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PREFACE

This dissertation is the culmination of a somewhat unconventional journey through

my graduate studies. As the reader may notice, the contents of this thesis contain

some chapters not wholly relevant to frequency comb generation, namely the two

chapters on stimulated Brillouin scattering. However, these chapters represent some

significant work I had done prior to working on semiconductor lasers. Serendipitous

or not, the theoretical understanding and technical expertise gained from modeling

Brillouin scattering was greatly relevant to the traveling wave models I would use and

develop in studying our laser diodes. For this reason, these chapters serve as a prelude

to the main event that is frequency comb generation directly from a semiconductor

laser diode. There are even more research projects I had worked on that predate

Brillouin scattering during my Ph.D., but alas, due to their divergence in content, I

am not able to include them.

This dissertation consists of about two-thirds theoretical studies and one-third ex-

perimental results. It is presented in mostly chronological order, which also happens

to be good for following along.

Mark Dong,

April 2018
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ABSTRACT

Optical frequency combs have shown much potential in recent years to be a rev-

olutionary tool in metrology, signals processing, and telecommunications. This dis-

sertation is a record of our investigation of a single-section semiconductor laser diode

as a portable and robust frequency comb source with the proper bandwidth and

spectral coherence for spectroscopy applications. Our previous theoretical studies on

stimulated Brillouin scattering demonstrated the predictive power of traveling wave

models in pulsed and cascaded configurations, including calculations of Brillouin fre-

quency comb generation. Utilizing this knowledge, a comprehensive theoretical model

of semiconductor laser diodes was developed, including all carrier dynamics, cavity

effects, and nonlinear phase shifts. Then, the physics and essential mechanisms of

laser diode frequency comb generation were studied, focusing upon the frequency

modulated nature of the output without any saturable absorber. Finally, InGaAsP /

InP quantum well laser diodes, operating at 1.55 µm and 1.3 µm were fabricated and

characterized, with designs specified by our theoretical models. The fabricated lasers

exhibited comb behavior as predicted, generating combs with bandwidths of about 1

THz and RF linewidths of 100-250 kHz, both at 1.55 µm and 1.3 µm. These sources

show much promise for spectroscopy and other frequency comb applications, paving

the way toward integration in portable systems as a truly practical frequency comb

source.

xviii



CHAPTER I

Introduction

The development of optical frequency comb technology has driven major advances

in optical spectroscopy techniques and precision metrology [1]. The high phase coher-

ence between the frequency comb modes allows easy transfer of information between

the optical and RF frequency domains. This highly versatile trait enables many

applications such as accurate measurements of atomic transitions [2], molecular spec-

troscopy [3], optical atomic clocks [4] and arbitrary waveform generation [5]. Using

techniques such as self-referencing [6], a frequency comb by itself is a highly precise

tool for measurement. With the advent of multiheterodyne spectroscopy, sometimes

called dual-comb spectroscopy [7], multiple frequency combs can be used to greatly

improve data acquisition time while maintaining high resolution by eliminating the

need for delay lines or diffraction gratings. This technique can be applied at a distance,

such as remote atmospheric sensing of greenhouse gases [8], or combined with multi-

dimensional coherent spectroscopy (MDCS) [9] to quickly and accurately distinguish

species in an inhomogeneous mixture [10]. The accuracy and simplicity improvements

of frequency comb spectroscopy over conventional spectroscopy have the potential to

improve nearly every field of science and industry. However, much of this potential

is stymied by the fact that general access to portable and reliable frequency comb

sources remains elusive. Many of the aforementioned experiments utilize sensitive
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and bulky mode-locked lasers for frequency comb sources, including erbium doped

fiber [11] and Ti: Sapphire lasers [12]. A truly portable, battery operated chip-scale

frequency comb source is a highly attractive platform for greatly expanding the utility

of frequency comb spectroscopy beyond the confines of the laboratory.

In this thesis, we investigate the viability of generating frequency combs directly

from single-section laser diodes. These lasers have much potential to be affordable

and compact frequency comb sources for spectroscopy. These laser diodes produce

frequency modulated (FM) frequency combs without a saturable absorber but with

sufficient bandwidth and coherence for our spectroscopy applications. Moreover, they

represent a solid-state solution that requires no moving mirrors or gratings, easier

to operate compared to two-section lasers, and are mass producible via standard

lithography methods.

This work can be split into three major sections in its study of frequency comb

generation:

1. The first major section, consisting of chapters II through IV, can be thought

of as an extended prologue. These chapters contain detailed theoretical studies

into solving traveling wave equations with coupled forward and backward waves.

In particular, we apply this theory to the nonlinear phenomenon of stimulated

Brillouin scattering (SBS) and cascaded Brillouin scattering, touching upon

SBS frequency combs in fibers and on-chip chalcogenide waveguides. This first

section outlines important numerical techniques that will be essential in the

next two sections.

2. The second major section, consisting of chapters V through VII, is the main

theory of FM comb generation in single-section semiconductor laser diodes. De-

tailed semiconductor physics are derived from first principles with the resulting

equations solved numerically to demonstrate the dynamics and physics of these

laser devices. While we focus on quantum well (QW) devices, the theory can
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be extended to other types of lasers including quantum dot (QD) and quantum

cascade (QC) systems.

3. The third and last major section, consisting of chapters VIII and IX, moves away

from theory and into experimental work. We utilize our semiconductor laser

models to aid in designing and fabrication of QW laser diodes and characterize

their performance and coherence. The experimental spectra and behavior are

compared to theory with additional comments on the physics and behavior of

real laser diodes.

Lastly, the dissertation concludes with a look at future directions and comments

on the utilization of these laser diodes as a new source of frequency comb technology.
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CHAPTER II

Maxwell’s Wave Equation

When I first learned about Maxwell’s equations in my applied physics days in

undergrad, there was a joke about James C. Maxwell - by adding one term to one

equation, Maxwell somehow, dubiously, managed to get all four equations named

after him, despite some of those equations being previously named after other physi-

cists. As it turns out, this naming may be justified as this small term became the

key to describing light as oscillating electromagnetic waves. The wave equation for

electric and magnetic fields is now the entire basis for modeling all sorts of physical

phenomenon, including light propagation through matter. As the work presented

in this thesis lies in the fields of nonlinear optics and semiconductor photonics, we

therefore begin with Maxwell’s wave equation.
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2.1 Wave equation derivation

We start with the simple form of Maxwell’s equations, assuming no free charges

or currents.

∇ ·D = 0 (2.1a)

∇ ·B = 0 (2.1b)

∇× E = −∂B

∂t
(2.1c)

∇×H =
∂D

∂t
(2.1d)

At this point, we can make the simplifying assumption that H = B/µ0, meaning there

is no significant magnetic response of the material due to the fact we are modeling

optical fields. Also, we rewrite the electric auxiliary field by its definition: D =

ε0E + P, where P is the induced material polarization, which can be linear and

highly nonlinear depending on the material. Now we can decouple the variables by

applying the curl to Equation 2.1c and substituting in Equation 2.1d, obtaining

∇×∇× E = −µ0ε0
∂2E

∂t2
− µ0

∂2P

∂t2
. (2.2)

While Equation 2.2 contains all the essential pieces for calculating light interactions

with matter, it requires a bit more simplification before it can be effectively used.

The first problem occurs in simplifying the LHS - if the traditional vector identity is

used,

∇×∇× E = ∇(∇ · E)−∇2E , (2.3)

it is not obvious if ∇ · E = 0, especially if P is highly nonlinear. We can, however,

approximate that∇·P ≈ 0, therefore allowing∇·E = 0. Physically, this ignores some

5



nonlinear transverse effects [13] [14], which are not important to the work presented

in this thesis. Another way to to allow ∇ · E = 0 is to treat the nonlinear portions

of P as a perturbation to the overall electric field propagation [15]. This approach

is valid in many materials in which the nonlinear effects are rather weak, but may

be somewhat dubious when strong nonlinearities are present. Either way, we use the

vector identity with ∇ · E = 0 and obtain the standard form of the traveling wave

equation given by

∇2E− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
. (2.4)

The second problem is that this equation is still too complex, as it is a full vector

equation in three dimensions and in time. By applying further simplifications, we

can reduce the wave equation into a first order, 1-D equation that is much simpler

to solve, both analytically and numerically. We now assume that the electric field

is transversely polarized in predominantly a single direction (arbitrarily x or y) and

propagates in direction z. The polarization is separated into its linear and nonlinear

parts, P = PL + PNL, in which we assume the nonlinear polarization will not sig-

nificantly affect the eigenmodes of the system. Under these assumptions, the wave

equation reduces to a scalar problem and can be solved using separation of variables.

Separating the transverse derivatives from the propagation derivatives, we obtain

(
∇2
t +

∂2

∂z2

)
E − 1

c2

∂2E

∂t2
= µ0

∂2PL
∂t2

+ µ0
∂2PNL
∂t2

. (2.5)

Here the operator ∇2
t is the transverse Laplacian. The linear polarization has the

general form

PL(r, t) = ε0

∫ ∞
−∞

dτχ(t− τ)E(r, τ) (2.6)
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For the sake of simplicity, we will ignore the effect of material dispersion and assume

that χ(t) = χδ(t) so the polarization reduces to PL = ε0χE(r, t). The material disper-

sion will be added later as second order dispersion when we model the semiconductor

waveguides. In addition, the electric field is assumed to be in the following separa-

ble form, with a forward and backward propagating wave expanded around a center

frequency and wave vector

E(r, t) = Fxy(x, y)e−iω0t
[
E+(z, t)eik0z + E−(z, t)e−ik0z

]
+ c.c. . (2.7)

Note that the expansions around ω0 and k0 are arbitrary and depend upon the specific

system being modeled. We plug in Equation 2.7 into Equation 2.5 to obtain

[
E+(z, t)eik0z + E−(z, t)e−ik0z

]
∇2
tFxy + Fxy

∂2

∂z2

[
E+(z, t)eik0z + E−(z, t)e−ik0z

]
+ Fxy

n2
0

c2
eiω0t

∂2

∂t2
e−iω0t

[
E+(z, t)eik0z + E−(z, t)e−ik0z

]
= µ0e

iω0t
∂2PNL
∂t2

,

1

Fxy
∇2
tFxy =

eiω0tµ0
∂2PNL
∂t2

Fxy [E+(z, t)eik0z + E−(z, t)e−ik0z]
+

∂2

∂z2

[
E+(z, t)eik0z + E−(z, t)e−ik0z

]
E+(z, t)eik0z + E−(z, t)e−ik0z

+

n2
0

c2
eiω0t ∂

2

∂t2
e−iω0t

[
E+(z, t)eik0z + E−(z, t)e−ik0z

]
E+(z, t)eik0z + E−(z, t)e−ik0z

.

We have used the refractive index definition n2
0 = 1 + χ. The LHS now only depends

on the transverse dimensions x,y, while if we ignore the effect of the nonlinear polar-

ization on the transverse modes Fx,y, the RHS only depends on z and t. Thus from

standard separation of variables theory, each side of the equation is equal to a con-

stant, which we write as −k2. We can now separate this equation into its transverse

and longitudinal parts, which produces an eigenvalue equation (Helmholtz equation)

and the pulse propagation equations. We separate the forward and backward waves

in the pulse propagation equations by phase matching to the appropriate exponential
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term and apply the slowly-varying envelope approximation to obtain

∇2
tFxy + k2Fxy = 0 (2.8)

Fxy
∂E+

∂z
+ Fxy

n2
0ω0

k0c2

∂E+

∂t
+

1

2ik0

FxyE+

(
k2 − k2

0 +
n2

0ω
2
0

c2

)
=

µ0

2ik0

∂2PNL
∂t2

eiω0t−ik0z

(2.9a)

−Fxy
∂E−
∂z

+ Fxy
n2

0ω0

k0c2

∂E−
∂t

+
1

2ik0

FxyE−

(
k2 − k2

0 +
n2

0ω
2
0

c2

)
=

µ0

2ik0

∂2PNL
∂t2

eiω0t+ik0z

(2.9b)

Equation 2.8 can be solved to determine the effective propagation vector k depending

on the transverse geometries. While we never solve Equation 2.8 explicitly, we assume

there exists a set of normalized transverse modes Fxy which are used in determining

spatial overlap integrals. However, Equations 2.9 are somewhat incomplete - they

have extra terms that modify the wave propagation as well as not quite giving the

correct group velocity. This problem stems from the slowly-varying envelope approx-

imation, and can be dealt with by defining an explicit phase in the electric field [14].

Another way to get around this is to transform into frequency domain and make the

appropriate expansion for k(ω). Because the latter approach is a little simpler, we

apply this to Equations 2.9, approximating that n0 ≈ ng, k
2
0 − k2 ≈ n2

0ω
2
0

c2
to obtain

Fxy
∂E+

∂z
+ Fxy

ng
c

∂E+

∂t
=

µ0

2ik0

∂2PNL
∂t2

eiω0t−ik0z (2.10a)
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−Fxy
∂E−
∂z

+ Fxy
ng
c

∂E−
∂t

=
µ0

2ik0

∂2PNL
∂t2

eiω0t+ik0z . (2.10b)

We can define vg as the group wave velocity where vg = c/ng, and ng is the group

index.

Finally, we have a much simpler and usable set of equations for modeling light

propagation in one direction. In the subsequent chapters, we will modify Equations

2.10 by specifying specific forms for the nonlinear polarization PNL appropriate to

each specific system. These traveling wave equations form the basis for all theoretical

studies in this work.

2.2 Numerical solution method to traveling wave equations

In most applications, analytically solving the traveling wave equations is exceed-

ingly difficult. Even solving them in steady state, there are few forms of the nonlinear

polarization that will yield analytic solutions. Thus we must use numerical methods

to solve these equations.

The method we use for all our solutions is integration along both forward and

backward characteristics. This method is essential for systems that have significant

forward and backward waves that interact with each other as well as clearly de-

fined boundary conditions. In these systems, we cannot use conveniences such as

moving reference frames as there are no convenient frames of reference with counter-

propagating waves. Moreover, we cannot use split step methods as there are no easy

ways to eliminate the boundaries for performing the numerical Fourier Transform.

For three-wave scattering problems such as Stimulated Brillouin Scattering (SBS) or

modeling Fabry-Perot cavity laser diodes, characteristic integration is clearly the best

choice.

The characteristic curves for the first order traveling wave equation are simply

straight lines, which are either forward or backward diagonals in the z and t axes. For
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Figure 2.1: Plot of characteristic lines for the traveling wave equation. Blue lines are
characteristics for the forward wave, while red lines are characteristics for
the backward wave.

convenience, we rewrite the space and time variables as dimensionless, ζ = z/L, τ =

vgt/L, where L is the length of the system’s domain. In Figure 2.1, the characteristics

are plotted for the forward and backward waves in a space of length 5 units. If we

define the characteristic lines as ξ+ = 1
2
(ζ + τ), ξ− = 1

2
(τ − ζ), Equations 2.10 can be

rewritten as

Fxy
∂E+

∂ξ+

=
µ0L

2ik0

∂2PNL
∂t2

e−ik0z (2.11a)

Fxy
∂E−
∂ξ−

=
µ0L

2ik0

∂2PNL
∂t2

eik0z , (2.11b)

with numerical integration following soon after. All we must do now is evaluate at
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the current time τ = τ0 the RHS as the derivative along each characteristic, and then

using an Euler stepping scheme or a collocation method [16] to evaluate the electric

fields at the next time step τ = τ0 + ∆τ . As an example, say we want to calculate

the solutions of the traveling wave equations up to a time of τ = 2 units, as depicted

in Figure 2.1. We have discretized the ζ and τ domains with ∆ζ = ∆τ = 1 units.

Starting at τ = 0 on the ζ axis, at each ζ discretization the RHS of Equations 2.11

is evaluated, except at the boundaries (ζ = 0, ζ = 5). Here, only the forward wave’s

RHS is evaluated at ζ = 0, and only the backward wave’s RHS is evaluated at ζ = 5.

This is simply due to the fact that we stop tracking what happens to these waves

once they propagate past the boundary. Once we have the derivative evaluations, we

step forward in time (going up in the τ axis) and either to the right (forward wave)

or to the left (backward wave) in space. Mathematically, we can write this in general

form as

E+(ζ, τ0 + ∆t) = ∆ξ

(
∂E+

∂ξ+

)
|ζ−∆ζ,τ0 (2.12a)

E−(ζ, τ0 + ∆t) = ∆ξ

(
∂E−
∂ξ−

)
|ζ+∆ζ,τ0 . (2.12b)

The step size ∆ξ can be determined by its relations to ∆t and ∆z. We clearly see that

∆ξ = 1
2
(∆τ + ∆ζ). However, ∆t and ∆z are not independent. For a wave traveling

at speed vg, the characteristic integration must satisfy the condition that the next

spatial discretization is the at the distance traveled during the time step taken. In

other words, ∆z = vg∆t is a necessary relation for the characteristic integration.

Using this relation, we find that ∆τ = ∆ζ = ∆z/L = vg∆t/L.

Once we calculate the fields at the next time step, we can now evaluate the

boundary conditions for either waves reflecting (e.g. rE+(ζ = 5) = E−(ζ = 5)), or

for external waves to enter the domain (E−(ζ = 5) = Epump). This completes the
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calculation of all electric field values at time τ = 1. This process can be repeated

until we have reached the desired maximum simulation time.

While we have technically described the numerical process for solving traveling

wave systems, implementation can be very difficult. The evaluation of the deriva-

tive can be tremendously costly, as for certain nonlinear systems we have to solve

additional, coupled differential equations describing the dynamics of the material.

Some examples include carrier equations in semiconductors, acoustic phonon or opti-

cal phonon equations, or Langmuir plasma waves. For our work in this dissertation,

each system will be described in detail in their respective chapters.

2.3 Note on second-order derivatives

In later sections, we will be adding a second-order time derivative to the traveling

wave equations. In the systems we model, this term represents a material or waveguide

dispersion term and can be written

Fxy
∂E+

∂z
+ Fxy

ng
c

∂E+

∂t
+ i

k′′

2
Fxy

∂2E+

∂t2
=

µ0

2ik0

∂2PNL
∂t2

eiω0t−ik0z (2.13a)

−Fxy
∂E−
∂z

+ Fxy
ng
c

∂E−
∂t

+ i
k′′

2
Fxy

∂2E−
∂t2

=
µ0

2ik0

∂2PNL
∂t2

eiω0t+ik0z , (2.13b)

where k′′ is the strength of the dispersive term. The second order derivative makes it

more difficult to solve using the characteristics integration, but because in our systems

the dispersion only plays a minor role, we can resolve it by using a predictor-corrector

method. First, we solve the traveling waves without the dispersion term to ”predict”

the value of the electric fields at time t+∆t utilizing the methodology in the previous

section. This predicted value can now be used to evaluate the second-order time
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derivative using the finite difference formula

∂2E±
∂t2

≈ E±(t−∆t) + 2E±(t) + E±(t+ ∆t)

(∆t)2
. (2.14)

Now the full derivative including dispersion can be calculated and used to evaluate

the ”correct” value of the electric fields. It is possible to use this new value of the

electric field and perform the prediction-correction again - this iteration can be done

as many times as desired. For our simulations, we use only a single correction step.

2.4 Note on two-point boundary value problems

The preceding sections describe what is in essence an initial value problem (IVP)

with definite boundary conditions. The traveling wave equations are integrated from

time t = 0 to a time t = tmax, applying the boundary conditions at each step. While

we are certainly interested in the dynamical behavior of the simulated systems, we are

typically also very interested the steady state solutions and sometimes only care about

the steady state solutions. The reader may wonder if it is possible to assume steady

state conditions for the traveling wave equations and solve the following two-point

boundary value problem (BVP):

Fxy
dE+

dz
= −ω

2
0µ0

2ik0

PNL (2.15a)

Fxy
dE−
dz

=
ω2

0µ0

2ik0

PNL . (2.15b)

Such an approach certainly looks attractive as the equations are now much simpler,

no longer being partial differential equations but reduced to a single independent

variable. However, looks can be highly deceiving. There are two major issues with
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attempting to solve the two-point BVP. The first is that all the dependent variables,

the electric field and nonlinear polarization in this case, must actually have steady

state solutions. Time harmonic wave solutions inherently carry around a complex

exponential that represents phase and amplitude oscillations. If these exponentials

are wittingly or unwittingly embedded in the electric field variables, then ∂E±
∂t

will

never be zero, even if all material dynamics have died out. Thus the first step in

solving the two-point BVP is ensuring that all dependent variables consist of only

wave envelopes and that the rapidly varying exponentials are all separate beforehand.

Such a process may not be desirable, however, as every electric field mode would have

to have its own variable. For simulations of frequency combs in which there can

be many modes, the calculations will be forced to keep track of not just each mode

individually, but also the growing number of interaction terms that can easily make

such simulations unruly.

The second issue, however, is that nonlinear two-point BVPs may not have unique

solutions. The uniqueness of solutions to nonlinear IVPs has well defined conditions

and even holds for fractional, nonlinear differential equations [17]. Numerically in-

tegrating nonlinear two-point BVPs can require an unknown number of numerical

iterations before a solution is found [18]. Even worse, the resulting solutions may

or may not even be unique, as they typically vary based upon the initial guess for

the numerical methods in solving two-point BVPs. Calculation times are also costly:

shooting methods involve iterations with Newton’s method to find roots, while relax-

ation methods may or may not ever converge for nonlinear systems. Moreover, one

may intuitively postulate that IVPs better imitate real scenarios than steady state

BVPs (such as turning on a laser or studying dynamics of a pulse after it arrives).

For these reasons, we prefer the IVP over the BVPs in every instance with one

exception: when the BVPs are simple enough to yield analytic solutions. Otherwise,

despite the downsides of time domain calculations, solving the IVP is generally easier,
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quicker, and guarantees a unique solution.
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CHAPTER III

Pulse Storage in Acoustic Waves via Stimulated

Brillouin Scattering

Our first application of the traveling wave equations is for modeling Stimulated

Brillouin Scattering (SBS). SBS is the phenomenon of light scattering off of an acous-

tic phonon in the medium, or light scattering from sound [19]. This is in contrast to

Raman scattering, in which light scatters off optical phonons or molecular vibrations.

The study of SBS in various media such as optical fibers [15] [20] and photonic chips

[21, 22] has led to many diverse applications, including signals processing [23], pulse

compression [24], and pulse storage and retrieval [25]. Some advantages of utilizing

SBS are its low threshold and automatic phase matching [13].

We first review how the SBS equations are derived from the nonlinear polarization

and then apply them to optical pulse storage and retrieval in optical fibers. At first,

the optical pulses are transform limited but then we investigate the effects of frequency

chirp on the efficiency of pulse storage.

3.1 Derivation of SBS equations for three waves

We begin with the first order traveling wave equations derived in Chapter I.
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Fxy
∂E+

∂z
+ Fxy

ng
c

∂E+

∂t
=

µ0

2ik0

∂2PNL
∂t2

eiω0t−ik0z (3.1a)

−Fxy
∂E−
∂z

+ Fxy
ng
c

∂E−
∂t

=
µ0

2ik0

∂2PNL
∂t2

eiω0t+ik0z (3.1b)

For modeling SBS, the nonlinear polarization is

PNL = ε0
ρ

ρ0

γeE , (3.2)

where ρ0 is the average material density, ρ is the deviation of the density from ρ0,

and

γe = ρ0

(
∂ε

∂ρ

)
|ρ0 (3.3)

is the electrostrictive constant, or the change in material permittivity per density

change. For convenience, we also expand the electric field into a forward pump wave

and a backward wave that is shifted by an arbitrary frequency ∆ω,

E+ = Ap (3.4a)

E− = Ase
i∆ωt+i∆kz . (3.4b)

We insert Equations 3.2, 3.4 into Equation 3.1 and obtain

Fxy
∂Ap
∂z

+ Fxy
ng
c

∂Ap
∂t

=
γeµ0ε0
2ik0ρ0

eiω0t−ik0zFxy
∂2

∂t2
[
ρ(Ape

−iω0t+ik0z + Ase
−i(ω0−∆ω)t−i(k0−∆k)z

]
(3.5a)
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−Fxy
∂As
∂z

+ Fxy
ng
c

∂As
∂t

=
γeµ0ε0
2ik0ρ0

ei(ω0−∆ω)t+i(k0−∆k)z

× Fxy
∂2

∂t2
[
ρ(Ape

−iω0t+ik0z + Ase
−i(ω0−∆ω)t−i(k0−∆k)z

]
.

(3.5b)

The material density obeys the acoustic wave equation [13]

∂2ρ

∂t2
− ΓA∇2∂ρ

∂t
− v2

A∇2ρ = −ε0γe∇2(E · E) . (3.6)

Because the acoustic wave has its own dispersion relation that is derived from Equa-

tion 3.6, this greatly limits the possible phase-matching pairs on the RHS of Equations

3.5. For a bulk or nearly bulk materials, the acoustic wave has the simple dispersion

relation |q| = Ω/vA, where q is the acoustic wave vector and Ω is the acoustic wave

frequency. If we assume the acoustic wave has the form ρ = FA,xyQ(z, t)ei|q|z−iΩt+c.c.,

then by inspection, the RHS exponents are phase matched when Ω = ∆ω and

|q| = 2k0 − ∆k. The phase matched acoustic frequency is also called the Brillouin

frequency, labeled ΩB. Using the acoustic dispersion relation, the Brillouin frequency

is calculated to be

ΩB ≈
2vA
vg

ω0 . (3.7)

Now returning to Equations 3.5, we keep only the phase matched terms and the

equations reduce to

Fxy
∂Ap
∂z

+ Fxy
1

vg

∂Ap
∂t

=
γeµ0ε0
2ik0ρ0

eiω0t−ik0zFA,xyFxy
∂2

∂t2
[
QAse

−iω0t−ik0z
]

(3.8a)

−Fxy
∂As
∂z

+ Fxy
1

vg

∂As
∂t

=
γeµ0ε0
2ik0ρ0

ei(ω0−∆ω)t+i(k0−∆k)zFA,xyFxy
∂2

∂t2
[
Q∗Ape

−i(ω0−∆ω)t−i(k0−∆k)z
]
.

(3.8b)

18



We can apply the slowly-varying amplitude approximation once more to the RHS

time derivative. Because the acoustic frequency Ω is typically much less than the

optical frequency ω0, we neglect both time derivatives of the envelopes. Lastly, we

apply the transverse inner product
∫ ∫

dxdyFxy to Equations 3.8 in order to simplify

the transverse functions.

∂Ap
∂z

+
ng
c

∂Ap
∂t

= iκ1QAs (3.9a)

−∂As
∂z

+
ng
c

∂As
∂t

= iκ1Q
∗Ap (3.9b)

κ1 =
ω2

0γe
〈
FA,xyF

2
xy

〉
2k0ρ0c2

〈
F 2
xy

〉 (3.10)

The phase matching conditions can also be visualized as momentum conservation

and energy conservation between the two optical waves and the acoustic wave. Figure

3.1 shows the k vector phase matching for counter-propagating optical waves Ap and

As with respective wave vectors k0 and ks = k0 −∆k. We note that we only focus

on backward SBS in this thesis as it is the more common phenomena due to phase-

matching conditions. While it is possible for forward SBS to occur efficiently in

confined structures [26], we predominantly work with bulk or nearly bulk acoustic

behavior.

While Equations 3.9 are complete for the optical fields, we still must solve Equa-

tion 3.6 as it is coupled to the optical fields. There are considerable simplifications

we can make to this equation, the biggest of them being the slowly varying amplitude

approximation. We can plug in the assumed form of ρ = FA,xyQ(z, t)ei|q|z−iΩt + c.c.,
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Figure 3.1: A schematic of backward SBS, with the forward wave Ap, backward wave
As and acoustic wave Q labeled.

making the assumptions that

Ω = ΩB

∂2

∂z2

∂ρ

∂t
≈ iΩB|q|2ρ

∂2ρ

∂z2
≈ −|q|2ρ

∇2(E · E) ≈ −|q|2F 2
xy(ApA

∗
se
i|q|z−iΩBt) .

Putting it all together, Equation 3.6 becomes

−2iΩBFA,xy
∂Q

∂t
− iΩBΓBFA,xyQ = ε0γe|q|2F 2

xyApA
∗
s , (3.11)

where ΓB = |q|2ΓA = 1/τB, the inverse acoustic lifetime. Rearranging some of the

variables and operating once more with the transverse inner product, we finally obtain

∂Q

∂t
+

1

2τB
Q = i

ε0γengω0

〈
FA,xyF

2
xy

〉
vAc

〈
F 2
A,xy

〉 ApA
∗
s . (3.12)

The electric fields can be normalized such that their magnitude squared is in units of
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power by rewriting

Ap →

√
2

ε0ngcAeff
Ap (3.13a)

As →

√
2

ε0ngcAeff
As . (3.13b)

This substitution affects the acoustic wave equation but does not change the optical

wave equations.

∂Q

∂t
+

1

2τB
Q = iκ2ApA

∗
s (3.14)

κ2 =
2γeω0

〈
FA,xyF

2
xy

〉
vAc2Aeff

〈
F 2
A,xy

〉 (3.15)

Lastly, to transform the Brillouin gain terms into a measurable quantity, we also

normalize Q such that it too has units of power. We make the following substitution

Q→ 2iτBκ2Q (3.16)

Putting everything together, we obtain the following coupled three-wave SBS equa-

tions

∂Ap
∂z

+
ng
c

∂Ap
∂t

=
gB

2Aeff
QAs (3.17a)

−∂As
∂z

+
ng
c

∂As
∂t

=
gB

2Aeff
Q∗Ap (3.17b)

2τB
∂Q

∂t
+Q = ApA

∗
s , (3.18)
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where gB = 4κ1κ2τBAeff is the Brillouin gain coefficient in units of m/W. We note

that the acoustic wave is also called the Brillouin grating due to its periodic nature

and how it acts as a grating to scatter light.

3.2 Optical pulse storage in acoustic waves

We apply Equations 3.17 and 3.18 to the problem of optical pulse storage, or

transferring light energy into acoustic energy. Because the acoustic wave propagates

much slower (or not at all relative to the speed of light), this energy transfer can be

used as either temporary energy storage, optical delay lines or signals processing [25]

[27] [23]. However, for these applications to be practical, the efficiency of generating

the acoustic wave is paramount. This efficiency can be simulated in time domain

using the three-wave SBS equations.

Pulse storage and retrieval is set up as follows. First, there is a pump ”signal”

pulse that carries the information we would like to store. Next, there is a counter-

propagating ”write” pulse that is down shifted in frequency by the Brillouin frequency

(ΩB ≈ 10 GHz in optical fibers), also called a Stokes wave (if the frequency shift is

higher than the pump, it is called an anti-Stokes wave). These two pulses are sent

from opposite ends of a medium, either an on-chip waveguide or an optical fiber. Once

they collide, they beat together due to their frequency offset to generate the acoustic

wave, transferring energy from the signal pulse to the acoustic wave. After the pulses

exit, the acoustic wave stays in place and decays as the acoustic lifetime, storing the

energy and information of the signal pulse. This process is shown schematically in

Figure 3.2. In order to retrieve the stored information and energy, we can send in

a third ”read” pulse at the same Stokes frequency as the write pulse. This third

read pulse depletes the acoustic wave and transfers that energy back into a revived

signal pulse. Physically, we can describe the whole process as two optical beams with

a frequency offset beating together to engrave a grating into the material to store
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Figure 3.2: Plots of the signal and write pulses generating the acoustic wave or Bril-
louin grating. At first, the two pulses are separate but once they collide,
they mix together to generate the Brillouin grating in the material, which
exists even after the optical pulses exit.
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Parameter Description Value
L Length of fiber 5 m
τB Brillouin lifetime 3.4 ns
gB Brillouin gain coefficient 3.56× 10−11 m/W
λ Vacuum wavelength 1.55 µ m
ng Refractive index 1.50
Aeff Effective modal area 11 µm2

τp Pump (or signal) pulse width 2.0 ns
τs Write (or Stokes) pulse width 1.5 ns

Table 3.1: Simulation parameters for SBS pulse storage and retrieval

information. Then a third beam comes in and scatters off of this grating to retrieve

the information. We note that the write and read pulses are much larger than the

signal and do not change much at all throughout the interaction. This allows for

some simplifications in our later analysis.

We can simulate pulse storage by solving Equations 3.17 and 3.18 numerically

in an optical fiber and study the interaction. The equations are solved numerically

using integration along characteristics as described in Chapter II with a fourth order

collocation scheme [16] for the electric fields and a simple Euler stepper for the acoustic

wave equation. The pump Ap and write As pulses are sent in via boundary conditions

of the form

Ap(t, z = 0) = Ap0 exp

[
−1 + iCp

2

t2

τ 2
p

]
(3.19a)

As(t, z = L) = As0 exp

[
−1 + iCs

2

t2

τ 2
s

]
. (3.19b)

The pulses are Gaussian in form with a chirp parameter Cj, pulse width τj, and input

pulse power |Aj0|2 where j = {p, s} for the pump or Stokes pulses. The use of chirped

pulses was previously proposed to enhance the storage and readout efficiency and to

achieve compression (hence higher signal to noise ratio) of the retrieved signal pulse

[24]. The parameters used for the numerical calculations are listed in Table 3.1.
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Figure 3.3: The efficiency of energy transfer into the acoustic wave (Q) as a function
of write pulse area, for chirped and unchirped write pulses.

We first take a look at the efficacy of Brillouin grating generation as a function of

write pulse power. However, we also define a ”pulse area” for the write pulse of the

form

Θw =

√
gBc

8AeffτBng

∫
As(t)dt , (3.20)

whose importance will be seen shortly. We simulate the pulses for 30 ns with a pump

pulse power of |Ap0|2 = 10 mW and calculate the strength of the resulting acoustic

grating while varying the area of the write pulse (Equation 3.20). The pulses have

chirp parameters (Cp, Cs) = (0, 0) for the unchirped case, and (Cp, Cs) = (0, 3) for

the chirped case. The strengths of the Brillouin gratings are plotted in Figure 3.3.

It is clear that using a chirped write pulse results in more robust Brillouin gratings

as seen in the total energy of Q. In the case of using unchirped write pulses, the

behavior is actually very similar to electron excitation in two-level atomic systems

[14], in which a π-pulse must be used in order to efficiently excite atoms into the
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upper state. The analytic solution of unchirped pulse excitation is well-known for

atomic systems and is derived in the three-wave SBS context [28] (also in plasma

waves [29])

Q(z) ∼ Ap(2z) sin(Θw) (3.21)

Physically, this sinusoidal behavior can be understood by the Stokes and anti-Stokes

scatterings in SBS. When the pulses first collide, their beating forms a Brillouin

grating until the pump pulse is depleted. However, if the write pulse has not passed

the spatial extent of the Brillouin grating once the pump is depleted (or it still has

some ”pulse area” left over), then the write pulse continues to interact with the

Brillouin grating, this time via anti-Stokes scattering. The anti-Stokes scattering

revives the pump pulse and depletes the grating, decreasing the efficiency of pulse

storage. So when the write pulse has a π pulse area, this corresponds to the scenario

in which the write pulse passes the Brillouin grating right as the pump is depleted.

Moreover, this is a cyclical process: the pump can be fully depleted, revived, and

then depleted again, which corresponds to a write pulse area of 3π/2.

However, when the write pulses are chirped, the interaction becomes more com-

plex. The chirped write pulse interacts with the pump pulse as before, but the

Brillouin grating generated is only phase matched to the front portions of the write

pulse frequency due to the chirp. As the tail of the write pulse moves through, the

frequency is sufficiently detuned from the phase of the Brillouin grating that this

suppresses the anti-Stokes process, thus preventing the depletion the acoustic wave

and no energy is returned back into the signal.

Because the generation of the Brillouin grating using unchirped pulses is sinu-

soidal, we would much prefer using chirped write pulses to maintain high energy

transfer. Despite the ease in changing pulse chirps in our calculations, making chirped
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pulses experimentally is not trivial. While the relatively long pulse lengths (∼1 ns)

and low pulse powers (∼100-200 W) are easy to generate with conventional electronic

components, the large frequency sweep per second needed for our chirps are more

difficult. However, the chirp levels used (∼500 MHz/ns to 1 GHz/ns) can still be

generated with more complex optical mode-locking schemes. There has been exper-

imental demonstration of such chirps in passively mode-locked fiber lasers [30] and

also diode-pumped fiber lasers [31] on the order of ∼ 10 GHz/ns to 1 THz/ns and

should be well-suited for use as the write pulse.

3.3 Chirped pulse area theorem in the three wave interaction

We have seen that there exists an area theorem (Equation 3.21) when the write

pulse is unchirped. In this section, we take a closer look at how this is derived and

explore the connection to the two-level atomic system. In addition, we can derive

a similar area theorem pertaining to using chirped pulses, although, as we shall see,

this is considerably more difficult.

We return to the three-wave interaction equations (Equations Equations 3.17 and

3.18) and recast it into dimensionless units by making the substitutions ζ = z/L,

τ = vgt

L
, Ap,s →

(
4Aeff τBc

gBnL2

)1/2

Ãp,s, Q → 2Aeff
gBL

Q̃. We also recast the spatial variable

in the moving reference frame of the pump pulse A2 with the variable ξ = ζ + τ so

traveling wave equations become

2
∂Ãp
∂ξ

+
∂Ãp
∂τ

= −Q̃Ãs (3.22a)

∂Ãs
∂τ

= Q̃∗Ãp (3.22b)

∂Q̃

∂τ
+
∂Q̃

∂ξ
= ÃpÃ

∗
s . (3.22c)
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To complete the transformation into a set of equations that resemble the two-level

atomic system, we assume no depletion of the pump pulse, ∂Ãs
∂τ

= 0, that decay of Q̃

can be neglected (τB is large relative to the pulse collision time), and also Ãs is large

and short in duration compared to Ãp such that the quasi-static approximation can be

used [29]. Under the quasi-static approximation, the idea is that the time derivatives

represent roughly how much the pulse shape changes on its own, while the ξ derivatives

represent how quickly the pulse depletes under the SBS interaction. For very strong

and short write pulses, ∂
∂ξ

>> ∂
∂τ

and the time derivatives in Equations 3.22 are

also dropped. Under the quasi-static approximation and after another rescaling Ãs =
√

2A′s, Q̃ =
√

2q, we obtain the following

∂Ãp
∂ξ

= −qA′s (3.23a)

∂q

∂ξ
= ÃpA

′∗
s . (3.23b)

Lastly, we simply write A′2 = |S|eiθ, where |S| is the shape of the undepleted write

pulse and θ is the time-varying phase. Now make the substitutions θ = B − π/2 and

|S| = A/2 into the equations 3.23 to get

∂Ãp
∂ξ

= i
A

2
eiBq (3.24a)

∂q

∂ξ
= i

A

2
e−iBÃp (3.24b)

Now it is clear that the pump pulse Ãp and the acoustic wave q are analogous to

the two atomic levels, while the write pulse A′s is analogous to the optical excitation

pulse. These can be identified as q → c1, Ãp → c2, where c1 is the amplitude of

the ground state and c2 is the amplitude of the upper state. In this form, analytic

solutions can be readily found for unchirped pulses where B does not vary in time or

is zero. For initial conditions of q(0) = 0 and Ãp = Ain, the solutions to Equations
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3.24 are found by simply integrating to get

q(ζ, τ) = −i sin

(∫
A

2
dξ

)
Ain(2ζ) (3.25)

The area of the write pulse
∫
dξA/2, can be rewritten out in terms of the original

pulse As and making the transformation that dξ = c
ngL

dt to obtain

Θ =

∫
A

2
dξ =

√
gBc

8AeffτBng

∫
|As(t)|dt , (3.26)

which is the previously mentioned pulse area (Equation 3.20) with the major difference

being the absolute value. For unchirped pulses, |As| = As and the pulse areas are the

same.

One peculiar aspect of Equation 3.25 is the factor of 2 in the argument of Ain.

We note that this factor stems from the nature of the initial conditions applied,

which are pulse profiles rather than simple constants as in the case of the two-level

atom. Applying the initial condition of one wave to the solution of another, unrelated

wave is a little more complex. Ain must satisfy initial conditions of propagation

for the wave Ap, so it must have the form Ain(ζ − τ). However, this cannot be

the final propagation form of q, as the argument does not satisfy the acoustic wave

propagation requirements. One way out of this conundrum is embedded as part of the

aforementioned quasi-static approximation in which these pulse profiles are evaluated

at a singular point when all three waves interact [29]. Under our current formulation,

this point is the center of the write pulse, or ξ = 0. Using this expression, we can

rewrite Ain(ζ− τ) = Ain(2ζ), which now satisfies the propagation requirements for q.

Going back to Equations 3.24, if we assume that the phase B is time dependent,

then analytic solutions become much more difficult to obtain. Fortunately, there are

some solutions that exist for specific forms of the write pulse profile [32] that we can

utilize to our advantage. While our numerical simulations consist of Gaussian pulses
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and linear chirps, analytic solutions can be only be found for a similar, albeit slightly

different, pulse shape of a sech pulse with a tanh chirp [33]. These functions are

suitably close enough to warrant the usefulness of finding analytic solutions using the

latter functional forms.

We can decouple Equations 3.24 with the phase B no longer constant and we get

the following second order differential equation

q′′ = i

[
−iA

′

A
q′ + i

(
A

2

)2

q −B′q′
]

(3.27)

q′′ + q′
(
iB′ − A′

A

)
+

(
A

2

)2

q = 0 , (3.28)

where here the primes indicate a ∂
∂ξ

operation. If we let

A =
α

πξ0

sech

(
ξ − ξd
ξ0

)
(3.29)

B′ =
1

πξ0

(
β0 − β tanh

(
ξ − ξd
ξ0

))
, (3.30)

the write pulse assumes the form of a sech pulse with pulse area α and chirp parameter

β. We can vary the strength of the chirp of this pulse by varying β. Additionally,

the parameter ξd is the pulse delay relative to the center of the reference frame and

can be set to 0, while ξ0 is a measure of the width of the write pulse. Now by also

30



substituting in the hypergeometric constants

a =
1

2π

[
(α2 − β2)

1
2 + iβ

]
(3.31)

b =
1

2π

[
−(α2 − β2)

1
2 + iβ

]
(3.32)

c =
1

2

[
1 +

i

π
(β0 + β)

]
(3.33)

zh =
1

2

(
1 + tanh

(
ξ − ξd
ξ0

))
, (3.34)

we can transform the equation 3.28 into the hypergeometric equation

zh(1− zh)
d2q

dz2
h

+ (c− (a+ b+ 1)zh)
dq

dzh
− abq = 0 . (3.35)

This equation can be solved by looking into a handbook of mathematical functions

[34]. The general solution in the range 0 < zh < 1 (corresponding to −∞ < ξ < ∞)

is given by hypergeometric functions 2F1(a, b, c, zh) = F (a, b, c, zh)

q = a1F (a, b, c, zh) + a2z
1−c
h F (a+ 1− c, b+ 1− c, 2− c, zh) (3.36)

The two constants a1 and a2 in Equation 3.36 are found by applying initial con-

ditions for our two waves. First, we apply the initial condition that at τ → −∞,

ξ → −∞, zh → 0, the acoustic wave q is zero, thus we get F (a, b, c, 0) = 1 so a1 = 0.

The second initial condition is that the initial profile of the forward propagating pump

wave must be taken into account. Solving for the second constant a2 is significantly
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more difficult and involved. We present the steps below.

∂q

∂ξ
=

∂q

∂zh

∂zh
∂ξ

dzh
dξ

=
2

ξ0

zh(1− zh)

d

dzh
(zc−1
h F (a, b, c, zh)) = (c− 1)zc−2

h F (a, b, c− 1, zh)

∂q

∂ξ
= (1− c)z−ch F (a+ 1− c, b+ 1− c, 1− c, zh)

2

ξ0

zh(1− zh)a2 (3.37)

We can use Equations 3.24 to relate this derivative to the initial input wave Ap. The

variables A and B can be rewritten in terms of zh after some effort:

A =
α

πξ0

2z
1/2
h (1− zh)1/2

B =
1

πξ0

∫
dzh

ξ0

2

1

zh(zh − 1)
(β0 − β(2zh − 1))

=
1

2π

(
ln
(
zβ+β0
h (1− zh)β−β0

))
+ φ0

∂q

∂ξ
= i

A

2
e−iBÃp(ξ)

=
iα

2πξ0

(2z
1/2
h (1− zh)1/2)z

−i
2π

(β0+β)

h (1− zh)
i
2π

(β0−β)Ãp(zh)e
−iφ0

(3.38)

Here φ0 is an arbitrary integration constant which represents an overall, constant

phase of the backwards propagating Stokes wave which can be set to zero. Setting

the two derivatives (Equation 3.37 and 3.38) equal to each other, we can solve for a2
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at zh = 0.

(1− c)z−ch F (a+ 1− c, b+ 1− c, 1− c, zh)
2

ξ0

zh(1− zh)a2

=
iα

2πξ0

(2z
1/2
h (1− zh)1/2)z

−i
2π

(β0+β)

h (1− zh)
i
2π

(β0−β)Ãp(zh)

(1− c)a2z
−c
h F (a+ 1− c, b+ 1− c, 1− c, zh) =

iα

2π
z
− 1

2
− i

2π
(β0+β)

h (1− zh)−
1
2

+ i
2π

(β0−β)Ãp(zh)

(1− c)a2z
−c
h F (a+ 1− c, b+ 1− c, 1− c, zh) =

iα

2π
z−ch (1− zh)−

1
2

+ i
2π

(β0−β)Ãp(zh)

(1− c)a2 =
iα

2π
Ãp(zh = 0)

a2 =
iα

2π(1− c)
Ain(ζ − τ) (3.39)

At last, we have solved for all unknowns in the solution to q (Equation 3.36). So the

formal solutions for the three-wave SBS interaction with a chirped write pulse are

found to be

Ãp(ζ − τ) = (1− zh)1−c+a+bF (a− c+ 1, b− c+ 1, 1− c, zh)Ain(ζ − τ) (3.40a)

q(ζ) =
iαe−iφ0

2π(1− c)
z1−c
h F (a− c+ 1, b− c+ 1, 2− c, zh)Ain(2ζ) . (3.40b)

However, we are interested in the final result of the pulse storage interaction, as

that ultimately determines the efficiency of pulse storage and retrieval. We take the

limit as zh → 1 or equivalently, τ →∞ when the pulses separate. There is a special

relation between the hypergeometric function and the gamma function when zh = 1,

given by

F (a, b, c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(3.41)
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So taking the limit in Equation 3.40b, we get

q(ζ) =
iαe−iφ0

2π(1− c)
(1)1−cΓ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
Ain(2ζ) (3.42)

Equation 3.42 is still not very useful, as we may not always have readily available Γ

function calculators. But there are some Γ function identities that can be applied to

this expression to simplify it to elementary functions [34]

Γ(zh + 1) = zhΓ(zh)

Γ(zh)Γ(−zh) =
−π

zh sin(πzh)

Γ(
1

2
+ iy)Γ(

1

2
− iy) = |Γ(

1

2
+ iy)|2 =

π

cosh(πy)

Γ(1− zh)Γ(zh) =
π

sin(πzh)

Γ(1− zh) =
π

sin(πzh)

1

Γ(zh)
.

So using plugging these into Equation 3.42 and also utilizing the fact that −a = b∗,

−b = a∗, the magnitude of the acoustic wave or Brillouin grating is calculated to be

|q(ζ)|2 =
α2

4π2|1− c|2
|1− c|2 Γ(1− c)Γ(1− c∗)Γ(c− a− b)Γ(c∗ − a∗ − b∗)

Γ(1− a)Γ(1− a∗)Γ(1− b)Γ(1− b∗)
|Ain(2ζ)|2

|q(ζ)|2 =
α2

4π2
|Γ(

1

2
− i

2π
(β0 + β))|2|Γ(

1

2
+

i

2π
(β0 − β))|2

× 1

π4
sin2(πa) sin2(πb)Γ(a)Γ(a∗)Γ(b)Γ(b∗)|Ain(2ζ)|2

|q(ζ)|2 =
α2

4π2

π

cosh(1
2
(β0 + β))

π

cosh(1
2
(β0 − β))

× 1

π4
sin2(πa) sin2(πb)Γ(a)Γ(−a)Γ(b)Γ(−b)|Ain(2ζ)|2
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|q(ζ)|2 =
α2

4
sech(

1

2
(β0 + β)) sech(

1

2
(β0 − β))

× 1

π4
sin2(πa) sin2(πb)

−π
a sin(πa)

−π
b sin(πb)

|Ain(2ζ)|2

|q(ζ)|2 =
α2

4ab
sech(

1

2
(β0 + β)) sech(

1

2
(β0 − β))

1

π2
sin(πa) sin(πb)|Ain(2ζ)|2 ,

|q(ζ)|2 =
α2

4π2ab
sech

(
1

2
(β0 + β)

)
sech

(
1

2
(β0 − β)

)
× sin

(
1

2
Φ + i

β

2

)
sin

(
−1

2
Φ + i

β

2

)
|Ain(2ζ)|2 ,

(3.43)

where Φ = (α2 − β2)1/2. We note that −ab = α2

4π2 which allows q to remain dimen-

sionless. For our write pulses, the chirp strengths are not large relative to the pulse

area, meaning α > β. Under this assumption, we can simply Equation 3.43 into its

final form

|q(ζ)| =

√
sech

(
1

2
(β0 + β)

)
sech

(
1

2
(β0 − β)

)

×

√
sin2

(
Φ

2

)
cosh2

(
β

2

)
+ sinh2

(
β

2

)
cos2

(
Φ

2

)
|Ain(2ζ)|

(3.44)

Equation 3.44 is our main result for this section. This equation determines the final

Brillouin grating strength for a Gaussian-like write pulse with a linear-like chirp.

Plots of Equation 3.44 are shown in Figure 3.4 for varying values of write pulse

chirp β. At β = 0, this corresponds to the case of the unchirped write pulse. If we

plug in β0 = β = 0 into Equation 3.44, the solution for |q| reduces to

|q(ζ)| = sin
(α

2

)
|Ain(2ζ)| (3.45)

which matches our previous solution (Equation 3.25) for unchirped write pulses.
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Figure 3.4: Plots of the analytic solution (Equation 3.44). The plots represent the
Brillouin grating strength, a measure of energy transfer into the acoustic
wave, at varying values of β the write pulse chirp.

Lastly, we verify that this analytic solution is indeed accurate for the case of

Gaussian pulses with linear chirp by numerically solving Equations 3.17 and 3.18

with varying write pulse chirps. The chirp codes are defined as (C1, C2) where C1

is the chirp of the pump pulse (no chirp in this case) and C2 as the chirp of the

write pulse. The results are shown in Figure 3.5, with very good agreement with the

analytic results. The chirp strength C2 = 1, 2 roughly corresponds with the values

of β = 2.24, 4.48. Even though the analytic results are the product of sech and tanh

pulse shape and chirp respectively, they still produced plots that are highly predictive

of Gaussian pulse behavior.

3.4 Conclusion

In summary, we have found that chirping the pulses can produce very different

behaviors of how the acoustic wave is generated in the SBS interaction. Overall, the

use of chirped pulses should result in more efficient and robust generation of SBS.
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Figure 3.5: The efficiency of energy transfer into the acoustic wave numerically cal-
culated for several write pulse chirps.

Analytic results from the use of the quasi-static approximation have confirmed the

nature of using chirped pulses, which match well with our numerical calculations.

The behavior of chirped pulses has been experimentally investigated in quantum

dots in which chirped pulses were used for much more robust excitation [35], whose

efficiencies followed the same behavior as predicted by our analytic results. Despite

the fact that our derivation is applied in the context of SBS, Equations 3.24 are quite

general and can apply to any three-wave interaction platform. In theory, the chirped

pulse result in Equation 3.44 should be applicable to Raman scattering and plasma

wave excitation as well.
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CHAPTER IV

Frequency Combs from Cascaded Stimulated

Brillouin Scattering

One interesting aspect of SBS is that it can be cascaded to generate many elec-

tric field modes, forming the basis of a frequency comb, or frequency modulation

for signals processing. These have been demonstrated on-chip and in fibers utiliz-

ing both backward and forward scattering [36, 37, 38, 39, 26]. While the coherence

and bandwidth of such combs need to be further investigated for practical use, the

phenomenon of cascaded Brillouin scattering at the tens of GHz frequencies has po-

tential to affect microwave photonics, wavelength-division multiplexing, and other

sensing applications.

This chapter focuses on our modeling work on cascaded SBS. We develop a new,

more unified and complete approach to modeling SBS [40] with ideas and principles

that, as we see later, extend to modeling more complex frequency combs in semicon-

ductor laser diodes.

4.1 Modeling cascaded Brillouin scattering

As the reader may have noticed from the previous chapter, the modeling efforts of

nonlinear optical effects, including SBS, typically extract any rapidly varying phases
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from the electric field envelope. In such a scheme, all envelopes in the calculation

are free from any complex exponentials and will typically have a steady state so-

lution (not oscillating to infinity). This type of formulation is common for second

and third harmonic generation, sum-difference frequency generation, and four-wave

mixing (FWM) [13] [41]. The convenience and practical necessity of separating these

envelopes allow us to define separate refractive indices for waves at vastly different

frequencies, as well as not having to potentially use subwavelength time steps for

numerical calculations.

However, such a formulation becomes unruly for a large number of frequencies

present in a system, especially when they all interact at the same time. For cascaded

Brillouin scattering, in which multiple modes are generated in both the forward and

backward directions, separating each envelope quickly becomes untenable as the num-

ber of modes exceeds even three or four frequencies. In previous work on Brillouin

combs, the authors would have to solve multiple coupled differential equations for

just a few cascaded Brillouin modes [36], with Ogusu solving 14 equations in the

work [42]. Moreover, there have been experiments with about 800 modes generated

from cascaded Brillouin scattering [38], which could require more than 3200 coupled

differential equations to model.

To see how the number of equations can grow so quickly, let us assume we have

only three modes, a center mode with forward wave A0, and backward wave B0, and

two adjacent side modes A±, B±. Immediately, we would need six traveling wave

equations just to describe the three electric field frequencies. However, we still need

to account for the acoustic wave equations. We would need an equation for the scat-

tering from A0 to B−1 as we did before, but now we also need an equation for A1 to

B0, particularly if this frequency spacing is slightly different. However, we are still not

done, as there could be Stokes scattering from the backward direction to the forward

direction via B1 to A0 or B0 to A−1, which would require two additional backward
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Cascaded Stokes

scattering

Figure 4.1: A diagram showing the nature of cascaded Brillouin scattering. An input
forward wave A0 can scatter into the Stokes wave B−1, which can then
scatter again to form A−2 etc. The frequency shifts down with each wave
due to Stokes scattering, shifting by the Brillouin frequency ΩB with each
mode.

acoustic wave equations. So we have a total of 10 coupled differential equations for

only three cascaded Brillouin modes. The number of equations would simply balloon

as more modes are added, as there would be a growing amount of combinations of

scatterings possible. Numerical solutions to these coupled equations would eventu-

ally run into problems due to the tremendous amount of coupling between all the

differential equations.

We instead opt for a different approach to modeling cascaded SBS. The central
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idea is that, because the Brillouin frequency shift is quite small relative to optical

frequencies and that optical parameters like refractive index are roughly constant

and dispersion is negligible, we should be able to easily calculate the traveling wave

and acoustic dynamics without overly tiny time steps. We would only need time steps

that can resolve the GHz acoustic response rates and electric field modulations. In

this formulation, the electric field variables can retain oscillating exponential terms,

denoting frequency shifts on the order of the Brillouin frequency, without having

to separate each frequency exponent. This allows a single electric field variable to

describe many frequencies and modes, as long as they can be approximated with the

same propagation characteristics and group velocity.

In other words, if we wish to numerically resolve the following solution

E(z, t) = E(z)eiΩBt , (4.1)

where ΩB is the Brillouin frequency, we would only need time steps smaller than

∼ 1/ΩB (and not 1/ω0 the optical frequency) which puts us at the picosecond time

step regime. Since time steps of this size are taken anyway in modeling SBS [28], we

have much to gain by adopting the multimode approach.

4.2 Mathematical formulation of multimode SBS equations

Mathematically, formulating the electric field variables for multimode operation

is straightforward - we simply retain the time harmonic exponentials that are in the

range of the Brillouin frequency while extracting the central exponential with the

optical frequency. Going back to Equations 3.1 in which we have already extracted

the exponential e−iω0t, we leave the electric field variables as is. In this case, the
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subsequent steps become

Fxy
∂E+

∂z
+ Fxy

ng
c

∂E+

∂t
=
γeµ0ε0
2ik0ρ0

eiω0t−ik0zFxy
∂2

∂t2
[
ρ(E+e

−iω0t+ik0z + E−e
−iω0t−ik0z

]
(4.2a)

−Fxy
∂E−
∂z

+ Fxy
ng
c

∂E−
∂t

=
γeµ0ε0
2ik0ρ0

eiω0t+ik0z

× Fxy
∂2

∂t2
[
ρ(E+e

−iω0t+ik0z + E−e
−iω0t−ik0z

]
.

(4.2b)

Now, instead of expanding ρ like we did in Chapter III, we do not assume any explicit

operating frequency. However, we extract the propagation vector q with magnitude

2k0 for spatial phase matching

ρ = FA,xyQ(z, t)ei|q|z + c.c. . (4.3)

The resulting material equation is a bit more complex, as we can no longer eliminate

the time derivatives as those oscillating exponentials are contained in the variable

Q(t),

FA,xy
∂2Q

∂t2
− FA,xyΓA|q|2

∂Q

∂t
− FA,xyv2

A|q|2Q = −ε0γe∇2(E · E) . (4.4)

From here, we follow similar procedures as those outlined in Chapter III, collecting

phase-matched terms and rewriting the field variables in terms units of power, with

the forward wave A(z, t) and backward wave B(z, t). The result consists of only three
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equations in the form

∂A

∂z
+
ng
c

∂A

∂t
=

gB
2Aeff

QB (4.5a)

−∂B
∂z

+
ng
c

∂B

∂t
= − gB

2Aeff
Q∗B (4.5b)[

∂2

∂t2
+

1

τB

∂

∂t
+ Ω2

B

]
Q =

(
4iΩB

τB

)
AB∗ . (4.5c)

To complete the derivation, we add in the physical effects of linear loss, Kerr effect

[15], and noise [43, 44]. The final set of equations describing a more generalized SBS

process is written

∂A

∂z
+
ng
c

∂A

∂t
=

gB
2Aeff

QB − α

2
A+ iγ

(
|A|2 + |B|2

)
A (4.6a)

−∂B
∂z

+
ng
c

∂B

∂t
=− gB

2Aeff
Q∗B − α

2
B + iγ

(
|A|2 + |B|2

)
B (4.6b)[

∂2

∂t2
+

1

τB

∂

∂t
+ Ω2

B

]
Q =

(
4iΩB

τB

)
AB∗ + f̃ , (4.6c)

where γ is the third-order nonlinear coefficient, f̃ is the Langevin noise term, and α

is the linear loss per length.

There are a few interesting features about the formulation in Equations 4.6. We

note that the acoustic wave equation takes on the form of a simple harmonic oscillator

with resonance frequencies at ±ΩB. While the driving term on the RHS of the oscil-

lator can theoretically be of any frequency, the acoustic wave will only be appreciably

large when it is driven on resonance. Also, because of the way ρ is formulated, the

+ΩB resonance corresponds to backward propagating acoustic waves, while the −ΩB

resonance corresponds to the forward propagating acoustic wave. Both resonances

will be present and significant in more complex interactions with multiple forward

and backward electric field modes. Other features of these equations include the

dynamic incorporation of the Brillouin gain lineshape, which in frequency domain
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consists of peaks at the resonances ±ΩB with linewidth ΓB, yielding a gain band-

width of about 30 MHz. Moreover, physical effects such as all anti-Stokes scattering

possibilities and every possible four-wave mixing pair between the electric field modes

are automatically included as well. The strengths of the modes depends upon the

gain of the various modes at phase-matched frequencies that is automatically built

into Equations 4.6.

There is a similar multimode approach for the 1-D Lugiato-Lefever equation (LLE)

[45] in which additional modes are modeled as phase modulations to the electric field

envelope. Modeling microresonator combs with the LLE can span up to an octave

with hundreds of modes. However, the LLE is rather simple compared to the SBS

equations, as there is no acoustic wave in the LLE and the fields are unidirectional,

which makes solving them much easier compared to the case of SBS with counter-

propagating waves.

4.3 Numerical solutions to multimode SBS equations

Now that we have arrived at a unified set of only three equations (Equations

4.6) that compactly describes all possible cascaded backward SBS between optical

modes, including Stokes and anti-Stokes scatterings, we put our theory to the test

with some numerical experiments modeled after some actual experiments already

published. The parameters of these simulations are given in Table 4.1. We focus

our numerical calculations on two different systems: SBS in silica fibers, and SBS in

chalcogenide glass. Equations 4.6 are solved using the same characteristics integration

described in Chapter II and collocation method [16] for the electric fields. However,

the second-order acoustic wave equation is now solved using a 5th order predictor

corrector based upon Adams-Bashforth-Moulton coefficients [18], which yields fairly

accurate and stable solutions to the harmonic oscillator equation.

Our first numerical study is a simple backward SBS setup, in which we send
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Parameter Description Silica Chalcogenide Glass
L Length of device 10 m 38.6 cm
τB Brillouin lifetime 3.4 ns 12 ns
ΩB Brillouin frequency shift 2π × 9.44 GHz 2π × 7.8 GHz
gB Brillouin gain coefficient 1.78× 10−11 m/W 6.1× 10−9 m/W
ng Refractive index 1.50 2.81
Aeff Effective modal area 11 µm2 56 µm2

γ Third order nonlinear coefficient 11.5× 10−3(Wm)−1 1.737(Wm)−1

α Linear loss coefficient 0.0064 m−1 0.1935 m−1

Table 4.1: Simulation parameters for cascaded SBS in fibers and chalcogenide glass.

a CW pump with 5 W power into a 10 m silica optical fiber. This is done via

a boundary condition such that |A(z = 0, t)|2 = 5W. The transmitted wave, the

forward-propagating light that emerges from the back facet |A(z = L, t)|2, and the

reflected wave, the backward-propagating light that emerges from the front facet

|B(z = 0, t)|2, are plotted in Figure 4.2. The temporal outputs show the relative

stability of the transmitted and reflected waves, but the spectrum shows that the

backward wave has a clear frequency offset due to the presence of an exponential

phase shift. In other words, the backward wave B(z, t) has downshifted relative to

the forward pump wave A(z, t) by a frequency offset, and we find that this frequency

shift is precisely equal to the Brillouin frequency ΩB.

Although this is a simple calculation, it demonstrates some features of our formula-

tion. Instead of having to specify beforehand that the backward wave is downshifted

by the Brillouin frequency, this shift is automatically calculated from the acoustic

wave equation (Equation 4.6c) and applied as a phase modulation. But perhaps the

most powerful part is that we no longer need to know apriori which electric field

modes will be significant for each SBS interaction, as under the old formulation, we

had to assign them separate variables in order to know whether they will grow or

not. In the new approach, significant modes can be seen simply by taking a Fourier

transform and looking at the strength of each line.
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Figure 4.2: a) Temporal output and b) spectra for a 5-W cw pump in a 10-m silica
fiber without facet reflections.

Our next study is similar to the first, but now the input pump is 150 W instead

of 5 W. This number is chosen as it just exceeds the threshold of the emergence of

a second order Stokes line, found to be about 130 W [46]. The threshold power for
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Figure 4.3: a) Temporal output and b) spectra for a 150 W cw pump in a 10-m silica
fiber without facet reflections. Note the emergence of a second Stokes
line, albeit very weak.

SBS is approximated as

Pth = 21
Aeff
gBLeff

(4.7)

Leff =
1− e−αL

α
. (4.8)
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For the first Stokes scattering, the effective length is roughly equal to the total length

of the fiber, especially due to very low losses. The threshold power greatly decreases

as the length of the fiber increases, causing issues in amplifiers and long distance

communications that require some engineering to suppress all SBS [47]. However,

while the first order Stokes scattering is relatively easy to obtain, the second Stokes

scattering has considerably higher threshold. The length traversed by the first back-

ward Stokes wave is typically much shorter, on the order of 1% of the original length

for a fully depleted pump. By sending in 150 W, we are able to see a second Stokes

line emerge in Figure 4.3. Once more, we did not need to specify any additional

variable for this second order Stokes wave but rather it shows up naturally as a phase

modulation of A at 2ΩB.

There is a way to greatly reduce the threshold of cascaded SBS for the generation

of additional modes. Having facet reflections or internal reflections of any sort restores

Leff to its original value along the fiber. For the next study, we change the front facet

to be reflecting by modifying the boundary condition to

A(z = 0, t) = −rB(z = 0, t) , (4.9)

where |r|2 = 0.20, a 20% reflection coefficient. In this case, the backward Stokes waves

will be fed back into the forward wave A(z, t) in which they can scatter once more

or mix together via FWM to produce entirely new frequencies. We reduce the pump

power to 5 W once more and monitor the outputs of the fiber, shown in Figure 4.4.

Many more modes emerge, both in the forward and backward directions, with the

forward spectrum having many more modes due to longer FWM interaction lengths

from the front reflecting facet. The temporal output shows mostly a sinusoidal output

from the beating of the pump and first order Stokes, while the spectrum shows several

other modes at much lower magnitudes. We see about 10-11 distinct frequencies,
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Figure 4.4: a) Temporal output and b) transmitted and reflected spectra from a fiber
with a 20% Fresnel reflecting input facet and a 5-W cw pump. Many
Stokes and anti-Stokes lines are now visible due to four-wave mixing.

which would already be extremely difficult to model properly with the old approach

of separating every mode into its own variable. The basis of a frequency comb can be

now be seen, with the dominant effects being cascaded SBS into FWM to generate

the multiple modes [48].
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Figure 4.5: a) Output spectrum of a silica fiber ring cavity with feedback of 99%
of the backward Stokes. The odd-order Stokes and anti-Stokes lines are
spaced by twice the Brillouin frequency. b) Temporal output showing
erratic pulsations.

Now we seek to reproduce some data from cascaded SBS frequency comb exper-

iments. The first experiment we look at is by Tang, et al. [49]. The experiment

uses 2.5 km of silica fiber pumped with 160 mW of power at 1546.5 nm in a ring
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cavity configuration. The backward Stokes waves are recirculated via fiber couplers,

with 99% of the backward wave being fed back through the back facet. In terms of

mathematical boundary conditions, this ring cavity is equivalent to

B(z = L, t) = 0.99B(z = 0, t) . (4.10)

Because simulating 2.5 km of fiber is rather time consuming, we shorten the fiber

length to 10 m but greatly increase the pump power. We calculate the power output

and spectra for an input pump of 1 W, shown in Figure 4.5. The spectra are in good

agreement with the experimental results, with several odd numbered modes in the

backward wave, meaning the frequency offset is mΩB, where m is odd. The trans-

mitted spectrum also exhibits some modes, although all at even ordered frequencies.

The labels in Figure 4.5a correspond to Stokes (S) scattering or anti-Stokes (AS)

modes with the frequency offset. The odd numbered modes emerge from the first two

cascaded Stokes interactions, then mixing the strongest lines (S1 and S3) to create

other odd numbered frequencies.

The temporal output also matches the experimental results with many seemingly

random fluctuations. This chaotic behavior likely reflects the changing phases and

amplitudes of the various modes interfering together, which suggests that there is no

stable phase relation between them. If this is the case, the spectrum may look like a

frequency comb but unless the phase is stabilized, the comb cannot be used.

The last experiment we investigate is by Büttner, et al. [36]. The experimental

setup is in a chalcogenide glass fiber which has much higher nonlinear coefficients,

including Brillouin gain, albeit at a cost of higher linear loss. The fiber is cut into

a length of 38 cm which is resonant with the Brillouin frequency shift and acts as a

Fabry-Perot cavity with facet reflections. A 500 ns square pulse of 0.7 W power is

sent through the fiber and the outputs are monitored. Our new boundary conditions
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Figure 4.6: Temporal output of 38-cm-long chalcogenide fiber Fabry-Perot cavity for
a 500-ns pulse input and two different values of phase shift. a) φ0 = 0.62π;
b) φ0 = 1.8π

are

B(z = L, t) = −rA(z = L, t)ei∆φ0 (4.11a)

A(z = 0, t) = −rB(z = L, t) +
√

0.7 , (4.11b)
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where |r|2 = 0.226 and ∆φ0 is a constant phase factor. The origin of this phase factor

stems from the fact that we have reflections from the front and the back facets and

need to apply the proper carrier phase shift that has been neglected thus far. This

phase shift is equal to

∆φ0 = 2k0L . (4.12)

Because the value of k0 is rather large, very slight adjustments to the carrier frequency

ω0 will easily be able to sweep this phase from 0 to 2π to yield different results,

particularly in the phase relations between the modes.

We calculate the transmitted and reflected power through the fiber for 500 ns

with the adjusted boundary conditions while sweeping the parameter ∆φ0, as did

the actual experiment. We plot the temporal outputs for two values of the phase,

∆φ0 = 0.62π, and ∆φ0 = 1.8π that are in good agreement with the experimental data

(Figure 4.6). In the case of ∆φ0 = 0.62π, the modes appear to be well correlated and

form a relatively stable series of pulses. However, in the case of ∆φ0 = 1.8π, we find

a more oscillatory solution that forms pulses and then breaks up and reforms in a

periodic manner.

If we focus on the initial oscillations, a zoomed-in inset around 20 ns shows a

rapidly oscillating sinusoid at the Brillouin frequency shift from the the beating be-

tween the pump and the newly generated first Stokes wave [50]. The temporal output

becomes more complex as more SBS modes are generated, either coherently combin-

ing to form pulses or having slight differences between the frequency spacing, resulting

in the long period oscillations in Figure 4.6b.

A typical spectrum is shown in Figure 4.7, which also is in good agreement with

the experimental spectrum. We see quite a few strong Stokes modes adjacent to the

pump but also the emergence of a few anti-Stokes modes from FWM, same as reported
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Figure 4.7: Typical spectrum of temporal outputs in Figure 4.6. There are several
strong Stokes lines of the frequency comb with a few anti-Stokes lines
adjacent to the pump.

in the experiment. By tweaking the carrier phase offset ∆φ0, the chalcogenide fiber

cavity is able to convert a CW pump into a series of pulses with a modest bandwidth

via cascaded SBS and FWM.

4.4 Conclusion

To conclude this chapter, we have shown the power of formulating the traveling

wave equations for multiple modes around a single carrier frequency. Instead of the

conventional SBS approach in which each wave is a separate envelope, all waves are

described by a single variable through phase and amplitude modulations. This essen-

tially allows for modeling adjacent side modes, from SBS or an optical cavity, with

greatly reduced number of interaction terms and variables, simplifying the equations

to solve as well as producing a more predictive model without knowing apriori the

modes that will be significant. These side bands oscillate at the free-spectral range

rather than the carrier frequency and allows us to easily calculate the emergence
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of additional modes without taking tiny time steps. This method is well-suited for

modeling frequency comb generation as we shall see.
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CHAPTER V

Modeling Quantum Well Gain in Semiconductor

Laser Diodes

Moving past Brillouin scattering, we turn to other methods of frequency comb

generation. In the effort to make frequency combs practical outside the confines of

the laboratory, we prefer comb sources that are small and portable, easy to operate,

and inexpensive. The semiconductor laser diode certainly fits all these criteria and its

prevalence in many kinds of laboratory equipment and consumer devices strengthens

the argument for using diodes as a frequency comb source.

However, semiconductor lasers are not without problems when it comes to fre-

quency comb generation. The typical approach to generating frequency combs is to

use a mode-locked laser. A passively mode-locked laser diode usually has two sec-

tions: a forward-biased gain section and a reverse-biased saturable absorber section

that leads to the formation of a periodic train of short pulses. The periodic train in

time domain translates to a comb in the frequency domain. Unfortunately because

of fast carrier dynamics in the semiconductor, there are nonlinear phase shifts inside

the cavity [51], which essentially limits the pulse width. These phase shifts originate

from carrier-induced refractive index shift, in which movement of carriers changes the

real part of the gain, which in turn changes the imaginary part or refractive index

via Kramers-Kronig relations.
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There are some ways to get around this issue. There have been successful at-

tempts at mode-locking using semiconductor saturable absorber mirrors (SESAMs)

in external cavity configurations [52] to minimize the phase effects. We can also gen-

erate frequency combs without generating a series of short pulses by generating a

frequency modulated (FM) output. In this case, the laser remains CW or quasi-CW

while its phase is periodically swept in time, resulting in a comb in frequency do-

main. Experimentally, this type of laser has been demonstrated in laser diodes based

on bulk material [53], quantum wells [54, 55], quantum dots and quantum dashes

[56, 57, 58], and quantum cascade lasers (QC lasers) [59]. There are also a number of

substantial theoretical studies on FM comb generation in quantum dot [60, 61] and

quantum cascade systems [62, 63] that use a variety of traveling wave and third-order

perturbation techniques, but not a lot of work on quantum well laser diodes.

For our work, we opted for the FM comb approach in quantum well based systems.

A ridge waveguide is etched into the semiconductor itself for light confinement. For

this device, there is no need for external cavity configurations, so we do not need

any additional optical components, moving parts, or precise alignments for frequency

comb generation. Instead, the laser diode itself outputs the frequency comb. The

quantum well systems are also advantageous for their low cost, high gain, mature

manufacturing technology, and wide availability of materials. In this chapter, we

present our detailed model for a quantum well laser diode [64] and later study how

the FM comb emerges.

5.1 Derivation of Bloch Equations

Before we get to modeling lasers, we take a look at the fundamentals of light-

matter interaction, which ultimately result in the Bloch equations. There are actu-

ally two distinct sets of equations, the optical Bloch equations and the semiconduc-

tor Bloch equations (SBE). The optical Bloch equations are more typically used for
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atomic systems in which there is relatively little coupling between the atoms and elec-

trons, while the SBEs incorporate in detail the lattice potentials and carrier-carrier

interactions. Generally speaking, SBEs are much more complex and require a second

quantization formulation [65]. We will focus primarily on the optical Bloch equations,

neglecting most of the carrier-carrier coupling (but incorporating some phenomenolog-

ically) for simplicity and practicality in solving the traveling wave equations, although

we will make mention of the SBEs occasionally.

We begin with the Hamiltonian for light-matter interaction, or matter interacting

with an electric field. Under the dipole approximation, the Hamiltonian takes the

form

Ĥ = Ĥ0 − µ̂ · E(r, t) , (5.1)

where Ĥ0 is the unperturbed Hamiltonian, µ̂ = −qr̂ is the dipole operator, and q

is the elementary charge. Now assume that for a semiconductor there is an allowed

carrier state in the valence band denoted by

〈r̂| 1〉 = c1 (5.2)

and in the conduction band denoted by

〈r̂| 2〉 = c2e
−iω0t , (5.3)

where ω0 is an arbitrary frequency offset, but it is typically highly conveniently to

set ~ω0 to the band gap energy. This is also called the interaction representation in
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some texts [14]. The matrix elements of the Hamiltonian are calculated to be

H11 =
〈

1
∣∣∣ Ĥ0

∣∣∣1〉− 〈1∣∣ µ̂ · E(r, t)
∣∣1〉 = Ev

H12 =
〈

1
∣∣∣ Ĥ0

∣∣∣2〉− 〈1∣∣ µ̂ · E(r, t)
∣∣2〉 = d∗cve

−iω0t
(
E(z, t)e−iω0t + E∗(z, t)eiω0t

)
H21 =

〈
2
∣∣∣ Ĥ0

∣∣∣1〉− 〈2∣∣ µ̂ · E(r, t)
∣∣1〉 = dcve

iω0t
(
E(z, t)e−iω0t + E∗(z, t)eiω0t

)
H22 =

〈
2
∣∣∣ Ĥ0

∣∣∣2〉− 〈2∣∣ µ̂ · E(r, t)
∣∣2〉 = Ec − ~ω0 .

Here, Ev is the valence band carrier energy, Ec is the conduction band carrier energy,

and dcv = q 〈2| r̂ |1〉 is the dipole matrix element. We now take the rotating wave

approximation (RWA) and only keep the electric field terms in which the exponents

cancel. The Hamiltonian can be written in matrix form

Ĥ =

 Ev d∗cvE
∗(z, t)

dcvE(z, t) Ec − ~ω0

 . (5.4)

We note that we have ignored many other potentials, including the Coulomb interac-

tion and carrier-carrier scattering.

Once we have the Hamiltonian in Equation 5.4, we can apply the density matrix

formulation to calculate the time evolution of carrier populations in the valence and

conduction bands, as well as the microscopic polarization. The density matrix ap-

proach allows us to add relaxation and scattering terms back into the calculation in

ways that the Schrödinger amplitude approach does not. The equation of motion for

the density matrix elements is

i~
∂ρ

∂t
=
[
Ĥ, ρ

]
(5.5)
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i~
∂

∂t

ρ11 ρ12

ρ21 ρ22

 =

 Ev d∗cvE
∗(z, t)

dcvE(z, t) Ec − ~ω0


ρ11 ρ12

ρ21 ρ22


−

ρ11 ρ12

ρ21 ρ22


 Ev d∗cvE

∗(z, t)

dcvE(z, t) Ec − ~ω0

 .

(5.6)

We write down the two population equations and the equation for the microscopic

polarization

∂ρ11

∂t
=

1

i~
[d∗cvE

∗(z, t)ρ21 − dcvE(z, t)ρ12] (5.7a)

∂ρ22

∂t
=

1

i~
[dcvE(z, t)ρ12 − d∗cvE∗(z, t)ρ21] (5.7b)

i~
∂ρ21

∂t
= (∆Ecv − ~ω0)ρ21 − dcvE(z, t)(ρ22 − ρ11) . (5.8)

We identify ρ22 as the electron occupation probability and rewrite it as ρe. Similarly,

we write 1− ρ11 = ρh, the hole occupation probability. The microscopic polarization

is also rewritten as p(k, t), where k is the carrier momentum vector which is related

to the carrier energy ∆Ecv via the semiconductor band structure. We also add in

the relaxation terms, so that Equations 5.7, 5.8 now take on the form of the Bloch

equations [65], approximately describing light interacting with a semiconductor

∂ρe(k, t)

∂t
= −2

~
Im[d∗cvE

∗(z, t)p(k, t)] +
∂ρe(k, t)

∂t
|relax (5.9a)

∂ρh(k, t)

∂t
= −2

~
Im[d∗cvE

∗(z, t)p(k, t)] +
∂ρh(k, t)

∂t
|relax (5.9b)

i~
∂p(k, t)

∂t
=(∆Ecv(k)− ~ω0)p(k, t)

− dcvE(z, t)(ρe(k, t) + ρh(k, t)− 1)− i~p(k, t)
T2

.

(5.10)
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5.2 Derivation of light-matter interaction in quantum wells

The Bloch equations can be tailored to modeling quantum well gain after a cer-

tain amount of approximations. The general approach is to find the macroscopic

polarization by calculating individual microscopic polarizations and carrier occupa-

tion probabilities, summing them up, and inserting the result into the RHS of the

traveling wave equation (Equation 2.10).

However, we need to quantify the ∆Ecv(k) term in Equations 5.9 and 5.10. In the

full treatment given in the SBEs, the energy dependence upon k, also called the band

structure, is automatically calculated with all interacting potentials present. While

this is very accurate, we typically do not have the capacity to calculate the band

structure in this much detail in a traveling wave model. Instead, we use the common

parabolic band approximation in which the conduction band and the heavy hole (hh)

valence band can be written as quadratic functions [66]. This approximation is valid

as long as the material has a direct bandgap, excited carriers behave mostly like free

carriers, and the the light interacts mostly with carriers close to the k = 0 or Γ-point.

For a quantum well structure, electrons and holes are confined in one direction,

usually labeled as the z axis. However, we note that, in the coordinates of our traveling

wave, this confined direction must either be x or y as the direction the wave travels

(±z directions) is actually one of the unconfined directions relative to the geometry

of the quantum well. To minimize this confusion, we use

kt = ky + kz , (5.11)

the momentum vector in the unconfined or ”transverse” directions of the quantum

well (written in traveling wave coordinates), and

k⊥ = kx , (5.12)
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0

Figure 5.1: The parabolic band structure we use for our quantum well gain model.
The energy difference ∆Ecv, which defines the radiative transition fre-
quency or photon energy, is labeled and varies as the transverse momen-
tum kt varies.

in the carrier confined direction or perpendicular to the quantum well plane. We

assume that only trapped or confined electrons will contribute to radiative recombi-

nations. While the confined carrier energy is the same for all trapped carriers, the

total energy of these carriers can vary significantly. Each confined carrier still has

momentum and therefore energy in the kt directions, which contributes to inhomo-

geneous broadening of the gain spectrum.

The conduction and valence band energies in the parabolic approximation can be

written in terms of the transverse momentum’s magnitude kt = |kt|,

Ec(kt) = Eg + Een +
~2k2

t

2m∗e
(5.13)

Ev(kt) = Ehm −
~2k2

t

2m∗h
, (5.14)

where Eg is the bandgap energy, Een is the confinement energy of the nth confined
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electron state in the quantum well, Ehm is the confinement energy of the mth confined

hole state, and m∗e,h is the electron and hole reduced effective mass. The transition

energy, then, is simply the difference between these two energies

∆Ecv(kt) = Ec − Ev

∆Ecv(kt) = Een
hm +

~2k2
t

2m∗r
, (5.15)

where Een
hm = Eg + Een − Ehm, and

m∗r =

[
1

m∗e
+

1

m∗h

]−1

(5.16)

is the reduced effective mass. While a quantum well may have multiple confined

states for the carriers, for simplicity our model only accounts for the first and lowest

energy confined state. In this case, the Een
hm = Ee1

h1. Figure 5.1 shows the parabolic

band structure in the unconfined kt direction, labeling the variances in radiative

recombination frequency. It is convenient now to define the variables

~ω0 = Ee1
h1 (5.17)

Et =
~2k2

t

2m∗r
, (5.18)

where the photon carrier frequency ω0 that we extract from the traveling wave equa-

tions is now aligned to the fundamental quantum well transition. The new variable

Et is the transverse energy and represents the additional energy that is added due to

carrier momentum in the unconfined directions.

Returning to the Bloch equations (Equations 5.9, 5.10), we can now make some

progress in formulating our model. We insert the expression for the transition energy
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(Equation 5.15) and rewrite the equations in terms of the transverse energy Et. The

microscopic polarization can be directly integrated to give

∫ t

−∞
dt′
[
∂p(Et, t

′)

∂t′
+ i

Et
~
p(Et, t

′) + Γp(Et, t
′)

]
=
i

~

∫ t

−∞
dt′dcvE(z, t′)(ρeEt + ρhEt − 1)∫ t

−∞
dt′

∂

∂t′

[
p(Et, t

′)ei
Et
~ t
′+Γt′

]
=
i

~

∫ t

−∞
dt′dcvE(z, t′)(ρeEt + ρhEt − 1)ei

Et
~ t
′+Γt′

p(Et, t) =
idcv
~

∫ t

−∞
dt′E(z, t′)(ρeEt + ρhEt − 1)e−i

Et
~ (t−t′)−Γ(t−t′) . (5.19)

We have rewritten the coherence relaxation time T2 = 1/Γ, which is typically on

the order of 10 - 100 fs (Zimmermann [67] measured a relaxation time of 300 fs for

electrons and 50 fs for holes in strained quantum wells). We now make an impor-

tant simplification by realizing that the population occupation probabilities will vary

slowly in interband lasers, typically much slower than the coherence relaxation time.

In this case, we can use the adiabatic approximation, in which the microscopic polar-

ization adiabatically follows the electric field and population terms. Mathematically,

if the ρe,hEt terms in Equation 5.19 vary slowly relative to the exponential decay, then

we can take them out of the integral. This results in a simple expression for the

microscopic polarization

p(Et, t) =
idcv
~Γ

(ρeEt + ρhEt − 1)F (Et, z, t) , (5.20)

where we call F (Et, z, t) the filtered field [60] and is defined as

F (Et, z, t) = Γ

∫ t

−∞
dt′E(z, t′)e−i

Et
~ (t−t′)−Γ(t−t′) . (5.21)

This filtered field variable is a time domain representation of a Lorentzian gain profile

with half linewidth Γ centered around frequency Et/~. It captures the real and
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complex parts of the gain, dynamically accounting for carrier induced refractive index

shifts.

To complete the derivation of the stimulated emission term, we insert the micro-

scopic polarization (Equation 5.20) into the population equations (Equations 5.9) to

obtain

∂ρeEt
∂t

=− 2|dcv|2

~2Γ
Im[iE∗(z, t)F (Et, z, t)(ρ

e
Et + ρhEt − 1)] +

∂ρeEt
∂t
|relax

∂ρhEt
∂t

=− 2|dcv|2

~2Γ
Im[iE∗(z, t)F (Et, z, t)(ρ

e
Et + ρhEt − 1)] +

∂ρhEt
∂t
|relax

∂ρeEt
∂t

=− 2|dcv|2

~2Γ
(ρeEt + ρhEt − 1)Re[E∗(z, t)F (Et, z, t)] +

∂ρeEt
∂t
|relax (5.22a)

∂ρhEt
∂t

=− 2|dcv|2

~2Γ
(ρeEt + ρhEt − 1)Re[E∗(z, t)F (Et, z, t)] +

∂ρhEt
∂t
|relax . (5.22b)

As per usual, we rewrite several variables in more convenient units, starting with the

electric field in units of
√

W

E(z, t)→

√
2

ε0ngcAeff
E(z, t) . (5.23)

Operating with a transverse integral over the area of the quantum well, we next define

the mode overlap integral

Γxy =

∫ ∫
dA

Fqw,xyFxy
Aeff

, (5.24)

where Fqw,xy is the transverse distribution of electrons, roughly uniform over the active

region. Thus when this integral operates on the LHS of Equations 5.22, it yields the

active region area for a single quantum well which is approximately Aactive = hqwW ,

where hqw is the height or thickness of the quantum well and W is the width of

65



the optical waveguide. The overlap integral is typically on the order of 1% -10%

depending on the design of the active region. Now the electric dipole moment can be

rewritten in terms of the momentum matrix element [66]

|dcv|2 =
q2

m2
0ω

2
0

|ê · p|2 , (5.25)

where q is the electron charge and m0 is the free electron mass. The momentum

matrix element can be related to an experimental parameter EP via

|ê · p|2 ≈ m0EP
6

. (5.26)

The value of EP varies by material but has been measured and documented for the

most common III-V semiconductors. We also introduce the effective reduced or joint

2-D density of states

Nr,qw =
∆Etm

∗
r

~2πhqw
, (5.27)

where ∆Et is a discretized slice of the transverse energy. Writing the terms this way

will give us some physical insight, as we will see in a moment. Putting it all together,

the rate equations become

∂ρeEt
∂t

=− 8g0
∆Et

(~ω0)2hqwWNr,qw

(ρeEt + ρhEt − 1)Re(E∗F ) +
∂ρeEt
∂t
|relax (5.28a)

∂ρhEt
∂t

=− 8g0
∆Et

(~ω0)2hqwWNr,qw

(ρeEt + ρhEt − 1)Re(E∗F ) +
∂ρhEt
∂t
|relax , (5.28b)

with the gain coefficient

g0 = Γxy
q2EPm

∗
r

12πngcε0m0~2Γhqw
. (5.29)
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In this form, we can describe the stimulated emission in physical terms. It is the

number of photons per second (electric field power Re(E∗F ) divided by the photon

energy ~ω0) resonant with carriers at transition energy Et with width ∆Et, divided

by the total number of states available for that carrier group at Et with the gain

coefficient as the conversion factor. This results in a rate of carrier depletion with

units 1/s, which we can write as the stimulated emission rate

Rst = 8g0
∆Et

(~ω0)2hqwWNr,qw

. (5.30)

The derivation of the stimulated emission term at this point is complete. Light in-

teracts with a certain group of carriers in an energy bin with energy Et and bin width

∆Et. These carriers are tracked separately, each with their own rate equations and

Lorentzian gain lineshapes. In order to properly model the inhomogeneous broaden-

ing, the overall gain will be the result of a summation of all of these carrier-photon

interactions.

5.3 Modeling carrier injection and relaxation in quantum

wells

While the light-matter interaction term has been carefully derived from the Bloch

equations, the carrier injection and relaxation terms are added phenomenologically.

We follow the schematic of the quantum well shown in Figure 5.2. There is a bulk

layer called the separate confinement heterostructure (SCH) layer that facilitates elec-

tron transport and capture into the quantum well. We model the carrier occupation

probability in this region via the variable ρe,hsch and we add a subscript to the quantum

well carriers to avoid confusion ρe,hqw,Et . Electrons are captured into the quantum well

(with lifetime τc), hence lost by the SCH, and simultaneously electrons can escape

from the quantum well (with lifetime τe) and gained by the SCH. To begin quanti-
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SCH

Quantum well

n-type p-type

,

Figure 5.2: A schematic of carrier injection, capture, and escape in a quantum well
laser diode. The lifetimes are measured

fying the term
∂ρe,hqw,Et
∂t
|relax, we write simple rate equations for the SCH (Nsch) and

quantum well (Nqw) carrier number that satisfy charge conservation

dNsch

dt
= −Nsch

τc
+
Nqw

τe
(5.31a)

dNqw

dt
=
Nsch

τc
− Nqw

τe
(5.31b)

d

dt
(Nsch +Nqw) = 0 . (5.32)

The carrier number can be converted into carrier occupation probabilities via

Nsch = Nc,v,schWhsch∆zρ
e,h
sch (5.33a)

Nqw = Nr,qwWhqw∆zρe,hqw,Et , (5.33b)
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where

Nc,v,sch = 2

(
m∗e,hkBT

2~2π

)3/2

(5.34)

is the effective bulk density of states for the conduction and valence bands. We now

add Pauli blocking terms and obtain a set of coupled rate equations for the occupation

probabilities

dρsch
dt

= −ρ
e,h
sch

τ e,hc
(1− ρe,hqw,Et) +

Nr,qwhqw
Nc,v,schhsch

ρe,hqw,Et

τ e,he
(1− ρe,hsch) (5.35a)

dρqw,Et
dt

=
Nc,v,schhsch
Nr,qwhqw

ρe,hsch
τ e,hc

(1− ρe,hqw,Et)−
ρe,hqw,Et

τ e,he
(1− ρe,hsch) . (5.35b)

We note that, for spin 1/2 carriers, the steady state solutions to Equations 5.35 should

obey Fermi-Dirac statistics and relax into a Fermi-Dirac distribution. We assume the

solutions for the electrons, with holes following a similar expression, are of the form:

ρesch =
1

1 + exp
(
Esch−Ef
kBT

) (5.36a)

ρeqw,Et =
1

1 + exp

(
Eqw+

m∗r
m∗e

Et−Ef
kBT

) , (5.36b)

where Ef is the electron Fermi level. Inserting these expressions into Equations 5.35,

we can solve for the proper escape time in terms of the capture time such that the

occupation probabilities settle into Fermi-Dirac statistics in steady state. We find the

resulting expressions for the escape times and the relaxation to be:

τ ee (Et) = τ ec

(
Nr,qwhqw
Nc,schhsch

)
exp((δEc −

m∗r
m∗e

Et)/kBT ) (5.37a)

τhe (Et) = τhc

(
Nr,qwhqw
Nv,schhsch

)
exp((δEv −

m∗r
m∗h

Et)/kBT ) . (5.37b)
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Here, δEc = Esch − Eqw (and analogously, δEv) is the energy difference between the

SCH layer and the confined carrier with zero transverse energy, visually labeled in

Figure 5.2. For a slightly simpler form, we relocate the bracketed fraction from the

lifetimes and write it explicitly in the rate equations, allowing us to define the escape

lifetimes as:

τ ee (Et) = τ ec exp((δEc −
m∗r
m∗e

Et)/kBT ) (5.38a)

τhe (Et) = τhc exp((δEv −
m∗r
m∗h

Et)/kBT ) (5.38b)

Finally, we can combine the capture and escape terms with the stimulated emission

term and add in a spontaneous lifetime to get the rate equations. While we have

shown the derivation for only a single quantum well carrier group, there are actually

multiple quantum well rate equations discretized by the value of Et with bin width

∆Et. Thus the SCH equation must sum up the capture and escape contributions

from every group of quantum well carriers. Taking this into account, we write the

down the rate equations with carrier injection, capture, and escape.

∂ρe,hsch
∂t

=
ηJin

qNc,v,schhsch
(1− ρsch)−

ρe,hsch
τsp

+
∑
Et

[
ρe,hqw,Et

τ e,he
(1− ρe,hsch)−

ρe,hsch
τ e,hc

(1− ρe,hqw,Et)

]
(5.39a)

∂ρe,hqw,Et
∂t

=
Nc,v,schhsch
Nr,qwhqw

(
ρe,hsch
τ e,hc

(1− ρe,hqw,Et)−
ρe,hqw,Et

τ e,he
(1− ρe,hsch)

)
−
ρe,hqw,Et
τsp

−Rst (5.39b)

We can account for multiple quantum wells by adding a simple parameter nqw to

denote the number of quantum wells and assume that carriers are injected uniformly

across all quantum wells without coupling. In this case, the rate equations are mod-
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ified to

∂ρe,hsch
∂t

=
ηJin

qNc,v,schhsch
(1− ρsch)−

ρe,hsch
τsp

+ nqw
∑
Et

[
ρe,hqw,Et

τ e,he
(1− ρe,hsch)−

ρe,hsch
τ e,hc

(1− ρe,hqw,Et)

]
(5.40a)

∂ρe,hqw,Et
∂t

=
Nc,v,schhsch
nqwNr,qwhqw

(
ρe,hsch
τ e,hc

(1− ρe,hqw,Et)−
ρe,hqw,Et

τ e,he
(1− ρe,hsch)

)
−
ρe,hqw,Et
τsp

−Rst

(5.40b)

The input current density is Jin, scaled by the quantum efficiency η, and τsp is the

spontaneous lifetime.

5.4 Evaluation of the macroscopic polarization and gain spec-

trum

With the rate equations in place, we can evaluate the macroscopic nonlinear po-

larization in the traveling wave equations. We sum up all microscopic polarization

contributions (Equation 5.20) in kt and write the total polarization as

PNL =
2

V

∑
k

−d∗cvp(kt, t)e−iω0t

= −ie−iω0t
|dcv|2

2~Γ

2

V

∑
k

(ρeqw,Et + ρhqw,Et − 1)F (Et, z, t) .

(5.41)

The summation can be converted into a transverse energy integral via the 2-D density

of state. Inserting Equation 5.41 into the RHS of Equations 2.10 yields

Fxy
∂E+

∂z
+ Fxy

ng
c

∂E+

∂t
=

µ0

2ik0

eiω0t−ik0z ∂
2

∂t2

[
−ie−iω0t

|dcv|2

2~Γ

∫
dEt

m∗r
~2πhqw

(ρeqw,Et + ρhqw,Et − 1)F (Et, z, t)

]
(5.42a)
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−Fxy
∂E−
∂z

+ Fxy
ng
c

∂E−
∂t

=

µ0

2ik0

eiω0t+ik0z
∂2

∂t2

[
−ie−iω0t

|dcv|2

2~Γ

∫
dEt

m∗r
~2πhqw

(ρeqw,Et + ρhqw,Et − 1)F (Et, z, t)

]
.

(5.42b)

We again rewrite the dipole matrix elements into momentum matrix elements and

apply the slowly varying amplitude approximation for the second order derivative of

the polarization to simplify the RHS. We also expand the filtered field into forward

and backward components recalling that F (Et, z, t) is proportional to E(z, t)

F (Et, z, t) = F+(Et, z, t)e
ik0z + F−(Et, z, t)e

−ik0z . (5.43)

Lastly, we apply a transverse integral to the traveling wave equations, yielding the

confinement factor nqwΓxy. By taking the phase-matched components, the traveling

wave equations become

∂E+

∂z
+
ng
c

∂E+

∂t
= nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F+(Et, z, t) (5.44a)

−∂E−
∂z

+
ng
c

∂E−
∂t

= nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F−(Et, z, t) . (5.44b)

The gain spectrum is found by taking the Fourier transform of the RHS of Equa-

tions 5.44. We assume the carriers are in steady state so that the populations obey

Fermi-Dirac statistics. In this case, the Fourier transform evaluates to

F
[
nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F±(Et, z, t)

]
= nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)
E±(z, ω)

−i(ω + Et/~)− Γ
,
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Figure 5.3: The real and imaginary parts of the gain plotted for various levels of car-
rier injection rates. a) low injection b) medium injection c) high injection.
The gain is asymmetric, reflecting the product of the 2-D density of states
and the Fermi-Dirac occupation probabilities.
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and hence the gain spectrum is

g(ω) = nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)
1

−i(ω + Et/~)− Γ
(5.45)

In this form, we see that the gain spectrum is an integral of Lorentzians centered at

different transition energies. A plot of Eq. 5.45 is shown in Figure 5.3 for varying

levels of carrier population. Note that the gain is highly asymmetrical due to the

quantum well 2-D density of states and the fact that lower energy carriers fill up

much faster than higher energy carriers, a result of Fermi-Dirac statistics.

5.5 Complete equations for QW laser diode

We can at last put everything together - traveling waves coupled with the carrier

rate equations. We add a few other effects to the electric field equations, including

linear loss, second order dispersion, noise, and third order nonlinearities. The deriva-

tions of many of these effects can be found in standard textbooks [15], so we omit

them here. We obtain the full set of equations to be

∂E+

∂z
+
ng
c

∂E+

∂t
+ i

k′′

2

∂2E+

∂t2
= −α

2
E+ − (

αS
2

+ iβS)(|E+|2 + 2|E−|2)E+ + Ssp

+ nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F+(Et, z, t)

(5.46a)

−∂E−
∂z

+
ng
c

∂E−
∂t

+ i
k′′

2

∂2E−
∂t2

= −α
2
E− − (

αS
2

+ iβS)(|E−|2 + 2|E+|2)E− + Ssp

+ nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F−(Et, z, t) ,

(5.46b)
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where k′′ is the group velocity dispersion, α is the linear loss coefficient, αS, βS are the

third order nonlinear coefficients for two-photon absorption and Kerr effect, respec-

tively, and Ssp is the spontaneous emission noise. This spontaneous emission term

Ssp is derived more phenomenologically and is related to the number of free carriers

able to radiatively recombine. The traveling wave equations in Equations 5.46 are

coupled to the rate equations given by

∂ρe,hsch
∂t

=
ηJin

qNc,v,schhsch
(1− ρsch)−

ρe,hsch
τsp

+ nqw
∑
Et

[
ρe,hqw,Et

τ e,he
(1− ρe,hsch)−

ρe,hsch
τ e,hc

(1− ρe,hqw,Et)

]
(5.47a)

∂ρe,hqw,Et
∂t

=
Nc,v,schhsch
nqwNr,qwhqw

(
ρe,hsch
τ e,hc

(1− ρe,hqw,Et)−
ρe,hqw,Et

τ e,he
(1− ρe,hsch)

)
−
ρe,hqw,Et
τsp

−Rst .

(5.47b)

Equations 5.47 must be solved simultaneously with Equations 5.46 to calculate all

carrier dynamics and laser dynamics in a quantum well laser diode. Typical values

for all material parameters in these equations are given in Table 5.1.

The spontaneous emission term is found by following the approach in [61] in which

the power spectrum follows the quantum well gain spectrum.

|Ssp∆z|2 =
∑
modes

# carriers

τsp
× photon energy× coupling factor

=
∑
modes

nqw
Nr,qwhqwW∆z

2πτsp
ρeqw,Etρ

h
qw,Et~ωβsp

Ssp ≈
∑
Et

√
nqwNr,qwhqwWβsp~ωρeqw,Etρ

h
qw,Et

2πτsp∆z
Fsp(Et) (5.48)

Fsp(Et) = Γ

∫ t

−∞
dt′e−i(

Et
~ −ω0)(t−t′)−Γ(t−t′)eiφ(z,t′,Et) (5.49)

Here, φ(z, t, Et) is a random phase value between 0 and 2π, ∆z = c∆t/n0 is the

75



spatial discretization size, and βsp is the spontaneous emission coupling factor.

Parameter Description Value
L Length of device 500 µm
W Width of waveguide 4 µm
hsch Height of SCH layer 50 nm
hqw Height of quantum well 5 nm
ng Group refractive index 3.5
nqw Number of quantum wells 2
α Intrinsic waveguide loss 5 cm−1

Γxy Optical confinement factor 0.01
αS Two-photon absorption 2750 W−1m−1

βS Kerr coefficient 430 W−1m−1

k′′ Group velocity dispersion 1.25 ps2/m
~ω0 Central transition energy 800 meV
|ê · p|2 Momentum matrix element 21 meV ×m0/6 [66]

Γ Homogenous half linewidth 10 meV/~
m∗e,h,sch Effective mass of electrons, holes in the SCH layer 0.07m0, 0.55m0

m∗e,h,qw Effective mass of electrons, holes, in the InGaAsP QW 0.067m0, 0.45m0

τ e,h,qwc electron, hole capture time 1, 10 ps
δEc Conduction band quantum well barrier 50 meV
δEv Valence band quantum well barrier 75 meV
βsp Spontaneous emission coupling factor 1× 10−4

τsp Spontaneous emission lifetime 1 ns

Table 5.1: Typical parameters for an InGaAsP quantum well with photoluminescence
at 1.5 µm.

5.6 Numerical simulation of a quantum well semiconductor

laser

Now we have all the pieces to numerically calculate the quantum well laser dynam-

ics using parameters in Table 5.1. We numerically solve Equations 5.47, 5.46 using a

simple first order Euler stepper along characteristics for both the carrier and electric

field equations. We note that this is a step down from the SBS solution methods

(fourth order collocation and fifth order predictor-corrector) which were much higher

order, as the equations we solve here are extremely complex. Derivative evaluations
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are expensive here, so we opted for the time saving Euler’s method. For future work,

it is possible to implement a higher order scheme.

In order to solve all the discretized quantum well population equations, we specify

a few more values. We define a maximum transverse energy max(Et) = 50 meV,

roughly corresponding to the quantum well electron barrier height. The idea is to

include enough carrier groups until they become insignificant to the gain or until

they can no longer be confined in the quantum well. For the energy spacing, we

choose ∆Et = 2meV, which is small relative to the homogeneous linewidth 2Γ - this

allows multiple Lorentzians to overlap in calculating the inhomogeneous gain. All

calculations are done at room temperature T = 300K.

For our first study, we simulate an InGaAsP quantum well laser as a semiconductor

optical amplifier operating at 1.5 µm to make sure the expected carrier dynamics are

properly calculated. In this case, we pump the laser diode with ηIin = 10 mA with no

reflections at the boundaries. Then, once the carriers are pumped, we send in a pulse

to be amplified. Two pulses of similar total energies are sent through the amplifier,

one with pulse width 5 ps and the other 0.5 ps. The amplified pulse magnitude and

phase are plotted in Figure 5.4

We note that, as expected from past experiments [51], the length of the input pulse

has large effects on the carrier dynamics and can induce unwanted phase effects in

the amplified pulse. The short pulse has a cubic phase which stems from partial gain

recovery from carrier cooling, which in our model involves carriers quickly refilling

from the SCH layer. The capture time is 1 ps, so only pulses shorter than this time

will appreciably see this effect. For the case of the long pulse, the process is much

more adiabatic and the carrier population simply follows the shape of the pulse giving

a simpler quadratic phase that is easy to compensate. The population levels in the

laser cavity as these two pulses pass through is shown in Figure 5.5. As we discussed

before, the short pulse population has much a steeper depletion and partial recovery,
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Figure 5.4: The results of sending in a transform limited or unchirped Gaussian pulse
through a single pass of the laser cavity. The amplified pulse shape and
phase are plotted for a) a 0.5 ps pulse b) a 5 ps pulse.

while the long pulse decreases mostly adiabatically. It is precisely these phase effects,

resulting from fast carrier dynamics, that have made mode-locking in laser diodes

difficult in the past. Our simulation is able to accurately reproduce these effects, so

we can be confident of the robustness of any predicted mode-locking from our model.
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Moving on from semiconductor optical amplifiers, we now run a numerical study

on a ridge waveguide laser diode with an InGaAsP quantum well with a central

photoluminescence (PL) wavelength of 1.5µm. The laser cavity is a simple Fabry-

Perot cavity with facet reflecting mirrors, with reflection coefficient |r|2 = 0.32. This

time, there are no external input fields but the laser is started from noise with an DC

injection current of ηIin = 25 mA. The temporal output and spectrum are plotted

in Figure 5.6. The resulting spectrum has important physical characteristics - it is a

single mode with CW temporal output after initial relaxation oscillations.

The nature of single mode operation can be understood in terms of gain competi-

tion [68]. In semiconductor lasers and certain gas lasers, the homogeneous linewidth

2Γ ≈ 5 THz is much larger than the cavity mode spacing (νfsr ≈ 50) GHz, meaning

all cavity modes are competing for the same gain to lase. For such strong gain com-

petition, only a single mode will emerge in steady state as once this mode reaches

threshold, the gain is capped at threshold gain due to carrier depletion from stimu-

lated emission. In Figure 5.7 the carrier dynamics are shown. Initially, the carriers
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Figure 5.6: a) the temporal output of the InGaAsP quantum well laser.The output
operates in a single mode after some initial relaxation oscillations b) the
spectrum of the above output which shows predominantly a single mode,
with some side bands many decades below the peak mode.

fill up very quickly, but within 1 ns the laser reaches threshold the populations start

to deplete. We note that the electrons in the SCH and quantum well layer deplete

to a lower level, but the holes actually continue to fill until they reach a steady state
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Figure 5.7: Plot of the temporal dynamics of the carriers in the SCH and QW regions.
The populations settle into a steady state value after the initial pumping
and then depletion from lasing.

value that is much larger than that of electrons. This interesting feature is due to

the unusual splitting of the conduction and valence band offsets [69] in InGaAsP /

InP heterojunctions. Of the total bandgap difference between InGaAsP and InP, ap-
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Such behavior is typical for a single mode laser.

proximately 40% is in the conduction band offset, while 60% is in the valence band.

This means that holes have a much larger barrier height to overcome, meaning they

are trapped much more efficiently than electrons and hence the charge build-up seen

in Figure 5.7. This is in contrast to GaAs / AlGaAs heterojunctions in which the

conduction band sees 2/3 of the bandgap difference while the valence band only sees

1/3 [70].

5.7 Conclusion

To conclude, we have successfully derived a model for quantum well laser diodes

that incorporates inhomogeneous broadening, carrier induced refractive index shift,

third order nonlinearities, second order dispersion, and fast carrier dynamics. The car-

rier dynamics of each inhomogeneous group is solved separately, all coupled through

the interaction with carriers in the bulk SCH layer. Each of the carrier groups con-
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tributes a complex Lorentzian gain lineshape that accounts for refractive index shifts,

and the total gain is calculated by integrating all of these carriers weighted by the 2D

density of states. The model accurately replicates pulse amplification and calculates

a quantum well laser with a single mode. However, the output is not yet a comb, and

we take a look at how to generate one in the next chapter.
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CHAPTER VI

Spatial Hole Burning and Frequency Comb

Generation in Quantum Wells

While we have successfully derived and implemented a model for quantum well

laser diodes, we find that the output of the laser is not actually a frequency comb,

whether an FM comb or a mode-locked laser. Because there is no saturable absorber

in our model (our laser is single-section), the single mode laser we found is expected as

there is nothing driving mode-locking. However, there are additional physical effects

such as spatial hole burning (SHB) which we did not yet include. As we shall see,

the inclusion of standing waves inside the cavity, which generate carrier gratings or

SHB, is vitally important to comb generation.

6.1 Modeling spatial hole burning in quantum well laser diodes

SHB occurs when there is a significant standing wave inside the laser cavity. When

the forward and backward waves interfere, an intensity pattern is created with half the

optical wavelength inside the cavity. This standing wave pattern has intensity peaks

and minima, which in turn affects the rate of stimulated emission (as seen in Rst,

Equation 5.30). This allows some parts of the cavity to see no electric field, retaining

the carriers and gain in those sections. This unused gain can then be utilized by other,
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Figure 6.1: A diagram of SHB inside a Fabry-Perot cavity. The forward and backward
waves create a standing wave pattern which does not deplete the gain
uniformly inside the cavity.

adjacent cavity modes to reach threshold and lase simultaneously to the central mode.

This multimode operation of the laser diode is vital to the generation of frequency

combs. A schematic of SHB is shown in Figure 6.1.

However, we do have to be careful that carrier diffusion in our gain medium does

not wash out the standing wave grating. In other words, the diffusion of carriers from

the low intensity parts of the standing wave to the high intensity parts, and then

recombining will still deplete carriers and gain at the intensity minima. Therefore,

strong carrier diffusion and short operating wavelengths mitigate the effects of the

unused gain. In this chapter, we focus on the InGaAsP quantum well operating at 1.5

µm wavelength, which has a strong enough SHB effect for multimode lasing. A more

in-depth analysis of SHB in various quantum well systems is investigated in Chapter

VII.

To model SHB, we look at several other quantum well models in the literature that

have varying degree of complexity. They range from simple rate equations [71, 72]

to more complicated models with multiple rate equations [73, 74, 75, 76, 77, 78, 79].

In particular, SHB modeling in papers such as [71, 80, 81] use an explicit grating
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equation, while other papers use a more phenomenological approach with adjustable

parameters such as gain compression [61, 60, 82]. Because we need to carefully in-

corporate the diffusion effects into our system, we choose to use the more rigorous

process of expanding the carrier populations in space and keeping the diffusion term

to account for spatial gratings. This allows us to modify our current quantum well

gain theory and also incorporating diffusion effects.

We add the effects of SHB to our current theory as follows. We start by modifying

Equation 5.47b to include a diffusion term in the quantum well rate equations

∂ρe,hqw,Et
∂t

=
Nc,v,schhsch
nqwNr,qwhqw

(
ρe,hsch
τ e,hc

(1− ρe,hqw,Et)−
ρe,hqw,Et

τ e,he
(1− ρe,hsch)

)

−
ρe,hqw,Et
τsp

−Rst −D
∂2ρe,h

∂z2
,

(6.1)

where D is the ambipolar diffusion coefficient in units of cm2/s. If we were to nu-

merically calculate this term directly, we would need a spatial discretization of much

less than a wavelength which is something we want to avoid. We can get around this

by defining a separate variable for the grating terms by expanding the quantum well

population to the first even harmonic in z

ρe,hqw,Et → ρe,hqw,Et + ρg,Ete
i2k0z + ρ∗g,Ete

−i2k0z , (6.2)

where k0 = ngω0/c. In this expansion, we have made a few simplifying assumptions:

we drop all higher order grating terms and we write only a single grating equation for

both electrons and holes. The source for the grating is evaluated from the stimulated

emission term in the rate equations, which contains the product:

Re(E∗F ) = Re(E∗+F+ + E∗−F−) +
1

2
(E∗+F− + F ∗+E−)ei2k0z +

1

2
(E+F

∗
− + F+E

∗
−)e−i2k0z

Under this formulation, we can separate the quantum well rate equation into two
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equations, one for the carrier population and one for the grating, by matching the

spatial phases on the LHS to the RHS of Equation 6.1

∂ρe,hqw,Et
∂t

= ...− 8g0
∆Et

(~ω0)2hqwWNr,qw

×
[
Re(E∗+F+ + E∗−F−)(ρeqw,Et + ρhqw,Et − 1)

+ (E+F
∗
− + F+E

∗
−)ρg,Et + (E∗+F− + F ∗+E−)ρ∗g,Et

]
(6.3)

∂ρg,Et
∂t

= −4k2
0Dρg,Et − 8g0

∆Et
(~ω0)2hqwWNr,qw

×
[

1

2
(E∗+F− + F ∗+E−)(ρeqw,Et + ρhqw,Et − 1) + 2Re(E∗+F+ + E∗−F−)ρg,Et

]
.

(6.4)

We define another rate constant as the photon-grating interaction

Rg = 8g0
∆Et

(~ω0)2hqwWNr,qw

(
(E+F

∗
− + F+E

∗
−)ρg,Et + (E∗+F− + F ∗+E−)ρ∗g,Et

)
. (6.5)

Combining the new terms in the population and grating equations together, we obtain

∂ρe,hsch
∂t

=
ηJin

qNc,v,schhsch
(1− ρe,hsch)−

ρe,hsch
τsp

+ nqw
∑
Et

[
ρe,hqw,Et

(1− ρe,hsch)
τ e,he

− ρe,hsch
(1− ρe,hqw,Et)

τ e,hc

]
(6.6a)

∂ρe,hqw,Et
∂t

=
hschNc,v,sch

nqwhqwNr,qw

(
ρe,hsch

(1− ρe,hqw,Et)
τ e,hc

− ρe,hqw,Et
(1− ρe,hsch)

τ e,he

)
−
ρe,hqw,Et
τsp

−Rst −Rg

(6.6b)
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∂ρg,Et
∂t

= −ρg,Et
τsp
− 4k2

0Dρg,Et − 8g0
∆Et

(~ω0)2hqwWNr,qw

×
[

1

2
(E∗+F− + F ∗+E−)(ρeqw + ρhqw − 1) + 2Re(E∗+F+ + E∗−F−)ρg,Et

]
.

(6.6c)

For modifications to the traveling wave equations, we similarly phase match the

RHS to the LHS of Equations 5.46 to obtain a coupling between the forward and

backward waves through the carrier grating term

∂E+

∂z
+
ng
c

∂E+

∂t
+ i

k′′

2

∂2E+

∂t2
= −α

2
E+ − (

αS
2

+ iβS)(|E+|2 + 2|E−|2)E+ + Ssp

+ nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F+(Et, z, t)

+ nqwg0

∫
dEt
~ω0

ρg,EtF−(Et, z, t)

(6.7a)

−∂E−
∂z

+
ng
c

∂E−
∂t

+ i
k′′

2

∂2E−
∂t2

= −α
2
E− − (

αS
2

+ iβS)(|E−|2 + 2|E+|2)E− + Ssp

+ nqwg0

∫
dEt
~ω0

(ρeqw,Et + ρhqw,Et − 1)F−(Et, z, t)

+ nqwg0

∫
dEt
~ω0

ρ∗g,EtF+(Et, z, t) .

(6.7b)

Equations 6.7 coupled with the rate equations 6.6 form the basis of our model with

SHB included. These equations are significantly more complex than the model pre-

sented in Chapter V, as they introduce an additional grating equation for every carrier

energy bin. However, the numerical methods used to solve the previous model still

apply to solving these equations.
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6.2 Calculating frequency modulated comb generation

We simulate the laser cavity once more with the effect of SHB. The parameters

are the same as those in Table 5.1 with the addition of D = 7.2 cm2/s, a measured

value in InGaAsP quantum wells [83].

We calculate the same Fabry-Perot laser as before, starting from noise, and moni-

tor the output. The results are plotted in Figure 6.2. The power output and spectrum

qualitatively replicate the experimental results for a single-section laser diode found in

experiments [55, 54], with a significant number of strong comb lines spanning about

30 nm in bandwidth (or about 3 THz) with a mode spacing of νfsr = 85.7 GHz.

The laser reaches steady state at about t = 100 ns, before which there are irregular

oscillations in the power output. After steady state, however, the waveform remains

periodic and is coherent over a long timespan. We note that the output also does not

consist of a train of short pulses as is typical for a mode-locked laser, but rather a

periodic modulation of the intensity and phase to generate the comb spectrum. Plots

of the output power and instantaneous frequency in Figure 6.2a,c show the periodic

nature of the amplitude and phase, with both of them being swept in time. The

instantaneous frequency is being swept across a large range of about 5 THz and has

a triangular, almost saw-tooth like shape. The chirp of the laser output is linearly

decreasing until it jumps back up and then repeats at the round trip cavity time.

This frequency sweep is the signature feature of an FM signal.

The results in Figure 6.2 are in stark contrast to Figure 5.6. The carrier grating

which induces the SHB effect is a major mechanism for the generation of multiple

Fabry-Perot modes. This is consistent with previous work [61, 60] which modeled

SHB in quantum dot laser diodes. Without an effect like SHB which reduces the gain

competition between modes, we would only get a single mode laser, but now we are

able to achieve multimode lasing without the need of active modulation or saturable

absorbers.
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Figure 6.2: a) The temporal output of the single-section quantum well device at
ηIin = 25 mA with a zoomed inset to show the detailed dynamics. The
output is quasi-CW except for a short burst that repeats every round trip.
A steady state is reached for t > 110 ns b) The power spectral density of
the last 100 ns of the temporal output in log scale showing a broad comb
c) the instantaneous frequency of the laser output, which is also sweeping
periodically, showing the FM nature of the comb.

To show that the modes in the comb we calculated are indeed phase coherent with

one another, we perform some phase calculations in frequency domain. If we apply a

spectral filter in frequency domain in the form of a quadratic phase

Ẽcomp(z, ω) = e−iGDDω2

Ẽ(z, ω) (6.8)

where Ẽ(z, ω) is the Fourier transform of E+(z, t) and GDD is the group delay dis-

persion, we can compensate for the quadratic phase in our output and realign all
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Figure 6.3: a) the power spectral density in linear scale along with the spectral phase
b) The spectrum is compensated for dispersion and inverse Fourier trans-
formed to produce a series of short pulses separated by the cavity round
trip time. The group delay dispersion (GDD) is calculated to be 0.41 ps2.

modes to precisely the same phase value. To find the approximate spectral phase,

we sweep the GDD until we find the value that most coherently transforms the time

domain signal into a series of pulses. This GDD is inserted as the approximate phase

and plotted (along with the power spectral density) in linear scale in Figure 6.3a. We
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apply this phase compensation at the optimum GDD and inverse Fourier transform

the signal to show that the time-domain output power has transformed into a series

of short pulses as seen in Figure 6.3b with pulse width of about 390 fs. The original

field is plotted for comparison.

This demonstrates that our FM, quasi-CW power output has modes that are all

phase-locked but not necessarily all at the same phase value. This explains why

the modes do not all constructively interfere at one point in time. However, if we

compensate for this phase, either numerically as we have done here or experimentally

by propagating the FM signal through an anomalous dispersion material [55, 84], we

are able to obtain a series of short pulses.

During our simulations, we find that the third order nonlinearities (two-photon ab-

sorption and Kerr effect) do not play a significant role in frequency comb generation,

likely due to the fact our laser output is quasi-CW instead of pulses. Two-photon ab-

sorption does appear to help stabilize our numerical stepping scheme due to increased

losses in the cavity, but the Kerr effect has almost no effect at all. The physics of

why exactly the laser diode would behave this way, with only a single section and no

saturable absorber, is explored in Chapter VII.

6.3 Conclusion

Our results in this chapter show that FM comb generation directly from a laser

diode is possible. The frequency comb has phase-locked modes with a quadratic spec-

tral phase that can be compensated to form a series of short pulses with a bandwidth

of about 1-3 THz. This FM solution allows us to avoid some of the detrimental phase

effects stemming from carrier dynamics, as seen in the pulse amplification calcula-

tions. Ultimately, the great advantage of these laser diodes is that they can be easily

used, cheaply produced, and embedded into various electronics, as they only require a

power supply and no additional optical components. This technology will be a major
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step in bringing the advantages of frequency combs outside the laboratory.
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CHAPTER VII

Physics of Frequency Modulated Comb

Generation in Laser Diodes

With the completion of our full theoretical model that can predict and replicate

the generation of FM combs from laser diodes in experiments, we now delve a bit

deeper into the physics of frequency comb generation in quantum well laser diodes.

On the surface, it is not quite clear why the inclusion of SHB would generate

a frequency comb, let alone an FM comb. This question has been investigated in

quantum dot and QC systems [60, 85, 62, 63]. In [60], modeling QD and quantum dash

lasers, the authors used an additional gain compression term to model SHB which also

gave rise to multimode operation, as we saw in our model. The authors also mention

that the large inhomogeneous gain broadening provided by the quantum dot gain

medium is also essential, making great effort to properly model the inhomogeneous

distribution of quantum dots. In other QD papers [86, 87], additional physical effects

are also mentioned as important in affecting comb generation, including four-wave

mixing (FWM), Kerr nonlinearities, and group velocity dispersion (GVD). In QC

systems, previous works [62, 63] place significant focus on the effect of the short

upper state population lifetime for intraband transitions (∼ 1 ps in QC lasers), which

are typically much shorter than interband transitions (∼ 1 ns, as is the case in our

lasers). The short gain recovery in QC lasers naturally favors the FM mode-locked
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state as opposed to the traditional mode-locking that generates a pulse train.

In this chapter, we study the physics in quantum well systems to answer the ques-

tion of how an FM comb is generated in a single-section laser diode. We attempt to

isolate the essential physical mechanisms and find the most important effects without

the large amount of microscopic details already in our full model. We also apply some

of our findings on quantum wells to QD and QC systems, making some important

comparisons of the physical characteristics of each system.

7.1 Background

From the modeling results so far, we can hypothesize that we require at least two

physical effects for comb generation: a mechanism for multimode operation and a

mechanism for locking the phases together. Typically, either inhomogeneous broad-

ening or SHB can lead to multimode lasing [68]. It is clear from the preceding chapters

that SHB is essential for multimode operation, especially in our semiconductor cav-

ities in which the homogeneous linewidth is large relative to the free spectral range

(FSR) of the cavity. Because of gain competition, the laser operates mostly in single

mode unless we have SHB. The effects of SHB have been investigated in past works

such as [71, 75]. where SHB is clearly linked to multimode operation. Once we have

multimode lasing, however, the modes still need to be locked together. For this, we

find gain-mediated four-wave mixing (FWM) as the most likely candidate responsible

for phase locking. In semiconductor lasers, the FWM arises from either intraband

population pulsations or interband population fluctuations which nonlinearly couples

the adjacent cavity modes [88] through the gain term, thus locking their phases to-

gether. This is not the same as the third order nonlinearity responsible for FWM

in many other media such as fibers and crystals [13, 15]. This distinction becomes

quite important as they affect laser operation in different ways - the most important

of which is that the phase locking requires the different optical modes to share the
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same group of carriers for gain and phase modulation via FWM. In other words, a

laser emitting multiple frequencies with only inhomogeneous broadening for multi-

mode lasing will, by definition, not share common carriers between its optical modes.

Such a laser would not be phase coherent, as it does not have the FWM component.

There have been many experimental and theoretical papers documenting FWM in

bulk and quantum well semiconductor optical amplifiers (SOAs) and lasers [89, 90].

In particular, [90] shows significant FWM efficiency in SOAs even up to detunings

of 10 nm or about 1 THz at the 1550 nm operating point. This detuning is already

much larger than the normal FSR of a typical semiconductor diode laser, which has

longitudinal mode spacings of 10 GHz - 100 GHz. This suggests that FWM should be

significant in QW lasers. Indeed, it has been shown that FWM is responsible for the

passive mode locking that leads to self-pulsations in quantum well distributed Bragg

reflector (DBR) lasers [91]. On the other hand, SHB is typically discarded [88, 92, 93]

as the carrier diffusion length in quantum wells (∼ 2 - 3 µm) is very long relative to the

half wavelength inside the cavity, smearing out the spatial carrier grating. However,

the calculation of these diffusion lengths relies on the optical cavity being empty of

light or mostly empty in the case of pulsed inputs. So while the diffusion length is very

long during diffusion measurements in which pump-probe pulses are used [94], the

diffusion length can be shortened considerably when light is always present inside the

cavity. We find that in the case of a free running Fabry-Perot laser operating under

a quasi-CW state, the carrier lifetime is significantly shortened due to the continuous

presence of stimulated emission [95]. Such a difference not only reduces the diffusion

length and leads to SHB effects, but the shortening of the lifetime also aids in the

FWM process. The shorter carrier lifetime modifies our interband laser to be more

similar to the QC case.
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7.2 Derivation of Simplified Model

We illustrate these ideas by taking our full model and reducing it to gain some

insight into the physics. The goal is to find a reduced set of equations in which

analytic solutions can be found and physical effects clearly discerned.

We first simplify the carrier equations. The SCH population equation is removed,

thus ignoring carrier capture and escape dynamics. Carrier injection is now directly

incorporated into the quantum well population equations. However, instead of mul-

tiple carrier equations to model inhomogeneous broadening, we simplify the carrier

groups into just one group centered at the band edge. In doing this, the quantum well

carriers no longer have a dependence upon the transverse energy Et. This, in essence,

ignores the effects of inhomogeneous broadening and assumes only a homogenous

group of carriers with a Lorentzian gain distribution. In addition, we revert back to

a pure two-level system in which ρqw = ρeqw = ρhqw, thus having to model only one of

the carrier types. However, we retain the effects of SHB by keeping the grating term.

Under these simplifications, Equations 6.6 become

∂ρqw
∂t

=
ηIin
qNqw

(1− ρqw)− ρqw
τsp
−R(2ρqw − 1)Re(E∗+F+ + E∗−F−) (7.1a)

dρg
dt

= − ρg
τsp
− 4k2

0Dρg −R
[

1

2
(E∗+F− + F ∗+E−)(2ρqw − 1) + 2Re(E∗+F+ + E∗−F−)ρg

]
,

(7.1b)

where

Nqw = D2D
r × (~Γ)×WLhqw (7.2)

is the number density of states, D2D
r is the traditional, reduced 2-D density of states,
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and

R =
8gL

~ω0Nqw

(7.3)

is the simplified recombination coefficient. The new gain coefficient is related to g0

via

g =
~Γ

~ω0

g0 . (7.4)

We note that instead of the single carrier group put in an energy bin of width ∆Et,

we expand this width to be ~Γ in order to capture gain from the entire homogeneous

bandwidth. The filtered field F± still retains its original form, albeit no longer with

an Et dependence

F± = Γ

∫ t

−∞
dt′e−Γ(t−t′)E±(z, t′) . (7.5)

The traveling wave equations are now simplified as well, as we remove the terms

related to third-order nonlinearity and second order dispersion. We retain the linear

loss and noise terms and write the traveling waves as

∂E+

∂z
+

1

vg

∂E+

∂t
=− α

2
E+ + g [(2ρqw − 1)F+ + 2ρgF−] + S̃sp (7.6a)

−∂E−
∂z

+
1

vg

∂E−
∂t

=− α

2
E− + g

[
(2ρqw − 1)F− + 2ρ∗gF+

]
+ S̃sp . (7.6b)

Equations 7.1 and 7.6 contain the physical effects of FWM via population pulsa-

tions in ρqw and the physical effects of SHB via the presence of ρg. We do note that,

while the other physical effects we discarded including chromatic and waveguide dis-

persion, Kerr nonlinearities, and inhomogeneous gain broadening are certainly very

important and can greatly affect comb performance, we ignore them here to demon-
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strate that they are not essential for FM comb formation. This clarifies not only

clarifies the essentials, but also allows us to focus in-depth on the important physical

effects of FWM and SHB. Equations 7.1, 7.6 may look much simpler than those in

the full model, but finding analytic solutions is still far from easy.

7.3 Effects of four-wave mixing

To start analyzing the physics, we first take a look at the effects of FWM. For this,

we assume that the grating term is zero and ignore it for now. We ask the question,

”what effect does FWM have on a single mode laser?” We use perturbation theory

to analyze the growth of adjacent cavity modes in a laser operating in single mode in

the presence of FWM. The simplified equations without the grating term become

∂ρqw
∂t

=
ηIin
qNqw

(1− ρqw)− ρqw
τsp
−R(2ρqw − 1)Re(E∗+F+ + E∗−F−) (7.7)

∂E+

∂z
+

1

vg

∂E+

∂t
=− α

2
E+ + g(2ρqw − 1)F+ + S̃sp (7.8a)

−∂E−
∂z

+
1

vg

∂E−
∂t

=− α

2
E− + g(2ρqw − 1)F− + S̃sp . (7.8b)

We assume that the electric field is operating in a single mode at optical frequency ω0

and only strongly interacts with the nearest adjacent cavity modes. Thus the forward

and backward electric fields can be written as

E+ = A0 + A1e
iωst + A−1e

−iωst (7.9a)

E− = B0 +B1e
iωst +B−1e

−iωst , (7.9b)
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where An is the nth forward mode envelope, and Bn is the nth backward mode

envelope. The cavity spacing or FSR is given by νfsr = ωs/2π.

Our perturbation approach is as follows: we first assume the laser is only in single

mode, with envelopes A±1 and B±1 being zero and only A0 and B0 being nonzero;

then we solve for a steady state solution for the field and the carriers in the single

mode state; lastly we take a look at the growth and behavior of the side modes A±1,

B±1 as a perturbation to the aforementioned steady state, single mode solution. Using

this approach, we extract the effects of FWM on our system. This approach has some

resemblance to the gain competition modeling in Siegman’s Lasers [68].

Solving for a steady state, the filtered field (Equation 7.5) becomes simply F+ =

A0, F− = B0, and the rate equations simplify to

ρ0 =τcw
ηIin
qNqw

+ τcwR(|A0|2 + |B0|2) (7.10)

τcw =

[
ηIin
qNqw

+
1

τsp
+ 2R(|A0|2 + |B0|2)

]−1

, (7.11)

where we have defined the dc carrier lifetime as τcw. We note right away that if there

is a significant amount of light, or if the terms |A0|2 or |B0|2 become large, τcw can be

significantly reduced from its dark cavity value of τsp. Inserting Equation 7.10 into

the traveling wave equation (Equation 7.8), we obtain

dA0

dz
=− α

2
A0 +

geff
2
A0 (7.12a)

−dB0

dz
=− α

2
B0 +

geff
2
B0 , (7.12b)
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where the effective gain is written

geff = g

[
2τcw

ηIin
qNqw

+ 2τcwR(|A0|2 + |B0|2)− 1

]
. (7.13)

Equations 7.12 can be solved by introducing an auxiliary variable θ [96] such that

dθ

dz
= −α

2
+
geff

2
. (7.14)

Substituting this into Equations 7.12, we obtain a much simpler set of equations

dA0

dθ
= A0 (7.15)

−dB0

dθ
= B0 . (7.16)

The solution is a straightforward integration with respect to θ and yields

A0 = C1e
∫
dz′ dθ

dz′

B0 = C2e
−

∫
dz′ dθ

dz′ ,

and converting back to our original variables,

A0 = C1 exp

(
−αz

2
+

1

2

∫ z

0

dz′geff

)
(7.17a)

B0 = C2 exp

(
αz

2
− 1

2

∫ z

0

dz′geff

)
. (7.17b)

Here, C1 and C2 are arbitrary integration constants. To complete the solution, we ap-

ply the two reflective boundary conditions, A0(0) =
√
rB0(0) and B0(L) =

√
rA0(L),

where r is the power reflection coefficient. This results in an expression for the effec-
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tive gain in steady state.

1

L

∫ L

0

dzgeff = α +
1

2L
ln(1/r2) = gth (7.18)

Here is our first major result - we see that the total, round trip integrated gain of the

cavity is equal to the threshold gain in steady state. The fact that the laser gain is

clamped to threshold is a well known feature of CW lasers. This is important in our

subsequent stability analysis, as it suggests the side cavity modes will have difficulty

achieving lasing threshold due to this gain clamping. Conceivably, one can solve for

the total power inside the cavity with a given input pump Iin via Equation 7.18 and

then subsequently relate that to the constants C1 and C2 to obtain a formal solution

for the central cavity mode. However, because the effects of FWM are not dependent

upon the values of C1 and C2, we leave it as an exercise to the reader.

Now consider the behavior of the side modes, A±1 and B±1, in the presence of

A0 and B0. Because we assume the effects of the side modes are perturbative, at

least initially, we only keep terms that are linear in these side mode amplitudes.

However, the central mode, A0, B0, is significant so we retain nonlinearities associated

with them. The perturbative approach is useful as the initial growth or decay of

the side modes will determine the stability of single mode operation. We modify

the population term to include a time harmonic exponential to represent population

pulsations, as given by

ρqw = ρ0 + ρ1e
iωst + ρ∗1e

−iωst . (7.19)

The filtered field is also modified to include the side modes and the convolution
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integral can be expanded as such

F+ = Γ

∫ t

−∞
dt′e−Γ(t−t′)(A0 + A1e

iωst + A−1e
−iωst)

F− = Γ

∫ t

−∞
dt′e−Γ(t−t′)(B0 +B1e

iωst +B−1e
−iωst) ,

and assuming, again, that the envelopes are very slowly varying compared to the

exponential decay, the integral is evaluated to be

F+ = c∗sA−1e
−iωst + A0 + csA1e

iωst (7.20a)

F− = c∗sB−1e
−iωst +B0 + csB1e

iωst . (7.20b)

The constant cs comes from the integration and defined as

cs =
1

1 + iωs/Γ
. (7.21)

Using these definitions, an equation for the time varying population term describing

population pulsations is found to be

∂ρ1

∂t
+ iωsρ1 =− ρ1

τsp
− 2R(|A0|2 + |B0|2)ρ1

−R(2ρ0 − 1)
cs + 1

2

(
A∗0A1 + A0A

∗
−1 +B∗0B1 +B0B

∗
−1

)
,

(7.22)

whose steady state solution is easily calculated

ρ1 = −Rτac(2ρ0 − 1)
cs + 1

2

(
A∗0A1 + A0A

∗
−1 +B∗0B1 +B0B

∗
−1

)
. (7.23)

The lifetime for these pulsations is defined as

τp =

[
1

τsp
+ iωs + 2R(|A0|2 + |B0|2)

]−1

. (7.24)
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The steady state electric field equations for the side modes can be found by substitut-

ing Equations 7.23, 7.27, and 7.9 into Equations 7.6, assuming still that the grating

term ρg is zero. The four side mode equations are obtained

dA1

dz
=− α

2
A1 +

geff
2
csA1

− g2

(
|A0|2A1 + A2

0A
∗
−1 + A0B

∗
0B1e

2i∆k + A0B0B
∗
−1e

2i∆k
) (7.25a)

dA−1

dz
=− α

2
A−1 +

geff
2
c∗sA−1

− g∗2
(
|A0|2A−1 + A2

0A
∗
1 +B0A0B

∗
1e
−2i∆k +B∗0A0B−1e

−2i∆k
) (7.25b)

−dB1

dz
=− α

2
B1 +

geff
2
csB1

− g2

(
|B0|2B1 +B2

0B
∗
−1 +B0A

∗
0A1e

−2i∆k +B0A0A
∗
−1e
−2i∆k

) (7.25c)

−dB−1

dz
=− α

2
B−1 +

geff
2
c∗sB−1

− g∗2
(
|B0|2B−1 +B2

0B
∗
1 +B0A0A

∗
1e

2i∆k +B0A
∗
0A−1e

2i∆k
) (7.25d)

where ∆k is the difference in the propagation vectors between the central and side

modes. We also introduce a gain saturation

g2 = gR(2ρ0 − 1)τp
cs + 1

2
(7.26)

We can make a an additional simplification by noting that, because it is typical that

ωs << Γ as we mentioned before in semiconductor lasers, we take cs ≈ 1. Thus the
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filtered field is simply the sum of the three modes

F+ = A−1e
−iωst + A0 + A1e

iωst (7.27a)

F− = B−1e
−iωst +B0 +B1e

iωst , (7.27b)

and the wave equations simplify to

dA1

dz
=− α

2
A1 +

geff
2
A1

− g2

(
|A0|2A1 + A2

0A
∗
−1 + A0B

∗
0B1e

2i∆k + A0B0B
∗
−1e

2i∆k
) (7.28a)

dA−1

dz
=− α

2
A−1 +

geff
2
A−1

− g2

(
|A0|2A−1 + A2

0A
∗
1 +B0A0B

∗
1e
−2i∆k +B∗0A0B−1e

−2i∆k
) (7.28b)

−dB1

dz
=− α

2
B1 +

geff
2
B1

− g2

(
|B0|2B1 +B2

0B
∗
−1 +B0A

∗
0A1e

−2i∆k +B0A0A
∗
−1e
−2i∆k

) (7.28c)

−dB−1

dz
=− α

2
B−1 +

geff
2
B−1

− g2

(
|B0|2B−1 +B2

0B
∗
1 +B0A0A

∗
1e

2i∆k +B0A
∗
0A−1e

2i∆k
)
.

(7.28d)

Equations 7.28 form the basis of investigating FWM. We can transform them

into an eigenvalue equation by assuming that, based on our single mode analysis,

the effective gain is equal to the threshold gain, meaning there is no net gain or loss

inside the cavity. We can therefore ignore the gain and loss terms. Moreover, we

can further simplify by ignoring the spatially phase mismatched terms, decoupling

the forward and backward waves and writing separate equations for the forward and
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backward waves. We also explicitly write the center mode in terms of magnitude and

phase, A0 = |A0|eiψ
+
0 , B0 = |B0|eiψ

−
0 , as the phase relation between the modes will be

important. This transforms the forward and backward side mode equations to be

dA1

dz
=− g2|A0|2

(
A1 + A∗−1e

2iψ+
0

)
(7.29a)

dA∗−1

dz
=− g2|A0|2

(
A∗−1 + A1e

−2iψ+
0

)
(7.29b)

dB1

dz
=g2|B0|2

(
B1 +B∗−1e

2iψ−0

)
(7.29c)

dB∗−1

dz
=g2|B0|2

(
B∗−1 +B1e

−2iψ−0

)
. (7.29d)

At last, we have a highly simplified set of equations that describe the major effects of

population pulsations caused by the interference of two adjacent electric field cavity

modes. The first effect, as seen in the first term in Equations 7.29, is a type of self-

saturation that reduces the overall gain of the field. This self-saturation is sometimes

called spectral hole burning in the literature [88]. This is somewhat of a misnomer,

as it is quite different from spectral hole burning in the physics community which

typically refers to saturation of a group of carriers or atoms that is inhomogeneously

broadened, reducing the gain and burning a hole in the gain spectrum [14]. The second

effect is the FWM term that we expect. The second term in the bracket of Equations

7.29 couples three different waves and is highly phase dependent. The phases of the

center mode, ψ±0 can be shown to be constant in z by expanding Equations 7.12 and

seeing that dψ±0 /dz = 0.

We can solve Equations 7.29 by solving for the system’s eigenfunctions. Again,

we substitute the auxiliary variables θ±, but now with the expressions

dθ+

dz
= g2|A0|2 (7.30)

dθ−

dz
= g2|B0|2 . (7.31)
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The forward and backward waves each reduce to a separate 2× 2 matrix and can be

written

d

dθ+

 A1

A∗−1

 =

 −1 −e2iψ+
0

−e−2iψ+
0 −1


 A1

A∗−1

 (7.32a)

d

dθ−

 B1

B∗−1

 =

 1 e2iψ−0

e−2iψ−0 1


 B1

B∗−1

 (7.32b)

The solutions to Equations 7.32 consist of the eigenvalues λ1 = 0, λ2 = ±2, depending

on the direction of the wave. The general solution for the side modes are

 A1

A∗−1

 =C1

−e2iψ+
0

1

+ C2 exp

(
−2

∫ z

0

dz′g2|A0|2
)e2iψ+

0

1

 (7.33a)

 B1

B∗−1

 =D1

−e2iψ−0

1

+D2 exp

(
2

∫ z

0

dz′g2|A0|2
)e2iψ−0

1

 , (7.33b)

where C1, C2, D1, and D2 are arbitrary constants. We see from Equations 7.33 that

it is not possible for either side mode A1 , B1 or A−1, B−1 to grow through FWM.

The eigenmodes of propagation are either net loss or zero gain. This is supported

the fact that the integral in the exponential is always positive. Moreover, simply

increasing the strength of FWM by increasing g2 does not lead to multimode lasing,

as it simultaneously increases the self saturation due to the population pulsations.

Thus the major result of FWM in QW diode lasers is clear. FWM can certainly

exist in laser diodes but is not strong enough to sustain additional modes, as it

simultaneously increases gain saturation of these side modes. As found in the single

mode analysis, there is no net gain or loss inside the cavity when the laser is well above

threshold current, due to the clamping of the gain to threshold gain. We note that this

is quite different from Kerr combs generated from microresonators, which typically
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require a very strong external pump laser [97] able to provide the power necessary to

sustain the modes. The same effect is also present in FWM experiments in SOAs in

which external lasers (CW or pulsed) are used. In addition, some FWM experiments

can have lower power inputs that only weakly saturate the gain as opposed to strong

saturation in a free running laser. The weak saturation allows the side band modes

to achieve gain [90].

7.4 Spatial Hole Burning Analysis

We have found that the requirement of multimode lasing remains unfulfilled with

only FWM, as we expected based on our previous numerical calculations. We now

take a look at how the grating equation changes the dynamics and reduces gain

competition.

Reverting back to our single mode analysis, we assume the population grating

term is only significantly generated by the strong central mode, as the side bands are

negligible in their contributions to the carrier grating in the perturbation approxima-

tion. Thus we write ρg → ρg0. Substituting this into the grating equation (Equation

7.1b), we obtain

dρg0
dt

= −ρg0
τsp
− 4k2

0Dρg0 −R(2ρ0 − 1)B0A
∗
0 − 2R(|A0|2 + |B0|2)ρg0 . (7.34)

The steady state solution is given by

ρg0 = −R(2ρ0 − 1)τgB0A
∗
0 , (7.35)

and we define the grating lifetime as

τg =

[
1

τsp
+ 4k2

0D + 2R(|A0|2 + |B0|2)

]−1

. (7.36)
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The key component to this lifetime is the value of 4k2
0D, which varies significantly

depending upon material and operating wavelength. Physically, this lifetime can be

interpreted as the time it takes to diffuse one half wavelength inside the cavity. Using

the solution in Equation 7.35 in the single mode wave equations, we obtain a modified

set of equations for the steady state single mode

dA0

dz
=− α

2
A0 +

g′eff
2
A0 − gR(2ρ0 − 1)τg|B0|2A0 (7.37a)

−dB0

dz
=− α

2
B0 +

g′eff
2
B0 − gR(2ρ0 − 1)τg|A0|2B0 . (7.37b)

The presence of the additional losses from the carrier grating affects the steady state

value of the gain and the intracavity fields. We can follow the same approach as before

and derive a new expression for the effective gain (labeled g′eff ) with the effects of

SHB

1

L

∫ L

0

dzg′eff = gth +
2

L

∫ L

0

dzg3|B0|2 , (7.38)

for the forward wave, and

1

L

∫ L

0

dzg′eff = gth +
2

L

∫ L

0

dzg3|A0|2 , (7.39)

for the backward wave. These should be identical, however, because of the symmetric

nature of the Fabry-Perot cavity, the integrals of |A0|2 and |B0|2 evaluate to be the

same. We introduce another gain saturation term

g3 = gR(2ρ0 − 1)τg , (7.40)

which is a measure of the strength of the carrier grating. The modified effective gain

equations show that the overall steady state effective gain is no longer clamped to
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threshold, but is actually increased by the saturation intensity of the carrier grating.

This physically means that the single mode can no longer take advantage of all the

gain inside the cavity because of the standing waves. We therefore write the new

effective gain as

g′eff ≈ geff + 2g3|B0|2 , (7.41)

where geff is the effective gain without spatial hole burning calculated in Equation

7.18, and |B0|2 can be replaced with |A0|2 depending on the direction of the wave.

This modified effective gain changes the dynamic of how the side modes behave.

Going back to Equations 7.28 and inserting the new effective gain, we obtain

dA1

dz
=− α

2
A1 +

1

2

(
geff + 2g3|B0|2

)
A1 − g2

(
|A0|2A1 + A2

0A
∗
−1

)
(7.42a)

dA−1

dz
=− α

2
A−1 +

1

2

(
geff + 2g3|B0|2

)
A−1 − g2

(
|A0|2A−1 + A2

0A
∗
1

)
(7.42b)

−dB1

dz
=− α

2
B1 +

1

2

(
geff + 2g3|A0|2

)
B1 − g2

(
|B0|2B1 +B2

0B
∗
−1

)
(7.42c)

−dB−1

dz
=− α

2
B−1 +

1

2

(
geff + 2g3|A0|2

)
B−1 − g2

(
|B0|2B−1 +B2

0B
∗
1

)
. (7.42d)

Once more, the gain and loss terms given by geff , the linear loss, and the cavity

mirror losses will cancel in a round trip by definition of the threshold gain. We are

then left with a modified set of FWM equations

dA1

dz
=(g3|B0|2 − g2|A0|2)A1 − g2|A0|2A∗−1e

2iψ+
0 (7.43a)

dA∗−1

dz
=(g3|B0|2 − g2|A0|2)A∗−1 − g2|A0|2A1e

−2iψ+
0 (7.43b)

−dB1

dz
=(g3|A0|2 − g2|B0|2)B1 − g2|B0|2B∗−1e

2iψ−0 (7.43c)

−
dB∗−1

dz
=(g3|A0|2 − g2|B0|2)B∗−1 − g2|B0|2B1e

−2iψ−0 . (7.43d)

Unfortunately, these equations are not as straightforward as the last two cases to
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solve. There is no clear integrating factor that can transform the 2 × 2 matrix into

all constants for the eigenvalue solution. Fortunately, we can guess a solution based

upon the idea that the gain saturation has been reduced by the value of g3. We then

write down the solutions A1

A∗−1

 =C1 exp

(∫ z

0

dz′g3|B0|2
)−e2iψ+

0

1


+ C2 exp

(∫ z

0

dz′
(
g3|B0|2 − 2g2|A0|2

))e2iψ+
0

1


(7.44a)

 B1

B∗−1

 =D1 exp

(
−
∫ z

0

dz′g3|A0|2
)−e2iψ−0

1


+D2 exp

(
−
∫ z

0

dz′
(
g3|B0|2 − 2g2|A0|2

))e2iψ−0

1

 .

(7.44b)

These can be verified by taking each solution and taking the derivative, confirming

that they obey Equations 7.43.

With the effects of SHB present, we see that both forward waves have the potential

to grow exponentially when the integrals in the exponents are positive. In other

words, the grating must be sufficiently strong, or equivalently, the grating lifetime

must be sufficiently large, such that the gain competition is weakened from unused

gain available inside the cavity. In this scenario, we will have sustained multimode

lasing from reduced gain competition.

It is clear from our solution in Equations 7.44a that SHB reduces the effects of

gain competition and increases the total gain seen by the side modes. It is primarily

this SHB effect, not FWM, that induces multimode lasing. In other laser systems,

the SHB effect is easily obtained: a long operating wavelength in QC lasers greatly

reduces the ability of diffusion to wash out the spatial holes, while negligible diffusion
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Parameter Description GaAs (InGaAsP) Value
L Length of device 500 µm
W Width of waveguide 4 µm
hqw Height of quantum well 5 nm
ng Group refractive index 3.5
α Intrinsic waveguide loss 5 cm−1

~ω0 Central transition energy 1.5 eV (0.8 eV)
Γ Homogenous linewidth 4.0 meV/~
g Modal gain coefficient 50 cm−1

Nqw Effective number of QW states 2.92× 106

τsp Spontaneous emission lifetime 1 ns
D Ambipolar diffusion coefficient 20.0 cm2/s (7.2 cm2/s)

Table 7.1: Simulation parameters for QW traveling wave model for the GaAs and
InGaAsP system.

in QD lasers allows for even very narrow gratings to survive. As we expected from

our previous numerical calculations, SHB fulfills the multimode lasing requirement

for generating a frequency comb.

7.5 Numerical Results

We can see the effects of SHB by solving Equations 7.1 and 7.6 numerically, as

we did before. We solve the systems for two different materials - GaAs laser diodes

operating at 800 nm wavelength, and InGaAsP operating at 1.550 µm wavelength.

The full parameter list for both materials are in Table 7.1. The major differences

in parameters are the different central emission wavelengths and a different diffusion

coefficient.

We use a first-order Euler method along characteristics as in previous chapters.

The results of this calculation for GaAs are shown in Figure 7.1 and for InGaAsP

shown in Figure 7.2. The biggest contrast between the two results is the GaAs device

exhibits only a single mode, while the InGaAsP has a spectrum with a comb structure.

The relative strength of the central comb lines in Figure 7.2b has a remarkably similar
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Figure 7.1: The calculated output optical power for a GaAs quantum well. a) the
temporal power output, which settles down quickly to a single mode after
the initial relaxation oscillations b) the spectrum of the GaAs temporal
output showing a single mode.

shape to that of the spectrum obtained from experiment in [53]. Such a spectrum is

distinctive of frequency modulation.

The determining criteria for comb generation is whether or not SHB is significant
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Figure 7.2: The calculated output optical power for an InGaAsP quantum well. a)
the temporal power output which, in contrast with the GaAs solutions,
does not settle to a single mode but eventually reaches a stable phase-
locked state. A zoomed in inset at 100 ns is shown. b) the spectrum
of the InGaAsP temporal output showing a frequency comb. c) the in-
stantaneous frequency which shows a triangular, almost saw-tooth like
output.

inside the cavity. If the diffusion length is much smaller than the half wavelength, or as

modeled in our equations, that τg is large enough, then SHB will induce multimode

lasing. Assuming a total intracavity power of |A0|2 + |B0|2 ≈ 5 mW, the carrier
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lifetime and diffusion lengths are calculated to be

τcw,GaAs = 11 ps (7.45)

τcw,InGaAsP = 5.80 ps (7.46)

LD,GaAs = 149 nm >
λGaAs
2ng

= 118 nm (7.47)

LD,InGaAsP = 64.8 nm <
λInGaAsP

2ng
= 221 nm . (7.48)

The GaAs has a significantly longer diffusion length, which essentially washes out

within a half wavelength any spatial grating that exists. However, in the case of

InGaAsP, the diffusion length is much shorter, only about a quarter of the half wave-

length. Thus in InGaAsP QW devices operating at 1550 nm, multimode generation

should be possible, arising from SHB effects.

The significance of SHB in quantum wells is not a binary effect. The strength of

the grating depends on two important parameters - the wavelength and ambipolar

diffusion coefficient. As seen in the numerical results, a strong enough SHB effect

induces multimode lasing, which then allows FWM to lock the phases with an FM

output. Therefore, we should be able to reduce the operating wavelength down to

somewhere in between 1.55 µm and 800 nm and generate combs in this range by

modifying the InGaAsP quantum wells to suit our needs. An interesting wavelength

is 1310 nm, which is around the zero dispersion point of silica. These wavelengths

will be revisited in testing our actual devices in the following chapters.

The effects of SHB become more clear as we isolate its effects in our calculation.

We solve Equations 7.1 and 7.6 under the InGaAsP parameters but we then turn the

grating term off for 50 ns < t < 125 ns, and then turn it on again for t > 125 ns. In

Figure 7.3a, the dynamics of the this turn on and off can be seen in real time. The

output reaches a stable, phase-locked state after some initial relaxation oscillations.

Then, at 50 ns, it abruptly simplifies to a single mode due to the absence of SHB.
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Figure 7.3: The results of turning off and on the population grating equation respon-
sible for SHB. The grating is turned on for t < 50 ns, but turned off for
50 ns < t < 125 ns, and turned back on for t > 125 ns. a) The temporal
output, which at first shows a phase-locked solution but abruptly reduces
to a single mode after SHB is turned off. Once it is reenabled, the output
goes multimode once more and finds the same phase-locked solution as
before. b) The spectrum of the output. It is labeled to identify each
mode. c) the modal envelopes after filtering the spectrum in a), with
labels corresponding to each mode, with an inset at 125 ns showing the
detailed dynamics during the transition from single mode to a multimode,
phase-locked state. The center mode emerges as the strongest mode when
SHB is turned off, but it is rather weak in the phase-locked solution.

Then after 125 ns, as expected after SHB is turned back on, the laser returns to

multimode lasing and reaches the same phase-locked state in the first 50 ns.

The individual mode envelopes can be tracked (as labeled in Figure 7.3b) by

applying a simple spectral filter to each comb line in frequency domain and inverse
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Fourier transforming the central group of modes back into time domain. Figure 7.3c

shows the results of the filtering and inverse transform. We see more clearly that,

once SHB is turned off, all other modes decay rapidly until only the center mode

remains. When SHB is turned back on, the central mode immediately drops in power

due to increased self saturation, while simultaneously the side band amplitudes start

increasing from reduced gain competition. Eventually the side bands become strong

enough to saturate the central mode’s gain and all modes mix together, reaching

the same phase-locked state as before. The dynamics of the individual modes are

consistent with our previous analytic results which show that the side bands grow

primarily due to increased available gain due to increased self saturation of the central

mode.

7.6 Phase locking in FM combs

Once the system is in multimode operation, we revisit the effects of FWM to

see how it locks the phases together. For this section, we will focus on the forward

propagating wave and look at just the amplitudes A1 and A∗−1 (Equations 7.43a, b)

dA1

dz
=(g3|B0|2 − g2|A0|2)A1 − g2|A0|2A∗−1e

2iψ+
0 (7.49)

dA∗−1

dz
=(g3|B0|2 − g2|A0|2)A∗−1 − g2|A0|2A1e

−2iψ+
0 . (7.50)

We take a look at two distinct cases: one in which g2 is purely real, and the second

when g2 is purely imaginary. Which regime we are in is determined by the lifetime

τp. For ωs << 1/τsp + 2R(|A0|2 + |B0|2), then

τp ≈
[

1

τsp
+ 2R(|A0|2 + |B0|2)

]−1

, (7.51)
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a pure real quantity. This regime can be reached by increasing the intracavity power

such that |A0|2, |B0|2 are large, reducing the overall lifetime but increasing the real

part of τp relative to the imaginary part. Physically, we can say the real part de-

termines the carrier fraction that follows in phase with the electric field, or as pre-

viously mentioned, equivalent to interband FWM. For the second case, in which

ωs >> 1/τsp + 2R(|A0|2 + |B0|2), we obtain

τp ≈ −
i

ωs
, (7.52)

a pure imaginary quantity. This regime is typical for an mostly empty cavity in which

|A0|2, |B0|2 are small. Here, the imaginary part determines the carrier fraction that

is 90 degrees out of phase with the electric field, or equivalent to intraband FWM.

From our previous analytic solutions, a whether τp is real or imaginary affects the

phases of A±1 and B±1. Looking at the solution for A±1,

 A1

A∗−1

 =C1 exp

(∫ z

0

dz′g3|B0|2
)−e2iψ+

0

1


+ C2 exp

(∫ z

0

dz′
(
g3|B0|2 − 2g2|A0|2

))e2iψ+
0

1


if τg < 2Re(τp), the term attached to the C2 coefficient will exponentially die out,

resulting in only a simple and constant phase relation between A1 and A−1.

Additional insight is gained by writing the phase equation explicitly by substitut-

ing A1 = |A1|eiψ1 , A−1 = |A−1|eiψ−1 . First, for the case in which g2 is real, we obtain
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d|A1|
dz

=(g3|B0|2 − g2|A0|2)|A1| − g2|A0|2|A−1| cos(2ψ0 − ψ−1 − ψ1) (7.53a)

d|A−1|
dz

=(g3|B0|2 − g2|A0|2)|A−1| − g2|A0|2|A1| cos(2ψ0 − ψ1 − ψ−1) (7.53b)

d

dz
(ψ1 + ψ−1) = −2g2|A0|2 sin(2ψ0 − ψ1 − ψ−1)

[
|A1|2 + |A−1|2

|A1||A−1|

]
. (7.53c)

If we look carefully at the phase in Equation 7.53c, we see that the derivative goes to

zero when

Φ = 2ψ0 − ψ1 − ψ−1 = ±π, 0 , (7.54)

suggesting that these values indicate phase locked states.

A stability analysis around these two points reveals that the phase equation is

unstable at Φ = 0, as seen by the fact that d
dz

(ψ1 + ψ−1) increases when ψ1 + ψ−1

increases in the sine function. This solution corresponds to the phase differences all

being zero between all the modes, which when summed, would result in a series of

ultrashort pulses. The instability explains why it is difficult to achieve ultrashort

pulses without additional sections, such as a saturable absorber. However, the value

of Φ = ±π is a stable solution. This value corresponds to an FM or FM-like solution

in which each mode differs in phase by a finite, but fixed value. A diagram of how

the modes interfere given their phase differences are shown in Figure 7.4. From this

figure, it is clear that the phase state of Φ = ±π is much better suited for utilizing all

available gain due to gain saturations resulting from population pulsations. Therefore,

the phase of the three modes naturally prefers this second state, as it provides the

most gain. This is also seen mathematically from Equation 7.53a, b by plugging in

Φ = ±π, which turns the RHS FWM term into a net gain due to cos(Φ) = −1.

This phase relation can be generalized to any mode n and summed to produce an
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Figure 7.4: An illustration of the intensity patterns of the forward modes. a) the
interference between the central mode A0 and one of the side modes A1

produces a sinusoidal pattern. b) The third wave’s amplitude A−1, in-
terfering with A0, produces a second sinusoidal pattern that is in phase
with the first sinusoid (Φ = 0). c) The second sinusoid is now offset by a
phase shift of ±π (Φ = ±π )

expression for the phase ψn as a function of n [58]:

n∑
m′=0

m′∑
m=0

Φm =
n∑

m′=0

m′∑
m=0

(2ψm − ψm+1 − ψm−1) . (7.55)
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We can do the summation by changing indices and canceling like terms

n∑
m′=0

[
2

m′∑
m=0

ψm −
m′∑
m=0

ψm+1 −
m′∑
m=0

ψm−1

]
= ±

n∑
m′=0

m′∑
m=0

π

n∑
m′=0

[
2

m′∑
m=0

ψm −
m′∑
m=0

ψm + ψ0 − ψm′+1 −
m′∑
m=0

ψm − ψ−1 + ψm′

]
= ±

n∑
m′=0

m′π

We repeat this process with the second summation, again by adding or removing

terms to the summations so that they cancel

n∑
m′=0

(ψm′ − ψm′+1) = ±
n∑

m′=0

(m′π + ψ−1 − ψ0)

n∑
m′=0

ψm′ −
n∑

m′=0

ψm′ − ψn+1 + ψ0 = ±n
2π

2
+ (ψ−1 − ψ0)n

and we are able to obtain an expression for just the phase ψn+1 as a function of n

ψn+1 =∓ πn2

2
+ αψn+ βψ , (7.56)

where αψ = ψ0 − ψ−1 and βψ = ψ0 are arbitrary constants.

The phase as a function of mode number n has a clear quadratic dependence,

which can then be compensated via a simple dispersive medium to produce a series

of short pulses as shown already in the previous chapters. Our numerical results from

the reduced model can also be compensated. The InGaAsP results are numerically

phase compensated and the result, shown in Figure 7.5, is similar to that calculated

in the full model (Figure 6.3).
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Figure 7.5: The results of InGaAsP temporal output after dispersion compensation.
The spectrum from Figure 7.2b is multiplied by quadratic phase to sim-
ulate dispersion compensation via an optical fiber. The group delay dis-
persion (GDD) in this case is 1.15 ps2.

Now for the second case, in which τp is imaginary, we obtain

d|A1|
dz

=g3|B0|2|A1| − g2|A0|2|A−1| sin(2ψ0 − ψ−1 − ψ1) (7.57a)

d|A−1|
dz

=g3|B0|2|A−1|+ g2|A0|2|A1| sin(2ψ0 − ψ1 − ψ−1) (7.57b)

d

dz
(ψ1 + ψ−1) = g2|A0|2 cos(2ψ0 − ψ1 − ψ−1)

[
|A−1|2 − |A1|2

|A1||A−1|

]
. (7.57c)

In this form, we see that the phase derivative is much more complicated. The stability

of the phase relation now depends highly upon the magnitudes, |A±1| instead of only

upon phase values. This suggests the phase relation will be much less stable, as we

have the additional requirement that |A1| = |A−1|. Even in this state, Φ is not forced

to take a specific value, so we cannot say that we have reached a stable, fixed phase

relation between the three modes. Therefore, it is important that we operate with
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a high enough intracavity laser power so that the carriers will be in phase with the

electric field for FM comb generation.

Thus, we see that the FM solution emerges as the natural phase-locked solution in

the presence of interband FWM and multimode lasing. This physically makes sense

in light of gain competition. The various phases of the modes will settle to where

the available gain is greatest, producing a natural phase offset between the different

modes. In other words, a solution in which all modes constructively add to form a

train of pulses is not preferable (absent a saturable absorber) due to the inefficient use

of the available gain in between pulses. Instead, the FM solution utilizes all available

gain by having the modes interfere at different points in time, producing a stable,

quasi-CW phase-locked state.

7.7 Conclusion

We have explored the physics of FM comb generation in QW diode lasers in some

detail in this chapter. While there are many physical effects that can alter laser

operation and comb generation, we have reduced it down to SHB and FWM as the

two dominant and important ones. SHB allows multiple modes to achieve threshold

gain due to reduced gain competition between modes, and the FWM induced by

population pulsations locks the phases of the modes together. It is important that

the cavity modes share the same carriers, or equivalently, are within the homogeneous

gain linewidth. This allows for the fields to modulate the phase of the carriers, which

in turn modulates the phases of the optical modes. Both SHB and FWM enable this

effect to occur - generating a laser with multiple, mutually phase coherent modes.

In comparison to other systems, SHB is easily achieved in QD and QC lasers,

proper selection of materials can also allow SHB to exist in QW systems. With the

presence of both SHB and FWM, a FM comb emerges passively as a natural state of

operation of these diode lasers. With this knowledge, we are now well-equipped to
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design, fabricate, and test some laser diodes experimentally to verify our theory.

124



CHAPTER VIII

Design and Fabrication of Quantum Well Laser

Diodes

Now that we have a basic understanding of the physics and inner workings of

generating FM combs from InGaAsP laser diodes, we move on to design, fabricate,

and characterize these devices. The InP / InGaAsP semiconductor materials are

processed at the University of Michigan’s Lurie Nanofabrication Facility (LNF). We

discuss additional laser design parameters not modeled in our theory and also go over

the fabrication steps and calibrations used.

8.1 1.55 µm Laser Diode Design

On an elementary level, a semiconductor laser diode converts electric current (elec-

trons and holes) into light by way of radiative recombination. In device design, we

have to modify the electrical and optical properties of the material to achieve optimal

light generation. The electrical properties are modified by properly growing semicon-

ductor heterojunctions using binary, ternary, and sometimes quaternary materials

using metal-organic chemical vapor deposition (MOCVD) or molecular beam epitaxy

(MBE) [98]. There are several characteristics that must be carefully considered, such

as doping levels, layer thickness, and material types. Incorporating means of trapping
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n-type InP substrate

n-type InP cladding

p-type InP cladding

p-type InGaAs contact layer

Active region

Figure 8.1: Typical layers grown on an InP substrate for a laser diode or LED.

these carriers in QWs or other nanostructures such as QDs and quantum dashes aids

in the recombination efficiency. Laser diodes can also be made from bulk materials.

For our laser diode design, we start with a simple Fabry-Perot cavity made up of

facet reflections with a 1.5 µm central wavelength. A typical stack of the InP based

semiconductor laser is shown in Figure 8.1.

The layers grown on the substrate include a 1 µm waveguide cladding layer, an

active region (also the waveguide core) in which the carriers recombine to generate

light, a second cladding layer, and a highly doped top contact layer. The lower

and upper layers are n-doped and p-doped respectively, forming a p-n diode that

facilitates current flow with proper forward bias. As the carriers are injected, they

move into the active region, become trapped in the QWs (or other structures), and

radiatively recombine to generate light. The energy band diagram for this design is

shown in Figure 8.2. Our active region consists of a 200 nm separate confinement

heterostructure (SCH), which serves to facilitate carrier capture as well as providing a

refractive index contrast between the core and the cladding. Moreover, there are four

QWs, separated by 15 nm, to capture carriers and provide optical gain. This design is

referred to as a multi-quantum well (MQW) structure. Having multiple QWs aids in
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Figure 8.2: The energy band diagram of the semiconductor layers in the active region.

the capture of transported carriers through the active region and overall provides more

gain, albeit at the expense of requiring more current to reach population inversion

[99, 66].

The details and characteristics of each stack in our laser are shown in Table 8.1.

The doping levels of each region can be varied depending on the design. We have

chosen a standard doping profile in which the contact layers (substrate and InGaAs

cap) are heavily doped to facilitate ohmic contacts with the deposited metal during

fabrication [100], while the cladding layers are still doped but not as heavily. The

smaller core regions remain undoped. The major trade-off between a lightly or heavily

doped cladding and the core region is better electrical characteristics and carrier

transport versus additional optical losses from free carrier absorption [101].

The quaternary product, InGaAsP, also written GaXIn1−XAsY P1−Y , has addi-

tional parameters X, Y that specify its bandgap, lattice constant, and strain. The

SCH and barrier layers consist of 1.15Q InGaAsP (designated as such due to its
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Stack layer Thickness Doping level GaXIn1−XAsY P1−Y fractions
n-type InP substrate 350 µ m 2× 1018 cm−3

n-type InP cladding 1 µ m 5× 1017 cm−3

1.15Q InGaAsP SCH layer 200 nm undoped X = 0.1712, Y = 0.3737
1.15Q InGaAsP barrier, 5x 15 nm undoped

InGaAsP QW, 4x 8 nm undoped X = 0.2034, Y = 0.7475
p-type InP cladding 1 µ m 5× 1017 cm−3

p-type InGaAs top contact 100 nm 2× 1019 cm−3

Table 8.1: Semiconductor layer thicknesses and doping levels for a 1.5 µm Fabry-
Perot laser diode and quaternary fractions for the InGaAsP layers. The
QW fractions are designed for a +1% compressive strain.

bandgap being 1.15 µm) while the QW InGaAsP is designed to emit photons around

1.55 µm and are compressively strained. The compressive strain offers advantages of

higher gain and better efficiency due to the separation and decoupling of the heavy-

hole (HH) band from the light-hole (LH) band, reducing distortion and lowering

effective mass of the heavy holes [102]. The specific values of X and Y are also listed

in Table 8.1.

However, the design is not yet complete, as the generated light must also be con-

fined in a laser cavity. While the confinement in the vertical direction is accomplished

by index guiding due to the index contrast between the core and the cladding areas,

we need to provide confinement in the horizontal direction. This is accomplished by

using a ridge waveguide structure etched into the wafer, as seen in Figure 8.3a.

The ridge waveguide provides the needed lateral confinement via the index differ-

ence between the semiconductor ridge and its surroundings. We can control the ridge

width, tailoring it for single transverse mode or multimode operation. Because our

goal is to phase lock longitudinal cavity modes in our laser diode, we design the ridge

for the single mode operation. Therefore, we narrow the ridge to a width of 2 µm

and etch through the cladding to right before the active (core) region. The transverse

electric field profile of this waveguide mode is calculated using finite element meth-

ods (COMSOL Multiphysics). Using modal analysis in the optics module, we define
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Figure 8.3: a) a diagram of our etched wafer, forming a ridge waveguide with the core
and cladding labeled. b) A finite element calculation of the transverse
waveguide mode of our laser.

approximate refractive indices for the materials in our structure and find the mode

shape, frequency, and effective group index. The result is plotted in Figure 8.3b.
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Stack layer Thickness Doping level GaXIn1−XAsY P1−Y fractions
1.15Q InGaAsP SCH layer 200 nm undoped X = 0.1712, Y = 0.3737
1.15Q InGaAsP barrier, 5x 15 nm undoped

InGaAsP QW, 4x 8 nm undoped X = 0.0808, Y = 0.4848

Table 8.2: Semiconductor layer thicknesses and doping levels for a 1.3 µm Fabry-
Perot laser diode and quaternary fractions for the InGaAsP layers. Once
more, the QW fractions are designed for a +1% compressive strain.

8.2 1.3 µm and 1.55 µm Asymmetric QW Laser Diode Design

Going beyond the standard 1.55 µm design, we have two additional designs to test.

From our theoretical studies, the SHB and FWM effects should still be prevalent at

some lower wavelengths such as 1.3 µm, a wavelength of interest due to its close

to zero dispersion in optical fibers. The design parameters of the 1.3 µm laser are

identical to the aforementioned 1.55 µm laser, albeit with changes to the gain region

so the QW energy is adjusted to the shorter wavelength. The parameters for this

active region of this design are shown in Table 8.2.

The third design, however, is a bit more complex. The idea is to expand the band-

width of our comb by expanding the gain bandwidth by incorporating asymmetric

QWs with different emission wavelengths, essentially expanding the inhomogeneous

broadening of the system. This can be easily done by adjusting the widths of the

QWs. However, it is not a simple matter of just growing any asymmetric QWs - we

still must ensure that the optical modes can share some carriers in either QW. As

mentioned in chapter VII, the frequency separation between the QWs should not be

more than the homogeneous linewidth of the gain, thus satisfying the above criteria.

A calculation of the asymmetric QW system based off of our reduced equations is

shown in Figure 8.4. It is clear from the figure that, if the confined energy separation

between the two QWs is much larger than the homogeneous linewidth, the temporal

output is not periodic, indicating a lack of phase locking. As the separation is re-

duced to where there is good overlap via the homogeneous linewidth, the temporal
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Stack layer Thickness Doping level GaXIn1−XAsY P1−Y fractions
1.15Q InGaAsP SCH layer 200 nm undoped X = 0.1712, Y = 0.3737
1.15Q InGaAsP barrier, 5x 15 nm undoped

InGaAsP QW, 2x 8 nm undoped X = 0.2034, Y = 0.7475
InGaAsP QW, 2x 7 nm undoped X = 0.2034, Y = 0.7475

Table 8.3: Semiconductor layer thicknesses and doping levels for the asymmetric 1.55
µm Fabry-Perot laser diode and quaternary fractions for the InGaAsP
layers. Like the previous two designs, the QW fractions are designed for a
+1% compressive strain.

output becomes more regular until it reaches a phase locked state similar to what we

calculated in the previous chapters. Thus the principle in our third design is to have

slightly different QW confined energies - enough to expand the bandwidth but not

separated larger than the homogeneous linewidth. The result is a comb that should

be broader than just a single QW while still maintaining phase coherence between the

modes. The active region parameters for this design are shown in Table 8.3. Here,

we have two QWs of 8 nm and two QWs of 7 nm for the asymmetric design for a

total of four QWs.

8.3 Laser Fabrication

With the design ready, we move on to manufacturing and fabrication of our lasers.

During the work of this dissertation, the University of Michigan’s LNF did not have

semiconductor growth capabilities, so we ordered InP / InGaAsP material from an ex-

ternal foundry (Xiamen Powerway Advanced Material Co. LTD). The semiconductor

layer stack was grown to our specifications as shown in Table 8.1.

We outline the fabrication steps and details as follows. First, we need to etch

through the InGaAs top layer and InP cladding layers. The following steps follow the

illustration shown in Figure 8.5 for the ridge fabrication.

1. We cleave the 2 inch wafers into smaller pieces, about 1.0 cm × 1.0 cm.
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Figure 8.4: A simulation of 2 asymmetric QWs using our reduced model described in
chapter VII. The homogeneous half linewidth Γ for all simulations is 6
meV. a) Spectrum and b) temporal output of two QWs with a confined
energy separation of 10 meV. c) Spectrum and d) temporal output of
two QWs with a confined energy separation of 5 meV. e) Spectrum and
f) temporal output of two QWs with a confined energy separation of 2
meV.
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Spin photoresist Expose pattern

Develop resistDry etch of top and

   cladding layers

Etch complete

Mask

Clean wafer piece

Figure 8.5: An illustration of the InP etching fabrication process as described in this
section. Note that the layer thicknesses are not to scale.

2. Pieces are cleaned and primed with HMDS using recipe 1 in the YES Oven

(YES-310TA E).

3. Photoresist (SPR 220 3.0) is spun at 3000 RPM and baked for 90 seconds at

115 C. This gives about a 3 µm layer of photoresist.

4. Pieces are exposed using the GCA AS200 AutoStep for 0.3 seconds and baked

again for 90 seconds at 115 C (see appendix for details of this exposure).
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5. Samples are developed using the CEE Developer tool with AZ 726 and recipe

DP 60-60.

6. We perform a dry etch of the cladding layers using the Oxford ICP RIE for 10

minutes. Details of the recipe are in the appendix.

However, we need to fabricate some insulation and passivation layers to protect

the edges of the ridge from any unwanted current or applied potentials. Thus we

use silicon dioxide for passivation and to aid in planarization of our surface. These

additional steps are outlined below and follow the illustration shown in Figure 8.6.

1. We deposit about 800 nm of silicon oxide via physical vapor deposition (PVD)

using the AE Evaporator.

2. Samples are soaked for 24-48 hours in Remover PG to dissolve the photoresist,

prepping for lift-off.

3. In a heated ultrasonic bath, samples are agitated for 1 hour to complete the

oxide lift-off process.

4. Once more, samples are primed with HMDS, spun with SPR 220 3.0 at 2000

RPM, and baked for 90 seconds at 115 C.

5. Pieces are exposed using the GCA AS200 AutoStep for 0.32 seconds and baked

again for 90 seconds at 115 C (see appendix for details of this second exposure).

6. Samples are developed using the CEE Developer tool with AZ 726 and recipe

DP 60-60.

7. A 100 Å / 3000 Å Titanium / Gold layer is deposited via the AE Evaporator

as the top metal contact.

8. Samples are soaked in Remover PG again and sonicated to lift-off the gold.

134



PVD oxide

deposition 

Expose new

   pattern

Gold depositionGold lift-offDevice completed

Mask

Oxide lift-off

Figure 8.6: An illustration of the silicon oxide passivation and planarization fabrica-
tion process is shown. Note that the layer thicknesses are not to scale.

9. A 100 Å / 2000 Å Titanium / Gold layer is deposited on the underside of the

substrate to complete the bottom metal contacts.

10. Lastly, the pieces are hand-cleaved into laser bars ranging from 1 mm - 2 mm

long.

Alternatively, we could simply strip the photoresist after the InP etching, then

deposit silicon oxide using PECVD on the Plasmatherm 790 via the recipe L OX350

(41 nm / min) for 20 minutes. The difficulty with this approach is that we now have
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Figure 8.7: An SEM of a cleaved facet of the ridge laser. The oxide and gold layers
can be identified by the darker and lighter films respectively around and
on top of the ridge.

to etch away the top oxide in order to expose the InGaAs contact. Moreover, the HF

wet etchants we have on hand are too imprecise for such a task, so we opted for the

lift-off process as described above.

Once the lasers are cleaved, care is taken not to damage or dirty the edge facets

to maintain good facet reflectivity. An SEM of the completed ridge device is shown

in Figure 8.7.

8.4 Conclusion

To summarize this chapter, we have designed three distinct lasers by changing

the semiconductor compositions of the QW layers. The laser designs consist of four

identical QWs emitting at 1550 nm, an asymmetric design at 1550 nm to expand the

bandwidth of the laser, and a 1310 nm laser. We fabricated ridge waveguides using

standard lithography techniques, reactive ion etching, and metallization. We finish

the devices with cleaved facets that form the Fabry-Perot cavities. Their performance,

136



spectrum, and coherence will be discussed in detail in the following chapter.
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CHAPTER IX

Characterization of Frequency Combs Generated

from Quantum Well Laser Diodes

With the design and fabrication process complete, we proceed to make measure-

ments of the optical spectrum and coherence of our laser diodes. Because of the large

frequency spacing of our laser cavities, we expect to be able to resolve our frequency

combs using a high resolution optical spectrum analyzer. However, the downside

with a high repetition rate is that we also require the use of fast electronics in order

to perform electrical measurements. Fortunately, we have such equipment on hand

which greatly simplifies the experimental setups.

The organization of this chapter is two-fold. The first major section consists of

optical spectra and LI curves of our three laser designs, while the second section

details the RF and coherence measurements. For convenience, we designate our three

laser designs as follows:

1. The 1.55 µm laser with four identical QWs is designated as structure 1 (S1);

2. The 1.55 µm laser with the asymmetric QWs is designated as structure 2 (S2);

3. The 1.3 µm QW laser is designated as structure 3 (S3).
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Figure 9.1: A typical IV curve of our laser diodes.

9.1 Characterization of the 1.55 µm Laser

Our experimental setup to perform the characterization measurements is fairly

simple. Our hand-cleaved lasers are mounted on a conductive brass sheet on top

of a thermoelectric cooler (TEC), which rests on a micrometer stage. Aluminum

clamps (held down to the brass sheet with plastic screws) help secure the small laser

piece so it has good contact with the brass on the underside of the chip. A second

clamp also secures a thermistor that has contact to the chip in order to monitor the

temperature. An electric probe on an adjustable stage is brought down on top of the

laser to complete the electrical contacts. The mounting and alignment of the electrical

probe is done under a monocular microscope (AM Scope) attached to a digital camera

which is fed to the computer. The diode can now be forward or reverse biased, with

a typical IV curve shown in Figure 9.1. Laser injection current and the TEC are

both controlled by a commercial laser diode and temperature controller (Thorlabs

ITC4001).
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Figure 9.2: a) absorption spectrum of the QWs for the 1.55 µm laser, or S1 (absorp-
tion data courtesy of Xiamen Powerway) b) a typical LI curve of our S1
fabricated laser diodes.

The absorption spectrum of the first laser design, S1, is shown in Figure 9.2a,

showing a peak around 1550 nm. We measure the LI curve with a broad area IR

power head that does not require a precise alignment and plot the LI curve in Figure
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9.2b. The shape is of a conventional laser, reaching threshold around 30 mA with

a power output of several mW. While this amount of power is certainly usable, it

is lower than what has been previously reported. This is due to several factors:

first, our power head for measurement is likely not capturing all the power from the

laser, as we could not get it right next to the edge of the laser due to spatial and

stage constraints. Second, our manufacturing process could be improved to reduce

the intracavity losses by having more robust passivation layers, such as the polymer

Benzocyclobutene (BCB). Lastly, the epitaxial semiconductor structures could be

modified, either slightly reducing the doping level in the cladding to reduce free

carrier absorption or increasing the size of the upper InP cladding to further separate

the gold contacts from the optical mode. All these changes could help increase the

available laser power.

In order to further characterize the laser, we need to couple the light out from the

chip. For this purpose, we use a Corning SMF-28 tapered fiber with an AR coating

on the tip. The tapered fiber is mounted on a fiber holder on top of another micron

stage. The fiber can be easily aligned under the microscope in the plane of the laser

waveguide, then adjusted vertically until the coupled power is maximized. We observe

a fairly good coupling efficiency of 50% - 60%. The fiber is then fed into an optical

spectrum analyzer or a photodiode for additional measurements.

9.1.1 Cavity Length vs Optical Spectrum

We direct the light from the laser diode coupled through the fiber into our optical

spectrum analyzer (Ando AQ6315E) and observe the spectrum at practical laser

powers (>2 mW). We measured the spectra of two lasers at significantly different

cavity lengths, with the results shown in Figure 9.3. It is clear that the comb spacing

or FSR can be widely adjusted just by changing the cavity length. Because many of

these lasers can be made on a single chip, simply cleaving them at different lengths
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Figure 9.3: Measured optical spectra of an S1 laser diode at two different lengths.
a) linear and b) log scale optical spectra of a length 1.0 mm laser diode
at a pump current of I = 190 mA. A comb structure spanning several
nm bandwidth is seen, with an FSR of 42.36 GHz. c) linear and b) log
scale optical spectra of a length 1.8 mm laser diode at a pump current of
I = 185 mA. A similar comb structure is found, although this time with
a much lower FSR of 23.04 GHz.

provides quick access to frequency combs of different repetition rates. The bandwidth

of the laser diodes is about 6 - 8 nm and consists of fairly flat comb lines.

An interesting pattern is that the shorter lasers, with larger FSR, typically have

larger bandwidths than the longer lasers with smaller FSR. While the number of

combs lines in the longer lasers is usually larger - 32 lines at -10 dB for the longer

laser in Figure 9.3c compared to 24 comb lines at -10 dB for the shorter laser in Figure

9.3a - this does not entirely compensate for the reduced comb spacing and thus the
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overall bandwidth is smaller. We would expect the gain bandwidth to be similar

across both the shorter and longer lasers, but we note that both short and long cavity

lasers in Figure 9.3 are at similar pump currents. The longer cavity laser in this

case would have reduced current density compared to the short cavity laser, which,

according to our previously mentioned theoretical models, would reduce the effective

pump rate for higher energy carriers and reducing the overall gain bandwidth.

Overall, our measured spectra is an accurate representation of the spectra from

previous work in quantum wells [54, 55] as well as bearing much similarity to our

calculations from our theoretical models in Chapter VI.

9.1.2 Pump Current and Temperature vs Optical Spectrum

According to our theoretical model, the frequency comb should broaden as the

input pump current is increased due to the increasing gain bandwidth. This increase

stems primarily from a larger number of higher energy carriers being injected into the

cavity, thus broadening the available gain on the higher frequency side of the comb.

Figure 9.4 confirms the effect of this broadening as the pump current is increased from

80 mA to 150 mA, with the shape of the spectra tilting toward the shorter frequency

side indicating the gain due to higher energy carriers. However, the measured spectra

also exhibit an overall red shift to longer wavelength that is significant (30 - 40 nm

from the absorption line center). This shift is likely due to the temperature narrowing

of the bandgap [103], an effect not included in our theoretical model.

We can try to reduce the temperature by tuning the TEC current and therefore

reduce the red shift of the comb lines. Figure 9.5 shows measured spectra of this

temperature tuning at an injection current of I = 65 mA. The current for this mea-

surement is kept low as to not heat the chip up too much. As the TEC temperature

set point is reduced from room temperature 22 C down to 16 C, the spectrum is blue

shifted by about 5 nm. However, this does not work well at higher injection currents
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Figure 9.4: Measured optical spectra of an S1 laser diode at various pump currents.
As the pump is increased, with I = 80 mA, I = 110 mA, and I = 150
mA shown, the spectra broadens significantly and also red shifts to longer
wavelengths.
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Figure 9.5: Measured optical spectra of an S1 laser diode at a fixed pump of I = 65
mA while adjusting the TEC temperature set point. The laser chip can
be cooled, as shown in the T = 22 C, T = 19 C, and T = 16 C spectra.
The wavelength is blue shifted with the cooling of the laser.
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as the heating becomes too significant and our TEC cannot cool past its maximum

current rating. Thus some carrier induced heating is inevitable as larger currents

are driven through the diode, despite our efforts to control the temperature via the

TEC. As a compromise, we occasionally turn off the laser diode and let it cool before

resuming measurements. In terms of designing a laser for a specific wavelength, it is

a good idea to blue shift the QW transition at the band edge to compensate for the

temperature effect.

While we have not tested lasers at currents much larger than 200 mA due to

the aforementioned heating effects and the fact that the diodes tend to break at high

injection currents, we expect our results can be improved with additional engineering.

The TEC setup, stage heat sink, and thermistor placement relative to the active laser

diode could all be improved to help manage the temperature. Moreover, all our

measurements are done with a DC current without any modulation. Having long,

pulsed current injections will still resemble DC current but simultaneously reduce

overall heating.

9.2 Characterization of the Asymmetric 1.55 µm Laser

The second design, S2, is an effort to expand the gain bandwidth through asym-

metric QWs which should result in more comb lines. By artificially building more

inhomogeneous broadening, the overall gain bandwidth has increased a significant 15

nm with only two types of QWs, as seen in Figure 9.6a. The absorption profile is

still a single peak, which is important as the optical cavity modes need to overlap in

the homogeneous linewidth for proper four-wave mixing. Because we have added a

thinner, 7 nm QW, the overall absorption spectra is blue shifted as we would expect

due to the higher energy electrons confined in these QWs.

The experimental setup for design S2 is the same as that of the first design. A

typical LI curve is shown in Figure 9.6b, which, similar to the output of the first
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Figure 9.6: a) absorption spectrum of the QWs for the asymmetric QW design at
1.55 µm, or S2 (absorption data courtesy of Xiamen Powerway). The
bandwidth is significantly broader than the S1 design (Figure 9.2a) due
to the asymmetric QW design. b) a typical LI curve of our S2 fabricated
laser diodes.
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Figure 9.7: Measured optical spectrum of an S2 laser diode. a) linear and b) log scale
plot of the optical spectrum at pump current I = 190 mA of a length
1.2 mm laser diode, corresponding to an FSR of 34.4 GHz. c) linear
and d) log scale plot of the optical spectrum of the same laser at pump
current I = 235 mA. The modes on the shorter wavelength side are lasing
relatively stronger.

design, shows a power of a few mW.

All of the length, temperature, and injection current behaviors studied in the

previous section also apply to our asymmetric QW laser. A typical spectrum is

shown in Figure 9.7. The laser diode in this case has a cavity length of 1.2 mm,

corresponding to a mode spacing of 34.4 GHz. The bandwidth of the comb has

increased relative to Figure 9.3ab, a design S1 laser of similar length. In particular,

the log spectra (Figure 9.7b, d) show a bump on the shorter wavelength side that is
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Figure 9.8: The spectrum of an approximately 2 mm length laser diode at similar
pump currents for a) design S1 with the four identical QWs and b) design
S2 with the asymmetric QWs. The asymmetric design has a broader
spectrum.

not present in the S1 lasers, indicating that the higher energy carriers are filling up

the narrow, 7 nm QW. This allows more modes to expand into the higher frequencies,

expanding our bandwidth. At an input current of 235 mA, the -10 dB bandwidth is

about 1.2 THz.

A more direct comparison of lasers of similar length and similar injection current

is shown in Figures 9.8 and 9.9. We can see more clearly that the S2 laser design is

superior in terms of bandwidth, particularly on the shorter wavelength side. In both
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Figure 9.9: The spectrum of an approximately 1 mm length laser diode at similar
pump currents for a) design S1 with the four identical QWs and b) design
S2 with the asymmetric QWs. Again, the asymmetric design’s spectrum
is broader.

the long laser (about 2 mm) and short laser (about 1 mm) the spectrum of the asym-

metric QW laser is broader. We expect that with better temperature management,

we should be able to push the bandwidth even further into the higher frequency side

with higher injection current. For future experiments, it is likely we can cascade more

than just two widths of QWs, but three or four to expand the number of frequency

comb lines.
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Figure 9.10: a) absorption spectrum of the QWs for the 1.3 µm laser, or S3 (absorp-
tion data courtesy of Xiamen Powerway). The band edge of the QW is
shifted down to 1.3 µm. b) a typical LI curve of our S3 fabricated laser
diodes.

9.3 Characterization of the 1.3 µm Laser

Lastly, we move to our third (S3) and final design, the 1.3 µm laser diode. Our

theoretical model has calculated that the diffusion should still be low enough at this
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Figure 9.11: Measured optical spectrum of an S3 laser diode at pump current I = 135
mA. a) linear and b) log scale plot of the optical spectrum of a length
1.4 mm laser diode, corresponding to an FSR of 30.5 GHz. The QW
laser diode still exhibits comb behavior at the shorter, 1.3 µm operating
wavelength.

wavelength to generate combs, albeit with slightly degraded performance due to the

weaker SHB effect. The absorption spectrum for this laser design is shown in Figure

9.10a, while a typical LI curve is shown in Figure 9.10b. Again, the power output is

several mW, similar to that of the first two designs. Also, we once more use the same

experimental setup as described for laser design S1 - the major difference is simply

adjusting the equipment settings for 1.3 µm.

The absorption spectrum for this laser design is shown in Figure 9.10a, with

another typical LI curve in Figure 9.10b. The absorption profile now has a center

around 1300 nm and has a similar bandwidth to the S1 design, while the LI curve

outputs several mW of power.

A typical optical spectrum is shown in Figure 9.11 for the S3 design. A frequency

comb with a bandwidth of about 4 nm (≈ 0.7 THz at 1.3 µm) is seen. The spectrum is

not as sharp as the ones shown for 1.5 µm due to our spectrum analyzer having more

limited resolution being fixed at 0.05 nm, which corresponds to a larger sampling

steps in frequency due to the lower wavelength. Despite this, we are still able to
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Figure 9.12: Measurements of a length 1.92 mm laser operating at 1.5 µm (S1) a)
the LI curve b) optical spectrum at an input current of I = 130 mA c)
optical spectrum at an input current of I = 150 mA.

resolve many comb lines. Overall, the number of comb lines is not as large as the 1.5

µm lasers with a similar decrease in bandwidth.

The comb behavior of the 1.3 µm is an important experimental confirmation of

our theoretical predictions, that an optical comb can be generated at this wavelength

with QW gain media. While combs at this frequency have been generated with QD

lasers [57], we have shown that it is also possible with QW lasers.
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9.4 RF Measurements

While we have characterized the optical spectrum of our laser designs, we still

need to characterize the coherence of the modes. To perform this measurement, we

utilize a self-heterodyning technique which measures the interference of all the comb

lines with each other. To do this, we simply feed our fiber which couples the light

from the laser into an ultrafast photodiode (Newport 1014). The detector translates

our optical spectrum into an RF signal which is then analyzed in a high frequency

electrical spectrum analyzer (HP E4408B). Typically, a very narrow RF linewidth

suggests extremely stable comb spacing and low amplitude noise, both indicators of

phase-coherence between the optical modes.

First, we measure the RF signal of our 1.5 µm laser (design S1). Because of the of

limited equipment on hand at the time, such as our electrical spectrum analyzer only

reads up to 26 GHz, we are only able to obtain data on our longer lasers with smaller

FSR. The LI curve and some optical spectra are shown in Figure 9.12 as a reference

for the RF measurements. The actual RF spectra are shown in Figure 9.13. There

is a clear trend in the RF linewidths and signal to noise ratio (SNR): as the input

current increases, the SNR greatly increases while the linewidth greatly decreases.

This is good for our laser operation, as the coherence of the laser improves with

increasing laser power (as well as frequency comb bandwidth). The lowest measured

RF linewidth is around 240 kHz, a very small fraction of the FSR. This should be

sufficiently narrow for dual-comb experiments in which the two combs have different

repetition rates separated by a few 100s of kHz to a few MHz.

There are some additional stability considerations not captured by Figure 9.15.

Over a period of a few seconds (quite long relative to the laser frequency), the RF peak

around 21.85 GHz does tend to drift over a value of 500 kHz - 1 MHz. During this

drift, the linewidth does not seem to change significantly and the fact that the time

scales for this effect are on the order of seconds suggests a temperature stabilization
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Figure 9.13: RF spectrum of the 1.92 mm laser at different pump currents. Each
spectrum is normalized and averaged over 40 acquisitions. a) RF spec-
trum at I = 130 mA b) RF spectrum at I = 150 mA c) RF spectrum
at I = 188 mA.
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Figure 9.14: RF spectrum of an approximately 2 mm laser comparing the S1 and S2
coherences. a) S1 design RF spectrum at I = 188 mA b) S2 (asymmetric
QWs) design RF spectrum at I = 191 mA

problem. The TEC controller does record small oscillations in temperature over longer

periods of time. The drift can likely be improved by adjusting the temperature PID

settings and, as already mentioned, improving our temperature control setup.

While the 1550 nm laser has shown to be coherent, we do a direct comparison

between the four identical QW design and the asymmetric QW design to ensure

that the asymmetric QW design still retains the necessary FWM for phase coherence

between the separate QWs. We again compare two lasers of similar length and with
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Figure 9.15: Measurements of a length 2.02 mm laser operating at 1.3 µm (S3) a)
the LI curve b) optical spectrum at an input current of I = 115 mA
c) optical spectrum at an input current of I = 125 mA and d) optical
spectrum at an input current of I = 130 mA.

similar injection current. The RF spectra are shown in Figure 9.14. The S1 RF

spectrum (Figure 9.14a) has been averaged 40 times, while the S2 RF spectrum

(Figure 9.14b)has been averaged only twice, due to the nature of the equipment

used for the measurement. The coherence has not been lost in the transition to the

asymmetric QW, as seen in that the RF linewidth is even narrower in the asymmetric

case (116 kHz). The narrower line could be attributed to the fact that the RF signal

tends to drift and the fewer averages in measurement actually shows a narrower line.

Moving onto the 1.3 µm laser (design S3), we perform similar RF measurements
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Figure 9.16: RF spectrum of the 2.02 mm laser at different pump currents. a) RF
spectrum at I = 115 mA, averaged over 40 acquisitions b) RF spectrum
at I = 125 mA, averaged over 40 acquisitions c) RF spectrum at I = 130
mA without averaging, only a single acquisition is shown.
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for the characterization of the coherence. The LI curve and some optical spectra for

reference are shown in Figure 9.15. The RF spectra are shown in Figure 9.16. The

optical spectra for these pump currents resemble frequency combs similar to the 1.5

µm laser, but are not as flat or stable. The RF lines show interesting behavior: at low

injection currents, (Figure 9.16a), there is not a single RF line but multiple, suggesting

that the comb spacing is not constant and varies between the optical modes. However,

as the current injection is increased, the weaker RF lines disappear while the center

line narrows and increases in signal. This increase in coherence as power is increased

is consistent with the previous RF measurement for the 1.5 µm laser.

The lowest RF linewidth we captured is shown in Figure 9.16c, about 100 kHz.

While this value indicates good coherence, the long term comb stability is not as

good as the 1.5 µm laser. This is the reason the measurement in Figure 9.16c is not

averaged but is only a single acquisition. Over time, the RF peak tends to drift a

significant amount (>5 MHz) and sometimes disappears entirely, only to reappear in

a few seconds. These effects are possibly due to temperature effects and weaker SHB

because of the lower operating wavelength. These effects combine to make the 1.3

µm QW lasers less practical than the 1.5 µm QW lasers, unless more engineering is

done to ensure more stable laser operation.

There is an unusual feature in the LI curve for this laser, in which there is a

bump in the laser power around I = 130 mA before resuming its increase. Past this

point, the RF line no longer appears and the optical spectra do not resemble combs

anymore, as shown in Figure 9.17. It is possible that the QW has been saturated

at this point and the bulk SCH layer started to lase. In this scenario, we would no

longer have the necessary elements for comb generation (strong SHB) due to the lack

of confined carriers. This effect only occurs in the 1.3 µm lasers, as the QW depth is

much smaller (70 meV for electrons, 104 meV for holes) compared to that in the 1.5

µm QWs (133 meV for electrons, 200 meV for holes).
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Figure 9.17: Optical spectra of the 2.02 mm laser at high pump currents. a) optical
spectrum at I = 140 mA b) optical spectrum at I = 150 mA. The comb
structure is greatly weakened and no longer significant.

Another observation we would to note is that an RF line is observable for most

input currents in our laser diodes. This suggests that the output is not purely FM,

as such phase modulations would not be picked up by the photodetector. The output

likely is a mix of amplitude and frequency modulation such that periodic intensity

patterns are generated and picked up by our detector and transformed into an elec-

trical signal. Our theoretical models indeed show an amplitude modulation on top

of a CW base. However, future experiments such as an autocorrelation measurement

would better confirm the time domain output of our laser diodes.
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In summary, the 1.3 µm laser still exhibits a coherent comb at certain pump

currents, even though its performance is slightly worse than the 1.5 µm lasers. This

experimentally validates our theoretical models of working frequency combs based on

of QW gain at lower wavelengths, opening up the possibility for tailoring QW laser

diodes to operate in any wavelength in the 1.3 µm - 1.6 µm range.

9.5 Additional Discussion

The behavior of the RF measurements is consistent with our theoretical prediction

that the frequency comb coherence should increase as laser power is increased. From

the equations in Chapter VII, the pulsating carrier population lifetime is

τp =

[
1

τsp
+ iωs + 2R(|A0|2 + |B0|2)

]−1

. (9.1)

As the laser power out and the intracavity power, |A0|2 + |B0|2, increase, the overall

pulsating lifetime is shortened while its real part starts to dominate the imaginary

part. This allows for the pulsating carriers to follow in phase with the electric field.

For our 2 mm cavity length lasers emitting a power of P = 2.5 mW, we can

estimate the intracavity power to be approximately

|A0|2 + |B0|2 ≈
P

1− r
+ rP = 4.9 mW ,

where r = 0.32 is the power reflection coefficient. At this amount of intracavity

power, the pulsating lifetime is found to be

|τp| = 2.8 ps

Re(τp)
2

|τp|2
= 0.86 .
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Figure 9.18: A plot of the real and imaginary parts of the pulsating lifetime τp (Equa-
tion 9.1) as a fraction of the total lifetime for a 2 mm long cavity. The
real part of τp affects the coherence between the optical modes.

The real portion of τp is already much larger (86%) than the imaginary portion (14%),

even though the output power is still relatively low. A plot of the fraction of real

and imaginary parts of τp is shown in Figure 9.18. The overall trend is clear: when

there is very little or no intracavity power inside the laser, the pulsating lifetime is

almost purely imaginary because the spontaneous lifetime (1 ns) is very long relative

to the round trip time (46 ps for a 2 mm cavity length). As the laser power increases,

the lifetime is greatly reduced while the real part greatly increases until it dominates.

This increases the strength of the FWM and thus reducing the RF linewidth as seen

in our experimental results.

All things considered, longer lasers seem to be preferable to shorter lasers. Longer

lasers have a smaller FSR, which will be beneficial as they do not require as much

power for efficient FWM due to the carrier population not needing to oscillate as

quickly. Moreover, a smaller FSR provides more resolution in dual-comb experiments
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for measuring smaller absorption linewidths (such as vibrational modes in carbon

monoxide). Longer lasers also benefit by being less sensitive to cavity losses, as the

mirror reflections are not as significant compared to shorter lasers.

Compared to previous QW laser diodes [55, 54], our devices have comparable

bandwidth and RF spectral coherence (about 1 THz bandwidth, 100 kHz RF linewidth).

Generally, the lengths of our lasers are longer than previous lasers (2 mm vs 1 mm,

respectively), giving us a smaller mode spacing, which should be beneficial for spec-

troscopy. The major difference in our lasers is that our total power is less than that

of previously reported (our lasers are 3-4 mW, while previous published literature

have stated 15-20 mW). This can be improved upon by improving our laser cavity

and semiconductor designs for reduced losses.

9.6 Conclusion

To conclude this chapter, we have characterized our laser diodes, showing that

they indeed generate frequency combs as we expected. Their optical spectra show

combs up to 1.2 THz bandwidth at -10 dB with a center wavelength of 1.3 µm -

1.6 µm. The narrow RF linewidths, from 100 kHz - 200 kHz, indicate good mutual

coherence between the comb lines. The coherence of the frequency combs follows our

theoretical predictions in which higher laser power improves the FWM effect, as seen

by the narrowing of the RF linewidth with increasing intracavity power. With these

characteristics, these laser diodes have much potential to be useful alternatives to

current frequency comb sources, possibly acting as a primary source of combs in fiber

lasers, or used directly as a frequency comb in free space spectroscopy.
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CHAPTER X

Conclusion and Future Directions

As a conclusion to this work, we present a short summary of our work as well

some future directions and applications of these laser diode frequency combs. We

have studied the nature of traveling wave electric field models and the numerical

schemes in which to solve them as a powerful tool for modeling optical phenomenon.

We have applied the traveling wave model, while also developing new and predic-

tive theories, to pulsed and cascaded stimulated Brillouin scattering. From there,

we have developed a comprehensive model of laser diodes incorporating many ele-

ments of semiconductor physics in order to predict the generation of frequency combs

directly from single section lasers without a saturable absorber. These calculations

demonstrate the feasibility and material requirements for FM comb generation. We

further study the physics of FM comb generation in laser diodes by simplifying our

comprehensive model and finding some analytical solutions to our wave equations,

illuminating the importance of FWM and SHB in the generation of frequency combs.

Finally, we have undertaken experimental fabrication and design of InGaAsP/InP

based laser diodes, successfully characterizing that their spectra consist of frequency

combs with about a 1 THz bandwidth and good coherence with RF linewidths around

200 kHz.

As for possible future experiments and applications, the combs at 1.55 µm can be
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easily amplified with erbium-doped amplifiers (combs at 1.064 µm can be amplified

with ytterbium) and dispersion compensated in single mode fibers to form pulses to

be used directly in spectroscopy. Alternatively, after amplification, the pulses can be

frequency doubled through nonlinear crystals to 800 nm, expanding their usefulness

in spectroscopy. For combs operating less than 1.3 µm, dispersion compensation may

be trickier as fibers are not anomalously dispersive at wavelengths less than 1.3 µm,

but can still be accomplished with dispersion shifted fibers. Additional measurements

include autocorrelation, which can distinguish whether the output is pulsed or FM,

and optical heterodyning to establish the optical linewidth and coherence for absolute

spectroscopy measurements.

While there are some potential shortcomings of these sources compared to fiber

or Ti:Sapphire mode-locked lasers, there are major compensations that help alleviate

these shortcomings. The laser diode frequency combs typically have lower output

power, but as mentioned already, they can be amplified with erbium or ytterbium

doped fibers and passively dispersion compensated in the same fiber system. This

eliminates free-space components such as moving gratings and mirrors and, more crit-

ically, the saturable absorber altogether, greatly simplifying the design of the system.

Finding the mode- locked regime is mostly automatic and much more robust with

laser diode combs. Another issue that could be problematic is the lack of tunability

of the comb spacing once the lasers are cleaved. However, this can be alleviated by in-

tegrating several laser diodes of different cavity lengths (at negligible additional cost)

into the same system that can be selectively turned on and off. While this reduces

our choices of frequency comb spacing, the elimination of moving mechanical parts

greatly improves the stability and viability of using these combs in the field.

For future theoretical work, we can extend our laser model to applications such as

dual-comb spectroscopy and calculating the effects of combining the outputs of inde-

pendent laser diodes. Additionally, we can also include a full many-body calculation
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of the semiconductor quantum-well gain medium while maintaining the traveling-

waves.. This approach would require the use of the semiconductor Bloch equations

that takes into account Coulomb interactions and screening, carrier-carrier scatter-

ing, and band structure calculations. Such calculations are not trivial, as all carrier

equations would now be coupled to every other carrier equation, which would likely

require a more sophisticated numerical computation scheme.

The overall major significance is that all of the frequency comb applications at

these wavelengths would now be much more accessible to researchers in science and

industry. The relatively inexpensive and solid-state nature of laser diode based fre-

quency combs allows them to be mounted on vehicles and robots, greatly enhancing

military and national safety applications such as explosive and biochemical weapons

detection. In addition, they may be deployed on drones or in hand-held devices for

civilian applications such as atmospheric sensing or metrology in chemistry and bi-

ology. Many possibilities open up with further engineering and development of these

frequency combs.
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Fabrication Tools Settings

We list the details of some of the laser diode fabrication steps here, as well as

some tips and tricks for avoiding several problems we encountered.

GCA AS200 AutoStep Exposure Recipes

The exposure using the AS200 AutoStep, or also called the Stepper, utilizes cus-

tom recipes and settings due to size of our pieces. Normally, this tool is using default

settings for 100 mm (or 4 inch), 550 µm wafers and we have to make sure these set-

tings are adjusted for our 1.0 cm2, 350 µm pieces. The SOP for the tool has been

updated to accommodate leveling the chuck by focusing directly on the small pieces.

The names of the two recipes for exposure are MARK1 (0.3 second exposure) and

MARK2 (0.32 second exposure). The first being the first exposure step without any

marker alignments, while the second requires an alignment step.

The alignment tolerance on the tool is only ± 0.44 µm, as this is the smallest

step the stage can take. Obviously, this causes problems for very precise alignments,

especially if we need to overlay a 2 µm waveguide on top of a another one. While our

described oxide lift-off process does not require such precise alignment, the PECVD

approach does require it. In those cases, it is good to run several alignment steps and
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Oxford ICP Parameter Value
RF Power 110 W
ICP Power 200 W

Process pressure 18 mTorr
CH4 gas flow 30 sccm
H2 gas flow 10 sccm

Temperature 50 C

Table A.1: Tool parameters for the Oxford ICP RIE InP etching recipe.

exposures and manually adjust the stage for small errors in alignment, using previous

exposure steps as a reference. Errors in the AutoStep stage and lens alignments, as

well as errors in the mask maker, can be corrected this way.

InP Dry Etching Recipe

Dry etching of InP is performed in the Oxford ICP RIE with a custom recipe

loaded onto the tool (XDev InP) that uses methane and hydrogen plasmas as etchants.

Our process follows the results of Lee, et al. [104]. We have listed the parameters in

Table A.1 for the recipe settings. There is no oxygen flow in this recipe, which is a

minor difference from the process in [104]. This gives about a 100 nm/min etch rate

for InP, while it is a little slower while etching InGaAs.

Silicon Oxide Deposition

We use the AE Evaporator to deposit thin films in the fabrication process. While

depositing gold is relatively straightforward, depositing oxide is a little trickier. There

are two problems to be aware of:

1. The deposition of the oxide is not perfectly vertical, as there is significant build

up on the sides of the ridges;

2. The oxide does not stick well to the crystal monitoring the deposition rate.
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Figure A.1: An SEM of the laser ridge after 850 nm of oxide deposition. The sides
and top have unusual shapes due to the slightly non-vertical nature of
the deposition tool.

The first problem can be useful as we are hoping for good side wall coverage. However,

this means that the oxide layer cannot be too thick - a value around 650-750 nm for

a 1 µm ridge is good. If the oxide is too thick, the sides of the photoresist become

covered and lift-off is nearly impossible. This means that the second problem is more

potent as it exacerbates the first problem. Hitting the range of 650-750 nm may not

be easy due to the inaccuracy of deposition. A solution for this is to first deposit 100

Å of titanium in an empty chamber to condition the crystal. That way, the oxide

deposition is more accurate.

Buffered HF Etch Rates

While we did not use wet etching in the end process, a characterization of the etch

rate is given here. The buffered oxide etch (BHF) available in the LNF is Buffer HF
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Figure A.2: A plot of the etch rate using Buffer HF improved etchant. The blue
crosses are experimental data while the red line is the fit. The fitting
gives an etch rate of about 325 nm/min.

improved from Transene Company, Inc.. We tested this etchant on 350 C PECVD

oxide, grown in the Plasmatherm 790 tool (recipe L OX350). The etch rate is about

325 nm/min, with the graph shown in Figure A.2.
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[99] M. Rosenzweig, M. Möhrle, H. Düser, and H. Venghaus, “Threshold-current
analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,”
IEEE J. Quantum Electron., vol. 27, no. 6, p. 1804, 1991.

181



[100] D. G. Ivey and P. Jian, “Metallurgy of ohmic contacts to InP,” Canadian Met-
allurgical Quarterly, vol. 34, no. 2, pp. 85–113, 1995.

[101] G. Belenky, L. Shterengas, C. W. Russel, C. L. Reynolds, M. S. Hybertsen, and
R. Menna, “Trends in semiconductor laser design: Balance between leakage,
gain and loss in InGaAsP/InP MQW structures,” Advanced Research Workshop
on Future Trends in Microelectronics, no. 231–240, 2002.

[102] P. S. Zory, Quantum Well Lasers. 1250 Sixth Ave., San Diego, CA 92101-4311:
Academic Press, Inc., 1993.

[103] B. V. Zeghbroeck, Principles of Semiconductor Devices and Heterojunctions.
Prentice Hall PTR, 2007.

[104] C.-W. Lee, D. Nie, T. Mei, and M. K. Chin, “Study and optimization of room
temperature inductively coupled plasma etching of InP using Cl2/CH4/H2 and
CH4/H2,” J. of Crystal Growth, vol. 288, pp. 213–216, 2006.

182


