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Abstract 

Neurodegenerative diseases such as Alzheimer’s disease (AD) are all results of neurons 

losing their normal functionality. However, the exact mechanics of neurodegeneration remains 

obscure. Most of the knowledge about this class of diseases is obtained by studying late stage 

patients. Therefore, the mechanism proceeding the late stages of such diseases are less understood. 

Better understanding of respective mechanisms can help developing in early diagnostic tools and 

techniques to enable more effective treatment methods. Analyzing the dynamics of neural systems 

can be the key to discover the underlying mechanisms, which lead to neurodegenerative diseases. 

The dynamics of neural systems can be studied in different scales. 

At subcellular level, dynamics of axonal transport plays an important role in AD. In 

particular, anterograde axonal transport conducted by kinesin-1, known conventionally as kinesin, 

is essential for maintaining functional synapses. The stochastic motion of kinesin in the presence 

of magnetic nanoparticles is studied. A novel reduced-order-model (ROM) is constructed to 

simulate the collective dynamics of magnetic nanoparticles that are delivered into cells. The ROM 

coupled with the kinesin model allows the quantification of the decrease in processivity of kinesin 

and in its average velocity under external loads caused by chains of magnetic nanoparticles. 

Changes in the properties of transport induced by perturbations have the potential to decipher 

normal transport from impaired transport in the state of disease. 



 xv 

In single-cell level analysis, Ca2+ transients in ASH neuron of C. elegans model organism 

is studied in the context of biological conditions such as aging and oxidative stress. A novel 

mathematical model is established that can describe the unique Ca2+ transients of ASH neuron in 

C. elegans including its “on” and “off” response. The model provides insight into the mechanism 

that governs the observed Ca2+ dynamics in ASH neuron. Hence, the proposed mathematical model 

can be utilized as a tool that offers explanation for changes induced by aging or oxidative stress in 

the neuron based on the observed Ca2+ dynamics. 

Network level analysis of neurons does not require methods of extremely high spatial and 

temporal resolution compared to the analysis in subcellular and cellular level. Yet, malfunction in 

smaller scales can manifest themselves in dynamics of larger scales. In particular, impairment of 

synaptic connections and their dynamics can jeopardize the normal functionality of the brain in 

pathological conditions such as AD. The impact of synaptic deficiencies is investigated on 

robustness of persistence activity (essential for working memory, which is adversely affected by 

AD) in excitatory networks with different topologies. Networks with rich-clubs are shown to have 

higher robustness when their synapses are impaired. Hence, monitoring changes in the properties 

of the neural network can be utilized as a tool to detect defects in synaptic connections. Moreover, 

such defects are shown to be more devastating if they occur in synapses of highly active neurons. 

Impairments of synapses in highly active neurons can be directly linked to subcellular processes 

such as depletion of synaptic resources. Using stochastic firing rate models, the parameters that 

govern synaptic dynamics are shown to influence the capability of the model to possess memory. 

The decrease in the release probability of synaptic vesicles, which can be caused by loss of axonal 

transport, is shown to have a detrimental effect on memory represented by the firing rate of 

population models. 
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Chapter 1  

 Introduction 

Advances in neuroscience constantly improve our understanding of the brain’s complexity 

and functionality. However, many aspects of the nervous system including the brain itself are 

elusive such as brain-related diseases. Unfortunately, the brain displays limited self-repairing 

capabilities when faced with stroke, severe traumatic injury or neurodegeneration [1]. 

Neurodegenerative diseases such as Alzheimer’s disease (AD) are now more important than ever 

due to the increase in life expectancy and an aging population [2]. Significant progress has been 

achieved in the understanding of the underlying mechanisms of such diseases, as for instance the 

involvement of tau proteins, Aβ amyloids, and impaired axonal transport [3] and synaptic 

deficiencies [4] that are linked to AD. Investigating dynamical characteristics of neurons can be 

the key to decipher the mechanisms that govern neurodegenerative diseases and lead potentially 

to early diagnosis.  

 The dynamics of neural systems ranges from nanoscale of intracellular transport to 

mesoscale population activity of neurons. However, dynamical processes in different scales are 

not independent of each other. Understanding the link between dynamics of different scales and 

connecting them can be the key to better understanding of neural systems in normal and 

pathological conditions. For instance, detecting defects in a subcellular process requires extremely 
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high spatial and temporal resolution. However, such subcellular malfunctions may have a 

magnified impact in the dynamics of larger scales where they are more tractable.  

Such a multiscale study cannot be conducted without adequate knowledge of each 

individual scale. Therefore, this dissertation first studies the intracellular transport in neurons 

before attempting to establishing connections between the dynamics in small scales and larger 

scales. Axonal transport supplies newly synthesized proteins from the cell body of the neuron 

along the axons toward the presynaptic area [5]. Such transport has been shown to decline during 

normal aging or AD [6–8]. Therefore, understanding the mechanism that regulates axonal transport 

is crucial [9]. Moreover, experimental data shows that defects in transport is present earlier than 

other neural abnormalities [10]. Therefore, axonal transport deficiencies potentially occur in the 

early stages of neurodegeneration. Defects in axonal transport can be attributed to many factors 

including cargo-motor deficiencies [11]. Impaired motor protein mediated transport of cargos is 

related to variety of pathological conditions [12].  

Motor proteins are energy consuming protein carriers that moving along the cytoskeleton. 

Among motor proteins, kinesin transport cargos from the cell body to the periphery whereas other 

motor proteins such as dyneins perform the transport in the opposite direction [13]. Advances in 

cell imaging techniques led to direct observation of organelle transport and discovery of the kinesin 

family of motor proteins [14].  

Kinesin motion on microtubules has been characterized previously [15]. Loads and 

directionality affect motion of kinesin greatly. For instance, loads opposing motion of kinesin has 

been shown to decrease motility of kinesin while assisting force increases binding affinity  of ADP 

(adenosine diphosphate) for kinesin [16]. Moreover, the effects of load and ATP (adenosine 

triphosphate) concentration on the motion of kinesin transport has been measured experimentally 
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[17]. For instance, the distance traveled by kinesin decreases as the opposing force increases or 

ATP concentration decreases. Such experiments and measurements have paved the way for the 

development of mathematical models that can describe motion of kinesin and its stochasticity 

[18,19]. Detailed models are extremely important when mechanisms that represent impairment of 

axonal transport are studied. For instance, microtubule-associated proteins such as tau protein have 

been shown to be related to neurodegenerative diseases [3,20]. Tau protein has been reported to 

cause traffic jams [21] and such traffic jams have been suggested to be related to neurodegenerative 

diseases [22,23]. Moreover, tau protein has been shown to regulate dynamics of motor proteins by 

changing their properties such as their binding and unbinding rates [24,25]. Therefore, mechanistic 

models that can also demonstrate effects of binding and unbinding of kinesin to microtubules are 

crucial [26]. Indeed, such models [27,28] have been helpful to study phenomena like traffic jams 

in the axonal transport  [29,30].  

The interruption of the dynamics of the axonal transport by various mechanisms such as 

the traffic jams can affect dynamics of neural systems in larger scales. Kinesin axonal transport is 

necessary for synaptic components such as synaptic vesicle precursors [31]. Therefore, defects in 

motors proteins and intracellular transport are expected to cause failure of synaptic efficiency and 

subsequently to neurodegeneration [9,32]. Hence, synaptic dynamics is the bridge that connects 

the dynamics of intracellular process of the axonal transport to larger scale dynamics of neural 

networks.  

There are several factors to consider in modeling of neural networks. First, there are many 

choices for modeling of neurons [33]. Models with several compartments are capable of 

reproducing physiological behavior of neurons faithfully [34] but they are computationally 

expensive for many network applications. Simpler models such as integrate-and-fire models [35] 
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are computationally more efficient but less biologically plausible compared to Hodgkin-Huxley 

based models since they do not model individual channels [36].  

The effect of network topology and its structure on its dynamics (neural networks here) is 

apparent but less studied [37]. Small-world network [38] is a popular choice and networks with 

such properties have been studied extensively. For example, the properties of small-world network 

have been shown to influence dynamics of activity patterns in epilepsy [39,40]. However, 

properties of neural networks are not limited small-world. Examples of structured topologies in 

neural networks are many, ranging from humans [41] to simpler organisms such as C. elegans 

nematode [41]¸ the first organism to have its connectome fully mapped [42,43]. Such 

advancements in mapping neural networks have revealed static network metrics in neural system 

such as presence of rich-clubs [41], scale-free or aforementioned small-world networks [44]. The 

non-random structure of the neural networks in the brain is the common conclusion of all such 

studies [45]. However, understanding how the non-random topology of neural networks influences 

their dynamics is limited. Such understanding can be the key to reveal how neuronal malfunctions 

affect the dynamics of neural network.  

The dynamics of neural networks can be studied in various details and contexts. In a high-

fidelity model, detailed models of neurons and synapses in the network will be simulated 

individually. One the other hand, low-fidelity models will consider population of neurons as one 

entity and model their collective behavior without tracking dynamics of individual neurons. Both 

of these approaches are considered in this dissertation. High-fidelity and low fidelity models of 

neural networks are studied when the neural system is exposed to various impairments, which can 

mimic biological and pathological conditions (mainly defects in the axonal transport). The context 

that such neural systems are studied is related to AD because AD is known to be adversely affected 
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by loss of synapses [4]. However, AD is a disease with broad range of conditions and symptoms. 

Here, the focus is on working memory, which is shown to deteriorate in patient with AD [46]. 

Working memory is the ability of the brain to store some information for a short period of time. 

For instance, remembering a sequence of number such as a phone number for seconds. Such ability 

of the brain has been shown be related to persistent activity of neural networks in the brain [47]. 

The persistent activity of a neural network can be considered as the ability of the network to sustain 

its activity after the initial stimulus is withdrawn [48]. Moreover, the capability of the network to 

show bistability has been shown to be essential to working memory [49]. This dissertation aims to 

study neural systems with such properties subjected to impairments.  

Chapter 2 explores subcellular dynamics of axonal transport. Intracellular dynamic of 

kinesin mediated cargo transport is studied in neurons. The stochastic kinesin model is perturbed 

by forces exerted on the cargo by magnetic nanoparticles that are delivered into the cell. The 

magnetic nanoparticles form chain-like structures in the presence of external magnetic field that 

oppose movement of the cargo by kinesin. A reduced-order-model (ROM) is developed to enable 

fast simulation of the particle dynamics. Then, the ROM and kinesin model are coupled to explore 

the impact of spatial forces on the dynamics of kinesin. The tool developed in Chapter 2 enables 

fast and accurate modeling of kinesin transport in the presence of temporal and spatial varying 

forces. Such tool can be utilized to study dynamics of healthy and impaired transport. Then, 

detection methods can be established based on the comparison between the dynamics of impaired 

and healthy transport due to their dissimilar response to the same external force.  

Chapter 3 studies dynamics of a single neuron a cellular level. Namely, Ca2+ dynamics in 

ASH neuron of C. elegans model organism is investigated. A mathematical model is developed 

based on experimental data [50] that can capture unique features of Ca2+ dynamics in ASH neuron. 
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Such features include the “on” and “off” responses of ASH neuron. Moreover, the mathematical 

model can be utilized to predict response of ASH neuron to complex stimuli, which is challenging 

in experiments. However, the main contribution of the developed model with regard to this 

dissertation is the ability of the model to suggest potential subcellular variations in the cell 

machinery that can explain changes in Ca2+ dynamics induced by aging or oxidative stress. The 

results in Chapter 3 demonstrate how changes in small scale dynamics in neurons (here, 

components of the models such as pumps and channels) can contribute to dynamics of the neurons 

in larger scales (here, Ca2+ transients).  

Chapter 4 studies dynamics of neural systems in a network level. Dynamics of neural 

networks are explored when subjected to synaptic impairments. Excitatory networks that show 

persistent activity are created. The degree distribution of the networks is used to construct networks 

with desired metrics such as having high rich-club coefficient. Then, dynamical metrics are 

introduced to investigate robustness of networks when synapses are weakened. Different scenarios 

of impairments are introduced that can represent biological and pathological conditions, especially 

those related to defects in the axonal transport. The results of Chapter 4 shows how the dynamics 

of neural networks can provide monitoring guidelines for detection of synaptic failure by 

monitoring dynamics of the network.   

Chapter 5 introduces the method and tools for studying stochastic dynamical systems, 

which will be exploited in Chapter 6. The Fokker-Planck equation is used to find the probability 

distribution associated with stochastic dynamical systems. Mainly, probabilistic bifurcation 

diagrams are introduced based on stationary solution the Fokker-Planck equation. Such 

probabilistic bifurcation diagrams are powerful tools that allow detailed analysis of stochastic 

dynamical systems in the presence of additive and multiplicative noise.  
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Chapter 6 studies dynamics of population of neurons. Firing rate models are used to explore 

population activities in the presence of noise. Noise is added to the firing rate models to represent 

stimulus, which is necessary for recalling of a memory. Then, using the methods and tools 

introduced in Chapter 5, stochastic firing rate models are studied. Namely, the ability of the system 

to hold and recall memory is related to bistability of the firing model. Then, changes in the 

probability distribution of the model, which leads to loss of bistability is used to explore effects of 

impairment on the model. The model of impairment ranges from synaptic weights to parameters 

that are connected to synaptic dynamics. The parameters related to synaptic dynamics are directly 

linked to dynamics of the axonal transport in neurons. Hence, changes in population activity with 

defects in axonal transport is explored.  

Finally, chapter 7 provides the summary of the dissertation and main conclusions. Then, 

future direction is suggested with regard to the topics covered in each chapter.  
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Chapter 2  

 Reduced-Order Models for the Dynamics of Superparamagnetic 

Nanoparticles Interacting with Cargoes Transported by Kinesins 

2.1 Introduction 

Magnetic nanoparticles have been used in vivo for many different purposes such as drug 

delivery [51], image contrast [52], localized heating [53], and many more [54]. Complimentary to 

the experimental work, nanoparticles have also attracted computational scientific community to 

develop mathematical models to study dynamics of magnetic nanoparticles [55]. However, such 

models are computationally expensive because they consist of many particles with highly 

nonlinear dynamics. Such high-fidelity models become a burden when they need to be integrated 

with highly stochastic biological systems since many realizations are needed to draw statistically 

relevant conclusions from systems with such high variability.  

Reduced order models (ROMs) can be utilized as an alternative method to high-fidelity 

models to decrease the computational cost associated with running many long simulations. 

However, conventional methods of constructing ROMs [56–58] are not completely applicable for 

multibody dynamics of particles that are also subjected to external magnetic fields. ROMs 

                                                 

 The results presented in this chapter is published as: 

Mirzakhalili E, Nam W, Epureanu BI. Reduced-order models for the dynamics of superparamagnetic nanoparticles 

interacting with cargoes transported by kinesins. Nonlinear Dyn 2017:1–18. doi:10.1007/s11071-017-3673-0. 
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developed for discrete element methods [59] are the most similar system to the one developed in 

this chapter. However, such model reductions are developed by assuming an infinite number of 

particles [60] while such assumption is not accurate for biological systems. For example, aside 

from technical difficulties in delivering nanoparticles into cells, excessive numbers of 

nanoparticles have adverse effects on cells [61–63]. Hence, we develop a novel ROM for limited 

finite/moderate number of magnetic nanoparticles based on the dynamics of the magnetic 

nanoparticles and their interaction with nanotransport inside cells.  

In the absence of an external magnetic field, superparamagnetic nanoparticles have random 

magnetization and therefore have zero net magnetic moment [64]. Hence, they can be coated as to 

not agglomerate in the absence of external magnetic fields [64,65]. However, in the presence of 

an external magnetic field, superparamagnetic nanoparticles can form aggregates. These are most 

frequently chain-like structures [66]. Models based on first principles can predict the behavior of 

superparamagnetic nanoparticles under a variety of conditions [67]. We use such models to 

develop our novel ROM to be combined with models for intracellular transport by motor proteins 

such as kinesins.  

Kinesin-1, also known as conventional kinesin [68], performs anterograde transport inside 

cells, including neuronal axons by walking on microtubules [14,69,70]. Motor proteins such as 

kinesin convert chemical energy in the form of adenosine triphosphate (ATP) into mechanical 

energy to transport cargoes inside cells. Advances in single molecule techniques [71] have enabled 

detailed studies of motor proteins [15,72–74]. With the help of experimental data, stochastic 

models for kinesin nanotransport have been developed and validated [26]. Such models can predict 

features of kinesin-mediated nanotransport that have not yet been studied experimentally, and can 

be used to design new experiments to investigate further the intracellular nanotransport [75]. Such 
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an example is provided in this chapter, where kinesin models are used to predict the effects of 

superparamagnetic particles on the kinesin-mediated intracellular nanotransport. In experiments, 

the external force is directly applied to the cargo (typically a latex bead) carried by kinesins [76–

78]. However, extending such single-molecule methods from in vitro to in vivo has had only partial 

success. Here, we propose and examine an alternate method, possible to apply in vivo, to influence 

kinesin transport by indirectly applying external loads on cargoes using superparamagnetic 

nanoparticles. We study such nanotransport using novel models.  

The strength of the attractive forces between adjacent superparamagnetic nanoparticles 

depends on the properties of the particles as well as the intensity of the magnetic field. Therefore, 

altering the magnetic field can be used as a means to control dynamically the properties of the 

medium in which the nanoparticles are present [79]. Such features of magnetic nanoparticles can 

be used for many different applications. In this chapter, we examine how superparamagnetic 

nanoparticles and the chains they form inside cells can influence transport of cargos transported 

by kinesins. The simulation of even small numbers of superparamagnetic nanoparticles requires 

intensive computations, and a large number of simulations are necessary to characterize the 

average nanotransport because it is stochastic. Thus, performing full-order computations is 

ineffective. To address this issue, we develop a novel ROM to determine the interaction of chains 

of superparamagnetic nanoparticles with cargoes without having to solve the motion of each 

individual nanoparticle. The ROM is then coupled with kinesin models to allow the quantification 

of the decreases in processivity of kinesin and in its average velocity under the external loads 

caused by chains of magnetic nanoparticles.  
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2.2 Modeling  

In this section, we present the mathematical models we use to describe dynamics of the 

different components of the system explored in this chapter. To that end, the forces that act on 

different components in the system are provided. The dynamics of superparamagnetic 

nanoparticles is described by the interaction forces between them due to the external magnetic 

field, their interaction with the cargo, and viscous forces. The dynamics of the cargo is described 

by the interaction forces between the cargo and the superparamagnetic nanoparticles, viscous 

forces, and the pulling force generated by the motion of kinesin motor proteins. Finally, we present 

the mechano-chemical model that describes the motion of kinesin motor proteins and the forces it 

generates.  

2.1.2 Dynamics of the Superparamagnetic Nanoparticles and the Cargo  

Superparamagnetic nanoparticles are assumed to be spheres of the same radius. They have 

a uniform steric layer coating which prevents them from creating collides [64]. In the absence of 

an external magnetic field, they do not have interacting forces between them. However, in the 

presence of an external magnetic field, superparamagnetic nanoparticles are magnetized and have 

their magnetic moment aligned with the direction of the external magnetic field. This leads to 

magnetic interaction forces. The thermal fluctuation forces that lead to the Brownian motion of the 

superparamagnetic nanoparticles are negligible compared the strong magnetic interaction forces. 

The interaction of two particles i  and j , and the interaction force with the external magnetic field 

is characterized using three energy terms [80] as follows 

(a) the energy of particle-to-particle interaction due to the magnetic field, which can be 

expressed as  
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where 0  is the magnetic permeability in vacuum, 0m  is the magnetic moment of a particle, 

ijr  is the relative position vector between the two particles ( /ij ij ijrt r  is the unit vector along ijr

), in  is the direction of magnetic moment on particle i . 

(b) the energy of particle-to-particle interaction due to the steric overlap, which can be expressed as  
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where d  is the diameter of the particle, k  is the Boltzmann constant, T  is the temperature, 

v  is a non-dimensional parameter related to d  and to the number of surfactant molecules on the 

surface of each particle, and / t d  is the ratio of the thickness   of the steric layer. 

(c) the energy of particle-to-field interaction, which can be expressed as  

 0 0 ,  H

i iu m n H   (2.3) 

where H  is the applied external magnetic field.  

Most studies of magnetic nanoparticles focus on predicting the final structure formed by 

the particles [67,80–82] instead of their dynamics under forces. Hence, these studies can use 

energy-based methods in Monte Carlo simulations [67,80–82], where the structure/formation is 

determined by the minimization of potential energy. However, our study focuses on the dynamics 

of the nanoparticles. Therefore, we use the force between magnetic particles calculated as the 

gradient of the potential energy fields in Eqs. (2.1)-(2.3)Thus, the interaction forces between two 

superparamagnetic nanoparticles [83] can be expressed in three components as follows  

(a) the particle-to-particle interaction due to the magnetic field, which can be expressed as  
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(b) the particle-to-particle interaction due to the steric overlap, which can be expressed as  
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where 150 pN



 v

v

kT
L  is a constant that acts like a penalty term and controls the small 

numerical penetration between contacting particles. 

(c) the particle-to-field interaction, which can be expressed as  

 0,H

ijF   (2.6) 

Of course, Eq. (2.6) reflects the fact that interaction of a nanoparticle with the applied 

magnetic field does not create any force because the magnetic filed is constant in space.  

The motion of the superparamagnetic nanoparticles in a fluid is also affected by viscous 

fluid forces. The Reynolds number of nanoparticles is very small. Hence, the fluid force for a 

spherical particle is a drag force that can be calculated using Stokes’ law as  

 3 , d

i idF v   (2.7) 

where 
310 Pa. s   is the viscosity of the fluid, and iv  is the velocity of particle i .  

The interaction force between a cargo (i.e., a non-magnetic and larger particle) and 

superparamagnetic nanoparticle i  can be expressed similar to Eq. (2.5) as  
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where ir  is the relative position vector between the cargo and particle i  ( /i i irt r  is the 

unit vector along ir ), D  is the diameter of the cargo.  

The equation of motion for each superparamagnetic particle i  can be expressed as 
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where n  is the total number of superparamagnetic nanoparticles, im  is the mass of 

superparamagnetic particle i , and  ia is its acceleration. Since the inertia of the particles is 

negligible compared to the viscous and magnetic forces (at the nanoscale), the equation of motion 

can be reduced to  
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Similarly, the inertia of the cargo is negligible compared to the viscous forces and the forces 

generated by the kinesin motors. Therefore, the sum of all forces acting on the cargo can be 

expressed as  
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where 
d

cF  is the drag force created by the fluid onto the cargo, kF  is the force generated 

by the kinesin, which will be described in the next section, and cV  is the velocity of the cargo. 

Equation (2.10) provides the velocity iv  of particle i , and can be integrated over time using, 

for example, a well-known forward Euler formula, to obtain the position 
t

ix  of the particle i  at 

time t .  

2.2.2 Mechano-chemical Model of Kinesins and the Force They Generate  

The walking motion of a kinesin molecule and its unbinding from the microtubule 

determine the transport velocity and the run length. Importantly, the motion of kinesin is affected 
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by the loads acting on its cargo linker. In this work, we use a model which captures these 

phenomena [19,26,84].  

The model includes the chemical reaction between the kinesin heads and ATP, the change 

in the kinesin structure induced by ATP binding to kinesin, and the Brownian motion of the free 

kinesin head (i.e., a head when is not bound to the microtubule). The influence of the load on the 

unbinding is introduced into the model with a Boltzmann’s relation, which can predict the changes 

in the unbinding probability as a function of the strain energy generated by the force in the 

molecule. This model uses a single-molecule kinetics [85] to account for the chemical reaction 

[26] as  

 
1 2

1

K ATP K.ATP K ADP Pi,    
f f

b

k k

k
  (2.12) 

where K denotes kinesin molecule, 
1 1

1 2 μM s fk  and 1bk  are the forward and backward 

rates for the binding of ATP to kinesin, 
1

2 100 sfk  is the rate constant for hydrolysis of ATP 

molecule [26]. ADP is adenosine diphosphate, and Pi is phosphate. 

  1 1 . ,   K ATP f K ATP b K ATP

d
P k ATP P k P

dt
  (2.13) 

  . 1 1 . 2 . ,  K ATP f K ATP b K ATP f K ATP

d
P k ATP P k P k P

dt
  (2.14) 

 2 ,  K ADP Pi f K ATP

d
P k P

dt
  (2.15) 

where K ATPP , .K ATPP , and  K ADP PiP  denote the probabilities of chemical states of kinesin. 

These probabilities are calculated by solving the coupled relations in Eqs. (2.13)-(2.15). The effect 

of the load on the chemical reaction is modeled as a load-dependent transition rate constant in the 
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backward reaction of ATP binding to kinesin. Specifically, the rate constant is a function of the 

strain energy in the kinesin structure generated by the external load [86] as  

 

2

1 1 ,0

1
Φ

2
exp ,




 
 

 

k
c

b b

F

k k
kT

  (2.16) 

where 3.964pN/nm  (implicitly affected by the potential and stress in of the molecule 

configuration of the motor protein) and Φ 1.009 nmc (related to optimal configuration of the 

motor protein) are parameters determined by using experimental data [26]. These parameters 

consider the effects of strain energy in the kinesin structure on the chemical reaction. 
1

1 ,0 43 sbk  

is the minimum backward reaction rate. kF  is the force acting on kinesin molecule, as shown in 

Figure 2.1. 

  

Figure 2.1- Schematic of kinesin molecule. 0.3pN / nmcK  and 3.8pN / nmnK  [26] are the stiffness 

of the cargo linker and the neck linker.  

The force kF  is calculated using the position of the kinesin and the cargo, and the stiffness 

of the cargo linker and the neck linker. Details and the values of the parameters are provided in 

[26].  

The time required for the conformational change and the Brownian motion are significantly 

short compared to the duration of the chemical reaction cycle [26,86]. Thus, the rear (free) head 

of kinesin is assumed to move instantaneously to the next binding site after ATP attaches to the 
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leading head. In addition, the backward motion is modeled by using the probability of backward 

steps measured experimentally [86]. The unbinding probability of kinesin from the microtubule is 

constant over steps if the load and ATP concentration do not change. However, each mechano-

chemical state has a different unbinding probability. The highest unbinding probability is when a 

kinesin takes a step. The unbinding probability is low during the dwell time (time when a kinesin 

waits for ATP to bind). After a kinesin takes a step, the likelihood of unbinding is negligible 

because both its heads are tightly bound to the microtubule. Thus, the unbinding probabilities are 

calculated depending on the current state of kinesin. In addition, in time marching simulations, 

three different uniformly distributed random numbers between 0 and 1 are generated at every time 

step to characterize the three types of stochastic behavior in the model, namely the duration of the 

current dwell time, the direction of walking, and the occurrence of unbinding. The methods used 

to calculate the probability of each event and more details can be found in [26].  

2.3 Modeling Results  

In this section, we present first the general behavior of superparamagnetic nanoparticle 

dynamics in the presence of an external magnetic field. Then, we describe the likely scenarios that 

the cargo interacts with chains of superparamagnetic nanoparticles, and show the results for such 

scenarios. In Sec. 3, we use such scenarios to build our novel ROM.  

2.3.3 Nanoparticle Chains  

The size of the superparamagnetic nanoparticles used in the study is very important for 

several reasons. First, if nanoparticles are too small, the magnetic moment they create under 

feasible external magnetic fields is not strong enough to create strong chains, and thus the resisting 

force the chains apply to cargoes is too small. Second, if nanoparticles are too large, it is difficult 

to deliver them inside cells. Moreover, large particles may have greater side effects in the cell 

because they are more likely to interact with other intracellular proteins [61–63]. Thus, the 
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resisting forces created by nanoparticle chains were calculated for commercially available 

nanoparticles with a diameter of 40nm and a saturated magnetization of 30 emu/g. Such particles 

are commercially available, are small enough to be used inside cells, and they can form chains that 

exert large enough resisting forces on cargoes to alter the transport.  

The integration of the equations of motion in Eq. (2.10) from random initial conditions  

shows that superparamagnetic nanoparticles form chain-like structures in the y  direction which is 

the direction of the applied external magnetic field (Figure 2.2). The formation of chains of 

superparamagnetic nanoparticles has been shown experimentally (in the presence of thermal 

fluctuations) [66]. Therefore, our modeling approach is able to predict the formation of 

nanoparticle chains even with considering simplifying assumptions such as neglecting the 

Brownian motion of the nanoparticles. Moreover, we are only interested in the mean displacement 

of the chains. Therefore, the fast and small motion of superparamagnetic nanoparticles can be 

neglected compared to the slow and large motion of the cargo. 

Initially, chains are very short and have different lengths as shown in Figure 2.2-A. Over 

time, small chains slowly join each other in the y  direction, and form longer structures as shown 

in Figure 2.2-B-F. Therefore, long chains are formed in the fluid when there are enough 

nanoparticles. Figure 2.2 also shows that longer chains tend to stay away from each other in the x  

direction. When the external magnetic field is applied, chains of superparamagnetic nanoparticles 

repel each other in the horizontal direction. Thus, chains are generally not close to each other, as 

shown in Figure 2.2-D-F.  
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Figure 2.2- The formation of chains is shown. Dots show superparamagnetic nanoparticles. Frames are in 

chronological order with frame A being the earliest. Initially, the superparamagnetic nanoparticles are 

randomly positioned. The external magnetic field is applied in the y  direction. Frames A through F show 

the structures superparamagnetic nanoparticles form when time advances. Initially, small chains are formed 

in the direction of applied magnetic field (frames A-C). Next, the short chains of particles join each other 

and form longer chains (frames D and E). As longer chains are formed (frame F), the chains also tend to 

repel each other in the direction perpendicular to the direction of applied magnetic field ( x  direction).  

2.4.3 Cargo Transport  

We consider a cargo with a diameter of 1µm, which is similar to cellular cargoes such as 

mitochondria. When the cargo encounters a single chain of magnetic nanoparticles in its path, it 

pushes against the chain. The attractive forces between the nanoparticles in the chain are much 

stronger than the repulsive force between the cargo and the nanoparticles in the chain. In addition, 

chains are aligned in the direction of the external magnetic field. Thus, our computational model 

shows that in the absence of any other obstacles, chains slide in front of cargoes remaining 

relatively straight and not significantly bending as cargoes push them. However, experimental 

A B C

D E F

y

x
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results [87] show that the intracellular environment where the transport occurs is crowded by other 

structures of the cytoskeleton that do not allow molecules to move freely. For example, 

experimental and computational results show that the porosity of the cytoskeleton restricts the free 

diffusion of protein in cells [88]. Therefore, we assume that the chains of nanoparticles will not 

remain straight because of their interaction with the cytoskeleton structure while they slide because 

of the cargo motion. We model the interaction between chains and the other structures in the 

cytoskeleton as constraints or obstacles on the motion of the chains (as shown in Figure 2.3). These 

obstacles resemble the porosity of the cytoskeleton and do not allow chains to slide, but they act 

as anchors for the chains (Figure 2.3-A). Thus, chains start to bend when pushed by cargoes (Figure 

2.3-B and D) and eventually break (Figure 2.3-C and E). The force applied by an anchored chain 

on a cargo during the breaking process is much larger than the force of a free chain.  

 

Figure 2.3- The process of a cargo breaking a chain is shown. Frame A shows the cargo aproaching a chain 

of superparamagnetic nanoparicles that are anchored by two obstacles. Frame B shows the cargo bending 

the chain of superparamagnetic nanoparicles. Frame C shows the cargo breaking the chain of 

superparamagnetic nanoparicles. Frame D shows the cargo pushing the reminder of the chain that is still 

anchored by one of the obstacles. Frame E shows the cargo breaking the chain for the second time. Frame 

F shows the cargo pushing/sliding the broken chain. Also, similar to the nanoparticles that formed longer 

chains in Figure 2.2, the small broken chains shown in frame E are attracted to the larger broken chain in 

front of the cargo to form a longer broken chain seen in frame F. 

Next, several features regarding the interaction between cargoes and chains are considered. 

First, the resisting force exerted on a cargo by an anchored chain depends on the attractive force 
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acting between the nanoparticles. Thus, the motion of the cargo is slowed down or terminated 

when the attractive force between particles increases considerably. Second, the distance between 

the obstacles that anchor chains play an important role. Hence, the kinesin-mediated transport of 

the cargo strongly depends on the distance between chain anchors. This distance is a stochastic 

variable, which we examine in detail. The chain of nanoparticles only exerts considerable force on 

the cargo when they are anchored at their both ends. However, chains may not be anchored at both 

their ends when they are pushed by the cargo. Hence, we modeled chains that extend beyond the 

anchors. The length of the chains beyond the anchors does not influence the resisting force 

considerably. This is the reason why we use the distance between the anchors in our model instead 

of the length of the chains. Third, the interaction between a cargo and a chain is affected by the 

relative position of the cargo with respect to the anchors. As shown in Figure 2.3, the cargo does 

not always encounter the chain at the middle point between two anchors. We refer to the distance 

between the center of the cargo and the middle point between two anchors as the offset of the 

chain-cargo interaction. Since the location of the anchors and that of the cargoes is random, the 

probability of the cargo pushing a chain anywhere between two adjacent anchors is the same.  

Although the chains of superparamagnetic nanoparticles repel each other, a cargo can push 

a complete chain or a portion of a previously broken chain. As a cargo encounters multiple chains 

in its path (as shown in Figure 2.3-F), it pushes these chains against each other. Through this 

process, chains that consist of more than a single row of nanoparticles are formed. These multiple 

chains create larger resisting forces that can stall the cargo. It is much harder for a cargo to break 

such multiple chains.  
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2.4 Reduced-order Model (ROM)  

Computing the dynamics of the superparamagnetic nanoparticles is computationally 

intensive because very small time-scales are needed for numerical convergence. In addition, the 

system contains a significantly large number of particles, and calculating the interaction between 

all of them increases the computational effort even further. However, forces between particles that 

are far from each other are weak and can be neglected without significant loss of accuracy. 

Therefore, a common approach is to use a cutoff radius chosen to limit the calculation to the 

neighboring nanoparticles inside a sphere with that radius, and hence reduce the computational 

effort. Nonetheless, the remaining computational effort is still prohibitively large, especially for 

performing stochastic simulations with many nanoparticles and over long durations of time. 

Therefore, to overcome this challenge, instead of using a cutoff radius, a unique reduced-order 

model (ROM) is developed in this section. The ROM can estimate the interaction force between 

the superparamagnetic nanoparticles and cargoes without having to solve the high-fidelity model 

of the nanoparticle dynamics. After our ROM is constructed, we discuss how the ROM can be 

used to study the dynamics of a cargo transported by a kinesin motor protein.  

2.5.4 ROM Construction  

Based on the results shown in the previous section, nanoparticle chains are the dominant 

structures that are formed. Hence, the ROM is developed for chains of nanoparticles. The ROM is 

dynamic. Its construction requires several components as described next. Quasi-static simulations 

can be used instead of dynamic simulations to construct the ROM to characterize the interaction 

forces between a cargo and chains of nanoparticles. At each step of the quasi-static motion, the 

cargo is incrementally displaced by / 20d , where d  is the diameter of the nanoparticles, and the 

final position of the nanoparticles is computed. This position is computed over time and updated 

until the nanoparticles reach a steady-state location. Then, the force between the cargo and the 
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magnetic nanoparticles is recorded. Thus, the velocity of the nanoparticles and the cargo are not 

parameters of the ROM because the interaction forces do not depend on these velocities. In 

addition, the repulsive penalty forces between the particles (Eq. (2.5)) and those between the 

particles and the cargo (Eq. (2.8)) are automatically accounted for in the ROM because the ROM 

is constructed using quasi-static simulations which account for these forces (i.e., it prevents 

particles from penetrating each other especially when the penalty terms are large enough). 

Therefore, size of the cargo (value that only appears in Eq. (2.8)) does not influence the ROM 

significantly. The size of the cargo only affects how many particles are in contact with the cargo 

simultaneously when the chain is highly bent and near breaking (Figure 2.3-B). Thus, we do not 

consider size of the cargo as one of the parameters of the ROM. Moreover, the size of the 

nanoparticles does not appear explicitly in any of the equations except for Eqs. (2.5) and (2.8). 

However, considering Eq. (2.4), the distances between nanoparticles, that are a function of the 

particle size, are important in determining the forces between particles. Hence, even though we do 

not use the size of the nanoparticles as a parameter in the ROM, the particle size is accounted for 

in the distance between the nanoparticles. The magnetic moment of the particles is the other 

determining factor that appears in Eq. (2.4) for the forces between particles. Hence, the magnetic 

moment of the nanoparticles and the distance between them are used as the main parameters in 

building the ROM in this chapter.  

Consider first the interaction between a cargo and a chain. To characterize this interaction, 

quasi-statically move a cargo against a chain with zero, one or two anchors. The motion of the 

cargo results in the deformation of the chain. At the beginning of the motion, the resisting force is 

small. The chain deforms and the force increases as the cargo moves, as shown in Figure 2.4-A. 

The deformation continues until the chain breaks. The sudden drop in the resisting force (near a 
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displacement of 400nm in Figure 2.4-A) indicates the rupture of the chain, and the resisting force 

after the breakage of the chain is negligibly small. The main goal in constructing the ROM is 

predicating force-position curves such as the one shown in Figure 2.4-A for different scenarios 

without the need for simulations using high-fidelity models.  

 

Figure 2.4- Variation of the resisting force versus the cargo position for a sample quasi-static simulation in 

which the cargo breaks a single chain of superparamagnetic nanoparticles (as shown in A). Breaking length 

bL  of superparamagnetic nanoparticle chains for different distances between the two anchors aL  follows 

a quadratic polynomial as shown in Eq. (2.17) and B).  

Interactions between a cargo and several different chains with different distances between 

anchors were performed to obtain a series of force-displacement curves such as the one shown in 

Figure 2.4-A. We refer to the distance that the cargo travels between the moment when it 

encounters a chain to the moment when it breaks the chain as the breaking length ( bL ). When the 

chains are not anchored by the obstacles, no matter how strong the magnetic forces are between 

the particles, the chains do not break and the cargo only slides/pushes the chain (such as the 

situation shown in Figure 2.3-F). Therefore, it is expected that bL  must be correlated with the 

length aL  of the chain between the two anchors. This correlation can be observed in Figure 2.4-B; 

it is a quadratic polynomial relation given by  

 
2 ,  b L L a L aL a b L c L   (2.17) 
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where 522.15 La , 699.44Lb , and 57.63 Lc  are constants. The existence of this 

correlation is one of the reasons why constructing a ROM is possible. Similar analyses can be 

performed when the cargo encounters multiple chains in its path. In this chapter, we analyzed 

encounters with double and triple chains since chains with higher multiplicity create resisting 

forces over 6pN; strong enough to completely stall cargoes transported by single kinesins. As 

expected, we discovered correlations between aL  and bL  for multiple chains similarly to single 

chains. These correlations were the same as in Eq. (2.17), with different coefficients La , Lb , and 

Lc , of course.  

To create the ROM, the maximum resisting force bF  at breaking must be determined. As 

Eq. (2.4) suggests, the breaking force depends on the distance between the nanoparticles and on 

the magnetic moment m  of the particles. As discussed earlier, the correlation between bL  and aL  

includes the distance between particles because aL  accounts for that distance. Therefore, the 

dependences of bF  on the distance aL  and on m  are investigated.  

We assume that the effects of aL  on bF  and the effects of  m  on bF  are cumulative and 

independent of each other. First, the magnetic moment appears as a quadratic term in Eq. (2.4). 

Thus, it is expected that the relation between bF  and m  has a quadratic form. To check this 

hypothesis, we fixed the length aL  of the chain and performed simulations of cargoes quasi-

statically moving and breaking chains over different magnetic moments, as shown in Figure 2.5-

B. The results of these simulations showed that the variation of bF  with m  follows a quadratic 

polynomial. However, unlike the magnetic moment – that is the same for all the particles in Eq. 

(2.4) and can be factored during summation of forces between the particles – the distance between 

the particles in Eq. (2.4) cannot be generalized especially when the chains are bent. Therefore, 
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predicting the correlation between bF  and aL  is more challenging compared to the correlation 

between bF  and m . Nonetheless, we discovered that such a correlation exists between bF  and aL

, and can be captured by a quadratic polynomial for a fixed magnitude of m  (as shown in Figure 

2.5-A). Hence, the complete dependence of bF  on m  and aL  can be expressed as  

   2 2 ,    b m m m b b a b aF a b m c m a b L c L   (2.18) 

where 0.9606 ba , 0.0192 bb , 0.0021bc , 0ma , 0mb , and 0.003mc  are 

constants. The fact that 0ma  and 0mb  in Eq. (2.18) is because m  is involved only as 
2m  in 

the expression of the forces between particles in Eq. (2.4). The existence of these correlations is 

another reason why constructing a ROM is possible. Similar analyses can be performed when the 

cargo encounters multiple chains in its path. We discovered correlations between bF  and aL  for 

multiple chains similarly to single chains. These correlations were the same as in Eq. (2.18), with 

different coefficients ba , bb , bc , and mc .  

 

Figure 2.5- Maximum resisting force bF  that occurs at the breaking point of superparamagnetic 

nanoparticle chains follows a quadratic polynomial with respect to the distance aL  between the two anchors 

for a fixed magnitude of magnetic moment (as shown in A). Maximum resisting force bF  increases with 

respect to the magnetic moment m  of the superparamagnetic nanoparticles for a fixed length aL  of the 

chain, and follows a quadratic polynomial (as shown B).  

A B

A 
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Equations (2.17) and (2.18) allow the prediction of the breaking length and maximum 

resisting force. However, to use the ROM to create the force-position curves such as the one shown 

in Figure 2.4-A, the value of the resisting force for each cargo displacement before the chain breaks 

is needed. The force-displacement curves for various distances between the obstacles are shown 

in Figure 2.6-A. All these curves appear different although they start from the origin and terminate 

each at a different breaking point. To analyze whether a correlation exists between the force and 

the cargo displacement, we nondimensionalize the cargo displacement of different chains by their 

corresponding breaking length  * / bx x L , and nondimensionalize the force by their 

corresponding breaking force  * / | | bF F F . The nondimensionalization revealed that all the 

different curves in Figure 2.6-A approximately collapse onto a single curve (as shown in Figure 

2.6-B). This suggests that the nondimensionalized force *F  is strongly correlated with the 

nondimensionalized displacement x . This correlation can be expressed using a cubic polynomial 

as  

 
* * *2 *3 ,  F F FF a x b x c x   (2.19) 

where 1.52 Fa , 0.25Fb , and 0.27Fc  are constants. This correlation shows that the 

force-displacement relation for all chains of magnetic nanoparticles with different lengths and 

magnetic moment is the same. Similar analyses can be performed when the cargo encounters 

multiple chains in its path. We discovered correlations between *F  and 
*x  for multiple chains 

similarly to single chains. These correlations have the same form with Eq. (2.19)). However, the 

values of the coefficients Fa , Fb , and Fc  are different, as expected.  
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Figure 2.6- The absoulte value of the resisting force is shown as the cargo moves until the chain of 

superparamagnetic particles is broken. The varation of the resisting force with the cargo position (shown in 

A) depends on the distance aL  between the two anchors. However, if the resisting forces are 

nondimensionalized by the resisting force at the breaking instant, and the cargo position is 

nondimensionalized by the breaking length , then all curves can are similar (as shown in B), and can be 

approximated by a cubic polynomial as shown in Eq. (2.19)).  

In the results above, we focused on scenarios where the cargo encounters chain of the 

particles in the middle. When there is an offset, the cargo breaks the chain in two steps. First, the 

chain breaks near the obstacle what is closer to the cargo (as shown in Figure 2.3-C). Next, the 

cargo pushes the reminder of the chain (as shown in Figure 2.3-D) and breaks it at a location near 

the cargo (as shown in Figure 2.3-E). However, only the resisting force before the first breaking 

point is significant. The resisting forces of the remaining chain are negligibly small. Thus, the 

offset reduces both of the maximum resisting force and the breaking length for chains of all 

lengths. We nondimensionalized the breaking length  at all offset values using the value of  at zero 

offset   ./ 0 o b bL L L y  Similarly, we nondimensionalized the maximum resisting force bF  at 

all offset values using the value of bF  at a zero offset   ./ 0 o b bF F F y  Figure 8 shows that 

a linear approximation can be used to describe the variation of the nondimensionalized breaking 

length oL  and the nondimensionalized maximum resisting force oF  with the offset oy  as  

 , , , o o L o L oL a b y   (2.20) 

A B

A 



 29 

 , , , o o F o F oF a b y   (2.21) 

where , 0.9527o La , , 0.3355o Lb , , 1o Fa , and , 0.1673 o Fb .  

 

Figure 2.7- The values of the breaking length oL  and the breaking force bL  are smaller when the cargo 

encounters the chain of superparamagnetic nanoparticles with an offset compared with the case when the 

cargo faces the middle of the chain. The nondimensionalized breaking length oL  and the 

nondimensionalized maximum resisting force oF  when there is an offset can be estimated by linear 

approximations as shown in Eqs. (2.20) and (2.21).  

In summary, the force-position curves can be predicted without solving the full-order 

system. This estimation requires a small set of 14 parameters, and is achieved by combining Eqs. 

(2.17)-(2.21) to obtain  
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where Eq. (2.19) was used along with the term   2

, ,     b o L L a L a o L o L oL L a b L c L a b y  

(the breaking length when the offset is also considered) to convert the nondimensionalized 
*x  to 

A B

A 
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actual displacement, and the term    2 2

, ,     b o m b b a b a o F o F oF F c m a b L c L a b y  (the maximum 

resisting force when offset is also included) to convert *F  to actual resisting force.  

Equation (2.22) allows a very fast estimation of the force-position curves over different 

lengths of chains and over different magnitude of magnetic moment when there are single, double 

or triple chains for quasi-static cases. The ROM does not need to be re-constructed when the 

velocity or the size of the nanoparticles and the cargo change because they do not directly 

contribute to the ROM. In addition, the ROM does not need to be re-constructed if one changes 

the magnetic moment of the particles or the lengths and numbers of the chains or the offset; these 

are inputs for the ROM. Specifically, the magnetic moment m , the length of the chain encountered 

by the cargo aL  and the value of offset oy  are inputs for the ROM in Eq. (2.22) while the output 

of the ROM is the quasi-static force-position curve which can be used in a statistical simulation 

(Monte-Carlo or any other sample-based statistical approach) to obtain results such as those shown 

in Figure 2.6-A. However, the ROM must be re-constructed only when the characteristics of the 

chains are changed. These characteristics can change if, for example, the magnetic particles have 

different geometry or internal properties, or if the external magnetic field is not constant in space. 

Figure 2.8 provides a schematic overview of procedure to construct and use the ROM. 
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Figure 2.8- Schematic of the reduced order model (ROM) construction, usage and relationship to the high-

fidelity model  

2.6.4 ROM Application  

The transport of the cargo by kinesin is a dynamic process, and the motion of the cargo 

affects the force-position curve. During the dwell time, the cargo does not move and the resisting 

force caused by the chain of the magnetic nanoparticles can be found using the results of quasi-

static simulations. However, as kinesin steps forward or backward, the cargo changes its position 

quickly. Therefore, the quasi-static force-position simulations can no longer be used to estimate 

the resisting force during this rapid process. Nevertheless, it is possible to enhance the quasi-static 

model to resolve the swift dynamics of the cargo in the presence of kinesin. When kinesin steps, a 

sudden change in the resisting force is observed. The amount of sudden force increase depends on 

the acceleration of the cargo. When the acceleration of the cargo is positive, the absolute value of 

the resisting force starts to increase from the baseline (quasi-static curve) to a maximum value. 

When the acceleration is negative, the absolute value of the resisting force starts to decrease and 

recovers to the value of the baseline when the cargo stops moving. Therefore, the resisting force 

oscillates between the baseline and a lower curve (where the acceleration of the cargo is zero) 



 32 

during the motion. In the ROM, the upper curve for the force corresponds to the quasi-static case. 

We found that the lower bound for the force can be constructed similar to the upper curve by using 

different coefficients in Eq. (2.19). Moreover, the oscillations between the upper curve and the 

lower curve are assumed proportional to the acceleration of the cargo.  

The comparison between the results obtained using a high-fidelity model (Figure 2.9-A) 

and those from the ROM (Figure 2.9-B) shows that the ROM is capable of reproducing the force-

position curves with acceptable detail and accuracy. There are several occasions where the actual 

forces are smaller than even the quasi-static motion (in both graphs of Figure 2.9). Such decrease 

in the force is caused by backward steps of kinesin. When no external load is applied to kinesins, 

they tend to move toward the plus end of microtubules. However, the probability of moving 

backward increases as the external load becomes larger. Therefore, when the resisting force is high 

(the magnetic moment is high and the chains are near breaking), a backward stepping and 

consequently, a sudden drop in the resisting force may be observed. Backward steps take place at 

different locations for the high-fidelity model compared to the ROM, as can be observed in Figure 

2.9 because the backward steps are not a deterministic phenomenon and they have a probability 

proportional to the external load. Therefore, even for the same simulation parameters, the location 

where backward steps occur is highly variable.  
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Figure 2.9- Force-position curves show oscillations between two curves because the cargo has a pulsatile 

motion due to the walking nature of kinesin motor proteins. The ROM can successfully predict the force-

position curves for the motion of the cargo. The drop in the value of the forces is due to backward steps of 

kinesin. The backward motion occurs at different locations in the ROM compared to the high-fidelity model 

since the walking of kinesin is stochastic.  

Using the ROM, we have investigated the nanotransport of cargoes by kinesin in the 

presence of superparamagnetic nanoparticles with various magnetic moments. We chose random 

lengths of the chains that the cargoes encounter. The position of the cargoes was initialized 

randomly behind or in front of the kinesin heads such that the cargo linkers are not in a stall 

condition. The nanotransport in the presence of superparamagnetic nanoparticles was predicted 

until the kinesin unbinds from the microtubule. Since the transport by kinesin is stochastic and the 

chains are chosen randomly, many simulations are needed to calculate the average velocity and 

run length for each magnetic moment. To show the stochastic nature of the nanotransport, we first 

present histograms of run length and velocity for two situations: (a) no external magnetic field, 

and (b) maximum external magnetic field.  

A B

A 
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Figure 2.10- The force exerted on the cargo by chains of superparamagnetic nanoparticles reduces the 

maximum run length of kinesin (A and B). The force exerted on the cargo by chains of superparamagnetic 

particles changes the velocity distribution of the cargo by decreasing the mean velocity and increasing the 

variability in the velocity (C and D). These results are obtained using 3000 random realizations 

Figure 2.10-A and B show that applying an external magnetic field changes the probability 

distribution of the run length dramatically. First, when there is no external magnetic field, kinesin 

can walk distances longer than 1,000nm before detaching from the microtubule. However, for a 

strong external magnetic field, long run lengths are not observed. However, the number of very 

small run length (less than 100nm) does not change significantly. This behavior can be explained 

by examining the force-position curves such as the ones shown in Figure 2.9. When the run length 

is small, the chain of superparamagnetic nanoparticles is not deformed considerably. Hence, the 

resisting force is small regardless of the intensity of the external magnetic field. Therefore, for 

A B

A 

C

A 

D

A 
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small displacements of the cargo, the run length is not affected considerably by the external 

magnetic field, and the stochastic nature of the simulation determines the number of events that 

have small run lengths. However, comparing probability of events for run lengths larger than 

100nm, we observe that the external magnetic field encourages early unbinding of kinesin. Figure 

2.10-C and D show that the velocity for different events is also affected by the external magnetic 

field. In the absence of an external magnetic field, the number of events at which the velocity is 

low is lower than the number of similar events in the presence of an external magnetic field. The 

resisting force created by the magnetic field decreases the kinesin velocity in two ways: (a) by 

increasing the dwell time, and (b) by causing backward steps. For the same reason, the value of 

the maximum velocity in the distribution also decreases due to the presence of external magnetic 

field.  

The results presented in Figure 2.10 as histograms can be obtained for other magnetic 

moments, and the information can be summarized by averaging the results as shown in Figure 

2.11.  

 

Figure 2.11- Mean value and standard deviation of the run length decrease as the magnetic moment of the 

superparamagnetic nanoparticle increases (as shown in A). The mean velocity of the cargo decreases as the 

magnetic moment increases (as shown in B). These results are obtained using 3,000 realizations.  

A B

A 
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Figure 2.11-A shows how average run length changes with the magnetic moment of the 

nanoparticles. As the distribution of run lengths in Figure 2.10- A and B also suggests, the average 

run length decreases with the magnetic moment. The error bars in Figure 2.11-A represent the 

standard deviation of run lengths obtained for 3,000 random simulations. The standard deviations 

decrease over the magnetic moment of the nanoparticles. When the external magnetic field is weak, 

the resisting force is small, and the run lengths are longer. However, there are always instances 

when the run lengths are short and near zero. Long run lengths are also more frequent when the 

magnetic field is weak. Hence, the difference between the average run length and the minimum 

and maximum values of the run length is greater for weak external magnetic fields. On the 

contrary, when the magnetic moment is high, the resisting force by the chains of magnetic 

nanoparticles is stronger. Therefore, kinesin has a higher chance of detachment, which decreases 

the average run length. Moreover, instances when the run length is long are less frequent. 

Therefore, the difference between the average run length and the minimum and maximum values 

of the run length is smaller for strong external magnetic fields. Hence, the standard deviation of 

the run length decreases as the magnetic moment of the nanoparticles increases.  

For high magnetic moments, the velocity distribution is closer to the normal distribution 

but it deviates from the normal distribution for smaller magnetic moments (as shown in Figure 

2.10-C and D). Therefore, simply averaging the velocities for all the events does not reflect the 

proper average velocity. Therefore, instead of averaging the velocities for all the events, we 

calculate the average velocity by dividing the sum of all run lengths by the sum of all times for 

transport. This method of averaging gives more weight to velocities that are distributed near the 

peak value. The downside of calculating the average velocity with this method is that it does not 

allow calculating the standard deviation of velocities. Figure 2.11-B shows that the average 
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velocity decreases when the magnetic moment increases. The increase in the magnetic moment is 

equivalent to the increase in the resisting force acting on the cargo when it is carried by kinesin. 

The curve in Figure 2.11-B is very similar to the velocity-force curves observed in other studies 

[17,76,89,90]. The main difference is in the method used to apply a resisting force to the cargo; by 

chains of nanoparticles in our study. In previous studies [17,76,89,90], single-molecule methods 

such as optical tweezers are used to exert forces on the cargo transported by kinesin. Such methods 

are designed to control and measure the applied force on the cargo in vitro, but their applicability 

in vivo is challenging. One alternative is to use magnetic nanoparticles to influence intracellular 

transport. This method has the potential to be used in vivo studies by passively controlling the in 

vivo transport system by manipulating the environment with magnetic nanoparticles and magnetic 

fields. The effective ROM technique developed in this chapter contributes to this magnetic-based 

method by reducing long computation time to calculate the effects of nanoparticles on kinesin-

mediated transport. 

2.5 Conclusions  

Magnetic nanoparticles have been used for variety of applications in cells. Most such 

research for biological systems only includes experimental studies. The simulation of magnetic 

nanoparticles is time consuming because of the small time-scales associated with their dynamics 

and the dynamics involves interactions between many nanoparticles. Moreover, integrating the 

model for the dynamics of the nanoparticles with the dynamics of highly stochastic biological 

phenomena inside cells adds to the computational cost of simulating the whole system. Hence, in 

this chapter, we developed a novel ROM for dynamics of superparamagnetic nanoparticles to be 

implemented in studying nanotransport inside cells.  
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The nanoparticles were shown to create elongated chains in the direction of the applied 

external magnetic field. Therefore, our novel ROM was developed to predict dynamics of such 

chains inside cells. Moving cargos such as organelles inside cells interact with the chains of 

nanoparticles, and that leads to the deformation of these chains. The deformed chains create 

resisting forces on the cargo. Force-position curves associated with the deformation of the chains 

are the necessary information needed to study nanotransport inside cells. By examining several 

scenarios and introducing a few parameters, a ROM was developed which was capable of 

generating almost identical force-position curves compared to high-fidelity models of the same 

superparamagnetic nanoparticles.  

For an application of the developed ROM, we focused on kinesin-mediated cargo transport 

by using a stochastic model of the kinesin previously developed. The resisting forces that chains 

of nanoparticles exert on the cargo are of interest because they can be used to influence intracellular 

transport, and can be utilized for in vivo experiments where the transport is deliberately interrupted. 

Nanoparticles with higher magnetic moments attract each other more strongly, and form chains 

that are difficult to deform or break. Therefore, the external magnetic field can be used to affect 

dynamically the force exerted on the cargo carried by motor proteins. Using the ROM, we 

investigated features of the nanotransport that were affected by the space-varying forces created 

by the superparamagnetic nanoparticles chains. The ROM enabled us to characterize the stochastic 

motion of the cargo by using many realizations for different values of the magnetic field intensity.  

The results showed that increasing the external magnetic field reduces the average velocity 

and the run length of kinesin. The resisting forces created by the chains of superparamagnetic 

nanoparticles increases the dwell time and the frequency of backward steps, which in turn 

decreases the velocity of kinesin. In addition, the run length decreases because kinesin detaches 
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from the microtubule faster under higher loads. Moreover, we observed that the decrease in the 

average velocity and the run length did not occur uniformly, and their probability distribution 

changes. For small external magnetic fields, kinesin is more processive, i.e. walks longer distances 

before detaching. However, when the magnetic field becomes stronger, the kinesin unbinds sooner. 

The number of events at which the kinesin unbinds right after the start of the simulation is almost 

independent of the strength of the external magnetic field. For the average velocity, when the 

resisting force is small, the probability distribution of velocities is higher around the mean value. 

However, for stronger external magnetic fields, the probability distribution of velocities becomes 

more similar to normal distribution around the average value. Such results show the importance of 

forces acting on the cargo transported by kinesin especially when such forces vary in space.  
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Chapter 3  

 A Mathematical and Computational Model of Calcium Dynamics in 

Caenorhabditis Elegans ASH Sensory Neuron  

3.1 Introduction   

Voltage gated Ca2+ channels open when an action potential generated near the cell body 

reaches synapses. Then, the Ca2+ ions trigger release of vesicle containing neurotransmitters, 

which enable communication of presynaptic and postsynaptic neurons. Also, Ca2+ dynamics is 

known to regulate synaptic plasticity [91]. Synaptic plasticity is necessary for formation of 

memory and is shown to be highly affected  by Ca2+ [92,93]. Moreover, Ca2+ dynamics and its 

effect on plasticity has been shown to be linked to Alzheimer’s disease [94]. Furthermore, the use 

of Ca2+ transients to indirectly assess a neuron's activation is a well-established approach [95–97] 

despite its limitations and the caution needed when drawing conclusions about the neuron's 

concurrent depolarization [98–102]. C. elegans in particular has been proved ideal for applying 

imaging techniques to monitor stimulus-evoked Ca2+ transients in a variety of neurons [96,103–

108], in freely moving [104,109] as well as in immobilized worms, by using either traditional 

approaches[97,98,110,111] or advanced methods [50,96,112–115]. The ASH polymodal neuron 

is the subject of numerous such studies [50,112,113,116], due to its key importance as a nociceptor 

for the worms' survival and also because it is the starting point for a plethora of downstream 
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neuronal events. The use of microfluidic chips for worm immobilization and stimulus delivery has 

revealed a second peak in the ASH Ca2+ transients, occurring upon withdrawal of the stimulus (the 

"off" response) [113,117,118], in addition to the first peak, which occurs upon delivery of the 

stimulus (the “on” response). 

The “on” and “off” responses that ensue in the ASH neuron upon its stimulation are the 

object of several studies, which explore the connection between Ca2+ transients, neuronal behavior 

[100,117,119] and synaptic output of the ASH neuron to downstream neurons [105,113,120]. In 

particular, the connection between Ca2+ transients in the ASH neuron and C. elegans behavior has 

been the object of several studies that suggest an interesting correlation not only between the "on" 

response and specific behaviors[121–123], but also between the "off" response and avoidance 

behavior [117]. This leads to the conclusion that all features of the Ca2+ dynamics in the ASH 

neuron participate in fine-tuning the worm's rich behavioral repertoire.  

Ca2+ transients [97] have been studied in ASH neurons in the context of different biological 

or environmental conditions, including aging [112,116], oxidative stress [50,106], food 

availability [123] and oxygen concentration [124]. Extended efforts have been made to decipher 

the molecular players involved [97,98,117,119,125]. At the same time, mathematical modeling of 

Ca2+ dynamics has been performed in a variety of organisms and cells, but the literature is sparse 

and far from complete for mathematical modeling of Ca2+ response in C. elegans neurons 

[118,121,126]. Work conducted by Kato and colleagues [118] has focused on the temporal 

responses of ASH and AWC to flickering stimuli, developing a phenomenological model that 

explains selected features of Ca2+ dynamics using ordinary differential equations. However, that 

work does not include the ASH "off" response, and the model does not account for the dynamics 

of the molecular players involved.  
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We propose a mathematical and computational model that is based on biochemical 

pathways and for the first time encompasses the Ca2+ dynamics observed during both the "on" and 

"off" responses in the C. elegans ASH neuron. The approach integrates biophysical models that 

describe several aspects of the overall Ca2+ signaling mechanism and it merges them into an 

inclusive model forged by novel phenomenological adjustments and known biochemical motifs. 

Thus, the model succeeds in capturing the Ca2+ dynamics in ASH neuron with excellent fidelity. 

Moreover, we show how the model can be used to suggest potential changes in molecular 

components that can explain modifications in Ca2+ dynamics due to aging and oxidative stress to 

guide future experiments. Lastly, we demonstrate how the proposed model can be used to predict 

Ca2+ transients in ASH neuron when delivering arrays of complex stimuli.   

3.2 Methods  

The model is based on intracellular molecular events responsible for the generation of Ca2+ 

transients. Numerous molecules and pathways are involved in this process [127,128]. We focused 

on molecular players which are believed to dominate the dynamics [98,118,129–132], taking also 

into account that some of the remaining molecular players are not yet well understood in C. elegans 

neurons [133]. We modeled the dynamics of the secondary players using a coarse grain approach, 

similar to reduced order modeling. To this end, we introduced selected equivalent players (viewed 

as states in the model) whose dynamics captures the overall combined effects of most of the 

secondary players.  

3.1.2 Mathematical Model of Ca2+ Dynamics   

Assuming a cell with well-mixed free Ca2+, the concentration of free Ca2+ in the cytoplasm 

and endoplasmic reticulum (ER) can be written as the following system of ordinary differential 

equations [134]:  
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where c  and ERc  are the concentrations of free Ca2+ in the cytoplasm and in the ER. PMCAJ  

represents the Ca2+ efflux through plasma membrane Ca2+ ATPase (PMCA) pumps to the 

extracellular space (ES), and SERCAJ  is the Ca2+ flux from the cytoplasm into ER through ER 

ATPase pumps. TRPVJ  and VGCCJ  denote the influxes of Ca2+ into cytoplasm from ES through 

transient receptor potential-vallinoid (TRPV) channels and through voltage gated Ca2+ channels 

(VGCC). LeakJ and 
,Leak ERJ  represent constant influxes of Ca2+ into the cytoplasm from ES and ER 

through other mechanisms.   denotes the ratio of the cytoplasmic volume to the ER volume, which 

can also account for fast linear Ca2+ buffers in the ER [135].  

The PMCA pumps are modeled following [134] as:  
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where PMCAG  and SERCAG  are the maximum fluxes through PMCA and SERCA pumps.

PMCAK  and SERCAK  model the affinity of PMCA and SERCA for Ca2+. Ca2+ in the cytoplasm and 

the ER is always at equilibrium before applying the stimulus. To that end, the leak parameters 

across the cell membrane and the ER need to be adjusted based on the parameter values for PMCA 

and SERCA, and on the initial concentration of Ca2+ in the cell and the ER. The necessary leak 

values for equilibrium can be found by setting the time derivatives in Eqs. (3.1) and (3.2) (for 
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example, when PMCA is knocked out in silico, the leak across the membrane will be found equal 

to zero). 

Even though TRP channels show weak voltage dependence [136], due to limited evidence 

regarding TRP voltage sensitivity in C. elegans neurons, this behavior is not included in the model. 

The Ca2+ influx through TRPV channels is modeled as:  

 . ( ), TRPV TRPV ESJ G O I c c   (3.5) 

where TRPVG  is the maximum influx of 
2Ca 

 through TRPV channels, and ESc  denotes the 

2Ca 
 concentration in the ES, which is assumed to be constant and ESc =2000 µM. O  and I  are 

the probabilities of TRPV channels to be activated and inactivated, and are governed by:  
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where Ok , Ik  are forward and 

Ok , 

Ik  are backward rate constants for the O  and I  states. 

1P  and 2P  represent two molecular players that control activation and inactivation of TRPV 

channels with the following kinetics:  
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where 
1Pk , 

2Pk  are forward and 
1



Pk , 
2



Pk  are backward rate constants for 1P  and 2P , and 
2PK  

is the affinity of 2P  for an equivalent player 0P  that coarsely represents the dynamic effects of the 
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cascade of molecular players that are activated by the external stimulus. We model the dynamics 

of 0P  as:  
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where S  represents the strength of the stimulus, 
0PK  is the affinity of 0P  for S , and 

0Pk , 

0



Pk  are forward and backward rates for 0P .  

Player 0P  coarsely accounts for the pathway that is triggered upon delivery of the stimulus, 

including the G-proteins which are coupled with the receptors [137,138] (ODR-3, EGL-30, Figure 

3.1). Player 1P  coarsely represents the pathway downstream of EGL-30, which leads to activation 

of TRPV channels [137]. Player 2P represents the cascade of events in which fatty acids participate, 

modulating TRPV channels [127,139] (Figure 3.1).  

Experimental results [104,116,117] show that a stronger stimulus leads to a stronger Ca2+ 

response in ASH neuron, although this finding has been challenged [98,102]. Therefore, 0P , which 

in our model translates the stimulus input into sparking molecular cascades, increases with the 

strength S  of the stimulus. However, the dependence of 0P  on S is not linear, to allow saturation 

of 0P  for very strong stimuli and reflect the reality that an infinitely strong response is not possible. 

Both 1P  and 2P are promoted by 0P . Hence, a stronger stimulus leads to a larger 0P , which in turn 

produces larger 1P and 2P . Larger 1P  leads to stronger activation of TRPV channels, while larger

2P leads to stronger inactivation of TRPV channels. Activation needs to surpass inactivation ( 1P  

must respond more strongly to the stimulus compared to 2P ) to observe a stronger Ca2+ influx 

when a stronger stimulus is applied, as dictated by the underlying assumption [104,116,117]. 
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Therefore, 2P  in our model saturates with 0P  (see Eq. (3.9)) to allow for stronger activation with 

stronger stimulus. 

The Ca2+ influx through 3IP receptors (IP3Rs) is modeled as:  

 ( ),IPR IPR IPR ERJ O cG c   (3.11) 

where IPRG  is the maximum 
2Ca 

 flux through 3IP  receptors, and IPRO  is the probability 

of IP3 receptors (IPRs) to be open, which is modeled using a reduced form [140,141] in the De 

Young-Keizer model [142], namely:  
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where p  is the concentration of 3IP , and y  is the faction of inhibited IPRs. The faction of 

inhibited IPRs is in turn governed by:  
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with / i i ik kK  being the equilibrium constants for binding/unbinding of 3IP  or Ca2+ to 

IPRs, with their original values, as used by De Young and Keizer [142].  

To model variations in p  upon the delivery of the stimulus, we use players 1P  and 2P  

together with c  to create the following phenomenological model:  
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where pk  and 


pk  are constants that represent forward and backward rates, while pK  and 

cK  are the affinities of p  for 2P  and c . The relation between 1P  and 2P  in Eq. (3.16) follows an 

incoherent feed-forward network motif [143], which is also combined with a Hill equation [134]  

for Ca2+. This part of the model plays an important role in the "off" response. IPRs are responsible 

for the release of Ca2+ from intracellular stores. IP3 concentration ( p ) is the only free parameter 

in the original model of IPRs dynamics [142]. One option is to introduce new molecular players 

to govern the dynamics of p . However, that approach adds states to the model. Instead, 1P  and 2P  

(two molecular players already present in the model) are used to capture the dynamics of p . 

Players 1P and 2P coordinate the dynamics of p in a way that the surge of p occurs when the 

stimulus is withdrawn, to allow release of Ca2+ from stores. Such dynamics for p can be achieved 

using incoherent feed-forward motifs [143] for generation of p by 1P  and 2P . Moreover, the term 

in Eq. (3.16) that depends on c  (Ca2+ concentration) accounts for the generation of p . This term 

saturates when the concentration of Ca2+ increases, to incorporate in the model the well-known 

phenomenon of Ca2+-induced Ca2+ release from intracellular stores [144].  

The Ca2+ influx through L-type voltage gated calcium channels (VGCCs) are modeled 

using the Goldman-Hodgkin-Katz [145] equation:  
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where VGCCG  is the maximum Ca2+ flux through VGCC, z  is the valence of the respective 

ions ( 2z for Ca2+), F is the Faraday constant, R is the gas constant, T  is the temperature, V is 

the membrane voltage, and m is the activation variable given by:  
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where   and   are rates that vary with the membrane voltage for the L-type current as 

follows [146]:  
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Finally, we model the dynamics of membrane potential V . Unfortunately, the available 

experimental data regarding changes in the membrane potential of the C. elegans ASH neuron is 

limited. Moreover, the ion currents, which are responsible for the voltage response of C. elegans 

neurons, are not completely understood. However, the available data suggests that many C. elegans 

neurons show a graded voltage response rather than the action potential response [147–149]. 

Therefore, we use a phenomenological approach to model a graded voltage response based on the 

only ionic current, namely the Ca2+ current, as follows:  

 ( ( ),)     max restV V V VV   (3.21) 

where maxV  is the maximum membrane potential that can be reached during the graded 

response of the ASH neuron, and 70mV restV  is the resting membrane potential. and   are 

forward and backward rates for Eq. (3.21), and are given by: 
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Note that and    are similar to  and   in Eqs. (3.19) and (3.20). However, they have 

different values, and are functions of c  (concentration of free Ca2+ in the cytoplasm) instead of V

.  

3.2.2 Ca2+ Concentration to FRET Signal Conversion   

The Ca2+ concentration obtained using the mathematical model can be related to signals 

measured in experiments [50,112]. Experimental signals obtained using TN-XL FRET 

(fluorescence resonance energy transfer) measurements [150] are the result of Ca2+ interaction 

with an indicator genetically encoded in the C. elegans ASH neuron. The relation between the 

Ca2+ concentration and the measured % FRET change signal R  follows an empirical form [151] 

that can be expressed as:  
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where the Hill coefficient is 1.7n , and the apparent affinity of R  for Ca2+ is 2.5 n

dK , 

as provided in [150].  

Equation (3.24) can be used to convert measured % FRET changes into the corresponding 

Ca2+ concentration. The use of Eq. (3.24) a stronger stimulus leads of minR , maxR  and 0R . To this 

end, we used the data in [150,151] to set the baseline Ca2+ concentration to 100nM. Also, we set 

R=5 in Eq. (3.24) for the baseline Ca2+ concentration [Suppl. Figure 2 of ref 22]. We set FRET 

ratio change = 10% when Ca2+ concentration equals 500nM [152]. Hence, we calculate minR and

maxR based on the Ca2+ that we set. set the baseline Ca2+ concentration to 100nM and the maximum 

Ca2+ concentration to 500nM when % 10 R  (for young unstressed worms), and then calculated 
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minR  and maxR . Next, we determined 0R  using Eq. (3.24) based on the initial value of the Ca2+ 

concentration in the mathematical model, which is set to 100nM for all cases.  

3.3.2 Parameter Estimation   

There are 23 parameters (Table S1) that need to be determined in order to use the 

mathematical model proposed. Ultimately, the mathematical model must capture the Ca2+ 

dynamics in four experimental data sets that are used in this chapter, namely measured Ca2+ 

transients for young unstressed, young stressed, aged unstressed and aged stressed worms. We 

chose the experimental data set for young unstressed worms as reference to determine all 23 

parameters. Next, we modified the values of as few of these parameters as necessary to fit the data 

for the other three cases, one at a time. This approach allows us to suggest different possible 

pathways through which the parameters governing Ca2+ transients may change, to capture 

alterations in stimulus-evoked Ca2+ dynamics in aged worms or in worms previously exposed to 

oxidative stress.  

We used a hybrid optimization approach, which consists of a genetic algorithm (GA) as a 

global minimizer, and trust-region-reflective nonlinear least squares (TRNLS) as a local optimizer, 

to determine the parameters of the mathematical model. The hybrid optimization algorithm starts 

with the GA, and the fittest individual found from the GA is passed to the TRNLS. The 

minimization problem is also subjected to constraints that ensure all parameter values are physical 

(namely that they are positive). The MATLAB optimization toolbox is used to perform these 

calculations. The maximum-likelihood of the experimental data is the objective function used in 

the TRNLS algorithm, namely:  

 ,







model exp

exp

Res
FRET

  (3.25) 
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where Res is the residual at each measurement instant, modelFRET  is the data obtained from 

the model, exp
 and  exp

 are the average and the standard deviation of experimental data at that 

same time instant. The objective function to be minimized in the GA is the sum of all residuals 

given by Eq. (3.25) over all time instants measured.  

We determined first the parameters for young unstressed worms. The solution of the GA 

depends on the initial population. Thus, we first applied the GA as a multi-objective optimizer to 

all four sets of experimental data. We then used the resulting population as an initial population 

for the GA applied only to the data from the young unstressed worms. Among the optimum 

solutions suggested by the multi-objective GA, we chose the solution for which the sum of the 

residuals for all experimental cases was the minimum, even though there were other solutions in 

which the residual for individual cases was smaller than the chosen solution. This approach 

allowed us to select as initial population for the GA a vicinity in the parameter space that is near 

an optimum solution (minimum residual) for all four cases.  

There are more than one parameter sets that can result in the measured Ca2+ dynamics for 

young unstressed worms. However, we sought a single set of parameters for young unstressed 

worms for which the sensitivity of the solution for the estimated parameters was small. To that 

end, we used the numerical Jacobian matrix that is obtained from TRNLS to approximate the 

Hessian matrix. Then, we used the Hessian matrix to construct the covariance matrix. We chose 

the solution that had the smallest diagonal elements of the covariance matrix. That corresponds to 

choosing the solution with the smallest variance of the parameters, indicating that small changes 

in the parameters (for that solution) do not lead to vast changes in the Ca2+ dynamics.  

For the other three experimental cases, we start with the parameters found for young 

unstressed worms to create the initial population for the GA in the hybrid optimization. Next, we 
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limit the algorithm to change only 13 selected parameters of the total of 23. These 13 parameters 

(listed with bold in S1 Table) include strength and rates related to key players of the Ca2+ signaling 

mechanism – TRPV channels being activated/deactivated, IP3, IPRs, PMCAs, SERCAs – and they 

have been selected based on discussions in the existing literature [153–156]. Then, we use the 

hybrid optimization algorithm to estimate the values of the 13 selected parameters, while the other 

parameters are kept constant. A similar procedure is performed separately for all possible 

combinations for the selected parameters. Next, the results from all the combinations are pooled 

together for each of the three experimental cases. Each combination of selected parameters is a 

potential pathway that can show effects of aging or oxidative stress on young unstressed worms. 

However, not all of the combinations are plausible. The first criterion used to select valid 

combinations of parameter sets, is the goodness of fit that the mathematical model provides, i.e. 

the residuals must be small. To make the comparison consistent among different cases, we sort the 

residual for all different combinations and only keep the combinations for which the residuals are 

smaller than 99% of all solutions. Next, we use a second criterion on the remaining combinations 

in which parameter changes that are detectable are selected. To that end, we compute changes in 

parameters as compared to young unstressed worms. If the absolute value of the changes for a 

parameter combination is larger than the sensitivity found using the covariance matrix, then we 

consider such combination plausible.  

A component with more than one values for its parameters is still necessary in the model, 

even though different parameter sets can lead to same qualitative results. For instance, different 

combinations of parameters for PMCA and TRPV channels can provide relatively similar results. 

However, including PMCA cannot be claimed to be redundant just because several values can be 

suggested for it as the model breaks without PMCA (Figure 3.2-B). 
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3.4.2 Ca2+ Transients Experimental Data Analysis 

All experimental results presented in Figure 3.2 and Figure 3.3 were acquired as described 

in Gourgou and Chronis, 2016 [50]. Briefly, using the TN-XL FRET sensor, the stimulus-evoked 

Ca2+ transients generated when the ASH neuron of stressed (exposed to oxidative stress) and 

unstressed C. elegans of various ages was stimulated by hyperosmotic solution of 1M glycerol 

[50,112] were recorded [50]. The FRET signal change was recorded in the microfluidic device 

[50], where each worm was introduced after growing in the presence of the oxidative stress-

causing chemical paraquat [50]. Experimental data used in this chapter come from four populations 

of adult hermaphrodite C. elegans: i) young unstressed animals (control animals; reference case), 

ii) young oxidative-stressed animals, iii) aged unstressed animals, and iii) aged oxidative-stressed 

animals.  

3.3 Results 

The pathways and molecules included in the proposed model are portrayed in Figure 3.1 

detailed description of their contribution in the generation of Ca2+ transients and their connection 

with the rest of the model components is given in the Discussion.  



 54 

 

Figure 3.1- Molecular components of the Ca2+ homeostatic machinery that are included in the proposed 

mathematical model. GPCRs: G-protein coupled receptors, as the ones that are activated in ASH neuron by 

hyperosmotic stimuli; ODR-3, EGL-30, GPA-3: G-proteins coupled with the receptors, participating in 

signal transduction to downstream ion channels;  OSM-9, OCR-2: molecular elements of the TRPV 

channels, the main cation channels through which Ca2+  flows into the neuron upon its stimulation; GαO: 

G-protein coupled with TRPVs; EGL-19: molecular component of the VGCCs, the L-type voltage gated 

Ca2+  channels, activated by the changed membrane potential due to ion influx upon neuronal activation; 

PMCA: plasma membrane Ca2+ ATPase, the main pump responsible for transporting Ca2+  into the 

extracellular space; SERCA: sarco-endoplasmic reticulum Ca2+ ATPase, which transports Ca2+ into the 

intracellular stores; IP3: 3-phopsho-inositol, secondary messenger participating in Ca2+ signaling events; 

IP3R: IP3 receptors,  glycoprotein complex acting as a Ca2+ channel activated by IP3 , abundant on the 

endoplasmic reticulum (ER) membranes. GPCRs, ODR-3, EGL-30, GPA-3, OSM-9, OCR-2: not modeled 

individually; model parameters that account for these molecular components are 0P , 1P and 2P , see Methods. 

Lipid synthesis, PUFAs, fatty acids, TRPV activation, TRPV inactivation events: modeled as O (activated) 

and I (inactivated) probabilities, see Methods. Included in the model and not depicted here: LeakJ and 

,Leak ERJ  , which represent the constant influx of Ca2+ into the cytoplasm from extracellular space and ER, 

respectively, through other mechanisms, see Methods. 

3.5.3 Accuracy and Effects of Knocking Out Components of the Model  

As a first step, we explore whether our model can capture the dynamics of the Ca2+ 

transients which occur when the ASH neuron of young unstressed worms is stimulated by a 

hyperosmotic solution (Figure 3.2-A). Our results show that the model matches well the special 

and critical features of the Ca2+ transients, including magnitude and time of peaks, rising and 
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decaying slopes for both “on” and “off” responses. The representation of the stimulus as a square 

pulse corresponds to the way the hyperosmotic solution is delivered to the worm’s nose in the 

microfluidic device [50,96,112,113]. 
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Figure 3.2- The proposed mathematical model can capture the Ca2+ dynamics observed in young (Day 1) 

unstressed worms, when ASH sensory neuron is stimulated by hyperosmotic solution (glycerol 1M). (A) 

The model matches the Ca2+ transients, as recorded experimentally, including all key features (time and 

magnitude of peaks, rising and decay slopes) for the "on" response (upon delivery of the stimulus) and the 

"off" response (upon withdrawal of the stimulus). (B-F) Different components of the model are knocked 

out (in silico knock-out) to investigate their impact on the model-generated results. For the knockout results 

with original parameters (solid line), all the parameters are kept the same as in (A), except for the knockout 

component that is removed from the mathematical model. For the knockout results with updated parameters 

(dashed line), the hybrid optimization algorithm is run again trying to find an updated set of parameters 

which can explain the experimental Ca2+ dynamics, after the knocked-out component has been removed 

from the mathematical model. (B) When PMCA is removed, Ca2+ is not pumped out of the cell and the 

mathematical model fails. Changes in the parameters in any of the model components cannot compensate 

for PMCA knockout in the updated model. (C) When SERCA is removed, the original model fails to show 

the "off" response and features of the "on" response are also affected. Updating the parameters restores 

most of Ca2+ transients' features, except for the decaying slopes. (D) Removal of IPR affects all the features 

of "on" response and the "off" response completely vanishes. Updating the parameters restores the "on" 

response partly but fails to rescue the "off" response. (E) TRPV knockout for the original model does not 

show any "on" response, while "off" response is amplified. When the parameters are updated, both "on" 

and "off" responses are partially restored. (F) VGCC in silico knock-out does not affect significantly the 

results of the model, original or updated. The dashed and continuous lines coincide; the dashed line is 

distinguishable around the peak of the “on” response. (G) The phenomenological model used to describe 

the voltage response shows a graded response when the stimulus is applied. A weaker graded voltage 

response is also observed when the stimulus is removed. (H) The Ca2+ fluxes for different components in 

the original model show how much each component contributes to the overall dynamics. PMCAJ  is the flux 

of Ca2+ by PMCA, plasma membrane Ca2+ ATPase, the main pump responsible for transporting Ca2+  into 

the extracellular space; SERCAJ is the flux of Ca2+ by SERCA, sarco-endoplasmic reticulum Ca2+ ATPase, 

which transports Ca2+ into the intracellular stores; TRPVJ is the flux of Ca2+ by TRPV, transient receptor 

potential-vallinoid channels that are responsible for initial influx of Ca2+ into the cell; IPRJ  is the flux of 

Ca2+ IP3 receptors from the stores, which are the main contributor to the “off” response; and VGCCJ is the 

flux of Ca2+ through voltage gated Ca2+ channels. 

One way to explore if a component of the model is necessary is to knock out that 

component and look for parameter sets that can still capture the complete response of the cell. To 

this end, we removed different components of the model, one at a time, to investigate their 

contribution to the predicted Ca2+ dynamics (Figure 3.2-B-F). For each of these in silico knockouts, 

two cases were considered: i) the original case, in which after the knockout component is removed 

the values for all parameters remain the same as in the model that generates the output shown in 

Figure 3.2-A, and ii) the updated case, in which after the knockout component is removed, we 

apply the hybrid optimization algorithm to estimate again the model parameters.  
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We use the case of PMCA, which leads to expected results, as the first knock out, to 

illustrate the purposefulness of the in silico knock out approach. We find that the model completely 

diverges without the PMCA (Figure 3.2-B), since all the Ca2+ that flows in upon delivery of the 

stimulus, remains in the neuron. Moreover, since the PMCA pump is the only component in the 

model that actively removes excessive Ca2+ out of the neuron, changing the value of any other 

parameter cannot compensate for the PMCA knockout; therefore, no updated solution can be 

reached when the PMCA is knocked out.  

Next, when the SERCA pump is removed (Figure 3.2-C), Ca2+ that enters the cytoplasm is 

not pumped into the ER. The original model with a knocked out SERCA accounts for more Ca2+ 

in the cytoplasm, compared to the results shown in Figure 3.2-A, while at the same time the "off" 

response is absent. In the updated model, where the parameters of other components are adjusted, 

the overall results are improved. However, the final return of cytoplasmic Ca2+ to its initial levels 

is still not completely restored, and the rising slope of the "off" response is captured with a slight 

time lag.  

Removing IPRs from the model (Figure 3.2-D) completely alters the features of the Ca2+ 

transients. The magnitude of the “on” response decreases dramatically, and the "off" response 

vanishes. The updated parameters can recover features of the “on” response, but they fail to yield 

the “off” response.  

The “on” response completely disappears when TRPV channels are knocked out (Figure 

3.2-E). Interestingly, the “off” response remains present and strong in the absence of TRPV 

channels. In the updated model, the adjusted parameters yield the “on” response, even without 

TRPV channels. However, the updated model without the TRPV channels accounts poorly for the 
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magnitude of the "on" response and, most importantly, it fails to capture the dynamics of its 

decaying slope.  

Elimination of VGCCs from the model (Figure 3.2-F) does not affect its predictions 

substantially. This is reflected equally in the outputs of the original and the updated version of the 

model, as shown in Figure 3.2-G.  

We also explored the Ca2+ fluxes from each model component (Figure 3.2-H). The fluxes 

associated with PMCA and SERCA are not zero before applying the stimulus, because they need 

to keep Ca2+ flux in balance, despite the leaks across the cell membrane and ER membrane. TRPV 

channels respond quickly when the stimulus is presented, which leads to higher activity of pumps 

to balance the excessive Ca2+. IPRs also follow TRPVs but their main contribution is to the “off” 

response when the stimulus is removed. VGCCs respond to the stimulus with a significant lag 

compared to the other components of the model, because they require a large amount of Ca2+ to 

enter the cell to induce their activation. Hence, VGCCs act like a secondary mechanism, with a 

weak contribution to total Ca2+ influx. Moreover, it is shown that TRPVs do not contribute to the 

“off” response at all (see also Figure 3.2-E). In addition, it takes time for most of the fluxes to 

return to or approach their initial equilibrium state after the stimulus is removed. Therefore, a 

different dynamical response is expected if the first stimulus is followed by a second pulse after a 

short interval. We explore such scenarios in Figure 3.6. 

3.6.3 The model captures Ca2+ dynamics in aged and stressed worms  

The parameters values in the parameter set found to capture the Ca2+ dynamics in young 

unstressed worms (Figure 3.2-A) are used as reference case. Using them as a starting point we can 

obtain different plausible parameter values that explain Ca2+ transients for young stressed (Figure 

3.3-A), aged unstressed and aged stressed worms (Figure 3.3-B).  
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Figure 3.3- The proposed mathematical model can capture the stimulus-induced changes in the Ca2+ 

dynamics in the case of aged (Day 5) or previously exposed to oxidative stress (stressed) animals. (A) The 

parameter set for young (Day 1) unstressed worms is used as a reference point to detect changes in the 

parameters that can explain the stimulus-evoked Ca2+ dynamics in treated worms of the same age. The 

model results shown correspond to all plausible solutions. (B) Similar to (A), the parameter set for young 

(Day 1) unstressed worms is used to detect changes in the parameters that can explain the stimulus-evoked 

Ca2+ dynamics in aged (Day 5) unstressed and stressed worms. The modeling results correspond to all 

plausible solutions. Red line represents the stimulus pulse delivered (duration: 30sec). Experimental data 

originally presented in Gourgou and Chronis, 2016 [50].  

We use the parameters for young unstressed worms to initiate the search for plausible 

solutions in the other three cases so that we can explore the impact of oxidative stress and age on 

the model parameters. The experimental data for young stressed worms lie well within the bounds 

of the results predicted by the mathematical model, except for the time right after the “on” 

response, as well as some time during the plateau (Figure 3.3-A). In these two short periods the 

model seems not to follow exactly the stabilization in Ca2+ concentration. In the case of aged 

worms, experimental data falls within the bounds of the results predicted by the mathematical 

model, with plausible parameter sets for both unstressed and stressed worms (Figure 3.3-B). Most 

of the model generated variations for aged worms occur around the “off” response, for both 

unstressed and stressed animals.  
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3.7.3 Parameters Contributing to the Modified Ca2+ Dynamics 

Each plausible parameter set obtained from the multitude of possible initial populations in 

the hybrid optimization algorithm contains combinations of parameters that are different from the 

reference case (young unstressed worms). The times each parameter is present in a plausible 

parameter set for young stressed (total of 15 plausible sets), aged unstressed (total of 3 plausible 

sets) and stressed (total of 6 plausible sets) worms is shown in Figure 3.4-A, C, and E. The absence 

of a bar for a parameter (for example, VGCC is not present in Figure 3.4-A) does not indicate that 

the specific parameter remined unchanged at the condition studied (i.e., age and/or oxidative 

stress). Rather, it means that none of the different combinations that constitute plausible solutions 

for the specific case (e.g., regarding Figure 3.4-A, stress in young worms), contains this specific 

parameter. As shown in the dot plots in Figure 3.4-B, D, and F, the values of each parameter in all 

plausible sets in which it is included may vary substantially (e.g., Ok , Figure 3.4-F) or not (e.g., pk  

, Figure 3.4-B). Notably, in the case of aged stressed worms (Figure 3.4-F) the parameters included 

in the plausible solutions that are changed compared to young unstressed worms, are increased 

hundreds of times (e.g., 4000% for 


ok  , 6000% or even 14000% for ok   Figure 3.4-F). In the case 

of young stressed and aged unstressed worms, the altered parameters increase only by up to ~350% 

(Figure 3.4-B, D), and sometimes they even decrease, compared to young unstressed animals (e.g. 

 and 


Ok   Figure 3.4-B,  and Ik   in Figure 3.4-D).  SERCAG SERCAK
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Figure 3.4- The effects of aging and oxidative stress treatment on stimulus-evoked Ca2+ transients can be 

explained by changing values of the parameter set for young unstressed worms (reference case). The 

frequency by which each of the selected parameters appears in all plausible combinations of solutions is 

shown in (A) for young stressed worms (15 plausible combinations), in (C) for aged unstressed worms (3 

plausible combinations), and in (E) for aged stressed worms (6 plausible combinations). The dot plots in 

(B), (D), and (F) show the relative changes in the parameters compared to the respective parameters for 

young untreated worms. Each dot corresponds to a plausible solution; red circles indicate the mean; error 

bars represent standard deviation. 
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The overall sensitivity of the model parameters can be visualized by a sensitivity plot 

(Figure 3.5). For each of the plausible parameter sets, the parameter values are randomly perturbed 

by ±25%, and the peaks of the “on” and “off” responses are plotted. Results suggest that the model 

can predict the different behaviors observed in experiments, as shown by the approximate overlap 

between the model-generated and the experimental results. Moreover, the density of the model-

generated data is high where the experimental data points are dense and is low where the 

experimental data points are sparse. This illustrates that the model generates more results in the 

regions where most experimental results are recorded.  

 

Figure 3.5- Sensitivity of transients on parameter models. Open green circles represent all the experimental 

results, including young unstressed, young stressed, aged unstressed, and aged stressed worms. For each 

plausible parameter set 100 samples are created, in which the parameter values are randomly perturbed by 

±25%. For each sample, the maximum magnitudes of the “on” and “off” responses are recorded and plotted 

as filled black circles. The distribution of randomly perturbed model results shows that the mathematical 

model can capture the variations that are observed in experimental results. Moreover, the modeling results 

are observed to be dense/sparse where the experimental results are dense/sparse. 

3.8.3 Using the Model to Predict Ca2+ Dynamics in the Case of Complex Stimuli  

We used the model to explore how the ASH neuron would respond when activated by 

complex time-varying stimuli that would be challenging to implement in an experimental setup, 

yet it is possible for the worms to encounter in nature.  
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Figure 3.6 demonstrates selected examples of stimulus-evoked Ca2+ transients for such in 

silico experiments. In all panels, in addition to the %FRET ratio change, the Ca2+ concentration in 

the ER is also presented in order to show the long-lasting effects of the stimulus on the system. 

Compared to the changing Ca2+ concentration in the cytoplasm (represented by %FRET ratio 

change), the Ca2+ concentration in the ER has a slower dynamic, which affects the system’s 

response especially during sequential stimuli. At rest, the Ca2+ concentration in the ER is equal to 

its equilibrium value. When the stimulus is delivered, a small increase in the ER Ca2+ concentration 

is observed due to influx of Ca2+ through TRPVs and VGCCs. This is followed by a rapid large 

decrease due to Ca2+ release from the ER through IPRs. Then, the Ca2+ concentration in the ER 

remains relatively constant while the stimulus is sustained, since the influx and efflux of Ca2+ 

balance each other. Finally, when the stimulus is withdrawn, a second rapid large decrease in the 

ER Ca2+ concentration is observed during the “off” response. Then, the Ca2+ concentration in the 

ER starts returning to its equilibrium. However, if a stimulus is delivered before the Ca2+ 

concentration in the ER reaches its equilibrium (this is the case for all the panels in Figure 3.6), 

the dynamics of the new cytoplasmic Ca2+ response are different. For instance, in all cases with 

sequential stimuli (Figure 3.6-A - D), the first “on” response is the strongest. When stimuli of 

equal strength and different durations are applied (10, 30 and 50 sec) Figure 3.6-A), the magnitude 

for all “off” responses are almost the same. The shortest stimuli (fourth and sixth pulse, 10sec) 

result in just one peak. The longest stimulus (fifth pulse, 50 sec) results in a longer plateau. When 

we apply stimuli with the same duration but different magnitudes (2α, α, α/2, 4α) (Figure 3.6-B), 

the response to the first pulse, which has twice the magnitude of the first pulse in Figure 3.6-A, 

leads to stronger “on” and “off” responses. However, a stimulus with the same magnitude that is 

delivered later (fourth pulse) leads to weaker “on” and “off” responses.  
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Figure 3.6- The proposed mathematical model can be used to investigate in silico the Ca2+ transients which 

would occur due to complex stimuli, challenging to implement experimentally. The parameters for young 

(Day 1) unstressed worms (reference case) are used to generate all the results shown in this figure. The left 

y-axis shows % FRET ratio change and the right y-axis shows the Ca2+ concentration in ER. (A) A sequence 

of stimuli with the same magnitude and different durations is applied. Consecutive stimuli lead to weaker 

"on" response while the "off" response is less affected. (B) A sequence of stimuli with same duration and 

different magnitudes is applied. Stronger stimulus leads to larger "off" response for successive stimuli while 

the "on" response does not increase when the stimulus strength increases. (C) A flickering stimulus results 

in a Ca2+ transient in which an array of single consecutive peaks is observed. (D) A flickering stimulus with 

the same frequency as (C). The pulses are stronger than the ones in (C), but they are shorter so that the area 

underneath each plus is the same for each pulse in C and D. The Ca2+ transients in (C) and (D) are almost 

identical. (E) When delivering a rising ramp-shaped stimulus, ASH neuron appears to show both "on" and 

"off" responses, of similar magnitude. (F) When the stimulus is in the shape of a decaying ramp, it leads to 

a strong "on" response, whereas a distinct "off" peak is absent. (G) A rising followed by a decaying ramp 

stimulus (triangular pulse) results in an initial "on" response, followed by a second rise during decrease of 

stimulus magnitude, without the characteristic "off" response peak. (H) The continuous triangular pulse in 

(G) can be delivered in consecutive steps. The area underneath the pulses in (G) and (H) is the same. While 

the overall Ca2+ transients in both cases are comparable, delivering the stimulus in discrete steps leads to 

“off” responses. Red line represents the stimulus; black line indicates the model-generated results. 

As a next step, we applied short, repetitive (flickering) pulses (Figure 3.6-C, D). When we 

apply a series of pulses with medium intensity (magnitude the same with the first pulse in Figure 

3.6-A) and intervals of equal duration (Figure 3.6-C), then a strong first "on" response occurs, 

followed by a series of almost identical peaks, apart from the second one. No obvious difference 

between "on" and "off" responses is observed. Interestingly, when we implement a series of acute, 

very short and strong pulses (1/10 of the duration and 10 times the magnitude of the first pulse in 

Figure 3.6-A), the response recorded (Figure 3.6-D) is almost identical.  

Lastly, we applied ramp pulses, where the stimulus intensity (magnitude) changes 

gradually over time (Figure 3.6-E - G). When the pulse is in the form of a rising ramp (Figure 3.6-

E) both “on” and “off” responses are observed, but they are weaker compared to the rectangular 

stimulus (first pulse in Figure 3.6-A, for example). However, for a descending ramp pulse (Figure 

3.6-F) a strong “on” response is generated (comparable to the “on” response for the first pulse in 

Figure 3.6-A), without any apparent “off” response. When the pulse is triangular, namely an 

ascending ramp followed by a descending one (Figure 3.6-G), the "on" response peak is like the 
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one caused by a single rising ramp (Figure 3.6-E). Instead of a well-defined "off" response, though, 

we observe a relatively mild increase of the % FRET ratio change before the signal returns to the 

basal level. Interestingly, when we replace the ramped triangular pulse with a stepped triangular 

pulse (Figure 3.6-H), the overall shape of the change in the % FRET ratio is similar, but the system 

seems to respond also to the small steps, especially as the magnitude of the stimulus decreases.  

3.4 Discussion  

3.9.4 The Dynamics of the Ca2+ Transients Mechanism is Reflected in the Model 

TRPVs are the first channels to be activated, and the Ca2+ that flows in leads to IPRs 

opening via Ca2+-induced Ca2+ release, and to a voltage change that activates the VGCCs. The 

important role of TRPVs in the model is verified when they are in silico knocked out (Figure 3.2-

E). Neither the original model, where parameters remain as estimated before omitting a 

component, nor the updated model, where parameters are re-estimated after removing a 

component, can successfully account for the Ca2+ dynamics once the TRPV channels are removed.  

TRPV channels are the key contributors to the cytoplasmic Ca2+ increase during the “on” 

response, even though VGCCs and IPRs contribute as well.  This is mirrored in the original model, 

since in the absence of TRPV-mediated Ca2+ influx the VGCCs are not activated. Moreover, the 

Ca2+ that is released from the ER, due to IP3 activation via receptor-coupled EGL-30, may not be 

enough to trigger an "on" response.  

The contribution of VGCCs to the ASH Ca2+ transients has been experimentally reported 

[98,118]. Their role in Ca2+ signaling in the neurons lies mainly in propagating the Ca2+ signal 

from the soma to the axon. Their contribution to the soma Ca2+ transients is mild [97,98]. The 

absence of constraints on the model parameters that control Ca2+ flux through these channels 

reflects the lack of experimental data on the relative contribution of TRPVs and VGCCs to the 

"on" response. In the absence of such constraints, the optimization algorithm determines the 
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strength of each channel solely based on goodness of the fit. Thus, both the original model and the 

updated one can compensate for the omission of VGCCs (Figure 3.2-F).  

In contrast, the "off" response takes place even without the TRPV channels and is in fact 

stronger when the TRPV channels are knocked out (Figure 3.2-E). The "off" response occurs 

mainly due to Ca2+ released from the ER, and the model takes into account the Ca2+-induced Ca2+ 

release, since the rates controlling the opening probability of IPRs depend on the Ca2+ 

concentration, Eqs. (3.12)-(3.14). Thus, since no Ca2+ flows in through knocked out TRPVs during 

the "on" response, the Ca2+ release from the ER is minimized. Hence, ER stores remain full and 

release a high amount of Ca2+ into the cytoplasm, as they respond to EGL-30 mediated induction 

of IPRs opening during the "off" response.  

In the updated model with knocked out TRPV channels (Figure 3.2-E), the remaining 

parameters change, so that IPRs and VGCCs yield the "on" response even without TRPV channels. 

The entire Ca2+ response is then similar to the normal transient (Figure 3.2-A) and it includes an 

"off" response. However, certain features are not accounted for, as for example the time needed 

for the "on" peak and the respective decaying slope, indicating that the presence of TRPVs in the 

model is indispensable. In reality, a neuron will not be capable of compensating for complete loss 

of TRPV channels by upregulation of VGCCs and IPRs mechanism, therefore the inability of the 

updated model to account for the full dynamics of the Ca2+ transients may reflect a real biological 

constrain. 

At the same time, VGCCs are gated by voltage changes, which in the cell are not generated 

only due to the Ca2+ influx, but also due to other ions that enter the cytoplasm upon neuronal 

activation. We do not explicitly include the dynamics of each of the other ion transients in the 

model. However, we do include players that account for the combined effects of these ion 
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transients. The experimental data available in the literature regarding voltage traces in the ASH 

neuron is limited to events related to the "on" response [98]. Therefore, we use a reduced order 

modeling approach to model the membrane potential to construct a phenomenological model that 

generates a graded voltage response (Figure 3.2-G), which matches measurements reported for 

other C. elegans neurons [147–149,157,158]. Hence, our model accounts for the contribution of 

voltage gated channels only coarsely.  

PMCA is the main ion pump responsible for removing excess Ca2+ from the cytoplasm in 

C. elegans [159]. Therefore, in silico knockout of PMCA (Figure 3.2-B) results in partial (original 

model) or complete (updated model) inability for the model to compensate for the PMCA function. 

We choose not to include in the model the Na+/Ca2+ exchanger, which also exports Ca2+ from the 

cytoplasm, although its presence has been reported in C. elegans [160,161].  

In eukaryotic cells, there are pumps to facilitate the Ca2+ transport back into Ca2+ stores. 

The most prominent among them is the SERCA [161] which, depending on its isoform, is abundant 

on the sarcoplasmic and endoplasmic reticulum membrane of muscle cells and neuronal cells 

[162–165]. In C. elegans, functional SERCA homologs have been discovered [165,166]. One 

orthologue of SPCA, a Golgi-related Ca2+ - transport ATPase, functioning as Ca2+ transporter, has 

also been reported [167–169]. C. elegans neurons are known to have the typical eukaryotic Ca2+ 

signaling tools [170], including functional Ca2+ stores. In our model, all Ca2+ stores are considered 

as one entity, depicted as ER, and the respective pumps are modeled as one mechanism, herein 

referred to as SERCA.  

SERCA's omission from the model (Figure 3.2-C) results in most of the ER Ca2+ being 

released without being replenished, during the “on” response. Therefore, in the original model, 

there is not enough Ca2+ left in ER to yield the “off” response. However, even without an active 
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SERCA pump, the modeled leak across ER can restore Ca2+. In the updated model for SERCA 

knock out, the hybrid optimization algorithm takes into account that there has to be an "off"' 

response upon withdrawal of the stimulus. Therefore, the remaining parameters change to save 

Ca2+ in the ER for the "off" response. This leads to forced increased influx of Ca2+ through TRPV 

channels during the “on” response. This way there is enough Ca2+ stored in the ER to produce the 

“off” response later in the updated model, even with SERCA removed.  

However, in vivo a cell does not upregulate a priori the TRPV-mediated influx of Ca2+ 

upon neuronal activation to afford an "off" response later. Moreover, without a SERCA pump, the 

"off" response could not possibly occur in case of sequential stimuli, as replenishment of 

intracellular stores would not take place. Hence, the original model illustrates better the 

consequences for the cell, should the SERCA pumps be impaired (Figure 3.2-C, continuous line). 

This highlights the way in which the model can be used in a biologically meaningful way, to make 

reasonable hypotheses that may guide targeted experimental efforts.  

The IP3 receptor, a major intracellular Ca2+ release channel, has been reported in C. elegans 

[153,171,172]. As shown in the original model (Figure 3.2-D), the magnitude of the “on” response 

decreases dramatically when IPRs are omitted. However, the updated model parameters rescue 

most features of the “on” response, by increasing the input of TRPVs and VGCCs. Nevertheless, 

since the “off” response is attributed mainly to the release of Ca2+ from the ER, even the updated 

parameters fail to capture it. This shows that certain molecular players are irreplaceable, even when 

other agents are artificially asked to compensate for them.  

The characteristic "off" response of the ASH Ca2+ dynamics, is observed also in other C. 

elegans sensory neurons [96,173]. However, it has not been included so far in any mathematical 

model for C. elegans Ca2+ dynamics. Elucidating the respective physiological mechanisms is work 



 71 

in progress [105,117]. Based on experimental results, which show that the TRP channel OSM-9 is 

required for the "off" response [117], and on the results of our model, we claim that the ASH “off” 

response is attributed mainly to the efflux of Ca2+ from the intracellular stores. This is an event 

related to OSM-9, via the Ca2+-induced Ca2+release mechanism. Therefore, the proposed model 

encompasses and accounts for experimentally obtained results.  

Additional improvements could be applied to the model, if more experimental and 

electrophysiological data were available. For example, in young stressed worms the model 

successfully captures the overall Ca2+ dynamics, except for a small region right after the “on” 

response. One possible explanation is that, as explained, the current model accounts for VGCCs 

only coarsely, thus it misses some features of Ca2+ transients related VGCCs. This is supported by 

the fact that egl-19 mutant worms have less steep decaying slope after the "on" response [118]. 

The models’ variations around the “off” response of aged worms may be related to the high 

variation observed also experimentally in the "off" response of in this age cohort ([50] S2 Figure 

C, [113] S1 Figure).  

The in silico knock outs are informative primarily about how the model works and illustrate 

its minimality and purposefulness. Moreover, the in silico knock outs can serve as indications and 

possibly guides to targeted experiments.  

3.10.4 Effect of Age and Stress on Ca2+ Signaling Machinery  

Potential intercellular interactions between ASH and other neurons are not considered in 

the present model. ASH might be affected by oxidative stress- or aging-induced changes in other 

cells. The proposed effects are intended to offer plausible explanations regarding the intracellular 

events. Nonetheless, the overall ability of our model to capture the Ca2+ dynamics in all four worm 

groups studied is excellent (Figure 3.2- A, Figure 3.3-A, Figure 3.3-B). The model accounts for 

variability in the experimental data, as shown in the sensitivity analysis (Figure 3.5) and shows the 
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same variation observed in the experimental data, when the model parameters are perturbed. Yet, 

the model is robust enough not to lead to unreliable results away from what is experimentally 

anticipated.  

There are more than one parameter sets that can equally explain the changes in Ca2+ 

dynamics. This is because of multiple possible ways that can lead to similar cell responses. For 

example, the correlation between different channels in neurons that produce similar electrical 

properties has already been established [174]. Our model reflects similar phenomena. For instance, 

the elevated Ca2+ response due to aging may occur because PMCA is weakened or because TRPVs 

are more sensitive or perhaps due to a combination of the two. In fact, even though the effect of 

aging on the Ca2+ response is approximately the same among worms of the same age, their 

biological cause may be different among individuals. As expected, such correlations introduce 

difficulties when searching for a unique parameter set in the model.  

Each parameter may affect the outcome of the model in more than one way. For example 

IPRG  affects both the "on" and "off" responses (Figure 3.2-D), and PMCAG   affects the decaying 

slope of both responses and also the magnitude of the on response (Figure 3.2-B). Consequently, 

quantitative correlations of parameter values exclusive to one specific feature of the Ca2+ transient 

are precarious. However, qualitative connections between parameters and physiological changes 

in the Ca2+ transients can be articulated in combination with experimental results. Worms of Day 

5 of their adult life used here are considered to be middle aged; therefore the effect of aging on 

their Ca2+ transients is expected to be mild [175].  

G-protein coupled receptors (GPCRs), like the ones activated by osmotic stress in the ASH 

neuron [176,177], can be dysregulated by increased production of ROS [178,179]. The effect of 

aging on GPCRs depends strongly on how related molecules, especially kinases and G-proteins, 
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are affected [180–182]. In our experimental data (Figure 3.3), aging affects the rising and decaying 

slope of both "on" and "off" responses, the latter in combination with stress. The slopes in the 

model could be correlated to the rates (i.e. 0P ,
0Pk ,

0



Pk ) of events related to the receptor-coupled G 

proteins. Moreover, oxidative stress results in faster "on" peak in aged worms. This could 

potentially be linked to the rates of cascades related to receptor-coupled proteins (i.e. 
0Pk , 

0



Pk ). 

These rates (
0Pk ,

0



Pk ) appear changed in the plausible solutions for young stressed and aged 

unstressed worms (Figure 3.4-A-D). Therefore, the model can assist on choosing potential 

experimental targets, to explore biological events. 

Although TRP channels are involved in lifespan regulation in C. elegans [183], changes in 

TRPV activation with respect to aging have not been reported yet. Studies in mammalian systems 

indicate that expression or distribution of TRPV channels is affected by aging [184,185]. Our 

experiments show that the magnitude of the "on" and the "off" responses increases with aging 

(Figure 3.3). This could be related to changes in the probability of TRPVs being activated 

(parameters ok  and 

Ok ) in aged worms (Figure 3.4E and F) as well as to changed rates for the G 

protein related cascades (
0Pk ,

0



Pk ) (Figure 3.4C and D). Thus, the model can suggest potential 

roles for molecular players involved in aging-driven changes in the Ca2+ transients. 

Oxidative stress has a significant impact on TRPV channels, mainly through oxidation of 

cysteine residues in channels' subunits [186,187], resulting in TRPV sensitization [186,188]. 

Experiments show that oxidative stress affects the magnitude and rising slope of the "on" response 

in aged worms, and the magnitude of "off" response in younger worms (Figure 3.3). These features 

can be linked to changes in the rates for the G protein related cascades (
0Pk ,

0



Pk  in young worms) 

or the probability of activated TRPV channels ( Ok  and 

Ok , in aged worms, Figure 3.4-C-F). 
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Therefore, the results of our model corroborate experimental findings in C. elegans and other 

systems.  

VGCCs are known to be affected by oxidative stress [189] via oxidation of cysteine 

residues [190] and –SH groups [191]. In aged neurons, VGCCs show increased activity [129,192], 

and their contribution to Ca2+ influx rises in both cases [129,133]. Interestingly, we do not detect 

any significant change regarding VGCC channels in our model. This could be due to the fact that 

VGCCs contribute less than TRPVs to Ca2+ transients in the neuronal body, where our efforts are 

focused. Moreover, VGCCs are modeled coarsely in the present work, not allowing us to draw 

solid conclusions.  

The effect of aging on neuronal IP3 receptors [133] results in elevated flux of Ca2+ into the 

cytoplasm [130,131], partially through enhanced Ca2+-induced Ca2+ release [132]. Age increases 

the rising and decaying slopes of the "on" and "off" responses in our experiments, the latter only 

in stressed animals (Figure 3.3). The slopes in the model may be related to the maximum ion flux 

though IPRs ( IPRG ), and to the rates for IPRs ( Pk and 

Pk ). These parameters are indeed included in 

the plausible solutions for aged and for stressed worms (Figure 3.4-C - F). This indicates that the 

model can successfully account for experimentally detected physiological changes. 

Oxidative stress leads to increased Ca2+ efflux from the stores into the cytoplasm [193,194] 

through IP3 receptors, because of –SH groups oxidation [131] and increased production of IP3 

[193]. Experiments show that oxidative stress affects the magnitude and rising slope of "on" 

response in aged worms, and the "off" response peak in young worms (Figure 3.3). The responses 

magnitude can be linked to the maximum ion flux through IPRs ( IPRG ), which changes in stressed 

worms (Figure 3.4-A and B). Oxidative stress also results in faster "off" peak in young worms 

(Figure 3.3), which could be related to altered maximum ion flux through IPRs ( IPRG ) and to the 
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rates for IPRs (
pk  and 

pk ) (Figure 3.4-A and B). Hence, the model accounts satisfactorily for the 

role of intracellular Ca2+ channels described by experimental data.  

In contrast to the increased activity of ion channels due to oxidative stress, the PMCA pump 

is inactivated by ROS [193], as a result of altered tyrosine and methionine residues [195]. 

Decreased efflux of Ca2+ through PMCAs occurs also in aged neurons [196,197]. SERCA pumps 

are affected in a similar way, since they are inhibited by oxidative stress [198] and are also 

impaired in aged neurons [199]. The magnitude of the "on" and the "off" response increases with 

aging (Figure 3.3) in C. elegans. This could be related to changed affinity of PMCAs and SERCAs 

for Ca2+ ( PMCAK  and SERCAK ) in aged worms (Figure 3.4-C-F). Experiments show also that 

oxidative stress affects the peak and rising slope of the "on" response (Figure 3.3) in aged worms, 

and of the "off" response in young worms (Figure 3.3). The response magnitude can be linked to 

the changed affinity for Ca2+ of SERCAs ( SERCAK ) in young stressed worms (Figure 3.4-A and B). 

Stress results in altered decaying slope after the "on" and "off" response of young worms (Figure 

3.3), which could possibly be related to changed maximum ion flux through PMCAs ( PMCAG ), as 

is suggested in the model (Figure 3.4-A and B). Therefore, the way aging and oxidative stress 

affect the function of major cell pumps is well captured by the proposed model. 

To summarize, our model can be used to explore the effects of aging and stress on the ASH 

Ca2+ signaling machinery. The suggested correlations between the effect of aging and oxidative 

stress on physiological cascades and the model parameters are not the only possible explanation 

for the observed changes in Ca2+ dynamics and should be confirmed experimentally. Parameters 

that are not included in the plausible solutions may also play a role. However, the agreement of 

the model with the available experimental data strongly suggests that the model and the selected 

parameters capture successfully the physiological trend.  
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3.11.4 Complex Ca2+ Transients Can be Predicted by the Model  

C. elegans sensory neurons respond differently to varying stimulus strengths [200]. Our 

model generates Ca2+ transients peaks of different magnitudes in ASH neuron, in both "on" and 

"off" responses, depending on the strength of the applied stimulus (Figure 3.6-B). However, hidden 

states with slower dynamics, i.e. ER Ca2+ dynamics, that are not easily measured in experiments 

but are captured by the mathematical model, may have an important impact (Figure 3.6-B, 

differences in sequential responses).  

The response to gradient stimuli has been shown experimentally for C. elegans sensory 

neurons [200], especially for odor gradients[121,201,202]. The model-generated Ca2+ transients 

that occur in the presence of a ramp stimulus (Figure 3.6-E-G) indicate that the ASH neuron can 

detect smooth gradients via the "on" response and sharp decreases via the “off” response. 

Therefore, our model suggests that the “off” response may be a mechanism that detects acute 

changes.  

A step-increasing pulse, instead of a continuous gradient, (Figure 3.6-G and H) does not 

affect significantly the overall shape of the Ca2+ transient (the area underneath both pulses is the 

same). However, the decreasing stimulus through stepped pulses results in different “off” 

responses, as has been reported experimentally (33). This suggests that the proposed model can 

encapsulate Ca2+ dynamics in the ASH neuron in alignment with the experimental data.  

The ability of ASH to respond reliably to a sequence of identical stimuli has been shown 

experimentally [118], and interestingly, the neuron responds consistently, especially via the "off" 

response (Supplementary Figure 5 of [118]). Indeed, when arrays of sequential pulses are applied 

in the model, results account for the robustness of the "off" response (Figure 3.6-A and B).  

In our experiments, the duration of the stimulus is 30 sec [50], as in other similar studies 

[112,113]. Previous work [112] suggests that a shorter hyperosmotic stimulus (15 sec) leads to a 
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weaker “on” response and a stronger “off” response, compared to long stimulus delivery in the 

same study. When a short stimulus is applied in our model (Fig S1 A) the "off" peak is lower than 

the "on". We hypothesize that the stronger “off” response reported in [112] is a consequence of 

the weaker “on” response and not of the short stimulus duration. To test this hypothesis, we tried 

different values for the cK  parameter in Eq. (3.16), which affects the dynamics of IP3 production, 

to change the magnitude of the “on” response (Fig S1). Indeed, a weaker “on” response leads to a 

stronger “off” response, without changing the duration of the stimulus, possibly due to full 

intracellular Ca2+stores. In the paper by Chronis and colleagues [113], the reason behind the shape 

of the Ca2+ transient of the 15 sec pulse could be the small population examined (3 traces, Suppl. 

Data [113]). Therefore, our model can help interpret experimental variations in C. elegans 

populations.  

In the study by Kato and colleagues [118], the ASH neuron is shown to respond with precision, 

through its Ca2+ transients, to flickering stimuli of 1 sec long pulses (Figure 1 of [118]). Our model 

is able to capture such a flickering response (Figure 3.6-C and D). Therefore, the model can be a 

reliable computational tool when exploring the response of C. elegans sensory neurons. Moreover, 

the model shows that the stimulus-evoked Ca2+ transient is the same when the total amount of 

stimulus-carrying solution delivered is the same (as indicated by the area under each pulse) and 

does not depend solely on the actual duration or magnitude of the pulse (Figure 3.6-C: 2units of 

stimulus/5sec; Figure 3.6-D: 10units of stimulus/1sec). This is an interesting finding, which can 

elucidate the details of the activation mechanism of the ASH neuron if corroborated by 

experimental data.  

Note that the fast responses of the system (Figure 3.6-C and D) captured by our model require 

further validation, because the equations of the model have been developed based on slower 
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dynamics (Figure 3.3). However, the capability of the proposed model to successfully account for 

in silico trials shows that it can serve as a preliminary tool for pre-experimental tests.  

3.5 Conclusions 

We propose a model for the Ca2+ dynamics in the C. elegans ASH polymodal neuron, based 

on intracellular events that unfold as part of the Ca2+ signaling machinery. Our model uses 

experimental data on stimulus-evoked Ca2+ transients upon neuronal activation and it captures 

efficiently for the first time the dynamics of both the “on” and “off” responses. Moreover, the 

model can account for changes in the ASH Ca2+ dynamics due to age and exposure to oxidative 

stress, reflecting, confirming and sometimes predicting the role of each molecular player modeled 

in the cellular mechanism that generates Ca2+ transients. We believe that the proposed model 

makes a contribution in C. elegans neurobiology because it i) suggests how molecular players that 

are known to be affected by aging and/or oxidative stress may be involved in generating the altered 

Ca2+ transients features (e.g. IP3 receptors), ii) suggests a possible effect of aging and/or oxidative 

stress on molecular players not yet documented to play a role toward aging- or stress-driven 

modifications of the Ca2+ transients features (e.g. activation/inactivation of TRPV channels), and 

iii) can be used to propose and guide future experimental work, targeting specific molecular 

players involved in Ca2+ dynamics. Finally, the model can be used to predict Ca2+ transients in the 

ASH neuron in the case of complex stimuli. We envision the proposed model as a tool used to 

further elucidate the Ca2+ dynamics of C. elegans neurons and to pave the way for the development 

of more mathematical models for neuronal Ca2+ dynamics.   
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Chapter 4  

 Synaptic Impairment and Robustness of Excitatory Neuronal 

Networks with Different Topologies 

4.1 Introduction 

The network structure/topology of the brain plays an indisputable role in a wide variety of 

tasks the brain performs [203]. Knowledge of the function of brain networks enables the 

development of tools and methods to detect and treat pathological conditions related to network 

malfunction [204,205]. That is in part why building the human connectome has attracted vast 

efforts in the past few years [206,207].  

Although the complete human connectome is not available yet, even mapping individual 

circuits of human’s or other animals’ central nervous system has provided researchers with 

enormous amounts of data to study the network structure/topology of the brain. The non-random 

structure of the brain networks is a common conclusion of all these studies [203]. Scale-free or 

small-world network structures of the brain have been proposed [44,208–210]. More recently, the 

neuronal network of C. elegans, the first organism to have its connectome fully mapped [42,43], 

has revealed the presence of hubs and rich clubs in its nervous system [41]. Although in less detail, 

                                                 

The results presented in this chapter is published as:  
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Networks with Different Topologies. Front Neural Circuits 2017;11:38. doi:10.3389/fncir.2017.00038. 
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mesoscale and macroscale studies in humans [211], mice [212] and cats [213] have shown similar 

findings. Additionally, such heterogeneity in the network structure has been observed in cultured 

cells, and emergence of small-world networks [214] or rich clubs [215] has been reported for in 

vitro experiments.  

The number and the strength of connections that neurons make with each other, create a 

non-random spatial topology of neuronal networks [216]. Connections are not completely static 

even in normal conditions. For example, synaptic plasticity and neuromodulation can affect the 

dynamics of neuronal networks and change the brain’s functional connectivity [217,218]. 

Malfunctions in synaptic connections and synaptic dynamics in pathological conditions can 

jeopardize the normal functionality of brain. For instance, studies have shown loss of synapses as 

a hallmark of Alzheimer’s disease [4,219,220]. Random loss of synapses has already been used to 

simulate different stages of Alzheimer’s disease [221]. However, there are biological or 

pathological conditions that can lead to nonrandom loss of synapses. For instance, recent studies 

have shown that oxidative stress related to neuronal activity may result in dysfunction of synapses 

in Alzheimer’s disease [222].  

EEG [223,224] and fMRI [225–227] data have revealed that the network topology of the 

brain changes even during normal aging. Therefore, the study of neurodegenerative diseases and 

their symptoms on the network level can be the key to better understanding of these disorders by 

monitoring the structure and dynamics of neuronal networks [228–230]. In the present study, we 

investigate the impact of synaptic deficiency, namely reduced effectiveness of the synaptic 

function, on the robustness of neuronal networks with different topologies. The biological process 

that leads to this deficiency can be attributed to many factors, ranging from functional decline 

during normal aging, to age-associated neurodegenerative diseases, such as Alzheimer’s disease. 
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We focus on networks with only excitatory neurons to emphasize on the importance of topology 

on the robustness of networks, since inhibitory neurons are shown to increase networks’ robustness 

[231]. Particularly, we focus on persistent activity of neuronal networks defined as the ability of 

the network to sustain its activity upon removal of the initial stimulation. Persistent activity has 

been linked to working memory, which is the ability to remember information for periods of time 

in the order of seconds [47,232,233]. One of the reasons why we are interested in persistent activity 

is because working memory is known to be adversely affected in patients with Alzheimer’s disease 

[46,234,235]. Previously, network connectivity [48,236] and degree distribution of networks [237] 

has been shown to influence the self-sustained activity of neuronal networks under normal 

conditions. However, there are no studies where the sensitivity of persistent activity to synaptic 

failure is investigated. We show here that networks with rich clubs can be constructed 

systematically by using bimodal degree distributions. Then, we examine how networks with 

different topologies respond to different levels and types of impairment. Robustness and capability 

of the neuronal network to maintain activity are used to differentiate dynamics of networks with 

different topologies.  

4.2 Methods 

4.1.2 Neuron Model  

We adopt a neuron model based on the Hodgkin-Huxley formalism. The model features a 

fast Na+ current, a delayed rectifier K+ current and a leakage current [238–240]. The current 

balance equation for cell i  is:  

      3 4 ,         syni
Na i Na Kdr i K L i L ext i

dV
C g m h V E g n V E g V E I I

dt
  (3.26) 

where 
21.0  F / cmC , 224.0 mS / cmNag , 23.0 mS / cmKdrg , 20.02 mS / cmLg , 

55.0 NaE mV , 90.0 mV KE , 60.0 mV LE  [238,239,241]. extI  is the external current 
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(measured in 
2A / cm ) that controls the firing frequency of the neuron. This current is chosen so 

that the firing frequency of the 
thi  cell is zero when syn

iI  (the synaptic current received by neuron 

i ) is zero.  

The Na+ inactivation gating variable h , and the K+ delayed rectifier activation gating 

variable n  are governed by first order dynamic equations expressed as:  

  and   , 

 

 
 

h n

h h n ndh dn

dt dt
  (3.27) 

where the steady state values and the time constants are given by:  
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The activation of Na+ current is assumed instantaneous, and is modeled by the following 

function:  
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4.2.2 Synaptic model  

The synaptic current from the presynaptic neuron j  received by the postsynaptic neuron 

i  is modeled as:  

    , syn

ij syn ij ij i sI g W s V E   (3.32) 
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where 20.005 mS / cmsyng  is the maximum synaptic conductance, and sE  is the reversal 

potential for the synaptic current, which is usually considered equal to zero for excitatory synapses. 

ijW  is the connectivity weight between the presynaptic neuron j  and the post synaptic neuron i . 

a synaptic connection without any synaptic impairment has a weight of 1ijW . When 0ijW , the 

two neurons are not connected to each other. We defined synaptic deficiencies as any values of 

ijW  between 0 and 1. 
ijs  is the fraction of open receptors, which follows a simple first order kinetic 

equation given by:  

  1 ,     
ij

j ijj i

ds
T s s

dt
  (3.33) 

Here 
1 11.1 mM ms    and 

10.19 ms   [242] are constants and correspond to forward 

and backward rates.   jT  is the concentration of neurotransmitters released by the presynaptic 

neuron j  that can be approximated by the following equation [242]:  

    ,

1 exp


 

   
 

max
i

i p

p

T
T

V V

K

  (3.34) 

where 1 mMmaxT  is the maximum concentration of released neurotransmitters by the 

presynaptic neuron. 5 mVpK  and 2 mVpV  are constants that determine the steepness and 

half-activation value of the neurotransmitter release [243].  

The total synaptic current received by neuron i  is the summation of all synaptic currents 

from its presynaptic neurons in the network.  

4.3.2 Network Connectivity  

We use the degree distribution of networks to construct networks with different topological 

metrics. While small world networks can be constructed systematically [38] without using the 
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degree distribution of the network, authors are not aware of such methods to build networks that 

consist of rich clubs. Hence, we propose a method in which networks with rich clubs can be 

constructed provided that they are based on bimodal degree distributions.  

The degree of a neuron is defined as the summation of its indegrees (number of its inputs) 

and outdegrees (number of its outputs). The indegree and outdegree of a neuron can be different 

since the connections are not necessarily bidirectional. To generate networks with different degree 

distributions, we chose to concentrate on bimodal distributions, because they are the simplest 

distributions that are not single modal. Without any constraints, the degree distribution of a purely 

random network, also known as an Erdős–Rényi model, follows a Poisson distribution [244]. The 

networks in this chapter have 200 neurons, with 5% probability of connectivity. The probability 

of connectivity is defined as the chance of having a unidirectional connection between two neurons 

in the network. For the above parameters, a totally random network has a single mode distribution 

of mean 20. To make a close comparison to single modal distributions, we create bimodal 

distributions that have the same mean. Taking this as a reference case, all other networks are 

created so as to have the same number of synapses but with different mode distributions. To this 

end, the following relation for the modes of networks with bimodal degree distribution must hold: 

 1 1 2 2 20,  M M   (3.35) 

where 1  and 2  are weights of the modes and 1M  and 2M  are the mean degree values of 

the modes. Hence, if weights of the modes are equal, then their average must be equal to 20 (for 

example 1 10M  and 2 30M  are a valid pair when the weights are equal).  

To generate networks with different degree distributions, first, two Poisson distributions 

with the desired mean values are generated. Then, each of the probability distributions is 

normalized and weighted as desired so that the integral of the combined bimodal probability 
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distribution function (PDF) is equal to 1. Next, a bin size is chosen, and the combined probability 

distribution function is integrated over each bin. The result of the integration in each bin shows 

the number of neurons that must have degrees between limits of that bin. Next, the proper number 

of neurons is assigned randomly with degrees according to the limits of each bin. Thus, the 

probability distribution function is converted to a degree distribution for the anticipated network. 

The next step is constructing a network according to the established degree distribution. For this 

purpose, a scrambled list is created in which each neuron is repeated at a number of times equal to 

its degree [52]. Next, two non-identical members of the list are selected randomly, and a 

connection is created from the first to the second element. Then, these two elements are removed 

from the list, and the process is continued until the list is empty. With this approach, a directed 

graph without any self-loops is constructed with the desired degree distribution. Figure 4.1 shows 

the implementation of this method to construct a network with mean values of 5 and 35, with equal 

weights. 

 

Figure 4.1- Implementation of network construction with desired degree (summation of indegree and 

outdegree) distribution. (A) A degree distribution that matches the desired probability distribution function 

(PDF) is randomly generated. (B) A network that matches the desired degree distribution described in (A), 

is randomly generated. The algorithm generates networks that match the desired degree distribution in a 

non-exact manner, since the process is random. 
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Figure 4.1 shows the steps that are taken to construct networks with different degree 

distributions. Figure 4.1-A shows the first two steps that are prescribing a probability distribution 

function and creating a random degree distribution according to that degree distribution. Figure 

4.1-B shows the degree distribution of the actual network that is constructed based on the degree 

distribution in Figure 4.1-A. The degree distribution shown in Figure 4.1-A and B are different 

because the process of generating a network for a given degree distribution is random. 

In addition to random networks with a single mode with mean degree value of 20, three 

bimodal degree distributions with pairs of {15,25}, {10,30}, and {5,35} are used in this chapter.  

Even though the two mean values used to build each distribution are imposed, the way that the 

lists are assembled and then networks are created is random. Therefore, the whole process of 

network construction is random, which leads to deviations in the number of synapses among 

different networks. Nevertheless, these deviations are small and negligible as the number of 

synapses is mainly a function of the network size and the probability of connectivity, which both 

remain unchanged in this chapter. However, to minimize the effects of stochasticity arising from 

the process of network construction on the system’s dynamics, 50 realizations of each degree 

distribution are used to obtain the results.  

4.4.2 Impairment Modeling  

To quantify synaptic impairment of the network, we define two metrics: the level of 

impairment and the percentage of impairment. Impairments are implemented in the elements of 

the adjacency matrix  W , which represent the synapses in the network. When the element 
ijW  is 

zero, then the two neurons i  and j  are not connected. When the element 
ijW  is nonzero, then the 

postsynaptic neuron i  receives an input from the presynaptic neuron j . If the nonzero element is 

equal to 1, then the synapse between the two neurons is considered to be healthy, i.e., it has full 
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strength. If the nonzero element is less than 1, then the synaptic connection is considered impaired, 

and the difference between the nonzero element and 1 is defined as the level of impairment. The 

percentage of impairment indicates what percentage of synapses in the network is weakened by 

the specific level of impairment. For example, a level of impairment of 0.6 and a percentage of 

impairment of 20% indicates that 20% of nonzero elements of the adjacency matrix of the network 

have 0.4ijW . For the same level and percentage of impairment, three possible scenarios of 

deficiency are used to study the effects of synaptic deficiency in the network.  

In the first impairment scenario, synapses are randomly selected and weakened or removed, 

with equal probability. Conditions in which all neurons in a network can be affected equally may 

lead to random weakening of synapses. For example, aging may affect neurons in some regions of 

the brain with equal likelihood, and weakens the synapses randomly. Such method of synaptic 

weakening has been also used to model different stages of Alzheimer’s disease [221]. Nonetheless, 

random impairments are analogues to normal heterogeneity in the strength of synapses in healthy 

neuronal networks. Furthermore, random impairments can be considered as the control scenario 

to determine if other impairment scenarios show different results.   

In the second impairment scenario, neurons that have a higher number of synapses are more 

likely to be weakened or removed. The hypothesis for this type of defect is based on the 

significance of intracellular transport. We speculate that such impairment can be linked to 

pathologies where axonal transport is not functioning properly [9]. For instance, tau protein has 

been proposed to cause synapse loss induced by impaired axonal transport [20]. Axonal transport 

is required to provide precursor proteins that are essential for production and recycling of synaptic 

vesicles [5]. Therefore, the load on axonal transport is related to the number of functional synapses 

a neuron can maintain. For a neuron with few synapses, impaired axonal transport may still allow 
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for synapses to be functional. However, if the number of synapses of the same neuron increases, 

the already impaired axonal transport becomes overloaded as well and thus it becomes more 

difficult for the neuron to perform. Hence, we propose that the synapses of neurons with large 

number of out-going synapses are more likely to be weakened in case of inefficient axonal 

transport. To implement this impairment scenario, the outdegree of all neurons in the network is 

calculated and sorted. Next, neurons with higher outdegree are selected and impaired first.  

In the third impairment scenario, synapses of neurons that are highly active are more likely 

to be weakened or removed. Thus, this scenario considers the activity of neurons, not just the 

network topology. This contrasts the second scenario where neurons with more synapses are more 

likely to suffer from inefficient axonal transport. If such a neuron is not firing frequently, then 

even an impaired axonal transport might be capable of keeping synapses functional. Nevertheless, 

if such a neuron is highly active and fires frequently, then defective axonal transport will result in 

more ineffective synapses compared to a less active neuron which fires less frequently. In fact, 

synaptic fatigue has already been seen in experimental results even in healthy neurons for high-

frequency stimulation [245].To this end, the third impairment scenario investigates how 

impairment of synapses of highly active neurons affects the activity of the whole network. To 

explore such synaptic weakening, the number of firings for each neuron in the unperturbed network 

is measured over a fixed period of time. Next, neurons are sorted based on their level of activity 

and those that are more active are selected first to have their synaptic weights reduced. Figure 4.2 

shows an example of how each scenario affects the degree distribution of a network. The 

healthy/unperturbed network is constructed using mean values of 5 and 35 with equal weights. The 

level and percentage of impairments are 1 and 30% respectively for all impairment scenarios. 
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Figure 4.2- Implementation of the three cases of network impairment. Each graph shows how the original 

bimodal degree (summation of indegree and outdegree) distribution is affected in different impairment 

scenarios. Each method of impairment affects the original network degree distribution differently, leading 

to different network dynamics. Level of impairment and percentage of impairment are 1 and 30%, 

respectively, for all impairment scenarios. (A) Degree distribution in the original network, without any 

impairment. Network is constructed with mean values 5 and 35, with equal weights. (B) Random 

impairment of synapses. The shape of distribution and the general structure of the network are not affected. 

(C) Synaptic impairment based on the number of synapses per neuron. Neurons with more synapses are 

affected more. Shape of distribution and overall network structure are also affected. (D) Synaptic 

impairment based on neuron’s level of activity. More active neurons suffer more. Distribution and network 

structure are changed. 

Comparing the degree distribution of the original network with the distribution in the first 

impairment scenario (Figure 4.2-B), we note that, as expected, the random selection affects neither 

the structure of the network nor the shape of the degree distribution. However, the mean degree 

value of each mode and consequently, the mean degree value of the whole network decrease 

because of the applied impairments. In the second impairment scenario (Figure 4.2-C), the mode 
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with higher mean degree is affected more, since neurons with higher degrees are targeted first. 

Moreover, removing synapses from neurons with higher outdegree increases the number of 

neurons with lower degrees. Therefore, the height and width of the first mode increases in this 

scenario. In the third impairment scenario (Figure 4.2-D), neurons with higher degrees are still 

more likely to be affected since those with higher degrees are generally more active. However, 

comparing the degree distribution of the second and the third scenarios we notice that they are not 

equivalent. For instance, in the third impairment scenario, neurons with a degree of 45 still exist 

in the impaired network while such neurons are removed in the second impairment scenario. 

Importantly, the presence of such neurons in the third impairment scenario shows that neurons 

with a high degree are not necessarily more active. This is expected, because the activity of a 

neuron in the network depends on the dynamics of the whole network. 

4.5.2 Topological Metrics  

If a neuronal network is considered as a graph, each neuron is a node and the synaptic 

connection between each two neurons is an edge. Then, several metrics can be used to describe 

features of the network based on graph theory [246]. The degree of a node discussed above is the 

simplest of these metrics. Another metric is the characteristic path length defined as the average 

of path lengths (minimum number of edges between two nodes) over the whole network. Another 

metric is the clustering coefficient defined as the ratio of closed paths of length 2 over the total 

paths of length 2 in the whole network [247]. A network with a characteristic path length 

comparable to a random network but with a higher clustering coefficient is known to be a small 

world network [38]. Another metric is the rich club coefficient defined over degrees of the network 

[248–250]. For a chosen degree k , all of the nodes with smaller degrees than k  and their 

corresponding edges are removed from the network. Then, the rich club coefficient is defined as 

the ratio of the edges in the remaining set over the number of edges in a fully connected network 
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of the same size. The rich club coefficient is not a metric that can be defined for the whole network, 

since it depends on the chosen degree k , which varies between the lowest and highest degrees of 

nodes in networks. For each k , the size of the remaining network (club size) can be used to show 

how the rich club coefficient varies within a network. The network size and probability of 

connectivity can affect all of these metrics. Thus, the network metrics of a purely random network 

have been used to normalize these metrics for different network structures/topologies [250].   

4.6.2 Dynamical Metrics  

Unlike topological metrics, dynamical metrics depend on the activity of the neurons and 

their intrinsic properties, such as their excitability. Network synchronization is one of the most 

widely used dynamical metrics that has been used for the investigation of complex networks [251]. 

However, network synchronization is not an informative metric in our case because the neuron 

model used in this work is a type 1 neuron and networks that consist of such neurons are shown to 

have asynchronous behavior [241]. 

The first dynamical metric we use, is the presence of persistent activity. Persistent activity 

is a collective behavior of a network that indicates whether the network can sustain its activity for 

long periods of time, once the initial stimulus is removed. To quantify persistent activity, we 

declare that a network has persistent activity if even a single neuron has fired at least once during 

a time window (i.e., the last 200 ms ) at the end of a longer period (e.g., a period of 4,000 ms ).  

All levels of impairment and percentages of impairment for each network need to be 

examined to determine the sensitivity of the persistent activity to impairments. However, this 

approach is computationally inefficient. A more effective approach is to estimate the boundary of 

persistent activity. This boundary is defined as the curve which separates networks without 

persistent activity (above the curve) from networks with persistent activity (below the curve)). To 
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estimate the boundary of persistent activity, for a fixed percentage of impairment, we start from 

the highest level of impairment and observe the dynamics of the network. If the network activity 

is not persistent, then the level of impairment is decreased until a level of impairment with 

persistent activity is found (or the level of impairment reaches zero). Thus, for a fixed percentage 

of impairment, the boundary of persistent activity shows the maximum level of impairment that 

allows the network to have persistent activity. After the maximum level of impairment for a fixed 

percentage of impairment is found, the percentage of impairment is increased, and the networks 

are re-examined for persistent activity to find the maximum level of impairment for the new fixed 

percentage of impairment. This process continues until the percentage of impairment is 100%. The 

percentage of activity and the level of impairment are varied in increments of 10% and 0.1, 

respectively, to find the boundary of persistent activity. 

The quality of the network activity is the second dynamical metric we introduce. We define 

it as the fraction of all neurons that fire at least once during a time window at the end of a longer 

period. Thus, this metric is useful for networks at the limit of persistent activity. Higher quality of 

activity means that more neurons participate in the activity of the network, during the time window 

used.   

4.3 Simulations  

All the neurons in the network are initially at rest. At time 0t , they receive an external 

current with a random uniform distribution between 0 and 
21  A / cm . At 100 mst , the external 

current is removed and the dynamics of the network is observed until 4000 mst . All results 

presented are average values obtained from 50 realizations of the network with the same degree 

distribution. Error bars represent standard deviations of the measured values for these realizations. 
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All results are obtained using custom MATLAB codes and the numerical integration of the 

network is performed using the ODE45 function. 

4.4 Results 

First, we investigated how the topological metrics vary among the different network 

structures we have studied in this work. The topological metrics shown in Figure 4.3 explain why 

the dynamical metrics of different network structures vary. 

 

Figure 4.3- Comparison of clustering coefficients, characteristic path lengths, and rich club coefficients (the 

three topological metrics introduced in section 2.5) for three different network structures/topologies, each 

one with two modes of equal weight and mean degree values in pairs of {15,25}, {10,30} and {5,35}. The 

networks with distinct modes can resemble the structure of small world networks (high clustering 

coefficient, A) and can have rich clubs at the same time (rich club coefficient, B). the average of the two 

numbers is the same (20), and a network of {20,20} represents a single modal distribution with a mean of 

20. The topological metrics for random networks (single mean degree value of 20) are used to normalize 

the same topological metrics for networks with bimodal degree distribution to avoid artifacts in results 

related to the size of the networks and the probability of connectivity. For example, if we denote clustering 

coefficient by C, normalized clustering coefficient of networks with {15,25} mean degree values is 

   15,25 20
 /normalizedC C C  . 

Figure 4.3- A shows that the normalized characteristic path lengths of different networks 

are near 1, which means that all these networks have characteristic path lengths similar to a purely 

random network. However, the normalized clustering coefficients of these networks are larger than 

1, and the value of this metric increases with the difference between the mean values of the bimodal 

distribution. Figure 4.3- B shows how the normalized rich club coefficients for different networks 
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change with the club size. The normalized rich club coefficient approaches 1 when the club size 

reaches the size of the original network, as expected for this metric. All networks with bimodal 

degree distribution have normalized rich club coefficients greater than 1 for many club sizes, which 

means that the nodes with larger degrees are connected to each other more in these networks 

compared to random networks. Moreover, for club sizes smaller than 100, the normalized rich club 

coefficients for networks with bimodal degree distributions is large and remains constant with 

small fluctuations. The value of this plateau region becomes higher as the distance between the 

modes of the degree distribution increases.  

Figure 4.4 presents the raster plots for a sample case of network activity. Figure 4.4-A 

shows that the original network without any impairment continues its activity after the initial 

stimulus is removed, and therefore even though it consists of only excitatory neurons, it reaches a 

stable state. In addition, Figure 4.4-B shows that the same network structure loses persistent 

activity when its synapses are randomly impaired.   

 

Figure 4.4- Raster plots for activity of a network with mean degree values of {10, 30}. (A) The original 

network, without any impairment, shows persistent activity. (B) The synapses of the original network are 

impaired randomly, and the network no longer shows persistent activity. 

Next, we investigated how the network structure influences the dynamical metrics of the 

network by using four different degree distributions. The first degree distribution has only one 
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mode with mean degree value of 20, which resembles a purely random network. The remaining 

three distributions have two modes with equal weights and have mean degree values in pairs of 

{15,25}, {10,30} and {5,35}. Figure 4.5 shows the boundary of persistent activity and the quality 

of activity when these networks are subjected to random impairments.  

 

Figure 4.5- Boundary of persistent activity and quality of activity for four different network 

structures/topologies, when targets of impairments are chosen randomly. (A) The level of impairment 

(namely, the strength of an impaired synapse compared to a healthy synapse) implemented in the network, 

in relation to the applied percentage of impairment (namely, the percentage of synapses in the network that 

are weakened by the implemented level of impairment). The results show that random networks exhibit 

more vulnerability to synaptic loss compared to nonrandom networks. (B) The quality of activity (namely, 

the fraction of active neurons in the network), in relation to the percentage of applied impairment. Details 

for the definitions and the metrics can be found in Sections Impairment Modeling and Dynamical Metrics. 

Standard deviations from 50 separate realizations are shown by the error bars. 

For each degree distribution, networks below the boundary have persistent activity (similar 

to Figure 4.4- A), and networks above the boundary have lost their persistent activity (similar to 

Figure 4.4- B). Figure 4.5-A clearly shows that the purely random network contains the smallest 

region in which the persistent activity is maintained when impairments are imposed. These results 

suggest that random networks are most vulnerable to random impairments, and they cannot 

withstand any level of impairment when more than 40% of the network is damaged. In contrast, 

networks with bimodal degree distributions endure impairments considerably better than random 
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networks, as their boundary of persistent activity is well above the boundary of persistent activity 

for random networks.  

When the difference between the two mean values of the degree distribution increases, the 

neurons start to form two clusters with one cluster having higher rich club coefficient than the 

other (Figure 4.3- B).  The quality of activity can be used to determine whether neurons of only 

one of these clusters participate in the persistent activity of the networks. Since the weights of the 

two modes are equal, the number of neurons in each cluster is the same. Thus, if the quality of 

activity is above 0.5, then we can conclude that more than half the neurons are active (in the time 

window where the persistent activity was determined). Figure 4.5-B shows the quality of activity 

for each of the networks at their own boundary of persistent activity. Note that not all networks 

show persistent activity at all impairment levels up to 100%. Hence, the plots stop at lower values 

of impairment because the quality of activity is not defined for higher levels of impairment. For 

example, the quality of activity cannot be defined for impairments over 40% for networks with 

one mode of degree distribution (and mean degree value of 20) as shown in Figure 4.5-B. 

Similarly, the quality of activity cannot be defined for {15,25} networks for impairments over 

90%. Note, however, that the quality of activity is over 0.5 for all cases, which shows that all 

networks have more than one active cluster. However, the networks with {5,35} modes, which 

have the largest region of persistent activity, have the poorest quality of activity compared to the 

rest of the networks. Therefore, the graphs in Figure 4.5 suggest that higher resistance to 

impairments has the downside of reducing the number of neurons that participate in the activity of 

the whole network. For instance, {15,25} networks have comparable quality of activity to {10,30} 

and {5,35} networks even though their self-sustained activity region is smaller.  
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Figure 4.6-A shows that the integrated persistent activity corresponding to random 

impairments of synapses (scenario 1) is always higher than the integrated persistent activity for 

the other impairment scenarios for all network structures/topologies. Moreover, the integrated 

persistent activity corresponding to impairments of synapses of highly active neurons (scenario 3) 

is always lower than the integrated persistent activity for the other scenarios, which means that the 

persistent activity of neuronal networks suffers the most in this scenario. However, the comparison 

between the scenarios of impairment in Figure 4.6-A does not hold for the quality of activity, as 

shown in Figure 4.6-B, except for {15,25} networks. Particularly, the quality of activity for 

{10,30} and {5,35} networks changes less than 4 between different impairment scenarios. All 

results in Figure 4.6 were analyzed in pairs by the unpaired two-tailed Student's t-test to determine 

if they are statistically significant (the performed t-test has 98 degrees of freedom for all the cases). 

For the results in Figure 4.6-A, all the comparisons showed p-values smaller than 0.001, except 

for the comparison between scenarios 1 and 2 for random networks which showed a p-value of 

0.90. For the results in Figure 4.6-B, all the comparisons showed p-values smaller than 0.001, 

except for the comparison between scenarios 1 and 2 for random networks (p-value = 0.63), 

{15,25} networks (p-value = 0.002), {10,30} networks (p-value = 0.057) and {5,35} networks (p-

value = 0.041).  
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Figure 4.6- Comparison of persistent activity and quality of activity (the two dynamical metrics introduced 

in Section Dynamical Metrics), for different methods of impairment and network structures. In the first 

scenario, synapses are randomly impaired. In the second scenario, neurons with more synapses are 

preferably impaired. In the third scenario, synapses of most highly active neurons are preferably impaired. 

Details for the scenarios of impairment are provided in Section Impairment Modeling. (A) Persistent 

activity area suffers more from nonrandom impairment for all network structures. (B) Quality of activity 

area does not depend strongly on method of impairment for networks with distinct modes in their degree 

distribution. Standard deviations from 50 separate realizations are shown by the error bars. 

All results presented above correspond to bimodal degree distributions with modes that 

have equal weights. However, different network structures can be constructed by keeping the mean 

value of one mode constant and varying the weights of each mode (sum of the weights must equal 

to 1). As the weight of the first mode becomes larger, the mean value of the second mode starts to 

increase to keep the total mean value constant. The results in Figure 4.6 show that {10,30} 

networks exhibit both a high level of persistent activity and a high quality of activity. Therefore, 

it is insightful to vary the weights and examine networks where one of the mean values is kept at 

10 while the other mean value is fixed by the weights. Figure 4.7 shows how the weights affect 

the dynamical metrics of different networks. When the weights are equal to 0.5, the results are the 

same as {10,30} networks.  

Figure 4.7-A shows that the area of persistent activity region increases monotonically when 

the weight of the first mode increases. Similar to the results shown in Figure 4.6-A, impairment 

scenario 1 inflicts less damage to the persistent activity compared to the other two scenarios. In 



 99 

addition, scenario 3 has the most invasive effect. For low weights of the first mode, the integrated 

persistent activity for all impairment scenarios is similar - the lines corresponding to scenarios 1 

and 2 are close to each other. However, they start to separate as the weight of the first mode 

increases. In contrast, the integrated persistent activity for scenarios 2 and 3 are separated for low 

weight of the first mode, but the distance between them decreases slightly as the weight increases.  

 

Figure 4.7- Comparison of persistent activity and quality of activity (the two dynamical metrics introduced 

in Section Dynamical Metrics), when the weights of degree distribution mode vary. In the first scenario, 

synapses are randomly impaired. In the second scenario, neurons with more synapses are preferably 

impaired. In the third scenario, synapses of most highly active neurons are preferably impaired. Details for 

the scenarios of impairment are provided in Section Impairment Modeling. (A) persistent activity area 

increases monotonically with weight of first mode of network degree distribution. (B) Quality of activity 

area initially increases with weight of first mode of network degree distribution, but it decreases with further 

increase of the weight. Standard deviations from 50 separate realizations are shown by the error bars. 

Figure 4.7-B shows that the quality of activity changes nonlinearly with the weight of the 

first mode. Lines corresponding to different impairment scenarios cross each other several times. 

Therefore, unlike the persistent activity shown in Figure 4.7-A, a general statement cannot be made 

about how different impairment scenarios affect the quality of activity. For low weights of the first 

mode, the quality of activity is low because the network has low integrated persistent activity. The 

quality of activity improves as the integrated persistent activity increases. However, further 

increasing the weight of the first mode lowers the quality of activity even though the integrated 

persistent activity is still improving. 
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4.5 Discussion  

Our results show the vulnerability of random networks to synaptic loss, compared to 

networks with bimodal degree distribution. The robustness of networks with bimodal degree 

distribution can be attributed to their topological metrics, and especially the presence of rich clubs. 

Our results also show that targeted synaptic loss, which may resemble different pathological or 

biological conditions, affects the dynamics of networks more, compared to random impairments. 

Therefore, monitoring the activity of networks has the potential to reveal underlying pathological 

or biological conditions earlier than symptoms detection methods. 

We have used a model based on the Hodgkin-Huxley formalism that has been previously 

used successfully to simulate dynamics of neuronal networks [241]. One advantage of this model 

is its capability to be switched to a type 2 neuron with addition of a slow potassium current, which 

is ultimately responsible for the shift in neural excitability mediated by ACh [241]. Ca2+ dynamics 

have been shown to be related with persistent activity of neurons[252,253]. However, even though 

Ca2+ dynamics are not captured in this model, previous research has shown that persistent activity 

can be observed on the network level even when simple integrate-and-fire neurons have been used 

[48]. Like many other network simulations, details of simulations such as the values of dynamical 

metrics and boundary of persistent activity will change, because the elements of the network 

(neurons) will change. However, our main goal is to examine whether the network topology and 

pattern (or scenario) of impairment has significant counter-intuitive (or non-intuitive) effects on 

the network function. Hence, it is the relative robustness that we are mostly interested in; relative 

between different impairment scenarios or network topologies. Therefore, we believe that using 

other models such as the ones that include Ca2+ dynamics will not change the conclusions of this 

work about the influence of network structure on the activity of the network. 
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As a first step, we used the degree distribution of networks to construct networks with 

different topological metrics. While completely random connectivity topologies are usually the 

first choice made when studying the dynamics of neuronal networks, in vitro [214,215], in vivo 

[254] and even in silico [255] studies have revealed that neurons form structures/topologies which 

are correlated to their functionality. One simple way to explain the structure/topology of a network 

is through its degree distribution [247]. We built different network structures/topologies by 

combining Poisson distributions (the degree distribution of a random network) with two different 

mean values. This method of network generation creates networks with bimodal degree 

distributions, which consist of rich clubs with high clustering coefficients while their characteristic 

path lengths are almost equal to that of random networks. Networks with high clustering 

coefficients and path lengths comparable to random networks are known to have features of small 

world networks [38]. The characteristic path lengths of all the networks we studied are close to the 

characteristic path lengths of random networks. Therefore, networks with higher clustering 

coefficients are more similar to small world networks. Our results show that the clustering 

coefficient increases as the distance between modes of degree distribution increases (Figure 4.3). 

At the same time, the increased distance between modes of degree distribution leads to an increase 

in the persistent activity area. Hence, our results show that networks that have properties of small 

world networks are more robust. We define robustness as the ability of neuronal networks to 

maintain their persistent activity when exposed to impairments. Small world networks can tolerate 

impairments better than random networks since the connections between neurons in small world 

networks have more closed loops to sustain the activity of the whole network. Other studies 

[48,236], have also reported that the small world networks are more likely to have persistent 

activity. However, those studies are not parallel to our study since they do not consider impairment 
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in synaptic connections. Moreover, their networks are constructed following the conventional 

method of constructing small world networks, so they do not consist of distinct rich clubs. 

However, features of small world networks are likely not enough to explain the higher robustness 

of networks with bimodal degree distribution because this topological metric does not describe the 

variation in the quality of activity for different networks. 

The rich club coefficients can be used to describe both the persistent activity and the quality 

of activity for networks with bimodal degree distribution. When networks start to form rich clubs, 

hubs of highly connected neurons are created, which are interconnected to each other also. During 

impairments, these hubs can preserve the activity of the whole network. Having a core of highly 

connected neurons enables such network structures/topologies to maintain self-sustained activity 

when they experience loss of synapses. Moreover, for such networks, removal of connections 

between members of rich clubs and neurons outside the rich clubs does not influence the persistent 

activity significantly because neurons outside the rich clubs are not responsible for maintaining 

the persistent activity. Neurons in the rich club are also connected to the neurons outside the rich 

clubs. Hence, they distribute the activity to the whole network. This is the reason why high rich 

club coefficients coincide with high robustness in our results (Figure 4.3-B and Figure 4.6-A).  

Our results suggest that there is a compromise between quality of activity and persistent 

activity of neuronal networks. Unlike the integrated persistent activity, the integrated quality of 

activity shows a nonlinear behavior when the distance between the modes of the degree 

distribution increases (Figure 4.6- B). Such behavior is more obvious when the weights of modes 

are changed (Figure 4.7-B). Initially, the quality of activity is low when the distance between the 

modes of degree distribution is small, because the integrated persistent activity is low. Such 

networks resemble random networks rather than networks with bimodal degree distributions. 
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When the distance between the modes of degree distribution increases, the integrated quality of 

activity and the integrated persistent activity both increase. In these networks, rich clubs sustain 

the activity of the whole network and since they are also connected to neurons outside rich clubs, 

they are able to keep neurons outside rich clubs active as well. However, as the distance between 

the modes of degree distribution increases, the robustness of networks continues to increase, 

whereas the quality of activity starts to decrease. At the same time, neurons outside rich clubs 

make few connections, either with each other or with members of rich clubs.  In fact, the sharp 

transition in the normalized rich club coefficients of {5,35} networks (Figure 4.3-B) indicates that 

the core has weak connection with neurons outside the core. Therefore, neurons outside of rich 

clubs lose their activity even when a few of their synapses are removed. In this situation, rich clubs 

fail to act as a driving force for the rest of the network. Hence, the quality of activity for such 

networks is low even though highly connected hubs that form rich clubs can maintain the activity 

of the whole network.  

The interplay between persistent activity and quality of activity can be considered as an 

optimization problem. To achieve higher robustness, our results suggest that the number of 

connections between neurons in rich clubs must increase. However, if the size of the neuronal 

network and its synapses are constrained to remain the same, then more connections between 

neurons in rich clubs mean fewer connections between neurons outside rich clubs. Therefore, even 

though such networks can endure impairments very well and can maintain persistent activity, only 

few neurons participate in the activity of the whole network and the quality of activity low. From 

this perspective, the network structure/topology can be viewed as a multi-objective optimization 

problem where the fitness of a network can be determined by both persistent and quality of activity, 

and the number of neurons and synapses are the constraints. Even though the network optimization 
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can be regarded as an abstract mathematical problem, emergence of certain structures/topologies 

in networks can also be considered as evolution of these networks in reality [256]. However, a 

random network can evolve into different network structures/topologies to serve different tasks 

[257]. For example, Sporns and colleagues [258] have shown that based on differently imposed 

criteria, their graph selection algorithm leads to networks with different structures and capabilities. 

Although we have not solved such an optimization problem in the present work, our results show 

that networks with bimodal distributions have good fitness. Therefore, if a neuronal network 

requires high robustness to perform its tasks, a network with bimodal degree distribution can be 

the plausible solution. More precisely, networks with bimodal degree distributions with a moderate 

distance between distinct modes have high robustness and high quality of activity at the same time. 

Moreover, our results suggest that random networks are the least preferable neuronal network 

structure/topology for the metrics we have used, since such networks have neither high persistent 

activity nor high quality of activity.  

In the present study, we have explored also how selective impairment of neurons can affect 

the dynamics of neuronal networks by investigating targeted weakening of synapses. We have 

explored how three different scenarios of synapses loss can affect the dynamical features of 

neuronal networks. 

In the first impairment scenario, synapses are impaired randomly leading to the least impact 

on the persistent activity for all the network structures/topologies (Figure 4.6-A and Figure 4.7-

A). The importance of all neurons and their synapses in the activity of the whole network is not 

the same, especially for the neuronal networks that do not have random connectivity. However, 

the reason why random impairments are the least damaging method is not the fact that synapses 

of more important neurons are not selected. Essentially, the likelihood of damaging such neurons 
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is the same as any other neuron since the method of impairment is random. In fact, highly 

damaging effects of impairing critical neurons are compensated by impairing synapses of neurons 

that are less important to the activity of the whole network. Therefore, random impairments lead 

to overall less damaging effects compared to other impairment scenarios we have described in our 

study.  

In the second impairment scenario, synapses of neurons with larger number of synapses 

are more likely to be impaired leading to more damaging effects to the persistent activity of 

neuronal networks than random impairments of neurons, for all network structures/topologies. The 

number of synapses a neuron has is a topological feature of a neuronal network. Therefore, if the 

wiring between neurons in a network is known, this wiring can be used to suggest where the 

impairments will occur in case of damaged axonal transport. Van den Heuvel and Sporns [213] 

have performed a similar analysis by observing the efficacy of neuronal networks. They have 

shown that targeted impairments that remove the links between members of rich clubs in the 

network induce a more dramatic change on the efficacy of neuronal networks than random 

impairments. The mechanism used for the targeted impairments in that study is not mentioned, but 

such impairments resemble our second scenario. Complimentary to our speculation about the links 

between the hub location and axonal transport deficiencies, experimental results have also shown 

that the hub locations correlate Aβ deposition in Alzheimer’s disease [259]. Hence, hub locations 

can be monitored to detect abnormalities in neuronal networks earlier and with more efficiency.  

In the third impairment scenario, synapses of highly active neurons are more likely to be 

impaired leading to the most destructive effect on the persistent activity of all neuronal networks 

when compared to the other impairment scenarios. The structure/topology of neuronal networks 

plays an important role, but the dynamics is important also. The dynamic map of activity in 



 106 

neuronal networks can also provide critical information about regions of interest. Other research 

has suggested also that regions of high activity and metabolism can be associated with cellular 

mechanism involved in Alzheimer’s disease [259]. Moreover, it has been proposed that, highly 

active neurons in the brain can be especially vulnerable to intrinsic oxidative stress, thus being 

susceptible to functional decline during normal aging or neurodegenerative diseases [260]. 

Therefore, monitoring the activity of neuronal networks can reveal the critical regions and neurons 

that influence the most the activity of the whole network. Consequently, we speculate that losses 

or changes in the activity of such regions can be used as an early sign of deficiencies in neuronal 

networks. 

Altogether, we speculate that the transition in the network structure can be used as an 

indicator of neurodegenerative disease as the robustness of neuronal networks decreases when they 

lose their structured topology.  Such transition of the brain network towards randomness has 

already been shown even in normal aging in several studies [261]. Therefore, monitoring alteration 

in the brain network structure has the potential to be used as an early diagnostic method in 

neurodegenerative diseases.  Moreover, our results show that even though the topological metrics 

and maps of neuronal networks can provide valuable information, they should be accompanied by 

the dynamical metrics and maps of neuronal networks that are even more informative. Our results 

illustrate that such an argument is even stronger when neuronal networks are not randomly 

connected, and are instead topologically defined. 
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Chapter 5  

 Probabilistic Analysis of Bifurcations in Stochastic Nonlinear 

Dynamical Systems Using the Fokker-Planck Equation 

5.1 Introduction 

Dynamical systems have long been used to describe the behavior of physical systems. 

However, the analysis of dynamical systems is usually conducted in the absence of noise. While 

absence of noise can simplify the analysis of dynamical systems, such mathematical idealism is 

not physically realistic. Whether the source of the noise is from the environment, the nature of the 

physical system, or merely from observation, noise can dramatically change the behavior of 

dynamical systems [262,263]. Hence,  stochasticity cannot be disregarded especially for nonlinear 

dynamical systems that their bifurcation leads to critical transitions with dramatic consequences 

[264].  

Stochasticity is commonly encountered in biological systems. Hence, the mathematical 

models describing biological systems are subjected to noise. The noise is important in biological 

systems especially when the dynamical processes take place in smaller scales. Moreover, cell-to-

cell variations is a common source of stochasticity in biological system such as cellular networks 

[265,266]. In this chapter, we develop a tool to analyze stochastic dynamical systems that will be 

used later in chapter 6 in which firing rate models [267] of neural networks are studied. Such 
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probabilistic tool to study stochastic dynamical systems is necessary because noise can influence 

dynamics of neural systems greatly. For instance, noise can describe [267] spontaneous switching 

between states of neural networks in experimental data [268]. 

A single time evolution of stochastic dynamical systems is not representative of the system. 

However, the Monte Carlo simulation can estimate the probability density function (PDF) of 

stochastic nonlinear dynamical systems. However, even though The Monte Carlo simulation is 

easy to implement, numerous realizations are necessary to obtain PDFs from the Monte Carlo 

method since the initial conditions for the Monte Carlo simulations must span the physical space 

adequately. Such cumbersome simulations must be conducted each time the bifurcation parameter 

is changed because a previous Monte Carlo simulation cannot simply be the initial condition for 

the next simulation during the continuation of bifurcation parameter. Alternatively, the time 

evolution of PDFs of stochastic differential equations with white noise excitation can be obtained 

from the Fokker-Planck equation (FPE) [269]. The stationary solution of the FPE, provided it 

exists, can be used to construct probabilistic bifurcation diagrams of stochastic nonlinear 

dynamical systems. Such probabilistic bifurcation diagram demonstrates the probability of finding 

the dynamical system in space at each point on the bifurcation diagram. The probabilistic 

bifurcation diagram converges to the deterministic bifurcation diagram in the limit of noise going 

to zero. However, finding the closed-form analytical solution of the FPE is not trivial especially 

for higher-dimensional dynamical systems. Therefore, numerical solution of the PFE are often 

sought [270]. For example, finite element and finite difference methods have been used previously 

to obtain numerical solution of the FPE without showing any particular superiority for any of the 

methods [271,272]. Recently, more modern numerical methods have been utilized to address the 

curse of dimensionality associated with traditional numerical methods. For instance, meshless 
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methods have been used to solve the FPE for four-dimensional dynamical systems [273]. 

Moreover, stationary and transient solution of the FPE for higher-dimensional dynamical has been 

obtained by utilizing tensor decomposition method [274–276]. Such methods highly relay on the 

validity of separating the dimensions in the FPE [277].  More recently, statistical methods have 

been used to approximate the solution of high-dimensional FPE [278]. Interestingly, the mentioned 

numerical studies of the FPE are performed for the case of additive noise and their authors have 

not included case studies with multiplicative noise. Moreover, none of the previous studies 

investigate the bifurcation diagrams of the systems they are presenting.   

In this research, we find the stationary solution of the FPE for nonlinear dynamical systems 

in the presence of additive and multiplicative noise to construct their probabilistic bifurcation 

diagrams. We use the finite volume method to discretize the FPE to establish the numerical 

scheme. First, we compare our numerical solution with the analytical results for a one-dimensional 

system with subcritical pitchfork bifurcation. Then, we study the FitzHugh-Nagumo model as a 

two-dimensional system that exhibits limit cycle oscillations. Next, we study the three-dimensional 

Lorenz model as a system that displays chaotic behavior. Finally, we conclude by investigating 

dynamics of coupled Brusselators.  

5.2 Numerical Solution 

Consider a system of Ito stochastic differential equations for N  variables [269]: 

 ( , ) ( , ) ( ) d t dt t d tx f x g x W    (4.1) 

where  N
x  is the state vector of the general nonlinear dynamical system, ( , )tf x  is the 

drift vector describing the deterministic nonlinear dynamical system, 
 N M

g  is the diffusion 

matrix and ( ) Md tW is the standard Weiner process. Then, the Fokker-Planck equation (FPE) 

is formed as [269]: 
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where ,( )p tx is the time evolution of probability density function (PDF) associated with 

the stochastic system of equations in (4.1). Equation (4.2) can be written as a function of 

probability flux ( , )tJ x : 

 ( , ) . ( , ),

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

p
t t

t
x J x   (4.3) 

where each element of vector ( , )tJ x  can be written as: 
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Next, we apply the finite volume method on Eq. (4.3) by integrating over a N -dimensional 

volume of k : 

 ( ,( , ) . , ) ( , ) ( , ).
  





 

 
    

k k k
k

p p
t dv t dv V t t dS

t t
x J x x J x n   (4.5) 

where kV  is the volume, p is the volume average of PDF and the divergence theorem is 

applied on the flux terms. For the stationary solution we have ( , ) 0





p
t

t
x , which leads to: 

 .( 0, ).



k

t dSJ x n   (4.6) 

Equation (4.6) shows that the finite volume method allows conservation of probability flux 

in each stencil in the domain. We have used a uniform structured grid to discretize the domain for 

all our cases. The fluxes are evaluated at the center of edges and cell average values are used to 

evaluate fluxes with second order accuracy. We have also assumed reflective boundary condition 

over the domain meaning the flux of probability is zero on the boundaries of the domain. Hence, 

assembling the discretized equations leads to a system of linear equations: 
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 ,Ap 0   (4.7) 

where A is the matrix of coefficients obtained from discretization of the domain, and p

(we denote p as p for simplicity from now) is the vector of cell average PDF. Equation (4.7) has 

the trivial solution of p 0 . However, such solution is not acceptable since p  must satisfy the 

constraint for PDF as: 

 ( ) 1.







 p x dx   (4.8) 

Applying the constraint of Eq. (4.8) will not be necessary if transient form of Eq. (4.5) is 

solved with proper initial condition such as 0 0,0) (( ) p x x x  that already satisfies Eq. (4.8) at 

0t . Nonetheless, there are several methods to incorporate constraint in Eq. (4.8) into linear 

system of equations in (4.7). In the first approach, a vector b  can be constructed such that 
T 1b p

. Then, an additional row is added to bottom of matrix A with elements of 
T

b and the last row of 

right hand side in Eq. (4.7) will now be equal to 1. Therefore, matrix A is no longer a square matrix 

and the new linear system of equations must be solved by least-square methods. Alternatively, Eq. 

(4.7) can be solved with the constraint of Eq. (4.8) using optimization techniques and packages 

such as CVX [279] or CPLEX [280]. Also, Eq. (4.7) can be solved using an iterative method such 

as GMRES with a nonzero initial guess that can even satisfies Eq. (4.8) to obtain a nonzero 

solution. The final solution of the iterative solver will not necessarily satisfy Eq. (4.8) but it can 

be scaled so that the probability normalization can still hold. Such scaling is allowed because Eq. 

(4.7) is linear and the right-hand side is zero. We have applied the later approach in this work 

because it’s the fastest compared to the other methods we have explained. We have used SciPy 

[281] library of iterative solvers for sparse systems of equations to obtain the stationary solution 

of the FPE.  
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5.3 Results and Discussion 

In this section we present the probabilistic bifurcation diagrams for stochastic nonlinear 

dynamical systems of different dimension in the presence of additive and multiplicative noise and 

discuss how noise affects the dynamics of the systems.    

5.1.3 Subcritical Pitchfork Bifurcation 

We start with a one-dimensional nonlinear dynamical system for which we can find the 

analytic stationary solution of the FPE. Consider the following stochastic nonlinear dynamical 

system: 

 
3 5 ) ( , ) ,(    x xd x dt g xx t dW   (4.9) 

where   is the bifurcation parameter. When there is no noise  ( , ) 0g x t , Eq. (4.9) shows 

the normal of a dynamical system with subcritical pitchfork bifurcation. First, we consider the 

stochastic differential equation with additive noise where ( , ) g x t  in which   is a constant 

determining the strength of the noise. Figure 5.1-(A) shows the time evolution of the stochastic 

process for 0.1    and 0.5  . Clearly, the time evolution shows the dynamical systems 

oscillates between two extremums  | | 1x   and also spend some short time in the between the 

extremums near 0x  . However, such short simulation is not informative while the FPE can 

demonstrate what is the probability of being at each state.  

Using Eq.  (4.3) and (4.4), the stationary FPE associated with Eq. (4.9) with additive noise 

is: 

 
3 5 21

( ) ( ) ( ) ( ) 0.
2

 
 

       
 

d d dp
J x x x x p x x

dx dx dx
  (4.10) 

Integrating Eq. (4.10) once leads to: 
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Assuming reflective boundary conditions, the constant in Eq. (4.11) becomes zero. Then, 

Eq. (4.11) can be integrated once more to find the stationary solution of the FPE associated with 

Eq. (4.9): 
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where is a normalization constant to make sure the constraint of Eq. (4.8) is satisfied. 

The PDF obtained from Eq. (4.12) as well as the numerical stationary solution of the FPE and the 

Monte Carlo simulation is depicted in Figure 5.1-(B). First, we can see that the numerical and 

analytical solutions of the FPE match well. Moreover, the PDF in Figure 5.1-(B) shows that the 

likelihood of finding the dynamical system is the same for both extremums at 1x . Such 

conclusion could not be simply reached from the time evolution of the system, which demonstrate 

why the probabilistic approach to stochastic differential equations is powerful and even necessary.   

 

Figure 5.1- (A) time evolution of stochastic system of Eq. c. The system oscillates between extremums of 

1x and lingers in each one of them as well as a state between the two extremums at 0x . (B) The 

PDF for system of Eq. (4.9) obtained from all three methods match well. The PDF shows that the system 

the likelihood of finding the system is equal and largest at the two extremums. 
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The bifurcation diagram of the dynamical system in Eq. (4.9) in the presence of additive 

noise can be constructed by varying  in Eq. (4.12) or the numerical solution of the FPE must be 

found for each value of . The results for both methods is shown in Figure 5.2. The results of the 

numerical method match well with the results obtained from the analytic solution. The solid lines 

in Figure 5.2 corresponds to the deterministic bifurcation diagrams, which are obtained using 

MATCONT toolbox [282]. The black lines correspond to stable branches and white lines to 

unstable branches of the deterministic bifurcation diagram (the same color code for stable and 

unstable branches is used in the rest of the chapter). 

For 0.25   there is only a single deterministic stable branch at 0.x  In the presence of 

additive noise, the PDF distribution is centered around this branch and becomes wider as the 

bifurcation parameter approaches 0   where the deterministic bifurcation occurs. However, in 

the presence of additive noise, the dynamical system visits the large amplitude branches before the 

deterministic bifurcation occurs as the probability of being near these branches is nonzero before 

0  . Such phenomenon occurs because the noise is strong enough to allow the dynamical system 

switch between the equilibria in the region of bistability in the neighborhood of 0  . Hence, the 

effects of noise can have dramatic consequences in the system studied here, as the blow-up occur 

earlier than what the deterministic bifurcation predicts. Therefore, knowing the probability of 

finding the system at each point on the bifurcation diagram is invaluable.  

For 0  , the probability of finding the stochastic dynamical system around now unstable 

branch of 0x  is nonzero. However, this probability approaches zero as  becomes larger. For 

large , the probability of finding the system is largest around the deterministic large amplitude 

stable branches.  
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Figure 5.2- Analytic and numerical solution of the FPE for the dynamical system of Eq. (4.9) in the presence 

of additive noise ( 0.5)   match well. The black lines show the stable branches and the white lines 

correspond to unstable branches of the deterministic bifurcation diagram  

For each value of   in Figure 5.2, Eq. (4.8) still holds. Therefore, for example, the 

maximum value of ( )p x  is smaller for 2    compared to the maximum value of ( )p x  at 2   

because the PDF distribution is wider when 2   compared to when 2  . Such format of 

plotting where Eq. (4.8) holds for every  can jeopardize interpretation of probabilistic bifurcation 

diagram. For instance, consider the extreme case in which the distribution for a certain bifurcation 

parameter is the delta function for which Eq. (4.8) clearly holds. However, no other distribution 

will be visible on the bifurcation diagram because the maximum value of the delta function 

dominates the colorbar of the graph. To avoid such issues and facilitate interpretation of results, 

we can normalize the PDF with its maximum at every bifurcation parameter. Therefore, the values 

of the colorbars in all graphs will be the same and vary between 0 and 1 for all bifurcation 

parameters. Also, the colorbars from all figures can be removed to make the representation of the 

results more concise. 

Figure 5.3-(A) shows the same results as the one plotted in Figure 5.2 with the new format. 

The new representation allows tracking where the probability is the highest for each value of the 
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bifurcation parameter. Hence, we can deduce from Figure 5.3-(A) the bifurcation occurs in the 

stochastic dynamical system when the stable branches with large amplitude appear at 0.25   . 

Next, we increase the strength of the additive noise as seen in Figure 5.3-(B). Increasing the noise 

does not change the trend of the probabilistic bifurcation diagram significantly and only widens 

the distribution.  

Next, we introduce multiplicative noise into Eq. (4.9) by setting  2( ) 1 g x x . The 

analytic stationary solution of the FPE for such noise can be find similar to what we did for Eq. 

(4.12) as: 
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  (4.13) 

where is again a normalization factor. Comparing Eq. (4.13) and (4.12), clearly shows 

that the multiplicative noise changes the PDF completely. The results for the probabilistic 

bifurcation diagram of Eq. (4.13) is shown in Figure 5.3-(C) and (D). The actual boundaries of the 

domain that the FPE is solved in is larger than the ones shown in Figure 5.3-(C) and (D) to ensure 

that the probability flux approaches zero on the boundaries. However, the bounds shown in Figure 

5.3 are kept the same to allow easy comparison of results between different scenarios. Figure 5.3-

(C) shows that for small noise, the bifurcation for the dynamical system with additive noise occurs 

for a larger   compared to the system with just additive noise (Figure 5.3-(A)). Moreover, the 

probability around the for the multiplicative noise is no longer centered around the stable branches 

for large  . Such deviation from deterministic bifurcation diagram is more evident for larger noise 

values as shown in Figure 5.3-(D). Figure 5.3-(D) shows that the bifurcation occurs for much larger 

values of compared with deterministic dynamical system. Moreover, examining  Figure 5.3-(D) 
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shows the bifurcation type has also changes from subcritical to supercritical. Hence, Figure 5.3-

(D) shows the importance of the probabilistic approach for bifurcation of stochastic dynamical 

systems especially when the noise is multiplicative. 

To emphasize the importance of multiplicative noise, we considered another case in which 

the multiplicative noise has the form of  2( ) 1  g x x . for which the analytic solution for the 

stationary FPE can be found as:  
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  (4.14) 

where is the normalization factor. Comparing Eq. (4.12)-(4.14), we can see the impact 

of multiplicate noise once more. The results of probabilistic bifurcation diagram of Eqs (4.14) are 

shown in Figure 5.3-(E) and (F). For both strength of noise, the probabilistic bifurcation diagram 

is almost similar. For large values of  , the probabilistic bifurcation diagram follows the 

deterministic bifurcation diagram. However, for 0.25   the probabilistic bifurcation diagram 

does not follow the stable branch of the deterministic bifurcation diagram at 0.x  Even though 

the system is attract to the fixed point at 0x , because the noise is proportional to 
2x , the noise 

becomes larger near the fixed point and is repelled from it. Therefore, a bifurcation does not happen 

in this case as the behavior of the system changes smoothly and continuously as the bifurcation 

parameter changes. Hence, introducing such multiplicative noise actually annihilate the bifurcation 

point.  
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Figure 5.3- Probabilistic bifurcation diagram of the dynamical system of Eq. (4.9) in the presence of 

additive noise (A-B) and multiplicative noise.  2( ) 1 g x x for (C-D) and  2( ) 1  g x x for (E-

F). Black lines correspond to stable branches and white lines to unstable branches in the deterministic 

bifurcation diagram. The colorbars are removed because the values of the normalized PDF vary between 0 

and 1 for all cases 



 119 

5.2.3 FitzHugh-Nagumo Model  

We have considered the FitzHugh-Nagumo (FHN) model as a two-dimensional nonlinear 

dynamical system. The FHN model is a simplified version of Hodgkin-Huxley neuron model 

[283]. The FHN model is also similar to van der Pol model and can be written as [284]: 

 ( )( 1) ,    V V a V V I   (4.15) 

 ,  bV c   (4.16) 

where V mimics the membrane voltage, is a recovery variable, I resembles the injected 

current, and 0.1, 0.075, a b  and 0.1c are constant parameters. The stationary solution of the 

FPE for the FHN model has been previously investigated numerically in the presence of additive 

noise by Kostur and colleagues [285]. However, they did not construct the bifurcation of the 

dynamical system, which could have been used to explain some of the results they report in their 

study.  

We choose the injected external current I , as the bifurcation parameter and assume it is 

noisy 2

0 (0, ) I I . Here 
2(0, ) is white noise with 0 mean and variance equal to 

2 . 

Hence, there will be additive noise only in Eq. (4.15) and Eq. (4.16) will remain unchanged. Figure 

5.4 shows the probabilistic phase plane analysis of the FHN model for three different values of 

external current.  
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Figure 5.4- probabilistic phase planes of Fitzhugh-Nagumo (FHN) model when the external current has 

white noise 2

0 (0, ) I I  with 
2 0.0025  .  

Figure 5.4-(A) shows that for no injected current, the joint PDF for the states of the 

dynamical system is distributed around a fixed point meaning that the FHN neuron model is not 

firing and the membrane voltage is near the resting value. However, since the FHN model 

resembles a neuron model, increasing the injected current should lead to firing in the neuron model. 

Such behavior is demonstrated in Figure 5.4- (B) where we observe a limit cycle meaning that the 

membrane voltage oscillates between the resting value and a maximum value resembling firing of 

a neuron. Figure 5.4-(C) shows that increasing the injected current furthermore leads to the 

phenomenon known as the depolarization block meaning that the neuron stops firing while 

maintaining a high voltage due to the excessive injected current. 
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 The complete behavior of the FHN in the presence of noisy injected current can be 

analyzed by constructing the probabilistic bifurcation diagram of the system. For systems that have 

more than one variable, we calculate the marginal probability density function (MPDF) for the 

variable that we want to construct its bifurcation diagram. For instance, the MPDF of membrane 

voltage,V , for the FHN model can be calculated as: 

 ( ) ( , ) .  V p V dp   (4.17) 

The MPDF for systems with more than two dimensions can be found similar to Eq. 17 by 

calculating the multidimensional integral of the joint PDF. Again, we normalize the MPDF with 

its maximum value at each bifurcation parameter so that the MDPF varies between 0 and 1 for all 

values of the bifurcation parameter.  

Figure 5.5-(A-D) demonstrate the probabilistic bifurcation diagram of the FHN model for 

two different magnitude of additive noise (white noise in the injected current). Again, the solid 

lines indicate the bifurcation diagram of the deterministic dynamical system. The black lines are 

the stable branches, the white lines are the unstable branches and the gray lines indicate the 

extremums of the limit cycles. 

 Even though noise is only introduced to Eq. (4.15), the recovery variable ( ) shows noisy 

behavior as expected because Eq. (4.15) and (4.16) are coupled. For the values of the bifurcation 

parameter where there is a stable branch, the probabilistic bifurcation diagram is almost centered 

around the stable deterministic branches when the noise is small ( 

Figure 5.5- (A) and (B)). However, when the noise becomes larger ( 

Figure 5.5-(C) and (D)) we observe that the probabilistic bifurcation diagram of voltage

( )V deviates from the deterministic analysis especially near the bifurcation point where the limit 
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cycle appears. Hence, the deterministic bifurcation diagram does not represent dynamics of the 

FHN model when the noise in the injected current is large. Moreover, comparing  

Figure 5.5-(A) and (C), we observe that the transition from finding the system around the 

stable branch to limit cycle oscillation is also affected by the magnitude of the noise. For small 

noise, such transition is more sudden compared to larger noise. When the system enters limit cycle 

regime, there is a probability of finding the system anywhere between the limits of the cycle. 

However, there are regions in the limit cycle regime that the probability is higher. The presence of 

such regions indicate that the dynamical system spends more time at such points during its cycle. 

In other words, the probabilistic bifurcation diagram can tell if the dynamical system is passing 

through a point in its cycle slowly or swiftly. Such information is also deducible from probabilistic 

phase plane analysis such as the one shown in Figure 5.4-(B). Points of higher probability in Figure 

5.4-(B) indicate where the dynamical system is slow during its cycle.  

Next, we study the FHN model in the presence of multiplicative noise. Here, we assume 

the membrane voltage is noisy  2

0 (0, )V V . Inserting such noise into Eq. (4.16) leads to: 

 ,    d bV c b dW   (4.18) 

where dW is the Wiener process again. However, implementing such noise in Eq. (4.15) 

is more complicated because of the nonlinearity in the voltage. When the voltage is noisy, Eq. 

(4.15) can be written in a more general form as: 

  2(0, ), , ,  dV F V I dt   (4.19) 

where  , , ( )( 1)     F V I V a V V I . However, Eq. (4.19) does not have the 

standard form of stochastic differential equations as Eq. (4.1) in order to be converted to the FPE. 



 123 

However, assuming the noise is small compared to the voltage, we can use the Taylor series 

expansion of  2(0, )F V to write Eq. (4.19) as: 

    , , , , .  


 


dV F V I dt F V I dW
V

  (4.20) 

Now, Eq. (4.20) has the same standard for as Eq. (4.1) and can be used to construct its 

associated FPE along with Eq. (4.18).  

Figure 5.5-(E-H) demonstrate the bifurcation diagram of the FHN model in the presence 

of the multiplicative noise. Increasing the magnitude of noise does not change shape of the 

probabilistic bifurcation diagram in the multiplicative noise that is studied here. However, when 

the magnitude of noise increases, the injected current that leads to occurrence of limit cycle 

increases and the current that leads to depolarization block (the stable branch with large V ) 

decreases. Therefore, increasing the magnitude of noise shortens the region where limit cycles 

exist. In other words, the multiplicative noise that is proportional to derivative of the drift as the 

one shown in Eq. (4.20) works towards keeping the system near its fixed points. 
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Figure 5.5- Probabilistic bifurcation diagrams of Fitzhugh-Nagumo (FHN) model in the presence of 

additive (A-D) and multiplicative (E-H) noise. The additive noise is associated with white noise in the 

injected current in Eq. (4.15). The multiplicative noise is due to white noise in the membrane voltage that 

leads to Eq. (4.18) and (4.20). Black lines correspond to stable branches, white lines to unstable branches, 

and gray lines to extremums of limit cycles in the deterministic bifurcation diagram. The colorbars are 

removed because the values of the normalized PDF vary between 0 and 1 for all cases. 

5.3.3 Lorenz System 

Next, we investigate dynamics of the Lorenz equations [286] in the presence of noise: 

 1( ) ( , , ) ,   y x dt g x y zx dWd   (4.21) 

 2) ( , ,( , )    z y g x yx zy dWd   (4.22) 

 3( , , ) , d x z g x y zz dWy   (4.23) 

where x  is related to the rate of convection, y  and z  are related to variation of 

temperature horizontally and vertically, respectively. We have set Prandtl number 5  , the 

geometrical parameter 0.5   and   Rayleigh number   as the bifurcation parameter. The FPE 

for Lorenz equations has been investigated previously in the chaotic regime in the presence of 

additive noise [287,288]. However, previous studies did not investigate the bifurcation diagram of 

Lorenz system in the presence of noise or the influence of multiplicative noise. 

First, we investigate the dynamics of Lorenz equations in the presence of additive noise. 

We have set 1 2 3 0.5   g gg in equations (4.21)-(4.23). Figure 5.6 shows the MPDFs of the 

Lorenz system when 15  , which corresponds to chaotic dynamics. For the FHN model, we 

claimed that regions of high probability when there is a limit cycle indicate that the dynamical 

system passes through those points slowly. However, such conclusion cannot be made for the 

probabilistic phase planes shown in Figure 5.6. For a chaotic dynamical system, regions of high 

probability can merely mean that such points are visited more frequently rather than the dynamical 

system being slow at those points (or a combination of both).   
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Figure 5.6- Probabilistic phase planes of Lorenz system in the presence of additive noise when 15   . 

The two-dimensional projections show MPDFs.  

Next, we construct the probabilistic bifurcation diagrams of the Lorenz equations in the 

presence of additive and multiplicative noise. Figure 5.7- (A-C) shows the probabilistic bifurcation 

diagrams for the case off additive noise where 1 2 3 0.5  g gg . For another scenario, we assume 

there is white noise in y . Such white noise  2

0 (0, )y y will introduce additive noise in Eqs. 

(4.21)  1 0.5   g  and Eq. (4.22)  2 0.5 g but multiplicative noise in Eq. (4.23) 

 3 0.5 x xg . The results for such white noise is presented in Figure 5.7-(D-F). Again, the 

solid lines indicate the bifurcation diagram of the deterministic dynamical system. The black lines 
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are the stable branches, the white lines are the unstable branches and the gray lines indicate the 

extremums of the limit cycles.  

The supercritical pitchfork bifurcation occurs at 1   for the deterministic Lorenz 

equations. However, examining Figure 5.7-(A) and (B), the pitchfork bifurcation is delayed 

because of the additive noise. Figure 5.7-(D) and (E) also show delay in the pitchfork bifurcation 

in the case of multiplicative noise but the bifurcation occurs earlier compared to the case with 

additive noise. As  is increased, the dynamical system oscillates around the stable fixed points 

of the branches that occur after the pitchfork bifurcation. However, the dynamical system is also 

attracted by the unstable fixed point at 0 x y  because the probability of finding the system 

there is not zero. In fact, the bounds of the unstable limit cycles approach fixed points at 0 x y

, which allows the stochastic system to switch between the stable branches. Hence, unlike the 

deterministic dynamical system that ultimately converges to either of the stable branches when 

  chaos , the stochastic Lorenz system continue oscillating and switching between the stable 

branches. Further increase of   leads to chaotic behavior. The transition happens where the region 

of high probability occurs on the unstable branch even though stable fixed points are present. 

Comparing  Figure 5.7-(A) and (B) with Figure 5.7-(D) and (E) shows that transition to chaotic 

behavior occurs faster when the noise is multiplicative in Eq. (4.23). The region of high probability 

near unstable fixed point at 0 x y  in the chaotic regime indicates that the dynamical systems 

passes through that region of space more frequently. The width of probability distribution around 

0 x y  remains almost unchanged when the noise is additive unlike for the case where noise in 

multiplicative in Eq. (4.23).  
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Figure 5.7- Probabilistic bifurcation digrams of Lorenz equations in the presence of additive (A-C) and 

multiplicative (D-F) noise. The multiplicative noise is due to white noise in y Black lines correspond to 

stable branches, white lines to unstable branches, and gray lines to extremums of limit cycles in the 

deterministic bifurcation diagram. The colorbars are removed because the values of the normalized PDF 

vary between 0 and 1 for all cases 



 129 

5.4.3 Coupled Brusselators 

We investigate dynamics of two Brusselators coupled together as a four-dimensional 

dynamical system. The Brusselator model [289] is a hypothetical chemical oscillator named after 

home of it inventors. Here, we study a system of coupled Brusselators in the presence of noise: 

  2

1 1 1 1 1 2 1 1 1 1 2 2( , , , ) ,       xY BXd X D X gX A dX t X Y X Y dWX   (4.24) 

  2

2 2 2 2 2 1 2 2 1 1 2 2( , , , ) ,       xY BXd X D X gX A dX t X Y X Y dWX   (4.25) 

  2

1 1 1 1 2 1 3 1 1 2 2( , , , ) ,    yBX X Yd D Y d XY Y t g Y X Y dW   (4.26) 

  2

2 2 2 2 1 2 4 1 1 2 2( , , , ) ,    yBX X Yd D Y d XY Y t g Y X Y dW   (4.27) 

where A  and B  are constant supply of revivor chemicals [290], 1 2 1, ,X X Y  and 2Y are the 

concentration of intermediate reactants. The coupled model of Brusselators represents a system of 

two connected boxes (the subscript of reactants indicates which box the material is in) with xD  

and 
yD being the diffusion constants that control the exchange of material between the two boxes. 

Here, we choose B  as the bifurcation parameter and have 1A and 0.5 x yDD . Moreover, we 

assume that there is white noise in both A  and B . Such noise leads to multiplicative noise in Eq. 

(4.26) and (4.27) as 3 3 1g X  and 4 4 2g X . The noise also leads to a combination of additive 

and multiplicative noise in Eq. (4.24) and (4.25) as 1 1 3 1  g X  and 2 2 4 2   Xg . We have 

set 
1 2 3 4 0.1       . 

Interpretation of a four-dimensional system is less straightforward. We use MPDFs to 

present the results in two dimensions. Figure 5.8 shows the two-dimensional projection of MPDFs 

of the coupled Brusselators for 2.5B . Solving PDEs in more than 3 dimensions is not common. 

Therefore, we use the symmetry in Eqs. (4.24)-(4.27) to show the validity of the solutions obtained 
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here. Since the oscillators are identical, phase planes for 1 1X Y  and 2 2X Y  must look similar as 

shown in Figure 5.8-(A) and (D). Moreover, phase planes for 1 2X Y and 2 1X Y must look similar 

as shown in Figure 5.8-(C) and (F).  
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Figure 5.8- Probabilistic phase planes of coupled Brusselators in the presence of noise when 2.5B  . The 

two-dimensional projections show MPDFs. 

1 2 1.0  X AX  and 1 2 / 2.5  Y B AY  is a solution of Eqs. (4.24)-(4.27) in the 

absence of noise. Such solution loses stability when 21 B A  and a limit cycle appears in the 
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deterministic equation. Figure 5.8 shows that the dynamical system has highest probability near 

the fixed points but the system is oscillatory because we can observe large deviations in the 

probability from the fixed point. The probabilistic bifurcation diagram of the coupled Brusselators 

is shown in Figure 5.9. Since the oscillators are identical, the bifurcation diagrams for 1X and 2X  

are similar as well as the diagrams for 1Y  and 2Y . Hence, we are only presenting the diagrams only 

for 1X  and 1Y . According to Figure 5.9-(A) the probabilistic bifurcation diagram has significant 

deviation from the deterministic bifurcation diagram before the bifurcation point at 1 2X . After 

the bifurcation point, 1X  follows one bound of the limit cycle meaning that the dynamical system 

has slow dynamics at one of the bounds during its oscillations. However, claiming that the 

oscillations take place after the deterministic bifurcation point is not accurate. None of the 

diagrams in Figure 5.9 can be used to define the exact point that limit cycles start to appear. 

Examining Figure 5.9-(B) suggest that the stochastic Brusselators are always oscillating and 

increasing B  only increase the bounds of the oscillation. Moreover, Figure 5.9-(B) shows that the 

probabilistic bifurcation diagram is centered around both the stable and unstable branches for 1Y . 

Therefore, the deterministic bifurcation diagram can predict where the probability of finding the 

system is highest with regard to 1Y  but fails to provide bounds of oscillations as shown by the 

probabilistic bifurcation diagram. 
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Figure 5.9- Probabilistic bifurcation digrams of coupled Brusselators in the presence noise. The noise is 

due to white noise in A  and B . Black lines correspond to stable branches, white lines to unstable branches, 

and gray lines to extremums of limit cycles in the deterministic bifurcation diagram. The colorbars are 

removed because the values of the normalized PDF vary between 0 and 1 for all cases 

5.4 Conclusions 

Bifurcation diagrams provide essential information showing how nonlinear dynamical 

systems behave in a concise manner. However, such analysis is mostly limited to deterministic 

dynamical systems and there does not exist a unified approach to construct bifurcation diagrams 

for stochastic dynamical systems. Yet, noise is unavoidable in many real physical systems that are 

modeled using dynamical systems. We have demonstrated in this chapter that probabilistic 

bifurcation diagrams can be constructed for stochastic dynamical systems using the Fokker-Planck 

equation (FPE). The probabilistic bifurcation diagram provides the probability distribution for a 

state of the dynamical system for each value of bifurcation parameter. In the limit of noise going 

to zero, the PDF for a state becomes the delta function. Such delta function can also resemble 

stable fixed points of the deterministic dynamical system. However, when the noise is not zero, 

the PDF for a state of the dynamical system does not distinguish between stable or unstable fixed 

points. We have provided several examples of nonlinear dynamical systems in this chapter that 

shows how noise can affect the behavior of dynamical system.  
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Finding a closed form analytic solution of FPE is not usually tractable even when the 

stationary solution is sought. Hence, we have constructed such probabilistic bifurcation diagrams 

by finding the numerical stationary solution of the PFE that is associated with stochastic dynamical 

systems. However, we have provided analytic solution for the stationary FPE for the case of one-

dimensional dynamical system that we have studied in this chapter. The comparison between the 

numerical solution and analytical solution shows that they match well.  

We have considered a one-dimensional dynamical system with deterministic subcritical 

pitchfork bifurcation. Additive noise can change where the bifurcation occurs in such dynamical 

system depending on the strength of the noise because the system can switch between stable 

branches if the noise is strong enough. Hence, the system can jump to other equilibria before 

reaching the deterministic bifurcation point. Such change in the position where bifurcation can 

lead to dramatic consequences in real systems in which such sudden large amplitude changes must 

be avoided. The change in the parameter where the bifurcation occurs in stochastic dynamical 

systems compared to deterministic systems was also observed in the other systems we studied in 

this chapter. Moreover, multiplicative noise can have greater impact on the behavior of dynamical 

systems compared to additive noise. For instance, we have provided evidence that multiplicative 

noise not only changes where pitchfork bifurcation occurs, it can also change subcritical 

bifurcation into supercritical bifurcation. Furthermore, we have provided another type of 

multiplicative noise that terminates pitchfork bifurcation altogether. 

We have considered nonlinear system of equations beyond one-dimension. We have 

investigated dynamics of the FitzHugh-Nagumo (FHN) model that is simplified neuron model. We 

have provided probabilistic phase plane analysis and probabilistic bifurcation diagrams for the 

FHN model. The FHN model exhibits limit cycles and the FPE can accurately capture the presence 
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of limit cycles. Moreover, joint PDFs obtained from FPE can be used to show how fast a dynamical 

system is at each point in its cycle. Noise also changes when limit cycles appear and disappear in 

FHN model. Moreover, we have applied noise in nonlinear terms of FHN model. For such noise, 

we have used Taylor series expansion of nonlinear terms to construct standard stochastic 

differential equations before they can be converted to FPE. The probabilistic bifurcation diagrams 

for such multiplicative noise can stabilizes the system by delaying when the bifurcation occurs and 

also reducing amplitude of oscillations.  

We have studied Lorenz equations as a three-dimensional dynamical system. The 

probabilistic bifurcation diagram can be used to show the transition to chaos. The bifurcation 

parameter where such transition occurs depends on the magnitude of noise and the functional form 

of noise. We have shown that even changing the noise in one of the equations in Lorenz system 

from additive noise to multiplicative noise can change the parameter where the transition to chaos 

occurs significantly.  

We have studied dynamics of a coupled Brusselators as a four-dimensional dynamical 

system. The probabilistic bifurcation diagram for one the states of Brusselators follow the 

deterministic bifurcation diagram closely while the other state shows complete disparity between 

the deterministic and probabilistic analysis. Moreover, analyzing the probabilistic phase planes of 

the system shows the oscillatory behavior of the dynamical system. However, such conclusion 

cannot be made from the probabilistic bifurcation diagrams.  

All the examples that we have provided in this work emphasizes that noise must not be 

disregarded in nonlinear dynamical system because noise can change where the bifurcation occurs 

or change nature and type of the bifurcation. More accurate and faster solution to high dimensional 
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Fokker-Planck equation can provide a powerful tool that enables construction of probabilistic 

bifurcation diagrams for stochastic dynamical systems. 
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Chapter 6  

 Probabilistic Analysis of the Bifurcations and Nonlinear Dynamics 

of Stochastic Firing Rate Models 

6.1 Introduction 

Advances in the characterization of neurons and the increase in computational capacity has 

enabled researchers to build larger and more detailed models of neural networks. While such 

models have proven to be helpful, the interpretation of results obtained from such models is not 

straightforward due the lack of necessary analytical and mathematical tools [291]. Such detailed 

models have high degrees of freedom and spiking of each individual neuron is tracked separately. 

However, large networks of neurons can be modeled using a simplification models such as firing 

rate models. Firing rate models are attractive not only because they are computationally efficient, 

but they can also be analyzed based on a rich mathematical foundation of dynamical systems [267].  

Firing rate models are sometimes referred to as population models because they represent 

activity of whole populations of neurons rather than spiking of single neurons. Such models can 

be used to model the activity of a single population or interaction of different population of 

neurons. For instance, the celebrated model by Wilson and Cowan [292] considered interaction 

between an excitatory and an inhibitory population.  
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Firing rate models can be utilized in context of various neural systems. Here, we consider 

the concept of working memory. Working memory is the ability of the brain to hold memories for 

short periods of time [293]. Working memory can be investigated based on its association with 

persistent activity (the ability of neural network to sustain its activity upon removal of the initial 

stimulus) [47]. However, working memory can also be studied in the context of attractor based 

memory models. The dynamics of such models have more than one stable state and a transient 

stimulus switch the dynamics of network between these states. The famous model proposed by 

Hopfield [294] is an example of such models. The Hopfield model for associative memory was 

not biologically plausible, but extremely advanced theories and models for memory. More 

biologically relevant models for attractor based memories were developed later. For example, the 

work by Wang [49] used dynamics of integrate-and-fire neurons with all-to-all connectivity to 

model working memory. Moreover, Wang [49] used mean-field analysis to derive firing rate 

equations for the average firing rate of the network. The firing rate model was shown to have 

bistability. However, Amit and Brunel [295,296] have demonstrated that multiple attractors can 

exist if the network consists of several clusters such that each cluster is selective to a certain 

stimulus. Such clustering can be achieved by online synaptic plasticity rules [297] or statically 

implemented higher synaptic weights in the cluster compared to rest of the network [298].  

In this research, we use the probabilistic framework that was introduced in chapter 5 to 

study firing rate models. The firing rate models show bistability that can represent different states 

of memory. Noise is introduced to the firing rate model as the stimulus that can switch the 

dynamical states of the model (recalling the memory). We solve the Fokker-Planck equation (FPE) 

numerically to find the stationary solutions at various parameter values, hence building stochastic 

bifurcation diagrams. Namely, we are interested to investigate how different parameter values that 
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can represent impairment of synapses can change the capability of the model to be bistable (exhibit 

working memory).  

6.2 Methods 

We consider firing rate models for interaction of population of inhibitory and excitatory 

neurons. The excitatory population is divided into two subpopulations: an active population that 

represents neurons that are selective to external stimulus, and a background population that is not 

selective to any stimulus. Figure 6.1 shows the schematic of the firing model used.  

 

Figure 6.1- Schematic of the firing rate model. The excitatory population is divided to subpopulations of 

active and silent. The excitatory and inhibitory populations are driven by an external population.  m  is the 

firing rate of population m  and mnw  is the weight of the connection that population m  receives from 

population n . 

Short-term synaptic plasticity has been shown to affect working memory [299]. A 

phenomenological model of short-term plasticity can be written as [300,301]: 
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where x  corresponds to amount of available synaptic resources (normalized so that 

0 1 x ), and u  is the fraction of resources used during each spike. d  and  f  are two time 

constants that correspond to depression and facilitation, respectively. 0U  is the baseline release 

probability.  is the Dirac delta function and spikest  is arrival time of a presynaptic spike. For a 

firing rate model, the Dirac delta function ( )   is replaced with firing rate of the population ( )  

[299]. Moreover, since we are only interested in steady state behavior of the system, the time 

derivatives are set equal to zero to obtain steady-state function for x  and u  as [302]: 
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Then, the effective firing rate of a population ( )S  that is subjected to short-term plasticity 

can be written as: 

 .( )  xuS   (5.5) 

Next, based on the schematic shown in Figure 6.1, the firing rates for each population can 

be written as [267]: 

   ,) ( )F (           a a a o ao a aa s as i aiw S www S   (5.6) 

   ,) ( )F (           s s s o so a sa s ss i siw S w w wS   (5.7) 

  F ,           i i i o io a ia s is i iiw ww w   (5.8) 

where the subscript , ,o a s  and i  correspond to external, active, silent and inhibitory populations 

respectively.  m  is the time constant that controls the time response of population m  ,  m  is the 
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firing rate of population m , and mnw  is the weight of the connections from population n  to m . 

Also, the short-term synaptic plasticity is assumed to be present only in the connections of 

excitatory populations. F  is the gain function that approximates the firing rate of a population 

based on the current it receives [267]: 

    ,( ) 1 explog /    
 TF y A y y   (5.9) 

where   is a measure of noise, A  controls the magnitude of the gain function and Ty  

determines the minimum current that induces firing.  

Next, we assume the transient stimulus that triggers the memory recall acts as white noise 

that is added to the external derive  2(0, ) o . Such noises will be added inside the nonlinear 

function of Eq. (5.9) for each of the population (Eqs. (5.6)-(5.8)). Since the noise is added inside 

the nonlinear gain function, the corresponding stochastic differential equations do not have the 

standard form of Ito process. However, assuming the noise to be small compared to the other terms 

in the gain function, we can linearize the gain function using Taylor’s series as: 
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Using Eq. (5.10), the standard stochastic differential equation for the firing rate of each 

population can be constructed. For example, the standard stochastic differential equation for the 

firing rate of active population (Eq. (5.6)) can be written as: 
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where tW  is the standard Wiener process. Similar to Eq. (5.11), the standard stochastic 

differential equations can be constructed for firing rate of silent (Eq. (5.7)) and inhibitory (Eq. 
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(5.8))  populations. The multiplicative noise for each of the equations will have different functional 

form. Moreover, the variance of the white noise that translates to the strength of noise will be 

different for each population. However, we assume that the noise for the active population to be 

greater compared the silent and inhibitory populations. Next, we use the method introduced in 

Chapter 5 to form the Fokker-Planck equation (FPE) from the standard stochastic differential 

equations. Then, the stationary solution of the FPE is studied for rate models with different 

parameter values.  

6.3 Results and Discussion 

 We investigated how different parameters of the model can affect the dynamics of the rate 

model. The rate model studied here can exhibit three different behaviors: 

1) The system has only a stable state in which the active and inhibitory populations have high 

firing rate and the silent population has low firing rate (baseline activity). 

2) The system has only a stable state in which the active and inhibitory populations low high 

firing rate and the silent population has high firing rate (persistent activity). 

3) The system is bistable and switches between dynamics of baseline activity and persistent 

activity.  

Figure 6.2 shows the marginal probability distribution for a bistable system. There are two 

regions of high probability. The one in which the firing rate of active population is low corresponds 

to the baseline activity. This state shows the dynamics of the system when the memory is not 

recalled. However, when the memory is recalled, the firing rate of the active state increases. Higher 

firing rate of the active population increases the firing rate inhibitory population. Consequently, 

the higher activity of inhibitory population suppresses the activity of silent population. Hence, the 

firing rate of silent population decreases during the memory recall. Such behavior is consistent 

with the dynamics observed in detailed models of working memory [299].  
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Figure 6.2- Firing rate model with bistability demonstrates characteristics of working memory. The stable 

state with high firing rate of active population corresponds to the persistent activity after a memory is 

recalled while the stable state with low firing rate of active population shows the system with baseline 

activity. The parameter values for the results shown here are 2,A  0.5,B  3,tu  0 0.2,U 

0.5,f  0.1, d 8, o 0.5,aow 4.75,aaw 0.2,asw 0.5,aiw 0.75,sow 0.2,saw

0.2,ssw 0.5,siw 2,iaw 1,iow 2,isw and 0.1iiw .  

Systems with bistability such as the one shown in Figure 6.2 can resemble networks with 

working memory. For such systems, a transient stimulus (here implemented as white noise), can 

switch the system from baseline activity to persistent activity. Therefore, changing the parameters 

of the system that leads to loss of bistability can be regarded as impairment. The parameter that is 

changed can be considered as a bifurcation parameter. Hence, probabilistic bifurcation diagrams 

of the rate model are constructed to study loss of bistability (the ability of the system to resemble 
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working memory) for various scenarios of impairment. Figure 6.3 shows how the marginal 

probability distribution of the system changes when aaw  (the strength of the connection between 

neurons within the active population) varies. 

 

Figure 6.3- Probabilistic bifurcation diagrams of the rate model when aaw  (the strength of the connections 

between neurons within the active population) is changed. All the other parameters of the system are the 

same as the ones used in Figure 6.2.  

A bistable system requires the strength of connections between neurons of active 

population ( )aaw  needs to be higher compared to the strength of connections within and between 

other populations. Such property for aaw is similar to having higher synaptic weight between 

neurons within a cluster in network models of working memory [295,296]. Therefore, for small

aaw  the system cannot have persistent activity and the only stable state is the baseline firing. 
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However, when the strength of connections between the neurons within the active population is 

too high, the active population becomes dominant and the system only shows persistent activity. 

Between these two extremes, there is a region in which the system is bistable (the vicinity of 

4.75aaw  as seen in Figure 6.3). The region of bistability observed in Figure 6.3 is small. Hence, 

small impairment of aaw  affect bistability of the system dramatically. Essentially, neurons within 

a cluster in detailed network models [295,296] are equivalent to the active population in the rate 

model. Therefore, impairment of aaw  is similar to impairment of neurons with higher outdegree 

[303], which was shown to be more detrimental compared to random impairment of synapses. 

Random impairment of synapses is not possible in the firing rate model. However, we can still 

compare the results when aaw  is impaired with changes in the strength of connection within and 

between different populations (Figure 6.1). Such comparison can demonstrate if impairment of 

connection within the active population is more harmful compared to impairment of connections 

elsewhere. Figure 6.4 shows probabilistic bifurcation diagrams when asw  varies.  

The system is bistable for all the values of asw  explored in Figure 6.4. Therefore, unlike 

changing aaw  (Figure 6.3) the system is not sensitive to changes of asw . Similar results are obtained 

when saw  and ssw  are changed (supplementary Figure B.3 and Figure B.4). Hence, impairing of 

connections within the active population has greater impact than impairing the other connections 

of the system. Thus, random impairment that can affect any of the connections in the system with 

equal likelihood, is less destructive compared to targeted impairment of active population.  



 146 

 

Figure 6.4- Probabilistic bifurcation diagrams of the rate model when asw  (the strength of the connections 

neurons in the active population receives from the silent population) is changed. All the other parameters 

of the system are the same as the ones used in Figure 6.2. 

Next, we consider impairment scenarios that are related to activity of neurons. Such 

impairments are shown to have the largest impact on the activity of the network [303]. Here, we 

apply such impairments by changing the parameters of short-term synaptic plasticity (Eqs. (5.3) 

and (5.4)). Such impairments can be linked into subcellular dynamics such as axonal transport. 

When axonal transport is defected [22], less resources are delivered to synaptic terminals for 

producing and recycling of synaptic vesicles [31]. Therefore, axonal deficiency is expected to 

decrease the baseline release probability 0( )U , speed up the rate that resources are consumed 

(decrease  f
), and increase the time constant associated with recovery of resources ( ) d  at the 
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synaptic terminal. However, synapses of a less active neuron should be affected less by such 

defects in axonal transport. A neuron that does not fire frequently consumes its synaptic resources 

slowly. Hence, even a deficient axonal transport might be able to maintain synapses of such 

neuron. Contrary, a highly active neuron consumes its synaptic resources quickly and requires a 

healthy and efficient axonal transport for maintaining it synapses. Therefore, impairments related 

to axonal transport should affect highly active neurons more than silent neurons. Figure 6.5 shows 

that changing parameters of the short-term synaptic plasticity model affects the effecting firing 

rate ( )( )S more when the firing rate ( ) is high. Therefore, changing parameters of the short-term 

plasticity model satisfies our hypothesize regarding impairments due to defects in axonal transport.  

 

Figure 6.5- )(S (Eq. (5.5)) changes nonlinearly with the firing rate when parameters of the short-term 

plasticity (Eqs. (5.3) and (5.4)) are varied. The arrows show the direction in which each parameter increases.  

Figure 6.6 shows the probabilistic bifurcation diagram when the baseline release 

probability in Eq. (5.4) changes. Similar to results in Figure 6.3 in which aaw  (the strength of 

connections within the active population) was changed, the regions of bistability is small when 

0U  is changing. Therefore, the system is sensitive to changes of 0U . Similarly, changing the other 

parameters of the short-term synaptic plasticity ( f
 and  d ) have visible impact on the bistability 

of the system (supplementary Figure B.5 an Figure B.6). Hence, impairments that are related to 
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activity of populations and can be linked to defects in the subcellular dynamics (axonal transport), 

have harmful impact on the ability of the system to have working memory (show bistability). 

 

Figure 6.6- Probabilistic bifurcation diagrams of the rate model when 0U  (the baseline release probability 

in Eq. (5.4)) is changed. All the other parameters of the system are the same as the ones used in Figure 6.2. 

All the probabilistic bifurcation diagrams shown so far are marginal probability density 

functions (PDF) in which the stationary PDF obtained from FPE is integrated twice. Integrating 

any of the marginal PDF equals to 1 because the integral of the PDF over the whole domain is 1. 

However, we can define “up” and “down” states and perform the integration only around the “up” 

and “down” state. We define the “down” state when the active population has low firing rate and 

the “up” state when the active population has high firing rate. Then, the probability function can 

be integrated in the vicinity of “up” and “down” states to determine the likelihood of finding the 
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system near each of these states. To that end, we first find the local maximum of the PDF for 

2.5av (“down” state) and 2.5 a  (“up” state). The threshold is based on the bifurcation 

diagram shown in Figure 6.3- A that shows how the “up” and “down” states are separated for the 

firing rate of active population. Then, the PDF is integrated within a box that is centered around 

each local maximum. The size of the box is set equal to 2 in each direction. For the parameter 

values that the system shows only baseline firing rate, the resulting integral will be approximately 

equal to 1 for the “down” state and 0 for the “up” state. Similarly, the resulting integral will be 

approximately equal to 0 for the “down” state and 1 for the “up” state when the system only shows 

persistent activity. However, when the system is bistable, the integral is nonzero for either of the 

states. The value of the integral is closer to 1 for the state in which the system is more likely to 

found. The sum of the integrals obtained for the two states should be approximately equal to 1 

because the likelihood of finding the system in transition between the “up” and “down” state is 

small (for example there is no region of high probability between the “up” and “down” states in 

Figure 6.2). The results of such analysis are presented in Figure 6.7 for the same parameters that 

their bifurcation diagrams were shown in Figure 6.3, Figure 6.4 and Figure 6.6 studied in this 

chapter.  
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Figure 6.7- Probability of being in the “up” or “down” states when parameters of the model change.  

The conclusion from  Figure 6.7 is similar to what was observed in Figure 6.3, Figure 6.4 

and Figure 6.6. For example, Figure 6.7-A shows aaw  has greater impact on the bistability of the 

system compared to asw (Figure 6.7-B). However, the results shown in Figure 6.7 can be used to 

compare the sensitivity of the system when different parameters of the model are changed. To this 

end, we calculate how the absolute value of the normalized slope for the “up” state: 
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where p  is the probability, and  p P
 is the bifurcation parameter at which p P . We use 

points at which  max( ) 0.1p  and  min( ) 0.1p to avoid the flat regions seen in Figure 6.7-A 
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and C. We normalized the slope by the value of the bifurcation parameter at which the probability 

of being in the “up” state is same as the probability of being in “down” state 
0.5 p

. The 

normalization is conducted to allow fair comparison between parameters that their scale and nature 

is different. Figure 6.8 shows how the normalized slope changes when different parameters of the 

model are changed.  

 

Figure 6.8- Sensitivity of the model to changes of different parameters. A Larger slope means that the 

system loses its bistability with a smaller change of a parameter  

Figure 6.8 shows that strength of connections within the active population ( )aaw  has the 

greatest impact on the bistability of the system. However, other strengths of connections have 

minimal effect on the bistability of the system. The parameters associated with short-term synaptic 

plasticity can affect the bistability of the system. The baseline probability of release 0( )U has the 

largest impact on the bistability of the system, which is comparable to changes in aaw .  

6.4 Conclusions 

The firing rate models are computationally affordable but more importantly, they can be 

analyzed using mathematical techniques that are developed for dynamical systems. Here, we 

studied stochastic firing rate models that can represent models of working memory. The noise acts 

as the transient stimulus that recalls a stored memory. The stochastic differential equations 
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associated with the firing rate model is used to construct the Fokker-Planck equation (FPE). The 

stationary solution of the FPE is obtained numerically in the presence of the multiplicative noise. 

Next, the stationary solution of the FPE is used probabilistic bifurcation diagrams of the firing rate 

model by changing different parameters of the model. The regions of bistability in the probabilistic 

bifurcation diagrams correspond to models that can represent working memory. Hence, changes 

in the parameters that diminish bistability can be considered as impairments that lead to loss of 

working memory. The strength of connections within the active population is shown to have the 

greatest impact on the bistability of the model. Such impairment is closely related to impairment 

of synapses in neuron with high degrees (introduced in Chapter 4). Moreover, impairment of 

parameters that are linked to dynamics of synapses is shown to lead to loss of bistability. Such 

parameters are connected to subcellular dynamics such as axonal transport. Hence, we have shown 

that impairments related to subcellular processes can manifest themselves in larger scale dynamics 

of neural systems such population of neurons firing rate. 
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Chapter 7  

 Summary and Future Research 

7.1 Summary 

Dynamics of neural system in different scales were studied. The goal at each step was to 

provide insight into how dynamics of neural systems can help with detecting malfunctions in the 

element of the neural system that was under investigation. Moreover, this effort tries to connect 

the dynamics of neural systems in different scales when possible. Specifically, how small-scale 

dynamics in neurons such as the axonal nanotransport can influence larger scale dynamics such as 

population activity of neurons. Addressing such questions are important because they can pave the 

way to solve inverse problems that connect observed dynamics of neural system on larger scales 

to otherwise undetectable subcellular neural processes.   

At the smallest scale, axonal transport by kinesin motor protein was studied. Previously 

developed mechanistic models of kinesin dynamics were used to investigate dynamics of cargo 

transport in the presence of magnetic nanoparticles. The magnetic nanoparticles were used as a 

mean to perturb dynamics of kinesin by exerting forces on the cargo that can be altered 

dynamically by changing the external magnetic field. Traditional single-molecule methods that are 

used to exert forces on the cargo transported by kinesin have had only partial success to be 

extended from in vitro to in vivo. The alternate method proposed here has the possibility to be 



 154 

applied in vivo, to influence kinesin transport by indirectly applying external loads on cargoes 

using superparamagnetic nanoparticles. However, multiphysics models that capture the dynamics 

of both magnetic nanoparticles and biological phenomena such as axonal nanotransport are 

computationally expensive. Hence, a novel reduced order model (ROM) for the dynamics of 

magnetic nanoparticles was developed to study the interaction of superparamagnetic nanoparticles 

with cellular nanotransport upon delivery of these particles into cells. Superparamagnetic 

nanoparticles were shown to form chain-like structures in the presence of external magnetic fields. 

Such chains influence the nanotransport inside cells. The model included viscous and magnetic 

forces on the nanoparticles, and the formation of aggregates/structures composed of nanoparticles 

to construct the novel ROM. Further, the stochastic nanotransport coupled with the dynamics of 

the magnetic nanoparticles was established. The novel ROM was used to characterize the 

stochastic motion of a kinesin in the presence of magnetic nanoparticles by determining the force 

acting on cargoes for different aggregate shapes and sizes (without having to solve the full-order 

dynamics every time). The ROM coupled with kinesin model allows the quantification of the 

decreases in processivity of kinesin and in its average velocity under external loads caused by 

chains of superparamagnetic nanoparticles. Such changes can then be utilized to decipher healthy 

and impaired transport. However, the small scale of such analysis reduces its practicality and 

requires high spatial and temporal resolution. Nonetheless, study of dynamics of neural systems in 

larger scales can still provide vital information about subcellular mechanism in normal or 

pathological conditions. 

 Investigating dynamics of Ca2+ transients to indirectly assess a neuron's activation is a 

well-established approach. A mathematical and computational model is developed that captures 

the stimulus-generated Ca2+ transients in the C. elegans ASH sensory neuron. The model provides 
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a tool that enables a cross-talk between modeling and experiments, using modeling results to guide 

targeted experimental efforts. The model is built based on biophysical events and molecular 

cascades known to unfold as part of neurons' Ca2+ homeostasis mechanism, as well as on Ca2+ 

signaling events. The state of ion channels is described by their probability of being activated or 

inactivated, and the remaining molecular states are based on biochemically defined kinetic 

equations or known biochemical motifs. The parameters of the model are estimated using 

experimental data of hyperosmotic stimulus-evoked Ca2+ transients detected with a FRET sensor 

in young and aged worms, unstressed and exposed to oxidative stress. A hybrid optimization 

method composed of a multi-objective genetic algorithm and nonlinear least-squares is used to 

estimate the model parameters. First, the model parameters are obtained for young unstressed 

worms. In addition, the established model is shown to be able to predict ASH response to complex 

combinations of stimulation pulses. The proposed model includes for the first time the ASH Ca2+ 

dynamics observed during both "on" and "off" responses. This mathematical and computational 

effort is the first to propose a dynamic model of the Ca2+ transients' mechanism in C. elegans 

neurons, based on biochemical pathways of the cell's Ca2+ homeostasis machinery. Most 

importantly, the model can explain potential changes in the components of the system induced by 

aging or oxidative stress that leads to alteration in the observed Ca2+ transients. The findings of the 

model for the changes that can explain aging or impact of oxidative stress agrees with available 

experimental results in the literature. However, some of the predictions made by the mathematical 

model has not been investigated in experiments yet. Indeed, one goal for the proposed model is to 

further elucidate the Ca2+ dynamics of a key C. elegans neuron by guiding future experiments on 

C. elegans neurobiology.  
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Study of cellular processes such as Ca2+ transients still requires high temporal and spatial 

precision. However, larger scales dynamics of neural systems can still provide valuable 

information regarding defects occurring in smaller scales. For instance, synaptic deficiencies are 

a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the 

cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal 

networks with damaged synapses can be detected using techniques that do not require high spatial 

resolution. The structure/topology of neuronal networks and how they influence their dynamics 

when they suffer from synaptic loss has been investigated. Different neuronal network 

structures/topologies were studied by specifying their degree distributions. The modes of the 

degree distribution can be used to construct networks that consist of rich clubs and resemble small 

world networks, as well. Two dynamical metrics were defined to compare the activity of networks 

with different structures: persistent activity (namely, the self-sustained activity of the network 

upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that 

participate in the persistent activity of the network). The results show that synaptic loss affects the 

persistent activity of networks with bimodal degree distributions less than random networks. The 

robustness of neuronal networks enhances when the distance between the modes of the degree 

distribution increases, suggesting that the rich clubs of networks with distinct modes keep the 

whole network active. In addition, a tradeoff is observed between the quality of activity and the 

persistent activity. For a range of distributions, both of these dynamical metrics are considerably 

high for networks with bimodal degree distribution compared to random networks. Also, three 

different scenarios of synaptic impairment were proposed, which may correspond to different 

pathological or biological conditions. Regardless of the network structure/topology, results 
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demonstrate that synaptic loss has more severe effects on the activity of the network when 

impairments are correlated with the activity of the neurons. 

Detailed models of neural networks are computationally expensive and interpretation of 

results obtained from detailed neural networks is not straightforward. Alternatively, firing rate 

models allow fast simulation of population of neurons and can be analyzed using mathematical 

tools that are accessible for dynamical systems. Firing rate models are considered to represent 

properties of working memory. To that end, a mechanistic model of short-term plasticity is 

incorporated into the rate model. Adding noise to the firing rate model with short-term plasticity 

allows investigating capability of the model to poses properties of working memory. The 

established stochastic firing rate model requires numerous simulations in order to draw meaningful 

statistical conclusions from the model. Instead, the stochastic differential equations of the firing 

rate model are used to construct the Fokker-Planck representation of the firing model. The Fokker-

Planck equation is solved to directly find the probabilistic properties of the firing rate model. 

Specifically, the stationary solution of the Fokker-Planck equation is obtained by solving the 

discretized partial differential equations numerically. The interaction of excitatory and inhibitory 

populations is modeled. The excitatory population is divided into two subpopulations of active and 

silent neurons. The active subpopulation corresponds to neurons that participate in the memory 

recall by showing elevated activity and the silent subpopulation correspond to neurons that show 

low activity during the recall. The probability distributions obtained from the Fokker-Planck 

equation shows the state of each population for different parameters of the model. The probabilistic 

bifurcation diagrams of the stochastic rate model are constructed by changing parameters of the 

model. The regions of the bistability is considered where the model shows characteristics of 

working memory. Hence, changing the parameters from their nominal, where system is bistable, 
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is considered as impairment. The results show that impairment of parameters that control the 

synaptic plasticity affects the region of bistability more than the other parameters of the model 

such as the strength of connections between the populations. Especially, the parameter related to 

synaptic availability of synaptic resources and rate of synaptic resource depletion. Such parameters 

are adversely affected by impairments of axonal transport. Hence, dynamics of homogenized 

models of neural systems such as firing rate models still inherent impairments occurring in smaller 

scales of the system.  

7.2 Contributions 

The major contributions of this dissertation are summarized as follows. 

• A novel reduced-order model is constructed for the interaction of magnetic 

nanoparticles and kinesin meditated axonal transport to study effects of 

perturbation on dynamics of intracellular transport.   

• A mathematical model is developed for Ca2+ dynamics in the ASH neuron of C. 

elegans. No previous model existed that could capture the full dynamics of Ca2+ 

transients in ASH neuron including its “on” and “off” response.  

• The mathematical model for Ca2+ dynamics in the ASH neuron of C. elegans is 

used to propose potential changes in the cell, induced by aging or exposure to 

oxidative stress. 

• Constructing networks with multiple modes in their degree distributions are 

proposed as a method to create networks with high rich-club coefficient.  

• Neural networks with high rich-club coefficient are shown to be more robust to 

impairment of their synapses. 
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• Synaptic impairment scenarios are proposed that can reflect defects in subcellular 

dynamics of neurons specifically deficiencies in intracellular transport. Synaptic 

impairment scenarios that are correlated with topology or activity of the network 

are shown to be detrimental.  

• Stationary solution of the Fokker-Planck equation is proposed as a mean to 

construct probabilistic bifurcation diagrams for stochastic nonlinear dynamical 

systems in the presence of additive and multiplicative noise.  

•  Stochastic firing rate model is used to study effects of impairment on working 

memory. Impairments related to synaptic dynamic that are linked to deficiencies in 

intracellular transport are shown to be most harmful.  

7.3 Future Research 

The proposed method of using magnetic nanoparticles to perturb transport of cargos by 

motor proteins needs to be tested experimentally. In vitro studies can be used to calibrate the model 

and test usefulness of the reduced-order model. In vivo studies will be more difficult because 

delivering enough particles into cells is challenging. Moreover, the size of the particles can also 

be a limiting factor. The particles need to be large enough to have enough magnetic material to 

create effective forces, yet they must not be too large to cause significant side effects by interfering 

with every aspect of the cell. Different characteristics of the external magnetic field can also be 

considered in experiments and in modeling. For instance, effects of spatial gradients or time 

varying magnetic fields on the behavior of the magnetic nanoparticles and their interaction with 

the transport of cargos can be studied. More importantly, the reduced-order-model should be 

coupled with models of impaired transport. The results of such study will show if healthy and 
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defected axonal transport can be distinguished by perturbing transport of cargos by spatial and 

temporal varying forces (caused here by magnetic nanoparticles).   

The findings of the mathematical model (those not already investigated in the available 

literature) of ASH neuron in C. elegans need to be verified experimentally. Such experiments can 

explore the complex stimuli that is investigated in the model. To that end, new experimental setups 

might be necessary in order to provide stimulus with complex transients such as those explored 

with the model. Moreover, knockouts in the actual model organism can be carried out to investigate 

if they agree with the in silico knockouts in the model. The model can also be expanded by 

incorporating interaction of other neurons with ASH. Moreover, the model can be more realistic 

if there were available data for fluxes of Ca2+ from different channels. Measurements for different 

ions other than Ca2+
 is necessary if more realistic modeling of membrane voltage is also sought. 

Hence, electrophysiology experiments on C. elegans must be explored.  

The network model used to study robustness of persistent activity only included excitatory 

neurons. Such network analysis can be improved by including inhibitory neurons and investigate 

how they can contribute to robustness against impairment of synapses. Moreover, more realistic 

models of working memory need to be implemented. To that end, long-term and short-term 

synaptic plasticity must be incorporated into the model. Then, similar analysis can be performed 

to determine how the dynamics and topology of the neural networks varies when synapses are 

impaired. 

 Models for axonal transport can be linked to dynamics of synapses. To that end, models 

of synapses must be developed that incorporate availability of synaptic resources at synaptic 

terminals. Then, the availability of the resources needs to be connected to precursor proteins that 

are provided by means of axonal transport. Establishing such interaction between axonal transport 
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and synaptic dynamics will enable building multi-scale models of neural systems. Such models 

can be used to directly address how dynamics of neural systems in different scales affect each 

other.  

Population models of neurons can be improved by expanding number of subpopulations. 

Then, each subpopulation will represent a different memory rather than state of the network (being 

active or silent). Then, the bifurcation analysis and effects of impairment can be investigated when 

network can store multiple memories. Moreover, the number of populations in the firing rate model 

that can adequately represent detailed network models needs to be determined. To that end, 

clustering algorithm and machine learning techniques can be utilized to determine which neurons 

have similar dynamical behavior to be grouped together. Such data-driven approach will be also 

applicable when real experimental data is available in order to construct the firing rate models.   

 Expanding number of populations is not computationally expensive when stochastic 

differential equations of firing rate model is considered. However, the dimension of the Fokker-

Planck equation is the same as the number of populations in the firing rate models. Therefore, rate 

models with more population leads to high-dimensional partial differential equations. Finding the 

numerical solution of high-dimensional partial differential equations requires intensive 

computational resources. Therefore, more modern numerical schemes such as tensor 

decomposition methods should be utilized for higher-dimensional Fokker-Planck equations to 

prevent curse of dimensionality.  
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Appendix A: Supplementary Tables and Figures for Chapter 3 

 

Figure A.1- The model generated Ca2+ transient, induced by square pulses of different durations and same 

strength. (A) A short pulse of 10sec still results in distinct peaks for “on” and “off” responses of different 

magnitudes, without the plateau region; (B) The Ca2+ transient induced by the pulse (30sec) delivered in 

the experimental data and the model results, presented here for comparison; (C) A long pulse of 50 sec 

results in a Ca2+ transient of similar shape with the one shown in (B). The response to the shorter stimulus 

in (A) includes an “off” response stronger than the one observed in (B) and (C), although still smaller than 

the “on” peak. All three Ca2+ transients are generated using the parameters estimated for young unstressed 

worms (reference case).    
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Figure A.2- The parameters of the mathematical model can be modified to capture 

variations in the  transients that are observed experimentally. CK  in Eq. 16, which affects dynamics 

of  IP3 , can be changed to control the relative magnitude of “on” and “off” response. A weaker 

“on” response leads to a stronger “off” response because when less Ca2+ is released from the ER 

during the “on” response, then there is more available to be released from ER during the “off” 

response. *

CK  corresponds to the value of this parameter used in the model for young unstressed 

worms (reference case).  
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Table A-1-Parameters descriptions, references, and values for young (Day 1) unstressed worms (reference 

case), as generated by the hybrid optimization algorithm. With bold are the selected parameters which are 

investigated for the aging and oxidative stress effect in the next three worm populations. 

Parameters Value Units Reference 

SERCAG  5.78 1Ms 
 This work 

SERCAK  0.10 M  0.1-1 [304] 

PMCAG  14.81 1Ms 
 This work 

PMCAK  0.60 M  0.1-1 [304] 

TRPVG  0.03 1s 
 This work 

IPRG  0.30 1s 
 This work 

VGCCG  0.00 1 1V s 
 This work 

OPK  11.77 - This work 

oPk  6.61 1s 
 This work 

o

-

Pk  0.30 1s 
 This work 

1Pk  0.44 1s 
 This work 

1Pk 
 0.29 1s 

 This work 

2Pk  0.24 1s 
 This work 

2Pk 
 1.09 1s 

 This work 

ok  0.04 1s 
 This work 

-

ok  0.05 1s 
 This work 

Ik  0.01 1s 
 This work 

-

Ik  1.39 1s 
 This work 

pk  8.60 1Ms 
 This work 

-

pk  3.63 1s 
 This work 

1K  0.138 M  [142] 

2K  1.05 M  [142] 

3K  0.943 M  [142] 

4K  0.144 M  [142] 

5K  0.082 M  [142] 

2k 
 0.21 1s 

 [142] 

4k 
 0.029 1s 

 [142] 

cK  0.23 M  This work 

pK  14.04 - This work 

2PK  14.04 - This work 

,Leak ERJ  0.01 1s 
 [135] 
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LeakJ  0.39 1s 
 This work 

  5.40 - [135] 

restV  -70.00 E  This work 

ESc  2000 M  [152] 
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Appendix B: Supplementary Tables and Figures for Chapter 6 

 

Figure B.3- Probabilistic bifurcation diagrams of the rate model when saw  (the strength of the connections 

neurons in the silent population receives from the active population) is changed. All the other parameters 

of the system are the same as the ones used in Figure 6.2. 
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Figure B.4- Probabilistic bifurcation diagrams of the rate model when ssw  (the strength of the connections 

between neurons within the silent population) is changed. All the other parameters of the system are the 

same as the ones used in Figure 6.2. 
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Figure B.5- Probabilistic bifurcation diagrams of the rate model when  f
 (the time constant associated with 

facilitation in Eq. (5.4)) is changed. All the other parameters of the system are the same as the ones used in 

Figure 6.2. 
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Figure B.6- Probabilistic bifurcation diagrams of the rate model when d  (the time constant associated with 

synaptic depression in Eq. (5.3)) is changed. All the other parameters of the system are the same as the ones 

used in Figure 6.2. 
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