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Abstract 

A major challenge for ecology rests in understanding how direct and indirect effects of abiotic 

and biotic drivers combine to influence organisms under rapid environmental change. The local 

environment of both hosts and parasites can have profound impacts on disease dynamics, but the 

major mechanisms underlying these changes remain largely unresolved. In this dissertation, I 

combine a series of manipulative experiments to assess the effects of an ongoing and pervasive 

driver of global environmental change, elevated CO2, on a plant-phytophagous host-parasite 

system. In Chapter II, I investigated the effects of elevated CO2 on the defensive and nutritional 

chemistry of milkweeds and the subsequent impacts of those phytochemical changes on monarch 

tolerance and parasite virulence. I found that high-cardenolide milkweeds lost their medicinal 

properties under elevated CO2; monarch tolerance to infection decreased, and parasite virulence 

increased. Declines in foliar medicinal quality were associated with declines in foliar 

concentrations of lipophilic cardenolides. In Chapter III, I examined how those same 

phytochemical changes induced by elevated CO2 influence the defensive phenotype of monarchs 

against predation, e.g. toxin sequestration and flight ability. I found that monarchs maintained 

the concentration and composition of cardenolides that they sequestered despite changes in the 

phytochemistry of milkweed under elevated CO2. Additionally, feeding on high cardenolide 

milkweed was associated with the formation of rounder, thinner wings, which are less efficient at 

gliding flight. In Chapter IV, I evaluated changes in monarch cellular and humoral immunity in 

response to phytochemical shifts induced by elevated CO2. I found that the immune enzyme 

activity of early-instar monarchs declined under parasite infection but was “rescued” by 

consuming foliage grown under elevated CO2. Additionally, infection and a diet of foliage from 

elevated CO2 increased the hemocyte concentrations of early-instar monarchs. In late-instar 

monarchs, the immune response against parasitoids declined on “medicinal” milkweed, 

suggesting a potential tradeoff between resistance against parasitoids and resistance against 

agents of disease. Finally, in Chapter V, I examined how elevated CO2 might alter plant 

resistance traits and regrowth tolerance and the subsequent relationship between these defense 
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strategies. I found that elevated CO2 altered the resistance of regrowth foliage in a species-

specific manner. However, the tradeoff between resistance and regrowth tolerance varied only 

among milkweed species. Taken together, my research illustrates that anthropogenic changes in 

abiotic and biotic factors operate in complex combinations, and at multiple scales, to influence 

the outcome of host-parasite interactions in our changing world. 
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Chapter 1 : Introduction 

 
1.1 Global Environmental Change and Ecological Interactions 

Species interactions are intricately connected to the surrounding environment. Both abiotic and 

biotic conditions influence the physiology, phenology, and behavior of organisms with important 

implications for population dynamics and trophic interactions (Tylianakis et al. 2007) Critically, 

these environmental conditions are changing at an accelerating rate. 

 

Over the next 100 years, Earth surface temperatures are projected to rise nearly 4°C, and 

precipitation patterns will become more variable (IPCC 2013). Increases in atmospheric 

greenhouse gas concentrations like methane, nitrous oxide and carbon dioxide have driven much 

of this recent warming and combine with other effects of human activity to alter biogeochemical 

cycles. The rate at which atmospheric CO2 concentrations are increasing remains unrivaled in the 

last 800,000 years and expected to rise from roughly 400 ppm today to 700 ppm over the next 

100 years. Additionally the anthropogenic fixation and deposition of reactive nitrogen will 

continue to accelerate (Galloway et al. 2008) along with increased habitat loss and fragmentation 

(Sala et al. 2000).  

 

Because ecological interactions are context dependent, global environmental change alters the 

composition of communities through both direct and indirect effects. Variable environmental 

factors directly impact the phenotype of some organisms (Parmesan & Yohe 2003; Altizer et al. 

2013; Chu et al. 2016), which, in turn, may generate cascading indirect effects on other 

community members (Parmesan 2006; Gilman 2017; Gunderson et al. 2017). For example, 

reactive nitrogen deposition enhances the growth and floral display of an Andean Aster, which, 

in turn, increases pollinator visitation rate and overall fitness (Muñoz et al. 2005).  

Conversely, the same global change driver (N deposition) reduces the performance of another 

member of the Andean plant community because N deposition reduces the prevalence of 
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beneficial fungal mutualists in the surrounding soil (Dean et al. 2014). Therefore, a major 

challenge for ecology rests in understanding how direct and indirect effects of abiotic and biotic 

drivers combine to influence organisms under environmental change (Tylianakis et al. 2008; 

Gilman et al. 2010; Gunderson et al. 2017). 

 

Host-parasite interactions are ubiquitous within ecosystems and critical to their function. 

Diseases influence the abundance, distribution, evolution and extinction of not only the hosts and 

parasites, but other members of the surrounding community (Hudson et al. 1998, 2002; 

Hochachka & Dhondt 2000; Torchin et al. 2003; De Castro & Bolker 2005). Therefore, 

understanding the factors that govern the strength of host-parasite interactions is critical to 

predicting future community composition and ecosystem function. 

 

Our knowledge of disease stems from a long history of pairwise studies centered on interactions 

between hosts and their parasites. However, the abiotic and biotic environment may profoundly 

shape the outcome of these dynamics. Environmental conditions affect both the host (e.g. 

density, immunity, resistance, etc.) and the parasite (e.g. density, replication and transmission, 

etc.), with important consequences for disease dynamics (Harvell et al. 2002; Keesing et al. 

2006; Wolinska & King 2009; Altizer et al. 2013; Civitello et al. 2013, 2015). For example, 

increases in sea-water temperature simultaneously stimulate the production of anti-fungal 

compounds by the seafan, Gorgonia ventalina, and the growth of its fungal pathogen, 

Aspergillus spp., resulting in an overall increase in infection prevalence (Ward et al. 2007). 

Likewise, changes in biotic environmental factors influence disease dynamics, such as the 

exclusion of large vertebrate herbivores decreasing overall pathogen prevalence in grasses 

around central Californian oak savannahs (Borer et al. 2009).  

 

Moreover, anthropogenic sources of variability in abiotic and biotic factors regularly operate in 

combination and at multiple scales to influence the outcome of host-parasite interactions (Duffy 

et al. 2011; Aalto et al. 2014; Raffel et al. 2015). For instance, eutrophication resulting from 

nutrient enrichment causes a predator-induced shift in snail communities, favoring the prime 

intermediate host of Ribeiroia ondatrae, a pathogen that induces malformations in frog 

populations (Johnson & Chase 2004). Such a shift in the pool of available hosts increases the 
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prevalence of disease in the surrounding frog population. Therefore, predicting the effects of 

environmental change on host-parasite interactions is complex and requires a thorough 

knowledge of not only host and parasite ecology, but also of the surrounding ecological 

community. 

 

 

1.2 Milkweed Chemistry, Monarchs, Parasites, and Other Natural Enemies 
The effects of global change should be particularly apparent in herbivorous host-parasite 

interactions, because food-plant quality is plastic with respect to environmental conditions 

(Hunter 2001; Bidart-Bouzat et al. 2005; Robinson et al. 2012) and herbivore performance is 

tightly linked to the nutritional and defensive chemistry of their food plants (Mattson 1980; 

Hunter 2016). My dissertation centers around one such interaction between a phytophagous 

specialist insect, its obligate host plant and a sub-lethal, but debilitating parasite. 

 

The interaction between the monarch butterfly, Danaus plexippus, and its protozoan parasite, 

Ophryocystis elektroscirrha depends heavily on the local biotic environment (de Roode et al. 

2007, 2008a; Tao et al. 2015). Monarchs become infected with O. elektroscirrha after ingesting 

parasite spores on the surface of egg chorea and milkweed (Asclepias) tissues (Leong et al. 

1997a, b). Spores lyse within the larval gut, sporozoites penetrate the larval hypoderm and 

replicate over the course of the monarch’s development (Mclaughlin et al. 1970).  Infected adult 

monarchs emerge covered in dormant parasite spores and experience reduced lifespan, decreased 

fecundity, and limited flight ability (Altizer & Oberhauser 1999; Bradley & Altizer 2005; de 

Roode et al. 2008b, 2009). 

 

In addition to the nutritional benefits that milkweeds provide for monarchs, milkweed plants also 

produce a group of toxic steroids, known as cardenolides, which are medicinally active against 

O. elektroscirrha (Gowler et al. 2015). Monarchs utilize the diversity of milkweed species that 

they encounter throughout their range as larval host plants (Vickerman & de Boer 2002). 

Milkweed vary substantially in the composition and concentration of cardenolides in their foliar 

tissues (Rasmann & Agrawal 2011; Agrawal et al. 2012). Feeding on high-cardenolide (hereafter 

medicinal) milkweed ameliorates the fitness costs of harboring each additional parasite, a form 
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of defense known as host tolerance (Sternberg et al. 2012; Råberg 2014). Additionally, medicinal 

milkweeds reduce infection probability, and the number of parasites produced in adult butterflies 

(an inverse measure of host resistance) (de Roode et al. 2008a, 2011; Gowler et al. 2015). 

Because medicinal milkweed improve both monarch tolerance and resistance to disease, feeding 

on these plants also reduces the inherent damage (virulence) that parasites cause to their hosts 

(de Roode et al. 2008a).  

 

We know very little about the mechanism by which cardenolides provide protection to monarchs 

against O. elektroscirrha. Cardenolides disrupt the function of Na+/K+-ATPase in the sodium-

potassium channels of animal cells (Agrawal et al. 2012), rendering them toxic to most animals. 

The biological activity of cardenolides is determined, in part, by the polarity of the different 

sugar moieties attached to steroid skeleton of the compound (Rasmann & Agrawal 2011; 

Agrawal et al. 2012). Because animal cell membranes are outwardly hydrophobic, lipophilic 

(nonpolar) cardenolides are thought to be the most toxic (Sternberg et al. 2012; Tao et al. 2016).  

Critically, monarchs that feed on milkweed containing more lipophilic cardenolides experience 

enhanced protection against the parasite to a certain point, after which the plants become too 

toxic even for monarch specialists (Sternberg et al. 2012). The cellular membranes of a close 

relative of O. elektroscirrha possess these same ion channel enzymes vulnerable to the action of 

cardenolides (Felibertt et al. 1995). Furthermore, medicinal milkweeds provide increased 

protection against the parasite when consumed immediately before or during ingestion of spores 

(de Roode et al. 2011). This critical period of medicinal action suggests that milkweed 

cardenolides influence the effective dose of parasites that monarchs initially experience. Thus, 

cardenolides could potentially be directly toxic to the parasite.  

 

Alternatively, monarchs possess the well-characterized innate immune response of Lepidoptera. 

Namely, monarchs encapsulate foreign antigens with specialized immune effector cells 

(hemocytes) which adhere, harden and die around the surface of the invader (Lavine & Strand 

2002; Beckage 2008). Within adhering hemocytes and the surrounding cytoplasm, 

Phenoloxidase (PO) enzymes catalyze the production of melanin which combines with the 

encasement of dead and dying cells to both asphyxiate and poison the antigen (“encapsulation” 

(Rolff & Reynolds 2009)). Given the strong biological activity of cardenolides within the insect, 
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it is also possible these toxins may either stimulate or suppress the monarch immune response to 

O. elektroscirrha.   

 

Monarchs also face attack from parasitoids and predators that may be vulnerable to the toxicity 

of cardenolides. Monarchs begin to mount an immune response after oviposition by the multiple 

species of tachinid flies and other parasitoids that attack mid to late instar monarch larvae 

(Arnaud 1978; Stenoien et al. 2015). However, we know very little about general rates of 

parasitoid survival within monarchs (Hunter et al. 1996; Sternberg et al. 2011), and monarch 

immune defense against parasitoid infection. Due to the intimate nature of parasitoid 

development within the monarch larvae, the nutritional and medicinal quality of the monarch 

host diet likely influences parasitoid success (Oberhauser et al. 2015). However, cardenolides 

may impact the strength of the immune response that monarchs can mount against parasitoids. In 

other herbivorous insect systems toxic secondary metabolites reduce insect immune defense 

against parasitoid attack (Smilanich et al. 2009; Richards et al. 2012; Singer et al. 2014). 

 

Monarchs defend themselves against predators by sequestering cardenolides from ingested 

milkweed foliage (Reichstein et al. 1968; Malcolm & Brower 1989). The composition and 

concentration of cardenolides sequestered by monarchs is correlated tightly with milkweed 

chemistry (Malcolm 1990, 1994; Agrawal et al. 2015). Besides making themselves unpalatable 

to predators, adult monarchs can also physically evade capture through flight. Monarchs are 

particularly famous for their nearly 4500 km yearly migration to overwintering sites in Mexico 

(Urquhart & Urquhart 1978; Brower & Malcolm 1991). Butterflies with larger and more 

elongated wings and higher wing loading values are more successful flyers (Altizer & Davis 

2010; Li et al. 2016). Wing development can be affected by the environmental conditions 

experienced by larvae in their final instars and during pupation (Speight et al. 1999). Therefore, 

environmental factors, such as diet (Johnson et al. 2014), and parasite infection (Bradley & 

Altizer 2005), may influence the ability of monarchs to fly. However, no study to date has 

examined the effects of varying cardenolide concentrations on monarch wing morphology.  

 

Thus, monarchs participate in a diversity of interactions, all influenced by milkweed chemistry. 

Critically, one ongoing and pervasive global environmental change driver, elevated CO2, reduces 
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the medicinal and nutritional quality of milkweed foliage (Vannette & Hunter 2011; Zavala et al. 

2013). Given the strong dependence of monarch-enemy interactions on host plant chemistry, any 

changes in the phytochemical quality of milkweed should have important implications for 

monarch populations. The research here examines the potential effects of elevated CO2 on the 

multitrophic interactions, mediated by phytochemistry, in which monarchs participate. 

 

1.3 Summary of Dissertation Chapters 
My dissertation is divided into four chapters. Chapters II-IV focus on the indirect impacts of 

elevated CO2 on aspects of monarch defense against parasitism and predation. Chapter V focuses 

on potential effects of elevated CO2 on plant defense against herbivory. Broadly, Chapter II 

investigates the effects of elevated CO2 on the defensive and nutritional chemistry of milkweeds 

and the subsequent impacts of those phytochemical changes on monarch tolerance and parasite 

virulence. In Chapter III, I examine how those same phytochemical changes induced by elevated 

CO2 compound to influence the defensive phenotype of the monarch against predation, e.g. toxin 

sequestration and flight ability. In Chapter IV, I evaluate changes in monarch cellular and 

humoral immunity in response to phytochemical shifts induced by elevated CO2. Finally, in 

Chapter V, I examine how elevated CO2 might alter plant resistance traits and regrowth tolerance 

and the subsequent relationship between these defense strategies. 

 

Chapter II: Elevated Atmospheric Concentrations of Carbon Dioxide Reduce Monarch 

Tolerance and Increase Parasite Virulence by Altering the Medicinal Properties of Milkweeds.  

Hosts combat their parasites using mechanisms of resistance and tolerance, which together 

determine parasite virulence (Råberg et al. 2007). Environmental factors, including diet, mediate 

the impact of parasites on their hosts, with diet providing both nutritional and medicinal 

properties (Sternberg et al. 2012; Tao et al. 2015; Zeller & Koella 2017). For herbivorous insect 

hosts, plant quality substantially influences the deleterious effects of parasites (Cory & Hoover 

2006; Shikano 2017) and plant quality varies markedly in response to environmental change 

(Hunter 2001; Robinson et al. 2012; Jamieson et al. 2017). In this chapter, I explore how 

elevated CO2 alters the medicinal quality of milkweeds and, in turn, influences monarch host 

tolerance and parasite virulence.  
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We reared monarch larvae on four milkweed species (A. incarnata (low cardenolide), A. 

speciosa, A. syriaca (both medium cardenolide), and A. curassavica (high cardenolide)) grown 

under either elevated (760ppm) or ambient (400ppm) CO2. We also infected a subset of those 

monarchs with O. elektroscirrha to measure how monarch resistance and tolerance, and parasite 

virulence, changed under future atmospheric conditions. We predicted that eCO2 would reduce 

the production of diverse and lipophilic cardenolides, and decrease foliar nutrient quality, 

thereby decreasing monarch performance and increasing parasite virulence. 

 

Chapter III: Managing Migration and Defense in a Changing World.  

As I demonstrate in Chapter II, higher trophic levels are affected by CO2-induced shifts in plant 

quality (Hentley et al. 2014; Ode et al. 2014). Typically, the effects of elevated CO2 on natural 

enemies are mediated through shifts in prey nutritional quality and growth rate (Roth & Lindroth 

1995; Holton et al. 2003; Chen et al. 2005; Klaiber et al. 2013). However, elevated CO2 may 

also inhibit the defense and escape capabilities of herbivores. In this chapter, I examine the 

indirect effects of elevated CO2 on toxin sequestration and flight morphology of the monarch 

butterfly, mediated by plant quality.  

 

We measured cardenolide sequestration and wing morphology of the monarchs reared from 

Chapter II on the same four milkweed host plant species grown under ambient or elevated CO2. 

A portion of these monarchs were also infected with the parasite, to understand how infection 

and environmental change combine to alter herbivore defense, including wing traits associated 

with migratory escape from parasites. Phytochemistry influences insect sequestration patterns 

(Malcolm 1990, 1994; Agrawal et al. 2015), therefore, we expected sequestration profiles to 

mirror changes in plant chemistry induced by elevated CO2. In terms of butterfly morphology, 

we predicted that phytochemical changes would cause declines in the quality of the insect flight 

phenotype: smaller, thinner and rounder wings with lower wing loading values. Finally, we 

expected that the metabolic costs of parasitic infection would exacerbate any deleterious effects 

of elevated CO2 on toxin sequestration or wing morphology. 

 

Chapter IV: Effects of CO2 on Environmentally Mediated Immunity in a Specialist Herbivore 
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The mechanisms underlying the impacts of anthropogenic environmental change on host-parasite 

interactions remain largely unresolved. The strength and activity of the host immune response is 

a central line of defense against infection and varies with environmental context (Rolff & Siva-

Jothy 2003; Lazzaro & Little 2009; Brock et al. 2014). Importantly, insect immunity is strongly 

determined by the nutritional and phytochemical quality of the diet (Singer et al. 2014). In this 

chapter, I explore the plant-mediated effects of elevated CO2 on monarch immunity in response 

to infection by O. elektroscirrha and to challenge by simulated parasitoid attack.  

 

We fed monarchs foliage from two species of milkweed, A. curassavica (medicinal), and A. 

incarnata (non-medicinal), grown under ambient and elevated CO2. Larvae were either infected 

with O. elektroscirrha or left as uninfected controls. We then measured critical aspects of the 

monarch humoral (in vitro PO activity) and cellular (in vitro hemocyte concentrations and types) 

(Beckage 2008; Strand 2008) immune response.  We also measured foliar secondary metabolites 

and nutritional quality, to understand the mechanisms underlying monarch immunity under 

future atmospheric conditions. Because immunity is costly (Sheldon & Verhulst 1996; 

Kraaijeveld et al. 2002; Schmid-Hempel 2003) and dependent on host condition, we predicted 

two alternative effects of milkweed cardenolides on insect immunity: 1) cardenolides would 

suppress immunity by either directly inhibiting immune function or reducing the number of 

infective spores through direct toxicity to the parasite; 2) alternatively, cardenolides could 

stimulate monarch immunity within the nutritional constraints of the insect host. 

 

Chapter V: Variation Among Individual Milkweed Species, Not Elevated CO2, Influences the 

Relationship Between Plant Resistance and Tolerance. 

Similar to the monarch host, milkweed defense against attack from enemies (herbivores) may 

take two broad forms: regrowth after defoliation (hereafter regrowth tolerance) (Strauss & 

Agrawal 1999) and chemical resistance (Rhoades 1985). Because plant resources are finite, a 

trade-off may exist between these two strategies of defense, but this relationship is ultimately 

complex and context dependent (Coley & Chapin 1985; van der Meijden et al. 1988; Fineblum 

& Rausher 1995). Changing environmental conditions, including elevated atmospheric 

concentrations of CO2, alter resource availability and thereby influence the defensive strategies 

of plants.  
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In this study, we investigated the effects of elevated CO2 on the chemical resistance and 

regrowth tolerance traits of the four milkweed species used in Chapters II and III. We first 

measured plant growth rate and chemical resistance before damage occurred. We then simulated 

herbivory by cutting plants at the base of the stem. Following three weeks of growth in a 

common ambient CO2 environment, we measured regrowth tolerance and plant resistance traits.  

We then examined four potential trade-offs among these traits: a) a tradeoff between plant 

growth rate and chemical resistance before damage occurs, b) a tradeoff between plant growth 

rate before damage and the chemical resistance of regrowth tissues, c) a tradeoff between 

chemical resistance before damage and regrowth tolerance after damage, and d) a tradeoff 

between regrowth tolerance and the chemical resistance of regrowth tissues. 
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Chapter 2 : Elevated Atmospheric Concentrations of Carbon Dioxide Reduce 
Monarch Tolerance and Increase Parasite Virulence by Altering the Medicinal 

Properties of Milkweeds 

 

2.1 Abstract 
Hosts combat their parasites using mechanisms of resistance and tolerance, which together 

determine parasite virulence. Environmental factors, including diet, mediate the impact of 

parasites on their hosts, with diets providing both nutritional and medicinal properties. Here, we 

present the first evidence that ongoing environmental change decreases host tolerance and 

increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use 

dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed 

monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2, 

and measured changes in resistance, tolerance, and virulence. High-cardenolide milkweeds lost 

their medicinal properties under elevated CO2; monarch tolerance to infection decreased, and 

parasite virulence increased. Declines in medicinal quality were associated with declines in foliar 

concentrations of lipophilic cardenolides. Our results emphasize that global environmental 

change may influence parasite-host interactions through changes in the medicinal properties of 

plants.  

 

2.2 Introduction 
When facing parasite infection, hosts utilize two fundamentally different avenues of defense: 

resistance and tolerance (Råberg et al. 2007; Best et al. 2008). Resistance mechanisms reduce 

the probability and degree of parasitic infection, and subsequent parasite replication (e.g. parasite 

fitness)(Best et al. 2008). In contrast, tolerance describes the ability of hosts to ameliorate the 

negative fitness impacts of infection for a given pathogen load (Råberg et al. 2009; Kutzer & 

Armitage 2016a). While host resistance reduces parasite fitness, host tolerance does not. 

Therefore, the two defense strategies should engender different co-evolutionary outcomes for 

host-parasite dynamics (Roy & Kirchner 2000; Restif & Koella 2004).  
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Resistance and tolerance evolve to combat the inherent damage (virulence) that parasites cause 

to their hosts. Virulence differs among parasite and host genotypes (Lambrechts et al. 2006; 

Råberg et al. 2007) and with host ecology and condition (Thomas & Blanford 2003; Boots 2011; 

Howick & Lazzaro 2014). For example, hosts that consume high nutrient diets express increased 

immune function, reducing virulence (Lee et al. 2006; Povey et al. 2009).  Together, host 

resistance and tolerance influence the rate at which parasites replicate and damage the host, 

combining to govern the severity of virulence (de Roode et al. 2008a, b; Tao et al. 2015). 

 

Understanding variance in resistance has long been a focus of disease ecology. Host genotype, 

physiology and environment all contribute to parasite resistance (Lambrechts et al. 2006; 

Wolinska & King 2009). In contrast, our understanding of host tolerance derives in large part 

from the study of pests that attack plants (reviewed in Baucom & De Roode 2011). Recent work 

investigating host tolerance in animal systems has focused largely on host genotype under 

laboratory conditions (Råberg et al. 2007; Rohr et al. 2010; Jackson et al. 2014; Regoes et al. 

2014). However, we miss important factors that contribute to variation in tolerance (Lefèvre et 

al. 2011) by isolating host-parasite interactions from the complex community of organisms or 

environmental conditions within which they normally interact (Sternberg et al. 2012; Hayward et 

al. 2014; Tao et al. 2015; Debes et al. 2017; Zeller & Koella 2017). For example, variation in the 

nutritional quality of host diet combines with genotype to affect the tolerance of mice and fruit 

flies to parasites (Clough et al. 2016; Kutzer & Armitage 2016b).  

 

Global environmental change directly affects the ecology and evolution of host-parasite 

interactions (Tylianakis et al. 2008; Altizer et al. 2013; Becker et al. 2015). In many cases, 

environmental change increases the distribution and prevalence of parasites in host populations 

(Garamszegi 2011; Zamora-Vilchis et al. 2012). Host resistance can increase or decrease in 

response to the direct effects of environmental change on parasite life cycle and host physiology 

(Bruno et al. 2003; Adamo & Lovett 2011; Paull & Johnson 2014). However, surprisingly little 

work has investigated how future environmental conditions may impact host tolerance of 

disease. 
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Moreover, indirect effects of environmental change on host-parasite interactions remain largely 

unexplored. Future environmental conditions will alter the composition and traits of the 

surrounding biotic community (Tylianakis et al. 2008; Gunderson et al. 2017), which may lead 

to additional shifts in host resistance and tolerance, and parasite virulence. Phytophagous insect-

parasite systems are excellent models with which to study the indirect effects of global change 

on host-parasite interactions in the context of their communities. Host-plant quality influences 

the effects of parasites on phytophagous insects (Cory & Hoover 2006; Shikano 2017), and plant 

nutritional and defensive chemistry vary substantially in response to environmental change 

(Bidart-Bouzat & Imeh-Nathaniel 2008). For instance, elevated concentrations of atmospheric 

CO2 can induce the accumulation of foliar carbohydrates, reduce leaf nitrogen concentrations, 

and change secondary metabolite production (Hunter 2001; Robinson et al. 2012; Zavala et al. 

2013). Such changes in host plant secondary chemistry and nutrient content can alter herbivore 

performance against parasites through changes in host immunity or by directly affecting parasite 

performance (Cory & Hoover 2006; Shikano et al. 2010; Lampert 2012). In essence, global 

environmental change alters plant quality, which can affect the interactions between herbivores 

and their parasites. 

 

Here, we assess the impact of a pervasive driver of environmental change, elevated atmospheric 

CO2 concentration (eCO2), on the interaction between monarch butterflies, Danaus plexippus, 

and their protozoan parasite, Ophryocystis elektroscirrha (Mclaughlin et al. 1970). Ophryocystis 

elektroscirrha infection reduces adult monarch lifespan, fecundity, and flight ability (Bradley & 

Altizer 2005; de Roode et al. 2008b, 2009). Monarchs become infected by consuming dormant 

parasite spores on the surface of egg chorea and leaf tissue. During monarch development, 

parasites replicate within the insect and adult butterflies emerge covered in dormant parasite 

spores. The specialist monarchs lay eggs on their milkweed, Asclepias, host-plants (Malcolm & 

Brower 1989), thereby contaminating foliage and eggs with spores. 

 

Certain milkweed species are strongly medicinal, reducing the probability of infection, growth 

rate, and virulence of O. elektroscirrha (de Roode et al. 2008a). The medicinal qualities of 

milkweed are related to concentrations of cardenolides, toxic steroids produced in a majority of 

milkweed species (Gowler et al. 2015). Larvae that feed on plants with high cardenolide 
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concentrations, or a high diversity of lipophilic cardenolides, suffer lower rates of infection, 

maintain higher fitness at a given parasite load, and produce fewer new parasites (de Roode et al. 

2011b; Sternberg et al. 2012; Gowler et al. 2015). Additionally, high foliar nutrient 

concentrations can increase monarch tolerance to their parasites (Tao et al. 2015). Thus, foliar 

cardenolides and nutrients combine to mediate the resistance and tolerance of monarchs to their 

parasites. Recent work shows that eCO2 causes decreases in cardenolide concentrations, changes 

in the composition of cardenolides, and declines in nutrient concentrations of milkweed 

(Vannette & Hunter 2011; Matiella 2012). Therefore, increasing atmospheric CO2 concentrations 

may influence milkweed-mediated interactions between monarchs and their parasites 

 

Together these data motivate the overarching question of this study: Will monarch resistance and 

tolerance and O. elektroscirrha virulence change with milkweed phytochemistry under future 

atmospheric CO2 concentrations? We performed a field mesocosm experiment to explore how 

eCO2 alters the foliar chemistry of four milkweed species. We then measured the CO2-mediated 

effects of altered food-plant chemistry on three aspects of monarch and parasite performance: 1) 

the spore load of infected monarchs; 2) the tolerance of monarchs, expressed as the rate of 

decline in longevity with increasing spore load; and 3) the virulence of O. elektroscirrha, 

calculated as the decline in adult monarch lifespan due to infection. We hypothesized that the 

presence of diverse and lipophilic cardenolides, in conjunction with foliar nutrient quality, 

dictates the effects of eCO2 on monarch-parasite interactions.  

 

2.3 Materials and Methods 
We performed the experiment in two temporal blocks during the summers of 2014 and 2015. 

General experimental procedures were the same for both blocks, with some minor differences 

noted below. The experiment was fully factorial, with milkweed species, parasite treatment 

(infected or uninfected), and CO2 treatment (ambient or elevated) as main effects (Table S1). 

 

Plant Materials  

We grew four species of milkweed under current ambient (400 ppm, aCO2) and future (760 ppm, 

eCO2) concentrations of atmospheric CO2 at the University of Michigan Biological Station 

(45.5587° N, 84.6776° W). Plants grew in a mesocosm array of 40 chambers, 20 maintained at 
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aCO2 concentrations, and 20 at eCO2 concentrations from dawn until dusk (Drake et al. 1989). 

We chose milkweed species that differed in their cardenolide concentrations and diversity, on a 

gradient of anti-parasitic effects from low to high: A. incarnata (low), A. speciosa, A. syriaca 

(both medium) and A. curassavica (high) (Sternberg et al. 2012). All four milkweed species 

occur in sympatry in North America (Woodson 1954; Malcolm & Zalucki 1996). Seeds were 

obtained from commercial sources (Butterfly Encounters, CA in 2014 and Prairie Moon 

Nurseries, MN in 2015). After six weeks of cold stratification (for all but tropical A. 

curassavica), seeds were germinated and planted on 5/3/14 and 5/5/15 in deepots TM containing 

Metromix 360 and Osmocote 16:16:16 controlled release fertilizer. Seedlings were watered daily 

and kept in a glass house for two weeks following germination to avoid frost damage. We 

transferred seedlings outside to their assigned chambers on 5/24/14 and 5/23/15. 

 

Monarch caterpillars can consume three entire plants as larvae. Due to space limitations in 2014, 

only two plants of the assigned milkweed species and CO2 treatment were grown for each larva. 

This made for 16 experimental plants in total in each chamber (4 species of milkweed x 2 

parasite treatments x 2 plants per monarch). Once larvae had consumed both assigned plants, 

they were fed cuttings from A. tuberosa, a milkweed with negligible cardenolides. Milkweed 

chemistry influences parasite infection success and severity just before and during consumption 

of parasite spores on plant material (de Roode et al. 2011a). Therefore, switching to an almost 

cardenolide-free host-plant just before pupation should have no effect on monarch-parasite 

interactions. In 2015, each chamber held enough plants to feed all larvae for their entire larval 

periods (4 species of milkweed x 2 infection treatments x 3 plants per monarch = 24 plants per 

chamber) with 20 aCO2 and 20 eCO2 chambers as before.  

 

CO2 concentrations were monitored continuously during daylight hours in all eCO2 chambers 

and one ambient chamber using a LI-COR 320 IRGA (LI-COR, Lincoln, NE, USA). The 

concentrations of CO2 were adjusted throughout the day to maintain target concentrations in each 

elevated chamber. Air temperatures within the chambers were monitored throughout the 

experiment using iButton dataloggers (IbuttonLink, Whitewater, WI, USA). Elevated CO2 

chambers averaged 21.03 (±0.03)ºC, and ambient CO2 chambers averaged 21.24 (± 0.04)ºC 

which were roughly 2ºC higher than the outside average temperature of 18.93 (± 0.04)ºC and fell 



 21 

well within those temperatures experienced by monarchs in eastern North America. Plants were 

maintained in their chambers for 61 days in 2014 and 42 days in 2015 before experimental trials 

began. 

   

Monarch Sources and Rearing Methods 

Monarchs were F1 offspring of eight (2014) and seven (2015) genetic crosses between eastern 

North American lineages. Darkened monarch eggs (those about to hatch) were placed 

individually on milkweed cuttings taken from plants grown in the array. Only one larva from 

each treatment group (4 milkweed species x 2 levels of parasite infection = 8 treatments) was 

reared on plants from each chamber (Table A1). We kept larvae individually in 0.64L plastic 

containers under ambient conditions on foliage transferred daily from the appropriate atmosphere 

to avoid any possible confounding direct effects of CO2 on insect performance (although such 

effects are considered negligible (Bale et al. 2002)).  

 

Each year, we infected monarchs with a single parasite genotype cultured from spores collected 

from an eastern North American butterfly. Hatchlings fed for three days on their assigned leaf 

tissue before inoculation with O. elektroscirrha. To infect larvae, 10 parasite spores were 

transferred to a 70.6 mm2 leaf disk taken from each larva’s assigned host plant. The leaf disk was 

placed in a petri dish containing moist filter paper and the assigned larva. Control larvae received 

spore-free leaf disks. Immediately after disks were punched from plants, foliage was collected 

for chemical analysis (below).  Petri dishes containing disks and larvae were kept in an incubator 

held at 26°C with 16-hour daylight. Once each larva had consumed its entire leaf disk (and 

therefore all spores) it was returned to its assigned container and fed foliage ad libitum from its 

designated plants until pupation.  

 

Measures of Monarch Performance 

Upon emergence, butterflies were sexed, transferred to individual glassine envelopes, stored at 

14°C and inspected daily until death. Lifespan under these conditions correlates strongly with 

monarch lifetime reproduction (fitness) (De Roode et al. 2008b). Parasite virulence was 

measured as the magnitude reduction in lifespan of infected monarchs when compared to control 

monarchs. After death, spore loads were measured from adults following established methods 
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(de Roode et al. 2008a). Wings were removed and each monarch body was placed in a 

scintillation vial with 5 mL of deionized water. The mixture was vortexed for five minutes, and 

10 µL aliquots were deposited into 4 wells in a hemocytometer for counting. Spore load 

represents the inverse of monarch resistance. Tolerance to O. elektroscirrha was measured as the 

slope of the relationship between spore load and longevity, with a separate line (slope estimate) 

for each milkweed species by CO2 treatment. The slopes of the tolerance lines are an index of the 

fitness cost suffered per spore in each treatment.  

 

Plant Defense Measurements 

On the same day as inoculations, we sampled foliage to measure cardenolide and nutrient 

concentrations using established methods (Zehnder & Hunter 2009; Tao & Hunter 2012). Six 

424 mm2 leaf disks were taken from one leaf of the fourth leaf pair, deposited in 1 mL methanol 

and stored at -10°C for cardenolide analysis. Cardenolides were extracted, separated and 

quantified by reverse-phase high-performance liquid chromatography (HPLC) on a Waters 

Acquity UPLC with PDA detector (Waters Coperation, Milford, MA, USA) with 0.15mg/mL 

digitoxin internal standard (Sigma Chemical Company, St. Louis, Missouri, USA). Peaks with 

symmetrical absorbance between 217-222 nm were identified as cardenolides. Another six disks 

from the opposite leaf in the leaf pair were collected, weighed, dried, and reweighed to provide 

estimates of sample dry mass. Remaining foliage from the two punched leaves was collected, 

oven dried, and analyzed using a TruMac CN Analyzer (Leco Corporation, St. Joseph, MI) to 

estimate foliar carbon (C) and nitrogen (N) concentrations. 

 

Statistical Methods 

Analyses were carried out in R (version 3.3.2). In all of the linear mixed effects models (lme4 

package, LMMs) that follow, we included experimental year and chamber identity as random 

effects, to account for unintended temporal and spatial variation. We also included monarch 

genotype as a random effect in all models of monarch performance. 

 

Monarch performance 

Our analyses are limited to only those monarchs that survived to adulthood, including 

successfully infected monarchs, and uninoculated (control) monarchs (Sternberg et al. 2012). 
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Analyses of parasite burden were restricted to infected monarchs, but analyses of tolerance 

included both infected and uninfected monarchs.  

 

To investigate effects of our treatments on monarch tolerance, we modeled adult longevity 

(square-root-transformed) as a function of spore load (square-root-transformed) (Sternberg et al. 

2012), including milkweed species and CO2 treatment as additional fixed effects. To investigate 

the effects of CO2 treatment and milkweed species on parasite virulence, we used monarch life 

span (square-root-transformed) as the dependent variable and parasite treatment as an additional 

fixed effect. Finally, to estimate monarch resistance, we included monarch spore load (square-

root-transformed) as the dependent variable, with milkweed species and CO2 treatment as fixed 

effects. Analysis of monarch resistance was only conducted on infected individuals. For all 

models, homoscedasticity of variance was tested using Levene’s Tests (car package in R). 

 

To test for a trade-off between host tolerance and resistance, we associated monarch tolerance 

with resistance to O. elektroscirrha using a LMM with year as a random effect (Råberg et al. 

2009). We assessed any relationship between the 16 tolerance slope values of each treatment 

group in each year (4 milkweed species x 2 CO2 treatments x 2 years) and the mean resistance 

values (1/spore load) of those treatment groups. 

 

Milkweed chemistry and elevated CO2 

We explored the responses to our CO2 treatments of (a) total foliar cardenolide concentration 

(log-transformed), (b) cardenolide diversity, (c) cardenolide polarity, (d) C:N ratio, and (e) foliar 

N concentration using LMMs. Cardenolide diversity was calculated using the Shannon diversity 

index borrowed from the biodiversity literature: H=-sum(Pilog[Pi]) where Pi is the relative 

amount of a cardenolide peak compared to the total amount of cardenolides in an individual plant 

(Rasmann & Agrawal 2011). We excluded A. incarnata plants from the LMM exploring effects 

of CO2 treatments on cardenolide diversity because only 2 individuals produced more than a 

single cardenolide peak.  Following Rasmann & Agrawal (2011), we calculated an index of 

cardenolide polarity P=sum(Pi RTi), where RTi is the retention time of the ith peak in the 

individual. The polarity index values that result range from 0 (highly polar) to 1 (highly 

lipophilic). 
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We also compared cardenolide composition among milkweed species and CO2 treatments using 

permutational multivariate analysis of variance (PerMANOVA) (Anderson 2001) following 

Bray-Curtis ordination. The analysis was performed using the Adonis procedure of the Vegan 

package in R. Using metaMDS we performed Nonmetric Multidimensional Scaling (NMDS) 

(McCune & Grace 2002) reducing the dimensions of the model with 999 permutations per model 

run and a maximum of 500 runs per dimension. We ultimately used a three-dimensional model in 

subsequent analyses (model stress = 0.119) (McCune and Grace 2002).  

 

Within the assemblage of cardenolides available to monarchs, two specific cardenolide peaks 

(RT585 and RT650) have been associated previously with the medicinal efficacy of milkweed 

species against O. elektroscirrha (de Roode et al. 2011b). In our experiment, we found these two 

cardenolides only in the foliage of A. curassavica, with the exception of one A. syriaca plant 

grown under aCO2. Given the established importance of these two compounds, and the losses 

that we observed in the medicinal activity of A. curassavica under elevated CO2 (see Results, 

below), we ran separate LMMs with each of these cardenolides as dependent variables and CO2 

treatment as a fixed effect.   

 

Milkweed chemistry and monarch performance 

We observed significant effects of elevated CO2 on monarch tolerance and parasite virulence on 

only one milkweed species, A. curassavica (see Results). We used LMMs to assess any 

individual and interactive effects of A. curassavica traits on monarch tolerance and parasite 

virulence. All analyses were restricted to those A. curassavica plants for which we had measures 

of cardenolide diversity and corresponding C and N data (N=77). We also performed a 

PerMANOVA on the cardenolide communities produced in A. curassavica alone.  

 

We used Akaike’s information criterion (AIC) scores to select chemical traits that were 

associated with virulence or tolerance. We planned to add additional traits (and interactions) to 

each model only if the AIC scores improved by two points and if the significance level of the 

new variable was below 0.05 (Burnham & Anderson 2002).  However, in no case was more than 

one independent variable included in any model. 
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(i) Chemistry and Tolerance. Using the procedure described above, we assessed associations 

between A. curassavica traits and monarch tolerance (slope of fitness decline) by investigating 

effects of spore load (log10-transformed) and plant traits on lifespan (square-root-transformed).  

 

(ii) Chemistry and Virulence. Likewise, we measured associations between individual A. 

curassavica traits and parasite virulence by investigating the effects of infection treatment and 

plant traits on lifespan (square-root-transformed). Because we were interested in how plant traits 

could influence the fitness consequences of infection, we also performed analyses on infected 

butterflies only (N=32) using only plant traits that produced significant and marginally 

significant interactions with infection treatment. 

 

2.4 Results 
Monarch tolerance and parasite virulence 

Monarch tolerance to O. elektroscirrha declined by 77% under eCO2 for individuals reared on 

the medicinal milkweed, A. curassavica (see slope relating monarch longevity to parasite spore 

load in Fig. 1). The tolerance of monarchs feeding on less medicinal milkweed species remained 

unchanged under eCO2 (spore load *species*CO2: F3,315= 4.50, p= 0.00415, Fig. 2.1).  These 

results suggest that eCO2 reduces the protective properties of A. curassavica to the same levels as 

those of less-medicinal milkweeds (Fig. 2.1).  

 

Consistent with effects on tolerance, the virulence of O. elektroscirrha increased under eCO2 in 

those monarchs reared on A. curassavica, and remained unchanged on the lower cardenolide 

milkweed species (infection*species*CO2: F3, 308= 4.44, p= 0.0045, Fig. 2.2a). Essentially, eCO2 

made A. curassavica non-medicinal, magnifying the reduction in fitness caused by infection to 

values similar to those of those monarchs feeding on the other three milkweed species. The 

magnitude of the reduction in lifespan between control and infected monarchs feeding on A. 

curassavica increased from 1.8 days to 7.2 days under eCO2 (Fig. 2.2b). As expected, all 

infected monarchs had shorter lifespans than uninfected monarchs (infection: F1, 314=263.55, 

p<0.0001, Fig. 2.2b).  
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In contrast to their effects on monarch tolerance and parasite virulence, we found no effects of 

eCO2 (F1,129=1.71, p=0.1931), host plant species (F3,137=1.28, p=0.2845), or their interaction 

(F3,138=1.35, p=0.2596) on monarch resistance to the parasite as measured by spore load. 

Additionally, we found no tradeoff between monarch tolerance and resistance to O. 

elektroscirrha (F1, 15 =0.91, p=0.3548).  

 

Milkweed chemistry and elevated CO2 

Foliar cardenolide concentrations were twelve times higher in A. curassavica than in A. syriaca, 

the next highest milkweed species (milkweed species: F3,166 =192.31, p<0.0001, Fig. 2.3a). 

Cardenolide concentrations declined under eCO2 across all milkweed species (CO2: F1,166 =5.77, 

p=0.0174, Fig. 2.3a), and there was no interaction between milkweed species and CO2 treatment 

(F1,166=0.48, p=0.6963). The diversity of cardenolide molecular forms was four times higher in 

A. curassavica than in the other milkweed species (milkweed species: F3, 109= 47.11, p<0.0001, 

Fig. 2.3b) and declined under eCO2 in all milkweed species but A. incarnata, a species which 

rarely produces more than one cardenolide (CO2: F1, 33=5.63, p=0.02362). There was no 

interaction between milkweed species and CO2 treatment on cardenolide diversity (milkweed 

species*CO2: F2,141= 0.54, p = 0.58274). The average polarity of A. curassavica cardenolides 

was marginally reduced by eCO2 treatments, while the average polarity of cardenolides increased 

in A. speciosa and decreased in A. syriaca (species*CO2: F3, 153=2.99, p=0.03281, Fig. 2.3c).  

 

Across all four species, foliar N concentrations (an estimate of plant nutritional quality) declined 

under eCO2 (CO2: F1,48= 12.33, p= 0.00098, Fig. 2.3d). Milkweed species also varied in their 

foliar N concentrations from 1.42% in A. curassavica to 1.14% in A. syriaca (F1,137 = 4.43, p= 

0.0052, Fig. 2.3d). 

 

Beyond simple measures of cardenolide polarity and diversity, milkweed species differed in the 

composition of cardenolides in their foliage (PerMANOVA; milkweed host plant species: F3, 171= 

20.02, p= 0.001, R2=0.26, Fig. A1). Additionally, the effects of CO2 treatment on cardenolide 

community composition varied among milkweed species (PerMANOVA; milkweed 

species*CO2: F1, 171= 2.12, p= 0.001, R2=0.027, Fig. A1). In A. curassavica alone, the 

communities of cardenolides produced by individual plants differed between CO2 treatments 
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(CO2: F1, 76 = 2.80, p= 0.03, R2=0.036, Fig. 2.4a). NMDS1 was associated with declines in the 

concentrations of lipophilic cardenolides (decline in polarity index) (p<0.0001, R2=0.47, Fig. 

2.4b).  

 

Concentrations of both RT585 and RT653, the two cardenolides with established medicinal 

activity (de Roode et al. 2011b), declined in A. curassavica under eCO2. Concentrations of 

RT585 declined by 25% under eCO2 (F1, 61= 5.36, p= 0.02401, Fig. 2.5a). Far fewer A. 

curassavica individuals produced RT653, making for a very small sample size (N=6). 

Nonetheless, we detected a large (65%), marginally nonsignificant, decline in RT653 

concentration under eCO2 (F1, 4= 5.92, p= 0.0717, Fig. 2.5b).  

  

 

A. curassavica chemistry and monarch performance 

Tolerance 

A significant interaction between spore load and a given plant trait on monarch lifespan indicates 

a correlation between that trait and tolerance to O. elektroscirrha. Monarch tolerance correlated 

positively with the expression of lipophilic cardenolides in leaves (spore load* polarity: F1, 72 

=4.10, p= 0. 04665, Fig. 2.6a). No other individual plant trait or combination of traits correlated 

with monarch tolerance.  

 

Virulence 

A significant interaction between a plant trait and parasite treatment on monarch lifespan 

indicates a relationship between that trait and parasite virulence. As with tolerance, there was a 

positive relationship between the expression of liphophilic cardenolides and the lifespan of 

infected individuals (declining virulence) but it was marginally non-significant (parasite 

treatment*polarity: F1, 72= 3.32, p= 0.0726, Fig. 2.6b); only infected monarch lifespans increased 

significantly with increasing expression of lipophilic cardenolides (F1,23= 14.41, p= 0.0009). No 

other individual plant trait or combination of traits correlated with monarch virulence. 
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2.5 Discussion 
Monarch butterflies benefit from the medicinal properties of milkweeds when combating their 

parasites (de Roode et al. 2008a, 2011a; Sternberg et al. 2012; Gowler et al. 2015), and infected 

females can actively choose the most medicinal milkweeds for oviposition in laboratory choice 

tests (Lefèvre et al. 2010, 2012).  Here, we show that a medicinal milkweed species, A. 

curassavica, loses its protective abilities under eCO2.  Our results suggest that rising 

concentrations of atmospheric CO2 will reduce the tolerance of monarch butterflies to their 

common parasite, Ophryocystis elektroscirrha, and will increase parasite virulence. Ongoing 

changes in water availability (Andrews 2015), ambient temperature (Couture et al. 2015) and 

soil nutrient loading (Zehnder & Hunter 2009; Tao et al. 2014) have already been shown to 

influence the cardenolide chemistry of milkweeds, with potential consequences for parasite-

monarch interactions.  Here, we add elevated concentrations of atmospheric gases to the list of 

drivers that may alter parasite-host interactions of monarch butterflies in a changing world. 

 

We observed the lowest tolerance values in those monarchs feeding on A. syriaca grown under 

eCO2 and the highest tolerance values in those monarchs feeding on A. curassavica grown under 

aCO2. However, monarchs feeding on the same species of milkweed that once conveyed a 

tolerance advantage under aCO2 (A. curassavica), experienced a 77% reduction in their tolerance 

levels under eCO2. In parallel, parasite virulence also depended on both milkweed species and 

CO2 concentrations. Parasites caused the most virulence when monarchs fed on A. incarnata 

under aCO2, reducing host lifespan by nearly 8 days (see Fig. 2.2b). Parasites caused the least 

virulence in those monarchs feeding on A. curassavica grown under aCO2, reducing mean 

lifespan by only 2 days. Importantly, monarchs feeding on this same species, A. curassavica, 

under eCO2 experienced virulence of comparable values to non-medicinal species like A. 

incarnata, suffering a reduction in lifespan of 7 days due to infection. To our knowledge, these 

results are the first to show that there can be effects of environmental change on host tolerance to 

parasites and the virulence of those parasites as a result of indirect effects mediated by 

community members.  
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A growing number of studies stress the importance of understanding the indirect mechanisms by 

which disease will respond to changing environmental conditions (Harvell et al. 2002; 

Tylianakis et al. 2008; Altizer et al. 2013; Gunderson et al. 2017). Indirect effects of 

environmental change on host-parasite interactions emerge from additional members of 

ecological communities (Keesing et al. 2006; Wolinska & King 2009; Vuong et al. 2017). 

Associated predators, competitors and symbionts are all subject to the effects of environmental 

change, which may alter their interactions with host-parasite pairs (Ritchie 2006; Gherlenda et 

al. 2016). Here, we provide a previously unrecognized indirect mechanism by which 

environmental change can act on disease: the loss of medicinal compounds in host diet, 

contributing to reductions in host tolerance and increases in parasite virulence.  

 

Changes in host tolerance and parasite virulence under future environmental conditions have 

important evolutionary implications. Theory predicts that reductions in resistance will lesson 

antagonistic coevolution between host and parasite (Roy & Kirchner 2000; Råberg et al. 2009; 

Rohr et al. 2010). However, we are less certain what changes in host tolerance could mean for 

host-parasite dynamics (Best et al. 2008; Schneider & Ayres 2008). Because tolerance helps to 

maintain host fitness when infected, less tolerant hosts should suffer shorter infections due to 

increased mortality, thereby potentially decreasing transmission and the prevalence of parasites 

in the host population (Miller et al. 2006). In our study, reduced tolerance was also accompanied 

by increased parasite virulence. In some cases, increases in virulence may lead to local extinction 

(Kutzer & Armitage 2016a; Wilber et al. 2017). We expect parasites that cause higher virulence 

to be selected against when host tolerance is also reduced because the risk of premature host 

mortality is higher. Early host death reduces parasite fitness and thus, induces selection on 

parasite virulence to decrease to a new optimum (Little et al. 2010). Given the reductions in host 

tolerance, we predict that future environmental conditions may select for less virulent parasites. 

But it remains unclear how potential feedback mechanisms between host defenses and parasite 

transmission will ultimately shape disease dynamics under global change regimes (Metcalf et al. 

2017). 

  

Our results add to a substantial body of work that emphasizes the role of environmental factors in 

phytophagous host-parasite interactions (Cory & Hoover 2006; Myers & Cory 2016; Shikano 
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2017). The largest declines in tolerance and increases in virulence occurred in monarchs feeding 

on A. curassavica, a species in which cardenolide production declined by nearly 25% when 

grown under eCO2. However, total cardenolide concentrations did not correlate with changes in 

tolerance. Rather, reductions in cardenolide concentration under eCO2 occurred in concert with 

changes in cardenolide community composition and declines in the expression of lipophilic 

cardenolides (Figs. 2.4, 2.5). Because the polarity of cardenolides partially determines their 

biological activity (Agrawal et al. 2012), the loss of lipophilic cardenolides under eCO2 

compromises the anti-parasitic properties of milkweed foliage. Infected monarchs that consume 

lipophilic cardenolides live longer than do those infected monarchs consuming polar 

cardenolides (Sternberg et al. 2012; Tao et al. 2016). Previous work has shown that declines in 

the concentrations of two key lipophilic cardenolides, RT585 and RT653, increase parasite 

virulence (de Roode et al. 2011b). We also observed reductions in these two cardenolides in our 

populations of A. curassavica that were exposed to eCO2, which likely led to the observed 

increases in parasite virulence.  

 

Surprisingly, the declines in tolerance to O. elektroscirrha that we observed in monarchs feeding 

on A. curassavica under elevated CO2 were unrelated to host-plant nitrogen concentrations, our 

proxy for nutritional quality. Recent studies of environmentally-determined host tolerance have 

reported that diets high in nutrients generally increase host tolerance to parasite infection 

(Clough et al. 2016; Kutzer & Armitage 2016b; Miller & Cotter 2017; Zeller & Koella 2017). 

While foliar nitrogen concentrations often limit herbivore performance (Mattson 1980), there can 

be complex, non-linear relationships between milkweed nitrogen concentrations and herbivore 

performance (Zehnder & Hunter 2009; Tao et al. 2014). We may need more comprehensive 

evaluations of nutritional quality before we can establish the effects of dietary quality on O. 

elektroscirrha tolerance in monarchs. Nonetheless, our study supports previous work (Sternberg 

et al. 2012) suggesting that secondary metabolites, not just nutrients, influence the tolerance of 

herbivores to their parasites.   

 

By demonstrating that tolerance to parasite infection can be altered by environmental change, we 

reinforce the idea that tolerance is not solely determined by intrinsic host factors but relies 

additionally on environmental conditions including interactions with other community members. 
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As the environmental factors that mediate host tolerance and parasite virulence continue to 

change, further empirical studies are sorely needed to explore the interplay between multiple 

global change drivers and host-parasite interactions embedded within diverse ecological 

communities. 
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2.7 Tables & Figures 

 
Figure 2.1. Monarch tolerance to O. elektroscirrha infection as a function of milkweed species and CO2 treatment.  
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a) 

 
 
b) 

 
Figure 2.2: The virulence of O. elektroscirrha parasites increases under elevated CO2 when 
monarch larvae feed on A. curassavica. Virulence is measured as the magnitude of the reduction 
in host fitness resulting from infection. In (a), points represent the standardized difference 
(Hedge’s d ± 95% CI) in mean lifespan between uninfected and infected monarchs fed different 
species of milkweed under ambient CO2 (400 ppm, light gray) and elevated CO2 (760 ppm, dark 
gray). In (b), we show mean longevity of parasite-infected (dark gray bars) and uninfected (light 
gray bars) monarchs used to calculate the Hedge’s d values shown in (a). Longevities were 
transformed to approximate normality of errors before statistical analyses but are presented here 
as untransformed values for ease of interpretation. Milkweed species codes match those 
presented above 
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Figure 2.3: Effects of elevated CO2 on foliar cardenolide concentrations (mg/g dry mass, a), cardenolide diversity (b), cardenolide 
polarity index (c), and foliar nitrogen concentration (%N) (d) of four milkweed species. Trait values were transformed to 
approximate normality of errors before analyses but are presented here in their untransformed values for ease of interpretation. 
Light gray bars represent plants grown under ambient CO2 and dark gray bars are those from elevated CO2. Milkweed species 
codes match those presented above. 
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reflects greater expression of lipophilic cardenolides.  The slopes of the lines in (a) indicate 
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binning was used purely as a simplified alternative to a 3D graph.  In (b), light gray points and 
lines indicate uninfected (Control) monarchs, and dark gray points and lines indicate infected 
monarchs. Only the lifespan of infected monarchs was positively correlated with the index of 
cardenolide polarity. 
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Chapter 3 : Defense and Evasion from Predators in A Changing World 
 

3.1 Abstract 
Environmental change has the potential to influence trophic interactions by altering the defensive 

phenotype of prey. For example, changing environmental conditions may influence prey 

resistance to disease, prey palatability, or the ability of prey to escape from areas of high 

predation risk. Here we present the first study to examine the effects of a major environmental 

change driver, elevated CO2, on toxin sequestration and flight morphology of a specialist 

herbivore. We fed monarch butterfly larvae, Danaus plexippus, foliage from four milkweed, 

Asclepias, host plant species of varying chemical defense profiles grown under either ambient or 

elevated CO2. We also infected a subset of these herbivores with a protozoan parasite, 

Ophryocystis elektroscirrha, to understand how infection and environmental change combine to 

alter herbivore defenses. We measured changes in phytochemistry induced by eCO2 and assessed 

subsequent toxin sequestration and morphology of butterflies. Our results demonstrate that 1) 

monarchs compensate for lower plant toxin concentrations under elevated CO2 by increasing 

toxin sequestration rate; they maintain the same composition and concentrations of cardenolides 

in their wings under the two CO2 treatments. 2) Flight morphology, including wing shape, wing 

loading, and wing density vary by elevated CO2, milkweed species, infection status, and sex. 3) 

Feeding on high cardenolide milkweed is associated with the formation of rounder, thinner 

wings, which are less efficient at gliding flight. We suggest that changes in the rate of 

sequestration under elevated CO2 are a byproduct of compensatory feeding aimed at maintaining 

a nutritional target in response to declining dietary quality. Ingesting larger amounts of foliage 

from milkweed high in cardenolides may come at a cost to the monarch. Such costs may 

manifest as lower quality flight phenotypes: rounder, thinner wings with lower wing loading 

values. Small changes in wing morphology may have important consequences for flight ability 

and migration success. Energetic costs due to alterations in sequestration and morphology may, 

therefore, have important consequences for monarch defense in a changing world. 
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3.2 Introduction 
Global environmental change alters the composition of ecological communities through both 

direct and indirect effects. For example, variable environmental factors directly impact the 

phenotype of some organisms (Parmesan & Yohe 2003; Altizer et al. 2013; Chu et al. 2016), 

which, in turn, may generate cascading indirect effects on other community members (Parmesan 

2006; Gilman 2017; Gunderson et al. 2017). Therefore, a major challenge for ecology rests in 

understanding how direct and indirect effects of abiotic and biotic drivers combine to influence 

organisms under environmental change (Tylianakis et al. 2008; Gilman et al. 2010).  

 

The rising concentration of carbon dioxide (CO2) in Earth’s atmosphere is one of the most 

pervasive global change drivers. Elevated CO2 typically causes reductions in the nutritional 

quality of plants, increasing the concentration of nonstructural carbohydrates in relation to 

nitrogen-based compounds (Drake et al. 1997; Ainsworth & Long 2005; Robinson et al. 2012; 

Bazzaz et al. 1992). Because herbivore growth is often limited by nitrogen (Mattson 1980), 

elevated CO2 generally causes herbivores to increase the amount of foliage that they consume 

(Docherty et al. 1996; Johnson et al. 2014b). Along with diluting nutritional quality, elevated 

CO2 also alters the defensive chemistry of plants with important implications for herbivores 

(Hunter 2001; DeLucia et al. 2012; Robinson et al. 2012; Zavala et al. 2013; Facey et al. 2014; 

Ode et al. 2014; Jamieson et al. 2017). Elevated CO2 changes both the composition and 

concentration of plant secondary metabolites (PSMs) depending on compound class (Bidart-

Bouzat et al. 2005; Ryan et al. 2010; Klaiber et al. 2013a; Jia et al. 2016). Because detoxifying 

or catabolizing PSMs is energetically costly, changes in PSM concentrations affect the 

performance, abundance and distribution of herbivores (Hunter 2016). A number of authors have 

reviewed the plant-mediated effects of elevated CO2 on plant-herbivore interactions (most 

recently Jamieson et al. 2017). Generally, herbivore growth rates decline under elevated CO2, 

accompanied by decreases in fecundity, survival, and abundance in several insect orders 

including Lepidoptera (Robinson et al. 2012), although responses are context dependent.  

 

Higher trophic levels are also affected by CO2-induced shifts in plant quality (Ode 2006; Ode & 

Crompton 2013; Hentley et al. 2014a; Ode et al. 2014), with the effects of elevated CO2 on 
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natural enemies mediated mainly through shifts in prey nutritional quality and growth rate (Roth 

& Lindroth 1995; Holton et al. 2003; Chen et al. 2005; Klaiber et al. 2013b). For example, 

elevated CO2 reduces alfalfa nutritional quality, which increases the development times of 

armyworm caterpillars. Delayed development results in asynchrony between caterpillars and 

parasitoid wasps, and ultimately reduces parasitoid fitness (Dyer et al. 2013). However, changes 

in prey nutritional quality and growth rates are not the only means by which elevated CO2 may 

affect the natural enemies of herbivores. Elevated CO2 may also inhibit the defense and escape 

capabilities of herbivores. For example, elevated CO2 impairs aphid escape from predator attack 

by disrupting conspecific chemical alarm signaling (Hentley et al. 2014b). Hence, assessing the 

indirect influence of elevated CO2 on defensive strategies of herbivores in the context of natural 

enemies remains an important goal. 

 

In response to the threat of predators and parasitoids, many specialist herbivores have evolved 

mechanisms to co-opt PSMs for their own defense (Dyer & Deane Bowers 1996; Nishida 2002; 

Ode 2006; Opitz & Müller 2009; Petschenka & Agrawal 2016). Sequestration by insect 

herbivores is an active process involving the modification, transfer, and storage of toxic 

compounds, often at a significant metabolic cost to the insect (Opitz et al. 2010). This process 

may come at an additional cost to herbivores if the presence of toxic PSMs reduces the insect’s 

ability to mount a strong immune response against other natural enemies such as parasites 

(Smilanich et al. 2009; Greeney et al. 2012). The concentration and composition of PSMs 

sequestered depends on both the amount of tissue consumed by the insect, and insect 

sequestration efficiency, defined as the proportion of PSMs ingested that are retained (Bowers & 

Collinge 1992; Camara 1997). Host plant chemical profiles strongly influence the concentration 

and composition of PSMs sequestered by herbivores (Malcolm 1990, 1994; Agrawal et al. 2015). 

Therefore, environmental factors that alter phytochemistry could also influence herbivore 

sequestration (Prudic et al. 2005; Tao & Hunter 2015) with important consequences for 

herbivore susceptibility to predation and parasitism (Duffey 1980; Malcolm & Brower 1989a; 

Stamp & Bowers 1995; Dyer & Deane Bowers 1996).  Despite the well-demonstrated 

phytochemical changes induced by elevated CO2, we are unaware of any study to date that has 

examined the effects of CO2 on toxin sequestration by insects.  
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Changes in herbivore morphology may also mediate herbivore-enemy interactions under 

elevated CO2. Diet and stress influence the development and morphology of herbivores, with 

significant ecological consequences (Wainwright & Reilly 1994; Koehl 1996; Stoks 2001; 

Bernabò et al. 2013; Stoks et al. 2016). Therefore, phytochemical changes induced by elevated 

CO2 may alter aspects of herbivore morphology that directly influence escape from predators on 

both small and large scales. Escape over large spatial scales includes the phenomenon of 

“migratory escape”, in which prey may move long distances annually to mitigate any local build-

up of predators and parasites (Altizer et al. 2011, 2015).  In flying animals, foraging, courtship, 

predator escape, and migratory ability are strongly influenced by wing size, shape and wing 

loading, the ratio between body mass and wing area (Wootton 1992; Berwaerts et al. 2002; 

Dudley 2002). Subtle changes in wing size and shape can affect drag, lift, and ultimately, flight 

behavior (Srygley & Thomas 2002). To maximize energy use efficiency during flight, animals 

typically employ a combination of gliding and active propulsion (Park et al. 2010; Kovac et al. 

2012). Larger, more elongated wing shapes, where the ratio is high between wing length and 

width (Aspect Ratio), result in optimal gliding flight (Kerlinger 1989). Indeed, many migratory 

animals have bigger, more elongated wings (higher aspect ratios) with narrower tips that reduce 

drag and, thus, improve long distance flight performance (Lockwood et al. 1998; Leisler & 

Winkler 2003; Vágási et al. 2016). Wing loading also influences flight efficiency and behavior. 

Flying insects with higher wing loading values tend to possess larger energy reserves for stronger 

powered flight (Srygley & Kingsolver 2000; Dudley & Srygley 2008). Migration and habitat use 

impose strong selection on wing size, shape (Altizer & Davis 2010; DeVries et al. 2010; Chazot 

et al. 2015; Li et al. 2016), and wing loading (Buler et al. 2017). However, despite an extensive 

body of literature detailing the importance of dietary chemistry for insect fitness (Awmack & 

Leather 2002; Chown & Sue Nicolson. 2004), only a handful of studies have explored the effects 

of diet on wing morphology and consequent flight ability (Boggs & Freeman 2005; Pellegroms 

et al. 2009; Johnson et al. 2014a). 

 

Natural enemies themselves may also influence toxin sequestration and morphology of 

herbivores. Despite our knowledge of how sequestration jeopardizes immune defense against 

parasitoids and parasites (reviewed in Greeney et al. 2012), no study to date has examined how 

infection itself alters sequestration. In contrast, parasites have well-studied impacts on host 
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morphology (Johnson et al. 2002; Cunningham et al. 2005). In insects, disease may cause severe 

wing deformations ultimately inhibiting flight performance (Genersch et al. 2006; de Roode et 

al. 2008b; Villacide & Corley 2008; Dorhout et al. 2011). Infection and environmental factors 

may also combine to influence host morphology (Kristan & Hammond 2000), with the potential 

to alter defensive phenotypes. However, we do not yet know how the presence of natural 

enemies combines with environmental change to alter host defense. 

 

Here, we investigate the effects of elevated CO2 on the defense and susceptibility of a specialist 

Lepidopteran herbivore to its natural enemies. We fed larvae foliage from four host plant species 

with varying chemical defense levels grown under either ambient or elevated CO2. We also 

infected a subset of these herbivores with a parasite, to understand how infection and 

environmental change combine to alter herbivore defense, including wing traits associated with 

migratory escape. We measured changes in phytochemistry induced by elevated CO2 and 

assessed subsequent toxin sequestration and morphology of butterflies. Because phytochemistry 

influences insect sequestration patterns (Malcolm 1990, 1994; Agrawal et al. 2015), we expected 

sequestration profiles to mirror changes in plant chemistry induced by elevated CO2. In terms of 

butterfly morphology, we predicted that changes in PSMs and reductions in the nutritional 

quality of larval host plants grown under elevated CO2 (Robinson et al. 2012) would cause 

declines in the quality of the insect flight phenotype: smaller, thinner and rounder wings with 

lower wing loading values. Finally, we expected that the metabolic costs of parasitic infection 

would exacerbate any deleterious effects of elevated CO2 on toxin sequestration or wing 

morphology. 

 

 

3.3 Materials and Methods 
Study System 

Monarch butterflies, Danaus plexippus, are best known for two ecologically important behaviors 

relevant to defense against higher trophic levels: the sequestration of toxic PSMs and long-

distance migration. Some of the earliest studies of sequestration detail the monarch’s ability to 

store toxic steroids, cardenolides, derived from the foliage of their milkweed, Asclepias, host 

plants (Reichstein et al. 1968; Malcolm & Brower 1989b). Cardenolides disrupt the function of 
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Na+/K+-ATPase in the sodium-potassium channels of animal cells (Agrawal et al. 2012) and 

render monarchs bitter tasting, well-defended prey (Reichstein et al. 1968; Malcolm & Brower 

1989b). The polarity of cardenolides determines, in part, their biological activity (Rasmann & 

Agrawal 2011; Agrawal et al. 2012), whereby the most lipophilic (nonpolar) cardenolides are the 

most toxic, even reducing monarch performance (Sternberg et al. 2012; Tao et al. 2016). 

Monarchs utilize the diversity of milkweed species that they encounter throughout their range as 

larval host plants (Vickerman & de Boer 2002). Milkweed species vary substantially in the 

composition and concentration of cardenolides in their foliar tissues (Rasmann & Agrawal 2011; 

Agrawal et al. 2012). In turn, the composition and concentration of cardenolides sequestered by 

monarchs is correlated tightly with milkweed chemistry (Malcolm 1990, 1994; Agrawal et al. 

2015). Importantly, monarchs can selectively sequester moderately lipophilic cardenolides in 

their tissues (Malcolm & Brower 1989b; Tao & Hunter 2015). Despite a growing body of work 

illustrating the effects of environmental change on milkweed chemistry (Vannette & Hunter 

2011; Matiella 2012; Tao et al. 2014; Andrews 2015), we know very little about how monarch 

sequestration will respond to future environmental conditions (Tao & Hunter 2015).  

 

Monarchs exist in both migratory and non-migratory (resident) populations distributed across the 

globe (Ackery & Vane-Wright 1984). In eastern North America, monarchs migrate up to 4500 

km from their summer breeding grounds to overwintering sites in Mexico every Fall (Urquhart & 

Urquhart 1978; Brower & Malcolm 1991; Flockhart et al. 2017). Previous work comparing flight 

phenotype (wing size, shape, and loading) among different geographic populations of monarchs 

established that eastern N. American monarchs have larger and more elongated wings than their 

non-migratory conspecifics (Altizer & Davis 2010; Li et al. 2016). Migratory monarchs also 

have higher wing loading values. Within the eastern N. American population of monarchs, wing 

size and shape also vary with migration timing; earlier migrants have larger more elongated 

wings than do later migrants (Satterfield & Davis 2014). Wing development can be affected by 

the environmental conditions experienced by larvae in their final instars and during pupation 

(Speight et al. 1999). Therefore, morphological variation within populations may reflect the 

influence of environmental factors, such as diet, on flight phenotype. Extreme food restriction 

reduces monarch wing size (Johnson et al. 2014a); however, no study to date has examined the 

effects of varying cardenolide concentrations on monarch wing morphology.   
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Throughout their range, monarch populations suffer infection by a debilitating, protozoan 

parasite, Ophryocystis elektroscirrha, (Mclaughlin et al. 1970; Leong et al. 1997a; Altizer et al. 

2000). Infection by O. elektroscirrha reduces monarch lifespan, decreases fecundity, and limits 

flight ability (Altizer & Oberhauser 1999; Bradley & Altizer 2005; de Roode et al. 2008b, 2009). 

Monarchs become infected as early-instar larvae by ingesting spores on the surface of egg chorea 

and leaf tissue. During monarch development, parasites undergo both asexual and sexual 

replication. Ultimately, adult monarchs emerge covered in dormant parasite spores and heavily 

infected individuals are less able to migrate long distances (Altizer et al. 2000, 2015). Because 

heavily infected monarchs migrate poorly and are more likely die in transit (“migratory culling”), 

monarchs that do arrive to overwintering grounds experience a much lower prevalence of the 

pathogen (“migratory escape” (Altizer et al. 2011)). Thus, the migration behavior itself reduces 

the prevalence of infected individuals in the population seasonally (Bartel et al. 2011). For 

monarchs suffering light to moderate infection, there is no clear link between the impaired flight 

ability resulting from disease and morphological changes induced by parasitic infection (Bradley 

& Altizer 2005). Ophryocystis elektroscirrha more likely depletes the energy reserves necessary 

for flight (Altizer et al. 2015). However, additional stressors, such as reductions in diet quality 

induced by elevated CO2, may influence the impact of parasitic infection on wing morphology.  

 

Milkweed and Monarch Source Materials 

We analyzed the wings of monarch butterflies reared on milkweeds grown under ambient (400 

ppm) or elevated (760 ppm) CO2 at the University of Michigan Biological Station (UMBS). We 

provide full details of the UMBS CO2 array in Decker et al. (2018). Briefly, during the summer 

of 2015, we grew four species of milkweed in a 40 chamber mesocosm array (Drake et al. 1989), 

with 20 chambers maintained at ambient and 20 at elevated concentrations of CO2. Within those 

chambers, we grew milkweed species that varied substantially in their cardenolide 

concentrations, ranging from high to low: A. curassavica, A. syriaca, A. speciosa, and A. 

incarnata. We purchased A. curassavica and A. speciosa seeds from Prairie Moon Nurseries, 

MN and collected A. syriaca and A. incarnata seeds from wild populations growing near 

Pellston, MI in 2014. We surface sterilized seeds in a 5% bleach solution and germinated them 

on damp filter paper. Germinated seedlings were planted in deepots TM containing Metromix 360 



 50 

and Osmocote 16:16:16 controlled release fertilizer and were watered daily. After planting, we 

let the seedlings establish in the UMBS glass house for three weeks and then transferred them 

outside into the chamber array for the remainder of the experiment (below), where they were 

watered daily. Each chamber contained at least six individual plants of each species, with three 

designated for a single parasite-infected monarch and the other three for an uninfected (control) 

monarch. Monarchs are voracious herbivores and will consume up to 3 fully-grown milkweed 

plants as larvae, which is why we grew at least 3 plants for each monarch in each chamber (3 

plants x 4 species x 2 parasite treatments x 40 chambers = 960 plants total). 

 

The monarchs used in this study were the F1 offspring of seven genetic crosses between monarch 

lineages from eastern North America (St Marks, FL). Individual monarchs were assigned to one 

of 16 treatments (2 parasite treatments x 4 host plant species x 2 levels of CO2) making for 320 

monarchs reared in total (2 parasite treatments x 4 host plant species x 2 CO2 concentrations x 20 

replicates of each). However, not all monarchs survived to adulthood, with mortality notably 

higher among monarchs infected with parasites. Moreover, some inoculated monarchs resisted 

infection, thereby inflating the sample size of uninfected monarchs. Final sample sizes for each 

treatment are shown in Table 3.1. 

 

After 42 days of growth in the chamber array, cuttings were excised from plants, placed in 

individual 0.64L plastic containers, and kept under ambient CO2 conditions. A darkened monarch 

egg (darkening indicates eggs just about to hatch) was attached to a leaf on each cutting to ensure 

that neonate monarchs consumed only tissue from their assigned plant before inoculation with 

parasite spores. Three days after hatching, monarchs were inoculated following the methods of 

de Roode et al. (2008), whereby 10 spores were deposited onto one 70.6 mm2 leaf disk taken 

from the assigned plant on which they hatched. Spores originated from a single genetic parasite 

lineage collected directly from an eastern North American, wild-caught butterfly. Uninfected 

control monarchs were fed clean leaf disks of the same size with no parasite spores. Foliar 

chemistry samples were taken from each plant at the same time as inoculations following the 

methods detailed below; the chemistry of milkweed foliage just before and during inoculation 

influences parasite infection success and severity (de Roode et al. 2011a). We only measured the 

chemistry of the individual plants used at inoculation, and assume that their chemistry reflects 
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adequately that of the other two plants per treatment in each chamber, which larvae consumed in 

later instars. 

 

Monarch larvae were fed cuttings from their assigned host-plants ad libitum until pupation. 24-

hours after adult eclosion, monarchs were sexed and weighed to obtain adult wet mass. For the 

remainder of their adult lives, monarchs were kept in 5.75 x 9.5 cm glassine envelopes at 15°C 

without food to estimate lifespan under starvation conditions (an estimate of parasite 

virulence)(de Roode et al. 2007).Three weeks after death, the wings were carefully removed 

from each monarch body with forceps. The spore load of each monarch was measured by 

individually vortexing bodies in 5mL of DI water for 5 minutes and then counting the number of 

spores found in 10 µL aliquots of that solution using a KOVA glasstic hemocytometer (KOVA 

International Inc., CA) (de Roode et al. 2008a).  Monarch left forewings were stored at -20°C for 

up to three months and then scanned using an HP scanJet 6300C. The left forewing of each 

monarch was then weighed and deposited in 1mL centrifuge tubes for cardenolide analyses. 

 

Cardenolide Chemical Analysis 

We quantified cardenolides in both milkweed foliage and monarch left forewings (wing 

cardenolide concentrations correlate tightly with body cardenolide concentrations (Fink & 

Brower 1981) following well-established methods (Zehnder & Hunter 2009; Vannette & Hunter 

2011; Tao & Hunter 2012). Samples were ground in 1 mL of methanol for 3 minutes, sonicated 

for 1 hour at 60°C, and centrifuged for 6 minutes. The supernatant was then transferred to a new 

1 mL ependorff tube and evaporated under vacuum at 45°C until dry. We then resuspended the 

samples with 150 µL of methanol spiked with 0.15 mg/mL digitoxin internal standard and 

separated compounds of interest using ultra performance liquid chromatography (UPLC, Waters 

Inc., Milford, MA, USA) with an Acquity BEH C18 column (1.7 µm, 2.1 x 50 mm, Waters Inc., 

Milford, MA, MA, USA). We eluted each 2 µL sample injection for 9 minutes under a gradient 

of 20% acetonitrile (ACN): 80% water for 3 minutes followed by a linear gradient to 45% ACN: 

55% water over the remainder of the run with a constant flow rate of 0.7 mL per minute.  Peaks 

were detected by absorption at 218 nm using a diode array detector. Only those peaks that 

absorbed symmetrically around maxima between 216-222 nm were considered cardenolides.  
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We calculated three descriptive measures of cardenolide chemistry for both foliar and wing 

tissues: total cardenolide concentration of the sample, cardenolide diversity, and cardenolide 

polarity. Cardenolide concentrations were calculated as the sums of all separated peak areas, 

corrected by the concentration of the internal digitoxin standard and estimated by the dry sample 

mass. Cardenolide diversity was calculated using the Shannon diversity index borrowed from 

biodiversity literature: H=-sum(Pilog[Pi]) where Pi is the relative amount of a cardenolide peak 

produced in an individual plant compared to the total amount of cardenolides in that same 

individual. We calculated cardenolide polarity P=sum(Pi RTi), where RTi is the retention time of 

the ith peak in the individual following Rasmann & Agrawal (2011). Finally, we subtracted the 

cardenolide concentration in plant tissues from the cardenolide concentration sequestered in 

monarch wings for a measure of the magnitude of difference in cardenolide concentration 

between monarch wings and plant tissues. 

 

Wing Morphometrics 

In our analysis of monarch wing morphology, we concentrated on monarch forewings alone for 

two reasons: first, monarchs position their forewings to cover their hindwings during soaring 

flight (Altizer & Davis 2010). Therefore, forewing size and shape should have the largest 

influence on flight ability. Second, preliminary work established that variation in milkweed 

chemistry only affects forewing morphology (Berns et al. 2014). Therefore, we scanned the left 

forewing of each specimen next to a ruler for scaling of the image. 

 

Forewing Size 

We calibrated Adobe Photoshop to calculate distance measures based on a pixel-to-millimeter 

ratio. We then took four basic measures of forewing morphology: (1) length of the butterfly wing 

from wing apex to thorax insertion (mm), (2) width of the forewing at the longest axis 

perpendicular to the length measurement (mm), (3) total forewing area (mm2), and (4) wing 

perimeter (mm) (see Figures 3.1a,b). When minor damage to wings occurred, we estimated wing 

edges to create a complete outline; butterflies with substantial wing damage were discarded from 

all analyses. 

 

Forewing Shape 



 53 

We calculated two traditional metrics of forewing shape using the wing measures taken in Adobe 

Photoshop: 1) wing aspect ratio (length divided by width), and 2) roundness (area to perimeter 

ratio: 4π area/perimeter2) (Altizer & Davis 2010). We also calculated wing loading (wet body 

mass/wing area) (Altizer & Davis 2010), a common aeronautical measure indicative of 

maneuverability and performance in flight. Finally, we created a metric that examined butterfly 

wing density, which we termed, specific wing area (wing area/wing mass). 

 

Statistical Analysis 

Basic Model Structure 

We used linear mixed models (R version 3.3.2.; package: lme4) to test for effects of our 

treatments on plant chemistry, toxin sequestration, and monarch morphology. Because each of 

the 40 chambers contained plants from multiple treatments (plant species and monarch infection 

status), we included chamber identity as a random effect in all models to account for the lack of 

independence of samples within chambers (Littell et al. 2002; Vannette & Hunter 2011). 

Additionally, for models with monarch traits as response variables, we also included monarch 

genotype as a random effect. Variables were transformed when necessary, and model 

homoscedasticity of variance was tested using Levene’s Tests from the car package in R. 

 

Milkweed Host-Plant Chemistry  

To determine the effects of CO2 treatment and milkweed species on foliar chemical traits, we ran 

models with square-root-transformed total concentration, log-transformed diversity, and polarity 

index of cardenolides as response variables, and CO2 treatment and milkweed species as fixed 

effects. Asclepias incarnata tended to produce only one cardenolide compound and therefore had 

cardenolide diversity values of 0 for most plants. We therefore excluded A. incarnata from 

analyses of cardenolide diversity.  

 

Cardenolide Sequestration by Monarchs  

We used similar models to test for effects of CO2 treatment, milkweed host-plant species and 

infection status on monarch wing cardenolides (square-root transformed total concentration, 

diversity, and polarity). In addition, we used the same model structure to test for treatment 

effects on the magnitude of difference in cardenolide concentration between monarch wings and 
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plant tissues. We used Tukey Post-Hoc tests to compare means among treatments (significance 

reported at the 0.05 level) when significant effects were detected in our models. 

 

Infection status is complicated because some monarchs exposed to O. elektroscirrha can resist 

infection and are spore-free as adults. Therefore, before conducting the analyses described 

above, we compared the wing cardenolides of control monarchs (never exposed to the parasite) 

with those of monarchs that were exposed to the parasite but had resisted infection (zero spore 

loads). There were no significant differences between cleared monarchs and control monarchs in 

the sequestration of total cardenolides (F 1,190 = 0.90, p = 0.3446), cardenolide diversity (F 1,190 = 

0. 02, p = 0.8773) or cardenolide polarity (F 1,190 = 0.13, p = 0.9101). Therefore, in all subsequent 

analyses of sequestration, we grouped these two monarch treatments into one “uninfected” 

status. We followed a similar procedure to determine whether or not monarch sex played a role 

in sequestration chemistry and found no effect of monarch sex on total sequestered cardenolide 

concentrations (F 1 ,250 = 0.24, p = 0.6237), diversity (F 1 ,250 = 0. 39, p = 0.5336) or polarity (F 1 

,250 = 0.13, p = 0.9101). Therefore, we did not include monarch sex in the models that explored 

treatment effects on butterfly sequestration. 

 

In addition to the analyses above, we used permutational multivariate analysis of variance 

(PerMANOVA) (Anderson 2001) to compare the effects of CO2 treatment, milkweed host-plant 

species and, in the case of butterfly cardenolides, infection status on the assemblage (identity and 

relative abundance) of cardenolide compounds produced in milkweed and sequestered by 

monarchs. For the PerMANOVA, we used the Bray-Curtis ordination with the Adonis package 

in R 3.3.2.  

 

Monarch sequestration in relation to host plant chemistry  

Previous studies of cardenolide sequestration by monarchs have revealed a positive correlation 

between the concentration of cardenolides that monarchs consume in milkweed foliage as larvae 

and the total amount of cardenolides sequestered in their bodies as adults (Malcolm & Brower 

1989). Therefore, we tested whether CO2 treatment or infection status might alter the slope of 

this relationship by including them in a linear mixed model with plant cardenolide concentration 

as an independent variable and total wing cardenolide concentration as the dependent variable. 
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As before, both the chamber number of the plant and monarch genotype were included as 

random effects in the model. 

 

Wing Morphology 

Because of collinearities among the different size and shape metrics of monarch wings, we 

followed the methods of Altizer & Davis (2010) and used Principal Component Analysis (PCA) 

to reduce our morphology measures into one PCA axis explaining forewing size (PCA-size) and 

another PCA axis explaining forewing shape (PCA-shape). Specifically, forewing length, width, 

area and perimeter were used to create the PCA-size axis that explained 99.6% of the total 

variance, while forewing area and roundness were used to create the PCA-shape axis that 

explained 95.2% of the total variance. High values of PCA-size correspond to larger wings and 

low values correspond to smaller wings. High values of PCA-shape represent monarchs with 

more elongated wings while low values of PCA-shape represent monarchs with blunt, rounder 

wings. We then ran models with these PCA axes as response variables; CO2 treatment, milkweed 

host-plant species, infection status and monarch sex were fixed effects. Because some treatments 

had small sample sizes (see Table 3.1) we could not include the four-way interaction in any of 

our full models. 

 

Wing Loading and Specific Wing Area 

To examine effects of treatments on monarch wing loading and specific wing area, we ran 

models with wing loading (wet body mass/wing area) and specific wing area (wing area/wing 

mass) as response variables.  CO2 treatment, milkweed host-plant species, infection status and 

monarch sex were fixed effects. Because we found effects of infection, sex, and host-plant on 

specific wing area (see below), we then tested whether wing mass, wing area, or both varied 

among treatments.  

 

3.4 Results 
In total, 252 monarchs survived to adulthood, sequestered cardenolides in their wings, and were 

used in our analyses. The O. elektroscirrha variant used in our study was extremely virulent 

(Decker et al. 2018), and 43 of the 68 butterflies not included in this study died due to infection. 

The remaining 19 either did not survive the experiment, had wings that were too badly 
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malformed or damaged to perform morphometric measures, or did not sequester measurable 

cardenolides in their wings.  

 

Milkweed Host-Plant Chemistry 

Of the 252 milkweeds that supported surviving monarchs, only 114 produced measurable 

cardenolides, and we have restricted our chemical analyses to those plants. Within those 114 

plants, there were 65 A. curassavica, 19 A. syriaca, 18 A. speciosa, and 12 A. incarnata 

individuals. Elevated CO2 changed the total concentration of foliar cardenolides produced by 

milkweed in a species-specific manner (species*CO2: F3,106 = 3.047, p = 0.032, Figure 3.2a). 

Under elevated CO2 there was a 52% decline in the foliar cardenolide concentrations of A. 

curassavica (F1,36 = 13.43, p = 0.0008, Figure 3.2a). Concentrations in A. syriaca (F1, 13 = 1.0847, 

p = 0.32), A. speciosa (F1, 13 = 0.76, p = 0.399) and A. incarnata (F1, 11 = 0.01, p = 0.910) 

remained unaffected by elevated CO2. Across CO2 treatments, A. curassavica produced the 

highest cardenolides concentrations, while A. incarnata produced the lowest (F3, 92 = 19.92, p < 

0.001, Figure 3.2a). 

 

We present mean values of foliar cardenolide diversity and polarity in Table B1.  Asclepias 

curassavica plants produced nearly 6 times the diversity of next highest species A. syriaca, 

followed closely by A. speciosa (F2, 96 = 60.94, p < 0.0001). There was no effect of CO2 treatment 

on foliar cardenolide diversity (F1, 96 = 0.19, p = 0.6656) and no interaction between CO2 and 

milkweed species (F2, 96 = 0.15, p = 0.8653) on foliar cardenolide diversity. Asclepias 

syriaca plants produced cardenolides with the highest polarity values (most lipophilic), followed 

by A. curassavica then A. speciosa (F3, 96 =13.30, p < 0.0001). Asclepias incarnata produced 

foliar cardenolides with the lowest polarity index values (most polar). There was no main effect 

of CO2 treatment (F1, 55 = 1.01, p =0.3189) on foliar cardenolide polarity, and no interaction 

between CO2 and milkweed species (F3, 96 =1.42, p = 0.2415, Table B1).  

 

As expected (Sternberg et al. 2012), milkweed species varied in the assemblage of cardenolides 

that they produced (PERMANOVA, species: F3, 110 = 24.16, R2 = 0.39, p = 0.001).  In addition, 

the effect of CO2 treatment on cardenolide composition varied among milkweed species but 
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explained relatively little of the variation in cardenolide community composition 

(PERMANOVA, CO2*species: F3, 110 = 2.26, R2 = 0.037, p = 0.004).  

 

Monarch Wing Chemistry 

Monarchs maintained the same cardenolide concentrations in their wings between the two CO2 

treatments (F 3 ,214 = 1.60, p = 0.1909, Figure 3.2b) despite the decline in foliar cardenolide 

concentration in A. curassavica induced by elevated CO2 (Figure 3.2a). Monarchs were able to 

increase the rate at which they sequestered cardenolides from their host plants under elevated 

CO2 (CO2*plant cardenolide F1, 110 = 12.41, p = 0.0006, Figure 3.2c). In other words, monarchs 

feeding on milkweed foliage grown under elevated CO2 sequestered more cardenolides per unit 

cardenolide available in their larval host plants (see difference in slopes in Figure 3.2c). 

Consequently, the difference between the cardenolide concentrations sequestered in the 

butterflies and those available in the plants varied by CO2 treatment in a species-specific manner 

(CO2*species: F3, 93 = 2.80, p = 0.04402, data not shown). The largest difference between 

butterfly and plant cardenolide concentrations was found in those monarchs feeding on A. 

curassavica under elevated CO2. Monarchs feeding on A. incarnata grown under elevated CO2 

sequestered concentrations of cardenolides that were the most similar to the concentrations of 

their host plants.  

 

When feeding on A. syriaca, monarchs infected with parasites sequestered nearly 20% less 

cardenolide in their wings than did uninfected monarchs (Infection*Species F 3, 232 = 2.84, p = 

0.0385, Figure 3.3). However, the spore load of infected monarchs was unrelated to the 

concentration (F1, 58 = 2.12, p=0.1505), diversity (F1, 58 = 2.23, p=0.1405), or polarity (F1, 58 = 

0.72, p= 0.4007) of cardenolides sequestered in the wings. Monarchs feeding on other milkweed 

species showed no such parasite-induced decline in sequestration (Figure 3.3). CO2 treatment, 

milkweed species and infection status did not interact to influence the concentration of 

cardenolides sequestered by monarchs (F 1 ,225 = 0.83, p = 0.4803).  

 

Monarchs that fed on A. incarnata grown under elevated CO2 sequestered a lower diversity of 

cardenolides than did those that fed on A. incarnata under ambient CO2 (Species*CO2 F 3 ,211 = 

4.44 p = 0.005, Figure 3.4). There was no interaction between CO2 treatment, milkweed host-
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plant species and infection status on the diversity of cardenolides sequestered by monarchs (F 3 

,219 = 1.92, p = 0.1271. The cardenolides sequestered by monarchs fed A. curassavica had the 

highest polarity index values (most lipophilic), while those sequestered by monarchs fed A. 

speciosa had the lowest (most polar) (F 3, 243 = 287.20, p < 0.0001, data not shown). In contrast, 

the polarity of the cardenolides in monarch wings was generally unresponsive to CO2 treatment 

(F1, 243 = 0.024, p = 0.8758) or parasite infection (F1, 242 = 0.036, p = 0.7593).  Moreover, there 

were no significant interactions among treatments.  

 

Despite the interactive effects of CO2 treatment and milkweed species on the composition of 

cardenolides produced in the milkweed host-plants, monarchs themselves sequestered a 

consistent assemblage of cardenolides in their wings among treatments (PERMANOVA, 

CO2*species: F3, 247= 1.41, R2 = 0.006, p = 0.149). Further, the composition of wing cardenolides 

was also unaffected by CO2 treatment alone (PERMANOVA, CO2: F1, 250= 2.37, R2 = 0.003, p = 

0.073). However, just as in the foliar tissue, milkweed host-plant species strongly influenced the 

composition of cardenolides sequestered by monarchs (PERMANOVA, species: F3, 247 = 157.00, 

R2 = 0.65, p = 0.001). 

 

 

Monarch Wing Morphology 

Size 

Monarch sex was the only factor to affect wing size in our study. Male monarch wings were 

slightly larger than were those of female monarchs (F 1, 231 = 3.50, p = 0.064), corroborating the 

findings of Altizer et al. (2010). Monarch wing size was unaffected by CO2 treatment (F 1, 31 = 

0.21, p = 0.6525), milkweed host plant species (F 1, 203 = 2.39, p = 0.070), infection status (F 1, 225 

= 2.78, p = 0.097) and the interaction between these three treatments (F 1, 212 = 0.66, p = 0.576). 

 

Shape 

In contrast to the weak effects of our treatments on wing size, monarch wings were more angular 

and elongated (higher values of PCA-Shape) when larvae had fed on milkweed grown under 

elevated CO2 (F1, 214 = 15.82, p <0.0001, Figure 3.5a) or when larvae had consumed A. syriaca or 

A. incarnata (F1, 212 = 3.78, p = 0.0113, Figure 3.5c).  Additionally, the wings of female 
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butterflies were more angular and elongated than were those of males (F1, 214 = 15.50, p = 

0.0001, Figure 3.5b).   

 

While O. elektroscirrha infection had no independent effect on forewing shape (F1, 212 = 0.86, 

p=0.3550) a finding consistent with previous work (Bradley & Altizer 2005), infection 

influenced the response of monarch wing shape to elevated CO2; infected monarchs from plants 

under ambient CO2 had rounder wings than did butterflies from other treatments (infection*CO2: 

F1, 212 = 9.46, p = 0.0024, Figure 3.6a). Moreover, effects of infection on wing shape varied 

among milkweed species (infection*species: F1, 212 = 4.54, p = 0.0041, Figure 3.6b). Specifically, 

infected monarchs had rounder wings than uninfected monarchs when feeding on A. curassavica, 

A syriaca, and A. incarnata, but had more elongated wings than uninfected monarchs on A. 

speciosa (Figure 3.6b). Finally, there were some differences between male and female butterflies 

in the way that their wing shapes responded to plant species and infection (sex*infection*plant 

F3, 212 = 2.96, p = 0.0331, Figure B1). However, the three-way interaction term explained only a 

small portion of variance in the model when compared to the strength of the main effects 

reported above. Wing aspect ratio correlated most strongly with PCA-shape (r = 0.999, N = 237, 

p < 0.0001) and therefore partially represents the changes in wing shape found in our study. We 

summarize the model results for wing shape in Table 3.2 along with corresponding mean values 

of wing aspect ratio (wing length (mm)/ wing width (mm)) by treatment for ease of 

interpretation.  

 

Wing Loading 

Flying animals with higher wing loading values tend to exhibit faster more powerful flight. 

Therefore, we examined how our treatments influenced this aspect of the flight phenotype in 

monarchs. Male monarchs had 5% higher wing loading (wet body mass/wing area) values than 

female monarchs (F 1,16 = 17.12, p = 0.0008, Figure 3.7a), corroborating the findings of Altizer et 

al. (2010).  Notably, wing loading also varied with larval diet (F 3,16 = 4.77, p = 0.0152, Figure 

3.7b) such that monarchs reared on A. syriaca had a 5% higher wing loading than did those 

reared on other milkweed species. Wing loading was unaffected by CO2 treatment, parasite 

infection, or their interactions with other treatments.  
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The wings of monarchs infected with O. elektroscirrha were 7% less dense than were the wings 

of uninfected monarchs (specific wing area: F 1, 221 = 20.65, p < 0.0001, Figure 3.8a). This 

decline in wing density in response to infection was likely due to the 11% reduction in forewing 

mass induced by infection (F1, 221 = 16.18, p < 0.0001), because the area of monarch wings did 

not respond to infection (F 1, 231 = 3.42, p= 0.0656). Female monarch wings were 6% more dense 

than male monarch wings (F 1, 228= 15.74, p < 0.0001, Figure 3.8b). In this case, the difference in 

wing density between sexes was due to the fact that females had smaller wing areas (F 1, 237= 

3.78, p = 0.0530) because there was no difference in wing mass between monarch sexes (F 1, 234= 

1.82, p = 0.1780). Finally, milkweed host-plant species influenced monarch specific wing mass 

as well. Monarchs fed A. curassavica had the least dense wings while those fed A. syriaca had 

the densest wings (F 3, 199= 2.66, p = 0.0492, Figure 3.8c). The influence of milkweed host-plant 

species on wing mass (F 3, 201= 2.95, p = 0.0340) partially explains the differences in specific 

wing mass observed by species. Monarchs fed A. curassavica had the lightest wing masses in our 

study, while those fed A. syriaca had the heaviest wing masses.  

 

 

 

3.5 Discussion 
Rapid environmental change has the potential to influence trophic interactions by altering the 

defensive phenotype of prey. Here we present the first study to examine the effects of a major 

environmental change driver, elevated CO2, on toxin sequestration and morphology of monarch 

butterflies. Our results demonstrate that 1) monarchs maintain the concentration and composition 

of cardenolides that they sequester despite changes in the phytochemistry of milkweed under 

elevated CO2. 2) Aspects of monarch morphology important to flight ability such as wing shape, 

wing loading, and wing density are influenced by elevated CO2, milkweed host plant species, 

parasite infection, and sex. 3) Feeding on high cardenolide milkweed is associated with the 

formation of rounder, thinner wings, which are less efficient at gliding flight. We suggest that 

changes in the rate of sequestration under elevated CO2 are a byproduct of compensatory feeding 

aimed at maintaining a nutritional target in response to declining dietary quality. Ingesting larger 

amounts of foliage from milkweed high in cardenolides may come at a cost to the monarch. Such 

costs may manifest as lower quality flight phenotypes: rounder, thinner wings with lower wing 
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loading values. Critically, small changes in wing morphology can have important consequences 

for migration success (Bradley & Altizer 2005), which includes migratory escape from parasites. 

Changes in sequestration and morphology may, therefore, have negative consequences for 

monarch defense and migration in a changing world. 

 

Monarchs increase the rate of sequestration under elevated CO2 

We demonstrate that monarchs increase their rate of cardenolide sequestration under elevated 

CO2 (Figure  3.2a). Consequently, the concentration and composition of cardenolides that 

monarchs sequester from one species of milkweed, A. curassavica, remain the same despite both 

a 52% reduction in the concentration of cardenolides and changes in the composition of those 

cardenolides induced by elevated CO2 (Figure 3.2a-d). Monarchs have been found previously to 

maintain constant concentrations of sequestered cardenolides in their tissues in response to 

changes in the chemical quality of A. curassavica (Tao & Hunter 2015). Herbivores can regulate 

sequestration by altering both the total amount of foliage consumed and sequestration efficiency 

(Camara 1997). Arthropods are well known for their ability to track target ratios of 

carbohydrates to protein in their diet through behavioral shifts in consumption (Simpson et al. 

2015). Therefore, it is possible that the monarchs in this study increased the total amount of 

foliage that they consumed to compensate for the characteristic reduction in nutritional value of 

plants grown under elevated CO2 (Lincoln et al. 1984; Docherty et al. 1996; Hunter 2001; 

Zavala et al. 2013; Johnson et al. 2014b).  

 

In addition to increasing the amount of tissue monarchs consumed, elevated CO2 may have also 

lowered the energetic requirements of sequestration by changing the community of cardenolides 

consumed by monarchs. Sequestration is an active process during which toxic metabolites are 

either absorbed, metabolized, or excreted with significant energetic costs to the insect (Nishida 

2002; Hartmann 2004; Opitz & Müller 2009). The new cardenolide communities produced by 

milkweed under elevated CO2 may have included compounds that are easier to modify, transport, 

and store in biological tissue (Nishida 2002).  

 

Increased consumption rates and sequestration efficiency may come at an ecological cost to 

monarchs in the context of other natural enemies. Monarchs become infected with O. 



 62 

elektroscirrha by ingesting spores on the surface of milkweed foliage (Leong et al. 1997b; de 

Roode et al. 2008a). If monarchs increase the amount of leaf tissue consumed under elevated 

CO2, they may also increase the probability of ingesting dormant spores and becoming infected. 

Yet, certain cardenolides provide medicinal protection to monarchs against O. elektroscirrha, 

reducing infection probability, severity and fitness costs (de Roode et al. 2008a, 2011b; 

Sternberg et al. 2012; Gowler et al. 2015). However, elevated CO2 decreases concentrations and 

changes the composition of cardenolides produced by A. curassavica (Decker et al. 2018). If 

monarchs cannot also ingest enough protective cardenolides to negate increased spore 

consumption, then they may suffer more prevalent and intense infections under future 

atmospheric conditions.  

 

Elevated CO2, milkweed species, infection, and sex influence monarch morphology 

We found that diet quality influences aspects of monarch wing morphology important to both 

aerial maneuverability and long-distance flight (wing shape, wing loadingmass, and wing density) 

(Berwaerts et al. 2002; Ortega Ancel et al. 2017). Notably, the concentration of atmospheric CO2 

under which the plants grew and the species of milkweed on which the monarchs fed as larvae 

influenced adult wing shape contingent upon infection status (Figure 3.6a, 3.6b, Table 3.3b). 

Under ambient CO2, infection induced rounder wings, which are less efficient for gliding flight. 

However, under elevated CO2 both infected and uninfected monarchs developed elongated wings 

better suited for gliding (Figure 3.6a). Additionally, monarchs that fed on low cardenolide 

milkweed, A. incarnata, also produced elongated wings regardless of infection status (Figure 

3.6). Pointed forewings are thought to improve the flight efficiency of long-distance migratory 

species (Lockwood et al. 1998; Leisler & Winkler 2003; Vágási et al. 2016) because elongated 

wing tips minimize drag (Kerlinger 1989). Therefore, our data suggest that future environmental 

conditions, in combination with milkweed species, may induce the formation of wing shapes that 

improve the efficiency of monarch flight.  

 

This is the first study to report effects of milkweed species on monarch wing shape. Changes in 

wing morphology in response to different host plants have been reported in other flying insects, 

such as Drosophila utilizing different species of cacti (Soto et al. 2008). Furthermore, in some 

tropical moths, certain larval host plant species can induce increased wing shape asymmetry 
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(Benítez et al. 2015). In the eastern N. American monarch population, wing shapes vary 

temporally throughout the migratory period: earlier migrants have more elongated wings than do 

later migrants (Satterfield & Davis 2014). In addition to temporal changes in shape, earlier 

migrants have redder pigmentation as compared to later migrants (Satterfield & Davis 2014). 

Wing redness predicts monarch flight distance and endurance (Davis et al. 2012; Hanley et al. 

2013) and is loosely linked to diet (Johnson et al. 2014a). Perhaps, changes in monarch wing 

shape and reductions in redness throughout the migration period result from changes in the 

abundance of different milkweed species that vary in chemical and nutritional quality (Flockhart 

et al. 2012).  

 

Additionally, we found that wing loading varied among milkweed species: monarchs fed A. 

syriaca had 6% higher wing loading values than monarchs fed other milkweed species (Figure 

3.7b).  During migration, monarchs actively propel themselves within the boundary layer and 

utilize upward convection currents of air and prevailing winds for gliding to reduce energy loss 

(Gibo 1986). Higher wing loading values are beneficial to this flight pattern, as they typically 

produce faster powered flight (Srygley & Kingsolver 2000; Dudley & Srygley 2008). Heavier 

monarchs with larger energy reserves tend to exhibit higher wing loading values as well. Our 

data suggest that eastern N. American monarchs feeding on the most prevalent species of 

milkweed in that region, produce higher, more beneficial wing loading values.  

 

Both milkweed host plant species and infection by O. elektroscirrha influence the specific wing 

area of monarch wings (wing density). Monarchs fed A. curassavica have less dense wings when 

compared to monarchs feeding on the other three milkweed species tested (Figure 3.8c). 

Additionally, uninfected monarchs have denser wings than their infected counterparts (Figure 

3.8a). Both infection and feeding on A. curassavica caused reductions in wing mass with no 

change in wing area. Therefore, though wings may experience more lift due to reduced mass, 

they may also be more prone to the deleterious effects of extended flight such as tearing or 

splitting.  

 

Small differences in wing morphology that may affect the efficiency of flight could have large 

consequences for monarch migration success (Bradley & Altizer 2005). Eastern N. American 
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monarchs migrate up to 4,500 km through a combination of both soaring and active flight 

(Urquhart & Urquhart 1978; Gibo 1986; Brower & Malcolm 1991). Like other migratory insects, 

monarchs must take shelter during adverse weather conditions, utilize tail and head winds 

effectively, and cross large expanses of unsuitable habitat (Gibo & Pallett 1979; Srygley & 

Kingsolver 2000; Garland & Davis 2002). Therefore, any factor that causes monarchs to remain 

grounded during beneficial flying conditions or reduces the amount of time monarchs may stay 

aloft over unsuitable habitat will significantly reduce migration success. Here, we suggest that 

diet quality, mediated by milkweed species and CO2 concentrations, in combination with 

infection and sex, influence monarch flight ability. Our data support previous findings, wherein 

infection by O. elektroscirrha did not alter wing shape or size directly (Bradley & Altizer 2005; 

Satterfield & Davis 2014). However, our data reveal changes in wing shape due to infection in 

combination with milkweed species, CO2 treatment, and sex. Infection by O. elektroscirrha 

reduces monarch flight endurance (Bradley & Altizer 2005), and may, therefore, combine with 

these subtle changes in wing shape to influence overall migration success. Any influence of diet 

on the flight phenotype of monarchs may alter the effectiveness of migratory culling, whereby 

heavily infected monarchs have poor migration success (Altizer et al. 2000, 2015). In our data, 

elevated CO2 eliminates the shape difference between infected and uninfected individuals, 

inducing more elongated wings in both groups (Figure 3.6a). If infected individuals become 

more efficient gliders under environmental change, this might jeopardize the migratory escape 

phenomenon that reduces pathogen prevalence seasonally in the N. American monarch 

population (Altizer et al. 2011; Bartel et al. 2011). 

 

It should be noted that, although our treatments affected monarch wing shape, we detected no 

effect of diet or infection on wing size. All of the butterflies used in this study originated from 

the same migratory eastern N. American population. Therefore, strong selection for larger wings 

imposed by migration distance within this population may explain the consistency of wing size 

among treatment groups (Altizer & Davis 2010; Li et al. 2016; Yang et al. 2016; Flockhart et al. 

2017).  

 

Conclusions 
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Monarchs face multiple threats from anthropogenic environmental change (Malcolm 2017). Our 

data reveal the potential for elevated CO2 to alter interactions between monarchs and their 

natural enemies mediated through changes in plant quality. We demonstrate that monarchs 

maintain consistent levels of cardenolide sequestration, despite changes in milkweed chemistry 

under elevated CO2. Surprisingly, monarch wing shapes become more favorable for long-

distance flight under elevated CO2, but infection and milkweed host plants also influence 

monarch wing shape, loading, and density. Ultimately, feeding on high cardenolide milkweed 

reduces the quality of the flight phenotype, but further studies are needed to test the effects of 

diet chemical and nutritional quality on monarch flight and its implications for migration 

success. 
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3.7 Tables & Figures 
 

Table 3.1. Sample sizes of 252 surviving monarchs whose forewings were used to explore the 
effects of milkweed species, elevated CO2 and infection by a protozoan parasite, Ophryocystis 
elektroscirrha, on toxin sequestration and wing morphology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 3.2. The main effects of treatments on mean monarch wing Aspect Ratios (wing 
length/wing width), a component of monarch wing shape. Values are considered to be equal if 
they do not significantly differ from each other using p = 0.05. 

CO2 treatment  F1, 214 = 15.82  p < 0.0001 
  Aspect Ratio   
Ambient  1.95 ± 0.002   
Elevated  1.96 ± 0.002   

Butterfly Sex F1, 214 = 15.50 p < 0.0001 
  Aspect Ratio   
Female 1.97 ± 0.002   
Male 1.93 ± 0.002   

Milkweed Species F 3,16 = 4.77 p = 0.0152 
  Aspect Ratio Tukey Results 
A. curassavica 1.94 ± 0.003 A 
A. incarnata 1.96 ± 0.003 B 
A. speciosa 1.95 ± 0.004 B 
A. syriaca 1.96 ± 0.003 AB 

Milkweed 
Species 

Infection 
Status 

CO2 
Treatment N total Female Male 

A. curassavica infected ambient 7 3 4   
elevated 9 6 3  

uninfected ambient 26 9 17   
elevated 27 12 15 

A. incarnata infected ambient 11 4 7   
elevated 8 5 3  

uninfected ambient 24 10 14   
elevated 19 9 10 

A. speciosa infected ambient 9 2 7   
elevated 6 6 0  

uninfected ambient 21 9 12   
elevated 24 13 11 

A. syriaca infected ambient 5 1 4   
elevated 5 1 4  

uninfected ambient 26 16 10   
elevated 25 9 16 
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Table 3.3. The two-way interactions between treatments on mean monarch wing Aspect Ratios 
(wing length/wing width), a component of monarch wing shape. Values are considered to be 
equal if they do not significantly differ from each other using p = 0.05. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Infection*CO2  F1, 212 = 9.46 p = 0.002   
Infection Status CO2 treatment  Aspect Ratio Tukey Results 

Infected Ambient 1.93 ± 0.004 infected ambient > infected elevated 
  Elevated 1.97 ± 0.005 uninfected elevated = infected 

elevated 
Uninfected Ambient 1.95 ± 0.002 uninfected ambient = uninfected 

elevated 
  Elevated 1.96 ± 0.002 uninfected ambient > infected ambient 

Infection*Species  F3, 212 = 4.61        p = 0.004 Tukey Results 
 

Infection Status Milkweed 
Species 

Aspect Ratio Infected  Uninfected 

Infected A. curassavica 1.93 ± 0.008 CUR = INC CUR < INC 
  A. incarnata 1.95 ± 0.005 CUR < SPE CUR = SPE 
  A. speciosa 1.97 ± 0.006 CUR = SYR CUR = SYR 
  A. syriaca 1.94 ± 0.0102 INC = SPE INC > SPE 
Uninfected A. curassavica 1.95 ± 0.003 INC = SYR INC = SYR 
  A. incarnata 1.97 ± 0.003 SPE = SYR SPE = SYR 
  A. speciosa 1.94± 0.004 

 
  

  A. syriaca 1.96 ± 0.003     
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Figure 3.1. A scanned monarch butterfly forewing. A) & B) illustrate four basic 
morphometric measures taken in Adobe Photoshop: length, width, area and perimeter. 

Table 3.4. The three-way interaction between treatments on mean monarch wing Aspect Ratios 
(wing length/wing width), a component of monarch wing shape.  
 

 
 
Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monarch Sex*Infection Status*Milkweed 

Species F3, 212 = 2.96 p = 0.033 

Infection Status Sex Milkweed Species AR 

Infected Female A. curassavica 1.959 ± 0.011 

  A. incarnata 1.960 ± 0.008 

  A. speciosa 1.979 ± 0.011 

  A. syriaca 1.970 ± 0.003 

 Male A. curassavica 1.899 ± 0.010 

  A. incarnata 1.938 ± 0.004 

  A. speciosa 1.955 ± 0.007 

  A. syriaca 1.930 ± 0.012 

Uninfected Female A. curassavica 1.960 ± 0.004 

  A. incarnata 1.991 ± 0.003 

  A. speciosa 1.972 ± 0.005 

  A. syriaca 1.974 ± 0.003 

 Male A. curassavica 1.939 ± 0.003 

  A. incarnata 1.952 ± 0.004 

  A. speciosa 1.918 ± 0.006 

  A. syriaca 1.949 ± 0.005 
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Figure 3.2 Effects of elevated CO2 on (a) foliar cardenolide concentrations (mg/g dry mass), (b) monarch wing cardenolide concentrations 
(mg/g dry mass), and (c) the relationship between the cardenolide concentrations of plants and the concentrations sequestered by monarch. 
Bars represent mean values ±1 SE. Traits were transformed to approximate normality of errors before analyses but are presented here as 
untransformed values for ease of interpretation. Grey bars represent plants grown under ambient CO2 and orange bars are those from elevated 
CO2 or the monarchs that fed on those plants. Milkweed species codes: CUR = A. curassavica, SYR = A. syriaca, SPE = A. speciosa, INC= 
A. incarnata. 

 
 
 
a)            b)           c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 78 

 

 
Figure 3.3. Effects of infection by Ophryocystis elektroscirrha on the total concentration of 
cardenolides sequestered by monarchs feeding on four species of milkweed. Red bars represent 
mean sequestration of infected monarchs and blue bars represent mean sequestration of 
uninfected monarchs ±1 SE. Milkweed species codes are the same as above. 

 
Figure 3.4. Effects of elevated CO2 on the diversity of cardenolides sequestered by monarchs. 
Grey bars represent mean diversity values ±1 SE of cardenolides sequestered by monarchs that 
fed on plants grown under ambient CO2 and orange bars are those from elevated CO2. Milkweed 
species codes are the same as above. 
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Figure 3.5. The effects of (a) CO2 treatment, (b) sex and (c) milkweed host-plant species on a 
composite measure of monarch forewing shape. Points represent mean PCA-shape values ±1 
SE. With increasing PCA-shape values wings become more elongated and angular. Milkweed 
species codes are the same as above. 
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Figure 3.6. The interactions between (a) CO2 treatment and infection by Ophryocystis 
elektroscirrha, and (b) milkweed host-plant species and infection on a composite measure 
of monarch forewing shape. Points represent mean PCA-shape values ±1 SE. Red points 
indicate mean shape values of infected monarchs while, blue points represent uninfected 
monarchs. With increasing PCA-shape values wings become more elongated and angular. 
Milkweed species codes are the same as above. 
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Figure 3.7. The effects of (a) monarch sex and (b) milkweed host-plant species 
on monarch wing loading (wet body mass/wing area). Bars represent mean 
values ±1 SE. Milkweed species codes: CUR = A. curassavica (red), SYR = A. 
syriaca (purple), SPE = A. speciosa (blue), INC= A. incarnata (green). 
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Figure 3.8. The effects of (a) Ophryocystis elektroscirrha infection, (b) monarch sex and (c) 
milkweed host-plant species on monarch specific wing area (wing area/wing mass), a measure of 
wing density. Bars represent mean specific wing area values ±1 SE. Higher specific wing area 
values indicate wings that are less dense. More dense wings will have lower specific wing area 
values.   
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Chapter 4 : Effects of CO2 on Environmentally Mediated Immunity in a 

Specialist Herbivore 
 

4.1 Abstract 

Hosts use diverse immune responses to protect themselves from parasite attack.  Understanding 

how and why the efficacy of immune responses varies with environmental conditions is 

important, especially given current rates of environmental change. Hosts must balance energetic 

investment in the immune response with investments in other life history traits. Therefore, any 

factor that generates further energetic deficits for the organism may lead to compromised 

immune function. Here, we investigate the influence of elevated CO2 on the immune response of 

the monarch butterfly, Danaus plexippus, to infection by a sub-lethal, protozoan parasite, 

Ophryocystis elektroscirrha and simulated parasitoid attack. Certain species of milkweed host 

plants with high concentrations of toxic steroids known as cardenolides protect monarchs from 

infection by the parasite and reduce the fitness costs of infection. Yet we know very little about 

how plant secondary metabolites influence the monarch’s immune response. To investigate the 

effects of cardenolides on monarch immunity and determine how elevated CO2 will alter this 

relationship, we fed monarchs foliage from two species of milkweed- A. curassavica 

(medicinal), and A. incarnata (non-medicinal) - grown under ambient and elevated 

concentrations of CO2. We then measured critical aspects of the monarch immune response, 

along with foliar secondary metabolites and nutritional quality, to understand the mechanisms 

underlying monarch immunity under future atmospheric conditions.  

 

We demonstrate that elevated CO2 influences the immune response of monarch hosts to infection 

by O. elektroscirrha. The immune enzyme activity of early-instar monarchs declined under 

parasite infection but was “rescued” by consuming foliage grown under elevated CO2. 

Additionally, infection and a diet of foliage from elevated CO2 increased the hemocyte 

concentrations of early-instar monarchs. In late-instar monarchs, the immune response against 
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parasitoids declined on “medicinal” milkweed, suggesting a potential tradeoff between resistance 

against parasitoids and resistance against agents of disease. With an improved understanding of 

immune mechanisms underlying host-enemy interactions, we can begin to make more powerful 

predictions about alterations in trophic cascades and emerging infectious diseases. 

 

4.2 Introduction 

Hosts must defend themselves against attack from parasites while embedded within complex 

communities and ecosystems. The local abiotic and biotic environment can have profound 

impacts on the outcomes of host-enemy interactions (Tylianakis et al. 2008; Wolinska & King 

2009; Altizer et al. 2013; Dyer et al. 2013). However, the primary mechanisms underlying 

variation in host-enemy interactions often remain unresolved. Ecoimmunology is a burgeoning 

field that concentrates on the importance of environmental context in determining the strength, 

activity and variability of the host immune response (Rolff & Siva-Jothy 2003; Lazzaro & Little 

2009; Brock et al. 2014). Central to this field is the idea that organisms must dynamically 

balance energetic investment in the immune response with investments in other life history traits 

(Stearns 1992) such as growth, survival, and reproduction (Sheldon & Verhulst 1996; 

Kraaijeveld et al. 2002; Schmid-Hempel 2003). Because immunity is costly and dependent on 

the host condition, environmental variability that generates further energetic deficits for the 

organism may lead to compromised immune function. Therefore, anthropogenic environmental 

change has the potential to influence host immunity through both direct physiological impacts 

and through changes in patterns of resource allocation by hosts. 

 

A handful of studies have begun to explore the effects of environmental change on host 

immunity, and have thus far yielded variable results (reviwed in Martin et al. 2010; Jolles et al. 

2015; Gherlenda et al. 2016). For example, increased ambient temperatures stimulate the 

immune enzyme activity and subsequent resistance of crickets, Gryllus texensis to bacteria 

(Adamo & Lovett 2011). In contrast, higher more variable ambient temperatures reduce frog 

immunity against infection by Batrachochytrium dendrobatidis (Bd) (Raffel et al. 2006). Much 

of the research on immunity and environmental change focuses on the direct physiological 

effects of warming temperatures and pollutants on host immune function, e.g. enzymatic activity 

(Martin et al. 2010; Bauerfeind & Fischer 2014; Richard et al. 2015; Wojda 2017). However, 
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other aspects of the host environment including stress, population density, and diet quality can 

shift in response to environmental change and consequently impact host immune function 

(Kraaijeveld et al. 2002; Schmid-Hempel 2003, 2005).  

 

The growth, survival, and reproduction of insect herbivores are all vulnerable to changes in the 

nutritional and defensive chemistry of their food plants (Mattson 1980; Hunter 2016). Insects 

also face regular challenges from parasites and parasitoids and, as such, have well characterized 

immune responses. Insect immunity primarily targets foreign entities within the haemocoel, e.g. 

parasitoids, parasites and pathogens (Beckage 2008), and can be subdivided into humoral and 

cellular defenses (reviewed in Strand 2008). Humoral defenses encompass soluble effector 

molecules such as antimicrobial peptides that act on the membranes of pathogenic microbes 

(Kavanagh & Reeves 2007), take part in melanin formation and regulate clotting (Theopold et al. 

2004; Rolff & Reynolds 2009). In contrast, cellular immunity consists of cellular defenses such 

as phagocytosis and encapsulation originating from the rapid synthesis of immune cells known 

as hemocytes (Eslin & Prévost 1998; Kraaijeveld et al. 2001; Wilson et al. 2003; Kavanagh & 

Reeves 2007; Strand 2008; Kacsoh & Schlenke 2012; Triggs & Knell 2012). While insects 

employ phagocytosis and immune effector molecules against smaller parasites and pathogens, 

the encapsulation response targets multicellular invaders, such as parasitoid eggs and parasites.  

 

Despite the categorical subdivisions of immunity, both humoral and cellular immune defenses 

generally combine to produce the encapsulation response.  In fact, many humoral molecules 

influence hemocyte function and many hemocytes produce humoral factors which all contribute 

to the strength of encapsulation (Lavine & Strand 2002). Encapsulation begins with the 

identification of a foreign antigen by recognition proteins which then activate specialized 

hemocytes (Rolff & Reynolds 2009). These hemocytes attach to the surface of the antigen and 

form layers of cells that eventually die and harden, surrounding the object. As the hemocytes 

undergo apoptosis, prophenoloxidase (proPO), an inactive dimer, is activated into 

polyphenoloxidase (PO), an enzyme critical to the cascade that produces melanin and other 

cytotoxic molecules (Hagen et al. 1994; Nigam et al. 1997; Reeson et al. 1998; Wilson et al. 

2001; Cotter et al. 2004). Antigens typically die from simultaneous asphyxiation and poison 

exposure as result of both encasement by dead, melanized cells (encapsulation) and toxins 
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produced in the oxidative reactions taking place during melanization (Strand 2008). For insects, 

encapsulation and melanization are immediate and effective defenses against parasitoids such as 

wasps and flies, and against some parasites (Gillespie and et al. 1997; Lavine & Strand 2002; 

Beckage 2008).  

 

Insect immunity depends strongly on diet quality (reviewed in Singer et al. 2014). Because 

immune defenses are tightly modulated by host energetic constraints, the ratio of protein to 

carbohydrate concentrations (nutritional quality) of host food-plants is well-known to influence 

immunity (Klemola et al. 2008; Srygley et al. 2009; Cotter et al. 2011). For instance, the 

immune response of a generalist caterpillar, Spodoptera littoralis, increases substantially when 

larvae are fed diets high in protein (Lee et al. 2008). Alternatively, hosts may starve themselves 

to reduce the intake of food molecules such as lipids that require costly enzymatic machinery to 

digest, and thereby detract from the resources allocated to immune function (Adamo et al. 2008, 

2010). The concentration of plant secondary metabolites (PSMs) within the host diet can also 

alter immune function (Smilanich et al. 2009, 2011; Richards et al. 2012; Trowbridge et al. 

2016). PSMs are inherently toxic, thus, certain concentrations and combinations of plant toxins 

may reduce insect immune function (Haviola et al. 2007; Smilanich et al. 2009; Greeney et al. 

2012; Hansen et al. 2016). For example, the presence of dietary catalpol, an iridoid glycoside, 

reduces the melanization response of a Sphingid moth larva (Lampert & Bowers 2015).  

Alternatively, PSMs can sometimes enhance the insect immune response, such as the increased 

immunity expressed by a generalist Arctiid when consuming foliage high in antioxidants (Ojala 

et al. 2005). Given the large diversity of PSMs, and the many modes of their chemical action on 

insect performance, it is still unclear how plant secondary metabolism and nutritional quality 

combine to influence insect immunity.  

 

More comprehensive methods for quantifying the diversity of plant secondary metabolites have 

recently been developed, refined, and associated with insect performance on plants (Krishnan et 

al. 2005; Macel et al. 2010; Bose et al. 2014; Dyer et al. 2014; Richards et al. 2015). Using 1H-

NMR (nuclear magnetic resonance) recent studies have begun to describe the structural diversity 

of secondary metabolites in plant foliage, not just calculate diversity indices based on compound 
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identities. Here, we utilize this technology to better associate the holistic plant “metabolome” 

with insect immunity. 

 

The monarch butterfly, Danaus plexippus, is a specialist insect herbivore known to utilize the 

secondary chemistry of its host plants, Asclepias, as a defense against infection by a sub-lethal, 

protozoan parasite, Ophryocystis elektroscirrha (Lefèvre et al. 2010, 2012). Monarchs become 

infected with O. elektroscirrha after ingesting parasite spores on the surface of egg chorea and 

milkweed (Asclepias) tissues (Leong et al. 1997a, b). Spores lyse within the larval gut, 

sporozoites penetrate the larval hypoderm and replicate over the course of the monarch’s 

development (Mclaughlin et al. 1970).  Infected adult monarchs emerge covered in dormant 

parasite spores and experience reduced lifespan, decreased fecundity, and limited flight ability 

(Altizer & Oberhauser 1999; Bradley & Altizer 2005; de Roode et al. 2008b, 2009). 

 

The chemical quality of the host plants that monarchs consume influences O. elektroscirrha 

infection. Certain milkweed species with high concentrations of toxic steroids known as 

cardenolides reduce infection probability, parasite growth rate, and parasite virulence in monarch 

larvae (de Roode et al. 2008a, 2011a; Gowler et al. 2015). Feeding on high-cardenolide 

(hereafter medicinal) milkweed also ameliorates the fitness costs of harboring each additional 

parasite, a form of defense known as host tolerance (Sternberg et al. 2012). Yet, despite a decade 

of research centered around milkweed medicinal protection and O. elektroscirrha infection (de 

Roode et al. 2008a, 2011b; Sternberg et al. 2012; Gowler et al. 2015), we know very little about 

how PSMs influence the monarch’s immune response. Importantly, medicinal milkweeds 

provide increased protection against the parasite when consumed immediately before or during 

ingestion of spores (de Roode et al. 2011a). This critical period of medicinal action suggests that 

milkweed chemistry influences the effective dose of parasites that monarchs initially experience. 

However, we do not know if the secondary metabolites in milkweed are interfering directly with 

parasites within the midgut or promoting a strengthened anti-parasite immune response.  

 

Monarchs also face attack from other enemies vulnerable to the insect immune response. Several 

microbial parasites and pathogens including a nuclear polyhedrosis virus (NPV), gram-positive 

bacteria such as Bacillus, gram-negative bacteria such as Pseudomonas and a microsporidian 



 86 

Nosema species infect monarchs (Oberhauser et al. 2015b). Additionally, there are 12 species of 

tachinid flies, one brachonid wasp and one chalcid wasp known to parasitize monarchs (Arnaud 

1978; Stenoien et al. 2015). The tachinid fly, Lespesia archippivora, has received the most 

attention (Smithers 1973; Borkin 1982; Prysby 2004; Oberhauser et al. 2009; Oberhauser 2012). 

This parasitoid attacks middle to late instar larvae and pupae, and may parasitize anywhere from 

10-90% of monarchs in a given population (Oberhauser 2012). Due to the intimate nature of 

parasitoid development within the monarch larvae, the nutritional and medicinal quality of the 

monarch host diet likely influences parasitoid success (Oberhauser et al. 2015a). However, we 

know very little about general rates of parasitoid survival within monarchs (Hunter et al. 1996; 

Sternberg et al. 2011), and monarch immune defense against parasitoid infection. Interestingly, 

O. elektroscirrha infection reduces the mortality caused by the tachinid parasitoid, L. 

archippivora to late-instar monarch larvae (Sternberg et al. 2011). We need additional studies to 

understand the complex interactions among co-infection, monarch immunity, and diet chemistry. 

 

Critically, global change drivers like temperature, rainfall, and elevated atmospheric 

concentrations of carbon dioxide (CO2) have direct effects on plant physiology, which manifest 

themselves in plant nutritional quality and defensive chemistry (Bidart-Bouzat & Imeh-Nathaniel 

2008, Hunter 2001; Robinson et al. 2012; Zavala et al. 2013). For example, elevated CO2 causes 

substantial reductions in the cardenolide concentrations and nutritional quality of milkweed 

leaves (Vannette & Hunter 2011; Matiella 2012).  

 

In this study, we examined how one global change driver, elevated CO2, alters monarch immune 

function through changes in the medicinal (secondary chemistry) and nutritional (carbon, and 

nitrogen) quality of milkweed. We fed monarchs foliage from two species of milkweed, A. 

curassavica (medicinal), and A. incarnata (non-medicinal), grown under ambient and elevated 

concentrations of CO2. Larvae were either infected with O. elektroscirrha, or left as uninfected 

controls. We then measured critical aspects of the monarch humoral (in vitro PO activity) and 

cellular (in vitro hemocyte concentrations and types) immune response, along with foliar 

secondary metabolites and nutritional quality, to understand the mechanisms underlying monarch 

immunity under future atmospheric conditions.  
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Because we still lack a complete understanding of the interaction between plant secondary 

metabolites, O. elektroscirrha, and monarch immunity, we approached this study with two 

contrasting predictions. Prediction 1: monarchs feeding on medicinal plants will produce a lower 

immune response. Rationale 1: If the mechanism of plant protection against the pathogen is 

through direct toxicity of cardenolides to the parasite, then monarchs will encounter lower 

effective doses of the parasite. Given that immunity is costly, monarchs feeding on medicinal 

plants that encounter lower spore loads will not invest energy into the immune response.  

 

Alternatively, we generated prediction 2a: medicinal milkweed may improve insect immunity. 

Rationale 2a: certain secondary metabolites may have stimulating effects on insect immunity 

(Ojala et al. 2005). However, ecoimmunology teaches us that the increased energetic investment 

needed for this immune stimulation may be dependent on the nutrient concentrations of the 

milkweed foliage. We, thus, additionally generated prediction 2b: under conditions of low 

resource availability, e.g. reduced nutritional quality of foliage induced by elevated CO2, 

monarchs may exhibit suppressed immune function despite feeding on medicinal host plants. 

Rationale 2b: despite the positive effects of dietary secondary metabolites for immunity, 

monarchs may still experience nutrient limitation in the immune response. 

 

4.3 Materials and Methods 

We performed a fully factorial manipulation with milkweed species (A. incarnata and A. 

curassavica), CO2 treatment (ambient or elevated), and O. elektroscirrha treatment (infected or 

uninfected) as fixed factors. We then ran immune assays from two groups of caterpillars reared 

under the factorial treatments: (i) an immune assay, measuring PO activity and hemocyte counts 

of early-instar larvae, and (ii) a filament assay, measuring encapsulation activity of late-instar 

larvae. A third group of caterpillars (assay controls) were reared to adulthood to estimate the 

effects of our factorial treatments on monarch resistance and tolerance to parasite infection 

(Table 4.1). 

 

Milkweed Sources and Growing Conditions 

We obtained the seeds of both milkweed species from commercial vendors (A. curassavica: 

Victory Seed, OR and A. incarnata: Lupine Gardens, WI). Seeds were surface sterilized using a 
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5% bleach solution and only A. incarnata seeds were cold stratified for six months prior to 

planting. Seedlings were germinated on moist, sterilized paper towels and planted on 5/1/17 in 

deepots TM containing Metromix 360 (SunGro Horticulture, Vancouver, BC) and Osmocote 

16:16:16 controlled release fertilizer (ICL Specialty Fertilizers, Dublin, OH). We grew and 

watered seedlings daily in the glass house at the University of Michigan Biological Station 

(UMBS, 45.5587° N, 84.6776° W) for two weeks before transferring them outside into the CO2 

array.  

 

On 5/28/17 we distributed plants evenly into 40 open-top controlled atmosphere chambers in the 

field at UMBS. The CO2 array was comprised of 20 chambers maintained at ambient CO2 (410 

ppm) and 20 chambers maintained at elevated CO2 (810 ppm) from dawn until dusk (Drake et al. 

1989). We monitored CO2 concentrations in all 20 elevated CO2 chambers and one ambient CO2 

chamber during daylight hours using a LI-COR 320 IRGA (LI-COR, Lincoln, NE, USA). 

Additionally, we recorded air temperatures within the chambers using iButton dataloggers 

(IbuttonLink, Whitewater, WI, USA). The average air temperature inside elevated CO2 chambers 

was 20.81 (± 0.05) ºC, and 20.80 (± 0.05) ºC inside ambient CO2 chambers. These temperatures 

fall well within temperatures typically experienced by monarchs in eastern North America 

(Couture et al. 2015; Faldyn et al. 2018).  

 

Within each chamber, we grew 3 plants of each treatment group (2 milkweed species x 2 parasite 

treatments x 3 assay groups = 12 treatments), making for 36 plants per chamber. We planned to 

rear one caterpillar per treatment group from each chamber (20 replicate larvae per treatment), 

using the three plants per treatment to rear each individual caterpillar.  However, final replicate 

numbers were smaller based on some mortality during rearing (Table 4.1). Plants were watered 

at least once a day, sometimes twice depending on the weather. We began taking cuttings of 

plants for the different assays after approximately 1 month of growth in the array (6/27/17). 

Cuttings were placed individually in 710 mL plastic containers containing one monarch each.  

 

Monarch Sources and Rearing Methods 

A darkened monarch egg (darkening indicates close proximity to hatching) was randomly 

assigned and attached to the leaf surface of each cutting. The monarchs used in this study were 
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the grand-offspring of lab-reared butterflies collected from St. Marks, FL and Lawrence, KS. We 

distributed monarchs from five full-sib family lines evenly across our experimental treatments. 

Three days after neonates hatched on their assigned plant cuttings, we began the inoculation 

process. Each larva was transferred to a petri dish containing a 95 cm2 piece of moist filter paper 

and a 70.6 mm2 leaf disk taken from the larva’s assigned host plant, cleaned with a 5% bleach 

solution and rinsed thoroughly with water. For those larvae designated as inoculated, we placed 

10 parasite spores on the surface of the leaf disk, while uninoculated larvae received spore-free 

leaf disks. Immediately after the leaf disk was taken from the plant for inoculation, we collected 

foliage for chemical analyses (detailed below). The petri dishes containing larvae and leaf disks 

were kept in an incubator maintained at 26°C with 16-hour daylight. Upon consuming the entire 

leaf disk (and therefore all spores), larvae were returned back their cleaned original containers 

with new plant cuttings. We continued to feed monarchs in the control and filament treatments 

ad libitum until pupation or until filament insertion (see below), replacing tissue and cleaning 

each monarch container every 2-3 days.  Monarchs designated for the immune assays (see 

below) were sacrificed 48 hours following inoculation to determine the initial immune response 

to O. elektroscirrha infection. We chose this period because most larvae finished feeding on the 

entire leaf disk around 24-36 hours after being transferred to a petri dish, thus, to ensure that all 

larvae had completed inoculation and had adequate time to mount an immune response (Beckage 

2008), we waited for a complete 48 hours to pass. 

 

Monarch Performance Measures (only Assay Controls) 

Approximately 24 hours following the formation of the chrysalis, we removed all frass and 

remaining foliage from each container so that monarchs could pupate in a clean container. We 

sexed monarchs 24 hours after eclosion and transferred them to pre-weighed 5.75 x 9.5 cm 

glassine envelopes. To obtain adult wet mass, we weighed each butterfly within its envelope. 

Monarchs were then stored in an incubator kept at 15°C with 16-hour daylight for the remainder 

of their adult lives. We checked each monarch daily and recorded date of death. The lifespan of 

monarchs under these starvation conditions correlates strongly with lifetime reproductive fitness 

(de Roode et al. 2008b). Therefore, we estimated parasite virulence as the reduction in the 

lifespan of infected monarchs as compared to uninfected monarchs (de Roode et al. 2007, 

2008a). Two months after death, we quantified the spore loads of each monarch following well-
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established methods (de Roode et al. 2007, 2008a, b). We removed wings from the bodies of 

deceased monarchs and transferred each monarch body into a 10 mL scintillation vial with 5 mL 

of deionized water. We vortexed the mixture for 5 minutes, and then transferred 10 µL aliquots 

into 4 wells in a glasstic hemocytometer (KOVA International, Inc., Garden Grove, CA) for 

counting. The tolerance of monarchs to the parasite was measured as the slope of the regression 

between spore load and longevity, with separate regressions for each milkweed species by CO2 

treatment (Sternberg et al. 2012, 2013; Tao et al. 2015). 

 

Immune Assays to Determine Monarch Immune Response  

As in most insects, the immune defenses of monarchs include both humoral and cellular 

responses (Lindsey & Altizer 2009; Satterfield et al. 2013). We performed two major groups of 

immune assays on the hemolymph of those monarchs designated for the immune assay treatment 

group (Table 4.1): phenoloxidase (PO) activity (humoral immunity) and hemocyte counts 

(cellular immunity). Monarchs use the PO enzyme to orchestrate melanization and ultimately 

encapsulation. We used a colorimetric assay to determine the activity of free, naturally active PO 

(PO activity), PO proenzymes (proPO) and the total PO activity (total PO activity) in monarch 

hemolymph following published methods (Adamo 2004; Smilanich et al. 2017; Dhinaut et al. 

2018). We made incisions in the larval cuticle above the final proleg in the A6 abdominal 

segment using a hand-pulled Pasteur pipette needle (Smilanich et al. 2009, 2017). With a 

micropipette, we took 2 µL of hemolyph from each larva and deposited it into 50 µL of chilled 

phosphate-buffered saline (PBS) solution in a 1.0 mL Eppendorf tube and vortexed the mixture. 

We then incubated two 50 µL aliquots of the hemolymph-PBS mixture with 300 µL of L-DOPA 

(g L-DOPA in mL deionized water) in two wells of a 96-well plate for 20 minutes at room 

temperature. To the second designated well of each sample, we also added 17 µL of 10% 

Cetylpyridinium chloride monohydrate (CPC) to activate any proPO in the hemolymph. Using 

an ELx800 Absorbance Microplate Reader (BioTek) we measured absorbance of the samples at 

a wavelength of 490 nm every 30 seconds for 180 minutes. In our analyses, we used the slope of 

the linear portion of the absorbance curve (30-106 minutes) as our measure of PO, and total PO 

activity. We calculated the activity of proPO by subtracting free PO activity from total PO 

activity.  
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Counting hemocytes present in the hemolymph provides an additional measure of insect 

immunity. The density and frequency of different hemocytes can indicate insect encapsulation 

ability (Eslin & Prévost 1998; Kacsoh & Schlenke 2012; Triggs & Knell 2012). At the same time 

samples were extracted for the PO analysis, we took an additional 4 µL of hemolymph and added 

it to 8 µL of chilled anticoagulant solution (0.684 g EDTA, 0.346 g citric acid dissolved in 180 

mL PBS). Within 24 hours of taking the sample, we performed counts using a Neubauer Bright-

Line hemocytometer (Cambridge Instruments, Inc.) and 10 µL of the sample. We counted the 

total number of hemocytes present in the entire central gridded area and recorded the different 

hemocyte types present in the hemolymph following the descriptions of Strand (2008) and 

Vogelweith et al. (2016). Monarchs produce four major hemocyte types: plasmocytes, 

granulocytes, oenocytoids and spheroulocytes. Plasmocytes are the most prevalent hemocyte 

type in Lepidoptera (Strand 2008) and are cells involved with aggregation and encapsulation. 

Granulocytes are cells involved primarily in phagocytosis and encapsulation. Oenocytoides are 

thought to be associated with PO synthesis and production and we are unsure of the exact 

function spheroids have in monarch immunity (Altizer & de Roode 2015).  

 

Filament Assay to Determine Monarch Encapsulation Response  

To measure the immune defense of 5th instar larvae designated for the Filament treatment (Table 

4.1), we inserted an artificial “parasite egg” into monarchs following Klemola et al. (2008). Our 

simulated parasite eggs were 2 mm long pieces of nylon, which we rubbed with sandpaper, 

knotted at one end (for ease of handling), sterilized with pure ethanol, and dried before inserting 

into larvae. Similar to the hemolymph extraction protocol, we made a small incision into the 

larval cuticle of the A6 abdominal segment just above the final proleg. We then inserted the 

filament into the larval haemocoel parallel to the abdomen, taking care not to perforate the 

intestine. Larvae were returned to their cleaned, original containers and allowed 24 hours to 

mount an immune response. We removed the implanted filaments using forceps, deposited the 

filaments into a 70% ethanol solution and stored samples at – 20 ºC for three months before 

further analyses. Incisions, insertions and removals were made by the same person every time.  

 

To quantify filament melanization (our estimate of encapsulation response) we photographed 

filaments under a dissecting microscope using an iPhone 6 (Apple Inc.) with an iDu LabCam 
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Microscope Adapter (iDu, Detroit, MI, USA) in a dark room. We calibrated Adobe Photoshop to 

calculate distance measures based on a pixel-to-millimeter ratio. We then quantified the mean 

gray value (MGV, 0 = black to 255 = white) of a roughly 0.500 mm2 rectangle selected from the 

tip of the filament that was directly inserted into the insect.   

 

Foliar Chemical Analyses 

Cardenolide extraction and analysis 

To quantify milkweed foliar cardenolides, we followed well-established methods (Zehnder & 

Hunter (2009); Vannette & Hunter (2011);  Tao & Hunter (2012)). At the same time that we 

inoculated monarchs with O. elektroscirrha (above), we punched 6 leaf disks from each 

monarch’s assigned plant into 1 mL of methanol and stored samples at -10°C until processing. 

We took another 6 disks and recorded wet and dry mass of these disks to obtain the approximate 

dry mass of each foliar cardenolide sample. To extract cardenolides, we ground foliage for 3 

minutes, sonicated the sample for 1 hour at 60°C, and centrifuged the sample for 6 minutes. We 

then transferred the supernatant to a new 1 mL ependorff tube and evaporated the sample under 

vacuum at 45°C until dry. Samples were resuspended in 150 µL of methanol spiked with 0.15 

mg/mL digitoxin internal standard. We separated cardenolide compounds of interest using ultra 

performance liquid chromatography (UPLC, Waters Inc., Milford, MA, USA) with an Acquity 

BEH C18 column (1.7 µm, 2.1 x 50 mm, Waters Inc., Milford, MA, MA, USA). Each 2 µL 

sample injection was eluted for 9 minutes with a constant flow rate of 0.7 mL per minute under a 

mobile phase of 20% acetonitrile (ACN): 80% water for 3 minutes followed by a gradient that 

increased to 45% ACN: 55% water over the remainder of the run. Cardenolides were quantified 

using a diode array detector scanning between 200 and 300 nm; peaks that absorbed 

symmetrically with maxima between 216-222 nm were considered cardenolides.  

 

We calculated three descriptive measures of cardenolide chemistry from our milkweed foliar 

samples: total cardenolide concentration of the sample, cardenolide diversity, and cardenolide 

polarity. Cardenolide concentrations were calculated as the sums of all separated peak areas, 

corrected by the concentration of the internal digitoxin standard and estimated by the dry sample 

mass. Cardenolide diversity was calculated using the Shannon diversity index borrowed from 

biodiversity literature: H=-sum(Pilog[Pi]) where Pi is the relative amount of a cardenolide peak 
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produced in an individual plant compared to the total amount of cardenolides in that same 

individual. The biological activity of cardenolides is determined, in part, by the polarity of the 

different sugar moieties attached to steroid skeleton of the compound (Rasmann & Agrawal 

2011; Agrawal et al. 2012). Because animal cell membranes are outwardly hydrophobic, the 

most lipophilic (nonpolar) cardenolides are thought to be the most toxic (Sternberg et al. 2012; 

Tao et al. 2016). We calculated cardenolide polarity P=sum(Pi RTi), where RTi is the retention 

time of the ith peak in the individual following Rasmann & Agrawal (2011).  

 

NMR-extraction and analysis 

At the same time that we removed leaf disks for cardenolide analysis, we harvested three 

additional leaves for NMR sampling. We dried these leaves in a 30°C drying oven and ground 

the tissue to a fine powder. We then transferred 200 mg of each sample to a centrifuge tube and 

added 3 mL of deuterated extraction buffer (25% KH2PO4 90 mM, pH 6 in D2O, 75% CD3OD 

with Tetramethylsilane). We vortexed each sample for 30 seconds, sonicated and then 

centrifuged each sample for 15 minutes each. We filtered the supernatant into an NMR tube and 

prepared the sample for NMR analysis on a 400 MHz Varian Instrument (Aligent Technologies). 

We processed the NMR spectral data using MestReNova software (Mestrelab Research) and 

aligned sample spectra using the solvent peak. Sample spectra were then baseline-corrected, 

phase-corrected, and normalized to the total area of 100, and binned every 0.04 ppm from 0.5 to 

14 ppm. As an estimate of whole-plant chemical diversity we calculated the Simpson diversity 

index (D = 1 - å (n/N)2) of chemical shifts (approximations of secondary metabolites) where n is 

the integral of a specific binned frequency range, and N is the total number of binned frequency 

ranges measured in the sample (Richards et al. 2015).  

 

C:N extraction and analysis 

Remaining dried foliar tissue was ground to a fine powder and then analyzed using a TruMac CN 

Analyzer (Leco Corporation, St. Joseph, MI) to provide estimates of foliar carbon (C) and 

nitrogen (N) concentrations. Examining the foliar C:N ratio is a simple approximation of the 

nutritional quality of the plant (Mattson 1980). 

 

Statistical Analyses 
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For all of our analyses, we used either linear mixed models (LMMs; lme4 package) or 

generalized linear mixed models (GLMMs; lme4 package) always including chamber identity 

and monarch genotype (when applicable) as random effects. We implemented all statistical tests 

in R version 3.3.2 (R Development Core Team, 2018) and all variables were transformed to best 

achieve normality of error. 

 

Monarch Immunity, Milkweed Species and Elevated CO2 

To investigate the effects of CO2 treatment, infection by O. elektroscirrha, and milkweed species 

on the PO activity of larvae, we ran LMMs with these three treatments and their interactions as 

fixed effects and a) total-PO activity (square-root transformed), b) proPO activity (square-root 

transformed), and c) free PO activity (log transformed) as response variables. To all of the PO 

mixed models we also included plate ID as an additional random effect to account for any 

unintended variance from plate to plate. 

 

We used LMMs to assess the effects of our treatments on a) total hemocyte concentration (log-

transformed), b) granulocyte (log-transformed), c) oenocytoid (log-transformed), d) spherule cell 

(square-root transformed), and e) plasmocyte (log-transformed) concentrations. In each of these 

LMMs, CO2 treatment, infection by O. elektroscirrha, milkweed species, and their interactions 

were fixed effects. 

 

We assessed the encapsulation response of late-instar monarchs as a measure of Mean Gray 

Value (MGV) over a standardized area of filament by running an LMM with CO2 treatment, 

infection by O. elektroscirrha, milkweed species, and their interactions as fixed effects.  

 

Within the Assay Control group (Table 4.1), we investigated the effects of our treatments on 

monarch performance. To determine if monarch tolerance to infection varied by CO2 treatment 

and milkweed species, we used an LMM with the lifespan of infected monarchs as the response 

variable and spore load (log10-transformed), CO2 treatment, and milkweed species as fixed 

effects. Any significant interaction between either CO2 treatment or milkweed species and spore 

load indicates effects on monarch tolerance to infection. To test for any effects of CO2 treatment, 

and milkweed species on parasite virulence, we ran an LMM with monarch lifespan as the 
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response variable and parasite treatment, CO2 treatment, and milkweed species as fixed effects. 

Similar to tolerance, an interaction of either of these treatments with infection indicates a 

difference in the magnitude reduction in lifespan (fitness) induced by infection (our definition of 

a change in virulence). To estimate any treatment effects on monarch resistance, we used an 

LMM with spore load (log10-transformed) as the response variable and CO2 treatment, and 

milkweed species as fixed effects. Lastly, we used GLMMs with binomial error distributions and 

logit link functions to assess the effects of CO2 treatment, and milkweed species on the binary 

response variables of monarch survival and infection probability. 

 

We assessed the effects of milkweed species and CO2 treatment on a) total foliar cardenolide 

concentration (log-transformed), b) cardenolide polarity, c) cardenolide diversity (log-

transformed), d) whole-plant secondary metabolite diversity detected with H1-NMR, and e) foliar 

C:N ratio (log-transformed) using LMMs.  

 

To explore the effects of foliar chemical traits on monarch immunity we used LMM’s with all of 

the immunological traits that we measured as response variables and our five foliar traits 

(cardenolide concentration, cardenolide diversity, cardenolide polarity, H1NMR diversity, and 

C:N ratio (log-transformed)) as fixed effects. To avoid detecting spurious correlations that result 

from differences between plant species, we originally included milkweed species as a fixed 

effect in these models.  However, the species term was never significant, and we have removed it 

from the models presented here.  We report only those models that showed significant effects of 

foliar quality: a) total PO activity, b) total hemocyte concentration (log-transformed), c) 

oenocytoids concentration (log-transformed), and d) encapsulation. 

 

4.4 Results 

Early-instar monarch PO activity declines under parasite infection but is “rescued” by 

consuming foliage grown under elevated CO2  

Infection by O. elektroscirrha suppressed the total PO response of monarch larvae by 25% when 

larvae were reared on milkweed grown under ambient CO2 conditions; feeding on foliage grown 

under elevated CO2 eliminated the immune suppression caused by parasite infection 

(infection*CO2: F1, 134 = 5.80, p= 0.0174, Figure 4.1a). Similarly, the ProPO activity of infected 
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monarchs was 35% lower than that of uninfected monarchs when larvae were reared on 

milkweed grown under ambient CO2 conditions; once again, feeding on foliage grown under 

elevated CO2 eliminated this immune suppression (infection*CO2: F1, 134 = 8.34, p= 0.0045, 

Figure 4.1b). Surprisingly, milkweed species had no effect on total PO activity (milkweed 

species: F1, 135 = 0.04, p= 0.8423) or proPO activity (milkweed species: F1, 133 = 0.01, p= 0.9141). 

Further, there was no interaction between milkweed species, CO2 treatment and infection on total 

PO activity (F1, 133 = 2.64, p = 0.1066) or proPO activity (F1, 133 = 1.86, p = 0.1750).  

 

Infection and a diet of foliage from elevated CO2 increased the hemocyte concentrations of 

early-instar monarchs 

Circulating hemocytes aid in the recognition and phagocytosis of microbial parasites and 

encapsulation of parasitoids. Monarchs typically produce four differentiated hemocyte types: 

phagocytic granulocytes, capsule-forming plasmocytes, oenocytoids that contain components of 

the PO cascade, and spherule cells that potentially contain cuticular components (Strand 2008). 

We first present the effects of our treatments on total hemocyte concentrations circulating in 

monarch hemolymph followed by the responses of each hemocyte type.  

 

Infected monarchs that fed on foliage grown under elevated CO2 had 48% higher total 

concentrations of hemocytes circulating in their hemolymph than uninfected monarchs fed 

foliage from the same CO2 treatment (infection*CO2: F1,107= 5.57, p = 0.0201, Figure 4.2a). Put 

differently, feeding on milkweed grown under future concentrations of CO2 and being infected 

with a parasite induced the strongest hemocyte response in monarch larvae. There was no main 

effect of infection (F1,105 = 0.29, p = 0.5924), CO2 treatment (F1,105 = 2.27, p = 0.1353) or an 

interaction among infection, CO2 treatment and milkweed species on total hemocyte 

concentrations (F1,105 = 0.65, p = 0.4217). 

 

Parallel to the pattern found across all hemocyte types, the concentration of granulocytes 

(phagocytic cells) in infected monarchs fed foliage grown under elevated CO2 was 89% higher 

than uninfected monarchs fed the same foliage (infection*CO2: F1,95 = 4.26, p = 0.0418, Figure 

4.2b). CO2 treatment (F1,95 = 1.96, p = 0.1651), infection (F1,95 = 1.66, p = 0.20) and milkweed 
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species (F1,95 = 1.42, p = 0.2370) had no main or interactive (F1,95 = 0.33, p = 0.5671) effects on 

granulocyte concentrations. 

 

Oenocytoids are much rarer in lepidopteran hemolymph but are thought to be directly involved 

in PO production (Strand 2008; Altizer & de Roode 2015). The concentration of oenocytoids 

circulating in monarch hemolymph was markedly higher in those infected monarchs feeding on 

A. curassavica grown under ambient CO2 (infection*milkweed species*CO2: F1,54 = 4.60, p = 

0.0364, Figure 4.2c).  

 

Though we are unsure the exact immunological function of spherule cells, they do contain 

cuticular components necessary for clotting after a wound (Altizer & de Roode 2015). Parasite 

infection increased the concentration of spherule cells circulating in larvae by 71% on those 

larvae fed A. incarnata (infection *milkweed species: F1,77 = 4.02, p = 0.0485, Figure 4.2d). 

Additionally, across infection and milkweed species, elevated CO2 induced a 60% increase in the 

concentration of spherule cells in monarchs (CO2: F1,77 = 5.69, p = 0.0195, Figure 4.2e). There 

was no main effect of milkweed species (F1,77 = 0.61, p = 0.4363), or parasite treatment (F1,77 = 

2.09, p = 0.1526) on spherule cell concentration, nor was there an interaction among our three 

treatments (F1,77 = 0.01, p = 0.9234). 

 

Finally, monarch plasmocyte concentrations (cells involved with encapsulation) were unaffected 

by parasite infection (F1,74 = 0.38, p = 0.5409), species (F1,74 = 0.04, p = 0.8383), CO2 treatment 

(F1,35 = 0.07, p = 0.7976) and their interaction (F1,79 = 0.12, p = 0.7351).  

 

Late-instar monarch immunity against parasitoids declined on “medicinal” milkweed 

The extent of encapsulation around an artificial antigen is an integrated measure of insect 

immune resistance against parasitoids. In our study, monarch encapsulation around a sterile 

filament (simulated antigen) was 11% lower (higher Mean Gray Values indicate less dark 

objects) in larvae feeding on the high-cardenolide A. curassavica in comparison to those fed low-

cardenolide A. incarnata (species: F1, 130 = 4.92, p= 0.0283, Figure 4.3a). In other words, feeding 

on a milkweed species with high concentrations of toxins reduced the strength of monarch 

immune defense against parasitoids. Across all monarchs, inoculation with the protozoan O. 
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elektroscirrha increased encapsulation marginally by 10% (infection: F1, 129 = 3.35, p= 0.0694, 

Figure 4.3b). There was no effect of CO2 treatment on monarch encapsulation (CO2: F1, 130 = 

0.92, p= 0.3404) nor was there an interaction between CO2 treatment, parasite infection and 

milkweed species (species*infection*CO2: F1, 130 = 0.47, p= 0.4927).  

 

 

Tolerance declined in monarchs fed foliage grown under elevated CO2 

The tolerance of infected monarchs within the Control Assay Group (Table 4.1) declined by 70% 

under elevated CO2 across infected adults fed both species of milkweed host plants (F1, 40 = 1.61, 

p = 0.0212, Figure 4.4). Unlike previous studies (Decker et al. in Revision), there was no 

milkweed species-specific decline in tolerance that differed between CO2 treatments (F1, 39 = 

2.31, p = 0.1369), nor were there differences in tolerance between monarchs fed distinct host-

plant species (F1,40 = 1.50, p = 0.2280). Additionally, there was no effect of milkweed species 

(milkweed species*infection: F1,115 = 0.83, p = 0.6340), CO2 treatment (CO2*infection: F1,115 = 

0.2, p = 0.6232), or their interaction (milkweed species* CO2*infection: F1,116 = 0.48, p = 0.4920) 

on parasite virulence. Finally, the spore loads of infected monarchs did not respond to CO2 

treatment (F1,23 = 0.06, p = 0.8118), milkweed species (F1,23= 2.39, p = 0.1357) or their 

interaction (F1,23 = 0.74, p = 0.3975). Monarchs fed A. incarnata foliage had a 3% lower survival 

rate than those monarchs fed A. curassavica as larvae (milkweed species: c2 = 4.24, p = 0.0395). 

There was no effect of CO2 treatment (c2 = 1.36, p = 0.24321) or infection (c2 = 1.41, p = 

0.2347) on monarch survival.  

 

Foliar chemical defenses and nutritional quality declined under elevated CO2  

Elevated CO2 induced a 23% reduction in the foliar cardenolides produced by A. curassavica and 

a 30% reduction in A. incarnata cardenolide production (CO2: F1,98 = 7.88, p = 0.006, Figure 

4.5a, Table 4.2). The two species of milkweed also differed substantially in the amount of 

cardenolides they produced, whereby A. curassavica produced nearly 16 times more foliar 

cardenolides than A. incarnata (species: F1,265 = 622.82, p < 0.0001, Figure 4.5a, Table 4.2). 

Because elevated CO2 caused similar magnitude reductions in both species, there was no 

interaction between milkweed species and CO2 treatment on cardenolide production (species* 

CO2: F1,265 = 1.26, p = 0.2630). The mean polarity index of cardenolides produced by A. 
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curassavica was twice that of A. incarnata (species: F1,264 = 104.40, p < 0.0001, Figure 4.5b 

Table 4.2); a high polarity index indicates an abundance of lipophilic cardenolides. However, 

CO2 treatment had no effect on the mean polarity value of cardenolides (CO2: F1,94 = 2.79, p = 

0.0982, Figure 4.5b, Table 4.2) and caused no significant interaction (species* CO2: F1,263 = 2.48, 

p = 0.1166). Similarly, cardenolide diversity was 86% higher in A. curassavica than in A. 

incarnata (species: F1,239 = 26.10, p < 0.0001 Figure 4.5c, Table 4.2). Elevated CO2 had no effect 

on cardenolide diversity (CO2: F1,239 = 2.43, p = 0.1205, Figure 4.5c, Table 4.2) nor was there an 

interaction between milkweed species and CO2 treatment (species* CO2: F1,239 = 2.89, p = 

0.0903, Figure 4.5c, Table 4.2).  

 

Using H1-NMR we were able to quantify the holistic diversity of secondary metabolites 

produced within the milkweed plants sampled using Simpson’s diversity index of binned 

chemical shift values. The diversity of metabolites declined by roughly 2% in both species of 

milkweed under elevated CO2 (CO2: F1,38 = 6.93, p = 0.0122, Figure 4.5d, Table 4.2). A. 

incarnata, produced a higher diversity of metabolites than A. curassavica but only by about 1% 

(species: F1,435 = 13.21, p = 0.0003, Figure 4.5d, Table 4.2). Just as with cardenolide 

concentrations, elevated CO2 caused similar declines in the chemical diversity of both milkweed 

species, and consequently had no interaction with milkweed species in the model (species* CO2: 

F1,435 = 1.36, p = 0.2437, Figure 4.5d, Table 4.2). 

 

Supporting two decades worth of CO2 research, the nutritional quality of milkweed foliage 

declined under elevated CO2 (CO2: F1,38= 75.11, p < 0.0001, Figure 4.5e, Table 4.2). 

Specifically, the foliar C:N ratio increased by 29% in A. curassavica and by 38% in A. incarnata. 

Across both CO2 treatments, A. incarnata had 22% higher foliar C:N ratios than A. curassavica 

(species: F1,437= 41.34, p < 0.0001, Figure 4.5e, Table 4.2), but there was no species-specific 

response of the foliar C:N ratio to CO2 treatment (species* CO2: F1,437 = 0.10, p = 0.7571, Figure 

4.5e, Table 4.2). 

 

Decreasing diet nutritional quality increased early-instar immunity, while late-instar monarch 

immunity was influenced by cardenolide polarity and diversity 
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Infected larvae increased the strength of their immune response (high total PO activity and 

hemocyte concentrations) with decreasing diet nutritional quality (parasite treatment*CN: F1,137 = 

4.06, p = 0.04589; F1,105 = 5.51, p = 0.0208, Figure 4.6a & b). Additionally, the concentration of 

circulating oenocytoids in infected monarchs responded to both diet cardenolide concentration 

and nutritional quality (parasite treatment*cardenolides*CN: F1,105 = 5.51, p = 0.0208, Figure 

4.6c). Infected monarchs fed high cardenolide foliage reduced the concentration of oenocytoids 

produced as foliar nutritional quality declined.  Conversely, infected monarchs fed low 

cardenolide tissue maintained oenocytoid concentrations despite reductions in diet nutritional 

quality (Figure 4.6c). 

  

Both foliar cardenolide polarity and cardenolide diversity were negatively correlated with the 

encapsulation response of uninfected monarchs (parasite treatment*cardenolide polarity: F1,132 = 

6.25, p = 0.0136; parasite treatment*cardenolide diversity: F1,132 = 3.97, p = 0.0483, Figure 4.6d 

& e). Namely, there was a cost to feeding on plants with more lipophilic and diverse 

cardenolides for uninfected, late-instar monarchs in the form of increased vulnerability to 

parasitoid attack. However, being infected with the parasite eliminated the negative relationship 

between foliar cardenolide chemistry and encapsulation. 

 

4. 5 Discussion 

Here, we demonstrate that a single global environmental change driver, elevated CO2, can impact 

the immune response of recently challenged, young monarch hosts to parasitic infection by O. 

elektroscirrha. Conversely, the immune defense of late-instar monarchs shows no response to 

elevated CO2 but declines when monarchs are fed medicinal milkweed. Additionally, monarch 

age influenced the relationship between phytochemistry and the strength of the immune 

response. In infected early-instar larvae, both PO (a critical immune enzyme) activity and 

hemocytes (immune effector cells) increased with decreasing foliar nutrient concentrations. This 

increased immune response despite reductions in the nutritional quality of plants could reflect 

differences in young host resource allocation. The encapsulation response of uninfected late-

instar monarchs was negatively correlated with cardenolide diversity and polarity. Consequently, 

monarchs may experience an ecological cost to feeding on toxic plant species in the form of 

increased vulnerability to parasitism. To our knowledge, this is the first study to investigate the 
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effects of elevated CO2 on the interplay of foliar nutrients, and secondary metabolites on insect 

immunity against parasites and parasitoids. 

 

Our data suggest that milkweed foliage from elevated CO2 can stimulate monarch immune 

responses to O. elektroscirrha and relieve PO and total hemocyte suppression induced by the 

parasite (Figures 4.1 & 4.2). Despite our predictions, we found no evidence that cardenolides 

play a role in immune inhibition or induction (except in oenocytoids production discussed 

below). This is in contrast to the negative effects of other secondary metabolites such as iridoid 

glycosides on the circulating PO activity of other lepidopterans (Smilanich et al. 2009, 2017). 

Instead, the immune response of infected monarchs was positively correlated with declining 

foliar nutrient concentrations induced by elevated CO2 (Figure 4.6a &b). Typically, insect 

immunity follows the opposite pattern, whereby immune responses decline on diets low in 

nutrients (Beckage 2008; Strand 2008). Dietary proteins especially have been implicated as 

limiting macronutrients for insect immunity (Lee et al. 2006; Povey et al. 2009; Simpson et al. 

2015; Miller & Cotter 2017). However, in some instances, diets low in protein but high in 

carbohydrates (a condition commonly induced in foliage grown under elevated CO2) may 

promote insect melanization induced by PO activity (Mason et al. 2014). Presumably, a diet high 

in soluble carbohydrates is easier to metabolize than one consisting of the high-energy peptide 

bonds within proteins. Within other insect systems, research has revealed a trade-off between 

lipid digestion and immunity (Adamo et al. 2008, 2010). Therefore, infected monarchs may have 

more energy to invest in their immune response because of reduced energetic requirements for 

digestion when feeding on foliage with higher C:N ratios. One other study tested the PO activity 

of Lepidoptera larvae feeding on plant foliage grown under elevated CO2, and found that future 

atmospheric conditions decreased PO activity in unchallenged larvae (Gherlenda et al. 2015). 

The uninfected larvae in our study also exhibited this trend of reduced PO activity, which could 

reflect energetic investment into other life history traits unrelated to immunity under elevated 

CO2 in the absence of parasite challenge. 

 

The concentration of oenocytoids, a hemocyte that contains PO cascade components (Lavine & 

Strand 2002), circulating in early-instar monarch larvae may reflect a selective influence of plant 

chemistry on monarch cellular immunity (Figure 4.2c). When monarchs fed on foliage from A. 
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curassavica (the medicinal milkweed) grown under ambient CO2, the production of this specific 

hemocyte type spiked. This stimulation of immunity on the highest-cardenolide plants in our 

study may provide weak support for hypothesis 2a: that cardenolides may stimulate monarch 

immunity in response to O. elektroscirrha infection. Additionally, the oenocytoids 

concentrations of infected and uninfected monarchs were related simultaneously to both nutrient 

and cardenolide concentrations (Figure 4.6c). Infected early-instar larvae fed foliage with 

intermediate to high cardenolide concentrations produced fewer oenocytoids in their hemolymph 

when that foliage was also of low nutritional quality. Conversely, the production of oenocytoids 

in uninfected monarchs feeding on the low cardenolide foliage was unrelated to nutritional 

quality. Taken together, this pattern supports hypothesis 2b, where monarchs may exhibit 

suppressed immune function despite feeding on medicinal host plants under conditions of 

nutrient stress. 

 

Our results contribute to a growing body of research illustrating the cost of secondary metabolite 

ingestion to the melanization and encapsulation responses of hosts under parasite attack 

(Smilanich et al. 2009; Richards et al. 2012; Lampert & Bowers 2015; Hansen et al. 2016). Late-

instar monarch larvae reared on high-cardenolide milkweed produced a weaker encapsulation 

response against a standardized antigen (filament) (Figure 4.3a). Intriguingly, the strength of 

encapsulation in uninfected monarchs was also negatively related to the presence of more diverse 

and lipophilic cardenolides in the insect diet (Figure 4.6d & e). This reduction of immune 

defense suggests the potential for synergistic interactions among cardenolides and the 

importance of molecular traits such as polarity to insect performance (Richards et al. 2012; 

Sternberg et al. 2012). Additionally, the lack of a reduction in encapsulation in infected 

monarchs despite consuming toxic metabolites lends support to the previous finding that O. 

elektroscirrha protects monarchs from mortality induced by a tachinid parasitoid (Sternberg et 

al. 2011). Our data imply that O. elektroscirrha infection prior to parasitoid attack increases the 

monarch encapsulation response despite the presence of toxic secondary metabolites (Figure 4.6 

d& e). Because improving monarch host fitness also improves the parasite’s own fitness, the 

induction of an increased encapsulation rate by O. elektroscirrha may be an adaptive function for 

the parasite. We suggest future experiments exploring variation in the protective capabilities of 

this parasite in relation to changing foliar chemistry, and different parasitoid attackers. 
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Additionally, if O. elektroscirrha can actually modulate the immune response of monarchs this 

may explain the suppression of PO and hemocytes in infected individuals under ambient CO2. 

 

Host age directly influences the strength of insect immunity (Butcher & Lord 2004; Laws et al. 

2004; Zerofsky et al. 2005). In monarchs, we know that PO activity and total hemocyte 

concentrations directly increase with larval age (Altizer unpublished data, Altizer & de Roode 

2015). Therefore, it is extremely interesting that the clearest effects of plant species on monarch 

immune defense occurred in late-instar larvae. Perhaps, the effects of host plant chemistry take 

time to develop within the insect host. Our study only examined the underlying humoral and 

cellular immune response of monarchs at one time point, 48 hours following inoculation. It is 

possible that further sampling over the course of O. elektroscirrha infection may reveal stronger 

effects of host plant species on monarch immunity. 

 

Though our holistic secondary metabolite diversity index provides a rough estimate of the 

milkweed metabolome and its relationship to monarch performance, further studies investigating 

the importance of specific compounds or chemical structures other than cardenolides are sorely 

needed. Our study provides a clear example of why correlations with simple diversity indices 

(e.g. Simpson index) of chemical structures are insufficient in determining the importance of 

secondary chemistry to herbivore performance. We recommend further analyses of this dataset 

and future studies that employ metabolic profiling (Watrous et al. 2012) to detect molecular 

features important to biological activities such as immunity. This type of holistic approach may 

better detect synergies among compounds and perhaps aid in future drug discovery (Krishnan et 

al. 2005; Macel et al. 2010; Bose et al. 2014; Dyer et al. 2014; Richards et al. 2015a, b). 

 

Monarch butterfly populations currently face multiple threats induced by anthropogenic 

environmental change (Malcolm 2017). Here we demonstrate enhanced monarch immunity in 

early-instar larvae feeding on milkweed grown under elevated CO2. Monarchs experience very 

high mortality rates as neonates and other early instars (Prysby 2004). Thus, our results suggest 

one aspect of environmental change may promote increased protection from parasites and 

parasitoids at this stage. However, increased immune investment will likely come at a cost of 

other important life history traits (Schmid-Hempel 2005) such as growth and reproduction that 
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may ultimately decrease monarch fitness. Ecologists in the Anthropocene face the major 

challenge of determining the direction and magnitude of change in ecological interactions in 

response to future environmental conditions. With an improved understanding of immune 

mechanisms underlying host-enemy interactions, we can begin to make more powerful 

predictions about alterations in trophic cascades and emerging infectious diseases. 
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4.7 Tables & Figures 
 
Table 4.1. The total number of larvae used in an experiment investigating the effects of infection 
by Ophryocystis elektroscirrha, elevated CO2 and milkweed species on monarch immunity. The 
table shows experimental treatments, initial sample sizes, and the number of individuals that 
survived to be assayed (encapsulation or PO/Hemocytes) or that survived to adulthood (Assay 
Controls). 

Assay 
CO2 
Treatment 

Milkweed 
Species 

Parasite 
Treatment 

Surviving 
N 

Initial 
N 

Encapsulation ambient A. curassavica uninfected 14 20    
infected 19 20   

A. incarnata uninfected 15 20    
infected 12 20  

elevated A. curassavica uninfected 15 20    
infected 19 20   

A. incarnata uninfected 18 20    
infected 12 19 

PO & Hemocytes ambient A. curassavica uninfected 18 20    
infected 20 20   

A. incarnata uninfected 16 20    
infected 20 20  

elevated A. curassavica uninfected 20 20    
infected 19 20   

A. incarnata uninfected 19 20    
infected 19 20 

Assay Control ambient A. curassavica uninfected 20 20    
infected 19 20   

A. incarnata uninfected 18 20    
infected 20 20  

elevated A. curassavica uninfected 20 20    
infected 19 20   

A. incarnata uninfected 18 20    
infected 20 20 
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Table 4.2. The effects of CO2 treatment, milkweed species and their interaction on log-transformed foliar cardenolide concentration, 
foliar cardenolide polarity, log-transformed foliar cardenolide diversity, entire plant secondary metabolite diversity detected with H1-
NMR, and carbon (C) to nitrogen (N) ratio. 

 
CO2 Species CO2*Species 

 
F P F P F P 

log(Cardenolide Concentration) F1,98 = 7.88 p = 0.006** F1,265 = 622.82 p < 0.0001*** F1,265 = 1.26 p = 0.2632 
Cardenolide Polarity F1,94 = 2.79 p = 0.0982 F1,264 = 104.40 p < 0.0001*** F1,263 = 2.48 p = 0.1166 

log(Cardenolide Diversity) F1,239 = 2.43 p = 0.1205 F1,239 = 26.10 p < 0.0001*** F1,239 = 2.89 p = 0.0903 
NMR Simspon Diversity Index F1,38 = 6.93 p = 0.0122* F1,435 = 13.21 p = 0.0003** F1,435 = 1.36 p = 0.2437 

log(C:N Ratio) F1,38= 75.11 p < 0.0001*** F1,437= 41.34 p = 0.0003** F1,437 = 0.10 p = 0.7571 
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Figure 4.1. The interactive effects of infection by Ophryocystis elektroscirrha and 
CO2 on a) total Phenoloxidase (PO) activity, and b) prophenoloxidase (proPO) 
activity. Error bars represent ±1 SEM. Ambient CO2 concentrations averaged 410 
ppm and elevated CO2 concentrations averaged 810 ppm. 
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Figure 4.2. The interactive effects of infection by Ophryocystis elektroscirrha, and 
CO2 treatment on a) total hemocyte concentration, and b) granulocyte concentration 
in monarch hemolymph. The c) interactive effects of infection, milkweed species 
and CO2 treatment on oenocytoid concentrations. The interaction of d) infection 
and milkweed species and e) the main effect of CO2 on spherule cell concentrations. 
Error bars represent ±1 SEM and milkweed species codes are as follows: CUR= A. 
curassavica and INC= A. incarnata. Ambient CO2 concentrations averaged 410 
ppm and elevated CO2 concentrations averaged 810 ppm. 
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Figure 4.3. The encapsulation response of 5th instar monarch larvae to artificial antigens 
(sterile filaments) varied by a) the species of milkweed on which monarchs were feeding 
before insertion, and b) whether or not monarchs were infected with Ophryocystis 
elektroscirrha, a protozoan parasite. Higher Mean Gray Values (MGV) represent lighter 
pigmented filaments or lower encapsulation responses. Error bars represent ±1 SEM 
from the mean values and milkweed species codes are as follows: CUR= A. curassavica 
and INC= A. incarnata. Images are of actual plastic filaments inserted into monarchs 
that span the continuum between dark (highly encapsulated) or light (un-encapsulated). 
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Figure 4.4. Monarch tolerance to O. elektroscirrha infection declined on foliage from the 
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Figure 4.5. The effects of CO2 treatment and milkweed species on a) initial foliar cardenolide concentrations (mg/g dry mass), b) the polarity index 
of foliar cardenolides, c) the diversity of foliar cardenolides, d) the diversity of the entire assemblage of foliar secondary metabolites detected with 
H1-NMR and e) the ratio of foliar carbon (C) to nitrogen (N). ANOVA statistics are presented with each graph; although all interactions were not 
significant, we present the data in this fashion for ease of comparison. Error bars represent ±1 SEM from the mean values and milkweed species 
codes are the same as in Figure 1. Dark gray bars represent plants grown under elevated CO2 and light gray bars are those grown under ambient CO2. 
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CO2: F1,38 = 75.11, p<0.0001 
 

CO2*Species: F1,239 = 2.89, p = 0.0903 
Species: F1,239 = 26.10, p <0.0001 
CO2: F1,239 = 2.43, p = 0.1205 
 
 

CO2*Species: F1,435= 1.36, p = 0.2437 
Species: F1,435= 13.21, p = 0.0003 
CO2: F1,38 = 6.93, p = 0.0122 
 
 

CO2*Species: F1,435= 0.10, p = 0.7571 
Species: F1,437= 41.34, p < 0.0001 
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Figure 4.6. The relationship between diet nutritional quality (C:N ratio), infection, and a) 
total PO activity and b) total hemocyte concentrations. c) The combined relationship 
among infection, diet nutritional quality, cardenolide concentration and oenocytoid 
concentrations in larval hemolymph. The relationship between infection by O. 
elektroscirrha, d) diet cardenolide polarity index and e) diet cardenolide diversity and 
monarch encapsulation. A high polarity index reflects greater expression of lipophilic 
cardenolides. For visual simplicity, we have binned larvae in (c) by cardenolide 
concentrations of the foliage that they consumed. However, the analysis was performed 
with un-binned data, and binning was used only as a simplified alternative to a 3D graph. 
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Chapter 5 : Variation Among Individual Milkweed Species, Not Elevated CO2, 

Influences the Relationship Between Plant Resistance and Tolerance 
 

5.1 Abstract 

Regrowth after defoliation (hereafter regrowth tolerance) and chemical resistance are two major 

forms of defense that plants employ against herbivory and that jointly influence plant fitness. 

Because plant resources are finite, a trade-off may exist between these two strategies of defense, 

but this relationship is ultimately complex and context dependent. Predicting the conditions 

under which defense trade-offs manifest is therefore of considerable importance, particularly 

under global environmental change. Changing environmental conditions, including elevated 

atmospheric concentrations of CO2, alter resource availability and thereby influence the 

defensive strategies of plants. In this study, we investigated the effects of elevated CO2 on the 

chemical resistance and regrowth tolerance traits of four milkweed species (Ascelpias). 

Specifically, we examined the effects of elevated CO2 on four potential tradeoffs: a) a tradeoff 

between plant growth rate and chemical resistance before damage occurs, b) a tradeoff between 

plant growth rate before damage and the chemical resistance of regrowth tissues, c) a tradeoff 

between chemical resistance before damage and regrowth tolerance after damage, and d) a 

tradeoff between regrowth tolerance and the chemical resistance of regrowth tissues.  

 

We found support for only one of the four potential trade-offs described: within regrown plants, 

there was a trade-off between plant tolerance (regrowth rate) and resistance traits (foliar 

cardenolide concentrations). This trade-off varied substantially among milkweed species but was 

unaffected by previous exposure to elevated CO2. In all tests of potential trade-offs, milkweed 

species identity was by far the most important factor determining plant growth and resistance. 

Previous exposure to elevated CO2 did alter chemical resistance of regrowth tissue in a species-

specific fashion. Our data add to a growing body of work that demonstrates the complex nature 

of plant growth and resistance relationships in the context of changing resource availability. 
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5.2 Introduction 

Plants use a suite of defensive traits to deter herbivory. These defenses often occur in concert and 

together constitute the plant defensive phenotype (Agrawal & Fishbein 2006). As a result, 

critical factors and synergies that contribute to plant fitness in the context of herbivory may be 

overlooked when we study defenses in isolation (Baucom & De Roode 2011). Regrowth after 

defoliation (hereafter, regrowth tolerance) and chemical resistance are two major forms of 

defense that plants employ against herbivory that jointly influence plant fitness (Strauss & 

Agrawal 1999; Stamp 2003; Núñez-Farfán et al. 2007; Agrawal 2011; Fornoni 2011; Zas et al. 

2011). Resistance is defined as the ability of plants to decrease herbivory through reductions in 

herbivore density, performance, and feeding (Rhoades 1985). Plants resist herbivore damage 

through physical and chemical traits such as trichomes, latex exudation, thorns, and toxic 

secondary metabolites that together reduce herbivore performance. In contrast, plant tolerance to 

herbivory is defined as the maintenance of plant fitness following damage (van der Meijden et al. 

1988; Stowe et al. 2000; Baucom & De Roode 2011). Tolerance is usually achieved through 

simultaneous shifts in physiology and resource allocation that together increase the capacity of 

plants to regrow (Rosenthal & Kotanen 1994; Strauss & Agrawal 1999; Fornoni et al. 2003). 

 

It is widely recognized that plant resistance and regrowth tolerance are inter-related (Stamp 

2003; Agrawal 2011). Because plant resources are finite, early studies predicted that a trade-off 

would exist between plant growth/regrowth and resistance (Coley & Chapin 1985; van der 

Meijden et al. 1988; Fineblum & Rausher 1995). The cost of producing resistance traits directed 

at herbivores, such as defensive structures and secondary metabolites, may result in depressed 

herbicide resistance and pathogen resistance, and reductions in growth rate (Bergelson & 

Purrington 1996). For example, there is a genetic tradeoff between resistance and tolerance in the 

tall morning glory, Ipomoea purpurea, wherein those genotypes that exhibit high levels of 

resistance simultaneously express lower regrowth tolerance to herbivory (Fineblum & Rausher 

1995). However, the link between the two plant defense strategies is less clearly understood in 

other systems (Tiffin & Rausher 1999; Leimu & Koricheva 2006; Stevens et al. 2007; Fornoni 

2011; Oduor et al. 2011; Carmona & Fornoni 2013) where tolerance also depends on the type of 

reproductive cost incurred by herbivory, plant genetic constraints, and resource allocation during 
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development (Stowe et al. 2000; Boege et al. 2007; Núñez-Farfán et al. 2007; Scholes & Paige 

2011, 2014; Siddappaji et al. 2013). In some instances, resistance and tolerance may correlate 

positively because the costs of the two defenses are mediated by factors other than resource 

allocation (Stowe et al. 2000; Fornoni et al. 2004; Núñez-Farfán et al. 2007). Additionally, 

plants that suffer higher herbivore pressure may benefit from high levels of both resistance and 

tolerance (Krimmel & Pearse 2016). Thus, the proposed tradeoff between resistance and 

tolerance is both complex and context dependent (Núñez-Farfán et al. 2007; Züst & Agrawal 

2017). Predicting the conditions under which such defense trade-offs manifest remains an 

important goal of plant ecology and evolution.  

 

Resource availability dictates in part the physiology of plants. A rich literature exists describing 

the defense syndromes of plants in the context of variable resource regimes (Coley & Chapin 

1985; Strauss & Agrawal 1999; Hawkes & Sullivan 2001; Wise & Abrahamson 2007) and has 

led to the accumulation of numerous defense hypotheses that center around the evolution of 

resistance or tolerance. Notably, the Resource Availability Hypothesis (RAH) posits that plants 

living in environments low in resources will evolve greater energetic investment in resistance 

traits (Coley & Chapin 1985). While a central tenet of RAH is a tradeoff between growth and 

resistance, effects of environmental variation on resistance-tolerance tradeoffs remain unclear 

(Gianoli & Salgado-Luarte 2017). The compensatory continuum hypothesis (CCH) (Hawkes & 

Sullivan 2001), represents a complimentary tolerance theory that predicts higher plant tolerance 

under nutrient-rich environments with low competition on both ecological and evolutionary 

scales. However, the empirical tests of these theories provide mixed support—in some instances, 

plants inhabiting low nutrient environments express higher resistance and lower regrowth 

tolerance over evolutionary time because of a reduced capacity to replace lost tissue (Fine et al. 

2006; Gianoli & Salgado-Luarte 2017). Alternatively, some species grown in nutrient-poor 

environments actually increase their regrowth tolerance in the presence of additional stressors 

(Hawkes & Sullivan 2001; Wise & Abrahamson 2007). Within the lifetime of individual plants, 

many studies have demonstrated shifts in plant resistance syndromes in response to 

environmental factors such as nutrient availability (Herms & Mattson 1992; Vannette & Hunter 

2011; Tao et al. 2016a). However, we lack consensus on the relationship between resistance and 

tolerance allocation by plants in response to changing resource regimes across ecological time.   
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Elevated atmospheric concentrations of CO2 influence both plant resistance and regrowth 

tolerance to herbivores. Both the composition and concentration of some plant secondary 

metabolites change in response to elevated CO2 (Hunter 2001; Bidart-Bouzat et al. 2005; Ryan et 

al. 2010; Robinson et al. 2012; Klaiber et al. 2013; Zavala et al. 2013; Jia et al. 2016). Elevated 

CO2 also positively affects plant growth rates by increasing photosynthesis, and water use 

efficiency (Drake et al. 1997; Ainsworth & Long 2005; Robinson et al. 2012; Bazzaz et al. 

1992). However, the direct effects of elevated CO2 on plant tolerance are generally negative 

(Wilsey 2001; Marshall et al. 2008; Lau & Tiffin 2009; Guo et al. 2012) partially because 

nutrient limitation may increase under CO2 enrichment. Concentrations of atmospheric CO2 may 

also influence the phytohormonal signaling pathways of plants, which mediate resistance and 

tolerance (Guo et al. 2012). However, studies that explore the integrated influence of elevated 

CO2 on the interaction between resistance and tolerance are lacking. 

 

Here, we investigated the effects of elevated CO2 on the chemical resistance traits and regrowth 

tolerance of four milkweed species (Ascelpias) over ecological time. Specifically, we examined 

the effects of elevated CO2 on four potential tradeoffs: a) a tradeoff between plant growth rate 

and chemical resistance before damage occurs, b) a tradeoff between plant growth rate before 

damage and the chemical resistance of regrowth tissues, c) a tradeoff between chemical 

resistance before damage and regrowth tolerance after damage, and d) a tradeoff between 

regrowth tolerance and the chemical resistance of regrowth tissues. We predicted that elevated 

CO2 would: a) induce higher growth rates and regrowth rates and depress cardenolide 

concentrations; and b) mitigate in part any tradeoff between chemical resistance traits and 

regrowth tolerance in milkweed. By analyzing changes in plant regrowth and defensive 

chemistry, we hope to improve our understanding of how future environmental conditions may 

influence the defensive phenotype of plants, with implications for the herbivore communities 

that damage them. 

  

Study System 

Milkweeds in the genus Asclepias originate from North and Central America (Woodson 1954). 

The four milkweed species used in our study (A. syriaca, A. speciosa, A. incarnata, and A. 
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curassavica) support herbivores that range from phloem feeding insects such as oleander aphids 

(Aphis nerii) to chewing insects capable of removing large amounts of tissue, like monarch 

caterpillars (Danaus plexippus), and long horn beetles (Tetraopes spp.). Most milkweed 

herbivores specialize within the genus because Asclepias produce a well-characterized suite of 

defenses against herbivory. 

 

To physically deter feeding by arthropod herbivores, milkweed plants exude latex, produce 

trichomes, and increase leaf toughness (Hochwender et al. 2000; Zalucki et al. 2001; Agrawal & 

Fishbein 2006; Agrawal & Konno 2009). However, milkweeds are best known for synthesizing a 

class of toxic steroids known as cardenolides that disrupt Na+/K+-ATPase in the sodium-

potassium channels of animal cells (Agrawal et al. 2012). The composition and concentration of 

cardenolides produced by milkweed plants vary substantially among species and as well as 

within different parts of the plant (Rasmann & Agrawal 2011; Agrawal et al. 2012). Regrowth 

tolerance also play a prominent role in the defensive phenotype of milkweeds (Agrawal & 

Fishbein 2008; Tao et al. 2016a). Despite a growing body of work illustrating the effects of 

environmental change on milkweed chemistry and milkweed growth rates (Vannette & Hunter 

2011; Matiella 2012; Tao et al. 2014; Andrews 2015), no study to date has explored the interplay 

between milkweed resistance traits and regrowth tolerance under future environmental 

conditions.  

 

5. 3 Materials and Methods 

Plant Materials  

We grew four species of milkweed under ambient (400 ppm) and elevated (760 ppm) 

concentrations of atmospheric CO2 at the University of Michigan Biological Station (UMBS) in 

northern Michigan. To manipulate atmospheric CO2 concentrations, we used an array consisting 

of 40 open-top chambers, with 20 chambers maintained at ambient CO2 and 20 chambers 

maintained at elevated CO2 from May through August of 2015. 

 

We chose Asclepias species for our study that vary in their foliar cardenolide concentrations.  

Specifically, we included A. incarnata (low cardenolide), A. speciosa, A. syriaca (both medium 

cardenolide), and A. curassavica (high cardenolide). Seeds of A. speciosa and A. curassavica 
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were obtained from commercial sources (Prairie Moon Nurseries, MN) and seeds of A. incarnata 

and A. syriaca were collected locally (Cheboygan county, MI). We surface sterilized all seeds 

following a six-week cold stratification period (for all but tropical A. curassavica), and 

germinated seeds on moist filter paper for 1 week. We planted seedlings in deepots TM containing 

Metromix 360 (SunGro Horticulture, Vancouver, BC) and Osmocote controlled release fertilizer 

[N:P:K:16:16:16 ppm N (g/g)] (ICL Specialty Fertilizers, Dublin, OH) on 5/5/15. Germinated 

seedlings were watered daily and grown in the UMBS glass house for two weeks before they 

were moved to their randomly assigned chambers outside in the array. Once in the array, plants 

were watered a least once a day and were maintained under their CO2 treatments for 3 months.  

 

Within each chamber, we grew as many as 7 plants of each milkweed species. Low germination 

success limited the number of A. speciosa and A. syriaca used in this study, and not all milkweed 

species were represented in every chamber. Overall, our 8 treatments (2 CO2 treatments x 4 

milkweed species) combined for a total of 442 plants, with exact replicate numbers reported in 

Table 5.1 a & b. To compensate for the nested nature of plants within the 40 chambers (Table 

5.1b), we used the chamber number as a random effect in all of our linear mixed models 

described below. 

 

Using a LI-COR 320 IRGA (LI-COR, Lincoln, NE, USA), we monitored atmospheric CO2 

concentrations daily in the 20 chambers maintained under elevated CO2 and in one randomly 

selected ambient chamber. The concentrations of CO2 were adjusted throughout the day to 

maintain the target concentration of 760 ppm in each elevated chamber. The ambient temperature 

inside each chamber was recorded every hour using a thermochron datalogger (Thermochron, 

Australia). Elevated CO2 chambers averaged 21.03 (±0.034) ºC, and ambient CO2 chambers 

averaged 21.24 (± 0.038) ºC, roughly 2ºC higher than the outside average temperature of 18.93 

(± 0.039) ºC.  

 

Simulated Damage and Growth Measures 

Three months following the initial transfer of plants into the array, we simulated defoliation by 

cutting all plants at the soil line. At our field site in northern Michigan, we have observed 

monarch caterpillars, milkweed tussock moths (Euchaetes egle), chipmunks (Tamius striatus), 
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milkweed stem weevils (Rhyssomatus lineaticollis) and porcupines (Erethizon dorsatum) all 

remove the entire above ground tissues of milkweed plants, and so our clipping treatment 

represents severe but not infrequent levels of damage.  The aboveground biomass that we 

removed was dried at 60°C, weighed, and used to calculate growth rate prior to damage (below). 

Cut plants were then thoroughly watered and moved to the UMBS glass house, where all plants 

were maintained under identical (ambient CO2) conditions for 21 days. We regrew plants under 

ambient CO2 conditions to disentangle the resource allocation decisions made by plants before 

damage from the direct effects of CO2 after damage.  After that time period, the aboveground 

regrowth plant material was harvested, dried at 60°C, and weighed as a measure of regrowth 

tolerance.  For a measure of growth rate prior to damage, we divided the aboveground dry 

biomass of the plant by 64 days (the number of days since the seedling had been transferred to 

soil) following Agrawal & Fishbein (2008). Similarly, to calculate plant regrowth rate following 

mechanical damage (our measure of tolerance) we divided the mass of the regrowth material by 

21 days (the length of time plants were allowed to regrow following damage). Differences in 

growth rate following damage are important for the competitive success and ultimate fitness of 

plants (Züst & Agrawal 2017). 

 

Immediately following our removal of regrowth tissue, we harvested the roots of plants by 

soaking the entire root mass in water for 48 hours and then gently washing the soil from the root 

with a hose. Once most of the soil had been removed, roots were dried and stored until 

desiccated soil particles could be removed by hand. After roots were completely free of soil, they 

were weighed and recorded as the belowground biomass of each sample. Due to time constraints, 

we could only weigh the root tissues of 293 plants. Our sample sizes (Table 5.1) were not large 

enough to sacrifice a subset of plants before our clipping treatments.  We stress that by only 

sampling roots after the period of regrowth, we can only assess the combined effects of CO2 

treatment and clipping on root biomass and chemistry, and not their independent effects. 

 

Chemical Analyses of Above and Belowground Tissues 

We collected samples of the original aboveground foliage, the regrowth foliage, and the fine root 

tissue of each plant for cardenolide analysis using established methods (Zehnder & Hunter 2009; 

Vannette & Hunter 2011; Tao & Hunter 2012). Roughly 20 mg of dried plant material was 
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ground in a ball mill, deposited in 1 mL methanol, and stored at -10°C prior to analysis. 

Cardenolides were extracted, separated and quantified with a 0.15mg/mL digitoxin internal 

standard (Sigma Chemical Company, St. Louis, Missouri, USA), by reverse-phase high-

performance liquid chromatography (HPLC) on a Waters Acquity UPLC with PDA detector 

(Waters Corporation, Milford, MA, USA). Peaks with symmetrical absorbance between 217-222 

nm were identified as cardenolides. Cardenolide concentrations were calculated as the sums of 

all separated peak areas, corrected by the concentration of the internal digitoxin standard and 

sample dry mass. 

 

Statistical Analyses 

In all analyses that follow, we used either linear mixed models (LMMs; Lme4 package) or 

generalized linear mixed models (GLMMs; Lme4 package), always including chamber identity 

as a random effect. We performed all statistical tests in R version 3.3.2 (R Development Core 

Team, 2018). Variables were transformed to best achieve normality of error as tested by the 

Shapiro-Wilk normality test, and model homoscedasticity of variance was confirmed using 

Levene’s Tests from the car package. 

 

Relationships Among Milkweed Growth, Regrowth Tolerance, and Resistance Chemistry 

Our analyses were designed to assess the potential for a) a tradeoff between plant growth rate 

and chemical resistance before damage occurs, b) a tradeoff between plant growth rate before 

damage and the chemical resistance of regrowth tissues, c) a tradeoff between chemical 

resistance before damage and regrowth tolerance after damage, and d) a tradeoff between 

regrowth tolerance and the chemical resistance of regrowth tissues.  In all cases, we examined 

the effects of elevated CO2 on the putative tradeoffs. 

 

Specifically, to test for the potential effects of elevated CO2 on a) the relationship between initial 

growth rate and initial chemical resistance, we used an LMM with log-transformed initial foliar 

cardenolide concentrations as the dependent variable and square-root-transformed growth rate 

prior to clipping, CO2 treatment, and milkweed species as fixed effects. An interaction between 

growth rate prior to clipping and CO2 indicates a difference between the two atmospheres in the 

extent to which growth rate correlates with the production of cardenolides. 
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To test for the potential effects of elevated CO2 on b) a tradeoff between plant growth rate before 

damage and the chemical resistance of regrowth tissues, we used an LMM with log-transformed 

foliar cardenolide concentrations of the regrowth foliage as the dependent variable and square-

root-transformed growth rate prior to clipping, CO2 treatment, and milkweed species as fixed 

effects. An interaction between initial growth rate and CO2 indicates a difference between CO2 

treatments in the potential trade-off between plant growth rate before damage and chemical 

resistance after damage. 

 

Likewise, to test for potential effects of elevated CO2 on c) a tradeoff between chemical 

resistance before damage and regrowth tolerance after damage, we ran a LMM with square-root-

transformed regrowth rate as the response variable and log-transformed initial foliar cardenolide 

concentrations, CO2 treatment, and milkweed species as fixed effects. An interaction between 

initial foliar cardenolide concentration and CO2 would indicate a difference between 

atmospheres in the relationship between initial plant chemical resistance and regrowth tolerance. 

 

Lastly, we assessed any potential effects of elevated CO2 on d) a tradeoff between regrowth 

tolerance and the chemical resistance of regrowth tissues. To do this, we ran a LMM with log-

transformed regrowth foliar cardenolide concentrations as the response variable and square-root-

transformed regrowth rate, CO2 treatment, and milkweed species as fixed effects. A significant 

interaction between CO2 treatment and regrowth rate would signify a difference between the two 

atmospheres in any correlation between the two defense traits. 

 

Elevated CO2, Milkweed Species, and Plant Growth  

To determine the effects of our treatments on plant growth rate prior to damage and regrowth 

rate after damage (tolerance), we used CO2 treatment and milkweed species as fixed effects and 

square-root transformed growth rates (mg/day) and square-root transformed regrowth rates 

(mg/day) as response variables. We then examined how CO2 treatment and species influenced 

the relationship between growth rate prior to damage and regrowth rate following damage, using 

a LMM with square-root transformed regrowth rate as the response variable and square-root 

transformed initial growth rate, CO2 treatment and species as fixed effects.  



   

 128 

 

Not all milkweed individuals regrew following damage. We therefore used generalized linear 

mixed models with binomial error distributions and logit link functions to assess the effects of 

plant species and CO2 treatment on the proportion of milkweed plants that regrew following 

damage. For the subset of plants for which we had root biomass values (N = 293), we determined 

the combined effects of our treatments on belowground biomass with a LMM, with log-

transformed root biomass as the dependent variable and milkweed species and CO2 treatment as 

fixed effects. 

 

Elevated CO2, Milkweed Species, and Defense Chemistry 

Similar to the models described above, we constructed LMMs, with milkweed species and CO2 

treatment as fixed effects and the cardenolide concentrations of (a) the aboveground foliage 

before damage, (b) the regrowth foliage after damage, and (c) the fine root tissue as response 

variables. Over the course of the experiment, some plants did not produce cardenolides and a few 

samples were mishandled. Therefore, we only analyzed the chemistry of plants for which we had 

both aboveground cardenolide samples before damage and matching root chemistry samples 

(N=299). Additionally, we used GLMMs with binomial error distributions and logit link 

functions to assess the effects of plant species and CO2 treatment on the proportion of milkweed 

plants that produced measurable cardenolides in aboveground foliage before damage, in the 

regrowth foliage after damage, and in the fine roots. Because 100% of A. curassavica roots 

produced cardenolides and 100% of A. curassavica plants that regrew produced cardenolides, 

this species was excluded from these two GLMMs. 

 

Relationships Among Root Traits, Milkweed Growth, and Resistance Chemistry 

To determine if regrowth tolerance might occur at the expense of root biomass, we used a LMM 

with log-transformed belowground biomass as a response variable and binary regrowth response, 

milkweed species, and CO2 treatment as fixed effects.  Additionally, using only those plants that 

regrew after clipping, we also tested how root mass varied with a) regrowth rate and b) the 

concentration of regrowth foliar cardenolides. We ran LMMs with root mass as a dependent 

variable and either a) the square-root-transformed rate of regrowth or b) log-transformed foliar 
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cardenolides of regrowth foliage as fixed effects. In both of these models, we also included 

milkweed species and CO2 treatment as additional fixed effects.  

 

To assess any independent and interactive effects of our treatments on root cardenolide 

concentrations, we repeated the analyses described above for root mass, but using root 

cardenolide concentration as the dependent variable. 

 

Finally, we examined relationships among the initial growth rate and chemical resistance of 

plants before damage, and their root mass and root chemistry after the final harvest. We created 

LMMs with log-transformed belowground biomass or log-transformed root cardenolides as 

response variables and square-root-transformed growth rate and log-transformed cardenolide 

concentrations as fixed effects. In all four models, we also included milkweed species and CO2 

treatment as fixed effects. 

 

5.4 Results 

Milkweed species, not elevated CO2, influenced Tolerance-Resistance Relationships 

First, we present the effects of milkweed species and CO2 treatment on the four potential growth 

and defense trade-offs that motivated our study: a) a tradeoff between growth rate and chemical 

resistance before damage occurs, b) a tradeoff between growth rate before damage and the 

chemical resistance of regrowth tissues, c) a tradeoff between chemical resistance before damage 

and regrowth tolerance after damage, and d) a tradeoff between regrowth tolerance and the 

chemical resistance of regrowth tissues. 

 

Tradeoff a): Milkweed growth rate prior to damage was unrelated to foliar cardenolide 

concentrations prior to damage (growth: F1, 316 = 0.47, p = 0.4924, Figure 1a).  Growing under 

elevated CO2 did not change that result significantly (growth*CO2: F1, 316 = 3.20, p = 0.07437, 

Figure 1a). We can therefore reject our hypothesis of a tradeoff between initial plant growth rate 

and initial chemical resistance, and our hypothesis that the tradeoff would be mitigated under 

elevated CO2.  Plant species was by far the most important determinant of the foliar cardenolide 

concentration of undamaged milkweed (Species: F 3, 314 = 8.17, p < 0.0001, Figure 2a).  There 

was no significant interaction between CO2, milkweed species and initial growth rate on foliar 
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cardenolide concentrations before damage (CO2* milkweed species* growth: F3, 313 = 1.78, p = 

0.1504).  

 

Tradeoff b): Likewise, we found no evidence of a trade-off between growth rate before damage 

and the chemical resistance of regrowth tissues (growth: F1, 211 = 1.57, p = 0.2121, Figure 1b). 

CO2 treatment also did not influence the existence of a trade-off between initial growth rate and 

regrowth resistance (CO2*growth: F1, 211 = 2.70, p = 0.1021, Figure 1b). Similar to the foliage 

before damage (above), milkweed species varied substantially in the concentrations of foliar 

cardenolides in their regrowth foliage (milkweed species: F3, 211 = 5.70, p < 0.001, Figure 2b). 

There was no interactive effect of CO2, milkweed species and growth rate before damage on 

regrowth foliar cardenolide concentrations (CO2* milkweed species* growth: F3, 210 = 0.81, p = 

0.4931).   

 

Tradeoff c): As with the other trade-offs tested above, we found no evidence for a relationship 

between chemical resistance before damage and regrowth tolerance after damage (initial 

cardenolides: F1, 195 = 1.17, p = 0.2800, Figure 1c), and no effect of elevated CO2 on that 

relationship (CO2* initial cardenolides: F1, 195 = 0.5856, p = 0.4451, Figure 1c).  As with 

regrowth chemistry (above) regrowth tolerance was determined in large part by milkweed 

identity (milkweed species: F1, 195 = 0.5856, p = 0.4451, Figure 2c). There were no interactive 

effects among initial foliar cardenolides, CO2 treatment, and milkweed species on regrowth 

tolerance (CO2* milkweed species* initial cardenolides: F3,199 = 1.82, p = 0.1450).  

 

Tradeoff d): In contrast to the first three potential tradeoffs, we observed a significant tradeoff 

between regrowth tolerance and the chemical resistance of regrowth foliage (Regrowth rate F1,209 

= 20.85, P<0.0001, Figure 1d).  However, the tradeoff was determined mainly by two of the four 

milkweed species (A. incarnata and A. speciosa) (regrowth rate*milkweed species: F3,209 = 5.53, 

p= 0.0011, Figure 1d).  As above, there was no impact of CO2 on the tradeoff (regrowth*CO2: 

F1,209= 1.49, p = 0.2230), nor was there an interaction among CO2, milkweed species and 

regrowth rate on regrowth cardenolides (CO2* milkweed species* regrowth: F3,209= 1.58, p = 

0.1951).  
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Beyond testing for tradeoffs, and any effects of elevated CO2 in their mitigation, we also 

explored the effects of CO2 on growth rates, regrowth tolerance, and chemical resistance. We 

present these results below. 

 

Elevated CO2 increased initial plant growth rate but had no effect on regrowth tolerance 

The initial growth rates of plants before damage increased in A. curassavica, A. syriaca and A. 

incarnata under elevated CO2 by 12%, 42% and 31% respectively, and remained unchanged in 

A. speciosa (CO2*species: F3,414 = 3.07, p = 0.0278, Figure 3, Table 5.2). Across all milkweed 

species, elevated CO2 induced an average 24% increase in growth rate (CO2: F1,64 =13.97, p= 

0.0004) illustrating the classic pattern of CO2 fertilization on plant growth (Kimball 1983; 

Leadley et al. 1999). We observed the fastest growth rates in A. curassavica and A. incarnata 

(99.60 ± 2.15 mg/day and 98.01± 2.36 mg/day, respectively), while A. speciosa grew half as 

quickly (51.91 ± 2.72 mg/day) (species: F3,414 =77.98, p < 0.0001).  

 

Following mechanical damage, only 278 of the 442 plants (63%) regrew any above ground 

tissue. The probability of regrowth varied among milkweed species (c2 = 55.88, p < 0.0001, 

Figure 4). Nearly 92% of A. curassavica, 86% of A. syriaca, 76% of A. speciosa and only 32% 

of A. incarnata regrew following damage. CO2 treatment did not affect the probability of 

regrowth (c2 = 1.07, p = 0.3009), nor was there an interaction between milkweed species and 

CO2 treatment on regrowth probability (c2 = 2.58, p = 0.4609). 

 

As mentioned above, milkweed regrowth rate following damage was highest in A. curassavica 

(11.03 ± 0.41 mg/day) and lowest in A. syriaca (2.49 ± 0.42 mg/day) (F3,263 =69.01, p < 0.0001, 

Figure 2c, Table 5.2). Interestingly, CO2 treatment had no effect on tolerance across milkweed 

species (F3,57 = 0.01, p = 0.9699, Table 5.2), nor was there an interaction between species and 

CO2 treatment on milkweed tolerance (F3,263 = 0.548, p = 0.6502, Table 5.2). This result 

contradicted our original predictions that increased carbon (C) availability and reduced water 

loss through elevated CO2 would favor faster rates of regrowth in damaged plants. Intriguingly, 

elevated CO2 eliminated the positive relationship between initial plant growth rate and regrowth 

rate following damage (F1, 271= 4.251, p = 0.04018, Figure 5). In other words, future atmospheric 
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concentrations of CO2 uncoupled the relationship between regrowth rate following damage and 

initial growth rate before damage.  

 

Asclepias incarnata plants grew more than twice the dry mass of root tissue (7.297± 0.17 g) than 

did A. curassavica (2.93 ± 0.08 g) (F3,282= 213.77, p < 0.0001, Figure 6a, Table 5.2). Across all 

four species of milkweed, elevated CO2 induced a 9% increase in belowground dry mass 

accumulation (F1,45= 12.53, p = 0.0001, Figure 6b, Table 5.2). 

 

Elevated CO2 influenced the resistance of milkweed in a species-specific manner 

Similar to the patterns observed in foliar cardenolides, A. curassavica produced the highest 

concentration of root cardenolides, but A. speciosa instead had the second highest average root 

cardenolide concentration, followed by A. incarnata and A. syriaca (species: F3,291= 89.16, p < 

0.0001, Figure 7, Table 5.2). In those plants that did regrow following damage, A. curassavica 

again produced the highest concentrations of foliar cardenolides, followed by A. speciosa, A. 

syriaca and A. incarnata (species: F3,154= 121.32, p < 0.0001, Figure 2b, Table 5.2). 

Interestingly, elevated CO2 influenced the concentration of foliar cardenolides of regrowth in a 

species-specific manner (species*CO2: F3,154= 3.50, p = 0.0170, Figure 2b, Table 5.2). Elevated 

CO2 induced a 17% increase in the foliar cardenolide concentrations of regrowth tissue in A. 

curassavica, and a 171% increase in cardenolides in A. incarnata regrowth foliage. In contrast, 

elevated CO2 reduced the concentrations of regrowth foliar cardenolides in both A. syriaca and 

A. speciosa by 59% and 57% respectively. 

 

Of the 380 milkweed plants for which we had initial foliar cardenolide samples before damage, 

only 332 of those plants produced measurable cardenolides (87%). Exactly 99% of all A. 

curassavica, 95% of A. speciosa, and 83% of A. syriaca plants produced measurable foliar 

cardenolides before damage, while only 77% of A. incarnata plants produced cardenolides 

(species: c2 = 18.07, p = 0.0004). CO2 treatment did not affect the probability that milkweeds 

would produce measurable foliar cardenolides before damage (c2 = 2.01, p = 0.1560), nor was 

there an interaction between milkweed species and CO2 treatment (c2 = 0.31, p = 0.9572). Nearly 

96% (343/356) of all root tissues produced measurable cardenolides in our study. Elevated CO2 

induced an ecologically trivial, and marginally non-significant 2% reduction in the probability of 
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milkweeds producing root cardenolides (c2 = 3.15, p = 0.0761), but there was no interaction 

between milkweed species and CO2 treatment (c2 = 3.61, p = 0.1646). Within the 271 milkweed 

plants that regrew following damage, 84% (227) of those plants produced measurable 

cardenolides. All A. curassavica plants, 88% of A. speciosa plants, 86% of A. syriaca plants and 

only 40% of A. incarnata plants produced foliar cardenolides in their regrowth tissue (species: c2 

= 14.70, p = 0.0006). CO2 treatment did not affect the probability that milkweeds would produce 

cardenolides in regrowth tissues (c2 = 01.38, p = 0.2399), nor was there an interaction between 

milkweed species and CO2 treatment (c2 = 1.28, p = 0.5272). 

 

Root Mass was influenced by Tolerance and Resistance  

Our data suggest that most milkweeds used significant root resources to regrow after clipping. In 

A. speciosa, A. syriaca, and A. incarnata, root biomasses were 9%, 16%, and 13% lower in those 

plants that regrew following damage than in those plants that failed to regrow (F3,282= 7.01, p = 

0.0001, Figure 8a).  However, root biomass was 39% higher in the A. curassavica plants that 

regrew than in those plants that failed to regrow. As noted earlier, we have no measures of root 

biomass from plants prior to damage and cannot conclude with certainty that regrowth occurred 

at the cost of root material, or that those plants with less root material regrew more frequently 

following damage. Within the subset of milkweed plants that did regrow following damage, 

regrowth rate was correlated negatively to root mass (F1,179=6.18, p=0.0138, Figure 8b). This 

negative correlation further supports the argument that regrowth comes at the cost of root 

biomass. There was no relationship between root mass and foliar cardenolide concentrations of 

regrowth tissue (F3,126=0.88, p=0.3503), nor was there an interaction among foliar cardenolide 

concentrations, milkweed species, and CO2 treatment (F3,132=0.60, p=0.6134).  

 

Root cardenolide concentrations of plants previously grown under elevated CO2 were 119% 

higher in plants that regrew following damage, and 84% higher in plants previously grown under 

ambient CO2 that regrew following damage (regrowth binary* CO2: F1,302=4.97, p=0.02651, 

Figure 9a). In other words, there was a positive relationship between regrowth and root 

cardenolides that became stronger when plants were previously grown under elevated CO2. 

Within the plants that regrew following damage, there was no relationship between the rate of 

regrowth and the concentration of root cardenolides (F1, 326 = 0.01, p = 0.9373), nor was there an 
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interaction between regrowth rate, milkweed species and CO2 treatment (F3,321 = 0.3691, p = 

0.7754). Finally, in A. curassavica, A. syriaca and A. incarnata plants previously grown under 

elevated CO2, root cardenolides were positively correlated with regrowth cardenolide 

concentrations (CO2*species*regrowth cardenolides: F3, 156 = 2.86, p = 0.03810). Conversely, the 

root cardenolides of A. speciosa plants previously grown under elevated CO2 were negatively 

correlated with regrowth foliar cardenolides (Figure 9b). Intriguingly, the relationship between 

root cardenolides and regrowth foliar cardenolides switched signs between ambient and elevated 

CO2 treatments in A. speciosa (from positive to negative) and A. incarnata (from negative to 

positive, Figure 9b). 

 

Pre-defoliation growth rates above ground were correlated positively with root mass 

(F1,286=81.29, p < 0.0001) but were unrelated to root cardenolide concentrations (F1,144=1.71, p = 

0.19348). Additionally, there were no relationships between initial foliar cardenolides and root 

biomass (F1,172=0.28, =0.5988) or root cardenolide concentrations (F1,283=0.01, p = 0.9290). 

 

5.5 Discussion 

Our study examined the potential effects of elevated CO2 on four hypothesized trade-offs 

between aspects of plant growth and resistance traits. We found support for only one of the four 

potential trade-offs described: within regrown plants, there was a trade-off between plant 

tolerance (regrowth rate) and resistance traits (foliar cardenolide concentrations) (Figure 1d). 

This trade-off varied substantially among milkweed species but was unaffected by previous 

exposure to elevated CO2. In all tests of potential trade-offs, milkweed species was by far the 

most important factor determining plant growth and resistance. Our data add to growing body of 

work that demonstrates the complex nature of plant growth and resistance relationships and the 

need to test these energetic decisions in the context of changing resource availability on 

ecological time scales as well as in evolutionary contexts. 

 

Among plants that regrew following clipping, we found evidence of a trade-off between foliar 

cardenolide concentrations and regrowth rate in two of four milkweed species (Figure 2). This 

finding supports previous studies that have demonstrated negative relationships between 

milkweed growth and cardenolide production (Hochwender et al. 2000; Züst et al. 2015; Tao et 
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al. 2016a). Multiple mechanisms may govern the magnitude of this tradeoff including limitation 

by other nutrients, allocation costs within the plant, genetic linkage of defense traits, ontogeny, 

and other ecological costs such as negative effects on critical mutualists (Simms & Rausher 

1987; Strauss et al. 1999; Fine et al. 2006; Boege et al. 2007; Wise & Abrahamson 2007; Tucker 

& Avila-Sakar 2010; Tao et al. 2016a; Züst & Agrawal 2017). Ours is the first study within the 

milkweed system to show differences in tolerance-resistance relationships among milkweed 

species. However, this could be an artifact of our use of clipping as a defoliation treatment. 

Plants can modulate tolerance and resistance in response to specific herbivore species (Fornoni 

2011; Carmona & Fornoni 2013), and therefore alter the strength and magnitude of the 

relationship between resistance and tolerance in response to herbivory. It would be interesting to 

repeat our experiment with a range of defoliation treatments by a range of herbivores to assess 

effects of CO2 and herbivore identity on resistance-tolerance tradeoffs. 

 

Within the plants that did regrow following mechanical damage, A. syriaca and A. speciosa 

individuals grown under elevated CO2 had cardenolide concentrations in regrowth foliage (our 

measure of resistance) nearly 60% lower than individuals grown under ambient CO2 (Figure 2b). 

Conversely, both A. curassavica and A. incarnata produced higher cardenolide concentrations in 

regrowth foliage when plants were grown previously under elevated CO2 (Figure 2b). A change 

in the chemical resistance traits of regrowth foliage in response to elevated CO2 is perhaps 

surprising, given that there were no effects of CO2 treatment on the concentration of cardenolides 

in either the foliage prior to damage or in the roots (Figure 2a & 7, Table 5.2). Phylogenetic 

relatedness may play a role in the direction and magnitude of response to elevated CO2 exhibited 

by the milkweed species we tested. Within the American Asclepias genus, A. syriaca and A. 

speciosa are more closely related to each other than they are to A. curassavica and A. incarnata 

(Fishbein et al. 2011), and vice versa. These data support previous work suggesting that closely 

related species have similar underlying mechanisms governing plant chemical defense (Agrawal 

& Fishbein 2008), such as resource allocation patterns and phytohormone concentrations.  It also 

suggests that there may be useful phylogenetic signals to predict how plant species may respond 

to global environmental change (DeLucia et al. 2012; Guo et al. 2012; Zavala et al. 2013, 2017), 

although we would need a much more comprehensive phylogenetic comparison to be sure.  
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Surprisingly, the probability of regrowing and the rate of that regrowth following damage were 

unaffected by past atmospheric carbon enrichment. In our study, the expected pattern of CO2 

fertilization manifested in both higher original growth rates (Figure 5.3) and belowground 

biomass (Figure 5.6) under elevated CO2. However, post-clipping effects of elevated CO2 were 

limited to chemical resistance (Figure 5.2b), not regrowth tolerance. Generally, elevated CO2 

reduces plant tolerance and resistance (Wilsey 2001; Marshall et al. 2008; Lau & Tiffin 2009) 

likely through altered phytohormonal signaling pathways (Guo et al. 2012). We did not fertilize 

plants following mechanical damage, so it is possible that the plants were limited by soil 

nutrients such as nitrogen or phosphorous, which are known to alter the tolerance-resistance 

relationship in milkweed (Tao et al. 2016a). The lack of an effect of CO2 treatment on regrowth 

may therefore have arisen from simultaneous nutrient limitation and altered plant signaling that 

suppressed regrowth. Further, elevated CO2 uncoupled the relationship between initial plant 

growth rate and regrowth rate following damage (Figure 5.5). Those plants that were fast 

growers initially and had grown previously under ambient CO2 were also fast growers following 

damage (had higher tolerance). However, those plants that were fast growers and had grown 

under elevated CO2 were much slower to regrow following damage. The elimination of a 

relationship between initial growth rate and regrowth rate lends further support to the argument 

that elevated CO2 suppresses regrowth mechanisms. 

 

Our data also reveal a complicated relationship between the biomass and chemistry of roots and 

plant tolerance. Because we measured root mass and chemistry at the end of the experiment 

(after roots are removed, the plant is completely unable to grow), we are unable to distinguish the 

exact factor driving the relationships among root mass, root chemistry, and regrowth and 

resistance traits. Storage in root tissues is known to improve milkweed tolerance (Strauss & 

Agrawal 1999; Tiffin & Rausher 1999; Stowe et al. 2000), in a context-dependent fashion 

(Hochwender et al. 2000). For instance, A. syriaca plants with more root biomass are more 

tolerant under nutrient poor conditions, but this trend disappears when soil nutrients are abundant 

(Hochwender et al. 2000). Given that the regrowth period of 21 days is sufficient time for plants 

to utilize root energy stores, we think it likely that differences in root mass related to tolerance 

are the result of regrowth costs, rather than the determinant of regrowth ability. Regrowth in the 

three perennial species of milkweed native to North America in our study was associated with 
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low root mass, suggesting a strategy whereby milkweeds invest stored energy from below 

ground into new above ground structures for one last period of photosynthesis before winter. The 

opposite strategy is exhibited by A. curassavica, the one tropical species used in our study that 

has no life-history strategy to prepare for dormancy. Less clear is the positive relationship 

between root cardenolides and regrowth that is strengthened by previous exposure to elevated 

CO2 (Figure 5.9). Because root tissues are well-known sites of secondary metabolite synthesis 

(Hartmann et al. 1989; Erb et al. 2009), factors that alter the amount of root material produced 

(such as elevated CO2) or the allocation of resources to roots may influence the production of 

secondary metabolites in the plant. Our data indicate that plants which produce low to moderate 

foliar and root cardenolides (A. syriaca, A. speciosa, and A. incarnata), employ different 

resource allocation strategies into chemical resistance when grown under different CO2 

treatments: A. speciosa and A. incarnata exhibit opposite relationships between root and 

regrowth cardenolides between CO2 treatments. To improve our understanding of these defense 

strategies, we urge further studies testing the relationship between below ground and above 

ground chemical resistance traits under future environmental conditions.  

 

Monarch caterpillars are one of the most iconic herbivores found on milkweed and are suffering 

massive declines, due in part to changing environmental conditions (Stenoien et al. 2016; 

Malcolm 2017). Roadside milkweed habitats are important for monarchs (Mueller & Baum 

2014; Kasten et al. 2016), and appropriately timed mowing treatments can increase monarch 

fecundity within milkweed patches by increasing the availability of regrowth foliage (Borkin 

1982; Fischer et al. 2015). Our study reveals that foliar cardenolide concentrations in A. syriaca, 

the most common species of milkweed available to monarchs in eastern N. America, decline by 

by 59% following clipping treatments (Figure 5.7c). Reductions in foliar cardenolide 

concentrations may initially prove beneficial to monarchs because toxin catabolism is 

energetically costly (Tao et al. 2016b). However, these reductions in cardenolide concentrations 

could increase the energetic cost of toxin sequestration by monarchs to defend against predators 

(Reichstein et al. 1968; Malcolm & Brower 1989), or lower the antimicrobial properties of 

milkweed for protection against parasite infection (de Roode et al. 2008). Given the conservation 

importance of roadside milkweed patches that are regularly mowed throughout N. America, 

changes in regrowth tissue chemical quality could have implications for monarch populations. 
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However, attempts to predict how migratory monarchs that depend on roadside milkweed 

corridors will fare under global environmental change remain challenging (Zipkin et al. 2012). 

 

Many theories of plant defense assume the existence of a trade-off between tolerance and 

resistance (Strauss & Agrawal 1999), however detecting this trade-off has been difficult (Tiffin 

& Rausher 1999; Leimu & Koricheva 2006; Agrawal 2011; Carmona & Fornoni 2013). In our 

study, the identity of the milkweed influenced any trade-off between tolerance and resistance 

following mechanical damage, and the potential costs of regrowth to plant energy stores in root 

tissues. Effects of CO2 on plant defenses are highly context dependent (Hunter 2001, Vannette & 

Hunter 2011) and our study lends further support to this claim. Although our data provide 

another step towards understanding mixed defense strategies under future environmental 

conditions, further studies exploring the ultimate fitness costs of tolerance and resistance, and the 

responses of herbivore populations to these changes, are greatly needed. This knowledge can be 

used to inform policy decisions which reduce the use of pesticides (Strauss & Murch 2004) and 

inform weed control programs (Williams et al. 2004).  
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5.7 Tables & Figures 
 
Table 5.1. Sample sizes of 442 milkweed plants grown under either ambient (400 ppm) or 
elevated (760 ppm) CO2 grouped (a) by species and (b) by their distribution in 40 open-top 
chambers. Species codes are: CUR = A. curassavica, SYR = A. syriaca, SPE = A. speciosa, 
INC= A. incarnata. 

a) 
CO2 Treatment species N 
ambient A. curassavica 84 
 A. incarnata 105 
 A. speciosa 22 
 A. syriaca 25 
elevated A. curassavica 81 
 A. incarnata 91 
 A. speciosa 23 
 A. syriaca 11 

 
b) 

CO2 
Treatment chamber CUR INC SPE SYR chamber CUR INC SPE SYR 

elevated 1 4 3 0 2 21 4 4 2 1 
ambient 2 6 6 1 2 22 5 6 2 0 
elevated 3 6 7 1 0 23 2 5 3 0 
ambient 4 3 6 2 3 24 5 5 0 1 
elevated 5 4 4 3 1 25 6 6 2 1 
ambient 6 4 4 0 1 26 4 6 1 0 
elevated 7 5 6 2 0 27 2 4 0 1 
ambient 8 4 6 1 1 28 4 6 0 1 
elevated 9 1 6 0 0 29 5 5 2 0 
ambient 10 4 5 3 1 30 3 5 0 2 
elevated 11 4 5 1 0 31 5 2 0 1 
ambient 12 4 6 2 1 32 4 3 0 0 
elevated 13 3 1 1 0 33 4 6 3 0 
ambient 14 2 5 2 3 34 4 5 0 1 
elevated 15 6 3 1 1 35 2 3 1 2 
ambient 16 5 5 0 3 36 6 6 3 2 
elevated 17 3 4 1 0 37 4 6 1 1 
ambient 18 5 4 0 0 38 5 6 2 1 
elevated 19 5 6 0 0 39 6 5 0 0 
ambient 20 5 6 2 1 40 2 4 0 1 
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Table 5.2. ANOVA Table detailing the effects of CO2 treatment, milkweed species, and their interaction on plant growth rate before 
damage, regrowth rate after damage, final root biomass, foliar cardenolide concentration before damage, root cardenolide concentration 
at harvest, and cardenolide concentrations of regrowth foliage. 

 
 
 

 
Plant Species CO2 treatment  Plant species* CO2  N 

 
F P F P F P 

 
sqrt(Growth rate) F3,414 =77.98 < 0.0001*** F1,64 =13.97 0.0004*** F3,414 = 3.07 0.0278* 442 

sqrt(Regrowth rate) F3,263 = 69.01 < 0.0001*** F1,56.95 = 0.01 0.9699 F3,263 = 0.548 0.6502 278 

log(Root biomass) F3,270 = 210.31 < 0.0001*** F1,270 =14.89 0.0001*** F3,270 = 1.45 0.2283 278 

log(Initial Foliar Cardenolide Concentration) F3,288 = 217.19 < 0.0001*** F1,288= 2.49 0.1185 F3,57 = 2.49 0.0817 299 

log(Root Cardenolide Concentration) F3,291 = 89.16 < 0.0001*** F1, 291 = 0.08 0.7817 F3,291 = 0.88 0.4528 299 

log(Regrowth Cardenolide Concentration) F3,154 = 121.32 < 0.0001*** F1, 154 = 0.58 0.4492 F3, 154 = 3.50 0.0170* 162 
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Figure 5.1. a) Nonsignificant effects of CO2 treatment and initial growth rate on milkweed foliar cardenolide concentrations 
(mg/g dry mass) before mechanical damage. b) Nonsignificant effects of CO2 treatment and initial growth rate on milkweed 
regrowth foliar cardenolide concentrations (mg/g dry mass) after mechanical damage. c) Nonsignificant effects of CO2 
treatment and milkweed foliar cardenolide concentrations before mechanical damage on regrowth rate after damage. d) The 
relationship between log-transformed foliar cardenolide concentrations (mg/g dry mass) after damage and square-root-
transformed regrowth rate (mg/day) within those milkweed plants that regrew. Regressions are represented with 95% 
confidence intervals and milkweed species codes: CUR = A. curassavica, SPE = A. speciosa, SYR = A. syriaca, and INC= 
A. incarnata. 
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Figure 5.2. The effects of CO2 treatment and milkweed species on a) initial foliar cardenolide concentrations (mg/g dry mass), and b) 
regrowth foliar cardenolide concentrations (mg/g dry mass) after damage. Interaction statistics from the accompanying ANOVAs are 
presented with each graph; although some interactions were not significant, we present the data in this fashion for ease of comparison. The 
main effect of Species was significant in every case (Table 2).  The effect of milkweed species on c) the regrowth rate of plants (mg dry 
mass of above ground tissue per day over 21 days). Error bars represent ±1 SEM from the mean values and milkweed species codes are the 
same as in Figure 1. 

 
a)            b)          c) 
 

Species*CO2: F3,288 = 2.27, p = 0.0817 
Species: F3,288 = 217.19, p<0.001 
CO2: F1, 288 = 2.49, p=0.1185 

 

Species*CO2: F3,154= 3.50, p = 0.0170  
Species: F3,154 = 121.32, p<0.001 
CO2: F1,154= 0.58, p=0.4492 
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Figure 5.4. Effects of elevated CO2 and milkweed species on the initial growth rate of 
milkweeds prior to mechanical damage (mg dry mass of aboveground tissue accumulated per day 
for 64 days). Dark gray bars represent plants grown under elevated CO2 and light gray bars are 
those grown under ambient CO2. Error bars represent ±1 SEM from the mean values. Innate 
growth rate was transformed for analyses but we present raw data here for ease of interpretation. 
Milkweed species codes: CUR = A. curassavica, SYR = A. syriaca, SPE = A. speciosa, INC= A. 
incarnata. 

Figure 5.3. Variation among milkweed species in the probability of regrowth after 
mechanical damage. Regrowth growth rate was transformed for analyses but we 
present raw data here for ease of interpretation. Milkweed species codes are the 
same as in Figure 1.  
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Figure 5.6. Effects of a) milkweed species and b) CO2 treatment on the root mass of milkweeds. 
Error bars represent ±1 SEM from the mean values. Root mass was transformed for analyses but 
we present raw data here for ease of interpretation. Milkweed species codes are the same as in 
Figure 1. Dark gray bars represent plants grown under elevated CO2 and light gray bars are those 
grown under ambient CO2. 

 

 
Figure 5.5. Effects of elevated CO2 and initial growth rate on milkweed regrowth rate following 
mechanical damage. Light gray points and lines represent plants grown under ambient CO2 and 
dark gray points and lines are those grown under elevated CO2. Regressions are represented with 
95% confidence intervals. Variables were transformed for analyses but we present raw data here 
for ease of interpretation.  
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Figure 5.7. The effects of CO2 treatment and milkweed species on root 
cardenolide concentrations (mg/g dry mass). Interaction statistics from the 
accompanying ANOVAs are presented; although some interactions were not 
significant, we present the data in this fashion for ease of comparison. Error bars 
represent ±1 SEM from the mean values and milkweed species codes are the same 
as in Figure 1. Dark gray bars represent plants grown under elevated CO2 and light 
gray bars are those grown under ambient CO2. 

Figure 5.8. The effects of a) milkweed species on the relationship between 
milkweed regrowth following mechanical damage and final root mass. Within 
those plants that regrew following damage, b) the rate of regrowth was related 
negatively to final root mass. Error bars represent ±1 SEM from the mean 
values, regressions are represented with 95% confidence intervals, and 
milkweed species codes are the same in Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
a)      b)      

 
 
 
 
 
 
 
 
 
 
  

Species*CO2: F3,291= 0.88, p = 0.4528  
Species: F3,291 = 89.16, p<0.001 
CO2: F1,291= 0.08, p=0.7817 
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Figure 5.9. The effects of CO2 on a) the relationship between regrowth probability on root 
cardenolide concentrations. b) The effects of CO2 and milkweed species on the relationship 
between root cardenolide concentrations and regrowth foliar cardenolide concentrations. Dark 
gray points and lines represent plants grown under elevated CO2 and light gray points and lines 
are those grown under ambient CO2. Milkweed species codes are the same as in Figure 1, and 
regressions are represented with 95% confidence intervals. Note the different x-axes. 

 
  a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

152 
 

Chapter 6 : Conclusion 
 

6.1 Summary of Findings 

Anthropogenic drivers of global change influence the biology of organisms, accelerating 

extinction events, altering the abundance and distribution of organisms, and shifting community 

composition (Sala et al. 2000; Pearson & Dawson 2003). Simultaneously, changing climate and 

biogeochemical cycles may cause less obvious, but equally important, alterations to the networks 

of ecological interactions among species (Tylianakis et al. 2008; Gunderson et al. 2017).  

 

In this dissertation, I combine a series of manipulative experiments to assess the effects of a 

critical global environmental change variable, increasing CO2 concentration, on a plant-

phytophagous host-parasite system. To understand how global change will alter disease 

dynamics, I investigate the effects of elevated CO2 on the medicinal and nutritional chemistry of 

plants.  I assess the subsequent impacts of those phytochemical changes on host (herbivore) 

tolerance to parasites, and parasite virulence. I then examine how those phytochemical changes 

induced by elevated CO2 may also affect host defenses against predation, including the 

sequestration of chemical defense and mobility. To better understand one potential mechanism 

mediating the effects of diet quality on host-parasite interactions, I examine effects of elevated 

CO2 on the host immune response mediated by diet chemistry. Finally, I explore how elevated 

CO2 alters how plants allocate resources to defense, potentially shifting the relationships between 

plant resistance traits and regrowth tolerance. This matters to herbivore disease dynamics 

because any reduction in allocation to resistance traits may also reduce the pharmaceutical nature 

of plant foliage. I summarize the results of these four manipulative experiments below. 

 

I use the monarch butterfly, Danaus plexippus, and its protozoan parasite, Ophryocystis 

elektroscirrha, as the central host-parasite interaction of my dissertation due to the strong 

influence of the monarch’s obligate host plant, Asclepias, on the interaction (de Roode et al. 
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2008a, 2011; Sternberg et al. 2012). Plants of the genus Asclepias, milkweed, produce a group of 

toxic steroids known as cardenolides, which are medicinally active against O. elektroscirrha 

(Gowler et al. 2015). Given the strong dependence of monarch-enemy interactions on 

phytochemistry, any changes in the quality of milkweed should have important implications for 

monarch populations.  

 

 

Chapter II: Elevated Atmospheric Concentrations of Carbon Dioxide Reduce Monarch 

Tolerance and Increase Parasite Virulence by Altering the Medicinal Properties of Milkweeds.  

Environmental change imposes both direct and indirect effects on host resistance, host tolerance, 

and parasite virulence. In this chapter, I explored how elevated CO2 alters the medicinal quality 

of milkweeds and, in turn, influences monarch host tolerance and parasite virulence. A high-

cardenolide (medicinal) milkweed species lost its medicinal properties when grown under 

elevated CO2. In response, monarch tolerance to O. elektroscirrha decreased, and O. 

elektroscirrha virulence increased. We related declines in medicinal quality with declines in the 

production of lipophilic foliar cardenolides.  No such effects were observed on low cardenolide 

(non-medicinal) milkweeds under elevated CO2. Our results emphasize that key parameters of 

host-parasite dynamics are susceptible to environmental change. Notably, the alterations in host 

tolerance and parasite virulence described here could modify selective pressures on parasites, 

which may favor the evolution of less virulent pathogens under future environmental conditions.  

 

 

Chapter III: Managing Migration and Defense in a Changing World.  

Higher trophic levels are affected by CO2-induced shifts in plant quality (Hentley et al. 2014; 

Ode et al. 2014) as these changes may render herbivores more vulnerable to predation. In this 

chapter, I examined the indirect effects of elevated CO2 on toxin sequestration and flight 

morphology of the monarch butterfly mediated by plant quality.  Our results demonstrate that 1) 

monarchs compensate for lower plant toxin concentrations under elevated CO2 by increasing 

toxin sequestration rate. Namely, monarchs maintain the same composition and concentrations of 

cardenolides in their wings under the two CO2 treatments despite declines in foliar cardenolide 

concentrations under elevated CO2. 2) Flight morphology, including wing shape, wing loading, 
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and wing density vary by elevated CO2, milkweed species, infection status, and sex. 3) Feeding 

on high cardenolide milkweed is associated with the formation of rounder, thinner wings, which 

are less efficient at gliding flight and more prone to tearing.  

 

We suggest that changes in the rate of sequestration under elevated CO2 are a byproduct of 

compensatory feeding aimed at maintaining a nutritional target in response to declining dietary 

quality. Ingesting larger amounts of foliage from milkweed high in cardenolides may come at a 

cost to the monarch. Such costs may manifest as lower quality flight phenotypes: rounder, 

thinner wings with lower wing loading values. Small changes in wing morphology may have 

important consequences for flight ability and migration success. Energetic costs due to 

alterations in sequestration and morphology may, therefore, have important consequences for 

monarch defense in a changing world.  

 

 

Chapter IV: Effects of CO2 on Environmentally-Mediated Immunity in a Specialist Herbivore 

The mechanisms underlying the impacts of global change on host-parasite interactions, such as 

those found in Chapter II, often remain unresolved. In this chapter, I investigated the plant-

mediated effects of elevated CO2 on monarch cellular (hemocyte concentrations) and humoral 

(immune enzyme activity) immunity in response to infection by O. elektroscirrha and to 

challenge by simulated parasitoid attack. I found that the immune enzyme activity of early-instar 

monarchs declined under parasite infection but was “rescued” by consuming foliage grown under 

elevated CO2. Additionally, infection and a diet of foliage from elevated CO2 increased the 

hemocyte concentrations of early-instar monarchs. However, in late-instar monarchs, the 

immune response against parasitoids declined on “medicinal” milkweed, suggesting a potential 

tradeoff between resistance against parasitoids and resistance against agents of disease. An 

improved understanding of immune mechanisms underlying host-enemy interactions may 

enhance our ability to make predictions about alterations in trophic cascades and emerging 

infectious diseases.  
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Chapter V: Variation Among Individual Milkweed Species, Not Elevated CO2, Influences the 

Relationship Between Plant Resistance and Tolerance. 

Changing environmental conditions alter resource availability and influence the defensive 

strategies of plants. Milkweed plants must employ two major avenues of defense against 

attacking herbivores: chemical resistance and regrowth tolerance. In this study, we investigated 

the effects of elevated CO2 on the resistance and tolerance traits of the four milkweed species 

used in Chapters II and III. We demonstrate that a trade-off between plant tolerance and 

resistance traits varies in strength among milkweed species. Previous exposure to elevated CO2 

did not affect the strength of the trade-off between tolerance and resistance observed in our study 

despite the species-specific effects of elevated CO2 on the chemical resistance of regrowth tissue. 

Our data add to a growing body of work that demonstrates the complex nature of plant growth 

and resistance relationships. Given the conservation importance to monarchs of roadside 

milkweed patches that are regularly mowed throughout N. America, changes in the chemical 

quality of regrowth tissue could have implications for future monarch populations. 

 

6.2 Synthesis & Future Directions 
Anthropogenic environmental change regularly influences both abiotic and biotic factors that 

operate in combination and at multiple scales to alter host-parasite interactions (Tylianakis et al. 

2008; Altizer et al. 2013; Gunderson et al. 2017). My dissertation provides strong evidence that 

interactions between monarch butterflies and their protozoan parasites will be affected by 

ongoing environmental change. Notably, elevated concentrations of atmospheric CO2 had 

important effects on milkweed chemistry, monarch tolerance, and parasite virulence. However, 

my dissertation spans a relatively short period. Long-term evolution experiments are very 

difficult to perform in this system but would provide much needed empirical data illustrating the 

evolution of both parasite virulence and host tolerance under future environmental conditions. 

There is strong support for the evolution of optimal virulence within O. elektroscirrha 

populations (de Roode et al. 2008b). During my three field seasons I observed substantial 

variation in parasite virulence, upon which selection may act. In the absence of external 

stressors, theory predicts that virulence should decline under elevated CO2 back to a level that 

best optimizes parasite lifetime fitness (Best et al. 2008; Schneider & Ayres 2008). Given the 

accelerating rise in atmospheric CO2 however, future empirical and theoretical studies should 
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investigate the relationship between the timescale of virulence evolution, rapid environmental 

change, and ultimate host-parasite dynamics. These studies will be crucial for evaluating policy 

decisions that recommend intervention in ecological processes to manipulate virulence evolution 

in human and animal pathogens in our changing world (Galvani 2003).  

 

Rising concentrations of atmospheric CO2 are also accompanied by increasing ambient 

temperatures, variability in precipitation regimes, and other aspects of environmental change 

(IPCC 2013). Reductionist studies focused on the effects of single environmental change drivers 

on multitrophic interactions, like the chapters presented here, are needed to infer causal 

relationships and population level effects. However, more studies combing the effects of multiple 

global change drivers, such as elevated CO2 and temperature, on host-parasite interactions over 

varying temporal scales are sorely needed to improve our predictive abilities. Higher order 

interactions between environmental change drivers have already been illustrated in other systems 

(reviewed in Tylianakis et al. 2008), and may help to explain the considerable variation in the 

strength and magnitude of ecological responses to environmental change. Observational studies 

across gradients of environmental stress (for environmental change drivers such as drought) will 

also add to our understanding of disease under future conditions and better inform the design of 

further empirical work. 

 

Much like a growing number of other chemical ecology studies, my work suggests that total 

concentrations of secondary metabolites are not indicative of ecological function, rather 

synergies amongst different compounds and chemical structures determine biological activity 

(Hay et al. 1994; Nelson & Kursar 1999; Dyer et al. 2003). In all of my studies where herbivore 

performance was influenced by phytochemistry, it was the diversity and polarity of cardenolides 

that was biologically relevant. This highlights the importance of measuring and categorizing the 

diversity of molecular structures in future studies of chemical ecology (Ayres et al. 1997; Dyer et 

al. 2014; Richards et al. 2015). Further analyses of our H1-NMR foliar metabolomics data are 

currently underway to correlate important molecular features with the immune responses of 

monarchs. With these methods, we may better detect synergies between plant compounds critical 

to monarch defense, better describe the phytochemical changes induced by elevated CO2, and 

perhaps aid in future drug discovery. 
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Additionally, my dissertation reveals an alarming reduction in phytochemical diversity under 

elevated CO2. Given the extensive variation that exists on the phytochemical landscape, and its 

importance to multitrophic interactions and nutrient cycling (Hunter 2016), it would be 

interesting to explore the ubiquity of phytochemical homogenization by global environmental 

change and its effects on trophic dynamics. Additionally, we know very little about how 

environmental patchiness and resource instability (Hite & Cressler 2018), or its disappearance, 

influences the evolution of virulence across landscapes. Therefore, I urge future observational 

and empirical studies to examine the phytochemical dependence of host-parasite interactions at 

larger spatial scales of varying resource heterogeneity.  

 

Implications for the Monarch 

Despite the multitude of negative predictions accumulating about monarch survival in the face of 

global change (Oberhauser et al. 2015; Stenoien et al. 2016; Malcolm 2017), my dissertation 

work reveals possible mechanisms of monarch resilience. Elevated CO2 improved early-instar 

monarch immunity and flight phenotype (made wings more elongated) despite inducing 

reductions in monarch host tolerance of O. elektroscirrha (see Chapters, II, III, & IV). 

Additionally, mowing milkweed at optimal times (Fischer et al. 2015) during the breeding 

season under future concentrations of CO2, may improve the survival of monarchs depending on 

the species of milkweed and the prevalence of O. elektroscirrha infection in the monarch 

population (see Chapter V). However, this dissertation warns of the complexity of responses by 

organisms to global change. Thus, monarchs may be more resilient than previously proposed in 

the face of elevated CO2, but how this resilience will fair under combined environmental change 

drivers remains uncertain. 

 

 

Overall, the work described here contributes to our knowledge of multitrophic interactions in a 

changing world. Understanding the factors that govern the strength of host-parasite interactions 

(i.e. host immunity, resistance and tolerance) and the importance of environmental context (i.e. 

plant defensive and nutritional chemistry) under future conditions is critical to predicting future 

disease risk, community composition, and ecosystem function.  
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Appendix A Supplementary Figures & Table for Chapter 2 

Table A 2. Experimental treatments and the numbers of uninfected (control) and infected larvae 
used to explore the effects of elevated CO2 and milkweed species on the interaction between 
monarch butterflies and a protozoan parasite, Ophryocystis elektroscirrha. 

Year Milkweed 
Species 

CO2 
Treatment  

Uninfected 
Initial 

Uninfected 
Surviving 

Infected 
Initial 

Infected 
Surviving 

2014 A. curassavica ambient 10 8 20 15   
elevated 10 6 21 13  

A. incarnata ambient 10 10 20 17   
elevated 10 9 19 16  

A. speciosa ambient 10 5 14 13   
elevated 10 7 18 11  

A. syriaca ambient 10 9 18 15   
elevated 11 8 19 12 

2015 A. curassavica ambient 19 19 20 13   
elevated 21 20 21 17  

A. incarnata ambient 21 20 19 16   
elevated 20 18 21 18  

A. speciosa ambient 21 18 19 13   
elevated 20 19 22 16  

A. syriaca ambient 22 20 19 13   
elevated 21 20 20 12 
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Figure A 2. Effects of milkweed species and CO2 treatment on foliar cardenolide communities, 
separated in a 3-dimensional NMDS analysis. Circular points represent plants grown under 
ambient CO2 and triangular points represent plants grown under elevated CO2. The color of the 
points indicates the species of milkweed: CUR =A. curassavica (red), SYR=A. syriaca (purple), 
SPE=A. speciosa (blue), INC=A. incarnata (green). 
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Appendix B : Supplementary Figures & Table for Chapter 3 

 
Table B 2. Effects of milkweed species on foliar cardenolide diversity and polarity. Numbers 
represent mean values ± 1 SE. A. incarnata were omitted from the analyses of cardenolide diversity 
because most individuals plants contained only a single cardenolide. 

 
 
 

 A. curassavica A. syriaca A. speciosa A. incarnata 
Cardenolide Diversity 0.66 ± 0.02 0.12 ± 0.042 0.10 ± 0.04 - 
Cardenolide Polarity 3.12 ± 0.07 4.41 ± 0.22 2.57 ± 0.40 2.07 ± 0.50 
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Figure B 2. The interaction between milkweed host-plant species, infection by 
Ophryocystis elektroscirrha and sex on a composite measure of monarch 
forewing shape. Points represent mean PCA-shape values ±1 SE. Red points 
indicate mean shape values of infected monarchs while, blue points represent 
uninfected monarchs. With increasing PCA-shape values wings become more 
elongated and angular. Milkweed species codes: CUR = A. curassavica, SYR = 
A. syriaca, SPE = A. speciosa, INC= A. incarnata. 


