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ABSTRACT

Flow over a wall-mounted cube in a turbulent boundary layer is a canonical problem

with applications in many engineering systems. Atmospheric flow over buildings in an urban

environment or vegetative canopies, air flow over road vehicles, flow over printed circuit

boards, etc., are few examples which can be modeled by considering flow over wall-mounted

cubes. Without loss of generality, the problem of interest in this work is controlling the

separation region on the rear end of road vehicles to reduce aerodynamic drag. To do so, we

intend to use an array of cubes placed in single line normal to the flow direction, as passive

vortex generators (VGs) to reduce flow separation. Flow separation is caused by a strong

adverse pressure gradient (APG). As the flow expends its kinetic energy to overcome the

strong APG it decelerates, and eventually separates from the surface. It is important to

reduce flow separation to improve and maintain aerodynamic efficiency, and the approach

of interest is to energize the flow to help overcome the APG. Passive VGs aid in reducing

flow separation by entraining the turbulent kinetic energy (TKE) from the free-stream flow

to the near wall region. Prior research in passive flow control reveals that the effectiveness

of a VG in controlling separation depends on multiple factors which include, the size of the

VG relative to the boundary layer thickness, spacing between adjacent VGs, and position of

the VG with respect to the line of separation. Performing experiments of the different VG

geometries and configurations is both expensive and time consuming. While recent advances

in numerical methods and computational resources have brought more complex flows under

our computational grasp, resolving all the length and time scales for a large portion of real-

world flows is still unfeasible. Large Eddy Simulations (LES) provide a promising alternative,
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and is our tool for investigation in this study.

An optimal deployment of cubes to control boundary layer separation requires a thorough

understanding of the TKE entrainment and distribution in the wake of the cubes. The

dependence of these quantities on the cube to height (h) to boundary layer thickness (δ) ratio,

and spacing between adjacent cubes (w/h) is poorly understood. Therefore, the objectives

of this work are to perform LES of flow over wall-mounted cubes in turbulent boundary layer

(TBL) to understand the effect of: (i) h/δ on the wake characteristics in general, and TKE

distribution in particular (ii) inter-cube spacing (w/h) on the TKE distribution in the wake

of a single line of cubes placed normal to the flow direction. To achieve these objectives,

we validate an existing approach to simulate a spatially evolving turbulent boundary layer

(SETBL), and propose a novel method using machine learning for the same purpose, with

the aim of reducing computation time without any significant modification to the numerical

framework. For a single cube placed in SETBL on a flat plate we discover that the TKE

per unit area decays as a power law in the near-wake, and the power law exponent increases

in a non-linear manner with increasing h/δ. The presence of the cube results in a departure

from the state of equilibrium of the TBL, and a higher value of the power law exponent

facilitates the faster transition back toward equilibrium. LES of flow over an array of cubes

in SETBL reveals amplification of large scale coherent structures in the outer region of the

TBL, which are characterized by increasing TKE. We believe the ejection of low momentum

fluid in the region in between adjacent cubes is responsible for this amplification. From our

physics-based findings we propose an optimal configuration of a row of cube shaped VGs to

reduce pressure drag on road vehicles. We believe the cube height should be between 0.6δ

and δ, the spacing between adjacent cubes should be between 3h and 4h, and the row of

cubes should be placed at an approximate distance of 5w from the line of separation. Our

findings have direct applications in reducing aerodynamic drag on automobiles, aircrafts and

improving turbine efficiency, which in turn can help us reduce greenhouse gas emissions.

xvi



CHAPTER I

Introduction

This chapter explains the motivation of our work. It defines the scope of the dissertation

and the application of our work to solving problems of academic and engineering interest.

Presented work lies within the broad research area of computational fluid dynamics (CFD).

The goal behind pursuing a deeper understanding of a turbulent boundary layer flow over

a wall-mounted cube is explained, along with a comprehensive review of relevant literature.

The use of large eddy simulation approach as our preferred tool of investigation is defended,

and the application of our results in reducing emissions of greenhouse gases from automobiles

is explained. Finally, this chapter concludes with the thesis objective and the outline.

1.1 Physical context and applications

Turbulent flows are ubiquitous in nature. Flow of water in rivers, air flowing on the

surface of earth, flow of air over an aircraft or an automobile, combustion of fuels in an engine,

etc., are all examples of turbulent flows. Understanding the universal nature of turbulent

flows has eluded researchers for a long time. One of the most notable contributions to the

field of turbulence research was made by Kolmogorov (1941) [13]. Kolmogorov’s hypotheses

provided a foundation connecting the underlying nature of all turbulent flows. Based on the

speed of the fluid under consideration in the problem, the variation in density of the fluid

may or may not be significant. The importance of density variation is governed by the ratio
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of fluid velocity (u) to the speed of sound in the medium (c), known as Mach number (M),

i.e., M = u/c. As a rule of thumb if M . 0.3 the flow is considered to be incompressible,

and considered compressible in other scenarios. Flow over an aircraft cruising at high speeds

is an example of a compressible turbulent flow, whereas flow over an automobile moving on

a freeway is an example of an incompressible turbulent flow.

The problem of interest in the present work lies in the incompressible wall-bounded

turbulent flow regime. The term “wall-bounded” refers to the fact that the fluid motion

occurs in contact with a solid surface. Air flow over the surface of a car, an aircraft, or the

earth are all examples of wall-bounded turbulent flows. The effect of the solid surface on

the fluid flow is explained in Sec. 1.2. A common characteristic of all turbulent flows is

the presence of a wide spectrum of length scales. These large and small length scales are

stochastically time-varying, and a closed form analytical solution to determine the turbulent

flow quantities does not exist. Therefore, in the present work we resort to computational

methods to solve the governing system of equations.

The specific problem investigated in this study is turbulent flow over a wall-mounted cube.

The canonical nature of the problem and its applicability in various engineering systems

makes it an attractive problem for a high-fidelity, physics-based computational study. The

numerical framework developed in this work can be further applied to investigate problems

with applications in design of turbo-machinery, buildings, circuit boards, etc. However, it

is important to mention that the quantities investigated and the choice of parameters in

our work are influenced by the efforts in reducing aerodynamic drag on road vehicles. In

the following sections we explain the fundamental concepts necessary to understand the

motivation behind this research campaign, and describe the objectives and contributions of

this thesis.
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Figure 1.1: A schematic representation of laminar to turbulent boundary layer transition.

1.2 Turbulent boundary layer on a flat plate

When a fluid moves along a solid surface, due to the viscosity of the fluid a region develops

close to the wall where the fluid velocity is much lower than the fluid velocity far away from

the wall, and where the shear stresses are increasingly dominant. On the surface where

the fluid meets the solid, the velocity of the fluid must be equal to that of the solid. This

boundary condition is referred to as no-slip. At the surface, the fluid is at rest relative to the

surface, whereas the fluid continues to move at the free-stream velocity far away from the

surface. This difference results in a gradient of fluid velocity as a function of its wall-normal

distance from the surface. This region extending from the surface to a point at which the

fluid attains 99% of the free-stream velocity is called as the boundary layer. The height of

the boundary layer is usually denoted by δ. This concept was first introduced by Prandtl in

1904 [14]. The boundary layer can be laminar or turbulent in nature. In case of laminar flow,

the fluid flows in “layers”, and the transfer of momentum takes place only across adjacent

layers. In a turbulent flow on the other hand, there is transfer of momentum across the flow

in a more effective manner than a comparable laminar flow. This is well demonstrated by

an experiment conducted by injecting dye on the centerline of a long pipe in which water is

flowing [15]. As Reynolds [16] later established, this flow is characterized by a single non-
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dimensional parameter, now known as the Reynolds number (Re). The Reynolds number is

defined in Eq. 1.1.

Reynolds number, Re =
ρUL

µ
(1.1)

where ρ is the fluid density, U is the characteristic flow velocity, L is the characteristics length

scale associated with the flow, and µ is the dynamic viscosity of the fluid. In Reynolds’ pipe-

flow experiment, if the Re is less than about 2,300, the flow is laminar, and the dye injected

on the centerline forms a long streak that increases in diameter only slightly with downstream

distance. If, on the other hand, Re exceeds about 4,000, then the flow is turbulent1. The dye

streak is jiggled about by the turbulent motion; it becomes progressively less distinct with

downstream distance; and eventually mixing with the surrounding water reduces the peak

dye concentration to the extent that it is no longer visible. The Reynolds number relates the

magnitude of inertia to viscous forces. For a fluid moving on a flat surface if the Reynolds

number is higher than a critical value (∼ 5 × 105), the boundary layer transitions from a

laminar to a turbulent regime as depicted in Fig. 1.1.

The turbulent boundary layer (TBL) is a complex flow phenomenon, and it is character-

ized by a wide-range of length and time scales. A TBL can be further divided into a inner

region and a outer region, as illustrated in Fig. 1.2. The inner region is the region close

to the wall, where the magnitude of the viscous forces is comparable to the inertial forces.

The characteristics length scale inside the inner region is much smaller than that in the

outer region, and it is densely populated with coherent structures [17, 18]. These coherent

structures scale with the friction velocity (uτ ) and the kinematic viscosity (ν), and uτ and ν

are known as the inner variables. The inner region extends to a height of y ≈ 0.2δ from the

wall [19, 20], and it is characterized by high levels of production and dissipation of turbulent

1As the Reynolds number is increased, the transition from laminar to turbulent flow occurs over a range
of Re, and this range depends on the details of the experiment.
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Figure 1.2: Mean turbulent boundary layer velocity profile normalized by the outer variables.

kinetic energy (TKE). The outer region extends from y ≈ 0.2δ to the end boundary layer,

and has low levels of TKE production. Inertial forces are dominant in the outer region, and

the length scales in this region are governed by the outer variables, i.e., flow velocity (U) and

TBL thickness (δ). The outer region has larger coherent structures known as the hairpin

vortices, which are organized in packets, and are of the size of the boundary layer thickness

[21, 22]. Many researchers have investigated different aspects of the TBL in great detail

over the years [23, 24, 25]. TBLs are a common occurrence in engineering applications, and

separation of the TBL from the surface can have profound consequences on the efficiency of

the application.

1.3 Flow separation

When flow along a surface decelerates too strongly, streamlines detach from the surface

in a process called flow separation. Flow separation occurs either due to a strong adverse

pressure gradient (APG) on a smooth surface, or a surface discontinuity. Consider the
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stream-wise momentum equation inside a boundary layer in the limit, Re → ∞, presented

in Eq. 1.2.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(1.2)

At the solid surface, y = 0, at steady state we have, ∂u/∂t = 0, u = 0 and v = 0, so that,

dp

dx
= µ

∂2u

∂y2

On the surface ∂2u/∂y2 must always have the same sign as the pressure gradient, dp/dx,

and in case of an APG, dp/dx > 0. However, at the edge of the boundary layer we must

have, ∂2u/∂y2 < 0. Therefore, there must exist an inflection point between the cross-over

from the inner region of ∂2u/∂y2 > 0 and the outer region of ∂2u/∂y2 < 0. As we proceed

along the stream-wise direction the gradient of the velocity profile becomes so steep that,

(
∂u

∂y

)
y=0

= 0

This point is defined as the point of separation. When a TBL approaches separation due

to a strong APG, it results in modification of the coherent structures inside the boundary

layer; coherent streaks tend to disappear or reduce [26, 27]. Flow separation and the stages

that lead to it have been studied in great detail. Yet, investigating the flow characteristics

in the separated and reattachment regions is an area of active research. Stratford et al. [28]

developed a criterion for turbulent boundary layer separation on a flat plate. Work done

by Simpson et al. [29] on measurements of flows with adverse pressure gradient revealed

that the log law is maintained until close to separation. More recently, direct numerical

simulation (DNS) of separating turbulent boundary layer studied by Na et al. [30] revealed

stark similarities in the kinetic energy budget in the separated region to that of a plane

mixing layer. Along with studying the underlying universal nature of the boundary layer

in separated regions, the subsequent reattachment and recovery of the boundary layer have
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been investigated with equal interest. In the review on recovery of a boundary layer, Smits

et al. [31] report that the recovery process initiates from the wall and grows outwards in

the shear layer. However, Alving et al. [32] present a contrary view observed while studying

mild separation of a turbulent boundary layer in which the recovery process is initiated in

the outer layer. Flow separation has drastic effects in engineering applications like, drop in

lift and increase in drag of an aircraft, drop in efficiency of turbo-machinery, energy losses in

subsonic diffusers, increased after-body drag in aircraft fuselage, etc., making flow separation

control important.

1.4 Control of flow separation

When a TBL encounters a strong APG it expends its energy to overcome the APG.

According to the Bernoulli equation, the kinetic energy gradient (1
2
∆u2) is working against

the pressure gradient (∆p/ρ). The point at which the flow can no longer overcome the

APG, it separates. Conversely, one might expect that energizing the flow will help mitigate

flow separation. This is the fundamental idea behind flow separation control strategies that

are relevant to the present work. Energizing the TBL can be achieved by inducing strong

stream-wise and/or span-wise vortices near the wall, which entrain high momentum fluid

from the free-stream to the near wall region. The methods used to facilitate this momentum

transfer can be classified into two categories: passive and active flow control.

1.4.1 Passive flow control

In passive flow control methods, stationary objects are mounted on the surface inside

the flow domain, before the flow separates. These objects are referred to as passive vortex

generators (VGs). Passive VGs have been found to be most effective in controlling flow

separation in applications where flow separation line is relatively fixed [2] like, flow over

a backward-facing step [33, 34]. Passive VGs with different shapes and sizes have been

investigated, which include, vane-type, span-wise cylinders, wheeler’s doublets, wishbone
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separation-control effectiveness somewhat; however, the

VGs substantially lose their effectiveness when lowering

h=d to less than 0.1. Velocity survey data indicate that a

value of h=do0:1 corresponding to yþ o300, which

approximates where the inner (log) region ends and

the outer (wake) region begins [16], as illustrated in

Fig. 4(a).

The above results demonstrate that for certain

applications where the flow-separation line is relatively

fixed, the low-profile VGs could be more efficient and

effective than the much larger conventional VGs having

a device drag an order-of-magnitude higher. The most

effective range of low-profile VGs is determined to be

about 5–30 h upstream of baseline separation, although

the device-induced streamwise vortices could last up to

100 h. Therefore, the low-profile VGs roughly follow

many of the same guidelines established by Pearcey [7]

for conventional VGs, where the downstream effective-

ness, defined as a multiple of h (instead of d for the

conventional VGs), is thereby reduced due to the lower

height of the device.

Although both Wheeler’s doublet and wishbone VGs

could effectively provide flow mixing over 3 times their

own device height [15], the performance of low-profile

vane-type VGs generally compares favorably with that

of the doublet or wishbone VGs. For example, at

h=dB0:2; the vane-type VGs are slightly more effective

in separation control while incurring less device drag

than the wishbone VGs with equivalent heights. How-

ever, the doublet VGs, because of their extended device

chord length (double rows), could be more effective than

the vane-type VGs when the device height is reduced to

only 10% of the boundary-layer thickness [16]. Simplis-

tically, the effectiveness of the low-profile VGs is at least

partially attributed to the full velocity-profile character-

istic of a turbulent boundary layer. As an example,

Fig. 4(b) shows the typical height of low-profile VG

relative to the boundary-layer velocity profile. Even at a

height of only 0.2d; the local velocity is over 75% of the

free-stream value. Any further increase in height

provides only a moderate increase in local velocity but

dramatically increases the device drag.

Ashill et al. [20] report a recent experiment performed

at the Defence Evaluation and Research Agency

(DERA) Boundary Layer Tunnel, Bedford, to examine

the comparative effectiveness of flow-separation control

over a 2D bump for various low-profile VGs at

UN ¼ 20m/s. Wedge type and counter-rotating delta-

vane VGs with h=dB0:3 (dB33mm, e=hB10; Dz=h ¼
12; b ¼ 7141) are located at 52 h upstream of the

baseline separation. All VG devices examined reduce the

extent of the separation region, but the counter-rotating

vanes spaced by 1 h gap are the most effective in

this respect. Although the device-induced streamwise
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(b) VG geometry and device parameters. 

Fig. 1. Flow-control effectiveness summary and VG geometry [16].
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Figure 1.3: Different passive vortex generator configurations from Lin [2], c© Elsevier. Re-
produced with permission. All rights reserved.

type etc. as seen in Fig. 1.3. Passive VGs modify the flow by entraining turbulent kinetic

energy from the mean flow to the near the wall region inside a TBL. The increased TKE

helps to overcome the adverse pressure gradient, and reduce the region of flow separation.

Reduction in flow separation can be beneficial in reducing pressure drag, as demonstrated

by Pujals et al. [8]. They used cylinder shaped passive VGs to reduce pressure drag on a

simplified car model.

The effectiveness of passive VGs depends on the size (h) of the VG compared to the

boundary layer thickness (δ). Larger VGs produce stronger vortices however, they also have

a greater device drag associated with their size. VGs of size comparable to the boundary

layer thickness (δ) have been used by early researchers [35, 2]. However, it was soon realized

that larger VGs have a greater device drag associated with their shape, and soon they were

replaced by sub-merged VGs, with height h ∼ 0.2δ [36, 2]. Sub-merged VGs are found
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separation-control effectiveness somewhat; however, the
VGs substantially lose their effectiveness when lowering
h=d to less than 0.1. Velocity survey data indicate that a
value of h=do0:1 corresponding to yþ o300, which
approximates where the inner (log) region ends and
the outer (wake) region begins [16], as illustrated in
Fig. 4(a).
The above results demonstrate that for certain

applications where the flow-separation line is relatively
fixed, the low-profile VGs could be more efficient and
effective than the much larger conventional VGs having
a device drag an order-of-magnitude higher. The most
effective range of low-profile VGs is determined to be
about 5–30hupstream of baseline separation, although
the device-induced streamwise vortices could last up to
100h. Therefore, the low-profile VGs roughly follow
many of the same guidelines established by Pearcey [7]
for conventional VGs, where the downstream effective-
ness, defined as a multiple of h (instead of d for the
conventional VGs), is thereby reduced due to the lower
height of the device.
Although both Wheeler’s doublet and wishbone VGs

could effectively provide flow mixing over 3 times their
own device height [15], the performance of low-profile
vane-type VGs generally compares favorably with that
of the doublet or wishbone VGs. For example, at
h=dB0:2; the vane-type VGs are slightly more effective

in separation control while incurring less device drag
than the wishbone VGs with equivalent heights. How-
ever, the doublet VGs, because of their extended device
chord length (double rows), could be more effective than
the vane-type VGs when the device height is reduced to
only 10% of the boundary-layer thickness [16]. Simplis-
tically, the effectiveness of the low-profile VGs is at least
partially attributed to the full velocity-profile character-
istic of a turbulent boundary layer. As an example,
Fig. 4(b) shows the typical height of low-profile VG
relative to the boundary-layer velocity profile. Even at a
height of only 0.2d; the local velocity is over 75% of the
free-stream value. Any further increase in height
provides only a moderate increase in local velocity but
dramatically increases the device drag.
Ashill et al. [20] report a recent experiment performed

at the Defence Evaluation and Research Agency
(DERA) Boundary Layer Tunnel, Bedford, to examine
the comparative effectiveness of flow-separation control
over a 2D bump for various low-profile VGs at
UN ¼ 20m/s. Wedge type and counter-rotating delta-
vane VGs with h=dB0:3 (dB33mm, e=hB10; Dz=h¼
12; b ¼ 7141) are located at 52h upstream of the
baseline separation. All VG devices examined reduce the
extent of the separation region, but the counter-rotating
vanes spaced by 1h gap are the most effective in
this respect. Although the device-induced streamwise
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separation-control effectiveness somewhat; however, the
VGs substantially lose their effectiveness when lowering
h=d to less than 0.1. Velocity survey data indicate that a
value of h=do0:1 corresponding to yþ o300, which
approximates where the inner (log) region ends and
the outer (wake) region begins [16], as illustrated in
Fig. 4(a).
The above results demonstrate that for certain

applications where the flow-separation line is relatively
fixed, the low-profile VGs could be more efficient and
effective than the much larger conventional VGs having
a device drag an order-of-magnitude higher. The most
effective range of low-profile VGs is determined to be
about 5–30hupstream of baseline separation, although
the device-induced streamwise vortices could last up to
100h. Therefore, the low-profile VGs roughly follow
many of the same guidelines established by Pearcey [7]
for conventional VGs, where the downstream effective-
ness, defined as a multiple of h (instead of d for the
conventional VGs), is thereby reduced due to the lower
height of the device.
Although both Wheeler’s doublet and wishbone VGs

could effectively provide flow mixing over 3 times their
own device height [15], the performance of low-profile
vane-type VGs generally compares favorably with that
of the doublet or wishbone VGs. For example, at
h=dB0:2; the vane-type VGs are slightly more effective

in separation control while incurring less device drag
than the wishbone VGs with equivalent heights. How-
ever, the doublet VGs, because of their extended device
chord length (double rows), could be more effective than
the vane-type VGs when the device height is reduced to
only 10% of the boundary-layer thickness [16]. Simplis-
tically, the effectiveness of the low-profile VGs is at least
partially attributed to the full velocity-profile character-
istic of a turbulent boundary layer. As an example,
Fig. 4(b) shows the typical height of low-profile VG
relative to the boundary-layer velocity profile. Even at a
height of only 0.2d; the local velocity is over 75% of the
free-stream value. Any further increase in height
provides only a moderate increase in local velocity but
dramatically increases the device drag.
Ashill et al. [20] report a recent experiment performed

at the Defence Evaluation and Research Agency
(DERA) Boundary Layer Tunnel, Bedford, to examine
the comparative effectiveness of flow-separation control
over a 2D bump for various low-profile VGs at
UN ¼ 20m/s. Wedge type and counter-rotating delta-
vane VGs with h=dB0:3 (dB33mm, e=hB10; Dz=h¼
12; b ¼ 7141) are located at 52h upstream of the
baseline separation. All VG devices examined reduce the
extent of the separation region, but the counter-rotating
vanes spaced by 1h gap are the most effective in
this respect. Although the device-induced streamwise
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separation-control effectiveness somewhat; however, the
VGs substantially lose their effectiveness when lowering
h=d to less than 0.1. Velocity survey data indicate that a
value of h=do0:1 corresponding to yþ o300, which
approximates where the inner (log) region ends and
the outer (wake) region begins [16], as illustrated in
Fig. 4(a).
The above results demonstrate that for certain

applications where the flow-separation line is relatively
fixed, the low-profile VGs could be more efficient and
effective than the much larger conventional VGs having
a device drag an order-of-magnitude higher. The most
effective range of low-profile VGs is determined to be
about 5–30hupstream of baseline separation, although
the device-induced streamwise vortices could last up to
100h. Therefore, the low-profile VGs roughly follow
many of the same guidelines established by Pearcey [7]
for conventional VGs, where the downstream effective-
ness, defined as a multiple of h (instead of d for the
conventional VGs), is thereby reduced due to the lower
height of the device.
Although both Wheeler’s doublet and wishbone VGs

could effectively provide flow mixing over 3 times their
own device height [15], the performance of low-profile
vane-type VGs generally compares favorably with that
of the doublet or wishbone VGs. For example, at
h=dB0:2; the vane-type VGs are slightly more effective

in separation control while incurring less device drag
than the wishbone VGs with equivalent heights. How-
ever, the doublet VGs, because of their extended device
chord length (double rows), could be more effective than
the vane-type VGs when the device height is reduced to
only 10% of the boundary-layer thickness [16]. Simplis-
tically, the effectiveness of the low-profile VGs is at least
partially attributed to the full velocity-profile character-
istic of a turbulent boundary layer. As an example,
Fig. 4(b) shows the typical height of low-profile VG
relative to the boundary-layer velocity profile. Even at a
height of only 0.2d; the local velocity is over 75% of the
free-stream value. Any further increase in height
provides only a moderate increase in local velocity but
dramatically increases the device drag.
Ashill et al. [20] report a recent experiment performed

at the Defence Evaluation and Research Agency
(DERA) Boundary Layer Tunnel, Bedford, to examine
the comparative effectiveness of flow-separation control
over a 2D bump for various low-profile VGs at
UN ¼ 20m/s. Wedge type and counter-rotating delta-
vane VGs with h=dB0:3 (dB33mm, e=hB10; Dz=h¼
12; b ¼ 7141) are located at 52h upstream of the
baseline separation. All VG devices examined reduce the
extent of the separation region, but the counter-rotating
vanes spaced by 1h gap are the most effective in
this respect. Although the device-induced streamwise
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(b) counter-rotating vane-type VG

Figure 1.5: Streamwise vortices produced by vane-type VGs from Cuvier [3].

to be more efficient in momentum transfer than bigger VGs [36, 2, 37]. In 2002, Lin et

al. published work on an extensive exploratory analysis on the effectiveness of different

9



passive VGs in flow control. They measured the effectiveness of a VG configuration based

on the percentage reduction in separation region, as observed in Fig. 1.4. They concluded

that submerged VGs that produce strong stream-wise vortices like the vane-type, are most

effective in separation control, Fig. 1.5, followed by VGs that produce span-wise vortices,

like span-wise cylinders. Researchers have explored a variety of shapes of passive VGs to

control separation on different geometries [35, 36, 2, 38]. From [2, 38] and several others it

is clear the effectiveness of the VG in controlling boundary layer separation depends on the

size of the VG relative to the boundary layer thickness, the span-wise spacing between the

VGs, and the streamwise distance between the VG trailing edge and the line of separation.

1.4.2 Active flow control

Active flow control is the use of actuators to convert electrical energy to fluid flow distur-

bances. There are scenarios in which flow control is needed only under specific conditions,

in which case continuously using a passive VG would result in performance degradation.

An example is the flow separation that occurs on the wings on an aircraft during landing

and take off. When an aircraft lands or take off, the wings are exposed to high angles of

attack, leading to separated flow on the suction side however, when the aircraft is in cruise

condition, the airfoil is designed such that there is no separation. If passive VGs were used in

cruise conditions they would result in increased drag and lower efficiency. To overcome this

problem, active devices have been developed, which can be turned off when not required.

There are various types of actuators used to interact with the flow, which can be classified

in numerous ways. One way to classify them is based on their function, as illustrated in Fig.

1.6. The most common type is fluidic, which uses fluid suction or injection, and are briefly

described below. Another class of actuators include moving body inside or on the domain

boundary, with the objective to induce local fluid motion. An example is the electrodynamic

fluid oscillator used in the classic flat plate experiments [39]. The final category of commonly

used active VGs is the plasma actuators, which have gained popularity in the recent years

10



Flow control 
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object/surface

Plasma
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Figure 1.6: A type classification of flow control actuators from Cattafesta et al. [4].

 

(a) Co-rotating

 

(b) Counter rotating

Figure 1.7: A schematic of synthetic jets from Cuvier [3].

because of their solid-state nature and fast response time.

Within the class of fluidic actuators, round jets are the most commonly used active VGs

[40, 41, 42]. Steady jet VGs require a constant supply of power and are not suitable for

real-world applications due to their large energy requirements. To overcome this drawback,

pulsed jets have been developed [42, 43], which can be used in a co-rotating or counter-
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Figure 1.8: Forces acting on an automobile as a function of it’s speed from Barnard [5].

rotating configurations, as illustrated in Fig. 1.7. Steady and pulsed jets were initially used

in an open loop, without feedback [40, 42]. More recently, closed-loop pulsed jets have been

used efficiently to reduce flow separation [44, 45]. The effectiveness of a pulsed jet depends

on a number of factors like the jet velocity compared to the free-stream velocity, the jet

angle compared to the free-stream velocity, the diameter of the jet, the pulse frequency, the

spacing between adjacent jets, etc. [42, 43, 46].

1.5 Flow separation on an automobile

Our work is a part of a larger project with the ultimate goal of reducing the aerodynamic

drag acting on road vehicles by manipulating the separated region on the back of the vehicles.

Recent data from the Environmental Protection Agency (EPA) reveals that nearly 23% of

the total greenhouse gas emissions in the United States come from automobiles [47]. For

a typical mid-sized American car, 18% of fuel energy is expended to perform work against
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Figure 1.9: Visualization of air-flow separation of the rear end of an automobile. Photo
credit: NASA [6].

the aerodynamic drag on an urban schedule, and the number can be as high as 51% on

the free-way [48]. Reducing the aerodynamic drag will in turn aid our efforts in mitigating

greenhouse gas emissions. Aerodynamic drag is the resistance to the motion of the car by

air. If we consider an automobile moving on a freeway there are two main forces acting on

the car: (i) rolling resistance acting on the wheels, and (ii) air resistance, i.e., aerodynamic

drag. Barnard [5] explain that as the speed of the automobile increases the rolling resistance

does not significantly change, while, the aerodynamic drag increases in a quadratic manner,

as depicted in Fig. 1.8. This aerodynamic drag acting on the car can be decomposed into

two components,

Aerodynamic drag = Pressure drag + Viscous drag

where pressure drag is the net pressure force acting on the car and viscous drag is the net

viscous force acting on the surface of the car, which depends strongly on the viscosity of
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 Figure 1.10: Schematic of an Ahmed body from Hinterberger et al. [7], c© Springer Nature.
Reproduced with permission. All rights reserved.

the fluid. Flow separation occurs on the rear end of the automobile, as illustrated in Fig.

1.9. The sudden change in vehicle geometry at the rear end of the roof results in flow

separation. Experimental investigation [8] of a simplified model shows that the separated

region is characterized by low pressure. The pressure gradient setup along the surface of the

vehicle results in a net force opposing its motion. This force is termed as pressure drag.

1.6 Ahmed body: a simplified car model

The geometry of road vehicles is complex and highly variable, therefore for the purpose

of academic research Ahmed et al. [49] proposed a simplified model subsequently referred

to as Ahmed body (Fig. 1.10). Amongst other studies, researchers have used this model

to understand the complex three dimensional wake formed behind a car [8, 50, 51]. An

Ahmed body is essentially a parallelepiped with a slant face at the rear which reproduces

basic aerodynamic features of a car. Ahmed et al. showed that the strength of the side-edge

vortices and the horse-shoe vortices in the separation bubble is mainly determined by the

rear slant angle. Beyond a critical slant angle (α ≈ 30◦) while keeping all other parameters
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(a) Shape of cylinder VGs with relevant
parameters.

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

(b) Rear view of the cylinder VGs placed on the
Ahmed body.

Figure 1.11: From Pujals et al. [8], c© Springer Nature. Reproduced with permission. All
rights reserved.

fixed, pressure drag increases significantly.

The separation of flow from the rear edge creates a strong pressure gradient between the

sides and the slant, which leads to the formation of strong counter-rotating vortices from the

two upper corners of the slant. Minguez et al. [52] performed a LES of flow over an Ahmed

body to find that the flow separates from the leading edge of the body front and reattaches

after a recirculation bubble on the top-surface. The reattachment is followed by a thickening

of the turbulent boundary layer. Minguez et al. demonstrated in their simulations that

before the flow separates from the rear end of the Ahmed body the turbulent boundary layer

is spatially evolving in nature. The quantities investigated and the choice of parameters in

our work are influenced by the efforts in reducing pressure drag acting on the rear end of an

Ahmed body.

Pujals et al. [8] performed an exploratory study to reduce the flow separation on the

rear end of an Ahmed body using cylinders as passive VGs with different configurations.

The cylinder-shaped VGs and their arrangement on the Ahmed body can be seen in Fig.

1.11a and 1.11b respectively. An experimental study conducted by Pujals et al. [53, 8]

15



using cylinder shaped roughness elements to modify a flat plate turbulent boundary layer at

moderate Reynolds number (Re = Ueδ
∗/ν = 1000, where δ∗ is the displacement thickness)

demonstrated that large-scale, high-speed and low-speed stream-wise coherent structures are

formed downstream of the roughness elements. These coherent structures emanate from the

horse-shoe vortex formed in front of the cylinder, as illustrated by Fig. 1.12. From the

extensive work done on passive VGs by Lin et al. [2], we know that strong stream-wise

vortices are most effective in entraining momentum from the free stream to the near wall

region, and therefore in separation reduction. Pujals et al. put this observation to test by

investigating the ability of large-scale stream-wise coherent streaks to reduce flow separation

on the rear end of the Ahmed body, and then evaluating whether the drag changed [8]. In

the most optimal configuration they were able to reduce the total drag coefficient by 10% in

which the cylinders were placed at a distance of 4λz to 5λz upstream of the separation line,

where λz is the distance between adjacent cylinders. In this study the Reynolds number

of the TBL on the top surface of an Ahmed body was 20,000, based on the boundary

layer thickness and the mean flow velocity. The similarity between the horse-shoe vortices

produced by a wall-mounted cylinder and a cube is evident from Fig. 1.12 and 1.13. This is

the inspiration behind considering a wall-mounted cube as a potential passive VG.

1.7 Cube as a passive vortex generator

Flow over cube-like obstacles in a turbulent flow have been investigated using experimen-

tal and numerical methods. Martinuzzi [54] performed an extensive experimental study of

flow over surface-mounted prismatic obstacles of width-to-height ratio (W/H) ranging from

1 to 24 in a fully developed channel flow at Reynolds numbers ranging from 80,000 to 115,000

based on the mean velocity and channel height. They documented the reattachment length

and separation length for different ratios, and concluded that for W/H > 6 the flow is nom-

inally two dimensional in the middle of the wake. In the experimental study by Hussein et

al. [11] the evolution of the spatial dissipation rate from the near field recirculation zone to
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Figure 1.12: Coherent structures of horse-
shoe vortex around a cylinder in a turbulent
boundary layer from Escauriaza et al. [9],
c© Springer Nature. Reproduced with per-

mission. All rights reserved.

 
 

 
 

Figure 1.13: Coherent structures of horse-
shoe vortex around a cube in a channel flow
from Yakhot et al. [10], c© Cambridge Uni-
versity Press. Reproduced with permission.
All rights reserved.

the asymptotic wake is examined. A cube of half channel height was placed in a fully devel-

oped turbulent channel flow at a Reynolds number of 40,000, based on the cube height and

mean channel velocity. The production and dissipation of turbulent kinetic energy (TKE)

exhibited a power law decay in the center-plane of the channel.

Numerical studies of flow over a wall-mounted cube placed in a turbulent channel have

been performed using the Reynolds Averaged Navier Stokes (RANS) approach with little

success [55, 56] because steady RANS simulation neglects the unsteady flow features. Shah

et al. [57, 58] and Krajnovic et al. [59, 12] performed Large-Eddy Simulation (LES) of this

problem at a Reynolds number of 40,000 based on the mean velocity and cube height. They

compared their results with those of Martinuzzi et al. [54] with good agreement. For this

problem, the one-equation sub-grid scale model and its variants were reported to perform

better than Smagorinsky-type models due their ability to capture back-scatter. Back-scatter

is a phenomenon in which TKE flows from smaller scales to larger scales, contrary to an

equilibrium turbulent flow.

More recently, Liakos et al. [60] performed a Direct Numerical Simulation (DNS) of

steady-state laminar flow over a cube at Reynolds numbers ranging from 1 to 2000 based on
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the cube height. The study investigates the onset of dominant flow structures and instability

in this flow configuration. It was found that the horse-shoe vortex begins to appear at a

Reynolds number of 1267 and the onset of unsteadiness is seen at Re = 2000. In another

DNS study by Yakhot et al. [61, 10] the inflow was fully developed channel flow, with a

Reynolds number of 1870 based on the cube height. They reported that the unsteadiness in

the flow is caused by the viscous-inviscid interaction between the horse-shoe vortex and a

narrow band of positive vorticity in front of the cube.

Drawing inspiration from the work done by Pujals et al. [8], in the successful use of

cylinder VGs in reducing drag on the Ahmed body, we propose to use cube-shaped VGs

to investigate the basic fluid mechanics associated with blunt VGs. A cube geometry has

several advantages: (i) a face-on cube has a single length dimension associated with it, as

opposed to two, in case of the cylinder; this reduces the parameter space. (ii) The cube

produces similar large stream-wise coherent structures in its wake (horse-shoe vortices), as

shown in Fig. 1.13 [59, 12, 61]. These vortices are important flow features associated with

VGs. In fact, with a detailed understanding of the fluid mechanics, cubic VGs could be a

possible geometry in practice.

As explained in Sec. 1.6, a spatially evolving turbulent boundary layer (SETBL) is

formed on the top-surface of the Ahmed body. In light of this knowledge, our proposition

to investigate the cube as a passive VG gives rise to three important questions: (i) what

should be the height of the cube relative to the boundary layer thickness? (ii) where should

we place the cube with reference to the rear end of the Ahmed body? (iii) what should be

the spacing between adjacent cubes, if using an array of cubes? We seek to answer these

questions by studying a cube placed on a flat plate in isolation, subjected to a SETBL using

high-fidelity numerical simulations (large-eddy simulations). This canonical geometry will

enable us to identify the fundamental physics underlying SETBL flow over wall-mounted,

blunt objects, and possibly generalize to more complicated geometries and settings.

18



1.8 Objectives of this thesis

The objective of this thesis is to understand the basic fluid mechanics of turbulent flow

over (cube-like) VGs in a SETBL using high-fidelity numerical simulations. For the findings

to be useful to control TBL separation on the rear end of an Ahmed body, we consider

a Reynolds number of 20,000 (Sec. 1.6). There are many numerical approaches to solve

the Navier-Stokes equations for turbulent flows, among which the most commonly used

approaches are Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES)

and Direct Numerical Simulation (DNS). The three methods are described in detail in Sec.

2.1, with their advantages and disadvantages. The RANS approach gives a steady-state

solution by computing time-averaged flow quantities. RANS simulations are computationally

inexpensive. We know that the unsteady vortex shedding observed in flow over cube-like

objects has a significant impact on the physics, and steady RANS simulations cannot capture

the flow accurately [55, 56]. In a DNS, we solve the Navier-Stokes equations on a fine

computational grid, and resolve the entire spectrum of length scales in the turbulent flow.

DNS is only feasible for low Reynolds number flows, due to its fine mesh requirement. They

are computationally expensive and not a feasible option for the present study, because we

are interested in understanding the effect of a number of parameters on the flow physics.

Therefore, we use the LES approach in this computational campaign. The computational

expense of LES lies between RANS and DNS.

The literature demonstrates that there is a good understanding of the complex flow struc-

tures formed around a cube, e.g., the horse-vortex, hair-pin vortices and vortex shedding,

for a range of Reynolds numbers [59, 12, 60, 61, 10]. These flow structures are demonstrated

in Fig. 1.14. We illustrate the iso-surfaces of the second invariant of the velocity gradient

tensor (∇u), known as the Q-criterion. The Q-criterion defines a vortex as a “connected

fluid region with a positive second invariant of ∇u” i.e. Q > 0. It represents vortices as

regions where the vorticity magnitude is greater than the magnitude of rate-of-strain [62]. In

Fig. 1.14, the iso-surfaces of Q−criterion are colored with vorticity magnitude. In this figure
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Figure 1.14: Iso-surfaces of Q−criterion colored with vorticity magnitude for flow over a
wall-mounted cube in a spatially evolving turbulent boundary layer.

we observe a horse-shoe shaped vortex formed in front of the cube, lateral vortices on the

side of the cube, and vortex shedding on the top surface of the cube. While various bodies

of work [11, 59, 60, 61, 10] have advanced our understanding of physics of turbulent flow

over a cube with h ∼ δ, these studies have been performed in a fully developed channel. For

the physics-based findings from turbulent flow over a cube to be applicable for estimating

wind loads on buildings, simulations of flow over vehicles, passive flow control, etc., with the

cube height (h) greater than 0.3δ, a SETBL provides a more accurate representation of the

turbulent flow physics than that by a fully developed channel flow. Beyond a wall-normal

distance of 0.3δ, there are quantifiable differences in the Reynolds stresses between a SETBL

and a turbulent channel flow [63], and the effect of these differences on the flow over a cube

is not completely understood.

On the other hand a vast body of work investigates atmospheric boundary layer flows over

wind farms [64], vegetative canopies [65, 66] and urban environments [67, 68, 69, 70]. These

engineering and geophysical examples are distinctly different from smooth wall turbulence,

because of the presence of a distribution of obstacles of height, h, which protrude in the
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inertial region of the boundary layer [71]. The obstacle height is these studies is typically less

than 0.2δ. A 3D array of cubes with h < 0.2δ has also been investigated to understand the

physics of turbulent flow over rough surfaces [72, 73, 74, 75]. From these studies and several

others it has been found that the validity of the wall-similarity hypothesis of Townsend

[76] — outside the roughness sublayer, turbulent motions are independent of the surface

roughness and the interaction between inner and outer layers is weak at high Reynolds

numbers — depends on the type of roughness (2D or 3D), and the nature of the turbulent

flow (internal or external). For turbulent channel flows with symmetric 2D, or 3D roughness

the wall-similarity is satisfactory in the outer region. Whereas, in case of TBLs the wall-

similarity hypothesis holds only for 3D roughness elements at high Reynolds numbers. For

2D roughness elements the effects extend in the outer region at both low and high Reynolds

numbers regardless of the roughness height.

For the cube to be used as a passive vortex generator, h > 0.2δ, and the problem

of understanding the wake characteristics of a cube (h > 0.2δ) placed in a TBL has not

garnered significant attention. Furthermore, for our findings to be applicable in controlling

flow separation on the rear end of road vehicles, we need to understand the mechanism of

TKE entrainment and its distribution in the wake of the cube. In a related work, Hussein

et al. [11] studied the flow over a cube in fully developed channel flow, and reported the

TKE production and dissipation as a function of the stream-wise coordinate in the plane

of symmetry of the cube. However, the differences in the Reynolds stresses in a turbulent

channel flow and a TBL prevent us from directly employing their findings to the application

of interest. Moreover, the TKE distribution in regions away from the center-plane, and

its dependence of h/δ ratio have not been examined. For the aforementioned reasons, the

objective of our work is two-fold: (i) to investigate the effect of h/δ ratio (for h > 0.2δ) on

the TKE distribution in the wake of a cube placed in a SETBL (ii) to understand the effect

of varying the spacing between adjacent cubes on the wake characteristics, when a single

row of cubes is placed normal to the flow direction.
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1.9 Thesis overview

To accomplish the aforementioned objectives we perform high-fidelity large eddy simu-

lations of flow over a cube placed in a TBL. For our findings to be applicable in controlling

separated region on the rear end of road vehicles, flow over a cube in a SETBL is considered.

We begin our computational campaign by studying a single cube in isolation, and under-

standing the effect of h/δ ratio on the wake characteristics. Later, we consider a single array

of cubes placed in a line normal to the flow direction, and scrutinize the effect of varying the

inter-cube spacing on the wake characteristics. The sequential steps we took to achieve our

objectives form the basis of the different chapters in my thesis and are summarized below:

1. In Chapter II, the governing equations and numerical approach (large-eddy simulation

of the incompressible Navier-Stokes equation) are described. Given that the simulations

are conducted using the open source OpenFOAM [77] libraries, we first assess the

viability of the code to simulate the problem of interest. In particular, we present our

approach to introduce a turbulent boundary layer as an inflow into our domain in the

OpenFOAM framework. After evaluating an existing strategy [1], we introduce a novel

approach making use of a turbulent flow database and machine-learning.

2. To understand the basic fluid mechanics of a spatially evolving turbulent boundary

layer flow over a wall-mounted cube, we present our LES results for cubes of different

heights in Chapter III. We observe that size of the wake behind the cube scales with the

cube height (h). The center of the horse-shoe vortex is characterized by high levels of

TKE production, and the reason for this increase is explained. An important finding of

this work is the discovery of the power of decay of TKE per unit area in the near-wake

of the cube, and quantifying the dependence of the decay rate on the cube height to

boundary layer thickness ratio.

3. To predict the influence of neighboring cubes on each other, we present in Chapter

IV results from LES of a line array of cubes, for which the spacing between the cubes
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is varied. The periodic arrangement of cubes in the span-wise direction artificially

imposes a periodic forcing in the outer region of the TBL. This leads to amplification

of large scale coherent structures in the outer region for the case with the smallest

spacing. The amplification of these structures results in an increasing TKE in the

region in between adjacent cubes. We conclude with Chapter V, highlighting our

major contributions and possible avenues for future research.
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CHAPTER II

Governing equations and the numerical approach

We perform a computational analysis of flow over a wall-mounted cube in a spatially

evolving turbulent boundary layer (SETBL) using Large Eddy Simulations (LES). The pur-

pose of this chapter is to justify the use of LES, present the system of governing equations,

and explain the discretization schemes and the boundary conditions employed to perform

the simulations. In order to simulate a SETBL we implement an existing physics-based

approach, and propose a novel approach to perform the same task. A detailed explanation

of the procedure and validation of both these methods in presented in this chapter.

2.1 Large Eddy Simulations

2.1.1 Introduction

A fundamental characteristic of turbulent flows is the presence of a wide spectrum of

length and time scales. The amount of energy contained in the fluctuating velocity field in

a turbulent flow is quantified by the turbulent kinetic energy (TKE). TKE is distributed in

a non-uniform manner across the spectrum of scales. If V (x, t) represents the velocity field

as a function of time and space, and 〈V (x, t)〉 represents the velocity field averaged in time

and invariant spatial directions, then,

v(x, t) = V (x, t)− 〈V (x, t)〉
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Figure 2.1: Schematic of the one-dimensional turbulent kinetic energy spectrum as a function
of wave-number.

where, v(x, t) is the fluctuating velocity field. Turbulent kinetic energy (TKE) is defined as

the mean kinetic energy contained in the velocity fluctuation field given by 1
2
〈vivi〉. It remains

to be determined how the TKE is distributed among the eddies of different sizes. This is

most easily done for homogeneous turbulence. A turbulent flow is said to be homogenous if

all the statistics are invariant under a shift in position. The distribution of TKE for such

a flow is illustrated in the wave-number space in Fig. 2.1. In this figure, larger eddies

correspond to smaller wave-numbers and contain greater amount of TKE, whereas smaller

eddies correspond to larger wave-numbers and contain less TKE. We will use the TKE

energy spectrum for a homogeneous turbulent flow in Fig. 2.1 to explain the three common

numerical approaches to simulate turbulent flows.

For a numerical simulation to accurately predict such a turbulent flow it should have

zero numerical errors and resolve all the length and time scales. Assuming the numerical

framework is accurate, in order to resolve the entire spectrum of scales, we require a com-

putational grid at least as fine as the smallest length scale. A simulation in which the entire

spectrum of TKE is resolved using a fine computational grid is called as Direct Numerical
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Simulation (DNS), as depicted in Fig. 2.1. As the Reynolds number (Re) of the flow in-

creases the computational cost of DNS increases as Re37/14 [78]. The Reynolds number of the

flow under consideration in the present work (Re = 19, 600) is significantly high, and though

DNS would be quite expensive, it is not out of reach in the foreseeable future. Moreover,

for a large parametric study like the present work, DNS is not a feasible approach. On the

other end of the spectrum of methods to simulate turbulent flows is the Reynolds Averaged

Navier-Stokes (RANS) approach. In a RANS simulation, we decompose the velocity field

into a mean component and a fluctuating component, as given below,

V (x, t) = 〈V (x, t)〉+ v(x, t) (2.1)

Using Eq. 2.1, we explicitly calculate the mean flow quantities, and model the effect of the

fluctuating component on the mean flow for the entire spectrum. While a RANS simulation

is computational inexpensive, the accuracy of the results largely depends on the nature of the

turbulent flow, and the accuracy of the RANS model is capturing the effect of the fluctuating

component. For flow over a cube in a turbulent boundary layer, the flow is highly unsteady in

the region in front of the cube and in its near-wake, and RANS models are known to perform

poorly in capturing this unsteadiness [55, 56]. To address the drawbacks of DNS and RANS

approaches, the LES methodology was developed. It provides an accurate alternative to DNS

for the flow under consideration in the present work. In LES, we explicitly calculate both,

the mean and the fluctuating components of the flow for a major part of the spectrum, as

demonstrated in Fig. 2.1. This part of the spectrum is referred to as the resolved component.

The effect of the remaining or the unresolved part of the spectrum on the resolved component

is captured using a LES model. The scale separation between the resolved and the unresolved

components is achieved via a filtering operation, explained in the next section.
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2.1.2 Filtered Navier-Stokes equations

The main idea behind LES is to filter the turbulent scales into two components, those

which can be explicitly resolved using the grid, i.e., resolved or the grid scales, and those

which cannot be resolved and need to be modeled, called unresolved or the sub-grid scales

(SGS). This decomposition is achieved via a filtering operation. A general filtering operation

is defined as,

f̄(xi) =

∫
Ω

f(x′i)G(xi, x
′
i)dx

′
i (2.2)

where G is the filter function and Ω is the entire flow domain. In the present work, a top-hat

filter with filter function G = (1/∆)H(1
2
∆ − |x − x′|) is used, where H(x) is the Heaviside

function. The filter width ∆ is defined as ∆ = (∆1∆2∆3)1/3, where ∆i are the computational

mesh sizes in the three coordinate directions.

The velocity field has the following decomposition,

u(x, t) = u(x, t) + u′(x, t) (2.3)

where, u(x, t) is the filtered velocity, and u′(x, t) is the SGS velocity field. Despite the

apparent similarities with Reynolds decomposition in Eq. 2.1, u(x, t) is a random field, and

thus (in general) the filtered residual is not zero. The convolution of the filter function with

the Navier-Stokes equations gives the filtered Navier-Stokes equations,

∂ūi
∂xi

= 0

∂ūi
∂t

+
∂(ūiūj)

∂xj
= − ∂p̄

∂xi
+ ν

∂2ūi
∂x2

j

− ∂τij
∂xj

(2.4)

Eq. 2.4 is a set of four couple non-linear equations, which include one continuity equation

and three momentum equations for the three coordinate directions. This set is referred to

as the filtered Navier-Stokes equations.
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2.1.3 Dynamic k-equation model

In a turbulent flow energy cascades from the resolved, large-scales to the smallest scales

at which kinetic energy dissipates [79]. If one does not explicitly solve for the smallest scales,

as in LES, kinetic energy eventually accumulates due to inadequate dissipation. To address

this inadequacy, the effect of the SGS is taken into account through the SGS stress tensor,

τij = uiuj − ūiūj. The SGS stress contains the unknown, second order term uiuj. Without

an explicit equation for the unknown term, the filtered Navier-Stokes equations do not form

a closed system. Different methods have been developed to close the system of Eq. 2.4,

and a detailed review of many different methods can be found in Meneveau et al. [80]. In

the present work we use the dynamic k-equation model [81] in which we solve an additional

transport equation for the SGS kinetic energy (k). The reasons to use this specific model

is its ability to predict back-scatter. Back-scatter is a phenomenon in which kinetic energy

flows from the unresolved small scales to the resolved scales. Back-scatter has been observed

in flow over a wall-mounted by Yakhot et al. [61].

In the dynamic k-equation model, the SGS stress tensor is given by,

τij = −2νTSij +
1

3
δijτkk

νT = cνk
1/2∆

Sij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

) (2.5)

where, ∆ = (∆1∆2∆3)1/3 is the average grid spacing, and k = 1
2

(
u2
i−ui2

)
is the SGS kinetic

energy. In the dynamic k-equation model, the transport equation for k is given by Eq. 2.6,

∂k

∂t
+ ui

∂k

∂xi
= −τij

ui
xj
− ε+

∂

∂xi

(
νT

∂k

∂xi

)
(2.6)

In Eq. 2.6, the dissipation rate (ε) is given by,
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ε = cε
k

∆
(2.7)

An important feature of this model is that no assumption of local equilibrium between the

SGS energy production and dissipation rate has been made. Therefore, this model can take

into account non-local and history effects which are completely neglected in the algebraic

models.

In Eq. 2.5, Sij is the resolved strain rate tensor and
∣∣S∣∣ = (2SijSij)

1/2. The coefficients

cν in Eq. 2.5 and cε in Eq. 2.7 are determined by a dynamic procedure [82]. In the dynamic

modeling approach, a mathematical identity between the stresses resolved at the grid scale

filter ∆ and a test filter ∆̂ (typically, ∆̂ = 2∆) is used to determine the coefficients.

cν =
1

2

LijMij

MijMij

where, Lij = ûiui − ûi ûj

Mij = −
(

∆̂K1/2Ŝij −∆k̂1/2Sij

)
, and K = Lii/2 + k̂

(2.8)

cε =
F

G
where, F = ν

(
∂̂ui
∂xj

∂ui
∂xj
− ∂ûi
∂xj

∂ûi
∂xj

)
, and G =

(
K1/2

∆̂
− k̂1/2

∆

)
(2.9)

In Eq. 2.8 and Eq. 2.9, (̂ ) represents quantities at the test filter scale, and ( ) represents

quantities at the grid filter scale. In the present work, the size of the test filter is twice that

of the grid filter. The filtered Navier-Stokes equations (Eq. 2.4), transport equation for SGS

kinetic energy (Eq. 2.6), and the coefficients (Eq. 2.8 and 2.9) form a closed system. This

system of equations is solved simultaneously using the Finite Volume Method (FVM) in the

open-source software OpenFOAM R©[77], with the discretization schemes described in Sec.

2.2.
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2.2 Discretization schemes

OpenFOAM [77] is an open-source software with the capability of simulating a wide range

of flow processes. In the present study, we use the LES capabilities of OpenFOAM version

4.1 to solve the governing equations described in Sec. 2.1.2 and 2.1.3. Numerical schemes

implemented in OpenFOAM are 1st and 2nd order accurate. A detailed validation of the

numerical methods and RANS models in OpenFOAM can be found in Robertson et al. [83].

Cao et al. [84] validated the LES models and discretization schemes for separated flow over

a square cylinder, and concluded that the “LUST” (Linear Upwind Stabilized Transport)

and “linearUpwind” schemes for the convective term give good agreement of the mean and

RMS quantities with experimental data.

The coupled non-linear LES equations are solved on a structured collocated grid using

a Finite Volume Method (FVM) in which all the variables (three components of velocity,

pressure, and LES terms) are stored at the cell centers. The system of couple equations is

solved using the PIMPLE algorithm. PIMPLE is a combination of PISO (Pressure Implicit

with Splitting of Operator) [85] and SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) [86] algorithms, which follow the general procedure of momentum prediction,

pressure solution and momentum correction. The detailed procedure is available in Robert-

son et al. [83]. An implicit backwards scheme is used to discretize the unsteady term. For

illustration, consider an unsteady PDE of a scalar variable “φ”. An implicit backwards time

marching scheme used for the unsteady term ∂φ
∂t

gives,

∂φ

∂t
=

3φn+1 − 4φn + φn−1

2∆t
(2.10)

The time marching procedure in Eq. 2.10 is used for three components of velocity in our

work. The time step (∆t) is variable, determined by the Courant-Friedrichs-Lewy (CFL)

condition (Eq. 2.11).
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C = ∆t
n∑
i=1

uxi
∆xi

≤ Cmax (2.11)

where, uxi is the velocity in the xi direction, ∆xi is the grid spacing in the xi direction and

Cmax is the maximum CFL number prescribed in the code, which in the present work is

set to 1. The implicit time marching scheme is preferred over an explicit scheme to ensure

stability. The scheme is unconditionally stable and the time-step size (∆t) is not restricted

by the CFL number, however, we limit ∆t by a CFL number of 1 to ensure that the numerical

errors accumulated by the time-marching scheme are of the same order of magnitude as those

accumulated by the spatial discretization scheme.

The pressure and the viscous terms are discretized by the 2nd order central scheme [83].

The convective term is discretized using the LUST scheme, which is a combination of the

central differencing scheme and the linear upwind scheme with the weighting factors of 0.75

and 0.25 respectively. By Gauss’s divergence theorem, the convective terms are integrated

over the cell volume (denoted by Vp) and expressed as a sum of fluxes evaluated on each face

of the cell, as shown in Eq. 2.12.

∫
Vp

∇ · (uφp) =
∑
f

Sf · (uφ)f (2.12)

where, u is the cell-center velocity, φp is the flux at the cell-center, φf is the flux at the

cell-face and Sf is the normal vector of the corresponding cell-face. φf is interpolated using

Eq. 2.13 in a central differencing scheme.

φf = fxφP + (1− fx)φE (2.13)

where, the factor fx = fE/PE, fE is the distance between face f and cell-center E, and

PE is the distance between cell-centers P and E. Mittal et al. [87] report, a drawback of

the second order central scheme is that the simulations are sensitive to the numerical factors

such as grid discontinuities and outflow boundary conditions, and thus, grids and boundary
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conditions have to designed with extreme care. To overcome this problem, the LUST scheme

adds weighting towards the upstream contribution. In a the linear upwind scheme, the face

flux φf is determined by both, the value, and the cell gradient of φ in the upwind cell, as

shown in Eq. 2.14.

φf =


φP + (∇φP ) · df for u > 0

φE + (∇φE) · df for u < 0

(2.14)

2.3 Boundary conditions and initial conditions

The flow configuration of interest in this study consists of a cube placed on a flat plate in

a spatially evolving turbulent boundary layer (SETBL). In all the simulations over the cube,

the top-wall is treated as a slip (or no-stress) wall. If x, y and z represent the stream-wise,

wall-normal and span-wise directions, and u, v and w represent the velocity components in

those directions respectively, then the no-stress boundary condition is given by,

v = 0,
∂u

∂y
=
∂w

∂y
= 0, and

∂p

∂y
= 0 (2.15)

where, p is the pressure field. The outflow plane is treated with the standard implementation

of the zero-gradient boundary condition in OpenFOAM, for velocity and pressure,

∂u

∂x
=
∂v

∂x
=
∂w

∂x
= 0, and

∂p

∂x
= 0 (2.16)

The side-walls are treated differently for the cases with single and multiple cubes. In case of

the single cube, we deploy a slip-wall boundary condition as described in Eq. 2.15, whereas

in case of multiple cubes we use periodic boundary conditions on the side-walls. The initial

condition of velocity is zero everywhere inside the domain for the coarse mesh, whereas,

for the medium and fine mesh simulations the final instantaneous velocity field from the

immediate lower resolution simulation is mapped on the grid and used as an initial guess
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for the velocity field. An initial value of 1% of the free-stream kinetic energy (1
2
U2
∞) if used

for turbulent kinetic energy (k) inside all the cells. In order to achieve a SETBL, a special

type of time-varying boundary condition needs to be used for the velocity field at the inflow

boundary, described in detail is Sec. 2.4.

2.4 Inflow boundary condition

2.4.1 Introduction

The problem in LES of wall-bounded flows is prescribing fluctuations at the inlet which

are not only time-varying and random, but also, preserve the structure of near-wall turbu-

lence in an average sense. Furthermore, the appropriate amount of kinetic energy distributed

over the appropriate length scales must be provided at the inlet. Inflow boundary conditions

for spatially evolving turbulent boundary layer (SETBL) can be classified in two categories,

namely rescale and recycle and synthetic inflow approaches. A thorough review of these

methods can be found in Tabor et al. [88]. The two approaches are briefly described below:

1. The most accurate technique to impose the inlet boundary conditions for a LES is

to obtain inflow data from a precursor simulation. The precursor simulation typically

has a periodic streamwise boundary condition. The data from plane located at an

appropriate distance from the inlet boundary in the precursor simulation are sampled at

every time-step and stored. This stored data are then carefully modified to satisfy the

inflow boundary layer properties, and used as time-varying inflow boundary condition

for the main simulation. The inflow contains the exact large scale eddies of the flow

and there is no or little transition downstream of the inlet. This technique however

has two major drawbacks. Firstly, it is restricted to simple cases where the flow at the

inlet of the computational domain can be regarded as a fully developed turbulent flow

or SETBL. Secondly, it entails significant computational and storage costs.

2. The overcome these drawbacks researchers have pursued an alternate route of prescrib-

33



ing synthetic turbulence at the inlet. This method was first implemented by Le [1] to

simulate a turbulent boundary layer flow over a backward facing step. The basic idea in

this class of methods is to superimpose random fluctuations on top of a mean velocity

profile. The prescribed time-varying inflow velocity field does not obey Navier-Stokes

equations, and therefore requires a transition length for the flow to develop into a re-

alistic TBL. The most critical part is prescribing fluctuations that possess the right

spatial and temporal correlations to minimize the transition length. In order to make

it more realistic we superimpose a fluctuation field satisfying different statistics like the

turbulent kinetic energy, dissipation rate and in some cases the full Reynolds stress ten-

sor. There are a variety of approaches to prescribe the fluctuation field, which include

Fourier techniques [89, 90], proper orthogonal decomposition based methods [91], dig-

ital filter based methods [92], and methods based on Lagrangian treatment of vortices

[93, 94]. In the present work we use the same method as Le [1] to obtain a SETBL,

described in Sec. 2.4.2, and propose a novel approach based on machine-learning to

address the same problem in Sec. 2.5

2.4.2 Conventional approach of Le [1]

The basic idea is to superimpose random fluctuations on a mean turbulent velocity profile

[1], as outlined below:

1. Prescribe energy spectrum for TKE.

E(k) = u2
rms16

√
2

π

k4

k5
p

exp(−2k2/k2
p) (2.17)

where, kp is the most energetic wavenumber. In the present work, we set kp = 4, and

urms = 0.01U∞, where U∞ is the free-stream velocity.

2. Compute Ê(k), the kinetic energy at a given wavenumber vector, k , from the pre-

scribed spectrum E(k) as follows.
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The energy spectrum E(k) is defined as,

E(k) =
∑

k6|k |<k+1

Ê(k), (2.18)

where,

Ê(k) = 〈û∗i (k)ûi(k)〉/2 (2.19)

and ûi(k , t) is the Fourier coefficient of u′i(y, z, t) and û∗i (k , t) is its complex conjugate.

Thus Ê(k) can be computed from the prescribed E(k) as,

Ê(k) = E(k)/Z(k) (2.20)

where Z(k) is the number of Fourier modes at the wave number k,

Z(k) =
∑

k6|k |<k+1

1 (2.21)

3. Compute the instantaneous ûi(k , t) at every time step from

ûi(k , t) = [Ê(k)]1/2exp[iΦi(k , t)] (2.22)

where Φi is a random phase angle and i =
√
−1.

4. Prescribe profiles for the velocity fluctuation auto-correlations, 〈u′1〉, 〈u′2〉, 〈u′3〉, and

cross-correlation 〈u′1u′2〉. In our simulations we use fluctuation correlation profiles from

DNS of SETBL over a flat plate by Wu et al. [95].

5. In order to ensure that 〈u′1u′2〉 does not vanish, we rotate the flow coordinates [x, y]

35



by an angle θp so that they coincide with the principal coordinates [x̃, ỹ], where the

corresponding velocities ũ′1 and ũ′2 are uncorrelated, i.e. 〈u′1u′2〉 = 0.

θp =
1

2
tan−1

[
2〈u′1u′2〉
〈u′22 〉 − 〈u′21 〉

]
(2.23)

Compute 〈(u′1)2〉 and 〈(u′2)2〉 in the principal coordinates as

〈(u′1)2〉 =
〈u′21 〉cos2θp − 〈u′22 〉sin2θp

cos2θp − sin2θp

〈(u′2)2〉 =
〈u′22 〉cos2θp − 〈u′21 〉sin2θp

cos2θp − sin2θp

(2.24)

Note that since no rotation is required for u′3, the profile is identical to the prescribed

〈u′23 〉.

6. Compute at every time step, the inverse Fourier transform of ûi(ky, kz, ω) in the ky

direction to obtain ûi(y, kz, ω). Then evaluate the mean-square velocity correlation

u′2i (y) =

Nz/2∑
kz=−Nz/2+1

Nt/2∑
ω=−Nt/2+1

ûi(y, kz, ω)û∗i (y, kz, ω) (2.25)

to compute the ratio ri(y) of the mean squares as

ri(y) =
〈(ũ′i)2〉(y)

u′2i (y)
(2.26)

7. Compute at every time step, the inverse Fourier transform of ûi(y, kz, ω) in the kz

direction, and sum the result over all the frequencies ω to obtain ũ′i(y, z, t). Then
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Figure 2.2: Flow configuration for validation of the inflow generator technique.

multiply ũ′i(y, z, t) by
√
ri(y) so that the mean -square of the product matches 〈(ũ′i)2〉(y)

obtained from Eq. 2.24.

8. Rotate ũ′1 and ũ′2 back to u′1 and u′2 in the flow coordinates [x, y] using Eq. 2.27

u′1 = ũ′1cosθp + ũ′2sinθp

u′2 = −ũ′1sinθp + ũ′2cosθp

(2.27)

Our implementation of the approach of Le [1] into OpenFOAM is validated by simulating

a SETBL on a flat plate at a inlet Reynolds number of 7000, based on the free-stream velocity

and inlet boundary layer thickness. The parameters of the simulation were chosen to have a

fair comparison with the DNS study of Ferrante et al. [96]. The schematic of the case setup

is as shown in Fig. 2.2.

The domain is 30δo long, 5 δo wide and 5δo high, where δo is the boundary layer thickness

at the inlet. The corresponding Reynolds number based on the friction velocity at the inlet

is Reτ = uτ δo
ν

= 395, while Reynolds number based on the momentum thickness at the inlet

is Reθ = U∞θ
ν

= 1050. The computational grid has uniform spacing in the stream-wise (x)

and the span-wise (z) directions, whereas it is non-uniform in the wall-normal direction,
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Figure 2.3: Span-wise average of Reynolds stress profiles at the inlet. Solid lines: DNS
results of [95]; dots: our implementation of the conventional synthetic inflow method.

with a hyperbolic tangent stretching. The grid size close to the bottom-wall in wall units

(∆+ = ∆uτ
ν

) is 30, 1 and 20 in x, y and z directions respectively.

After following the procedure described above we obtain a [y, z] plane of velocity fluctu-

ation values which vary with every time step. These fluctuations are superimposed on the

mean turbulent boundary layer velocity profile given by “law of the wall” [97]. For any given

time-step the span-wise average of the Reynolds stress profiles is presented in Fig. 2.3. At

the inlet plane there is excellent agreement in the prescribed fluctuation field and the DNS

profiles [95].

In Fig. 2.4a we compare the evolution of the turbulent boundary layer thickness as a

function of the stream-wise coordinate with DNS results from Ferrante et al. [96]. The

velocity profiles are averaged in time and the span-wise direction to calculate the boundary

layer thickness (99 %U∞). We observe that after an initial transition length of approximately

12δo there is good agreement with DNS data. The transition length is similar to that observed

by Le [1] (∼ 10δo at Reθ = 670).

If we observe the mean velocity profiles in Fig. 2.4b at different stream-wise locations,
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Figure 2.4: Mean quantities averaged in time and span-wise direction.
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Figure 2.5: Reynolds stress profiles averaged in time and span-wise direction at different
stream-wise locations.

there is small deviation of the converged profiles from the law of the wall. The velocity

profiles and wall-normal distance are expressed in wall coordinates (U+ = U/uτ and y+ =
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yuτ/ν). Le [1] observed similar deviations and attributed them to the inaccurate prediction

of friction velocity uτ , however, our results demonstrate excellent agreement in the buffer

region (y+ < 10). Therefore, we believe these differences originate from a favorable pressure

gradient (FPG) in the stream-wise direction [98]. Although, it would be ideal to simulate a

SETBL with zero pressure gradient in the stream-wise direction, it is impossible to achieve

those conditions even with the most carefully configured DNS, as explained by Wu et al.

[95]. Our simulation profiles approach the log-law behavior as we move along the stream-wise

direction.

In Fig. 2.5a and 2.5b we present the xx− and xy−component of the Reynolds stress

averaged in time and the span-wise direction at different stream-wise locations. The Reynolds

stresses and the wall-normal distance are expressed in wall-units (u′2+ = u′2/u2
τ , u

′v′
+

=

u′v′/u2
τ and y+ = yuτ/ν). The DNS result from Wu et al. [95] has a momentum thickness

based Reynolds number (Reθ = U∞θ/ν) of 900, whereas in our simulations Reθ varies from

1050 to 1300. We know from prior research [99, 95] that the Reynolds stresses do not exhibit

a universal scaling in inner coordinates especially in the logarithmic region, therefore we do

not expect our simulation results to match exactly with the DNS profiles. The near-wall

region shows excellent agreement. However, there are small discrepancies in the logarithmic

region. From the behavior of the mean and turbulence quantities in Fig. 2.4 and 2.5 we are

confident that we can simulate a SETBL with reasonable accuracy with our implementation

of the physics-based approach of Le [1].

2.5 Machine learning approach

We present a novel approach similar to the rescale and recycle methods. The motivation

to pursue this novel approach is to address the drawbacks of existing rescale and recycle

methods. The current implementation of our method does not produce a realistic TBL,

and we highlight the reasons for poor agreement with DNS results. Finally, we propose a

modified approach to address the shortcomings of the current implementation. There are
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three common approaches to implement the rescale and recycle procedure:

1. Perform a precursor simulation and store a library of velocity profiles [100]. Modify the

stored velocity profiles and use them at the inflow boundary of the main simulation.

2. Run an auxiliary simulation simultaneously with the main simulation and map velocity

profiles from the auxiliary simulation to the inlet plane of the main simulation [96, 101]

3. Modify and map velocity profiles from a downstream plane of the same simulation to

the inlet plane [102].

In these three approaches we have to either create a massive storage library of velocity

profiles or significantly modify the flow solver to synchronize the main simulation with the

auxiliary simulation. We present a technique that circumvents both these drawbacks. In

our approach we leverage the kernel-density estimation (KDE) technique [103] to learn the

probability density function (PDF) of the velocity fluctuations from a precursor simulation,

and instead of storing a library of velocity profiles we only store the learned models. Then

we use the library of stored models to generate a time-varying inflow field for any other

simulation. This techniques does not require major modifications to the flow solver, except

sampling fluctuations from a known PDF.

2.5.1 Method

The fundamental idea behind our machine learning approach is to learn the prior PDFs

from training datasets. The learned PDFs are then used to generate time-varying velocity

fluctuation fields. In our approach we learn the PDF of the fluctuation field obtained from

the precursor simulation as a function of the wall-normal coordinate. We know that the

Reynolds stresses when expressed in wall units exhibit self-similar behavior, at least over

a wide-range of Reynolds numbers. Therefore, we express the fluctuation field from the

precursor simulation in wall-units to train the PDFs. Our hypothesis is that the learned

PDFs can be used to generate fluctuation fields for the main simulation by scaling the values
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from wall coordinates to physical coordinates. Our proposed procedure is described in detail

below for the x−component of velocity fluctuation field (the same steps are followed for the

y and z components):

1. Using the physics-based approach described in Sec. 2.4.2, a SETBL on a flat plate

a precursor simulation is performed to produce training data. Sample instantaneous

velocity profiles from the precursor simulation after a transition length of 12δo at every

time step, where δo is the boundary layer thickness at the inflow boundary.

2. The mean velocity profile is calculated by averaging the instantaneous velocity in time.

Time-averaged velocity profile are then averaged in the span-wise direction to obtain

〈U(y)〉. From this mean velocity profile the friction velocity is calculated,

uτ =

√
ν

(
∂|〈U(y)〉|2

∂y

)
y=0

(2.28)

where ν is the kinematic viscosity, and | |2 represents the L− 2 norm.

3. The fluctuation field u′(y, z, t) is computed and transformed to wall coordinates using

Eq. 2.29,

u′(y, z, t) = U(y, z, t)− 〈U(y)〉

u′+(y, z, t) =
u′(y, z, t)

uτ

y+ =
yuτ
ν

(2.29)

where ( )+ represents a quantity expressed in wall units.

4. From Fig. 2.6 we observe that the variance of the Reynolds stress profiles is higher

inside the boundary layer as compared to the region outside the boundary layer. At

different wall-normal locations inside the boundary layer, the variance differs by a

significant amount. Therefore, we seek to learn the PDF of the Reynolds stresses as
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Figure 2.6: Reynolds stresses at x/δo = 15 from the precursor simulation. Red curve is
the mean, averaged in time and the spanwise direction. Black lines are the instantaneous
profiles.

a function of the wall-normal coordinate. We consider equi-spaced points inside the

boundary layer, and learn the PDF of u′+ for each of those points.

Extensive research on the behavior of Reynolds stresses inside a turbulent boundary

[104] reveals that there exists a strong cross-correlation between the x-y components of

the fluctuation field, whereas the cross-correlation between the x-z and y-z components

is negligible. We capitalize on this fact in the training process: simply put, we learn

a joint distribution of the x-y components of the fluctuation field and an independent

distribution of the z-component.

The PDFs are learned using the kernel density estimation method [103] implementa-

tion in the scikit-learn Python machine learning library. The word “learn” refers to

determining the shape of the PDF of velocity fluctuation fields at different wall-normal

locations. For the learning process, we use a k-folds approach in which we divide the

training dataset in k parts. The velocity profiles in each of those folds are chosen at

random, but the number of profiles in each fold is the same. (k − 1) out of those k

folds are used for learning the PDF, and one fold is used for testing the PDF accuracy.
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5. After learning the PDFs for different wall-normal locations, we use them to generate

the u′+ field for the inflow of the main simulation using the rejection sampling proce-

dure [105]. These fluctuations are transformed to physical coordinates to obtain the

fluctuation field u′(y, z, t). The fluctuation field is then superimposed on the mean

turbulent velocity profile at the inlet.

u′(y, z, t) = u′+(y, z, t)× uτ

U(y, z, t) = U(y) + u′(y, z, t)

(2.30)

2.5.2 Preliminary validation

In order to examine the accuracy of our proposed method, we follow a two-step process:

(i) Learning process. The process in which we use the procedure outlined in Sec. 2.5.1

to learn the PDFs of the velocity fluctuation fields in the three coordinate directions, and

(ii) Physical validation. The main step in which we use the PDFs learned from step (i) to

generate a time-varying velocity inflow field to simulate a SETBL on a flat plate.

To train the ML models, we perform a precursor simulation of a SETBL at a inlet

Reynolds number (Reδ) of 7000, based on the mean velocity and the inlet boundary layer

thickness. The procedure outlined in Sec. 2.4.2 is used to perform the precursor simulation.

We discovered that the flow requires a transition length of approximately 12δo to develop

into a realistic TBL. Therefore, we sample instantaneous velocity field from the precursor

simulation at a stream-wise distance of 15δo. The velocity profiles are sampled over a time

period of 700δo/Um, starting at 500δo/Um to avoid the influence of the initial transient. Using

the procedure described in Sec. 2.5.1, we learn the PDFs of the velocity fluctuations as a

function of the wall-normal (y) coordinate. The kernel density estimation (KDE) models

are used to generate Reynolds stress profiles presented in Fig. 2.7. We compare the profiles

generated by the ML model with the training profile from the precursor simulation and DNS

profiles of Wu et al. [95]. The different values of n in Fig. 2.7 correspond to profiles obtained
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Figure 2.7: Machine-learned profiles of Reynolds stresses at x/δo = 15 from the precursor
simulation.

from KDE models trained using different number of samples. We observe that the accuracy

of the KDE models is independent of the number of training samples for n > 50× 103. The

DNS profiles are presented only as a guide to verify the physical validity of our results. From

Fig. 2.7, it evident that the KDE models produce a fluctuation field with a mean profile that

exhibits good agreement with the training data. Also it is clear that the number of training

samples does not have a major effect on the accuracy of the Reynolds stress profiles. After
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Figure 2.8: Results from main SETBL simulation on a flat plate using ML inflow approach.

having successfully trained the ML models, we performed the next step, which is physical

validation.

To validate the ML approach, we use KDE models to generate a time-varying velocity

fluctuation field which was used as a inflow boundary condition for the main simulation. The

computational setup of the main simulation is exactly the same as the precursor simulation.
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Figure 2.9: Instantaneous velocity fluctuation profiles generated by the physics-based ap-
proach and the ML approach.

We present the mean velocity and the Reynolds stresses obtained at different stream-wise

locations in Fig. 2.8. All the quantities are averaged in time and the span-wise direction.

From the mean velocity profiles we observe that the magnitude of the mean velocity exhibits

a reasonable agreement in the inner region (y+ < 50). However, in the logarithmic region

the magnitude increases with increasing stream-wise coordinate. The increase is particularly
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significant in the initial part of the domain (x/δo < 15), and the profiles tend to approach

an asymptotic value towards the end of the domain. On the other hand, the Reynolds

stress profiles exhibit a magnitude significantly lower than the reference DNS profiles. The

magnitude of the Reynolds stress profiles in all three directions increases as we move along

the stream-wise coordinate. This observed behavior of the mean velocity and the Reynolds

stress profiles can be explained by examining the instantaneous velocity fluctuation profiles

generated by the ML approach, as discussed below.

Fig. 2.9 illustrates the instantaneous velocity fluctuation profiles generated by the

physics-based approach described in Sec. 2.4.2 and the ML approach described in Sec.

2.5. With the conventional (physics-based) approach, the superposition of Fourier modes is

evident from the underlying wave-like pattern observed in Fig. 2.9a and 2.9c. This field is

later on modified in the wall-normal direction to account for the anisotropy near the wall in

a SETBL. Following this approach results in a distribution of turbulent kinetic energy across

the range of wave-numbers resolved by the computational grid. Although, the fluctuation

field generated by the physics-based approach does not obey the Navier-Stokes equations

at the inlet, there is enough energy in the smaller wave-numbers, which correspond to the

large scale structures in the turbulent boundary layer, to set the energy cascade in motion.

As the flow transitions to a realistic turbulent boundary layer, energy is redistributed across

the spectrum of length scales to achieve equilibrium. In the case of a TBL, equilibrium

is referred to as the state in which production of TKE at the large scales in balanced by

dissipation of TKE at the smallest scales.

In case of the ML approach, the KDE models are learned as a function of the wall-normal

coordinate, but independently of each other. This approach therefore does not account for

the spatial and temporal relationship between the fluctuation fields. The instantaneous

velocity profiles presented in Fig. 2.9b and 2.9d confirm this point. The fluctuations at

adjacent y−locations are completely independent of each other with no underlying modal

structure. This observation can also be interpreted as generating a fluctuation field, where
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Figure 2.10: Span-wise averaged profiles vs. normalized wall-normal coordinate (y) from a
SETBL on a flat plate using the ML approach.

all the energy content is present in the high wave-numbers which cannot be resolved on

the computational grid. In Fig. 2.10a, we observe a high initial magnitude of SGS kinetic

energy, and the magnitude gradually decreases in the stream-wise direction. The increase

in k is accompanied by an increased turbulent viscosity (νT ), which results in an increased

contribution to the SGS stress term to the filtered Navier-Stokes equation (Eq. 2.4). The

increase is SGS stress is further balanced by a strong favorable pressure gradient (FPG).

As a result, the magnitude of the mean velocity in the outer region increases [98] which is

clearly visible in Fig. 2.8a. The high frequency nature of the inflow turbulence leads to an

absence of grid scale coherent structures in the TBL. Therefore, there is negligible turbulent

kinetic energy in the resolved scales which is evident from the Reynolds stress profiles in Fig.

2.8b, 2.8c, and 2.8d. The magnitude of the xx−component of the Reynolds stress increases

much more rapidly in the stream-wise direction than the other components in Fig. 2.8. The

reason for this increase is the contribution of the stream-wise and wall-normal gradients in

x−component of velocity to the xx−component of the Reynolds stress tensor. The ML inflow

approach would require a larger computational domain for the TBL to achieve equilibrium,

which is impractical for the present simulations.
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2.5.3 A modified machine learning approach

To address the drawbacks of the ML inflow method described in Sec. 2.5.1, we propose

a modification to the learning process inspired by the lessons learnt while developing time-

varying inflow conditions for SETBL over a flat plate. This strategy paves a way forward to

improve on the existing method to achieve shorter transition lengths and reduced compu-

tational time. The idea presented in this section is a well-informed hypothesis, which begs

further investigation.

A TBL is made up of coherent structures which vary in length and time scales. The

distribution of turbulent kinetic energy amongst these varying scales must be accounted for

in our approach. Considering this distribution in the Fourier domain, we realize that there

is a specific superposition of the resolved Fourier modes in space and time which must be

respected when prescribing such a boundary condition. With this view in mind, we propose

to perform the learning process in the Fourier space as opposed to our prior efforts in the

physical space as follows,

1. Sample velocity profiles from the precursor simulation of a SETBL on a flat plate

at every time-step taken from a plane normal to the flow direction after the initial

transient.

2. Consider a set of these velocity profiles in ascending time order. The set should span

a time-interval corresponding to the convection of the largest structures (l+ ∼ 100) at

the mean boundary layer velocity.

∆t =
l+

Um
(2.31)

Project the velocity fluctuations in this 3D volume onto Fourier space.

3. Learn the distribution of the Fourier coefficients after projection using a KDE-type

algorithm.
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4. Use the learned KDE-type models to generate a 3D superposition of Fourier modes.

5. Inverse Fourier transform these modes to obtain a velocity fluctuation field in the

physical space to be used as a time-varying inflow boundary condition.

2.6 Summary and conclusions

In this chapter, we listed the governing equations, motivated our turbulence modeling

approach, and described the underlying numerical methods. An essential part of our problem

is the accurate specification of the boundary conditions. We described the challenges in

simulating a SETBL, in particular regarding inflow boundary conditions. We described two

such approaches. The first, a physics-based approach, is shown to simulate a SETBL on a

flat plate with good accuracy. For the Reynolds number under consideration in the present

work this approach requires a transition length of x ≈ 12δ to develop into a realistic TBL.

The second, is a novel approach, based on machine-learning (ML) to address some of the

drawbacks of the existing methods.
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CHAPTER III

Understanding the dependence of near-wake

characteristics on the cube height in a turbulent

boundary layer

3.1 Introduction

Turbulent flow over a wall-mounted cube is a canonical problem with applications in

many engineering fields. A cube placed inside a channel flow with no-slip boundary con-

ditions on the top and bottom-walls replicates flow over printed circuit boards with chips

mounted, heat exchangers with cooling fins, turbines with rotor blades, to name a few ex-

amples. Understanding the flow physics and the heat transfer mechanisms in such flows

has significant implications in the engineering design process. Researchers have resorted

to both experimental and numerical methods to investigate different aspects of flow over

wall-mounted obstacles.

Experimental studies of a single cube placed inside a fully developed channel flow were

performed by Martinuzzi and Tropea [54], Hussein and Martinuzzi [11], Meinders and Han-

jalic [106] and Meinders et al. [107]. Time-averaged PIV measurements and laser visu-

alization techniques used in these experiments reveal the existence of flow features like a

horse-shoe vortex formed in front of the cube, an arc-shaped vortex formed behind the cube,

tornado-shaped vortices formed on the sides, and vortex shedding in the wake of the cube.
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We know that the size and intensity of the vortices scales with the incoming boundary layer

thickness [108]. For cube heights with h/δ > 1.4, the dynamic behavior of the pressure and

velocity fields in bimodal [54]. Hwang et al. [109] studied the effect of laminar boundary

layers with a low to moderate Reynolds number (Re < 3500) on the wake characteristics.

They found that the near-wake of the cube is unsteady and turbulent even at low Reynolds

number, and the periodicity of the vortical structures depends on the Reynolds number.

With advances in computational power, numerical simulations have been performed using

Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches.

Steady RANS simulations are [55, 56] are not capable of accurately predicting fully devel-

oped turbulent channel flow over a cube because the inherently unsteady nature of vortex

shedding cannot be represented with this approach. On the other hand, LES is capable

of accurately representing these unsteady flow phenomenon [110]. LES of fully developed

turbulent channel flow over a cube was performed by Shah et al. [57, 58] and Krajnovic

et al. [59, 12] at Reynolds number of 40,000 based on the mean velocity and cube height.

Back-scatter is observed in the region in front of the cube, therefore Smagorinsky-type LES

models do not perform nearly as well as the one-equation LES models and its variants [59].

A survey of LES models [12] in accurately simulating this complex flow problem revealed

that the dynamic one-equation model gives good agreement of the mean flow features with

experimental data using coarse grids. The dynamic one-equation model was also able to

predict the periodicity of the vortical structures to reasonable accuracy. Direct Numerical

Simulations (DNS) of flow over a cube in a fully developed channel at Re = 1870 [61, 10]

illustrates the bi-modal behavior of the wall-normal velocity fluctuation in the region in front

of the cube. This behavior is a result of aperiodic ejection of low-momentum fluid away from

the wall, and sweep of high-momentum fluid towards the wall. The Reynolds number of the

flow in the present work is 19600, and DNS of this complex flow is infeasible to study the

dependence on a number of parameters. The choice of this Reynolds number was made so

that it is large enough for the results to be Reynolds number independent, but small enough
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that we can perform a high-fidelity LES.

A cube placed in a fully developed channel flow is an important canonical problem with

applications in a variety of engineering problems however, in numerous situations such as,

flow over a car moving on a free-way, flow over objects mounted on the surface of a car

or an airplane like vortex generators, flow over a building inside the atmospheric boundary

layer, there is no confinement on the top boundary. In such situations flow over a cube

placed inside a spatially evolving turbulent boundary layer (SETBL) is a more relevant

flow model to study. Sillero et al. [63] investigated the differences in the wake structure,

velocity components, pressure and velocity fluctuations, between a fully developed channel

flow and a turbulent boundary layer (TBL). In case of a TBL the edge of the boundary layer

entrains irrotational fluid from the free-stream, and the entrainment reaches equilibrium.

The rotational-irrotational intermittency at the edge of the boundary layer is responsible for

higher normalized values of velocity and pressure fluctuations in a TBL as compared to a fully

developed channel flow. The largest differences lie between a height of y/δ ≈ 0.3− 0.8. We

believe these differences will have an effect on the near-wake characteristics of a cube placed

inside a TBL. This effect is poorly understood and motivates us to pursue a wall-resolved

LES study of a cube placed on a smooth-flat plate in a SETBL. A SETBL is more difficult

to replicate as compared to a fully developed channel inflow because of the non-periodic

boundary condition in the streamwise direction. Periodic boundary condition resembles an

infinite stream-wise domain in which the transition to a fully developed turbulent state is not

limited by the stream-wise length of the domain. On the other hand, in a SETBL the flow

requires a large stream-wise length due to the slow convergence of larger outer scales [63].

The buffer region (y+ < 50) in a TBL is laden with stream-wise streaks, i.e. narrow stream-

wise regions where the stream-wise velocity is larger or smaller than the mean velocity at the

same height from the wall. The characteristic span-wise spacing of these streaks inside the

buffer region is λ+
z ≈ 100 [17, 111]. Coherent structures, however, exist at scales comparable

to the boundary layer thickness (δ). These coherent large scale structures populate the outer
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region of the TBL, and carry a significant amount of turbulent kinetic energy (TKE) and

turbulent Reynolds stresses [112, 113, 114]. Therefore, it is evident that the height of the

cube (h) relative to δ will play a crucial role in the extent and the nature of its interaction

with a TBL. The TKE distribution in the near-wake of the cube will depend on the h/δ

ratio which is investigated in this work.

In the present study we perform wall-resolved LES of flow over a cube placed inside a

SETBL. An in-house code is developed to prescribe a time-varying turbulent inlet boundary

condition to achieve a SETBL with the desired boundary layer thickness and turbulence

statistics at the cube [115]. We investigate the effect of h/δ ratio on the near-wake charac-

teristics. Our hypothesis is that a larger cube enables larger TKE production, and exhibits

a more rapid decay of TKE as a function of the stream-wise coordinate. The underlying idea

is that the characteristic vortices associated with the cube scale with the height of the cube,

and larger vortices signify a greater departure of the TKE distribution from an equilibrium

state. We present the dependence of the horse-shoe vortex and turbulent kinetic energy on

the h/δ ratio. The results from this study have potential implications in design of passive

vortex generators for flow control.

3.2 Computational approach

3.2.1 Geometry and mesh

We consider a SETBL flow over a flat plate of length 18δo, where δo is the boundary

layer thickness at the inlet. As seen in Fig. 3.1, a cube of height h is placed in the plane

of symmetry of the flat plate with its front face at a stream-wise location of 12δo from the

inflow boundary. A synthetic inflow method [116] is used to prescribe a time-varying inflow

velocity field to simulate the SETBL with a free-stream turbulence of 1%. The synthetic

inflow velocity field does not obey the Navier-Stokes equations and requires a transition

length of 12δo to develop into a realistic TBL. Hence the cube is placed at 12δo from the
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Figure 3.1: Problem setup

inlet plane. In the absence of the cube, the boundary layer thickness at x = 12δo is also

δo. We investigate the effect of h/δo ratio on the near-wake characteristics by keeping the

incoming boundary layer thickness constant and considering three different cube heights, so

that h/δo is 0.2, 0.6 and 1.0. The width of the domain is 7h, because we know this width

is sufficiently large to avoid any effect of the side-walls on the turbulent wake [12, 61]. The

height of the domain is 5δo so that we can capture all the effects of the turbulent shear

layer formed on top of the cube and avoid any interaction with the top-wall. The Reynolds

number (Reh) based on the mean velocity (Um) and boundary layer thickness (δo) at the

inlet is 19,600. The Reynolds number (Reτ ) based on the friction velocity (uτ ) and the

boundary layer thickness (δo) at the inlet is 800. The choice of the Reynolds number is

influenced by two factors: (i) it should be small enough so that it is feasible to perform

wall-resolved LES, and (ii) it should be large enough for our results to be Reynolds number

independent. Castro et al. [108] observed that there are no discernible Reynolds number
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Figure 3.2: Computational grid for h/δo = 1.0.

effects of incoming turbulent conditions if Reh > 4000, and the Reh in this study varies

from 3,920 to 19,600. The boundary conditions used in the simulation are no-slip on the

bottom-wall and the surface of the cube. Slip-wall boundary conditions are used on the side

walls and the top-wall. A zero-gradient boundary condition is used on the outlet. A time-

varying turbulent inflow boundary condition is used at the inlet. An in-house code is used to

provide a time-varying turbulent inflow field, which implements the procedure described by

Le [1]. The inflow generation procedure has been validated for the present flow configuration

(Appendix A).

The mesh is non-uniform with smaller cells in the vicinity of the cube and larger cells

towards the periphery of the domain, as demonstrated in Fig. 3.2. Fig. 3.2 illustrates the
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computational grid for h/δo = 1.0 by taking slices normal to the three directions. Similar

mesh is used for h/δo = 0.6 and 0.2. Three different mesh resolutions are used to achieve

grid convergence. The details of the three grids are presented in Table 3.1. Grid convergence

is achieved on the fine mesh, and results can be found in Appendix C.

3.2.2 Numerical Method

The incompressible filtered Navier-Stokes equations are solved with a finite volume ap-

proach using OpenFOAM [77]. The effect of the sub-grid scales is accounted for with the

dynamic k−equation eddy-viscosity LES model [81]. The reason to use this model is its

ability to capture back-scatter. Back-scatter of turbulent kinetic energy is observed in the

region in front of the cube [12]. This model can also accurately simulate the periodicity of

the vortices formed around the cube. A second-order central scheme is used for the viscous

and pressure terms, whereas as the LUST (Linear Upwind Stabilized Transport) [84] scheme

is used to discretize the convection term. LUST scheme a linear combination of the cen-

tral and linear upwind schemes with weights 0.75 and 0.25 respectively. Mittal et al. [87]

reported that for LES of turbulent flows, the computational grids and boundary conditions

should be designed with extreme care when using a central scheme for the convective term.

To overcome this problem, a more robust LUST scheme is used in the present work. The

solution is advanced in time using a second-order implicit backward time-marching scheme.

The validation results were presented in Appendix B [116]. The simulations are carried out

for a total time period of 1100δo/Um with variable time-step and a maximum Courant num-

Mesh ∆x+
min ∆x+

max ∆y+
min ∆y+

max ∆z+
min ∆z+

max

Coarse 21 104 2.5 200 21 146
Medium 18 80 0.5 200 18 125

Fine 16 74 0.5 200 16 110
*

∆+ represents grid spacing in wall units. ∆+ = ∆uτ/ν

Table 3.1: Non-dimensional grid spacing details.
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Figure 3.3: Iso-surfaces of Q−criterion colored with vorticity in the near wall region for a
cube with h/δo = 1.0 in a SETBL.

ber of 1.0. The turbulent statistics are averaged starting from 100δo/Um over a time period

of 1000δo/Um to avoid contamination of the results by the initial transient.

3.3 Results

3.3.1 Flow description

We present the iso-surfaces of theQ−criterion colored with vorticity magnitude for h/δo =

1.0 in Fig. 3.3 and 1.14 to illustrate the basic features of flow over a cube in a TBL. The

Q−criterion is the second invariant of the velocity gradient tensor (∇u) and defines a vortex

as a “connected fluid region with a positive second invariant of ∇u” i.e. Q > 0. It represents

vortices as regions where the vorticity magnitude is greater than the magnitude of the rate-

of-strain [62]. In Fig. 3.3, we depict the inner region of the TBL which contains small-scale

coherent structures. We observe that the density of small-scale structures increases in the

near-wake due to the break-down of vortices produced by the cube. In Fig. 3.3 and 1.14,

we notice a region of high vorticity in the shape of a horse-shoe around the front-face of the

cube. This region is known as the horse-shoe vortex. We examine the dependence of the
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Figure 3.4: Skin friction coefficient (Cf ) for different h/δo ratios.

horse-shoe vortex on the h/δo ratio in Sec. 3.3.3. The lateral vortices formed on the sides of

the cube, and the vortex shedding from the top surface are visible in Fig. 1.14. The vorticity

magnitude decreases in the wake of the cube as we move along the stream-wise direction.

3.3.2 Drag coefficient, separation and reattachment lengths

Previous experimental and numerical studies [54, 59, 12] performed on flow over a cube

placed inside a channel flow have reported the existence of a horse-shoe vortex around the

cube. The presence of the horse-shoe vortex leads to the separation of the boundary layer

from the bottom-wall in front of the cube and reattachment of the boundary layer behind the

cube. The separation length (Xs) is the length in front of the cube where the boundary layer

separates from the bottom-wall; the reattachment length (Xr) is the length behind the cube

where the boundary layer reattaches to the bottom-wall. The skin-friction coefficient (Cf )
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is plotted against the stream-wise coordinate in Fig. 3.4 to quantify Xs and Xr. The exact

values of Xs and Xr are shown in Table 3.2. Our results for Xs and Xr are similar to those

obtained from DNS of a wall-mounted cube in a fully developed channel flow [61, 11]. From

Fig. 3.4 and Table 3.2 we observe that Xs and Xr are independent of the cube height to

boundary layer thickness ratio. This observation indicates that the stream-wise position of

the horse-shoe vortex formed around the cube scales with the size of the cube itself. On the

other hand, from Table 3.2 we notice that the drag coefficient (Cd) increases with increasing

h/δo. This increase is justified by the fact that a larger cube provides a greater resistance to

the boundary layer flow.

3.3.3 Horse-shoe vortex

We analyze the strength and the size of the horse-shoe vortex in Fig. 3.5. The x-

component of the time-averaged vorticity is plotted in the y − z plane for the three h/δo

ratios. In Fig. 3.5a - 3.5i, we observe two bright spots on either sides of the cube along the

wall which correspond to the horse-shoe vortex. In the region close to the wall, between the

horse-shoe vortex and the bottom-wall we observe a secondary vortex sheet, which extends

to a more wider span-wise distance. As we go downstream, we observe the diverging nature

of the horse-shoe vortex, whose strength decreases with increasing x/h. For a given x/h

location, the smaller cube has a weaker horse-shoe vortex. Interestingly, we notice that for

h/δo = 0.6 and 1.0, the horse-shoe is confined to a wall-normal distance of 0.2y/h and span-

wise distance of 1.2z/h, whereas for h/δo = 0.2 it extends to 0.3y/h and 1.3z/h in the wall-

Cube height (h/δo) Cd Separation length (Xs/h) Reattachment length (Xr/h)
0.2 0.6 1.3 1.5
0.6 0.9 1.2 1.6
1.0 1.0 1.3 1.6

Table 3.2: Drag coefficient (Cd), and separation and reattachment length normalized
by cube height for a spatially evolving turbulent boundary layer flow over a wall-
mounted cube.
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(a) h/δo = 0.2, x/h = 0.1 (b) h/δo = 0.6, x/h = 0.1 (c) h/δo = 1.0, x/h = 0.1

(d) h/δo = 0.2, x/h = 0.5 (e) h/δo = 0.6, x/h = 0.5 (f) h/δo = 1.0, x/h = 0.5

(g) h/δo = 0.2, x/h = 0.9 (h) h/δo = 0.6, x/h = 0.9 (i) h/δo = 1.0, x/h = 0.9

Figure 3.5: Span-wise contours of streamwise component of the mean vorticity at x/h =
0.1, 0.5 and 0.9 along the cube, with the cube outlined in black

(a) h/δo = 0.2, x/h = 0.5 (b) h/δo = 0.6, x/h = 0.5 (c) h/δo = 1.0, x/h = 0.5

Figure 3.6: Mean pressure contours in the y − z plane at x/h = 0.5, with the cube outlined
in black.

normal and span-wise directions respectively. Yakhot et al. [61] performed a direct numerical

simulation (DNS) of flow over a cube placed inside a channel at a far lower Re = 1870 and

h/δo = 1.0, and reported a horse-shoe vortex extending from 0.35y/h to 1.4z/h towards

the rear face of the cube, which is close to our results for the h/δo = 0.2. We believe this

agreement is because the h/δo = 0.2 cube is located deeper inside the boundary layer, and

therefore surrounded by lower velocity fluid. In our simulations the Reynolds number based

on cube height in this region is 3920, which is much closer to the Reynolds number from

Yakhot et al. than our free-stream Reynolds number of 19,600. The slower rate of spreading

of the horse-shoe vortex for larger cube heights can be explained from the mean pressure
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(a) h/δo = 0.2, x/h = 3.0 (b) h/δo = 0.6, x/h = 3.0 (c) h/δo = 1.0, x/h = 3.0

(d) h/δo = 0.2, x/h = 5.0 (e) h/δo = 0.6, x/h = 5.0 (f) h/δo = 1.0, x/h = 5.0

Figure 3.7: Span-wise contours of stream-wise mean vorticity at x = 3h and 5h downstream
of the cube.

contours represented in Fig. 3.6. For greater cube heights, there exists a stronger pressure

gradient between the side-walls of the cube and the free-stream flow. This increased pressure

gradient forces the horse-shoe to remain closer to the side-walls, thereby decreasing the rate

of spreading. In summary, the strength of the horse-shoe vortex decreases with decrease in

cube height, but the rate of spreading increases with decrease in cube height. The reason

for this behavior is the lower, mean pressure gradient in case of smaller cube heights.

In Fig. 3.7 we consider the evolution of the horse-shoe vortex in the wake of the cube.

Expectedly, the strength of the horse-shoe vortex continues to decrease with stream-wise

distance and cube height. At x = 3h, the plane lies just behind the arc-type vortex behind the

cube which can be observed in the center. At this location the horse-shoe vortex has spread

over a larger wall-normal and span-wise distance of y ≈ 0.4h and z ≈ 1.8h respectively. As

we move further downstream (x = 5h), the horse-shoe vortex continues to spread in the y−z

plane to y ≈ h.

3.3.4 Mean velocity and Reynolds stress

The span-wise variation of the mean velocity and Reynolds stresses for h/δo = 1.0 are

plotted in Fig. 3.8. We consider the results from the simulation for largest cube height

to analyze the important flow characteristics because the effects are most pronounced, and
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Figure 3.8: Mean velocity and Reynolds stress profiles at y = 0.5h, x = 4h for h/δo = 1.0:
, u′2; , v′2; , w′2; , u′v′; , u′w′; , v′w′.

similar trends are observed for the smaller cube heights. The figures correspond to the

stream-wise location of x = 4h and a height of y = 0.5h. In Fig. 3.8a we observe that

the stream-wise component of velocity is an order of magnitude larger than the other two

components and exhibits two peaks at the centers of the two counter-rotating vortices. The

stream-wise velocity is lower at the center of the domain, which corresponds to the region

in between the counter-rotating vortex pair. The counter-rotating nature of the vortex

pair results in a net sweep of high-momentum fluid from the outer region to the near-wall

region. This is evident from the negative value of the wall-normal component of velocity

in the center of domain. The z−component of velocity exhibits a wave-like pattern with a

small magnitude and a period of approximately h which is consequence of the vortex-pair.

It signifies a net transport of momentum by the z−component of velocity towards to the

center of the domain.

The components of the Reynolds stress at x = 4h, y = 0.5h are plotted for h/δo = 1.0

as a function of the span-wise coordinate in Fig. 3.8b. The u′2 and u′w′ components have

peaks at the center of the horse-shoe vortex, whereas the v′2, w′2 and u′v′ components have
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Figure 3.9: Mean velocity and Reynolds stress profiles in the centerplane and at z = h for
h/δo = 1.0 at x = 4h: , u′2; , v′2; , w′2; , u′v′; , u′w′;

, v′w′.

peaks at the center of the domain. A increase in u′2 at the center of the vortices is a result of

turbulent transfer of momentum in the stream-wise direction, and has been observed before

for a counter-rotating vortex pair [117]. The peak in v′2 and w′2 at the center of the domain

is because of the wall-normal and span-wise turbulent transport of momentum to the near-

wall region and center-plane respectively. The negative peak of u′v′ is a consequence of the
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turbulent transport of momentum (u′ > 0) to the negative wall-normal direction (v′ 6 0).

The u′w′ component has a magnitude comparable to the u′v′ component which indicates its

significance. On the left side of the center-plane high momentum fluid (u′ > 0) is carried

towards to positive span-wise direction (w′ > 0), giving rise to a positive peak in u′w′. The

opposite arguments apply for the negative peak on the right side of the center-plane.

The variation of the mean velocity profile and Reynolds stress in the wall-normal direction

in the center-plane and z = h, at a stream-wise location of x = 4h for h/δo = 1.0 in presented

Fig. 3.9. From the x−component of mean velocity in Fig. 3.9a and Fig. 3.9c we observe that

the boundary layer thickness is greater in the center-plane because boundary layer has not

completely recovered, and process of momentum transfer to the center-plane is still underway.

In the center-plane the y−component of velocity is negative as the high momentum fluid is

carried by the counter-rotating vortex pair to the near-wall region. The z−component of

mean velocity is zero in the center-plane. At z = h, the y−component of mean velocity of

zero however, the z−component is positive near the wall and becomes negative away from the

wall, this behavior is because of the direction of rotation of the vortex on the right hand side

of the center-plane (Fig. 3.7f). The point at which Uz becomes zero (y = 0.25h), corresponds

to the center of the vortex. The u′w′ component of the time-averaged Reynolds stress in

the center-plane is negligible whereas its magnitude is comparable to the u′v′ component

at z = h. This increase in magnitude is because of the span-wise turbulent transport of

momentum by the horse-shoe vortex on the right hand side of the center-plane. The u′v′

and the u′w′ components are responsible for major production of turbulent kinetic energy

at the center of the two vortices, as explained later.

3.3.5 Turbulent kinetic energy

To understand the energy transfer and dissipation in the wake of the cube we show the

turbulent kinetic energy (TKE) per unit area for different cube heights as a function of the

stream-wise coordinate in Fig. 3.10a. For the three h/δo ratios, average the TKE over an

66



2 3 4 5 6

x/h

0.4

0.5

0.6

0.7

0.8

0.9

1.0
T

K
E

/
ar

ea
h/δo = 0.2

h/δo = 0.6

h/δo = 1.0

TKE ∼ (x/h)−α

(a) Normalized TKE per unit area vs. nor-
malized stream-wise distance. The dotted
line corresponds to the power law behavior
with a different value of α for each cube
height.

 

x 

2𝛿" 

7h 

(b) Schematic showing area over which TKE is
averaged

Figure 3.10: TKE area density as a function of stream-wise location for different h/δo ratios.

area of height 2δo and width 7h is considered, as illustrated in Fig. 3.10b. This particular

height is chosen to ensure that the kinetic energy produced by the shear-layer at the edge of

the cube’s top surface is accounted for. It height of the shaded area scales with the boundary

layer thickness (δo) as opposed to the cube height (h) because we intend to capture the effect

of interaction between the vortices produced by the cube with the vortices inside the TBL.

The vortices produced by the cube scale with h, and the large scale coherent structures

inside the TBL scale with δo. The interaction between vortices with these two length scales

will have an effect on the TKE distribution around the cube, and even for the smallest cube

height (h/δo = 0.2) will affect the outer region of the TBL. An area with height 2δo allows us

to capture the effect of this interaction on the TKE distribution inside the TBL. From Fig.

3.10a two important observations stand out: (i) the TKE area density decays in increasing

stream-wise distance in a power law manner, and (ii) the rate of decay depends on h/δo.

The TKE area density decay is summarized by Eq. 3.1.
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TKE

area

∗
=

(
x

h

)−α
(3.1)

where the “ ∗ ” denotes that the TKE per unit area is normalized by its value at x = 2h,

x is the stream-wise coordinate, h is the cube height and, α is the power law exponent. We

observe that the TKE area density decay scales with h in the near-wake of the cube. Since

we consider the average TKE over the entire span of the domain, the only terms from the

TKE budget that should contribute to its decay are the production (Pk) and the dissipation

(εk) of TKE. Hussein et al. [11] experimentally showed that Pk and εk individually decay in a

power law manner in the center-plane in near-wake of the cube. In their work, the cube was

placed in fully developed channel flow, with h equal half channel height, and the Reynolds

number was 80,000 (based on channel height and mean velocity). They reported a decay

rate which lies between α =-2 and -2.3 in the center-plane for both, Pk and εk. However,

in our case we observe that α < 1, and the reason for this lower values of α is that the

decay of Pk and εk in the center-plane is more rapid as compared to that over the entire

shaded area. The greater decay rate in the center-plane is a consequence of larger gradients

in velocity and velocity fluctuations in the center-plane. The lower decay rate observed in

our work represents an average effect that spans the entire width of the domain. A value

of α < 1 also implies that the integration of Eq. 3.1 with x/h ranging from 0 to ∞ would

diverge, further confirming the at fact that the observed power law decay is a near-wake

phenomenon. Physically, as the TBL recovers the TKE area density should remain constant

with x/h in the far-wake, and that behavior is not captured by the power law decay.

In Fig. 3.11a we illustrate non-linear increase in the power law exponent with increasing

h/δo. A 2nd order polynomial can be fit through the three data points using a least squares

method leading to Eq. 3.2.

α

αo
= 0.6− 0.2

(
h

δo

)
+ 0.6

(
h

δo

)2

(3.2)
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Figure 3.11: TKE area density dependence on the normalized stream-wise coordinate.

where αo = 0.9 is the power law exponent corresponding to h/δo = 1.0. It is important to

note that the fit is non-linear, but does not obey an exponential or a power law expression.

The rate of decay increases with increasing h/δo which leads us to propose the following

hypothesis: (i) Pk and εk, individually scale with h, and (ii) Pk and εk decay in a power law

manner with x/h. The first hypothesis is confirmed by examining the Pk contribution to the

TKE budget of the three h/δo ratios. The second hypothesis holds true in the center-plane

for the flow over a cube in a turbulent channel [11], and needs to be confirmed for the present

flow configuration. A larger cube produces greater TKE because of the greater gradients in

velocity present in the outer region, which also represents a greater departure of the flow

from the state of equilibrium. A higher decay rate facilitates a faster return to equilibrium

state. We believe the rate of decay of TKE in the near-wake is a function of the measure of

departure of the flow from equilibrium. A turbulent flow is said to be in equilibrium when

the production (Pk) of TKE is balanced by its dissipation (εk). In Fig. 3.11b, we present

the collapsed TKE area density curves for the three cases when the values are scaled with
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(a) h/δo = 0.2, x/h = 0.5 (b) h/δo = 0.6, x/h = 0.5 (c) h/δo = 1.0, x/h = 0.5

(d) h/δo = 0.2, x/h = 3.0 (e) h/δo = 0.6, x/h = 3.0 (f) h/δo = 1.0, x/h = 3.0

(g) h/δo = 0.2, x/h = 6.0 (h) h/δo = 0.6, x/h = 6.0 (i) h/δo = 1.0, x/h = 6.0

Figure 3.12: TKE production to dissipation ratio contours in the y− z plane at x/h = 0.5, 2
and 5.

the power law decay of the stream-wise distance behind the cube.

To better understand the energy transfer, we consider the turbulent kinetic energy budget

given by,

∂(1
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where

1

2
q2 =

1

2
(u′2 + v′2 + w′2) (3.4)

1
2
q2 is the turbulent kinetic energy, Re = Umδ

ν
is the Reynolds number based on mean velocity
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(Um) and boundary layer thickness (δ), ντ is the eddy viscosity in the LES model. The over-

bar represents a time average. The terms on the right hand side of Eq. D.1 are: convection

(Ck), production (Pk), turbulence transport (Tk), viscous diffusion (Dk), viscous dissipation

(εk) and velocity-pressure gradient (Πk).

Fig. 3.12 depicts the absolute ratio of turbulent kinetic energy (TKE) production to

dissipation terms (Pk/εk) in the y − z plane at three stream-wise locations. The ratio

Pk/εk helps us to quantify the departure from the state of equilibrium. In a turbulent flow,

equilibrium is defined as the state in which the production of TKE is balanced by dissipation,

therefore, large values of Pk/εk represent regions of greater non-equilibrium. In Fig. 3.12 we

observe that the Pk/εk values decrease with decreasing cube heights. The contribution to the

production term ((u′lu
′
k)Ul,k) comes from the gradient of velocity tensor and the Reynolds

stress tensor. The no-slip boundary condition imposed on the surface of the cube results in

large velocity gradients which in turn is responsible for the increased production of TKE.

A bigger cube results in larger velocity gradients, and therefore, large values of Pk/εk. At

x = 0.5h in Fig. 3.12a - 3.12c we observe a region of high Pk/εk around the surface of the

cube. In case of h/δo = 1.0, we observe a region of large Pk/εk at y ≈ 1.4 to 2.2, and the

reason for this increase in the ratio is explained later. As we move along the stream-wise

direction at x = 3h and x = 6h, we observe an increase in Pk/εk at the center of the horse-

shoe vortex at z ≈ h, and a relatively smaller magnitude of the ratio in the center of the

domain behind the cube. We learned in Sec. 3.3.4 that the span-wise gradient of velocity

(∂U/∂z) is zero at the center of the domain therefore, the only term contributing to Pk in

the center-plane is u′v′Ux,y. On the other hand, in the center of the horse-shoe vortex, the

u′w′Ux,z term also contributes the production of TKE. This term is a result of span-wise

turbulent transport of momentum caused by the counter-rotating vortex pair.

To understand the large increase in Pk/εk for h/δo = 1.0 between y/h ≈ 1.4 and 2.2 in

Fig. 3.12c and 3.12f, we look at the distribution of the terms individually in the center-plane

of the domain in Fig. 3.13. We observe that the regions with Pk > εk are present in front
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(a) Production term (Pk) (b) Absolute value of the dissipation term (εk)

Figure 3.13: Contours of the production term and absolute value of the dissipation term
from the TKE budget of h/δo = 1.0 in the center-plane.
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Figure 3.14: Normalized span-wise averaged terms on the right hand side of the TKE budget
equation at x = 0.5h: , convection; , production; , turbulence transport;

, viscous diffusion; , viscous dissipation; , velocity-pressure gradient.

of the cube at the center of the horse-shoe vortex, and inside the shear-layer emanating

from the front edge of the cube. This is because the major contribution to the production

term comes from the velocity gradient tensor, whereas the dissipation term depends on the

gradient of velocity fluctuations which are an order of magnitude smaller than the gradients

in velocity. At the height of y/h ≈ 1.4 to 2.2 we notice that both Pk and εk have negligible

magnitudes, and therefore, the large increase in Pk/εk at that height is a numerical artifact

72



of dividing a small value of Pk by an order of magnitude smaller value of εk. The regions

where Pk is not balanced by εk are recognized as regions of non-equilibrium.

We examine the normalized, span-averaged terms on the right-hand-side of TKE budget

equation at x = 0.5h in Fig. 3.14. The magnitude of each term increases with increasing

cube height on account of the increased gradients across the shear-layer. A large spike in

the production term is observed at y ≈ 1.2h, which lies inside the shear layer. This spike

correlates with the location of the negative spike in the transport term, indicating the transfer

of TKE from the shear layer to regions close to cube top-wall and away from the shear-layer.

The magnitude of dissipation inside the shear layer is negligible relative to the that of

the production term, thereby implying non-equilibrium. The commonly used assumption

in the eddy viscosity parameterization, that production is balanced by dissipation, is not

applicable in this region, further justifying the use of the dynamic k−equation LES model.

The convective term shows a distinct negative peak inside the shear layer, which implies that

the velocity and gradient of TKE point in the same direction at x = 0.5h. We can therefore

conclude that the magnitude of the TKE decreases in the stream-wise direction on the top

of the cube.

Fig. 3.15 depicts the normalized, span-averaged TKE budget at x = 2h; outer coordinates

are used in Fig. 3.15a - 3.15c, and inner coordinates in Fig. 3.15d - 3.15f. The reason to

normalize the TKE budget terms using the outer and inner coordinates separately is that the

large scale outer structures are governed by the outer variables (mean velocity Uo, and cube

height h), whereas the near-wall behavior is governed by the inner variables (friction velocity

uτ , and kinematic viscosity ν). This plane lies just after the point of reattachment behind

the cube. In the outer region we observe that the magnitude of the production term, and the

location of its peak value inside the shear layer increases with increasing cube height. The

profile of the production term in the outer region has two distinct peaks; first, near the wall,

and second, away from the wall inside the shear layer. The peak inside the shear layer is

mainly due to the contribution of u′v′∂U/∂y to the longitudinal stress, P11. This observation
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Figure 3.15: Normalized span-averaged terms on the right-hand-side of the TKE budget
equation at x/h = 3: , convection; , production; , turbulence transport;

, viscous diffusion; , viscous dissipation; , velocity-pressure gradient.

is similar to that of a shear layer formed from a backward facing step [118] although, there

is an enhancement in the production term close to the wall in our case. We observed in

Sec. 3.3.4 that near the wall at the center of the horse-shoe vortex the u′w′∂U/∂z term

has a significant magnitude, which also contributes to increased production along with the

u′v′∂U/∂y term. Peak value of the production term is not balanced by the dissipation term,

implying non-equilibrium. The transport term continues to transfer energy from the shear

layer to the low-speed and the high-speed sides of the shear layer, with greater magnitudes

in case of the h/δo = 1.0. The convective term has become positive inside y/h < 1.0, from

a distinct negative value seen in Fig. 3.14. This positive value implies that the direction of

velocity and the direction of TKE gradient vectors are opposite. TKE introduced in the flow

by the cube is convected in the stream-wise direction, to the near-wall region and towards the
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Figure 3.16: Normalized span-averaged terms on the right-hand-side of the TKE budget
equation at x/h = 6: , convection; , production; , turbulence transport;

, viscous diffusion; , viscous dissipation; , velocity-pressure gradient.

center-plane of the domain. In the region close to the wall in Fig. 3.15d - 3.15f, we observe

that dissipation dominates as expected. However, the velocity-pressure gradient term has a

large magnitude at y+ < 5. The adverse pressure gradient gives rise to the large spike in Πk.

We investigate the TKE budgets in the recovery region in Fig. 3.16. We observe a sharp

decrease in the magnitude of Pk inside the shear layer compared to Fig. 3.15. This drop is

mainly due to the transport of TKE to the regions away from the shear layer. However, this

drop is not as significant near the wall because the velocity gradients which contribute to Pk,

are still strong. Comparing the profiles to those corresponding to a zero-pressure-gradient flat

plate boundary layer [118], the recovery of the boundary layer is more effective in h/δo = 0.2

case, compared to that of the larger cubes. The magnitude of Pk is balanced closely by εk

for h/δo = 0.2 for y > 0.2h. The TKE budget profiles look identical to the zero-pressure
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gradient boundary layer for the three cube heights in the inner region, indicating that the

boundary layer has recovered in the near-wall region. However, the recovery of the TBL is

incomplete in the outer region at x = 6h, for h/δo = 0.6 and 1.0 because: (i) the transport

term has a non-zero magnitude for h/δo = 1.0 in the outer region, indicating transport of

TKE from the shear to the low-speed and high-speed sides of the shear layer, (ii) a large

spike in the production term close to wall, and (iii) non-zero value of the convection term,

with a peak at y ≈ 0.5h.

3.4 Conclusions

Wall-resolved large eddy simulations of a wall-mounted cube placed inside a spatially

evolving turbulent boundary layer (SETBL) are performed. The Reynolds number of the

flow based on mean velocity and incoming boundary layer thickness is 19,600. The key

novelty of this work is the use of SETBL to analyze the effect of varying the cube height (h)

to boundary layer thickness ratio (δo) on the near-wake characteristics. Separation distances

and reattachment lengths are similar to those observed in previous experiments and direct

numerical simulations of a cube in a fully developed channel flow. We observe that the

size of the recirculation region behind the cube scales with the cube height (h), which is

in agreement with previous studies [119, 61]. On the other hand, mean vorticity contours

indicate that several properties of the horse-shoe vortex depend on h/δo. For h/δo = 0.6 and

1.0, the horse-shoe vortex extends to 0.2y/h and 1.2z/h, whereas, for h/δo = 0.2, it extends

to 0.3y/h and 1.3z/h. The slower rate of spreading of the horse-shoe for larger cubes is

attributed to the presence of a strong, span-wise pressure gradient. The strength of the

horse-shoe vortex decreases with decreasing cube height and in the stream-wise direction, as

the velocity behind the cube increases with decreasing lateral pressure gradients.

The turbulent kinetic energy (TKE) per unit area exhibits a power law decay in the near-

wake for all the h/δo ratios, and the power law exponent increases in a non-linear fashion

with increasing h/δo. We believe this observation is a near-wake phenomenon, similar to
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the observations of Hussein et al. [11] for flow over a cube in a turbulent channel. A larger

cube results in stronger gradients in velocity, which in turn leads to greater production of

TKE. The production of TKE is not balanced by its dissipation inside the shear layer in the

wake and this imbalance is a measure of the departure from the state of equilibrium. The

greater decay rate facilitates a faster recovery of the TBL, as it transitions to equilibrium.

An investigation of the TKE budget indicates that the TKE production to dissipation ratio

(Pk/εk) increases inside the shear layer emanating from the top surface of the cube. This

ratio also increases with increasing h/δo. This behavior is explained by the large velocity

gradients inside the shear layer for larger cube heights. A detailed look at the TKE budget

terms reveals high values of Pk close to the wall on account of the near-wall velocity gradients,

but these high levels are overshadowed by far greater viscous dissipation. The shear layer

transports TKE to regions close to the wall and away from the shear layer as the boundary

layer recovers. The recovery of the turbulent boundary layer is not complete at x = 6h, as

exemplified by large values of transport and convection due to the opposite nature of velocity

and TKE gradient vectors inside the boundary layer.
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CHAPTER IV

Understanding the dependence of near-wake

characteristics on the spacing between adjacent cubes

in a turbulent boundary layer

4.1 Introduction

Flow over wall-mounted cubes has been an active research topic for decades. The cube

has been studied in an open channel to mimic external flow scenarios, as well as in a closed

channel to represent internal flow configurations. The need to understand air flow over build-

ings or flow over objects mounted on moving bodies (e.g., aircraft, automobile, submarine,

etc.) has motivated researchers to study flow over a wall-mounted cube in an open chan-

nel. Furthermore, gaining a deeper understanding of physics of flow over a cube in a fully

developed channel flow has implications in designing of circuit boards, heat exchangers with

cooling fins, turbines with rotor and blades, etc.

For a single cube placed in a turbulent boundary layer (TBL) the relevant parameters

that affect the flow physics are the cube height to boundary layer thickness ratio (h/δ)

[108], Reynolds number based on the cube height and mean flow velocity (Reh), level of

free-stream turbulence (FST) [119], and the orientation of the cube with respect to the flow

direction. Researchers have investigated the influence of each of these parameters on the flow

physics through experimental [108, 54, 11] and numerical studies [59, 12, 61]. Castro et al.
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[108] investigated the effect of upstream turbulence and shear on the wake characteristics for

changing cube height (h) to boundary layer thickness ratio (δ), where h/δ varied from 0.1 to

2.3. They concluded that for h/δ . 0.7 the reattachment length achieved a certain degree

of Reynolds number independence. Varying the h/δ ratio and keeping the TBL properties

constant led to the cube intersecting the TBL at different locations, which in turn varied

with the level of turbulence at the cube height. They postulated that the wake properties

should depend on the shear layer formed on the top surface of the cube. Martinuzzi et

al. [54] varied the aspect ratio (W/H) from 1 to 24 for flow over an obstacle placed in

fully developed channel flow. The obstacle height was half channel height and the Reynolds

number of the flow was 40,000. They discovered that the for W/H > 6 the wake of the

obstacle was nominally two-dimensional. For flow over a single cube in a turbulent channel

flow with h = 0.5H, where H is the channel height, and a Reh = 40, 000, Hussein et al.

[11] investigated the TKE budget in the center-plane in the wake of cube and concluded

that the production and dissipation terms of TKE budget decay in a power law manner in

the plane of symmetry. Hearst et al. [119] investigated the effect of varying free-stream

turbulence on the wake characteristics for a cube placed in a SETBL for h/δ = 0.5. They

observed a monotonic reduction in the wake length with increasing free-stream turbulence.

Aforementioned studies and several others [120, 121, 122] also report the existence of time-

averaged flow features like the horse-shoe vortex formed in front of the cube, the arch-type

vortex formed in the wake of the cube, and the hair-pin vortices on the top surface.

With the increase in computational power in the past two decades, scientists have used

numerical methods to study the fluid mechanics in this complex problem. A variety of

numerical approaches like Reynolds-Averaged Navier-Stokes (RANS), detached-eddy sim-

ulation (DES), large-eddy simulation (LES), and direct numerical simulation (DNS) have

been used. Krajnovic et al. [59, 12] performed LES of flow over a cube placed inside a fully

developed channel flow at a Reynolds number of 40, 000, where the cube height was half the

channel height. They surveyed different LES models and concluded that the one-equation
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LES model is better capable to capture the non-equilibrium turbulent flow around the cube

than the Smagorinsky model. Yakhot et al. [61, 10] in their DNS of the same flow configura-

tion, but at a lower Reynolds number of 1870 (based on the cube height and mean velocity),

reported negative turbulence production in the region in front of the cube, and attributed the

unsteadiness observed in the flow to the viscous-inviscid interaction between the horse-shoe

vortex and a narrow band of positive vorticity in front of the cube. Liakos et al. [60] studied

the onset of unsteadiness in the flow as it transitions from laminar to turbulent flow regimes

for h = 0.1H, where H is the channel height. From these studies it is clear that DNS of this

flow configuration at high Reynolds number is still beyond our computational grasp. LES is

the most accurate numerical alternative for tackling this problem, and hence the preferred

tool for investigation in this study.

In addition to the parameter discussed above for turbulent flow over an array of cube-like

objects stretching in the stream-wise, span-wise, or both the directions the spacing between

these objects also affects the flow physics. To understand the atmospheric boundary layer

flow over an urban landscape (Belcher et al. [68], Lee et al. [75], Coceal et al. [69]), past

work investigated the flow over an array of obstacles stretching in the stream-wise and span-

wise directions on smooth walls. The height of the obstacles is much smaller as compared

to the boundary layer thickness, with height h < 0.2δ, causing minimal interaction of the

cube-like obstacles with the large-scale and very-large-scale structures in the outer region of

the TBL. On the other hand, for h < 0.1δ, researchers treated the array of obstacles as a

rough surface, and investigated the effect of roughness on the coherent structures in a TBL

(Tomkins et al. [123], Orlandi et al. [124]). However, the effect of spacing between adjacent

cubes on the interaction between horse-shoe vortices, and its effect on the turbulent kinetic

energy (TKE) distribution in the near-wake is poorly understood. A deeper understanding

of the effect of spacing between adjacent cubes on TKE distribution can be leveraged to

control flow separation on aircrafts, automobiles, turbo-machineries, etc. Therefore, in the

present work we consider a single row of cubes in a turbulent boundary layer, and study
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the near-wake characteristics. An infinite line of cubes placed adjacent to each other and

normal to the flow direction is replicated using periodic boundary conditions in the span-wise

direction. The cube height is equal to the boundary layer thickness at its front face, causing

a significant perturbation of the large-scale structures in the boundary layer. In Chapter

III we considered the turbulent wake characteristics of a single cube in a spatially evolving

turbulent boundary layer for varying h/δ. We discovered that the decay of TKE area density

obeys a power law equation, and the power law exponent increases in a non-linear manner

with increasing h/δ. In this chapter, we investigate the effect of interaction between vortices

from adjacent cubes on the near-wake behavior when an infinite line of cubes is placed normal

to the flow direction. We expect that the power law decay of the TKE area density holds

true for regions close to the cube in its wake, before the horse-shoe vortices from adjacent

cubes interact with each other. We further expect an increase in the TKE area density after

the onset of these interactions.

4.2 Computational approach

4.2.1 Geometry and mesh

We simulate a SETBL over a flat plate of length 18δo, where δo is the boundary layer

thickness at the inlet boundary. As illustrated in Fig. 4.1, a cube of height h = δo is placed

at a distance of 12δo from the inlet boundary, and the reason for choosing this distance is

explained later. The height of the domain is 5δo, so that we can capture all the effects of the

turbulent shear layer formed on top of the cube, at the same time avoid any influence of the

top-wall on the vortices generated by the cube. To examine the effect of spacing between

adjacent cubes on the near-wake, we vary the width (w) of the computational domain with

periodic span-wise boundary conditions. In the present work we consider three different

domain widths, so that w/h is 3, 5, and 7. The dotted lines in Fig. 4.1 represent a infi-

nite repetition of the computational domain on both sides, achieved via a cyclic boundary
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Figure 4.1: Problem setup.

condition imposed on the side-walls. The SETBL is simulated using a time-varying inflow

boundary condition (Sec. 2.4.2) for the velocity field at the inlet, with a free-stream turbu-

lence of 1%. The time-varying inflow field does not obey the filtered Navier-Stokes equations

at the inlet and requires a transition length of 12δo to regain the boundary layer thickness

and develop into a realistic TBL. Hence, the cube is placed at a distance of 12δo from the

inflow boundary. In the absence of the cube, the boundary layer thickness at x = 12δo is

also δo.

The Reynolds number (Reh) of the flow is 19,600 based on the mean velocity and the

cube height, whereas the Reynolds number (Reτ ) based on friction velocity (uτ ) and the cube

height is 800. The choice of the Reynolds number is influenced by two factors: (i) it should

be small enough, so that it is feasible to perform wall-resolved LES, and (ii) it should be

large enough for our results to be Reynolds number independent. Castro et al. [108] found

that there are no discernible Reynolds number effects of incoming turbulent conditions if

Reh > 4000, and the Reh in this study is an order of magnitude higher. The bottom-wall

and the cube surface are treated as no-slip walls, and a zero-gradient boundary condition

is used at the outlet. As demonstrated in Fig. 4.2, the mesh is non-uniform with smaller
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Figure 4.2: Computational grid for w = 7h.

cells near the bottom-wall and the cube, and larger cells away from the wall and towards

the periphery of the domain. A grid convergence study is performed using three (coarse,

medium, fine) different mesh resolutions for the w = 7h case, and the results are presented

in Appendix C. From this study we conclude that grid independence is achieved on the fine

mesh. The cell spacings for the three grids are reported in Table 3.1.

4.2.2 Numerical methods

The incompressible filtered Navier-Stokes equations are solved with a finite volume ap-

proach using the OpenFOAM libraries [77]. The effect of the sub-grid scales is accounted for

with the dynamic k−equation eddy-viscosity LES model [81]. The reason to use this model

83



is its ability to capture back-scatter of turbulent kinetic energy1, a phenomenon observed in

the region in front of the cube [12]. This model can also accurately simulate the periodicity

of the vortices formed around the cube [12]. A second-order central scheme is used for the

viscous and pressure terms, whereas as the LUST (Linear Upwind Stabilized Transport) [84]

scheme is used to discretize the convection term. LUST scheme a linear combination of the

central and linear upwind schemes with weights 0.75 and 0.25 respectively. Mittal et al. [87]

reported that for LES of turbulent flows, the computational grids and boundary conditions

should be designed with extreme care when using a central scheme for the convective term.

To overcome this problem, a more robust LUST scheme is used in the present work. The

solution is advanced in time using a second-order implicit backward time-marching scheme.

The numerical framework is validated by comparing its accuracy with experimental results

for flow over a cube in a turbulent channel flow (Appendix C). The simulations are carried

out for a total time period of 1100δo/Um with variable time-step and a maximum Courant

number of 1. The turbulent statistics are averaged starting from 100δo/Um for a time period

of 1000δo/Um, to avoid contamination of the results by the initial transient.

4.3 Results and discussion

The basic flow features described in Sec. 3.3.1 for flow over a single cube in a SETBL

like the horse-shoe vortex formed around the front-face of cube, the lateral vortices formed

on the sides of the cube, and the vortex shedding from the top surface of the cube, are also

observed in case of multiple cubes. It is difficult to quantify the effect of w/h on these flow

features by examining volumetric distribution of quantities. Therefore, in this section we

focus our attention on line and contour plots of quantities of interest, to understand the

dependence of the near-wake characteristics on the inter-cube spacing.

1Back-scatter of turbulent kinetic energy is a phenomenon in which energy is transferred from the smaller
scales to the larger scales in a direction opposite to that of the energy cascade in an equilibrium TBL.
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Figure 4.3: Skin friction coefficient vs. normalized stream-wise coordinate.

4.3.1 Separation and reattachment lengths

In Fig. 4.3, we depict the variation of the skin-friction coefficient (Cf ) along the bottom-

wall of the domain in the center-plane for the three cube spacings. Cf is defined by Eq.

4.1,

Cf =
τw

1
2
ρU2
∞

τw = µ

(
∂u

∂y

)
y=0

(4.1)

where, τw is the wall shear stress, ρ is the fluid density, U∞ is the free-stream velocity of the

fluid, µ is the dynamic viscosity of the fluid, u is the fluid velocity parallel to the bottom-

wall, and y is the wall-normal coordinate. Cf gives a measure of the velocity gradient close

to the wall. We observe a similar variation of Cf in the three cases. In the region in front

of the cube, Cf is almost constant up to x ≈ −2h, because the TBL is attached to the

bottom-wall. Close to the front face of the cube the flow separates from the bottom-wall at

distance of Xs = 1.3h from the front face, where Xs is the separation length. The separated

region is marked by a negative value of Cf which is a result of the negative stream-wise
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velocity component in the region occupied by the horse-shoe vortex [12]. The recirculation

region also identified by negative value of Cf is located immediately downstream of the cube.

The flow reattaches at a distance of Xr = 1.6h, where Xr is the reattachment length. Xr

is measured as the distance from the back-face of the cube to a point where Cf = 0. The

separation and reattachment lengths are unaffected by the inter-cube spacing in the span-

wise direction for the spacings considered in this study. Xs and Xr are controlled by the

horse-shoe vortex in front of the cube and the shear-layer emanating from the top surface

of the cube. We know from our study of flow over a single cube that these flow features

scale with the cube height (Sec. 3.3.2). The inter-cube spacing (w) is much greater than h

even for w = 3h. As a result there are negligible interactions between vortices from adjacent

cubes in the immediate vicinity of the cube. Hence, Xs and Xr are unaffected by w/h.

4.3.2 Mean velocity and Reynolds stress

To understand the dependence of mean velocity and turbulent transport of momentum

in the span-wise direction on varying w/h in Fig. 4.4 and 4.5, we examine the mean velocity

and Reynolds stress profiles near the end of the domain at x = 5.5h and at half cube height

from the bottom-wall. For the w = 7h case, the variation of the stream-wise component

of mean velocity is different than that observed in case of a single cube with w = 7h and

slip boundary conditions on the side-walls. The magnitude of the velocity is mostly uniform

with small peaks toward the edge of the domain because the cube forces high speed fluid

to the periphery of the domain, and the region behind the cube is characterized by low

momentum flow. The variation of Ux informs us that the outer flow has not completely

recovered at x = 5.5h. A similar behavior is observed for the w = 5h case, whereas for

w = 3h the peak velocity lies at the center of the domain. Pujals et al. [8] observed a

sine wave-like variation in the mean velocity in the wake of periodically spaced cylinders

with a spacing of λz = 4d, where λz is the spacing between adjacent cylinders, and d is the

diameter of the cylinders. At a stream-wise distance of 4λz in the wake of the cylinders,
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Figure 4.4: Normalized mean velocity vs. normalized span-wise coordinate at x = 5.5h in
the stream-wise direction and y = 0.5h in the wall-normal direction.

they observed a peak in the mean velocity (approximately 0.9U∞), and a trough in between

the cylinders (approximately 0.7U∞). We believe the behavior observed in the Fig. 4.4 is

a precursor to the sine variation, with a small peak appearing at the center of the domain

in all the cases. The stream-wise length of the domain is insufficient to reflect the full

interaction between vortices from adjacent cubes, and a longer domain length would help

us capture the sine variation of the mean velocity. The y−component of velocity exhibits

a similar variation in all the cases, with a negative peak at the center of the domain. The

negative peak corresponds to the entrainment of high-momentum fluid from the outer region

to the near-wall region by the shear layer and the counter-rotating vortices present in the

wake of the cube. For w = 3h, the y−component of mean velocity is slightly positive in

the periphery of the domain, whereas it is zero in the other two cases. This implies a net

ejection of low momentum fluid to the outer region. These ejections could be responsible for

the amplification of outer scales motions with a span-wise spacing of approximately 3h, as

explained in detail in subsequent sections.

The Reynolds stress components on the other hand illustrate similar behavior along the

span-wise direction for all cases. The u′2 and u′w′ components have a peak value at the

center of the horse-shoe vortex at z ≈ ±1.2h, and the value decays in both directions away

from the center of the vortex. This variation is similar to that observed in case of a single
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Figure 4.5: Normalized Reynolds stresses vs. normalized span-wise coordinate at x = 5.5h
and y = 0.5h. , u′2; , v′2; , w′2; , u′v′; , u′w′; , v′w′.

cube (Sec. 3.3.4), and the reason is a strong coupling between the u′ and the w′ components

inside the horse-shoe vortex. The v′2, w′2 and u′v′ components exhibit a peak at the center of

the domain because of the wall-normal and the span-wise turbulent transport of momentum

to the near-wall region and the center-plane. In case of w = 3h, the u′v′ component has

an almost constant negative value across the domain. The negative correlation between the

u′ and the v′ components is due to the “sweep” of high momentum fluid to the near-wall

region and the “ejection” of low momentum fluid to the outer region [25] in a TBL. The

downward sweep of high momentum to the near-wall region in the center-plane is responsible

for the negative value of u′v′ at the center of the domain in all the cases. For w = 3h, the

exact reason for the large value of u′v′ observed at the edge of the domain in the span-wise

direction is not known. The ejection of low-momentum fluid to the outer region observed

toward the edge of the domain in Fig. 4.4a could be responsible for the negative value.

The normalized velocity profiles depicted in Fig. 4.6 and Fig. 4.7 exhibit an similar

behavior for the three cases. The boundary layer thickness is greater in the center-plane

(δ ≈ 1.5h) as compared to its value at z = h (δ ≈ 1.2h). The velocity profiles in the center-

plane have not recovered completely from the momentum deficit created by the presence of

the cube, as indicated by a higher value of the boundary layer thickness. The mean velocity

profiles do not match with those in an equilibrium TBL because of the non-zero Uy and
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Figure 4.6: Normalized mean velocity vs. normalized wall-normal coordinate at x = 5.5h in
the stream-wise direction and in the center-plane (z = 0).
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Figure 4.7: Normalized mean velocity vs. normalized wall-normal coordinate at x = 5.5h in
the stream-wise direction and at z = h in the span-wise direction.

Uz components. In the center-plane, the entrainment of high momentum fluid to the near

wall region is indicated by the negative Uy component. The Uz component is zero because

there is no net transfer of fluid from the center-plane to the periphery of the domain, and

vice-versa. In Fig. 4.7, the Uz component of velocity shows an inflection point as the mean

span-wise velocity on the two sides of the center of the horse-shoe vortex points in opposite

directions. The center of the horse-shoe vortex is at y ≈ 0.4h, where Uz is zero.

In Fig. 4.8 and 4.9, we present the variation of Reynolds stresses in the wall-normal

direction at z = 0 and z = h respectively. The former demonstrates, that the magnitude of

the w′ component is greater than the u′ component, unlike that observed in an equilibrium
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Figure 4.8: Normalized Reynolds stresses vs. normalized wall-normal coordinate at x = 5.5h
in the center-plane (z = 0). , u′2; , v′2; , w′2; , u′v′; , u′w′;

, v′w′.
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Figure 4.9: Normalized Reynolds stresses vs. normalized wall-normal coordinate at x = 5.5h
and z = h. , u′2; , v′2; , w′2; , u′v′; , u′w′; , v′w′.

TBL. The span-wise turbulent transport of momentum is responsible for this increase in w′.

The v′ component is also comparable to the u′ due to the transport of turbulent momentum

from the outer region to the near-wall region. This same phenomenon is responsible for

the negative correlation between the u′ and the v′ components inside the TBL. We observe

two peaks in the u′ and w′ profiles: the near wall peak due to the turbulent transport of

momentum by the horse-shoe vortex, and the peak in the outer region caused by the TKE

produced by the shear layer generated along the top surface of the cube. At z = h, the u′w′

component has a magnitude comparable to the u′v′ term, unlike that in the center-plane.

90



(a) w/h = 3, x/h = 0.1 (b) w/h = 5, x/h = 0.1 (c) w/h = 7, x/h = 0.1

(d) w/h = 3, x/h = 0.5 (e) w/h = 5, x/h = 0.5 (f) w/h = 7, x/h = 0.5

(g) w/h = 3, x/h = 0.9 (h) w/h = 5, x/h = 0.9 (i) w/h = 7, x/h = 0.9

Figure 4.10: Span-wise contours of streamwise component of the mean vorticity at x/h =
0.1, 0.5 and 0.9 along the cube, with the cube outlined in black.

This location lies inside the horse-shoe vortex which is characterized by the strong coupling

between the u′ and w′ components. The magnitude and the variation of the u′ component

at z = h for w = 5h and w = 7h is similar to that observed in the center-plane. However,

for w = 3h we observe an increase in the magnitude of u′ in the outer region. The periodic

arrangement of cubes with a span-wise spacing of 3h artificially imposes large-scale coherent

structures in the outer region of the TBL. We believe this increase is a consequence of the

amplification of these large scales in the outer region, as explained in Sec. 4.3.4.

4.3.3 Horse-shoe vortex

The horse-shoe vortex is a characteristic of flow past wall-mounted obstacles. We examine

the extend to which the horse-shoe vortex spreads as w/h is varied in Fig. 4.10. Qualitatively,

for the three inter-cube spacings, we observe a primary horse-shoe vortex formed closer to

the cube, and a secondary horse-shoe vortex formed at a greater span-wise distance from the
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(a) w/h = 3, x/h = 3 (b) w/h = 5, x/h = 3 (c) w/h = 7, x/h = 3

(d) w/h = 3, x/h = 6 (e) w/h = 5, x/h = 6 (f) w/h = 7, x/h = 6

Figure 4.11: Span-wise contours of streamwise component of the mean vorticity at x/h = 3
and 5 in the wake of the cube.

cube. The strength of both of these horse-shoe vortices decreases with increasing stream-

wise distance because of the diffusion of the vortex in the y − z plane. Quantitatively, the

span-wise positioning of the horse-shoe vortex is affected by the smaller inter-cube spacing in

case of w = 3h. Both the primary and the secondary vortices are closer to cube in this case,

with a stronger secondary vortex compared to the w = 5h and 7h cases. We believe these

differences are a result of the blockage created by the smaller inter-cube spacing driving the

vortices closer to the cube.

In Fig. 4.11, we present the x−component of mean vorticity at x = 3h and 6h in the

wake of the cube. The strength of the horse-shoe vortex decreases with increasing stream-

wise distance behind the cube. The decrease in strength can be attributed to vorticity

diffusion in the y − z plane which is evident from the increased spreading of the red and

blue spots. The range of the color-bar in Fig. 4.11 is smaller than that in Fig. 4.10 by

an order of magnitude. Along the surface of the bottom wall, a vortex sheet of opposite

sign vorticity (compared to that of the horse-shoe vortex) develops. Given the sign of the

vorticity, this vortex sheet is a consequence of the horse shoe vortex, and thus the cube,

rather than turbulent boundary layer dynamics. As illustrated in Fig. 4.11, the right leg

of horse-shoe vortex exhibits anti-clockwise rotation, whereas the right half of the vortex
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Figure 4.12: TKE area density as a function of the stream-wise distance for different inter-
cube spacings.

sheet exhibits clockwise rotation. On account of the opposite rotation directions, the fluid

in between the horse-shoe vortex and the vortex sheet experiences a net force in the span-

wise direction away from the center-plane. Furthermore, the anti-clockwise rotation of the

right leg of the horse-shoe vortex corresponding to the cube under consideration, and the

clock-wise rotation of the left leg of the horse-shoe vortex corresponding to the cube on the

right, results in a net force acting on the fluid in between the two vortices in the positive

y−direction, which explains the ejection process observed in Sec. 4.3.2. In the wake of the

cube, the span-wise spreading of the horse-shoe vortex depends on the inter-cube spacing as

the horse-shoe vortex is more concentrated for w = 3h than for larger spacings.

4.3.4 Turbulent kinetic energy

The analysis of the turbulent kinetic energy (TKE) per unit area in the wake of a single

cube with slip walls imposed on the span-wise boundary demonstrated a power law decay

with an increasing stream-wise coordinate, and a power law exponent (α) increasing with

increasing h/δ in a non-linear fashion (Sec. 3.3.5). In case of multiple cubes with varying

93



inter-cube spacing, the TKE per unit area in the wake of the cubes in presented in Fig.

4.12a. TKE is averaged over the shaded region depicted in Fig. 4.12b at different stream-

wise locations. The shaded area symmetrically spans a distance of 3h in the z−direction,

and 2δo in the wall-normal direction, where δo is the turbulent boundary layer thickness at

the front face of the cube. The span-wise width of the smallest domain is 3h, hence the

choice for the width of the shaded area in the span-wise direction. The area extends up to

2δo in y−direction to capture the TKE production inside the shear layer emanating from the

top surface of the cube. We observe that the decay of TKE/area obeys the same power law

behavior up to x = 5h for the three cases, with the power law exponent α = 0.9, as given

below,

TKE

area

∗
=

(
x

h

)−0.9

(4.2)

where the “∗” denotes that TKE/area is normalized by its value at x = 2h. We conclude

that TKE/area is independent of the inter-cube spacing (w/h) for constant h/δ up to a

stream-wise distance of 5h behind the cube. Qualitatively, the rate of decay of TKE/area

is a measure of the departure from the state of equilibrium of the TBL, which in turn is

governed by the TKE produced by the cube. Furthermore, TKE production depends on the

TBL properties and the height at which the cube intersects the TBL (Sec. 3.3.5). Because

the TBL properties and the h/δ ratio are same in all the cases, we expect the three curves

in Fig. 4.12a to collapse on top of each other. The observation that α < 1 implies that this

decay in the turbulent kinetic energy is a near-wake phenomenon, because integration of Eq.

4.2 in x from zero to infinity would diverge. The TKE area density should be constant with

respect to x/h as the TBL recovers and reaches equilibrium. Toward the end of the domain

at x = 5.8h, the TKE/area increases for the w = 5h and w = 3h cases because of interaction

between vortices from adjacent cubes.

To understand the distribution of TKE, we examine the absolute value of the production

(Pk) to dissipation (εk) ratio in the y−z plane in Fig. 4.13. At stream-wise location x = 0.5h
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(a) w/h = 3, x/h = 0.5 (b) w/h = 5, x/h = 0.5 (c) w/h = 7, x/h = 0.5

(d) w/h = 3, x/h = 3 (e) w/h = 5, x/h = 3 (f) w/h = 7, x/h = 3

(g) w/h = 3, x/h = 6 (h) w/h = 5, x/h = 6 (i) w/h = 7, x/h = 6

Figure 4.13: Absolute value of TKE production to dissipation ratio contours in the y − z
plane at x/h = 0.5, 3 and 6, with the cube outlined in black.

(half-way along the cube), we observe large values of Pk/εk around the cube. The dominant

contribution to production term around the cube is expected due to the large gradients in

velocity along the surface on account of the no-slip boundary condition. The large patch

of high Pk/εk at a height y ≈ 2h over the cube is a numerical artifact of dividing small

value of Pk by an order of magnitude smaller value of εk, as was observed in case of the

single cube (Sec. 3.3.5). The reason is Pk depends on the gradient of velocity, whereas εk

depends on the gradient in velocity fluctuations, which decay much faster in the outer region

than the outer scale velocity. Further downstream at a stream-wise location of x = 3h, the

magnitude of Pk/εk has decreased on account of dissipation and diffusion of the TKE. At

x = 6h, however, we observe an increase in Pk/εk. These peaks are separated by a span-wise
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distance of approximately 3h and originate as a result of the amplification of large scale

structures, artificially imposed by a periodic span-wise arrangement of the cubes.

A growth analysis of optimal linear modes using the Orr-Sommerfeld-Squire equations

for the mean turbulent profile [125] suggests that the largest transient growth is observed for

large-scale global structures with a span-wise spacing of approximately 3h. This claim was

verified numerically by Hwang et al. [126]. In case of our simulations with w = 3h, we are

artificially imposing large-scale structures with a span-wise separation of 3h. We believe that

these coherent structures undergo amplification as we move along the stream-wise direction,

in a manner similar to that observe by Pujals et al. [8] with a periodic arrangement of

span-wise wall-mounted cylinders. For w = 3h, the observation station at x = 6h is located

at a distance of 2w behind the periodic array of cubes, which is long enough for the onset of

amplification of the imposed coherent streaks [8]. This amplification of the dominant mode

results in an increased value of Pk/εk. In case of w = 5h and 7h, imposed modes have a

period of 5h and 7h respectively, so the domain is not long enough for the coherent structures

to interact with each other. Nevertheless, we do observe similar peaks for the w = 5h case,

which could be a precursor to the amplification of coherent streaks, spreading further in the

span-wise direction as we move downstream.

To understand the physics behind the distribution of TKE in the wake of the cube, we

examine the TKE budget,

∂(1
2
q2)

∂t
=−1

2
Uk(u′lu

′
l),k︸ ︷︷ ︸

Ck

−(u′lu
′
k)Ul,k︸ ︷︷ ︸

Pk

−1

2
(u′lu

′
lu
′
k),k︸ ︷︷ ︸

Tk

+
1

2

(
1

Re
+ ντ

)
(u′lu

′
l),kk︸ ︷︷ ︸

Dk

−
(

1

Re
+ ντ

)
u′l,ku

′
l,k︸ ︷︷ ︸
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(4.3)
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Figure 4.14: Span-wise averaged TKE budget normalized using outer coordinates at x =
0.5h: , convection; , production; , turbulence transport; , viscous
diffusion; , viscous dissipation; , velocity-pressure gradient.

where

1

2
q2 =

1

2
(u′2 + v′2 + w′2) (4.4)

1
2
q2 is the turbulent kinetic energy, Re = Umδ

ν
is the Reynolds number based on mean velocity

(Um) and boundary layer thickness (δ), ντ is the eddy viscosity given by the LES model,

and the over-bar represents a time average. The terms on the right hand side of Eq. 4.3 are:

convection (Ck), production (Pk), turbulence transport (Tk), viscous diffusion (Dk), viscous

dissipation (εk) and velocity-pressure gradient (Πk).

We examine the variation in the contribution of each of the terms in Eq. 4.2 at different

stream-wise locations. Fig. 4.14 shows the TKE budget on the top surface of the cube at

x = 0.5h. The profiles are averaged in the span-wise direction and in time, and normalized by

the outer coordinates (free-stream velocity Uo and cube height h). We observe a large spike

in the production term (Pk) at a wall-normal distance of y = 1.2h, which is a consequence

of the turbulent shear layer emanating from the top surface of the cube. The large velocity

gradients inside the shear layer are responsible for the production of TKE. The magnitude

of Pk is identical in the three cases because at x = 0.5h the coherent structures produced

on the top of the cube scale with the cube height itself, and the length scales associated
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Figure 4.15: Span-wise averaged TKE budget normalized using inner and outer coordinates
at x = 3h: , convection; , production; , turbulence transport; ,
viscous diffusion; , viscous dissipation; , velocity-pressure gradient.

with the spacing between adjacent cubes is not relevant. The negative peak in the transport

term (Tk) corresponds to the positive peak in Pk in terms of its wall-normal distance. Tk

is positive in both directions moving away from the center of the shear layer, which implies

that TKE is transported from the shear layer to the low speed and high speed sides of the

shear layer.

As we move along the stream-wise direction at x = 3h, the spacing (w) begins to affect

the TKE budget, as illustrated in Fig. 4.15. In the outer region at y ≈ 0.8h we observe

a peak in the Pk profile, which corresponds to the shear layer production of TKE. For the

w = 5h and w = 7h cases, the value of Pk decreases with decreasing y-coordinate, however,

there exists another peak close to the wall. This near wall peak is a result of the strong
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velocity gradients in the wall-normal direction at that height. For the case with the smallest

inter-cube spacing (w = 3h), the Pk profile does not exhibit an inflection point at y ≈ 0.2h,

observed in the other two cases. This higher Pk value is a consequence of two effects: (i)

large production of TKE at the center of the horse-shoe vortex, and (ii) a major portion of

the domain width being occupied by the horse-shoe vortex, unlike the other two cases. The

transport term behaves in a similar fashion as observed at x = 0.5h, transporting TKE from

the shear layer to the near-wall region and the region away from the wall. The convection

term (Ck) is positive inside the boundary layer, because the TKE values are highest inside the

boundary layer, and TKE produced by the cube is convected by the mean flow in the stream-

wise direction. In the inner region of the TBL, the TKE budget terms show similar variation

in the wall-normal direction. We know that viscosity dominates in the inner region, which

is illustrated by the large magnitudes of the viscous diffusion (Dk) and viscous dissipation

terms (εk). In the outer region Pk > εk, whereas, in the inner region the situation is reversed.

This informs us that at x = 3h the TBL is in a state of non-equilibrium. A turbulent flow

is said to in equilibrium when the production of TKE is balanced by its dissipation.

Toward the end of the domain in the stream-wise direction, at x = 6h, the vortices from

adjacent cubes are interacting strongly for the w = 3h and w = 5h cases, and its effects on

the TKE budget are depicted in Fig. 4.16. The Pk peak in the outer region is still noticeable

but is smaller than its value at x = 3h. This decrease is due to the transport, diffusion

and dissipation of TKE from the shear layer and the center of the horse-shoe vortex, as we

move along the stream-wise direction. However, the most interesting observation is the large

increase in the convection (Ck) of TKE in the outer region. We suspect this increase is due

to the amplification of large-scale, coherent structures in the outer region of the TBL, as

explained in Sec. 4.3.3. An obvious question arises: why does this increase in TKE appear

in Ck, as opposed to an increase in the transport (Tk) term similar to the shear layer? The

transport term is a third-order correlation in the velocity fluctuations, whereas Ck is defined

directly in terms of the outer scale velocity (U). If the dominant mode is amplified as
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Figure 4.16: Span-wise averaged TKE budget normalized using inner and outer coordinates
at x = 6h: , convection; , production; , turbulence transport; ,
viscous diffusion; , viscous dissipation; , velocity-pressure gradient.

suggested it would as an outer scale phenomenon naturally convect TKE in the stream-wise

direction, resulting in an increased Ck. The Pk term is not balanced by the εk term in the

outer region implying non-equilibrium. The magnitude of Ck is larger in the inner region

than that observed in an equilibrium flat plate TBL [118], thus suggesting, the TBL is still

in a state of non-equilibrium at x = 6h.

4.4 Conclusions

A high-fidelity LES of flow over a single row of equally spaced, wall-mounted cubes placed

in SETBL is performed at a Reynolds number of 19,600, based on the mean velocity and the

cube height (h). The cube height is set equal to the boundary layer thickness at its front
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face. We investigate the impact of the inter-cube spacing (w = 3h, 5h, and 7h) on the fluid

dynamics by varying the domain width, whose boundaries are prescribed as periodic.

The variation of the skin friction coefficient along the bottom-wall of the domain reveals

that the flow separates at a distance of 1.3h in front of the cube, and reattaches at a distance

of 1.6h behind the cube, consistent with those obtained for a single cube in a SETBL. This

observation implies the separation and reattachment lengths are independent of the inter-

cube spacing for the values considered in this study. On the other hand, the span-wise

location of the horse-shoe vortex is affected by the inter-cube spacing (w). In the near-wake

of the cube the horse-shoe vortex is more concentrated for w = 3h, as compared to the

other two cases because of the blockage created by the smaller inter-cube spacing driving the

vortices closer. The center of the horse-shoe vortex exhibits a strong correlation between the

u′ and w′ components of velocity fluctuations on account of span-wise transport of turbulent

momentum. For all the cases, TKE/area decrease in a power law manner up to a stream-wise

distance of 5h, with a power law exponent α = 0.9 implying that α is independent of the

inter-cube spacing, and is only a function of the h/δ amongst the parameters considered in

our work.

An important observation is the periodic increase in TKE production, and an increase

in TKE convection in between adjacent cubes in the outer region of the TBL at a stream-

wise distance of 5h in the wake of the cube with w = 3h. This observation suggests an

amplification of large-scale, coherent structures, similar to the findings of Pujals et al. [8] for

flow over a single row of wall-mounted cylinders. We believe the ejection of low momentum

fluid to the outer region in between horse-shoe vortices from adjacent cubes is responsible

for this amplification.
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CHAPTER V

Conclusions and future work

5.1 Summary and key findings

The objective of this work is to understand the basic physics of flow over a wall-mounted

cube placed in a spatially evolving turbulent boundary layer (SETBL) using high-fidelity

Large Eddy Simulations (LES). We investigated (i) the fundamental physics of flow over a

cube in a SETBL, (ii) the effect of cube height (h) to boundary layer thickness (δ) ratio

on the near-wake characteristics like, separation and reattachment lengths, spreading of the

horse-shoe vortex, and turbulent kinetic energy (TKE) distribution, and (iii) the effect of

spacing between adjacent cubes when a single row of cubes is placed normal to the flow

direction on the aforementioned parameters. The understanding achieved through this basic

physics study will enable the development of improved strategies for flow control using passive

vortex generators in a variety of applications, such as reducing pressure drag on road vehicles,

improving efficiency of turbo-machinery, etc. The keys findings are:

1. The major part of our initial effort was dedicated to developing the tools necessary

to conduct high-fidelity numerical simulations of flow over a wall-mounted cube in a

SETBL. A physics-based approach was implemented to prescribe a time-varying in-

flow boundary condition for the velocity field, which is necessary to simulate a SETBL.

The implementation revealed that for a Reynolds number of 19,600 based on the mean
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velocity and inlet boundary layer thickness. The flow requires a transition length of

x ≈ 12δo to recover the boundary layer thickness and develop into a realistic TBL.

Furthermore, we propose a novel approach to prescribe a synthetic inflow boundary

condition for LES of a SETBL based on kernel density estimation machine-learning

(ML) technique. However, this proposed method gives poor results in its current form

because the three dimensional time and space correlations between the turbulent struc-

tures are neglected. A modified ML approach is proposed to address this drawback,

whereby the ML is performed in the Fourier domain as opposed to the physical domain.

2. We validated the LES solver of the open-source software OpenFOAM against exper-

iments of flow over a cube in a fully developed turbulent channel flow. We use this

framework to first study the basic fluid mechanics, and later to understand the effect

of cube height to boundary layer thickness (h/δ) ratio on the near-wake characteristics

for a single cube placed in a SETBL at a Reynolds number (Reδ) of 19,600. Reδ is

based on the mean velocity and the boundary layer thickness at the front face of the

cube and is constant across the three h/δ cases considered in this work. At the center

of the horse-shoe vortex in the wake we observe a greater mean stream-wise velocity

than the center-plane, and a strong coupling between the u′ and w′ components of

velocity fluctuations. The span-wise gradient of mean stream-wise velocity and the

strong coupling is responsible for higher turbulent kinetic energy (TKE) production

at the center of the vortex for all h/δ ratios. The separation length in front of the

cube and the reattachment length behind the cube scale with h with values of 1.3h

and 1.6h respectively. The span-wise spreading of the horse-shoe vortex exhibits a

slight dependence on h/δ, with a greater spreading rate for smaller h/δ on account of

a weaker span-wise pressure gradient. The counter-rotating vortex pair generated by

the cube in its wake diffuses in the stream-wise direction. An important finding is the

discovery of a power law decay of TKE per unit area in the near-wake of the cube,

and the non-linear dependence of the power law exponent on the h/δ ratio. The TKE
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production in the wake scales with the cube height and is a measure of the deviation

from the state of equilibrium of the TBL. The power law exponent of the decay rate

increases with increasing h/δ which implies that more significant departure from the

state of equilibrium results in a more drastic decay of TKE area density. If we con-

sider the average TKE over the entire width of the domain in the near-wake of the

cube, then the only significant terms from the TKE budget are the production (Pk)

and the dissipation (εk) terms. Our results potentially imply that both of these terms

also decay in a power law manner in the near-wake, in agreement with the findings of

Hussein et al. [11].

3. The investigation of flow over a single row of wall-mounted cubes extending in the

span-wise direction, with their front-face normal to the flow direction is carried out

at the same Reδ of 19,600, with h/δ = 1. Three different inter-cube spacings (w)

are considered with w = 3h, 5h and 7h. We observed the same separation (Xs) and

reattachment (Xr) lengths for the three cases (Xs = 1.3h and Xr = 1.6h) which are

identical to those observed for the single cube case. This finding also implies that Xs

and Xr scale with the cube height (h) and are independent of the inter-cube spacing

up to w = 3h. However, the span-wise spreading of the horse-shoe vortex is influenced

by the inter-cube spacing. The vorticity field is more concentrated in the wake of more

closely spaced cubes, and interactions between horse-shoe vortices from adjacent cubes

are more prominent. These interactions result in a strong coupling between the u′ and

v′ components of velocity fluctuations in the region in between the cubes. The TKE

area density obeys the same power law decay with (x/h)−0.9, up to five cube heights

downstream as observed for the single cube case with h/δ = 1.0. Beyond five cube

heights downstream for the w = 3h and w = 5h cases, the TKE per unit area increases

on account of the interaction between the horse-shoe vortices from adjacent cubes. The

periodic arrangement of cubes in the span-wise direction artificially imposes large scale

structures in the outer region of the TBL. The large-scale coherent structures spaced
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3h apart get amplified after approximately five cube heights downstream in the wake

region. We hypothesize, the ejection of low momentum fluid from the near wall region

to the outer region in between horse-shoe vortices from adjacent cubes is responsible

for the amplification. This amplification results in an increasing TKE production to

dissipation ratio in the region in between two cubes and in an increasing convection

of TKE in the outer region of the TBL six cube heights downstream. We find that

the stream-wise length of the domain is insufficient to capture the entire amplification

process and far-wake properties.

5.2 Suggestions for future work

The flow over a wall-mounted cube is an active research area, and our present work

naturally lends itself to be extended in a number of directions. In this section, we discuss the

design implications of our physics-based findings in reducing pressure drag on automobiles.

We also discuss potential improvements to the numerical framework using machine learning,

future studies investigating the effect of other parameters and physical phenomenon for flow

over a single cube, and an array of cubes placed in a TBL.

5.2.1 Reducing pressure drag on road vehicles using a single row of cubes

Pujals et al. [8] experimentally showed that a single row of wall-mounted cylinders can be

used to reduce pressure drag on an Ahmed body by nearly 10%. Similarly, if we plan to use a

single row of wall-mounted cubes for the same purpose, there are three important questions:

(i) how should one choose the height (h) of the cubes as compared to the boundary layer

thickness (δ), (ii) how should one choose the spacing between adjacent cubes (w)?, and (iii)

how should one choose the distance of the row of cubes from the rear edge of the car model

(x)? Based on our physics-based discoveries we can make well-informed estimates for these

lengths.

We believe that 0.6δ < h < δ, and this estimate is drawn from our findings from the single
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cube and row of cubes studies. From the single cube study we know that the production

(Pk) of turbulent kinetic energy (TKE) increases with increase in h with the caveat that

as h increases the form-drag associated with the cube also increases. The magnitude of

Pk depends on the gradient of velocity, and the velocity gradient is highest at the surface

of the cube. The maximum value of the velocity gradient can be achieved when h = δ,

beyond which the velocity gradient remains the same, however, the form-drag increases.

From the LES of flow over a row of cubes we discovered that an amplification of the large

scale structures is observed in the outer region of the TBL. To leverage the increase in TKE

due to the amplification in reducing pressure drag the cube should lie in the outer region of

the TBL, i.e., h > 0.2δ. From the production of TKE and amplification considerations we

believe 0.6δ < h < δ.

The investigation of flow over a row cubes revealed that the amplification of TKE occurs

for an inter-cube spacing (w) approximately between 3h and 5h. Therefore, we believe

w ≈ 3h to 5h should be the spacing between adjacent cubes when using a row of cubes.

Finally, though we did not explicitly calculate the distance (x) of the row of cubes from

the rear edge of the car, we believe x ≈ 5w, where w is the inter-cube spacing. For a

row of cylinders placed inside a TBL on a flat plate Pujals et al. [53] observed that the

amplification of periodic streaks reaches maximum value at a distance of 5w behind the row.

If the amplification of large scale outer structures observed in case of row of cubes in the

present work is similar to that observed in case of the row of cylinders, then the row of cubes

should be placed at x ≈ 5w. The estimates for h,w and x need to be verified by studying

the effect of the row of cubes on the separated region on a car model.

5.2.2 Improving the numerical framework and models

The machine-learning based approach we proposed did not yield accurate results be-

cause the spatial and temporal correlations between the coherent turbulent structures are

completely neglected. If we transform the training data from the physical space to the
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wave-number space and then apply machine-learning, we expect the performance to improve

significantly. The proposed method has the potential to reduce the transition length required

for the flow to develop into a realistic TBL, as well as reduce the computation time without

any significant modification to the flow solver.

Prior research [55, 56] demonstrates the inability of the Reynolds Averaged Navier-Stokes

(RANS) approach in accurately simulating flow over a wall-mounted cube in a TBL. The

failure of RANS models is attributed to their inability to capture the unsteady effects in

front of the cube and the near-wake region, large-scale eddy structures that dominate the

turbulent transport, vortex shedding, and bi-modal fluctuation frequencies reported in front

of the cube [55]. In order to address the inability in capturing the unsteady flow features,

researchers have turned to the Unsteady RANS (URANS) approach, which provides a signif-

icant improvement in predicting mean flow quantities on top and in the wake of the cube [56].

However, even with the state-of-the-art implementation of the RNG k − ε URANS model,

we observe poor prediction of the reattachment length on the top surface and in the wake

of the cube [127]. From the URANS study of flow over a building in a TBL by Tominaga

[127] we observe that the lack of clear spectral separation between the periodic motions and

turbulent fluctuations may prevent URANS models from being successfully implemented for

such flows. On a more fundamental level, the physical processes that govern the mathe-

matical dependence of the Reynolds stress tensor on the turbulent transport by large-scale

structures and superpositioning of multiple shedding frequencies are unknown, it may be

possible that a closed form equation that captures this dependence may not even exists.

One may be able to leverage machine-learning to address this problem. Singh et al. [128]

used a neural-network-augmented Spalart-Allmaras model to improve RANS predictions of

separated flow over an airfoil. Flow over a single wall-mounted cube and an array of cubes

provides an ideal test case to apply ML augmented RANS/URANS models to improve mean

flow predictions.

Investigation of fundamental physics of flow over a cube in a TBL at high or very-
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high Reynolds numbers using wall-resolved LES or DNS is still beyond our scope. There

are two possible approaches to realize these studies: p−refinement and h−refinement. In

p−refinement we increase the number of degrees of freedom per computational cell, which

in the context of Galerkin-type methods would imply using a higher order polynomial to

interpolate the solution inside a cell. A potential study could develop a numerical frame-

work based on a Galerkin-type approach to arbitrarily increase the order of accuracy of the

framework. This will enable us to achieve the same order of accuracy as existing 2nd order

approaches using fewer grid points, or achieve the same order of accuracy using the same

number of grid points for higher Reynolds number flow configurations. On the other hand,

in h−refinement we increase the number of grid points in the computation to either resolve

smaller length scales or increase the order of accuracy. Exa-scale computing will enable us

to perform such massive simulations, and the scientific community needs to address multiple

issues in order to realize this objective. We need to build robust computer architectures,

smart compilers, develop fault tolerant and efficient CFD codes, consider power consumption

requirements while developing our codes, etc., all of which are possible research avenues.

5.2.3 Investigating fundamental physics

An important accomplishment in the present work is the discovery of the power law

decay of the turbulent kinetic energy (TKE) per unit area in the near-wake of the cube, and

the non-linear dependence of the power law exponent on the cube height to boundary layer

thickness ratio (h/δ). An immediate next step could be investigating the reason for this

power law decay rate. Efforts can be focussed on examining whether the power law decay

represents a non-linear process governed by a differential equation observed in other flow

configurations or physical systems.

We know that the h/δ ratio affects the wake characteristics for a single cube placed in a

TBL. A recent experimental study by Hearst et al. [119] demonstrates that the level of free-

stream turbulence (FST) (separate from the shear) also affects the wake characteristics for a
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constant h/δ. They identify that FST (u′h/Uh) and normalized shear (τ̂ = (h/Uh)(∂U/∂y)|h)

contain information about the major aspects of flow at the cube height, including the tur-

bulence intensity, the mean velocity, the shear, and the characteristic dimensions. They

investigate the effect of varying the FST on the wake characteristics and TBL recovery. A

potential study could investigate the effects of FST and normalized shear (τ̂), individually,

on the decay rate of TKE area density in the near-wake. Castro et al. [108] found that there

are no discernible effects of Reynolds number on the mean flow properties if Reh > 4000,

however the effect of Reh on the TKE area density decay rate is not known, which could be

a potential research problem. The power law decay of the average TKE in the near-wake

of wall-mounted obstacles is a novel finding, and it would be interesting to examine if the

same decay rate applies to obstacles of other shapes like cylinders, bumps, rollers, etc. An-

other possible extension of the present work is studying the local heat transfer from a cube

placed in a TBL. Investigating the convective heat transfer dependence of factors like h/δ,

Reynolds number, FST, etc., has been an active research topic for decades with applications

in designing of circuit boards, and understanding heat transfer from a building [107, 129].

Our work examined the TBL flow over a single row of cubes placed adjacent to each

other in the span-wise direction, with their front-face normal to the flow direction. Varying

the inter-cube spacing (w) revealed, large scale coherent structures get amplified in the outer

region of the TBL for the w = 3h case. However, the effects are visible only after a stream-

wise distance of 2w behind the cube. The domain length was found to be insufficient to

analyze the entire amplification process. An obvious next step could be to study the same

problem in a longer domain to capture the amplification and a subsequent decay to the

amplification factor with increasing stream-wise distance. It would be helpful to employ

a modal decomposition method like Proper Orthogonal Decomposition (POD), Dynamic

Mode Decomposition (DMD), or Koopman Operator to investigate the span-wise periodic

amplification of the larges-scale structures.

Pujals et al. [53] observed a similar amplification of artificially imposed large-scale struc-
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tures by a single row of wall-mounted cylinders. They leveraged the higher TKE of the large

scale structures to reduce flow separation on the rear end of an Ahmed body1. Similarly, an

array of span-wise wall-mounted cubes arranged in a single row can be used to reduce flow

separation by imposing large scale coherent structures. A potential test case could be flow

separation control on an Ahmed body, a backward-facing step or a backward-facing ramp

[115, 130].

The single row of cubes can be extended in the stream-wise direction to form a three

dimensional array of cubes. If the cube height h 6 0.1δ, the flow configuration can represent

flow over a rough-wall in TBL [75, 73, 131]. A matrix of cubes with height 0.1δ 6 h 6 0.5δ

placed in a turbulent channel flow has been used to study the local convective heat transfer.

Investigating this flow configuration has applications in the efficient designing of circuit

boards [106, 132, 133]. On the other hand, cubes of the same height placed inside a TBL

mimics the atmospheric boundary layer flow over vegetative canopies and urban landscape

[65, 66, 67, 69]. All of the above mentioned flow configurations are active research areas

in terms of analyzing the flow physics, developing modeling techniques, improving high-

performance computing architectures to perform DNS of more complex flows, etc. The

ideas and the tools developed in the present study can be applicable in investigating the

aforementioned problems.

1Ahmed body is a simplified car model, first proposed by Ahmed et al. [49]
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APPENDIX A

Validation of our implementation of the conventional

synthetic inflow method

A.1 Introduction

Our work investigates flow over a wall-mounted cube placed in a spatially evolving tur-

bulent boundary layer (SETBL) at a Reynolds number of 19,600. The Reynolds number

is based on the mean boundary layer velocity and the inlet boundary layer thickness. A

physics-based approach given by Le [1] is implemented to prescribe a time-varying inflow

velocity field to simulate the SETBL. The method is described in detail in Sec. 2.4.2. We

scrutinize the fundamental physics of the turbulent flow in the near-wake of the cube, and

an accurate representation of the near-wake flow physics hinges on the accurate simulation

of the turbulent boundary layer (TBL) at the Reynolds number of interest. The objective

of this appendix is to demonstrate the accuracy of our numerical framework in simulating a

SETBL at a Reynolds number of 19,600.

A.2 Computational approach

LES of a spatially evolving turbulent boundary layer on a flat plate is performed, at a

Reynolds (Reδ) number of 19,600, and a free-stream turbulence (FST) of 1%. Reδ is based
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Figure A.1: Schematic of the problem setup.

on the mean boundary layer velocity (Um) and inlet boundary layer thickness (δo). The

Reynolds number and the level of FST is maintained constant across all the simulations of

flow over a cube presented in this work. The geometrical setup of the flow configuration is

depicted in Fig. A.1. The dimensions of the domain in the stream-wise (x), wall-normal (y),

and span-wise (z) directions are 20δo, 5δo, and 5δo respectively. The non-dimensional grid

spacing1 is ∆+
x = 15, ∆+

y = 1, and ∆+
z = 15 in the x, y, and z directions respectively. The grid

spacing is uniform in the x and z-directions, while we use a hyperbolic tangent stretching in

the y−direction, with the smallest cells close to the wall. The computational approach, LES

model and discretization schemes are same as those explained in Sec. 3.2. The bottom-wall

is treated as a no-slip wall, whereas a slip (no-stress) wall boundary condition is imposed

on the top-wall. The domain is periodic in the span-wise direction, and a zero-gradient

boundary condition is prescribed on the outlet. A time-varying inflow boundary condition

is imposed for the velocity field on the inlet boundary (Sec. 2.4.2).

A.3 Results and discussion

We consider the time-averaged velocity field and further average it in the span-wise

1The grid spacing is non-dimensional using inner variables: friction velocity (uτ ) and kinematic viscosity
(ν).
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Figure A.2: Mean quantities averaged in time and the span-wise direction.
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Figure A.3: Normalized Reynolds stresses averaged in time and the span-wise direction.

direction. The averaged velocity field is used to estimate the boundary layer thickness

(99%U∞) as a function of the stream-wise coordinate, as demonstrated in Fig. A.2a. We

observe that the boundary layer recovers its inlet value, δo, at a stream-wise distance of
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12δo from the inlet. After x = 12δo, the boundary layer thickness increases in a near-linear

manner with increasing stream-wise distance. This observation is in agreement with the DNS

of a SETBL on a flat plate [96]. The average velocity profiles are compared to the log law

of the wall in Fig. A.2b. The profiles converge to a value which shows excellent agreement

up to the buffer region (y+ < 10), however, there is a small deviation in the logarithmic

region. The mean velocity values are greater than those predicted by the log law, because

of a favorable pressure gradient in the stream-wise direction. An ideal scenario to test

the inflow method would be to have a zero pressure gradient in the stream-wise direction,

however, it is numerically impossible to achieve a strictly zero pressure gradient [95]. The

time-varying inflow velocity field does not obey the filtered Navier-Stokes equations at the

inlet, and therefore, the solution to the poisson equation for pressure adjusts the pressure

field to converge the system of equations. In Fig. A.3, we compare the time averaged and

span-wise averaged velocity fluctuation profiles at different stream-wise locations with the

DNS results of Wu et al. [95]. The stream-wise and wall-normal velocity fluctuations are in

good agreement with the DNS results after x ≈ 12δo. Small discrepancies in the outer region

of the boundary layer could be attributed to LES modeling errors, as the mesh is coarser in

the outer region as compared to the near-wall region. From the results demonstrated in Fig.

A.2 and Fig. A.3, we are confident that the boundary layer recovers its initial thickness (δo),

and is fully turbulent at a stream-wise distance of 12δo from the inlet. Hence, the cube is

placed at a distance of 12δo from the inlet boundary in all the simulations performed in this

work.
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APPENDIX B

Validation of the OpenFOAM numerical framework

B.1 Introduction

In the present work we solve the filtered Navier-Stokes equations with a finite volume

approach using the open-source libraries of OpenFOAM [77]. The problem of interest is,

flow over a wall-mounted cube placed inside a spatially evolving turbulent boundary layer

(SETBL). The Reynolds number of the flow is 19, 600, based on the mean velocity and the

incoming boundary layer thickness. Although the flow configuration is canonical in nature,

this specific configuration has not been studied with either a high-fidelity numerical or an

experimental approach for a similar Reynolds number. On the other hand, the flow over a

wall-mounted cube placed in a fully developed channel flow has been investigated with similar

parameters by many researchers in great detail [108, 54, 59, 10]. These studies demonstrate

that flow over the cube is highly three-dimensional and unsteady with regions that exhibit

back-scatter of turbulent kinetic energy. The large eddy simulation (LES) approach is most

suited to accurately capture all the complex unsteady features of this flow. Before using

the numerical framework provided by OpenFOAM to investigate turbulent flow physics, we

deem it necessary to validate the framework for its ability to simulate this complex flow.
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Figure B.1: Problem setup.

We chose to replicate the work done by Krajnovic et al. [12], and simulated the flow over a

wall-mounted cube placed in a fully developed channel flow at a Reynolds number of 40,000.

Our choice is motivated by the following facts: (i) Krajnovic et al. used similar LES models,

(ii) the Reynolds number is of the same order of magnitude, and (iii) these computational

results are validated against high quality experimental data for the same flow configuration

from Hussein et al. [11].

B.2 Computational approach

Full details about the geometry and the numerical setup can be found in Krajnovic et

al. [12]. The problem setup is shown in Fig. B.1 which depicts flow over a cube of height h,

placed at a distance of 3h from the inflow boundary. The cube is placed inside a channel of

height, 2h, with no-slip boundary conditions imposed on the top and bottom-walls, and the

cube surface. A zero-gradient boundary condition is imposed on the outflow boundary, and

the side walls are treated with the slip boundary condition. The inflow boundary condition is

a fully developed turbulent channel flow velocity profile, obtained from a precursor simulation
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at Reh = 40, 000. The computational grid spacing mimics the finest resolution employed by

Kranjnovic et al., such that, ∆x+ = 28.5, ∆y+ = 4.6 and ∆z+ = 23.7, in the vicinity of the

cube1. The discretization schemes are same as those described in Sec. 3.2. The dynamic

k−equation LES model is used to account for the SGS influence [81].

B.3 Results and discussion

The separation (Xs) and reattachment (Xr) lengths from our simulation as presented in

Table B.1. Xs and Xr are calculated from the skin-friction coefficient Cf = τw
1/2ρU2

b
, in the

center-plane, along the bottom-wall of the domain. We obtain a 10% error in Xs and a 13%

error in Xr relative to the experiments, by contrast to 9.1% error in Xs and 9.7% error in

Xr, in the LES by Krajnovic et al. [12]. This discrepancy is partly due to the coarse nature

of the grid near the separation and reattachment points, as local mesh resolution plays a

larger role in accurately predicting Xs and Xr, than in predicting the flow over the top of

the cube [12].

In figure B.2, we demonstrate the x− and y−components of mean velocity, and the xx−

and xy−components of the Reynolds stress tensor. In general, the agreement of our results

with the experiments is at least as good, if not better, than Krajnovic et al. [12], except for

the xy−component. We expect that the agreement with experiments would be even better

with simulations on a finer computational grid.

1the“+” symbol stands for dimensions expressed in wall-units, non-dimensionalized using friction velocity
(uτ ), and kinematic viscosity (ν).

Contribution LES Model Grid Xs/h Xr/h
Martinuzzi and Tropea [11] Experiment — 1.04 1.61
Krajnovic et al. [12] one equation 210× 66× 114 1.10 1.45
Krajnovic et al. [12] localized dynamic one eqn. 210× 66× 114 1.13 1.44
Present simulations one equation 210× 66× 114 0.936 1.82

* Xs: separation length in front of the cube, Xr: reattachment length behind the cube

Table B.1: Separation and reattachment lengths normalized by the cube height (h).
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Figure B.2: Mean velocity components and Reynolds stresses in the center plane for fully
developed turbulent flow around a wall-mounted cube in a channel . +: experimental result
[11]; dashed line: one equation model [12]; dash-dotted line: localized dynamic one equation
model [12]; pink line: our results with dynamic k−equation model.
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APPENDIX C

Grid refinement study of flow over a wall-mounted

cube in a turbulent boundary layer

C.1 Introduction

The phenomenon of cascade of turbulent kinetic energy from larger scales to smaller

scales, and dissipation of energy at the smallest scales (a.k.a. kolmogorov scales) is central

to all turbulent flows. In wall-bounded turbulent flows, the kolmogorov length scales are

governed by inner flow variables, namely, friction velocity (uτ ) and kinematic viscosity (ν).

An accurate numerical simulation should ideally solve for all the length and time scales

present in the flow, and such a simulation is called as Direct Numerical Simulation (DNS).

In a DNS, the computational grid is of the order of the very fine kolmogorov length scales,

with the grid spacing, ∆+ ∼ O(1)1. Majority of turbulent flows of practical interest are at

significantly high Reynolds numbers, including the flow under consideration in the present

work. As the Reynolds number increases the kolmogorov length scales become smaller, and

therefore, the very fine computational grid requirement renders DNS unusable for simulations

1the “+” indicates a quantity non-dimensionalized by the inner variables: friction velocity (uτ ), and
kinematic viscosity (ν)
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of such flows. In these situations, our best alternative for achieving high-fidelity is the Large

Eddy Simulation (LES) approach. The physical intuition behind LES is explained in detail

in Sec. 2.1.1, and essentially it involves resolving a major part of the turbulent kinetic

energy (TKE) spectrum and accounting for the unresolved component using a LES model.

The resolved scales correspond to the large length scales while the unresolved component

represents the smallest length scales. This scale separation is achieved via a spatial filter.

The accuracy of a LES depends on the percentage of the TKE spectrum resolved in the

computation, which in turn is a function of the grid spacing.

In the present work we perform LES of a wall-mounted cube placed in a turbulent bound-

ary layer (TBL). A TBL is characterized by very fine coherent structures near the wall, and a

computational grid designed for such a simulation should take this into account. Therefore,

we use a hyperbolic tangent stretching of grid cells in the direction normal to the no-slip

walls, with the smallest cells placed near the wall. There are two important aspects to any

numerical solution obtained with a LES,

1. Accuracy, is the measure of, how close the solution is to the true solution which may

be obtained analytically or experimentally. We tested the accuracy of the numerical

framework by comparing our simulation results with experimental data in Appendix

B.

2. Convergence can be viewed as the robustness of the time-averaged quantities to changes

in period of time-integration and grid spacing. A numerical solution obtained with a

LES is considered to be converged, if any further refinement in the grid resolution does

produce a significant change in the results. At this point the solution is said to be grid

independent.

This is the rationale behind performing a grid refinement study. In this appendix, we demon-

strate that grid independence is achieved on the fine mesh. All the observations presented

in this thesis are obtained from the fine mesh simulations.
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Figure C.1: Profiles of mean velocity (x-component) and Reynolds stress (xx-component) for
spatially evolving turbulent boundary layer flow around a wall-mounted cube with h/δo =
0.2. coarse mesh, medium mesh, fine mesh.

C.2 Computational approach

To establish grid independence, we used three grids for each of the three different cube

heights. The grids are labelled as coarse, medium, and fine. The non-dimensional grid

spacing is same for the three cube heights. The details of the grid spacing are summarized in

Table C.1. The computational approach, LES model, discretization schemes and boundary

Mesh ∆x+
min ∆x+

max ∆y+
min ∆y+

max ∆z+
min ∆z+

max

Coarse 21 104 2.5 200 21 146
Medium 18 80 0.5 200 18 125

Fine 16 74 0.5 200 16 110
*

∆+ represents grid spacing in wall units. ∆+ = ∆uτ/ν

Table C.1: Non-dimensional grid spacing details.
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Figure C.2: Profiles of mean velocity (x-component) and Reynolds stress (xx-component) for
spatially evolving turbulent boundary layer flow around a wall-mounted cube with h/δo =
0.6. coarse mesh, medium mesh, fine mesh.

conditions are explained in detail in Sec. 3.2.

C.3 Results and discussion

In Fig. C.1, C.2 and C.3, we present the streamwise component of mean velocity and

xx−component of the Reynolds stress tensor, for three cube heights, h/δo = 0.2, 0.6, and

1.0, on the coarse, medium, and fine mesh. For h/δo = 0.2, we observe greater deviation in

the x−component of mean velocity of the coarse mesh from the medium and fine mesh, than

for the larger values of h/δo. For h = 0.2δo, the coarse mesh has fewer cells across the cube

height than for h = 0.6δo and h = δo, resulting in poor agreement with the medium and fine

mesh results. The results for x−component of mean velocity from medium and fine mesh

cases are in good agreement for the three cube heights.

We observe noticeable deviations in the xx−component of Reynolds stress between the

coarse, medium and fine mesh cases in Fig. C.1b, C.2b and C.3b. Since Reynolds stresses are
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Figure C.3: Profiles of mean velocity (x-component) and Reynolds stress (xx-component) for
spatially evolving turbulent boundary layer flow around a wall-mounted cube with h/δo =
1.0. coarse mesh, medium mesh, fine mesh.

calculated as the mean of the difference between instantaneous and time-average velocities,

the magnitude of values under consideration are small. As a result any slight deviation from

the mean gets amplified. From our experience and after a thorough literature review, we

believe that the results in Fig. C.1b, C.2b and C.3b are acceptable, and that the fine mesh

accurately represents the flow dynamics.
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APPENDIX D

Validation of our calculation of the turbulent kinetic

energy budget in OpenFOAM

In Chapter III and Chapter IV, we have put forward our observations regarding the

variation of turbulent kinetic energy (TKE) and the individual terms in the TKE budget

in the region around the cube. A utility was developed to perform these calculations in

OpenFOAM, and we believe it is important to verify the accuracy of this implementation

to support the validity of our observations. The purpose of this appendix is to validate our

calculation of TKE budget in OpenFOAM. In order to achieve this objective we use the

utility to calculate TKE budget for a spatially evolving turbulent boundary layer (SETBL)

on a flat plate. The TKE budget is given by,

∂(1
2
q2)

∂t
=−1

2
Uk(u′lu

′
l),k︸ ︷︷ ︸

Ck

−(u′lu
′
k)Ul,k︸ ︷︷ ︸

Pk

−1

2
(u′lu

′
lu
′
k),k︸ ︷︷ ︸

Tk

+
1

2

(
1

Re
+ ντ

)
(u′lu

′
l),kk︸ ︷︷ ︸

Dk

−
(

1

Re
+ ντ

)
u′l,ku

′
l,k︸ ︷︷ ︸

εk

−u′lp′,l,︸ ︷︷ ︸
Πk

(D.1)
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Figure D.1: TKE budget terms in a turbulent boundary layer on a flat plate at a stream-wise
location of x = 18δo from the inlet.

where

1

2
q2 =

1

2
(u′2 + v′2 + w′2) (D.2)

1
2
q2 is the turbulent kinetic energy, Re = Umδ

ν
is the Reynolds number based on mean velocity

(Um) and boundary layer thickness (δ), ντ is the eddy viscosity in the LES model. The over-

bar represents a time average. The terms on the right hand side of Eq. D.1 are: convection

(Ck), production (Pk), turbulence transport (Tk), viscous diffusion (Dk), viscous dissipation

(εk) and velocity-pressure gradient (Πk).

A LES of a spatially evolving turbulent boundary layer on a flat plate is performed at

a Reynolds number (Rem) of 7000, based on the inflow boundary layer thickness and the

mean velocity. The computational setup of the simulation is same as that explained in Sec.

2.4.2. We explain in Sec. 2.4.2 that the flow requires a transition length of approximately

12δo for the flow to develop in a realistic turbulent boundary layer, where δo is the boundary

layer thickness at the inlet. Therefore, we consider a plane after the transition distance at a
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stream-wise location of x = 18δo and present the wall-normal variation of the TKE budget

terms in Fig. D.1.

The TKE budget terms are normalized by the outer coordinates (mean TBL velocity,

Uo, and boundary layer thickness, δ) in Fig. D.1a, and by the inner coordinates (friction

velocity, uτ , and kinematic viscosity, ν) in Fig. D.1b. The variation of the TKE budget

terms in both these figures is in good agreement with those presented by Le et al. [118] for

a SETBL on the upper surface of a backward-facing step before the flow separates. We are

confident that our utility for the calculation of TKE budget in OpenFOAM gives accurate

results.
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[62] V Kolář. Vortex identification: New requirements and limitations. International Jour-
nal of Heat and Fluid Flow, 28(4):638–652, 2007.
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[125] J Del Álamo and J Jimenez. Linear energy amplification in turbulent channels. Journal
of Fluid Mechanics, 559:205–213, 2006.

[126] Y Hwang and C Cossu. Self-sustained process at large scales in turbulent channel flow.
Physical Review Letters, 105(4):044505, 2010.

[127] Y Tominaga. Flow around a high-rise building using steady and unsteady rans cfd:
Effect of large-scale fluctuations on the velocity statistics. Journal of Wind Engineering
and Industrial Aerodynamics, 142:93–103, 2015.

[128] A Singh, S Medida, and K Duraisamy. Machine-learning-augmented predictive mod-
eling of turbulent separated flows over airfoils. AIAA Journal, pages 1–13, 2017.

[129] B Blocken, T Defraeye, D Derome, and J Carmeliet. High-resolution cfd simulations
for forced convective heat transfer coefficients at the facade of a low-rise building.
Building and Environment, 44(12):2396–2412, 2009.

[130] S Tandon, S Shinde, K Maki, and E Johnsen. Flow control using passive vortex
generators. In 47th AIAA Fluid Dynamics Conference, page 3318, 2017.

[131] K Flack, M Schultz, and J Connelly. Examination of a critical roughness height for
outer layer similarity. Physics of Fluids, 19(9):095104, 2007.
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