Lemma A.2. The bias of the RNC estimator is given by

(A.1) b(θ̂) = −λ(X̃T X̃ + λM)−1Mθ.

Equivalently, one can write it in the following decomposed form:

(A.2) b(θ̂) = (b(α̂)T , ((XTX)−1XT b(α̂))T)T ,

where b(α̂) = −(1
λ
PX⊥ +L)−1Lα, and PX = X(XTX)−1XT is the projection matrix

onto col(X).

The variance of the RNC estimator is given by

Var(θ̂) = σ2(X̃T X̃ + λM)−1X̃T X̃(X̃T X̃ + λM)−1 � σ2(X̃T X̃ + λM)−1.

Proof. For the bias term,

b(θ̂) = E(X̃T X̃ + λM)−1X̃TY − θ

= (X̃T X̃ + λM)−1X̃T X̃θ − θ

= −λ(X̃T X̃ + λM)−1Mθ.

125

Note that we have Mθ =

Lα
0

. By the block matrix inverse formula, we have

(X̃T X̃ + λM)−1 = (PX⊥ + λL)−1 (PX⊥ + λL)−1X(XTX)−1

(XTX)−1XT (PX⊥ + λL)−1 (XTX)−1 + (XTX)−1XT (PX⊥ + λL)−1X(XTX)−1

 .
Then (A.2) follows directly from decomposing the bias vector into the α and β parts.

The variance can be calculated by the standard OLS formula taking X̃ as the

design matrix. The positive semi-definiteness follows from the fact that

XTX � XTX + λM

whenever M is positive semi-definite.

From Lemma A.2 and the bias-variance decomposition, we can directly get the

closed form expressions for the MSE of RNC estimation. In particular,

MSE(θ) =‖λ(PX⊥ + λL)−1Lα‖2 + ‖λ(XTX)−1XT (PX⊥ + λL)−1Lα‖2

+ σ2tr((X̃T X̃ + λM)−1X̃T X̃(X̃T X̃ + λM)−1).(A.3)

Proof of Theorem II.6. Note that PX⊥ + λL � νI. Thus the squared bias term for

α is

‖λ(PX⊥ + λL)−1Lα‖2 ≤ λ2

ν2
‖Lα‖2.

The total variance of α̂ can be upper bounded by

tr(σ2(PX⊥ + λL)−1) ≤ σ2

ν
tr(I) =

nσ2

ν
.

Thus the bound (2.12) on MSE(α̂) follows.

126

From Lemma A.2, we have

‖b(β̂)‖2 =b(α̂)TX(XTX)−1(XTX)−1XT b(α̂)

≤ 1

µ
b(α̂)TX(XTX)−1(XTX)(XTX)−1XT b(α̂)

=
1

µ
b(α̂)TX(XTX)−1XT b(α̂) =

1

µ
b(α̂)T (PXb(α̂))

=
1

µ
‖PXb(α̂)‖2 ≤ 1

µ
‖b(α̂)‖2 ≤ λ2

ν2µ
‖Lα‖2.(A.4)

By Lemma A.2 and Schur complement, the covariance matrix of β̂ is

Var(β̂) � σ2(XTX)−1 + σ2(XTX)−1XT (PX⊥ + λL)−1X(XTX)−1

� σ2(XTX)−1 +
σ2

ν
(XTX)−1XTX(XTX)−1 = σ2(

1

ν
+ 1)(XTX)−1.(A.5)

Combining the squared bias (A.4) and variance (A.5) gives the bound (2.13) on

MSE(β̂). The mean squared prediction error can be similarly derived. With V̂ =

X̃θ̂, we have

b(V̂) = X̃b(θ̂) = −λX̃(X̃T X̃ + λM)−1Mθ,

and

Var(V̂) = σ2X̃(X̃T X̃ + λM)−1X̃T X̃(X̃T X̃ + λM)−1X̃T .

Thus

E‖V̂ − EY ‖2 = ‖b(V̂)‖2 + tr(Var(V̂))

≤ λ2(Lα)T (PX⊥ + λL)−1(Lα) + σ2tr(STλ Sλ)

≤ λ2

ν
‖Lα‖2 + σ2‖Sλ‖2

F .

This completes the proof of Theorem II.6.

Proof of Proposition II.9. Let τi be the ith largest eigenvalue of L with the associated

eigenvector uk. Assume α =
∑n

i=n−k+1 ρiui. Without loss of generality, assume

127

‖α‖2 = n thus
∑n

i=n−k+1 ρ
2
i = n. In this situation, we need

‖Lα‖2 =
n∑

i=n−k+1

ρ2
i τ

2
i ≤ nc.

Since
∑n

i=n−k+1 ρ
2
i τ

2
i ≤ τ 2

n−k+1

∑n
i=n−k+1 ρ

2
i = nτ 2

n−k+1, it is sufficient to have ρ2
n−k+1 ≤

n−(1−c). By basic graph spectral theory [Edwards, 2013], we can see that all of the

eigenvalues of the lattice network can be written as

4 sin2(
π

2

i√
n

) + 4 sin2(
π

2

j√
n

)

for some (i, j) ∈ [
√
n]× [

√
n]. Thus it is sufficient to ensure

4 sin2(
π

2

i√
n

) + 4 sin2(
π

2

j√
n

) ≤ 4(
π

2

i√
n

)2 + 4(
π

2

j√
n

)2 ≤ n−
1−c
2 .

For reasonably large n, the proportion of pairs (i, j) satisfying the condition in [
√
n]×

[
√
n] is approximately the area ratio between a 1/4 sphere and a square, which is

1
4π

n
1+c
2

n
. Therefore, the number of eigenvalues that satisfies the requirement is at

least Cn
1+c
2 for some constant C.

For the easiness of comparison, we also give similar error bounds for the linear

null model estimate, which is obtained as

(A.6) θ̃ = (α̃, β̃) = argminα,β‖Y −Xβ −α‖2 + λ‖α‖2

The following proposition shows that in the case of linear regression, the null

model gives the same estimate of β as OLS.

Lemma A.3. Let β̃ be the estimate from null model. Then we have

β̃ = β̂OLS = (XTX)−1XTY.

128

As a result, we have α̃ = 1
1+λ

(Y −Xβ̂OLS). Moreover, the estimation errors for the

null model satisfy

MSE(α̃) = ‖α− 1

1 + λ
PX⊥α‖2 +

(n− p)σ2

(1 + λ)2

≤ λ2

(1 + λ)2
‖α‖2 +

1

(1 + λ)2
‖PX⊥α‖2 +

(n− p)σ2

(1 + λ)2
,

MSE(β̃) = ‖(XTX)−1XTα‖2 + σ2tr((XTX)−1),

E‖Ỹ − EY ‖2 =
λ2

(1 + λ)2
‖PX⊥α‖2 + σ2(p+

n− p
(1 + λ)2

).

In particular, the optimal MSPE is

E‖Ỹ − EY ‖2 =
(n− p)σ2‖PX⊥α‖2

(n− p)σ2 + ‖PX⊥α‖2

which is achieved when λ = (n−p)σ2

‖P
X⊥α‖2

.

Proof of Lemma A.3. Notice that X is column centered, so we always have 1TX = 0,

which ensures

β̂OLS = (XTX)−1XTY.

The solution of the null model is given by

(A.7)

α̃
β̃

 =

(1 + λ)In X

XT XTX


−1  Y

XTY

 .
By block matrix inverse formula, we have

β̃ = −1 + λ

λ

1

1 + λ
(XTX)−1XTY +

1 + λ

λ
(XTX)−1XTY

= (XTX)−1XTY = β̂OLS.

The formula for α̃ and all the error bounds can then be obtained similarly as in

Theorem II.6.

129

Proof of Theorem II.12. Denote `(α+Xβ;Y) by `(θ). Define

M =

 L 0n×p

0p×n 0p×p

 .
The matrix M∗ is defined similarly. Then by the optimality of θ̂

∗
under f ∗, we have

`(θ̂
∗
) + λθ̂

∗T
M∗θ̂

∗
= f ∗(θ̂

∗
)(A.8)

≤ f ∗(θ̂)

= `(θ̂) + λθ̂
T
M∗θ̂

≤ `(θ̂) + λ(1 + ε)θ̂
T
M θ̂,

in which the last inequality can be easily derived from (2.17) by noticing that M∗

has all zeros except in the upper left corner. By Taylor expansion of ` at θ̂, we have

`(θ̂
∗
) = `(θ̂) +5`(θ̂)T (θ̂

∗
− θ̂) +

1

2
(θ̂
∗
− θ̂)T 52 `(θ̄)(θ̂

∗
− θ̂)

= `(θ̂) +5`(θ̂)T (θ̂
∗
− θ̂) +

1

2
(θ̂
∗
− θ̂)T (52`(θ̄) + 2λM)(θ̂

∗
− θ̂)

− λ(θ̂
∗
− θ̂)TM(θ̂

∗
− θ̂)

≥ `(θ̂) +5`(θ̂)T (θ̂
∗
− θ̂) +

m

2
‖θ̂
∗
− θ̂‖2 − λ(θ̂

∗
− θ̂)TM(θ̂

∗
− θ̂).(A.9)

In (A.9), θ̄ is some point between θ̂ and θ̂
∗

and the last inequality comes from the

strong convexity assumption on f . Substituting (A.9) into (A.8) yields

m

2
‖θ̂
∗
− θ̂‖2 ≤ −5 `(θ̂)T (θ̂

∗
− θ̂) + λ(θ̂

∗
− θ̂)TM(θ̂

∗
− θ̂)

+ λ(1 + ε)θ̂
T
M θ̂ − λθ̂

∗T
M∗θ̂

∗

= −5 `(θ̂)T (θ̂
∗
− θ̂) + λ(2 + ε)θ̂

T
M θ̂(A.10)

+ λθ̂
∗T
M θ̂

∗
− λθ̂

∗T
M∗θ̂

∗
− 2λθ̂

T
M θ̂

∗
.

Since θ̂ is the minimizer of f , we have the stationary condition

(A.11) 5`(θ̂) + 2λM θ̂ = 0.

130

Substituting (A.11) into (A.10) gives

m

2
‖θ̂
∗
− θ̂‖2 ≤ 2λθ̂

T
M(θ̂

∗
− θ̂) + λ(2 + ε)θ̂

T
M θ̂ + λθ̂

∗T
M θ̂

∗

− λθ̂
∗T
M∗θ̂

∗
− 2λθ̂

T
M θ̂

∗

= ελθ̂
T
M θ̂ + λθ̂

∗T
M θ̂

∗
− λθ̂

∗T
M∗θ̂

∗

≤ ελθ̂
T
M θ̂ + ελθ̂

∗T
M θ̂

∗

≤ ελθ̂
T
M θ̂ +

ε

1− ε
λθ̂
∗T
M θ̂

∗

= ελα̂TLα̂+
ε

1− ε
λα̂∗TLα̂∗,(A.12)

where we use (2.17) again. This gives the bound we need. However, it would be

better to have a bound with a dominant term that only depends on α̂ and L. Thus

we rearrange the terms as

m

2
‖θ̂
∗
− θ̂‖2 ≤ ελα̂TLα̂+

ε

1− ε
λα̂∗TLα̂∗

≤ ελα̂TLα̂+ (1 + 2ε)λα̂∗TLα̂∗

= ελ[2α̂TLα̂+ (α̂∗TLα̂∗ − α̂TLα̂) + 2εα̂∗TLα̂∗]

≤ ελ[2α̂TLα̂+ |α̂∗TLα̂∗ − α̂TLα̂|+ 2εα̂∗TLα̂∗],(A.13)

in which the second inequality comes from the fact that 1
1−ε < 1 + 2ε for ε < 1/2.

Note that we expect |α̂∗TLα̂∗ − α̂TLα̂| to be negligible compared to the first term.

We now proceed to proving the second bound that only involves ‖α̂‖. By Taylor

expansion, we have, for any θ,θ0 ∈ Rn,

f ∗(θ) = f ∗(θ0) +5f ∗(θ0)T (θ − θ0) +
1

2
(θ − θ0)T 52 f ∗(θ̃)(θ − θ0)

≥ f ∗(θ0) +5f ∗(θ0)T (θ − θ0) +
m

2
‖θ − θ0‖2,

131

where the inequality follows from strong convexity. In particular, taking θ = θ̂ and

θ0 = θ̂
∗

and noticing that 5f ∗(θ̂
∗
) = 0, we get

‖θ̂
∗
− θ̂‖2 ≤ 2

m
(f ∗(θ̂)− f ∗(θ̂

∗
)).

Strong convexity also implies (equation (9.9) of [Boyd and Vandenberghe, 2004]) that

(f ∗(θ̂)− f ∗(θ̂
∗
)) ≤ 1

2m
‖5f ∗(θ̂)‖2.

Combining the two parts, we have

(A.14) ‖θ̂
∗
− θ̂‖2 ≤ 1

m2
‖5f ∗(θ̂)‖2 =

1

m2
‖5f ∗(θ̂)−5f(θ̂)‖2,

in which the last equality comes from the fact that 5f(θ̂) = 0. From (2.18), the

gradients of f and f ∗ are

5f(θ̂) = 5`+ 2λM θ̂, 5f ∗(θ̂) = 5`+ 2λM∗θ̂.

Thus the difference between θ̂
∗

and θ̂ can be bounded by

(A.15) ‖θ̂
∗
− θ̂‖2 ≤ 1

m2
‖2λ(M −M∗)θ̂‖2.

Finally, from (2.17), we obtain

‖2λ(M −M∗)θ̂‖2 = ‖2λ(L− L∗)α̂‖2

≤ 4λ2‖L− L∗‖2
2‖α̂‖2

≤ 4λ2ε2‖L‖2
2‖α̂‖2.(A.16)

Combining (A.15) and (A.16) yields the second bound and completes the proof.

132

A.2 Complexity of solving RNC estimator by block elimination

We calculate the complexity of solving RNC estimator here assuming the block

elimination strategy described in Section 2.2.6 is used. The first major part is solving

an n × n sparse symmetric diagonal dominant system to obtain (I + λL)−1X and

(I + λL)−1b1 in the estimator. Using the linear system notations, we want to solve

Ax = b

where A = I + λL. Naively solve it by Cholesky decomposition ignoring special

structures would result in O(n3) operations. When A is sparse as in a great many of

applications, we can first find a permutation matrix P to permute A and then find

sparse factorization for the resulting permuted matrix

PAP T = LLT .

The operation counts in this step depends on the heuristic algorithm to find a good

permutation, the number of nonzero elements in A (which is n+ 2|E| in our setting)

and the positions of these nonzeros (depicted by the network). Roughly speaking, it

depends on
∑

i d
2
i [Spielman, 2010]. Though the general complexity is not available, it

is shown in Lipton et al. [1979] that the complexity for the network transformed from

a
√
n×
√
n grid is O(n3/2) by using an algorithm called George’s Nested Dissection.

Solving both (I + λL)−1X and (I + λL)−1b1 thus requires O(n3/2 + pn) and when n

dominates p, we just have O(n3/2) there. We refer readers to Lipton et al. [1979] for

details.

Alternatively, one can solve the system approximately by iterative methods [Spiel-

man, 2010, Koutis et al., 2010]. In particular, Koutis et al. [2010] propose an iterative

algorithm with preconditioning such that for any n-node network, an approximate

133

solution x̂ of accuracy

‖x̂− A−1b‖A < ε‖A−1b‖A

can be computed in expected time O(m log2 n log(1/ε)) where m = n+ 2|E| and the

A-norm is defined by

‖x‖A =
√
xTAx.

To solve both (I+λL)−1X and (I+λL)−1b1, this is expected to takesO(pm log2 n log(1/ε))

operations. Notice that even if A is fully dense with n2 nonzero entries, the cost is

still much lower than the naive solving.

The rest steps in the block elimination only involve matrix multiplications and

general solving for a p × p symmetric positive definite system. The order is then

O(np2 + p3), the same as OLS procedure.

In summary, if one tries to compute the estimator exactly, the order depends on

the network connecting the samples. When the network is from a
√
n×
√
n grid, the

complexity is in the order of O(n3/2 + pn + np2 + p3). If approximate methods are

used instead, the order is expected to be O(p(n+ 2|E|) log3 n+np2 + p3) for general

networks with high accuracy (taking approximation tolerance ε = O(1/n)).

Both of dense and sparse Cholesky factorizations can be further parallelized on

modern distributed systems [Bosilca et al., 2012, Faverge and Ramet, 2008, Lacoste

et al., 2014], when high computational performance is needed. The complexity in

such settings heavily depends the systems.

134

A.3 Coefficients of recreational activity linear models

In the example of Section 2.5.1, we use linear regression to predict recreational

activity level from nine demographic covariates. The covariate coefficients from OLS

and RNC regressions are shown in Table A.1. Most of the coefficients are similar

for the two models, suggesting that most of the variables do not contain (or mask)

network structural information. The only covariate that is relatively significant in

OLS but has a substantially smaller effect in RNC is the indicator variable “race-

black”. This suggests that race follows a network cohesion pattern, and thus is not

as important for RNC since it is already getting network information elsewhere.

category (contrast) covariate OLS RNC p-value (OLS)
age -0.086 -0.088 0.065

sex (male) female 0.229 0.241 0.003
grade (other) grade11to12 0.206 0.212 0.078

race (other)

white 0.023 -0.029 0.733
black 0.539 0.426 0.007
Asian 0.346 0.512 0.081
native 0.369 0.252 0.407

born in U.S. (no) yes -0.059 0.090 0.290
living with mother (no) yes 0.095 0.162 0.251
living with father (no) yes -0.089 -0.047 0.620
parents in labor market (no) yes -0.193 0.018 0.957

mother education (no high school)

high school -0.039 -0.021 0.861
more than high school -0.116 -0.000 1.000
college 0.108 0.163 0.226
unknown -0.061 -0.051 0.681

father education (no high school)

high school -0.132 -0.127 0.326
more than high school 0.012 -0.040 0.814
college -0.049 -0.026 0.853
unknown -0.330 -0.336 0.006

Table A.1: Estimated covariate coefficients from OLS and RNC linear regression on the recreational
activity example. The p-values are for the OLS estimate.

135

A.4 Sensitivity to missing data

The AddHealth data set contains many records with missing values, and we used

imputation in both examples to handle the missing data. Here we report results of

a sensitivity analysis to the amount of missing data.

In the recreational activity example, we remove an additional fraction pm of

records in each column at random, where pm varies from 0 to 0.5; if the original

column was missing m values, it will now be missing m(1 + pm) records. When

pm = 0, the results match the ones reported in Section 2.4. Table A.2 shows the

corresponding RMSEs for the full model with all 10 predictors, calculated in the

same way as in Section 2.4, for a range of values of pm. The relative rankings of the

five models never change, although there are some small numerical changes in the

errors. This very robust performance suggests that our results are not sensitive to

proportion of missing data.

pm OLS & Null SIM RNC RNC-LA oracle-Bayes
0% 1.219 ** 1.188 ** 1.163 1.176 * 1.175 *

10% 1.219 ** 1.186 ** 1.163 1.174 * 1.171
20% 1.216 ** 1.184 ** 1.160 1.172 * 1.169 *
30% 1.218 ** 1.188 ** 1.164 1.174 * 1.174 *
40% 1.220 ** 1.198 ** 1.167 1.186 ** 1.179 *
50% 1.216 ** 1.185 ** 1.163 1.175 * 1.172

Table A.2: Prediction errors of five models with missing data imputation, with varying proportion
of additional missing values. All other columns are compared with RNC by a paired two-sample
t-test. ** indicates a p-value ≤ 10−4 and * indicates a p-value ∈ (10−4, 10−2).

In the marijuana usage example, we conduct the same experiment. However, the

number of records with missing values is much smaller in the home-survey data (used

for marijuana example) than the school survey data (used in the recreational activity

example). Therefore, we take a larger range for pm from 0 to 2. The results of the

corresponding prediction iAUC for the four models (with all the five variables) are

shown in Table A.3. Again, the relative ranking is the same as in Section 2.4 for

136

all different values of pm. Moreover, the iAUCs are also very stable across different

settings of pm.

pm Cox & Null SIM RNC RNC-LA
0 0.727 ** 0.743 0.748 0.766 **
0.5 0.727 ** 0.743 0.748 0.766 **
1 0.726 ** 0.742 0.747 0.765 **
1.5 0.726 ** 0.742 0.747 0.765 **
2 0.729 ** 0.745 0.749 0.767 **

Table A.3: Average integrated AUC (iAUC) for survival prediction ROC curves for age 14-17 with
artificially increased missing values (by pm). The average is taken over 50 random splits of the data
into 60 test samples and 587 training samples. All values are compared with the columns of RNC by
a paired two-sample t-test. ** indicates a p-value ≤ 10−4 and * indicates a p-value ∈ (10−4, 10−2).

137

APPENDIX B

Appendix for Chapter III

B.1 Proofs

We start with additional notation. For any vector x, we use ‖x‖ to denote its

Euclidean norm. We denote the singular values of a matrix P by σ1(P) ≥ σ2(P) ≥

· · ·σK(P) > σK+1(P) = σK+2(P) · · ·σn(P) = 0, where K = rank(P). Recall the

Frobenius norm ‖P‖F is defined by ‖P‖2
F =

∑
ij P

2
ij =

∑
i σi(P)2, the spectral

norm ‖P‖ = σ1(P), the infinity norm ‖P‖∞ = maxij |Pij|, and the nuclear norm

‖P‖∗ =
∑

i σi(P) be the nuclear norm. In addition, the max norm of P [Srebro and

Shraibman, 2005] is defined as

‖P‖max = min
P=UV T

max(‖U‖2
2,∞, ‖V ‖2

2,∞),

where ‖U‖2,∞ = maxi(
∑

j U
2
ij)

1/2.

We will need the following well-known inequalities:

‖P‖ ≤ ‖P‖F ≤
√
K‖P‖,(B.1)

‖P‖F ≤ ‖P‖∗ ≤
√
K‖P‖F(B.2)

|tr(P T
1 P2)| ≤ ‖P1‖‖P2‖∗(B.3)

max(‖P T‖2,∞, ‖P‖2,∞) ≤ ‖P‖(B.4)

‖P‖max ≤
√
K‖P‖∞.(B.5)

138

Relationship (B.3), which holds for any two matrices P1, P2 with matching dimen-

sions, is called norm duality for the spectral norm and the nuclear norm [Boyd and

Vandenberghe, 2004]. Relationship (B.5) can be found in Srebro and Shraibman

[2005]. The last one we need is the variational property of spectral norm:

(B.6) ‖P‖ = max
x,y∈Rn:‖x‖=‖y‖=1

yTPx.

Our proof will rely on a concentration result for the adjacency matrix. To the

best of our knowledge, Lemma C.3 stated next is the best concentration bound

currently available, proved by Lei and Rinaldo [2014]. The same concentration was

also obtained by Chin et al. [2015] and Le et al. [2017].

Lemma B.1. Let A be the adjacency matrix of a random graph on n nodes with

independent edges. Set E(A) = P = [pij]n×n and assume that nmaxij pij ≤ d for

d ≥ C0 log n and C0 > 0. Then for any δ > 0, there exists a constant C = C(δ, C0)

such that

‖A− P‖ ≤ C
√
d

with probability at least 1− n−δ.

Another tool we need is the discrepancy between a bounded matrix and its par-

tially observed version given in Lemma B.2, which can be viewed as a generalization

of Theorem 4.1 of Bhojanapalli and Jain [2014] and Lemma 6.4 of Bhaskar and

Javanmard [2015] to the more realistic uniform missing mechanism in the matrix

completion problem. Let G ∈ Rn×n be the indicator matrix associated with the

hold-out set Ω, such that if (i, j) ∈ Ω, Gij = 0 and otherwise Gij = 1. Note that

under the uniform missing mechanism, G can be viewed as an adjacency matrix of an

Erdös-Renyi random graph where all edges appear independently with probability

p. Note that PΩA = A ◦G where ◦ is the Hadamard (element-wise) matrix product.

139

Lemma B.2. Let G an adjacency matrix of an Erdös-Renyi graph with the probability

of edge p ≥ C1 log n/n for a constant C1. Then for any δ > 0, with probability at

least 1− n−δ, the following relationship holds for any Z ∈ Rn×n with rank(Z) ≤ K∥∥∥∥1

p
Z ◦G− Z

∥∥∥∥ ≤ 2C

√
nK

p
‖Z‖∞

where C = C(δ, C1) is the constant from Lemma C.3 that only depends on δ and C1.

Proof of Lemma B.2. Let Z = UV T , where U ∈ Rn×K and V ∈ Rn×K are the

matrices that achieve the minimum in the definition of ‖Z‖max. Denote the `th

column of U by U·` and the `th row by U`·.

Given any unit vectors x,y ∈ Rn, we have

yT
(

1

p
Z ◦G− Z

)
x =

∑
`

[
1

p
yT (U·`V

T
·`) ◦Gx− (yTU·`)(x

TV·`)

]
=
∑
`

[
1

p
(y ◦ U·`)TG(x ◦ V·`)− (yTU·`)(x

TV·`)

]
.(B.7)

Let 1̃ = 1n/
√
n be the constant unit vector. For any 1 ≤ ` ≤ n, let y ◦ U·` =

α`1̃ + β`1̃
`
⊥ in which 1̃`⊥ is a vector that is orthogonal to 1̃. It is easy to check that

α` = (y ◦ U·`)T 1̃ =
1√
n
yTU·`.

Similarly, we also have

(x ◦ V·`)T 1̃ =
1√
n
xTV·`.

Let Ḡ = p11T be the expectation of G with respect to the missing mechanism.

Then

(y ◦ U·`)TG(x ◦ V·`) =
1√
n

(yTU·`)1̃
TG(x ◦ V·`) + β`1̃

` T
⊥ G(x ◦ V·`)

=
1√
n

(yTU·`)1̃
T Ḡ(x ◦ V·`) +

1√
n

(yTU·`)1̃
T (G− Ḡ)(x ◦ V·`) + β`1̃

` T
⊥ G(x ◦ V·`) .

(B.8)

140

Notice that 1̃T Ḡ = np1̃T , and therefore

1√
n

(yTU·`)1̃
T Ḡ(x ◦ V·`) =

np√
n

(yTU·`)1̃
T (x ◦ V·`) . = p(yTU·`)(x

TV·`)

Further, since Ḡ1̃`⊥ = 0 for any `, we can rewrite (B.8) as

(y ◦ U·`)TG(x ◦ V·`) = p(yTU·`)(x
TV·`)

+
1√
n

(yTU·`)1̃
T (G− Ḡ)(x ◦ V·`) + β`1̃

` T
⊥ (G− Ḡ)(x ◦ V·`) .(B.9)

Substituting (B.9) into (B.7) and applying (B.6) and the Cauchy-Schwarz inequal-

ity leads to

yT (
1

p
PΩZ − Z)x =

1

p

∑
`

[
1√
n

(yTU·`)1̃
T (G− Ḡ)(x ◦ V·`) + β`1̃

` T
⊥ (G− Ḡ)(x ◦ V·`)

]
≤ 1

p
‖G− Ḡ‖

[∑
`

1√
n
|yTU·`|‖x ◦ V·`‖+

∑
`

|β`|‖x ◦ V·`‖
]

≤ 1

p
‖G− Ḡ‖

[
1√
n

√∑
`

(yTU·`)2

√∑
`

‖x ◦ V·`‖2 +

√∑
`

β2
`

√∑
`

‖x ◦ V·`‖2

]
.

(B.10)

Using Cauchy-Schwarz inequality, the definition of max norm and the relationship

(B.5), we get

∑
`

(yTU·`)
2 ≤

∑
`

‖y‖2‖U·`‖2 = ‖U‖2
F ≤ n‖U‖2

2,∞ ≤ n‖Z‖max ≤ n
√
K‖Z‖∞ .

(B.11)

Similarly,

∑
`

β2
` =

∑
`

(1̃` T⊥ (y ◦ U·`))2 ≤
∑
`

‖y ◦ U·`‖2

=
∑
`

∑
i

y2
iU

2
il ≤ ‖U‖2

2,∞

∑
i

y2
i ≤ ‖Z‖max ≤

√
K‖Z‖∞.(B.12)

We also have

∑
`

‖x ◦ V·`‖2 ≤
√
K‖Z‖∞.(B.13)

141

Combining (B.11), (B.12) and (B.13) with (B.10), we get

(B.14) yT (
1

p
PΩZ − Z)x ≤ 2

√
K

p
‖G− Ḡ‖‖Z‖∞.

From (B.6), we have

‖1

p
PΩZ − Z‖ = sup

‖x‖=‖y‖=1

yT (
1

p
PΩZ − Z)x ≤ 2

√
K

p
‖G− Ḡ‖‖Z‖∞.

Finally, Lemma C.3 implies

(B.15) ‖G− Ḡ‖ ≤ C(δ, C1)
√
pn

with probability at least 1− n−δ defined in Lemma C.3. Therefore, with probability

at least 1− n−δ,

‖1

p
PΩZ − Z‖ ≤ 2C(δ, C1)

√
nK

p
‖Z‖∞.

The following lemma is from Klopp [2015]. See also Corollary 3.3 of Bandeira

et al. [2016] for a more general results in expectation form.

Lemma B.3 (Proposition 13 of [Klopp, 2015]). Let X be an n×n matrix with each

entry Xij being independent and bounded random variables, such that maxij |Xij| ≤ σ

with probability 1. Then for any δ > 0,

‖X‖ ≤ C ′max(σ1, σ2,
√

log n)

in which C ′ = C ′(σ, δ) is a constant that only depends on δ and σ,

σ1 = max
i

√
E
∑
j

X2
ij

and

σ2 = max
j

√
E
∑
i

X2
ij.

142

Proof of Theorem III.6. Our proof is valid weather or not the network is undirected,

as Lemma C.3 holds for both directed and undirected networks. So we would proceed

ignoring that P can be potentially symmetric. Let W = A − P , so EW = 0. It is

known that

(B.16) SH(
1

p
PΩA,K) = argminP :rank(P)≤K‖

1

p
PΩA− P‖.

By this property, we have

‖Â− P‖ = ‖Â− 1

p
PΩA+

1

p
PΩA− P‖

≤ ‖1

p
PΩA− Â‖+ ‖1

p
PΩA− P‖

≤ 2‖1

p
PΩA− P‖

≤ 2‖1

p
PΩP − P +

1

p
PΩW‖

≤ 2‖1

p
PΩP − P‖+

2

p
‖PΩW‖

= 2‖1

p
G ◦ P − P‖+

2

p
‖G ◦W‖ := I + II.

Since rank(P) ≤ K, by Lemma B.2, we have

(B.17) I ≤ 4C(δ, C1)

√
nK

p
‖Z‖∞ ≤ 4C(δ, C1)

√
Kd2

np

with probability at least 1− n−δ for any δ > 0.

We want to apply the result of Lemma B.3 to control II, by conditioning on W .

Notice that (G ◦W)ij = ηijWij where ηij ∼ B(p). Clearly we can set σ = 1 in the

lemma. Also,

σ1 = max
i

√
E(
∑
j

η2
ijW

2
ij|W) = max

i

√∑
j

W 2
ijE(η2

ij|W)

= max
i

√
p

√∑
j

W 2
ij = max

i

√
p
√
‖Wi·‖2

2

=
√
p
√
‖W‖2

2,∞ ≤
√
p‖W‖

143

in which the last inequality comes from (B.4). Similarly, we have

σ2 = max
j

√
E(
∑
i

η2
ijW

2
ij|W) ≤ √p‖W‖.

Now by Lemma B.3, we know that given W ,

(B.18) II =
2

p
‖G ◦W‖ ≤ 2

p
C ′(δ)(

√
p‖W‖ ∨

√
log n)

with probability at least 1− n−δ where C ′(δ) is the C ′(1, δ) in Lemma B.3.

Finally, applying Lemma C.3 to (B.18), we have for any δ2, δ3 > 0

(B.19) II ≤ 2

p
C ′(δ) max(C(δ, C2)

√
p
√
d,
√

log n) ≤ C ′′(δ, C2)
max(

√
pd,
√

log n)

p

with probability at least 1− 2n−δ where C ′′(δ, C2) = 2C ′(δ) max(C(δ, C2), 1).

Combining (B.17) and (B.19) gives

‖Â− P‖ ≤ I + II ≤ C̃ max(

√
Kd2

np
,

√
d

p
,

√
log n

p
)

with probability at least 1− 3n−δ where C̃(δ, C1, C2) = 4C(δ, C1) + C ′′(δ, C2).

The bound about Frobenius norm (3.4) directly comes from (B.1) since rank(Â−

P) ≤ 2K.

Proof of Proposition III.9 and III.11. A direct consequence of Theorem III.6 is the

concentration bound

‖Â− P‖ ≤ C
√
d

with high probability. Then the conclusion of Proposition III.9 can be proved fol-

lowing the strategy of Corollary 3.2 of Lei and Rinaldo [2014]. The same con-

centration bound also holds for DCSBM. To prove Proposition III.11, recall that

144

nk = |{i : ci = k}|. Following Lei and Rinaldo [2014], define θk = {θi}ci=k and

νk =
1

n2
k

∑
i:ci=k

‖θk‖2

θ2
i

.

Let ñk = ‖θk‖2 be the “effective size” of the kth community. Under III.10, we have

νk ≤
1

n2
k

∑
i:ci=k

nk
θ2

0

=
1

θ2
0

.

Furthermore, when III.8 and III.10 hold, we have

(B.20)

∑
k n

2
kν

2
k

mink ñ2
k

≤
∑

k n
2
kν

2
k

mink n2
kθ

4
0

≤
∑

k n
2
k

γ2θ8
0

≤ K

γ2θ8
0

= O(1).

Proposition III.11 can then be proved by following the proof of Corollary 4.3 of Lei

and Rinaldo [2014] and applying (B.20).

B.2 Additional simulation results for model selection under the block
models

B.2.1 Using binomial deviance loss function for overall block model selection

As discussed in the paper, we can use both L2 loss and binomial deviance as

loss functions in selecting between different block models. Empirically we found

the L2 loss gives better results, shown in Section 3.4. For completeness, we include

overall block model selection correct rate using binomial deviance for both ECV

(ECV-dev) and NCV (NCV-dev) in Table B.1 (when the true model is DCSBM)

and Table B.2 (when the true model is SBM). The pattern is the same as for the

L2 loss; both methods benefit from stability selection and ECV always dominates

NCV. The difference between the two methods is very large under the DCSBM and

smaller under the SBM.

145

K n λ t β ECV-dev ECV-dev-mode NCV-dev NCV-dev-mode

3 600

15 0 0.2 0.47 0.45 0.00 0.00
20 0 0.2 0.89 0.96 0.00 0.00
30 0 0.2 1.00 1.00 0.26 0.14
40 0 0.2 1.00 1.00 0.84 0.96

5 600

15 0 0.2 0.34 0.40 0.00 0.00
20 0 0.2 0.82 0.93 0.00 0.00
30 0 0.2 0.97 1.00 0.01 0.00
40 0 0.2 0.99 1.00 0.13 0.10

5 1200

15 0 0.2 0.45 0.53 0.00 0.00
20 0 0.2 0.94 0.98 0.00 0.00
30 0 0.2 1.00 1.00 0.00 0.00
40 0 0.2 1.00 1.00 0.23 0.15

3 600

40 0 0.2 1.00 1.00 0.86 0.95
40 0.25 0.2 1.00 1.00 0.89 0.94
40 0.5 0.2 1.00 1.00 0.89 0.95
40 1 0.2 0.64 0.71 0.29 0.41

5 600

40 0 0.2 0.97 1.00 0.16 0.10
40 0.25 0.2 0.98 1.00 0.12 0.09
40 0.5 0.2 0.72 0.79 0.07 0.04
40 1 0.2 0.12 0.07 0.07 0.03

5 1200

40 0 0.2 1.00 1.00 0.21 0.17
40 0.25 0.2 1.00 1.00 0.21 0.15
40 0.5 0.2 0.81 0.82 0.09 0.04
40 1 0.2 0.09 0.07 0.02 0.01

3 600
40 0 0.1 1.00 1.00 0.99 1.00
40 0 0.2 1.00 1.00 0.85 0.96
40 0 0.5 0.96 0.97 0.00 0.00

5 600
40 0 0.1 0.99 1.00 0.59 0.82
40 0 0.2 0.98 1.00 0.18 0.10
40 0 0.5 0.00 0.00 0.00 0.00

5 1200
40 0 0.1 1.00 1.00 0.93 1.00
40 0 0.2 0.99 1.00 0.22 0.15
40 0 0.5 0.00 0.00 0.00 0.00

Table B.1: Overall block model selection correct rate of ECV and NCV in 200 replications when
binomial deviance is used as the loss function. The underlying true model is DCSBM.

146

K n λ t β ECV-dev ECV-dev-mode NCV-dev NCV-dev-mode

3 600

15 0 0.2 1.00 1.00 0.98 1.00
20 0 0.2 1.00 1.00 0.99 1.00
30 0 0.2 1.00 1.00 0.99 1.00
40 0 0.2 1.00 1.00 0.99 1.00

5 600

15 0 0.2 0.82 0.89 0.71 0.87
20 0 0.2 0.99 1.00 0.97 1.00
30 0 0.2 0.99 1.00 0.98 1.00
40 0 0.2 1.00 1.00 0.97 1.00

5 1200

15 0 0.2 0.97 0.98 0.92 0.96
20 0 0.2 1.00 1.00 1.00 1.00
30 0 0.2 1.00 1.00 0.96 1.00
40 0 0.2 1.00 1.00 0.96 1.00

3 600

40 0 0.2 1.00 1.00 1.00 1.00
40 0.25 0.2 1.00 1.00 0.99 1.00
40 0.5 0.2 1.00 1.00 0.95 1.00
40 1 0.2 0.67 0.73 0.26 0.38

5 600

40 0 0.2 0.99 1.00 0.94 1.00
40 0.25 0.2 1.00 1.00 0.95 1.00
40 0.5 0.2 0.80 0.86 0.58 0.74
40 1 0.2 0.12 0.04 0.21 0.12

5 1200

40 0 0.2 1.00 1.00 0.97 1.00
40 0.25 0.2 1.00 1.00 0.96 1.00
40 0.5 0.2 0.93 0.94 0.68 0.84
40 1 0.2 0.05 0.01 0.23 0.11

3 600
40 0 0.1 1.00 1.00 0.98 1.00
40 0 0.2 1.00 1.00 0.99 1.00
40 0 0.5 0.94 0.97 0.85 0.97

5 600
40 0 0.1 0.99 1.00 0.96 1.00
40 0 0.2 0.99 1.00 0.93 1.00
40 0 0.5 0.00 0.00 0.00 0.00

5 1200
40 0 0.1 1.00 1.00 0.97 1.00
40 0 0.2 1.00 1.00 0.97 1.00
40 0 0.5 0.00 0.00 0.00 0.00

Table B.2: Overall block model selection correct rate of ECV and NCV in 200 replications when
binomial deviance is used as the loss function. The underlying true model is SBM.

147

B.2.2 Selecting the number of communities under the SBM

Table 3.8 in the paper shows the accuracy of selecting K from multiple methods

under the DCSBM, and results under the SBM are given in Table B.3 below. The

pattern is similar, except ECV-AUC has a problem with perfectly separated com-

munities (β = 0, an unrealistic scenario, presumably due to many ties affecting the

AUC). LR-BIC is more robust than BHmc to unbalanced community sizes but is the

most vulnerable of all methods to high out-in ratio.

B.2.3 The impact of training proportion p and replication number N

This simulation study illustrates the impact of p and N on the performance of

ECV on the task of block model selection considered in Section 3.4.2. The true

model is the DCSBM with K = 3 equal-sized communities, n = 600, average de-

gree 15, and the out-in ratio 0.2. The results are averaged over 200 replications.

Figures B.1 and B.2 show the effects of varying p and N on model selection and

estimation of K, respectively. Clearly, a small p will not produce enough data to

fit the model accurately. A very large p is also not ideal since the test set will be

very small so the validation becomes noisy. The larger the number of replications N ,

the better in general. The stability selection step makes our procedure much more

robust to the choice of p and N , with similar performance for p > 0.85 and all values

of N considered. In all our examples in the paper, we use p = 0.9, N = 3.

148

Configurations Method
K n λ t β ECV-l2-avg NCV-l2-mode ECV-AUC-avg LR-BIC BHmc

3 600

15 0 0.2 1.00 1.00 1.00 1.00 1.00
20 0 0.2 1.00 1.00 1.00 1.00 0.99
30 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00

5 600

15 0 0.2 0.89 0.86 0.89 0.99 1.00
20 0 0.2 1.00 1.00 1.00 1.00 1.00
30 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 0.99 1.00 1.00

5 1200

15 0 0.2 0.98 0.96 0.99 1.00 1.00
20 0 0.2 1.00 1.00 1.00 1.00 1.00
30 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00

3 600

40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0.25 0.2 1.00 1.00 1.00 1.00 1.00
40 0.5 0.2 1.00 1.00 1.00 1.00 1.00
40 1 0.2 0.72 0.44 0.85 1.00 1.00

5 600

40 0 0.2 1.00 1.00 0.98 1.00 1.00
40 0.25 0.2 1.00 1.00 1.00 1.00 1.00
40 0.5 0.2 0.86 0.78 0.88 1.00 0.99
40 1 0.2 0.05 0.10 0.01 0.72 0.05

5 1200

40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0.25 0.2 1.00 1.00 1.00 1.00 1.00
40 0.5 0.2 0.95 0.89 0.96 1.00 1.00
40 1 0.2 0.03 0.06 0.01 0.79 0.07

3 600
40 0 0.1 1.00 1.00 0.93 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.5 0.95 0.96 1.00 0.82 1.00

5 600
40 0 0.1 1.00 1.00 0.76 1.00 1.00
40 0 0.2 1.00 1.00 0.99 1.00 1.00
40 0 0.5 0.00 0.00 0.05 0.00 0.00

5 1200
40 0 0.1 1.00 1.00 0.88 1.00 1.00
40 0 0.2 1.00 1.00 1.00 1.00 1.00
40 0 0.5 0.00 0.00 0.04 0.00 0.00

Table B.3: The correct rate for estimating the number of communities in 200 replications from the
best variant of each method. The underlying true model is SBM.

0.70 0.75 0.80 0.85 0.90 0.95

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Training proportion

C
or

re
ct

 r
at

e

ECV−l2
ECV−l2−mode

(a) Varying p, N = 3.

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Replication Number

C
or

re
ct

 r
at

e

ECV−l2
ECV−l2−mode

(b) Varying N , p = 0.9.

Figure B.1: The rate of correctly selecting between the SBM and the DCSBM as a function of p
and N .

149

0.70 0.75 0.80 0.85 0.90 0.95

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Training proportion

C
or

re
ct

 r
at

e

●●●●●●●●●●●●

●

ECV−l2
ECV−l2−mode
ECV−l2−avg

(a) Varying p, N = 3.

2 4 6 8 10

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Replication Number

C
or

re
ct

 r
at

e

● ● ● ●

●

ECV−l2
ECV−l2−mode
ECV−l2−avg

(b) Varying N , p = 0.9.

Figure B.2: The rate of correctly selecting K under the true model as a function of p and N .

150

APPENDIX C

Appendix for Chapter IV

C.1 Proofs

Proof of Proposition IV.1. We only focus on identifying the parameter for one ar-

bitrary community k. For any i such that ci = k, we have

(C.1) µil = log(θiB
λi
kl) = log(θi) + λi log(Bkl)

where we treat log(0) as −∞. It can be seen that log(θi) = log(P̃ik) by setting l = k

and use the constraint Bkk = 1.

Write b = (log(Bk1), · · · , log(Bk,K)). Notice that for any 1 ≤ l ≤ K such that

Bkl 6= 0, we have

(C.2) µik − µil = λi(bk − bl).

When Bkl 6= Bkk, bk − bl 6= 0 thus we can uniquely determine the ratio between all

nonzero λi’s. Therefore, with the constraint
∑

i∈Gk λk = nk, the identification of λi’s

is guaranteed.

Note that the constraint on λi also ensures that there exists at least one node

i with nonzero λi. For such node i, we can see that b can be determined by (C.2)

up to a shift. Since we constrain bk = Bkk = 1, all the other entries of b are also

identifiable.

151

The last condition is needed since if λi < 0 and Bcil = 0 for some 1 ≤ l ≤ K, the

model is not well-defined as Bλi
cil

=∞.

Proof of Proposition IV.2. It is easy to check that P̃ = FZT where F is the matrix

obtained by applying the power function fi(x) = θix
λi to each element of the ith row

in matrix ZB. Write ∆ = diag(
√
n1, · · · ,

√
nK). Assume the SVD of F∆ is given by

F∆ = UDV T .

We have

P̃ = UDV T (Z∆−1)T = UD(Z∆−1V)T .

Notice that Z∆−1 is an orthonormal matrix and so is Z∆−1V . Taking X = ∆−1V

gives the claimed result.

We need the three following lemmas on spectral clustering.

Lemma C.1 (Lemma 7 of Chen and Lei [2017]). Let M, M̂ be two matrices of size

n× n and V, V̂ be the n×K orthogonal matrices of top K right singular vectors of

M and M̂ . Then there exists a K ×K orthogonal matrix Q such that

‖V̂ Q− V ‖F ≤
2
√

2K‖M̂ −M‖
σK(M)

.

The orthogonal matrix Q is not material and will be ignored in the following

discussion.

Lemma C.2 (Lemma 5.3 of Lei and Rinaldo [2014]). Let V, V̂ be two n×K matrices

with V having only K distinct rows, corresponding to K communities denoted by c.

Let ĉ be the output of a K-means clustering algorithm on V̂ , with objective value no

larger than 1 + ε of the global optimum [Kumar et al., 2004]. Denote the community

152

indices from c and ĉ by {Gk} and {Ĝk}. Define Sk = {i : i ∈ Gk, ĉi 6= k}. For any

δ smaller than the minimum distance between any two distinct rows of V , if

8(2 + ε)‖V̂ − V ‖2
F ≤ nminδ

2

where nmin = mink |Gk|, then there exists a permutation of the K community labels

in ĉ, such that
K∑
k=1

|Sk| ≤ 8(2 + ε)
‖V̂ − V ‖2

F

δ2
.

Another important result we need is the concentration of a random (directed)

graph adjacency matrix from Le et al. [2017]. A similar argument is available from

Lei and Rinaldo [2014].

Lemma C.3. Let A be the adjacency matrix of a random graph on n nodes with

independent edges. Set E(A) = P = [pij]n×n and assume that nmaxij pij ≤ d for

d ≥ C0 log n and C0 > 0. Then there exists a constant C depending on C0 such that

‖A− P‖ ≤ C
√
d

with probability at least 1− n−1.

Now with the three lemmas above, we can easily prove Theorem IV.10.

Proof of Theorem IV.10. Assume Ṽ ∗ to be the matrix of right singular vectors for P̃

and assume Ṽ is the right singular vectors of Ã. Notice that ξmax = maxi,k,lB
λi
kl is

bounded so we pick an arbitrary constant upper bound ξmax for it, which depends on

B and η. The assumption nθmax ≥ C0 log n implies the concentration requirement of

Lemma C.3. From Lemma C.3, we have

‖Ṽ − Ṽ ∗‖F ≤
2
√

2K

Tn
‖Ã− P̃‖ ≤ 2C

√
2K

Tn

√
nθmaxξmax

with probability at least 1− n−1.

153

To apply Lemma C.2, notice that from Proposition IV.2, the minimum distance

between distinct rows in Ṽ ∗ is at least
√

2
nmax

. Therefore, according to Lemma C.2,

∑
k

|Sk|
nk
≤ 1

nmin

K∑
k=1

|Sk| ≤
1

nmax

8(2 + ε)
‖Ṽ − Ṽ ∗‖2

F
2

nmin

≤ 32C2(2 + ε)ξmax
nmaxKnθmax

nminT 2
n

≤ 32C2(2 + ε)ξmax

κ′
Knθmax

T 2
n

as long as the condition of Lemma C.2 holds:

32C2(2 + ε)ξmax

κ′
Knθmax

T 2
n

≤ 1.

which can be guaranteed by the assumptions of Theorem IV.10 when setting C1 =

32C2(2+ε)ξmax

κ′
. This completes the proof.

Proof of Corollary IV.12. Let f1 and f2 be the distribution of θ̄i and λi. Notice that

with probability at least 1−exp(−γ1n), maxi θ̄i = 1 where γ1 is a constant depending

on f1. Conditioning on this event to happen, we have θmax = ρn from A3. We now

need a bound on Tn.

From Lemma IV.2, it can be seen that Tn is the Kth singular value of ρn ·M

where

M =



θ̄1B
λ1
c1,1

θ̄1B
λ1
c1,2

· · · θ̄1B
λ1
c1,K

θ̄2B
λ2
c2,1

θ̄2B
λ2
c2,2

· · · θ̄2B
λ2
c2,K

...
...

. . .
...

θ̄nB
λn
cn,1 θ̄nB

λn
cn,2 · · · θ̄nB

λn
cn,K


.

and ∆ = diag(
√
n1, · · · ,

√
nK). Under A3, there are only at most m1m2K distinct

rows of M . Denote the matrix with these m1m2K rows as M̃ ∈ R(m1m2K)×K , then

we can write

F = ρnZ̃M̃

154

where F is the same quantity in the proof of Proposition IV.2, Z̃ ∈ Rn×(m1m2K)

with exactly one 1 in each row and zeros in the rest positions. Z̃ gives the correspon-

dence between each row of M to the rows of M̃ . Let ñk be the number of times that

the kth row of M̃ appears in rows in M , and define ∆̃ = diag(
√
ñ1, · · · ,

√
ñm1m2K).

It is easy to check Z̃∆̃−1 is an orthogonal matrix. Therefore,

Tn = σK(ρn∆̃M̃∆) ≥ λρn min
i,j,k

√
ñijk min

k

√
nk

in which λ = σK(M̃).

By IV.8-IV.11 and Hoeffding’s inequality, we have

min
i,j,k

ñijk ≥ C2n

with probability at least 1 − exp(−γ2n) for some constant γ2, C2 > 0 depending on

κ′, K and f1, f2. Under this event, we have

Tn ≥
√
C2κ′nρn.

Finally, applying Theorem IV.10 directly gives

∑
k

|Sk|
nk
≤ C1

Knθmax

T 2
n

≤ C1

C2κ′
K

nρn

with probability at least 1− n−1 − e−γ1n − e−γ2n ≥ 1− 2n−1 for sufficiently large n.

Setting C ′ = C1K
C2κ′

gives the stated result.

Proof of Theorem IV.14. Without loss of generality, let us assume we are estimating

the parameters in community 1 and that the first n1 nodes are from community 1.

Note that it is trivial to show the consistency for B1l = 0. We now focus on the

situation that B1l > 0. We start from the fact that each Aij is Bernoulli so it is

155

trivially sub-Gaussian. For each l ∈ [K], such that B1l > 0, define

P̃il = θiB
λi
1l

We have

(C.3) P(|
∑

j∈Gl Aij

nl
− P̃1l)| > t) ≤ 2 exp(−c̃nlt2) ≤ 2 exp(−c̃κ′nt2).

Setting l = 1 and t = n−
1
3 in (C.3) gives

P(|θ̂i − θi| > n−
1
3) ≤ 2 exp(−c̃κ′n1/3).

Takes the union for all i ∈ [n] gives

P(max
i
|θ̂i − θi| > n−

1
3) ≤ 2n exp(−c̃κ′n1/3) ≤ 2 exp(−1

2
c̃κ′n1/3)

for sufficiently large n. By noticing minθi ≥ c0n
−1/4 and writing c = c̃κ′, we get the

bound in (4.12) thus finish the proof of Part 1.

Again from (C.3), we can see that

(C.4) P(|
∑

j∈Gl Aij

nl
− P̃1l)| >

c0

2
n−1/4) ≤ 2 exp(−cc

2
0

4
n1/2).

Note that this also indicates that
∑
j∈Gl

Aij

nl
> 0 under the same event when n is

sufficiently large.

Now we want to first show that for any ρ ∈ (0, 1) and any i, l

(C.5) P(|Yil − µil| > n−(1−ρ)/4) ≤ 4 exp(−cc
2
0

4
nρ/2).

156

To see this, note that for any ρ ∈ (0, 1), we have

P(|Yil − µil| > n−(1−ρ)/4)

= P(|Yil − µil| > n−(1−ρ)/4,

∑
j∈Gl Aij

nl
≥ c0

2
n−1/4) + P(|Yil − µil| > n−(1−ρ)/4,

∑
j∈Gl Aij

nl
<
c0

2
n−1/4)

≤ P(|Yil − µil| > n−(1−ρ)/4,

∑
j∈Gl Aij

nl
≥ c0

2
n−1/4) + P(

∑
j∈Gl Aij

nl
<
c0

2
n−1/4)

≤ P(|Yil − µil| > n−(1−ρ)/4,

∑
j∈Gl Aij

nl
≥ c0

2
n−1/4) + P(|

∑
j∈Gl Aij

nl
− P̃1l)| >

c0

2
n−1/4)

≤ P(
|
∑
j∈Gl

Aij

nl
− P̃1l)|

c0
2
n−1/4

> n−(1−ρ)/4,

∑
j∈Gl Aij

nl
≥ c0

2
n−1/4) + P(|

∑
j∈Gl Aij

nl
− P̃1l)| >

c0

2
n−1/4)

≤ P(
|
∑
j∈Gl

Aij

nl
− P̃1l)|

c0
2
n−1/4

> n−(1−ρ)/4) + P(|
∑

j∈Gl Aij

nl
− P̃1l)| >

c0

2
n−1/4)

≤ 2 exp(−cc
2
0

4
nρ/2) + 2 exp(−cc

2
0

4
n1/2) ≤ 4 exp(−cc

2
0

4
nρ/2)

in which the third last line comes from the fact that

| log(x)− log(y)| ≤ 1

min(x, y)
|x− y|, x, y > 0.

From (C.5), we then know that for a fixed l 6= 1

(C.6) P(|(Yi1 − Yil)− (µi1 − µil)| > 2n−(1−ρ)/4) ≤ 8 exp(−cc
2
0

4
nρ/2)

and

P(| 1

n1

∑
i:ci=1

[(Yi1 − Yil)− (µi1 − µil)]| > 2n−(1−ρ)/4)

= P(| 1

n1

∑
i:ci=1

(Yi1 − Yil)− (log(B11)− log(B1l))| > 2n−(1−ρ)/4)

≤ 8n1 exp(−cc
2
0

4
nρ/2) ≤ 8 exp(−cc

2
0

8
nρ/2)(C.7)

for sufficiently large n. Part 2 of the theorem comes directly from (C.7) after taking

the union of K2 events.

For part 3, define bl = log(B1l) for B1l > 0. We discuss the estimation in two

cases according to IV.13.

157

Case 1: If bl − b1 ≤ −κ.

Applying Taylor’s theorem to the function F (x, y) = x
y
, x, y > 0, we have

|F (x, y)− F (x0, y0)| = |∇F (x̃, ỹ) · (x− x0, y − y0)| ≤ ‖∇F (x̃, ỹ)‖‖(x− x0, y − y0)‖

in which x̃ lies between x and x0 and ỹ lies between y and y0. Notice that

∇F (x, y) =

 1
y

− x
y2


So we further have

(C.8) (F (x, y)− F (x0, y0)) ≤
(

1

min(y, y0)2
+

max(x, x0)2

min(y, y0)4

)
‖(x− x0, y − y0)‖2.

Assume n is sufficiently large such that 2n−
1−ρ
n < min(κ

2
, κ

2η
) ≤ b1−bl

2
. Define the

event

E := {|(Yi1 − Yil)− (µi1 − µil)| ≤ 2n−(1−ρ)/4, | 1

n1

∑
i:ci=1

[(Yi1 − Yil)− (µi1 − µil)]|

≤ 2n−(1−ρ)/4, Yi1 − Yil > 0,
∑
i:ci=1

(Yi1 − Yil) > 0}

= {|(Yi1 − Yil)− (µi1 − µil)| ≤ 2n−(1−ρ)/4, | 1

n1

∑
i:ci=1

[(Yi1 − Yil)− (µi1 − µil)]| ≤ 2n−(1−ρ)/4}.

Under the event E, we have

|λ̂i − λi|2

= | (Yi1 − Yil)∑
i:ci=1(Yi1 − Yil)/n1

− (µi1 − µil)∑
i:ci=1(µi1 − µil)/n1

|2

≤

(
|(Yi1 − Yil)− (µi1 − µil)|2 + | 1

n1

∑
i:ci=1

[(Yi1 − Yil)− (µi1 − µil)]|2
)
×(

1

min(
∑

i:ci=1(Yi1 − Yil)/n1,
∑

i:ci=1(µi1 − µil)/n1)2
+

max(Yi1 − Yil, µi1 − µil)2

min(
∑

i:ci=1(Yi1 − Yil)/n1,
∑

i:ci=1(µi1 − µil)/n1)4

)
≤
(

1

((b1 − bl)− 2n−(1−ρ)/4)2
+

(λi(b1 − bl) + 2n−(1−ρ)/4)2

((b1 − bl)− 2n−(1−ρ)/4)4

)
8n−

1−ρ
2

≤
(

4

(b1 − bl)2
+

16(λi + 3/2)2

(b1 − bl)2

)
8n−

1−ρ
2

≤ 32

κ2

(
1 + 4(η + 3/2)2

)
n−

1−ρ
2 .

158

Finally, according to (C.6) and (C.7), the event E happens with probability at

least

1− 8 exp(−cc
2
0

4
nρ/2)− 8 exp(−cc

2
0

8
nρ/2) ≥ 1− 16 exp(−cc

2
0

8
nρ/2).

Case 2: If bl − b1 ≥ κ. This is the symmetric version of the previous case. The

only thing we need to change is to use the Taylor’s expansion of F (x, y) = x
y

for

x, y < 0 which still gives the same bound.

Combining Case 1 and 2 shows the error bound for one λi. Applying the same

procedure for any i in any community then taking the union of the events, we know

that

max
i
|λ̂i − λi| ≤

4
√

2

κ

√
1 + 4(η + 3/2)2n−(1−ρ)/4

with probability at least 1 − 16n exp(− cc20
8
nρ/2). For sufficiently large n, it can be

shown that this probability is larger or equal to

1− 16 exp(−cc
2
0

10
nρ/2).

This completes the proof for part 3.

C.2 Community detection of business schools on the undirected hiring
network

In Section 4.6, we show the community analysis by using the directed hiring net-

work between business schools. In this section, we list the community detection result

by spectral clustering if we treat the network as undirected. The four communities

are shown in Table C.1 with average and median ranking by US News and π-ranking

as well the 20 institutions with the highest π-ranking in each community. It can

be seen that the overall tie of the 3 communities are not so clear according to the

159

reference ranking systems of US News and π-ranking. The first community is still

overall better but the exclusion of institutions such as Yale, Cornell and Columbia

with inclusion of some other state universities make it much less interpretable com-

pared with the results in Table 4.1 of Section 4.6. This indicates the importance of

using the correct spectral information, since making the network symmetric hides

the interpretable community structures.

size USN
(avg./med.)

π-ranking
(avg./med.)

Institutions

1 19 19.2/14 17.8/13 Stanford, MIT, Harvard, UC Berkeley, U. Rochester, U. Chicago,
Northwestern, U. Michigan, U. Penn., Carnegie Mellon, NYU, U.
Minnesota-Twin Cities, Duke, UNC-Chapel Hill, U. Washington St.
Louis, U. Maryland, College Park, U. Southern California, Case West-
ern Reserve U., Boston College

2 20 55.1/56.5 44.6/42 Cornell, Columbia, U. Wisconsin-Madison, UIUC, Ohio State, U.
Florida, U. Pittsburgh, Penn State, Michigan State, SUNY-Buffalo, U.
Mass-Amherst, Syracuse, Tulane, U. Connecticut, U. Cincinnati, Rut-
gers U., Temple U., SUNY-Binghamton, St. Louis U., Northeastern
U.

3 24 52.7/40 54/49 Yale, UCLA, U. Washington, U. Colorado-Boulder, UC Irvine, U. Utah,
U. Oregon, UT-Dallas, U. Virginia, Boston U., UC Davis, Vanderbilt,
Claremont Graduate U., U. Houston, Rice U., Southern Methodist U.,
George Washington U., CUNY Baruch College, U. Hawaii

4 24 63.8/63 56/56.5 Purdue, U. Iowa, UT-Austin, Indiana U., Georgia Tech, U. Arizona,
Texas A&M, U. Georgia, Arizona State, U. South Carolina, Virginia
Tech, Florida State, U. Oklahoma, U. Kansas, Louisiana State, U.
Arkansas, U. Tennesse, U. Kentucky, U. Alabama, Oklahoma State

Table C.1: Communities of business school institutions detected by symmetric spectral clustering.

Bibliography

E. Abbe. Community detection and stochastic block models: recent developments.

arXiv preprint arXiv:1703.10146, 2017.

E. Abbe, J. Fan, K. Wang, and Y. Zhong. Entrywise eigenvector analysis of random

matrices with low expected rank. arXiv preprint arXiv:1709.09565, 2017.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership

stochastic blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014,

2008.

D. J. Aldous. Representations for partially exchangeable arrays of random variables.

Journal of Multivariate Analysis, 11(4):581–598, 1981.

A. A. Amini, A. Chen, P. J. Bickel, and E. Levina. Pseudo-likelihood methods for

community detection in large sparse networks. The Annals of Statistics, 41(4):

2097–2122, 2013.

S. Asur and B. A. Huberman. Predicting the future with social media. In Web

Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM

International Conference on, volume 1, pages 492–499. IEEE, 2010.

A. Athreya, D. E. Fishkind, K. Levin, V. Lyzinski, Y. Park, Y. Qin, D. L. Sussman,

M. Tang, J. T. Vogelstein, and C. E. Priebe. Statistical inference on random dot

product graphs: a survey. arXiv preprint arXiv:1709.05454, 2017.

160

161

A. S. Bandeira, R. van Handel, et al. Sharp nonasymptotic bounds on the norm

of random matrices with independent entries. The Annals of Probability, 44(4):

2479–2506, 2016.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Computation, 15(6):1373–1396, 2003.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric frame-

work for learning from labeled and unlabeled examples. Journal of Machine Learn-

ing Research, 7(Nov):2399–2434, 2006.

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet.

Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering.

Advances in Neural Information Processing Systems, 16:177–184, 2004.

J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal

of the Royal Statistical Society. Series B (Methodological), pages 192–236, 1974.

S. A. Bhaskar and A. Javanmard. 1-bit matrix completion under exact low-rank

constraint. In Information Sciences and Systems (CISS), 2015 49th Annual Con-

ference on, pages 1–6. IEEE, 2015.

S. Bhojanapalli and P. Jain. Universal matrix completion. In Proceedings of The

31st International Conference on Machine Learning, pages 1881–1889, 2014.

P. Bickel, D. Choi, X. Chang, H. Zhang, et al. Asymptotic normality of maximum

likelihood and its variational approximation for stochastic blockmodels. The Annals

of Statistics, 41(4):1922–1943, 2013.

P. J. Bickel and P. Sarkar. Hypothesis testing for automated community detection

162

in networks. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 78(1):253–273, 2016.

G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra.

Dague: A generic distributed dag engine for high performance computing. Parallel

Computing, 38(1):37–51, 2012.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,

2004.

Y. Bramoullé, H. Djebbari, and B. Fortin. Identification of peer effects through social

networks. Journal of Econometrics, 150(1):41–55, 2009.

C. T. Butts. Network inference, error, and informant (in) accuracy: a bayesian

approach. social networks, 25(2):103–140, 2003.

D. Cai, X. He, and J. Han. Spectral regression: A unified approach for sparse

subspace learning. In Seventh IEEE International Conference on Data Mining

(ICDM 2007), pages 73–82. IEEE, 2007.

T. Cai and W.-X. Zhou. A max-norm constrained minimization approach to 1-bit

matrix completion. The Journal of Machine Learning Research, 14(1):3619–3647,

2013.

E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,

98(6):925–936, 2010.

S. Chatterjee. Matrix estimation by universal singular value thresholding. The

Annals of Statistics, 43(1):177–214, 2015.

K. Chaudhuri, F. C. Graham, and A. Tsiatas. Spectral clustering of graphs with

163

general degrees in the extended planted partition model. In COLT, volume 23,

pages 35–1, 2012.

K. Chen and J. Lei. Network cross-validation for determining the number of com-

munities in network data. Journal of the American Statistical Association, pages

1–11, 2017.

P. Chin, A. Rao, and V. Vu. Stochastic block model and community detection in

sparse graphs: A spectral algorithm with optimal rate of recovery. In Conference

on Learning Theory, pages 391–423, 2015.

D. Choi. Estimation of monotone treatment effects in network experiments. Journal

of the American Statistical Association, pages 1–9, 2017.

D. Choi and P. J. Wolfe. Co-clustering separately exchangeable network data. The

Annals of Statistics, 42(1):29–63, 2014.

N. A. Christakis and J. H. Fowler. The spread of obesity in a large social network

over 32 years. New England Journal of Medicine, 357(4):370–379, 2007.

A. Clauset, S. Arbesman, and D. B. Larremore. Systematic inequality and hierarchy

in faculty hiring networks. Science advances, 1(1):e1400005, 2015.

M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao, and S. C.

Xu. Solving sdd linear systems in nearly m log 1/2 n time. In Proceedings of

the 46th Annual ACM Symposium on Theory of Computing, pages 343–352. ACM,

2014.

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society.

Series B (Methodological), pages 187–220, 1972.

164

H. Crane and W. Dempsey. A framework for statistical network modeling. arXiv

preprint arXiv:1509.08185, 2015.

N. Cressie. The origins of kriging. Mathematical geology, 22(3):239–252, 1990.

M. A. Davenport, Y. Plan, E. van den Berg, and M. Wootters. 1-bit matrix comple-

tion. Information and Inference, 3(3):189–223, 2014.

P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. arXiv

preprint arXiv:0712.2749, 2007.

T. Edwards. The discrete laplacian of a rectangular grid, 2013.

J. Eldridge, M. Belkin, and Y. Wang. Unperturbed: spectral analysis beyond davis-

kahan. arXiv preprint arXiv:1706.06516, 2017.

P. Erds and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci, 5:17–61, 1960.

M. Faverge and P. Ramet. Dynamic scheduling for sparse direct solver on numa

architectures. In PARA’08, 2008.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

K. Fujimoto and T. W. Valente. Social network influences on adolescent substance

use: disentangling structural equivalence from cohesion. Social Science & Medicine,

74(12):1952–1960, 2012.

C. Gao, Y. Lu, and H. H. Zhou. Rate-optimal graphon estimation. The Annals of

Statistics, 43(6):2624–2652, 2015.

C. Gao, Y. Lu, Z. Ma, and H. H. Zhou. Optimal estimation and completion of

165

matrices with biclustering structures. Journal of Machine Learning Research, 17

(161):1–29, 2016.

C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou. Achieving optimal misclassification

proportion in stochastic block models. The Journal of Machine Learning Research,

18(1):1980–2024, 2017.

A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi. A survey of statistical

network models. Foundations and Trends R© in Machine Learning, 2(2):129–233,

2010.

R. Guimerà and M. Sales-Pardo. Missing and spurious interactions and the recon-

struction of complex networks. Proceedings of the National Academy of Sciences,

106(52):22073–22078, 2009.

D. Hallac, J. Leskovec, and S. Boyd. Network lasso: Clustering and optimization in

large graphs. In Proceedings of the 21th ACM SIGKDD international conference

on knowledge discovery and data mining, pages 387–396. ACM, 2015.

K. M. Harris. The National Longitudinal Study of Adolescent to Adult Health (Add

Health), Waves I & II, 1994-1996; Wave III, 2001-2002; Wave IV, 2007–009

[machine-readable data file and documentation]. Carolina Population Center, Uni-

versity of North Carolina at Chapel Hill, 2009.

T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani.

The elements of statistical learning, volume 2. Springer, 2009.

D. L. Haynie. Delinquent peers revisited: Does network structure matter? American

Journal of Sociology, 106(4):1013–1057, 2001.

166

C. R. Henderson. Estimation of variance and covariance components. Biometrics, 9

(2):226–252, 1953.

P. Hoff. Modeling homophily and stochastic equivalence in symmetric relational data.

In Advances in Neural Information Processing Systems, pages 657–664, 2008.

P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social

network analysis. Journal of the american Statistical association, 97(460):1090–

1098, 2002.

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps.

Social networks, 5(2):109–137, 1983.

P. Ji, J. Jin, et al. Coauthorship and citation networks for statisticians. The Annals

of Applied Statistics, 10(4):1779–1812, 2016.

J. Jin. Fast community detection by SCORE. The Annals of Statistics, 43(1):57–89,

2015.

A. Joseph and B. Yu. Impact of regularization on spectral clustering. The Annals

of Statistics, 44(4):1765–1791, 2016.

B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in

networks. Physical Review E, 83(1):016107, 2011.

R. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. In

Advances in Neural Information Processing Systems, pages 952–960, 2009.

S. Kim, W. Pan, and X. Shen. Network-based penalized regression with application

to genomic data. Biometrics, 69(3):582–593, 2013.

O. Klopp. Matrix completion by singular value thresholding: sharp bounds. Elec-

tronic Journal of Statistics, 9(2):2348–2369, 2015.

167

E. D. Kolaczyk. Statistical Analysis of Network Data: Methods and Models.

Springer Publishing Company, Incorporated, 1st edition, 2009. ISBN 038788145X,

9780387881454.

I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving sdd linear

systems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE

Symposium on, pages 235–244. IEEE, 2010.

A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1+ ε)-approximation

algorithm for geometric k-means clustering in any dimensions. In Proceedings-

Annual Symposium on Foundations of Computer Science, pages 454–462. IEEE,

2004.

X. Lacoste, M. Faverge, P. Ramet, S. Thibault, and G. Bosilca. Taking advantage of

hybrid systems for sparse direct solvers via task-based runtimes. In Parallel & Dis-

tributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International,

pages 29–38. IEEE, 2014.

S. R. Land and J. H. Friedman. Variable fusion: A new adaptive signal regres-

sion method. Technical report, Technical Report 656, Department of Statistics,

Carnegie Mellon University Pittsburgh, 1997.

P. Latouche, E. Birmele, and C. Ambroise. Variational bayesian inference and com-

plexity control for stochastic block models. Statistical Modelling, 12(1):93–115,

2012.

C. M. Le and E. Levina. Estimating the number of communities in networks by

spectral methods. arXiv preprint arXiv:1507.00827, 2015.

168

C. M. Le and E. Levina. Estimating a network from multiple noisy realizations.

arXiv preprint arXiv:1710.04765, 2017.

C. M. Le, E. Levina, and R. Vershynin. Concentration and regularization of random

graphs. Random Structures & Algorithms, 2017.

D. Lee. CARBayes: An R package for Bayesian spatial modeling with conditional

autoregressive priors. Journal of Statistical Software, 55(13):1–24, 2013. URL

http://www.jstatsoft.org/v55/i13/.

L.-f. Lee. Identification and estimation of econometric models with group inter-

actions, contextual factors and fixed effects. Journal of Econometrics, 140(2):

333–374, 2007.

J. Lei. A goodness-of-fit test for stochastic block models. The Annals of Statistics,

44(1):401–424, 2016.

J. Lei and A. Rinaldo. Consistency of spectral clustering in stochastic block models.

The Annals of Statistics, 43(1):215–237, 2014.

C. Li and H. Li. Network-constrained regularization and variable selection for analysis

of genomic data. Bioinformatics, 24(9):1175–1182, 2008.

C. Li and H. Li. Variable selection and regression analysis for graph-structured

covariates with an application to genomics. The Annals of Applied Statistics, 4(3):

1498, 2010.

T. Li, E. Levina, and J. Zhu. netcoh: Statistical Modeling with Network Cohesion,

2016a. URL http://CRAN.R-project.org/package=netcoh. R package version

0.11.

169

T. Li, E. Levina, and J. Zhu. Network cross-validation by edge sampling. arXiv

preprint arXiv:1612.04717, 2016b.

T. Li, E. Levina, and J. Zhu. Prediction models for network-linked data. arXiv

preprint arXiv:1602.01192, 2016c.

X. Lin. Identifying peer effects in student academic achievement by spatial autore-

gressive models with group unobservables. Journal of Labor Economics, 28(4):

825–860, 2010.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM

Journal on Numerical Analysis, 16(2):346–358, 1979.

C. F. Manski. Identification of endogenous social effects: The reflection problem.

The Review of Economic Studies, 60(3):531–542, 1993.

C. F. Manski. Identification of treatment response with social interactions. The

Econometrics Journal, 16(1):S1–S23, 2013.

T. Martin, B. Ball, and M. E. Newman. Structural inference for uncertain networks.

Physical Review E, 93(1):012306, 2016.

C. Matias and V. Miele. Statistical clustering of temporal networks through a dy-

namic stochastic block model. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 79(4):1119–1141, 2017.

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for

learning large incomplete matrices. The Journal of Machine Learning Research,

11:2287–2322, 2010.

A. F. McDaid, T. B. Murphy, N. Friel, and N. J. Hurley. Improved Bayesian inference

170

for the stochastic block model with application to large networks. Computational

Statistics & Data Analysis, 60:12–31, 2013.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

L. Michell and P. West. Peer pressure to smoke: the meaning depends on the method.

Health Education Research, 11(1):39–49, 1996.

J. A. Nelder and R. J. Baker. Generalized linear models. Wiley Online Library, 1972.

M. Newman. Networks: an introduction. Oxford university press, 2010.

M. Newman. Network structure from rich but noisy data. Nature Physics, page 1,

2018a.

M. Newman. Network reconstruction and error estimation with noisy network data.

arXiv preprint arXiv:1803.02427, 2018b.

M. E. Newman. Modularity and community structure in networks. Proceedings of

the National Academy of Sciences, 103(23):8577–8582, 2006.

M. E. Newman and A. Clauset. Structure and inference in annotated networks.

Nature Communications, 7, 2016.

W. Pan, B. Xie, and X. Shen. Incorporating predictor network in penalized regression

with application to microarray data. Biometrics, 66(2):474–484, 2010.

M. Pearson and L. Michell. Smoke rings: social network analysis of friendship groups,

smoking and drug-taking. Drugs: Education, Prevention, and Policy, 7(1):21–37,

2000.

M. Pearson and P. West. Drifting smoke rings. Connections, 25(2):59–76, 2003.

171

T. Q. Phan and E. M. Airoldi. A natural experiment of social network formation and

dynamics. Proceedings of the National Academy of Sciences, 112(21):6595–6600,

2015.

T. Qin and K. Rohe. Regularized spectral clustering under the degree-corrected

stochastic blockmodel. In Advances in Neural Information Processing Systems,

pages 3120–3128, 2013.

B. Raducanu and F. Dornaika. A supervised non-linear dimensionality reduction

approach for manifold learning. Pattern Recognition, 45(6):2432–2444, 2012.

D. G. Rand, S. Arbesman, and N. A. Christakis. Dynamic social networks promote

cooperation in experiments with humans. Proceedings of the National Academy of

Sciences, 108(48):19193–19198, 2011.

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional

stochastic blockmodel. The Annals of Statistics, pages 1878–1915, 2011.

K. Rohe, T. Qin, and B. Yu. Co-clustering directed graphs to discover asymmetries

and directional communities. Proceedings of the National Academy of Sciences,

113(45):12679–12684, 2016.

G. Rossetti and R. Cazabet. Community discovery in dynamic networks: a survey.

arXiv preprint arXiv:1707.03186, 2017.

H. Rue and L. Held. Gaussian Markov random fields: theory and applications. CRC

Press, 2005.

V. Sadhanala, Y.-X. Wang, and R. J. Tibshirani. Graph sparsification approaches

for laplacian smoothing. In Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, pages 1250–1259, 2016.

172

D. F. Saldana, Y. Yu, and Y. Feng. How many communities are there? ArXiv

e-prints, Dec. 2014.

P. Sarkar and P. J. Bickel. Role of normalization in spectral clustering for stochastic

blockmodels. Ann. Statist., 43(3):962–990, 06 2015. doi: 10.1214/14-AOS1285.

URL http://dx.doi.org/10.1214/14-AOS1285.

S. R. Searle, G. Casella, and C. E. McCulloch. Variance Components, volume 391.

John Wiley & Sons, 2009.

C. R. Shalizi and A. C. Thomas. Homophily and contagion are generically confounded

in observational social network studies. Sociological Methods and Research, 40(2):

211–239, 2011.

J. Sharpnack, A. Singh, and A. Krishnamurthy. Detecting activations over graphs

using spanning tree wavelet bases. In Artificial Intelligence and Statistics, pages

536–544, 2013.

J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

X. Song and X.-H. Zhou. A semiparametric approach for the covariate specific roc

curve with survival outcome. Statistica Sinica, pages 947–965, 2008.

D. A. Spielman. Algorithms, graph theory, and linear equations in laplacian matrices.

In Proceedings of the International Congress of Mathematicians, volume 4, pages

2698–2722, 2010.

D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal on

Computing, 40(4):981–1025, 2011.

173

N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In International

Conference on Computational Learning Theory, pages 545–560. Springer, 2005.

L. Su, W. Wang, and Y. Zhang. Strong consistency of spectral clustering for stochas-

tic block models. arXiv preprint arXiv:1710.06191, 2017.

C. A. Sugar and G. M. James. Finding the number of clusters in a dataset. Journal

of the American Statistical Association, 98(463), 2003.

D. L. Sussman, M. Tang, and C. E. Priebe. Consistent latent position estimation

and vertex classification for random dot product graphs. IEEE transactions on

pattern analysis and machine intelligence, 36(1):48–57, 2014.

M. Tang and C. E. Priebe. Limit theorems for eigenvectors of the normalized lapla-

cian for random graphs. arXiv preprint arXiv:1607.08601, 2016.

M. Tang, A. Athreya, D. L. Sussman, V. Lyzinski, C. E. Priebe, et al. A nonpara-

metric two-sample hypothesis testing problem for random graphs. Bernoulli, 23

(3):1599–1630, 2017.

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

R. Tibshirani and G. Walther. Cluster validation by prediction strength. Journal of

Computational and Graphical Statistics, 14(3):511–528, 2005.

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a

data set via the gap statistic. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 63(2):411–423, 2001.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smooth-

174

ness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), 67(1):91–108, 2005.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business

Media, 2013.

J. T. Vogelstein, W. G. Roncal, R. J. Vogelstein, and C. E. Priebe. Graph classi-

fication using signal-subgraphs: Applications in statistical connectomics. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 35(7):1539–1551, 2013.

E. Vural and C. Guillemot. Out-of-sample generalizations for supervised manifold

learning for classification. IEEE Transactions on Image Processing, 25(3):1410–

1424, 2016.

G. Wahba et al. Support vector machines, reproducing kernel hilbert spaces and the

randomized gacv. Advances in Kernel Methods-Support Vector Learning, 6:69–87,

1999.

L. A. Waller and C. A. Gotway. Applied spatial statistics for public health data,

volume 368. John Wiley & Sons, 2004.

S. Wang, K. Rohe, et al. Discussion of “coauthorship and citation networks for

statisticians”. The Annals of Applied Statistics, 10(4):1820–1826, 2016a.

Y. R. Wang, P. J. Bickel, et al. Likelihood-based model selection for stochastic block

models. The Annals of Statistics, 45(2):500–528, 2017.

Y.-X. Wang, J. Sharpnack, A. Smola, and R. J. Tibshirani. Trend filtering on graphs.

Journal of Machine Learning Research, 17(105):1–41, 2016b.

T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build failures using

social network analysis on developer communication. In Proceedings of the 31st

175

International Conference on Software Engineering, pages 1–11. IEEE Computer

Society, 2009.

P. J. Wolfe and S. C. Olhede. Nonparametric graphon estimation. arXiv preprint

arXiv:1309.5936, 2013.

K. S. Xu and A. O. Hero. Dynamic stochastic blockmodels: Statistical mod-

els for time-evolving networks. In International conference on social computing,

behavioral-cultural modeling, and prediction, pages 201–210. Springer, 2013.

Y. Xu, J. S. Dyer, and A. B. Owen. Empirical stationary correlations for semi-

supervised learning on graphs. The Annals of Applied Statistics, pages 589–614,

2010.

W. Yang, C. Sun, and L. Zhang. A multi-manifold discriminant analysis method for

image feature extraction. Pattern Recognition, 44(8):1649–1657, 2011.

Y. Yao. Information-theoretic measures for knowledge discovery and data mining. In

Entropy Measures, Maximum Entropy Principle and Emerging Applications, pages

115–136. Springer, 2003.

S. J. Young and E. R. Scheinerman. Random dot product graph models for social

networks. In International Workshop on Algorithms and Models for the Web-

Graph, pages 138–149. Springer, 2007.

X. Zhang, C. Moore, and M. E. Newman. Random graph models for dynamic net-

works. The European Physical Journal B, 90(10):200, 2017.

Y. Zhang, E. Levina, and J. Zhu. Estimating network edge probabilities by neigh-

borhood smoothing. Biometrika (In press), 2015.

176

Y. Zhao, E. Levina, and J. Zhu. Consistency of community detection in networks

under degree-corrected stochastic block models. The Annals of Statistics, pages

2266–2292, 2012.

Y. Zhao, Y.-J. Wu, E. Levina, and J. Zhu. Link prediction for partially observed

networks. Journal of Computational and Graphical Statistics, 26(3):725–733, 2017.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local

and global consistency. In Advances in Neural Information Processing Systems,

pages 321–328, 2004.

D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on

a directed graph. In Proceedings of the 22nd international conference on Machine

learning, pages 1036–1043. ACM, 2005.

