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ABSTRACT

Quantum computing sounds like something out of a science-fiction novel. If we can

exert control over unimaginably small systems, then we can harness their quantum

mechanical behavior as a computational resource. This resource allows for astound-

ing computational feats, and a new perspective on information-theory as a whole.

But there’s a caveat. The events we have to control are so fast and so small that

they can hardly be said to have occurred at all1. For a long time after Feynman’s

proposal [2] and even still, there are some who believe that the barriers to controlling

such events are fundamental. While we have yet to find anything insurmountable,

the road is so pockmarked with challenges both experimental and theoretical that

it is often difficult to see the road at all. Only a marriage of both engineering and

theory in concert can hope to find the way forward.

Quantum error-correction, and more broadly quantum fault-tolerance, is an un-

finished answer to this question. It concerns the scaling of these microscopic systems

into macroscopic regimes which we can fully control, straddling practical and the-

oretical considerations in its design. We will explore and prove several results on

the theory of quantum fault-tolerance, but which are guided by the ultimate goal of

realizing a physical quantum computer.

In this thesis, we demonstrate applications of locality and asymmetry to quan-

tum fault-tolerance. We introduce novel code families which we use to probe the

behavior of thresholds in quantum subsystem codes. We also demonstrate codes

in this family that are well-suited to efficiently correct asymmetric noise models,

and determine their parameters. Next we show that quantum error-correcting en-

codings are incommensurate with transversal implementations of universal classical-

reversible computation. Along the way, we resolve an open question concerning

ε-information-theoretically secure quantum fully homomorphic encryption, showing

that it is impossible. Finally, we augment a framework for transversally mapping

between stabilizer subspace codes, and discuss prospects for fault-tolerance.

1Or so say the Watchmen.
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CHAPTER 1

Motivation and background

1.1 Fault-tolerant quantum computing

Quantum computing is a beautiful theory, admitting a host of possibilities that

are either unresolved or unimaginable for classical computers to achieve [2, 3, 4, 5,

6, 7, 8]. However, the beauty of quantum computing lies not only in the power of

its computational model, but in its physical realizability. Unfortunately, while the

laws of quantum mechanics allow us to build a quantum computer in theory, its

physical realization remains elusive. Simply put, fighting the effects of decoherence

and imperfect controls on such small and fast scales must be an enormous triumph

of both theory and engineering.

This thesis is concerned with quantum fault-tolerance, which involves encoding

and protecting quantum information against pervasive interactions with the environ-

ment and imprecise devices. More abstractly, it is the study of taking the quantum

effects of the very small and making them accessible to us.

In this work, we focus mostly on active quantum error-correction. While there are

proposals for quantum fault-tolerance on a physical and passive level [9, 10], these are

experimentally nascent and are not considered here. We prove results on the storage

of quantum information, the reliable processing of quantum information, and their

difficulties. Along the way, we resolve an open question in quantum cryptography

that we require as a building block. Although these results are not directly related,

they are small pieces of the same vast puzzle ultimately aimed at answering the

question: how can we encode and interact with quantum information in a controlled

way?

1
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1.2 Overview of results

1.2.1 Intermediate 2-D compass codes

In Chapter 4, we study a novel class of codes which we call intermediate 2-D

compass codes in the code capacity model. This family of codes includes many

famous subfamilies, including rotated surface codes, Bacon-Shor subsystem codes,

and Shor subspace codes.

Infamously, Bacon-Shor codes are an example of a family of local codes without

any asymptotic error threshold, while surface codes boast the highest thresholds

currently known. We define families that are intermediate between the two in order

to probe threshold behavior. We do this by defining structured families, for which we

determine threshold behavior both analytically and with a fixed decoder. Afterwards,

we define randomized code families, and use a deep connection between quantum

error-correction and statistical mechanics to give evidence that the threshold scales

linearly with the ratio of the expected dimension of the stabilizer group and the total

number of qubits.

Finally, we show that any code in this class supports an efficient minimum weight

matching decoder. We then define toy families within this class that exhibit superior

thresholds under asymmetric Pauli noise models using these decoders. We give fur-

ther evidence of the threshold’s linear scaling relation, and conclude with potential

applications for such codes.

1.2.2 Information-theoretically secure quantum homomorphic encryption

In Chapter 5, we consider the problem of extending classical homomorphic en-

cryption to the quantum setting. In doing so, we review existing proposals for

quantum homomorphic encryption. We then focus on the restriction of quantum

homomorphic encryption to the information-theoretically secure setting. Here, there

are several existing proposals which offer intermediate security guarantees, which we

review.

We consider the strongest security guarantee, perfect security, and a no-go proof

due to [11] which prohibits efficient encoding sizes in any perfect security scheme.

We then go on to answer an open question asked in [11] and [12], showing that even

an ε-relaxation of perfect security must incur significant overhead. This is proven via

a reduction to communication lower bounds for quantum random access codes, and

was obtained concurrently in [13]. Finally, we discuss prospects for working around

this no-go theorem.

This section is notably not about quantum fault-tolerance, but rather concerns

the capacity for quantum computers to offer cryptographic guarantees that are im-
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possible classically. However, we will use this result as a stepping stone to prove

results in Chapter 6.

1.2.3 Restrictions on transversal gates

In Chapter 6, we study transversal gate sets for quantum error-detecting and error-

correcting codes. We construct a homomorphic encryption scheme that provides

information-theoretic security guarantees at inefficient but nontrivial encoding sizes.

Using this, we study the question of which transversal gate sets can be implemented

for quantum codes. We show that, for a large class of quantum error-correcting codes,

implementing a classical-reversible universal transversal gate set is incommensurate

with the lower bounds proven in Chapter 4. In particular, this shows that these

codes cannot implement the valuable transversal Toffoli gate, answering a question

implicit in both [14] and [15].

We then restrict our attention to stabilizer subspace codes, and use the special

structure of codes exceptional to our theorem to rule out a transversal Toffoli gate

in this setting. We also provide an alternative proof inspired by the Bravyi-Konig

hierarchy [16], and note that similar arguments were extended in [17] to show that

all transversal gates in stabilizer subspace codes must lie in the Clifford hierarchy.

Finally, we discuss several potential workarounds to our no-go theorem.

1.2.4 A framework for transversal code switching

In Chapter 7, we investigate a framework for deforming stabilizer codes recently

proposed in [1] known as the stabilizer rewiring algorithm (SRA). This framework al-

lows one to map between different stabilizer codes via a transversal circuit comprised

solely of Pauli gates and measurements. As gates along this circuit are applied, the

initial code is deformed through a series of intermediate codes before reaching the

final code.

We propose a randomized variant to the SRA, the rSRA. We show that there

always exists a path of deformations which preserves the code distance throughout

the circuit, while using at most linear overhead in the code distance. This answers

an open question in [1], although is insufficient for full fault-tolerance. Furthermore,

we show that a random path will almost always suffice, and discuss both prospects

and barriers for implementing general fault-tolerant code switching circuits.

1.3 Dissertation outline

This dissertation is divided into eight chapters. Chapter 2 introduces the basics

of quantum information. This is meant to be a short summary of the foundations
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required to understand this thesis. For a more complete understanding of quantum

information, we recommend [18]. Next, Chapter 3 introduces a somewhat broader

view of quantum error-correction relevant to this thesis, but again, we recommend

[19] for a complete view of the field. All of the content of Chapters 2 and 3 is

background except for subsection 3.5.2, in which we briefly introduce a family of

homological codes as an example construction.

Chapter 4 introduces the family of 2-D compass codes and their properties. Chap-

ter 5 is focused on the limitations of information-theoretically secure quantum homo-

morphic encryption. Chapter 6 discusses limitations on transversal gates. Chapter

7 is concerned with transversal circuits mapping between stabilizer codes. Each of

these chapters is prefaced by an introduction summarizing the results in the context

of other work.

Finally, in Chapter 8 we summarize these results. We then give a broad overview

of potential avenues for future work, as well as rehashing the most salient open

questions from each chapter.

1.3.1 Works appearing

The work in Chapter 4 is ongoing at the time of this thesis, and will be found in

[20]. It has been presented in part during a contributed talk at the 3rd Aspen Winter

Conference on Advances in Quantum Algorithms and Computation by a co-author.

The main result in Chapter 5 first appears in [21], but the review is drawn pri-

marily from [22]. The result was shown concurrently in [13].

The work in Chapter 6 is contained almost entirely in [21]. This work was accepted

at the 7th International Conference on Quantum Cryptography as a contributed talk

by the author. It has been submitted for publication.

Finally, the work in Chapter 7 is drawn from [23]. It was presented as a poster

at the 21st Annual Conference on Quantum Information Processing by the author,

and has been submitted for publication.

In all of the above works, the author of this thesis has appeared as either the first

author or co-first-author, but has benefited tremendously from discussions with his

co-authors, colleagues, and friends. Other works to which the author has contributed

as a graduate student, but which do not fit into the theme of this thesis, can be found

in [24, 25, 26].



CHAPTER 2

The basics of quantum information

We begin with a cursory review of quantum computation. The following is not

intended to be complete, but is intended to briefly introduce only those fundamental

elements of quantum information that will be required in this thesis.

2.1 Quantum states

We start from the very beginning. The atomic units of quantum information are

called qubits. Formally, the state of a qubit can be called pure or mixed. A single

qubit pure state |ψ〉 is simply an equivalence class of unit vectors in C2,

|ψ〉 = α |0〉+ β |1〉 /(|ψ〉 ∼ c |ψ〉 : |c| = 1).

Here, the |·〉 notation represents vectors and 〈·| notation represents dual vectors, so

that 〈ψ||φ〉 (which we abbreviate as 〈ψ|φ〉) is a scalar inner product whereas |ψ〉 〈φ|
is a rank one operator.

We can extended this definition to n-qubit pure states by taking the tensor product

of the individual states, so that |ψ〉 is an n-qubit pure state if it can be expressed as

|ψ〉 =
∑

~i∈{0,1}n

α~i|~i〉,

a unit vector in the state space (C2)⊗n. Throughout, we will often suppress the

tensor product notation as concatenation, i.e. |i1〉 ⊗ |i2〉 = |i1i2〉.
A (general) single qubit quantum state can be expressed as a density operator.

A density operator is a positive semi-definite matrix of unit trace. Then a single

qubit quantum state is a density operator, ρ, acting on the state space of the qubit,

C2. We denote the set of density operators acting on a Hilbert space H as D(H).

Then again, we can extend this definition to an n-qubit quantum state by defining it

as a density operator acting on the combined tensor product of the individual qubit

state spaces, and so lying in D((C2)⊗n). Note that a pure state is simply a density

5
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operator of rank one via the identification |ψ〉 ↔ |ψ〉 〈ψ|. More generally, we can

define qudit quantum states by replacing C2 with Cd for any integer d > 2; all of the

definitions follow analogously.

We call quantum states mixed if they are not pure, and so a quantum state ρ

is mixed if and only if Tr(ρ2) 6= 1. Note also that any density operator ρ can be

diagonalized as

ρ =
∑
i

αi |ψi〉 〈ψi|

where |ψi〉 ⊥ |ψj〉 for i 6= j and nonnegative αi that sum to one. Thus, we can think

of any density operator as a probabilistic mixture of orthogonal pure states.

Sometimes, when we have a quantum state defined on a bipartite Hilbert space

V ⊗W , we would like to describe its state on just one of the subsystems. In this

case, we define the partial trace

TrV : D(V ⊗W )→ D(W )

as the unique linear operator satisfying TrV (ρ ⊗ σ) = Tr(ρ)σ. This is the right

description of a state on one of its subsystems as it preserves the expectations of

local observables. We sometimes refer to a state obtained by tracing out a subsystem

as a reduced state.

Given any mixed state ρ ∈ D(H), one can construct a pure state |ψ〉 called

the purification of ρ inside H ⊗ H′, where dim(H′) ≤ dim(H). This state satisfies

TrH′(|ψ〉 〈ψ|) = ρ, i.e. ρ is the reduced state of |ψ〉 in H. For any ρ, there are many

such purifications |ψ〉, see [18]. Thus, we can ultimately think of general quantum

states in terms of pure states in a sufficiently large Hilbert space.

Finally, we call a quantum state ρ separable if it can be decomposed as

ρ =
∑
i

αi(σi ⊗ γi),

where the αi are nonnegative and sum to one; otherwise we call it entangled. Note

that if ρ is pure, then it is separable if and only if can be identified as a simple tensor

in its state space, otherwise it is entangled.

2.2 Quantum operations

Now that we understand the basic building blocks of quantum information, how

are we allowed to manipulate and access them? For a pure quantum state occupying

a state space H, evolution is performed unitarily

|ψ〉 −→ U |ψ〉
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where UU † = I. Just as different quantum states can be combined as a tensor

product of individual states, so too can quantum operations. Namely, if U acts on

H and V acts on H′, then the combined action is U ⊗ V on H ⊗ H′. Concretely,

for finite-dimensional spaces, we can construct the tensor product as the Kronecker

product of matrices.

More generally, we would like to define mappings between general quantum states.

In this case, a (general) quantum channel is defined as a completely-positive trace-

preserving linear map Φ : D(H) → D(H′). Trace-preserving and positivity ensures

that a quantum channel maps density operators to density operators. Complete

positivity further enforces the condition that, for any n ∈ N, (In⊗Φ) is also positive

as a map D(R) ⊗ D(H) → D(R) ⊗ D(H′) where dim(R) = n. Choi’s theorem on

completely positive trace-preserving maps [27] tells us that any such Φ : Cn×n →
Cn′×n′ may be written as

Ψ(A) =
N∑
i=1

KiAK
†
i

where N ≤ nn′ and
∑

iKiK
†
i = I. The set of operators {Ki} are called the Kraus

operators of the channel.

Furthermore, just as we could purify quantum states, so too can we purify quan-

tum channels in the following sense. For any quantum channel Ψ : D(H) → D(H),

Stinespring’s dilation theorem [28] states that there exists a reference system R such

that dim(R) ≤ 2 dim(H) and Ψ(ρ) = TrK(U(ρ⊗ |~0〉〈~0|)U †).
There are a few quantum channels that are particularly important, and although

they fit into the above description, deserve special attention. A positive-operator

valued measure (POVM) is a collection of positive semidefinite operators {Mi} acting

on a Hilbert space and satisfying
∑

iMi = I. We often refer to the Mi as POVM

elements. In the special case that the {Mi} are orthogonal projectors, we say that this

set constitutes a projective measurement. One can think of a projective measurement

{Mi} acting on a quantum state ρ as returning a classical output i with probability

Tr(Miρ), and conditioned on outcome i, mapping ρ 7→ Miρ/Tr(Miρ). Finally, we

call a quantum channel an isometry if it preserves the standard inner product.

2.3 Gate sets

Although in principle we are allowed to manipulate quantum information via any

unitary, there are certain essential unitary gates that are particularly important. We

begin with the Pauli group P , which is simply the group of unitaries generated by
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the matrices

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

We can generalize the Pauli group to the n-qubit Pauli group Pn = {cP1⊗ . . .⊗Pn :

Pi ∈ P , c ∈ {1,−1, i,−i}}. We can in turn define the n-qubit Clifford group Cn as

the normalizer of Pn inside U(2n). These groups are generated by the unitaries

H =
1√
2

(
1 1

1 −1

)
, P =

(
1 0

0 i

)
, CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

The famous Gottesman-Knill theorem [29] states that any Clifford circuit is clas-

sically simulatable. In fact, the Clifford group along with any gate not contained

within the Clifford group is universal for quantum computing, in the following sense:

a finite gate set G is called universal if, for any unitary U and any ε > 0, there exists

a unitary V = Gi1Gi2 . . . Gi` such that ‖U − V ‖2 < ε.

Some common choices for gates that can supplement the Clifford gates and achieve

universality are the CCZ gate, defined by the action

CCZ : |a, b, c〉 7→ (−1)abc |a, b, c〉 ,

the CCX or Toffoli gate defined by the action

CCX : |a, b, c〉 7→ |a, b, (c⊕ ab)〉 ,

and the
√
P = T -gate

T : |a〉 7→ eaiπ/4 |a〉 .

The Toffoli gate will play a major role in Chapter 6, and so we remark now that

the Toffoli gate, with access to ancilla, is universal for classical reversible computing

[30]. That is to say, any reversible circuit can be decomposed into a product of Toffoli

gates. This leads us to a particularly nice interpretation of quantum computing, as

it was shown in [31] that {Toffoli, H} constitute a universal gate set for quantum

computing. Put another way, quantum computing can be seen as classical reversible

computing augmented by an H or Hadamard gate.
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2.4 Distances between quantum states

The are a few norms on quantum states that we will refer to in this thesis.

Throughout this discussion, when we write A ≤ B for A and B Hermitian oper-

ators, then ≤ refers to the semidefinite ordering so that 0 ≤ B − A, a positive

semidefinite matrix.

The first norm we will define on the set of Hermitian operators is known as the

Schatten p-norm. For a Hermitian matrix A with singular values a1, a2, . . . an, and

for any p ∈ [1,∞), we define

‖A‖p =

(
n∑
i=1

api

)1/p

.

We can similarly define the trace distance T between any two quantum states ρ and

σ as

T (ρ, σ) =
1

2
‖ρ− σ‖1.

If ρ and σ can be diagonalized simultaneously, then each can be thought of as a

classical probability distribution. In this case, trace distance is simply the statisti-

cal distance between these two distributions. Trace distance also satisfies the nice

property

T (ρ, σ) = max
M≤I

(M(ρ− σ)) .

Put simply, the trace distance between any two quantum states is the maximum

probability of distinguishing those two states using an optimal measurement, where

one can think of M as a POVM element.

One more notion of distance between two quantum states is the fidelity F between

those states. The fidelity is defined as

F (ρ, σ) = Tr

(√√
ρσ
√
ρ

)
.

In the case that ρ = |ψ〉 and σ = |φ〉 are pure states, this reduces to F (|ψ〉 , |φ〉) =

| 〈ψ|φ〉 |. Unlike the trace distance, fidelity is not a metric on the set of density

operators, but does satisfy

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√

1− F (ρ, σ)2.

Finally, Uhlmann’s theorem [32] gives a nice interpretation of fidelity in terms of pu-

rifications. Namely, for any quantum state ρ, let P (ρ) denote the set of purifications

of ρ. Then for any pair of quantum states ρ, σ, we have

F (ρ, σ) = max
|ψ〉∈P (ρ),|φ〉∈P (σ)

| 〈ψ|φ〉 |.
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Throughout this thesis, we may occasionally introduce new notation specific to a

section. In particular, in Chapter 6, we will sometimes denote reduced states on a

bipartite space as ρA := TrB(ρ), where ρ ∈ D(A ⊗ B). This is the only portion of

the thesis where this notation appears. Otherwise, the notation appearing here will

be uniform throughout the text.



CHAPTER 3

Quantum error-correction and fault-tolerance

In this chapter, we survey some basics of quantum error-correction and quantum

fault-tolerance. We will include those ingredients required for this thesis, but rec-

ommend [19] for a more comprehensive accounting. For an alternative and perhaps

gentler introduction, we also recommend the survey [33].

3.1 Quantum noise processes

The general setup is the following: we have an ideal quantum channel C which we

would like to implement. However, because of physical imperfections in our controls

and interaction with the environment, the channel that we actually implement is

E ◦ C where we think of E as a noise process. After repeating many such channels,

these noise processes will add up and eventually corrupt the underlying information,

and this is what we would like to protect against. Sometimes, we even think of C as

the identity channel acting over some period of time; in this case, we are describing

a quantum memory where E represents the degradation of our information over that

time.

We make a few simplifying assumptions, which are physically motivated, about

the noise channels that we allow. We assume that our noise acts independently on

individual physical qubits. Furthermore, we assume that our noise is incoherent, in

the sense that it can be modeled as a probabilistic ensemble of local Pauli operations.

Although general coherent rotations are an important consideration in quantum noise

processes [34, 35], they cannot be described within the stabilizer formalism and so

are difficult to model. For this reason, we restrict to two simplified noise models.

Definition 3.1. We define the bit-flip-phase-flip channel Ebp as the concatenation

of two channels Eb ◦ Ep, the bit-flip channel

Eb(ρ) = (1− px)IρI + pxXρX

11
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and the phase-flip channel

Ep(ρ) = (1− pz)IρI + pzZρZ.

Thus, Ebp is described by (px, pz). When px = pz, we refer to both as p the physical

error rate of the channel.

Definition 3.2. We define the depolarization channel Edp as the channel described

by

Edp(ρ) = (1− p)IρI +
p

3
(XρX + Y ρY + ZρZ).

Thus, the depolarization channel is described by p, which we again refer to as the

physical error rate of the channel.

In Chapter 4 we will refer to slightly more general asymmetric noise models, but

defer that discussion.

3.2 Subspace codes and the Knill-Laflamme recovery conditions

In order to protect a few physical qubits of information, we will encode them into

a small number of degrees of freedom of many physical qubits. Then, we define an

[[n, k]]-quantum code as a subspace C of dimension 2k inside a Hilbert space H of

dimension 2n. This is simply an encoding of k qubits into n qubits.

We would like such a code to be resilient against some number of physically

realistic errors. Given a set of errors E = {Ei} that we would like to protect against,

we say our quantum code corrects E if it satisfies the Knill-Laflamme error-correction

criterion,

PCEiE
†
jPC = δij

for all Ei, Ej ∈ E , where PC is the projection onto the codespace C [36]. In this case,

for every E ∈ E , there exists a recovery operation RE independent of the state of

the encoded information that corrects E. Note that if E and F are both correctable,

so are any linear combination of them. We say a quantum code has distance d if

any operator acting on at most d qubits can be expressed as a linear combination

of elements of the form EiE
†
j . In this case, there exists a recovery procedure by

which any error localized on at most bd−1
2
c qubits can be corrected. We denote the

parameters of such a code as [[n, k, d]]. An expanded discussion on these conditions

will be found in Chapter 6.

To define a logical operator acting on a code, we must choose some fiducial logical

basis for the code. In this case, we define a logical operator acting on our codespace

C as any unitary operator U : H → H that restricts to a map U : C → C. We refer

to the induced action on the logical basis states of the code as UL.
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3.3 Subsystem codes

A subsystem code is an encoding of logical information into a subsystem L of a

subspace C. Namely, on Hilbert space H, we have decomposition

H = C ⊕ C⊥ = L ⊗ G ⊕ C⊥.

We refer to G as the gauge degrees of freedom. Logical operators are then simply

codespace preserving unitaries ` : C → C that come in two flavors: dressed and

undressed. Simple undressed logical operators take the form f ⊗ I, while simple

dressed logical operators take the form f ⊗ g for some gauge operator g.

3.4 Stabilizer codes

Although the Knill-Laflamme conditions provide a general description of quantum

error-correcting codes, the stabilizer formalism makes these objects manageable [37].

A stabilizer group S is an abelian subgroup of Pn not containing −I. Because its

operators commute, we can associate to it a nontrivial stabilizer subspace code C

defined as

C := {|ψ〉 : g |ψ〉 = |ψ〉 ∀g ∈ S}.

Stabilizer codes are also called additive codes, as they can be identified with certain

additive subgroups of Fn4 . We will use this terminology extensively in Chapter 6.

More generally, we can consider stabilizer subsystem codes which are specified by

their gauge group G. Up to an automorphism of the Pauli group, we can express the

gauge group as

G = 〈Z1, Z2, . . . , Zs, Xs+1, Zs+1, . . . , Xs+g, Zs+g〉.

Here, Z(G) is the stabilizer group S for the subspace C, N (G) are the undressed

logical operators for the code, and N (S) are the dressed logical operators for the

code. For such a code on n physical qubits, encoding k = n−s− (g/2) logical qubits

to distance d, the parameters are [[n, k, d, g]]. Here, the distance d is equal to the

weight of the smallest operator in N (S)\G, the set of logical operators that are not

gauge symmetries. In the special case that G is abelian, G = S and the resulting

code is a stabilizer subspace code.

For any subsystem code specified by G, we can produce new codes by measuring

gauge degrees of freedom. Postselecting on outcome +1, the resulting gauge group

G ′ consists of all the elements of G that commute with the measured gauge. This

process is called gauge-fixing. Note that gauge-fixing does not change the number of

encoded qubits k, and cannot decrease the distance d.
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3.4.1 CSS codes

CSS codes are a special class of stabilizer codes whose gauge group can be pre-

sented as G = 〈GX ,GZ〉 where GX consists solely of X-type operators and GZ consists

solely of Z-type operators. These codes have a particularly nice structure, since X-

type error-correction and Z-type error-correction can be performed independently.

We sometimes refer to dx as the weight of the minimal nontrivial X-type logical

operator, and dz as the weight of the minimal nontrivial Z-type logical operator. We

will use codes within this class extensively in Chapter 4.

3.5 Homological codes

One particular class of subspace CSS codes that appear implicitly in Chapter 4

are homological codes, and so we briefly review them here. Any subspace CSS code

is specified by a stabilizer group that can be presented as S = 〈SX , SZ〉. As all of

the elements of SX and SZ commute with one another, constructing such a code

amounts to ensuring that the elements of SX commute with the elements of SZ .

We will now detail how to construct such a code from any chain complex of vector

spaces. Consider any such chain complex C

. . . Ci+1 Ci Ci−1 . . .
∂i+2 ∂i+1 ∂i ∂i−1

centered about an index i, where each Cj is a vector space over Z/2Z. Fix a basis

for Ci, and let n = dim(Ci). Associate to each such basis element a qubit, so that we

have n physical qubits. Fix a basis for Im(∂i+1) and to each element of that basis

associate an X-type stabilizer. Then, fix a basis for ker(∂i) and associate to each

element of that basis a Z-type stabilizer. Let S = 〈SX , SZ〉, the group of stabilizers

generated by the aforementioned X- and Z-type stabilizers. Note that two elements

sx ∈ SX and sz ∈ SZ commute if and only if 〈sx|sz〉 = 0 as vectors in Ci. This holds

for all such sx, sz as ∂i ◦ ∂i+1 = 0, and so we have defined a stabilizer group.

Let us determine the parameters of the associated stabilizer code. To any X-type

operator gx, we can associate an equivalence class gx where gx ∼ g′x if g′x = sxgx

for some sx ∈ Sx. This induces a quotient space Ci/Im(∂i+1). Furthermore, gx is

a logical operator if and only if it commutes with SZ , and so it must lie in ker(∂i).

Thus, there is an isomorphism between the group of X-type logical operators, with

the group operation inherited from multiplication in Pn, and the additive group given

by ker(∂i)/Im(∂i+1) = Hi(C;Z/2Z), the ith homology group of C with coefficients in

Z/2Z. Thus, k = rank(Hi(C)) and dX is the weight of the minimal nontrivial cycle

representative inside Hi(C).
We can reverse all the maps and in turn consider the cochain complex
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. . . Ci+1 Ci Ci−1 . . .
∂∗i+1 ∂∗i ∂∗i−1 ∂∗i−2

where rank(H i(C;Z/2Z)) = rank(Hi(C;Z/2Z)) by the universal coefficient theo-

rem, and in fact the coboundary maps satisfy ∂∗i−k = ∂Ti+k. Thus k is well-defined

and is precisely rank(Hi(C;Z/2Z)) while dz is the weight of the minimal nontrivial

cocycle representative in H i(C).
In the special case that such a chain complex is obtained from a cellular decompo-

sition of a manifold, the corresponding homological code belongs to a larger class of

codes known as topological codes. In this case, we can think of placing qubits on the

i-dimensional cells of the cellular complex. An X-type stabilizer is given by those

i-cells in the boundary of an (i+ 1)-cell, while a Z-type stabilizers is given by those

i-cells incident to an (i− 1)-cell.

3.5.1 Toric codes

Perhaps the most famous topological code is the toric code in 2-dimensions [38].

It can be realized as a square-cellular decomposition of a 2-torus, with qubits placed

on edges. Thus, to each plaquette, there is an associated 4-body X-stabilizer, and to

each vertex, an associated 4-body Z-type stabilizer. We will work extensively with

this code in Chapter 4. This code has parameters [[2L2, 2, L]].

One can easily extend this definition to homological codes defined on higher di-

mensional tori. In this case, we can consider a cubular cellulation of an n-dimensional

hypercube with periodic boundary conditions. Placing qubits on k-cells, the resulting

code will have parameters [[
(
n
k

)
Ln,
(
n
k

)
, dX = Lk, dz = Ln−k]] as Hk(T

n) =
(
n
k

)
.

3.5.2 Projective codes

One can obtain a similar family of codes by taking an n-dimensional hypercube

without a cellulation and taking the quotient by the antipodal relation ~e ∼ ~e ⊕ ~1.

Again, we emphasize that the only vertices in this construction are the corners of the

hypercube. The resulting manifold is RP n, and so because Hk(RP 2;Z/2Z) = Z/2Z,

we will encode one logical qubit no matter which k-dimensional cell we choose.

We call these codes projective codes. Such codes have parameters [[
(
n
k

)
2n−k−1, 1, dX =(

n
k

)
, dZ = 2n−k−1]]. Note that these codes can scale better than their toric code coun-

terparts when the latter is grown by increasing the dimension n analogously.

3.6 Quantum fault-tolerance

Quantum fault-tolerance is based off of a simple idea: encode quantum informa-

tion in such a way so that local errors become correctable. At every time-step, we
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assume that each physical qubit may be corrupted by some error with some prob-

ability p independently. Our encoding succeeds in preventing an error if, after that

time-step, we successfully diagnose the error and restore our information. Of course,

this idealized notion of fault-tolerance is far from a realistic setting. Practically

speaking, we must worry about things like time spent diagnosing errors, imperfect

controls introducing correlated errors, and actually implementing operations on our

encoded information. But first things first.

3.6.1 Fault-tolerance threshold theorem

Without encoding, if each of our devices fails with some probability p, then we can

only hope to realistically compute circuits of depth 1/p. We cannot hope to increase

the accuracy of our components indefinitely, and so something else is needed.

The fault-tolerance threshold theorem [39, 40, 41] states that, with imperfect

devices of a fixed but sufficiently low probability of failure, we can increase the

encoding size of our information to allow indefinite computation. The original idea

is based off of code concatenation. By concatenating two [[n, 1, d]] quantum codes,

we can obtain an [[n2, 1, d2]] quantum code. This is both good and bad: we can

tolerate more errors, but we’ve also given more opportunities for errors to occur by

increasing the size. Given that the error rate is sufficiently low, one can show that

increasing the encoding size will suppress the logical error rate. This is the content

of the fault-tolerance threshold theorem: for sufficient accuracy, we can implement

arbitrarily long quantum computations with polylogarithmic overhead. It was later

shown in [38] that a fault-tolerance threshold exists for certain topological codes

without appealing to code concatenation.

3.6.2 Thresholds and pseudothresholds

More formally, when we talk about a particular code, we typically mean an infinite

code family {CL} indexed by a growing size parameter L, along with an implicit

decoder. We can then define the logical error rate plog(p, L) as the probability that the

decoder will unsuccessfully diagnose an error syndrome and introduce an unintended

logical operator into the code. The accuracy threshold pthr is then the largest physical

error rate satisfying, for all p < pthr,

lim
L→∞

plog(p, L) = 0.

Plainly, it is the physical error rate below which we can make our computation

arbitrarily accurate by increasing the size of our encoding.

For a particular code at a fixed size, one can also define the pseudothreshold as

the physical error rate p at which plog(p) = p. Colloquially, this is the physical error



17

rate below which encoding the information reduces the logical error rate.

3.6.3 ExRec formalism

So far, our discussion has centered around the code capacity model, wherein errors

occur on the physical qubits comprising the code. However, this assumes that our

devices are acting perfectly to diagnose errors and correct them. While the code ca-

pacity model provides a nice theoretical upper-bound on our accuracy requirements,

we must ultimately account for circuit level errors.

The circuit error model assumes that at each time step, every circuit element can

fail with some probability. We formally act on any inactive physical qubits in a time

step by the identity channel, so that every qubit has some probability of failure in

every time step. If a circuit element fails with probability p, we replace its action by

a random Pauli operator on the support of its wires.

The extended rectangle formalism (or ExRec formalism) [39] is a technique for

analyzing malignant failures of devices in a circuit. For any effective gate G, we

assume that G is preceded and followed by an error-correction procedure EC. We

say that the gate G is t-fault tolerant if any t circuit element failures in the combined

circuit EC ◦G ◦ EC can be corrected by a faultless error-correction procedure. For

t = 1, we sometimes just refer to the gate G as fault-tolerant.

3.7 Fault-tolerant gates

Now that we have our definition of fault-tolerant gates, what are some examples?

This is tricky: once we have encoded our data, we might have to act on all of the

encoded qubits at once in order to implement a logical gate. This is not fault-

tolerant: if such a gate fails, it could certainly produce an uncorrectable error as it

will compromise all of the qubits of the code! Fortunately, there are several standard

constructions for fault-tolerant gates and measurements.

3.7.1 Tranversal gates

Transversal gates are one of the core components of fault-tolerant quantum com-

puting proposals, and one of the central themes of this thesis.

Definition 3.3. Given several code blocks of a quantum code C, partition the phys-

ical qubits from the collective blocks into T1, T2, . . . , T` satisfying, for any Ti, that

there is at most one qubit from each codeblock in Ti. Then any logical gate that

we can apply as a product of gates U1 ⊗ . . .⊗ U` such that each Ui acts only on the

physical qubits comprising Ti is called transversal.
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These gates are automatically fault-tolerant: if any single circuit element fails, it

will propagate errors to at most one qubit from each codeblock. As error-correction

is performed independently on each block, any such gate failure will be correctable

by an ideal error-correction circuit.

Gates of this form are extremely valuable to fault-tolerance proposals, but also

extremely restrictive. The discussions in Chapter 6 will focus extensively on quantum

error-correcting codes and their associated transversal gates. See Figure 3.1 for a

pictorial description. We remark that a tremendously computationally expensive

technique known as magic state distillation is often required to implement fault-

tolerant gates that are not transversal [42, 43].

Figure 3.1: An example of transversality. Pictured are three code blocks of the quantum Ham-
ming [[15, 7, 3]] code. The colors correspond to a transversal partition, while the three-dotted lines
correspond to a CCZ gate. CCZL is realized as the CCZ⊗15 when the final 6 logical qubits are
initialized to |0〉L. One of the CCZ gates has failed, producing an X-error on each of its supporting
orange qubits. Because error-correction is performed independently on each codeblock, the state
is recovered and after decoding, we have applied an effective CZZ gate on the first three logical
qubits of each block. We say CCZL is a transversal gate for the [[15, 1, 3]] code, which is obtained
by fixing the final 6 logical qubits of the usual [[15, 7, 3]] quantum Hamming code to the |0〉 state.

3.7.2 Fault-tolerant measurement

In order to diagnose errors for error-correction, we must also perform measure-

ments. It is essential to do so in such a way that if measurements fail, they will not

propagate errors. There are many popular constructions for doing so, but we include

only Shor-style measurement here [44, 4]. The essential idea again is to break the cir-

cuit into transversal pieces so that faulty gates do not produce malignant correlated

errors. See Figure 3.2 for a pictorial description.
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Figure 3.2: A transversal circuit for error-correction using Shor-style measurement. The left-hand
side diagnoses the error while the right-hand-size applies a correction conditioned on the outcome.
It requires access to verified cat states, which take the form 1√

2
(|0〉⊗w + |1〉⊗w). P1 ⊗ . . . ⊗ Pw is

the stabilizer check being measured, while P ′1 ⊗ . . . ⊗ P ′n is the correction applied conditioned on
the outcome of the check shown and all the other stabilizer checks (not shown). This is also the
transversal circuit used in Chapter 7.



CHAPTER 4

Intermediate 2-D compass codes

As we have seen, the heart of scalable quantum computing is fault-tolerance.

The celebrated quantum threshold theorem [39, 40, 41] ensures us that with suffi-

ciently accurate components, we can perform arbitrarily long quantum computations

with polylogarithmic overhead. For physical systems that prefer local interactions,

topological codes have emerged as leading candidates for fault-tolerant quantum

computation [38, 45, 46, 47, 48]. Among these, the rotated surface code is a particu-

larly enticing candidate, offering depolarization accuracy thresholds in excess of 15%

assuming noiseless error-correction with a planar architecture [49].

Another code family which has generated significant interest are the subsystem

Bacon-Shor codes [50]. These codes have many desirable properties: their gauge

group is 2-local, measurements can be performed with bare ancilla [51], and they

support fault-tolerance schemes that obviate magic-state distillation [52]. Unfortu-

nately, while Bacon-Shor codes offer some of the highest concatenated thresholds

[51], they fail to have any threshold when grown as a local subsystem family without

concatenation [53].

Indeed, asymptotic accuracy thresholds are important for determining the via-

bility of a code. For example, almost all the proposals for 2-D fault-tolerant ar-

chitectures without magic-state distillation [54, 55, 56] are not expected to exhibit

a threshold. With this view, we aim to understand the behavior of code capacity

thresholds in toy local systems.

Bacon-Shor codes provide such a system. Rotated surface codes can be realized as

a particular gauge-fix of Bacon-Shor codes, and while the former exhibit a threshold,

the latter do not. We examine the scaling behavior of thresholds in intermediate

gauge-fixed subsystem codes, which we call intermediate compass codes. We consider

both structured and randomized code families. The former we analyze by estimating

the logical error rate with a fixed decoder; the latter we analyze by identifying

the phase transition of an associate random-bond Ising model. We observe that,

20
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generically, the threshold scales linearly with the fraction of gauge-fixes.

Finally, we examine the behavior of toy code models in the presence of asymmetric

Pauli noise. We observe that these gauge-fixes provide a useful ansatz for tailoring

codes to these noise models, providing surface tessellations that match the asymmetry

of the noise at some expense to locality.

4.1 2-D Bacon-Shor codes

Bacon-Shor codes are defined on an L×L lattice of qubits, where we assume that

L is odd throughout. The gauge group can be presented 2-locally. It is generated by

nearest neighbor XX interactions on vertically adjacent qubits, and ZZ interactions

on horizontally adjacent qubits. Formally,

G = 〈Xi,jXi,j+1, Zi,jZi+1,j〉.

The bare logical operators are X-type operators acting on a row of qubits, and Z-

type operators acting on a column of qubits. The stabilizers are then generated by

products of adjacent X-type row operators and Z-type column operators (see Figure

4.1). Bacon-Shor codes then have parameters [[L2, 1, L, (L− 1)2]].
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Figure 4.1: The 49-qubit Bacon-Shor code. X-type operators are shown as bonds in red; Z-type
operators are shown as bonds in blue; overlaps are purple. On the top left there are two gauge
generators. Spanning the middle of the lattice are undressed logical operators. Spanning the bottom
and right of the lattice are stabilizer generators.

4.2 Rotated surface codes

Rotated surface codes can be seen as a π/4-rotation of Kitaev’s toric code in the

bulk, with modified boundary conditions. They are subspace codes with stabilizer
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group generated by an alternating checkerboard lattice of 4-local X- and Z- type

plaquette operators in the bulk. The boundaries are comprised of alternating 2-local

edge operators, of X-type on the east and west boundaries and of Z-type on the

north and south boundaries (see Figure 4.2). Thus, logical X operators are strings

of X-type operators that span the lattice from east to west, and logical Z operators

are Z-type operators spanning north to south.

Rotated surface codes then have parameters [[L2, 1, L, 0]]. Note that surface codes

can be realized as a gauge-fix of Bacon-Shor codes, simply by measuring the corre-

sponding plaquette operators. The boundary operators will then be induced by the

initial stabilizers of the Bacon-Shor code.
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Figure 4.2: The 49-qubit surface code. The red tiling represents X-type operators, while the blue
tiling represents Z-type operators. The bulk stabilizers are 4-local plaquettes, while the boundary
operators are 2-local edges.

4.3 Intermediate compass codes

We now define the family of intermediate compass codes. Begin with a 2-D Bacon-

Shor code defined on an L× L lattice of qubits with gauge group G.

We designate each of the (L− 1)× (L− 1) plaquettes in the lattice as either X-

minimal, Z-minimal, or gauge-free. To each X- or Z-minimal plaquette, we perform

a gauge-fix which ensures that its supporting 2-local X- or Z-type gauge operators no

longer lie in G. For an X- or Z- minimal plaquette supported on qubits {(i, j), (i, j+

1), (i + 1, j), (i + 1, j + 1)}, this corresponds to measuring the Z or X-type gauge

operator
i∏

k=0

Zk,jZk,j+1;

j∏
k=0

Xi,kXi+1,k,
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respectively. We call any code that can be realized via gauge-fixes of this type an

intermediate compass code.

Note that fixing a minimal plaquette amounts to cutting the global stabilizer

of opposite type into two pieces at that plaquette. Each of the potentially (L− 1)2

minimal plaquettes corresponds to fixing one of the (L−1)2 gauge degrees of freedom.

Thus, we obtain a subspace code only when there are no gauge-free plaquettes.

For symmetric noise models, we can use the CSS symmetry to argue about general

errors in terms of just bit-flip errors. We call an intermediate compass code CSS-

symmetric if its minimal X-plaquettes are mapped to minimal Z-plaquettes under

a π/4-rotation of the lattice. Such a code will have identical properties for the

correction of X- and Z-type errors, since they have identical configurations relative

to the east-west and north-south boundaries, respectively. For a pictorial description

of a CSS-symmetric intermediate compass code, see Figure 4.3.
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Figure 4.3: A pictorial description of a CSS-symmetric code with three minimal X-plaquettes and
three minimal Z-plaquettes. The three minimal X-plaquettes have upper left corner at lattice
sites (4, 2), (2, 6), and (4, 6), represented by shaded red blocks. The three minimal Z-plaquettes
are represented by shaded blue blocks. The edges correspond to the new stabilizers, cut at each
minimal plaquette. Red edges are X-type, blue edges are Z-type, and purple edges a combination.

4.3.1 Efficient decoding

Intermediate compass codes have the very nice property that they always support

an efficiently implementable minimum-weight matching decoder. This is because in

any compass code, each qubit is supported on at most two stabilizers of the same

type. Thus, excitations form either in pairs or from the boundary, and so matching

them will ensure that we return to the code state. Put another way, the corresponding

Ising model to any compass code supports at most 2-body interactions. We will detail
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the decoding procedure in further depth when analyzing asymmetric noise-tailored

codes.

Note that this heuristic does not work in general. For example, color codes can

have more exotic excitation structures: their logical string operators can branch, and

their excitations need not come in pairs. In this case, the above approach generalizes

to hypergraph minimum weight matching, for which there is no known polynomial-

time algorithm.

4.4 Structured Codes

We first consider two simple intermediate code families, which we call horizontal

and vertical codes. These families emphasize that the structure of the code can

significantly affect the behavior of a threshold.

4.4.1 Horizontal codes

We define f(L)-horizontal codes as CSS-symmetric codes for which the first (L−
f(L)) rows consist entirely of minimal X-plaquettes, and the last f(L) rows contain

no minimal X-plaquettes. Informally, these are codes for which the first (L− f(L))

rows behave as the surface code, and the last f(L) rows behave as the Bacon-Shor

code (see Figure 4.4). In particular, 0-horizontal codes are surface codes and L-

horizontal codes are Bacon-Shor codes.

Using techniques similar to [53, 57], one can show analytically that these codes

will often fail to have a threshold altogether. Essentially, a dominating portion of

the lattice must be equivalent to the surface code in order for this family to exhibit

a threshold.

Proposition 4.1. The family of f(L)-horizontal codes fail to have a threshold when-

ever f(L) = ω(log(L)).

Proof. Without loss of generality, we consider X-type errors and assume that every

qubit in the first (L − f(L)) rows is noiseless; certainly, this only reduces plog. The

remaining Z-type stabilizers whose support intersects noisy qubits are those double

column stabilizers extending down from the minimal X-plaquettes.

Given any physical error in this model, we can always multiply by an X-gauge

operator to ensure that all bit flip errors occur on the last row of qubits. We can

thus model the code as a repetition code with qubits experiencing an effective noise

peff(p, f(L)). In particular, a qubit experiences an effective bit flip error if the total
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number of bit flip errors in its column is odd. Thus,

peff =
1

2

(
((1− p) + p)f(L) − ((1− p)− p)f(L)

)
=

1

2

(
1− (1− 2p)f(L)

)
.

This reduces the problem to investigating the threshold of a repetition code with

an effective physical noise that scales with its length. The repetition code then fails

with probability

plog =
L∑

k=L+1
2

(
L

k

)
pkeff(1− peff)L−k.

Consider XL ∼ B(L, peff), the binomial distribution on L trials with bias peff. We

want to evaluate Pr[XL > L/2] in the L→∞ limit. We can approximate using the

normal distribution. For Y ∼ N (0, 1),

XL ≈ Lpeff +
√
Lpeff(1− peff)Y

= L

(
1− (1− 2p)f(L)

2

)
+

√
L(1− (1− 2p)2f(L)

4
Y

Furthermore, XL >
L
2

occurs precisely when Y > yL :=
√
L(1−2p)f(L)√

(1−(1−2p)2f(L))
. To evaluate

the presence of a threshold, we can choose any p > 0. Then for a threshold to exist,

we would need that

lim
L→∞

√
L(1− 2p)f(L)√

(1− (1− 2p)2f(L))
> 0.

Rearranging, we see that this condition fails to be met when

(1− 2p)−f(L) = ω(L).

This is whenever f(L) = ω(log(L)), independent of p.

The error of our approximation can be bounded by the Berry-Esseen theorem.

Namely, defining xL ∼ B(1, peff), for some constant c > 0, it holds that

‖Pr[XL > L/2]− Pr[Y > yL]‖1 <
c · E[(xL − peff)3]

Var(xL − peff)3/2
√
L
.

As the prefactor on the right is uniformly bounded in L, it follows that the se-

quence Pr[Y > yL] converges to Pr[XL > L/2] asymptotically as 1√
L

, and so the code

family cannot exhibit a threshold whenever f(L) = ω(log(L)).
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Figure 4.4: An illustration of the ( 5
7L)-horizontal code on 49 qubits. The red and blue plaquettes

represent minimal X- and Z- plaquettes, respectively. One obtains the ( 5
7L)-vertical code on 49

qubits by reflecting the minimal X-plaquettes about y = −x and the minimal Z-plaquettes about
y = x.

4.4.2 Vertical codes

We define f(L)-vertical codes similarly as CSS-symmetric codes for which the

first f(L) columns consist entirely of minimal X-plaquettes, and the last (L− f(L))

columns contain no minimal X-plaquettes. Intuitively, one would expect these codes

to exhibit a threshold for f(L) = θ(L), as any excitation would have to propagate

through a bulk of surface code in order to introduce a logical error.

We simulate the error threshold for such codes using a slightly modified minimum-

weight perfect matching decoder on the surface code bulk, efficiently implementable

using Edmond’s algorithm [58]. In the limit of large lattice sizes, the global stabilizers

spanning the boundary of the surface code bulk will flip with probability approaching

1/2. As such, we decode according to the local stabilizers alone, and use the boundary

information to project to a code state within the Bacon-Shor type bulk.

To compute the logical error rate, we borrow a technique from [49]. We sample

weight k errors uniformly at random to estimate the probability that a weight k error

may cause a failure, fk, and use this to estimate the logical error rate as

(4.1) pL(p) =
L2∑

k=d d−1
2
e

fk

(
L2

k

)
pk(1− p)L2−k.

We overestimate the error-rate slightly for the sake of computational simplicity. We

make the approximation in our trials that if |fk− 1/2| < 0.005, then fj ≈ 1/2 for all

j > k. Over several test trials, this never accounted for more than 0.08% absolute

error.
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We observe that this family has a threshold which is independent of f(L) as long

as f(L) = θ(L) (see Figure 4.5). This is expected as threshold behavior is a local

property: although at any finite size these globally asymmetric lattices account for

higher failure rates, these finite size effects are suppressed in the limit. It would be

interesting to examine cases in which f(L) = o(L), but more difficult to simulate as

this will further amplify finite-size effects.

4.5 Randomized Codes

Motivated by the observation that local structure determines threshold behavior,

we consider randomized code constructions to simulate “locally intermediate” be-

havior. In order to analyze such codes, we cannot hope to define fixed decoders to

estimate plog. Instead, we use a randomized decoding strategy and a well-studied

connection to statistical mechanics [38, 59] to probe thresholds.

4.5.1 Randomized Decoders

Consider a decoder and error-correction procedure for a subsystem code specified

by gauge group G. Each Pauli error E is representative of its error-class E :=

{GE}G∈G. The decoder will map an observed syndrome s to a candidate error-class

to correct.

The optimal decoder is the maximum-likelihood decoder (ML-decoder) which chooses,

for each syndrome s, the optimal error-class E maximizing Pr
[
E|s
]
. Letting S de-

note the set of all syndromes and Es denote this optimal choice of E conditioned on

syndrome measurement s, we can then express our success probability as

1− plog =
∑
s∈S

Pr
[
Es

]
.

Practically speaking, this decoder is often not efficiently implementable. Further-

more, it will be difficult to determine this fixed decoder for any randomized code

families. To alleviate this difficulty, one can use a suboptimal decoder that connects

to statistical mechanics. The decoder is probabilistic, and conditioned on syndrome

measurement s, chooses to correct error-class E with probability Pr
[
E|s
]
. We can

then express the success probability of this decoder as

1− plog =
∑
E

Pr[E] · Pr
[
E|sE

]
.

This emphasizes the importance of error-class probabilities, and not the probabilities

of individual errors. Note that although this decoder performs worse at any finite

size, it will share the same threshold as the ML-decoder.
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Figure 4.5: Physical vs logical error rates for various f(L)-vertical codes. The standard deviation
is less than the size of the markers. Our plot agrees with previously evaluated minimum weight
matching decoders at a 10.33% threshold for f(L) = L, up to statistical error. The coefficient on
L amplifies the finite-size effects, but leaves the threshold the same.
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4.5.2 Mapping to statistical models

We recall a well-known connection relating regular code families to associated sta-

tistical models. The presence of a phase transition in the statistical model indicates,

though does not imply, an accuracy threshold for the family. We will construct an

intermediate code family with an associated Ising model defined on random graphs

generated according to a parameter q. The parameter q captures the fraction of

minimal X-plaquettes that appear in the code family, conditioned on there existing

a gauge-fix transforming any member of the family into the surface code.

For varying q, if the resulting model is ferromagnetic at temperatures above the

Nishimori line for sufficiently small p, then this indicates an accuracy threshold for

the code family. While we detail the construction only for X-errors arising from the

bit flip channel and depending exclusively on G := GX , it can be extended to more

general codes [59].

Let G0 be a minimal generating set of GX . Let the gi ∈ G0 be indexed by i, and

associate to each generator an Ising spin si = ±1. Index the physical qubits by

j ∈ {1, . . . , L2} and define

gi(j) :=

1 if gi is supported on site j

0 otherwise.

Then for any vector τ ∈ {+1,−1}L2
, we define the classical spin Hamiltonian

Hτ (s) = −
L2∑
j=1

τj

|G0|∏
i=1

s
gi(j)
i .

For any Pauli X-error, define (τE)k to be −1 if E is supported on site k, and +1

otherwise. Then for any g ∈ G, letting sg denote the corresponding binary string, we

have

Hτg(s) = Hτ1(sgs).

For inverse temperature β, let Z be the partition function

Z(τ, β) =
∑
s

e−βHτ (s).

For physical error-rate p, we can define the virtual temperature βp according to the

Nishimori line [38] so that

βp :=
log(1− p)− log(p)

2
.
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Along this line, we can relate the partition function of the statistical model to the

probability of certain error-classes occurring. Namely, for individual errors E,

Pr(E) = (2 cosh(βp))
−L2

e−βpHτE (s1).

As Pr
[
E
]

=
∑

G Pr[EG] for representative E, it follows from the previous observation

on gauge translations that

Pr
(
E
)

=
∑
g∈G

(2 cosh(βp)))
−L2

e−βpHτE (sgs1)

=
∑
s

(2 cosh(βp)))
−L2

e−βpHτE (s)

= (2 cosh(βp)))
−L2 Z(τE, βp).

This expresses error-class probabilities in terms of the statistical model. Because

our codes encode a single logical qubit, we can simply notation as each syndrome

corresponds to two unique error-classes E1, E2 related by XLE1 = E2 for XL ∈
N (G)\G. Define τ to be a quenched random variable that takes value τE with

probability p|E|(1 − p)L2−|E|. Under this randomly-disordered statistical model, we

can express our success probability 1− plog using the randomized decoder as

=
∑
E

Pr(E) Pr
[
E|sE

]
=
∑
E

Pr(E)

 1

1 +
Z(τEXL ,βp)

Z(τE ,βp)


=
[
(1 + exp{−βp · (F (βp, τEXL)− F (βp, τE))})−1]

p

where [·]p is the average over the random variable τ distributed according to p and

F is the free energy. If our success rate approaches unity, then the free energy

cost of introducing a (nontrivial) domain wall XL diverges with the system size.

Since XL also grows with the size of the lattice, this occurs when the randomly-

disordered statistical model experiences a particular phase transition. Thus, finding

a transition to the ferromagnetically ordered phase indicates that the free energy cost

of introducing a growing domain wall will diverge with L, suggesting a threshold [38].

Conversely, temperatures in the disordered phase will always be above threshold, and

so it is meaningful to study phase transitions of the associated model.

To summarize, if the corresponding statistical model occupies a ferromagnetic

phase at temperatures T above the Nishimori line, then it will be ordered at the

correct virtual temperature, giving evidence that the corresponding code family will

exhibit an accuracy threshold at physical error rate p.
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4.5.3 Randomized code families

We define f(L)-randomized codes stochastically in the following way. For a lattice

of linear dimension L, for each X-type plaquette in the checkerboard configuration

of the rotated surface code, we fix the gauge so that the X-plaquette is minimal

with probability 2f(L)/(L − 1)2. The factor (L − 1)2/2 is simply the total number

of X-type plaquettes in the checkerboard configuration, so that f(L) is the expected

number of minimal X-plaquettes in the resulting lattice.

In particular, we consider q
2
(L − 1)2-randomized codes for different 0 < q < 1,

which we call q-codes. Plainly, these are codes for which a q-fraction of the X-

plaquettes are minimal (see Figure 4.6). Thus, 0-codes are Bacon-Shor codes, and

1-codes are surface codes.

We map these codes to corresponding anisotropic Ising models on random graphs

defined according to the stochastic gauge-fixing procedure (see Figure 4.7). We ana-

lyze the model using virtual inverse temperature β and disorder p along the Nishimori

line to estimate the phase transition. See also Appendix B for a visualization of the

q-code model during thermalization in different parameter regimes. We find that

the accuracy threshold scales linearly with q, suggesting that the threshold depends

linearly on the expected connectivity of the lattice in this restricted family.

4.5.4 Parameters of the Ising model simulation

To get the data points on this figure, we generate random samples of the random-

bond Ising model with the given q and p for various system sizes L. The temperature

is determined by the Nishimori line from the disorder parameter p. For each random

trial, we use a cluster algorithm to compute the Binder cumulant [60]. Finally we

scan over p at a separation of 0.1 for ln(p) and look for the crossing point of each of

these curves for different L, giving the transition point.

The system size we use ranges from L = 5 to L = 61, and the number of steps for

the cluster update ranges from 106 to 5× 108. The number of random trials for each

q, p and L range from 80 to 104. Because of the limited computational power and

the relatively small system size, we apply periodic boundary conditions to reduce the

finite-size boundary effect. In general, as the transition point pth increases with q, it

enhances the frustration in the system and so more steps are needed for convergence,

which is verified by the autocorrelation length of the observables. On the other hand,

for larger q the slope of the Binder cumulant U with respect to − ln(p) also increases,

and so fewer samples and smaller system sizes are required to achieve the same level

of accuracy.
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Figure 4.6: The X- and Z- minimal plaquettes featured as red and blue plaquettes respectively on
a 9× 9 lattice. The above was generated as an instance of a q-code with q = 3
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Figure 4.7: The associated random-bond Ising model to the q-code described in Figure 4.6. The
smaller dots represent qubits, the larger dots represent Ising spins. Black edges represent ferro-
magnetic spin interactions; red edges represent antiferromagnetic interactions. North and south
boundaries experience an external magnetic field. This model was generated with q = 3
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disorder p = 1
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Figure 4.8: Computed threshold pth from the random-bond Ising model vs. the parameter q. The
orange line is a linear fit through the origin.

4.6 Asymmetric noise tailored codes

We next consider intermediate subspace compass codes, and analyze their behavior

in the presence of asymmetric Pauli noise. The first of these families amounts to

particular surface tessellations, while the second is constructed stochastically. In

both cases, the models remain local.

In realistic physical systems, Pauli error is rarely unbiased, with dephasing noise

pz a dominating factor. For this reason, we define η-biased Pauli noise with physical

error rate p similarly to [61].

For the remainder of this section, we define p = px+py+pz where η := pz/(px+py),

and for simplicity, we assume py = px. At η = 1/2, this is the usual depolarizing

channel with physical noise p, and as η → ∞, this becomes the pure dephasing

channel with noise p.

Unlike the recent work in [61], we consider modifying the codes directly while

maintaining independent X- and Z- type decoding. A similar mapping to a redun-

dant syndrome set for Z-type errors with a correlated X, Y syndrome decoder should

push thresholds up even further.
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4.6.1 Elongated codes

We define a set of intermediate compass code families parametrized by ` ∈ N+.

These codes are constructed by fixing the (i, j)-th plaquette to be a minimal X-

plaquette if i − j ≡ 0(mod `). The remaining plaquettes we fix to be minimal

Z-plaquettes, resulting in a subspace code. We call the resulting family `-elongated

codes (see Figure 4.9).
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Figure 4.9: The bulk of a 3-elongated code. After deformation, 3-elongated codes form a
[3.6.3.6; 32.62] plane tiling with pairs of triangles identified along their shared edge. Each hexagon
is a Z-type stabilizer, while each plaquette is an X-type stabilizer. There is an additional 2-local
X-type stabilizer on any edge shared by adjacent hexagons.

Under this definition, we obtain Shor’s code [44] for ` = 1 and the surface code

for ` = 2. For ` > 2, we obtain an asymmetrization of Kitaev’s toric code in

the bulk with extended 2`-body plaquette operators. These asymmetric topologi-

cal codes will naturally behave better in the presence of similarly asymmetric noise,

while sacrificing somewhat in locality. The analysis of this behavior using a gener-

alized minimum-weight matching decoder can be found in Figure 4.10. Table 4.1

summarizes the code parameters in the η-biased Pauli noise model.

4.6.2 Randomized bias codes

In this last section, we consider randomized intermediate compass subspace code

families. Intuitively, minimal X-plaquettes help to correct X-errors: each such pla-

quette represents a cut in the corresponding Z-type stabilizer, which allows it to

collect more information locally. In the extreme case, performing each cut results in
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Figure 4.10: Physical vs logical error rates for ` = 3, 4, 5, 6 elongated codes. The plots on the left
are for bit-flip errors; the plots on the right are for phase errors.
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` ηopt pthr η∗ pz px

3 1.75 17.85% 1.39 14.1%± 0.3% 6.5%± 0.15%

4 3.02 20.11% 2.10 17.5%± 0.2% 5.0%± 0.15%

5 4.26 21.56% 2.78 19.5%± 0.1% 4.1%± 0.10%

6 5.89 22.74% 3.70 21.1%± 0.1% 3.3%± 0.10%

Table 4.1: The parameters of `-elongated codes using the minimum weight matching decoder. Here,
ηopt is the bias yielding the best threshold pthr for each code, while η∗ is the bias above which the
code will always outperform the surface code. Finally, pz and px are the dephasing and bit-flip
thresholds, respectively.

Shor’s code, the quantum analogue of the repetition code.

With this in mind, for q ∈ [0, 1], we define q-randomized bias codes as a family

of random codes. Each member of the family is obtained by selecting each plaque-

tte independently to be Z-minimal with probability q. We analyze these codes as

well, providing a picture of their behavior; see appendix Figures 1 through 3 for an

example.

Using the statistical model to threshold correspondence detailed previously, one

could in principle estimate the thresholds of these randomized code families, but the

rich connectivity makes this difficult. We again estimate the behavior of these codes

using the following minimum weight-matching decoder schematic.

For different code sizes, we sample 100 different codes from the q-randomized bias

code family. Then for each such code, we build a decoder graph G from its associated

Ising model by identifying spins as vertices and interactions as unweighted edges.

Here, it is essential that the Ising model associated to any intermediate compass

code supports at most 2-body interactions.

For each error weight k, we sample 5000 random error configurations and generate

the corresponding subgraphs in G. We then add and connect boundary vertices

to ensure a perfect matching exists [49]. The minimum weight perfect matching

is computed using a combination of Djikstra’s algorithm and Edmond’s blossom

algorithm. Finally, we average the probability of success over all samples, and use

these to compute Equation (4.1).

See appendix Figures 1 through 6 for a pictorial description of randomized bias

codes. We expect that the randomization in these codes may cause a significant gap

between the performance of this decoder and the optimal decoder. Figures 5 and

6 emphasize the duality between the X-type and Z-type Ising models associated

to these codes. The sparsity of the X-type model corresponds simultaneously to a

lower X-type phase transition, as well as a more robust Z-type error decoder, and

vice versa. Intuitively, the gap between the minimum-weight matching decoder per-
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formance on one model and the thermodynamic stability of its dual should indicate

the expected loss. Again, this is because the minimum weight matching decoder

identifies the most probable error given a syndrome, rather than the most probable

error class.

We observe that the threshold drops slightly for these randomized codes relative

to surface codes, and increases slightly compared to the similar family of 4-elongated

codes. However, these are relative minor changes in threshold, reinforcing that with-

out problematic structure in our code (such as that in section 4.4.1), the threshold

scales roughly linearly with the overall fraction of stabilizer checks for that particular

type of error. See Figure 4.11 for a snapshot of their behavior. It is important to

note that these codes do remain local up to a logarithmic factor for any q ∈ (0, 1).

This is because the maximum weight of any X-stabilizer is at most the number of

horizontal consecutive Z-fixes. In expectation, the longest such chain of Z-fixes is

O(log(L)) with a constant depending on the bias.
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Figure 4.11: Physical vs logical error rates for randomized bias codes, with bias q = 0.75 and
q = 0.50, respectively. The thresholds roughly mirror those of the comparable surface code and
4-elongated code.

4.7 Conclusion and future work

In this chapter, we have compared the relative behavior of error thresholds for

intermediate compass code families. In particular, we compare threshold results for

both structured and randomized intermediate compass code families. We find that

the threshold rate scales roughly with the expected local connectivity, subject to the

constraint that a gauge-fix to the surface code is possible. It would be interesting

to relate this to proposals for quantum codes defined on fractals [62] where infinite

ramification order (rather than large Hausdorff dimension) seems to be the requisite
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property for an ordered model at finite temperature.

We have also identified simple code families within this family that behave better

with respect to asymmetric Pauli noise, at some cost to the locality of the codes.

As realistic system often exhibit biased noise, schemes that use this bias to increase

threshold may prove useful in the future. Of course, there the important consid-

eration of whether this bias propagates down to the circuit level, which we must

ultimately consider.

As we have only touched on the design space and properties of such codes, there

is much left open about such codes. First and foremost, there is the barrier of

transferring from the code capacity error model to the circuit model. Can one hope

to design intermediate codes in a way that reduces the effect of correlated errors,

similar to the hook errors in surface codes [63] or bare-ancilla error correction in the

Bacon-Shor [51] and Bare [[7,1,3]] codes [64]. Ultimately, whatever gains we make in

the code capacity model must mitigate losses incurred from reduced locality.

It would be interesting to generalize this family to higher rate codes using tech-

niques from [65]. The difficulty is in defining a model which ensures that the stabilizer

cuts of opposite type commute with one another. Investigating a similar approach

using the 3-D compass model [50] might prove interesting as well.

Finally, we have only given simple examples of codes within this model. It is

reasonable to expect, for example, that `-elongated codes are not optimal at the

intermediate biases we consider. Are there other configurations that perform better?

Intuitively, the insertion of minimal Z-plaquettes helps to correct Z errors locally

around them. These codes may even be tailored to improve error-rates on correlated

local noise models, where the bias varies continuously along the lattice. As these

noise models may be more physically realistic, we hope to investigate this possibility

in future work.



CHAPTER 5

Quantum homomorphic encryption and its limitations

Fully homomorphic encryption is one of the great advances of modern cryptogra-

phy. First discovered by Gentry in 2009 [66], it allows one to delegate the processing

of encrypted information by a party without access to the secret key. In classical

computing, an enormous body of work has gone into developing and optimizing this

protocol (see [67] for a summary).

As the development of large scale quantum computers progresses, we must con-

sider the cryptographic consequences of their arrival. While quantum computers can

bolster the security of some cryptographic protocols [7], they can also obviate the

security of others [68]. Fortunately, the security of existing homomorphic encryption

schemes is derived from hard problems on lattices [69, 70], which are expected to be

computationally difficult for quantum computers to solve. Nonetheless, it is natural

to ask:

Can quantum computers allow homomorphic encryption schemes which exhibit

information-theoretic, rather than computational, security?

We detail why the answer to this question is many-fold and subtle, but for the

strongest security definitions, show that the answer is no [21, 13, 11, 71].

5.1 Classical homomorphic encryption

A (classical) homomorphic encryption scheme is typically an asymmetric key en-

cryption scheme with an additional functionality, called evaluation. This function-

ality allows a third party, in possession of a ciphertext, to meaningfully manipulate

the underlying plaintext without possessing the secret key. Formally, a homomorphic

encryption scheme HE is a four-tuple of (randomized) algorithms.

HE.KeyGen(1κ, 1L) = (pk, sk, evk). A key generation algorithm that accepts

security parameter κ and evaluation parameter L. It outputs the public key pk

39
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and secret key sk. Unlike usual encryption schemes, it also outputs a third key

known as the evaluation key evk, which depends on L. This key will assist with

the additional evaluation functionality.

HE.Enc(m, pk) = c. An encryption algorithm that accepts a public key pk and

a single bit plaintext m, and then outputs a ciphertext c. By slight abuse of

notation, we also allow m to be a bit string, and assume the algorithm performs

encryption bit-by-bit.

HE.Dec(c, sk) = m. A decryption algorithm that accepts a single ciphertext

c and secret key sk and outputs a single bit plaintext m. Again, we allow

multi-ciphertext inputs and assume decryption occurs bitwise.

HE.Eval(C, (c1, . . . , cn), evk) = c′. An evaluation algorithm that accepts a

Boolean circuit C with n input wires. It further accepts n ciphertexts (c1, . . . , cn)

and an evaluation key evk. It outputs a single new ciphertext c′.

Note that we can similarly define a symmetric key HE scheme, and it is straight-

forward to generalize to the evaluation of non-Boolean circuits. Then the encryption

scheme HE should satisfy the usual properties of an encryption scheme, but should

further satisfy the following homomorphic property. For some circuits C which we

call the homomorphisms of the scheme, we have the following commutative diagram.

M C

M C

HE.Enc(·,sk)

C HE.Eval(C,·,evk)

HE.Dec(·,sk)

Here, M is the space of valid plaintexts (i.e. all binary strings), and C is the

space of valid ciphertexts. One can think of the data processing as occurring from

top-to-bottom, and the encryption as occurring from left-to-right. Plainly, a party

Alice can perform the computation of C herself, or outsource the computation by

sending an encrypted message to a third party Bob.

We further call a homomorphic encryption scheme compact if the complexity

of HE.Dec is independent of the function being evaluated. This precludes trivial

schemes in which Bob simply sends back a description of the circuit to be evaluated,

and the true evaluation function is embedded into the decryption itself. Here and

throughout, we will assume that all schemes are compact.

We call a homomorphic encryption scheme leveled fully homomorphic if the set

of homomorphisms of the scheme is the set of all Boolean circuits up to some size
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specified by the evaluation parameter L. We call such a scheme fully homomorphic

if the set of homomorphisms is the set of all Boolean circuits, independent of L.

Typically, the ciphertexts in homomorphic encryption schemes experience an ac-

cumulation of noise that scales with the evaluated circuit depth. Eventually, this

noise will prevent accurate decryption, and this motivates the definition of leveled

fully homomorphic schemes. It is important to note that Alice’s work may scale

with the circuit she is evaluating, but this is realized implicitly as preprocessing in

the key generation phase. A bootstrapping procedure introduced in [66] allows for

the indefinite refreshing of noisy ciphertexts, but makes the stronger assumption of

circular security.

Homomorphic encryption schemes often allow for some small probability of failure.

To simplify the discussion, we assume that our schemes are perfectly correct, but

note that we can extend all our arguments to the imperfect case with some extra

notational baggage.

5.2 Quantum homomorphic encryption

In [72], the problem of extending homomorphic encryption to the quantum setting

was considered. Quantum homomorphic encryption accomplishes a similar task to

classical homomorphic encryption, but with some key differences. Formally, we can

model QHE as three families of quantum channels acting on four Hilbert spaces: K
the key space, M the plaintext space, C the ciphertext space, and R a reference

system with fixed initial state used during evaluation.

The size ofM is chosen to be a pre-specified input size n, the size of K is chosen

as a polynomial function of the security parameter κ, and the size of C is chosen

as a polynomial function of κ and the evaluation parameter L. We consider the

evaluation key as being appended to the encryption in the ciphertext space.

For notational simplicity, we define a symmetric key scheme. Formally, we have

a family of schemes parametrized by an input size n, security parameter κ, and

evaluation parameter L.

QHE.Enc: D(K ⊗M) −→ D(K ⊗ C). An encryption isometry that accepts a

classical secret key sk and a quantum state ρm, and then outputs a quantum

ciphertext ρc which includes the appended pre-specified evaluation key ρevk.

QHE.Dec: D(K⊗C) −→ D(M). A decryption channel that accepts a classical

secret key sk and a ciphertext state ρc, and then outputs a plaintext quantum

state ρm.

QHE.EvalC : D(C ⊗R) −→ D(C). An evaluation channel for a unitary circuit

C with n wires that accepts a ciphertext state ρc (with evaluation key ρevk), and
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a fixed state in reference system R of arbitrary dimension. It outputs another

ciphertext state ρc′ .

While the homomorphic property is defined analogously, there are a few sub-

tleties to this reformulation of homomorphic encryption. Encryption and decryption

are now performed all at once, rather than bit-by-bit. Also, we assume that any ran-

domness used during encryption is included in the secret key, making that channel

isometric. The evaluation key is in general a quantum state, and may be consumed

during the evaluation process. Finally, the set of homomorphisms for the scheme are

now unitary circuits. By the principle of deferred measurement, this does not limit

the model’s universality in evaluating functions.

In the classical setting, homomorphic evaluation is defined piece-by-piece for the

gates comprising a circuit. For universal gate sets, such as {AND,OR} or {NAND},
homomorphic evaluation of these constituent gates can be built into (leveled) fully

homomorphic encryption schemes. For quantum homomorphic encryption schemes,

the set of homomorphisms is augmented by a richer set of constituent gates.

The definitions for compact, leveled fully homomorphic, and fully homomorphic

encryption schemes carry over to the quantum setting. However, we will find it useful

later to define a homomorphic encryption scheme that is intermediate between clas-

sical and quantum schemes. We call this a reversible fully homomorphic encryption

(RFHE) scheme. This is defined as a quantum homomorphic encryption scheme with

the additional stipulation that the inputs are classical bits, and the set of homomor-

phisms for the scheme are the set of all classical reversible, rather than quantum,

circuits.

Certainly, a QFHE scheme yields an RFHE scheme. As we will see, one can place

information-theoretic bounds on RFHE schemes, and so in turn, QFHE schemes.

5.3 Proposals for quantum homomorphic encryption

In this section, we briefly outline existing proposals for quantum homomorphic

encryption with both computational and information-theoretic security guarantees.

We will later offer an alternative heuristic for information-theoretically secure homo-

morphic encryption relating to quantum codes in Chapter 6.

5.3.1 Computationally secure proposals

Computationally secure QHE was first considered in [72], along with an appro-

priate generalization of CPA security. The authors proposed three QHE schemes.

The first was a scheme that could homomorphically implement the set of Clifford

circuits, and followed directly from the quantum one-time pad. The second was a
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quasicompact scheme, with a decryption function that scaled quadratically in the

number of T -gates of the circuit. The final scheme required an evaluation key size

scaling superexponentially in the T -depth of the circuit, and so was restricted to

efficiently evaluating circuits of constant T -depth.

More recently, [73] proposed a scheme built off of previous work on instantaneous

nonlocal computation [74]. The scheme is centered around an evaluation key con-

sisting of T -gadgets, which allows for the homomorphic evaluation of one T -gate per

T -gadget. This provides a leveled quantum fully homomorphic encryption scheme for

polynomial-sized circuits, as these are precisely the circuits for which the evaluation

key can be generated efficiently. This was further extended to a verifiable scheme

in [75]. Very recently, a scheme was proposed for performing leveled QFHE with a

purely classical client using entirely different means [76]; this approach remains to

be explored.

One common thread throughout all of these proposals is that each is built on

a classical FHE scheme, and so inherits its underlying computational security. It

is natural to ask if quantum mechanics might allow for an information-theoretically

secure delegation of computation on encrypted information. To this end, we might

be encouraged by the invention of universal blind computation [6], which allows dele-

gated quantum computation that guarantees information-theoretically secure hiding

of both the plaintext and the computation, at the expense of interaction between

Alice and Bob.

5.3.2 Information-theoretically secure proposals

There have been several works aimed towards homomorphic encryption with

information-theoretic security guarantees. In [77], a homomorphic encryption scheme

based on bosonic encodings was proposed. This scheme used a weaker version of

information-theoretic security by bounding the information accessible by the adver-

sary. This allowed them to realize a fully unitary group of homomorphisms, although

these homomorphisms were not universal as the dimension of the group scaled poly-

nomially in the input size.

Later, [12] proposed a homomorphic encryption scheme based off of randomized

quantum codes and transversal gates. The homomorphisms for this scheme included

all Clifford circuits augmented by a constant number of T -gates. The security guar-

antees for this scheme were stronger, providing exponential suppression on the trace

distance between any two ciphertexts.

Very recently, [13] detailed a scheme using a similar methodology of randomized

quantum codes and transversal gates in order to implement an enlarged class of IQP

circuits homomorphically. Their scheme offers similarly strong information-theoretic
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security guarantees.

Finally, [78] proposed a homomorphic encryption scheme with a limited class

of operations and modest information-theoretic security claims, but which may be

implemented on current optical technologies. We recommend [79] for a more complete

summary of securely delegated quantum computing.

5.4 Limitations on information-theoretically secure quantum homomor-
phic encryption

We now elaborate on certain no-go theorems which limit the capacity of homomor-

phic encryption schemes to exhibit meaningful information-theoretic security. It is

well-known that in the classical setting, perfect information-theoretically secure ho-

momorphic encryption is impossible [80]. This follows from communication bounds

established for perfectly secure single-server private information retrieval [81], and

their relaxations [82].

The first restriction on QHE information-theoretic security was proven in [11].

There, they use a data localization argument via the no-programming theorem [83]

to show the following.

Theorem 5.1 (Yu, Perez-Delgado, Fitzsimons). Suppose there exists a QHE scheme

implementing a set of homomorphism S, with precisely zero mutual information be-

tween the plaintext and ciphertext. Then, the size of the evaluated ciphertext must

be at least log2(|S|) qubits long.

Using Stirling’s approximation, when S is the set of all classical reversible func-

tions, this evaluated ciphertext must be of size at least

log2((2n)!) = (n− log2(e))2n +O(n).

Thus, in the case of perfect information-theoretic security, any RFHE (and so

any QFHE) scheme must be highly inefficient. It is important to note that this

data localization technique bounds the efficiency of perfect ITS-QHE for any set of

homomorphisms.

In spite of this limitation, we have seen several QHE schemes [12, 13] that imple-

ment large sets of homomorphisms with strong, but imperfect, information-theoretic

security guarantees. As the information localization argument of [11] relies integrally

on perfect information-theoretic security, it is natural to ask whether an ε-relaxation

of the ITS guarantee may allow for much larger sets of homomorphisms?

5.4.1 Quantum random access codes

In [21], we show that this ε-relaxation does not afford much more delegated compu-

tationally power. This was observed concurrently in [13], which used generalizations
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of single-server private information retrieval bounds to the quantum setting [71]. At

the heart of all three of these arguments is an application of Nayak’s bound [84],

which places limitations on the compression of classical information into quantum

information. We now elaborate on the proof in [21] and discuss some of its subtleties.

Definition 5.2. An (n,m, p)-quantum random access code is a mapping of n classical

bits into m qubits, [b 7→ ρb], along with a set of POVM’s {M0
i ,M

1
i }ni=1 satisfying, for

all b ∈ {0, 1}n and i ∈ [n],

Tr(M bi
i ρb) ≥ p.

Informally, this is simply a compression of classical information into quantum

information that allows for a local recovery with some probability of success. Nayak’s

bound then places a fundamental limitation on the recoverability of this compression

[84].

Theorem 5.3 (Nayak). Any (n,m, p)-quantum random access code must satisfy

m ≥ n(1−H(p))

where H(·) is the binary entropy function.

We now have the required tools to prove the ε-ITS QFHE no-go theorem. The

essential idea is to extract a quantum random access code from an ITS-RFHE scheme,

and then apply Theorem 5.3 to lower bound the communication complexity.

5.4.2 Proof of theorem

Theorem 5.4. Suppose we have a QHE scheme that is also an RFHE scheme.

Suppose further that, for some ε < 1 and for any two ciphertexts ρ, ρ′, we have the

ITS guarantee that

‖ρ− ρ′‖1 < ε.

Then the combined size of the (evaluated) ciphertext and secret key must grow expo-

nentially in the input size.

Proof. Consider a QHE scheme which is also an RFHE scheme. Fix a security

parameter κ, evaluation parameter L, and input size n. For any x ∈ {0, 1}n define

the state

|ψk,x〉 〈ψk,x| := TrK (QHE.Enc((|k〉 〈k| ⊗ |x〉 〈x|)) ,
the encryption of x using secret key k, which is pure as the channel is isometric and

acts identically on K. Then we can define the state

|ψx〉 :=
1√
2p(κ)

∑
k∈{0,1}p(κ)

|k〉 ⊗ |ψk,x〉
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where p(κ) is some polynomial in the security parameter. Here, |ψx〉 represents the

uniform superposition over all keys and their corresponding encryptions on a fixed

input. It follows from our ITS guarantee that, for any x, x′ ∈ {0, 1}n,∥∥∥∥∥∥ 1

2p(κ)

∑
k∈{0,1}p(κ)

|ψk,x〉 〈ψk,x| − |ψk,x′〉 〈ψk,x′ |

∥∥∥∥∥∥
1

< ε.

Then there must be some unitary VK acting nontrivially only on K with the property

that ∥∥∥|ψx〉 〈ψx| − VK |ψx′〉 〈ψx′|V †K∥∥∥
1
< ε.

Fix any base point x′ ∈ {0, 1}n and define, for any x, the unitary V x
K that satisfies

the above.

Consider the set of Boolean functions f : {0, 1}n → {0, 1}. For any such f , let

Cf be a classical reversible circuit that computes f , with the output of Cf taken

as the output of the first wire. Furthermore, identify f with the binary string

(f(y1), f(y2), . . . , f(y2n)) ∈ {0, 1}2n where yi is the n-bit binary representation for i.

Let

ρxf := IK ⊗QHE.EvalCf (|ψx〉 〈ψx| ⊗ σ)

where σ is the fixed state of the reference system, and define ρf := ρx
′

f . Then we

observe that the encoding

f 7→ ρf

is a quantum random access code for 2n bits.

Our queries to this quantum random access code are indexed by x ∈ {0, 1}n. Let

Pj = |j〉 〈j| on the first qubit. Then for any x, the associated POVM’s in Definition

5.2 are given by

M j
x = Pj ·

(
QHE.Dec(V x

KρfV
x†
K )
)
.

Importantly, we are using the homomorphic property that the evaluation occurs only

on C ⊗R, which ensures that it will commute with the key space unitary.

Then, by the assumption that the QHE scheme is a perfectly accurate RFHE

scheme, our probability of failure pfail is bounded above by

pfail = max
x,f

Tr
(
M0

x

(
ρf − ρxf

))
≤ max

x,f
max
P≤I

Tr
(
P
(
ρf − ρxf

))
≤ max

x,f
max
P≤I

Tr
(
P
(
|ψx〉 〈ψx| − VK |ψx′〉 〈ψx′|V †K

))
< ε/2.
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Here, the third step follows from the contractivity of trace distance, and the final step

follows from the functional definition of trace distance. We then have a (2n, |K| +
|C|, 1− ε

2
)-quantum random access code. Then by Theorem 5.3,

|K|+ |C| ≥ 2n (1−H(ε/2))

where H(·) is the binary entropy function. It follows that |K| + |C| = θ(2n). Not-

ing that the proof holds even when an evaluated ciphertext is larger than a fresh

ciphertext, the result follows.

As any QFHE scheme is also an RFHE scheme, we obtain the following.

Corollary 5.5. Any QFHE scheme with nontrivial ε-information theoretic security

must be inefficient.

5.5 Conclusion and no-go workarounds

One thing to note is that, in our definition of QHE, we enforce that the fresh ci-

phertexts and evaluated ciphertexts are of the same size. This is simply for notational

convenience, and so the proof carries through even when the evaluated ciphertext

grows in size.

Although Theorem 5.4 represents an ε-relaxation of Theorem 5.1, it is restricted in

the sense that it only rules out fully homomorphic encryption from reversible circuits.

While of course this rules out QFHE as well, it does not immediately apply to ε-

ITS-QHE schemes with particular sets of homomorphisms S, as the perfect ITS-QHE

limitation does. Intuitively, one would expect to be able to more generally bound the

number of distinct unitaries in S. However, we are at least superficially constrained

by Nayak’s bound, which applies specifically to these classical to quantum encodings.

In fact, one may not even be able to consider sets of homomorphisms S that

are properly contained in the set of all Boolean functions realized from reversible

circuits. For such a set S of Boolean functions, even if log(|S|) is super-polynomial,

it is conceivable that some symmetry of the set S may allow for a more efficient

random access structure.

Another question is whether one can rule out a leveled ITS-QFHE scheme. Sup-

pose we fix a degree d polynomial p and only consider circuit families {Cn} with the

number of gates in Cn bounded by p(n) for all input sizes n. If we directly consider

n-bit Boolean circuits generated by the universal 2-bit NAND gate, then the total

number of unique such circuits is at most
(
n
2

)p(n)
= nθ(n

d).

For this reason, it seems fundamentally difficult to rule out leveled QFHE for

polynomial sized circuits using similar methods, simply because there aren’t that
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many circuits asymptotically. Nonetheless, it seems implausible that such a scheme

would exist as the evaluation key depends only on the length of the circuits being

evaluated, and not on the circuits themselves. This is an important possibility to rule

out as there are currently no non-leveled QFHE proposals, even with computational

security.

There are two main workarounds to this no-go theorem. We could limit the

number of homomorphisms for the scheme, and we’ve seen this restriction employed

fruitfully to augmented IQP [13] and Clifford circuits [12]. It would be interesting

to develop a more general framework for implementing limited circuit classes homo-

morphically, similar in size to the Clifford group on n qubits which grows as θ(2n
2
).

The other workaround is to lessen the stringency of the security. We’ve seen that,

when using a weaker security guarantee in terms of accessible information, we can

implement a full continuum of homomorphisms [77]. Could something similar be

made universal?



CHAPTER 6

Restrictions on transversal gates

Transversal gates are surprisingly ubiquitous objects, finding applications in quan-

tum cryptography [12], [13], quantum complexity theory [85], and of course quantum

fault-tolerance. Although the instability of quantum information is well-documented,

we have seen that quantum error-correcting codes [36] allow us a way to preserve

quantum data. However, performing computations on these codes carries the risk

of propagating errors between different subsystems, unless the code can implement

the computation in a way that preserves the subsystem structure. Informally, these

types of logical operators that decompose as a product across the subsystems are

called transversal (see section 3.7.1), and the oft-cited Eastin-Knill theorem [86],

[14] limits the ability of quantum codes to prevent this error propagation.

Theorem 6.1 (Eastin-Knill). No quantum error-correcting code can implement a

quantum universal transversal gate set.

These transversal gate sets are valuable as most models of fault-tolerant quan-

tum computation implement associated transversal gate sets fault-tolerantly “for

free”. Incurring comparatively significant overhead, often in the form of magic state

distillation [48], [87], gauge fixing [45], [88], or more recently deconstructions of non-

transversal gates into fault-tolerant pieces [89], one can fault-tolerantly implement

some remaining gate set making the computation space universal. Improving the effi-

ciency of this overhead and designing new fault tolerant architectures to supplement

transversal gates is central to quantum fault tolerance.

Implementing fault-tolerant classical reversible computation efficiently would be

extremely desirable as many quantum algorithms are primarily classical subroutines

with a relatively small number of quantum gates, and there have been several pro-

posals for doing so [90], [15], [91]. For example, factoring a cryptographically large

RSA key using Shor’s algorithm requires around 3 × 1011 Toffoli gates to perform

modular exponentiation alone, and is the dominating portion of the circuit [63]. As

Toffoli is universal for classical reversible computation, one might ask if there are

49
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any quantum error-correcting codes that can naturally implement Toffoli, and thus

classical computations, transversally? We give restrictions on the ability of QECCs

to do this.

Theorem 6.2 (Informal). Almost no quantum error-correcting code can implement

a classical universal transversal gate set. In particular, almost no quantum error-

correcting code can implement the Toffoli gate transversally.

The only exceptions to our theorem are non-additive distance d codes that de-

compose as d-fold product states in their logical computational basis, where each

“subcode” itself fails to be erasure-correcting. Essentially, one can think of these

as maximally redundant quantum codes: they are the concatenation of a repetition

code with some distance 1 inner code, similar to Shor’s stabilizer code written as a

3-fold product of GHZ states. We do not expect that any such code can implement

Toffoli transversally, but it remains a case our proof technique cannot rule out. In

particular, our proof does apply to all binary additive codes. The result is perhaps

slightly surprising since there exist QECCs (e.g. triorthogonal codes) that can im-

plement the CCZ gate transversally [90], and in fact transversal Toffoli gates can

map between different quantum Reed-Solomon codes by increasing the degree of the

underlying polynomial [15] (see section 6.5.1).

6.1 Summary of previous results

The five works the most closely resemble our results are [86],[14] and [16], which

place restrictions on transversal gate sets for QECCs, and [12] and [13], which use

similar ITS-QHE constructions. We very roughly summarize these results and com-

pare them to our own.

In [14], Zeng et al. were some of the first to place restrictions on quantum uni-

versal transversal gate sets for additive quantum codes by elucidating the stabilizer

group structure. Further work in [92] classified the set of diagonal gates that can

implement one and two qubit logical operations in stabilizer codes. Shortly there-

after, [86] showed that for any QECC, the transversal gate set must be finite, and so

cannot approximate with arbitrary precision the full unitary group. Intuitively, they

make a Lie type argument by showing that infinitesimal transversal operations are

themselves linear combinations of local error operators. Since these unitaries must

act identically on the codespace, it follows that the group of transversal operations

must be finite.

More recently, [16] placed restrictions on the more general class of topologically

protected logical gates in topological stabilizer codes, which include transversal gates

as an optimal subset. They showed that for a topological stabilizer code defined on a
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d-dimensional lattice, any such gate must lie in the dth level of the Clifford hierarchy.

These results were extended in [93] to more general stabilizer subsystem codes, and

we will detail how similar arguments can be used to rule out classical reversible

transversal computation for the subclass of stabilizer codes.

Our strategy will be to construct an ITS-QHE scheme similar to [12]. Because of

the stringent lower bounds placed by Nayak, we actually forgo the noisy encoding

circuit and embed QECCs directly into random noise after removing a correctable

set of qubits. This has the effect of increasing the overhead by an exponential factor

in order to achieve security, but thanks to the roomy lower bound, this factor is still

too small to allow an ITS-QFHE scheme.

We can argue directly about the security of this scheme using the nonlocality

of the quantum information being encoded in almost any QECC. The idea is con-

ceptually simple: in order to obtain encryptions of the data that are both secure

and (sufficiently) short, we must inject randomness into the encodings themselves

by withholding qubits from the code. While ordinarily this would negatively affect

the correctness of homomorphic evaluation, the error-correcting property allows us

to inject this randomness while still maintaining perfect recoverability. Then intu-

itively, spreading the information across the subsystems limits the complexity of the

class of logical operators that don’t couple the subsystems, i.e. the transversal oper-

ators. This differs fundamentally from the approaches in [14] and [86] in that it is a

quantitative information-type bound.

It is not without its drawbacks however, as these maximally redundant codes

fail to “spread out” the information sufficiently. The prototypical example is Shor’s

code, which is the concatenation of a bit-flip and phase-flip code. However, we can

argue directly using the stabilizer group structure that no such additive code can

implement Toffoli transversally.

6.2 Homomorphic encryption from quantum codes

Without loss of generality, we use a slightly simplified model of transversal gates

TC associated to C; they are those logical gates that decompose as a product across

the subsystems. That is to say, UL ∈ TC if UL = U1⊗ . . .⊗Un, where n is the length

of the code, each Ui acts on a single subsystem, and UL is a codespace preserving map

on the code C⊗r for U an r-qubit gate. This is similar to our previous definition, but

for ease of presentation, assumes that any element of a partition contains exactly

one qubit from each code block. We further define a logical gate to be strongly

transversal if it decomposes as UL = U⊗n. Following the example of [14], we do not

allow coordinate permutations in our definition of transversality.
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Here and throughout, we will refer to codes with distance at least two as error-

detecting and refer to stabilizer codes as additive codes. Although we restrict to

qubits, identical results should hold for qudits of any dimension by considering gen-

eralizations of Nayak’s bound. We will apply our argument to any logically encoded

qubit within a code block, and so without loss of generality assume k = 1.

Definition 6.3. We say a quantum code C = SpanC(
∣∣0̃〉 , ∣∣1̃〉) is an r-fold code if it

can be written as

|i〉L =
r⊗
j=1

|ψij〉 .

where each vector |ψij〉 does not further decompose as a product state across any

bipartition. We additionally assume that r ≤ d, that |ψ0j〉 and |ψ1j〉 occupy the same

subsystem, and that |ψ0j〉 ⊥ |ψ1j〉. It then makes sense to refer to Span{|ψ0j〉 , |ψ1j〉}
as the jth subcode. These assumptions are natural, and we justify them in our

discussion.

If the code is additionally an [[n, 1, d]] QECC with r = d ≥ 2 and each subcode

has distance 1, we simply call the resulting code a maximally redundant code. Note

that any (pure state) code is at least a 1-fold code.

The guiding example is Shor’s code, which can be seen as the concatenation of

a repetition outer code and a complementary GHZ inner code, neither of which

is quantum erasure correcting. In the case that the subcodes are identical, any

maximally redundant code is just the concatenation of a repetition code with some

distance 1 subcode. Intuitively, these are codes for which you can’t erase enough

qubits to mix the state while still remaining perfectly correctable: while redundancy

can be used in classical error-correcting codes to protect information, quantum error-

correcting codes must “spread out” information to protect it. In this sense, these

codes are maximally redundant because they “spread out” the information the least.

We show that non-additive maximally redundant codes (i.e. maximally redundant

codes for which the subcodes are comprised of non-stabilizer subspaces) are the only

binary QECCs with the hope of implementing logical Toffoli transversally.

We now consider a strategy for implementing compact QHE using quantum codes.

This will be a simple “block” embedding encryption scheme homomorphically im-

plementing quantum circuits on classical input, and is similar to the construction in

[12]. We will use the error-correcting property to withhold a correctable set of qubits

from the encoding.

The scheme is detailed in Figures 6.1 and 6.2. Using that notation to summarize,

our encryption channel E is defined, for secret key S and input string ~i, as E(S,~i) =
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Coding QHE Scheme:

Arguments:
C = an [[n+ r, 1, d]] r-fold QECC with r < d
~i ∈ {0, 1}p
m = the size of each noise code block
S ∈ [m]n, the secret key

1. On input ~i ∈ {0, 1}p, encode ~i as the pure state
p⊗̀
=1

|i`〉L, for {|0〉L , |1〉L} the

logical computational basis defining C.

2. Let R be a collection of r subsystems, each of p-qubits, comprised of one subsys-

tem from each subcode. Then form γ
~i = TrR(

⊗
` |i`〉L). Essentially, γ

~i is the
state of the collection of codewords with each codeword missing one subsystem
from each of its subcodes.

3. Initialize n (p × m) arrays of maximally mixed qubits, and replace the Sj-th

column of each array with the j-th subsystem of γ
~i. This forms the encrypted

state.

4. Publish a constant number of labeled encryptions of 0 and 1, to be used as ancilla
in homomorphic evaluation.

Figure 6.1: A description of the encryption procedure for the code based QHE scheme.

γ
~i
S. We sometimes use the notation γS instead of γ

~i
S or γ instead of γ

~i, omitting ~i

when we are unconcerned with the underlying plaintext.

The total size of our encrypted input is mnp qubits. In our preceding notation,

the described scheme has parameters (p,mnp,mnp, ε(m, p), 0), implementing the set

of gates TC homomorphically.

Lemma 6.4. Let E be the encryption scheme detailed in Figure 6.1. Let TC de-

note the group of transversal operators associated to the underlying quantum code C.

Then, E is TC-homomorphic.

Proof. Let UL be the logical operator we wish to apply to some codestate |ψ〉L. By

definition, UL ∈ TC implies UL can be decomposed as a product operator U1 ⊗ . . .⊗
Un+r where Ui is an operator that acts only on the i-th subsystem of the code. Then,

without knowledge of the secret key S, a third party can implement UL by applying

the operator
n⊗
i=1

m⊗
j=1

Ui

where each Ui is an operator local to some subsystem in Server’s possession (that is

to say, on one of the columns in the corresponding array). Returning the resulting



54

Figure 6.2: A diagram illustrating the code-based QHE scheme for an (n+1)-length 1-fold quantum
code while withholding a single subsystem. The (n + 1)-th subsystem remains in the hands of
Client. The arrows connecting the subsystems indicate where each subsystem (i.e. column) is
being mapped. The filled dots represent code qubits, while the empty dots represent maximally
mixed qubits.

data to a party with the secret key, that party can decrypt to obtain a state of

the form V RUL |ψ〉L, where V R is supported on the r subsystems that Client has

withheld. Since r < d, viewing V R as an erasure error on r subsystems, there exists

some recovery channel R such that R(V RUL |ψL〉) = UL |ψ〉L. Decoding, we obtain

U |ψ〉 as desired.

Note that this scheme is a TC-homomorphic, non-leveled, and compact QHE

scheme, since the recovery and decryption channel do not depend on the complexity

of U .

We now aim to compute the security ε(m, p) of the proposed scheme, namely the

tradeoff between the size of the input p, the size of the encoding mnp, and the ITS

guarantee. To avoid confusion, we point out here that the code size n is a constant,

as we are not concatenating to achieve security, just amplifying the size of the noise

into which we are embedding.

We want to show that while the scheme is inefficient, its parameters still defeat

Nayak’s bound. To simplify the security proof, we impose the requirement that the

outputs are indistinguishable from uniformly random noise. Here, we will see that

the nonlocality of the information stored in QECCs is essential in its allowing us
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to withhold qubits while still delegating computation to Server. This imposes the

requirement of using quantum error-correcting codes, as evidenced by the following

observation.

Lemma 6.5. Suppose we replace the preceding scheme with one that does not with-

hold any of the physical qubits comprising the (pure state) code. Then if m = o(2p),

ε must be bounded away from zero.

Proof. Counting the rank of the encrypted state, note that rank(γS) = 2np(m−1).

Then,

rank(ES[γS]) ≤ mn2np(m−1)

≤ 2n(p(m−1)+log(m)).

Thus, the fraction of nonzero eigenvalues must be at most (2n)log(m)−p. Since log(m) =

o(p), the fraction of nonzero eigenvalues goes to zero, and so ‖ES[γS]−I/2mnp‖1 must

be bounded away from zero as claimed.

6.3 Security proof

Our aim is to give (inefficient, but sufficient) security parameters for the coding

QHE scheme. We will then argue that if there were a QECC implementing a suf-

ficiently large transversal gate set (such as the set of all classical reversible gates),

then it would violate Nayak’s bound with these parameters. We will first need a

small lemma on the structure of the partial trace operator.

Lemma 6.6. For Hilbert space decomposition H = H∆̄1
⊗H∆ ⊗H∆̄2

,

Tr
(

(ρ∆̄1∆ ⊗ I∆̄2)(I∆̄1 ⊗ σ∆∆̄2)
)

= Tr (Tr∆̄1
(ρ)Tr∆̄2

(σ)) .

Proof. Expanding in terms of outer products,

Tr ((ρ⊗ I)(I ⊗ σ)) = Tr

((∑
i,i′

∑
j,j′

∑
k

ai,i′,j,j′ |i〉 〈i|∆̄1 ⊗ |j〉 〈j′|∆ ⊗ |k〉 〈k|∆̄2

)
·

(∑
`

∑
m,m′

∑
n,n′

bm,m′,n,n′ |`〉 〈`|∆̄1 ⊗ |m〉 〈m′|∆ ⊗ |n〉 〈n′|∆̄2

))

= Tr

(∑
i,i′

∑
n,n′

∑
j,m′

(∑
j′

ai,i′,j,j′bj′,m′,n,n′

)
|i〉 〈i| ⊗ |j〉 〈m′| ⊗ |n〉 〈n′|

)
=
∑
i

∑
n

∑
j,j′

(ai,i,j,j′bj′,j,n,n) .
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On the other hand, we have

Tr (Tr∆̄1
(ρ)Tr∆̄2

(σ)) = Tr

((∑
i

∑
j,j′

ai,i,j,j′ |j〉 〈j′|
)(∑

n

∑
m,m′

bm,m′,n,n |m〉 〈m′|
))

= Tr

(∑
i

∑
n

∑
j,j′

(∑
j′

ai,i,j,j′bj′,m′,n,n

)
|j〉 〈m′|

)
=
∑
i

∑
n

∑
j,j′

(ai,i,j,j′bj′,j,n,n)

as claimed.

With this we are ready to prove the security tradeoff between ε, p, and m. We

adopt the same notation used in the proposed scheme for convenience, and note that

we are demanding the stronger condition that outputs are indistinguishable from

random noise.

Proposition 6.7. For the scheme described in Figure 6.1, letting K = 2p be the

dimension of any subsystem and for some c ∈ (0, 1), we have

‖ (I/Kmn)− ES[γS]‖1 ≤ ε(K,m)

for ε(K,m) =
((

m−1
m

)n − 1 +K−c
(

2K
m

)n)1/2
.

Proof. By Cauchy-Schwartz,

‖ (I/Kmn)− ES[γS]‖2
1 ≤ Kmn‖ (I/Kmn)− ES[γS]‖2

2

≤ KmnTr(ES[γS]2)−
(

2

Kmn

)
Tr(ES[γS]) +

(
1

K2(mn)

)
Tr(I)

≤ KmnTr(ES[γS]2)− 1.

where the third line follows by noting that, as a quantum state, Tr(ES[γS]) = 1. We

write |S ∩ S ′| to denote the size of the intersection of S and S ′ considered as sets.

We can then decompose, for p` = PrS,S′ [|S ∩ S ′| = `],

KmnTr(ES[γS]2) =

(
Kmn

m2n

)∑
S,S′

Tr(γSγ
′
S)

(∗) = Kmn

n∑
`=0

p`Tr
(
E[(γSγS′)

∣∣ |S ∩ S ′| = `]
)
.

Note that p` =
(n`)(m−1)(n−`)

mn
≤
(
n
l

)
/m` and that p0 = (m−1

m
)n. Furthermore, up to a
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permutation on the coordinates, we may write for dim(I) = Kmn−2n,

KmnE[(γSγS′)
∣∣ |S ∩ S ′| = 0] = KmnTr

(
(γ/Kn)⊗ (γ/Kn)⊗

(
I/K(mn−2n)

)2
)

= 1

again by noting that γ is a quantum state of trace one and by multiplicativity of

trace over tensor products. Next consider the general case |S ∩ S ′| = `. Then up to

a permutation on the coordinates and for some π ∈ Sn, for ∆ the subsystem of the

intersection S ∩ S ′,

KmnTr(γSγS′) = KmnTr
(

(I/Kn−` ⊗ γ)(πγπ† ⊗ I/Kn−`)⊗
(
I/K(mn−2n+`)

)2
)

= K`Tr
(
(I ⊗ γ)(πγπ† ⊗ I)

)
= K`Tr

(
Tr∆̄(γ)Tr∆̄(πγπ†)

)
where the final line follows from Lemma 6.6. Then, because we have withheld a

subsystem from each subcode of the underlying QECC, in any row i we have that

Tr∆̄(γi) is mixed. It follows that Tr
(
Tr∆̄(γi)Tr∆̄(πγiπ†)

)
< 1. So by separabil-

ity across each encoded qubit and again by multiplicativity of trace across tensor

products,

Tr

(
p⊗
j=1

Tr∆̄(γij)Tr∆̄(πγijπ†)

)
=

p∏
j=1

Tr
(
Tr∆̄(γij)Tr∆̄(πγijπ†)

)
.

It follows that there exists some c ∈ (0, 1) so that

KmnTr(γSγS′) ≤ K`−c.

Putting this all together, we observe that

Kmn

n∑
`=1

p`Tr
(
E[(γSγS′)

∣∣ |S ∩ S ′| = `]
)
≤ K−c

n∑
`=1

(
n

`

)(
K

m

)`
≤ K−c

((
1 +

K

m

)n
− 1

)
≤ K−c

(
2K

m

)n
Including the first term in the sum, we get,

(∗) ≤
(
m− 1

m

)n
+K−c

(
2K

m

)n
and so,
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ε(K,m) =

((
m− 1

m

)n
− 1 +K−c

(
2K

m

)n)1/2

as desired.

6.4 Almost no classical-universal transversal gate sets

We are left with two competing bounds. On the one hand, it follows from Nayak’s

bound that, for any F -ITS-QHE encryption scheme with security ε and communica-

tion size s,

s ≥ log(|F|)(1−H(ε)).

If we choose parameters that do not leak some constant fraction of information about

our input, then as ε→ 0 we see that for s chosen as some fixed function of the input

size, it must be that s = Ω(log(|F|)). Using the notation and parameters from

the aforementioned coding scheme, this means that mnp = Ω(log(|Fp|)) for Fp the

restriction of functions in F to p-bit inputs. Note that we can assume no ancilla

overhead since the constant gets absorbed into this asymptotic bound.

Now by construction of the scheme, F is the transversal gate set for the underlying

choice of quantum error-correcting code. Next, we would like to choose m as a

function of K so that ε → 0. For this, it suffices to choose m as a function of K so

that

lim
K→∞

K−c
(

2K

m

)n
= 0.

Equivalently, we require m = ω(K1−( cn)). Then for some c′ < 1, we can select

m = Kc′ and still have ε → 0. Plugging this back into Nayak’s bound, we see that

asymptotically

Kc′ log(K) = Ω(log(|Fp|))

for |Fp| the size of the function class, seen itself as a function returning the number

of unique members in the class on p-bit inputs. In particular, Fp cannot be the set

of all Boolean functions, for then log(|Fp|) = K. This shows that no code satisfying

the hypotheses of our scheme can implement Toffoli transversally.

We now justify our earlier assumptions on the structure of candidate r-fold codes.

Suppose an r-fold [[n, 1, d]] QECC could implement a logical Toffoli gate transver-

sally. First note that the tensor decomposition between the logical states must align,

or else the restriction of logical Toffoli to one element of the product would uni-

tarily map a pure state to a mixed state. Furthermore, we can decompose of the
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Knill-Laflamme error-correction criterion in section 3.2 as a diagonal and off-diagonal

condition: for all |E| < d,

〈0L|E|0L〉 = 〈1L|E|1L〉,
〈0L|E|1L〉 = 0.

Since the Paulis form an operator basis, we can always assume that E is an element

of the Pauli group. Then, for r-fold codes with logical basis states |i〉L =
⊗r

j=1 |ψij〉,
this becomes

r∏
k=1

〈ψik|Ek|ψjk〉 = cEδij

where E = E1 ⊗ . . . ⊗ Er. Note then that if |ψ0j〉 6⊥ |ψ1j〉, we can trace out the

corresponding subsystem and obtain a code with the same correctable error set on

the complement of that system. Furthermore, if r > d, then we can again trace

out any r − d subcode subsystems to obtain a code with the same correctable error

set on the complement. Both of these observations follow from noticing that these

subcodes must themselves satisfy the diagonal condition,

〈ψ0j|E|ψ0j〉 = 〈ψ1j|E|ψ1j〉.
It follows from the security proof that if r < d, then the code would satisfy the

hypotheses of our scheme and violate the lower bound in Theorem 5.4. Thus, r = d.

Furthermore, logical transversal Toffoli on the entire code must restrict (up to global

phase) to a logical transversal Toffoli gate on the subcodes, each of which is 1-fold

by definition. Thus, each subcode must not be error-detecting. To summarize,

Theorem 6.8. If a quantum error-detecting code is not a maximally redundant code,

then it does not admit a classical-reversible universal transversal gate set. In partic-

ular, no such code can implement the Toffoli gate transversally.

Note also that for the scheme in Figure 6.1, for any m = ω(K1−( c
n

)), ε(K) is

negligible in p. Summarizing the parameters of the coding scheme:

Proposition 6.9. For any r-fold [[n, 1, d]] quantum error-detecting code C with r < d

and with transversal gate set TC, the described protocol is a compact quantum TC-

homomorphic encryption scheme with security ε = negl(p) for p the input size and

with encoding size m = 2pc
′

for some c′ < 1.

While this is highly inefficient, we pause to give some intuition for why it suits

our purposes. On the one hand, we can envision trivial “hiding” schemes that have

encoding length 2p in each bit. Nayak’s bound allows for higher efficiency, roughly



60

demanding that encodings implementing the set of all classical functions on p bits

homomorphically must have length at least (2p/p) in each bit. Finally our scheme,

with encoding length 2pc
′

for some c′ ∈ (0, 1), is just efficient enough to defeat this

bound and allow us to argue Theorem 6.8.

Finally, note that by concatenating an [[n, 1, d]] d-fold code with itself, the code

remains d-fold while the distance must increase to at least d2. Furthermore, if such

a code implements Toffoli strongly transversally, then so does its concatenation with

itself. As a result, we observe the following.

Corollary 6.10. No quantum error-detecting code can implement strongly transver-

sal Toffoli.

6.4.1 Stabilizer code case

Because these maximally redundant codes have a simple design, if we further

assume that they are additive, we can use the additional stabilizer structure to

argue directly that they cannot implement logical Toffoli transversally. From this

observation, we directly obtain the following.

Corollary 6.11. No additive quantum error-detecting can implement transversal

Toffoli.

Proof. By Theorem 6.8, it suffices to consider maximally redundant codes. So sup-

pose, for the sake of contradiction, that an [[n, 1, d]] additive d-fold code could im-

plement Toffoli transversally. Let [·, ·] denote the group commutator. We denote by

·̄ states and operations acting on the subcodes, and ·̃ those on the full code. We will

assume that each subcode is the same, e.g.
∣∣̃i〉 = |̄i〉⊗d, so that we can speak directly

about the inner and outer codes. The general argument follows similarly.

Since the code is additive, the code distance is the minimal weight logical Pauli

operator acting on the code. For any Z̄L, by multiplicativity of the inner product

over tensor products,

1

2

〈∣∣0̃〉+
∣∣1̃〉 ∣∣Z̄L∣∣ ∣∣0̃〉− ∣∣1̃〉〉 =

1

2

(
〈0̃|Z̄L|0̃〉 − 〈0̃|Z̄L|1̃〉+ 〈0̃|Z̄L|0̃〉 − 〈1̃|Z̄L|1̃〉

)
=

1

2

(
〈0̄|0̄〉nd + 〈1̄|1̄〉nd

)
6= 0.

Since the outer code has distance d, it follows from the QECC criterion that Z̄L

must have weight at least d. Then X̄L must have weight 1, since the underlying

inner code has distance 1 by assumption. Because the outer classical repetition code

factors as a tensor product, transversal T̃offL on the outer code must restrict (up

to a global phase) to transversal ToffL on the inner code. Since we’re now working
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with multiqubit gates, let GL(i) denote the logical gate for G acting on the ith code

block. We can compute directly,

[ToffL(1, 2, 3), X̄L(1)] = CXL(2, 3).

Furthermore, because ToffL and X̄L are transversal, it follows that CXL has

a representative that is also transversal and is supported on the subsystems that

support X̄L. By a similar argument

[CXL(1, 2), Z̄L(1)] = Z̄L(2)

so that Z̄L must also be contained in the subsystems supporting CXL, and in

turn X̄L. As we have already observed, the minimal weight of any representative of

Z̄L must be at least d, a contradiction as X̄L has a representative of weight 1.

Here we also offer an alternate proof limiting universal transversal reversible com-

putation for the subclass of stabilizer codes. The arguments here are based off of the

BK hierarchy [16, 93]. We reproduce the cleaning lemma for completeness. These

arguments showcase the rigid structure placed on stabilizer codes because of their

transversal Pauli operations.

Definition 6.12. The Clifford hierarchy C is a sequence of gate sets {Ck}k≥1 defined

recursively by Ck = {U : UC1U
† ⊆ Ck−1}, where we define C1 to be the Pauli group.

Note that C2 is the Clifford group, and Ck fails to be a group for k > 2. Further

note that reversible circuits saturate the Clifford hierarchy (and in fact can lie outside

it entirely) by the gate CkX, the k-controlled bit-flip gate, which lies in Ck+1. Toffoli

is simply C2X, and so lies in the third level of the Clifford hierarchy. We next recall

the stabilizer cleaning lemma, which can be found in [16].

Lemma 6.13. Let S be a stabilizer code, and let R be any subset of physical qubits

of the code such that any logical operator supported on R acts trivially on S. Then,

for any logical operator UL, there exists a representative of UL supported on Rc.

We call such subsets R cleanable. Equipped with the cleaning lemma, we can now

summarize the following lemma from [93].

Lemma 6.14. Let S be a stabilizer code and let {R0, . . . , Rk} be a set of cleanable

subsets of the physical qubits comprising S. Let U be a logical operator supported on

∪ki=0Ri such that U is transversal with respect to the Ri. Then, UL ∈ Ck.



62

Proof. We proceed by induction on k. In the base case, we have a logical operator

U supported on cleanable subsets R0 ∪ R1. Let P be any logical Pauli operator

cleaned off of R1, and let [·, ·] denote the group commutator. Since in a stabilizer

code the logical Pauli operators are transversal, we have Supp([U, P ]) ⊆ R0, which

by cleanability implies that [UL, PL] = cIL. Since this is true for any PL, it must be

that UL ∈ C1.

Similarly, suppose U is supported on ∪ki=0Ri. Then, cleaning any logical Pauli

P off of Rk, we see that Supp([U, P ]) ⊆ ∪k−1
i=0Ri. By our inductive hypothesis,

[UL, PL] ⊆ Ck−1, which implies ULPLU
†
L ∈ Ck−1 for any logical Pauli PL. Thus

UL ∈ Ck, completing the proof.

This argument generalizes to subsystem codes, and we refer the reader [93] for a

more complete description. As a consequence we obtain the following.

Corollary 6.15. No error-detecting stabilizer code can implement a classical re-

versible universal transversal gate set.

Proof. Partition the code block into single subsystem subsets {R1, . . . , Rn} where

n is the length of the code. Then, since the code is erasure-correcting, any logical

operator supported on a single subsystem must act trivially on the codespace, and

so these subsets are cleanable. By the lemma, any transversal logical gate must

lie in Cn. Since reversible circuits saturate C, they cannot be logically transversally

implementable.

One final remark is that a similar technique was later used in [17] to explicitly

demonstrate that any logical operator for a stabilizer code must belong to the Clifford

hierarchy. The rough argument follows similarly from the fact that for any error-

detecting code, the individual physical qubits themselves must constitute cleanable

subsets.

6.5 Some sidesteps

In this section, we detail a few existing stabilizer code constructions that illus-

trate potential workarounds for our no-go theorem. While of course none of these

construction has a native transversal Toffoli gate, each exemplifies a possible alter-

native.

6.5.1 Quantum Reed-Solomon codes

Let 1 ≤ k < n < q and let Fkq [x] denote the set of polynomials in Fq[x] of degree

at most k. Fix an evaluation point ~γ ∈ Fnq : γi 6= γj for any i 6= j. Then we may
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define the family of classical error-correcting codes known as Reed-Solomon codes as

RSqk(~γ) := {f(~γ) : f ∈ Fkq [x]}

where f(~γ) := (f(γi))i. In general, Reed-Solomon codes are linear codes generated

by the Vandermonde matrix, and so have parameters [n, k + 1, n− k]q [94].

We can generalize such codes to quantum Reed-Solomon codes in the following

way. These will be codes on qudits of dimension q. We define the code states as, for

any b ∈ Fq,

|b〉kL :=
1√
qk

∑
f∈Fkq :f(0)=b

|f(~γ)〉 .

It can be checked that such codes have parameters [[n, 1,min(k + 1, n − k)]]q [15].

We can also define the generalized Toffoli gate over Fq as

Toffq(|a, b, c〉) := |a, b, c+ ab (mod q)〉 .

Then, applying Toffq strongly transversally to a quantum Reed-Solomon code state

results in

Toff⊗nq |a〉kL |b〉
k
L |c〉

k
L = |a〉kL |b〉

k
L ·
(

1

qk

) ∑
j∈F2k

2 [x]:j(0)=c+ab

|j(~γ)〉

= |a〉kL |b〉
k
L |c+ ab (mod q)〉2kL

So we can use a transversal Toffoli gate to map between different codes. This is

not as desirable since eventually the blowup in k will take us out of the family of

quantum Reed-Solomon codes, in particular when k ≥ n. Thus, this can only be

used to practically implement finite-depth classical reversible computations fault-

tolerantly. With an additional non-unitary operation called fault-tolerant degree

reduction [41], one can reduce the degree of the underlying polynomial. However,

because this requires fault-tolerant measurement, it does not fit into our definition

of transversality, and as such incurs significant overhead.

6.5.2 [[8,3,2]]-color code

Next, we consider the [[8, 3, 2]] color code defined in [95]. This code can be de-

scribed by the following. The stabilizers are given by ZZZZIIII, ZZIIZZII,

ZIZIZIZI, ZZZZZZZZ, and XXXXXXXX.

The three logical qubits haveX- and Z- logical operatorsXXXXIIII, ZIIIZIII;

XXIIXXII, ZIZIIIII; and XIXIXIXI, ZZIIIIII respectively.

One can check that this code supports CCZL = T⊗T †⊗T †⊗T⊗T †⊗T⊗T⊗T †.
Such a code again does not implement a transversal Toffoli gate, but it demonstrates
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how a standalone code can implement multi-qubit gates on its internal degrees of

freedom. Although our definition for transversality is standard [14], this possibility

for fault-tolerant Toffoli is left open by our construction. Still, this may have limited

applicability as it is a priori unclear how to grow such a code into an infinite code

family with similar fault-tolerance properties.

6.5.3 [[105,1,9]]-concatenated code

The [[105, 1, 9]] code is an outer concatenation of Steane’s [[7, 1, 3]] code with

an inner [[15, 1, 3]] Reed-Muller code. It was proposed as a workaround for the

Eastin-Knill theorem by supporting a universal transversal gate set over two different

transversal partitions [96]. See Figures 6.3 and 6.4 for a description. Unfortunately,

this quantum universal construction is inefficient, encoding one qubit into 105 with

relatively low distance and only 1-fault-tolerance for each gate. Below, G refers to

the transversal logical gates for that particular code.

Figure 6.3: A partition of the physical qubits of the [[105, 1, 9]] code on which the Clifford group is
transversal. Each physical gate appearing represents a logical gate of the underlying [[15, 1, 3]] code
represented by each wire. The wire coloring corresponds to a particular partition. In this partition,
the logical Hadamard gate to the left is transversal, but the logical T gate to the right is not. This
is because TL on Steane’s code requires CX gates that couple wires from different elements of the
partition. However, the circuit for TL can be made transversal with another partition, see Figure
6.4.
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Figure 6.4: Blowing up the second, third, and seventh wires in Figure 6.3 for a total of 45 physical
qubits, one can see that changing the partition allows the implementation of a transversal TL.
Although each physical gate respects the new partition, the overhead incurred is apparent.

6.6 Conclusion and general no-go workarounds

Do there exist non-additive maximally redundant codes that can then implement

Toffoli transversally? One can essentially think of these as QECCs formed by con-

catenating an outer repetition code with a distance 1 inner code that is not a stabilizer

subspace. Intuitively, since the inner code is not quantum error-correcting, the code

only “spreads out the information in one basis”. More precisely, the inner code only

satisfies the diagonal QECC criterion. While this is a less restrictive condition, it

still must be “complementary” to the outer code, and this allows us to argue impos-

sibility in the additive case. Unfortunately by comparison, the structure of general

non-additive codes is less well-understood – in particular, we know of no examples

of such a code. We expect that no QECC can implement Toffoli transversally, and

view this exception as a consequence of the lack of structure on general non-additive

codes. We hope to resolve this exception in the future.

The QHE scheme we have detailed is non-leveled and compact, but highly in-

efficient. An immediate question would be to refine the security proof, which uses

too strong a security demand. It would be most interesting to see if a modified ap-

proach can achieve efficient ITS-QHE for transversal gate sets of general quantum

error-correcting codes, where the size of the encoding is some fixed polynomial of the

input length. There are certain quantitative properties of “nonlocality” in QECCs

(see e.g. [97], [98]) that might be helpful in such an endeavor. Following the out-
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line of [12], we could also expect to extend a scheme built on a code with desirable

transversal gates to accommodate a constant number of non-transversal gates. Just

as one might tailor a QECC for a specific algorithm that makes heavy use of its

transversal gate set, one might also tailor an ITS-QHE scheme to homomorphically

implement that algorithm. Furthermore, it would be of theoretical interest to find a

protocol matching the lower bound from Chapter 4.

Another interesting open question is to consider leveled ITS-QHE schemes: allow

the client some preprocessing to scale with the size of the circuit. Can this relaxation

allow more efficient or universal schemes for polynomial sized circuits, mirroring the

computational security case? A first step might be to try to apply the techniques

of instantaneous nonlocal computation [74] that proved invaluable in the computa-

tionally secure scheme. Moreover, through gauge-fixing, we have ways of converting

between codes that together form a universal transversal gate set. Its not clear

how to implement such a strategy, since the noisy embedding and non-interactivity

present barriers to measuring syndromes, but these elements taken together might

be useful in extending the current scheme.

Finally, one could ask if there is a correspondence between transversal gates for

quantum codes and nontrivial ITS homomorphically-implementable gate sets, based

on the “richness” of the function classes they can realize. In particular, [86] asked:

what is the maximum size of finite group that can be implemented logically and

transversally? Indeed, since the Clifford group on p-qubits is of size at most 22p2+3p

[99], one could reasonably expect to efficiently implement the Clifford gates homo-

morphically with information theoretic security, as was done in [12]. We hope that

our arguments might extend past classical reversible circuit classes to address this

question, although it is unclear how to generalize Nayak’s bound to apply to these

general finite subgroups of the unitary group.



CHAPTER 7

Transversal switching between generic stabilizer codes

As we have seen, methods for implementing fault-tolerant gates outside the frame-

work of transversality are vital. Some of the candidates we have touched on include

magic state distillation [48, 42], gauge fixing [90, 45], and more recently pieceable

fault-tolerance [89, 52]. These last two candidates can be seen as a special case of

the more general approach of code switching [100, 92, 101, 102, 103].

Code switching is a natural idea: given two codes, map information encoded in

one code to information encoded in the other. For this mapping to be fault-tolerant,

we must often perform several intermediate error-correction steps to ensure that

faults do not grow out of hand. Thus, it is essential that during a circuit switching

between codes, the extremal error-correcting codes are deformed through a series of

intermediate error-correcting codes from one to another. This notion of intermedi-

ate error-correction was used in [92] to implement universal transversal computa-

tion by switching between the Steane and Reed-Muller codes, whose complementary

transversal gate sets are universal when taken together. However, universal fault-

tolerant computation is not the only consideration in choosing error-correcting codes,

and different codes can be tailored to different tasks. For this reason, it would be

nice to have a way of converting between different quantum codes fault-tolerantly.

Simply decoding and re-encoding information is undesirable, since the bare in-

formation becomes completely unprotected during this transformation. Past work

has succeeded in constructing fault-tolerant circuits for switching between particu-

lar quantum error-correcting codes fault-tolerantly, while providing guarantees that

these circuits are optimal within some framework [100].

Recently, [1] considered switching between generic stabilizer codes, and proposed

the stabilizer rewiring algorithm (SRA) for constructing a transversal circuit map-

ping between any pair of stabilizer codes. The circuit complexity scales quadratically

with the code length, and depends on a choice of presentation for the code generators.

Different presentations will result in different circuits mapping between different sets

67
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of at most n intermediate codes. This circuit necessarily fails to be fault-tolerant

when these intermediate codes have low distance. This leads to the central ques-

tion: is there an efficient way of fault-tolerantly converting between generic stabilizer

codes?

Towards this goal, we propose a randomized variant of the SRA, the randomized

SRA (rSRA). We show that for any pair of stabilizer codes, with at most linear

overhead with respect to the distance of the codes, there always exists a transversal

circuit that maps between intermediate codes of high distance. Furthermore, using

slightly more overhead, such a path can be found with high probability. In particular,

we show the following.

Theorem 7.1 (Informal). For any two [[n, k, d]] stabilizer codes S1 and S2, the rSRA

scheme gives a transversal circuit mapping from S1 to S2 where each intermediate

code has distance at least d with probability 1− ε, using

m = O

(
d log

n

d
+ log

1

ε

)
ancilla qubits.

This distance-preserving property is a necessary, but not sufficient condition to

ensure a fault-tolerant mapping. So while the algorithm does not necessarily yield

a fault-tolerant conversion, it gives a universal upper bound on the number of an-

cilla qubits required for distance-preserving transversal code transformation. As was

noted in [1], the usefulness of this scheme is in its generality. While the upper bound

may be of independent conceptual interest, we hope that with modification, the rSRA

can be applied as a useful schema for searching for fault-tolerant paths between small

codes. We provide small examples of such transversal paths in Section 7.2, including

a path between the [[5, 1, 3]] and [[7, 1, 3]] codes that without modification protects

against erasure with no overhead.

7.1 The randomized stabilizer rewiring algorithm

Let us quickly recall some of the concepts from section 3.4 in the special case of

stabilizer subspace codes. A stabilizer subspace code CS has parameters [[n, k, d]].

Here, n is the number of physical qubits comprising the code, k is the number of

logical qubits of the code log(dim(CS)), and d is the distance of the code. More

precisely, the normalizer NPn(S) represents the set of logical Pauli operators for CS,

and so

d := min
L∈N (S)\S

(|L|)
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where | · | denotes the weight of the Pauli operator. Note that because we are defining

a subspace code, the number of stabilizers in the corresponding stabilizer subgroup

is n− k.

Given any stabilizer group S, if we choose a generating set GS for S, we can define

a syndrome map

SynG : Pn −→ {0, 1}n−k

SynG(e)i =

0 if [e, gi] = 0

1 if {e, gi} = 0

for G = (g1, . . . gn−k). Then equivalently,

d = min
L∈ker(SynG)\S

(|L|)

and is independent of the choice of G.

Another convenient formalism for describing stabilizer groups is as subspaces of

symplectic vector spaces, and this is the formulation we will use in this chapter. For

any P ∈ Pn/U(1), if

P = Xa1Zb1 ⊗Xa2Zb2 . . .⊗XanZbn

then we can associate to P the vector ~P := (~a|~b)T ∈ F2n
2 . Equip F2n

2 with a symplectic

bilinear form

〈~v, ~w〉 := ~vTB~w

where B is the 2n× 2n block matrix defined by

B =

(
0 I

I 0

)
.

Then Paulis P,Q commute if any only if their associated vectors ~P , ~Q are orthogonal

in this vector space. Thus, we can equivalently define a stabilizer group as a self-

orthogonal subspace of this vector space. A generator matrix G is then a choice of

basis for this subspace, so that for C an [[n, k]] code, G will be a rank (n−k) matrix

of shape 2n× (n− k). The syndrome map can then be similarly defined as

SynG(~P ) = GTB ~P .

Further note that for any A ∈ GL(F2, n−k), for any generator matrix G for S, GAT

is also a generator matrix for S. The syndrome map satisfies

SynGAT (~P ) = (GAT )TB ~P = AGTB ~P = A · SynG(~P ).
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So any action on the generator matrix induces a corresponding action on the

syndrome vectors themselves.

Finally, recall that a circuit C on a class of encoded inputs t-fault-tolerant if it

is t-fault-tolerant in the exRec formalism [39] (see section 3.6.3). Again, given error

correction procedure EC, C is t-fault-tolerant if for any choice of t faulty components

in the combined circuit EC ·C ·EC, a faultless version of EC applied to the output

of the combined circuit can successfully recover the data. If t ≥ 1 we may simply

call the circuit fault-tolerant.

7.1.1 The rSRA schematic

The rSRA modifies the SRA presented in [1], whose central insight is the following.

Consider two stabilizer groups S, S ′ with generating sets G,G′ satisfying the following

nice property:

G = {g, g1, . . . , gl}
G′ = {g′, g1, . . . , gl}

where {g, g′} = 0. We call two such codes for which one can choose such generating

sets adjacent. Then one can readily check that the Clifford gate 1√
2
(1 + g′g) maps

information encoded in the stabilizer code defined by G to the same information

encoded in the stabilizer code defined by G′. Letting |ψ〉G denote a logical state in

the code associated to G, we see that

gi ·
1√
2

(1 + g′g) |ψ〉G =
1√
2

(1 + g′g) |ψ〉G , and

g′ · 1√
2

(1 + g′g) |ψ〉G =
1√
2

(g′ + g) |ψ〉G

=
1√
2

(g′ + 1) |ψ〉G

=
1√
2

(1 + g′g) |ψ〉G .

The insight is that this mapping can be done transversally. While the Clifford trans-

formation described need not be transversal, it can be simulated by a transversal

Pauli measurement supplemented by a transversal Pauli gate controlled on classical

information. This is similar to gauge-fixing, in which one measures a logical operator

of the gauge and then applies a corresponding logical gauge operator conditioned on

the outcome. To see this, consider the circuit described by:

1. Measure g′.

2. Apply g conditioned on measurement outcome −1.
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Let P± denote the projector onto the +1/−1 eigenspace of g′. Then, if the measure-

ment outcome is +1,

1√
2

(1 + g′g) |ψ〉G =
1√
2

(1 + g′) |ψ〉G =
√

2P+ |ψ〉G .

Furthermore,

If the measurement outcome is −1,

1√
2

(1 + g′g) |ψ〉G =
1√
2

(g − gg′) |ψ〉G

=
1√
2
g(1− g′) |ψ〉G

=
√

2gP− |ψ〉G .

Thus, we see that we can transversally perform the mapping |ψ〉G → |ψ〉G′ .
Now consider the more general case in which we have (non-adjacent) S, S ′ describ-

ing [[n, k]] and [[n′, k]] codes respectively. We now describe a general randomized

algorithm for outputting a circuit switching between these two codes, similar to [1],

and will later show that this circuit is distance-preserving with high probability. The

inputs are arbitrary generator matrices G,G′ for stabilizer groups S, S ′, along with

a choice of ancilla size m ∈ N.

7.1.2 Preparing the generator matrices

1. Append |0〉 ancilla to the smaller code so that the codes are of equal size. We

now assume that both codes are [[n, k]] codes.

2. Append |0〉⊗m to the first code, and |+〉⊗m to the second. Note that this is

equivalent to defining a pair of new stabilizer codes

Ŝ = 〈S ⊗ I⊗m, I⊗n ⊗ Z ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗ Z〉,

Ŝ ′ = 〈S ′ ⊗ I⊗m, I⊗n ⊗X ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗X〉.

3. Choose GA = G′A to be a basis for the subspace defined by Ŝ ∩ Ŝ ′.

4. Choose GB to extend the basis of GA to a basis for N (Ŝ ′) ∩ Ŝ and choose G′B
to extend the basis of GA to a basis for N (Ŝ) ∩ Ŝ ′.

5. Choose GC to extend the basis GA ∪GB to a basis for Ŝ and G′C to extend the

basis G′A ∪G′B to a basis for Ŝ ′.
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6. Let H be the commutativity matrix for GC , G
′
C defined by H := G′C

TBGC . By

Lemma 7.3, H is invertible with dimension |GC | × |GC |, where |GC | ≥ m. So

we can choose M,N ∈ GL(F2, |GC |) : MTHN = I|GC | and redefine

GC ← GC ·M
G′C ← G′C ·N.

7. Choose uniformly at random V, V ′ ∈r F|GC |×|GB |2 and a U ∈r GL(F2, |GC |).

8. Redefine

GT
C ← U(V GT

B +GT
C)

G′C
T ← (U−1)

T
(V ′G′B

T
+G′C

T
)

Note that this does not change the commutativity matrix since

U(V GT
B +GT

C)B(G′C +G′BV
′T )U−1 = I|GC |.

9. Let GB = {g1, . . . , g|GB |} and G′B = {g′1, . . . , g|G′B |}. For each gi ∈ GB, choose gi

satisfying

[gi, GA] = 0

[gi, GC ] = 0

[gi, G
′
C ] = 0

[gi, {gi+1, . . . , g|GB |}] = 0

[gi, {g′i+1, . . . , g
′
|GB |}] = 0

[gi, {g1, . . . , gi−1}] = 0

{gi, gi} = 0

{gi, g′i} = 0.

To see that such a choice of gi always exists, note that it must satisfy at most

2n affine linear equations, all of which are linearly independent, in a space of

dimension 2n.

Now that we have prepared the generator matrices, we will step-by-step map

between adjacent codes transversally.
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7.1.3 Applying the transformation

10. For 1 ≤ i ≤ |GB| indexing the elements of GB, perform the transformation

gi 7→ gi. Note that the resulting stabilizer codes are adjacent, and so the

preceding discussion gives a transversal circuit for each mapping.

11. For 1 ≤ i ≤ |GC | indexing the elements of GC , perform the transformation gi 7→
g′i. Again, since the codes are adjacent, the mapping can be done transversally.

12. For 1 ≤ i ≤ |GB| indexing the elements of G′B, perform the transformation

gi 7→ g′i starting from i = |GB| and working backwards towards i = 1. Again,

we have a transversal circuit for each mapping.

13. Discard the ancilla.

This randomized variant differs from the original SRA in several ways. First,

there is the introduction of ancilla, which we will see are vital for preserving the

distance. Next, the SRA fixes the generating sets G,G′ subject to the same GA and

GC conditions, but with different GB conditions. Namely, the SRA fixes the g to be

the product of the complementary logical operators to those operators in GB and

G′B, which can be seen as nontrivial logical operators on the opposite code. This

allows for a certain degree of freedom in choosing the order in which one converts

between the two codes, but restricts the GC ,G′C that are available to use. Also in the

SRA, only the set of valid permutations among GB and GC are considered, which

restricts the search for a distance-preserving mapping. In the rSRA, we consider the

full set of invertible transformations on GC for a better chance of success. Finally,

the transformation described above is symmetric in the sense that switching from G

to G′ or G′ to G after step 9 results in the same set of intermediate codes. We will

see that this simplifies the set of errors we must consider.

7.2 Distance-preservation for small codes

We have now described a way of constructing a transversal circuit mapping in-

formation encoded in G to information encoded in G′ through the use of Shor-style

measurement (see Figure 3.2).

However, we have no a priori guarantee that these intermediate codes, resulting

from the sequence of deformations, will themselves be error-correcting. In light of

this, we offer several examples of small distance-preserving circuits generated from

the rSRA. These illustrate the necessity of the aforementioned modifications, which

are centered around choosing a path so that all of the intermediate codes have high

distance. In these examples, the extremal codes all have distance 3, and so we call

the circuit distance-preserving if the intermediate codes all have distance ≥ 3.
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7.2.1 [[7, 1, 3]]←→ [[5, 1, 3]]

With m = 0, one can generate a distance-preserving map from the [[7, 1, 3]] Steane

code to the perfect [[5, 1, 3]] code using the rSRA with 17 multi-qubit gates. An

optimal fault-tolerant (and so distance-preserving) transformation using CZ gates

between these two codes was found via brute force search in [100] and involves 14

multi-qubit gates. The circuit output by the rSRA requires no overhead in data

qubits compared to the three extra qubits required in [100]. However, because the

[[5, 1, 3]] code is perfect, any conversion without ancilla must only be able to protect

against erasure, for reasons detailed in Section 7.4. Note also that there must be

conversions with large separation between the circuit provided by the rSRA and

the optimal fault-tolerant circuit, in particular when G and G′ are locally unitarily

equivalent.

Type [[7, 1, 3]] [[5, 1, 3]]

GA −Y XXY IZZ −Y XXY IZZ

GC

ZZZZIII IXZZXII
−Y Y XXZZI XZZXIII
−IXZY Y ZX XIXZZII
−XIY ZY ZX ZXIXZII
−ZY Y ZIXX IIIIIZI

Table 7.1: The generator matrices defining a distance-preserving conversion, proceeding from top
to bottom. We follow steps 10 - 13 of the algorithm.

7.2.2 (34) · [[7, 1, 3]]←→ [[9, 1, 3]]

With m = 0, one can convert from the (34) permutation of the [[7, 1, 3]] Steane

code to Shor’s [[9, 1, 3]] code while preserving the distance. However, for the standard

choice of generator matrices, no permutation on the ordering of the deformations will

suffice. Thus, we must choose U ∈ GL(F2, |GC |) rather than restricting U to be a

permutation matrix. A choice of generator matrices for which the circuit is distance-

preserving is presented below.

7.2.3 [[7, 1, 3]]←→ (34) · [[7, 1, 3]]

For m = 0, it was observed in [1] that one cannot use the SRA to convert between

the [[7, 1, 3]] code, and the (34) permutation of the [[7, 1, 3]] code while preserving

the distance. In fact, there does not exist a U ∈ GL(F2, |GC |) that allows the

intermediate codes to be error-correcting. In contrast, with m = 2, there does

exist such a distance-preserving circuit, emphasizing the need for ancilla. Moreover,

brute force search shows that this is the minimal number of ancilla required to
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Type (34) · [[7, 1, 3]] [[9, 1, 3]]

GA
ZZIIZZIII ZZIIZZIII
IIIIIIIZZ IIIIIIIZZ

GC Y IIY Y IY II −Y XY ZZIXXX
GB ZZZZIIIZI ZZIIIIZZI

GC

−ZZY Y XXIII IZZZZIIII
ZIIZZIZII −Y Y XXXXIII
−XZZXY IY II −XY Y IIIXXX
−IY ZXZXY II IIIZZIIII

Table 7.2: The conversion proceeds from top to bottom. As the GB elements commute, we perform
an intermediate conversion to the product of the complementary logical operators, which in this
case are XXXXXXXXX and XXXXXXXII respectively. This small modification is similar
to the SRA [1], which we adopt here for ease of presentation.

produce a distance-preserving circuit within this framework. However, note that

qubit permutations are themselves automatically fault-tolerant by simply relabeling

the wires, rather than applying a fault-tolerant physical SWAP gate.

Type [[7, 1, 3]] (34) · [[7, 1, 3]]

GA

XXIIXXIII XXIIXXIII
ZZZZIIIII ZZZZIIIII
ZZIIZZIII ZZIIZZIII
XXXXIIIII XXXXIIIII

GC

XIXIXIXII Y IIY Y IY XX
IIIIIIIZZ XIIXXIXIX
ZIZIZIZIZ IIIIIIIXX
Y IY IY IY ZZ XIIXXIXXX

Table 7.3: The conversion proceeds from top to bottom. In particular, we use 2 extra ancilla qubits,
for 9 physical qubits in total.

7.3 Distance preservation

We now show that, with low overhead and high probability, the described rSRA

will yield a distance-preserving circuit. More specifically, we show that the inter-

mediate codes preserve the distance of the extremal codes. We begin with some

technical lemmas.

Lemma 7.2. Let v, w ∈ {0, 1}n\{0} and U ∈r GL(F2, n). Let i0 = max{i : (U ·v)i =

1} and i1 = min{i : ((U−1)T · w)i = 1}. Then,

Pr[i0 < i1] ≤ (n− 1) · 2−n.

Proof. Let 〈·, ·〉 be the dot product over F2. Note that 〈v, w〉 = 〈U · v, (U−1)T · w〉.
If 〈v, w〉 = 1, then there must be at least one entry where both U · v and (U−1)T ·w
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are 1 for whichever U we choose, and so Pr[i0 < i1] = 0. Therefore we only need to

consider the case in which 〈v, w〉 = 0.

Consider the action of GL(F2, n) on A defined by U(v, w) → (U · v, (U−1)T · w),

where A = {(v, w)|v, w ∈ {0, 1}n \ {0}, 〈v, w〉 = 0}. We show that the action is

transitive by showing that for all such pairs (v, w), there always exists a U sending

(e1, en) to (v, w), where e1, en are (1, 0, . . . , 0) and (0, 0, 0, . . . , 1), respectively. Given

such a (v, w), first extend v to a basis for w⊥, say (u1 = v, u2, . . . , un−1), and then

extend it to the whole space by adding in un. We claim that U = (u1, · · · , un) is the

desired matrix. It is sufficient to show that the last column w′ of (U−1)T is exactly w.

We have UTw′ = en given that UT (U−1)T = I, and that UTw = en by construction

of U . Then, since U is invertible, w = w′.

A uniformly random distribution over invertible U then induces a uniformly ran-

dom distribution over A. Then Pr[i0 < i1] can then be bounded by counting the

number of such pairs in A:

Pr[i0 < i1] =

∑n
i0=1 2i0−1(2n−i0 − 1)

(2n − 1)(2n−1 − 1)

=
(n− 2)2n−1 + 1

(2n − 1)(2n−1 − 1)

≤ (n− 1) · 2−n

when n ≥ 2. Note that |A| = 0 when n = 1, so Pr[i0 < i1] ≤ (n− 1) · 2−n holds for

all n ≥ 0.

Lemma 7.3. Let GA, GB, GC and GA, G
′
B, G

′
C be the matrices defined up to step 5

in the rSRA scheme. The commutativity matrix H = GT
CBG

′
C is invertible, and its

dimension is |GC |, with |GC | ≥ m.

Proof. For the two codes Ŝ and Ŝ ′, take arbitrary generator matrices G,G′ and

define H ′ = GTBG′. Note that any two choices of generator matrices for the

same code differ by an invertible row transformation, so the rank of H ′ is in-

variant under different choices of the generator matrices. In particular, letting

G = (GA|GB|GC), G′ = (G′A|G′B|G′C), we have

H ′ =

0

0

H

 .
Note that rank(H) = |GC |, or else there would exist a combination of the rows

of G′C
T that are orthogonal to all the columns of GC . Since all the vectors in G′C

are already orthogonal to GA and GB by definition, this cannot happen as no vector
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in G′C lies in N (S). The same argument applies to G′C as well. Therefore H is

invertible, with rank(H ′) = rank(H) = |GC |, and is independent of the choice of GC .

To show that |GC | > m, take ḠC = (I⊗n ⊗ Z ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗ Z) and

Ḡ′C = (I⊗n ⊗ X ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗ X), each of size m. By extending them

to generator matrices Ḡ and Ḡ′ for Ŝ and Ŝ ′ respectively, we get a commutativity

matrix H̄ with an invertible submatrix of size m×m, namely

ḠT
CBḠ

′
C = Im,

and so rank(H̄) = |GC | ≥ m.

Lemma 7.4. For D(·||·) the KL-divergence, let

P (n,m, d) = 4n+me−D( d
n+m

‖ 3
4

)(n+m) · (m+ 1) · 2−m.

Then P < ε for some m = O(d log n
d

+ log 1
ε
).

Proof. Let α = m/n. Then P (n,m, d) < ε can be rewritten as

f(n,m, d) : = log
P (n,m, d)

ε

= log
m+ 1

ε
+ n

(
(2 + α) log 2

− (1 + α)D

(
d

n(1 + α)
‖3

4

))
< 0.

We first compute the dominant term, i.e. the α such that

(2 + α) ln 2− (1 + α)D

(
d

n(1 + α)
‖3

4

)
= 0.

Doing this we obtain

(2− α

1 + α
) ln 2 = D

(
d

n(1 + α)
‖3

4

)
(2− α

1 + α
) ln 2 ≥ 2 ln 2 +

d

n(1 + α)

(
ln

d

3n(1 + α)
− 1

)
αn ≤ d

ln 2

(
ln

3n(1 + α)

d
+ 1

)
m ≤ 1

ln 2
d(log

n

d
+ (1 + ln 3)),

where we have used convexity of D(p‖q)− p ln p with respect to p. Letting α̃ denote

the solution to (2 + α) ln 2 − (1 + α)D
(

d
n(1+α)

‖3
4

)
= 0, we have that m̃ := α̃n =

O(d+ d log n
d
).
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We now have that f(n, m̃, d) = log m̃+1
ε

. Taking the derivative of f with respect

to m, for all α > α̃ we have

∂f(n,m, d)

∂m
=

=
1

m+ 1
−D(

d

(n+m)
‖3

4
)− (m+ n)

∂D( d
n+m
‖3

4
)

∂m

≤ 1

m+ 1
− 2 + α̃

1 + α̃
log 2 +

d

m+ n

(
log

d

3(m+ n− d)

)
≤ 1

m+ 1
− 1

1 + α̃
log 2 +

d

n+m

(
log

d

3(n+m− d)

)
≤ − 1

1 + α̃
ln 2 + 0.1

for m ≥ 10. For fixed n, α̃ is monotonically increasing as a function of d. By

the quantum singleton bound, d−1
n

< 1
2
, and α̃ < 3 even in this case. Therefore

∂f(n,m,d)
∂m

≤ −0.05 when m ≥ 10, so taking

m = m̃+ 20 log
m̃+ 1

ε
+O(1) = O(d log

n

d
+ log

1

ε
)

suffices to make f(n,m, d) < 0.

Theorem 7.5. Let S,S ′ be any two stabilizer codes with parameters [[n1, k, d1]] and

[[n2, k, d2]], respectively. Let d = min{d1, d2} and n = max{n1, n2}. Then, the

rSRA will output a distance-preserving circuit mapping information encoded in S to

information encoded in S ′ with probability 1− ε using m = O(d log n
d

+ log 1
ε
) ancilla

qubits.

Proof. Consider a particular error e : |e| < d. There are four different types of errors

to consider.

(1) e ∈ S ∩ S ′: In this case, e ∈ Span(GA), and so remains passively corrected

throughout the transformation.

(2) e ∈ S \ N (S ′): In this case, we can decompose e = gA + gB + gC where gA ∈
Span(GA), gB ∈ Span(GB), and gC ∈ Span(GC). Furthermore, gC 6= 0, or else e

would be a logical operator of weight < d for S ′. Thus, e must be detected by G′C ,

and so it remains detectable after step 11. In particular, before the end of step 11,

e must fall out of the intermediate stabilizer group. Suppose this occurs for the first

time when transforming between two adjacent codes whose stabilizer groups differ

by g, g′. Then we can write e = g +
∑

i aigi, and as g′ commutes with all other gi,

it must be that {e, g′} = 0. Since g′ remains in each intermediate code up through
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step 11, e must be detectable throughout.

(3) e ∈ S ′ \ N (S): This error is just an error of type (2) when performing the opposite

transformation from S ′ to S. By symmetry of the scheme, the set of intermediate

codes during this opposite transformation is the same, and so these errors remain

detectable by the preceding argument.

(4) e 6∈ N (S) ∪N (S ′): Let G
(0)
C , G

′(0)
C be the bases GC and G′C we choose after step

6 in the rSRA scheme, and let G
(1)
C , G

′(1)
C be the bases we choose after step 8. Note

that the syndrome map for G
(1)
C can then be expressed as

Syn
G

(1)
C

(e) = U(V · SynGB(e) + Syn
G

(0)
C

(e)).

In this case it must be that

(SynGA(e)|SynGB(e)|Syn
G

(0)
C

(e))T 6= 0,

(SynGA(e)|SynG′B(e)|Syn
G′

(0)
C

(e))T 6= 0.

Note that if SynGA(e) 6= 0, then e is always detectable since each intermediate code

includes the check operators from GA. Thus, we only need to consider the case

where SynGA(e) = 0, and so we can assume that (SynGB(e)|Syn
G

(0)
C

(e))T 6= 0 and

(SynG′B(e)|Syn
G′

(0)
C

(e))T 6= 0.

Let Pe denote the probability that the error e is undetectable in some intermediate

code over the random choices of U , V , and V ′. We divide Pe into three parts. Let

Ae denote the event that Syn
G

(1)
C

(e) = 0, Be the event that Syn
G′

(1)
C

(e) = 0, and

let Ce denote the event that both Syn
G

(1)
C

(e) and SynGC ′(1)(e) are nonzero, yet e

becomes undetectable on some intermediate code during the transformation. Then

Pe ≤ Pr[Ae] + Pr[Be] + Pr[Ce]. We bound Pr[Ae], Pr[Be], and Pr[Ce] separately. To

bound Pr[Ae], note that

Syn
G

(1)
C

(e) = U(V · SynGB(e) + Syn
G

(0)
C

(e)).

Since U ∈ GL(F2, n − k), Ae occurs if and only if V · SynGB(e) + Syn
G

(0)
C

(e) = 0.

If SynGB(e) = 0, it must be the case that Syn
G

(0)
C

(e) 6= 0, and so Syn
G

(1)
C

(e) 6= 0;

otherwise SynGB(e) 6= 0 and V · SynGB(e) + Syn
G

(0)
C

(e) is uniformly random over

{0, 1}|GC |. In either case, we have

Pr[Ae] ≤ 2−|GC |.
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Repeating the same argument shows that Pr[Be] ≤ 2−|GC | as well. To bound Pr[Ce],

define

v = V · SynGB(e) + Syn
G

(0)
C

(e),

w = V ′ · SynG′B(e) + Syn
G′

(0)
C

(e).

Since Uv, (U−1)Tw 6= 0, e will be detectable during steps 10 and 12, and so Ce oc-

curs only if e becomes undetectable during step 11. Specifically, it must be that

SynGA(e) = 0, SynGB(e) = 0, and the last 1 in the vector Uv occurs before the first

1 in the vector (U−1)Tw. This is because we are sequentially replacing the check

operators of G with the check operators of G′, and so an error becomes undetectable

for some intermediate code only if we produce some zero syndrome during this se-

quence of substitutions. By Lemma 7.2, for two nonzero vectors v, w ∈ {0, 1}|GC |,
the probability that the last 1 in Uv comes before the first 1 in (U−1)Tw is bounded

by (|GC | − 1) · 2−|GC |.
Summing these three terms, we have Pe ≤ (|GC | + 1) · 2−|GC |. Taking a union

bound, the probability P that any of the intermediate codes fail to detect any error

of weight less than d is upper bounded by

P ≤
∑
e:|e|<d

Pe ≤ |{e : |e| < d}| · (|GC |+ 1) · 2−|GC |.

Taking a Chernoff bound, we get that this is in turn upper bounded as

P ≤ 4n+m · e−D( d−1
n+m

|| 3
4

)(n+m) · (|GC |+ 1) · 2−|GC |

where D(·||·) is the KL-divergence. By the quantum singleton bound, we can assume
d−1
n+m

< d−1
n
< 3

4
. Furthermore, by Lemma 7.3, |GC | is given by rank(GTBG′), which

is at least m. So the probability of failure can be further upper bounded by

P ≤ 4n+m · e−D( d−1
n+m

‖ 3
4

)(n+m) · (m+ 1) · 2−m.

It suffices to choose m such that the above quantity is upper bounded by ε in order

to achieve a high probability of success. In particular, the case ε = 1 upper bounds

the minimum number of ancilla qubits required for a fault-tolerant transformation.

By Lemma 7.4 we observe that taking

m = O(d log
n

d
+ log

1

ε
)

is sufficient for the rSRA scheme to succeed with probability 1− ε.
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7.4 Conclusion and prospects for fault-tolerance

Theorem 7.5 shows that with high probability, the rSRA will produce a transversal

circuit with intermediate codes that have distances at least the minimum of the

distances of the extremal codes. It is important to note that this does not necessarily

imply fault-tolerance. The reason is because, when measuring g′, the randomness in

the outcome prevents us from using that syndrome bit during error-correction. More

specifically, consider the following two scenarios.

1. We project onto the (+1)-eigenspace of g′.

2. We project onto the (−1)-eigenspace of g′ and simultaneously experience an

error that anticommutes with only g′.

Then we cannot distinguish these two scenarios using only our syndrome bits,

and so cannot correct the resulting error. More generally, we can cast the property

required for fault-tolerance in terms of subsystem codes. For every conversion be-

tween adjacent codes, we consider the subsystem code with a single gauge degree

of freedom corresponding to gauge operators g′ and g. Then the resulting conver-

sion will be t-fault-tolerant precisely when the resulting subsystem code has distance

2t + 1. This is because the redundant syndrome information can diagnose errors

without the syndrome bit associated to g′, and so ensure that we project onto the

correct eigenspace. For this reason, additional techniques will be required to achieve

fault-tolerance using the rSRA, such as error-detection on the ancilla. We leave this

to future work.

These techniques contrast with recent results from [89], where it was shown that

pieceable fault-tolerance offers generic fault-tolerant code switching between stabi-

lizer codes subject to certain constraints. However, their techniques require that the

codes are nondegenerate and have some set of native fault-tolerant Clifford gates, al-

lowing a fault-tolerant SWAP gate between different codes. One could also consider

preparing a second code state and using logical teleportation to achieve a fault-

tolerant mapping [101].

Practically, on small examples, one finds that often no ancilla qubits are required

to find a distance-preserving circuit, which is desirable as the resulting circuit may

then be fault-tolerant. In general, this can be attributed to a coarse accounting of

|GC | in terms of the number m of ancilla qubits. In most cases, N(S) ∩ N(S ′) will

be small, and so the ancilla will be superfluous.

Moreover, the multi-qubit gate complexity of the algorithm is
∑

P∈{gi}∪GB∪GC |P |,
so that choosing a low weight generating set is ideal for reducing the complexity of

the code switching circuit. For this reason, LDPC codes might provide more efficient
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code switching circuits, although preserving the distance may depend on choosing a

high weight set of generators.

This algorithm derives its usefulness from its generality. For specific code switch-

ing examples, it may be profitable to modify the circuit using the rSRA as a template,

augmented with a larger class of fault-tolerant manipulations such as local Clifford

gates, in order to search for a fault-tolerant mapping. For large code sizes, the use

of high-weight Shor-style measurements is limiting as it requires large verified CAT

states. Thus, this technique may be most useful as a step in a concatenated scheme,

or simply as a search ansatz.

One subtlety about the rSRA is that, while it outputs a distance-preserving circuit

switching between two codes with high probability, this is difficult to check. This

follows from the difficulty of computing the minimum distance of a generic error-

correcting code, which is an NP-hard problem in general [104]. Indeed, even when

restricting to a particular distance, this check remains extremely costly. This poses

a barrier to derandomizing the algorithm, which would be one desirable avenue for

future improvement.

Another such improvement would be to minimize overhead. One could imagine

taking a random local clifford transformation in order to increase the size of GC ,

rather than introducing ancilla. Such a strategy would be interesting since locally

equivalent codes have nearly identical properties. Of course, modifying the algorithm

to ensure fault-tolerance is the most important improvement.

If it is true that one can always choose locally equivalent representatives for

which the rSRA provides a distance-preserving conversion without ancilla, this would

suggest that all error-protected information in stabilizer codes is, in some sense,

“transversally equivalent”. This contrasts with the diverse set of equivalence classes

of locally unitarily equivalent codes, which can be identified as distinct submanifolds

of Grassmanians. Indeed, it may be of conceptual interest to interpret these upper-

bounds in a broader framework of fault-tolerance, such as the one investigated in

[105].

Similarly, the generality of the rSRA provides an aesthetically nice interpretation

of error-protected information. It suggests that, with the addition of some minimal

overhead, any stabilizer error-protected encoding of information is indeed “transver-

sally equivalent” to any other.



CHAPTER 8

Summary and conclusions

In this thesis, we have studied several questions relating to quantum fault-tolerance,

and a tangentially related question appearing in quantum cryptography. While all

of these results lean on the side of theory, they investigate possibilities that may be

available down the road. With quantum computing in its nascent stages, it is unclear

which existing or yet to exist proposal may prove a magic bullet for the construc-

tion of larger fault-tolerant quantum computers. The intention of this thesis is to

inject more knowledge into this burgeoning field, in the hope that we may ultimately

utilize the computational power of quantum mechanics. Towards this goal, we have

contributed the following.

8.1 Intermediate 2-D compass codes

8.1.1 Summary

From [20], we constructed a novel class of local subsystem codes which we call

intermediate compass codes. We use these codes to study threshold behavior between

Bacon-Shor codes, which are optimally 2-local but fail to have a threshold, and

rotated surface codes, which are 4-local but boast a high threshold. We give evidence

that the threshold scales linearly with the expected ratio of stabilizer generators to

qubits.

Noting that these codes have the nice property that their excitations are created

in pairs, we use a minimum-weight matching decoder to study their behavior in

different subspace code families. We find that these codes can be easily tailored to

asymmetric noise models, providing higher thresholds in these settings. However,

we do so at the cost of locality, which scales linearly with the bias of the noise. For

fixed bias, however, these code families remain local. We also analyze the behavior

of randomized subspace code families; for these families, the expected locality scales

logarithmically with the lattice size. Such codes display similar threshold behavior

to their regularly-defined cousins.
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8.1.2 Future work

In the future, we would like to test this model on realistic noise models sampled

from quantum devices. For example, while dephasing noise is the dominant process

on all devices, its bias could vary as a collection of discrete Gaussians centered on

problematic qubits. Intermediate compass codes give a natural template for tailoring

codes to geometrically correlated noise. We also expect that employing decoder

techniques similar to [61, 106] may boost the threshold up even further.

The other natural question is to descend from the code capacity model to the

circuit error model to determine whether these gains are maintained. One barrier is

the increasing non-locality of the stabilizer checks, which may introduce correlated

errors depending on the measurement scheme used. It would be interesting to con-

sider whether these codes can be designed to mitigate such correlated errors, perhaps

by using techniques similar to [107, 108]. Finally, while these codes may be promis-

ing as quantum memories, we have also not yet detailed schemes for implementing

fault-tolerant operations.

8.2 Quantum homomorphic encryption

8.2.1 Summary

In [22], we study existing proposals for extending classical homomorphic encryp-

tion to the quantum setting. This problem is particularly important for quantum

information, as the average user is likely to outsource any quantum computation to a

third-party quantum device. We study this problem in the information-theoretically

secure regime, where there has been evidence that quantum computers may have the

potential for accomplishing this task with statistical security [6, 11, 12, 77].

In [21], we show that a quantum device enacting even a classical-reversible univer-

sal set of homomorphisms with ε-information theoretic security must use encoding

sizes that scale exponentially with the input size. This was observed concurrently

in [13], and precludes any hope for the strongest notion of information-theoretically

secure quantum fully homomorphic encryption.

8.2.2 Future work

It would be of theoretical interest to rule out the possibility of information-

theoretically secure leveled quantum fully homomorphic encryption. Also, similar

to the restrictions found in [11], what we would like to argue is that any doubly-

exponential family of unitary homomorphisms cannot be implemented efficiently,

rather than just the set of all Boolean functions. Both of these directions seem to

require a modification of Nayak’s bound.
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Finally, although we have ruled out quantum fully homomorphic encryption with

the most stringent security guarantees, we have seen that weakened information-

theoretic security can sometimes offer much larger sets of homomorphisms. In

fact, [77] offers a scheme that implements a continuum of homomorphisms with

some weaker information-theoretic security guarantees. Although these homomor-

phisms are not universal for quantum computing (and so the scheme is not fully-

homomorphic), can we design a similar scheme that is universal?

8.3 Transversal gates

8.3.1 Summary

In [21], we consider which families of gates may be implemented transversally

on quantum subspace error-detecting codes. We show that a particularly valuable

gate, the Toffoli gate, cannot hope to be implemented unless the codes take a very

special form. We suspect that there are no such codes. In doing so, we show that

within our framework, there are no codes that can implement a classical-reversible

universal transversal gate set, supplementing the no-go theorem for quantum uni-

versal transversal gate sets [109]. Our proof uses an information-theoretic approach,

reducing to lower bounds derived in Chapter 5, rather than the previous Lie group

approach. We further show that for the special class of error-detecting stabilizer

codes, there can be no transversal Toffoli gate by showing that the stabilizer group

structure is incommensurate with the special structure required to violate our lower

bound.

8.3.2 Future work

Finding fault-tolerance schemes for implementing classical-reversible computation

are of paramount importance. Many useful quantum algorithms are dominated by

classical-reversible circuits. Furthermore, these are the circuits on which we can test

the fidelity of our outputs. We details some existing proposals in Chapter 6, but

emphasize that we must do better.

Understanding the full picture of transversal gates is also important. Practically

speaking, the overwhelming majority of transversal gates are known only for the

extremely specialized class of CSS codes. Furthermore, these gates are almost always

Clifford gates, iterated roots of Z, or iterated controls of Z. It is reasonable to ask

if these gates constitute all such transversal gates? Perhaps there is a connection

between the complexity of a circuit class and whether or not it can be realized

transversally on a quantum error-detecting code.
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8.4 Transversal code switching

8.4.1 Summary

In [23], we consider the problem of constructing circuits that switch between

stabilizer subspace codes, building on the proposal in [1]. We prove theoretical

upper-bounds on the requirements for our construction to yield a sequence of codes

that preserves the distance throughout, answering an open question in [1]. We note

that this is a necessary but insufficient requirement for fault-tolerance, and certain

malignant errors can still cause a failure within our circuit. However, there do exist

examples within our framework displaying degrees of fault-tolerance, particularly

when switching between nondegenerate codes with |GC | (as defined in Chapter 7)

large, as if often the case. We give toy examples of such code mappings on small

codes.

8.4.2 Future work

The central open question here is whether these constructions can be made fully

fault-tolerant. While our proposal may be a useful ansatz for searching for code-

switching circuits, we are motivated by the question: what are the minimal re-

quirements necessary for switching between any two different stabilizer codes fault-

tolerantly. To achieve this goal, entirely new techniques may be needed.

More generally, code switching and gauge-fixing are only one proposal for im-

plementing non-transversal fault-tolerant logical gates. The major obstacle facing

such gates is the necessity of magic-state distillation, an enormous expense that ac-

counts for upwards of 99% of the required resources for a computation [48]. While

gauge-fixing, code switching, and pieceable fault-tolerance have provided alternative

approaches, no such proposal has yielded a competitively high threshold thus far.

The major question then becomes, how does one avoid magic-state distillation more

generally?

8.5 Final remarks

In this thesis, we have considered several problems relating to the fault-tolerance

of quantum information using the active error-correction paradigm. There remain

alternative proposals for physical fault-tolerance, such as topological quantum com-

puting and thermodynamically stable quantum memories, which we have not touched

on. It is unclear in the end what form a fault-tolerant quantum computer will take,

but it is the author’s personal belief that the concerted efforts of mathematicians,

physicists, computer scientists, and chemists will get us there.



APPENDICES

87



88

APPENDIX A

Visualizing randomized bias codes

Here, for visualization, we include a pictorial description of two members of the

randomized bias code family. The first set of diagrams (Figures 1 through 3) represent

a member of the family, along with its corresponding X- and Z- type stabilizers.

Figure 1: An example of a randomly generated intermediate compass code according to symmetric
bias η = 1 on a 9× 9 lattice. The red plaquettes are minimal X-plaquettes and the blue plaquettes
are minimal Z-plaquettes.

The second set (Figures 4 through 6) depict another member of the randomized

family, along with an illustration of its associated X- and Z- type Ising models.
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Figure 2: The intermediate compass code from Figure 1 with the X-type stabilizers included in
black lines.

Figure 3: The intermediate compass code from Figure 1 with the Z-type stabilizers included in
black lines.
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Figure 4: Another example of a randomly generated intermediate compass code according to asym-
metric bias η = 2 on a 7 × 7 lattice. The red plaquettes are minimal X-plaquettes and the blue
plaquettes are minimal Z-plaquettes. See Figures 5 and 6 for the associated Ising models.

Figure 5: The Ising model associated to X-type errors coming from the code defined in Figure 4.
Note that the connectivity of the lattice is sparser, corresponding to the relative infrequency of
X-type errors.
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Figure 6: The Ising model associated to Z-type errors coming from the code defined in Figure 4.
Note that the connectivity of the lattice is denser, corresponding to the relative frequency of Z-type
errors.
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APPENDIX B

Thermalization snapshots

In this section, we provide snapshots of the Ising fields during the same time-

step in thermalization over different parameter regimes. This helps to visualize the

different random-graph Ising models associated to the q-codes in section 4.5.3. The

snapshots are taken at virtual temperature defined by the Nishimori line

T =
2

log(1− p)− log(p)

for different disorders p, and for different values of q parametrizing the codes. Each

snapshot is taken after 5000 time cycles of a Metropolis algorithm, well before ther-

malization.

The model used to generate these differs slightly in that it has periodic boundary

conditions in order to minimize the effects of the boundary field, and has a constant

number of spins in order to fit the plot. In spite of this, it displays similar critical

behavior. The lattice is of size 512× 512, and appears in Figure 1.

In the top row of Figure 1, at low temperatures, one can observe the vertical

shearing due to exclusively 2-local vertical interactions. At q = 0, this corresponds

to Bacon-Shor codes, and can be seen as disjoint vertical copies of a 1D Ising model.

As we progress down the rows we increase q, and see that the vertical shearing

disappears and the ordering increases. Eventually, we would see the presence of an

ordered phase as domain walls begin to form from clustered spins of the same value

at low p.

However, as p increases, the model becomes increasingly disordered, nearing

threshold behavior around q = 1.0, p = 0.10. Here, in the random-bond 2D Ising

model, the phase transition is estimated to occur around p ≈ 11% [110]. As a final

note, the data used here and throughout this thesis will be made publicly available

at https://github.com/mgn2109.

https://github.com/mgn2109
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q = 0, p = 0 q = 0, p = 0.05 q = 0, p = 0.10 q = 0, p = 0.15

q = 0.25, p = 0 q = 0.25, p = 0.05 q = 0.25, p = 0.10 q = 0.25, p = 0.15

q = 0.50, p = 0 q = 0.50, p = 0.05 q = 0.50, p = 0.10 q = 0.50, p = 0.15

q = 0.75, p = 0 q = 0.75, p = 0.05 q = 0.75, p = 0.10 q = 0.75, p = 0.15

q = 1.0, p = 0 q = 1.0, p = 0.05 q = 1.0, p = 0.10 q = 1.0, p = 0.15

Figure 1: A visualization of the Ising fields associated to different q-codes at different disorders p
during thermalization.
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