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Abstract 

 
Increasing evidence supports the developmental origins of health and disease (DOHaD) 

hypothesis, which posits that exposure to environmental factors (e.g. diet, chemicals, stress etc.) 

during sensitive periods of life (e.g. pre-conception, gestation, infancy, adolescence) alters 

disease susceptibility later in life by influencing developmental plasticity. As support for 

DOHaD accumulates, it has been proposed that developmental exposures alter later-life gene 

regulation and subsequent phenotype through changes in heritable epigenetic marks – e.g. DNA 

methylation. Both biological aging and environmental exposures are associated with changes in 

DNA methylation, and it has been shown that developmental exposures can alter the rate of 

epigenetic aging. Based on these existing data, we defined a new term – environmental 

deflection – that refers to an environment- or toxicant-mediated shift away from the baseline rate 

of epigenetic aging within an organism. 

For this project, longitudinal animal model and human cohort studies were used to 

investigate whether developmental exposure to specific environmental factors – bisphenol A 

(BPA), Western high-fat diet (WHFD), and physical activity – would lead to environmental 

deflection of the aging epigenome. In the animal model study, matched blood and tail samples 

were collected from congenic a/a Agouti mice perinatally exposed to BPA (50 µg/kg diet) and/or 

WHFD. Linear mixed effects models were used to test for environmental deflection of epigenetic 

aging by dietary exposures. In the same mice, we used two next-generation sequencing methods 

– enhanced reduced representation bisulfite sequencing (ERRBS) and hydroxymethylated DNA 



 xiii 

immunoprecipitation sequencing (HMeDIP-seq) – to determine the contributions of 5-

methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) to the aging epigenome. In the 

Healthy Families Project, a human cohort, we investigated the effects of physical activity and 

diet quality on age-related methylation in longitudinal blood samples. DNA methylation was 

measured at obesity-related genes in matched neonatal bloodspot and childhood blood samples 

(12-24 months old, 3-5 years old, 10-12 years old). In an effort to test the utility of neonatal 

blood DNA methylation as a biomarker of obesity risk during childhood, we also investigated 

whether childhood obesity likelihood was associated with neonatal and/or childhood DNA 

methylation at a number of obesity-related genes.  

In both the mouse and human studies, we showed significant, gene-specific age-related 

DNA methylation. In mice, WHFD, but not BPA exposure, deflected age-related Esr1 

methylation rates away from Control baseline. In the mouse blood sequencing data, we showed a 

locus-specific contribution of 5-hmC to age-related DNA methylation patterns in mice, and also 

demonstrated significant effects of BPA exposure on DNA hydroxymethylation in the gene 

bodies of imprinted loci. In the human cohort, environmental deflection modeling was limited by 

sample size, but there was some indication of deflection by childhood BMI z-score and physical 

activity levels. Neonatal bloodspot LINE-1 DNA methylation was significantly associated with 

obesity likelihood in preschool children, and childhood PPARA was also negatively associated 

with body mass index z-score. 

In this dissertation, we showed that both altered diet and physical activity have the 

potential to alter rates of epigenetic aging. Separately, we found that developmental BPA 

exposure stably alters DNA hydroxymethylation at murine imprinted genes, and that human 

neonatal bloodspot DNA methylation may be a useful biomarker for estimating childhood 
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obesity risk. These results emphasize the importance of longitudinal study design in 

toxicoepigenetics research, and suggest that environmental factors play a key role in the 

developmental origins of adult disease.  
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Chapter 1  

Introduction 

1.1 Rationale and Significance 

Obesity as a disease burden 

Over the past several decades, U.S. adult and childhood obesity rates have steadily 

increased, reaching 39.8% and 18.5% in 2015-2016, respectively (Hales et al. 2017). As a 

phenotype, obesity is associated with a number of chronic diseases, including hypertension, 

various cancers, heart disease, and type 2 diabetes (Dixon 2010). As a result of these negative 

health impacts, obesity is also a significant economic burden; a recent literature review estimated 

that the annual medical cost of treating obesity in the U.S. is $149.4 billion in 2014 dollars (Kim 

and Basu 2016). Public health efforts to improve metabolic health in the U.S. have not been 

successful, leading to an investment in research examining the biological underpinnings of the 

obese phenotype.  Recent research has shown that childhood obesity or a family history of 

obesity are the best predictors of adult obesity (Loos and Janssens 2017), indicating that genetics 

may play a central role in the etiology of obesity. However, a new literature review on this topic 

showed that BMI-associated genetic variants only explain 0.66-2.70% of BMI variation, 

suggesting that obesity risk is not reflected in the available genetic information (Loos and 

Janssens 2017). This inconsistency suggests that there is critical role of the environment – 

including gene-environment interactions – in shaping obesity risk. 
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Public health significance 

As the rates of both childhood and adult obesity continue to increase across the world, 

researchers have struggled to identify precise biological mechanisms that explain obesity’s rapid 

rise. The primary goal of this research effort is to identify targets of therapeutic intervention that 

will either help reverse the rise in obesity or help mitigate the associated negative health impacts 

of obesity. Right now, therapeutic interventions are able to treat obesity’s negative health 

outcomes, but have not successfully prevented the rising tide of obesity. As such, investigations 

into the causes of obesity, as well as associated negative health effects, remain necessary. 

Mounting scientific evidence supports the developmental origins of health and disease (DOHaD) 

hypothesis, which posits that early-life exposures to environmental factors are linked to the 

development of disease later in life (Bateson et al. 2004; Heindel et al. 2015). One of the main 

biological mechanisms thought to regulate this process is the epigenome, which can be defined 

as mitotically heritable, physical changes to the genome that are unrelated to the dinucleotide 

sequence. The goal of this dissertation is to determine whether gene-environment interactions, as 

reflected by exposure-mediated epigenetic changes, are related to the obesity phenotype. Since 

epigenetic changes are reversible, they represent potential therapeutic targets in treating obesity, 

and could represent a new avenue to mitigate this growing public health problem.   

 
Developmental origins of health and disease 

In the early 1990s, British epidemiologist David Barker proposed a new hypothesis – that 

the intrauterine environment plays a causal role in the development of adult disease (Barker 

1995; Barker et al. 1990). This idea, which went on to be known as the Barker hypothesis, 

focused on the link between fetal undernutrition and offspring cardiovascular disease risk, 

thereby introducing the idea of prenatal biological programming. In recent years, this 
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programming paradigm was expanded beyond fetal nutrition to include developmental chemical 

exposures, giving birth to the Developmental Origins of Health and Disease (DOHaD) 

hypothesis (Heindel et al. 2015). This hypothesis states that exposure to nutritional and 

environmental factors during prenatal and early postnatal periods alters susceptibility to chronic 

diseases, including obesity, by influencing developmental plasticity (Bateson et al. 2004; Heindel 

et al. 2015). Given its importance in chronic disease development, DOHaD has become a 

valuable conceptual framework for investigating the effects of environmental factors on disease 

outcomes. 

1.2 Epigenetics 

As support for DOHaD accumulates, it has been shown that developmental exposure to 

environmental factors can alter gene regulation and subsequent phenotype through changes in the 

epigenome (Waterland and Jirtle 2004; Waterland and Michels 2007). Epigenetics refers to the 

study of mitotically heritable and potentially reversible changes in gene expression unrelated to 

the DNA sequence. Epigenetic marks include chromatin remodeling modifications (e.g. histone 

tail trimethylation), non-coding RNA, and alterations to DNA itself (e.g. DNA methylation, 

DNA hydroxymethylation) (Bernal and Jirtle 2010; Egger et al. 2004). DNA methylation is a 

well-characterized epigenetic control mechanism, and is typically defined as the addition of a 

methyl group to the 5’-carbon of cytosine in a Cytosine-phospho-Guanine (CpG) dinucleotide – 

5-methylcytosine (5-mC). In general, DNA methylation is associated with decreased 

transcription factor binding at promoter/enhancer sites, as well as decreased gene transcription 

(Medvedeva et al. 2014). Previous work has documented distinct waves of demethylation and de 

novo methylation that occur during fetal development (Reik et al. 2001; Smallwood and Kelsey 
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2012), as well as evidence that these waves of epigenetic reprogramming help regulate 

primordial germ cell proliferation and differentiation (Messerschmidt et al. 2014).  

While epigenetic reprogramming events are typically tightly regulated, 5-mC levels have 

also been shown to change in response to environmental exposures during early development 

(Anderson et al. 2012; Bernal and Jirtle 2010; Manikkam et al. 2013), adolescence (Essex et al. 

2013), and even adulthood (Tellez-Plaza et al. 2014; Wright et al. 2010). Specifically, animal 

studies have shown that offspring DNA methylation is associated with developmental exposure 

to a variety of environmental factors, including lead (Pb) (Dosunmu et al. 2012), altered diet 

(Marco et al. 2014; Vucetic et al. 2010), vinclozolin (Guerrero-Bosagna et al. 2012), arsenic 

(Reichard and Puga 2010), bisphenol A (BPA) (Kim et al. 2014), trichloroethylene (TCE) 

(Gilbert et al. 2012), ethanol (EtOH)((Kaminen-Ahola et al. 2010; Laufer et al. 2013; Marjonen 

et al. 2015), diesel exhaust (DE) (Tachibana et al. 2015), and stress (Dong et al. 2015). While 

this dissertation focuses mainly on DNA methylation, there is also evidence that environmental 

factors may influence other epigenetic modifications including posttranslational histone tail 

modifications (Arita et al. 2012), overall chromatin state (Schick et al. 2015; Veazey et al. 2015), 

and DNA hydroxymethylation (Tammen et al. 2014). As a result, direct measurements of 

epigenetic marks like chromatin structure and DNA methylation have become hallmark tools in 

investigating gene-environment interactions. 

1.3 Age-Related Methylation and Epigenetic Drift: Two Types of Change over the 

Life Course 

While environmental health sciences studies have focused on the association between 

toxicological factors and the epigenome in cross-sectional studies and in utero exposure models, 

a number of molecular epidemiology and genomics studies have evaluated DNA methylation 
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status as a function of age in humans and animal models. The aging epigenome was first 

described thirty years ago, when early investigations showed that levels of CpG methylation in 

human fibroblast cells and pooled mouse tissues were inversely related to lifespan (Fairweather 

et al. 1987; Wilson et al. 1987). More recently, a large number of studies have demonstrated age-

dependent changes in DNA methylation, including twin studies (Fraga et al. 2005; Martino et al. 

2013), human cohort studies (Alisch et al. 2012; Heyn et al. 2012; Madrigano et al. 2012; 

Urdinguio et al. 2016; Wang et al. 2012), and animal model studies (Maegawa et al. 2014; Spiers 

et al. 2016). Among the classically defined epigenetic marks, DNA methylation is most often 

investigated in epigenetic aging studies because of its stability and the availability of high 

throughput quantification methods. Studies investigating the aging epigenome show some 

consistent patterns, including locus-specific increases in DNA methylation with age 

(Teschendorff et al. 2013), global decreases in DNA methylation with age (Issa 2014; 

Teschendorff et al. 2013), and bidirectional changes in DNA methylation variability over time 

(Jones et al. 2015; Shah et al. 2014). To describe the epigenomic changes that occur in 

conjunction with chronological age, the literature has settled on two terms – age-related 

methylation and epigenetic drift (Issa 2014; Jung and Pfeifer 2015).   

Age-related methylation is traditionally defined as predictable, direction-specific changes 

in DNA methylation levels that occur with normal aging (Jung and Pfeifer 2015). This concept is 

closely linked to the “epigenetic clock” proposed by Horvath et al. in 2013, which showed that 

biological age could be reliably predicted from DNA methylation levels at specific CpG sites 

across the genome (Horvath 2013). Results from the literature demonstrate that age-related 

methylation occurs both at specific gene regions (Jung and Pfeifer 2015) and on an epigenome-

wide scale (Heyn et al. 2012). Additionally, a recent review of the aging epigenome noted that 
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the directionality of age-related methylation – hypomethylation or hypermethylation – varies by 

gene region (Jones et al. 2015). Considered together, these results suggest that age-related 

methylation is a complex process that can vary by genomic context. Further supporting this idea, 

age-related methylation has been shown to vary by tissue type. Day et al. looked at methylation 

array data from four different human tissue types – blood, kidney, brain, and skeletal muscle – 

and found both tissue-independent and tissue-dependent methylation changes associated with age 

(Day et al. 2013).  These data indicate that age-related methylation is non-random, and may be 

biologically meaningful.  

In contrast to age-related methylation, epigenetic drift refers to stochastic, bidirectional 

changes in epigenetic (e.g. DNA methylation) variability with age (Jones et al. 2015). These 

changes, which may alter methylome plasticity, are thought to be a result of methylation 

maintenance failure during cellular replication (Fraga et al. 2005; Teschendorff et al. 2013). 

Unlike age-related methylation, epigenetic drift is not a predictable process; instead, it can be 

conceptualized as the direct result of random inefficiencies in biological machinery that occur 

with age (Jones et al. 2015; Shah et al. 2014).  As such, epigenetic drift is not expected to be 

consistent across individuals within a population, and cannot be used to predict age. 

Nevertheless, this concept is critical for describing the epigenetic discordance that arises in 

monozygotic twins as they age (Fraga et al. 2005), and can also help explain results from cross-

sectional studies that show increased epigenetic variability with advanced age (Talens et al. 

2012). Baseline levels of epigenetic drift are expected to occur regardless of specific 

environmental exposures, providing a background rate of increased variability that occurs in 

tandem with site-specific age-related methylation changes. Supporting this idea, a recent study 

found an interaction between epigenetic drift and age-related methylation at specific “epigenetic 
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clock” CpG sites, showing an increased effect of environmental or stochastic influences with 

increasing age (van Dongen et al. 2016). This suggests that the relative contribution of epigenetic 

drift to the aging epigenome (i.e. longitudinal DNA methylation) varies across the lifecourse. 

1.4 Bisphenol A 

Bisphenol A (BPA) is a commercial monomer used in the production of polycarbonate 

plastic and epoxy resins that is found in a variety of consumer products (e.g. metal can linings, 

receipt paper, etc.). As a result of its presence in common products, BPA has near ubiquitous 

human exposure across the world (Calafat et al. 2008). BPA is a known endocrine disruptor that 

can activate a variety of growth-related transcription factors, and has been shown to bind 

effectively to several nuclear receptors involved in cell maturation (Krüger et al. 2008; Singh and 

Li 2012; Sui et al. 2012). In addition, BPA exposure has been shown to affect methylation levels 

across the epigenome (Manikkam et al. 2013; Singh and Li 2012; Wolstenholme et al. 2011; 

Zhang et al. 2012), and in utero doses of BPA in mouse models have been shown to affect both 

global and gene promoter-specific methylation (Anderson et al. 2012; Singh and Li 2012; 

Susiarjo et al. 2013). Combined, these results indicate that BPA exposure could alter regulation 

of gene expression during development, thereby modifying risk for negative health outcomes. 

The effects of BPA exposure on epigenetic aging have not been previously studied, but based on 

BPA’s documented ability to alter the epigenome, we hypothesized that prenatal BPA exposure 

would alter rates of age-related methylation.  

1.5 Western High-Fat Diet 

Western High-Fat Diet (WHFD) is characterized by high saturated and omega-6 

polyunsaturated fatty acids, reduced omega-3 fatty acid intake, and increased salt and refined 

sugar intake (Myles 2014). The adoption of the modern Western diet has been implicated in the 
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rising levels of obesity, diabetes, and immunologic disorders seen in Western countries across 

the world (Hariharan et al. 2015; Myles 2014). Recent studies in mice indicate that Western diet 

is associated with short-term increases in oxidative stress and adiposity, and a gradual increase in 

body fat mass across generations (Heinonen et al. 2014; Massiera et al. 2010). Additional rodent 

studies indicate that high-fat-diet-induced obesity is associated with altered promoter DNA 

methylation at genes related to metabolism, including leptin (Lep) and peroxisome proliferator-

activated receptor-α (Ppara) (Ge et al. 2014; Milagro et al. 2009). Genome-wide epigenome 

studies have also found obesity- and nutrient-sensitive CpG sites throughout the epigenome, 

suggesting that adiposity or an altered diet can affect specific gene regulation (Parle-McDermott 

and Ozaki 2011; Xu et al. 2013). Based on these results, it is clear that diet represents an 

important modifier of DNA methylation, and that it has the potential to affect the epigenome 

throughout the life course. 

1.6 Physical Activity and DNA methylation 

The physiological benefits of physical activity, which has been shown to alter gene 

expression levels (Huang et al. 2010; Lesniewski et al. 2013; Lindholm et al. 2014), are well-

documented, but the precise mechanism controlling activity-induced changes in gene expression 

remains relatively elusive. Investigating this idea, several recent studies have shown that physical 

activity is associated with changes in the epigenome, including gene-specific DNA methylation 

(Barrès et al. 2012; Rönn et al. 2013). One such study demonstrated that acute physical exertion 

is associated with decreases in DNA methylation at promoters of skeletal muscle gene promoters 

(Barrès et al. 2012). A second recent study demonstrated that long-term endurance training, as 

opposed to short-term physical activity, is associated with significant changes in DNA 

methylation at enhancer regions across the genome (Lindholm et al. 2014), suggesting that long-
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term physical activity may alter gene regulation via the epigenome. Supporting this idea, a third 

recent study showed that maternal exercise prevents high-fat-diet-induced hypermethylation at 

the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α), a master 

regulator of metabolism (Laker et al. 2014). While it remains unclear how much physical activity 

is needed to establish these epigenetic effects, it is clear that both acute and long-term physical 

activity can affect the methylome. As such, physical activity could also be an important modifier 

of the aging epigenome. 

1.7 Environmental Deflection of the Aging Epigenome 

Of particular interest to the field of toxicology, recent reports indicate that environmental 

exposure to exogenous environmental factors (e.g. lead (Pb), altered diet) can alter the rate of 

either age-related methylation (Faulk et al. 2014) or epigenetic drift (Gilbert et al. 2016). These 

results indicate that an interaction between age and exposure exists, and that investigations into 

the effects of environmental exposure on DNA methylation should not be limited to cross-

sectional analyses. However, while these papers discuss a role of the environment in establishing 

rates of “epigenetic drift” and/or “age-related methylation,” they do not provide a specific 

mechanism by which the environment could shape the aging epigenome.      

In an effort to improve clarity and interpretation of epigenetic studies in both animal 

models and human cohorts, we introduced a new term for this mechanism – environmental 

deflection – that refers to an environment- or toxicant-mediated shift away from the baseline rate 

of age-related methylation or epigenetic drift within an organism (Kochmanski et al. 2017). By 

altering longitudinal patterns of epigenetic marks, environmental deflection may facilitate long-

term changes in gene regulation via specific environmental exposures, showing the greatest 

effects during sensitive periods of growth and development. As such, environmental deflection 
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may underlie the apparent delay between developmental exposure and biological effects later in 

life. This type of long-lived, toxicant-sensitive epigenetic mechanism may also help to explain 

the growing prevalence of chronic diseases in human populations, demonstrating that 

longitudinal measures of the epigenome should be considered when designing future 

toxicoepigenetic and epigenetic epidemiological studies.  

Evidence for environmental deflection  

As a byproduct of their identical genetic background, monozygotic twin pairs are ideal 

for investigating the role the environment plays in shaping the aging epigenome while 

controlling for genetic effects. In 2005, a landmark paper by Fraga et al. demonstrated 

divergence of DNA methylation status with age in separate identical twin populations (Fraga et 

al. 2005). While this study was not longitudinal, the results suggest that environment and 

lifestyle, not simply genetics, could be driving age-associated changes in human methylation 

status. Supporting this idea, a more recent report demonstrated that newborn monozygotic (MZ) 

twins exhibit distinct patterns of inter-individual DNA methylation variation, indicating that the 

environment plays a role in determining the neonatal methylome (Ollikainen et al. 2010). 

Building off these data, another paper found locus-specific increases in within-twin pair 

methylation discordance across the adult life course (18-49 years old), a pattern that was 

attributable to the individual’s unique environment at most investigated loci (Talens et al. 2012). 

Extending twin studies to an epigenome-wide scale, several newer studies have shown region-

specific hypermethylation with age in adult MZ twins (Bell et al. 2012), high levels of within-

pair DNA methylation variability in adolescent twins (Lévesque et al. 2014), and significant 

interaction between environmental effects and age at 32,234 CpG sites across the epigenome 

(van Dongen et al. 2016). Combined, the epigenome-wide twin studies support the idea that the 
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environment plays an integral role in shaping the epigenome throughout human aging. However, 

by their very nature, twin studies are not able to tease apart the separate effects of environmental 

factors on epigenetic drift and age-related methylation, and do not examine interactions between 

specific exposures and the aging epigenome.  

Supplementing the available twin studies, a handful of recent non-twin human cohort 

studies have examined environmental deflection of epigenetic drift or age-related methylation by 

toxicants and other lifestyle factors. Building off the smaller scale methylation array and global 

methylation results noted previously, a recent publication using the Illumina 450K BeadChip 

showed that smoking-associated CpG probes exhibit diminished epigenetic drift, suggesting an 

environmental deflection of the drift rate by smoking status (Shah et al. 2014). Additionally, 

another recent publication showed that increased body mass index (BMI) is associated with 

accelerated age-related methylation at 353 CpG sites in human liver samples, suggesting that 

nutritionally-induced oxidative stress and metabolic alterations may deflect the rate of age-

related methylation (Horvath et al. 2014). These results indicate that environmental deflection of 

both epigenetic drift and age-related methylation may occur on an epigenome-wide scale in 

human populations. 

A small number of recent animal model studies have investigated the effects of 

environmental exposures on epigenetic aging. One such study found that perinatal lead (Pb) 

exposure alters the rate of age-related methylation in the promoter of a murine imprinted gene, 

Igf2r, as well as a metastable epiallele, CabpIAP (Faulk et al. 2014).  Similarly, examining 

epigenetic drift, a second study in mice found a trichloroethylene-dependent increase in naïve 

CD4+ T cell methylation variance at several gene regions, indicating that epigenetic drift can be 

shifted away from baseline by a chemical exposure (Gilbert et al. 2016). Together, these prior 



 12 

animal studies provide direct, exposure-specific evidence for environmental deflection of both 

age-related methylation and epigenetic drift.  

Conceptual model for environmental deflection 

In an effort to establish a clear conceptual framework for environmental deflection, we 

have utilized a visual bow and arrow metaphor that takes into account exposure timing and age-

related methylation (Figure 1-1). Time zero in our model represents the period of initial 

developmental epigenetic programming, the flight of the arrow represents the rate of age-related 

methylation, and deviations in the flight path represent environmental deflection. Figure 1-1A 

demonstrates how epigenetic status at a specific locus or global marker can change with age or 

be deflected by an environmental exposure away from age-related hyper- or hypomethylation. 

Respectively, these endpoints can be conceptualized as the arrow striking its target and the arrow 

missing the target by a significant amount. Meanwhile, Figure 1-1B shows environmental 

deflection of epigenetic drift for a population, with the yellow shaded area representing the 

normal range of DNA methylation variability for the population.  If a subset of the population 

(dotted circle) is exposed to specific toxicant exposures (vertical dotted arrows) during specific 

developmental time periods (vertical dotted arrows), the trajectory over time at labile genes 

could be deflected outside the normal range of variation, depicted by the dotted lines. When 

firing a real-life arrow, the greatest opportunity to affect the arrow’s flight occurs at release. 

Assuming environmental deflection works in a similar way – as suggested by developmental 

plasticity theory (Wells 2014) – the greatest opportunity to affect the normal trajectory of age-

related methylation and/or epigenetic drift (i.e. the arrow’s flight) is early in life (i.e. the release 

point). However, much like wind or another outside force can alter the path of an arrow after 

release, environmental deflection can also occur at other points throughout an organism’s life 
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course (Figure 1-1B). To test this conceptual model in real populations, longitudinal studies with 

adequate early life exposure data and repeated epigenetic assessments are recommended to 

identify epigenetic loci with deflected methylation measurements.  

1.8 DNA Hydroxymethylation 

While much of the available DNA methylation research has focused on 5-mC, recent 

studies have begun to investigate an oxidized form of the molecule, 5-hydroxymethylcytosine (5-

hmC). Previous work in mice and humans have demonstrated low, tissue-specific 5-hmC content 

that is highest in the brain, but also present in the liver, testes, placenta, colon, and blood, albeit 

in progressively lower levels (Nestor et al. 2012). While many studies have focused on the role 

of 5-hmC in DNA demethylation pathways (Ito et al. 2011; Shen and Zhang 2013), other 

genome-wide studies in humans and mice have shown that 5-hmC is enriched in gene bodies and 

enhancer regions, suggesting a role in transcriptional control (Johnson et al. 2016; Stroud et al. 

2011; Wu et al. 2011). Supporting this idea, additional work has shown that 5-hmC is recognized 

by a unique binding protein (Mbd3) (Yildirim et al. 2011), that 5-hmC may be maintained across 

DNA replication via a complex of the DNMT1, Tet, and UHRF1 proteins (Shen and Zhang 

2013), and that 5-hmC is enriched at imprinted loci in human tissues (Hernandez Mora et al. 

2017).  Based on the growing evidence that 5-hmC is a stable epigenetic mark with a unique 

function, a recent review of the literature concluded that 5-hmC is likely to play an important 

role in aging and age-related diseases (López et al. 2017). However, due to a lack of studies 

investigating the role of 5-hmC during normal aging, evidence to support this hypothesis remains 

scarce. In this dissertation, we tested whether 5-hmC contributes to the aging epigenome through 

direct, longitudinal measurements of epigenome-wide 5-hmC levels in murine blood samples. 
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1.9 Project Overview 

This project uses several environmental factors – chemical, diet, and physical activity – 

as tools to study the underlying mechanisms of epigenetic aging. The overarching hypotheses for 

this dissertation are as follows: 1. Developmental exposure to bisphenol A (BPA) will result 

in altered epigenetic aging, as measured by longitudinal DNA methylation and 

hydroxymethylation levels in multiple tissues; 2. The rate of epigenetic aging will be 

mitigated by beneficial environmental cues like exercise and exacerbated by the Western 

high-fat diet. To test these central hypotheses, Aim 1 of this project combines an animal model 

exposure study with target gene pyrosequencing to investigate the effects of developmental BPA 

exposure, WHFD, and physical activity on age-related methylation. Aim 2 uses next-generation 

sequencing techniques to examine the effects of BPA exposure on longitudinal epigenome-wide 

5-mC and 5-hmC levels from the same developmentally exposed mice. Finally, Aim 3 uses 

neonatal bloodspots and childhood blood samples to investigate age-related methylation in a 

childhood obesity cohort. By combining mouse and human data, this dissertation aims to shed 

light on the contribution of life-course epigenetics to development of the obese phenotype 

(Figure 1-2). 
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1.10 Figures and Tables 

 

Figure 1-1: Conceptual framework for environmental deflection of the aging epigenome. A) 

Environmental deflection of age-related methylation for an individual; deflection is represented 

by the altered flight of an arrow fired at a target. The gradient bar on the right shows how 

epigenetic status at a specific locus or global marker can change with age or be deflected by an 

environmental exposure away from age-related hyper- or hypomethylation. Respectively, these 

endpoints can be conceptualized as the arrow striking its target and the arrow missing the target 

by a significant amount.  B) Environmental deflection of epigenetic drift for a population; the 

vertical arrows represent specific exposures that may affect drift trajectory throughout life.  The 

yellow shaded area is the normal range of DNA methylation variability at a given time point for 

the population.  If a subset of the population (dotted circle) is exposed to a toxicant during the 

early developmental time period (large vertical dotted arrow), the epigenetic drift trajectory at 

labile genes could be deflected outside the normal range of variation, depicted by the dotted line. 
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Figure 1-2: A conceptual model summarizing the dissertation hypotheses. Questions from 

the three aims work together to examine the effects of environmental factors on epigenetic aging 

and obesity. The hypotheses of each aim are indicated by colors (Aim 1 = red, Aim 2 = purple, 

Aim 3 = blue) and numbers. Variables that were considered in statistical modeling are indicated 

within the boxes. 
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Chapter 2 

Longitudinal Effects of Developmental Bisphenol A, Variable Diet, and 

Physical Activity on Age-related Methylation in Mice 

 
Abstract 

Environmental factors, including exogenous exposures and nutritional status, can affect DNA 

methylation across the epigenome, but effects of exposures on the aging epigenome remain 

unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA), variable 

diet, and/or changes in physical activity result in altered age-related methylation, as measured 

longitudinally via target loci methylation in matched mouse tail (PND21, 10 months) and blood 

(2 months, 4 months, 10 months) samples. DNA methylation was quantified at two repetitive 

elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in 

isogenic a/a Agouti mice developmentally exposed to Control, Control+BPA (50 µg/kg diet), 

Mediterranean high-fat diet (MHFD), Western high-fat diet (WHFD), Mediterranean+BPA, or 

Western+BPA diets. With age, tail tissue DNA methylation levels significantly (p<0.05) 

decreased at LINE-1, IAP, and H19, and significantly increased at Esr1. In blood, Esr1 DNA 

methylation increased significantly with age, but no other investigated loci showed significant 

age-related methylation. In the tail tissue, Igf2 demonstrated WHFD-specific changes in early-

life methylation (p=0.027), and IAP showed marginal negative environmental deflection in the 

Western (p=0.058) and Western+BPA (p=0.051) exposure groups. In blood, Esr1 showed 

significant negative environmental deflection by WHFD exposure in females (p=0.02). Physical 

activity, while not significant, showed an opposite, positive effect on age-related Esr1 

methylation in female blood, suggesting that it may abrogate the effects of WHFD on the aging 

epigenome. Overall, we demonstrated significant age-related DNA methylation in two matched 

mouse tissues, as well as significant effects of developmental nutritional exposures on age-

related methylation patterns. 
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2.1 Introduction 

The epigenome is a dynamic regulatory framework that utilizes epigenetic information to 

govern the response of cells, tissues, and entire organisms to environmental stressors. Epigenetic 

control mechanisms operate at several levels, including alterations to DNA itself (e.g. DNA 

methylation), chromatin remodeling (e.g. histone modifications), and non-coding RNA 

interactions (Bernal and Jirtle 2010; Egger et al. 2004).
 
DNA methylation, which is perhaps the 

best-studied epigenetic mark, is defined by the addition of a methyl group to the 5’-carbon of 

cytosine in a cytosine-phospho-guanine (CpG) dinucleotide. Recent evidence indicates that DNA 

methylation status changes as a function of age in both humans and animal models, and that this 

change is often gene- or tissue-specific (Florath et al. 2014; Issa 2014; Madrigano et al. 2012; 

Teschendorff et al. 2013). This process of altered DNA methylation across the life-course is has 

important implications for gene expression and disease onset throughout the life course (Issa 

2014). While this process occurs across all individuals, twin studies have shown that genetically 

identical individuals can have vast divergence in their epigenetic marks as they age (Fraga et al. 

2005). These results suggest that unique environmental exposures throughout life, rather than 

any inherent genetic predisposition, may lead to a modulation in the rate of age-related DNA 

methylation.  

Mounting evidence indicates that exposure to environmental factors during key 

developmental windows may alter gene regulation and phenotype through changes in epigenetic 

marks (Waterland and Jirtle 2004). As such, the epigenome represents a possible mechanism 

underlying the Developmental Origins of Health and Disease (DOHaD) hypothesis, which states 

that exposure to nutritional and environmental factors during prenatal and early postnatal periods 

alters susceptibility to chronic diseases by influencing developmental plasticity (Bateson et al. 
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2004). In general, methylation of DNA at specific promoter/enhancer sites is associated with 

decreased transcription factor binding, as well as decreased transcription (Medvedeva et al. 

2014). However, gene-specific DNA methyl marks do not accurately predict global 5-

methylcytosine levels, which are driven by CpG methylation of non-coding, repetitive DNA 

elements, including transposons, retrotransposons, and endogenous retroviruses (Nelson et al. 

2011; Yang et al. 2004). In contrast to the transcriptional effects seen at gene 

promoters/enhancers, altered methylation of repetitive elements has the potential to affect genetic 

stability through increased movement of repetitive elements around the genome (Rodriguez et al. 

2006; Ross et al. 2010; Suzuki et al. 2006).
 
Based on the differential regulatory effects of site-

specific and global methylation levels, it is important to measure both when investigating the 

biological effects of epigenetic aging. Recent data also indicate that early life exposure to 

environmental toxicants has the potential to alter age-related global and gene-specific 

methylation (Christensen et al. 2009; Huen et al. 2014).
 
Supporting this idea, we recently 

demonstrated that developmental lead (Pb) exposure in congenic mice altered DNA methylation 

levels at imprinted genes, and that exposure was associated with alterations in the rate of 

epigenetic drift throughout the life-course (Faulk et al. 2014).  

Endocrine disrupting chemicals (EDCs) are an important class of environmental factors 

that have been linked to the developmental origins of adult disease (Newbold et al. 2009). One 

such chemical, bisphenol A (BPA), is a commercial monomer that makes up polycarbonate 

plastic and epoxy resins. BPA is found in a variety of consumer products (e.g. metal can linings, 

receipt paper, etc.), and has near ubiquitous and continuous human exposure across the world 

(Calafat et al. 2008). BPA can directly bind estrogen receptor α, has been shown to activate a 

variety of growth-related transcription factors, and can also bind effectively to several nuclear 
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receptors involved in cell maturation (Krüger et al. 2008; Singh and Li 2012; Sui et al. 2012; 

Watson et al. 2007).
 
BPA exposure has also been shown to affect DNA methylation levels across 

the epigenome (Manikkam et al. 2013; Singh and Li 2012; Wolstenholme et al. 2011; Zhang et 

al. 2012). In utero doses of BPA in mouse models affect both global and gene promoter-specific 

methylation, indicating that BPA exposure could alter gene expression during development 

(Anderson et al. 2012; Kim et al. 2014; Singh and Li 2012). The effects of BPA exposure on 

age-related methylation in matched samples have not been previously studied, but based on 

BPA’s ability to alter the developing epigenome, BPA exposure has the potential to alter 

epigenetic aging.  

In addition to chemical exposure, maternal diet can also affect offspring DNA 

methylation levels (Tobi et al. 2018; Waterland and Jirtle 2003).
 
The modern “Western High-Fat 

Diet” (WHFD) is characterized by high saturated and omega-6 polyunsaturated fatty acids, 

reduced omega-3 fatty acid intake, and increased salt and refined sugar intake (Myles 2014). 

Studies in animal models have shown that alterations in maternal diet, specifically levels of 

methyl donors, can alter gene-specific and global methylation in offspring, indicating that diet 

can induce long-lasting, inter-generational changes in methylation (Dolinoy et al. 2007; 

Hollingsworth et al. 2008; Niculescu et al. 2006). Genome-wide studies of the methylome have 

also noted nutrient-sensitive CpG sites throughout the epigenome, indicating that alterations in 

diet can affect DNA methylation at specific genomic sites (Parle-McDermott and Ozaki 2011). 

Based on these results, maternal diet represents an important mediator of the epigenome that has 

the potential to affect offspring methylation throughout the life course. 

Despite increasing investigation of diet- and toxicant-induced epigenetic changes, the 

role of physical activity in modulating the epigenome has been less extensively studied. Physical 
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activity is a lifestyle factor with well-documented positive health effects; in mice, exercise 

training has been shown to increase energy expenditure, offsetting the weight-gain induced by 

HFD (Sasaki et al. 2014). Physical activity-related energy expenditure (AEE), a measure of 

physical activity’s contribution to metabolic rate, can be calculated in mice using calorimetry 

data (Hills et al. 2014; Pontzer et al. 2016; Van Klinken et al. 2012). In addition to affecting 

energy expenditure, exercise/physical activity has also shown associations with gene promoter-

specific DNA methylation in mice (Kanzleiter et al. 2015; King-Himmelreich et al. 2016; 

Nguyen et al. 2016), suggesting that physical activity may also offset the epigenetic effects of 

HFD. Providing support for this idea, a recent study in mice demonstrated that maternal exercise 

attenuated HFD-induced Pgc-1α promoter hypermethylation in skeletal muscle of offspring 

(Laker et al. 2014). As such, physical activity is a lifestyle factor that has the potential to not 

only alter the aging epigenome, but also mitigate the epigenetic effects of HFD exposure.  

To investigate the potential combined effects of BPA exposure, Western high-fat diet, 

and physical activity on the epigenome, DNA methylation was measured in murine target loci 

regions -- Long Interspersed Nuclear Element-1 (LINE-1) repeats, Intracisternal A-Particle (IAP) 

repeats, Insulin-like growth factor 2 (Igf2) differentially methylated region (DMR) 2 (Faulk et al. 

2014; Waterland et al. 2006), H19 DMR (Faulk et al. 2014; Stouder et al. 2009), and the 

promoter region of Estrogen receptor α (Esr1) (Maegawa et al. 2010).
 
These target gene regions 

fall into three classes – repetitive elements (LINE-1, IAP), imprinted genes (Igf2, H19), and a 

non-imprinted protein-coding gene (Esr1). Target region classes were chosen based on their 

potential to reflect global methylation levels, their use as frequent biomarkers in environmental 

epigenetic studies, and their involvement in growth and metabolism, respectively. 
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Long interspersed nuclear element-1 (LINE-1) is the most common transposable element 

in the mouse genome, representing more than 20% of the murine sequence (Sookdeo et al. 2013). 

LINE-1 elements are ancient retrotransposons that replicated in the genome over evolutionary 

time. Although most LINE-1 elements are no longer active, they have widespread distribution 

across the genome, making LINE-1 methylation a useful approximation of “global” methylation 

levels (Nelson et al. 2011; Yang et al. 2004). Intracisternal A-Particle (IAP) retrotransposons are 

murine, long terminal repeat (LTR)-type genetic elements that also utilize RNA intermediates to 

retrotranspose around the genome (Horie et al. 2007). With the exception of metastable epialleles 

like the well-studied viable yellow (A
vy

) IAP element (Dolinoy et al. 2007), most IAPs are 

tightly regulated, and have lost their ability to retrotranspose (Horie et al. 2007).
 
However, 

evidence indicates that aging can cause demethylation of IAP promoters, potentially reactivating 

their retrotransposition competency (Barbot et al. 2002; Horie et al. 2007). The IAP assay in this 

study utilizes a conserved IAP sequence to measure methylation across all IAP retrotransposons 

present in the murine genome, thereby providing a second, but more genetically “active” 

approximation of global methylation.  

Along with repetitive elements, several imprinted and non-imprinted genes were also 

investigated. Imprinted genes display parent-of-origin differential methylation and mono-allelic 

expression (Sasaki et al. 2000). The imprinted genes included in this study, Igf2 and H19, 

contain differentially methylated regions (DMRs) that exhibit variability in methylation 

associated with exposure to diet and/or EDCs (Hoyo et al. 2011; LaRocca et al. 2014; Lee et al. 

2014; McKay et al. 2011; Susiarjo et al. 2013; Waterland et al. 2006), making them valuable 

biomarkers of exposure-induced changes in methylation. In addition to the imprinted genes, we 

also examined methylation levels at a non-imprinted protein-coding gene – Esr1. Estrogen 
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receptor α is a transcription factor activated by estrogenic ligands, and it mediates estrogen’s 

involvement in the regulation of growth and development (Bondesson et al. 2015). Evidence 

indicates that methylation of the Esr1 exon 2 promoter is positively associated with age in 

unmatched samples of murine small intestine (Maegawa et al. 2010). This fact, combined with 

Esr1’s biological importance throughout life, makes it an ideal non-imprinted candidate gene for 

assessing the effects of developmental exposure on epigenetic aging.   

The described study examines longitudinal changes in absolute mean DNA methylation 

from paired postnatal day 21 (PND21) and 10 month old mouse tail tissue, as well as matched 2 

month, 4 month, and 10 month old blood samples. Matched tail and blood tissues were used due 

to availability early in life and at sacrifice, and to eliminate inter-individual confounding. This 

study investigates whether developmental exposure to BPA, altered diet, and/or physical activity 

levels affects the rate of age-related methylation at five selected genetic loci. We found tissue- 

and gene-specific changes in absolute mean DNA methylation with age at all measured loci. 

WHFD exposure had a significant modifying effect on the rate of age-related methylation at the 

non-imprinted Esr1 locus in both tail and blood samples. In the blood samples, the effect of 

WHFD exposure on age-related methylation was sex-specific, showing negative deflection only 

in female mice. Physical activity had a non-significant positive effect on age-related Esr1 

methylation in female blood. Exposure to WHFD also modified rates of age-related methylation 

at IAP repeats in tail and blood. Dietary BPA exposure did not have a significant effect on the 

rate of age-related methylation at any of the investigated loci in either tail or blood. This study 

demonstrates measurable, gene-specific age-related methylation, as well as diet-dependent 

alterations in the rate of epigenetic aging at a class of repetitive elements and a non-imprinted 

locus related to murine growth and development. 
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2.2 Results 

Litter parameters 

Developmental BPA and/or diet exposure did not significantly alter litter size, sex ratio, 

or a/a to A
vy

/a genotypic ratio (n=277). Percent survival was significantly lower in the 

Control+BPA exposed offspring (survival = 73%) compared to Control (survival = 91%, 

p=0.006) and Mediterranean+BPA (survival = 85%, p=0.007) exposure groups, but was not 

significantly different in other comparisons. A subset of a/a non-agouti wild type mouse pups 

(n=133) was selected for inclusion in longitudinal follow-up up to 10 months of age, which 

incorporated collection of matched tail tip and blood samples (Table 2-1). 

Exposure- and diet-dependent changes in cross-sectional DNA methylation 

For all exposure groups, no significant changes in cross-sectional tail DNA methylation 

were found in the LINE-1, IAP, and H19 loci across the measured time points. However, several 

significant differences in PND21 cross-sectional tail DNA methylation were identified at the 

Esr1 and Igf2 loci (Figure 2-1). The Esr1 locus demonstrated significant alterations to PND21 

tail methylation when compared to Control, Mediterranean, and Western diets (ANOVA, p = 

0.002). Specifically, mice exposed to Western diet showed significantly decreased Esr1 tail 

methylation compared to Control (Tukey’s test, p= 0.027) and Mediterranean (Tukey’s test, p = 

0.002), and the Western exposure group demonstrated a significant decrease in Esr1 tail 

methylation compared to the Western+BPA group (Student’s t-test, p=0.005). The Igf2 locus 

demonstrated significant alterations to PND21 tail methylation when comparing BPA, 

Mediterranean+BPA, and Western+BPA diets (ANOVA, p = 0.020). At PND21, tail Igf2 

methylation in the Western+BPA group was significantly higher than methylation in the BPA 

group (Tukey’s test, p=0.027); a similar, marginally significant increase in tail Igf2 methylation 
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was seen when comparing Western+BPA to Mediterranean+BPA (Tukey’s test, p=0.073). There 

were no significant differences in cross-sectional DNA methylation by exposure group in the 

blood samples. 

DNA methylation changes with age 

DNA methylation at the LINE-1 and IAP repetitive elements, as well as the Igf2, H19, 

and Esr1 genes, was quantified from paired PND21 and 10 month tail samples (Table 2-2). 

When adjusting for exposure group, sex, age:exposure, and age:sex, LINE-1, IAP, and the H19 

locus demonstrated significant decreases in methylation over time (- 0.94%, p=0.035; -1.32%, 

p=2.2E-06; -10.44%, p=6.22E-08; respectively). In contrast, the Igf2 and Esr1 genes 

demonstrated increased methylation over time; however, only the increase in the Esr1 gene was 

statistically significant (7.60% increase, p=1.44E-12) (Table 2-2).  

DNA methylation was also quantified from matched 2 month, 4 month, and 10 month 

blood samples. When adjusting for exposure group, sex, age:exposure, and log(AEE), only the 

Esr1 gene demonstrated significant changes over time (β=4.094, p=3.64E-14) (Table 2-2). 

Specifically, Esr1 showed a significant increase in mean blood DNA methylation from 2 to 10 

months of age. Furthermore, the included sex variable showed a significant relationship with 

mean Esr1 DNA methylation (β=8.24, p<2E-16), indicating that sex may be modifying the 

association between age and blood DNA methylation. 

Developmental exposures alter mean DNA methylation 

To examine the effects of exposure on DNA methylation, we first examined whether each 

exposure group had a direct, significant effect on mean tail DNA methylation compared to 

Control. LINE-1, IAP, and H19 showed no significant effects of developmental exposures on 

mean tail methylation (Table 2-3). At the Igf2 locus, BPA exposure had a marginally significant 
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negative effect on mean tail methylation compared to Control (β=-3.81, p=0.066); no other 

exposure groups had a significant effect on tail methylation at this gene. At the Esr1 gene, 

Western diet exposure had a significant negative effect on mean tail methylation compared to 

Control (β= -1.93, p=0.013); this was the only significant exposure effect for the Esr1 gene in 

tail tissue (Table 2-3).  

To follow up on the tail results, we also examined whether BPA and/or WHFD exposure 

had a significant effect on mean blood DNA methylation compared to Control. IAP, Igf2, H19, 

and Esr1 showed no significant effects of developmental exposures on mean blood methylation 

(Table 2-4). At the LINE-1 repetitive element, WHFD exposed mice showed a significant 

increase in mean blood methylation compared to Control (β=0.762, p=0.003); no other exposure 

groups showed a significant change in mean blood methylation at this repetitive element (Table 

2-4). 

Environmental deflection by exposure 

To further examine the potential effects of exposure on the rate of age-related 

methylation in tail tissue, an interaction term between age and categorical exposure was included 

in the linear mixed effects model for each gene (Table 2-3). The Igf2 and H19 genes showed no 

significant interaction between age and exposure group, indicating that the relationship between 

age and tail methylation was not affected by developmental exposures in those genes. On the 

other hand, at LINE-1 repetitive elements, developmental Western diet exposure had a 

marginally significant negative effect on the association between age and tail methylation 

compared to Control (β=-1.05, p=0.069). Similarly, for global IAP, both the Western and 

Western+BPA diets had marginally significant negative effects on tail age-related methylation 

relative to Control (β=-0.645, p=0.058; β=-0.0649, p=0.051). At the Esr1 gene, developmental 
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Mediterranean+BPA diet exposure had a marginally significant positive effect on tail age-related 

methylation when compared to Control (β=1.85, p=0.064). Directionality of the interaction 

between age and exposure was specific to each gene in tail tissue (Table 2-3, Figure 2-1).  

Given that gene regulation can vary by sex, two additional variables – sex and a sex:age 

interaction term – were included in the linear mixed model for each gene. Neither sex nor 

sex:age were significant terms in the mixed models for LINE-1 (p=0.395, p=0.644), IAP 

(p=0.476, 0.786), Igf2 (p=0.868, p=0.686), and H19 (p=0.294, p=0.639) in tail tissue. However, 

at the Esr1 gene, while the sex categorical variable did not demonstrate a significant effect on 

tail methylation, the sex:age interaction term was statistically significant (p=0.003), indicating 

effect modification of tail age-related methylation by sex.  

Following up on the tail results, age:exposure interaction terms were also included in 

mixed effects models for mouse blood methylation to test for environmental deflection of age-

related methylation. There was significant WHFD-induced environmental deflection of age-

related blood methylation at LINE-1 (p=0.01), IAP (p=0.04), and Esr1 (p=0.02) (Table 2-4). At 

these gene regions, WHFD exposed mice had higher % methylation at 2M and lower % 

methylation at 10M compared to control (Figure 2-2). The Igf2 and H19 gene loci demonstrated 

no significant environmental deflection of age-related methylation by exposure. 

In the linear mixed model for Esr1, the included sex variable showed a significant 

relationship with mean DNA methylation (β=8.24, p<2E-16), indicating that sex may be having 

a confounding effect of the association between age and blood DNA methylation. To further 

examine the effects of sex on this relationship, sex-stratified models of age-related methylation 

were run for the Esr1 gene region. These models showed that the effect of age and WHFD 

exposure on Esr1 promoter methylation varied by sex in mouse blood. Males showed a 
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significant increase in Esr1 methylation with age (β=4.22; p=0.004), but no significant effects of 

exposure. Meanwhile, females demonstrated both a significant increase in Esr1 methylation with 

age (β=2.11, p=0.001) and a significant negative age:WHFD interaction term (β= -1.67, p=0.02). 

Combined, these data show a WHFD-mediated decrease in the rate of age-related Esr1 

methylation in female mouse blood compared to Control (Figure 2-3). 

Environmental deflection by physical activity 

To characterize murine physical activity, spontaneous activity levels were measured 

using Comprehensive Lab Animal Monitoring System (CLAMS) cages, which used lasers to 

measure movement in all directions. CLAMS data was collected at 2, 4, and 8 months prior to 

blood draws. From the CLAMS data, we used penalized spline regression models to calculate 

activity-related energy expenditure (AEE) values. An age:log(AEE) interaction term was then 

included in linear mixed models for the Esr1 gene region, the only gene region in blood with 

significant age-related methylation. Since the relationship between age and Esr1 methylation was 

shown to vary by sex, the age:log(AEE) variable was included in sex stratified models. In the 

female model, the age:log(AEE) term was non-significant, but positive, showing opposite 

directionality to the significant negative age:WHFD coefficient (Table 2-5). This indicates that 

AEE may partially offset the significant negative WHFD-mediated environmental deflection in 

female mice, a result that is apparent in a plot of the female mixed model results (Figure 2-4). 

2.3 Discussion 

BPA exposure 

 We did not find any significant effects of developmental BPA exposure on either cross-

sectional DNA methylation or age-related methylation at the five investigated genetic loci. These 

results match our previous work, which showed that the same dose of BPA (50 µg/kg diet) did 
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not significantly alter LINE-1 repetitive element methylation in liver (Faulk et al. 2016) or Esr1 

methylation in liver (Weinhouse et al. 2015). However, separate studies in our lab have shown 

that BPA exposure can alter genome-wide and global methylation levels in mouse liver and tail, 

respectively (Anderson et al. 2012, Kim et al. 2014). Taken together, these contradictory results 

suggest that the epigenetic effects of BPA may be tissue-, dose-, and gene-specific. Therefore, 

the lack of significant BPA-related changes in DNA methylation in this study may simply reflect 

an absence of exposure effects in tail or blood at the selected dose or investigated loci. 

Age-related methylation 

The results from this study indicate that the epigenome is dynamic with age in mouse tail 

and blood tissues. In tail, age-associated changes in DNA methylation occurred at all measured 

genetic loci, with statistically significant changes present at Esr1, H19, LINE-1, and IAP repeats. 

In blood, only the Esr1 promoter region demonstrated statistically significant age-related 

methylation across the 10 month life-course. Consistent with other results in the literature, 

directionality of age-related methylation was specific to each gene (Christensen et al. 2009; Issa 

2014). In blood and tail tissues, the non-imprinted gene promoter, Esr1, demonstrated an 

increase in methylation with age, a result consistent with documented decreases in estrogen 

receptor α (ERα) expression during aging (Wilson and Westberry 2009). Meanwhile, repetitive 

element methylation decreased with age in tail, and the investigated imprinted genes either 

increased or decreased with age in tail depending upon the locus. These results are also 

consistent with previous reports (Issa 2014; Maegawa et al. 2014; Teschendorff et al. 2013), and 

indicate that epigenetic aging varies in a region-specific manner.  

The effect of age on Esr1 promoter methylation in blood was also sex-specific, with 

males showing a more pronounced effect of age compared to females. This may be a reflection 
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of sex-specific Estrogen receptor α (ERα) regulation during the aging process. Previous work in 

mouse cortex has shown that adult females have increased ERα protein levels, mRNA 

expression, and promoter methylation compared to males (Sharma and Thakur 2006; Wilson et 

al. 2011). As such, females may show decreased effects of age due to a sex-specific requirement 

for increased ERα expression into adulthood. 

The documented region-specific directionality of drift fits a growing hypothesis in the 

field – that age-related changes in methylation facilitate development of chronic disease (e.g. 

cancer) via increased genomic instability and altered regulation of genes related to growth and 

development (Decottignies and d’Adda di Fagagna 2011; Issa 2014; Teschendorff et al. 2010). 

Decreased DNA methylation of repetitive elements with age has the potential to increase 

genomic instability through increased transposition of repetitive elements around the genome 

and dysregulation of expression via cis-chromatin modifying effects (Rodriguez et al. 2006; Ross 

et al. 2010; Suzuki et al. 2006). Additionally, increased methylation of promoter regions in 

protein-coding genes is associated with dysregulated transcription (Medvedeva et al. 2014; 

Varley et al. 2013). Combined, these effects have the potential to produce an epigenetic 

environment that alters gene expression and may increase the risk of disease states commonly 

associated with aging.  

Environmental deflection 

Expanding on simply examining the effects of age, we also tested the hypothesis that 

developmental BPA exposure, high-fat diet, and/or physical activity-related energy expenditure 

would lead to environmental deflection of age-related methylation rates. In tail tissue, the 

age:WHFD interaction term demonstrated marginal significance at IAP repeats and the Esr1 

locus, but not at LINE-1, Igf2, or H19, suggesting that WHFD exposure may lead to 
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environmental deflection of epigenetic aging. Supporting this idea, the age:WHFD interaction 

term was also significant at the Esr1, IAP, and LINE-1 loci when modeling longitudinal blood 

methylation. At all three significant loci in blood, WHFD exposed mice had higher % 

methylation at 2 months and lower % methylation at 10 months, suggesting differential effects of 

developmental WHFD exposure at distinct life-stages. Although the exact mechanism remains 

undefined, the apparent delay between WHFD exposure and decreased DNA methylation could 

be the result of a two phase process: early-life epigenetic programming followed by 

compensatory changes in regulation of methylation machinery – e.g. Dnmt3a, Tet1. DNA 

methyltransferase 3a (Dnmt3a) is an enzyme that facilitates the de novo addition of methyl 

groups to CpG sites across the genome (Challen et al. 2011). Meanwhile, ten-eleven 

translocation methylcytosine dioxygenase 1 (Tet1) is a 5-methylcytosine (5-mC) dioxygenase 

that facilitates oxidation of 5-mC, thereby tagging methylated CpG sites for active DNA 

demethylation by base excision repair (BER) (Xu and Wong 2015). Asynchronous alterations in 

activity of these opposing enzymes may explain the life-stage-specific effects of developmental 

WHFD exposure. 

The two-phase effect of WHFD exposure on the murine epigenome may be the result of 

oxidative stress (OS) induction. Previous work has demonstrated that Western diet can induce 

OS in mice (Heinonen et al. 2014), and other work has shown that OS can alter DNA 

methylation (Yara et al. 2015). For example, research indicates that OS can induce DNA 

hypermethylation via targeted acceleration of the reaction between cytosine molecules and S-

adenyl-methionine (SAM), a methyl group donor (Yara et al. 2015). Research has also shown 

that oxidative conditions can activate Tet enzymes (Chia et al. 2011; Coulter et al. 2013; Zhao et 

al. 2014), suggesting that OS may affect active DNA demethylation. These bidirectional effects 
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of OS on the epigenome fit into a proposed two-phase model for the effects of WHFD on DNA 

methylation. In the first phase, WHFD-induced OS would increase DNA methylation on a short 

time scale though direct acceleration of the interaction between SAM and CpG sites across the 

genome. In the second phase, OS recruits Tet enzymes, leading to hypomethylation at specific 

promoter regions via targeted oxidation of 5-mC to 5-hydroxymethylcytosine (5-hmC). 5-hmC 

could then be lost throughout the life-course via active or passive demethylation pathways (Shen 

et al. 2014). While this model fits well with our results, 5-hydroxymethylcytosine (5-hmC) is not 

distinguishable from 5-mC in bisulfite-pyrosequencing data (Huang et al. 2010). As a result, 

there may be an early-life wave of OS-induced 5-mC oxidation to 5-hmC that is not captured in 

our targeted pyrosequencing data. Additional work is needed to fully characterize the role of OS 

in WHFD-induced environmental deflection of epigenetic aging in mice. 

In contrast to an oxidative stress or environmental mismatch model, the apparent delay 

between WHFD exposure and age-related hypomethylation may be the result of technical 

limitations in our methods. The Tet1 enzyme oxidizes 5-mC to 5-hydroxymethylcytosine (5-

hmC), but this oxidized form is not distinguishable from 5-mC in bisulfite-pyrosequencing data. 

As a result, active demethylation would only appear in bisulfite-pyrosequencing data once the 

oxidized methyl group has been targeted for repair and replaced with an unmethylated cytosine. 

This means may be an early-life wave of Tet-assisted 5-mC oxidation to 5-hmC that is not 

captured in our targeted pyrosequencing data. In addition to this technical issue, recent evidence 

has shown that 5-hmC is a stable epigenetic mark that has a complex role in both positive and 

negative regulation of transcription (Hahn et al. 2014; Wu et al. 2011). As such, the delay 

between exposure and Esr1 hypomethylation could be the result of early-life processing of 5-mC 

to 5-hmC followed by a gradual loss of 5-hmC during cellular replication.  
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In addition to WHFD-specific results, female blood also showed opposing effects of 

WHFD and AEE on longitudinal Esr1 methylation, suggesting a mitigating effect of life-long 

physical activity on age-related methylation in WHFD-exposed female mice. Supporting this 

idea, a recent study in mice showed that maternal exercise attenuated HFD-induced Pgc-1α 

promoter hypermethylation in skeletal muscle of offspring (Laker et al. 2014). Combined with 

our results, this suggests that physical activity – whether maternal or life-long – can offset high-

fat diet effects on the epigenome. In our study, the opposing effects of WHFD and physical 

activity on age-related methylation were less clear in male mice, indicating that environmental 

deflection of age-related Esr1 methylation may be sex-specific. This may be a reflection of sex-

specific regulation of the Esr1 gene, which is more highly expressed in female mice (Sharma and 

Thakur 2006). These blood data at the Esr1 locus demonstrate the importance of considering 

sex-specific epigenetic effects when studying environmental deflection of epigenetic aging. 

For IAP repeats in tail tissue, developmental exposure to the Western and Western+BPA 

diets was associated with a marginally significant decrease in the rate of age-related methylation. 

At this global locus, the magnitude of this effect did not differ between the Western and 

Western+BPA diets, suggesting that exposure to Western diet was driving the age:exposure 

interaction effect. Given that age-related demethylation of IAP promoters has the potential to 

reactivate retrotransposition competency (Barbot et al. 2002; Horie et al. 2007), Western HFD, 

by increasing the rate of age-related methylation loss at IAP elements, may also increase IAP 

retrotransposition events. This suggests a mechanism by which developmental WHFD influences 

genomic stability throughout an organism’s life.  

Although age-related methylation at IAP repetitive elements demonstrated environmental 

deflection by WHFD in tail tissue, this result was not seen in LINE-1. This suggests that separate 
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classes of repetitive elements exhibit distinct epigenetic responses to environmental factors. 

Therefore, when studying the effects of the environment on global DNA methylation – both in 

cross-section and across the life course – multiple classes of repetitive elements should be 

included in analysis.  

In tail tissue, sex did not significantly alter age-related methylation directionality at 

LINE-1, IAP, Igf2, or H19. However, sex did significantly alter age-related methylation at the 

Esr1 locus in both tail and blood. Specifically, as age increased from PND21 to 10 months in tail 

tissue, there was a significant increase in the effect of sex on methylation at the Esr1 gene. 

Across all exposures except Med+BPA in tail, male mice demonstrated lower average Esr1 

methylation at PND21, but higher average Esr1 methylation at 10 months. This trend, combined 

with a significant age:sex interaction term, suggests a sex-specific change in regulation of the 

Esr1 gene during aging. This idea was supported by sex-specific differences in Esr1 DNA 

methylation in blood. In blood tissue, males showed greater increases in Esr1 DNA methylation 

between 2 months and 10 months of age. Additionally, effects of WHFD on age-related 

methylation were sex-specific, with a significant environmental deflection only apparent in 

female mice exposed to developmental WHFD. These data corroborate the fact that the sexes 

utilize estrogen for very different processes during reproduction and growth, with females of 

reproductive age demonstrating higher average serum estrogen than males (Bondesson et al. 

2015). Therefore, as the animals reach reproductive age, sex-specific effect modification of age-

related Esr1 methylation may occur as a regulatory response to sexually dimorphic estrogen 

activity.  
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Cross-sectional epigenetic effects of exposures 

Given the environmental deflection by WHFD exposure in tail, we also tested the effects 

of developmental exposure on cross-sectional methylation at PND21 and 10 month tail samples. 

PND21 tail DNA methylation showed significant changes by exposure group at two candidate 

regions – Igf2 and Esr1. Igf2 encodes the Insulin-like growth factor 2 protein, an important 

regulator of cellular glucose transport during development (Fowden et al. 2006; O’Dell and Day 

1998).
 
The cross-sectional WHFD-mediated increase in early-life Igf2 methylation may be a 

biological response to an increased simple sugar load, indicating that developmental exposure to 

WHFD can affect early-life establishment of age-related methylation at a gene related to 

metabolism and growth. Similarly, at the Esr1 gene promoter, WHFD had a significant effect on 

mean methylation, with a decrease in methylation compared to Control at PND21. This suggests 

that developmental exposure to WHFD alters the epigenetic profile of the Esr1 locus during 

development, potentially predisposing animals to increased Esr1 transcription in anticipation of 

the Western diet’s altered nutritional profile. Given the directionality of this exposure effect, 

developmental WHFD exposure, which is high in fat and has been linked to obesity, may 

increase transcription of the Estrogen Receptor  (ER) early in life. Previous studies have 

shown that ER is involved in control of lipid metabolism (Foryst-Ludwig and Kintscher 2010), 

with ER knockout mice demonstrating increased adipose tissue deposition with aging (Cooke 

et al. 2001; Ohlsson et al. 2000). As a result, our results suggest that developmental exposure to 

WHFD could alter risk for obesity development via epigenetic misregulation of the Esr1 locus. 

When a mismatch occurs between the developmental and postnatal environment, there is 

potential for improper regulation of epigenetic marks and disease development (Bateson et al. 

2004; Waterland and Jirtle 2004). The significant effects of exposure on PND21 tail DNA 
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methylation at the Igf2 and Esr1 loci support this idea, indicating that developmental exposure to 

environmental factors may not only alter the rates of age-related methylation, but also the cross-

sectional establishment of DNA methylation at specific genetic loci during development.  

At the Igf2 locus, BPA exposure had a marginally significant effect on mean tail 

methylation, with Control+BPA exposed mice showing decreased Igf2 methylation compared to 

Control at both PND21 and 10 months. This result, which is not present in the Med+BPA or 

Western+BPA diets, indicates that BPA exposure alone may alter regulation of the Igf2 gene. A 

previous study demonstrated decreased Igf2 methylation and increased Igf2 expression in 

developing embryos as a result of early-life 10 mg/kg/day BPA exposure (Susiarjo et al. 2013). 

Given these past results, the marginally significant effects of 50 µg BPA/kg diet exposure on 

Igf2 methylation presented in this report may reflect BPA exposure-mediated alterations in Igf2 

expression, but further investigation is required. The LINE-1, IAP, and H19 loci did not 

demonstrate significant cross-sectional effects by BPA exposure, suggesting that these three 

genetic regions are not sensitive to developmental BPA exposure. 

Effects of mediterranean diet on survival 

Separate from the epigenetic effects, the Mediterranean+BPA diet group had significantly 

improved PND21 survival rate compared to the Control+BPA diet group. Previous studies have 

observed that nutritional supplementation counteracts negative epigenetic effects on the 

epigenome (Bernal et al. 2013; Dolinoy et al. 2007). Furthermore, in multiple longitudinal 

human birth cohort studies, maternal adherence to a Mediterranean diet was associated with 

reduced risk of intrauterine growth restriction, low birth weight and low placental weight (Chatzi 

et al. 2012; Timmermans et al. 2012). Mothers consuming a Mediterranean diet also had higher 

circulating folate and vitamin B12 concentrations (Timmermans et al. 2012). Folate and vitamin 
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B12 are critical nutrients in the regeneration of S-adenosyl methionine, a major participant in 

DNA methylation maintenance; this suggests adherence to the Mediterranean diet may impact 

fetal epigenetic reprogramming. Therefore, it is possible that the developmental Mediterranean 

diet is providing a protective effect on survival by offsetting BPA-induced changes to epigenetic 

marks and gene regulation. Future studies should investigate this toxicant-diet interaction more 

fully.  

Limitations and future directions 

This study demonstrates measurable WHFD-based modifications to the rate of age-

related methylation in murine tail and blood, but the potential biological effects of this 

environmental deflection remain unclear without concurrent, longitudinal measurements of gene 

expression. Longitudinal measures of gene expression would provide a validation of DNA 

methylation results, demonstrating whether age- and exposure-related alterations to the 

epigenome have measurable physiological effects. As such, future studies investigating the 

effects of early-life toxicant exposure on epigenetic aging could expand the interpretability of 

their results by examining the effects of exposure and age on longitudinal gene expression, 

and/or examining DNA methylation and expression levels in other biological tissues of interest 

including blood – which may be accessed at multiple time points – and target tissues such as 

liver and brain.  

By using matched tail and blood tissues in this longitudinal study, age-related 

methylation rates reflected defined changes within organisms in the study population rather than 

changes in time between two separate populations. This matched design, combined with the 

controlled developmental exposure, isolates the effects of exposure for each organism in the 

study population, allowing for a direct test of the hypothesis that environmental factors can 
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modify the rates of epigenetic aging. Despite the longitudinal design, an inherent limitation of 

this study is the inability of bisulfite sequencing to differentiate between 5-methylcyosine (5-

mC) and 5-hydroxymethylcytosine (5-hmC). Although hydroxymethylation is not expected to be 

a major epigenetic mark in tail or blood tissue, recent study showed that aging affects global 

hydroxymethylation in healthy hepatic tissue, with a general trend towards increasing 5-hmC 

levels in older mice (Tammen et al. 2014). This reported increase in global hepatic 5-hmC levels 

over time is at odds with the previously reported loss of global 5-mC in cancer cells (Issa 2014; 

Maegawa et al. 2014; Teschendorff et al. 2013), suggesting that these separate epigenetic marks 

may change in different ways during aging. As a result, future epigenetic aging studies must 

better characterize the effects of aging on 5-hmC levels at specific CpG sites in the genome, as 

well as across tissue types. 

2.4 Conclusion 

We measured longitudinal DNA methylation in tail and blood tissue collected from 

isogenic mice, and then quantified the magnitude of age-related methylation in these samples at 

five genetic loci – two repetitive elements, two imprinted genes, and one non-imprinted gene. 

The use of matched tissues from an isogenic mouse colony allowed for strict control of genetic, 

environmental, and dietary measures, as well as removal of potential confounding. This study 

demonstrates significant, gene-specific age-related methylation, supporting the growing 

hypothesis that epigenetic aging plays an important role in the link between aging and cancer 

(Decottignies and d’Adda di Fagagna 2011; Issa 2014; Teschendorff et al. 2010). In addition, we 

showed significant WHFD- and sex-dependent environmental deflection of both repetitive 

elements and a non-imprinted gene. These results indicate that developmental exposure to 

WHFD can affect the aging epigenome in a mouse model. WHFD-dependent changes in tail 
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DNA methylation were also evident in two investigated loci at PND21, demonstrating the effect 

of developmental exposure on early-life establishment of epigenetic marks. Finally, activity-

related energy expenditure was shown to attenuate the effects of WHFD on age-related 

methylation at the Esr1 locus in blood tissue. To improve the generalizability of these results, the 

dynamics of epigenetic aging at the studied gene regions should be further evaluated in human 

cohorts. 

2.5 Materials and Methods 

Mouse colony 

Mice were a/a offspring sourced from a genetically invariant A
vy

/a mouse colony 

maintained in the Dolinoy Lab via sibling mating and forced heterozygosity for more than 220 

generations (Waterland 2003). Within this colony, the A
vy

 allele is passed through the 

heterozygous male line, which has a genetically constant background 93% identical to C57BL/6J 

strain (Waterland 2003; Weinhouse et al. 2014). Two weeks prior to mate-pairing with A
vy

/a 

males, six week old wild type a/a dams were placed on one of six experimental diet groups: (1) 

Control (modified AIN-93G), (2) Control + 50 µg BPA/kg diet, (3) Mediterranean HFD chow, 

(4) Mediterranean + 50 µg BPA/kg diet, (5) Western HFD chow, and (6) Western HFD + 50 µg 

BPA/kg diet (Figure 2-5). Dietary exposure was continued through pregnancy and lactation, at 

which point treatment group pups were shifted over to a modified AIN-93G Control diet 

containing 7% corn oil rather than 7% soybean oil (Harlan Teklad). The 50 µg/kg diet BPA 

exposure level was chosen based on previous studies, which demonstrated both increased global 

methylation and sex-specific phenotypic effects at 50 µg/kg BPA (Anderson et al. 2013, 2012). 

BPA (0.01 g) was mixed with sucrose (9.99 g) in glass containers to achieve a 0.1% BPA 

mixture. To achieve the 50 µg/kg BPA concentration, 0.1% BPA/sucrose mixture was included 
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at 0.05 g/kg diet in custom Control/HFD diets by the manufacturer (Harlan Teklad). Western 

HFD and Mediterranean HFD mixtures were designed based on the U.S. junk food diet and the 

human Cretan diet, respectively (Block et al. 1985a, 1985b; Kafatos et al. 2000; Trichopoulou et 

al. 1993). Protein was kept constant between the three base diets, but vitamin levels, lipid ratios, 

and carbohydrate types were altered to mimic human consumption (Table 2-6).   

Exposure and tissue collection 

At postnatal day 21 (PND21), offspring were tail tipped, and collected tail tissue was 

frozen at -80°C. For each exposure group, a subset of PND 21 a/a wild-type pups were 

maintained until 10 months of age – Control: n = 22, Control+BPA: n=19, Mediterranean (Med): 

n=23, Mediterranean+BPA: n=24, Western: n=22, Western+BPA: n=23 (Table 2-1). At 2, 4, and 

8 months of age, offspring were relocated to a new cage outfitted with an integrated open-circuit 

calorimetry system: Comprehensive Lab Animal Monitoring System (CLAMS, Columbus 

Instruments); in this context, a host of phenotypic measures were taken, including body weight, 

oxygen consumption, food intake, and physical activity. After three days in the CLAMS cages, 

mice were returned to their original cages. During the 2 and 4 month cage transfers, tail vein 

blood samples were collected from all mice. At 10 months of age, mice were sacrificed; tail and 

cardiac puncture blood samples were again collected. All animals in this study were stored in 

polycarbonate-free cages with ad libitum access to food and drinking water, and were maintained 

in accordance with Institute for Laboratory Animal Research (ILAR) guidelines (National 

Research Council (US) Committee for the Update of the Guide for the Care and Use of 

Laboratory Animals 2011). The study protocol was approved by the University of Michigan 

Committee on Use and Care of Animals (UCUCA). 
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DNA isolation  

Genomic DNA was isolated from PND21 tail tissue (≤3mm) using a phenol-chloroform-

isoamyl alcohol protocol (Sambrook and Russell 2006). Genomic DNA was isolated from 10 

month tail tissue (3 mm) using the Maxwell Mouse Tail DNA Purification Kit (Promega, Cat. 

#AS1120). Genomic DNA was isolated from 2, 4, and 10 month frozen blood using the Qiagen 

Allprep DNA/RNA Mini Kit (Qiagen, Cat. #80204). Yield and purity of all DNA was measured 

using a NanoDrop spectrophotometer, and then genomic DNA was bisulfite converted using the 

Zymo Research 96-well EZ-methylation kit (Zymo Research, Cat. #D5004). Briefly, bisulfite 

conversion was accomplished through the addition of sodium bisulfite to 0.5-1 µg of genomic 

DNA, thereby converting unmethylated cytosines to uracil. Bisulfite converted DNA was then 

amplified using polymerase chain reaction (PCR), which causes uracils to be replaced with 

thymines. Remaining cytosines in the amplified PCR product are thereby a direct, quantitative 

measure of DNA methylation (Grunau et al. 2001). PCR amplification was performed on 

bisulfite converted DNA using HotStarTaq master mix (Qiagen, Cat. #203443), RNAse-free 

water, forward primer (9 pmol), and biotinylated reverse primer (9 pmol). Total PCR volume 

was 30-35 µL per sample, and gel electrophoresis was used to verify PCR product identity.  

DNA methylation measurement 

Specific PCR amplification for regions of interest (Igf2, H19, Esr1, IAP, and LINE-1) 

was performed on bisulfite converted DNA with primers designed using the PyroMark Assay 

Design software 2.0 and mm9 mouse genome. DNA methylation levels were quantified using the 

PyroMark Q96 MD instrument (Qiagen). Pyrosequencing samples were run in duplicate, and the 

average of the duplicates provided the final methylation percentages. Sample duplicates with 

coefficient of variation (%CV) > 10% were discarded and re-run. Pyrosequencing assay 



 50 

information, including primer sequences, chromosomal location, annealing temperature, and 

sequences to analyze are available in Table 2-7. In an effort to reduce plate-to-plate batch 

effects, matched samples were run on the same plate for all PCR amplification and 

pyrosequencing runs. All pyrosequencing plates included 0% and 100% bisulfite converted 

methylation controls, as well as a no template control, to ensure proper functioning of the 

instrument and to provide background standards of methylation for each gene. 

Data analysis 

 Matched tail tissue was collected at postnatal day 21 and 10 months of age from a total of 

133 a/a offspring (Table 2-1). The effect of developmental BPA/HFD exposure on sex ratio and 

litter survival rate was determined by Fisher’s exact test, with Control as the reference group. 

Litter number, sex ratio, and litter survival rate were compared between exposure groups using a 

combined statistical approach involving both 3-way ANOVAs and Independent Student’s T-

tests. This same approach was used to compare cross-sectional PND21 or 10 month methylation 

data by exposure group. Separate 3-way ANOVAs were performed to compare Control vs. 

Mediterranean vs. Western and Control+BPA vs. Med+BPA vs. Western+BPA exposure groups. 

Separate Student’s t-tests were performed to individually compare methylation between base 

diets and their associated BPA exposure diet (e.g. Control vs. Control+BPA). For all ANOVAs, 

Tukey’s post-hoc test was used to determine the significance of each group-to-group 

comparison.  

In addition to tail, matched blood samples were collected at 2, 4, and 10 months of age 

from a total of 86 a/a offspring across four exposure groups – Control: n = 22 (10 female, 12 

male), Control+BPA: n=19 (9 female, 10 male), Western: n=22 (11 female, 11 male), 

Western+BPA: n=23 (12 female, 11 male). Cross-sectional DNA methylation for each target 
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gene was compared between the Control, Western, Control+BPA, and Western+BPA exposure 

groups using ANOVA. For all ANOVAs, Tukey’s post-hoc test was used to determine the 

significance of each group-to-group comparison. Physical activity (PA) data on multiple axes of 

movement -- X ambulatory counts, X total counts, and Z total counts – were measured using 

CLAMS cages (Columbus Instruments). We summarized physical activity data in a single 

activity-related energy expenditure (AEE) variable. AEE was calculated from total energy 

expenditure (TEE; kcal/kg/hour) and resting metabolic rate (RMR; kcal/kg/hour) using the 

following formula: AEE = 0.9(TEE) – RMR (Hills et al. 2014; Pontzer et al. 2016; Van Klinken 

et al. 2012). The 0.9 multiplier was based on the thermic effect of food (TEF), which was 

assumed to be ~10% of TEE (Hills et al. 2014). RMR was calculated from CLAMS data using a 

three step protocol. First, physical activity data was preprocessed using an optimized power 

function based on the CLAMS 20 minute sampling interval (Van Klinken et al. 2012). Second, a 

penalized spline regression model was used to model the time-course relationship between 

Energy Expenditure and Physical Activity for each mouse. Third, intercepts from the TEE vs. 

PA models were used to represent the RMR for each mouse. The AEE variable was log-

transformed prior to its addition to regression models. 

Mixed effect linear models were used to compare absolute methylation levels over time 

by exposure group. Age, exposure group, and sex were included as explanatory variables in all 

models. Linear mixed models for each target region also included a random factor to account for 

matched, within-individual data, as well as a random factor to account for within-litter effects. 

Environmental deflection of age-related methylation was compared by exposure group via 

inclusion of an age*exposure interaction term in all mixed models. For tail tissue models, an 

age*sex interaction term was included in an effort to identify and/or control for potential 
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modifying effects of sex on age-methylation levels. For blood, age*sex and age*log(AEE) 

interaction terms were also considered in mixed models; these terms were only included in the 

final model for Esr1, where they demonstrated statistical significance. 

Mixed models for tail tissue were fit using the following format: Methylation ~ Age + 

Sex + Exposure + Age:Exposure + Age:Sex + [1│ID] + [1│Litter]. For blood, mixed models 

were fit using the following format: Methylation ~ Age + Sex + Exposure + log(AEE) + 

Age:Exposure + Age:Sex + Age:log(AEE) + [1│ID] + [1│Litter]. For all models, the 

methylation outcome variable was defined as mean methylation across all amplicon CpG sites 

for two passing replicates. The lme4 package within the statistical program R was used for all 

linear mixed models (R version 3.2.3, http://www.r-project.org). Alpha significance levels were 

set at p≤0.05 for all statistical comparisons.  
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2.8 Figures and Tables 

Developmental 

Exposure 

Group 

N 

(litter) 
Female Male 

Pups 

(#) 

Control 14 10 12 22 

Control+BPA 25 9 10 19 

Med HFD 20 11 12 23 

Western HFD 21 11 11 22 

Med+BPA 15 12 12 24 

Western+BPA 23 12 11 23 

Total 118 65 68 133 

Table 2-1: Litter parameters. A subset of n=133 mouse pups included in longitudinal follow-

up. All pups in the longitudinal subset were maintained until sacrifice at 10 months of age. 
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Age-Related Methylation in Tail 

Gene N 
PND21 % Methylation 

(SE) 

10M % 

Methylation 

(SE) 

Methylation 

by Age - Beta 

coefficient† 

 p-value 

LINE-1 260 65.05 (0.12) 63.50 (0.11) -0.943 0.035 

IAP 222 90.31 (0.13) 88.62 (0.13) -1.321 2.20E-06 

Igf2 249 34.39 (0.78) 37.87 (0.26) 3.275 0.112 

H19 257 58.87 (0.62) 49.31 (0.27) -10.436 6.22E-08 

Esr1 260 4.26 (0.37) 12.09 (0.26) 7.604 1.44E-12 

Age-Related Methylation in Blood 

Gene N 

2M % 

Methylation 

(SE) 

4M % 

Methylation 

(SE) 

10M % 

Methylation 

(SE) 

Methylation 

by Age - Beta 

coefficient† 

 p-value 

LINE-1 252 65.85 (0.10) 65.62 (0.10) 65.47 (0.10) 0.085 0.542 

IAP 252 92.64 (0.09) 92.80 (0.10) 92.62 (0.13) 0.167 0.244 

Igf2 245 46.45 (0.28) 47.07 (0.22) 47.05 (0.19) 0.218 0.469 

H19 237 42.79 (0.19) 42.87 (0.23) 43.00 (0.28)  -0.049 0.867 

Esr1 244 50.71 (0.73) 56.21 (0.62) 58.69 (0.40) 4.094 3.64E-14 

Table 2-2: Age-related DNA methylation in mouse tail and blood. Linear mixed effect 

models were used to compare absolute methylation levels over time. Age, exposure group, sex, 

and age:exposure were included as terms in all models. Log(AEE)variable was included for 

blood variables. Linear mixed models for each gene also included a paired factor to account for 

matched, within-individual data, as well as a random factor to account for within-litter effects. 

Separate models were run for each gene; beta coefficients and associated p-values for age 

predictor from each model are reported. BOLD = p<0.05; † = Beta coefficient for age predictor 

in linear mixed effects model. 
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Tail Age-related DNA Methylation by Exposure Group 

      DNA Methylation 
Relative Methylation by 

Exposure 

Environmental 

Deflection 

Gene 
Developmental 

Exposure Group 
N 

PND21 % 

Methylation 

(SD) 

10 Month % 

Methylation 

(SD) 

Methylation 

by Age Beta 

Coefficient† 

p-value 

Age : 

Exposure 

Interaction 

Beta 

Coefficient† 

p-value 

LINE-1 

Control 44 64.86 (1.14) 64.00 (1.40) (Reference) n/a (Reference) n/a 

Control+BPA 38 64.78 (2.18) 63.32 (1.32) -0.079 0.855 -0.596 0.316 

Med 44 64.81 (1.53) 63.83 (1.43) -0.040 0.925 -0.132 0.820 

Western 43 65.18 (1.03) 63.27 (1.13) 0.331 0.431 -1.052 0.069 

Med+BPA 47 65.08 (1.44) 63.41 (1.29) 0.232 0.568 -0.818 0.147 

Western+BPA 46 64.97 (1.25) 63.65 (1.09) 0.122 0.766 -0.450 0.426 

          

IAP 

Control 38 89.98 (1.37) 88.64 (1.60) (Reference) n/a (Reference) n/a 

Control+BPA 32 90.56 (1.02) 89.03 (1.19) 0.560 0.279 -0.358 0.299 

Med 38 89.86 (1.15) 88.29 (1.15) 0.783 0.169 -0.291 0.410 

Western 34 90.34 (1.37) 88.77 (1.37) 0.484 0.356 -0.645 0.058 

Med+BPA 42 90.74 (1.53) 88.70 (1.53) 0.206 0.689 -0.325 0.335 

Western+BPA 38 90.37 (1.38) 88.36 (1.38) 0.788 0.135 -0.649 0.051 

          

Igf2 

Control 43 33.64 (6.23) 38.07 (2.59) (Reference) n/a (Reference) n/a 

Control+BPA 37 30.65 (8.26) 37.59 (4.58) -3.811 0.066 3.355 0.221 

Med 41 
32.70 

(10.69) 
37.83 (2.05) -0.513 0.804 0.338 0.900 

Western 41 
37.43 

(11.04) 
36.99 (1.84) 2.846 0.163 -3.914 0.143 

Med+BPA 44 31.97 (8.02) 38.61 (1.81) -2.506 0.207 2.965 0.259 

Western+BPA 45 37.55 (8.26) 38.25 (3.34) 3.162 0.108 -2.888 0.268 

          

H19 

Control 38 59.77 (7.22) 48.93 (2.86) (Reference) n/a (Reference) n/a 

Control+BPA 31 58.77 (6.43) 49.61 (2.29) -0.830 0.650 1.588 0.521 

Med 42 58.43 (7.31) 49.51 (3.84) -1.956 0.249 2.601 0.266 

Western 42 59.75 (8.28) 50.07 (3.23) 0.426 0.806 0.814 0.730 

Med+BPA 42 58.43 (6.25) 48.55 (2.67) -1.047 0.532 0.688 0.766 

Western+BPA 37 58.02 (7.32) 49.28 (3.03) -2.334 0.173 2.776 0.236 

          

Esr1 

Control 43 5.03 (2.25) 11.90 (1.93) (Reference) n/a (Reference) n/a 

Control+BPA 38 4.45 (1.56) 12.07 (3.00) -0.587 0.458 0.758 0.468 

Med 45 4.53 (1.84) 12.07 (2.01) -0.523 0.489 0.669 0.504 

Western 42 3.08 (1.12) 11.48 (1.65) -1.933 0.013* 1.620 0.112 

Med+BPA 46 3.96 (1.72) 12.67 (4.95) -1.089 0.150 1.851 0.064 

Western+BPA 46 4.51 (1.97) 12.27 (3.14) -0.604 0.424 0.988 0.321 
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Table 2-3: Tail DNA methylation by exposure group. Average methylation by age group was 

compared across exposure groups using a linear mixed effects model. Age, exposure group, sex, 

age:exposure, and age:sex were included as terms in all models. Linear mixed models included a 

paired factor to account for matched, within-individual data, as well as a random factor to 

account for within-litter effects. Separate models were run for each gene; beta coefficients and 

associated p-values for the exposure categories from each model are reported. Environmental 

deflection of age-related methylation was tested across all exposure groups via inclusion of an 

age:exposure interaction term in the model. Control diet was used as the reference exposure in all 

comparisons. † = Beta coefficient for age predictor in Linear Mixed Model; BOLD = p<0.10; * 

= p<0.05 
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Blood Age-related DNA Methylation by Exposure Group 

  DNA Methylation 
Relative Methylation 

by Exposure 

Environmental 

Deflection 

Gene Exposure N 

2M % 

Methylation 

(SE) 

4M % 

Methylation 

(SE) 

10 Month % 

Methylation 

(SE) 

Methylation 

by Age Beta 

Coefficient† 

p-value 

Age : 

Exposure 

Interaction 

Beta 

Coefficient† 

p-value 

LINE-1 

Control 64 65.58 (0.24) 65.39 (0.20) 65.66 (0.17) (Reference) n/a (Reference) n/a 

BPA 57 65.89 (0.19) 65.44 (0.23) 65.52 (0.19) 0.365 0.172 -0.228 0.249 

Western 66 66.24 (0.18) 65.80 (0.17) 65.31 (0.26) 0.762 0.003* -0.493 0.010* 

Western 

+BPA 65 65.69 (0.16) 65.84 (0.23) 65.38 (0.19) 0.347 0.173 -0.181 0.343 

                    

 IAP 

Control 64 92.44 (0.18) 92.69 (0.12) 92.78 (0.20) (Reference) n/a (Reference) n/a 

BPA 57 92.60 (0.19) 92.95 (0.15) 92.75 (0.32) 0.228 0.430 -0.099 0.626 

Western 66 92.71 (0.14) 92.84 (0.26) 92.27 (0.22) 0.367 0.307 -0.395 0.046* 

Western 

+BPA 65 92.77 (0.17) 92.73 (0.21) 92.71 (0.29) 0.299 0.185 -0.199 0.312 

                    

Igf2 

Control 63 46.50 (0.35) 46.91 (0.39) 46.92 (0.41) (Reference) n/a (Reference) n/a 

BPA 55 46.43 (0.50) 47.10 (0.48) 48.17 (0.65) -0.270 0.676 0.636 0.138 

Western 65 46.58 (0.33) 46.97 (0.47) 46.49 (0.51) 0.165 0.785 -0.323 0.429 

Western 

+BPA 62 46.29 (0.42) 47.32 (0.44) 46.69 (0.59) -0.004 0.994 -0.033 0.937 

                    

H19 

Control 60 43.16 (0.39) 42.96 (0.44) 43.06 (0.46) (Reference) n/a (Reference) n/a 

BPA 56 42.44 (0.36) 42.01 (0.51) 42.25 (0.72) -0.739 0.256 -0.095 0.816 

Western 62 42.31 (0.27) 42.47 (0.36) 42.89 (0.56) -0.747 0.235 0.261 0.513 

Western 
+BPA 59 43.32 (0.50) 43.93 (0.43) 43.76 (0.52) 0.307 0.631 0.264 0.518 

                    

Esr1 

Control 61 50.62 (0.90) 56.36 (1.34) 59.18 (1.46) (Reference) n/a (Reference) n/a 

BPA 55 50.25 (0.84) 56.30 (1.35) 59.58 (1.34) -0.327 0.732 0.503 0.480 

Western 63 51.48 (0.80) 56.21 (1.11) 56.64 (1.57) 1.417 0.114 -1.489 0.029* 

Western 
+BPA 65 50.41 (0.68) 56.00 (1.27) 59.47 (1.42) 0.139 0.876 0.389 0.565 

                    

Table 2-4: Blood DNA methylation by exposure group. Average methylation by age group 

was compared across exposure groups using a linear mixed effects model. Age, exposure group, 

age:exposure, and log(AEE) were included as terms in all models. Linear mixed models included 

id and litter random factors to account for intra-individual and within-litter effects. Separate 

models were run for each gene; beta coefficients and associated p-values for the exposure 

categories from each model are reported. Environmental deflection of age-related methylation 

was tested across all exposure groups via inclusion of an age:exposure interaction term in the 

model. Control diet was used as the reference exposure in all comparisons. † = Beta coefficient 

for age predictor in Linear Mixed Model; BOLD = p<0.10; * = p<0.05. 
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Male Esr1 Age-related Methylation in Blood Female Esr1 Age-related Methylation in Blood 

Variable Estimate SE DF p-value Variable Estimate SE DF p-value 

(Intercept) 53.41 0.79 109.7 <2E-16 (Intercept) 48.11 0.84 76.5 <2E-16 

Age 4.22 1.42 115.7 0.004 Age 2.11 0.62 93.8 0.001 

BPA -0.01 1.17 109.8 0.990 BPA -0.76 1.25 79.8 0.544 

WHFD 0.88 1.12 109.2 0.434 WHFD 1.70 1.15 76.2 0.144 

WHFD + 

BPA -0.28 1.12 109.1 0.801 

WHFD + 

BPA 0.28 1.13 76.3 0.807 

log(AEE) -2.97 1.98 85.7 0.137 log(AEE) -2.91 3.29 109.0 0.379 

Age:BPA 0.17 0.86 81.9 0.846 Age:BPA 1.06 0.76 74.3 0.167 

Age:WHF

D -0.83 0.84 81.9 0.324 Age:WHFD -1.67 0.70 71.4 0.020 

Age:WHF

D + BPA 0.80 0.88 85.7 0.362 

Age:WHFD 

+ BPA 0.74 0.70 72.1 0.293 

Age:log(A

EE) 1.59 1.22 116.0 0.193 

Age:log(AE

E) 1.40 1.65 89.6 0.399 

Table 2-5: Age-related Esr1 methylation stratified by sex. Beta estimates/coefficients for the 

Esr1 linear mixed models stratified by sex. Age is a significant predictor in both models, but 

only female mice show significant negative environmental deflection by WHFD. Age:log(AEE) 

has a positive, non-significant coefficient in both male and female models.  
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Nutrient Content in 3 Base Diets 

Diet Nutrients Control Mediterranean Western 

Kcal/g 3.98 4.53 4.72 

%Calories 

from Fat 16% 42% 40% 

PUFE : SFA : 

MUFA 1 : 0.2 : 0.5 1 : 1.3 : 5.6 1 : 1.9 : 1.6 

Protein 

(casein) 20 19 19 

Carb Content 

(g/100 g 

chow) 

  

  

Cornstarch 40 23 14 

Sucrose 10 9.2 25.5 

Cellulose 5 8 2 

Vitamin A 

(IU) 4000 8000 4000 

Vitamin C 

(mg) 0 500 0 

Vitamin D 

(IU) 1000 1000 400 

Vitamin E 

(IU) 75 75 25 

Folic Acid 

(mg) 2 4 1 

Sodium (mg) 1039 1039 7000 

Potassium 

(mg) 3600 8000 3600 

Magnesium 

(mg) 513 850 513 

Table 2-6: Comparison of nutrient content by diet. Three base diets were included as 

developmental exposures in this study – Control, Mediterranean HFD, and Western HFD. For all 

three base diets, protein was kept constant, but vitamin levels, lipid ratios, and carbohydrate 

types were altered to mimic human consumption. BPA was added to each diet to produce three 

additional developmental dietary exposure groups – Control+BPA, Med+BPA, and 

Western+BPA. Apart from BPA addition, nutrient content was not altered from the base diet 

levels in these three groups. 
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Primer/ 

Sequence to 

Analyze 

Igf2
1 

H19
1 

LINE-1 IAP Esr1
2 

Location 

chr7:149839707

–149839926 

strand = reverse 

chr7:149767589-

149767843 

Repetitive 

Element 

Repetitive 

Element 

chr10:4712147-

4712203 

Forward PCR 

Primer 

TTTTTTAATA 

TGATATTTGG 

AGATAGTT 

GGGGGGTTAT 

AAATGTTATT 

AGGGGGGTA

GG 

AAGGGGTTTG

TGTTTTAGAT

TAGG 

GTGTTATTTTT

TGATTGGTTGT

AGTTT 

TTTGGAAGT

TGTAGTTTTT

GGTTAGT 

Reverse PCR 

Primer 

biotin-

CCACATAATT

TAATTCACTA

ATAATT ACTA 

biotin-

AACCCCTAAC 

CTCATAAAAC 

CCATAACTAT 

AAAATCA 

biotin-

AACTCCCCAC

CAAATCCTAA

AACCTCTA 

biotin-

ACCAAAAATA

TCTTATAACTA

CTTATACT 

biotin-

ACAAAACAC

AAATAACCC

AACTC 

Sequencing 

Primer 

AATATGATAT

TT 

GGCGATAGTT 

GTGTAAAGAT 

TAGGGTTGT 

AGTTTGTTTT

TTTATGTATT

ATAGT 

ATTTTTTGATT

GGTTGTAGTTT

A 

GGAGAGGAG

TATGTAAAG 

Sequence to 

Analyze 

YGYGGGAYG

T  

TTGYGTAGAG 

GTTTGTTTGT 

TTTTTTGYGT 

GTTYGTYGGG 

GTYGT 

GYGGTYAGTG 

AAGTTTYGTA 

TATYG 

TTTAGGTTTY 

GYGYGATTGG 

ATTGGGGTAG 

AYGTTGTGTT 

TTATTTATTA 

GAGGTTT 

TYGGTYGAGT 

TGAYGTTAYG 

GGGAAAGTAG 

AGTATAAGTA 

GTTA 

TTGGAGAAT

T 

YGGGAGYGT

T 

TGGGTGYGT

T 

TTTTGGAGTT 

GGGTTATTT

G TGTTTT 

Amplicon 

Length (bp) 
220 255 132 87 131 

Annealing 

Temperature 

(°C) 

56 55 61 56 55 

Number of 

Cycles 
50 40 44 45 40 

Number of 

CpG Sites 
8 4 4 4 3 

Table 2-7: Pyrosequencing assay PCR conditions. Information for each assay, including 

genomic location, primer sequences (5’-3’), sequence to analyze, amplicon length, annealing 

temperature, number of cycles, and number of CpG sites measured. 
1
Assays from Faulk et al. 

2014; 
2
Assay adapted from Maegawa et al. 2010. 
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Figure 2-1: Methylation drift by exposure group. Visualization of age-related methylation 

over time at five target loci. LINE-1, H19, and IAP demonstrated a negative association between 

age and % methylation, while Esr1 and Igf2 demonstrated a positive association between age and 

% methylation. * = age:exposure interaction term p-value <0.10 for at least one exposure group 

in linear mixed model. † = ANOVA/t-test p-value <0.05 for cross-sectional comparison by 

exposure group. 
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Figure 2-2: Environmental deflection of age-related methylation by exposure group. 

Visualization of environmental deflection by exposure at five target loci. LINE-1, IAP, and Esr1 

demonstrated significant negative deflection of age-related methylation in Western-exposed mice 

compared to control. Igf2 and H19 did not display environmental deflection by WHFD. * = 

age:exposure interaction term p-value <0.05 for WHFD exposure group in linear mixed model. 
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Figure 2-3: Age-related Esr1 DNA methylation split by exposure and sex. Spaghetti plot of 

age-related Esr1 methylation as it varies by both exposure and sex. WHFD-exposed female mice 

had a decreased rate of age-related methylation compared to control (p=0.026). No other group 

showed a significant interaction between age and DNA methylation. 

 

 



 64 

 

Figure 2-4: Age-related Esr1 methylation for female mice. Slope estimates of the relationship 

between age and methylation for female mice. Slope estimates are separated based on exposure 

to Western diet and/or AEE. Slope estimates are based on beta values from the Esr1 linear mixed 

model for female mice. In the legend, “aging” refers to the baseline rate of age-related 

methylation, which is conceptualized as the beta estimate for the age term in the model when 

AEE and/or WHFD exposure are not considered. The other terms in the legend represent the 

effect of exposure and/or physical activity beta estimates on the baseline rate of age-related 

methylation. AEE and WHFD had opposing effects on Esr1 methylation rate in female mouse 

blood. 
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Figure 2-5: Diagram of exposure timing. F0 dams were assigned to one of six dietary 

BPA/HFD exposure groups two weeks prior to mating. Exposure continued throughout 

conception, gestation, and through lactation until weaning at post-natal day 21 (PND21). After 

weaning, offspring were transferred to an ad libitum Control diet, which continued until sacrifice 

at 10 months of age. Matched tail tips were collected at both PND21 and 10 months, and 

matched blood samples were collected at 2, 4, and 10 months. CLAMS data was collected during 

animal phenotyping at 2, 4, and 8 months of age. 
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Chapter 3  

Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-

wide DNA Hydroxymethylation at Imprinted Loci in Mouse Blood 
 
 

Abstract 

Epigenetic machinery plays an important role in genomic imprinting, a developmental process 

that establishes parent-of-origin-specific monoallelic gene expression. While a number of studies 

have investigated the role of 5-methylcytosine in imprinting control, the contribution of 5-

hydroxymethylcytosine (5-hmC) to this epigenetic phenomenon remains unclear. Using matched 

mouse blood samples (2, 4, and 10 months of age), we examined the effects of perinatal 

bisphenol A (BPA) exposure (50 µg/kg diet) on longitudinal 5-hmC patterns at imprinted 

regions. We also tested the hypothesis that 5-hmC would show defined patterns at imprinted 

genes that persist across the life course. Genome-wide 5-hmC content was measured using 

hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq). Modeling of 

differential hydroxymethylation by BPA exposure was performed using a pipeline of 

bioinformatics tools, including the csaw R package.Based on BPA exposure, we identified 5,950 

differentially hydroxymethylated regions (DHMRs), including 12 DHMRs that were annotated 

to murine imprinted genes – Gnas, Grb10, Plagl1, Klf14, Pde10a, Snrpn, Airn, Cmah, Ppp1r9a, 

Kcnq1, Phactr2, and Pde4d. When visualized, these imprinted gene DHMRs showed clear, 

consistent patterns of differential 5-hmC by developmental BPA exposure that persisted 

throughout adulthood. These data show long-term establishment of 5-hmC marks at imprinted 

loci during development. Further, the effect of perinatal BPA exposure on 5-hmC at specific 

imprinted loci indicates that developmental exposure to environmental toxicants may alter long-

term imprinted gene regulation via an epigenetic mechanism. 
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3.1 Introduction 

DNA methylation is an epigenetic mark that typically occurs at cytosines (5-

methylctyosine; 5-mC) in cytosine-phosphate-guanine (CpG) dinucleotides. Research has shown 

that 5-mC plays a role in X chromosome inactivation (Cotton et al. 2015), regulation of gene 

transcription (Medvedeva et al. 2014), and genomic imprinting (Bartolomei and Ferguson-Smith 

2011). In addition to 5-mC, recent studies have shown that the oxidized form of 5-mC – 5-

hydroxymethylcyotisine (5-hmC) – is a stable epigenetic mark present in a variety of mammalian 

tissues (Globisch et al. 2010; Hahn et al. 2014; Wu et al. 2011). Active processing of 5-mC to 5-

hmC occurs via a Ten-eleven translocation (TET) methylcytosine dioxygenase-mediated 

oxidative pathway (Shen et al. 2014), and previous studies show that exposure-induced oxidative 

stress can alter both TET enzyme expression (Coulter et al. 2013) and global 5-hmC content 

(Delatte et al. 2015). In addition to these characteristics, 5-hmC has a complex role as both a 

positive and negative regulator of transcription (Hahn et al. 2014; Wu et al. 2011), suggesting it 

may represent an important secondary genomic regulator in the methylome.  

During early embryonic development, DNA methylation undergoes a distinct wave of 

demethylation and de novo methylation (Reik et al. 2001; Smallwood and Kelsey 2012), 

processes that assist in the regulation of stem cell proliferation and differentiation 

(Messerschmidt et al. 2014). After differentiation, there is a second phase of DNA methylation 

reprogramming that occurs to establish a baseline methylome in primordial germ cells prior to 

birth (Smallwood and Kelsey 2012). Given these multiple waves of reprogramming during 

development, DNA methylation has been proposed as a mechanism driving the developmental 

origins of health and disease (DOHaD) hypothesis. DOHaD posits that exposure to 

environmental factors (e.g. diet, chemicals, etc.) during sensitive periods of development 
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influences developmental plasticity, thereby altering disease susceptibility later in life (Bateson 

et al. 2004; Heindel et al. 2015; Jirtle and Skinner 2007). Of particular interest in the DOHaD 

field is genomic imprinting, an epigenetic phenomenon by which parent-of-origin-specific 

monoallelic gene expression is established during development (Bartolomei and Ferguson-Smith 

2011; Das et al. 2009). Genomic imprinting is critical for proper placental maturation, embryonic 

growth and development, and it also plays important roles in post-natal development – especially 

in parent-offspring interactions (e.g. milk suckling, maternal care) (Plasschaert and Bartolomei 

2014). A vast amount of research on genomic imprinting has shown that differential DNA 

methylation at imprinting control regions (ICRs) plays an important role in establishing genomic 

imprinting during development, and that these regions are not demethylated during post-

fertilization reprogramming (Arnaud 2010; Kelsey and Feil 2012; Kim et al. 2017; Pidsley et al. 

2012; Smallwood and Kelsey 2012). Given that imprinted gene expression is controlled via 

developmentally programmed epigenetic marks, imprinted genes have been investigated as 

potential targets of developmental environmental exposures in both human and rodent studies 

(Haycock and Ramsay 2009; Heijmans et al. 2008; Nye et al. 2015; Susiarjo et al. 2013).  

However, virtually all of the existing studies on genomic imprinting relied upon sodium 

bisulfite treatment for generation of DNA methylation levels from biological samples. While 

bisulfite treatment is a useful quantitative tool for measuring the methylome, it also has an 

inherent weakness – it does not distinguish between 5-mC and 5-hmC. This is because both 5-

mC and 5-hmC are resistant to sodium bisulfite-induced cytosine deamination (Huang et al. 

2010). This means that bisulfite treatment-based measurements of the “methylome” actually 

represent combined 5-mC+5-hmC levels. In recent years, methods to specifically measure 5-

hmC, including hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq) (Tan 
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et al. 2013), have been developed. Despite these recent advances, however, little work has been 

done to identify the role of 5-hmC in genomic imprinting. One recent study showed enrichment 

of 5-hmC in imprinted regions in human brain and placenta (Hernandez Mora et al. 2017), but no 

study has yet investigated the contribution of 5-hmC to imprinting control in animal models. 

Furthermore, existing animal studies have not investigated effects of the environment on 5-hmC 

levels at imprinted genes. 

Developmental exposure to a number of environmental factors, including endocrine 

disrupting chemicals (EDCs), has been linked to changes in DNA methylation. Bisphenol A 

(BPA) is a commercial EDC that is found in a variety of consumer products (e.g. receipt paper, 

metal can linings, etc.) and has near ubiquitous human exposure across the world (Calafat et al. 

2008). BPA can activate growth-related transcription factors, bind nuclear receptors involved in 

cell growth and maturation, and also alter DNA methylation levels across the epigenome (Krüger 

et al. 2008; Manikkam et al. 2013; Singh and Li 2012; Sui et al. 2012; Watson et al. 2007; 

Wolstenholme et al. 2011; Zhang et al. 2012). Developmental BPA exposure in mouse models 

has been shown to alter the methylome (Anderson et al. 2012; Kim et al. 2014; Singh and Li 

2012), including specific effects on DNA methylation at imprinted loci (Susiarjo et al. 2013). 

Despite these results, however, it remains unclear whether developmental BPA exposure can 

specifically affect DNA hydroxymethylation. 

Here, we used the HMeDIP-seq method to measure epigenome-wide 5-hmC from  

longitudinal mouse blood samples in an effort to examine DNA hydroxymethylation at imprinted 

loci throughout murine adulthood. HMeDIP-seq is an antibody-based high-throughput 

sequencing method that measures the genome-wide distribution of 5-hmC. While this method 

has some inherent antibody inefficiency and fails to provide base-pair resolution sequencing 
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data, it does provide cost-effective amplification of high frequency, low signal 5-hmC marks 

within gene bodies (Skvortsova et al. 2017; Tan et al. 2013). Given the discovery nature of this 

study and the lack of a priori knowledge regarding 5-hmC levels in mouse blood, HMeDIP-seq 

was chosen to measure genome-wide 5-hmC from longitudinal blood samples. From this data, 

we tested the hypothesis that perinatal BPA exposure alters longitudinal 5-hmC content at 

imprinted genes. We also tested the hypothesis that imprinted genes would show defined 5-hmC 

peaks that persist across the life course. Our results confirm these hypotheses, showing both 

BPA-related differential hydroxymethylation and persistent 5-hmC patterning at imprinted 

genes. 

3.2 Materials and Methods 

Study animals and blood collection 

Mice included in longitudinal analysis were a/a offspring sourced from a genetically 

invariant viable yellow agouti A
vy

/a mouse colony maintained by sibling mating and forced 

heterozygosity for more than 220 generations (Waterland and Jirtle 2003). Within this colony, 

the A
vy

 allele is passed through the heterozygous male line, which has a genetically constant 

background 93% identical to C57BL/6J strain (Waterland and Jirtle 2003; Weinhouse et al. 

2014). Two weeks prior to mate-pairing with A
vy

/a males, eight to ten-week-old wild type a/a 

dams were placed on one of two experimental diet groups: (1) Control (modified, phytoestrogen-

free 7% corn oil AIN-93G), (2) Control + 50 µg BPA/kg diet (Figure 3-1) (Anderson et al. 2012; 

Weinhouse et al. 2014). BPA dose was chosen based on a previous dosing study from our lab 

that showed intake of 50 ug BPA/kg diet produced on average 2.02 ng BPA/g liver (Anderson et 

al. 2012). This exposure level is within the range of human exposure levels measured in human 

fetal liver samples (range: non-detect to 96.8 ng BPA/g liver) (Anderson et al. 2012). Dietary 
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exposure was continued through pregnancy and lactation, at which point BPA-exposed offspring 

(total n=19; n=6 used for these analyses) were weaned to the modified AIN-93G Control diet and 

followed along with Control offspring (total n=22; n=6 used for these analyses) until 10 months 

of age. All diets were provided by Envigo (Indianapolis, IN). At 2 months and 4 months of age, 

tail vein blood samples were collected from all mice (Figure 3-1). At 10 months of age, mice 

were sacrificed, and blood samples were again collected, this time using cardiac puncture. Six 

mouse blood samples from each exposure group were selected for inclusion in next-generation 

sequencing analyses. In accordance with methods established by the NIEHS TaRGET II 

consortium (Wang et al. 2018), we selected male (n=3) and female (n=3) blood samples 

collected from six separate litters. All animals were stored in polycarbonate-free cages with ad 

libitum access to food and drinking water, and were maintained in accordance with Institute for 

Laboratory Animal Research (ILAR) guidelines (National Research Council (US) Committee for 

the Update of the Guide for the Care and Use of Laboratory Animals 2011). The study protocol 

was approved by the University of Michigan Committee on Use and Care of Animals (UCUCA 

PRO00004797). 

DNA and RNA isolation 

To allow for matched analyses of DNA hydroxymethylation and gene expression from 

the same set of mice (n=6), genomic DNA and RNA were co-isolated from 2, 4, and 10 month 

frozen blood using the Qiagen Allprep DNA/RNA/miRNA Universal Kit (Qiagen, Cat. #80224). 

Yield and purity of all DNA and RNA was measured using a NanoDrop spectrophotometer. All 

samples were stored at -80°C prior to DNA and RNA isolations.  
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Real-time quantitative PCR (RT-qPCR) 

 The Bio-Rad iScript cDNA Synthesis Kit (Cat. #1708890) was used to reverse transcribe 

complementary DNA (cDNA) from 250 ng of RNA for each sample. In preparation for RT-

qPCR, cDNA samples were diluted 1:2.5 in RNase-free water, then mixed with 10 µM 

forward/reverse primers, nuclease-free water, and Bio-Rad iQ SYBR Green Supermix (Cat. 

#1708880). RT-qPCR was then performed using a Bio-rad CFX96 Real-Time System C1000 

Thermal Cycler (Bio-Rad; Hercules, CA). The pre-programmed 2-step PCR+melt curve protocol 

was used for all qPCR reactions – 95°C for 3 minutes, [95°C for 10 seconds, 55°C for 30 

seconds, plate read] x40, 95°C for 10 seconds. The melt curve for each plate was 65°C-95°C; 

0.5°C increment for 5 seconds, with plate read at each temperature. RT-qPCR analyses were 

performed for the Gnas genes in triplicate for each cDNA sample. Three housekeeping genes – 

Actb, 18S, and Gapdh – were included as internal controls in all RT-qPCR runs. In addition to 

housekeeping genes, an inter-plate calibrator control of brain cDNA was included for calculation 

of relative gene expression across multiple plates. Expression levels were calculated following 

the 2
−ΔΔCt

 method (Livak and Schmittgen 2001). RT-qPCR primers for the Gnas and Gapdh 

genes (Table 3-1) were designed using the online Genscript Real-time PCR Primer Design 

software (https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool). The β-

actin and 18S gene primer pairs were sourced from the literature (Dolinoy et al. 2010; La Salle et 

al. 2004). Primer pair specificity for all designed primers was checked using the NCBI Primer-

BLAST online tool (https://www.ncbi.nlm.nih.gov/tools/ primer-blast/).  

Next-generation sequencing of 5-hmC 

Epigenome-wide DNA hydroxymethylation was quantified in blood from mice using 

hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq) (Tan et al. 2013). 

https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool
https://www.ncbi.nlm.nih.gov/tools/%20primer-blast/
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Unlike other some other methods, HMeDIP-seq is an antibody-based approach that does not 

provide base-pair resolution data. This method is also subject to the inherent bias of a multi-step, 

immunoprecipitation-based sequencing method, including potential for antibody binding 

inefficiency, as well as library preparation bias, read mapping bias, or PCR amplification bias 

(Meyer and Liu 2014). Despite these weaknesses, HMeDIP-seq is a cost-effective method to 

measure genome-wide 5-hmC, including at regions of high frequency weak 5-hmC signal (Tan et 

al. 2013). Sequencing data were generated by Dr. Claudia Lalancette at the University of 

Michigan Epigenomics Core Facility for a subset of control (n=6) and BPA-exposed (n=6) mice 

(Figure 3-2). Blood samples from the six mice (3 male, 3 female) in each exposure group were 

sequenced at three time points across the life-course (2, 4, and 10 months of age), for a total 

sequencing data sample size of 36 samples. The six mice for each exposure group were selected 

from different litters to minimize litter effects. Sample quality and quantitation were assessed 

using the Agilent TapeStation genomic DNA kit (Agilent, Cat. #G2991AA) and Qubit broad 

range dsDNA (Invitrogen, Cat. #Q32850), respectively. Indexed adapters and PCR primers were 

synthesized by Integrated DNA Technologies (IDT). Enzymes used for library preparation were 

sourced from New England BioLabs (NEB).  

A total of 1μg of genomic DNA (gDNA) was sheared by adaptive focused acoustics, 

using the Covaris S220 (Covaris, Cat. #4465653). This sheared DNA was next blunt-ended and 

phosphorylated. A single adenine nucleotide was then added to the 3’end of the fragments in 

preparation for ligation of adapter duplex with a thymine overhang. The ligated fragments were 

cleaned using Qiagen’s MinElute PCR purification columns (Qiagen, Cat. #28004). DNA 

standards for HMeDIP (Diagenode 5-hmC, 5-mC & cytosine DNA standard pack for HMeDIP, 

Cat. #AF-107-0040) were added to each sample before denaturation. Resuspension was then 
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performed in ice-cold immunoprecipitation buffer (10 mM Sodium Phosphate pH 7.0, 140 mM 

NaCl, 0.05% Triton X-100). A 10% volume (input) was retrieved before 2ug of a 5-hmC-

specific antibody (Active Motif, Cat # 39791) was added for immunoprecipitation overnight at 

4°C with rotation. Dynabeads Protein-G (Invitrogen, Cat. #10003D) was used to pull-down 5-

hmC-enriched fragments. The 5-hmC-enriched DNA fragments (IP) were then released from the 

antibody by digestion with Proteinase K (Ambion, Cat. #AM2548). After cleanup with AMPure 

XP beads (Beckman Coulter, Prod.# A63880), the percent input enrichment (%input) in the IP 

was evaluated by qPCR, using hydroxymethylated, methylated, and unmethylated primers for 

spike-ins. Samples with high % input for the 5-hmC spike-in – typical inclusion threshold was 

>80% – were then PCR amplified for the final library production, cleaned using AMPure XP 

beads, and quantified using the Qubit assay (Invitrogen, Cat. #Q32850) and TapeStation High 

Sensitivity D1000 kit (Agilent, Cat. #G2991AA). Single-end, 50 base pair reads were obtained 

for each library by sequencing on the HiSeq 4000 system (Illumina). Each HMeDIP-seq sample 

was run on a single sequencing lane. 

Bioinformatics pipeline for differential 5-hmC 

HMeDIP-seq data for all control and BPA-exposed mice were compared using a suite of 

bioinformatics tools (Figure 3-2). First, the Sartor lab mint pipeline was used for data quality 

control (FastQC and MultiQC), adapter trimming (trim_galore), and alignment (bowtie2) 

(Cavalcante et al. 2017). Based on previous research, we required a minimum overlap of 6bp and 

minimum quality score of 20 for adapter and quality trimming, respectively (Akalin et al. 2012). 

Although the default minimum overlap in trim_galore is 1 bp, we selected a less stringent 

minimum overlap of 6 bp in an effort to include all legitimate genomic sequences and improve 

read depth. Despite these benefits, the less stringent minimum overlap length increases the 
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possibility for adapter contamination in our data (Krueger 2017). The quality score cut-off is the 

default in trim_galore, and is based on previous research showing an optimal tradeoff between 

correct read mapping and read survival at quality scores between 20 and 30 (Del Fabbro et al. 

2013). Default parameters were used for bowtie2.  

After data quality check, trimming, and alignment, the csaw package was used to test for 

differential 5-hmC by BPA exposure (Lun and Smyth 2016). Aligned HMeDIP-seq data were 

read into R using the windowCounts function in csaw. When reading in the data, extension was 

set to 52, window width was set to 100, and sex chromosomes were removed. The data were then 

filtered twice – by count ( average count >5) and by local enrichment using the filterWindows 

function (type= “local”) – to remove regions of negligible binding. After filtering, normalization 

factors were calculated for each sample using the normOffsets function on binned data 

(width=10000). Normalization factors were linked to filtered data using the asDGEList function, 

and then the estimateDisp function was used to generate dispersion factors based on a 

multifactorial design matrix. The glmQLFit function was used to fit a model (model design = 

model.matrix(~ exposure + age + age:exposure + mouse_ID + sex)) for differential 5-hmC 

binding; an empirical Bayesian method used to stabilize the QL dispersion estimates. Contrast 

statements were used to extract modeling results for the variable of interest – BPA exposure. To 

correct for multiple testing, filtered data was clustered using a window length of 500 bp; the 

combineTests function was then used to compute a combined p-value for each cluster. Multiple 

testing correction was performed using the Benjamini-Hochberg method (Benjamini and 

Hochberg 1995, 1997). Differential hydroxymethylated region (DHMR) length cutoff was set at 

≥100 bp; significance was set at FDR < 0.10.  
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After testing for differential hydroxymethylation using csaw, the annotatr R package was 

used to annotate all DHMRs to the mm10 genome (Cavalcante and Sartor 2017). The 

annotate_regions function was used to generate genomic annotations, which include 

classifications by region class (e.g. intron, exon, promoter, etc.) and annotated gene IDs. A list of 

mouse imprinted loci was then sourced from the MouseBook online database (Williamson et al. 

2013). All available imprinted genes were manually cross-checked with the generated list of 

BPA-related DHMR annotated gene IDs.  

Sequencing data visualization 

 5-hmC peaks were visualized using the csaw and GViz R packages (Hahne and Ivanek 

2016; Lun and Smyth 2016). Using csaw, data was first read into R as a GRanges object using 

the extractReads function. Next, the GeneRegionTrack in the Gviz R package was used to define 

regions of interest for visualization. Separate blue and red genome tracks were used to represent 

the forward and reverse strand reads, respectively. The plotTracks function was then used to plot 

5-hmC peaks for these regions. Reads-per-million was used for the y-axis in all graphs, and scale 

was adjusted to individual region coverage.  

BPA-related DHMRs at imprinted loci were visualized using the GViz R package to 

determine directionality and magnitude of differential 5-hmC. Plots generated in R (R version 

3.4.0) were formatted for publication in Adobe Illustrator CS6 (version 16.0.5). 

Pathway analysis 

Pathway analysis for DHMRs was performed using ChIP-enrich (Welch et al. 2014). 

Within the ChIP-enrich online interface (http://chip-enrich.med.umich.edu/), the gene set filter 

was set to 2000, peak threshold was set to 1, and adjustment for mappability of gene locus 

regions was set to false. The genome used for pathway analyses was mm10, and the ChIP-enrich 
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method was used for enrichment testing. DHMRs were split into hypo- and hyper-

hydroxymethylated regions prior to separate analyses. Only regions <5kb from TSS were 

included in ChIP-enrich analysis. All pathway analyses included GO terms and KEGG pathways. 

After correcting for multiple testing, only pathways with FDR<0.05 were considered significant. 

3.3 Results 

Epigenome-wide differential 5-hmC 

Using the csaw R package, multivariate models were constructed to test for differential 5-

hmC by perinatal BPA exposure (50 µg/kg diet). Based on the csaw models, we identified 5950 

differentially hydroxymethylated regions (DHMRs) by BPA exposure (Table 1). Comparing the 

directionality of DHMRs by BPA exposure, we found more hypo-hydroxymethylated regions 

(n=4247; 71.4%) than hyper-hydroxymethylated regions (n=1559; 26.2%) (Table 1). We also 

identified a small fraction of BPA-related DHMRs (n=144; 2.4%) that showed both hypo- and 

hyper-hydroxymethylation. Taken together, these epigenome-wide results show that the 

directionality of differential hydroxymethylation varies by region, with a skew toward decreased 

5-hmC by BPA exposure. 

BPA-related DHMRs at imprinted genes 

 Previous research has shown effects of developmental exposures on DNA methylation at 

imprinted loci (Gallou-Kabani et al. 2010; Susiarjo et al. 2013), but it remains unclear whether 

exposures can also alter DNA hydroxymethylation at imprinted genes. Further complicating this 

question, despite recent research in humans showing enrichment of 5-hmC at imprinted loci 

(Hernandez Mora et al. 2017), the distribution and potential function of 5-hmC at murine 

imprinted genes remains unknown. In an effort to broadly identify BPA-sensitive regions of 5-

hmC at imprinted loci, we cross-checked the BPA-related DHMR annotations with a database of 
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known murine imprinted genes (Williamson et al. 2013). In total, 12 of the 151 known imprinted 

genes had annotated BPA-related DHMRs (Table 3-3). Five of these twelve genes had increased 

5-hmC peaks by BPA exposure – Grb10, Pde10a, Pde4d, Plagl1, and Gnas. The remaining 

seven imprinted loci – Ppp1r9a, Phactr2, Klf14, Kcnq1, Cmah, Airn, and Snrpn – had decreased 

5-hmC peaks by BPA exposure. The number of CpG sites within these DHMRs varied by 

region, with five of the DHMRs showing zero CpG sites (Table 3-4). In an effort to confirm the 

DHMRs, we visualized the five most significant imprinted gene DHMRs and one DHMR at the 

well-characterized Snrpn gene, showing marked changes in 5-hmC peaks by BPA exposure that 

persisted across all of the three matched sample ages (Figure 3-3). We also showed striking 

changes in 5-hmC peaks at the remaining six imprinted gene DHMRs, despite their decreased 

significance (Figure 3-4). In an effort to determine whether this was a shared trait at imprinted 

genes, we visualized 5-hmC peaks at Igf2 and H19, two well-characterized imprinted genes that 

did not have any annotated DHMRs with FDR < 0.1. Despite their lack of significant DHMRs, 

Igf2 and H19 still had specific 5-hmC peaks that showed non-significant changes by BPA 

exposure (Figure 3-5). Combined, these data suggest that perinatal BPA exposure alters the 

establishment of 5-hmC marks at specific regions of imprinted genes. 

In examining the imprinted loci visually, two of the DHMRs – Plagl1 and Gnas – had 5-

hmC peaks that were cut-off by the DHMR boundaries, suggesting larger scale 5-hmC patterns 

at these genes. To provide a complete picture for these two loci, 5-hmC peaks across the entire 

gene were visualized. Both Plagl1 and Gnas had widespread 5-hmC peaks along the entire gene-

coding region, with only the annotated DHMRs showing apparent modifications by BPA 

exposure (Figure 3-6). Of note, 5-hmC peaks across these two genes were consistent between 

mice and across time, a pattern that was also observed at the Igf2 and H19 imprinted genes 
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(Figure 3-5). Together, these data show that imprinted genes have predictable 5-hmC peaks 

along the length of their gene bodies.  

RT-qPCR gene expression data 

 To follow up on the DHMR annotated to the Gnas gene, we performed RT-qPCR on 

RNA from matched mouse blood samples to examine longitudinal mRNA expression. At the 

Gnas locus, there was a significant increase in mean mRNA expression from 2 to 10 months of 

age in mice exposed to BPA (p=0.05) (Figure 3-7). This increase was not significant in control 

samples. Additionally, mean Gnas expression was significantly lower in control mice than BPA-

exposed blood at 10 months of age (p=0.01), a result that reflects a result that reflects the 

increased Gnas 5-hmC peak found in BPA-exposed blood.  

Pathway analysis for DHMRs 

ChIP-enrich pathway analysis was performed on separate lists of hyper- and hypo-

methylated DHMRs. In an effort to maximize biological relevance and limit number of 

comparisons, DHMR datasets were restricted to regions <5kb from the transcription start site. 

After correction for multiple testing, a small number of GO terms were enriched in hypo- and 

hyper-hydroxymethylated DHMRs (Table 3-5). Of note, enriched pathways showed no overlap 

between hyper- and hypo-hydroxymethylated DHMRs. In the BPA-related hypo-

hydroxymethylated DHMRs, the only two significantly enriched pathways were hippocampus 

development and spinal cord association neuron differentiation. In the BPA-related hyper-

hydroxymethylated DHMRs, the two most significant enriched pathways were L-ascorbic acid 

binding and oxidoreductase activity. These pathway analysis results indicate that only a few GO 

terms were enriched in the significant DHMRs, and that enrichment was specific to directionality 

of BPA-related DHMRs. 
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3.4 Discussion 

Epigenome-wide differential 5-hmC 

We found statistically significant effects of perinatal BPA exposure on DNA 

hydroxymethylation across the epigenome. While the exact mechanism driving this relationship 

is unclear, it is possible that BPA-related DHMRs are a result of BPA-induced oxidative stress 

(OS) (Gassman 2017). Based on the available literature, free BPA is thought to induce OS via 

enzymatic formation of BPA phenoxyl radicals (Sakuma et al. 2010), which can then be further 

processed to other reactive oxygen species (ROS), including superoxides and peroxides (Babu et 

al. 2013). In addition to potential ROS-induced cytotoxicity (Gassman 2017), the prooxidant 

activity of BPA also has the potential to modify 5-hmC across the epigenome. Research has 

shown that Tet enzyme activity is activated under oxidative conditions (Chia et al. 2011; Coulter 

et al. 2013; Zhao et al. 2014), indicating that active processing of 5-mC to 5-hmC may be 

affected by ROS production. Further supporting this idea, recent research has shown that OS-

inducing exogenous factors – buthionine sulfoximine and PM2.5 fine particulate matter – can alter 

DNA hydroxymethylation levels (Delatte et al. 2015; Wei et al. 2017). These prior results 

support the hypothesis that BPA exposure could be triggering changes in 5-hmC via induction of 

oxidative stress. This idea should be further explored in future studies examining the effects of 

endocrine disrupting chemicals on 5-hmC levels across the epigenome. 

BPA-related DHMRs at imprinted genes  

In addition to examining the effects of BPA on broad-scale DNA hydroxymethylation, 

we also specifically investigated whether BPA exposure altered 5-hmC content at murine 

imprinted genes. Of the 151 interrogated imprinted loci, twelve (7.95%) had annotated DHMRs 

(Table 3-3). As a broad scale comparison, out of the estimated 24,360 known protein-coding 
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genes in mice (Blake et al. 2017), 1,616 unique gene IDs had annotated DHMRs (6.63%). These 

results indicate that imprinted genes show slight enrichment for DHMRs compared to all known 

genes combined. Although none of the twelve imprinted gene BPA-related DHMRs overlapped 

with known imprinting control regions (ICRs) (Figure 3-8), expanded visualization of Gnas and 

Plagl1 showed widespread hydroxyl across imprinted gene regions. The directionality and 

magnitude of the imprinted gene DHMRs was also gene-specific. Of note, five of the imprinted 

gene DHMRs had zero CpG sites (Table 3-4), a result that could be driven by several possible 

scenarios: 1. DNA hydroxymethylation at non-canonical methylation contexts (i.e. CHG sites, 

where H = A, C, or T); 2. Inexact DHMR definitions due to inherent lack of specificity in 

pulldown method (HMeDIP-seq); 3. False positives in our data. Supporting the first option, 

recent work in mice has shown intragenic enrichment of non-CpG methylation at particular 

domains in clusters of genes related to embryonic development (He et al. 2017). Further fitting 

with this idea, eight of the twelve imprinted gene DHMRs had at least ten CHG sites within their 

chromosomal ranges (Table 3-4). Nevertheless, it remains difficult to distinguish between the 

three outlined scenarios using the data available in this project. The most significant imprinted 

gene DHMR was annotated to the Gnas locus, which encodes the G-protein alpha subunit 

protein, a key component of G-protein coupled signal transduction (Plagge and Kelsey 2006). 

Gnas is an imprinted gene that has a complex expression pattern, four alternative promoters, a 

number of isoforms, and may be involved in energy homeostasis (Peters and Williamson 2007; 

Plagge and Kelsey 2006). Given the complexity of transcriptional control at this locus, the 

identified intronic Gnas DHMR may represent a long-range regulatory region. This hypothesis is 

supported by research demonstrating that 5-hmC is enriched at enhancers (Ehrlich and Ehrlich 

2014; Stroud et al. 2011; Sun et al. 2013; Wen et al. 2014), regulatory regions that can be quite 
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distant from the gene promoters they activate (Pennacchio et al. 2013; Shlyueva et al. 2014). 

Based on this idea of distant regulatory regions, we hypothesized that the documented increase in 

intronic Gnas 5-hmC would show a corresponding BPA-related change in Gnas expression. 

Using RT-qPCR, we found increased Gnas expression by BPA exposure across all three time 

points, with the magnitude of this increase reaching significance at 10 months of age (Figure 3-

7). Given the complex regulation of this locus, the age-specific effect of BPA exposure on Gnas 

expression may be a result of changes in alternative splicing, which is dynamic during the aging 

process (Li et al. 2017). During aging, Gnas splicing could shift toward specific isoforms that are 

controlled by 5-hmC at the BPA-related DHMR, leading to a late adulthood effect of 

developmental BPA exposure. Future functional work should explore this idea, as well as test for 

potential effects of BPA exposure at the human GNAS locus. 

In addition to Gnas, three other imprinted genes – Grb10, Plagl1, and Pde10a – showed 

significant increases in 5-hmC by BPA exposure. The first of these additional hyper-

hydroxymethylated genes, Grb10, encodes the growth factor receptor-bound protein 10 (Grb10). 

Grb10 is involved in a number of biological processes, including cellular proliferation, apoptosis, 

and metabolism (Holt and Siddle 2005; Kabir and Kazi 2014; Plasschaert and Bartolomei 2015; 

Riedel 2004). Grb10 is maternally expressed in most tissues, but it is paternally expressed in the 

brain; this complex imprinting pattern is established through tissue-specific alternate promoters 

(Sanz et al. 2008). The tissue-specific maternal and paternal expression patterns of Grb10 have 

been linked to fetal growth and adult social behavior in mice, respectively (Garfield et al. 2011). 

This complex expression patterning is thought to be controlled via epigenetic modifications 

(Sanz et al. 2008). Like Gnas, the Grb10 DHMR is intronic, meaning any functional effects of 

differential 5-hmC at this region would have to be through long-distance contacts. The second 
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additional gene, Plagl1, encodes the pleomorphic adenoma of the salivary gland gene like 1 

(Plagl1) protein. Plagl1 is a zinc finger transcription factor that regulates other imprinted loci 

involved in embryonic growth, including H19 and Igf2 (Varrault et al. 2006, 2017). As such, 

BPA-related alterations in 5-hmC at Plagl1 have the potential to affect an entire network of 

imprinted genes. Like Gnas and Grb10, Plagl1 has several alternative transcripts in mouse that 

are controlled by alternate promoters (Iglesias-Platas et al. 2013). The Plagl1 DHMR overlaps 

Exon 8 in some Plagl1 isoforms, but not others, suggesting that this region may play a role in 

alternative splicing for this gene. The third additional hyper-hydroxymethylated imprinted gene, 

Pde10a, encodes phosphodiesterase 10A (Pde10a). Pde10a is a member of the cyclic nucleotide 

phosphodiesterases (PDEs), a family of enzymes that regulate intracellular levels of cyclic AMP 

(cAMP) and cyclic GMP (cGMP), endogenous molecules involved in signal transduction 

(Bender and Beavo 2006; Soderling et al. 1999). Pde10a shows its highest expression levels in 

the brain, with minimal expression in peripheral tissues (Bender and Beavo 2006; Soderling et al. 

1999). Recent research shows that pharmaceutical inhibition of Pde10a leads to increased energy 

expenditure, decreased food intake, reduced adiposity, and improved insulin sensitivity in mice 

with high-fat diet-induced obesity (Nawrocki et al. 2014). As such, altered regulation of the 

Pde10a gene has the potential to modify murine energy homeostasis. While we found a Pde10a 

DHMR in blood tissue, where expression is minimal, our developmental BPA exposure occurred 

throughout tissue differentiation, so it is possible that the BPA-related DHMR annotated to 

Pde10a is present in multiple tissues, including the brain.  

 We also visualized two hypo-hydroxymethylated DHMRs annotated to imprinted genes – 

Klf14 and Snrpn. The first of these genes, Klf14, encodes the maternally-expressed Krüppel-like 

factor 14 (Klf14), a member of the Cys2/His2 zinc-finger transcription factors (Small et al. 2011; 
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Wang et al. 2017). Research shows that KLF14 acts as master regulator of adipose gene 

expression in humans (Small et al. 2011), and may be involved in metabolic disease risk. In 

addition, recent results in mice suggest that Klf14 may interact with peroxisome proliferator-

activated receptor-γ coactivator 1α (PGC-1α), a transcription coactivator that regulates a number 

of metabolic pathways, including hepatic gluconeogenesis (Wang et al. 2017). Based on these 

prior studies, changes in 5-hmC at Klf14 have the potential to not only alter murine energy 

homeostasis, but also modify risk of metabolic disorders. The second imprinted gene to show 

BPA-related decrease in 5-hmC was Snrpn, a paternally expressed gene that encodes the SmN 

protein, a key component of the spliceosome in the brain (Shemer et al. 1997). Snrpn has 

multiple alternate promoters and splice variants, is directly related to neurological function, and 

is located in the human Prader-Willi + Angelman syndrome (PWS/AS) imprinted domain (Wu et 

al. 2012). The PWS/AS imprinted domain is highly complex, containing a large number of C/D 

box small nucleolar RNAs (snoRNAs) and two imprinting control (IC) regions – PWS-IC and 

AS-IC (Wu et al. 2012). Research suggests the snoRNAs play a role in the etiology of the murine 

PWS phenotype (Relkovic and Isles 2013; Skryabin et al. 2007), which is often characterized by 

weight gain, decreased activity, and impaired attention (Relkovic and Isles 2013). Here, we 

identified a BPA-related hypo-hydroxymethylated region in an intron of Snrpn. While the 

functional relevance of this region remains unknown, previous work has shown that 

developmental BPA exposure alters DNA methylation at SNRPN/Snrpn (Faulk et al. 2015; 

Susiarjo et al. 2013), providing support for the idea that BPA can affect the epigenome at this 

locus. Additionally, the human SNRPN domain is enriched for 5-hmC across the expressed allele 

in brain tissue, indicating that 5-hmC may have a functional role in control of SNRPN gene 

expression (Hernandez Mora et al. 2017). Therefore, it is possible that BPA-related changes in 
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Snrpn 5-hmC could alter gene transcription, thereby modifying risk for PWS, a neurobehavioral 

disorder.  

 Remarkably, BPA-related DHMRs at the described imprinted loci persisted throughout 

adulthood despite BPA exposure ending at postnatal day 21 (PND21). These data indicate that 

perinatal exposure to BPA can have long-lasting effects on 5-hmC. Given the complex role of 5-

hmC in regulating transcription activation (Hahn et al. 2014; Wu et al. 2011), the identified 

BPA-related DHMRs may reflect programmed changes in gene regulation. Supporting this idea, 

a number of recent studies have shown that 5-hmC is a stable epigenetic mark that has an 

important role in gene regulation (reviewed in (López et al. 2017)). Building on the existing data, 

our results show differential 5-hmC at imprinted genes with complex regulatory patterns, 

indicating that 5-hmC marks at these genes may play a role in establishment of alternative 

splicing in response to BPA exposure. Though limited, our RNA expression data support this 

idea, showing that BPA exposure has long-term functional consequences at the imprinted Gnas 

locus. Based on these results, a new hypothesis has emerged – that differential 5-hmC at 

imprinted genes could be an important mechanism driving the developmental origins of adult 

disease.  

In addition to the BPA-specific DHMRs, our data separately show that widespread 5-

hmC peaks are established across entire imprinted genes during development, and that these 

patterns persist throughout life. This was apparent at genes with annotated DHMRs – Gnas and 

Plagl1 – and well-characterized genes without annotated DHMRs – Igf2 and H19. These results 

match recent research in humans, which showed 5-hmC enrichment at the H19-IGF2 locus in 

brain and at GNAS A/B in placenta (Hernandez Mora et al. 2017). Combined, the available data 

indicate that 5-hmC may be involved in imprinting control. As technologies for measuring 
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genome-wide 5-hmC continue to advance, efforts should be made to further examine the 

regulatory role of 5-hmC in genomic imprinting. 

Pathway analysis 

GO terms showed specific enrichment based on directionality of differential 

hydroxymethylation. This suggests that BPA exposure is associated with both up- and down-

regulation of several biological processes. In the BPA-related hypo-hydroxymethylated DHMRs, 

the only two significantly enriched pathways were hippocampus development and spinal cord 

association neuron differentiation. While it is difficult to interpret these pathways from blood 

samples, 5-hmC has its highest levels in brain tissue, where it is suspected to play a role in 

neuron development (Kinde et al. 2015). As such, it’s possible that these enriched pathways 

reflect a pre-differentiation effect of developmental BPA exposure on 5-hmC in stem cells. 

Previous work has shown that epigenetic marks at imprinted genes are maintained during post-

fertilization reprogramming (Plasschaert and Bartolomei 2014), suggesting that the epigenetic 

effects of developmental exposure could be maintained at imprinted loci during cellular 

differentiation. Building on this idea, our results indicate that 5-hmC establishment at imprinted 

genes could be involved in regulating neural plasticity. Additional work in pre-differentiated 

cells and brain tissue could help determine whether BPA actually alters neuronal differentiation 

via 5-hmC.  

Limitations 

Little is known about the stability of 5-hmC at imprinted loci across blood cell type 

proportions, but previous studies have shown that epigenetic marks can vary across blood cell 

types (Houseman et al. 2012; Skinner 2016). As such, it is possible that the documented effects 

of BPA on genome-wide 5-hmC in blood are simply a reflection of shifts in blood cell type 
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proportions. Counter to this idea, however, previous studies have shown that DNA methylation is 

often conserved across different cell types at imprinted loci (Skinner 2016; Talens et al. 2010), 

suggesting that investigating differential methylation from whole blood should still be valid at 

imprinted genes. While this evidence supports the validity our BPA-related DHMRs at imprinted 

loci, the dynamics of 5-hmC at these imprinted genes across blood cell types remains to be 

elucidated. To further explore the idea that altered 5-hmC in blood impacts imprinted gene 

regulation, future studies should also investigate allele-specific expression in individual cell 

types using new single-cell RNA-seq methods (Santoni et al. 2017). Despite lingering blood cell 

type questions, the use of matched blood samples allowed for direct measurement of 5-hmC 

from the same mice over time, reducing the potential confounding of inter-individual variability. 

Additionally, matched blood samples provide greater translatability to human epigenetics 

studies, which typically rely on peripheral blood samples.  

Due to low RNA yields from the longitudinal blood samples, it was not possible to 

examine gene expression at all identified imprinted loci with annotated DHMRs. RNA yields 

were diminished due to the small amount of blood collected during in vivo tail vein collection at 

2 and 4 months of age. Despite the low amounts of blood RNA available, the use of longitudinal 

samples allowed for direct measurement of expression at the Gnas imprinted locus from the 

same longitudinal samples used for HMeDIP-seq data generation. As such, BPA-related changes 

in Gnas expression directly coincide with BPA-related alterations in DNA hydroxymethylation 

at this locus. 

DNA hydroxymethylation has only recently become recognized as an important 

consideration in the field of genomic imprinting, meaning its role in imprinting control is poorly 

defined. As a result, the exact functional effects of the BPA-related changes shown in this paper 
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remain undetermined. So far, the available research suggests that 5-hmC can have very different 

regulatory effects depending upon its genomic context, so the relationship between BPA-related 

DHMRs and gene expression could vary in a gene-specific manner. Similarly, the phenotypic 

effects of BPA-related DHMRs remain unclear without additional measures of murine biology 

throughout the life-course. Despite these limitations in interpretation, we identified a large 

number of BPA-related DHMRs, indicating that DNA hydroxymethylation is sensitive to 

environmental factors during development.  

3.5 Conclusions 

We measured 5-hmC in matched blood samples collected from isogenic mice at 2, 4, and 

10 months of age, and then examined the effects of BPA on the longitudinal DNA 

hydroxymethylation. Across the epigenome, we identified a number of exposure-related 

DHMRs, suggesting that perinatal BPA exposure can alter this DNA modification throughout 

life. At twelve imprinted loci, including the Gnas locus, developmental BPA exposure 

significantly altered 5-hmC peaks in blood across all three measured ages. Echoing this result, 

we showed that BPA exposure modified Gnas expression throughout murine adulthood. These 

results suggest that BPA-related increases in Gnas hydroxymethylation may have long-lasting 

effects on gene expression at this complex imprinted locus, possibly through shifts in alternative 

splicing. In addition to BPA-related DHMRs, we also found stable patterns of 5-hmC along a 

number of imprinted loci, including Igf2 and H19. Combined, our data indicate that 5-hmC may 

play an important regulatory role in imprinting control, and that establishment of DNA 

hydroxymethylation at imprinted loci may be sensitive to developmental BPA exposure. Future 

studies should examine the contribution of DNA hydroxymethylation to the methylome at 
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imprinted loci, as well as the impact of additional environmental exposures on this recently 

rediscovered epigenetic mark.  
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3.7 Figures and Tables 

 

Gene Full Name 
GenBank 
Number 

Strand Primers (5' to 3') Tm (°C) Amplicon Size 

Gapdh 
Glyceraldehyde 

3-phosphate 
dehydrogenase 

NM_008084.3 
FWD 

GCCTGCTTCACCACC
TTCTT 

59.96 
98 

RVS 
CATGGCCTTCCGTGT

TCCTA 
59.07 

Gnas 

GNAS (guanine 
nucleotide 

binding 
protein, alpha 
stimulating) 

complex locus 

NM_201618.2 

FWD 
CTGCCATCATCTTCG

TGGTG 
58.99 

193 

RVS 
GATTTGCCAGCGAG

GACTTT 
58.83 

Table 3-1: RT-qPCR primers for self-designed gene assays. Forward and reverse primer 

sequences for the Gapdh and Gnas RT-qPCR assays are listed, along with melting temperatures 

and amplicon size. All assays were designed using the online Genscript Real-time PCR Primer 

Design software (https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool). 

 
 
 
 
 
 
 

Δ5-hmC BPA-related 
DHMRs* 

Hyper-hydroxymethylated 1559 

Hypo-hydroxymethylated 4247 

Both 144 

Total 5950 

Table 3-2: Differential 5-hmC in mouse blood by BPA exposure. The csaw R package was 

used to examine the effect of BPA exposure (50 µg/kg diet) on 5-hmC content across the 

epigenome. Models included a paired mouse ID variable to account for within-individual effects, 

as well as a sex variable. Directionality of DHMRs (relative to control) is indicated in separate 

rows. *DHMR-calling significance threshold was set at FDR < 0.10. 

https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool
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Chr Start End Gene ID 
Gene 
Name 

Locatio
n 

Direction 
with BPA 
exposure 

csaw 
score 

FDR 

chr2 174315451 174315750 14683 Gnas intronic + 113.4 <0.001 

chr11 12004801 12005100 14783 Grb10 intronic + 70.5 <0.001 

chr10 13130651 13131050 22634 Plagl1 exonic + 60.7 <0.001 

chr6 30957751 30958050 619665 Klf14 exonic - 55.9 <0.001 

chr17 8746901 8747050 23984 Pde10a intronic + 50.1 <0.001 

chr17 12828001 12828550 104103 Airn intronic - 16.2 0.02 

chr13 24335001 24335150 12763 Cmah intronic - 13.1 0.05 

chr7 60207401 60207600 20646 Snrpn intronic - 13.0 0.05 

chr6 5079501 5079850 243725 Ppp1r9a intronic - 12.8 0.05 

chr7 143348051 143348350 16535 Kcnq1 intronic - 11.5 0.07 

chr10 13402051 13402250 215789 Phactr2 intronic - 11.3 0.07 

chr13 108963951 108964200 238871 Pde4d intronic + 10.1 0.10 

Table 3-3: Imprinted genetic loci with BPA-related DHMR. List of imprinted loci with annotated, significant (FDR<0.10) DHMRs 

generated from csaw modeling results. The first four columns show the chromosomal location and entrez gene ID for each annotated 

imprinted gene. A transformed FDR is used for the csaw score, such that score = -10*log10(FDR); higher score indicates a larger 

degree of significance (lower FDR value). Additionally, direction of effect by BPA exposure is shown, with a (+) indicating increased 

5-hmC with BPA exposure, and a (-) indicating decreased 5-hmC with BPA exposure. 
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Gene 
Name 

Location Chr Start End CpG Sites CHG Sites 

Gnas intronic chr2 174315451 174315750 0 21 
Grb10 intronic chr11 12004801 12005100 0 13 
Plagl1 exonic chr10 13130651 13131050 0 17 
Klf14 exonic chr6 30957751 30958050 23 11 
Pde10a intronic chr17 8746901 8747050 1 10 
Airn intronic chr17 12828001 12828550 4 25 
Cmah intronic chr13 24335001 24335150 0 3 
Snrpn intronic chr7 60207401 60207600 0 0 
Ppp1r9a intronic chr6 5079501 5079850 1 31 
Kcnq1 intronic chr7 143348051 143348350 5 13 

Phactr2 intronic chr10 13402051 13402250 1 1 

Pde4d intronic chr13 108963951 108964200 1 5 

Table 3-4: Number of CpG and CHG sites at imprinted gene DHMRs. The number of CpG 

and CHG sites contained within the twelve BPA-related imprinted gene DHMRs were quantified 

using the mm10 reference genome (https://www.ncbi.nlm.nih.gov/nuccore). The number of CpG 

sites varied by region, with five of the DHMRs showing zero CpG sites. This unexpected result 

may be the byproduct of several possible scenarios: 1. DNA hydroxymethylation at non-

canonical methylation contexts (i.e. CHG sites); 2. Inexact DHMR definitions due to inherent 

lack of specificity in pulldown method (HMeDIP-seq); 3. False positives in our data. CpG and 

CHG sites were counted from the exact chromosomal range that was defined as a BPA-related 

DHMR. 
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Hypo-hydroxymethylated BPA-related  DHMR  Pathways 

Pathway Type Description FDR Genes 

Gene Ontology 
Biological 
Process 

hippocampus 
development 

0.007896 

12568, 
12570, 
19280, 
22062, 
22416 

 
Gene Ontology 
Biological 
Process 

spinal cord association 
neuron differentiation 

0.013765 
18505, 
21349, 
22416 

  
  
 

  
 

Hyper-hydroxymethylated BPA-related DHMR Pathways 

Pathway Type Description FDR Gene IDs 

Gene Ontology 
Molecular 
Function 

L-ascorbic acid binding 0.006355 
18484, 
320452 

Gene Ontology 
Molecular 
Function 

oxidoreductase activity, 
acting on paired donors, 
with incorporation or 
reduction of molecular 
oxygen 

0.006355 

13105, 
18484, 

232174, 
320452, 
60527 

Gene Ontology 
Cellular 
Component 

nucleolar part 0.02366 
12578, 
68147 

Gene Ontology 
Biological 
Process 

positive regulation of 
establishment of protein 
localization to plasma 
membrane 

0.028313 
56212, 
76686 

Gene Ontology 
Molecular 
Function 

isoprenoid binding 0.041794 
225467, 
232174 

Table 3-5: Enriched BPA-related DHMR pathways. Pathway analysis for DHMRs was 

performed using the ChIP-enrich analysis tool (http://chip-enrich.med.umich.edu/). Within the 

ChIP-enrich tool, the gene set filter was set to 2000, peak threshold was set to 1, and adjustment 

for mappability of gene locus regions was set to false. The genome used for pathway analyses 

was mm10, and the ChIP-enrich method was used for enrichment testing. DHMRs were split into 

hypo- and hyper-methylated regions prior to separate analyses. Only regions <5kb from TSS 

were included in ChIP-enrich analysis. All pathway analyses included GO terms and KEGG 

pathways. After correcting for multiple testing, only pathways with FDR<0.05 were considered 

significant. Significant pathways for hypo- and hyper-methylated DHMRs are listed in separate 

tables; there was no overlap between significant pathways for these separate analyses. None of 

the significant pathways included any imprinted genes. 
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Figure 3-1: Exposure paradigm and blood collection time points to measure longitudinal 5-

hmC patterns. Two weeks prior to mate-pairing with Avy/a males, six week old wild type a/a 

dams were placed on one of two experimental diet groups: (1) Control (modified AIN-93G), (2) 

Control + 50 µg BPA/kg diet. Exposure continued through pregnancy and lactation, ending for 

offspring at PND21. Matched blood samples were collected from wildtype a/a offspring at 2 

months, 4 months, and 10 months of age. 
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Figure 3-2: Sequencing data collection and analysis workflow. Genomic DNA was isolated 

from matched wild type a/a offspring blood samples at 2 months, 4 months, and 10 months of 

age. DNA was isolated from a subset of control (n=6 per age group) and BPA-exposed (n=6 per 

age group) mice, then processed in preparation for HMeDIP-seq. All processed samples were 

amplified and sequenced on an Illumina HiSeq 4000 sequencer using single-end, 50 nt reads. 

BPA-related differentially hydroxymethylated regions (DHMRs) were identified and annotated 

using a bioinformatics pipeline. Annotated DHMRs were then visualized in the genome browser. 

One target gene region – Gnas – was then validated using RT-qPCR on available RNA from the 

blood samples. 



 104 

 

Figure 3-3: Differential imprinted gene 5-hmC peaks by BPA exposure. 5-hmC coverage was visualized at six imprinted loci with 

significant BPA-related DHMRs. 5-hmC peaks are shown for matched 2 month, 4 month, and 10 month blood samples, as indicated 

by y-axis labels. Blue and red peaks represent forward and reverse strand 5-hmC enrichment, respectively. All six DHMRs showed 

stable, longitudinal changes in 5-hmC peaks based on perinatal BPA exposure (50 µg/kg diet). A) Gnas showed BPA-related 

enrichment of 5-hmC in an intronic region. B) Grb10 also showed BPA-related enrichment of 5-hmC in an intronic region. C) Plagl1 

showed BPA-related enrichment of 5-hmC in an exonic region. D) Klf14 showed BPA-related depletion of 5-hmC in an exonic region. 

E) Pde10a showed subtle BPA-related enrichment of 5-hmC in an intronic region. F) Snrpn showed subtle BPA-related depletion of 

5-hmC in an intronic region. The degree of 5-hmC enrichment or depletion by perinatal BPA exposure varied by imprinted locus, 

indicating that BPA has a variable effect on 5-hmC establishment at imprinted genes during development. 
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Figure 3-4: Additional differential imprinted gene 5-hmC peaks by BPA exposure. 5-hmC 

coverage was visualized at an additional six imprinted loci with significant BPA-related 

DHMRs. These six DHMRs also showed stable, longitudinal changes in 5-hmC peaks based on 

perinatal BPA exposure (50 µg/kg diet). A) Airn showed BPA-related depletion of 5-hmC across 

an intronic region. B) Cmah showed BPA-related depletion of 5-hmC in an intronic region. C) 

Ppp1r9a showed BPA-related depletion of 5-hmC in an intronic region. D) Kcnq1 showed subtle 

BPA-related depletion of 5-hmC in an intronic region. E) Phactr2 showed BPA-related depletion 

of 5-hmC in an intronic region. F) Pde4d showed BPA-related enrichment of 5-hmC in an 

intronic region. The degree of 5-hmC enrichment or depletion by perinatal BPA exposure varied 

by imprinted locus. 
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Figure 3-5: 5-hmC peaks at the Igf2/H19 imprinted loci. Based on results at the Plagl1 locus, which is a regulator of Igf2 and H19, 

longitudinal 5-hmC patterns across the Igf2 and H19 imprinted genes were also visualized. 5-hmC peaks at both loci appear stable 

across individuals and adulthood stage in longitudinal mouse blood (2, 4, and 10 months old). Regions of non-significant BPA-related 

differential 5-hmC are indicated in red boxes for both genes. Specifically, Igf2 shows BPA-related hypo-hydroxymethylation, and H19 

shows BPA-related hyper-hysdroxymethylation. Despite not being detected as significant DHMRs in csaw, these BPA-related changes 

in 5-hmC were stable at all three measured time points.
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Figure 3-6: Genomic context of Gnas and Plagl1 DHMRs. The DHMRs annotated to the Gnas and Plagl1 genes were visualized in 

the context of their respective imprinted genes using the csaw and Gviz R packages. 5-hmC peaks across the complete Gnas and 

Plagl1 imprinted loci are presented, showing distinct 5-hmC peaks along the length of both genes. 5-hmC peaks are shown for 

matched 2 month, 4 month, and 10 month blood samples, as indicated by y-axis labels. Black boxes indicate significant DHMRs that 

were identified using csaw differential hydroxymethylation models. Blue and red peaks represent forward and reverse strand 5-hmC 

enrichment, respectively. Green boxes below UCSC gene tracks represent CpG islands. 
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Figure 3-7: Gnas expression by BPA exposure and age. Based on BPA-related DHMR 

annotated to the Gnas gene, RT-qPCR was used to investigate longitudinal blood Gnas mRNA 

expression levels. Three housekeeping genes – Actb, 18S, and Gapdh – were included as internal 

controls in all RT-qPCR runs. In addition to housekeeping genes, an inter-plate calibrator control 

of brain cDNA was included for calculation of relative gene expression across multiple plates; all 

expression values are shown relative to this inter-plate calibrator. Expression levels were 

calculated following the 2
−ΔΔCt

 method. 
a
Mean Gnas expression in BPA-exposed mouse blood 

showed a significant increase between 2 and 10 months of age (p=0.05); this pattern was not 

found in control samples. 
b
Mean Gnas expression was significantly lower in control blood than 

BPA-exposed blood at 10 months of age (p=0.01). 
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Figure 3-8: Organization of the Gnas, Grb10, Plagl1, Klf14, Pde10a, and Snrpn imprinted loci. The thick black mid-line 

represents the gene sequence. Maternally expressed exons are indicated by black boxes, and paternally expressed exons are indicated 

by grey boxes. Exon locations for each gene are relative, but not to scale. Exon 1 of the Gnas gene is both maternally and paternally 

expressed, and is therefore indicated by a white box. Arrows show directionality and start sites for transcription. Parental origin-

specific expression patterns are represented by location of arrow above or below middle line, and context-specific expression is 

indicated by dotted arrows. Filled and empty circles represent methylated or unmethylated alleles, respectively. Imprinting control 

regions (ICRs) are indicated by dotted line boxes, and BPA-related DHMRs are indicated by boxes bordered by dotted vertical lines. 

None of the identified BPA-related DHMRs are located in known imprinting control regions. 
1
Adapted from (Tibbit et al. 2015).

 

2
Adapted from (Hikichi et al. 2003).

 3
(Iglesias-Platas et al. 2012; Smith et al. 2002).

 4
Adapted from (Parker-Katiraee et al. 2007).

 

5
(Wang et al. 2011).

 6
(Sanli and Feil 2015; Shemer et al. 1997). 
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Chapter 4  

Age-related Epigenome-wide DNA Methylation and Hydroxymethylation in 

Longitudinal Mouse Blood 
 
 

Abstract 

DNA methylation status at cytosine-phosphate-guanine (CpG) dinucleotides changes as a 

function of age in humans and animal models, a process that may contribute to chronic disease 

development. Recent studies have begun to investigate the role of an oxidized form of DNA 

methylation – 5-hydroxymethylcyotisine (5-hmC) – in the epigenome, but its role in age-related 

DNA methylation remains unclear. We tested the hypothesis that 5-hmC changes with age, but in 

a direction opposite to 5-methylctosine (5-mC), thereby playing a distinct role in epigenetic 

aging. To characterize whether epigenetic aging is driven by changes in 5-mC or 5-hmC, DNA 

modifications were measured in longitudinal blood samples (2, 4, and 10 months of age) from 

isogenic mice. Genome-wide 5-mC and 5-hmC levels were measured using two sequencing 

methods – enhanced reduced representation bisulfite sequencing (ERRBS) and 

hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq). Examining the 

epigenome by age, we identified 38,300 unique differentially methylated CpGs (DMCs) and 

8,613 differentially hydroxymethylated regions (DHMRs). Comparing age-related DMCs and 

DHMRs, 1,854 annotated genes showed both differential 5-mC and 5-hmC, including one gene – 

Nfic – at five CpGs in the exact same chromosomal region. At this shared region, 5-mC and 5-

hmC levels both decreased with age. Reflecting these age-related epigenetic changes, Nfic RNA 

expression in blood decreased with age, suggesting that age-related regulation of this gene may 

be driven by 5-hmC, not canonical DNA methylation. Combined, our genome-wide results show 

age-related differential 5-mC and 5-hmC, as well as some indication that changes in 5-hmC may 

drive age-related DNA methylation and gene expression. 
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4.1 Introduction 

Epigenetics refers to the study of heritable and potentially reversible changes in gene 

expression unrelated to the DNA sequence. Epigenetic marks include alterations to DNA itself 

(e.g. DNA methylation), chromatin modifications (e.g. histone tail trimethylation), and non-

coding RNAs (Bernal and Jirtle 2010; Egger et al. 2004). DNA methylation, which is the focus 

of this study, is typically defined as the addition of a methyl group to the 5’-carbon of cytosine in 

a Cytosine-phosphate-Guanine (CpG) dinucleotide; in simpler terms, it is termed 5-

methylctyosine (5-mC). Previous work has shown that increased promoter DNA methylation is 

associated with decreased transcription factor binding and decreased gene transcription 

(Medvedeva et al. 2014). During development, the methylome undergoes discrete waves of 

demethylation and de novo methylation (Reik et al. 2001; Smallwood and Kelsey 2012), 

processes that help regulate both somatic cell differentiation and primordial germ cell 

proliferation (Messerschmidt et al. 2014). 

Despite their establishment during development and maintenance through cellular 

replication, DNA methylation levels demonstrate clear changes with age. Predictable, 

unidirectional changes in DNA methylation that occur with age are referred to as “age-related 

methylation” (Jung and Pfeifer 2015; Kochmanski et al. 2017). Separate from these predictable 

changes, there are also stochastic, bidirectional alterations in epigenetic variability that occur 

with age; these are referred to as “epigenetic drift” (Jones et al. 2015; Kochmanski et al. 2017). 

Combined, these two processes represent “epigenetic aging,” a phenotype of age-associated 

changes in the epigenome. These age-related changes in DNA methylation have important 

implications for transcriptional control and protein expression throughout life, and may underlie 

later-life disease development. 
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Separate from 5-mC, recent studies have begun to investigate the role of an oxidized 

form of DNA methylation – 5-hydroxymethylcyotisine (5-hmC) – in the epigenome. 

Hydroxylation of 5-mC to 5-hmC occurs via the Ten-eleven translocation (TET) dioxygenase 

enzymes, and 5-hmC is an intermediate on the active demethylation pathway (Shen et al. 2014). 

Beyond its role in demethylation, however, recent evidence suggests that 5-hmC is a secondary 

epigenetic mark that has a complex role as a regulator of transcription (Hahn et al. 2014; Wu et 

al. 2011). Previous studies have shown that 5-hmC is specifically recognized by DNA-binding 

proteins (Mellén et al. 2012; Spruijt et al. 2013), and that 5-hmC enrichment varies by tissue and 

genic region in mouse and human tissues (Globisch et al. 2010; Hernandez Mora et al. 2017; 

Nestor et al. 2012; Wen et al. 2014). Despite the increased interest in 5-hmC as an epigenetic 

mark, traditional bisulfite treatment sequencing methods do not distinguish between 5-mC and 5-

hmC (Huang et al. 2010), so it remains unclear whether 5-hmC contributes to epigenetic aging. 

Here, we tested the hypothesis that 5-hmC would change with age, but in a direction opposite to 

5-mC, thereby playing a distinct role in the aging epigenome. 

4.2 Results 

ERRBS – epigenome-wide differential 5-mC+5-hmC 

Enhanced reduced representation bisulfite sequencing (ERRBS) is a bisulfite treatment-

based sequencing method that measures epigenome-wide 5-mC and 5-hmC at the same time. 

Despite this, to remain consistent with previous studies, we refer to all ERRBS data using the 

catch-all terms “methylation” or “5-mC.” Using the DSS R package, multifactorial models were 

used to test for differential methylation by age in matched ERRBS data from blood samples 

collected at three time points – 2 months old (n=6), 4 months old (n=6), and 10 months old (n=6) 

(Figure 4-1). In total, we identified 20 differentially methylated regions (DMRs) and 28196 
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differentially methylated CpGs (DMCs) by age (Table 4-1). Comparing the directionality of 

DMRs by age, we found slightly more hypomethylated DMRs (n=11; 55.0%) than 

hypermethylated DMRs (n=9; 45.0%). Conversely, we found more hypermethylated DMCs 

(n=17460; 61.9%) than hypomethylated DMCs (n=10736; 38.1%) by age (Table 4-1). Using the 

annotatr R package, all DMRs and DMCs were annotated to the mm10 genome. Comparing to a 

random distribution generated from the ERRBS libraries, age-related DMCs showed variable 

patterns of enrichment and depletion depending on the genomic annotation. Of note, age-related 

DMCs were enriched at promoters, CpG islands, CpG shores, CpG shelves, promoters, 5’ UTRs, 

and exons, but were depleted at interCGI regions. (Figure 4-2).  

HMeDIP-Seq – epigenome-wide differential 5-hmC 

Unlike ERRBS, HMeDIP-seq is an immunoprecipitation-based method that measures 

only 5-hmC; therefore, we refer to HMeDIP-seq data as “hydroxymethylation” or “5-hmC.” For 

the HMeDIP-seq data, multivariate models were constructed in the csaw R package to test for 

differential 5-hmC by age. Based on the csaw models, we identified 8613 DHMRs by age (Table 

4-1). Comparing the directionality of DHMRs by age, almost all DHMRs were hypo-

hydroxymethylated (n=8446; 98.1%) compared to hyper-hydroxymethylated (n=160; 1.9%). We 

also identified a small fraction of age-related DHMRs that showed both hypo- and hyper-

hydroxymethylation (n=7; 0.001%). Using the annotatr R package, age-related DHMRs were 

annotated to the mm10 genome. Comparing to a random distribution, age-related DHMRs 

showed moderate enrichment at CpG shores, CpG shelves, promoters, 3’-UTRs, 5’-UTRs, 

exons, and introns, as well as mild depletion at interCGI regions and CpG islands (Figure 4-2). 

On a broad scale, our data showed decreased epigenome-wide 5-hmC with age. 
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Comparison of epigenome-wide differential 5-mC and 5-hmC 

 Due to inherent bias in the ERRBS method, the measured 5-mC levels have incomplete 

coverage across the genome, making direct comparison to the genome-wide HMeDIP-seq data 

imperfect. Despite this limitation, we used the bedtools intersect function to directly compare 

annotated DMRs/DMCs and DHMRs by chromosomal location across the epigenome. For age-

related DMCs and DHMRs, we found 65 CpGs that intersected by chromosomal location 

(Figure 4-3). However, when comparing age-related DMRs and DHMRs, we found zero regions 

matched by chromosomal location. For the age-related DMC and DHMR overlap sites, there 

were 40 unique annotated gene IDs. Of these 40 genes, three had multiple DMCs that overlapped 

a DHMR – Fbln1, Ldlrad3I, and Nfic. At the Nfic locus, we identified five age-related DMCs 

overlapping a single DHMR. These five sites are located in a CpG shelf 2588-2639 bp upstream 

of the Nfic gene (Figure 4-4).  

 Building on our previous research in mouse tail and blood samples from this colony 

(Kochmanski et al. 2016, 2018), we checked for age-related DMRs, DHMRs, and DMCs 

annotated to the Esr1 gene. While we did not find any age-related DHMRs or DMRs annotated 

to the Esr1 gene, it did have seven annotated age-related DMCs (Table 4-2). Examining the age-

related Esr1 DMCs, four of the sites had increased methylation with age, including two CpGs 

annotated to the promoter region. The other three age-related Esr1 DMCs -- one exonic and two 

intronic – showed decreased methylation with age. Given the large number of DMCs annotated 

to Esr1, we interrogated the HMeDIP-seq data at the Esr1 gene, pulling out a large region that 

contained all annotated DMCs. On this broad scale, we did not see any obvious differences in 5-

hmC by age, but we did find stable 5-hmC peaks across the Esr1 genic region (Figure 4-5). This 

suggests that 5-hmC levels at the Esr1 locus are stable during adulthood in mouse blood. 
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RT-qPCR expression data 

 To further investigate the functional effects of age-related epigenetic results at the Nfic 

and Esr1 genes, we performed RT-qPCR using RNA from the same matched mouse blood 

samples (primers available in Table 4-3). We found a significant decrease in Nfic expression 

between 2 and 10 months of age in blood samples (p=0.04), but no significant change in Esr1 

expression with age (Figure 4-6). The significant decrease in Nfic expression with age echoes 

the observed age-related decrease in 5-hmC upstream of the Nfic gene. Conversely, the lack of 

an observed difference in Esr1 expression with age is consistent with the stable 5-hmC levels at 

Esr1 across adulthood. 

Pathway analysis 

ChIP-enrich pathway analysis was performed on separate lists of hyper- and hypo-

methylated age-related DMCs and DHMRs. DMC and DHMR datasets were both restricted to 

sites and regions <5kb from the transcription start site. Due to the large number of significant 

CpGs, DMC datasets were further limited to sites annotated to a gene promoter. After correction 

for multiple testing, a number of molecular function and biological process GO terms were 

enriched in hypo- and hyper-methylated age-related DMCs and DHMRs. Of note, enriched 

pathways showed very little overlap between hypo- and hypermethylated sites or regions, 

showing specific enrichment based on directionality of differential methylation or 

hydroxymethylation. DHMR pathways were particularly discordant, showing no overlap 

between hyper- and hypo-methylated regions for age-related DHMRs. The hypo-

hydroxymethylated DHMRs showed enrichment for T cell activation pathways, while hyper-

hydroxymethylated DHMRs showed enrichment for B cell activation pathways. Unlike the 

discordance found in the DHMRs, there was some overlap in enriched pathways between hyper- 
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and hypo-methylated DMCs. Specifically, for the age-related DMCs, both hyper- and hypo-

methylated sites showed enrichment for development of primary sexual characteristics.  

4.3 Discussion 

The results from this study indicate that both 5-mC and 5-hmC are dynamic with age in 

mouse blood. We identified statistically significant age-related DNA methylation and 

hydroxymethylation on an epigenome-wide scale, indicating that both epigenetic marks are 

altered during murine aging. To our knowledge, this is the first study to examine age-related 5-

hmC levels in a longitudinal model. Given the lack of available research on this topic, the 

biological effects of age-related changes in DNA hydroxymethylation remain poorly 

characterized. However, we found moderate enrichment of age-related DHMRs at CpG shores, 

CpG shelves, promoters, 5’-UTRs, exons, introns, and 3’-UTRs compared to a random 

distribution (Figure 4-2). While this enrichment of DHMRs at specific genomic locations was 

subtle, DHMRs also showed a clear bias toward hypo-hydroxymethylation with age (Table 4-1), 

a pattern supported by human studies showing decreased 5-hmC levels in blood with age 

(Truong et al. 2015; Xiong et al. 2015). Combined, these data suggest that age-related changes in 

5-hmC are non-random, and that DNA hydroxymethylation could play an important role in the 

aging process. Future studies should examine whether longitudinal 5-hmC levels can be used to 

accurately predict biological age, as has been shown in DNA methylation (Horvath 2013).  

Contrary to our original hypothesis, there was little overlap between sites or regions of 

age-related methylation and regions of age-related hydroxymethylation. It’s possible that this 

lack of overlap reflects differences in the effects of aging on 5-hmC and 5-mC, with age-related 

changes in these separate epigenetic marks occurring at disparate genomic regions. This idea is 

supported by recent evidence showing that 5-hmC is a stable epigenetic mark with its own 
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distinct genomic distribution (Hahn et al. 2014; López et al. 2017; Stroud et al. 2011). 

Alternatively, this lack of overlap could be due to the limited genomic coverage of the ERRBS 

method; a more complete comparison of 5-mC and 5-hmC could be achieved using whole-

genome bisulfite sequencing. Using the available data, only 65 age-related DMCs overlapped the 

annotated DHMRs by chromosomal location. After annotating these 65 CpG sites to the mm10 

genome, we identified one gene – Nfic – with five age-related DMCs overlapping a single 

DHMR. These five sites are 2588-2639 bp upstream of the Nfic gene, a locus that encodes the 

nuclear factor I-C (NFI-C) protein (Figure 4-4). NFI-C is a member of the nuclear factor I (NFI) 

transcription factors, a class of proteins involved in stem cell differentiation and maintenance 

during development and adulthood, respectively (Harris et al. 2015). While NFI proteins are 

expressed in most adult tissues (Chaudhry et al. 1997; Gronostajski 2000), the limited available 

research on NFI-C shows that it plays an important role in hepatocyte proliferation during liver 

regeneration (Edelmann et al. 2015) and odontoblast and osteoblast differentiation (Lee et al. 

2014; Roh and Park 2017). As a result, age-related changes in Nfic regulation could have 

important consequences on tissue maintenance with age. This idea is supported by the fact that 

Nfic
-/-

 mice exhibit an age-related osteoporosis-like phenotype (Lee et al. 2014). In our 

longitudinal data, we found simultaneous age-related decreases in combined 5-mC+5-hmC levels 

(ERRBS) and 5-hmC peaks (HMeDIP-seq) upstream of the Nfic gene. This overlap suggests that 

age-related decreases in DNA methylation at this region may be at least partially driven by 

decreases in 5-hmC levels. Given that 5-hmC has shown localization to enhancers and positive 

associations with gene expression (Ehrlich and Ehrlich 2014; Greco et al. 2016; Sérandour et al. 

2012; Wen et al. 2014), we predicted that Nfic expression would decrease with age in 

concordance with 5-hmC levels. Matching our expectation, Nfic expression decreased with age 
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in blood (Figure 4-6), supporting the idea that 5-hmC, not 5-mC, may be driving age-related 

changes in the methylome upstream of the Nfic gene. This result, while only from a single gene, 

highlights the importance of considering 5-hmC when examining age-related methylation 

patterns. Without measuring 5-hmC, the documented age-related decreases in 5-mC and Nfic 

expression would have been difficult to reconcile with the classic view that DNA methylation is 

a repressive epigenetic mark. As a result, it is important for future studies investigating 

epigenetic aging to consider the contribution of DNA hydroxymethylation. 

In a previous study, we found age-related DNA methylation changes at the Esr1 gene 

promoter (chr10:4712147-4712203) in matched mouse tail and blood tissues (Kochmanski et al. 

2016, 2018). To follow up on these results, we interrogated our sequencing data for age-related 

DMCs annotated to the Esr1 locus. In total, we found seven age-related DMCs annotated to 

Esr1; four of these sites had increased methylation with age, including two CpGs in the promoter 

region (Table 4-2). This result matches our prior results, which showed increased promoter Esr1 

methylation with age in murine tail and blood (Kochmanski et al. 2016, 2018). Upon locating the 

seven DMCs annotated to Esr1, we also examined the HMeDIP-seq data at the Esr1 gene, 

visualizing a region containing all of the annotated Esr1 DMCs. We did not find any significant 

differences in Esr1 5-hmC by age; instead, there were a number of 5-hmC peaks along the Esr1 

gene body that were stable across individuals and time (Figure 4-5). This suggests that 5-hmC 

content at the Esr1 locus is tightly regulated, and may not contribute to the documented age-

related methylation patterns at this locus. 

Enriched age-related GO terms were discordant between hypo- and hypermethylated sites 

and regions, showing specific enrichment based on directionality of differential methylation or 

hydroxymethylation. This suggests that age is associated with up- or down-regulation of various 
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biological processes. In the age-related DHMRs, hypo-hydroxymethylated regions showed 

enrichment for T cell activation pathways and hyper-hydroxymethylated regions showed 

enrichment for B cell activation pathways. Reports have shown age-related changes in T cell and 

B cell function and generation (Cancro et al. 2009; Moro-García et al. 2013), so these differences 

in enriched pathways may reflect distinct epigenetic changes that occur in T cell and B cell 

populations with age. Related to this idea, it is possible that many of the age-related enriched 

pathways are actually a result of shifting blood cell populations, not defined changes in 

biological regulation. This possibility should be further investigated in additional longitudinal 

studies of the mouse and/or human blood epigenome. 

DNA methylation and hydroxymethylation levels vary by tissue (Globisch et al. 2010; 

Lokk et al. 2014; Maegawa et al. 2010), so it remains to be seen whether the documented 

epigenetic aging in blood would be consistent in other murine tissues – e.g. liver, kidney, brain. 

Despite this uncertainty, blood samples have some distinct advantages over other murine target 

tissues. First, we were able to collect blood samples from the same mice over time, allowing for 

direct measurement of intra-individual age-related methylation during adulthood. Second, the use 

of tail vein puncture at 2 and 4 months of age meant that blood collection was minimally 

invasive and did not disrupt mouse health. Third, the use of blood allows for greater 

translatability to human epigenetics studies, which often use peripheral blood samples collected 

in the field or clinic. For these reasons, we chose to use blood samples as our tissue of interest; 

however, future studies should examine whether our results carry over to other target tissues. 

As stated previously, the number of significant age-related DMRs identified in the 

ERRBS data was relatively small compared to the number of age -related DMCs. This result is 

likely the byproduct of two combined factors – inherent limitations of the ERRBS method and 
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our variable of interest (aging). ERRBS is not a whole-genome sequencing method, rather 

relying on MspI (C^CGG) restriction enzyme digestion to enrich for GC-rich regions prior to 

amplification and sequencing (Garrett-Bakelman et al. 2015). CpG-dense regions are often found 

in regulatory regions (e.g. promoters), and may be under tight biological control, limiting 5-mC 

variability. Additionally, these well-regulated regions may not be sensitive to a variable like age, 

which shows lower magnitude epigenetic effects than distinct disease states like cancer. 

Supporting this idea, previous literature shows that age-related methylation occurs at high rates 

in repetitive elements and intragenic regions (Zampieri et al. 2015), genetic locations that are not 

well covered by ERRBS. The genomic bias inherent in ERRBS data may also partially explain 

the low number of overlapping DMCs and DHMRs in our data. Specifically, we noted a number 

of DHMRs that did not have coverage in ERRBS data, a constraint that weakened our 

comparative analyses. 

In addition to coverage inconsistencies, data from the two sequencing methods were also 

analyzed using different statistical methods. For the ERRBS data, an analysis pipeline was 

created based on the DSS R package, which uses a Bayesian hierarchical model to estimate and 

shrink gene- or CpG site-specific dispersions, then detects differential expression/methylation 

using a Wald statistical test. This is appropriate for the ERRBS data, which provides read 

coverage for discrete CpG sites. Meanwhile, for the HMeDIP-seq data, we used the csaw R 

package, which uses sliding windows to identify differences in binding patterns for 5-

hydroxymethylcytosine across the genome. This is appropriate for the HMeDIP-seq data 

structure because it provides read coverage across regions. While these analysis methods are 

appropriate for their respective sequencing data types, their differences in resolutions and 

statistical methods make it difficult to directly compare called DMRs/DMCs and DHMRs. To 
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avoid these limitations, future studies could use similar methods – e.g. whole genome bisulfite 

sequencing (WGBS) and oxidative bisulfite sequencing (oxBS-seq) – to measure epigenome-

wide site-specific 5-mC and 5-hmC. While expensive, WGBS provides genomic coverage far 

greater than ERRBS (Ziller et al. 2014), and simultaneous oxBS-seq sequencing would allow for 

a direct comparison of 5-mC and 5-hmC at the base pair level (Booth et al. 2013). In this way, it 

would be possible to probe for additional genomic regions where epigenetic aging is driven by 

changes in 5-hmC. 

4.4 Conclusion 

We measured DNA methylation and hydroxymethylation in matched blood samples 

collected from isogenic mice at 2, 4, and 10 months of age, then examined the effects of age on 

the longitudinal methylome. The use of matched blood allows for greater translatability to 

bioavailable specimens in human populations. On an epigenome-wide scale, we identified a 

number of age-related DMCs, DMRs, and DHMRs, suggesting that age alters both 5-mC and 5-

hmC levels throughout the murine life course. Examining the age-related DMCs and DHMRs, 

we found a small number of DMC/DHMR overlap regions, including one upstream of the Nfic 

gene. At this region, both 5-mC and 5-hmC decreased with age, patterns that were reflected in 

decreased Nfic mRNA expression. This result suggests that age-related methylation patterns at 

some genes can be at least partially driven by changes in DNA hydroxymethylation, an 

important consideration for future epigenetic aging studies.  

4.5 Materials and Methods 

Study animals and blood collection 

Mice included in longitudinal analyses (n=6) were a/a offspring sourced from a 

genetically invariant A
vy

/a mouse colony maintained by sibling mating and forced heterozygosity 
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for more than 220 generations (Waterland and Jirtle 2003). Within this colony, the A
vy

 allele is 

passed through the heterozygous male line, which has a genetically constant background 93% 

identical to C57BL/6J strain (Waterland and Jirtle 2003; Weinhouse et al. 2014). At 2 months 

and 4 months of age, tail vein blood samples were collected from all mice (Figure 4-1). At 10 

months of age, mice were sacrificed, and blood samples were collected using cardiac puncture. 

All animals were stored in polycarbonate-free cages with ad libitum access to food and drinking 

water, and were maintained in accordance with Institute for Laboratory Animal Research (ILAR) 

guidelines (National Research Council (US) Committee for the Update of the Guide for the Care 

and Use of Laboratory Animals 2011). Mice were fed a modified AIN-93G standard chow with 

7% corn oil substituted for 7% soybean oil (Harlan Teklad). The study protocol was approved by 

the University of Michigan Committee on Use and Care of Animals (UCUCA).  

DNA and RNA isolation 

Genomic DNA and RNA were isolated from matched 2 month (n=6), 4 month (n=6), and 

10 month (n=6) frozen blood using the Qiagen Allprep DNA/RNA/miRNA Universal Kit 

(Qiagen, Cat. #80224). All isolates were stored at -80°C.  

Next-generation sequencing of 5-mC and 5-hmC 

Epigenome-wide DNA hydroxymethylation and methylation levels were quantified in 

blood from mouse blood using two sequencing methods -- hydroxymethylated DNA 

immunoprecipitation sequencing (HMeDIP-seq) and enhanced reduced representation bisulfite 

sequencing (ERRBS) (Garrett-Bakelman et al. 2015; Tan et al. 2013). Standard bisulfite 

sequencing methods, including ERRBS, do not distinguish between 5-mC and 5-hmC, so 

HMeDIP-seq data was generated in parallel to ERRBS to specifically measure epigenome-wide 

5-hmC. Sequencing data were generated for a subset of colony mice (n=6) with longitudinal 
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blood collection (Figure 4-1). Blood samples from the six mice (3 male, 3 female) were 

sequenced at three time points across the life-course (2, 4, and 10 months of age), giving a total 

sequencing data sample size of 18 samples for each method. The six mice included in 

longitudinal analyses were selected from different litters to minimize potential batch effects.  

ERRBS was performed at the University of Michigan Epigenomics Core as described 

(Akalin et al. 2012; Garrett-Bakelman et al. 2015). Briefly, 75 ng of genomic DNA was digested 

using MspI, a restriction enzyme that preferentially cuts CG-rich sites. The digested DNA was 

then purified using phenol:chloroform extraction and ethanol precipitation in the presence of 

glycogen, before blunt-ending and phosphorylation. A single adenine nucleotide was next added 

to the 3’end of the fragments in preparation for ligation of adapter duplex with a thymine 

overhang. The ligated fragments were cleaned, and processed for size selection on agarose gel. 

Selected fragments were treated with sodium bisulfite to convert unmethylated cytosines to 

uracils, which are then replaced with thymines during PCR amplification. After cleanup with 

AMPure XP beads (Beckman Coulter, Prod.# A63880), libraries were quantified using the 

Agilent TapeStation genomic DNA kit (Agilent, Cat. #G2991AA) and Qubit broad range dsDNA 

(Invitrogen, Cat. #Q32850). Single-end, 50 base pair reads were obtained for each library by 

sequencing on the HiSeq 4000 system (Illumina). ERRBS samples were multiplexed, with three 

samples per sequencing lane. 

For HMeDIP-seq, a total of 1μg of genomic DNA (gDNA) was sheared by adaptive 

focused acoustics, using the Covaris S220 (Covaris, Cat. #4465653). This sheared DNA was 

next blunt-ended and phosphorylated. A single adenine nucleotide was then added to the 3’end 

of the fragments in preparation for ligation of adapter duplex with a thymine overhang. The 

ligated fragments were cleaned using Qiagen’s MinElute PCR purification columns (Qiagen, 
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Cat. #28004). DNA standards for HMeDIP (Diagenode 5-hmC, 5-mC & cytosine DNA standard 

pack for HMeDIP, Cat. #AF-107-0040) were added to each sample before denaturation. 

Resuspension was then performed in ice-cold immunoprecipitation buffer (10 mM Sodium 

Phosphate pH 7.0, 140 mM NaCl, 0.05% Triton X-100). A 10% volume (input) was retrieved 

before 2ug of a 5hmC-specific antibody (Active Motif, Cat # 39791) was added for 

immunoprecipitation overnight at 4°C with rotation. Dynabeads Protein-G (Invitrogen, Cat. 

#10003D) was used to pull-down of 5hmC-enriched fragments. The 5hmC-enriched DNA 

fragments (IP) were then released from the antibody by digestion with Proteinase K (Ambion, 

Cat. #AM2548). After cleanup with AMPure XP beads (Beckman Coulter, Prod.# A63880), the 

percent input enrichment (%input) in the IP was evaluated by qPCR, using primers for spike-ins. 

Samples with high % input for the 5-hmC spike-in – typical inclusion threshold was >80% – 

were then PCR amplified for the final library production, cleaned using AMPure XP beads, and 

quantified using the Qubit assay (Invitrogen, Cat. #Q32850) and TapeStation High Sensitivity 

D1000 kit (Agilent, Cat. #G2991AA). Single-end, 50 base pair reads were obtained for each 

library by sequencing on the HiSeq 4000 system (Illumina). Each HMeDIP-seq sample was run 

on a single sequencing lane. 

Bioinformatics pipeline for differential 5-mC and 5-hmC 

Sequencing results for all three ages were compared using a number of bioinformatics 

tools (Figure 4-1). The mint pipeline was used for data quality control (FastQC and MultiQC), 

adapter trimming (trim_galore), and alignment (bismark and bowtie2) (Cavalcante et al. 2017). 

For quality and adapter trimming, we required a minimum overlap of 6bp and minimum quality 

score of 20 in conjunction with special ERRBS trimming of 2bp from the 3’ end. For bismark 
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methylation extractor, the minimum threshold to consider a CpG site in analysis was 5 reads. 

Default parameters were used for bowtie2.  

The DSS R package was used to test for differential 5-mC in ERRBS data by age (Feng et 

al. 2014; Park and Wu 2016; Wu et al. 2013, 2015). Within the DSS package, the 

DMLfit.multiFactor function was used to test for differential methylation by age using a 

multifactorial modeling approach, with matched mouse ID and sex included as covariates. As 

such, modeling was performed according to the following formula: ~age + mouseID + sex. The 

DMLtest.multiFactor function was used to test the null hypothesis that the age coefficient was 

equal to 0. Differentially methylated CpG sites (DMCs) were then sorted and filtered according 

to a false discovery rate (FDR) cutoff < 0.05. The callDMR function in DSS was for DMR 

calling. DMRs were called at a p-value < 0.05 and absolute methylation difference ≥ 5%. 

The csaw package was used to test for differential 5-hmC by age (Lun and Smyth 2016). 

Aligned HMeDIP-seq data were read into R using the windowCounts function in csaw. When 

reading in the data, extension was set to 52, window width was set to 100, and sex chromosomes 

were removed. Next, the data were filtered twice – by count (average count >5) and by local 

enrichment using the filterWindows function (type= “local”) – to remove regions of negligible 

binding. After filtering, normalization factors were calculated for each sample using the 

normOffsets function on binned data (width=10000). Normalization factors were linked to 

filtered data using the asDGEList function, and then the estimateDisp function was used to 

generate dispersion factors based on a multifactorial design matrix identical to that used for 

ERRBS data. The glmQLFit function was used to fit a model for differential 5hmC binding by 

age; an empirical Bayesian method used to stabilize the QL dispersion estimates. A contrast 

statement was used to extract modeling results for the age variable. To correct for multiple 
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testing, filtered data were clustered using a window length of 500 bp; the combineTests function 

was then used to compute a combined p-value for each cluster. The Benjamini-Hochberg method 

was then used to control the FDR in all clusters (Benjamini and Hochberg 1995, 1997). DHMRs 

were called using an FDR < 0.10.  

After testing for differential 5-mC and 5-hmC, the annotatr R package was used to 

annotate all DMCs, DMRs, and DHMRs to the mm10 genome (Cavalcante and Sartor 2017). 

The annotate_regions function was used to generate annotations, including gene IDs and 

genomic context (e.g. intron, exon, promoter, etc.). Within annotatr, the randomize_regions 

function was used to create a secondary, random distribution of annotated sites or regions from 

the complete ERRBS or HMeDIP-seq data, respectively. Distributions of DMCs and DHMRs by 

genomic annotation were plotted against the random distribution using the plot_categorical and 

plot_annotation functions, respectively. Lists of chromosomal locations were compared using the 

bedtools (version 2.26.0) intersect function to determine overlap between DMCs and DHMRs.  

Sequencing data visualization 

 5-mC levels were visualized using the RnBeads R package (Assenov et al. 2014). Within 

this package, the rnb.execute.import function was first used to import the aligned ERRBS data. 

Next, the rnb.sample.groups function was used to group samples by age. The 

rnb.plot.locus.profile function was then used to plot relative 5-mC level in a heat map output for 

defined regions of the genome. A custom set of nine red colors were chosen from RColorBrewer 

for the heat map gradient.  

 5-hmC levels were visualized using the csaw and GViz R packages (Hahne and Ivanek 

2016; Lun and Smyth 2016). Data were read into R as a GRanges object using the extractReads 

function. Next, the GeneRegionTrack in the Gviz R package was used to define regions of 
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interest for visualization. Separate blue and red genome tracks were used to represent the 

forward and reverse strand reads, respectively. The plotTracks function was then used to plot 5-

hmC levels for these regions. Reads-per-million was used for the y-axis in all graphs, and scale 

was adjusted to individual region coverage.  

Plots generated in R (R version 3.4.0) were formatted for publication in Adobe Illustrator 

CS6 (version 16.0.5). 

Real-time quantitative PCR (RT-qPCR) 

The Bio-Rad iScript cDNA Synthesis Kit (Cat. #1708890) was used to reverse transcribe 

complementary DNA (cDNA) from 250 ng of RNA for each blood sample (n=6 per age). In 

preparation for RT-qPCR, cDNA samples were diluted 1:2.5 in RNase-free water, then mixed 

with 10 µM forward/reverse primers, nuclease-free water, and Bio-Rad iQ SYBR Green 

Supermix (Cat. #1708880). RT-qPCR was then performed using a Bio-rad CFX96 Real-Time 

System C1000 Thermal Cycler (Bio-Rad; Hercules, CA). The pre-programmed 2-step PCR+melt 

curve protocol was used for all qPCR reactions – 95°C for 3 minutes, [95°C for 10 seconds, 

55°C for 30 seconds, plate read] x40, 95°C for 10 seconds. The melt curve for each plate was 

65°C-95°C; 0.5°C increment for 5 seconds, with plate read at each temperature. RT-qPCR 

analyses were performed for the Nfic and Esr1 gene in triplicate for each cDNA sample. Three 

housekeeping genes – Actb, 18S, and Gapdh – were included as internal controls in all RT-qPCR 

runs. In addition to housekeeping genes, an inter-plate calibrator control of brain cDNA was 

included for calculation of relative gene expression across multiple plates. Expression levels 

were calculated following the 2
−ΔΔCt

 method (Livak and Schmittgen 2001). RT-qPCR primers for 

the Nfic, Esr1, and Gapdh genes (Table 4-3) were designed using the online Genscript Real-time 

PCR Primer Design software (https://www.genscript.com/tools/real-time-pcr-tagman-primer-

https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool
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design-tool). The Actb and 18S gene primer pairs were sourced from the literature (Dolinoy et al. 

2010; La Salle et al. 2004). Primer pair specificity for all designed primers was checked using 

the NCBI Primer-BLAST online tool (https://www.ncbi.nlm.nih.gov/tools/ primer-blast/). 

Pathway analysis 

Pathway analyses for DMCs and DHMRs were performed using the ChIP-enrich analysis 

tool (Welch et al. 2014). In the ChIP-enrich online interface (http://chip-enrich.med.umich.edu/), 

the gene set filter was set to 2000, peak threshold was set to 1, and adjustment for mappability of 

gene locus regions was set to false. The ChIP-enrich method was used for GO term and KEGG 

pathway enrichment testing against the mm10 reference genome. Both DMCs and DHMRs were 

split into hypo- and hyper-methylated sites/regions prior to separate analyses. For DHMRs and 

DMCs, only peaks <5kb from TSS were included in ChIP-enrich analysis. Due to the large 

number of significant DMCs, DMC pathway analyses were restricted to CpGs annotated to 

promoter regions. After correcting for multiple testing, pathways with FDR<0.05 were 

considered significant. 
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4.8 Figures and Tables 

 

Δ5-mC/5-
hmC 

Age 

DMRs† DMCs* DHMRs‡ 

Hyper- 9 17460 160 

Hypo- 11 10736 8446 

Both 0 0 7 

Total 20 28196 8613 

Table 4-1: Differential 5-mC and 5-hmC in mouse blood by age. The DSS and csaw R 

packages were used to examine the effect of age on 5-mC and 5-hmC levels across the 

epigenome. For all models, effect of age was defined as 10 months old relative to 2 months old 

(baseline). Models also included a paired mouse ID variable to account for within-individual 

effects, as well as a sex variable. Directionality of DMRs, DMCs, and DHMRs are indicated in 

separate rows; direction is relative to 2 month old samples. DMR, DMC, and DHMR calling 

thresholds are indicated -- †DMRs = Δ > 0.05 and p-value < 0.05; *DMCs = Δ > 0.05 and FDR 

< 0.05; ‡DHMRs = FDR < 0.10. 

 
 
 
 
 

Chr Start End Strand Location Δ % Methylation* 

chr10 4666894 4666894 + intron -25.7% 
chr10 4709922 4709922 + promoter 10.0% 
chr10 4712221 4712221 + promoter 41.2% 
chr10 4712716 4712716 + exon -25.4% 
chr10 4932943 4932943 + 1 to 5kb 30.4% 
chr10 4971465 4971465 + intron 36.2% 
chr10 4972470 4972470 + intron -14.9% 

Table 4-2: Age-related DMCs annotated to the Esr1 locus. List of significant DSS modeling 

DMCs annotated to the Esr1 locus. *Change in % methylation is defined as 10 month old level 

relative to 2 month old level. 
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Gene Full Name 
GenBank 
Number 

Strand Primers (5' to 3') 
Tm 
(°C) 

Amplicon 
Size 

Gapdh 
Glyceraldehyde 

3-phosphate 
dehydrogenase 

NM_008084.3 
FWD GCCTGCTTCACCACCTTCTT 59.96 

98 
RVS CATGGCCTTCCGTGTTCCTA 59.07 

Nfic 
Nuclear factor 

I-C 
AF111265.1 

FWD CGAGAAGCGCATGTCCAAGG 58.83 
168 

RVS GCCTTCTTGCCAGTCACAGC 58.95 

Esr1 
Estrogen 

Receptor 1 
(Alpha) 

NM_007956  
FWD AACCGGAGGAAGAGTTGCCA 58.40 

76 
RVS TCCGTATGCCGCCTTTCATCA 59.05 

Table 4-3: RT-qPCR primers for self-designed gene assays. Forward and reverse primer 

sequences for the Gapdh, Nfic, and Esr1 RT-qPCR assays are listed, along with melting 

temperatures and amplicon sizes. All assays were designed using the online Genscript Real-time 

PCR Primer Design software (https://www.genscript.com/tools/real-time-pcr-tagman-primer-

design-tool). Additional primers for the Actb and 18S genes were adapted from (Dolinoy et al. 

2010) and (La Salle et al. 2004), respectively. 

  

https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool
https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool
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Figure 4-1: Sequencing data collection and analysis workflow. Genomic DNA was isolated 

from matched offspring blood samples at 2 months (n=6), 4 months (n=6), and 10 months of age 

(n=6). DNA samples were then split for separate, parallel processing steps specific to the ERRBS 

and HMeDIP-seq methods. All processed samples were amplified and sequenced on an Illumina 

HiSeq 4000 sequencer using single-end, 50 nt read length. Separate bioinformatics pipelines 

were used to analyze ERRBS and HMeDIP-seq data. Differentially methylated CpGs (DMCs) 

and regions (DMRs) were compared to differentially hydroxymethylated regions (DHMRs) for 

regions of chromosomal overlap. Regions of overlap were then annotated and visualized in the 

genome browser. The Nfic gene was validated using RT-qPCR on available RNA from the blood 

samples. 
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Figure 4-2: Distributions of age-related DMCs and DHMRs compared to random. Age-related DMCs and DHMRs were 

annotated to the mm10 genome using the annotatr package in R. Within annotatr, the randomize_regions function was used to create 

secondary, random distributions of annotated DMCs and DHMRs using the complete ERRBS and HMeDIP-seq data as background, 

respectively. Distributions of DMCs and DHMRs by genomic annotation were then plotted against the random distribution using the 

plot_annotation function. A) Compared to the random distribution, age-related DMCs (All, Hyper, and Hypo) were enriched at 

promoters, CpG islands, CpG shores, CpG shelves, promoters, 5’ UTRs, and exons, but were depleted at interCGI regions. B) 

Compared to a random distribution, age-related DHMRs showed moderate enrichment at CpG shores, CpG shelves, promoters, 3’-

UTRs, 5’-UTRs, exons, and introns, as well as mild depletion at interCGI regions and CpG islands.



 142 

 

Figure 4-3: Venn diagrams of intersecting age-related DMCs and DHMRs by chromosomal 

location. The bedtools intercept function was used to test for overlap between DMCs and 

DHMRs by exact chromosomal location. Comparing age-related DMCs and DHMRs, we 

identified 65 regions that overlapped by chromosomal position. The age-related DMC and 

DHMR overlap sites annotated to 40 unique gene IDs. Of these 40 genes, three had multiple 

DMCs that overlapped a DHMR – Fbln1, Ldlrad3, and Nfic. 
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Figure 4-4: ERRBS and HMeDIP-seq data for the Nfic gene DMR and DHMR overlap 

region. (A) ERRBS and (B) HMeDIP-seq data at the identified Nfic DMC/DHMR overlap 

region (chr10: 81433551-81433800). 5-mC levels and 5-hmC peaks were visualized using the 

Gviz, csaw, and RnBeads R packages. 5-hmC and 5-mC levels at this overlap region both 

decrease with age in longitudinal mouse blood samples. 
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Figure 4-5: 5-hmC peaks across the Esr1 locus. 5-hmC coverage was visualized across the Esr1 locus (chr10: 4666850-4972500) 

using the csaw R package. Region of visualization covers all age-related DMCs annotated to Esr1. As indicated by labels on the y-

axis, data is shown for all 2 month (n=6), 4 month (n=6), and 10 month (n=6) blood samples. Data shows clear 5-hmC peaks along the 

entire Esr1 locus, a pattern that is consistent across the life course. This data shows that 5-hmC content is under tight regulation at the 

Esr1 locus. 
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Figure 4-6: RT-qPCR data for the Nfic and Esr1 loci by age. Based on DNA methylation 

results, RT-qPCR was used to investigate mRNA expression levels at the Nfic and Esr1 genes. 

Three housekeeping genes – Actb, 18S, and Gapdh – were included as internal controls in all RT-

qPCR runs. In addition to housekeeping genes, an inter-plate calibrator control of brain cDNA 

was included for calculation of relative gene expression across multiple plates; all expression 

values are shown relative to this inter-plate calibrator. Expression levels were calculated 

following the 2
−ΔΔCt

 method. There was a significant decrease in mean Nfic expression between 2 

and 10 month blood samples (p=0.04). Esr1 expression did not significantly differ by age.  
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Chapter 5  

Neonatal DNA Methylation Patterns are Associated with Childhood Weight 

Status in the Healthy Families Project 
 

Abstract 

Recent reports suggest that both cross-sectional DNA methylation and rates of age-related 

methylation are associated with obesity status, but it remains unclear whether levels of DNA 

methylation at various stages of childhood can be used to predict obesity likelihood. Using 

logistic regression, we tested whether neonatal bloodspot or childhood DNA methylation (12-24 

months old (n=40), 3-5 years of age (n=40), or 10-12 years of age (n=52)) at several target gene 

regions predicted childhood obesity likelihood, as defined by weight-for-length (WFL) z-score at 

12-14 mos. and body mass index (BMI) z-score at 3-5 and 10-12 years old. DNA methylation 

was quantified at a repetitive element (LINE-1), two imprinted genes (IGF2, H19), and four non-

imprinted genes (LEP, PPARA, ESR1, SREBF1) related to growth and adiposity in children from 

the Healthy Families study. In 3-5 year olds, neonatal bloodspot LINE-1 methylation was 

negatively associated with obesity likelihood (OR= -0.40, p=0.04). There were also suggestive 

negative associations between bloodspot IGF2 methylation and obesity likelihood in 12-24 

month olds (OR= -0.24, p=0.07), 10-12 year olds (OR= -0.14, p=0.09), and when all age groups 

were combined (OR= -0.08, p=0.09). Across childhood age in matched blood samples, DNA 

methylation levels in blood significantly decreased (p<0.05) at LINE-1, PPARA, ESR1, SREBF1, 

IGF2, and H19, and significantly increased (p<0.05) at LEP. Our results suggest that age-related 

epigenetic changes occur at growth-related genes in the first decade of life, and that gene-

specific neonatal bloodspot DNA methylation may be a useful biomarker for predicting obesity 

likelihood later in childhood. 
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5.1 Introduction 

As a field of study, epigenetics refers to heritable and potentially reversible changes in an 

organism’s gene regulation that occur independent of the DNA sequence. Epigenetic control 

mechanisms include chromatin modifications (e.g., histone tail acetylation), non-coding RNA 

interactions, and alterations to DNA (e.g., DNA methylation) (Bernal and Jirtle 2010; Egger et 

al. 2004). Previous studies have documented distinct, programmed waves of demethylation and 

de novo DNA methylation during fetal development, as well as evidence that these programmed 

events help regulate primordial germ cell proliferation and differentiation (Messerschmidt et al. 

2014; Reik et al. 2001; Smallwood and Kelsey 2012). While developmental epigenetic events are 

typically under tight regulation, 5-methylcytosine (5-mC) levels have been shown to change in 

response to environmental factors during early development (Anderson et al. 2012; Bernal and 

Jirtle 2010; Manikkam et al. 2013), adolescence (Essex et al. 2013), and even adulthood (Tellez-

Plaza et al. 2014; Wright et al. 2010). Given that DNA methylation is established during early 

development and sensitive to the environment, it has been proposed as a mechanism underlying 

the developmental origins of health and disease (DOHaD) hypothesis. DOHaD posits that 

developmental exposure to nutritional and environmental factors alters later-life susceptibility to 

chronic diseases (e.g., metabolic syndrome) by influencing developmental plasticity (Bateson et 

al. 2004; Heindel et al. 2015). This paradigm is supported by results from animal model exposure 

studies and human cohort epidemiological studies (Eriksson 2016; Hart et al. 2015; Heindel et al. 

2015; Radford et al. 2014). Despite this rich literature, however, the biological mechanisms 

supporting the apparent delay between developmental exposure and later-life disease remain 

poorly characterized. Specifically, few studies have considered whether associations between 

DNA methylation and disease likelihood change as a function of age during sensitive periods in 
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early and mid-childhood. This project aims to shed light on the contribution of longitudinal 

childhood epigenetics to obesity in a human population.  

Research suggests that prenatal nutrition can play an important role in establishment of 

the epigenome. For example, a recent intergenerational study in mice showed that in utero 

undernourishment leads to changes in the F1 adult male mouse methylome, as well as locus-

specific alterations in F2 generation metabolism-related gene expression (Radford et al. 2014). 

Other animal studies indicate that high-fat-diet-induced obesity is associated with altered 

methylation in promoters of genes related to metabolism and obesity, including Leptin (Lep) and 

Peroxisome Proliferator-activated Receptor-α (Ppara) (Ge et al. 2014; Milagro et al. 2009). 

Genome-wide studies of the methylome have also noted both nutrient- and obesity-sensitive CpG 

sites throughout the epigenome, indicating that alterations in diet or adiposity can affect DNA 

methylation at specific genomic sites (Parle-McDermott and Ozaki 2011; Xu et al. 2013). 

Supplementing the available animal research, studies in human cohorts have shown that maternal 

differences in methyl donor intake are associated with altered DNA methylation in children at 

metastable epialleles (Dominguez-Salas et al. 2014) and target genes related to growth and 

metabolism (Pauwels et al. 2017). In addition, another recent human cohort study demonstrated 

associations between lower maternal intake of vitamin D and several adverse outcomes in 

children – impaired neurocognitive function at 10 years of age, greater risk of eating disorders 

during adolescence, and lower peak bone mass at 20 years of age (Hart et al. 2015). Based on 

these results, diet represents an important mediator of methylation, in that it has the potential to 

affect the epigenome throughout the life course.  

In addition to the effects of diet, evidence also suggests that other lifestyle factors, 

including physical activity, can alter both gene expression levels (Huang et al. 2010; Lesniewski 



 155 

et al. 2013; Lindholm et al. 2014) and site-specific DNA methylation (Barrès et al. 2012; Rönn et 

al. 2013). One recent study demonstrated that long-term endurance training is associated with 

significant changes in DNA methylation at specific enhancer regions across the genome 

(Lindholm et al. 2014), suggesting that physical activity may have long-term protective effects in 

the epigenome. Supporting this idea, a study in mice showed that induced maternal physical 

activity prevents high-fat-diet-induced offspring hypermethylation at the promoter of peroxisome 

proliferator-activated receptor γ coactivator-1α (Pgc-1α), a master regulator of metabolism 

(Laker et al. 2014). Together, the available data suggests that physical activity could be an 

important modifier of methylome establishment/upkeep. 

While many DOHaD studies have focused on the association between developmental 

environment and a snapshot of the later-life epigenome, other recent studies have shown that the 

epigenome is dynamic with age in human twins (Fraga et al. 2005; Martino et al. 2013), non-

twin human cohorts (Alisch et al. 2012; Heyn et al. 2012; Madrigano et al. 2012; Urdinguio et al. 

2016; Wang et al. 2012), and rodent models (Maegawa et al. 2014; Spiers et al. 2016). 

Furthermore, reports indicate consistent patterns of DNA methylation with age -- higher gene-

specific methylation (Teschendorff et al. 2013), lower global methylation (Issa 2014; 

Teschendorff et al. 2013), and bidirectional changes in methylation variability (Jones et al. 2015; 

Shah et al. 2014). In general, age has two types of effect on the epigenome – epigenetic drift, 

which refers to stochastic, bidirectional changes in epigenetic variability with age (Fraga et al. 

2005; Jones et al. 2015; Teschendorff et al. 2013), and age-related methylation, which is defined 

as predictable, unidirectional changes in DNA methylation levels that occur with normal aging 

(Horvath 2013; Jung and Pfeifer 2015). Despite the establishment of these well-defined concepts 
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in adult populations, the patterns of epigenetic aging during childhood remain unclear, and could 

play an important role in early development of chronic diseases.  

Expanding the literature on epigenetic aging, recent studies have suggested that rates of 

age-related methylation and epigenetic drift can be affected by environmental exposures. For 

example, mouse studies indicate that environmental exposure to lead (Pb), Western high-fat diet, 

or trichloroethylene (TCE) can modify the rates of either age-related methylation (Faulk et al. 

2014; Kochmanski et al. 2016) or epigenetic drift (Gilbert et al. 2016), respectively. In an effort 

to describe a mechanism by which the environment could shape the aging epigenome, we 

recently introduced a new term – environmental deflection – that refers to any environment- or 

toxicant-mediated shift away from the baseline rate of age-related methylation or epigenetic drift 

within an organism (Kochmanski et al. 2017). Given that alterations in longitudinal epigenetic 

marks may facilitate long-term changes in gene regulation, environmental deflection could 

underlie the apparent delay between developmental exposure and biological effects later in life. 

In other words, alterations to the rates of age-related methylation may represent a mechanism 

underlying the DOHaD hypothesis. 

Obesity is a well-documented risk factor for a number of chronic diseases, including 

heart disease, hypertension, various cancers, and type 2 diabetes
 
(Dixon 2010). Rates of obesity 

continue to rise in the United States, but models using large numbers of BMI-associated genetic 

loci show that gene variants only explain 0.66-2.70% of BMI variation (Loos et al. 2017). This 

suggests that gene-environment interactions play an important role in the growing prevalence of 

obesity. Supporting this idea, reports suggest that both cross-sectional, gene-specific DNA 

methylation and rates of age-related methylation are associated with obesity status in humans 

(Almén et al. 2014; Horvath et al. 2014; Wahl et al. 2016). However, it remains to be seen 
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whether developmental programming of the epigenome at obesity-related genes is specifically 

associated with later-life obesity development. Here, we aim to shed light on this question by 

measuring longitudinal patterns of age-related DNA methylation at a number of obesity-related 

genes throughout childhood.  

For this study, we examined DNA methylation levels at seven target gene regions – the 

LINE-1 repetitive element, IGF2, H19, PPARA, LEP, ESR1, and SREBF1. LINE-1, or long 

interspersed nuclear element 1, is a retrotransposon that comprises ~18% of the human genome 

(Rodić et al. 2013). Given its prevalence across the genome, LINE-1 can be used as a surrogate 

for global DNA methylation levels (Yang et al. 2004). Apart from LINE-1, all of the other 

interrogated genes play a role in metabolism, growth, or development. Insulin-like growth factor 

II (IGF2) and H19 are well-characterized imprinted genes, in which parent-of-origin mono-

allelic expression is involved in the regulation of body composition and growth (Huang et al. 

2012; Lui et al. 2008; Soubry et al. 2013; St-Pierre et al. 2012). PPARA is a non-imprinted gene 

that encodes the peroxisome proliferator-activated receptor alpha (PPAR-α) protein, a nuclear 

receptor that regulates fatty acid metabolism (Lillycrop et al. 2008; Rees et al. 2008; Yoon 

2009). LEP is a non-imprinted gene that encodes leptin, an adipokine involved in satiety 

signaling (Crujeiras et al. 2015; Lesseur et al. 2013). ESR1 is a non-imprinted gene that encodes 

estrogen receptor alpha (ER-α), a transcription factor involved in regulation of energy 

homeostasis (Mauvais-Jarvis 2011). Lastly, SREBF1 is a non-imprinted gene that encodes the 

Sterol regulatory element-binding transcription factor 1, a transcription factor involved in 

glucose metabolism and lipid homeostasis (Eberlé et al. 2004; Ferré and Foufelle 2007). Here, 

we test whether epigenetic modifications at these target genes are associated with obesity risk 

during childhood.  
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As described in detail elsewhere (Acharya et al. 2017), the University of Michigan 

Momentum Center Healthy Families (HF) Project is an interdisciplinary study that explores the 

obese phenotype among children in three age groups (12-24 months old (n=40), 3-5 years of age 

(n=40), or 10-12 years of age (n=52)) through measurements of weight status, biology, food 

environment, and parenting. As part of this project, longitudinal paired DNA methylation levels 

were quantified from neonatal bloodspots and capillary and venous blood draws in childhood. 

This study design allows for a comprehensive examination of associations between age, the 

epigenome, and obesity during childhood. Here, we tested three hypotheses: 1. DNA methylation 

at growth-related genes at birth and during childhood will be associated with obesity status; 2. 

growth-related genes will exhibit age-related DNA methylation in childhood; 3. rates of age-

related methylation will differ by obesity status, childhood diet, physical activity, and/or age 

group.  

In testing these hypotheses, we aim to identify early-life epigenetic biomarkers of 

childhood obesity onset, as well as determine whether age-related DNA methylation is occurring 

at obesity-related genes during the early stages of human life. Furthermore, we aim to test 

whether rates of age-related methylation vary by environmental factors throughout childhood. 

Combining these results, it is possible to assess the utility of the longitudinal methylome as a 

predictive tool for obesity risk during multiple stages of childhood.  

5.2 Results 

Summary statistics  

Mean weight-for-length (WFL) or BMI z-score and weight category distribution were not 

significantly different across the three age groups (Table 5-1). Child race/ethnicity was 

significantly different (p=0.013) in the toddler (12-24 months old) group compared to the total 
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population, but maternal education and child sex ratio were not significantly different by age 

group (Table 5-1).  

Associations between neonatal DNA methylation and childhood weight status 

First, logistic regression models were used to examine the relationship between neonatal 

bloodspot target gene DNA methylation and dichotomous obesity (Y/N). For the toddler group, 

no target genes demonstrated significant associations between bloodspot DNA methylation and 

obesity likelihood. However, in the preschool group, bloodspot LINE-1 methylation showed a 

significant negative association with obesity likelihood (log odds = -0.40, p=0.04) (Figure 5-1). 

In addition, preschool bloodspot IGF2 methylation had a marginally significant negative 

association with obesity likelihood (log odds = -0.24, p=0.07). Matching this pattern, the school-

aged group showed a marginally significant negative association between bloodspot IGF2 

methylation and obesity likelihood (log odds = -0.14, p=0.09). This negative marginal 

association between bloodspot IGF2 methylation and log odds of obesity also held when all age 

groups were combined in a single model (log odds = -0.08, p=0.09) (Figure 5-1). No other 

investigated loci showed significant associations between bloodspot DNA methylation and log 

odds of obesity in the preschool or school-aged groups. 

Separate from the logistic regression analysis, linear regression models were used to 

examine the relationship between bloodspot DNA methylation and continuous WFL or BMI z-

score. For the toddler group, bloodspot LEP methylation showed a marginal negative association 

(β= -0.08, p=0.09) with WFL z-score, but no other investigated loci showed significant 

associations between bloodspot DNA methylation and WFL or BMI z-score in the toddler, 

preschool, or school-aged groups. This lack of significance also held true in models where all 

age groups were combined. 
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Associations between childhood DNA methylation and childhood weight status 

Following up on the bloodspot DNA methylation results, simple logistic models were 

also used to determine whether childhood blood DNA methylation levels were associated with 

obesity likelihood. Just as in the bloodspot results, separate models were run for each age group. 

When combining all the age groups together into a single model, there was a marginally 

significant negative relationship between LEP methylation and obesity likelihood (log odds =  

-0.455, p=0.08) (Figure 5-2). In the preschool group alone, we also found a marginal negative 

association between blood ESR1 methylation and obesity likelihood (log odds = -1.668, p=0.08) 

(Figure 5-2). However, both of these results are difficult to interpret due to the very low sample 

size of the childhood blood draws.  

Given the difficulty in interpreting the logistic regression results, follow-up linear 

regression models were used to examine the relationship between childhood blood DNA 

methylation and continuous WFL or BMI z-score. In the preschool group, blood PPARA 

methylation showed a significant positive association with BMI z-score (β= 0.210, p=0.01) 

(Figure 5-3). While this result did not carry over to any of the other age groups, it is noteworthy 

that the preschool group had the largest childhood blood draw sample size. The remaining 

genetic loci did not demonstrate significant associations between DNA methylation and WFL or 

BMI z-score in any analysis. 

Age-related DNA methylation in matched samples 

Linear mixed effect (LME) models were used to model longitudinal patterns of age-

related methylation for each target gene. Given that each age group contained different 

individuals, separate LME models were constructed for matched data in each age group (Table 

5-2). Longitudinal changes in methylation reflect differences between neonatal bloodspot DNA 
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(birth) and blood draw (childhood). All genes were modeled using the mean of all included CpG 

sites. For all age groups, LINE-1, H19, PPARA, LEP, and SREBF1 demonstrated significant age-

related methylation (Table 5-2). In contrast, significance of age-related methylation at IGF2 and 

ESR1 differed by age, suggesting that patterns of age-related methylation are not static 

throughout childhood. 

Age-related DNA methylation by childhood age group 

 To further test whether age-related methylation varied by recruited age group, an 

age*group interaction term was included in linear mixed effect models for each target gene. For 

most of the genes, the age*group interaction term was not significant. However, both ESR1 

(β=0.364; p=0.007) and LINE-1 (β=1.021; p=0.003) showed significant age*group interaction 

terms in the mixed models. At these genes, the slope of age-related methylation varied across the 

three age groups, showing a lower intensity of effect with age (Figure 5-4). This may reflect 

region-specific, controlled attenuation of age-related methylation that occurs throughout 

childhood. 

Effects of diet and physical activity on cross-sectional DNA methylation  

Cross-sectional linear regression models were used to test for associations between 

lifestyle factors – healthy eating index (HEI) score or moderate-to-vigorous physical activity per 

day (MVPA/day) – and target gene methylation later in life (Table S3). In the preschool group, 

there was a marginally significant negative relationship between MVPA/day and LEP 

methylation (p=0.06). In contrast, there was a marginally significant positive relationship 

between MVPA/day and LEP methylation in the school-aged children (p=0.07). There were no 

significant cross-sectional relationships between MVPA/day and target gene methylation in the 
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toddler group, and there were no significant cross-sectional relationships between HEI score and 

target gene methylation in any of the three age groups. 

Environmental deflection of age-related methylation 

Linear mixed effects models were used to examine environmental deflection of age-

related methylation by obesity status (BMI/WFL z-score), physical activity (MVPA/day), and 

healthy eating index (HEI score). To test for environmental deflection by these environmental 

factors, age:environment interaction terms were added to the linear mixed effects models used to 

test for age-related methylation. To ensure model integrity, each of the included interaction terms 

– age:MVPA/day, age:HEI, and age:BMI/WFLz – were included in separate models. Overall, 

there were no consistent patterns of significant environmental deflection at any of the 

investigated genetic loci across all three time points. However, several target genes exhibited 

significant or marginally significant environmental deflection by BMI/WFL z-score, MVPA/day, 

or HEI (Table 5-3).  

For the age:BMI/WFLz interaction term, there was no significant environmental 

deflection in the toddler group. In the preschool group, PPARA showed significant positive 

deflection of age-related methylation by BMI z-score (p=0.04) (Figure 5-5), but no other 

significant results were present. In the school-aged children, SREBF1 showed significant 

negative environmental deflection of age-related methylation by BMI z-score (p=0.05), but no 

other target genes showed significant effects of BMI z-score. 

For the age:MVPA/day interaction term, it was not possible to examine environmental 

deflection in the toddler group due to a lack of physical activity data. However, in the preschool 

group, LEP showed significant (p=0.02) positive deflection of age-related methylation by 

MVPA/day (Figure 5-6). No other significant results were present in the preschool age group. In 
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the school-aged children, LEP and IGF2 showed significant (p=0.001) and marginally significant 

(p=0.09) negative environmental deflection of age-related methylation by MVPA/day. No other 

target genes showed significant environmental deflection by obesity status in the school-aged 

group. 

For the age:HEI interaction term, there was no significant environmental deflection in the 

preschool or school-aged groups. In the toddler group, LEP demonstrated marginally significant 

negative environmental deflection of age-related methylation by HEI score (p=0.094), but no 

significant results were present.  

 

5.3 Discussion 

Associations between DNA methylation and childhood weight status  

 Neonatal bloodspot DNA methylation at the LINE-1 repetitive element and IGF2 

imprinted locus demonstrated significant and marginally significant negative associations with 

obesity likelihood in preschool children, respectively. These results, while not apparent in the 

other investigated loci, suggest that neonatal epigenetic biomarkers may be associated with 

childhood obesity. While these are only preliminary results from a small number of individuals, 

to our knowledge, this is the first time that neonatal bloodspot DNA methylation status has been 

linked to obesity likelihood in matched individuals during childhood.  

The significant bloodspot locus, LINE-1, is an active retrotransposon that comprises 

~18% of the human genome (Rodić et al. 2013). DNA methylation acts as a repressive mark at 

retrotransposons, blocking these repetitive elements from either duplicating in the genome or 

generating chimeric fusion transcripts (Slotkin and Martienssen 2007; Wang et al. 2016b). As a 

result, research indicates that decreases in LINE-1 methylation can increase retrotransposon 

activity, leading to a reduction in overall genomic stability (Rodić et al. 2013). While it’s 
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possible that this mechanism could modify risk for obesity development in later childhood, 

LINE-1 is not protein-coding and has no direct involvement in human growth or development, 

making it difficult to determine the biological significance of specific changes in LINE-1 

methylation in relation to obesity risk. However, separate from its intrinsic retrotransposon 

activity, LINE-1 methylation is prevalent enough in the genome that it also serves as a useful 

surrogate for global methylation levels (Yang et al. 2004). As such, the negative association 

between LINE-1 methylation and log odds of obesity in the preschool group may reflect a global 

link between lower DNA methylation and obesity likelihood during a specific phase of 

childhood.  

Distinct from LINE-1, IGF2 is an imprinted gene that encodes insulin-like growth factor 

II, a developmental growth factor that is active throughout life in humans (Chao and D’Amore 

2008). As an imprinted gene, IGF2 demonstrates parent-of-origin-dependent mono-allelic 

expression, a pattern at least partially controlled via differentially methylated regions (DMRs) 

(Chao and D’Amore 2008; Tobi et al. 2012). Allele-specific IGF2 DMR methylation is 

established in the two waves of epigenomic reprogramming that occur during gametogenesis and 

early embryogenesis (Ishida and Moore 2013). The imprinted epigenetic marks at IGF2 are then 

propagated throughout cellular replication and differentiation, providing life-long regulation of 

gene expression (Bartolomei and Ferguson-Smith 2011). Given this distinct pattern of 

programming, developmental changes in IGF2 DMR imprinting could have long-lasting effects 

on IGF2 expression, thereby altering growth and development. Recent studies support this idea, 

demonstrating associations between developmental IGF2 DMR methylation and newborn 

growth indices; however, directionality of these effects varies by study, making interpretation 

difficult. For example, one study found a significant association between lower umbilical cord 
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blood IGF2 DMR methylation and higher plasma IGF2 protein level, as well as a positive 

association between plasma IGF2 protein levels and birth weight (Hoyo et al. 2012). On the 

other hand, another study showed that greater placental IGF2 DMR methylation was positively 

correlated with newborn length, head circumference, and weight (St-Pierre et al. 2012). Further 

complicating the issue, a third study found an association between higher cord blood IGF2 DMR 

methylation and birth weight, but also showed that lower IGF2 DMR methylation was associated 

with greater weight gain six months after birth (Bouwland-Both et al. 2013). These available 

cross-sectional data indicate that epigenetic programming of IGF2 is associated with growth and 

development of newborns, and that directionality of this association is life stage-specific. Our 

results support this hypothesis, showing a positive link between lower bloodspot IGF2 DNA 

methylation and higher obesity likelihood during specific stages of childhood. The consistency 

of this effect across multiple older age groups suggests that IGF2 bloodspot methylation may be 

a meaningful biomarker of obesity risk in later childhood. To further validate this idea, this result 

must be replicated in a larger childhood obesity study. 

In the cross-sectional blood draw DNA methylation models, PPARA promoter 

methylation showed a significant positive association with BMI z-score in the preschool children 

(Figure 5-3). PPARA encodes the peroxisome proliferator-activated receptor alpha (PPAR-α) 

protein, a nuclear receptor that regulates fatty acid metabolism (Yoon 2009). Greater expression 

of this gene leads to breakdown of fatty acids, potentially leading to reductions in dyslipidemia 

and obesity (Chung et al. 2016; Yoon 2009). As such, it is expected that higher methylation at 

the PPARA promoter would be associated with lower PPARA gene expression and an increased 

risk of obesity. The significant positive association between preschool PPARA promoter 

methylation and BMI z-score matches this expectation, suggesting that PPARA promoter 
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methylation may play a role in childhood obesity development. However, this result was not 

consistent across age groups, making interpretation of these data difficult. Future studies should 

further investigate the contribution of PPARA promoter methylation to obesity in children across 

multiple life stages.  

In addition to PPARA, the ESR1 and LEP loci each demonstrated marginally significant 

negative associations between childhood DNA methylation and log odds of obesity in a single 

age group. However, like the PPARA results, these trends were not stable across ages, making it 

difficult to interpret the data (Figure 5-2). Furthermore, childhood blood DNA methylation 

models showed greater variability in results compared to neonatal bloodspot models. This is 

likely due to the smaller sample size of the cross-sectional childhood blood draw samples 

compared to sourced bloodspots. Of particular note in the childhood DNA methylation models, 

IGF2 and LINE-1 DNA methylation did not maintain the negative association with obesity 

likelihood seen in the neonatal bloodspots. This suggests that neonate DNA methylation levels at 

these loci, not cross-sectional DNA methylation, may be better predictors of later-life obesity 

risk. Based on our results, future studies investigating links between the epigenome and obesity 

should not only ensure large samples sizes, but also consider including neonatal bloodspot 

samples.  

Age-related methylation in matched samples 

A number of human cohort studies have examined the effect of age on the epigenome, 

with most of the available literature utilizing cross-sectional samples from pediatric or elderly 

populations (Alisch et al. 2012; Heyn et al. 2012; Madrigano et al. 2012; Wang et al. 2012). 

Here, we utilized matched bloodspot and blood samples from children in multiple age groups to 

investigate the effects of aging on the epigenome throughout different phases of childhood. We 
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found significant age-related methylation in all investigated genetic loci, with the directionality 

and magnitude of age effects varying by region. This matches previous studies, which have 

shown that the childhood methylome varies with age in a gene-specific fashion (Alisch et al. 

2012; Urdinguio et al. 2016; Wang et al. 2012). The directionality of age-related methylation 

was consistent across all three age groups for six out of the seven investigated loci, suggesting 

that aging effects during childhood are generally consistent at a given gene region.  

It is noteworthy that age-related changes in DNA methylation were seen as early as 12-24 

months old. This emphasizes the importance of considering age when interpreting DNA 

methylation data, suggesting that timing of sample collection during childhood could have a 

huge impact on how a study’s results are interpreted. Supporting this idea, marginal associations 

between neonatal IGF2 methylation and obesity likelihood disappeared in the 12-24 month old 

blood draw models, indicating that sample age can alter interpretation of the link between 

childhood DNA methylation and obesity risk. Based on these considerations, future studies 

should include longitudinal measurements of the childhood epigenome when testing for 

associations between DNA methylation and early-life disease risk. 

Age-related methylation by childhood age group 

 Beyond demonstrating age-related methylation during childhood, we also showed that the 

magnitude of age-related methylation can vary by developmental stage. This is most apparent at 

LINE-1, LEP, and ESR1, where rates of age-related methylation significantly diminished with 

increasing age (Figure 5-4). These results indicate that rates of age-related methylation are not 

necessarily static during childhood, but may instead follow regulated trajectories. For example, 

the ESR1 gene showed variable directionality of age-related methylation by age group, shifting 

from significant hypomethylation with age in preschool children to non-significant 
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hypermethylation with age in the school-aged children (Figure 5-4). The school-aged data were 

not unexpected, since previous studies in adult human colon tissue have demonstrated significant 

age-related hypermethylation at the ESR1 promoter (Issa et al. 1994; Kaz et al. 2014). However, 

the shift from hypo- to hypermethylation with age indicates that childhood may be a period of 

particular epigenetic volatility at the ESR1 promoter region. This idea matches evidence from 

previous studies, which show that patterns of age-related methylation are different during 

childhood and adulthood (Alisch et al. 2012; Simpkin et al. 2015), particularly at genes related to 

development (Acevedo et al. 2015; Urdinguio et al. 2016). Building on our results, future studies 

must not only capture cross-sectional measures of the epigenome early and late in life, but also 

characterize how longitudinal epigenetic marks vary during the child-to-adult transition. This 

would allow for improved identification of potential windows of epigenetic susceptibility.  

Environmental deflection of age-related methylation 

 Continuous BMI/WFL z-score demonstrated significant environmental deflection of the 

PPARA and SREBF1 gene regions in the preschool and school-aged children, respectively. In the 

preschool group, the age:BMIz interaction term was positive for the PPARA gene region. Given 

that our data show decreased PPARA DNA methylation throughout childhood, this result 

indicates that higher BMI is associated with weakened negative slope of age-related PPARA 

methylation in preschoolers. The PPARA pyrosequencing assay used in this study covers two 

CpG sites in the 5’ promoter of the PPARA gene. PPARA encodes the peroxisome proliferator-

activated receptor alpha (PPAR-α), a nuclear receptor that regulates fatty acid metabolism (Yoon 

2009). Increased expression of this gene leads to breakdown of fatty acids, potentially leading to 

reductions in dyslipidemia and obesity (Chung et al. 2016; Yoon 2009). Given that increased 

DNA methylation in promoter regions is typically associated with decreased transcription 
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(Medvedeva et al. 2014), it is expected that decreased methylation at the PPARA promoter would 

be associated with an increase in PPARA gene expression and decreased adiposity. Working 

under this paradigm, negative age-related methylation at PPARA during childhood could reflect 

programmed, age-dependent increases in PPARA expression. When the slope of this decrease 

with age is moderated, the affected individual will have a weakened programmed response, 

potentially leading to decreased PPARA expression and obesity development later in childhood. 

Our results support this idea, showing that increased preschooler BMI z-score is associated with 

weakened negative rates of age-related methylation at the PPARA promoter. 

The SREBF1 pyrosequencing assay covers four CpG sites in the gene body of SREBF1, 

including one CpG site – Illumina 450k cg2747935 – that has shown associations with Vitamin 

B12 intake and BMI in previous epigenome-wide studies (Adaikalakoteswari et al. 2015; Wang 

et al. 2016a). In contrast to the PPARA results, SREBF1 showed significant negative 

environmental deflection of age-related methylation by BMI z-score in the school-aged group. 

This is not unexpected, since the SREBF1 gene encodes the SREBF-1c protein, an insulin-

activated transcription factor involved in fatty acid synthesis and lipogenesis (Eberlé et al. 2004). 

Given its biological function, increased expression of SREBF1 is expected to increase adiposity 

(Shimano 2009). Our data show decreased SREBF1 DNA methylation with childhood age, 

suggesting that SREBF1 expression and associated adiposity may increase with age. In addition 

to age effects, we also found a significant negative deflection of SREBF1 methylation status by 

BMI z-score in school-aged children. While this result indicates that increased BMI may 

exacerbate the negative slope of SREBF1 age-related methylation during childhood, the low 

sample size limits interpretability of deflection results.  
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For the most part, measured lifestyle factors – dietary recall and physical activity – did 

not significantly modify age-related methylation patterns. In all three age groups, HEI score 

showed no significant environmental deflection of age-related methylation, suggesting that diet 

quality may not alter the dynamics of longitudinal DNA methylation during childhood. However, 

the interpretability of this result depends largely on the inherent range of HEI scores present in 

our population. In this study population, the HEI score distributions for all ages approached 

normality, with the majority of scores falling near the mean for each age group (Figure 5-7). 

Given the small sample size of our cohort, our HEI score distributions did not adequately capture 

the far extremes of diet quality, where most effects are expected to occur. As such, an obesity 

cohort study measuring levels of specific nutrients may be more appropriate for determining 

whether diet can lead to environmental deflection of childhood age-related methylation patterns. 

Exploring this idea, a recent cross-sectional study in adult human colon tissue showed concurrent 

effects of age and specific nutrients – folate, vitamin D, and selenium – on DNA methylation 

levels at target genes (Tapp et al. 2013). However, while these results are intriguing, the study 

was non-longitudinal and failed to test for interactions between age and nutrient intake. To better 

determine the impact of specific nutrients on age-related methylation, future work in the field 

should consider matched, longitudinal study designs. 

In contrast to HEI score, MVPA/day showed some significant environmental deflection 

of age-related methylation in the preschool and school-aged children. In both of these age 

groups, LEP showed a significant interaction between age and MVPA/day. However, these LEP 

interaction terms had opposing directionality across the age groups, shifting from positive to 

negative with increasing age. Assuming these opposing results are true positive, they may reflect 

changes in the effect of MVPA/day on rates of LEP age-related methylation during different 
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phases of childhood development. Although the mechanism behind this abrupt switch in 

deflection directionality remains unclear, it may be representative of physical activity dropping 

below some effect threshold in later childhood. Supporting the idea that physical activity could 

alter age-related methylation, previous research shows that physical activity can alter the adult 

epigenetic landscape through distinct alterations in either gene-specific (Nakajima et al. 2010; 

Zhang et al. 2015) or global methylation (White et al. 2013; Zhang et al. 2011). One study 

specifically addressed the idea that shifts in activity level could alter the course of age-related 

methylation, showing that an exercise intervention increased the rates of age-related methylation 

at the ASC gene in adult peripheral blood samples (Nakajima et al. 2010). In addition, a recent 

review of the literature concluded that physical activity leads to hypermethylation on a genome-

wide scale (Yu and Irwin 2016). These findings support the positive age:MVPA interaction we 

found for LEP methylation in preschoolers, and further suggest a trend toward positive 

environmental deflection of DNA methylation by physical activity. Further investigation into 

physical activity-mediated environmental deflection at the genes related to growth and 

metabolism should be repeated in a larger cohort that includes a defined exercise regimen. 

Limitations and future directions 

Our study was unique in many ways, but the findings are limited by the small sample 

sizes in analyses with the neonatal bloodspots (n=40, n=40, n=52) and especially in analyses 

with matching blood samples at childhood (n=16, n=26, n=20). While we observed several 

significant (p<0.05) and marginally significant (p<0.1) associations between target gene DNA 

methylation and childhood obesity outcomes, none would withstand correction for multiple 

testing. Given the associations observed, we recommend future longitudinal studies with 

increased cohort size and longer follow-up across successive life stages. Follow-up studies 
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should also consider expanding beyond target gene pyrosequencing, instead measuring 

epigenome-wide DNA methylation from neonatal bloodspots. Using this approach, future studies 

could utilize the Horvath epigenetic clock algorithm to determine whether early-life exposures 

alter rates of epigenetic aging from birth to adulthood (Horvath 2013). This may lead to the 

identification of additional gene regions where bloodspot DNA methylation predicts either 

childhood or adulthood obesity likelihood, strengthening the utility of bloodspot epigenetics as a 

clinically relevant tool for chronic disease risk estimation. 

Given the variability in DNA methylation levels by tissue, it remains to be seen whether 

the documented target gene age-related methylation in blood is consistent in other human tissues 

during childhood. Tissues of biological interest – i.e. liver, fat, muscle – may demonstrate 

significantly different associations between DNA methylation and age. Additionally, we did not 

correct for cellular heterogeneity over time, and the documented age-related methylation could 

be a reflection of shifting blood cell types with age. Future work should determine white blood 

cell percentage estimates from both neonatal bloodspots and childhood blood samples, then 

adjust for bias using a normalization method. Despite this uncertainty, there were some distinct 

advantages to using blood samples. First, they provided a matched tissue to retroactively 

collected neonatal bloodspots, allowing for direct measurement of intra-individual age-related 

methylation during childhood. In addition, blood is minimally invasive to collect from a cohort 

of children and was the best available biological sample for children in the Healthy Families 

project.  

Expanding the utility of neonatal bloodspots, recent literature shows that it is possible to 

measure some exposures (e.g., lead, mercury) from dried bloodspot samples (Funk et al. 2013). 

As such, it is possible that future study designs could use neonatal bloodspots to examine the 
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effects of childhood exposure to environmental contaminants on age-related methylation and 

associated phenotypes. This type of paradigm would provide important insight into the 

temporality of exposure-mediated changes in DNA methylation, further teasing out whether 

epigenetic changes are a cause or effect of disease phenotypes. The utilization of neonatal 

bloodspots as research samples is an exciting new model for environmental epidemiology, and 

should be considered in future human cohort epigenetics studies.  

5.4 Conclusions 

We tested whether neonatal bloodspot DNA methylation and childhood DNA methylation 

(12-24 mos. old, 3-5 years of age, or 10-12 years of age) at several target gene regions was 

associated with childhood obesity status. DNA methylation was quantified at one repetitive 

element (LINE-1), two imprinted genes (IGF2, H19), and four non-imprinted genes (LEP, 

PPARA, ESR1, SREBF1) in children from the Healthy Families cohort. We demonstrated 

negative associations between bloodspot target gene DNA methylation and obesity likelihood in 

preschool children, suggesting that the neonatal methylome may be useful tool for estimating 

obesity risk in childhood. In addition, the use of both neonatal bloodspots and matched childhood 

blood samples allowed for a unique examination of early-life epigenetic patterns. During 

childhood, all seven investigated genetic loci demonstrated significant age-related methylation, 

with directionality of age effects varying by region. Environmental deflection of age-related 

methylation by BMI z-score, MVPA/day, and HEI was minimal, with only a few significant 

interactions. Associations between neonatal DNA methylation and obesity likelihood were 

diminished in later-life blood models, indicating that longitudinal studies are critical for effective 

interpretation of DNA methylation data during childhood. To improve the utility of these results, 

the dynamics of epigenome-wide bloodspot DNA methylation should be further evaluated in 



 174 

larger cohorts that examine specific exposure to environmental chemicals or modified behaviors 

during childhood. 

5.5 Methods 

Healthy families study 

The HF project recruited 40 families with children 12-24 months old (toddlers), 40 

families with children 3-5.99 years old (preschool), and 52 families with children 10-12.99 years 

old (school-aged) within 1-hour driving distance to Ann Arbor, MI. During a home visit by a 

research assistant, families provided survey data, child and parent anthropometry measurements, 

and written, informed consent. Questionnaires were used to assess sociodemographic 

characteristics, which included measures of maternal education, child race/ethnicity, and child 

sex. Each child was weighed to the nearest 0.1 kg using a Detecto Portable Scale Model 

(Detecto, Cat. #DR550C) and measured to the nearest 0.1 cm using a Seca 214 portable 

stadiometer (Seca, Prod. #213 1821 009). For toddlers, length was measured using a Seca 417 

infantometer (Seca, Prod. # 417 1821 009). Each individual was weighed twice; if the two 

readings were inconsistent by more than 0.1 kg, the individual was weighed two more times. For 

the height and length measurement, the individual’s position and posture were checked and the 

height/length measured twice; if the measurements differed by more than 0.5 cm, two more 

measurements were performed. Weight-for-length (WFL) or Body mass index (BMI) was then 

calculated. Separately, preschool and school-aged BMI z-score and toddler WFL z-score were 

derived using age- and sex-specific references from the US Centers for Disease Control (CDC) 

growth charts (Center for Health Statistics 2000). Per CDC recommendations, for preschool and 

school-age children, obese was categorized as a BMI ≥ 95th percentile, and overweight as a BMI 

≥ 85th percentile and <95th percentile for age and sex (Defining Childhood Obesity 2016). For 
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toddlers, obese was categorized as a WFL ≥ 95th percentile and overweight ≥ 85th percentile and 

<95th percentile for age and sex. Institutional Review Board (IRB) approval was obtained for all 

research practices (HUM00079730). 

 

Neonatal bloodspots and blood collection 

Neonatal bloodspots (n=132) for each recruited child were sourced from the Michigan 

Neonatal Biobank (MNB). Consent was obtained from all recruited families prior to bloodspot 

retrieval. Michigan Department of Health and Human Services (MDHHS) and University of 

Michigan (UM) IRB approvals were obtained for the Healthy Families project (UM: 

HUM00079730), DNA isolations from neonatal bloodspots (MDHHS: 201311-04-EA), and 

DNA isolations from blood draw samples (UM: HUM00086182). Before retrieval, MNB 

neonatal bloodspots were stored at different temperatures depending upon their collection date. 

As such, the current age of each recruited child corresponded to the storage method for their 

bloodspot – toddler and preschooler bloodspots were stored at -20°C, school-aged children’s 

bloodspots were stored at 4°C.Upon receiving the bloodspots, they were stored in their shipping 

bags at 4°C.  

In addition to neonatal bloodspots, matched childhood blood samples were collected for 

recruited children by the Michigan Clinical Research Unit based on child assent (school-aged 

group)/parent consent (all ages). During this blood draw, 0.25-0.50 mL of blood (finger or heel 

poke) or 7 mL of blood (venous draw) were collected from the toddlers/preschoolers or school-

aged children, respectively. Due to lack of consent, blood draw samples were only collected for 

approximately half of the recruited children (n=65). After collection, all blood draw samples 

were stored at -80°C. 
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DNA isolation and bisulfite conversion 

DNA was isolated from neonatal bloodspots using a modified version of the Oragene 

QIAamp DNA Micro Kit (Qiagen, Cat. #56304). To maximize DNA yields from bloodspots, a 

number of changes were made to the standard QIAamp DNA Micro Kit protocol. First, isolations 

were performed on four 3mm bloodspot punches rather than the recommended three punches. 

Second, to account for the increase in sample punches, all protocol buffer volumes were scaled 

up by 33%. Third, to ensure complete digestion, the heated incubation step was increased from 1 

hour to overnight. Fourth, the two vortex mixing steps were increased to 2 minutes and 5 

minutes, respectively. Fifth, the elution buffer was heated to 56°C prior to use. Finally, the final 

elution step was repeated to maximize yield. Across all bloodspot samples, average DNA yield 

was 19.3 ng/µL (S.D. = 9.3 ng/µL) for 25 µL samples. 

For the 12-24 mo. and 3-5 yr. age groups, DNA was isolated from blood samples using 

the Qiagen DNA Blood Mini Kit (Qiagen, Cat. #51104). For the 10-12 yr. group, DNA was 

isolated from blood samples using the Qiagen Flexigene Kit (Qiagen, Cat. #51206). DNA purity 

and yield was measured using a NanoDrop spectrophotometer. All isolated DNA was stored at -

80°C prior to use. 

Genomic DNA from all samples was bisulfite converted using the Zymo Research 96-

well EZ-methylation kit (Zymo Research, Cat. #D5004). Depending on the total yield of each 

DNA sample, bisulfite conversion was carried out on 0.2-1 µg of genomic DNA. To amplify 

bisulfite converted DNA, polymerase chain reaction (PCR) was performed using HotStarTaq 

master mix (Qiagen, Cat. #203443), RNAse-free water, forward primer (9 pmol), and 

biotinylated reverse primer (9 pmol). Total PCR volume was 35 µL per sample, and gel 

electrophoresis was used to verify PCR product identity. 
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Target gene pyrosequencing 

Upon successful DNA purification, bisulfite conversion, and PCR amplification, % DNA 

methylation was quantified for a panel of target genes using quantitative DNA pyrosequencing 

assays specific to each gene (Table 5-4). Methylation levels for all genes of interest were defined 

as the mean % methylation of all CpG sites in each gene’s PCR amplicon. SREBF1, PPARA, 

LEP, ESR1, H19, and IGF2 were chosen as a panel of target genes to explore based on their 

involvement in growth/development, obesity, and energy homeostasis. Long Interspersed 

Nucleotide Element 1 (LINE-1), a repetitive element spread throughout the human genome, was 

also included as a surrogate for global methylation levels (Martín-Núñez et al. 2014; Yang et al. 

2004). 

Quantification of DNA methylation levels was performed using the Qiagen Q96 

PyroMark ID instrument (Qiagen). Percentage methylation at target CpG sites is calculated 

within the Pyromark software as the fraction of 5-methylcytosine (5-mC) among all cytosines 

(methylated and unmethylated). All samples were run in duplicate and mean methylation 

percentages were calculated as the mean of the duplicates. All pyrosequencing plates included 

0%, 25%, 50%, 75%, and 100% methylation controls to ensure proper functioning of the 

instrument, and to provide baseline measures of methylation. 

Physical activity 

Physical activity was measured in preschool and school-aged children using an Actigraph 

(GT3X+, Pensacola, FL) accelerometer. Children were instructed to wear the accelerometer on 

an elastic belt at their hip for 7 consecutive days. To improve validity of included accelerometry 

data, participants who did not complete at least 4 days of valid recording, with at least 8 hours of 

measured activity, were removed prior to analysis. The 8 hour cutoff is below the standard 10 
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hour inclusion criteria, but was chosen in an effort to maximize sample size in this small study. 

Providing additional support for this choice, other recent studies have used 8 hour cutoffs when 

characterizing accelerometer data (Cain et al. 2013; Lockwood et al. 2016). At least one recorded 

weekend day was required for inclusion (Cain et al. 2013). Using the ActiLife software, 

accelerometer output was reduced into 1 minute epochs to classify data into three groups: 

moderate- to vigorous- intensity physical activity (MVPA/day; min·d
-1

), light intensity physical 

activity (LPA, min·d
-1

), and sedentary time (ST, min·d
-1

). Accelerometer data calibration was 

performed using previously established intensity cut points for children (Freedson et al. 2005). 

Physical activity data were not collected for toddlers. 

Dietary recall and healthy eating index 

Three separate, unannounced 24-hour dietary recalls (one weekend day, two weekdays) 

were completed with the parents of each enrolled child over the phone. Dietary recalls were 

completed according to the USDA Automated Multiple Pass Method (AMPM) (Blanton et al. 

2006), and recorded using the Nutrition Data System for Research (NDSR) software (Tiro et al. 

2013). During the phone call, parents were asked to recall exactly what their child ate/drank for 

the past 24 hours, and were provided with a Food Amounts Booklet to assist in portion size 

estimation. School-aged children were also sometimes asked recall questions by the staff directly 

to help clarify exact diet. Dietary recalls were broken down into specific nutrient and food group 

intakes using the Nutrition Data System for Research (NDSR) software (Tiro et al. 2013). 

According to guidelines established in the NDSR “Guide to Creating Variables Needed to 

Calculate Scores for Each Component of the Healthy Eating Index-2010 (HEI-2010)” (NDSR 

2014), a Healthy Eating Index (HEI) score was then calculated for each meal (Guenther et al. 

2014). All calculated HEI scores were based on serving size recommendations (per 1000 kcal) 



 179 

from the Dietary Guidelines for Americans (McGuire 2011). Calculation of HEI was performed 

using an in-house SAS code, and the average of all three meal scores for each child was used as a 

final HEI score.  

Statistical analysis 

Simple summary statistics, including number of recruited individuals, sex ratios, and 

mean WFL or BMI z-score were calculated for each age group. For sex, child race/ethnicity, 

maternal education, and weight status category, a chi-squared test of equal proportions was 

computed to assess differences in distribution of sociodemographic characteristics across the 

three age groups. Analysis of variance (ANOVA) was used to test for significant differences in 

mean WFL or BMI z-score across the three age groups. 

To test our first hypothesis, logistic regression models were used to examine the 

association between target gene bloodspot DNA methylation (% methylation) and obesity status 

(categorical outcome; obese vs. not obese) within each age group. As a secondary test of this 

association, linear regression models were used to examine the association between target gene 

bloodspot DNA methylation (% methylation) and continuous WFL or BMI z-score. This 

modeling approach was repeated to examine associations between blood draw DNA methylation 

at the same age and weight status. 

For our second hypothesis, age-related methylation was measured as the absolute change 

in average DNA methylation for each gene from birth to follow-up in each of three age groups 

(toddler, preschool, school-aged). Linear mixed effect (LME) models were used to test for an 

association between percent DNA methylation and age at each gene region. Percent DNA 

methylation for all investigated loci was defined as the mean of all included CpG sites. Age, 

WFL or BMI z-score, and sex were included as explanatory variables in LME models. Linear 
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mixed models for each target region also included a paired individual factor to account for 

matched, within-individual data. Given that each age group contained different individuals, 

separate age-related methylation models were run for each group. All models were run using the 

lme4 package in R 3.4.0 (http://www.r-project.org).  

For the third hypothesis, childhood age group was delineated as a categorical variable. 

Using this new grouping variable, an age:group interaction term was included in the LME 

models to test for differences in age-related methylation slope by recruited age group. 

Environmental deflection of age-related methylation was tested using interaction terms between 

potential environmental modifiers and age in LME models. Interaction terms for age:BMI z-

score, age:WFL z-score, age:HEI score, and age:MVPA/day were included in separate models to 

test the individual effects of each factor on age-related methylation. 

Significance levels were set at p ≤ 0.05 for all analyses. Results with p≤ 0.10 were 

considered suggestive of significance. 
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5.8 Figures and Tables 

Variables 
12-24 months 

(n=40) 
  3-5 years (n=40)   10-12 years (n=52) 

Mean (SD)   Mean (SD)   Mean (SD) 

         
WFL or BMI z-
score 

0.32 (0.94)  0.38 (1.06)  0.24 (1.28) 

         

Variables 

12-24 months 
(n=40) 

  3-5 years (n=40)   10-12 years (n=52) 

Count     
(n) 

(%)   
Count      

(n) 
(%)   

Count      
(n) 

(%) 

Child Weight 
Class         

Underweight 1 (2.5)  2 (5)  5 (9.6) 

Normal 30 (75)  28 (70)  30 (57.7) 

Overweight 6 (15)  6 (15)  10 (19.2) 

Obese 3 (7.5)  4 (10)  7 (13.5) 

         

Neonatal 
Bloodspots 

40 (100)  40 (100)  52 (100) 

         

Ancillary Blood 
Draws 

19 (47.5)  26 (65)  20 (38.5) 

         

Child Gender          

Male 20 (50)  22 (55)  28 (54) 

Female 20 (50)  18 (45)  24 (46) 

         

Child Race*          

White 24 (60)  31 (77.5)  38 (73.1) 

Black 6 (15)  7 (17.5)  9 (17.3) 
American Indian 

or Alaska Native 
0 (0)  0 (0)  1 (0) 

Asian or Pacific 
Islander 

8 (20)  1 (2.5)  1 (1.9) 

Biracial 2 (5)  1 (2.5)  3 (5.7) 

Other 0 (0)  0 (0)  0 (0) 

         

Child Ethnicity          
Hispanic or 

Latino 
4 (10)  2 (5)  2 (3.8) 
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Not hispanic or 
latino 

36 (90)  38 (95)  50 (96.2) 

         

Maternal 
education  

        

Did not complete 
High School 

6 (15)  1 (2.5)  4 (7.7) 

Graduated High 
School 

4 (10)  2 (5)  9 (17.3) 

Completed GED 1 (2.5)  0 (0)  1 (1.9) 
Have some 

college courses 
9 (22.5)  10 (25)  13 (25) 

Completed a 2-
year  degree 

7 (17.5)  6 (15)  7 (13.4) 

Completed a 4-
year degree 

13 (32.5)   21 (52.5)   18 (34.6) 

Table 5-1: Summary statistics for Healthy Families cohort. A total of n=132 bloodspots for 

children in three age groups were sourced from the Michigan Neonatal Biobank. At visits during 

childhood, anthropometry data were collected. ANOVA was used to compare mean WFL or 

BMI z-score across age groups. A chi-squared test of equal proportions was used to test for 

significant differences in categorical variable proportions by age group. WFL z-score, BMI z-

score, and distribution of weight categories were not significantly different by age; child race 

was significantly different by age group.* = p-value < 0.05. 
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Toddler Age-related Methylation 

Gene N 

Mean 

Bloodspot % 

Methylation 

(SE) 

Mean 12-24 

month old % 

Methylation 

(SE) 

Methylation by 

Age - Beta 

coefficient† 

 p-

value 

LINE-1 18 80.44 (0.89) 77.99 (0.23) -2.431   0.011* 

IGF2 18 49.10 (1.43) 47.93 (0.59) -1.147 0.310 

H19 18 58.14 (1.36) 52.37 (0.56) -5.774 <0.001* 

PPARA 18 18.29 (0.88) 14.45 (0.67) -3.852   0.001* 

LEP 18 21.9 (0.69) 26.93 (0.63) 5.020 <0.001* 

ESR1  18 4.96 (0.23) 4.40 (0.18) -0.582 0.052 

SREBF1 13 50.52 (2.47) 41.42 (2.91) -11.750   0.005* 

Preschool Age-related Methylation 

Gene N 

Mean 

Bloodspot % 

Methylation 

(SE) 

Mean 3-5 year 

old % 

Methylation 

(SE) 

Methylation by 

Age - Beta 

coefficient† 

 p-

value 

LINE-1 25 82.15 (0.66) 77.68 (0.23) -2.058 <0.001* 

IGF2 25 50.98 (0.91) 47.06 (0.50) -1.865 <0.001* 

H19 25 61.92 (1.39) 52.36 (0.45) -4.652 <0.001* 

PPARA 23 21.62 (0.74) 12.58 (0.49) -4.890 <0.001* 

LEP 23 22.05 (1/19) 28.59 (0.65) 3.297 <0.001* 

ESR1 23 5.42 (0.28) 4.54 (0.18) -0.430   0.008* 

SREBF1 22 47.85 (1.49) 37.89 (1.65) -5.306 <0.001* 

School-Aged Age-related Methylation 

Gene N 

Mean 

Bloodspot % 

Methylation 

(SE) 

Mean 10-12 

year old % 

Methylation 

(SE) 

Methylation by 

Age - Beta 

coefficient† 

 p-

value 

LINE-1 17 81.95 (0.73) 79.69 (0.49) -0.843   0.018* 

IGF2 16 49.34 (1.71) 45.30 (0.48) -1.779   0.013* 

H19 16 63.23 (3.51) 52.81 (0.59) -4.683   0.002* 

PPARA 16 19.98 (2.04) 10.06 (0.47) -3.607   0.002* 

LEP 13 19.52 (2.27) 27.68 (0.74) 2.184   0.047* 

ESR1  15 4.71 (0.29) 5.08 (0.17) 0.120 0.337 

SREBF1 12 51.11 (2.08) 36.38 (1.55) -5.305 <0.001* 

Table 5-2: Age-related methylation separated by gene region and age group. The three 

sections of the table show target gene age-related methylation for the separate age groups. WFL 

or BMI z-score and sex were included as covariates in all models. Linear mixed models included 

a paired factor to account for matched, within-individual effects. Separate models were run for 

each gene; beta coefficients and associated p-values for age from each model are reported. † = 

Beta coefficient for age predictor in linear mixed model; * = p<0.05. 
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Toddler Environmental Deflection 

Gene N 

Age:BMIz - 

Beta 

coefficient† 

 p-

value 

Age:MVPA - 

Beta 

coefficient† 

 p-

value 

Age:HEI - 

Beta 

coefficient† 

 p-

value 

LINE-1 36 -0.457 0.551 N/A N/A 0.036 0.671 

IGF2 36 -0.369 0.708 N/A N/A -0.110 0.335 

H19 37 0.434 0.726 N/A N/A -0.037 0.786 

PPARA 36 0.500 0.591 N/A N/A -0.041 0.694 

LEP 36 0.764 0.353 N/A N/A -0.151 0.094^ 

ESR1 36 -0.113 0.683 N/A N/A 0.015 0.596 

SREBF1 26 -1.198 0.687 N/A N/A 0.084 0.793 

Preschool Environmental Deflection 

Gene N 

Age:BMIz - 

Beta 

coefficient† 

 p-

value 

Age:MVPA - 

Beta 

coefficient† 

 p-

value 

Age:HEI - 

Beta 

coefficient† 

 p-

value 

LINE-1 50 0.277 0.456 -0.005 0.739 0.044 0.123 

IGF2 50 0.293 0.528 -0.005 0.782 0.007 0.854 

H19 50 -0.202 0.807 -0.019 0.565 0.059 0.352 

PPARA 47 0.771 0.042* -0.008 0.606 0.025 0.423 

LEP 46 -0.176 0.639 0.033 0.016* 0.024 0.402 

ESR1 46 0.006 0.970 0.005 0.480 -0.007 0.548 

SREBF1 44 0.867 0.367 -0.006 0.896 0.030 0.738 

School-Aged 

Children  
Environmental Deflection 

Gene N 

Age:BMIz - 

Beta 

coefficient† 

 p-

value 

Age:MVPA - 

Beta 

coefficient† 

 p-

value 

Age:HEI - 

Beta 

coefficient† 

 p-

value 

LINE-1 35 0.040 0.863 -0.002 0.905 0.040 0.331 

IGF2 33 0.026 0.950 -0.047 0.093^ 0.107 0.209 

H19 33 0.020 0.977 -0.056 0.363 0.012 0.919 

PPARA 32 -0.437 0.517 -0.080 0.510 -0.080 0.510 

LEP 27 -0.231 0.733 -0.180 0.001* 0.186 0.125 

ESR1 31 -0.076 0.470 -0.011 0.202 -0.009 0.637 

SREBF1 25 -1.248 0.050* -0.031 0.576 -0.036 0.768 

Table 5-3: Environmental deflection of age-related DNA methylation. Environmental 

deflection was investigated for each separate age group using interaction terms between age and 

environmental predictors of interest. Linear mixed models included a paired factor to account for 

matched, within-individual effects, and sex was included as a covariate in all models. Separate 

models were run for each gene; beta coefficients and associated p-values for interaction terms 

from separate models are reported. † = Beta coefficient for age:environment interaction terms in 

LME models that control for gender and id random effect; * = p<0.05; ^ = p<0.10. 
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Assay LINE-1 IGF2
1
 H19

1
 PPARA LEP

2
 ESR1 SREBF1

3
 

Location 
(hg19) 

Repetitive 
Element 

chr11: 2169499; 
chr11: 2169515; 
chr11: 2169518  

chr11: 
2024254; 

chr11: 
2024257; 

chr11: 
2024259; 

chr11: 
2024261 

chr22: 46545064; 
chr22: 46545083 

chr7: 
127881127; 

chr7: 
127881129; 

chr7:1278811
3 

chr6: 
152128834

; chr6: 
152128841

; chr6: 
152128845

; chr6: 
152128868 

chr17: 
17723203; 

chr17: 
17723288; 

chr17: 
17723297; 

chr17: 
17723305 

Forward 
PCR 

Primer 

5'- 
TTGAGTTAGGT
GTGGGATATA

GTT-3' 

5'-
GGAGGGGGTTTA
TTTTTTTAGGAAG-

3' 

5'-
TTTGTTGATTT
TATTAAGGGA

G-3'  

5'-
GGAGGTTTTTATG
AGGATGTAGTT-3'  

5'-
GAGTTTTTGG
AGGGATATTA

AGGAT-3' 

5'-
GTTGGAG

GTTAGGGA
GTTTAGGA

-3' 

5'-
TTTGTTTGG
GTTTTGATG
TAAATGTA-

3' 

Reverse 
PCR 

Primer 

5'-[Biotin]-
CAAAAAATCAA
AAAATTCCCTT

TCC-3' 

5'-[Biotin]-
AACCCCAACAAAA
ACCACTAAACAC-

3' 

5'-[Biotin]-
CTATAAATAA
ACCCCAACCA

AAC-3' 

5'-[Biotin]-
ACACATATTAACC
AACAATAACTATC

AT-3' 

5'-[Biotin]-
CAAAATTATA
TAAAACCCTA
TAACCTACCA-

3' 

5'-[Biotin]-
CTAACCCC
CACCCTAC

CCC-3' 

5'-[Biotin]-
ATTCAACTC
CACCCCTAT
ATTAAACTA

C-3' 

Sequencin
g Primer 

5'-
AGGTGTGGAT

ATAGT-3' 

5'-
GGGGTTTATTTTT

TTAGGA-3' 

5'-
GTGTGGAATT

AGAAGT-3' 

5'-
GGATGTGGTTGTT

TG-3' 

5'-
GGGAGGTAT
TTAAGGG-3'; 

5'-
GGGAGGGGA
GGGAGTTGG-

3' 

5'-
GGTTAGG
GAGTTTAG

GAG-3'  

5'-
GTATTGGTT
TTAAGTTAG

GTT-3' 

Sequence 
to Analyze 

TTYGTGGTGYG
TYGTTTTTTAAG
TYGGTTTGAAA

AG 

AGTATAGTTAYGT
YGTTTTTTATTGGT
TTYGTTAAGTAGA 

GGTYGYGYGG
YGGTAGTGTA
GGTTTATATA 

TTATAGTT 

TATATTTTAYGAGA
TATGTAGGATATT
AYGTGTATAGGTT 
ATTTTATAAATTTT

GAAATAA  

TGYGYGYGTG
GTTTTTGGHG 

TTGGYGGA
GGGYGTTY

GTTT 
TGGGATTG
TATTTGTTT

TYGT 

TTTAGTGYG
AGGTTGYGT

TT 
ATTTYGGTA
ATAAGTATA

TT 
AGGATTGTT
AGTAATAGG

GT 
ATTTTAAGT
AGTYGAGTG

GA 
GTTTTAGTTT
TTAAAGTTT

G 

Amplicon 
Length 

(bp) 
~150 bp 93 145 198 383 119 293 

Annealing 
Temperat

ure (°C) 
55 55 51 54.5 52 58/56* 56 

Number 
of Cycles 

48 50 50 48 50 15/29* 44 

Number 
of CpG 
Sites 

4 3 4 2 3 4 4 
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Table 5-4: Pyrosequencing primer sequences and PCR conditions. Pyrosequencing primer 

sequences and PCR conditions. Information for each assay, including genomic location 

(individual CpGs analyzed), primer sequences (5’-3’), sequence to analyze, amplicon length, 

annealing temperature, number of cycles, and number of CpG sites measured. Touchdown PCR 

was used for ESR1 assay, as indicated by the multiple temperatures and cycle numbers. 
1
Assay 

adapted from Hoyo et al., 2012; 
2
Assay adapted from Lesseur et al., 2013; 

3
Assay adapted from 

Adaikalakoteswari et al., 2016. 
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Figure 5-1: Associations between bloodspot DNA methylation and log odds of obesity 

(Y/N). Forest plot of logistic regression models examining associations between neonatal 

bloodspot DNA methylation at investigated target genes and log odds of obesity. Logistic 

regression coefficients are represented as log odds of obesity in the right column. The left 

column shows how the obesity outcome was grouped by age in the regression models. It also 

lists all target genes included in analyses. Associations that approach significance (p<0.10) are 

indicated in blue, and significant (p<0.05) associations are indicated in red. Arrows indicate that 

confidence interval extends beyond the scale of the plot. 
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Figure 5-2: Associations between childhood blood DNA methylation and log odds obesity 

(Y/N). Forest plot of obesity likelihood by childhood blood draw DNA methylation at 

investigated target genes. Logistic regression coefficients are represented as log odds of obesity 

in the right column. The left column shows how the obesity likelihood outcome was grouped by 

age in the regression models. It also lists all of the target gene methylation predictors included in 

bloodspot logistic regression models. For the 10-12 year old age group, no LEP methylation data 

was available for obese individuals. Trends that approach significance (p<0.10) are indicated in 

blue. 
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Figure 5-3: Associations between childhood blood DNA methylation and WFL or BMI z-

score. Forest plot of continuous WFL or BMI z-score by childhood blood draw DNA 

methylation at investigated target genes. Linear regression coefficients are shown in the right 

column. The left column shows how the regression models were grouped by age. It also lists all 

of the target gene methylation predictors included in blood logistic regression models. 

Significant positive association between PPARA blood DNA methylation and WFL or BMI z-

score (p<0.05) is indicated in red. 
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Figure 5-4: Age-related methylation at seven target loci by age group. Spaghetti plots are 

used to visualize age-related methylation for all individuals at each gene region. The three 

separate age groups are represented in different boxes, as well as by different colors. Thick black 

lines correspond to linear regression lines for association between age and mean methylation at 

each gene region. Age groups are indicated as 0, 1, 2, and 3, which correspond to bloodspot 

(time=0) and follow-up at one of three age groups – 12-24 months old (time=1), 3-5 years old 

(time=2), and 10-12 years old (time=3). All seven target genes demonstrated significant (p<0.05) 

age-related methylation between birth and at least one follow-up age. 
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Figure 5-5: Environmental deflection of preschool PPARA age-related DNA methylation by 

BMI z-score. Line plot of longitudinal PPARA DNA methylation from neonatal bloodspot (age 

group = 0) to preschool (age group = 2). BMI z-score is indicated on a colored scale, with blue 

representing higher z-score and red representing lower z-score. In the preschool group, PPARA 

showed significant positive deflection of age-related methylation by BMI z-score (p=0.04). The 

thick black line is the best-fit regression slope of DNA methylation over time for all individuals 

combined. Going from low BMI z-score (red) to high BMI z-score (blue), individuals had 

increased slopes of age-related methylation at the PPARA gene. This result was only present in 

the preschool age group. 
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Figure 5-6: Environmental deflection of preschool LEP age-related DNA methylation by 

MVPA/day. Line plot of longitudinal LEP DNA methylation from neonatal bloodspot (age 

group = 0) to preschool (age group = 2). MVPA/day is indicated on a colored scale, with blue 

representing higher activity counts and red representing lower activity counts. In the preschool 

group, LEP showed significant positive deflection of age-related methylation by MVPA/day 

(p=0.02). The thick black line is the best-fit regression slope of DNA methylation over time for 

all individuals combined. Going from low MVPA/day (red) to high MVPA/day (blue), 

individuals had increased slopes of age-related methylation at the LEP gene. This result was only 

present in the preschool age group. 
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Figure 5-7: Histograms and Q-Q plots of HEI score distributions. Histograms and Q-Q plots demonstrate general normality of 

HEI score data for each separate age group. Low sample size was available at the high and low end of HEI score range, meaning HEI 

score distributions did not adequately capture the far extremes of diet quality.  
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Chapter 6 

Conclusion 
 

6.1 Dissertation Objectives 

The overall goal of this dissertation was to improve understanding of the epigenetic 

mechanisms driving the developmental origins of health and disease (DOHaD) hypothesis 

(Bateson et al. 2004; Heindel et al. 2015). Specifically, we aimed to determine whether 

epigenetic aging, the changes that occur in the epigenome with age, contribute to later-life 

disease development. In an effort to answer this question, we tested whether early-life exposure 

to specific environmental factors alters long-term regulation of the epigenome, as had been 

suggested in previous human (Horvath et al. 2014; Shah et al. 2014; van Dongen et al. 2016; 

Zannas et al. 2015) and animal model (Faulk et al. 2014; Gilbert et al. 2016; Kochmanski et al. 

2016) studies. To examine the effects of perinatal environmental exposures on longitudinal 

epigenetic patterns, we exposed mice to bishenol A (BPA) and/or Western high-fat diet (WHFD) 

throughout the perinatal period, then measured longitudinal DNA methylation from blood and 

tail tissues. Both BPA and HFD have shown cross-sectional effects on the epigenome (Anderson 

et al. 2012; Yoon et al. 2017), but their effects on epigenetic aging were unclear prior to this 

dissertation. 

To describe the effects of the perinatal environment on epigenetic aging, we first 

developed a formal conceptual framework – environmental deflection (Kochmanski et al. 2017). 

This concept, which refers to environment-mediated shifts in the aging epigenome, was tested in 

each part of this dissertation. In the first chapter, we hypothesized that early-life exposure to the 
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endocrine-disrupting chemical BPA would result in altered epigenetic aging in a mouse model, 

as measured via longitudinal DNA methylation levels across multiple mouse tissues. 

Secondarily, it was hypothesized that the effects of BPA on murine epigenetic aging would be 

mitigated by increased physical activity and exacerbated by co-exposure to WHFD. In the fifth 

chapter, utilizing samples from a children’s cohort, it was hypothesized that physical activity and 

diet would also modify rates of epigenetic aging in a human population, and that long-term 

changes in age-related methylation would be associated with obesity status. Human results were 

used in an attempt to improve the clinical significance of our animal model data. 

  While the concept of environmental deflection cut through all aspects of this dissertation, 

there were also several experimental questions unique to each chapter. For example, in chapter 1, 

we compared the aging epigenome between two tissues – tail and blood – testing for tissue-

specific differences in the effects of perinatal exposures. In chapter 2, we examined epigenome-

wide 5-mC and 5-hmC levels based on BPA exposure, testing whether exposure modified 

establishment and long-term regulation of multiple epigenetic marks. Finally, in chapter 3, we 

included a disease outcome of interest – obesity. Recent research indicates that obesity is 

associated with cross-sectional measures of the epigenome (Almén et al. 2014; Wahl et al. 2016), 

but little has done to test whether obesity modifies rates of epigenetic aging during childhood. In 

the third chapter, matched neonatal bloodspots and blood draw samples were used to test 

whether obesity was associated with changes in the aging epigenome during the early phases of 

life. Despite these chapter-specific questions, all of the additional experiments fed into a single 

goal – to determine the contribution of epigenetic aging to the DOHaD paradigm. 
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6.2 Summary of Dissertation Findings 

Contrary to our initial hypothesis, we did not find any significant effects of BPA 

exposure on age-related methylation at target genes in mice. These results suggest that BPA may 

not deflect epigenetic aging in mice. Despite the negative findings for BPA, we demonstrated 

significant effects of WHFD on age-related methylation at target genes related to growth and 

development in mouse tail and blood tissues. These data support the environmental deflection 

paradigm, showing that perinatal exposure to an altered diet can alter epigenetic aging across 

multiple murine tissues.  

On a genome-wide scale, we found some evidence for environmental deflection of 5-mC 

levels in mouse blood by BPA exposure, but no evidence for BPA-induced deflection of 5-hmC. 

These inconsistent results may be the byproduct of differences in data structure and analysis 

methods for 5-hmC and 5-mC, but they could also reflect differences in the effects of 

environmental factors on these separate epigenetic marks. Despite the unclear environmental 

epigenome-wide deflection results, we did identify twelve BPA-related DHMRs annotated to 

murine imprinted genes. While this result was not predicted, it fits with previous data showing 

that developmental BPA exposure can alter the epigenome (Anderson et al. 2012; Susiarjo et al. 

2013). Providing support for the functional relevance of these 5-hmC findings, we showed BPA-

related gene expression across the life-course at the imprinted Gnas locus. The exact mechanism 

of action for BPA’s effect on 5-hmC remains unclear, but we hypothesize that it may be a 

byproduct of oxidative stress induction by BPA, as has been shown in previous research 

(Gassman 2017). In addition to the effects of BPA exposure, we also identified a region 

upstream of the Nfic gene that showed simultaneous age-related decreases in 5-mC and 5-hmC 

levels. Following up on these results, we showed that Nfic expression significantly decreased 
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with age, suggesting that epigenetic aging may have functional effects. Further investigation into 

the biological outcomes of epigenetic aging will require additional measurements of longitudinal 

gene expression. 

In humans, we found some evidence for environmental deflection of age-related 

methylation by physical activity-related energy expenditure, but no environmental deflection by 

healthy eating index, a measure of diet quality. This latter result was unexpected given the clear 

effects of WHFD on age-related methylation in the mouse exposure study. This inconsistency 

between species could reflect difficulties in accurately measuring human diet, differences in 

follow-up time-scale used for the two species, or the fact that humans have a number of 

uncharacterized environmental factors that were not considered in our analyses. Examining the 

mouse and human results as a whole, the target genes analyzed in both mice and humans – 

IGF2/Igf2, H19, ESR1/Esr1, and LINE-1 did not display any consistent, cross-species patterns of 

environmental deflection by environmental factors. This lack of consistency may be a byproduct 

of biological differences in humans and mice, species that show clear divergences in both genetic 

sequence and regulatory control (Yue et al. 2014). However, interpretation of our human 

findings is also limited by a small sample size; a larger cohort may show effects of environment 

on epigenetic aging that better correspond to the mouse data. Despite these inter-species 

inconsistencies, we did show evidence for environmental deflection by environmental factors in 

both species, suggesting that this is a shared epigenetic phenomenon in multiple mammal 

species. 

While the mouse exposure study results differed from our human cohort, longitudinal 

mouse model studies still provide a number of experimental benefits for investigating the aging 

epigenome. For one, mice advance to adulthood at a rapid pace, reaching full maturation at 
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approximately postnatal day 60 (Brust et al. 2015); this allows for a relatively fast examination 

of the entire life-course. Second, in addition to their short lifespan, mice also have closed 

environments with controlled diets and chemical exposures. Third, our mouse colony is a 

genetically invariant in-bred strain, which eliminates genetic heterogeneity. Combines, these 

benefits remove much of the variability and confounding present in human cohort studies, 

allowing for longitudinal experimental designs that examine the effects of an isolated exposure 

early in life. This would be difficult, if not impossible, to achieve in human cohorts, even using 

large samples sizes and sophisticated statistical models. 

   

6.3 Significance of Findings 

Despite multiple public health initiatives aimed at improving metabolic health in the 

U.S., obesity rates have continued to climb over the past few decades, reaching 39.8% in 2015-

2016 (Hales et al. 2017). Of particular concern, obesity is associated with a number of chronic 

diseases, including heart disease, hypertension, some cancers, and type 2 diabetes (Dixon 2010). 

Based on these negative health effects, the estimated annual medical cost of obesity in the U.S. is 

$149.4 billion in 2014 U.S. dollars (Kim and Basu 2016). Previous research has shown that the 

best predictors of adult obesity are obesity during childhood or a family history of obesity (Loos 

and Janssens 2017), results that seem to suggest a critical role for genetics in determining obesity 

status. However, reviews of this subject have shown that BMI-associated genetic variants only 

explain 0.66-2.70% of BMI variation , concluding that the available genetic information does not 

accurately predict risk of obesity (Loos and Janssens 2017). Genetics-based models fail to 

capture the essential role of the environment – including diet, behavior, and chemical exposures 

– in shaping obesity risk. As such, biomarkers of the developmental environment, including the 
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neonatal epigenome, have the potential to provide important information about chronic disease 

risk through adulthood.  

In the last two decades, Bisphenol A has been the subject of a vast amount of research, as 

well as significant public concern. Exposure to BPA is near ubiquitous in the U.S. population 

(Calafat et al. 2008), and it is found in a number of consumer goods, including plastic bottles, 

canned food liners, and some paper products (Cooper et al. 2011). Worries about the safety of 

BPA are largely based on evidence indicating that it is an endocrine disrupting chemical, 

meaning BPA can interfere with normal hormone synthesis, metabolism, or function (Diamanti-

Kandarakis et al. 2009). Specifically, research has shown that BPA is an estrogen-mimicking 

chemical that can activate growth-related transcription factors and bind to nuclear receptors 

involved in cell growth/maturation (Krüger et al. 2008; Sui et al. 2012). In addition to its activity 

as an EDC, previous work has reported BPA-induced oxidative stress (Gassman 2017), as well 

as associations between BPA exposure and metabolic disorders (Alonso-Magdalena et al. 2015; 

Carwile and Michels 2011; Ko et al. 2014). However, as a result of contradictory results showing 

sex-specific links between BPA exposure and a lean phenotype in mice (Anderson et al. 2013; 

van Esterik et al. 2014), the exact human health effects of BPA exposure remain controversial. In 

an effort to better determine the mechanism of action for BPA, recent studies have investigated 

the epigenetic effects of BPA exposure, showing that developmental BPA exposure can alter 

global, genome-wide, and gene promoter-specific methylation in mouse models (Anderson et al. 

2012; Singh and Li 2012; Susiarjo et al. 2013). However, these studies failed to distinguish the 

effects of BPA exposure on 5-mC and 5-hmC, separate epigenetic marks that can have opposing 

associations with gene transcription (Hahn et al. 2014; Wu et al. 2011). Here, we followed up on 

previous studies, showing that genome-wide 5-hmC was altered by BPA exposure, with specific 
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effects taking place at a number of imprinted genes. Given their tight regulation during 

development and involvement in growth-related biological pathways (Bartolomei and Ferguson-

Smith 2011), modified regulation of imprinted genes has the potential to adversely impact long-

term health. As such, our results showing longitudinal BPA-related differential 

hydroxymethylation at imprinted genes may represent a epigenetic mechanism by which BPA 

impacts health throughout the life-course. 

Typical toxicology studies examine the effects of a single chemical exposure at multiple 

doses in an animal model. While these types of studies are useful for identifying specific 

functional outcomes of exposure, they do not consider whether diet and/or behavioral factors 

modify the effects of exposure. Normal human environments are a mélange of behaviors, diet, 

and chemical exposures, so examining the effect of an isolated chemical exposure has only 

limited applicability to the human condition. Here, in an effort to determine how chemical 

exposures interact with other environmental variables, we integrated changes in diet quality and 

physical activity into our longitudinal models. This is particularly important in the field of 

toxicoepigenetics since previous studies have demonstrated significant associations between the 

epigenome and developmental high-fat diet or physical activity (Dudley et al. 2011; Laker et al. 

2014; Marco et al. 2013; Xu et al. 2017). Results from this dissertation showed that diet and/or 

physical activity modified rates of age-related methylation at specific genes related growth and 

development, but failed to show an interaction between diet/physical activity and BPA exposure. 

In addition, the effects of WHFD were greater than BPA in all measures of target gene DNA 

methylation in our mouse model, suggesting that developmental diet may have a larger effect on 

the methylome than perinatal BPA exposure. These data suggest that the epigenetic effects of 

WHFD and BPA are separate phenomena, and may work through separate biological pathways. 
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However, it is also possible that the effects of BPA were simply washed out by WHFD in the 

combined exposure group, and that these two exposures could still interact with one another in a 

“two-hit” exposure design. That is, early life exposure to BPA could set the epigenome in a 

poised state, making it more vulnerable to later-life environmental challenges, including WHFD. 

This paradigm of epigenetic dormancy is supported by recent research (Chamorro-Garcia et al. 

2017), suggesting that future studies should focus on dietary and chemical exposures that are 

staggered throughout life, not necessarily simultaneous during development. 

 

6.4 Strengths and Limitations 

This dissertation has a number of strengths that set it apart from traditional toxicology 

research. First, it utilizes the toxicoepigenetics framework, examining the effects of 

environmental exposures on epigenetic marks, a biological mechanism thought to play an 

important role in the developmental origins of disease. Second, we integrated data from modern 

sequencing technologies, allowing for a wide examination of the effects of environmental factors 

on the epigenome. Third, from the dissertation’s inception, we planned to include both mouse 

and human data in an effort to increase translatability of results. To ensure comparability of data 

across species, we used the same data collection and analysis methods for mouse and human 

DNA methylation results. 

Older toxicoepigenetics studies followed a simple, two-step experimental design: 1. 

maternal exposure to toxicant; 2. cross-sectional measure of offspring epigenome at sacrifice. 

This study design is effective at identifying dichotomous effects of exposure on the epigenome 

compared to control, but fails to consider how exposure alters long-term regulation of the 

genome. Eschewing the typical cross-sectional approach used in previous toxicoepigenetics 

studies, we used longitudinal data to examine the effects of developmental dietary exposures on 
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the aging epigenome. As a result, this dissertation aims to expand on a growing question in the 

field: can early-life toxicant exposures alter rates of epigenetic aging? 

Although very similar statistical methods were applied to both mouse and human data in 

this dissertation, several differences in study design and scope between the animal and human 

projects make the results difficult to compare between species. First, the human data was only 

collected during childhood, meaning measures of age-related methylation from our human cohort 

only represented the early phases of life. In contrast, our mouse studies followed the animals 

throughout life – PND21 to 10 months of age – thereby capturing the early phases of adulthood 

when chronic disease is expected to develop. Second, the environment of the recruited human 

cohort was not controlled, meaning background exposures to various environmental factors may 

be confounding the human methylation data. In contrast, the murine environment was carefully 

controlled, with dietary exposures representing the only difference between groups of mice. This 

allows for a reduction in background noise from environmental factors, and may explain the 

increased significance found in our mouse data. Third, the mice used in this study come from an 

in-bred, genetically invariant colony, while the recruited humans come from a heterogeneous 

population. This means that the mouse data, while less variable, may not be representative of a 

real-world population. As such, the mouse experiments should be repeated in different strains of 

mice to determine whether exposure effects are specific to our mouse colony. 

Sample sizes were limited in both the mouse and human portions of this dissertation. For 

the mouse exposure study, group sizes were selected based on power calculations performed for 

previous longitudinal mouse studies performed in the Dolinoy Lab. Nevertheless, larger group 

sizes would have improved analyses, particularly the environmental deflection interaction terms 

in linear mixed models. Due to increased environmental variability and population heterogeneity, 
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small sample size is an even greater concern in the human cohort. Fitting with this idea, 

interaction term fidelity broke down in the smallest batches of childhood human pyrosequencing 

data. Increasing the sample size of recruited human cohorts would improve statistical modeling 

of environmental deflection. 

Given how recently epigenetic aging has emerged as a topic of research interest, precise 

differences in how aging alters the epigenome in mice and humans remain unclear. Despite 

similarities in the underlying mechanisms of aging, research shows that mice and humans have 

marked differences in their metabolic stability throughout life (Demetrius 2006). Metabolic 

stability, which refers to the ability of an organism’s metabolic network to maintain normal 

redox balances in response to changes in enzymatic processes, is essential for maintaining 

homeostasis, thereby slowing the aging process. Mice have lower metabolic stability than 

humans, and are therefore expected to show decreased ability to offset the effects of aging 

(Demetrius 2006). As such, it is also possible that both epigenetic aging and environmental 

deflection are distinct in mice and humans. Additional cross-species comparisons are needed to 

test this idea.  

 

6.5 Future Directions 

 This dissertation attempted to integrate data from a mouse exposure study and a human 

cohort to investigate the contribution of toxicant-mediated environmental deflection to the obese 

phenotype. Unfortunately, while we found a number of significant results, interpretation of the 

data was limited by a number of experimental limitations. As a result, we did not definitively 

determine whether environmental deflection is a mechanism underlying chronic disease 

development. Despite this, the available data are suggestive in many ways, and pave the way for 

additional studies.  
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While it is difficult to directly compare the human and mouse data generated in this 

dissertation project, the available analyses suggest that the environment plays a role in shaping 

the aging epigenome in both species. Following up on these results, future studies should 

investigate whether specific environmental exposures – i.e. endocrine disrupting chemicals, 

pesticides, metals – have consistent effects on epigenetic aging in both humans and animal 

models. Studies should also examine the effects of exposure on long-term phenotype. This could 

be achieved through longitudinal measurements of body composition, RT-qPCR for gene 

expression, or physical analysis of additional tissues for pathological responses to exposure. 

Only with this type of combined approach will it be possible to determine the phenotypic 

consequences of environmental deflection. 

In this dissertation, we showed that BPA exposure modified establishment of 5-hmC at a 

number of imprinted genes in a mouse blood. As a result of epigenetic control mechanisms, 

imprinted genes exhibit monoallelic, parent-of-origin-specific gene expression during 

development (Bartolomei and Ferguson-Smith 2011; Das et al. 2009). Research shows that 

imprinting control regions (ICRs) are not demethylated during post-fertilization reprogramming 

(Arnaud 2010; Kelsey and Feil 2012; Kim et al. 2017; Pidsley et al. 2012; Smallwood and 

Kelsey 2012), making imprinted genes important potential targets of developmental exposures 

(Haycock and Ramsay 2009; Heijmans et al. 2008; Nye et al. 2015; Susiarjo et al. 2013). While a 

number of studies have examined 5-mC levels at murine imprinted genes, this is the first report 

of differential 5-hmC levels at imprinted genes in mouse blood. Given the novelty of this 

finding, this result should be tested in additional murine tissues, as well as human cohorts.  

For the human cohort, we isolated DNA from neonatal bloodspots and used DNA 

methylation levels from these samples as a baseline epigenome. The goal of this project was to 
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determine whether or not the measured neonatal DNA methylation was associated with obesity. 

However, the sample size of obese children from our cohort was quite small, making this 

relationship difficult to model. Additionally, we only measured DNA methylation at a few target 

genes related to growth and development. Moving forward, cohort size should be increased and 

data should be expanded to an epigenome-wide scale using sequencing technologies. In this way, 

it would be possible to determine whether the obesity phenotype is associated with neonatal 

DNA methylation. As an ultimate goal, future studies should examine whether it is possible to 

predict obesity risk from epigenetic biomarkers measured at birth. This would be a valuable 

clinical tool for identifying at-risk individuals prior to disease development. 

 

6.6 Conclusion 

In this dissertation, we showed that diet and physical activity have the potential to alter 

rates of age-related methylation throughout the life-course. These data support the environmental 

deflection paradigm that was described during the course of this project, showing that the 

environment can alter not only the cross-sectional measures of the epigenome, but also 

epigenetic aging. Separately, we showed that both age and BPA exposure can alter murine DNA 

hydroxymethylation, a secondary regulatory mark in the epigenome. The findings from this 

dissertation are relevant to the growing field of toxicoepigenetics, and help shed light on the 

mechanisms underpinning the developmental origins of health and disease hypothesis (Figure 6-

1). In an attempt to increase the clinical relevance of the mouse results, environmental deflection 

by physical activity and diet quality was also tested in a human cohort. While exact directionality 

of results varied by organism, our data support the idea that the aging epigenome is sensitive to 

environmental cues. These results emphasize the importance of longitudinal study design in 

toxicoepigenetics research, and suggest that environmental factors play a key role in the 
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developmental origins of adult disease. This idea has important implications for public health 

policies related to chronic disease prevention, including chemical regulations, dietary 

suggestions, and exercise recommendations. 
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6.7 Figures and Tables 

 

Figure 6-1: Synthesis of dissertation findings as they relate to the DOHaD hypothesis. Age-

related methylation was documented in both the mouse exposure study and the human cohort 

study. In mice, Western high-fat diet (WHFD) and activity-related energy expenditure (AEE) 

altered rates of epigenetic aging. Also in mice, BPA exposure had a long-term effect on 5-hmC 

levels at imprinted loci. In humans, moderate-to-vigorous physical activity (MVPA) levels 

altered gene-specific epigenetic aging, Childhood age group also altered rates of age-related 

methylation at several gene regions, indicating that epigenetic aging is dynamic throughout the 

life course. Also in humans, gene-specific neonatal bloodspot DNA methylation was associated 

with obesity likelihood in childhood. Combined, our data support the idea that the aging 

epigenome is sensitive to environmental cues, and that environmental deflection may play a role 

in the developmental origins of health and disease. 
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