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Abstract

Feedback models play a crucial role in biological physics. They underlie many of the phe-

nomena that are essential for life, from regularity and homeostasis to growth and rhythms.

Using these models to analyze biological systems is more involved than simply solving the

equations. In order for the models to be valuable tools for a research community it is neces-

sary to connect these formal models to experimental observations, and to use experimental

observations to distinguish between different types of model. How the details of the structure

of a model relate to the experimental observables it predicts for the biophysical system can

sometimes be obscure, especially for numerical models. This thesis presents two studies in

which the feedback structures of models for biological systems are analyzed. In each case,

differences in the feedback structure are shown to predict experimentally observable con-

sequences. In a simple post-translational protein oscillator it is possible to determine the

sign of the feedback present in the biophysical system by comparing model oscillators with

opposing signs for the dominant feedback. When the feedback strength is modulated, the

positive and negative feedback models predict that the period of the oscillation changes in

opposing directions. We show that this is a generic property of the distinct families of oscil-

lator models by considering extensions that have been proposed for each and demonstrating

that the results hold. We then compare different models of tissue growth in the Drosophila

wing disk epithelium based on experimental observables such as precision of the final size,

the uniformity of growth, and the presence of spatiotemporal patterns of apoptosis. Using

an analytic framework we connect these observables to the feedback structures of different

model families, defined by characteristics such as which quantities participate in the feedback

and whether or not growth is allowed at all points in the tissue. We show that mechanical

feedback models that disallow growth over macroscopic sections of the tissue cannot predict

a unique final size.

xv



Chapter 1

Introduction

Models in biology can serve a variety of different purposes. Some are highly synthetic,

attempting to provide insight into the net effect of many different, interacting components

such as entire cells or large signalling networks. Some work to provide detailed, quantitatively

precise descriptions of single functional units such as molecular motors or ion channels.

Others work in an intermediate regime, not necessarily aiming for quantitative precision or

comprehensive enumeration but attempting to demonstrate “generic” or “simple” principles

underlying qualitative phenomena. This work will focus on the last of these.

Simple, phenomenological models have a long history in the study of living systems.

A classic example is On Growth and Form [176], notable for being an early example of

quantitative modeling and in particular explaining biological phenomena with concepts from

physics such as scaling arguments for how metabolism changes with size and mechanical

constraints on growth. The well known Michaelis-Menten differential equation for the rate

of enzymatic reactions [113] is another example from the same period. Other notable models

of biological systems from that era were Schrödinger’s hypothesis that genetic information is

stored in an ”aperiodic crystal” [163] and Turing’s conjecture of reaction-diffusion processes

as underlying developmental pattering [179]. These are all notable for being proposed before

much was known about the fundamental constituents of biological systems, such as the

central role of DNA in inheritance and protein encoding or the role of proteins in genetic

regulation.

The subsequent revolution in molecular biology revealed a vast regulatory structure un-

derpinning the fundamental processes of life, with cycles and feedback present at many levels.

Thus as the physical foundations of life were elucidated, it simultaneously became clear that

there was important information contained in the structure of how all of the constitutents

1



interacted. While this information is in principle contained in the physical structure of the

constituents (in terms of binding rates, protein structures, etc), arriving at useful results

from first principles is often prohibitively difficult. Because of this, simple phenomenological

models have become common tools for interpreting the dynamics of biological processes, es-

pecially for feedback systems. They have been successful in explaining phenomena as diverse

as bacterial chemotaxis [9], epithelial-mesenchymal transitions [104], and somatogenesis [98].

The development of models such as these is particularly valuable when general principles or

families of models can be generalized to other situations, for example the identification of

integral feedback control as a mechanism for the “perfect adaptation” in bacterial chemo-

taxis [199].

Feedback models form an important subclass of these models. Not only do they provide

an intuitive framework for understanding dynamics (since they can often be represented

by simple diagrams), but they play important roles in generating many types of common

phenomena. Negative feedback fundamentally underlies the concept of homeostasis, dynam-

ically reacting to changes in the environment in order to ensure that biologically necessary

processes continue at appropriate rates [181, 199]. It is also necessary for the generation of

oscillations. Positive feedback serves to produce dynamical bistability, which is necessary for

switch-like behavior and hysteresis [181].

Although phenomenological models of this sort have been powerful tools for comprehend-

ing biological processes in cases where first principles arguments are not practical, there can

be some ambiguity in their structure. It is well known in control system engineering that

the precise details of a control system can have important qualitative impacts on how the

system functions, for example in simple PID controllers it is possible to control a very wide

range of responses including ringing, steady-state error, and response time, all by tuning

three parameters. This is no less true in biology. Even when the underlying biochemistry

is known, there is not a unique mapping from these building blocks to a single observed

macroscopic phenotype. In order to understand the function of the regulatory or feedback

structure of a biochemical system it is necessary to understand how different choices for the

structure (and therefore the dynamics) influence the accessible experimental observables.

In the following two sections we will outline two biological systems where we have made

experimental predictions that distinguish between qualitatively different feedback structures.

First we introduce the study of biochemical oscillations and how different oscillators are

classified, and describe the cyanobacterial system which we focus on. We demonstrate that

by comparing models with different feedback structures it is possible to re-interpret existing

2



data to determine the feedback structure of the in vitro system. We then introduce the

problem of growth control, and describe how different mechanisms of mechanical feedback

could be distinguished experimentally.

1.1 Biological oscillations and rhythms

Oscillations are ubiquitous in biological systems. They were first introduced in formal models

in population dynamics and neuroscience, where the Lotka-Volterra equations [190] and the

Hodgkin-Huxley model [75] are both still commonly used. Since the mid-20th century there

have been many more examples of oscillatory rhythms underlying key biological processes.

These include metabolic processes as such glycolysis [74] and cAMP production [57], as well

as various oscillations in chloroplasts and mitochondira [73]. More recently oscillations have

been shown to play important roles in regulating organismal development, for example in

somitogenesis [98,121] and in Xenopus egg development [134,147].

This great diversity of roles played by biological oscillators reflects a common utility

for a regular signal of some kind. Often these oscillations can be understood as serving to

synchronize behaviors of many individual components in time. The mechanisms by which

these collective systems come together to produce oscillations play an important role in

determining the net function of the oscillator and how it interacts with its environment, and

these mechanisms can be classified in various different ways. The fundamental elements of

these oscillators are often discovered by identifying the molecular components of the oscillator

and determining how they interact, resulting in a model described in terms of constituent

molecular components. This approach, although it is fundamental for understanding the

oscillation, is often overly specific. Beyond identifying homologous protein systems in other

organisms this method alone does not provide a meaningful way to compare the operation of

any two oscillators. In fact, understanding the base constituents of a biological oscillator can

leave ambiguity about whether two models of the same oscillator are somehow qualitatively

different. Studying system-level characteristics of the oscillator, however, can provide criteria

which allow direct comparison and classification of different oscillator models.

A vast collection of phenomenlogicial and systems level tools have been developed to

understand the qualitative character of the oscillations that are found in biological systems.

These range from the mathematical, such as the distinction between limit-cycle oscillations

and Hamiltonian oscillations (which has implications for the relationship between the ampli-

tude and frequency of the oscillation, among other things), to more qualitative or heuristic
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tools such as identifying structures in the “circuit diagrams” that are common in analyzing

biochemical regulatory systems. From these methods some sets of criteria have arisen decrib-

ing fundamental qualitative charactersitics that are necessary components of an oscillator

model.

It is commonly accepted that in order for a chemical system to oscillate it requires negative

feedback, a mechanism for generating a time delay, and some kind of nonlinearity [135].

Negative feedback is identified as what causes the system to return to some initial point,

necessary for periodic behavior. A sufficient time delay is required to prevent the system

from attracting to a simple steady state. The nonlinearity then functions to make the steady

state unstable, creating the limit cycle that attracts the oscillator.

Each of these components can take a number of forms. For example, the time delay could

come from a large number of intermediate states, each of which requires a certain amount of

time to pass through [60,135]. Alternately, the delay could arise from positive feedback [135].

This can often be understood in terms of positive feedback introducing hysteresis to the

dynamics, causing the system to “overshoot” what would otherwise be the steady state.

Although each of these mechanisms in some sense provides the necessary “time delay”, it

is still possible to distinguish the operation of these types of feedback. For example, it has

been suggested on formal grounds that strong positive feedback can make oscillations easier

to achieve [51]. With this understanding in hand we can return to the biological systems

with an eye for systems-level phenomena. Since biological systems can be close to optimimal

for some regimes [?], finding clear examples of positive or negative feedback oscillators in

nature indicates that these feedback structures could serve some specific function. In turn,

understanding more about the implications of these feedback structures can give a greater

insight into the function and operation of the great diversity of oscillations found in nature.

To understand these feedback structures in this thesis we study one of the simplest and

most experimentally tractable chemical oscillators found in nature: the circadian oscillator

of the cyanobacterium S. elongatus. Circadian oscillators are the internal clocks which

organisms use to predict day/night cycles and are some of the earliest free-running biological

rhythms to be identified. J. B. D. de Mairan demonstrated in 1729 that the Mimosa plant

would continue opening and closing its leaves even if it were placed in a dark box without

any sunlight to set the rhythm [202]. Circadian oscillators have become defined by several

properties: a 24 hour period even in the absence of exposure to light (defining the day/night

cycle), temperature compensation so that the 24 hour period is stable to reasonable changes

in temperature, and entrainment to light from the sun (for example, allowing recovery from
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jet lag) [16].

Circadian clocks have been identified in many different organisms, ranging from bacteria

to plants to insects and vertebrates. In insects and vertebrates the fundamental operation

of the circadian clock is thought to be as a transcription-translation oscillator, in which the

rhythmic regulation of expression of various clock genes is fundamental [3]. On the other

hand, the circadian clock of S. elongatus has at its core a purely post-translational oscillator

capable of being reproduced in vitro [129]. This post-translational oscillator is made up of

just 3 purified proteins, KaiA, KaiB, and KaiC, which undergo a phosphorylation oscillation

in ATP buffer at appropriate concentrations [133]. Because of its relative simplicity this

biochemical oscillator makes an ideal model system for identifying the systems-level aspects

of how feedback structure affects dynamics. We examine different proposed models for this

oscillator and distinguish them based on their feedback structure. We demonstrate that

models with opposing feedback structures change their periods in opposite directions when

the strength of a crucial interaction is reduced. We demonstrate that this could be done

experimentally by introducing a protein that would bind competitively with one of the clock

proteins at a particular binding site and, using existing experimental results for proteins

making up the output mechanism for the clock, show that the negative feedback model

predicts the correct change in period.

1.2 Growth and morphogenesis

To understand how life is organized not only in time, but in space, it is necessary to study

how the various features of an organism achieve their relative sizes and identities. This

is called morphogenesis is a very complex coordination process wherein mostly genetically

identical cells differentiate into a tremendous variety of cell types. All of the various organs

and tissues of the organism then develop from these differentiated cells. Each of these tissues

must not only adopt the correct cell type but must also further proliferate to the appropriate

size and shape. The fine details of how this is all coordinated are often obscure, but even

through all of the biochemical complexity involved in development it is possible to analyze

hypotheses about the general mechanisms at play.

One such mechanism is a family of signaling molecules known as morphogens, which

take on some spatial distribution (for instance by being produced in some localized area and

diffusing away) which then plays a role in determining cell fates. This concept was proposed

by Wolpert in 1969 [193], and the first protein to be identified as having a concentration-
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dependent effect on morphogenesis was bicoid in 1988 by Christiane Nüsslein-Volhard and

Wolfgang Driever [42]. Many others have been discovered since, including hedgehog and dpp,

both of which have homologs in humans and in fact many metazoans [72,78]. However, while

these morphogens undoubtedly play a crucial role in ensuring that the various tissues that

they regulate develop in the correct manner, the precise details of how this occurs are often

obscure.

The study of control of growth and size is intimately related with that of morphogenesis.

The key signaling proteins of morphogenesis play an important role in controlling growth

and transplant experiments, for example in salamanders [180] and rats [167], show that

transplanted organs retain information about the donor. These transplanted organs can

continue to grow at the same rate as they would in the donor and even reach a dramatically

different size from the native organs if the in situ size of the donor organ was larger than

that normal to the recipient. In Drosophila is has been shown that if the wing imaginal disk,

a larval tissue that becomes the wing during metamorphosis, is dissected from the larva and

cultured in the abdomen of an adult it reaches the approximate size that the disk reaches

during normal development [23]. It is also insensitive to perturbations in quantities such

as the precursor cell number, pupariation time, local variations in growth rate as well as

others [67]. This robust, organ autonomous regulation of total tissue size is a remarkable

result. The Drosophila wing imaginal disk presents a unique platform for the study of how

regulation of signaling pathways introduces feedback and control on growth, which, since the

publication of On Growth and Form, has been intimately related with questions of mechanics.

The continuum mechanics of tissue and organ growth has been a rapidly developing field.

The earliest work on growth from the perspective of continuum mechanics formulates growth

as an addition of mass either in the bulk of the material or as growth from a surface (as in

the case of bones and horns) [169]. The possibility of growth inducing mechanical stress was

first considered analytically in [155]. This is understood as growth deforming the material

in such a way that there is no longer a stress-free state compatible with normal Euclidean

space. This framework has been applied with success in areas from human arteries [159] to

flower development [20].

In fact, growth feeding back on itself via stresses generated by growth has been implicated

as having an important role in controlling the development of the Drosophila wing disk.

Mechanical feedback was originally introduced as a means for explaining the observed near-

uniformity of the growth rate in light of the highly non-uniform distributions of morphogens

[166]. Since local overgrowth can cause mechanical stresses, if stresses feed back negatively
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on growth then nonuniformities in growth could be diminished, leading to the observed

macroscopic uniformity of growth. There has been subsequent support for the presence of

mechanical feedback in this tissue [139,162], indicating that mechanical feedback is necessary

for the usual development of the disk. There have also been numerical models [1,2,76] that

have shown that mechanical feedback can lead to the eventual halting of the growth of the

tissue.

This, however, leaves an apparent paradox. If mechanical feedback functions primarily

to generate uniform growth, which does not induce any stresses, how can a mechanical

feedback model predict the halting of growth at a precise final size, as is observed? This is

resolved in different ways in different models. We demonstrate that the models presented

above fall into qualitatively distinct model families. The way in which each model family

resolves the apparent paradox is related to whether or not they predict a unique final size

for the wing disk. We show that models that do not allow growth over macroscopic sections

of the disk cannot predict a unique final size. In contrast, mechanical feedback models that

do predict a unique final size fall into classes determined by whether or not feedback from

pressure gradients is present, and this determines the spatiotemporal patterning of apoptosis

in response to sharp changes in morphogen levels.

1.3 The structure of this work

Due to the breadth of the topics spanned in this thesis it has been split into two main

chapters, one on oscillator models and one on growth models. Each of these chapters will be

independent of the other. More detailed background and motivation for each topic will be

presented at the beginning of each chapter and a more exhaustive summary of results will

be presented at the end of each chapter.

Chapter 2 discusses models of the circadian clock of S. elongatus. This oscillator has been

modeled in a number of different ways but the sign of the feedback present in the biochemical

oscillator has not yet been conclusively identified. We examine two models for the oscillator

that propose opposite signs for the dominant feedback mechanism. As discussed in section

1.1, we show that the two models have very similar biochemical foundations but differ greatly

in terms of their dynamics and feedback structure, and that they can be distinguished by

introducing protein species that affect the feedback strength.

Chapter 3 discusses models of growth control by mechanical feedback in Drosophila.

In particular we study models of the wing imaginal disk which has been shown to have
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a robust, organ autonomous final size. We compare different models of size control by

mechanical feedback by introducing an analytic framework that places different models on

equal footing. This allows us to derive and compare macroscopic predictions about the

growth dynamics for the different models. As discussed in 1.2 we show that models that

require growth to vanish over macroscopic sections of the tissue cannot predict a unique final

size.

In both of these studies is was equally necessary to demonstrate how the types of model

are different and to understand how they can be compared on the same footing. In the case

of the circadian oscillator models it was necessary to examine how a key protein interaction

plays a very different role in models with different feedback structures. Then the models could

be distinguished by observing that they predicted opposing changes in the period when this

key interaction was disrupted. For the growing tissue system it was necessary to develop an

analytic framework which is capable of representing macroscopic observables about patterns

(such as uniformity of growth or spatial localization of apoptosis) that emerge during growth.

The key differences in the families of growth control models can then be described in terms of

these experimental observables, and the presence or absence of a precise final tissue size can

be related to these observables by the details of the feedback present. In each case finding

common regimes to compare different models led to insight into how to connect the results

to phenomena that can be measured experimentally.
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Chapter 2

Distinguishing Feedback Mechanisms

in Clock Models

2.1 Introduction

Circadian clocks are used by many organisms and are thought to provide advantages by syn-

chronizing biological processes with the earths day/night cycle. These time-keeping systems

are biological oscillators capable of being entrained by periodic signals (like the daily cycle

of light and dark) and of sustaining a robust period near 24 hours in the absence of exter-

nal signals. Biological activities as diverse as metabolism [157] and gene regulation [128]

have been shown to depend on circadian rhythms. The design of these oscillators can be

very intricate. Studies in various model systems have led to a number of conjectures about

the consequences of different feedback architectures for clock performance. For example, it

has been suggested [51, 86, 99] that the prevalence of positive feedback loops in biological

oscillators could make oscillations simpler to achieve, while other studies [90] have shown

that additional negative feedback loops can provide advantages in robustness. Being able to

identify signatures of different types of feedback structures present in simple experimental

systems enables direct studies of the importance of generic design principles for forming

reliable biological rhythms. Here we distinguish the signatures of two types of feedback

loops found in different models of a particularly simple circadian oscillator, that belonging

to the cyanobacterium Synechococcus elongatus. In particular, we aim to determine whether

strong positive feedback is essential to the in vitro functioning of the Kai clock derived from

S. Elongatus.

The S. Elongatus circadian clock is built around a core post-translational protein phos-
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phorylation cycle that has the striking property that it can be reproduced in vitro with

purified proteins [129]. It consists of the 3 proteins KaiA, KaiB, and KaiC [133], which

form complexes rhythmically in the presence of ATP. Over the course of an oscillation cycle,

dimeric KaiA binds to the C-terminal domain of KaiC. KaiC forms a homohexamer in the

presence of ATP, promoting autophosphorylation of KaiC on a threonine and then a serine

residue on each KaiC monomer [83, 132, 158, 191, 194]. Phosphorylation induces conforma-

tional changes in the KaiC hexamer which promote KaiB binding to the KaiC N-terminal

domain [28, 83, 92, 143, 194]. This KaiBC complex can then bind and sequester KaiA, pre-

venting it from inducing autophosphorylation in other KaiC. In the absence of free KaiA,

hexamers dephosphorylate. The unphosphorylated hexamers unbind the KaiB, releasing the

KaiA from sequestration. These KaiA are then free to phosphorylate KaiC hexamers and

repeat the cycle (figure 2.1).

Figure 2.1: Schematic of the Kai oscillator. KaiC hexamers autophosphorylate on serine and
threonine residues in the presence of KaiA. Phosphorylated KaiC can sequester KaiA in a
KaiABC complex, causing KaiC to dephosphorylate.

This cycle of protein interactions has been previously modeled in different ways [21,

32, 47, 124]. Here we study two different proposed models for the Kai system that both

focus on the importance of KaiA sequestration. We show that, even though they assume

similar molecular interactions, their distinct mathematical properties can be experimentally

distinguished. We call these models the allosteric and monomer models due to the focus of

the first model on the roles of different KaiC hexamer conformations and of the second on

the multiple possible phosphorylation states of KaiC monomers.

These two models of the Kai system can be understood as representing examples of

two qualitatively different mechanisms for generating oscillations in biological systems. The
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allosteric model, relying on negative feedback [186], is an example of a delay-based oscillator.

In these oscillators a time delay and negative feedback drive the system past steady state,

generating oscillations (figure 2.2). Delays can come from many different sources, from

protein synthesis times to long chains of intermediate reactions [182].

(a)
(b)

Figure 2.2: Delay oscillators operate by delaying negative feedback, indicated by flat arrows
in blue. (a) Schematic delay oscillator: a protein α feeds back negatively on its own activity
with time delay τ . (b) A peak in α activity leads to delayed inhibition, inducing a trough
at a time τ later. This trough relieves the inhibition, allowing the signal to recover towards
a peak after another delay of order τ .

The monomer model [158] is an example of a relaxation oscillator [173] that relies on

strong positive feedback (figure 2.3a). The positive feedback causes the system to overshoot

an unstable steady state, effectively switching between two slowly evolving states. This

action can be understood in analogy to the delay oscillator: whereas the delay oscillator

used a dependence on the previous state of the system to prevent the system from settling

at a steady state, a relaxation oscillator achieves a similar effect with hysteresis, which keeps

the system moving past the steady state. It also exhibits a strong separation of timescales:

the system evolves along one of the slow states until it reaches a turning point and then,

much more quickly, switches to the other slow state (figure 2.3b).

The question of whether the in vitro Kai system is best described as a delay or a relax-

ation oscillator has yet to be resolved experimentally, as current results appear to provide

contradictory evidence. The basic issue is whether KaiA bound to the KaiC C-terminal is

only active during the phosphorylation phase of the oscillation or also effectively retards

dephosphorylation. Even though the in vitro Kai system appears, by the standards of bi-

ological clocks, to be quite simple, it is still difficult to measure all of the relevant rate

11



(a)
(b)

Figure 2.3: A relaxation oscillator operates with a combination of positive and negative
feedback. (a) The simplest kind involves two species, α and β. Positive feedback, indicated
with a red arrow, on one of these (α in this case) causes the system to push past its steady
state instead of settling down, producing an oscillation. This is most effective when there is
a strong separation of timescales, with α evolving much faster than β. (b) The relaxation
oscillator limit cycle in the α-β phase plane. Positive feedback on α gives it a bistable
nullcline (black). The system evolves slowly along one branch of the nullcline until one of
the extrema are reached (yellow). It then moves quickly to the other branch (green) and
repeats the process.

constants directly, and different approaches to estimating their values do not agree. In

particular, experiments in which phosphomimetics are used to isolate certain reactions by

fixing the phosphorylation state of one of the residues [29,132] seem to conflict with studies

in which rates are instead inferred from fitting a kinetic model with multiple reactions to

phophorylation time courses of the native protein [158].

Here we show how the different possibilities for the type of feedback caused by KaiA

sequestration can be distinguished experimentally without direct measurement of microscopic

rate constants. We first introduce the models in detail and describe the distinct assumptions

they make about the form of the feedback introduced by KaiA sequestration. We show that

the allosteric model and the monomer model exhibit opposite responses in both amplitude

and period to changes in the efficiency of KaiA sequestration by the KaiB complex. These

responses can be understood as consequences of the type of feedback each model exhibits.

We then show that such changes in sequestration efficiency can be generated experimentally

by a protein that competes with KaiA for binding on the KaiC N-terminal domain in the

KaiBC complex. Recent research indicates that CikA is a strong candidate for this role [178].

Addition of CikA to the in vitro oscillator results in a decreased period [26], consistent with

the results for the allosteric model. We finally show that the same qualitative behavior is

seen in extensions of the basic allosteric and monomer models which maintain the same
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fundamental feedback structure [146, 203], including recent models that aim to provide a

more detailed description of the biochemistry of the Kai proteins [138]. Varying efficiency of

KaiA sequestration thus provides a robust way to directly probe whether the Kai oscillator

is closer to a delay oscillator or to a relaxation oscillator.

2.2 Models

In this section we describe the allosteric and monomer models and distinguish their feedback

structures. In particular, we define the sequestration efficiency m as the amount of KaiA

sequestered per KaiC (per KaiC hexamer for the allosteric model and per KaiC monomer for

the monomer model), which will play a central role in our analysis of each of the following

models. In the interest of showing that the principles valid for these comparatively simple

models hold in a more realistic setting we then introduce a third model, the two-site allosteric

model [138], that attempts to more faithfully capture the biochemical complexities of the

full system.

2.2.1 Allosteric Model

The allosteric model, introduced in [186], (figure 2.4a) takes hexameric KaiC as its funda-

mental object. It combines the two phosphorylation sites on each monomer into one lumped

site and assumes that each hexamer exists in one of two different allosteric states called

active and inactive in analogy with the Monod-Wyman-Changeux model of conformational

transitions. The transition rates between different conformations are assumed to depend on

the number of phosphorylated monomers in a hexamer, with more phosphorylated hexamers

preferring the inactive state and less phosphorylated hexamers preferring the active state. As

the system evolves the population of active hexamers becomes sequentially more phospho-

rylated until the inactive conformation is preferred. Once in the inactive conformation the

population then begins to dephosphorylate until it switches back to the active conformation.

The large number of elementary steps in each of these processes produces the delay that is

at the core of the oscillator.

In the allosteric model a KaiA monomer can bind to both active and inactive KaiC.

KaiA binds to active KaiC and promotes autophosphorylation before unbinding. After a

KaiC hexamer has changed conformation to the inactive state it can form a complex with

two KaiB dimers which in turn binds KaiA dimers, thereby sequestering KaiA and preventing

it from promoting phosphorylation. The inactive KaiC then dephosphorylates and begins to
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(a)

(b)

Figure 2.4: The allosteric and monomer models. Effective negative feedback, blue, flat ar-
rowhead; effective positive feedback, red. (a) In the allosteric model, the oscillation proceeds
by the phosphorylation of KaiC hexamers in the active conformation, denoted Ci, followed
by a conformational change and dephosphorylation of inactive hexamers (C̃i). Green arrow
indicates dominant direction of conformal transitions. The inactive KaiC sequesters KaiA,
preventing the active KaiC from phosphorylating, introducing the negative feedback and
delay shown in the blue. (b) The monomer model involves transitions between 4 different
phosphorylation states on a KaiC monomer, where a serine and a threonine residue can each
be either phosphorylated or unphosphorylated. Unphosphorylated KaiC (U) becomes phos-
phorylated on the threonine (T ) and then on the serine, making it doubly phosphorylated
(D). When the threonine dephosphorylates, only the serine remains phosphorylated (S). It
is this state that can sequester KaiA. This sequestration has the effect of increasing rate of
D → S transitions while decreasing the S → D rate. Both of these interactions amount to
positive feedback of S on its own concentration and so are shown in red above.

switch to the active state, at which point it begins to release the sequestered KaiA. When

enough KaiA is free it induces the active KaiC to autophosphorylate until the inactive

state is preferred again, completing the cycle. Thus the net effect of KaiA sequestration

by inactive KaiC in the allosteric model is a negative feedback with a delay (figure 2.2),

preventing active KaiC from phosphorylating and retarding the progression of the cycle

until dephosphorylation is complete. This model is described by the following chemical
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reactions [186], with mass action kinetics:

Ci � C̃i

Ci + A� ACi → Ci+1 + A

C̃i + 2B � B2C̃i, B2C̃i +mA� AmB2C̃i

Ci � Ci+1, C̃i � C̃i+1

B2C̃i � B2C̃i+1, AmB2C̃i � AmB2C̃i+1

(2.1)

Here Ci represents a KaiC hexamer in the active state with i phosphorylated monomers

(i ranging from 0 to 6) and C̃i represents a KaiC hexamer in the inactive state, and CT

represents the total concentration of KaiC hexamers. A and B stand for KaiA and KaiB,

respectively, and m is the KaiA sequestration stoichiometry. (Below we will take m to be a

continuously varying real number, and extend mass action kinetics to this case.) Since the

Kai oscillation is most commonly understood as a phosphorylation oscillation, we will also

often consider the quantity p(t), the phosphorylation fraction as a function of time. This is

the proportion of KaiC monomers that are phosphorylated, and is defined by

p(t) =
1

CT

(
6∑
i=0

iCi +
6∑
i=0

iC̃i +
6∑
i=0

iAmB2C̃i +
6∑
i=0

iB2C̃i +
6∑
i=0

iAmB2C̃i+1

)
(2.2)

Unless otherwise stated, the parameters used for simulations of the allosteric model are those

found in table S2 of [186].

2.2.2 Monomer Model

The monomer model (figure 2.4b), proposed in [158], takes the individual KaiC monomer as

its basic unit. It relies on ordered phosphorylation on the two residues (serine and threonine)

that are known to have a key contribution to the circadian oscillation. In this model, if all

KaiC monomers begin in the fully unphosphorylated state U , first the threonine residue

is phosphorylated, then the serine is phosphorylated yielding a doubly phosphorylated D

monomer, then the threonine is dephosphorylated and finally the serine is dephosphorylated.

This leads to the following cycle describing a full oscillation: U → T → D → S → U .

In the monomer model the presence of free KaiA directly alters the rates of each phos-

phorylation reaction as shown below. High free KaiA promotes phosphorylation and low
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free KaiA promotes dephosphorylation. KaiA binding is not explicit, instead, it is presumed

that the concentration of free KaiA is a bound immediately by any available S KaiC until

there is no remaining free KaiA. Thus as the amount of S KaiC increases it sequesters more

and more KaiA, promoting dephosphorylation and turning D KaiC into S KaiC, leading a

relatively small amount of S KaiC to produce more S KaiC, and to inhibit its phosphoryla-

tion into D KaiC. Therefore, in the monomer model, KaiA sequestration effectively acts to

catalyze the production of S KaiC, which in turn causes more sequestration. This suggests

that the monomer model is an example of a relaxation oscillator (figure 2.3), in which the

cycle can progress only when enough free KaiA is sequestered to trigger the strong positive

feedback which causes the sequestration of all free KaiA, at which point the KaiC monomers

can fully dephosphorylate. The model is described by the following system of differential

equations [158]:
dT

dt
= kUT (S)U + kDT (S)D − kTU(S)T − kTD(S)T

dD

dt
= kTD(S)T + kSD(S)S − kDT (S)D − kDS(S)D

dS

dt
= kUS(S)U + kDS(S)D − kSU(S)S − kSD(S)S

(2.3)

The U concentration is then determined by the conservation of total KaiC:

CT = U(t) + S(t) + T (t) +D(t) (2.4)

The amount of free KaiA is given by :

A(S) = max{0, AT −mS} (2.5)

Here the sequestration stoichiometry m = 2 by default but we will treat it as a parameter to

be varied in the subsequent section. The model then in effect assumes that KaiA has infinite

affinity for S-KaiC. The S dependence of each of the reaction rates is given by (with α and

β standing in for U , T , S, or D):

kαβ(S) = k0
αβ +

kAαβA(S)

K1/2 + A(S)
(2.6)

Again, we will often consider a phosphorylation fraction p(t). It is defined here as the sum
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of the concentrations of all phosphorylated forms of KaiC:

p(t) = T (t) +D(t) + S(t) (2.7)

Unless otherwise noted the parameters for this model are those found in [158] in table S2 of

the supporting information.

2.2.3 Two-Site Allosteric Model

Although our main focus is comparison of simple models that are relatively pure delay or re-

laxation oscillators, below we also investigate whether our conclusions carry over to a more

complex, biochemically realistic model. In particular, we consider the two-site allosteric

model, described in detail in [137, 138]. Like the allosteric model treated above, describes

the Kai system at the level of individual hexamers. Contrary to the allosteric model, how-

ever, the two-site allosteric model also explicitly describes the state of individual monomers,

and in particular their serine and threonine phosphorylation sites, as shown in figure 2.5.

Furthermore, each monomer now has two domains called the N-terminal and C-terminal do-

main. KaiA can bind to the C-terminal domain, where it will enhance the phosphorylation

of all the monomers in the hexamer. Each monomer in the hexamer is phosphorylated in

a well defined order: First the threonine site is phosphorylated and then the serine site.

Phosphorylation of the two sites has an antagonistic effect on the conformational state of

the hexamer: The U and T states stabilize the active conformation and the D and S states

stabilize the inactive conformation. Due to this antagonism, the relative stability of the

conformations does not depend on the absolute number of monomers in a certain state, as is

the case in the allosteric model, but rather on the difference between the number of phospho-

rylated threonine and serine sites. Roughly, when more serine sites are phosphorylated than

threonine sites, the hexamer will switch conformation. After flipping to the inactive state,

the hexamer binds KaiB on its N-terminal domain. In the model, KaiA is sequestered by

the N-terminal domain only after 6 KaiB monomers are bound. The resulting delay allows

hexamers lagging behind the main population to continue phosphorylation and reach the

inactive state, which is an essential property of this model to generate robust oscillations.

See Table S1 (SI) for information on the parameters used.

Since each monomer is modeled as having 4 phosphorylation states, which all play a role

in determining the allosteric state of the whole hexamer, the number of states in the model

is combinatorially large. Because of this, we follow the time evolution of the system using
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Figure 2.5: Cartoon of the two-site allosteric model, which accounts for both the hexameric
nature of KaiC and the presence of 2 distinct phosphorylation sites each monomer. Each
KaiC monomer consists of a N-terminal and a C-terminal domain: the N-terminal domain
drives the conformational change of the hexamer between the active and inactive state and
the C-terminal domain determines the timing of this switch through the ordered phospho-
rylation of its two phosphorylation sites. Phosphorylation of the threonine site (T-state)
stabilizes the active state and phosphorylation of the serine site (S-state) stabilizes the inac-
tive state. Phosphorylation can only occur with ATP (green arrows) and dephosphorylation
only with ADP (red arrows) in the C-terminal binding pocket. (Figure adapted from [137].)

a kintetic Monte Carlo algorithm. This large number of states, as well as the way in which

sequestration negatively feeds back on a different part of the cycle, it seems plausible that

this model represents an oscillator primarily driven by delayed negative feedback, but it is

more ambiguous than the fairly direct case of the simple allosteric model.

2.3 Results

The models presented in the previous section differ in their assumptions, in particular about

the type of feedback introduced by KaiA sequestration. Since enzyme sequestration has

been identified as being crucial for synchronization of individual molecular oscillators into

coherent population-level rhythms in the Kai system [86], it is reasonable to expect that

these differences have important consequences for the dynamics of these models.
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Sequestration blocks the progression of the oscillation in each of the models described

here. In the allosteric model sequestration acts to keep active KaiC hexamers from beginning

to phosphorylate before enough inactive hexamers have fully dephosphorylated and released

their KaiA. This effectively causes KaiA sequestration to feed back negatively, with a delay,

on the phosphorylation of active KaiC. On the other hand, in the monomer model, the

dynamical effect of KaiA sequestration is to cause S KaiC to induce its own production,

leading to the full sequestration of all free KaiA before the cycle can advance. This results

in strongly bistable behavior, with KaiA sequestration controlling the switch between two

slowly-evolving states. This mechanism, blocking the progression of the oscillation until

sufficient sequestration has occurred, is qualitatively different from that in the allosteric

model, most notably in that the block is relieved by changing the concentration of free KaiA

in the opposite direction.

To investigate how this fundamental difference affects the behavior of the oscillators

we vary the KaiA sequestration stoichiometry m (defined by equations 2.1 & 2.5, for the

allosteric and monomer models, respectively), understood as a continuous variable describing

the average number of KaiA monomers sequestered per KaiC in each model (per KaiC

hexamer in the allosteric model and per KaiC monomer in the monomer model). We find that

changing m has the opposite effect on both the amplitude and the period of the oscillation

in the two different types of models. Directly modifying m continuously is of course only

possible in abstract mathematical models, and cannot be related directly to experiment. In

order to relate to realizable systems we will then show that modifying the models to explicitly

include a competitive binding protein for the KaiA sequestration site on KaiC produces the

same qualitative results as directly varying the sequestration stoichiometry. We show that

our results extend to common variants and extensions of the basic allosteric and monomer

models in the (see Supporting Information).

2.3.1 Allosteric Model: Less efficient sequestration decreases pe-

riod

We first consider the allosteric model. In figure 2.6a we see three time traces of the fraction of

phosphorylated KaiC p(t) (defined in eqn. 2.2). These show that increasing the sequestration

stoichiometry m and thus the efficiency of sequestration increases both the amplitude of the

oscillation and the period. Figure 2.6d shows that this behavior is consistently observed over

a fairly broad range of values of m.
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(a) (b)

(c) (d)

Figure 2.6: Varying the efficiency m of KaiA sequestration in the allosteric model. (a) Time
traces of the phosphorylation fraction p(t) for three different values of m. In this model m
varies in the same direction as the amplitude and the period of the oscillation. (b) This
relationship can be seen over a wide range of m. (c) The concentration of total active KaiC,

6∑
i=0

CT
i , for three different values of m. The decrease of the maximum with m indicates

that at higher m less KaiC has switched to the active conformation before the majority
switches to the inactive conformation and begins dephosphorylating, indicating decreased

synchronization. (d) The concentration of sequestered KaiA, defined as m
6∑
i=0

AmB2C̃Ti
K̃m
i +Am

. As

m decreases, the maximum amount of sequestration also declines, allowing more KaiC to
phosphorylate even when most KaiC is inactive. Additionally, the minimum amount of
sequestered KaiA is higher, reflecting the presence of more inactive KaiC when the majority
is active.
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To understand this observation mechanistically, consider the effect of decreasing m. Since

m only controls the sequestration of KaiA, changing it has no direct effect on the active KaiC

and therefore no direct effect on the dynamics of phosphorylating KaiC. It also does not affect

the dephosphorylation rates. Decreasing m can only affect the timing of KaiA sequestration.

If m decreases, the same amount of KaiC sequesters less KaiA. Thus there is relatively more

free KaiA, including during the phosphorylation portion of the cycle (figure 2.6d). This has

two consequences: first, more active KaiC can begin phosphorylating while a substantial

amount is still in the inactive state, and the oscillations of individual KaiC hexamers are

less synchronized (figure 2.6c). Therefore there is more unphosphorylated KaiC when p(t)

reaches its maximum and less when it reaches its minimum, explaining the decrease in the

amplitude of the oscillation. Second, the phosphorylation phase can begin sooner, since

when an inactive hexamer releases its sequestered KaiA and becomes an active hexamer,

the inactive hexamers that remain are less able to sequester the newly released KaiA. This

causes more KaiA to be freed sooner, accelerating the phosphorylation phase.

2.3.2 Monomer model: Less efficient sequestration increases pe-

riod

The situation is reversed in the monomer model, as can be seen in figure 2.7, which shows

that both the amplitude and the period decrease with increasing m. As in the allosteric

model, this behavior can be understood mechanistically. A fundamental difference between

this model and the allosteric model is that in the monomer model dephosphorylation can

only begin once a certain threshold amount of KaiA has been sequestered, since the balance

between phosphorylation and dephosphorylation is directly dependent on the concentration

of free KaiA. This, combined with positive feedback whereby sequestration favors the D → S

transition, which in turn favors more sequestration, causes the model to produce switch-like

behavior. In addition, this model also shows a strong separation of timescales. Once a certain

amount of KaiA is sequestered dephosphorylation occurs relatively quickly (figure 2.7a)

compared to the time it takes to recover from dephosphorylation. Effectively, decreasing m

increases the amount of S-KaiC necessary to reset the switch controlling the balance between

phosphorylation and dephosphorylation. This means that the duration between most KaiC

becoming fully phosphorylated and the switch resetting must increase, since S-KaiC builds

up very slowly until the strong positive feedback kicks in and rapidly causes the remaining

KaiA to be sequestered. The duration where all KaiA is sequestered (figure 2.7d ) does not

seem to change significantly with m; increasing m instead decreases the amount of S needed
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to fully sequester all of the KaiA. This can be usefully contrasted with figure 2.6d which

shows that the allosteric model does not even need to sequester all of the KaiA in order to

function as an oscillator.
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(a) (b)

(c) (d)

Figure 2.7: Varying the sequestration efficiency m in the monomer model. (a) Time traces
of the phosphorylation fraction p(t) for three different values of m. In this model m varies
inversely with the amplitude and the period of the oscillation. (b) This relationship can be
seen over a wide range of m. (c) The concentration of U and T KaiC, the closest analog to
the active KaiC in the allosteric model, since these are the KaiC species that are competent
to phosphorylate. Compared with Fig. 6c it can be seen that this model does not exhibit the
same desynchronization asm is decreased. (d) The concentration of sequestered KaiA. Traces
for different values of m are aligned so that dephosphorylation ends at t = 0. Compared
to the allosteric model, this model sequesters all of the KaiA for part of the cycle, almost
regardless of m. It can be seen that m does not affect the duration of dephosphorylation does
not vary strongly with m, and that the majority of the variation in period comes from the
approach to full sequestration. Once the necessary threshold of sequestered KaiA is crossed,
positive feedback on S KaiC causes all of the KaiA to become sequestered.
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2.3.3 Analytic perspective on changing m in the monomer model

Because the monomer model is low dimensional it is possible to understand these numerical

results analytically. In order to make a more direct analysis we reduced the model from

a 3 dimensional system to a 2 dimensional system by assuming that the phosphorylation

and dephosphorylation of the threonine residue happen fast compared to that of the serine

residue. This is a reasonable assumption since one of the observations of the original model

is that the S phosphorylation is much slower than T phosphorylation [158]. In this limit

U � T is in steady state. Even though S � D is fast, it is bistable so it cannot be set

to steady state. With this in mind we change to a new set of variables X = S − D and

Y = S + D, with dynamics described by equation eq:MonoModelNewVars. We then have

one fast variable, X, which describes the resetting of the switch, and one slow variable, Y ,

which describes the of dynamics of the serine phosphorylation state. Figure 2.8d shows the

nullclines of the resulting 2 dimensional system in terms of Xand Y . They can be seen to

form the characteristic shape of a relaxation oscillator, describing slow evolution near the

red nullcline and fast evolution between the two different branches of the nullcline. It is also

possible to use this reduced system to provide an analytical explanation for the direction of

the period dependence on m (See appendix A).
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Figure 2.8: Dynamics inferred from the reduced model are apparent in time traces from
the full monomer model, for m = 2 (a), m = 1.8 (b), and m = 1.6 (c). Changes in the
sign of X = S − Dare correlated with changes in the sign of the derivative ofY = S + D,
indicating a switch along a fast degree of freedom. (d): A phase plane plot of the nullclines
for a reduced monomer mode. The red nullcline corresponds to X = S −D and the blue to
Y = S + D. The X nullcline has 3 main branches, and the middle branch is intersected by
the Y nullcline, a motif indicative of a relaxation oscillator.
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We can use the intuition gained from this asymptotic analysis to look for traces of this

behavior in the full model. For example, we can predict that if the oscillator takes longer to

reach its threshold, X will still only be active very briefly, since it describes the switching and

is controlled by the dephosphorylation dynamics, which do not depend on m. Additionally,

jumps in X should be roughly coincident with changes in the sign of the derivative of Y ,

since the jumps between the two branches of the nullcline (indicating a large change in X)

are the indicators that the slow dynamics of the system (indicated by Y ) have reversed

their direction. In figure 2.8 we can observe the full system in terms of the variables Xand

Y exhibiting these characteristic behaviors. These behaviors appear to be crucial to the

functioning of the oscillator since they are present even when the sequestration becomes very

inefficient, up until the oscillation ceases. Additionally it is possible to see that the majority

of the effect on the period is an increase in the amount of time with little S, consistent with

the finding for the reduced model that the amount of time spent unsequestered does not

depend on m.

2.3.4 Competitive binding effectively modulates m

It is not possible to vary the parameter m directly in an experiment. A direct way to

emulate changing the sequestration efficiency is instead to introduce a protein that can bind

competitively with KaiA in the KaiB-KaiC sequestration complex but does not promote

KaiC autophosphorylation (figure 2.9). This could be a truncated form of KaiA or a different

protein that binds competitively with KaiA to the KaiC-KaiB complex (such as possibly

CikA [178]). We will call this decoy KaiA or dKaiA, and unless otherwise stated it binds to

the KaiB-KaiC sequestration complex with equal affinity to KaiA. Both models considered

can be modified to include this interaction, and we will show that this modification produces

the same result as varying m directly: although the maximum possible number of KaiA

dimers sequestered does not change, the effective number of sites available is smaller due to

some being occupied by dKaiA (figure 2.9).

Allosteric model

Here we introduce to the standard allosteric model the following interactions:

B2C̃i +mdA� dAmB2C̃i

dAmB2C̃i � dAmB2C̃i+1

(2.8)
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Figure 2.9: A schematic of a method for varying the KaiA sequestration efficiency m. By
introducing a species (here shown as dA for decoy KaiA) that binds competitively with KaiA
for the site at which KaiA is sequestered it is possible to experimentally vary the average
amount of KaiA sequestered per KaiC.

We see in figure 2.10a that the addition of dKaiA to the allosteric model, whole holding m

at a constant value of 2, shows the same behavior as changing mdirectly. This indicates

that dKaiA competing for sequestration with KaiA causes KaiA to become unsequestered

faster. Increasing the amount of free KaiA allows those KaiC that transition from the

inactive conformation to the active conformation early to begin phosphorylating sooner. This

essentially decreases the effect of the delay in the system, and since this model is primarily

a negative feedback-delay oscillator this also corresponds to a decrease in amplitude.

Monomer model

As described, the monomer model foes not explicitly model formation of full KaiABC com-

plex but instead assumes KaiA has infinite affinity for S-KaiC. If the decoy KaiA binds with

equal strength to the KaiC-KaiB complex this amounts to a direct modification of m, where

m is modulated by 1/
(
1 + dAT/AT

)
. Figure 2.10 shows the amplitude and the period of

the oscillation as a function of dKaiA concentration. For differing binding rates it is not

as simple but Fig 17b,c (appendix A) shows that this behavior is not contingent on having

equal binding rates. This suggests that the relaxation oscillator type of positive feedback

present in the original monomer model is still operating in the same qualitative way. The

same amount of KaiA must be sequesered to trigger the positive feedback on the S phos-

phorylation and is simply sequestered more slowly in the presence of dKaiA, causing the

period to increase. This shows that these two models with opposing feedback properties

can be distinguished by the introduction of a competitor for the KaiA sequestration site.
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(a) (b)

Figure 2.10: a) The period and amplitude of the allosteric model with the KaiA sequestration
stoichiometry set to 2, but including some concentration of a decoy KaiA (dKaiA) which is
sequestered competitively with KaiA but does not bind to KaiC otherwise (for example to
promote KaiC autophosphorylation). This has qualitatively the same effect on the amplitude
and period as changing m directly does. Since increasing m and increasing the concentration
of the decoy should have opposite effects on the amount of KaiA bound, this figure shows
the same qualitative behavior as Fig. 8B. b) Amplitude and period for the original monomer
model with dKaiA. Since the decoy KaiA is sequestered with the same affinity as KaiA,m is

simply modulated from its default value of 2 by a factor of 1/
(

1 + dKaiAT
KaiAT

)
, and is formally

equivalent to changing m directly.

Additionally, the effect of such a competitor can be arrived at by modulating the effective

KaiA sequestration stoichiometry m. We will now observe the effects of doing so on a more

complex model, the previously introduced two-domain allosteric model.

2.3.5 Two-site allosteric model reproduces result of allosteric model

While the allosteric and monomer models are useful for analyzing the system by the virtue

of their dynamics being transparent, it is valuable to understand how the results manifest

in the more biologically realistic two-site allosteric model.

To simulate the effect of a competitor species, which competes with KaiA for free binding

sites on the N-terminal domain of KaiC, we explicitly introduce a new protein in the two-site

allosteric model which we assume to be dKaiA. Because the model tracks a discrete number

of proteins, we cannot continuously decrease the sequestration capacity m of a hexamer to

simulate the effect of dKaiA, as is done in the other two models. In this model, the N-
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Figure 2.11: Heat plot showing the change in the period for the two site allosteric model as
a function of the initial dKaiA concentration and the affinity of dKaiA for KaiB bound to
KaiC. Note that both axes are log scale. When the dKaiA affinity is significantly lower than
the KaiA affinity, which is the case for the values shown, dKaiA decreases the period of the
oscillation. Parameter values corresponding to the area in white show no oscillations.

terminal domain of a hexamer can maximally sequester six dKaiA proteins. dKaiA can only

be sequestered from solution when six KaiB monomers are bound to the N-terminal domain

of KaiC. Just like the binding of KaiA on N-terminal in this model, dKaiA does not bind

cooperatively.

In figure 2.11 we show the heat plot of the change in the period of the phosphorylation

level as a function of the dKaiA concentration and the affinity of dKaiA for KaiC. In this

plot, we only show results where dKaiA has a low affinity compared to the affinity of KaiA for

N-terminal bound KaiB, which is KN·KaiA
eq = 107µM−1. Clearly, for all dKaiA concentrations

and affinities shown in figure 2.11, the period of the oscillation decreases. Both the dKaiA

concentration we use in our simulations and the resulting decrease in period are in good

quantitative agreement with the experimental results shown in [26]. Also, when we look at

time traces of the phosphorylation level in figure 2.12, it is clear that the troughs of the

oscillation move up with increasing initial concentrations of dKaiA. This also agrees well

with experiments.

Our simulations show that for the two-site allosteric model, adding a protein that com-

petes with KaiA for the binding sites on the N-terminal domain reduces the period of the

oscillator. The period reduces because, by blocking the KaiA binding sites, dKaiA decreases

the the time that KaiC can sequester all KaiA from solution. This also explains why the

trough of the phosphorylation level increases with the dKaiA level: Due to competition,
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Figure 2.12: Time traces of the phosphorylation level at different concentrations of dKaiA,
for the two site allosteric model. The affinity of dKaiA for the N-terminal domain of KaiC
is KCI·KaiA

eq = 100µM . Consistent with experiments, the period decreases and the troughs of
the oscillations move to a higher phosphorylation level with increasing dKaiA concentration.

a single hexamer can on average sequester fewer KaiA dimers. Because there a now more

hexamers required to sequester all KaiA, and because these hexamers have a higher phos-

phorylation level compared to those that have already flipped back to the active state, the

trough in the phosphorylation level moves up. The fact that the period decreases shows

that, just as we concluded for the allosteric model, the oscillator in the two-site allosteric

model behaves as a delay oscillator. Because dKaiA has a much lower affinity than KaiA

for the N-terminal domain of KaiC, dKaiA is most effective competing with KaiA for free

binding spots when there are only a few KaiA dimers in the solution. This is because the

probability that either dKaiA or KaiA will bind to the N-terminal domain is roughly pro-

portional to dAKN ·dKaiA
eq or AKN ·KaiA

eq , respectively, where KN ·◦
eq is the dissociation constant

of the associated reaction. Given that KN ·dKaiA
eq � KN ·KaiA

eq in our simulations, dKaiA only

has a reasonable chance to bind when the concentration of free KaiA is extremely low. This

is only the case when all KaiA is sequestered by KaiC and only one or two KaiA are free in

solution due to hexamers flipping back to the active states prematurely. Therefore dKaiA

only has an effect at the end of the oscillation and not in the phase when most hexamers are

in the active state and there is a lot of free KaiA in solution.

If, as proposed above, the two-site allosteric model can be understood as an example of

a negative feedback model, these results are consistent with the simpler allosteric model.

This further supports the conjecture that the effect on the period of adding dKaiA to the
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oscillator would be a reliable readout of the sign of the feedback present in the system.

2.4 Discussion

We have presented a theoretical and computational study clarifying the differences between

two simple types of models of the Kai oscillator. These models, the allosteric model and the

monomer model, fall into the distinct classes of delay and relaxation oscillators, respectively,

depending on the dynamical effect that KaiA sequestration introduces. These differences

cause the period of the oscillator to change in opposing directions when the KaiA seques-

tration stoichiometry m is reduced. In the allosteric model KaiC hexamers can begin to

phosphorylate earlier and the period decreases. In the monomer model, the system needs to

wait longer for enough KaiA to be sequestered to reset the balance between phosphorylation

and dephosphorylation and both the amplitude and period increase.

The different oscillation mechanisms have heretofore proven to be difficult to unambigu-

ously distinguish experimentally. In the monomer model, positive feedback arises throughSKaiC

promoting its own production during dephosphorylation, with the rate of SKaiC production

increasing as the free KaiA concentration decreases. Thus the essential question is whether

free KaiA inhibits the dephosphorylation of KaiC that is competent to sequester KaiA (ei-

ther inactive hexamers in the monomer model or SKaiC in the monomer model). On one

hand, experiments with phosphomimetics indicated that KaiC with the serine residue phos-

phorylated (the form competent to bind KaiB and sequester KaiA) phosphorylates only very

slowly on the T residue in the presence of free KaiA. [29, 132]. Similar experiments [132]

suggest that dephosphorylation is independent of the action of KaiA and KaiB. These re-

sults imply that KaiA sequestration does not promote the creation of further species that

sequester KaiA to a meaningful degree, that is, that KaiA sequestration does not strongly

feed back positively on itself. This is consistent with the dynamics of the allosteric model,

which also assumes that phosphorylation of KaiB-bound KaiC is not strong and that KaiA

does not affect dephosphorylation rates. On the other hand, a study of the individual phos-

phostate time traces in the native protein showed that the dynamics could be fit very well

using the monomer model, which includes a strong positive feedback loop [158].

Investigating the effects of competitive binding on these models has revealed robust, ex-

perimentally distinguishable behaviors. We showed that these behaviors can be distinguished

by introducing a protein external to the oscillator that competes with KaiA for binding. This

method has received little attention as a tool for systematically modulating parameters that
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would otherwise be inaccessible, but it effectively probes for both the models and the in vitro

oscillator, allowing modeling to directly augment the interpretation of experimental results.

A strong candidate protein for such an assay is CikA, which is a known element of the clock

output mechanism and binds to the KaiBC complex. Adding CikA to the in vitro system

has been shown to decrease the amplitude and period [26]. CikA has also been shown to

bind to the KaiA sequestration binding site [178]. This strongly suggests that the dynamics

of the in vitro oscillator are primarily those of a delay oscillator.

Although descriptions based on KaiA sequestration have recently predominated, it is

worth noting that there are also models of the Kai system whose operation cannot be mapped

onto the two types of model considered here in an obvious way. One approach [85, 127]

has been to focus on the possibility that exchange of monomers between hexamers, as an

alternative to KaiA sequestration, is the primary mechanism of synchronizing the oscillations

of individual hexamers. We have not considered these models here because we are focusing

on the mechanism of KaiA sequestration.

This focus on modeling KaiA sequestration proved to be a useful starting point for reveal-

ing crucial mechanistic details about the system. By comparing two simple but qualitatively

distinct numerical models of the oscillator it was possible to understand current experimental

results in a new light, helping to contextualize relatively subtle differences that would have

been difficult to interpret otherwise. We showed that perturbing the system by introducing

a competitor for an important binding site, when compared to numerical results, identifies

the type of feedback present in the in vitro system.

The identification of the Kai oscillator as one driven primarily by negative feedback with

a delay (of a qualitatively different variety from that described in [90]) is itself a notable

result. Understanding the dynamics of oscillators found in biological systems can provide

information about why certain oscillator structures might be selected for, and it has been

proposed [51] that positive feedback architectures provide certain robustness advantages. In

the case of the Kai system it is possible that the large number of states in the oscillator mit-

igate these difficulties, suggesting a potential parameter regime in which negative feedback

oscillators could preferentially be found in biological systems.
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Chapter 3

Limitations on Precision in

Mechanical Feedback Models

3.1 Introduction

Throughout development organs grow and must stop at appropriate sizes. How the cessation

of growth is regulated to produce appropriate final sizes is a vital question in developmental

biology, and understanding the details of the regulatory processes that govern it is necessary

to address questions of how the usual growth plan breaks down, for example in the case of

cancer. To begin to answer this question it is valuable to observe that dramatic variations in

organ size between individuals in a species is rare, and bilateral symmetry on an individual

basis can result in even smaller variations is size between two organs on the same individual.

Such tightly controlled variation suggests that the regulation of organ growth should be

precise. However, determining the precision of the mechanisms of size control is difficult.

In this work we compare different families of growth control models and make experi-

mental predictions that distinguish their behavior. To do this we have developed an analytic

framework capable of representing generic models of growth control by mechanical feed-

back. We use this framework to derive the fixed point conditions for these families of models

and determine whether or not they predict a unique final size. Additionally, we describe

biologically relelvant observables such as uniformity of growth rate and amount of apoptosis.

There is a long history of support for the idea that organ size control is substantially

regulated organ-autonomously. From early experiments on salamanders to more recent work

on rats (reviewed in [24]), it appears that organ transplants often growt to sizes comparable

to those of the donor organism. Particularly striking are the results of experiments on the
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Drosophila wing imaginal disk, in which the disk is dissected from the larva and cultured in

the abdomen of an adult. One finds that when disks grown in the abdomen of the adult is

extracted it has grown and stopped at a final size close to the final size of the wing imaginal

disk on the larva [23, 65]. However, the precision of the target size is likely to be sharper

than that described in the dissection experiments, since estimates of the variation in sizes

between left and right wings on the same fly to be on the order of 1% [19].

Various models for how the growth of the Drosophila wing disk is controlled have been

proposed. Although there are numerous morphogen distributions that must certainly play

a role regulating the growth of the disk, the growth in the wing disk is uniform [115] while

these morphogens have some nontrivial gradient. It is also not as simple as reading out the

gradient of these distributions, since uniform expression of Dpp, a key morphogen, causes

overgrowth [130].

One proposed growth control mechanism consistent with uniform growth in response to

nonuniform morphogen distributions is feedback from local mechanical stresses [166]. The

mechanical feedback model relies on the tendency of nonuniform growth to generate stresses.

If growth is nonuniform, for example if a circular tissue grows more in the center than in the

periphery, stresses will build up. Since the material elements in the center are constrained by

the material elements in the periphery, their actual area is much smaller than their preferred

area, whereas the inverse is true for the elements in the periphery. In a mechanical feedback

model, if some localized section of the tissue overgrows, as in the center of such a disk,

the local pressure that is produced will downregulate its growth rate in response. Recently

there has been growing support for this mechanism in the Drosophila wing disk. Direct

experiments on dissected disks have shown that mechanical strain increases the cell division

rate [162]. Direct genetic modification of the putative mechanical feedback signaling pathway

has been also been shown to interfere with uniformity of growth in vivo [139].

Mechanical feedback has also been identified in other organisms. In MDCK cells (Madin-

Darby canine kidney cells, a well studied epithelian cell line) contact inhibition of growth,

the phenomenon of growth in an epithelium slowing upon confluence, has been explained by

mechanical feedback models [148]. In addition, the Piezo family of proteins is an evolution-

arily conserved family of channel proteins implicated in mechanotransduction in Drosophila,

zebrafish and mice [118].

In this work we will focus on the Drosophila wing disk and will compare the qualitative

features of the models studied to the biological details of growth in the wing disk. There

have been several [1, 2, 76] efforts to model mechanical feedback of growth control in this
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system using numerical models. These are cell-vertex models [50], a type of numerical

model which simulates an entire tissue at the level of individual cells which have elastic

properties defined by their geometry. These studies have demonstrated that it is possible

for mechanical feedback to cause a tissue such as the wing disk to halt its growth. An issue

with these cell-based numerical models is that the fixed point structure is difficult to analyze

and the relationship between the details of model structure and the specifics of the model

behavior can be obscure.

Here we develop an analytic framework that allows different models of growth control with

mechanical feedback to be directly compared and their fixed point structure to be analyzed.

We are able to study the long time behavior and fixed point structure of broad families of

models and to classify these models based on the predictions they make about the precision

and uniqueness of the final size of the wing disk. Since we are focusing on the Drosophila

wing disk, we emphasize relevant experimental observations such as the uniformity of the

growth rate and the absence of spatiotemporal patterning of apoptosis during large portions

of development. However, the analytic framework is straightforwardly generalizable to other

systems that experience mechanical feedback.

We begin in section 3.2 by introducing a theory of elasticity that incorporates growth of

the elastic material and describing the relationship between growth and stress. We introduce

linearized elastic equations assuming small deformations and small deviations from uniform

growth. We restrict our model to growth of an axially symmetric disk in 2D and introduce

our formalism for growth feedback by a growth rate γ for the growth that drives the elastic

stresses. This in turn introduces nontrivial dynamics for the total tissue size.

Different choices of model are defined by different choices of γ, which is considered as a

power series in the pressure p and its derivatives, taken to low order. We show that high

pressure in a central region with high growth must be accompanied by negative pressure in

an exterior region with low growth, and thus that negative feedback on pressure operating

uniformly throughout the disk causes disks to grow indefinitely. Thus we distinguish models

based on how they regulate these regions of negative pressure. We define those models that

require some threshold level of morphogen in order for any growth to occur, regardless of the

pressure, as AND-type models in analogy with the logical operation. In contrast, we define

OR-type models as those that allow the morphogen to trade off with mechanical feedback

at all points on the disk. We show that AND-type models which set the growth rate to zero

over macroscopic sections of the tissue do not predict unique final sizes, and that OR-type

models are capable of precise final sizes.
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3.2 Elasticity

Here we define the type of growing tissue that we will study and review the linear theory of

elasticity we use to introduce the effects of growth. We describe growth of a two dimensional,

initially axially symmetric disk of tissue, which will model the growing wing disk. We

introduce isotropic growth represented by a scaling factor η and derive linearized elastic

equations about uniform average growth, assuming small local fluctuations from uniform

growth and small elastic displacements. We describe the elastic equilibrium in terms of the

Cauchy stress σij. Then in section 3.2.2 we calculate the pressure in terms of η for problem

of axially symmetric growth of the initially axisymmetric disk.

In the main text we will assume the fields (the deformation, morphogen distributions, the

dilation field η, the stresses, etc) will be axisymmetrtic except when calculating the linear

stability of non-axisymmetric perturbations. The elasticity problem for general anisotropic

growth can be found in appendix B.1, and the pressure for non-axysymmetric growth of the

initially axisymmetric disk can be found in appendix B.1.3. Although the resulting linearized

theory will be similar in form to standard results for linear elasticity with expansion due to

nonuniform heating, the limit we are working in allows a uniform, isotropic component of

the growth to become very large and take on nontrivial, nonlinear time dynamics which will

describe the evolution of the total size of the tissue.

3.2.1 Problem fundamentals

We will now specify the fundamentals of the elastic problem we will be analyzing throughout

this work. We will follow the standard elasticity convention of referring to coordinates in the

Lagrangian configuration with upper case Roman letters (e.g. Xi for a coordinate vector,

or R and Θ for polar Lagrangian coordinates) and coordinates in the Eulerian configuration

with lower case Roman letters (e.g. xi for a coordinate vector, or r and θ for polar Eulerian

coordinates). We will take the Lagrangian configuration to be a disk with constant radiusRD.

The Eulerian radius of the disk, rd, then varies with time as required by the coordinate map

xi(Xi). The dynamics controlling the Eulerian configuration will take the form of growth

dynamics for the isotropic scaling factor η. Since we will be linearizing around uniform

growth we must extract the uniform component of this dilation. To do this we define for

any function on the Lagrangian configuration f(Xi) the average 〈f〉 as follows:

〈f〉 =
1

πR2
D

∫ RD

0

∫ 2π

0

f(R,Θ)RdRdΘ (3.1)
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Growth of this disk is encoded as a scaling factor η. Locally, η descibes how lengths

of tissue elements are scaled. If an infinitesimal tissue element at location Xi has sides of

length dX before growth, then, if it is not deformed elastically, after growth it will have

linear dimensions η(Xi)dX. We define

η̄ ≡ 〈η〉 (3.2)

as the uniform component of the growth, and

η̃ = η − η̄ (3.3)

as the nonuniform component of the growth. Given this uniform component η̄, we define the

total deformation in the Eulerian configuration as a displacement wi, which will be seen of

order η̃, on top of a displacement due to uniform growth:

xi(Xi) = η̄Xi + wi (3.4)

Here the vector wi is analogous to the displacement vector ui in standard linear elasticity,

but wi describes a displacement from a (possibly very large) uniform dilation η̄. We can

then define a linear strain tensor in the usual way:

wij =
1

2
(∂iwj + ∂jwi) (3.5)

Elastic equilibrium can then be expressed as the following modification of the standard

formulation of linear elasticity (see appendix B.1.2 for a derivation):

0 = ∂iσij =
1

η̄
∂i (λ(wkk − 2η̃)δij + 2µ(wij − η̃δij)) (3.6)

3.2.2 Pressure

We now proceed to calculate the pressure in this linearized elastic theory. Assuming axial

symmetry, this reproduces a familiar result from the theory of thermal expansion in linear

elastic media [93] and we determine that the radial component of the displacement is given

by:

wR(R) =
2(λ+ µ)

R(λ+ 2µ)

∫ R

0

η̃(R′)R′dR′ (3.7)
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for stress-free boundary conditions. From this we can determine the local pressure:

p(R) = −1

d
σii =

2µ(λ+ µ)

λ+ 2µ

η̃

η̄
(3.8)

So for an axisymmetric system the pressure can be found to be directly proportional to η̃,

and since 〈η̃〉 ≡ 0 as a result we have the following constraint on the pressure:

〈p〉 = 0 (3.9)

If the disk experiences compression in one area there must be other areas that are under

tension.

3.2.3 Disk size

Note that since 〈η̃〉 = 0, we have w(RD) = 0. This means that at the edge of the disk, the

total deformation xi = η̄Xi for the axially symmetric problem. Then the Eulerian radius of

the grown disk is given by

rd = η̄RD (3.10)

In addition, non-axisymmetric contribtions to η(R,Θ) are proportional to sin(nΘ) or cos(nΘ)

and have zero average over the disk. Thus to linear order they do not contribute to the

total disk size. Therefore η̄ gives the total size of the disk and we will use η̄ and disk size

interchangably throughout this work.

3.3 Growth dynamics

Now that we have developed the necessary fundamentals of elastic stresses due to growth we

can introduce dynamics for the growth itself. We will restrict ourselves to the study of a 2D

disk with an axisymmetric Lagrangian configutation. Growth is assumed to be isotropic and

occurs in response to some combination of a distribution of morphogen or growth factor and

feedback due to local stress. Growth dynamics take the form of a growth rate for η, which

describes how the linear dimensions of a given material element are dilated by local growth.

We assume an exponential growth law for η in terms of a growth rate γ:

η̇ = γη (3.11)
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Our choice of a feedback model for growth control amounts to a choice for γ, which can

depend on the local pressure, concentrations of morphogens, gradients or other operators

acting on these quantities, or any other variables which are believed to play an important

role in the regulation of tissue growth. Consistent with our linearized theory in which

deviations from uniform growth are small we will in general consider γ(p) as a power series

in p and its derivatives.

The function γ also serves to determine the fixed point of our dynamics. Some systems,

such as tumor spheroids, have homeostatic steady-states with cell growth and apoptosis

organized in such a way that the total cell number is constant [66]. In the wing disk spa-

tiotemporal patterns of apoptosis are not generally known to play an important role during

the majority of development [116], so we will not consider steady states with non-zero growth.

This means that steady states will be defined by the cessation of cell growth throughout the

tissue. This condition is equivalent to the following condition for the fixed point pressure

distribution p∗:

γ(p∗) ≡ 0 (3.12)

Since the pressure p is a function of the growth field η, γ (p(η∗)) defines a fixed point for η∗

the growth dynamics as well.

3.3.1 Strong feedback and nondimensionalization

Because the results for the pressure in terms of the growth rely on the nonuniformities in

the growth being small compared to the uniform average growth it is necessary that this

assumption remains valid throughout the dynamics. With this in mind we note that the

pressure is proportional to the nonuniformity in growth: p ∝ η̃/η̄. Thus, if the pressure

remains “small” then so will η̃/η̄ such that the linearity assumptions underlying the elastic

equilibrium equations are maintained throughout growth. The magnitude of the pressure

can be controlled by making the negative feedback on the pressure “strong”. The precise

form of the pressure feedback depends on the model, but we consider it here with only

proportional negative feedback from pressure additively interacting with some basal growth

rate γ0 to illustrate:

γ = γ0 − κp = γ0 − κ
2µ(λ+ µ)

λ+ 2µ

η̃

η̄
≡ γ0 − κ̃

η̃

η̄
(3.13)
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where κ is the feedback strength of the pressure and κ̃ is the feedback in terms of η. Since

κ̃ has the same dimensions as γ0, we nondimensionalize time using γ0 as a timescale:

t→ γ0t (3.14)

such that the basal growth rate γ0 is equal to 1, also nondimensionalizing the feedback

strength. Then the assumption that feedback is strong takes the following form:

κ̃

γ0

=
1

ε
(3.15)

where ε� 1, giving the following form for γ, after nondimensionalizing time:

γ = 1− 1

ε

η̃

η̄
(3.16)

This ensures that η̃/η̄ = O(ε) throughout the growth process (assuming it is small to begin

with), ensuring that the assumptions underlying the linearized elasticity are maintained.

Below, when we consider spatially varying morphogen distributions we will take the value of

the growth rate at the center of the disk in the absence of pressure feedback as the growth

rate γ0 setting the time scale.

Since this approximation introduces a timescale tied to negative feedback on the ratio

η̃/η̄ it is natural to look for a separation of timescales between these quantities, with η̃ having

very fast dynamics and approaching some quasi-steady-state η̃qss and η̄ evolving on a longer

timescale towards the fixed point, decoupled from the evolution of η̃. This does not happen

in general, and whether or not it is possible depends strongly on the form of γ. To see this

we calculate the time derivatives of η̄ and η̃:

˙̄η = 〈γη〉 = 〈γ(η̄ + η̃)〉 = η̄ 〈γ〉+ 〈γη̃〉 = η̄

(
〈γ〉+

〈
γ
η̃

η̄

〉)
= η̄ 〈γ〉 (1 +O(ε))

˙̃η = γη − 〈γη〉 = η̄ (γ − 〈γ〉) (1 +O(ε))

(3.17)

If we plug in the choice for γ in equation 3.16 this gives:

˙̃η = η̄

(
1− 1

ε

η̃

η̄
−
〈

1− 1

ε

η̃

η̄

〉)
= − η̃

ε
(3.18)

where the average 〈η̃/η̄〉 = 0 by equation 3.9. This clearly describes nonuniformities decaying

quickly on timescales proprtional to ε−1. The dynamics for η̄ are then totally decoupled from
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those of η̃:

˙̄η = η̄

〈
1− 1

ε

η̃

η̄

〉
= η̄ (3.19)

This describes a disk that continues to grow uniformly for all time. In order to produce

models in which growth eventually halts it will be necessary to introduce nontrivial spatial

variation in the basal growth rate. As we will see it is not always possible to decouple the

dynamics in this way, but by inspecting equation 3.17 we see that the condition

γ = 〈γ〉 (3.20)

for γ 6= 0 is both necessary and sufficient to define ˙̃η = 0 and therefore a quasi-steady state

η̃qss, and thus to decouple the dynamics of η̄ and η̃. Whether or not this decoupling is possible

there places qualitative constraints on the dynamics. Once our model families are defined

we will show that the two families that we analyze differ in whether or not such a nontrivial

quasi-steady-state exists, and that this has a qualitative impact on the dynamics. Not only

is uniformity of growth a meaningful prediction consistent with a current understanding of

a large portion of larval wing disk development, but since η̄ determines the disk size this

has implications for how the time it takes for the disk to reach its final size scales with the

feedback strength.

We now introduce the two families of models which we will investigate. Each of these

describes a different mechanism for halting growth in response to stress. These models are

defined by a choice for γ(p), and beginning in section 3.4 we examine the extent to which

they describe a precise, robust final size for tissues growing under that growth law. To do so

we compute the fixed point conditions and perform a linear stability analysis to determine

the uniqueness of these fixed points and their stability.

3.3.2 Families of models

We will define the basal growth rate, in the absence of feedback from pressure, as a function

M(r). This function describes the spatial distribution of the morphogen but also contains

information about all of the other quantities that affect the growth rate independent of

the pressure, for example basal rates of apoptosis. We will take positive values of M(r) to

promote growth and assume that its effect declines with increasing r. This suggests that

there will be more growth in the center of the disk and thus a higher pressure. Because of

this, by equation 3.9, there must be some region far from the center with p < 0. If there is
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negative feedback from pressure this will cause growth to occur in this region, which raises

the question of how growth stops at all.
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Figure 3.1: The two ways mechanical feedback models can arrest the growth of a disk.
Each model represents a choice for how the M(r) affects the pressure feedback at different
distances from the center. M(r) is represented (top center) as a step function, with a high
value near the center of the disk and a sharp jump at some cutoff radius rc. (lower left) The
AND model requires both feedback from pressure and some threshold level of morphogen
for growth to occur at all, in analogy with the logical “AND” operation and is therefore
indicated by a “×” symbol. Because of this the growth rate γ is identically zero in the
exterior region of the disk, defined by r > rc (see equation 3.21). As the interior continues
to grow, more tissue gets pushed into the region where γ = 0. Since this exterior region does
not grow, as the interior grows it becomes increasingly stressed. Eventually the stress on
the interior region from the exterior becomes large enough for the pressure feedback to halt
growth in the interior. (lower right) In the OR model growth is allowed to trade off with
growth over the entire disk, with growth being driven locally either by pressure feedback or
local morphogen concentration, in analogy with the logical “OR” operation and is indicated
by a “+” symbol. In order for the disk to stop growing it is necessary for the morphogen
concentration to decrease to a level that, in the absence of growth promoted by the negative
pressure in the exterior region required by equation 3.9, would cause apoptosis (see equation
3.22). This allows both growth to come to a local fixed point both near and far from the
center of the disk, and both regions approach the fixed point simultaneously.
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There are two different ways of formulating models that will allow growth to halt in this

situation. One is to prevent growth from occurring at all in regions far from the center,

including regions where p < 0. This is done by requiring some threshold level of morphogen

for any growth to occur. We call this the “AND” model, shown schematically in figure 3.1,

in analogy with the logical “AND” operation, which requires all inputs to be active in order

to produce an active output. The simplest form for γ(p) describing an AND model is:

γ = Θ(rc − r)
(

1− 1

ε

η̃

η̄

)
(3.21)

Since there is no growth in the exterior, as the interior continues to grow and more tissue

is pushed past the cutoff at rc, the greater amount of non-growthing tissue in the exterior

produces increased pressure on the interior until it eventually reaches the threshold pressure.

At this point growth on the interior also ceases and the disk has reached its final size.

Alternately, it is possible to formulate a feedback model in which growth may occur ev-

erywhere on the disk and the pressure and the morphogen concentration trade-off to regulate

growth locally. In order to cause the growth to halt eventually in the region where p < 0,

there must be some cutoff distance rc such that M(r) < 0 for r > rc. This model is shown

schematically in figure 3.1. The simplest form for γ(p) describing and OR model is:

γ = −1

ε

η̃

η̄
+ Θ(rc − r)− a (3.22)

where 0 < a < 1. This has the interpretation that there is some basal level of apoptosis in

the tissue and that away from the center of the disk the morphogen concentration is too low

to prevent it. In these regions the negative pressure promoting growth is necessary for the

disk to grow at all.

We will now analyze these different families of models. We describe the fixed points they

define for η and do a linear stability analysis to identify the uniqueness and stability of these

fixed points. The fixed point structure describes whether or not each of these families of

models predict a unique final size for the disk, and under what conditions such a unique final

size exists. We first treat the AND model family in section 3.4, and then the OR model in

section 3.5.
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3.4 AND model

The first model we address is what we will refer to as the “AND” model, since it requires

both nonzero growth factor and pressure for growth to occur at all. In this model the growth

rate γ depends multiplicatively on a morphogen distribution, with γ vanishing identically

when this morphogen is reduced below some threshold. The necessity of some minimal

concentration of this morphogen for any growth to occur at all is reminiscent of the logical

“AND” operation, inspiring the name.

This model has the virtue of being straightforward and has been propsed by multiple

groups in the literature on growth control in Drosophila [1, 76]. Its primary characteristic

is that growth only occurs within some central region defined by a fixed Eulerian distance

rc from the center (so the region that is growing is constantly shrinking in terms of the

Lagrangian coordinates). Growth depends on a basal growth rate, taken to be equal to

1, and negative pressure feedback. As more growth in this region occurs, more tissue is

displaced from this central region into the exterior, which exerts a pressure on the interior

growing region. The interior region experiences mechanical feedback due to this pressure

and its growth rate declines as the pressure approaches a threshold level at which growth

ceases. We thus define γ(η) as follows:

γ = Θ(rc − r)
(

1− 1

ε

η̃

η̄

)
(3.23)

First, we can see that this growth law does not allow uniform growth across the entire disk.

Since there is always a region with γ = 0, the only time the condition γ = 〈γ〉 is satisfied is

when γ = 0 everywhere, i.e. when growth is completed. However, this does not necessarily

mean that large nonuniformities in growth are expected over large section of the disk. In fact,

in the limit of strong feedback the majority of the disk will be uniform with a small fringe

region that contains all of the nonuniformities. Additionally, since there is no nontrivial,

uniform γ the dynamics of η̄ and η̃ cannot be decoupled. This suggests that there is some

intrinsic connection tying the evolution of η̃ to those of η̄.

To understand this we analyze the dynamics. Due to the simplicity of this model we

can perform a dimensionality reduction and analyze its dynamics in the phase plane to get a

better understanding of how η̃ and η̄ are connected. Since the region r > rc has no dynamics,

the only component of η̃ that contributes to the time evolution of the tissue is that within

rc. If this region is uniform at the onset of growth it will remain uniform throughout growth.

Thus the dynamics are reduced to two numbers: η̄, the average of η over the whole disk, and
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η̃in, the deviation away from uniform growth on the interior of the disk. Combined with the

condition that 〈η̃〉 = 0, these two numbers contain all of the information about the pressure

that contributes to the dynamics. Their dynamics are described as follows:

˙̄η = 〈γη〉 = η̄ 〈γ〉 (1 +O(ε))

= η̄

(
1− 1

ε

η̃in

η̄

)
〈Θ(rc − r)〉 =

1

η̄

(
1− 1

ε

η̃in

η̄

)
(1 +O(ε))

(3.24)

Without loss of generality, we choose the inital scale of the disk such that at the onset of

growth the Lagrangian radius of the disk Rd is equal to rc. Physically, this means that η̄ = 1

corresponds to the scale of the disk just as totally uniform growth ends and the outer edge

of the disk touches the morphogen cutoff for the first time. Prior to this all growth is totally

uniform and generates no stress. A consequence of this choice is that the Eulerian radius

of the disk rd = η̄rc + O(ε), thus that 〈Θ(rc − r)〉 = 1/η̄2. We can then calculate the time

derivative of η̃in:

˙̃ηin = η̄ (γ − 〈γ〉) = η̄

(
1− 1

ε

η̃in

η̄

)(
1− 1

η̄2

)
(3.25)

From this we can see that, except for a prefactor depending on η̄, the expressions for ˙̃ηin

and ˙̄η have an identical form. In particular, the feedback term which defines the fixed point

condition, is the same. This means that both η̄ and η̃in have identical fixed point conditions,

or that for this phase-plane system there is no unique fixed point, but rather a line of fixed

points described by the relation:

ε =
η̃in
η̄

(3.26)

So the AND model does not describe a unique final size for the wing disk. Essentially, the

dynamics encode an initial relaxation of η̃ to a steady state γ = 〈γ〉 = 0. We can see directly

that the final disk size, scales lienarly with ε (see appendix B.3). Thus, in the strong feedback

limit, the extent of the nonuniformity is restricted to a narrow band on the exterior of the

disk, with the width of this band scaling as
√
ε (see appendix B.3).

3.4.1 Robustness

Although the fixed point is not unique, the question of how this would manifest itself exper-

imentally is still meaningful. For example, we can consider a transient change in the inverse

feedback strength ε (which could arise as either from chemical signaling or a change in the
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elastic constants in the material). This would change the fixed point, and thus the final size.

However, when the perturbation ended and the original values were restored the disk would

relax back to the original final size. To see this we note that neither of these coefficients

is present when computing the integral curves of this phase-plane system ∂η̄/∂η̃in = ˙̄η/ ˙̃η.

Thus when ε is changed in a transient manner the phase-plane system remains on the same

integral curve, tracking the intersection of the curve with the line εη̄∗ = η̃∗in.

It has been suggested [30] that some mechanical feedback models are likely to predict

overgrowth in response to tissue damage, in particular if, as in the case of the AND model,

the cessation of growth is caused by the constriction of some central region by an exterior

region. If this exterior region is damaged, it deforms itself into a lower stress state, decreasing

the pressure in the interior. As the pressure on the interior decreases below the growth

suppression threshold growth can begin again in the center until pressure builds up to the

threshold again, at which point the tissue will have reached a different final size. We can

observe this process numerically by simulating the 2D ODE describing the dynamics of η̄

and η̃in, shown in Fig. 3.2.

With tissue removal

No tissue removal

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Time

η

Figure 3.2: Two simulations of the ODE for the reduced system described in equations 3.24
& 3.25, with η̄ describing the current size of the disk. Usual evolution to the fixed point in
blue. Evolution after disk damage in orange. For disk damage simulation, at normalized
time t = 0.5, an annulus with 5% of the total radius of the disk was removed from the edge
of the disk. The orange curve grows to a larger final size

Such a perturbation does not change the local value of η itself, but it changes the area
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over which it is averaged to calculate η̄. This changes the relationship between η̄ and η̃,

in this case increasing the average η̄ and decreasing the deviation from the average on the

interior η̃in, since the section that was removed had the lowest value for η. Since during

normal evolution both the pressure and the disk size increase together, a perturbation that

causes η̄ to increase and η̃in to decrease causes the system to move to a different integral

curve, resulting in the disk relaxing to a different final size. This new final size will again be

robust to transient changes in the feedback parameters.

That the AND model not predicting a unique final size is perhaps not surprising. The

fixed point condition γ = 0 does not define a unique configuration for the pressure, and thus

for η, indicating some non-uniqueness. The key point is that the growth dynamics do not

depend on the configuration of the disk outside the cutoff rc, so the only way they affect the

dynamics are through the pressure they exert on the interior. It is possible for both large

disks that have been deformed relatively little or small disks that have experienced larger

deformations to exert the same pressure on the interior, and thus are equally valid final sizes

for the disk under the AND model.

3.4.2 Linear stability

To understand this in more detail we will study the linear stability of this system to small

perturbations δη to the steady state η∗. That is, we will be solving the eigenvalue problem:

δη̇ = λδη = (γ∗ + δγ) (η∗ + δη) = δγη∗ (3.27)

Assuming that the perturbations δη are small and that γ∗ = η̇∗ = 0. We then take γ = 0+δγ

to first order in δη:

δγ = Θ(rc − r)
(
−1

ε

)(
δη̃

η̄∗
− δη̄ η̃

∗

η̄∗2

)
(3.28)

Note that there is no contribution to δγ proportional to the derivative of the Θ(rc− r) term,

even though r depends on δη since it would be proportional to γ(η∗) = 0. We then examine

the eigenvalue equation in detail:

λδη = Θ(rc − r)
(
− η̄
∗

ε

)(
δη̃

η̄∗
− δη̄ η̃

∗

η̄∗2

)
+O(ε)

= Θ(rc − r)
(

1− 1

ε

δη̃

δη̄

)
δη̄

(3.29)
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Where we have used the identity η̃∗/η̄∗ = ε in the second line. We can see that since δγ = 0

for r > rc, either δη = 0 or λ = 0. Thus any eigenmodes that are nonzero in the exterior

have λ = 0 and are soft. Additionally, δη̃ = εδη̄ is a λ = 0 mode, consistent with the

degeneracy of the fixed point in the reduced ODE model. To understand the λ 6= 0 modes

we will transform δη̃ = δη − δη̄ since δη = 0 for r > rc, simplifying the analysis. We can

then consider the eigenvalue problem for r < rc:

λδη = −1

ε

(
δη − δη̄ η

∗

η̄∗2

)
δη (λε+ 1) = δη̄

η∗

η̄
δη

δη̄
=

1

ε

1 + ε

λε+ 1〈
δη

δη̄

〉
= 1 =

1

η̄∗2
1 + ε

λε+ 1

λ =
1

ε

(
1

η̄∗2
− 1

)
(3.30)

where in the fourth line we have taken an average over the disk, with the average of Θ(rc−r)
contributing the factor of 1/η̄∗2 as before. Then since η̄∗ > 1 we have λ < 0. Thus the modes

that do not have λ = 0 are stable.

We then study non-axisymmetric perturbations. We define

δη̃

η̄∗
=
∞∑
n=0

sin(nθ)δηn,a + cos(nθ)δηn,b (3.31)

as before and note that for n > 0 δη = δη̃ since these modes are proportional to sin(nθ) or

cos(nθ) and thus average to zero over the disk. Then, from our expression for the correction

to the pressure from non-axisymmetric growth we have:

λδηn,i = −1

ε

(
δηn,i − 2(n+ 1)

(
R

RD

)n ∫ RD

0

δηn,i

(
R′

RD

)n+1
dR′

RD

)
Θ(rc − r) (3.32)

Again, all modes with δηn,i 6= 0 for r > rc have λ = 0 (this includes the necessary zero modes

from compatible growth, see appendix B.1.4). To find λ 6= 0 modes we require that δηn,i = 0

for r > rc. This requires that δη ∝ RnΘ(rc − r), and the eigenvalue problem can be solved
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as follows:

Rn(ελ+ 1) = 2(n+ 1)

(
R

RD

)n ∫ Rc

0

R′n
(
R′

RD

)n+1
dR′

RD

ελ+ 1 = 2(n+ 1)R
−2(n+1)
D

∫ Rc

0

R′2n+1dR′

=
1

η̄∗2(n+1)

λ =
1

ε

(
1

η̄∗2(n+1)
− 1

)
< 0

(3.33)

So again all modes with λ 6= 0 are stable. In this linear stability analysis we have reproduced

the soft mode seen in the reduced model, as well as identifying modifications to the exterior

where no growth occurs as being key in producing soft modes. This implies that for a

mechanical feedback model to predict a unique final size it is necessary for it to define a

fixed point pressure everywhere in the tissue. Since there are areas where the pressure will

be negative, the basal growth rate must itself be negative in these regions for growth to

stop. Essentially, it is necessary for the growth driven by morphogens and growth driven by

pressure feedback to be able to trade off everywhere in the disk.

3.5 OR model

As we observed, the AND model predicts a continuous family of final sizes due to the fixed

point condition described by γ = 0 not constraining the configuration of the material where

growth is set to zero by the growth factor concentration. This solved the problem of negative

pressure in the exterior region promoting growth by halting the dynamics completely. The

OR model allows the exterior region where there is negative pressure to have dynamics by

allowing the growth factor to be mildly inhibitory of growth in the regions where negative

pressure would be expected. The OR model is a model of such a trade-off mechanism. The

simplest form of the OR model is expressed by the following choice for γ:

γ = −κp+M(r) (3.34)
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Again, we choose the distribution M to depend on the Eulerian coordinate r. In the ax-

isymmetric case we can express γ in terms of η as follows:

γ = −1

ε

η̃

η̄
+M(r) (3.35)

This choice for γ specifies a fixed point η∗ defined by:

η̃∗

η̄∗
= εM(r∗(R)) (3.36)

3.5.1 Separation of scales

The OR model predicts a separation of timescales between η̃ and η̄ and thus predicts uniform

growth. To see this we first see that the evolution equations take the following form:

˙̃η = η̄

(
−1

ε

η̃

η̄
+ (M − 〈M〉)

)
ε ˙̃η = −η̃ + εη̄ (M − 〈M〉) ≡ −(η̃ − η̃qss)

(3.37)

where we have defined

η̃qss = εη̄ (M − 〈M〉) (3.38)

and we see that deviations from η̃qss decay exponentially quickly in the ε � 1 limit. This

quasi-steady-state does still evolve in time, but very slowly. It can be seen from its definition

that ˙̃ηqss = O(ε), as opposed to O(1) or O(ε−1), for ˙̄η and ∂t(η̃ − η̃qss), respectively, as we

show below. The time dependence derives from η̄ directly as well as via the dependence of

both M(r) (through r = η̄R + O(ε)) and the average over the disk. Effectively, the quasi-

steady-state pressure is the locally related to the fixed point pressure by a constant offset

determined by 〈M〉. This constant is necessary since one only has 〈M〉 = 0 at the fixed

point disk size η̄∗. We then determine the final size from the fixed point value η̄∗. For a

simple choice of M this can be calculated directly. We choose M(r) = Θ(rc − r)− a, where

0 < a < 1, so that it is positive for r < rc and negative for r > rc, as previously specified.

Then we have:

˙̄η = η̄ 〈M〉 = η̄

(
1

η̄2
− a
)

(3.39)

This demonstrates that the strength of the feedback does not affect the average growth rate

of the whole tissue, as opposed to the AND model where no nontrivial η̃qss could be found.
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Distributions of η̃qss for different values of 〈M〉 are plotted in figure 3.3. In the OR model the

time scale of the evolution of the total tissue size is set only by the morphogen distribution.

Then to find the final size of the disk we set ˙̄η = 0 to find

η̄∗ =
1√
a

(3.40)

Figure 3.3: The quasi-steady-state distribution η̃qss, given in equation 3.38, for different
values of 〈M〉, or equivalently, different times. As the system evolves and η̄ increases to its
fixed point value 〈M〉 decreases to zero. The disk size for each trace is indicated by a black
dot. Traces for larger values of 〈M〉 end earlier, since they describe a smaller disk size. Since
〈η̃qss〉 = 0, if the disk is smaller then η̃qss must be more strongly negative in the exterior in
order to meet this condition. It becomes shallower as the system approaches the fixed point.

3.5.2 Linear stability

To understand the properties of this fixed point in more detail we move to the linear stability

problem. We begin as before by calculating the growth rate δγ corresponding to a small
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perturbation to the fixed point:

δγ = −1

ε

(
δη̃

η̄∗
− δη̄ η̃

∗

η̄∗2

)
+ δrM ′(r)

= −1

ε

δη̃

η̄∗
+
δη̄

η̄∗
M(r) + r

δη̄

η̄∗
M ′(r)

(3.41)

Where δr = Rδη̄ +O(ε) = rδη̄/η̄∗ +O(ε). We then find 〈γ〉:

〈γ〉 =
δη̄

η̄∗
〈M + rM ′(r)〉 =

δη̄

η̄∗
〈rM ′(r)〉 (3.42)

For our choice of M = Θ(rc − r)− a these take the form:

δγ = −1

ε

δη̃

η̄
+
δη̄

η̄∗
(Θ(rc − r∗)− r∗δ(rc − r∗))

〈δγ〉 = −δη̄
η̄
〈rδ(rc − r∗)〉 = −δη̄

η̄

2rc
r∗d

= −2a
δη̄

η̄∗

(3.43)

The full linear stability problem is then again expressed as

λδη̄ = η̄∗ 〈δγ〉 , λδη̃ = (δγ − 〈δγ〉) (3.44)

We can then see that any modes with δη̄ 6= 0 have λ = −2a and any modes with δη̄ = 0 must

have λ = −ε−1. Thus there are no λ = 0 modes and all modes are stable. In particular we

can conclude that the OR model does predict a unique final size as well as uniform growth,

suggesting that it may provide the foundation for a description of the behavior of growth

control in the wing disk.

3.5.3 Apoptosis

Although the OR model predicts a unique final size and uniform growth it has other difficul-

ties that may prevent it from being an fully accurate description of the qualitative growth

dynamics of the wing disk. In particular it is generally understood that apoptosis does not

have meaningful spatiotemporal patterning during the majority of wing disk growth [116].

We will demonstrate that the OR model as presented thus far predicts apoptosis patterns for

sharp enough gradients in M . Steplike gradients in the relevant morphogen are potentially

biologically meaningful if the molecule directly affecting the growth rate is regulated by the

key morphogens, such as Dpp, by an ultrasensitive switch. A highly nonlinear activation
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response could amplify even shallow gradients in these key morphogens.

Apoptosis could occur if at some point R0 the local pressure overshoots the local value

of the fixed point pressure. This would require negative growth to return to the fixed point

when growth ends, which would involve apoposis. Oovergrowth could occur if the local

pressure was advected past the local fixed point value, causing apoptosis. A sharp gradient

would decrease the time it would take to advect the pressure past the fixed point pressure,

so a sharp enough gradient should result in overgrowth. To address this we consider the

difference in the time derivatives of the instantaneous pressure and the advected fixed point

pressure:
∂

∂t
(p(R, t)− p∗(r(R, t))) = ṗ(R, t)− p∗′(r(R, t))∂r(R, t)

∂t
(3.45)

We will consider in this case a morphogen distribution that takes the value M = −mp in

the exterior region, and a time t0 and point R0 > Rc(t0) such that p(R0, t0) = p∗(r(R0, t0))

which implies γ(R0, t0) = 0. This gives:

∂

∂t
(p(R, t)− p∗(r(R, t))) =− 2µ(λ+ µ)η

η̄2(λ+ 2µ)
〈γη〉

+mpε

[
〈γη〉 R̃ +

2(λ+ µ)

R̃(λ+ 2µ)

∫ R̃

0

(γη − 〈γη〉)R′dR′
]

=− 〈γη〉 2µ(λ+ µ)η

η̄2

+mpε

[
〈γη〉 R̃

(
1− λ+ µ

λ+ 2µ

)
+

2(λ+ µ)

R̃(λ+ 2µ)

∫ R̃

0

γηR′dR′

]
(3.46)

The first term is negative and the second is positive. As mp becomes large with respect to

ε−1, the positive term will dominate. Essentially, since the OR model can support arbitrarily

large gradients in steady state, there exist gradients large enough that the advection due to

growth causes the tissue to overgrow past its steady state value. This overgrowth will then

lead to spatiotemporally localized patterns of apoptosis as the system approaches its fixed

point, which is unknown during the majority of development [116]. Such apoptosis could be

avoided if the fixed point distribution could have a gradient set independently of the gradient

of the morphogen. This suggests that this difficulty could be avoided by introducing feedback

on the gradient of the pressure, which would cause the steady-state pressure to be smoother

and potentially prevent overgrowth.
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3.6 Gradient OR model

In order to address the prediction of patterns of apoptosis we introduce the gradient OR

model. With feedback on the gradient of the pressure sharp changes in pressure promote

growth. The resulting pressure distributions then become much smoother than they would

be for the model with only proportional feedback. Here we show that the crucial properties

of the OR model, such as uniform growth and a unique final size, carry over to a model with

additional gradient feedback. For the gradient OR model γ takes the following form:

γ = −κ(p+ c(r)p′(r)) +M(r) (3.47)

We require the gradient be taken with respect to the Eulerian coordinate r, as the tissue

would not be able to directly measure the gradient with respect to the Lagrangian coordinate

R. Such a term could appear in the growth rate γ as the dot product of the gradient of

the pressure and an auxiliary morphogen M2(r), decreasing monotonically with r, giving the

term ∇M2 · ∇p, which has the appropriate symmetry and sign. We take c(r) = cΘ(r − rc)
following [2] corresponding to spatial pattern of the regulation of the membrane proteins Ds

and Fj, proteins hypothesized to introduce gradient feedback [2], by key morphogens and

their effect on growth. Then in the axisymmetric case we have:

γ = −1

ε

η̃

η̄
− cΘ(r − rc)

ε

η̃′

η̄
+M(r) (3.48)

Now the steady state condition γ(η) = 0 is a differential equation and therefore requires

a boundary condition to produce a unique solution. The steplike activity of the gradient

feedback, combined with the condition that γ not diverge anywhere on the disk, will provide

this boundary condition as follows. Take a small region of width 2δ around rc and consider
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the limit in which δ → 0:

0 = lim
δ→0

∫ rc+δ

rc−δ
γ(R)dR

= lim
δ→0

∫ rc+δ

rc−δ
−1

ε

η̃

η̄
− cΘ(r(R)− rc)

ε

η̃′

η̄
+M(r(R))dR

= − lim
δ→0

∫ rc+δ

rc−δ

cΘ(r(R)− rc)
ε

η̃′

η̄
dR

= −c lim
δ→0

[
Θ(r(R)− rc)η̃(R)

∣∣∣rc+δ
rc−δ
−
∫ rc+δ

rc−δ
δ(r − rc)η̃(R)

]
= −c lim

δ→0

[
Θ(r(R)− rc)η̃(R)

∣∣∣rc+δ
rc−δ
− 1

2
(η̃(rc + δ) + η̃(rc − δ))

]
= −c lim

δ→0
(η̃(rc + δ)− η̃(rc − δ))

(3.49)

so we can see that η̃ must be continuous at rc, providing the boundary condition necessary

for the ODE describing the fixed point condition to have a unique solution.

3.6.1 Separation of scales

Next we observe that the separation of timescales proceeds in the same manner as before.

Again, we choose 0 = εη̄ [γ(η̃qss)− 〈γ(η̃qss)〉]. For the gradient model and our previous choice

of morphogen distribution M(r) = Θ(rc − r)− a this gives:

− 1

ε

η̃qss
η̄
− cΘ(r − rc)

ε

η̃′qss
η̄

+M =

〈
−cΘ(r − rc)

ε

η̃′qss
η̄

+M

〉

=⇒ η̃qss =

〈cΘ(r − rc)η̃qss〉+ η̄ε
(

1− 1
η̄2

)
r < rc

〈cΘ(r − rc)η̃qss〉 − ε
η̄

(3.50)

where the value of 〈cΘ(r − rc)η̃qss〉 is determined self-consistently. Again, this quasi-steady-

state has a time derivative that is of order O(ε), and the same separation of scales is achieved

as in the basic OR model. Analytically finding the fixed point size exactly is not possible

due to the complexity of the problem. We will instead estimate the final size in the limits
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c� rc and c� rc. The fixed point condition is as follows:

〈γ〉 = 0 =⇒ εη̄∗ 〈M〉 = 〈cΘ(r − rc)η̃∗′〉 =⇒ η̄∗2 =
1

a+
〈
cΘ(r−rc)

ε
η̃∗′
η̄

〉 (3.51)

The γ = 0 condition gives the fixed point distribution η̃∗/η̄∗, illustrated in Fig 3.4:

η̃∗

η̄∗
=

ε(1− a) r < rc

ε
(
e
rc−r
c − a

)
r > rc

(3.52)

and the gradient:

η̃∗′

η̄∗
=

0 r < rc

ε
c

(
e
rc−r
c

)
r > rc

(3.53)

3.6.2 Final size

In calculating the corrections to the final size and the solutions to the eigenvalue problem it

will be convient to introduce the dimensionless constants c̃ = 1/z = c/rc. The weak feedback

limit then corresponds to an expansion in small c̃ and the strong feedback limit corresponds

to small z. We first address the weak feedback limit. In this limit we have:〈
cΘ(r − rc)

η̃∗′

η̄

〉
=

2εc̃

η̄∗2

[
e

1−η̄∗
c̃

(
η̄∗

c̃
+ 1

)
−
(

1

c̃
+ 1

)]
= −2ε

c̃(1 + c̃)

η̄∗2

(3.54)

where the exponential term was dropped because it vanishes in the limit c→ 0. If we choose

η̄∗ = η̄∗0 + c̃η̄∗1 this condition simplifies to:〈
cΘ(r − rc)

η̃∗′

η̄

〉
= −2ε

c̃

η̄∗20

+O(c̃) (3.55)

Then by matching terms with the fixed point condition for η̄∗ we find:

η̄∗ =
1√
a

(1 + c̃) +O(c̃) (3.56)
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Figure 3.4: The fixed point distributions for the OR model with gradient feedback, plotted
for different values of c̃ = c/rc, in units with rc = 1. The size of the disk for each trace is
indicated by a black dot. The traces for each distribution end at the final size of the disks
they describe, calculated by the condition that 〈η̃∗〉 = 0. If the gradient feedback strength
is weak, c̃ � 1, then the steady state distribution has a sharp gradient and the final size
is similar to that of the non-gradient model. For strong gradient feedback with c̃ � 1, the
gradients of the steady-state distribution are much less sharp and the size of the disk is set
by the feedback strength rather than the cutoff distance.

We can then take the strong feedback limit, the limit of small z, next. We rearrange the

fixed point condition as follows:

1 = aη̄∗2 + 2

[
ez(1−η̄

∗)

(
η̄∗

z
+

1

z2

)
−
(

1

z
+

1

z2

)]
(3.57)

If η̄∗(z) were to diverge faster than z−1 as z →, the exponential term could be neglected. In

doing so, one finds that η̄∗ diverges as z−1, indicating that

η̄∗ = η̄∗−1z
−1 + η̄∗0 +O(z) (3.58)

is a consistent expansion. Rearranging, we arrive at the following expression for η̄∗:

0 = aη̄∗2−1 + 2
[
e−η̄

∗
−1
(
η̄∗−1 + 1

)
− 1
]

+ 2z
[
aη̄∗−1η̄

∗
0 + e−η̄

∗
−1
(
1 + η̄∗−1(1− η̄∗0)

)
− 1
]

(3.59)
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If η̄∗−1 > 1 we may ignore the exponential term. Doing so, we find

η̄∗−1 =

√
2

a
(3.60)

so the approximation is consitent. From the higher order term we then find

η̄∗0 =
1√
2a

(3.61)

so that in both limits we have η̄∗ ∼ c̃, so that the disk size is set by the length scale of the

gradient feedback. This is consistent with the intuition that gradient feedback will smoothen

the spatial distribution of pressure.

3.6.3 Apoptosis

For strong enough gradient feedback this model will not produce apoptosis even for steep

gradients in the morphogen. For this model, the gradient of the fixed point pressure (as

before, taking the morphogen to be linear with some steep slope −mp) takes the form:

p∗′ = −mpε
(
1 + (z − 1) ez(1−r/rc)

)
(3.62)

For large enough z = rc/c this gradient can be made small enough that the negative term ṗ

will cause the time derivative

∂

∂t
(p(R, t)− p∗(r(R, t))) (3.63)

to become negative, preventing apoptosis.

3.6.4 Linear stability

In order to fully understand the fixed point structure and uniqueness of the final size for this

model we must address the linear stability problem. As before this involves calculating δγ,
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initially for the axisymmetric case:

δγ = −κ(δp+ c(r)δp′ − δrc′(r)p∗′) + δrM ′

= −1

ε

(
δη̃

η̄∗
− δη̄ η̃

∗

η̄∗2

)
− rc

′(r∗)

ε

δη̄

η̄∗
p∗′ − c(r∗)

ε

(
δη̃′

η̄∗
− δη̄ η̃

∗′

η̄∗2

)
+ r

δη̄

η̄∗
M ′(r)

= −1

ε

δη̃

η̄∗
− c(r)

ε

δη̃′

η̄∗
+
δη̄

η̄∗

[
εM + r

(
M ′ − c′

ε

η̃∗′

η̄∗

)] (3.64)

Since δγ includes derivatives of step functions there will be discontinuities at rc. They can

be calculated as before:

0 = lim
δ→0

∫ rc+δ

rc−δ
δγdr

= lim
δ→0

∫ rc+δ

rc−δ
(−κδrc′(r∗)p∗′ − κc(r∗)δp′ + δrM ′(r∗)) dr

= lim
δ→0

∫ rc+δ

rc−δ

(
−rκcδη̄

η̄∗
δ(r − rc)p∗′ −Θ(r − rc)κcδp′ − r

δη̄

η̄∗
δ(r − rc)

)
dr

= lim
δ→0

[
−rc

δη̄

η̄∗

(
κc

1

2
(p∗′(rc − δ) + p∗′(rc + δ)) + 1

)
−
∫ rc+δ

rc−δ
Θ(r − rc)κcδp′dr

]
= lim

δ→0

[
−rc

δη̄

η̄∗

(
κc

1

2
(p∗′(rc − δ) + p∗′(rc + δ)) + 1

)
− κc1

2
(δp(rc + δ)− δp(rc − δ))

]
= lim

δ→0

[
−rc

δη̄

η̄∗
1

2
− κc1

2
(δp(rc + δ)− δp(rc − δ))

]
(3.65)

Since η̃∗ is continuous this translates into the following jump condition for δη̃:

lim
δ→0

(δη̃(rc + δ)− δη̃(rc − δ)) = −εδη̄ rc
c

(3.66)

The eigenvalue problem can then be posed:

λδη̄ = η̄∗ 〈δγ〉 ; λδη̃ = η̄∗ (δγ − 〈δγ〉) (3.67)
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with

〈δγ〉 = −〈c(r)δη̃
′〉

εη̄
+
δη̄

η̄∗

[
ε

(
1

η̄∗2
− a
)

+

〈
r

(
M ′(r)− c′(r)

ε

η̃∗′

η̄∗

)〉]
= −〈c(r)δη̃

′〉
εη̄∗

− εaδη̄
η̄∗

(3.68)

And for δη̃ we have (assuming δη̄ 6= 0):

δη̃ =

 1
1+λε

(εδη̄ + 〈c(r)δη̃′〉) r < rc

δη̄ε
(

1
1+λε
− rc

c

)
e−

rc−r
c

(1+λε) + 〈c(r)δη̃′〉
1+λε

r > rc
(3.69)

where the prefactor for the exponential is determined by the jump condition at rc as pre-

viously calculated. The average 〈c(r)δη̃′〉 can then be calculated. The simplest case is the

λ = 0 problem. In this case the fixed point relation

〈
Θ(r − rc)e−

r
c

〉
= e−

rc
c

(
a− 1

η̄∗2

)
(3.70)

simplifies the problem:

λη̄ = 0 = −〈c(r)δη̃
′〉

ε
− εaδη̄

η̄∗

= −δη̄
[
a− 1

η̄∗2
−
(

1− rc
c

)(
a− 1

η̄∗2

)]
= −δη̄ rc

c

(
1− 1

η̄∗2

) (3.71)

which is zero if and only if η̄∗ = 1/
√
a, which is the fixed point condition for the non-gradient

OR model. Since there are necessarily corrections depending on c̃, this shows that there are

no valid λ = 0 modes, and thus that the fixed point predicted by the gradient OR model is

unique. The next simplest case is the case where δη̄ = 0. In this case we have

λδη̃ = η̄∗ (δγ − 〈δγ〉)

= −1

ε
δη̃ − c(r)

ε
δη̃′ +

1

ε
〈c(r)δη̃′〉

(3.72)

Since the discontinuity at rc is proportional to δη̄ these modes are continuous at the jump.

Then since both sides of the jump have the same constant offset 〈c(r)δη̃′〉, constant of
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integration is zero unless the average 〈c(r)δη̃′〉 is zero. Because of this, no modes with

δη̄ = 0 are nonzero for r > rc. Then the problem reduces to:

λδη̃ = −1

ε
δη̃ (3.73)

So all modes with δη̄ = 0 are stable with eigenvalue −ε−1, but there are no δη̄ = 0 modes

that are nonzero for r > rc. In order to access the rest of the spectrum the δη̄ 6= 0 modes are

necessary. Since we are assuming δη̄ 6= 0, it is sufficient to address the eigenvalue problem

for δη̄:

λδη̄ = −1

ε
〈c(r)δη̃′〉 − aδη̄

= −1

ε

[
−εδη̄ rc

2
〈δ(rc − r)〉 − η̄ε

(
1− rc(1 + λε)

c

)〈
e
rc−r
c

(1+λε)Θ(r − rc)
〉]
− aδη̄

= δη̄

[
1

η̄∗2
− a+

(
1− rc

c
(1 + λε)

)〈
e
rc−r
c

(1+λε)Θ(r − rc)
〉]

(3.74)

This transcendental equation for λ describes the spectrum of the operator for all eigenfunc-

tions δη that have nonzero δη̄ and thus δη̃(r > rc) 6= 0. This cannot be solved analytically in

general, but first order approximations to the family of solutions can be found. We describe

the first order approximations for small ε, then taking the additional limits of weak and

strong gradient feedback. First, to low order in ε the problem becomes:

λδη̄ = δη̄

[
1

η̄∗2
− a+

(
1− rc

c
(1 + λε)

)〈
e
rc−r
c

(1+λε)Θ(r − rc)
〉]

= δη̄

[
1

η̄∗2
− a+

(
1− rc

c
(1 + λε)

)〈
e
rc−r
c

(
1 + λε

rc − r
c

)
Θ(r − rc)

〉]
+O(ε)

= δη̄

[
1

c̃

(
1

η̄∗2
− a
)

+ λε

(
1

c̃

(
1

η̄∗2
− a
)

+
1

c̃

(
1− 1

c̃

)〈
e

1−r/rc
c̃

(
1− r

rc

)
Θ(r − rc)

〉)]
(3.75)
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This then gives an expression for λ:

λ

[
1− ε

(
1

c̃

(
1

η̄∗2
− a
)

+
1

c̃

(
1− 1

c̃

)〈
e

1−r/rc
c̃

(
1− r

rc

)
Θ(r − rc)

〉)]
=

1

c̃

(
1

η̄∗2
− a
)

=⇒ λ =
1

c̃

(
1

η̄∗2
− a
)[

1 + ε

(
1

c̃

(
1

η̄∗2
− a
)

+
1

c̃

(
1− 1

c̃

)〈
e

1−r/rc
c̃

(
1− r

rc

)
Θ(r − rc)

〉)]
(3.76)

The average of the remaining exponential is calculated as follows:〈
e

1−r/rc
c̃

(
1− r

rc

)
Θ(r − rc)

〉
=

2

r2
d

∫ rd

rc

e
1−r/rc

c̃

(
1− r

rc

)
rdr

=
4c̃3

η̄∗2

(
e

1−η̄∗
c̃ − 1

)
+

2c̃2

η̄∗2

(
e

1−η̄∗
c̃ (2η̄∗ − 1)− 1

)
+

2c̃

η̄∗
e

1−η̄∗
c̃ (η̄∗ − 1)

(3.77)

In the limit of weak feedback the exponential terms do not contribute, leaving:〈
e

1−r/rc
c̃

(
1− r

rc

)
Θ(r − rc)

〉
= −2c̃2

η̄∗2
(2c̃+ 1) (3.78)

This gives the following value for λ:

λ = a(−2 + c̃(3− 2aε)) +O(ε2, c̃2) (3.79)

As expected, this is a O(c̃ correction to the δη̃ 6= 0 eigenvalue for the δη̄ 6= 0 mode for the

non-gradient OR model. In the strong feedback limit the exponential terms become linear

and λ takes the following form:

λ =
a

c̃
(−1 + 2aε) (3.80)

In both cases λ < 0 indicating that the system is stable.

The stability for non-axisymmetric perturbations is described by the growth rate δγn,i

for δηn,i as defined previously.

λδηn,i =η̄∗δγn = −1

ε

(
δηn,i − 2(n+ 1)

(
r

rd

)n ∫ rd

rc

(
r

rd

)n+1

δηn,i
dr

rd

)

− c(r)

ε

(
δη′n,i −

2n(n+ 1)

rd

(
r

rd

)n−1 ∫ rd

rc

(
r

rd

)n+1

δηn,i
dr

rd

) (3.81)
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Analogous to the axisymmetric case, if δη is chosen such that the integral is zero one finds

λ = −1/ε for modes that vanish for r > rc. The zero mode associated with compatible

growth (see appendix B.1.4) is also present. The rest of the spectrum is made up of modes

with δηn = rn + δHn, where δHn = 0 for r < rc. The eigenvalue problem for r > rc is the

following (since δη̄ = 0 for higher harmonic modes these modes are continuous at r = rc,

providing the necessary boundary condition):

δηn,i(λε+ 1) + cδη′n,i = 2(n+ 1)(r + nc)
rn−1

rnd

∫ rd

0

(
r′

rd

)n+1

δηn,i
dr

rd
(3.82)

Due to the complexity of this problem we only address the strong feedback case, as it is

of the greatest relevance. We rescale r to ρ = r/rc and as before let z = rc/c. Then the

eigenvalue problem becomes:

(λε+ 1)δηn = 2(n+ 1)ρnĨ ρ < 1 (3.83)

z(λε+ 1)δηn + δη′n = 2(n+ 1)ρn−1(zρ+ n)Ĩ ρ > 1 (3.84)

Where

Ĩ = η̄∗−2(n+1)

∫ η̄∗

0

ρn+1δηndρ (3.85)

with continuity at the boundary, since δη̄ = 0. This can be solved exactly:

δηn =
2(n+ 1)Ĩρn

λε+ 1

+
2(n+ 1)nλε(−1)nĨ

zn(1 + λε)n+1
e−ρz(1+λε) [Γn (−z(1 + λε))− Γn (−rz(1 + λε))]

≡2(n+ 1)Ĩρn

λε+ 1
+ ĨHn

(3.86)

64



The definition of Ĩ then becomes the eigenvalue equation:

Ĩ =

∫ 1

0

2(n+ 1)Ĩρ2n+1

1 + λε
dρ+

(
2az2

(z + 2)2

)n+1 ∫ η̄∗

1

Ĩρn+1Hndρ

≡
∫ 1

0

2(n+ 1)Ĩρ2n+1

1 + λε
dρ+ ĨH̃

=⇒ 1 =
1

1 + λε
+ H̃

=⇒ λε =
1

1− H̃
− 1

(3.87)

Then in order to determine the stability of the system we need only to examine the behavior

of H̃:

H̃ =

(
2az2

(z + 2)2

)n+1
2(n+ 1)nλε(−1)n

zn(1 + λε)n+1

×
∫ η̄∗

1

ρn+1e−ρz(1+λε) [Γn (−z(1 + λε))− Γn (−ρz(1 + λε))] dρ

(3.88)

We first note that λ = 0 gives a valid solution, representing the modes describing compatible

growth (see appendix B.1.4). In order to analyze the rest of the spectrum some limiting

arguments will be required. The limit of strong feedback corresponds to z → 0, with λ

depending on z.

It is helpful to consider λ→ λ0z
m, distinguishing three cases: m > 0, m < 0, and m = 0.

For m > 0, we find that we must have

H̃ → 0 (3.89)

as z → 0. Thus the eigenvalue condition is reduced to

λ = H̃ (3.90)

Then since Hn is proportional to λ we define λ0H̃0 ≡ H̃. This implies that H̃0 ∼ zm. On the

other hand, it is clear from the definition of Hn that H̃0 ∼ zm−n. So we have a contradiction

and cannot have λ = O(zm) for m > 0. For m < 0 the eigenvalue condition requires that

H̃ → 1 (3.91)
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in the limit z → 0. On the othe hand, the integrand Hn can be seen to limit to either 0 or

±∞, depending on the sign of λ0 and n, giving another contradiction. Thus we must have

λ = O(z0). In this limit the integral can be evaluated as follows:

H̃ =
(a

2

)n+1 λε

λε+ 1
2F2 (1, (2(n+ 1));n+ 1, 3 + 2n;−(1 + λε)) (3.92)

Where 2F2 is the generalized hypergeometric function. The eigenvalue condition then sim-

plifies to (
2

a

)n+1

= 2F2 (1, (2(n+ 1));n+ 1, 3 + 2n;−(1 + λε)) (3.93)

Since the second set of arguments of 2F2 are larger than the first for all n > 0, the hyperge-

ometric function is bounded from above by exp(−(1 + λε)), which only has λ < 0 solutions

for the eigenvalue problem, showing that the system is stable.

Since the growth rate is considered as a power series in the pressure and its derivative it

is natural to consider feedback on the Laplacian of the pressure as well. This can be done

(see appendix B.2) and the resulting model can be shown to reproduce similar qualitative

features as the gradient model, including uniform growth of a quasi-steady state, stability

except for the necessary soft modes due to compatible growth (see appendix B.1.4), and a

unique final disk size.

Gradient feedback is a consistent model of growth control by mechanical feedback. Gra-

dient feedback smoothens the pressure configurations generated through growth, and strong

enough gradient feedback can make up for a sharp cutoff in morphogen concentration to

prevent apoptosis. Such a sharp cutoff could be present if the signaling molecule directly

regulating the growth rate is downstream from the primary morphogens with weak gradients

and is controlled by an ultrasensitive switch. Such a switching mechanism would magnify

the cutoff detected by the tissue.

3.7 Discussion

Our goal was to compare different models of growth control by mechanical feedback and

distinguish them based on macroscopic properties, using the Drosophila wing imaginal disk as

a model system. To this end we introduced a theoretical framework and a limit which allows

different families of models to be analyzed on equal terms, giving direct comparisons for the

macroscopic properties of interest, including robustness of final tissue size, the spatiotemporal

patterning of apoptosis, and the uniformity of growth.
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We introduced two broad families of mechanical feedback models, distinguished by how

they produce growth arrest despite extensile stresses in peripheral regions of the disk. The

AND family of models prohibits all growth in these exterior regions, turning off growth

control dynamics completely. The OR family of models allows growth factor concentrations

to trade off with local pressure in different ways at different locations in the disk, leading to

growth inhibition even in some sections where the pressure is negative.

We demonstrated that models in the AND model family, those that require the growth

rate to vanish over macroscopic sections of tissue, do not predict unique final sizes for tissues,

and confirmed arguments [30] that direct damage to the tissue would result in overgrowth.

Moreover, we identified this overgrowth response as deriving from a fundamental nonunique-

ness implicit in the model structure.

Models in the OR family predict unique final sizes as a consequence of the fixed point

conditions describing a unique growth state at every point on the disk, which for the simple

OR model and the gradient OR model comes at the cost of predicting a negative M(r)

far from the center. This means that these models predict cell death is predicted in these

regions in the absence of extensile stress, which could be produced either by cutting the

tissue to relax the stresses or by biochemically perturbing the system such that the signaling

pathway detected either an absence of stress or contractile stress. For shallow morphogen

gradients, the region where M(r) < 0, and therefore the region in which such perturbations

would induce apoptosis, is macroscopically large. On the other hand, the simplest model

in the OR family predicts apoptosis for steep morphogen gradients. Introducing gradient

feedback, promoting growth in response to sharp changes in pressure, prevents apoptosis for

strong enough gradient feedback. We showed that models with gradient feedback predict a

unique final disk size under the condition that gradient feedback is not active close enough

to the center of the disk. This provides the necessary boundary conditions for the fixed point

condition to have a unique solution, and is supported by the biochemistry of the Drosophila

wing disk [2]. We introduced two models of derivative feedback, one that feeds back on

gradients in pressure and one that feeds back on the Laplacian, either of which could appear

as a low order term in an expansion of the growth rate as a power series in the pressure and

its derivatives, with appropriate morphogen distributions. The gradient model is a simple

extension of the gradient-free OR model and reduces to it in the limit where the strength of

the gradient feedback vanishes. The Laplacian feedback model does not necessarily reduce

to a valid simple OR model in the limit of vanishing Laplacian feedback since it does not

require M(r) < 0 anywhere. In cases where M(r) > 0 everywhere, in the limit of vanishing
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Laplacian feedback the model predicts dramatic overgrowth before apoptosis leading to a

small final size (see appendix B.2). The lack of a necessary region where M(r) < 0, combined

with the natrual interperetation of detecting a Laplacian of the pressure by cells averaging

over pressures detected by their neighbors, make the Laplacian model a potentially appealing

alternative. We analyzed the fixed point structures of these models and showed that they are

linearly stable. The experimental predictions associated with each of the families of model

that we analyzed are summarized in table 3.1.

Model Predictions

AND model:
· No unique final size
· Final size depends on feedback strength

OR models:

All
· Unique final size
· Final size independent of feedback strength

Proportional feedback

· Sharp morphogen gradients: spatiotemporal
apoptosis patterns near edge of disk
· Shallow morphogen gradients: apoptosis over
large sections of disk if pressure vanishes

Gradient feedback

· No apoptosis even with sharp morphogen gradi-
ents for c̃� 1
· Shallow morphogen gradients: apoptosis over
large sections of disk if pressure vanishes

Laplacian feedback
· No apoptosis even with sharp morphogen gradi-
ents for c̃� 1
· Disk doesn’t stop growing if pressure vanishes

Table 3.1: Summary of results

This study focused on a strong feedback limit (low order in ε) to control the elasticity

and ensure that linear elasticity was valid at all points. It is, however, possible for linearized

elasticity to be valid outside of the regime of strictly small wij due to material properties. It

may then be valid to linearize the elasticity but allow some higher order terms in ε into the

dynamics. In this case we expect the essential results are valid. For example, it is possible

to derive a similar system of ODEs for the AND model and see that the line of degenerate

fixed points is maintained, as are the essential results of the linear stability (see appendix

B.4). In the OR model the analysis becomes substantially more complex, but it can be

demonstrated that terms proportional to δwM ′(r) will appear, which could play a similar

role to θ dependence in M(r, θ) in removing soft modes in the non-axisymmetric problem

(see appendix B.5).

Although the specific model system that we treated was the Drosophila wing disk, this
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model framework is broadly generalizable to any systems in which growth is controlled by

mechanical feedback, with the specifics of the biology determining the relevant observables

and limits. Work studies of plants [8] have used mechanical feedback models to describe

a qualitatively different situation, in which mechanical feedback introduces nonuniformities

in growth. In this case a growth rate that is nonlinear in the stress (or equivalently the

growth) is necessary to amplify the nonuniformities in this way. Additionally, studies of

tumor spheroids have also demonstrated mechanical feedback [66] and the biology of this

system is also radically different. In the tumor spheroid systems, due to the presence of

significant apoptosis, steady-states with net fluxes of cells are possible, indicating that γ = 0

is not a valid criterion for identifying the steady state.

If fully anisotropic growth is considered the dynamics would be given in terms of a

symmetric growth rate tensor γij, depending on the full stress tensor σij as well as tensors

deriving from morphogen distributions. This would introduce feedback on the shear stress,

which can cause fluidization of the tissue on long timescales [152]. Such a fluidization process

could complicate the mechanism of precise tissue size detemination by mechanical feedback

if the shear relaxation time is short compared to the timescale of development. If the shear

relaxation time were short it could potentially disrupt the fixed points described here. This

is not expected in the AND model, since there is no growth at all in the exterior region and

in the interior region there is a uniform pressure, which can be supported by a fluid. Such

a fluidization could disrupt the OR model but there are general issues with feedback on the

full stress tensor (see appendix B.6) that suggest that size control mechanisms should involve

primarily isotropic feedback.

There are other models of the Drosophila wing disk that we do not treat here. The ent-

elechia model, in which information about position is inferred from neighboring interactions,

has been proposed as a mechanism for size determination but it has yet to be shown that

the necessary candidate signaling molecules are expressed in the shallow gradient patters

necessary for this model [67]. Models in which individual cells measure time derivatives of

relevant morphogens in order to control growth have also been proposed but these are known

to not predict a unique final disk size [125]. A mechanism that allows a tissue to robustly

reach a final size by the measuring the dilution of some morphogen distribution has been

demonstrated to be consistent with the growth dynamics of the Drosophila eye disk [188],

but this mechanism is not consistent with wing disk growth [189].

In summary, it is nontrivial for mechanical feedback models of growth control to predict

a unique final tissue size. Models that require the growth rate to be identically zero over
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some finite region will necessarily have a continuous family of possible final sizes. Only

models that allow the growth dynamics due to pressure and due to chemical signaling by

morphogens over the entire tissue can have unique final sizes. Future work will investigate

the ability of mechanical feedback models to control “compatible growth” modes that evolve

without generating stress, as well as study how stochastic fluctuations can affect the growth

dynamics described here.
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Chapter 4

Conclusion

In this work we have seen two examples where it has been possible to distinguish different

feedback structures by identifying characteristic dynamics. We first showed that it was

possible to identify whether positive or negative feedback was dominant in the circadian

oscillator of S. Elongatus by examining how the period of the oscillation changed when

the effect of KaiA sequestration was modulated. We then showed how different feedback

structures for mechanical feedback models of growth control would respond to perturbations

of different kinds, such as tissue damage or biochemical disruption of the feedback pathway.

Phenomenology and a detailed understanding of the experimental details in these systems

was vital for coming to these conclusions. Which kinds of experiments have been done, and

which are reasonably feasible, determine what sorts of observables are meaningful, and which

kinds of properties it is meaningful for models to constrain. For example, if one knew every

reaction rate for each reaction in the Kai protein oscillator it would be trivial to distinguish

positive from negative feedback. On the other hand, it would be an understatement to say

that acquiring that information to the accuracy necessary for such a judgement would be

unrealistic. Identifying readily accessible (and in this case, available) experimental observ-

ables is therefore as necessary as being able to formally distinguish the models, if they are

to be useful to other workers in the field.

Essentially, comparing models that are highly constrained by directly available exper-

iments is a way of making the most efficient use of those experimental results. This is a

benefit of phenomenological models in general. These models can produce nontrivial predic-

tions that are not immediately obvious to a qualitative analysis, and being able to distinguish

between different models provides a great deal of information about the structure of the sys-

tem under investigation. This is perhaps an explanation for their broad application at many
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different levels of organization in biology.

Just as important as identifying practical experimental observables is identifying reliable

theoretical foundations. Mass action kinetics and elasticity provide firm foundations for

theoretical modeling, and are based on fundamental physical principles, such as the laws of

thermodynamics, that place strict constraints on the forms of the models that are based on

them. These fundamental principles will remain valid for any biological process, even if they

are pushed into unfamiliar territory.

Thus, it is the principles of physics that describe the individual motions and forces

that make up the construction of biological systems. While DNA contains the information

necessary for life, the physical motions and structures that make up individual living things

rely on physical processes acting in regular ways. Even when biological design principles are

discovered, to the extent to which they are not required by these fundamental physics, it

will always be possible to find exceptions.
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Appendix A

Further Discussion of Clock Models

A.1 Modifications of basic models don’t change quali-

tative behavior

To test how robust these results are to complications to the model structure we investigated

published extensions to the previously presented models. These extensions show very similar

responses to changing their sequestration stoichiometry as the original models do, supporting

the hypothesis that these responses represent a general distinction between dynamics that

are driven primarily by delay or primarily by positive feedback.

A.1.1 Allosteric model

In 2010 a number of extensions to the allosteric model were introduced [203], but the one

that is most relevant here is one that allows KaiA to bind to KaiC and promote autophos-

phorylation in either one of the conformational states hypothesized by the allosteric model.

It allows KaiA to promote autophosphorylation in the inactive allosteric state, adding the

following interactions:

C̃i + A� AC̃i → Ci+1 + A

AmB2C̃i + A� Am+1B2C̃i → AmB2Ci+1 + A
(A.1)
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Figure A.1: The qualitative trends in the amplitude and period dependence of the allosteric
model are robust to the addition of a small amount of positive feedback into the model.
Parameters are identical to the standard allosteric model but with KaiA binding to the C-
terminal domain and promoting phosphorylation on inactive KaiC hexamers at 1/100 the
affinity of an active hexamer

A.1.2 Monomer model

The monomer model was also extended [146], in this case to include explicit KaiB binding,

and allows the KaiB-bound doubly phosphorylated state to weakly sequester KaiA in addi-

tion to the state that is phosphorylated only on the serine residue. It still relies on positive

feedback on the S phosphorylation state, albeit now bound to KaiB, so it should exhibit

a similar response to the original model to the modification of sequestration stoichiometry.

We see this is supported in A.3. This model differs from the 2007 version of the model by

adding an irreversible step that corresponds to ATPase activity allowing KaiB to bind to

the S and D states. These KaiB bound monomers are then the ones that participate in

sequestering KaiA. Ddoes in fact participate in KaiA sequestration, but only to 2% of the

extent to which Ssequesters KaiA, according to the published parameter set. The ODEs
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Figure A.2: The addition of a small amount of positive feedback to the allosteric model
allows it to reproduce the experimental result that adding a large amount of KaiA during
dephosphorylation will cause an increase in phosphorylation, while maintaining dynamics
that are generally dominated by negative feedback and delay effects. The addition of KaiA
is indicated by the trace changing from blue to green.

that govern the system are then:

dU

dt
= kTU (S)T + kSU (S)S + kSBU (S)SB − kUT (S)U − kUS (S)U

dS

dt
= kUS (S)U + kDS (S)D − kSU (S)S − kSD (S)S − kbcS

dT

dt
= kUT (S)U + kDT (S)D − kDBT (S)DB − kTU (S)T − kTD (S)T

dD

dt
= kTD (S)T + kSD (S)S − kDT (S)D − kDS (S)D − kbcD

dDB

dt
= kbcD + kSBDB (S)SB − kDBSB (S)DB − kDBT (S)DB

dSB

dt
= kbcS + kDBSB (S)DB − kSBDB (S)SB − kSBU (S)SB

(A.2)

Where the S dependence of the reaction rates is the same as before, and kbc is an S inde-

pendent rate of ATPase triggered catalysis of complex formation. The amount of free KaiA

is given by A = max {0, AT −mSB − nDB}. Unless otherwise stated the parameters are

those given by table S5 in [146].
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Figure A.3: The amplitude and period of the monomer model with explicit KaiB binding as
described show the same general trends and features as in the original monomer model.
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(a) (b)

(c) (d)

Figure A.4: An examination of a version of the monomer model extended to include explicit
KaiB binding. Comparing to Fig. 10, it is possible to see the same general qualitative
features that were predicted by the reduced 2 degree of freedom model, as described in the
main text.
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By comparing A.4 to 2.8 it is possible to see that it shares the key characteristics that

indicate that the dynamics described in the reduced model are still dominant for this ex-

tension. Specifically, changes in the sign of the derivative of Y are associated with large

changes in the magnitude of X, and the majority of the effect on the period is from the

time when most of the KaiA is unsequestered. This suggests that this behavior is generic or

at least very common in models that involve strong positive feedback as the primary driver

of the oscillation. Here the effective sequestration stoichiometry for D DB is changed in

proportion with that for SB .

Thus the effect of varying the stoichiometry m of KaiA sequestration is robust to minor

changes in the models studied here. This suggests that the effect of introducing a competitive

binder for the KaiA sequestration site on the amplitude and the period is a reliable indicator

of the sign of the feedback that KaiA sequestration introduces into the dynamics of the S.

Elongatus circadian system.

(a) (b)

Figure A.5: An examination of a version of the monomer model extended to include explicit
KaiB binding. Comparing to Fig. 10, it is possible to see the same general qualitative
features that were predicted by the reduced 2 degree of freedom model, as described in the
main text.
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A.1.3 ODEs for allosteric model

And the following differential equations:

dCT
i

dt
=σpsi−1C

T
i−1 + σdpsi+1C

T
i − (σpsi + σdpsi )CT

i − σ
Ff
i CT

i + σFbi C̃i

dC̃i
dt

=k̃psC̃i−1 + k̃dpsC̃i+1 − (k̃ps + k̃dps)C̃i + σFfi CT
i − σFbi C̃i

− kBfi

(
BT − 2

∑
i

B2C̃
T
i

)2

C̃i +
kBbi K̃m

i B2C̃
T
i

K̃m
i + Am

B2C̃
T
i

dt
=k̃psB2C̃

T
i−1 + k̃dpsB2C̃

T
i+1 − (k̃ps + k̃dps)B2C̃

T
i

+ kBfi

(
BT − 2

∑
i

B2C̃
T
i

)2

C̃i −
kBbi K̃m

i B2C̃
T
i

K̃m
i + Am

(A.3)

Where concentration of total KaiA is enforced by the condition:

A+
6∑
i=0

ACT
i

Ki + A
+m

6∑
i=0

AmB2C̃
T
i

K̃m
i + Am

− AT = 0 (A.4)

Here and throughout we use the same symbol for both concentration and species and let

context distinguish them. Here A and B and the concentrations of free KaiA and KaiB,

respectively. Ciand C̃i are the concentrations of active and inactive KaiC hexamers with

i monomers phosphorylated. Concentrations marked with a superscript T are the total

concentrations of the respective protein. The effective phosphorylation rates are:

σpsi =
kpsKi + kpfA

Ki + A
, σdpsi =

Kikdps
Ki + A

(A.5)

The flipping rates are σFfi = fiKi
Ki+A

, σFbi = bi.Ki and K̃i are the dissociation constants for

KaiA binding to the active and inactive allosteric state, respectively. k̃ps and k̃dps are the

phosphorylation and dephosphorylation rates. The transition rates between the active and

inactive allosteric states are fi and bi. Ki =
kAbi
kAfi

and K̃i =
k̃Abi
k̃Afi

are the dissociation constants

for KaiA binding to the active and inactive segments of the cycle. KBf
i and KBb

i are the

forward and backward rates for KaiB binding to inactive KaiC.
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A.2 Derivations for monomer model analytics

A.2.1 Reducing the monomer model

Due to the simplicity of the original monomer model it is possible to derive analytic results

which can describe the relationship between m and the period. The only approximation is

that the separation of time scales is large. In particular, by taking phosphorylation on the

threonine residue to be much faster than that on the serine residue it is possible to reduce

this to a 2 degree of freedom system, for which there exist powerful tools for the analysis

of nonlinear oscillations, especially of the relaxation type. This is valid because the rate

constants for T phosphorylation in the model as published are generally higher than those

for S. This is implemented analytically by multiplying the fast rates (phosphorylating and

dephosphorylating the threonine residue) by 1
ε
:

U̇ =
1

ε
(ktuT − kutU) + ksuS − kusU

Ṫ =
−1

ε
(ktuT − kutU) + kdtD − ktdT

Ḋ =
1

ε
(ksdS − kdsD)− kdtD + ktdT

Ṡ =
−1

ε
(ksdS − kdsD)− ksuS + kusU

(A.6)

We then take the change of variables:

W = T + U

X = S −D

Y = S +D

Z = T − U

(A.7)

Solving for the new variables gives:

S =
X + Y

2

D =
Y −X

2

T =
W + Z

2

U =
W − Z

2

(A.8)
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Rewriting the ODE in terms of the new variables gives:

Ẇ =
Y

2
(ksu + kdt) +

X

2
(ksu − kdt)−

W

2
(kus + ktd)−

M

2
(ktd − kus)

Ẋ =
1

ε
(Y (kds − ksd)−X (kds + ksd)) +

W

2
(kus − ktd)−

Z

2
(kus + ktd)

+
Y

2
(kdt − ksu)−

X

2
(kdt + ksu)

Ẏ =
W

2
(ktd + kus) +

Z

2
(ktd − kus)−

L

2
(kdt + ksu)−

X

2
(ksu − kdt)

Ż =
1

ε
(W (kut − ktu)− Z (kut + ktu)) +

Y

2
(kdt − ksu)−

X

2
(kdt + ksu)

+
W

2
(kus − ktd)−

Z

2
(kus + ktd)

(A.9)

In the ε→ 0 limit the Ẋ and Ż expressions result in self-consistent equations:

0 = −k0
tu (W + Z) + f (X, Y )

(
kAut (W − Z)− kAtu (W + Z)

)
0 = k0

ds (Y −X) + f (X, Y )
(
kAds (L−K)− kAsd (K + L)

) (A.10)

Where each kab is of the form k0
ab + f (X, Y ) kAab where f (X, Y ) =

max{0,AT−m(X+Y )}
k 1

2
+max{0,AT−m(X+Y )} . So

when there is no free KaiA, f (X, Y ) = 0 and the expression for X and Y simply gives

X = Y . Then when there is free KaiA we can take f (X, Y ) = AT−m(X+Y )
k 1

2
+AT−m(X+Y )

. The equation

for X and Y gives

0 =X2m
(
k0
ds + kAsd + kAds

)
+X

(
−k0

ds

(
k 1

2
AT −mY

)
−mk0

dsY −
(
kAds + kAsd

) (
AT −mY

)
+mY

(
kAds − kAsd

))
+ k0

dsY (k 1
2

+ AT −mY ) +
(
AT −mY

) (
kAds − kAsd

)
Y

(A.11)

A.2.2 Finding the turning points in the reduced monomer model

One can see from this expression that there will be terms sublinear in Y in the expression of

X (Y ). This also provides the endpoints of each branch. One endpoint is found by finding

the intersection of this expression with the line X = Y , the expression for the nullcline when

there is no free KaiA. This reduces to:

0 = 2Y 2m+ Y
(
−AT

)
(A.12)
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Or

Y =
AT

2m
(A.13)

To find the other turning point we must remember that the parabola described above must

have two distinct branches as a function of X as a function of Y . We can then find the

point at which the two branches meet. This occurs at the point where the discriminant of

the quadratic equation for X is equal to 0. This requirement is expressed by the relation:

0 =−
(
−k 1

2
k0
ds − AT

(
k0
ds + kAds + kAsd

)
+ 2kAdsY m

)2

+ 4m
(
k0
ds + kAds + kAsd

) (
mY 2

(
−k0

ds + kAsd − kAds
)

+ k0
dsY

(
AT + k 1

2

)
− Y AT

(
kAsd − kAds

))
(A.14)

This expression is now quadratic in Y , giving two solutions:

2
(
k0
ds + kAds

)2
mY =AT

(
k0
ds + kAds

) (
k0
ds + kAds + kAsd

)
+ k 1

2
k0
ds

(
k0
ds + kAds + 2kAsd

)
± 2

√
k 1

2
k0
dsk

A
ds

(
k 1

2
k0
ds + AT (k0

ds + kAds)
)

(k0
ds + kAds + kAsd)

(A.15)

Obviously only one of these can be the actual value at which the points of the parabola

meet so by plugging in the published parameter values it is clear that the negative of the

radical must be taken since if the positive term is taken the value achieved is several orders

of magnitude too high (approximately 1450/m as opposed to approximately 1/m).

A.2.3 Estimating the period dependence of the of the monomer

model

By reducing the system to 2 degrees of freedom we attain a model that is amenable to the

mathematically well understood regime of phase plane analysis. In 2.8d we plot the nullclines

of this system, curves along which each degree of freedom is constant. These nullclines have

a motif, where one nullcline has an S shape and the other has a linear section that crosses the

middle branch of the S-shaped nullcline, that indicates a type of positive feedback dynamics

known as a relaxation oscillator. This describes a system which tracks slowly along the outer

branches of S-shaped nullcline until the vertical cusp is reached. It then quickly switches

to the other branch and moves slowly in the opposite direction until it reaches the other

cusp and switches back to the first branch, restarting the cycle. Relaxation oscillators are

sometimes understood in terms of simple electric circuits which involve a capacitor slowly
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charging up to a certain voltage, suddenly discharging, and the slowly building a charge back

up again. It appears that a similar mechanism is at work in the KaiA sequestration dynamics

of this model. The linear part of the of the S-shaped nullcline corresponds to the situation

in which all of the KaiA is sequestered and the KaiC monomers are dephosphorylating, in

which case the original model becomes completely linear. This can be seen directly from the

nullcline plot as both X and Y are decreasing indicating that the sum S + T is decreasing,

indicating dephosphorylation, but the relative amount of S, the sequestering protein, is also

decreasing. By reducing the model to a one dimensional model along this nullcline it is

possible to derive an analytic expression for the time spent on this branch as a function of

m. The amount of time the system spends with all KaiA sequestered, which we call Tseq, is

of the form:

Tseq =

∫ z2
m

z1
m

1

Ẏseq(X(Y ), Y )
dY =

∫ z2
m

z1
m

1

−cY
dY = − ln(Y )

c

∣∣∣∣
z2
m

z1
m

= − ln(z2)− ln(z1)

c
(A.16)

This result is notable in that it suggests that even in the full model the time spent fully

sequestered does not vary strongly with m. This is supported by ??. The expression for the

time derivative of Y is linear since for zero free KaiA even the full three degree of freedom

system becomes linear. The turning points can be shown to depend only on the reaction rate

constants and the total KaiA concentration. Full expressions for the constants c, z1, and

z2 can be found in the supplementary material. On the other branch the KaiC monomers

are phosphorylating, first on the T residue and then more slowly on the S residue. This is

can be seen on the nullcline plot by noting that on the nonlinear branch Y increases but X

remains roughly constant, actually decreasing slightly, indicating an increase in the doubly

phosphorylated KaiC as well as a smaller increase in S phosphorylated KaiC. Then once

a certain amount of KaiA has been sequestered the doubly phosphorylated KaiC begins to

dephosphorylate, increasing the amount of S, causing more KaiA to be sequestered in a

positive feedback process. The KaiC monomers then begin to dephosphorylate and the cycle

begins again. The time spent when the amount of free KaiA is nonzero has the form:

Tunseq =

∫ z2
m

z1
m

1

Ẏunseq(X(Y ), Y )
dY (A.17)

Ẏunseq is much more complex so the integral is not directly tractable. Despite this it is

possible to gain some insight from this. In this case X(Y ) is the solution to a self-consistent
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equation that leads to a quadratic equation for X, of the form:

X(Y ) =
d1 + d2mY ±

√
d3 + d4mY + d5m2Y 2

m
(A.18)

The linear term under the radical would cause Ẏunseq to vary sublinearly with Y and

integrating such a term between endpoints z1 and z2 would cause the value of the integral

to vary inversely with m.
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Appendix B

Further Discussion of Disk Models

B.1 The nonlinear elasticity of growth

The linear elasticity presented in section 3.2 can be derived from a fully nonlinear theory

of elasticity, incorporating deformations due to tissue growth [45, 61, 155]. This theory of

elasticity modifies standard nonlinear elasticity, which distinguishes between a Lagrangian

configuration for the material (assumed to be stress-free) and an Eulerian, elastically strained

configuration of the material. Because growth can cause displacements in materials and

induce stresses without the material being otherwise elastically strained it is necessary to

introduce an intermediate configuration. This intermediate configuration is distinguished

from the Lagrangian configuration, which defines some pre-growth state, and represents

an abstract stress-free configuration, which may not be able to be represented in usual

Euclidean space. We define the Lagrangian, intermediate, and Eulerian configurations as

ΩL, ΩI , and ΩE, respectively. We will follow standard convention in nonlinear elasticity and

use capital Roman indices for tensors indices referring to the Lagrangian configuration and

lower case Roman indices for tensor indices in the Eulerian configuration. Additionally, we

will use lower case Greek indices for tensor indices in the intermediate configuration. We will

be using the Einstein summation convention for repeated indices throughout, and will not

distinguish between covariant and contravariant indices. There are multiple equivalent [46]

ways to formulate elasticity by relating such an intermediate configuration to the standard

formalism of classical nonlinear elasticity.

We begin in section B.1.1 by introducing two formalisms for treating nonlinear elasticity

in growing materials, and showing that they desribe the same physics. Then in section B.1.2

we derive the linearized elasticity described in the main text from the full nonlinear theory.
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In section B.1.3 we describe the solution of the linear problem for non-axisymmetric growth

and derive an expression for the pressure. In section B.1.4 we describe the general conditions

which can lead to growth without induced stress.

B.1.1 Comparison of different formalisms for elasticity of growing

materials

Representing the elasticity of growing materials builds from the model of standard nonlinear

elasticity, which relates the deformation of the Lagrangian to the Eulerian configuration by

a coordinate map xi(XI). The elastic strain tensor is then given in terms of this deformation

map:

EIJ =
1

2
(∂Ixk∂Jxk − δIJ) (B.1)

Elastic equilibrium is the condition that the stress have zero divergence or that the variation

of the total elastic free energy F =
∫
fdΩL vanish:

0 = ∂ISIJ (B.2)

or

0 =
δF

δxi(XI)
(B.3)

where SIJ is the second Piola-Kirchoff stress tensor [31], which relates forces mapped into

the stress-free configuration to areas in the stress-free configuration, which is identical to the

Lagrangian configuration in standard nonlinear elasticity, in the absence of growth. We will

assume that the growing tissue is an isotropic material, and thus that SIJ can be represented

as a derivative with respect to the energy density f :

SIJ =
∂f

∂EIJ
(B.4)

One can then derive similar relations for other stress tensors, such as the Cauchy stress,

which relates forces to areas in the deformed configuration. There are two ways to integrate

growth into this nonlinear elastic theory.

We will focus on what can be called the “target metric” formalism [45] that emphasizes

how the definition of the strain in the Lagrangian configuration can be modified to encode
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the growth of the material, with the strain being redefined as follows:

EIJ =
1

2
(CIJ − ḡIJ) (B.5)

where

CIJ =
∂xi
∂XI

∂xi
∂XJ

(B.6)

is the standard Cauchy-Green deformation tensor, describing the total deformation of the

material in the Lagrangian configuration to the Eulerian configuration, and ḡIJ is the “tar-

get metric”, describing the local geometry of the “stress-free” configuration after growth.

Effectively, all of the information about the growth is encoded in ḡIJ .

The other formalism, usually known as “morphoelasticity”, focuses on the tangent maps

between the three different spaces and makes explicit the distinction between deformation by

growth and deformation by elastic strain [61]. In this formalism the tangent map ∂xi/∂XI

is factored into a map defining the growth and a map defining the strain:

∂xi
∂XI

≡ ∂xi
∂ξα

∂ξα
∂XI

(B.7)

where the two tensors ∂xi/∂ξα and ∂ξα/∂XI are to be intepreted as defining the tangent

maps from the intermediate configuration to the Eulerian configuration (defining the elastic

deformation gradient) and from the Lagrangian configuration to the intermediate configu-

ration (defining the growth deformation gradient), respectively. The totally elastic part of

the strain Ee is then defined in the same way as usual, but on the intermediate, stress free

configuration (here and in the future using the convention that repeated indicies are summed

over):

Eeαβ =
1

2

(
∂xi
∂ξα

∂xi
∂ξβ
− δαβ

)
(B.8)

If we pull this strain back to the Lagrangian configuration we arrive at the strain defined

above:

Eeαβ
∂ξα
∂XI

∂ξβ
∂XJ

=
1

2

(
∂xi
∂XI

∂xi
∂XJ

− ∂ξα
∂XI

∂ξα
∂XJ

)
=

1

2
(CIJ − ḡIJ)

(B.9)
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where in the last line we have identified

ḡIJ ≡
∂ξα
∂XI

∂ξα
∂XJ

(B.10)

so these two formalisms define the same strain tensor, up to a change of coordinates.

In each case, the elastic free energy density f is properly considered as a function on the

intermediate, stress-free configuration: f = f(Eeαβ). In each case, the stress can be described

as a derivative of the elastic free energy with respect to the strain [31,45,155], which can be

calculated starting from a virtual work argument. Even for the target metric formalism it

will be necessary to transform to the intermediate coordinates to take the derivative.

F =

∫
ΩI

f(Eeαβ)dVI

δF =

∫
ΩI

∂f

∂Eeαβ
δEeαβdVI

=

∫
ΩL

∂ξα
∂XI

∂f

∂Eeαβ
∂ξβ
∂XJ

δEIJJgdVL

=

∫
ΩL

∂f

∂EIJ
δEIJJgdVL

(B.11)

Where Jg is the Jacobian of the map from the Lagrangian cofiguration to the grown, inter-

mediate stress-free configuration. Note that

δEeαβ =
∂ξα
∂XI

∂ξβ
∂XJ

δEIJ (B.12)

since strain tensors are covariant objects and transform under changes of coordinates in the

opposite way as stress tensors, which are contravariant objects. This is necessary since they

must be contracted together to form the work done, a scalar quantity.

This shows the relationship between the Second Piola-Kirchoff stress tensor, defined as

the work-conjugate of the elastic strain on the intermediate stress-free configuration, which

we call Σαβ, and the stress tensor induced in the Lagrangian coordinate system, SIJ . This

relationship is given by:

SIJ =
∂XI

∂ξα
Σαβ

∂XJ

∂ξα
Jg (B.13)
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We can then similarly derive the Cauchy stress by transforming to the Eulerian configuration:

δF =

∫
ΩI

∂f

∂Eeαβ
δEeαβdΩI

=

∫
ΩE

∂ξα
∂xi

∂f

∂Eeαβ
∂ξβ
∂xj

δeijJ
−1
e dΩE

=

∫
ΩE

∂f

∂Eij
δeijJ

−1
e dΩE

(B.14)

where eij can be seen to be the strain transformed to the Eulerian coordinates and thus

is the analog of the Eulerian-Almansi finite strain tensor, the work-conjugate tensor to the

Cauchy stress:

eij =
1

2

(
δij −

∂XK

∂xi

∂XK

∂xj

)
(B.15)

So we can write the Cauchy stress as follows:

σij = J−1
e

∂xi
∂ξα

Σαβ
∂xj
∂ξβ

= J−1
g J−1

e

∂xi
∂XI

SIJ
∂xj
∂XJ

(B.16)

We can see that these formalisms must describe the same physics by understanding that

they provide different interpretations of the same elastic free energy function. In the mor-

phoelasticity formalism, the energy is usually expressed in terms of the totally elastic strain

Eeαβ. Then the Saint Venant-Kirchoff elastic free energy is given by:

f(Eeαβ) =
λ

2
Ee2αα + µEe2αβ (B.17)

In the target metric formalism the total strain E is the fundamental strain tensor. The

energy is still considered to be a function on the intermediate configuration (and therefore a

function of the elastic strain Eeαβ), and thus it is necessary to represent the energy function in

terms of the tangent maps in addition to the total strain EIJ . It therefore becomes convenient

to express the elastic free energy density in terms of an elasticity tensor Aαβδγ [45]:

f(Eeαβ) = AαβδγEeαβEeδγ =
1

2
(λδαβδδγ + µ (δαγδβδ + δαδδβγ)) EeαβEeδγ (B.18)

In order to represent this energy in the target metric formalism, in terms of the total strain, it

is necessary to transform the elasticity tensor to an elasticity tensor ÃIJKL in the Lagrangian
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configuration:

ÃIJLK =
∂XI

∂ξα

∂XJ

∂ξβ

∂XK

∂ξδ

∂XL

∂ξγ
Aαβδγ (B.19)

It is then possible to represent this same elastic free energy density in the Lagrangian con-

figuration in terms of the inverse target metric ḡ−1
IJ = (∂XJ/∂ξβ)(∂XI/∂ξβ):

f(EIJ) = ÃIJLKEIJEKL =
1

2

(
λḡ−1

IJ ḡ
−1
KL + µ

(
ḡ−1
IK ḡ

−1
JL + ḡ−1

IL ḡ
−1
JK

))
EIJEKL (B.20)

Once this elastic free energy density is defined on the Lagrangian configuration it is possible

to derive the equations of equilibrium by demanding that the variation of the elastic free

energy with respect to the configuration xi(XI) vanish:

0 =
δF

δxi(XI)
=

∫
δw(EIJ)

δxi(XI)
JgdΩL =

∫
∂w(EIJ)

∂EIJ
δEIJ

δxi(XI)
JgdΩL

=

∫
1

2

[
∂xj
∂XJ

∂

∂XI

δ(XI −X ′I) +
∂xi
∂XI

∂

∂XJ

δ(XJ −X ′J)

]
∂w(EIJ)

∂EIJ
JgdΩL

=
∂

∂XI

(
∂xj
∂XJ

∂w(EIJ )

∂EIJ
Jg

) (B.21)

This can then be compared to the prescription commonly given by morphoelasticity, a defi-

nition for the Cauchy stress as a derivative of an energy density:

σij = J−1
e

∂xi
∂ξα

∂xj
∂ξβ

∂w

∂Eeαβ
(B.22)

The equilibrium equations are then defined by the condition that ∂iσij = 0. In order to

compare these we will need to transform the divergence in the Eulerian configuration to one

in the Lagrangian configuration, not only transforming the derivative operator in accordance

with the chain rule but also transforming the vector index it contracts with to one in the
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Lagrangian configuration, by using a Piola transform:

0 =
∂

∂xi
σij

=⇒ 0 =
∂

∂XI

(
J
∂XI

∂xi
σij

)
0 =

∂

∂XI

(
J
∂XI

∂xi
J−1
e

∂xi
∂ξα

∂xj
∂ξβ

∂w

∂Eeαβ

)

=
∂

∂XI

(
∂xj
∂XJ

∂w(EIJ )

∂EIJ
Jg

)
(B.23)

which can be seen to be the same is the equilbrium equation found by varying the energy

defined using the target metric formalism.

B.1.2 Linearization

Having defined the nonlinear theory necessary for describing growth in an elastic material we

may now derive the linearized elasticity described in the main text. Since we are concerned

with the limit of nearly uniform growth we will consider growth locally as a uniform, isotropic

component η̄ with small, nonuniform and potentially anisotropic perturbations η̃Iα and define

the growth map and target metric as follows:

ḡIJ = ∂Iξα∂Jξα = (η̄δIα + η̃Iα) (η̄δJα + η̃Jα) ≡ η̄2

(
δIJ +

2

η̄
η̃IJ +

η̃Iαη̃Jα
η̄2

)
= η̄2δIJ+2η̄η̃IJ+O(ε2)

(B.24)

where we have defined η̃IJ = η̃IαδJα+ η̃JαδIα, and assumed that the nonuniform η̃ is of order

ε� 1 compared to the uniform, isotropic growth η̄:

η̃IJ
η̄

= O(ε) (B.25)

We will also take η̄ as the total average growth, such that the average, as defined in equation

3.1, of η̃IJ over the disk is traceless:

〈η̃KK〉 = 0 (B.26)

We define the deformation as some small displacement wI about uniform growth:

xi(XI) = η̄XI + wI (B.27)
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Then the linearized strain takes the following form:

EIJ =
1

2
(∂Ixk∂Jxk − ḡIJ)

=
1

2

[
(η̄δIJ + ∂IwK) (η̄δJK + ∂JwK)− η̄2

(
δIJ +

2

η̄
η̃IJ +

η̃Iαη̃Jα
η̄2

)]
=
η̄

2
(∂JwI + ∂IwJ)− η̄η̃IJ +O(ε2)

'η̄(wIJ − η̃IJ)

(B.28)

We then choose a Saint Venant-Kirchoff strain energy. This strain energy is properly con-

sidered a function on the intermediate configuration ΩI , and thus we must define it not only

in terms of the strain EIJ , but also in terms of the inverse target metric ḡ−1
IJ (see equation

B.20), which is defined such that ḡIJ ḡ
−1
JK = δIK :

f(EIJ) =
λ

2
(wKK − η̃KK) + µ(wIJ − η̃IJ)2 +O(ε) (B.29)

This energy density is related to the linearized Cauchy stress σij (dropping the distinction

between indices in different spaces for simplicity)via the principle of virtual work, with a force

Fi, a virtual displacement δwi and Eulerian and Lagrangian volumes v and V , respectively:

δF =

∫
Fiδwidv =

∫
∂σij
∂xj

δwidv =
1

η̄

∫
σij
∂Xj

δwi|∂ixk|dV

= η̄

∫
∂σij
∂Xj

δwidV +O(ε3) = −η̄
∫
σijδ

∂wi
∂Xj

dV = −η̄
∫
σijδwijdV

(B.30)

Thus we identify

η̄σij =
∂f

∂wij
=⇒ σij =

1

η̄

∂f

∂wij
=

1

η̄
λ (wkk − η̃kk) δij + 2µ (wij − η̃ij) (B.31)

The linearized equilibrium equations are then given by:

∂iσij = 0 (B.32)

Expressed in terms of the linearized displacement ~w the equilibrium equations take the form:

(λ+ 2µ)∂j∂kwk − µεjikεkmn∂i∂mwn = λ∂j η̃kk + 2µ∂iη̃ij (B.33)
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which is equivalent to the standard Cauchy-Navier equation of linear elasticity with an active

stress. In the case where η̃ij = η̃δij we find a body force with potential −η̃, familiar from

thermoelasticity [14]. This can be seen to describe linear elasticity with active stresses around

a coordinate system uniformly scaled by η̄, with the η̄−1 scaling in the Cauchy stress relating

to the . This also demonstrates why we choose the limit that η̃/η̄ � 1 rather than simply

η̃ � 1, since η̃/η̄ is the quantity that appears in the Cauchy stress.

B.1.3 Non-axisymmetric growth

In the non-axisymmetric case the equations of equilibrium cannot be directly integrated and

a different approach is necessary. Since the system is in 2D and elastic equilibrium is still

defined by ∂iσij = 0, the standard Airy stress function formalism is useful. We introduce

the Airy stress function φ( ~X) as follows:

σxx =
∂2φ

∂y2
; σyy =

∂2φ

∂x2
; σxy = σyx = − ∂2φ

∂x∂y
(B.34)

From here we can invert the linearized stress-strain relation to express the elements of the

strain in terms of η̃ and φ:

wxx = η̃xx +
1

4µ(λ+ µ)

(
(λ+ 2µ)

∂2φ

∂y2
− λ∂

2φ

∂x2

)
wyy = η̃yy +

1

4µ(λ+ µ)

(
(λ+ 2µ)

∂2φ

∂x2
− λ∂

2φ

∂y2

)
wxy = η̃xy −

1

2µ

∂2φ

∂x∂y

(B.35)

If we then combine these expressions for wij with the compatability condition, which ensures

that wij can be written as a symmetrized gradient (i.e. that there exists a displacement

vector wi such that wij = 1/2(∂iwj + ∂jwi)) [14]:

0 =
∂2wxx
∂y2

− 2
∂2wxy
∂x∂y

+
∂2wyy
∂x2

(B.36)

to arrive at the non-homogeneous biharmonic equation governing φ:

∇4φ = −4µ(λ+ µ)

λ+ 2µ

(
∂2η̃xx
∂y2

− 2
∂2η̃xy
∂x∂y

+
∂2η̃yy
∂x2

)
(B.37)
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In the case of isotropic η̃ this reduces to:

∇4φ = −4µ(λ+ µ)

λ+ 2µ
∇2η̃ (B.38)

Since isotropic and anisotropic growth both result in a non-homogeneous biharmonic equa-

tion for φ, the following results for the isotropic case can be directly generalized to the

anisotropic case. Because of this we proceed with the isotropic case for simplicity. We begin

by writing φ as a sum of particular and general solutions φ = φp+φg. We choose φp such that

we reproduce the result for the pressure in the axisymmetric case: ∇2φp ∝ η̃. The general

solution, φg will then be chosen to match stress-free boundary conditions. Because we have

chosen a circular domain as our Lagrangian configuration, the Michell solution [114] for the

planar biharmonic equation gives a series solution for φg:

φg =R3(A1 cos Θ +B1 sin Θ)

+
∞∑
n=2

(
Anr

n+2 + Cnr
n
)

cos(nΘ)

+
∞∑
n=2

(
Bnr

n+2 +Dnr
n
)

sin(nΘ)

(B.39)

where we have omitted the terms forbidden by the geometry of the disk, and the axially

symmetric which is described by the main text. These are determined by the boundary

conditions:

σRR(RD,Θ) = 0, σRΘ(RD,Θ) = 0 (B.40)

This places boundary conditions on φg in terms of φp, or equivalently, η̃. Choosing ∇2φp ∝ η̃

results in the following expression for φp:

φp(R,Θ) ≡
∞∑
n=0

(cos(nΘ)φn,a(R) + sin(nΘ)φn,b(R))

=
4µ(λ+ µ)

λ+ 2µ

∞∑
n=0

(∫ ∞
0

(
cos(nΘ)

ˆ̃ηn,a(k)

k2
+ sin(nΘ)

ˆ̃ηn,b(k)

k2

)
Jn(Rk)kdk

)
(B.41)
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where the ˆ̃η are defined by

η̃(R,Θ) =
∞∑
n=0

(∫ ∞
0

(
cos(nΘ)ˆ̃ηn,a(k) + sin(nΘ)ˆ̃ηn,b(k)

)
Jn(Rk)kdk

)
(B.42)

The boundary conditions then give the following values for the coefficients:

An =
1

2Rn+2
D

(
(3n+ 1)φn,a(RD)−RDdφn,a

dR
(RD)

)
Cn =

1

2Rn+2
D

(
−3(n+ 1)φn,a(RD) +RD

dφn,a
dR

(RD)

) (B.43)

and the values for Bn and Dn are the same, substituting φn,b for φn,a. Combining these we

arrive at the pressure for a non-axisymmetric, isotropic growth field:

p =
2µ(λ+ µ)

η̄(λ+ 2µ)

[
η̃

−
∞∑
n=1

(
2(n+ 1)

(
R

RD

)n ∫ RD

0

(
R

RD

)
(sin(nθ)η̃n,a(R

′) + cos(nθ)η̃n,b(R
′))dR′

)]
(B.44)

B.1.4 Growth without stress

From the form of equation B.37, the biharmonic equation for φ, it is clear that if η̃ij satisfies

the compatability condition

0 =
∂2η̃xx
∂y2

− 2
∂2η̃xy
∂x∂y

+
∂2η̃yy
∂x2

(B.45)

the biharmonic equation is homogeneous and, given stress-free boundary conditions, growth

of this form will produce no stress. This is the anisotropic generalization of “harmonic

growth”, which is known to produce no stress [80]. To understand the source of this stress-

free growth note that this condition implies that η̃ij can be written as the symmetrized

gradient of a vector [14]:

η̃ij =
1

2
(∂iη̃j + ∂j η̃i) (B.46)

Then if we choose the displacement wi = η̃i the linearized stress is zero. This condition

extends to the full nonlinear case as well, where the condition for ḡij to be written as a square

gradient ∂iḡk∂j ḡk is that the Riemannian curvature of the metric ḡ must be zero, that is, that

95



ḡ describes a flat metric, embeddable in Euclidean space. This notion of compatible growth

can be found in early work on the introduction of growth to theories of elasticity [170] and

is important for understanding the origin of stress due to growth. From this perspective, we

can see that the requirement that growth occur without stress is equivalent to the statement

that the intermediate stress-free “grown” configuration of the material is flat Euclidean space.

In this case where growth is compatible with Euclidean space and it defines a deformation

vector ηi it is possible for each material element to “follow” the displacement defined by the

growth exactly, remaining in stress-free configuration. This is equivalent to taking xi = ηi.

The presence of growth modes that do not produce stress raises potential problems for

theories that rely on local feedback on stress to halt the growth of a tissue, let alone at

a precise final size. Mechanical feedback was originally introduced to explain how growth

could be uniform in the presence of nonuniform growth factors [166], and harmonic growth

has been implicated in the growth of leaves [80] [7], suggesting that mechanical feedback

can lead to cases where stress-free growth occurs. From the perspective of precise control of

tissue size, though, this has the potential to present a problem. We note that in the case of

linearized elasticity on a disk, these stress-free growth modes are all proportional to sin(nθ)

or cos(nθ) and thus do not affect the final size, given by η̄, since terms proportional to sin

and cos have zero average over the disk. On the other hand, it is nontrivial for mechanical

feedback models to be able to prevent these modes from growing due to random fluctuations,

eventually making the linear approximation invalid and potentially affecting the total size of

the disk. However, it is possible to control these models dynamically, for example via certain

kinds of boundary conditions or interactions with morphogens.

B.2 Laplacian OR model

If γ is considered as a power series in p and its derivatives, the presence of a ∇p term could

arise from a term such as ∇Mc · ∇p where Mc is some morphogen signaling the activation

of gradient feedback. From this perspective, feedback proportional to the Laplacian of the

pressure might be considered more generic. Laplacian feedback has many of the same char-

acteristics of gradient feedback with symmetry properties that are valuable in some analytic

contexts. We will see that, aside from some minor differences, the majority of the previous

results follow. We define γ as follows:

γ = −κp+ κc2(r)∇2p+M(r) (B.47)
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As before we require the Laplacian feedback to operate only for r > rc. As in the gradient

case we define the Laplacian feedback stength in terms of the length scale c.

The jump condition can be derived in the same way as before:

0 = lim
δ→0

∫ rc+δ

rc−δ
γdr = c2 lim

δ→0

∫ rc+δ

rc−δ
Θ(r − rc)∇2p(r)dr

= lim
δ→0

p′(rc + δ)− p′(rc − δ)
(B.48)

So the first derivative of the pressure must be continuous at the boundary rc. If the pressure

is not continuous, the laplacian is not defined and the integral diverges even in the limit.

Since the Laplacian measures the curvature instead of simply the gradient it is necessary

to change the form of the morphogen M(r) in the exterior. In order for the fixed point

condition to produce a valid pressure satisfying 〈p〉 = 0 we must have M(r > rc) > M(r <

rc). As before we will choose M(r) to be steplike:

M(r) = bΘ(r − rc) + 1 (B.49)

where b > 0. Note that this morphogen distribution does not define a non-gradient model

with a valid fixed point, since the morphogen distribution is not negative anywhere. This

means that the weak feedback limit is singular, but since we are concerned primarily with

the opposite limit this does not pose a problem. As before, a quasi-steady state exists where

γ = 〈γ〉. It is defined by:

η̃qss
η̄

=

ε (1− 〈γ〉) r < rc

ε
c

[
1(1 + b− 〈γ〉)− rc(b− 2 〈γ〉)

(
I1

(
rc
c

)
K0

(
r
c

)
+ I0

(
r
c

)
K1

(
rc
c

))]
r > rc

(B.50)

where In and Kn are the modified Bessel functions of order n.

B.2.1 Fixed point

As before, the dynamics reduce to ˙̄η = η̄ 〈γ〉 and the fixed point is determined by γ = 0.

The fixed point is then given by

η̃∗

η̄∗
=

ε r < rc

ε
(
1− b+ b rc

c

(
I1

(
rc
c

)
K0

(
r
c

)
+ I0

(
r
c

)
K1

(
rc
c

)))
r > rc

(B.51)
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Since c still sets the length scale the final size for strong feedback, 1 � z = rc/c, must

still scale as η̄∗ = z−1η̄∗−1 + η̄∗0 + η̄∗1 + O(z2). The fixed point distributions for different

values of the feedback length scale c are shown in figure B.1 For weak feedback, the fixed

Figure B.1: The fixed point distributions for the OR model with Laplacian feedback, plotted
for different values of c̃ = c/rc, in units with rc = 1. The size of the disk for each trace is
indicated by a black dot. The traces for each distribution end at the final size of the disks
they describe, calculated by the condition that 〈η̃∗〉 = 0. If the Laplacian feedback strength
is weak, c̃ � 1, then the steady state distribution has a sharp gradient, since the weak-
feedback limit is singular. For strong Laplacian feedback with c̃ � 1, the gradients of the
steady-state distribution are much less sharp and the size of the disk is set by the feedback
strength rather than the cutoff distance.

point distribution has a very sharp divergence and η̄∗ scales differently. This is because the

Laplacian model does not reduce to an OR model with a valid fixed point, and therefore does

not stop growing. For small c̃ the disk must then overgrow dramatically and then apoptose

down to the fixed point.
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The fixed point condition can be simplified as follows:

0 = 〈γ〉

〈M〉 = −c
2

ε

〈
Θ(r − rc)

∇2η̃

η̄

〉
1 + b

(
1− 1

η̄∗2

)
=

2bzε

η̄∗
(I1(z)K1(zη̄∗)− I1(η̄∗)K1(z))

(B.52)

Then each side can be expanded for small z, and the values of η̄∗i can be determined by

matching terms. The lowest order is as follows:

η̄∗−1(1 + b) = 2bI1(η̄∗−1) (B.53)

Because there is no requirement that b be small or large, the transcendental equation that

describes η̄∗−1 cannot be simplified as in the gradient case. Since 〈M〉 has no term proportional

to z while − c2

ε

〈
Θ(r − rc)∇

2η̃
η̄

〉
does, we have η̄∗0 = 0. Note also that this condition implies

η̄∗−1 > 1 (B.54)

The next correction, η̄∗1, is given by:

η̄∗1 =
1

4I2(η̄∗−1)

(
− 2

η̄∗−1

+ 2K1(η̄∗−1) + I1(η̄∗−1)(1− 2γ + log(4) + 2 log(z))

)
(B.55)

Where above γ is the Euler-Mascheroni constant.

B.2.2 Linear Stability

The linear stablility problem can now be addressed, beginning with defining δγ and the jump

condition for small perturbations.

δγ = −1

ε

(
δη̃

η̄∗
− δη̄

η̄∗
η̃∗

η̄∗

)
+ Θ(r − rc)

c2

ε

(
∇2δη̃

η̄∗
− δη̄

η̄∗
∇2η̃∗

η̄∗

)
+ δrδ(r − rc)

(
b+

c2

ε

∇2η̃∗

η̄

)
= −1

ε

δη̃

η̄∗
+ Θ(r − rc)

c2

ε

∇2δη̃

η̄
+
δη̄

η̄∗

(
M(r) +

rcb

2
δ(r − rc)

)
(B.56)

99



The jump condition is then given by:

0 = lim
δ→0

∫ rc+δ

rc−δ
δγdr (B.57)

= lim
δ→0

∫ rc+δ

rc−δ

[
c2Θ(r − rc)

ε

∇2δη̃

η̄∗
+
δη̄

η̄∗
rcδ(r − rc)

(
b+

c2

ε

(
− bε

2c2

))]
dr (B.58)

= lim
δ→0

[
c2

2εη̄∗
(δη̃′(rc + δ)− δη̃′(rc − δ)) +

δη̄

η̄∗
brc
2

]
(B.59)

As before, this jump condition cancels the singularity in δγ. The axisymmetric eigenvalue

problem is defined by:

λδη̄ = η̄∗ 〈δγ〉 =
c2

ε

〈
Θ(r − rc)∇2δη̃

〉
+ δη̄

[
1 + b

(
1− 1

η̄∗2

)]
λδη̃ = η̄∗ (δγ − 〈δγ〉)

=

−
δη̃
ε
− c2

ε
〈Θ(r − rc)∇2δη̃〉+ εbδη̄

(
1
η̄∗2 − 1

)
r < rc

− δη̃
ε

+ c2

ε
(Θ(r − rc)∇2δη̃ − 〈Θ(r − rc)∇2δη̃〉) + εbδη̄

η̄∗2 r > rc

(B.60)

As for the gradient case, if we choose δη̄ = 0 we find that δη̃ = 0 for r > rc and λ = −1/ε, and

for the rest of the spectrum we may analyze the equation for λδη̄. To do so the expression

for δη̃ as a function of λ is necessary, defining L =
√

1 + λε, z = rc/c and ρ = r/rd:

δη̃ =


L−2 (εδη̄b (1/η̄∗2 − 1)− c2 〈Θ(r − rc)∇2δη̃〉) r < rc

η̄∗−2L−2[−η̄∗2c2
〈
Θ(r − rc)∇2δη̃

〉
+bδη̄εη̄∗2((I1(Lz)− LzI0(Lz))K0(Lzη̄∗ρ)

+ (LzK0(Lz) +K1(Lz))I0(Lzη̄∗ρ))]

r > rc
(B.61)

The average c2 〈Θ(r − rc)∇2δη̃〉 can be calculated self-consistently. In the limit of z → 0 it

takes the following form:

c2
〈
Θ(r − rc)∇2δη̃

〉
= −

2bδη̄εI1(η̄∗−1L)

η̄∗−1L
(B.62)

Plugging this into the eigenvalue equation λδη̄ = η̄∗δγ all of the zero order terms in z and

ε are eliminated by the fixed point condition and the resulting eigenvalue problem to lowest
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order in z and ε is as follows:

λ =
2bz2

η̄∗−1

(
1− η̄∗−1(K1(η̄∗−1) + I1(η̄∗−1)(γ + log(z/2)))

)
− bεI2(η̄∗−1) +O(ε2, z4, (εz)2) (B.63)

If the Laplacian feedback is not substantially weaker than the normal proportional feed-

back this is negative, indicating that the axisymmetric modes are stable. For the non-

axisymmetric problem we define ρ̃ = r/rd.

For non-axisymmetric modes it is sufficient to analyze the stability of a single harmonic

δηn = einθδηn,r(ρ). As before δη̄ = 0 so δηn = δη̃n. We substitute L =
√

1 + ελ, ρ = r/rd,

and z = rc/c. The eigenvalue problem is then:

z2L2η̄∗2δηn −Θ(r − rc)∇2δηn = 2(n+ 1)Ĩρnz2η̄∗2einθ (B.64)

Again, for r < rc, modes where Ĩ vanishes have λ̃ = 0 or λ = −1/ε. For modes with Ĩ 6= 0

the situation is also fairly straightforward. For r < rc these modes have the form:

δηn =
2(n+ 1)

L2
Ĩρn (B.65)

for r > rc the eigenvalue problem is expressed as:

(∇2 − η̄∗2z2)δη = η̄∗2z2Ĩ2(n+ 1)ρn (B.66)

If we choose a trial function of the form:

δηn = α1In(ρ) + α2Kn(ρ) + α3ρ
n (B.67)

This solves the eigenvalue problem, with the three αi matching the ρn term for r > rc and

matching the two boundary conditions. The integral factor Ĩ then simply sets the scale of

δηn. The eigenvalue is determined by:

L2η̄∗2z2 = 1

λε =
1

η̄∗2−1

− 1 +O(z2)
(B.68)

Since we have η̄∗−1 > 1, we have λ < 0 and thus the rest of the spectrum is stable, aside from

the λ = 0 modes of the form δηn ∝ rn, leading to δp = 0 arising from “compatible growth”

as discussed earlier.
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B.3 AND model predicts disk size depends on feed-

back strength

For the ODEs describing the dynamics of the AND model it is possible to see that since

the strong feedback limit does not decouple the dynamics η̄ and η̃, the dynamics of η̄ will

depend strongly on ε. We proceed by deriving a relation describing the integral curves for

the ODE model. From equations 3.24 & 3.25 we find the integral curve condition:

∂ ˙̄η

∂ ˙̃η
=

1

η̄2 − 1
(B.69)

Integrating, we find:

η̃ = η̄

(
η̄2

3
− 1

)
+ C (B.70)

where C is a constant of integration. With the initial conditions η̄(0) = 1 and η̃(0) = 0 this

gives:

η̃ =
η̄

3

(
η̄2 − 3 +

2

η̄

)
(B.71)

Combining this with 3.24 gives

˙̄η =
1

εη̄

(
1− η̄2

3
− 2

3η̄

)
+

1

η̄
(B.72)

It is also possible to estimate the final size reached by following this integral curve. Com-

paring B.71 with the fixed point condition 3.26 gives a cubic equation for η̄∗(ε), which only

has one solution satisfying η̄∗ > 1. For ε� 1 this is:

η̄∗ = 1 +
√
ε+

ε

3
(B.73)

So we can see that in the AND model the final size of the disk depends strongly on the

strength of the pressure feedback.

B.4 Exact calculations for the AND model

In the AND model it is possible to carry out the reduction to and ODE as well as derive the

primary results from the linear stability without truncating powers of ε. In reducing to the

ODE model the only point at which low order in ε came in was in the average 〈γη〉. This
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can be carried out exactly as follows:

〈γη〉 =

〈
Θ(rc − r)

(
1− 1

ε

η̃in
η̄

)
(η̄ + η̃)

〉
=

(
1− 1

ε

η̃in

η̄

)
2

R2
D

∫ Rc

0

R′dR′

=

(
1− 1

ε

η̃in

η̄

)
R2
c

R2
D

=

(
1− 1

ε

η̃in

η̄

)
r2
c

R2
D(η̄ + η̃ λ+µ

λ+2µ
)

=

(
1− 1

ε

η̃in

η̄

)
1

η̄ + η̃in
λ+µ
λ+2µ

(B.74)

This simply modifies the prefactor of 〈γη〉, and the full dynamical equations are otherwise

identical to equations 3.24 and 3.25. Because of this, taking the limit of small ε has no effect

on the fixed point structure, which is still determined by γ = 0. This has no effect on the

linear stability problem for the same reason.

B.5 Soft modes for non-axisymmetric morphogen dis-

tribution

It is clear that there are growth modes that generate zero stress. These manifest themselves

in the linear stability of the non-axisymmetric problem, leading to λ = 0 modes which could

be driven by noise to eventually generate large displacements inconsistent with the linear

elastic approximation. This does not occur in the axisymmetric model due to contributions

from the morphogen. In particular, for the axisymmetric problem, the zero mode is given

by uniform growth. In the linear stability problem this is described by δη̃ = 0. Since δγ has

contribtions from the morphogen as well as from δη this does not produce a valid zero mode,

or even a valid solution of the eigenvalue problem. Such a phenomenon also operates in the

non-axisymmetric problem.

Considering a general OR model, with

δγ = f [δp(r, θ)] + δM(r, θ) (B.75)

where f is a general functional of δp potentially including gradient or Laplacian feedback.

103



We require f [0] = 0, as in all the examples we have treated. The problem of looking for soft

λ = 0 modes is, as before, the problem of finding δγ = 0. If δη takes the form of compatible

growth (∇2δη = 0 for the isotropic case), then we have δp = 0 this gives

0 = δγ = 0 + δM(r, θ) (B.76)

This shows that the∇2δη = 0 modes are no longer solutions to the eigenvalue problem. While

this does not itself prohibit λ = 0 modes it does imply that the ∇2δη = 0 modes are not valid

solutions to the eigenvalue problem. In particular, this emphasizes that the distribution of

the morphogen plays an important role in controlling λ = 0 modes and suggests that for a

non-axisymmetric M(r, θ) the non-axisymmetric zero modes are forbidden in the same way

as they are for the axisymmetric problem.

B.6 Feedback on the full stress tensor

Posing the problem of growth control by mechanical feedback on the full stress tensor poses

difficulties that do not arise in the isotropic case. Consider a simple OR type model, but

with γ → γij, a symmetric tensor, as follows:

γij = −1

ε
σij +Mij (B.77)

whereMij is a tensor formed from morphogen distributions, perhaps asM(xk)δij or ∂i∂jM(xk).

Defining a fixed point for the dynamics with no net tissue flux then requires γij = 0. This

gives a steady state stress:

σ∗ij = εMij (B.78)

But the elastic equilibrium also places constraints on ∂iσij, specifically that ∂iσij = 0. This

implies that at steady state we must have

∂iMij = 0 (B.79)

The condition ∂iσij = 0 places constraints on any chosen form for γij at steady state. This

could still be managed if the morphogen distributions underlying Mij had dynamics that

reproduced the relevant condition at their own steady state, placing tight constraints on the

coupling between the stress, growth, and morphogen dynamics. The other alternative is that

feedback on the traceless component of the stress is minimal.
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