Joint Mean and Covariance Modeling of
Matrix-Variate Data

by

Michael David Hornstein

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Statistics)
in The University of Michigan
2018

Doctoral Committee:

Professor Kerby Shedden, Co-chair
Assistant Professor Shuheng Zhou, Co-chair
Professor Alfred Hero

Professor Douglas Richstone



Michael Hornstein
mdhorn@Qumich.edu

ORCID id: 0000-0003-2721-807X
(©Michael Hornstein 2018



ACKNOWLEDGEMENTS

First I want to thank my advisors Professors Shuheng Zhou and Kerby Shedden for
their research and personal mentorship; it has been a great privilege to be advised by
them. They served as role models of intellectual curiosity and the drive to gain insight
into research questions, and they have been deeply invested in my success in research
and in life. I appreciate the extensive time they spent with me discussing everything
from research ideas to the detailed aspects of writing and clear communication. I
would like to extend additional thanks to Shuheng for supporting me through difficult
times and being a role model in terms of character and persistence. I also enjoyed
getting to know Shuheng’s wonderful family.

I would like to thank Professors Doug Richstone and Al Hero on my thesis com-
mittee for insightful discussion of future research directions.

I would like to thank my friend and colleague Roger Fan. I thoroughly enjoyed
working with him on joint mean and covariance estimation. Chapters 2 and 3 of the
thesis are joint work with Roger Fan, Kerby Shedden, and Shuheng Zhou. I would
like to thank Professor David Ruppert for serving as editor during the review process
in the Journal of the American Statistical Association. Chapter 4 is joint work with
Shuheng Zhou and Kerby Shedden. I would like to acknowledge research funding
from the NSF under Grant DMS-1316731.

I would like to thank Seyoung Park, Byoung Jang, Joey Dickens, and Yuekai Sun
for interesting research discussions and for contributing to a lively intellectual envi-

ronment. I would like to thank Adam Hall, Karen Nielsen, Josh Errickson, Nhat Ho,

1



Teal Guidici, and Wyliena Guan for interesting discussions of research and statistics.

I would like to thank Brad Efron and Susan Holmes for undergraduate advising.
I would like to thank Deanna Needell for supervising my undergraduate research and
introducing me to mathematical and statistical research; her mentorship was instru-
mental. I would like to thank Helen Tombropoulos for inviting me to departmental
undergraduate pizza parties and helping me throughout my undergraduate years.

I would like to thank my friends Adam Hall and Ruffa Arguelles. Spending time
with them was one of my great joys in Michigan, and attending their wedding was
one of the highlights of my time here.

I would like to thank Shirley, Thomas, Carlos, and Monchie for being my family
in Michigan. I would like to thank Jeremy Brightbill for inspiring me to pursue math,
and encouraging me throughout my time in the PhD program. I would like to thank
Jeffrey Spiro, Daniel Shifren, Chris Marten, Nico Clayton, and Daniel Teplitz for
lifelong friendship and good times. I would like to thank Sari Spiro, Randy Spiro,
and Barbara Shifren for being my second family in Los Angeles. I would like to
thank my teachers Mrs.. Haenschke, Mr. Vriesman, Mr. Piligian, Mr. Rutschman,
Mr. Laderman, Mr. Lieberman, Mr. Davisson, Mrs. Rogers, and Mr. Monarch for
instilling a love of learning and providing an academic foundation. I would like to
thank Jaclyn for her friendship.

I would like to thank my parents Rona and Bruce for our many joyous memories
and phone conversations, as well as my grandparents Max, Jennie, Bobbie, and Marv,
Uncle Steve, Aunt Bryna, cousins Ethan and Ella, Aunt Paula, Uncle Richard, and

cousins Ivan and Michael.

1l



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . .. .. .. ... . ..., ii

LIST OF FIGURES . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . e Xix

ABSTRACT . . . . e xxi
CHAPTER

I. Introduction . . . . . . .. ... 1

1.1 Matrix-variate data . . . . . . . . ... ... L. 1

1.2 Organization of the thesis . . . . . .. ... ... ... .... 3

1.2.1 Matrix-variate graphical modeling . . . . . . .. .. 4

1.2.2  Nodewise regression . . . . . .. .. .. ... .... 5

II. Joint mean and covariance estimation of matrix-variate data 7

2.1 Introduction . . . . . . ... ..o 7

2.1.1  Our approach and contributions . . . . .. ... .. 9

212 Relatedwork . . . . .. ... 11

2.1.3 Notation and organization . . . ... ... .. ... 13

2.2 Models and methods . . . . . . ... ... ... ... ... 14

2.2.1 Matrix-variate covariance modeling . . . . . . . .. 16

2.2.2  Group based centering method . . . . . . .. .. .. 18

2.2.3 Model selection centering method . . . . . ... .. 20

2.3 Theoretical results . . . . . .. ... oo 22

2.3.1 GLS under fixed covariance approximation . . . . . 23

2.3.2 Rates of convergence for Algorithms 1 and 2 . . . . 25

2.4 Simulations . . . . ... Lo 29

2.4.1 Accuracy of 4 and its implication for variable ranking 30

2.4.2 Inference for the mean difference 5. . . . . . . . .. 34

2.4.3 Covariance estimation for A . . . . . ... ... .. 36

v



2.5

2.6
2.7

2.8
2.9

Genomic study of ulcerative colitis . . . . . . ... ... ... 37

2.5.1 Calibration of test statistics . . .. ... ... ... 39
2.5.2 Stability of genesets . . . .. ... ... ... 39
2.5.3 Stability analysis . . . . ... ... 0L 40
Additional simulation results . . . . . ... .. ... ... .. 41
Additional data analysis . . . . . . ... ... ... ... ... 42
2.7.1 Stability simulation . . . . ... ... 43
Conclusion . . . . . . . . ... 43
Comparisons to related methods . . . . . ... .. ... ... 46
2.9.1 Simulation results . . . . . ... ... 48
2.9.2 Comparison on UC data . . . ... ... ... ... 49

ITI. Theoretical results for joint mean and covariance estimation 61

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Preliminary results . . . . . . . . . ... ... L. 62
3.1.1 Propositions . . . . . ... ... L. 63
Proof of Theorem II.1 and Corollary I1.2 . . . . . . . .. ... 65
3.2.1 Proof of Theorem IL.1 . . . . . ... ... ...... 65
3.2.2  Proof of Corollary I1.2 and Corollary I1.5 . . . . . . 66
3.2.3 Proof of Lemma IIL.5 . . . . ... ... ... ... .. 67
3.2.4  Proof of Lemma III.6 . . . . ... ... .. ..... 68
3.2.5 Proof of Proposition IIT.1 . . . . .. ... ... ... 69
3.2.6  Proof of Proposition II1.3 . . . . .. ... ... ... 71
Proof of Theorem I1.3 . . . . . . . . .. ... ... ...... 72
3.3.1 Proof of Theorem 1.3, Part I . . . . . ... ... .. 75
3.3.2  Proof of Theorem II.3, Part IT . . . . ... ... .. 76
More proofs for Theorem 11.3 . . . . . . ... ... ... ... 7
3.4.1 Proof of Lemma IIL.7 . . . .. ... ... ...... 7
3.4.2 Proof of Lemma IIL.8 . . . .. ... ... ...... 80
Entrywise convergence of sample correlations . . . . . . . .. 82
3.5.1 Proof of Proposition II1.16 . . . . . ... ... ... 86
3.5.2  Proof of Proposition IIL.17 . . . .. ... ... ... 87
3.5.3 Proof of Lemma IIL.18 . . . . ... ... ...... 89
3.5.4 Proof of Lemma IIL.L19 . . . . ... ... ...... 90
3.5.5 Proof of Lemma III.20 . . . . ... ... ...... 91
Proof of Theorem I1.4 . . . . . . . .. ... .. ... ..... 94
3.6.1 Notation . . .. ... ... ... L. 94
3.6.2 Two-Group Model and Centering . . . .. ... .. 95
3.6.3 Model Selection Centering . . . . ... .. ... .. 97
3.6.4 Convergence for fixed genesets . . . . . . ... ... 98
3.6.5 Proof of Theorem II.4 . . . . . ... ... ...... 104
Proof of Lemmas II1.22 and I111.23 . . . . ... .. ... ... 105
3.7.1 Proof of Lemma III.22 . . .. ... ... ... ... 106
3.7.2  Proof of part I of Lemma II1.23, term I . . . . . . . 107
3.7.3 Proof of part I of Lemma II1.23, term IT. . . . . . . 109



3.7.4  Proof of part IT of Lemma II1.23, term IIT . . . . . . 110
3.7.5 Proof of part IT of Lemma II1.23, term IV . . . . .. 111

IV. Matrix-variate modeling of pitch curves in linguistics research 118

4.1 Introduction to pitch curve data . . . . . . . ... ... ... 120
4.1.1 Phonetics terminology . . . . . . . . .. ... ... 120
4.1.2 Voicing and pitch in linguistics research . . . . . . . 121
4.1.3 Preliminary exploration of pitch curve data . . . . . 122
4.2 Matrix-variate models for pitch curve data . . . . . . . . . .. 122
4.2.1 Model-based centering . . . .. ... ... ... .. 126

4.2.2  Connections between trial differencing and trial cen-
tering . . . . . ..o 128
4.3 Covariance and precision matrices for time points and words . 130
4.3.1 Glasso regularization . . . . . ... ... ... ... 132

4.3.2 Time-time and word-word correlation and covariance 133
4.3.3 Metrics for word-word inverse correlation estimates 134
4.3.4 Analyzing edges related to long and short vowels . . 136

4.4 Visualization of edges . . . . . .. ... oL 150
4.4.1 Labial and alveolar words . . . . . . .. . ... ... 159
4.4.2 Initial consonant connectivities . . . . . .. ... .. 162
4.4.3 Comparing Glasso and nodewise regression graphs
for pairs of word groups . . . . . .. ... 164
4.4.4 Comparison of time inverse covariance graphs for each
pair of word groups . . . . . ... ... 171
4.5 Conclusion . . . . . . ... 178
V. Future Work . . . . . . . . ... 179
5.0.1 Decorrelation along the time axis . . . .. ... .. 179
5.0.2 Cross-validation . . . .. ... ... ... ...... 179
5.0.3 Permutation tests and hypothesis testing . . . . . . 181
5.0.4 Other matrix-variate models . . . . . . .. ... .. 181

5.0.5 Assessing the reasons for edges between word groups 182

APPENDIX . . . . . . . e 183
A.0.1 Time-time covariance, correlation, inverse covariance,
and inverse correlation . . . . ... ... ... ... 184
A.0.2 Word-word sample correlation and covariance heatmaps,
and Glasso covariance, inverse covariance, correla-
tion, and inverse correlation . . . . . .. ... ... 192
A.0.3 Edge graphs comparing Glasso and nodewise regres-
sion, for each pair of word groups (labial, alveolar,
nasal, v) . . ..o 200

vi



BIBLIOGRAPHY

vii



Figure

2.1

2.2

LIST OF FIGURES

ROC curves. For each plot, the horizontal axis is false positive rate
(FPR) and the vertical axis is true positive rate (TPR), as we vary a
threshold for classifying variables as null or non-null. The covariance
matrices A and B are both AR1 with parameter 0.8, with m = 2000
and n = 40, 80, and 160 in column one, two, and three, respectively.
Ten variables in v have nonzero entries. On each trial, the group
labels are randomly assigned, with equal sample sizes. The marginal
variance of each entry of the data matrix is equal to one. For the first
row of plots, the magnitude of each nonzero entry of v is 0.2, and for
the second and third rows of plots, the magnitude of each nonzero
entry of v is 0.3. In the first two rows we display ROC curves for
Algorithms 1 and 2 with penalty parameters chosen to maximize area
under the curve. The third row displays an ROC curves for Algorithm
1, sweeping out penalty parameters. . . . . . . . ... ... ... ..

Performance of centering methods as n and m are varied, with n
shown on the horizontal axis. In the first column of plots, the number
of edges is proportional to 4/m/log(m). In the second and third
columns of plots, the number of edges is proportional to m. In the
first two columns of plots, B~! is an Erdés-Rényi inverse covariance
matrix. In the third column, B~! is star block with blocks of size
10. The first row of plots shows RMSE for estimating ~, whereas the
second row shows average relative Frobenius error in estimating B,
All panels are based on 250 simulation replications. . . . . . . . ..
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This figure displays the correlation between the rankings of the com-
ponents of v and 7, sorted by magnitude, denoted Corr(Ranks(7y),
Ranks(%)) in the axis label. The vector of mean differences is chosen
as v; = Cexp(—(3/2000)j), for j = 1,...,2000. We also present the
Algorithm 2 results with a multiplier on the threshold as described
in Section 2.2.3. In the top row, the true B is AR1(0.8), with n = 40
and m = 2000. In the bottom row, the true B is chosen as an es-
timate from the UC data, with n = 20 and m = 2000. For the top
row, the group labels are randomly assigned; for the bottom row, the
first ten rows of the data are in group one, and the other ten are in
group two. The figure is averaged over 200 replications. The top and
bottom horizontal lines represent GLS with true B and OLS, respec-
tively. The vertical axis displays the correlation of ranks between 5

and v, and the horizontal axis displays the GLasso penalty parameter. 50

Ratio of estimated design effect to true design effect when B~! is
Erdés-Rényi, and A is AR1(0.8). Figures (A) and (B) correspond to
sample size n = 80; (C) and (D) correspond to n = 40. Figures (A)
and (C) correspond to Algorithm 1; Figures (B) and (D) correspond
to Algorithm 2, with ten columns group centered. These results are
based on dimension parameter m = 2000 and 250 simulation replica-

Quantile plots of test statistics. Ten genes have nonzero mean differ-
ences equal to 2, 0.8, and 1 in the three plots, respectively. In each
plot A is AR1(0.8). Covariance structures for B are as indicated. In
the third plot, the true B is set to B for the ulcerative colitis data,
described in Section 2.5. For the first two plots there are n = 40
samples and m = 2000 variables. For the third plot there are n = 20
samples and m = 2000 variables. Each plot has 250 simulation repli-
cabions. . . . . . ..

Relative Frobenius error in estimating A~!, as n varies. In each plot
the matrix B is AR1(0.8) and A is as indicated. The vertical axis is
relative Frobenius error, and the horizontal axis n/(dlog(m)), where
d is the maximum node degree. The GLasso penalty is chosen to
minimize the relative Frobenius error. Each point is based on 250
Monte Carlo replications. . . . . . . . . .. ... ...

Estimated person-person correlation matrix and its inverse, estimated
using the 2000 genes with largest marginal variance. . . . . . . . . .
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Quantile plots of test statistics for three disjoint gene sets, each con-
sisting of 2000 genes. The genes are partitioned based on marginal
variance. GLS statistics are taken from step 5 of Algorithm 2; in step
2, the ten genes with greatest mean differences are selected for group
centering. . . . . . ...

Performance of Gemini, Algorithm 1, and Algorithm 2 for estimating
B under different mean and covariance structures. As the sample size
increases, we can see that Algorithm 1 improves relative to Gemini
and begins to catch up to Algorithm 2. Gemini’s performance always
degrades as the true differences grow or more differentially expressed
genes are added, while Algorithm 1 and 2 are stable. We set B! as
Erdés-Rényi (ER) or star-block with blocks of size 4 (SB). All plots
use A from an AR1(0.8) model with m = 2000 and are averaged over
200 replications. In the left plot the first 50 genes are differentially
expressed at the level specified on the z-axis. As indicated, the three
groups of lines correspond to n = 20, 40, and 80. In the right two
columns there are m1 number of genes with exponentially decaying
true differences between groups, scaled so that the largest difference
is 5 (resulting in an average difference of approximately 1).

The first plot displays the estimated design effect vs. the penalty
multiplier for Algorithm 2. Each curve corresponds to a different
number of columns being group centered. As the curves go from
top to bottom, the number of group centered columns increases from
10 to 2000. The second plot shows a quantile plot of test statistics
from the data vs. simulated test statistics; in _the simulation, the
population person-person covariance matrix is B, as estimated from

the UC data. . . . . . . . . .

Quantile plot and inverse covariance graphs. The first two plots cor-
respond to A = 0.4 and 128 group centered genes. The third plot
corresponds to A = 0.5 and 128 group centered genes. Green circles
correspond to twins with UC, orange circles to twins without UC.
Twins are aligned vertically. . . . . . ... ... ... ... ... ..
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Performance of Algorithm 2 (GLS) relative to sphering and con-
founder adjustment methods, labeled as tsphere and cate, respec-
tively. These are ROC curves for identifying true mean differences.
An implementation of the sphering algorithm that does not adjust for
A is also included, labeled as tsphere noA. Each panel shows the av-
erage ROC curves over 200 simulations. We simulate matrix variate
data with gene correlations from an AR1(0.8) model and let s = 10
genes have true mean differences of 0.8, 0.6, and 0.4 for the first, sec-
ond and third rows, respectively. For all of these the true B is set to
B from the ulcerative colitis data (using a repeated block structure
for larger n values), described in Section 2.5 and evenly-sized groups
are assigned randomly. . . . . . .. ... L

Performance of Algorithm 2 (GLS) relative to sphering and con-
founder adjustment, labeled as tsphere and cate, respectively. These
are ROC curves for identifying true mean differences. An implemen-
tation of the sphering algorithm that does not adjust for A is also
included, labeled as tsphere noA. Each panel shows the average ROC
curves over 200 simulations. We simulate matrix variate data with
no gene-wise correlations (A = I) and let s = 10 genes have true
mean differences of 0.8, 0.6, and 0.4 for the first, second and third
rows, respectively. For all of these the true B is set to B from the
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Performance of Algorithm 2 (GLS) relative to sphering and con-
founder adjustment, labeled as tsphere and cate, respectively. These
are ROC curves for identifying true mean differences. An implemen-
tation of the sphering algorithm that does not adjust for A is also
included, labeled as tsphere _noA. Each panel shows the average ROC
curves over 200 simulations. We simulate matrix variate data with
an AR1(0.8) model for A and let s = 10 genes have true mean differ-
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ABSTRACT

This dissertation addresses theory, methodology, and applications for joint mean
and covariance estimation with matrix-variate data. Chapters 2 and 3 consider joint
mean and covariance estimation in the Kronecker product model, which has natural
methodological connections to large-scale screening and differential mean analysis in
various application areas including genomics. It has been proposed that complex
populations, such as those that arise in genomics studies, may exhibit dependencies
among observations as well as among variables. This gives rise to the challenging
problem of analyzing unreplicated high-dimensional data with unknown mean and
dependence structures. Matrix-variate approaches that impose various forms of (in-
verse) covariance sparsity allow flexible dependence structures to be estimated, but
cannot directly be applied when the mean and covariance matrices are estimated
jointly. We present a practical method utilizing generalized least squares and pe-
nalized (inverse) covariance estimation to address this challenge. We establish con-
sistency and obtain rates of convergence for estimating the mean parameters and
covariance matrices. The advantages of our approaches are: (i) dependence graphs
and covariance structures can be estimated in the presence of unknown mean struc-
ture, (ii) the mean structure becomes more efficiently estimated when accounting for
the dependence structure among observations; and (iii) inferences about the mean
parameters become correctly calibrated. We use simulation studies and analysis of
genomic data from a twin study of ulcerative colitis to illustrate the statistical con-
vergence and the performance of our methods in practical settings. Several lines of

evidence show that the test statistics for differential gene expression produced by our

xxi



methods are correctly calibrated and improve power over conventional methods.
Chapter 4 uses matrix-variate techniques to gain insight into pitch curve data that
plays an important role in linguistics research. These curves can be viewed as large
multi-indexed data arrays with distinct covariance behaviors along each index. We
estimate covariance and inverse covariance matrices and graphs, and we connect edge

structures to word properties.
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CHAPTER I

Introduction

1.1 Matrix-variate data

In the setting of matrix-variate data, correlations exist between both rows (obser-
vations) and columns (variables) of a data matrix (Efron, 2009; Allen and Tibshirani,
2012). Data with correlations along multiple axes exists in a broad range of research
fields, including environmental statistics (spatial and temporal correlations), neuro-
science (correlations among experimental trials, neurons, and time), and genomics
(correlations between people and genes). Such correlations affect both the accuracy
and calibration of inferences, resulting in under- or over-estimates of standard errors
(Allen and Tibshirani, 2012). We focus on the problem of jointly estimating mean
and covariance structures while accounting for such correlations.

In Chapters 2 and 3, we consider data in which the covariance matrix of each
column is proportional to a common matrix B. This allows information to be pooled
across the columns in order to estimate B. We present algorithms for estimation and
inference in this setting, including associated theory on rates of convergence of mean
and covariance parameters. A special case of this model is the Kronecker product
model, in which correlations between entries of the data matrix are decomposed into
factors that depend on rows and factors that depend on columns. Our method builds

on the Gemini estimator introduced by Zhou (2014a), which estimates covariance



matrices when both rows and columns of the data matrix are dependent. In the
setting where correlations exist along only one axis of the array, researchers have
proposed various covariance estimators and studied their theoretical and numerical
properties (Banerjee et al., 2008; Fan et al., 2009; Friedman et al., 2008; Lam and
Fan, 2009; Meinshausen and Bihlmann, 2006; Peng et al., 2009; Ravikumar et al.,
2011; Rothman et al., 2008; Yuan and Lin, 2007; Zhou et al., 2010; Ren et al., 2015).
We build on this work to jointly estimate mean and covariance parameters for matrix-
variate data. For matrix-variate data with two way dependencies, e.g., in the space-
time data, prior work depended on a large number of replicates to obtain certain
convergence guarantees, see for example Dutilleul (1999), Werner et al. (2008) and
Tsiligkaridis et al. (2013).

In Chapter 4, we investigate a tensor modeling framework which accounts for mean
and trial specific variations in a large scale linguistic data, where non-i.i.d. replicates
are available. In particular, we analyze linguistics pitch curve data using a Kronecker
product covariance model while allowing individual mean matrices. The goals are to
examine word-word and time-time correlation matrices, inverse correlation matrices,
and associated graphical models. By contrast with the previous chapters, the pitch
curve data contains a limited number of replicates, which allows us to use a novel
trial differencing idea to remove the complex mean matrices. We investigate whether
edges are associated with characteristics of the words, including initial consonant,
vowel type, and voicing using rigorous statistical methods to be introduced in Section
1.2.1 and 1.2.2. In particular, we hierarchically decompose the words by consonants
and/or by vowels while analyzing edges between individual words as well as word
groups categorized by initial consonant or vowel properties.

In Chapter 5, we discuss future work. One direction for future work is to consider
hypothesis testing for edges in linguistics pitch curve data, as well as cross-validation

for model selection. Another direction is to apply additive covariance models to



pitch curve data, including the Kronecker sum model for the precision matrix of the
vectorized data matrix. The precision matrix is sparser than in the case of the Kro-
necker product model, and the graph (for normally distributed data) has a Cartesian
product structure, which has a simple interpretation. Prior work on optimization al-
gorithms for the Kronecker sum model of the precision matrix includes the Biraphical
Lasso (Kalaitzis et al., 2013) and Tensor Graphical Lasso (Greenwald et al., 2017).
Another avenue for future work is to apply the decorrelation procedure proposed by
Zhou (2014a), in which we use the estimated time-time inverse correlation matrix to
decorrelate the data along the time axis, with the aim of improving the estimate of

the word-word covariance and inverse covariance matrices.

1.2 Organization of the thesis

e In Chapter 2, we present two algorithms for joint mean and covariance estima-
tion in the setting of matrix-variate data. We assess the performance of the
algorithms using simulations, and we apply the algorithms to data arising from

a genomic study of ulcerative colitis in twin pairs.

e In Chapter 3, we present theoretical results for the algorithms defined in Chap-
ter 2. We prove rates of convergence of the estimated mean and covariance

parameters.
e In Chapter 4, we analyze linguistics pitch curve data with trial replicates.

e In Chapter 5, we discuss future work, including cross-validation and applying

additional matrix-variate methods to linguistics pitch curve data.

Chapters 2 and 3 were accepted for publication in the Journal of the American
Statistical Association (Hornstein et al., 2018). We aim to send chapter 4 to NIPS

this May. With all future work which entails further analysis using cross validation,



permutation and another linguistics dataset in Chapter 5, we aim to eventually send
the paper to a journal.
In the remaining two subsections of the introduction, we introduce matrix-variate

graphical modeling and nodewise regression.

1.2.1 Matrix-variate graphical modeling

Graphical modeling plays a key role in the thesis, in particular in Chapter 4.
Consequently, we now provide a definition of matrix-variate graphical models. The
following paragraphs in this subsection defining matrix-variate graphical modeling
are quoted verbatim from Zhou (2014a).

First recall the following definition concerning the classical Gaussian graphical

model for a random vector.

Definition 1.2.1. Let V = (V4,...,V,)” be a random Gaussian vector, which we
represent by an undirected graph G = (V, F'). The vertex set V := {1,...,n} has one
vertex for each component of the vector V. The edge set F' consists of pairs (7, k)

that are joined by an edge. If V; is independent of V, given the other variables, then
(J,k) ¢ F.

Now let V = {1,...,n} be an index set which enumerates rows of X according
to a fixed order. For all i = 1,...,m, we assign to each variable of a column vector
2! exactly one element of the set V by a rule of correspondence g : ' — V such
that g(«}) = j,j = 1,...,n. The graphs G;(V, F) constructed for each random
column vector 2,7 = 1,...,m according to Definition 1.2.1 will share an identical
edge set F', because the normalized column vectors z'/\/ai1, ..., 2™ /\/Gmm follow
the same multivariate normal distribution N, (0, B). Hence, graphs G, ..., G, are
isomorphic and we write G; ~ G;,Vi,j. Due to the isomorphism, we use G(V, F)
to represent the family of graphs G, ..., G,,. Hence, a pair (¢, k) which is absent in

F' encodes conditional independence between the ¢th row and the kth row given all



other rows. Similarly, let T' = {1,...,m} be the index set which enumerates columns
of X according to a fixed order. We use H(I', E') to represent the family of graphs
Hy,...,H,, where H; is constructed for row vector y’, and H;, ~ H;, Vi,j. Now
H(T,E) is a graph with adjacency matrix T(H) = T(A™!) as edges in E encode
nonzeros in A~'. And G(V, F) is a graph with adjacency matrix T(G) = T(B™1).
The Kronecker product, H®G, is defined as the graph with adjacency matrix Y (H)®
T(G) (Weichsel, 1962), where clearly missing edges correspond to zeros in the inverse
covariance A~' ® B~!, and H ® G represents the graph of the p-variate Gaussian

random vector vec{ X}, where p = mn.

1.2.2 Nodewise regression

In addition to using Glasso, we also estimate edges using nodewise regression.
Meinshausen and Biihlmann (2006) proposed variable selection via nodewise regres-
sion, in which each variable is regressed on each other variable via ¢; penalized regres-
sion. The edges correspond to the nonzero entries of the regression coefficients (i.e. an
edge exists between vertices ¢ and j if either the regression coefficient of variable ¢ on
J is nonzero, or the regression coefficient of variable j on ¢ is nonzero). Meinshausen
and Biihlmann (2006) proved variable selection consistency of nodewise regression.

We now explain nodewise regression in more detail. Let X € R™™ denote a
centered and scaled data matrix,so that the sample correlation matrix ['e R™*™ can
be expressed as

1 ~

[=-X"X. (1.1)
n

Let @ e RMm=Dx(m=1) denote the submatrix of I obtained by excluding the ith
column and ith row. Let 7() denote the ith column of r excluding the diagonal

entry. The regression coefficient for the ¢th variable is obtained by solving the ¢;



penalized least squares problem,

A~

. 1 ~. .
B = arg ming g {gaTr% — G, + A||ﬁ||1} . (1.2)

Afterwards, the inverse correlation matrix is reconstructed by first obtaining a matrix

o,

O =0 —T; ;) 7%, and 6= (T;;—T; ;)" (1.3)
then projecting © onto the space of symmetric matrices.

Using nodewise regression with a refit to obtain an estimate of the inverse co-
variance matrix was proposed by Yuan (2010); Loh and Wainwright (2012). In Zhou
et al. (2011), they combine a multiple regression approach with ideas of threshold-
ing and refitting: first they infer a sparse undirected graphical model structure via
thresholding of each among many ¢;-norm penalized regression functions of (1.2);
they then estimate the covariance matrix and its inverse using the maximum like-
lihood estimator. They show that under suitable conditions, this approach yields
consistent estimation in terms of graphical structure and fast convergence rates with
respect to the operator and Frobenius norm for the covariance matrix and its inverse.
Finally, they also derive an explicit bound for the Kullback Leibler divergence.

In the present work, our nodewise regression with thresholding procedure follows
from ideas of Zhou et al. (2011) and Zhou (2010); in future work, we plan to further
exploit the MLE refit procedure using the model (edge set) obtained through nodewise
regression in combination with thresholding. See also Dempster (1972); Zhou (2010).

Since our input matrix is positive semidefinite, the methods of Loh and Wainwright

(2012), Yuan (2010), and Zhou et al. (2011) would all work to obtain ©.



CHAPTER II

Joint mean and covariance estimation of

matrix-variate data

This chapter is joint work with Roger Fan, Kerby Shedden, and Shuheng Zhou.

2.1 Introduction

Understanding how changes in gene expression are related to changes in biologi-
cal state is one of the fundamental tasks in genomics research, and is a prototypical
example of “large scale inference” (Efron, 2010). While some genomics datasets have
within-subject replicates or other known clustering factors that could lead to depen-
dence among observations, most are viewed as population cross-sections or conve-
nience samples, and are usually analyzed by taking observations (biological samples)
to be statistically independent of each other. Countering this conventional view,
Efron (2009) proposed that there may be unanticipated correlations between samples
even when the study design would not suggest it. To identify and adjust for unantic-
ipated sample-wise correlations, Efron (2009) proposed an empirical Bayes approach
utilizing the sample moments of the data. In particular, sample-wise correlations

may lead to inflated evidence for mean differences, and could be one explanation for



the claimed lack of reproducibility in genomics research (Leek et al., 2010; Allen and
Tibshirani, 2012; Sugden et al., 2013).

A persistent problem in genomics research is that test statistics for mean pa-
rameters (e.g. t-statistics for two-group comparisons) often appear to be incorrectly
calibrated (Efron, 2005; Allen and Tibshirani, 2012). When this happens, for example
when test statistics are uniformly overdispersed relative to their intended reference
distribution, this is usually taken to be an indication of miscalibration, rather than
reflecting a nearly global pattern of differential effects (Efron, 2007). Adjustments
such as genomic control (Devlin and Roeder, 1999) can be used to account for this;
a related approach is that of Allen and Tibshirani (2012). In this work we address
unanticipated sample-wise dependence, which can exhibit a strong effect on statisti-
cal inference. We propose a new method to jointly estimate the mean and covariance
with a single instance of the data matrix, as is common in genetics. The basic idea
of our approach is to alternate for a fixed number of steps between mean and covari-
ance estimation. We exploit recent developments in two-way covariance estimation
for matrix-variate data (Zhou, 2014a). We crucially combine the classical idea of
generalized least squares (GLS) (Aitken, 1936) with thresholding for model selection
and estimation of the mean parameter vector. Finally, we use Wald-type statistics to
conduct inference. We motivate this approach using differential expression analysis
in a genomics context, but the method is broadly applicable to matrix-variate data
having unknown mean and covariance structures, with or without replications. We
illustrate, using theory and data examples, including a genomic study of ulcerative
colitis, that estimating and accounting for the sample-wise dependence can systemat-
ically improve the calibration of test statistics, therefore reducing or eliminating the
need for certain post-hoc adjustments.

With regard to variable selection, another major challenge we face is that vari-

ables (e.g. genes or mRNA transcripts) have a complex dependency structure that



exists together with any dependencies among observations. As pointed out by Efron
(2009) and others, the presence of correlations among the samples makes it more
difficult to estimate correlations among variables, and vice versa. A second major
challenge is that due to dependence among both observations and variables, there is
no independent replication in the data, that is, we have a single matrix to conduct
covariance estimation along both axes. This challenge is addressed in Zhou (2014a)
when the mean structure is taken to be zero. A third major challenge that is unique
to our framework is that covariance structures can only be estimated after removing
the mean structure, a fact that is generally not considered in most work on high
dimensional covariance and graph estimation, where the population mean is taken to

be zero. We elaborate on this challenge next.

2.1.1 Our approach and contributions

Two obvious approaches for removing the mean structure in our setting are to
globally center each column of the data matrix (containing the data for one vari-
able), or to center each column separately within each group of sample points to be
compared (subsequently referred to as “group centering”). Globally centering each
column, by ignoring the mean structure, may result in an estimated covariance matrix
that is not consistent. Group centering all genes, by contrast, leads to consistent co-
variance estimation, as shown in Theorem I1.3 with regard to Algorithm 1. However,
group centering all genes introduces extraneous noise when the true vector of mean
differences is sparse. We find that there is a complex interplay between the mean and
covariance estimation tasks, such that overly flexible modeling of the mean structure
can introduce large systematic errors in the mean structure estimation. To mitigate
this effect, we aim to center the data using a model selection strategy. More specifi-
cally, we adopt a model selection centering approach in which only mean parameters

having a sufficiently large effect size (relative to the dimension of the data) are tar-



geted for removal. This refined approach has theoretical guarantees and performs
well in simulations. The estimated covariance matrix can be used in uncertainty as-
sessment and formal testing of mean parameters, thereby improving calibration of
the inference.

In Section 2.2, we define the two group mean model, which is commonly used in
the genomics literature, and introduce the GLS algorithm in this context. We bound
the statistical error for estimating each column of the mean matrix using the GLS
procedure so long as each column of X shares the same covariance matrix B, for which
we have a close approximation. It is commonly known that genes are correlated, so
correlations exist across columns as well as rows of the data matrix. In particular, in
Theorem II.1 in Section 2.3.1, we establish consistency for the GLS estimator given
a deterministic B which is close to B in the operator norm, and present the rate of
convergence for mean estimation for data generated according to a subgaussian model
to be defined in Definition 2.2.1. Moreover, we do not impose a separable covariance
model in the sense of (2.1).

What distinguishes our model from those commonly used in the genomics liter-
ature is that we do not require that individuals are independent. Our approach to
covariance modeling builds on the Gemini method (Zhou, 2014a), which is designed
to estimate a separable covariance matrix for data with two-way dependencies. For
matrices A € R™*™ and B € R™*", the Kronecker product A ® B € R™*™ ig the
block matrix for which the (7, j)th block is a;; B, for 4, j € {1,...,m}. We say that an
n x m random matrix X follows a matrix variate distribution with mean M e R™*™
and a separable covariance matrix

anm ~ £nm(M7 Amxm®Bn><n)7 (21>

)

if vec { X'} has mean vec { M } and covariance ¥ = A® B. Here vec { X } is formed by

10



stacking the columns of X into a vector in R™". For the mean matrix M, we focus on
the two-group setting to be defined in (2.4). Intuitively, A describes the covariance
between columns while B describes the covariance between rows of X. Even with
perfect knowledge of M, we can only estimate A and B up to a scaling factor, as
An® %B = A® B for any n > 0, and hence this will be our goal and precisely what
we mean when we say we are interested in estimating covariances A and B. However,
this lack of identifiability does not affect the GLS estimate, because the GLS estimate

is invariant to rescaling the estimate of B~

2.1.2 Related work

Efron (2009) introduced an approach for inference on mean differences in data with
two-way dependence. His approach uses empirical Bayes ideas and tools from large
scale inference, and also explores how challenging the problem of conducting inference
on mean parameters is when there are uncharacterized dependences among samples.
We combine GLS and variable selection with matrix-variate techniques. Allen and
Tibshirani (2012) also consider this question and develop a different approach that
uses ordinary least squares (OLS) through the iterations, first decorrelating the resid-
uals and then using OLS techniques again on this adjusted dataset. The confounder
adjustment literature in genomics, including Sun et al. (2012) and Wang et al. (2015),
can also be used to perform large-scale mean comparisons in similar settings that in-
clude similarity structures among observations. These methods use the same general
matrix decomposition framework, where the mean and noise are separated. They
exploit low-rank structure in the mean matrix, as well as using sparse approximation
of OLS estimates, for example where thresholding. Our model introduces row-wise
dependence through matrix-variate noise, while the confounder adjustment literature
instead assumes that a small number of latent factors also affect the mean expression,

resulting in additional low-rank structure in the mean matrix. Section 2.9 contains

11



detailed comparisons between our approach and these alternative methods.

Our inference procedures are based on Z-scores and associated FDR values for
mean comparisons of individual variables. While we account for sample-wise correla-
tions, gene-gene correlations remain, which we regard as a nuisance parameter. Our
estimated correlation matrix among the genes can be used in future work in combi-
nation with the line of work that addresses FDR in the presence of gene correlations.
This relies on earlier work for false discovery rate estimation using correlated data,
including Owen (2005); Benjamini and Yekutieli (2001); Cai et al. (2011); Li and
Zhong (2014); Benjamini and Hochberg (1995); Storey (2003). Taking a different
approach, Hall et al. (2010) develop the innovated higher criticism test statistics to
detect differences in means in the presence of correlations between genes. Our esti-
mated gene-gene correlation matrix can be used in combination with this approach;
we leave this as future work. Another line of relevant research has focused on hy-
pothesis testing of high-dimensional means, exploiting assumed sparsity of effects,
and developing theoretical results using techniques from high dimensional estimation
theory. Work of this type includes Cai and Xia (2014); Chen et al. (2014); Bai and
Saranadasa (1996); Chen et al. (2010). Hoff (2011) adopts a Bayesian approach,
using a model that is a generalization of the matrix-variate normal distribution.

Our method builds on the Gemini estimator introduced by Zhou (2014a), which
estimates covariance matrices when both rows and columns of the data matrix are
dependent. In the setting where correlations exist along only one axis of the array,
researchers have proposed various covariance estimators and studied their theoretical
and numerical properties (Banerjee et al., 2008; Fan et al., 2009; Friedman et al., 2008;
Lam and Fan, 2009; Meinshausen and Bihlmann, 2006; Peng et al., 2009; Raviku-
mar et al., 2011; Rothman et al., 2008; Yuan and Lin, 2007; Zhou et al., 2010; Ren
et al., 2015). Although we focus on the setting of Kronecker products, or separable

covariance structures, Cai et al. (2016) proposed a covariance estimator for a model
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with several populations, each of which may have a different variable-wise covariance
matrix. Our methods can be generalized to this setting. Tan and Witten (2014) use
a similar matrix-variate data setting as in (2.1), but perform biclustering instead of

considering a regression problem with a known design matrix.

2.1.3 Notation and organization

Before we leave this section, we introduce the notation needed for the technical

sections. Let ey, ..., e, be the canonical basis of RP. For a matrix A = (a;;)1<ij<m,
let |A| denote the determinant and tr(A) be the trace of A. Let ||A]| .. = max; ; |a;|
denote the entry-wise max norm. Let ||A||, = max; >}, |a;;| denote the matrix

¢, norm. The Frobenius norm is given by ||A|7 = 3, >, a3 Let pi(A) denote
the ith largest eigenvalue of A, with @nax(A) and @upin(A) denoting the largest and
smallest eigenvalues, respectively. Let x(A) be the condition number for matrix A.
Let [Al1of = >, |aij| denote the sum of the absolute values of the off-diagonal entries
and let | Alp o denote the number of non-zero off-diagonal entries. Let apay = max; a;;.
Denote by r(A) the stable rank ||A[%/||A|l3. We write diag(A) for a diagonal matrix
with the same diagonal as A. Let I be the identity matrix. We let C,C, ¢, cq,. ..
be positive constants which may change from line to line. For two numbers a, b,
aAb:=min(a,b) and a v b := max(a,b). Let (a); := a v 0. For sequences {a,}, {b,},
we write a,, = O(b,) if |a,| < C|b,| for some positive absolute constant C' which is
independent of n and m or sparsity parameters, and write a, = b, if c|a,| < |b,| <
Cla,|. We write a, = Q(b,) if |a,| = C|b,| for some positive absolute constant C'
which is independent of n and m or sparsity parameters. We write a,, = o(b,) if
limy, o @y, /by, = 0. For random variables X and Y, let X ~ Y denote that X and Y
follow the same distribution.

The remainder of the paper is organized as follows. In Section 2.2, we present our

matrix-variate modeling framework and methods on joint mean and covariance esti-

13



mation. In particular, we propose two algorithms for testing mean differences based
on two centering strategies. In Section 2.3, we present convergence rates for these
methods. In Theorems I1.3 and I1.4, we provide joint rates of convergence for mean
and covariance estimation using Algorithms 1 and 2, respectively. We also empha-
size the importance of the design effect (c.f. equation (2.15)) in testing and present
theoretical results for estimating this quantity in Corollary I1.2 and Corollary IL.5.
In Section 2.4, we demonstrate through simulations that our algorithms can out-
perform OLS estimators in terms of accuracy and variable selection consistency. In
Section 2.5, we analyze a gene expression dataset, and show that our method corrects
test statistic overdispersion that is clearly present when using sample mean based
methods (c.f. Section 2.4.2). Sections 2.6 and 2.7 contain additional simulation and
data analysis results. We conclude in Section 2.8. Proofs are presented in Chapter
3. In Section 2.9 we provide additional comparisons between our method and some

related methods on both simulated and real data.

2.2 Models and methods

In this section we present our model and method for joint mean and covariance
estimation. Our results apply to subgaussian data. Before we present the model, we
define subgaussian random vectors and the 1 norm. The )5 condition on a scalar
random variable V' is equivalent to the subgaussian tail decay of V', which means

P(|V| > t) < 2exp(—t?/c?), for all t > 0. For a vector y = (y1,...,y,) € RF, denote

by [yl = /27, 2.

Definition 2.2.1. Let Y be a random vector in RP. (a) Y is called isotropic if for

every y € R?, E[[KY,y)|?] = |ly]|3. (b) Y is ¢y with a constant « if for every y € RP,

1KY, )llg, = inft : Elexp((Y,9)*/t")] < 2} < allyll..
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Our goal is to estimate the group mean vectors S, 3 the vector of mean
differences between two groups v = () — B(2) € R™, the row-wise covariance matrix
B € R™" and the column-wise covariance matrix A € R™*™. In our motivating
genomics applications, the people by people covariance matrix B is often incorrectly
anticipated to have a simple known structure, for example, B is taken to be diagonal if
observations are assumed to be uncorrelated. However, we show by example in Section
2.5 that departures from the anticipated diagonal structure may occur, corroborating
earlier claims of this type by Efron (2009) and others. Motivated by this example,
we define the two-group mean model and the GLS algorithm, which takes advantage
of the covariance matrix B.

The model. Our model for the matrix-variate data X can be expressed as a mean

matrix plus a noise term,

X =M +¢, (2.2)

where columns (and rows) of € are subgaussian. Let u, v, € R” be defined as

w=(1,...,1,0,...,0)eR" and v=(0,...,0,1,....,1)eR"  (2.3)
S Y S~ Y

ni n9 ni n2
Let 1,, € R™ denote a vector of ones. For the two-group model, we take the mean
matrix to have the form

1n1ﬁ(1)T
M=Dp = e R"™™  where D = lu v} e R™*? (2.4)

1n2 B(Q)T

is the design matrix and g = (81, )T e R?*™ is a matrix of group means. Let
v = AW — 32 e R™ denote the vector of mean differences. Let dy = |supp(y)| =

{7 : 7; # 0}| denote the size of the support of . To estimate the group means, we
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use a GLS estimator,
B(B™Y):= (D"B'D)"'DTB'X e R¥>™, (2.5)

where B! is an estimate of the observation-wise inverse covariance matrix. Through-
out the paper, we denote by B (B™1) the oracle GLS estimator, since it depends on the
unknown true covariance B. Also, we denote the estimated vector of mean differences

as (B~1) = 5TB(§*1) e R™, where § = (1, 1) € R?.

2.2.1 Matrix-variate covariance modeling

In the previous section, we have not yet explicitly constructed an estimator of
B~!. To address this need, we model the data matrix X with a matrix-variate
distribution having a separable covariance matrix, namely, the covariance of vec { X }
follows a Kronecker product covariance model. When ¢ (2.2) follows a matrix-variate
normal distribution N, (0, A ® B), as considered in Zhou (2014a), the support of
B! encodes conditional independence relationships between samples, and likewise,
the support of A~ encodes conditional independence relationships among genes. The
inverse covariance matrices A~ and B~! have the same supports as their respective
correlation matrices, so edges of the dependence graphs are identifiable under the
model Cov(vec(e)) = A® B. When the data is subgaussian, the method is still valid
for obtaining consistent estimators of A, B, and their inverses, but the interpretation
in terms of conditional independence does not hold in general.

Our results do not assume normally distributed data; we analyze the subgaussian
correspondent of the matrix variate normal model instead. In the Kronecker product
covariance model we consider in the present work, the noise term has the form ¢ =
B'Y2ZAY? for a mean-zero random matrix Z with independent subgaussian entries

satisfying 1 = EZ7; < ||Z; < K. Clearly, vec{e} = A ® B. Here, the matrix A

j||¢2
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represents the shared covariance among variables for each sample, while B represents
the covariance among observations which in turn is shared by all genes.
For identifiability, and convenience, we define

A= 4 o =T p
tr(A) m

(2.6)

where the scaling factor is chosen so that A* has trace m. For the rest of the paper A
and B refer to A* and B*, as defined in (2.6). Let S4 and Sp denote sample covariance
matrices to be specified. Let the corresponding sample correlation matrices be defined

as

Tij(A) = (Sa)y and T;(B) = (55)is

(Sa)ii(Sa)jj (SB)ii(SB)j;

(2.7)

The baseline Gemini estimators (Zhou, 2014a) are defined as follows, using a pair of
penalized estimators for the correlation matrices p(A) = (a;j/ /aia;;) and p(B) =

(bij/A/biib),

A, = argmin {tr <f’(A)A;1) + log |A,| + )\B|A;1\Loff}, and (2.8a)

Ap>0

p arg min < tr (f(B)Bp_l> + log |B,| + )\A|Bp_1|17oﬁ“} : (2.8b)

B,>0

ss))
I

where the input are a pair of sample correlation matrices as defined in (2.7).
Let M denote the estimator of the mean matrix M in (2.1). Denote the centered

data matrix and the sample covariance matrices as

Xeen = X — ]/W\, for M to be specified in Algorithms 1 and 2,

Sp = XeewXL,/m, and Sy= XL Xeen/n. (2.9)
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Define the diagonal matrices of sample standard deviations as

I//I\/l _ \/ﬁdiag(SA)lﬂ c ]Rmxm7 W2 _ mdiag(SB)lﬂ c ]Rnxn7 (210)

and A@ B = (W1A,) @ (WaB,W2) /|| Xeanll3- (2.11)

2.2.2 Group based centering method

We now discuss our first method for estimation and inference with respect to the
vector of mean differences v = 3 — ) for M) and B as in (2.4). Our approach
in Algorithm 1 is to remove all possible mean effects by centering each variable within
every group.

Algorithm 1: GLS-Global group centering

Input: X; and G(1),G(2): indices of group one and two, respectively.

~ L —

Output: A=, BY, A® B, B(B™1), 3, Ty for all j

1. Group center the data. Let Y; denote the ith row of the data matrix. To esti-

mate the group mean vectors (), 32 € R™: Compute sample mean vectors

~ 1 ~ 1 ~ ~
BO- LS v md B0l S v e 39 < 30 )

M e i€G(2)

Center the data by Xeen =X — M, with M =

2. Obtain regularized correlation estimates. (2a) The centered data matrix used

to calculate Sy and Sp for Algorithm 1 is Xee, = (I — P3) X, where P, is
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the projection matrix that performs within-group centering,

ny ‘1,17 0

P, = = uu’ /ny + v’ /ny, (2.13)
0 ny 1,17

n2 +no

with v and v as defined in (2.3). Compute sample covariance matrices
based on group-centered data: Sy = 2 XL Xeen = 2 X7 (I — P,)X and

Sp = L Xeen X7 (I—P)XXT(I—Py).

=1
(2b) Compute (2.7) to obtain penalized correlation matrices fAlp and ép using

the Gemini estimators as defined in (2.8a) and (2.8b) with tuning param-

eters to be defined in (2.23).

3. Rescale the estimated correlation matrices to obtain penalized covariance

B = mWy ' B,Wy ' and A7 = (| Xeall}/m) W AW (2.14)

4. Estimate the group mean matrix using the GLS estimator as defined in (2.5).

5. Obtain test statistics. The jth test statistic is defined as

3B~
\/5T(DT§—1D)—15

T; = : with § = (1, —1) e R?, (2.15)

and f?j(é_l) = (5TBJ-(§_1), for j = 1,...,m. Note that T} as defined in (2.15)
is essentially a Wald test and the denominator is a plug-in standard error of

(B~
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2.2.3 Model selection centering method

In this section we present Algorithm 2, which aims to remove mean effects that
are strong enough to have an impact on covariance estimation. The strategy here is
to use a model selection step to identify variables with strong mean effects.

Algorithm 2: GLS-Model selection centering

Input: X, and G(1),G(2): indices of group one and two, respectively.

—_—

Output: A1, B', A@ B, B(B™"), 7, T; for all j

1. Run Algorithm 1. Use the group centering method to obtain initial estimates
fy;mt = BJ(.” — Bj@) for all j = 1,...,m. Let B;%t and éinit be as obtained in

(2.14).

2. Select genes with large estimated differences in means. Let Jy = {;j : 7| >
2Tt} denote the set of genes which we consider as having strong mean effects,

where

~ 10 1/2m éini Nratio B o
Tinit:< g + ” t”l ti ‘ 1n1t|0 H""\/EH DTBm1tD 1||1/2

\/7% Nmin Nmin
(2.16)

with Nmin = M1 A N2, Nmax = N1 V N, and Nratio = nmax/nmirr

3. Calculate Gram matrices based on model selection centering. Global cen-
tering can be expressed in terms of the projection matrix P, = n='1,,1Z. Com-

pute the centered data matrix

Xcen,j =

Xj—PlXj 1f]€j§,

20



where Xcen ; denotes the jth column of the centered data matrix Xce,. Compute

the sample covariance and correlation matrices with X, following (2.9) and

(2.7).

4. Estimate covariances and means. (4a) Obtain the penalized correlation ma-

trices B, and ﬁp using Gemini estimators as defined in (2.8a) and (2.8b)

with tuning parameters of the same order as those in (2.23).
(4b) Obtain inverse covariance estimates B!, A~! using (2.14).

(4c) Calculate the GLS estimator B(B\_l) as in (2.5), as well as the vector of

mean differences J(B~1) = 5T6( D), for 6 = (1,—1) e R

5. Obtain test statistics. Calculate test statistics as in (2.15), now using B!

estimated in Step 4.

Remarks. In the case that v is sparse, we show that this approach can perform
better than the approach in Section 2.2.2, in particular when the sample size is small.
We now consider the expression Ty, in (2.16) as an upper bound on the threshold in
the sense that it is chosen to tightly control false positives. In Section 2.4.2 we show
in simulations that with this plug-in estimate 7i,;;, Algorithm 2 can nearly reach the
performance of GLS with the true B. Since this choice of T, acts as an order on the
threshold we need, the plug-in method can also be applied with a multiplier between

0 and 1. When we set Ty, at its lower bound, namely,
v/ log ml|( DTBlmtD 1||1/ ?. where é;}t is obtained as in Step 3 from Algorithm 1,

we anticipate many false positives. In Figure 2.3, we show that the performance of
Algorithm 2 is stable in the setting of small n and sparse ~ for different values of 7,
demonstrating robustness of our methods to the multiplier; there we observe that the

performance can degrade if the threshold is set to be too small, eventually reaching
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the performance of Algorithm 1.

Second, if an upper bound on the number of differentially expressed genes is known
a priori, one can select a set of genes jo to group center such that the cardinality
|Jo| is understood to be chosen as an upper bound on dy = |supp(y)| based on prior
knowledge. We select the set jo by ranking the components of the estimated vector
of mean differences 4. In the data analysis in Section 2.5 we adopt this strategy in
an iterative manner by successively halving the number of selected genes, choosing at
each step the genes with largest estimated mean differences from the previous step.
We show in this data example and through simulation that the proposed method is
robust to the choice of |Jy|.

Finally, it is worth noting that these algorithms readily generalize to settings with
more than two groups, in which case we simply group center within each group. This
is equivalent to applying the method with a different design matrix D. In fact, we
can move beyond group-wise mean comparisons to a regression analysis with a fixed

design matrix D, which includes the k-group mean analysis as a special case.

2.3 Theoretical results

We first state Theorem II.1, which provides the rate of convergence of the GLS
estimator (2.5) when we use a fixed approximation of the covariance matrix B. We
then provide in Theorems I1.3 and I1.4 the convergence rates for estimating the group
mean matrix § € R**™ for Algorithms 1 and 2 respectively. In Theorem II.3 we
state rates of convergence for the Gemini estimators of B~! and A~! when the input
sample covariance matrices use the group centering approach as defined in Algorithm
1, while in Theorem II.4, we state only the rate of convergence for estimating B!,
anticipating that the rate for A=! can be similarly obtained, using the model selection

centering approach as defined in Algorithm 2.
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2.3.1 GLS under fixed covariance approximation

We now state a theorem on the rate of convergence of the GLS estimator (2.5),
where we use a fixed approximation By}, to B~!, where the operator norm of A, ,, =
B, ), — B7! is small in the sense of (2.17). We will specialize Theorem II.1 to the
case where B™! is estimated using the baseline method in Zhou (2014a) when X
follows subgaussian matrix-variate distribution as in (2.1). We prove Theorem II.1 in

Section 3.2.

Theorem II.1. Let Z be an n x m random matriz with independent entries Z;;

satisfying BZ;; = 0, 1 = IEZ% < || Z; < K. Let Zy,...,Z,, € R" be the columns

J'HQ/,Q
of Z. Suppose the jth column of the data matriz satisfies X; ~ BI/ZZJ-. Suppose

B € R™™ is a positive definite symmetric matriz. Let A, = B;}n - B7L.
Suppose
1
| Anml2 < where Nupin = N1 ANy and  Npax = N1 V Ng. (2.17)

(nmaX/nmin) HB||27

Then with probability at least 1 — 8/(m v n)?, for some absolute constants C, C’,

V7, H@(Bg:n) — /B;HQ < Tpm 1= Snm + tam,  Where (2.18)

Snm = C\/10gm||Bllo/nmim ~ and  tom = C'|Apmllz/n2:  (2.19)

log m|| Bl|

min

and  |[F(Bam) =l < V2 (C + C’nmilfllﬁn,ml\z) - (2.20)

Remarks. If the operator norm of B is bounded, that is ||Blls < W, then con-
dition (2.17) is equivalent to ||A, ;|2 < 1/(Wnyatio). The term t,,,,, in (2.19) re-
flects the error due to approximating B~! with B, 1, whereas s, , reflects the error
in estimating the mean matrix (2.5) using GLS with the true B~! for the random

design X. The term s,,, is O(y/logm/n), whereas t,., is O(1/4/n). The domi-

nating term s,,, in (2.19) can be replaced by the tighter bound, namely, s, , =
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C"og'?(m)+/6T (DT B-1D)~16, with § = (1,—1) € R?. This bound correctly drops
the factor of || B||2 present in (2.19) and (2.20), while revealing that variation aligned
with the column space of D is especially important in mean estimation.

Note that the condition (2.17) is not stringent, and that the B estimates used in
Algorithms 1 and 2 have much lower errors than this. When M = 0 is known, S4
and Sp can be the usual Gram matrices, and the theory in Zhou (2014a) guarantees
that t,,, as defined in (2.19) has rate C4a/logm/m, with C4 = /m|/Al|r/tr(A).
However in our setting, M in general is nonzero. In Sections 2.2.2 and 2.2.3 we
provide two constructions for S, and Spg, which differ in how the data are centered.
These constructions have a different bound t,,,,, as we will discuss in Theorems II.3
and I1.4.

In Section 2.4, we present simulation results that demonstrate the advantage of
the oracle GLS and GLS with estimated B (2.5) over the sample mean based (OLS)
method (c.f. (2.12) and (2.32)) for mean estimation as well as the related variable
selection problem with respect to . There, we scrutinize this quantity and its esti-
mation procedure in detail.

Design effect. The “design effect” is the variance of the “oracle” GLS estimator

(2.5) of ; using the true B, that is,
s"(D'BT'D)7'6 = Var(3;(B™)), Vj =1,...,m. (2.21)

The design effect reflects the potential improvement of GLS over OLS. It appears

as a factor above in s’

n,m?

so it contributes to the rate of mean parameter estimation
as characterized in Theorem II.1. Lower variance in the GLS estimator of the mean
difference contributes to greater power of the test statistics relative to OLS. The
design effect also appears as a scale factor in the test statistics for 7 (2.15), and

therefore it is particularly important that the design effect is accurately estimated in
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order for the test statistics to be properly calibrated. In a study focusing on mean
differences, it may be desirable to assess the sample size needed to detect a given
effect size using our methodology. Given the design effect, our tests for differential
expression are essentially Z-tests based on the GLS fits, followed by some form of

multiple comparisons adjustment.

Corollary IL.2. Let Q = (DTB'D)"!, Q = (DTB'D)™!, and A = Q — Q. Under
the conditions of Theorem II.1, the relative error in estimating the design effect is

bounded as

6TQ6 — 67Q6
< 20/“(3) ||B||2 ||A||27

2.22
5TQ§ Nratio ( )

with probability 1 — C/(m v n)?, for some absolute constants C,C".

We prove Corollary I1.2 in Section 3.2.2. Corollary I1.2 implies that given an
accurate estimator of B~!, the design effect is accurately estimated and therefore
suggests that traditional techniques can be used to gain an approximate understand-
ing of the power of our methods. We show that B~! can be accurately estimated
under conditions in Theorems 3 and 4. If pilot data are available that are believed
to have similar between-sample correlations to the data planned for collection in a
future study, Corollary I1.2 also justifies using this pilot data to estimate the design
effect. If no pilot data are available, it is possible to conduct power analyses based

on various plausible specifications for the B matrix.

2.3.2 Rates of convergence for Algorithms 1 and 2

We state the following assumptions.

(A1) The number of nonzero off-diagonal entries of A~* and B~! satisfy

= o(n/log(m v n)) (n,m — o) and

= o([m/loglm v )] v [2*/|BF])  (n.m — ).
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(A2) The eigenvalues of A and B are bounded away from 0 and +00. We assume

that the stable ranks satisfy 7(A),r(B) = 4log(m v n), where r(A) = || A||% /|| A]l3.

Theorem I1.3. Suppose that (A1) and (A2) hold. Consider the data as generated
from model (2.2) with e = BV?ZAY? where A € R™*™ and B € R™" are positive
definite matrices, and Z is an n x m random matriz as defined in Theorem II.1.
Let C,C",C1Cy, C",C" be some absolute constants. Let Cy = /m||Al|r/tr(A) and

Cp = /n||Bl||r/tr(B). (I) Let Ay and A\p denote the penalty parameters for (2.8b)

and (2.8a) respectively. Suppose

logl/z(m vn) ||B|h logm(m vn) ||B|:
M= C | OyK d \g=C"| CgK 2.23
4 ( A \/m * Nmin o B B \/ﬁ * Nmin )

Then with probability at least 1 — C"/(m v n)?, for A® B as define in (2.11),

|A® B~ A® Bl|> < || A]l»]| B2,

— 1
A B — A7'@ B ls < ||A7 2| BT,

where 5,0/ =0 ()\Aq/ | B~ Yoo vV 1+ Aga/ Ao 0p v 1) .

Furthermore, with probability at least 1 — C" /(m v n)?,

IA® B — A® B||r < || All#| Bl e, (2.24)

where 1 =0 ()\Aq [1BYo.op v /1 + Mg/ [A  o.05 v m/ﬁ) . (2.25)

The same conclusions hold for the inverse estimate, with 1 being bounded in the same
order as in (2.25). (II) Let B be defined as in (2.5) with B~ being defined as in
(2.14) and D as in (2.4). Then, with probability at least 1 — C/m? the following holds
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for all j,

~ A Nratio B-1 0 v 1 _ _
Hﬁj(Bl)—B;‘llzéCMA\/ B Zoor Y1)y 6, fiogm (D7 B D)1
(2.26)

We prove Theorem II.3 part I in Section 3.3; this relies on rates of convergence
of B~' and A~! in the operator and the Frobenius norm, which are established in
Lemma III.7. We prove part II in Section 3.3.2.

Remarks. We find that the additional complexity of estimating the mean matrix
leads to an additional additive term of order 1/n appearing in the convergence rates
for covariance estimation for B and A. In part I of Theorem II.3, A4 is decomposed
into two terms, one term reflecting the variance of Sg, and one term reflecting the
bias due to group centering. The variance term goes to zero as m increases, and the
bias term goes to zero as n increases. To analyze the error in the GLS estimator

based on B!, we decompose ||3;(B~1) — B2 as
18;(B™) = B5lla < 18;(B™1) = B3 (B2 + 18;(B™") = B |2,

where the first term is the error due to not knowing B~!, and the second term is the
error due to not knowing 57. The rate of convergence given in (2.26) reflects this
decomposition. For Algorithm 2, we have analogous rates of convergence for both
mean and covariance estimation. Simulations suggest that the constants in the rates
for Algorithm 2 are smaller than those in (2.26).
We state the following assumptions for Theorem I1.4 to hold on Algorithm 2.
(A1’) Suppose (A1) holds. Let the number of nonzero off-diagonal entries of B~*
satisfy
|B~ oo < max <m, ﬁ,nlog m) :

(A2’) Suppose (A2) holds, and n = logm (|| A, || Blly bmax/C3)-
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(A3) Let supp(y) = {j : 7; # 0}. Let s = |supp(7)| denote the sparsity of ~.
— Ca _m_
Assume that s = O (IIBllzn’ /logm)'
Remarks. When B is dense in the sense that || B||; = y/n || B||,, the new condition
|B7 Yoo < nlogm is vacuous. Condition (A2’) is mild, because the condition on the

stable rank of B already implies that n > logm.

Theorem I1.4. Suppose that (A1°), (A2’), and (A3) hold. Consider the data as
generated from model (2.4) with ¢ = BY2ZAY?, where A € R™™ and B € R™™ are
positive definite matrices, and Z is an n x m random matriz as defined in Theorem

I11.53. Let A4 denote the penalty parameter for estimating B. Suppose A4 is as defined
n (2.23). Let

it = \/logm||(DTB' D)3 (2.27)

Then with probability at least 1 — C”/(m v n)?, for output of Algorithm 2,

C/)\A\/ ‘Bilyo,off vl
< and (2.28)

> bunenan(p(B))

tr (A) (Wzéﬁz) B!

1B,(B™) = B;ll2 < Con/log ml| (D B~ D) ~'|1; (2:29)
for all j, for absolute constants C, Cy, C', and C”.

We prove Theorem II.4 in Section 3.6.5. In Section 3.6.4 we also show a stan-
dalone result, namely Theorem III.21, for the case of fixed sets of group and globally
centered genes. This result shows how the algorithm used in the preliminary step to
choose which genes to group center can be decoupled from the rest of the estimation
procedure in Algorithm 2, so long as certain conditions hold. The proof of Theorem
I1.4 indeed validates that such conditions hold for the output of Algorithm 1. It is
worth noting that a similar rate of convergence for estimating A could also be derived,
but we focus on B in our methodology and applications, and therefore leave this as

an exercise for interested readers.
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We specialize Corollary I1.2 to the case where B~! is estimated using Algorithm

Corollary I1.5. Under the conditions of Theorem II.4, we have with probability 1 —

C/m?
6706 — 67Q8

Nratio
<90 ato By /| B! 1, 2.
5TQ5 C )\mln(B) K/( ) A | |0,0ﬂ: Vv ( 30)

for some absolute constants C' and C".

Remarks. The right-hand-side of (2.30) goes to zero because of the assumptions
(A1), (A2’), and (A3), which ensure that the factor Ay /|B71|, 5 v 1 goes to zero.
We conduct simulations to assess the accuracy of estimating the design effect in

Section 2.4.2.

2.4 Simulations

We present simulations to compare Algorithms 1 and 2 to both sample mean based
analysis and oracle algorithms that use knowledge of the true correlation structures
A and B. We show these results for a variety of population structures and sample

sizes. We construct covariance matrices for A and B from one of:

e ARI1(p) model. The covariance matrix is of the form B = {pli=l},;, and the

graph corresponding to B~! is a chain.

e Star-Block model. The covariance matrix is block-diagonal with equal-sized
blocks whose inverses correspond to star structured graphs, where B;; = 1, for
all 4. In each subgraph, a central hub node connects to all other nodes in the
subgraph, with no additional edges. The covariance matrix for each block S in
B is generated as in Ravikumar et al. (2011): S;; = p = 0.5 if (i,7) € E and

S;; = p? otherwise.
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e Erdos-Rényi model. We use the random concentration matrix model in Zhou
et al. (2010). The graph is generated according to a type of Erd6s-Rényi random
graph. Initially we set B~! = 0.251,,,,,. Then, we randomly select d edges and
update B~! as follows: for each new edge (i,j), a weight w > 0 is chosen
uniformly at random from [Wpin, Wiax] Where wy, = 0.6 and Wy, = 0.8; we
subtract w from Bigl and Bj_il, and increase B;;' and Bj_j1 by w. This keeps B~!

positive definite. We then rescale so that B~! is an inverse correlation matrix.

2.4.1 Accuracy of 4 and its implication for variable ranking

Table 2.1 displays metrics that reflect how the choice of different population struc-
tures B can affect the difficulty of the mean and covariance estimation problems.
Column 2 is a measure discussed by Efron (2007). Column 3 appears directly in the
theoretical analysis, reflecting the entry-wise error in the sample correlation f(B)
Columns 4 analogously reflects the entry-wise error for the Flip-Flop procedure in

Zhou (2014a), and is included here for completeness. Column 5 displays the value of

\/0T(DTB-1D)~14, where § = (1, —1) € R?, which represents the standard deviation
of the difference in means estimated using GLS with the true B~!. Column 6 displays

what we call the standard deviation ratio, namely

ul Bu
2.31
\/5T(DTB—1D)—15’ ( 3 )
where v = (1/n1,...,1/n1,—1/ng,...,—1/ny) € R™ and § = (1, —1) € R?, which re-
ni n2

flects the potential efficiency gain for GLS over sample mean based method (2.12)
for estimating . Note that the standard deviation ratio depends on the relationship
between the covariance matrix B and the design matrix D. In Table 2.1, the first
n/2 individuals are in group one, and the following n/2 are in group two. The values

in Column 6 show that substantial improvement is possible in mean estimation. For
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B 7% 1Ble/u(B) [p(B) Tox sd GLS sd ratio

1 ARI1(0.2) 0.00 0.12 32.92 0.27 1.00
2 ARI1(0.4) 0.00 0.13 75.24 0.33 1.02
3 ARI1(0.6) 0.01 0.16 148.12 0.40 1.07
4 AR1(0.8) 0.04 0.24 351.11 0.46 1.32
5 StarBlock(4, 20) 0.02 0.18 101.33 0.35 1.51
6 ER(0.6, 0.8) 0.01 0.14 92.75 0.17 1.21
n =40

1 AR1(0.2) 0.00 0.16 16.25 0.38 1.01
2 ARI1(0.4) 0.01 0.19 37.14 0.45 1.03
3 ARI1(0.6) 0.03 0.23 73.12 0.53 1.12
4 ARI(0.8) 0.08 0.33 173.33 0.53 1.47
5 StarBlock(2, 20) 0.04 0.25 50.67 0.50 1.51
6 ER(0.6, 0.8) 0.02 0.21 47.24 0.25 1.23

Table 2.1: Assessment of the difficulty of estimating B~! and the potential gain from
GLS. The total correlation pp is the average squared off-diagonal value
of the correlation matrix p(B). The fourth column is the design effect as
defined in (2.21). The last column (sd ratio) presents the ratio of the stan-
dard deviation of the difference in sample means in (2.12) to the standard
deviation of the GLS estimator of the difference in means. The first three
columns of the table reflect the difficulty of estimating B, whereas the last
two columns reflect the potential improvement of GLS over the sample
mean based method (2.12). In the notation StarBlock(a,b), a refers to the
number of blocks, and b refers to the block size.

an AR1 covariance matrix, the standard deviation ratio increases as the AR1 param-

eter increases; as the correlations get stronger, the potential improvement in mean

estimation due to GLS grows. For the Star Block model with fixed block size, the
standard deviation ratio is stable as n increases.

In Figure 2.1, we use ROC curves to illustrate the sensitivity and specificity for
variable selection in the sense of how well we can identify the support for {i : v; # 0}
when we threshold 4; at various values. To evaluate and compare different methods,
we let 4 be the output of Algorithm 1, Algorithm 2, the oracle GLS, and the sample
mean based method (2.12). These correspond to the four curves on each plot of the

top two rows of plots. We find that Algorithm 1 and Algorithm 2 perform better than

the sample mean based method (2.12), and in some cases perform comparably to the
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Figure 2.1: ROC curves. For each plot, the horizontal axis is false positive rate (FPR)
and the vertical axis is true positive rate (TPR), as we vary a threshold
for classifying variables as null or non-null. The covariance matrices A
and B are both AR1 with parameter 0.8, with m = 2000 and n = 40,
80, and 160 in column one, two, and three, respectively. Ten variables
in 7 have nonzero entries. On each trial, the group labels are randomly
assigned, with equal sample sizes. The marginal variance of each entry of
the data matrix is equal to one. For the first row of plots, the magnitude
of each nonzero entry of v is 0.2, and for the second and third rows of
plots, the magnitude of each nonzero entry of v is 0.3. In the first two rows
we display ROC curves for Algorithms 1 and 2 with penalty parameters
chosen to maximize area under the curve. The third row displays an ROC
curves for Algorithm 1, sweeping out penalty parameters.

oracle GLS. Plots in the third row of Figure 2.1 illustrate the sensitivity of Algorithm 1

to the choice of the graphical lasso (GLasso) penalty parameter (2.23); the simulations
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are run using the glasso R package (Friedman et al., 2008) to estimate B via (2.8b).
The performance can degenerate to that of the sample mean based method (2.12), if

the penalty is too high.
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Figure 2.2: Performance of centering methods as n and m are varied, with n shown
on the horizontal axis. In the first column of plots, the number of edges
is proportional to 4/m/log(m). In the second and third columns of plots,
the number of edges is proportional to m. In the first two columns of plots,
B! is an Erd6s-Rényi inverse covariance matrix. In the third column,
B! is star block with blocks of size 10. The first row of plots shows
RMSE for estimating v, whereas the second row shows average relative
Frobenius error in estimating B~!. All panels are based on 250 simulation
replications.

In the top row of Figure 2.2 we plot the root mean squared error (RMSE) when
estimating the mean differences 7 for Algorithm 1, Algorithm 2, OLS (i.e. sample
means) and the oracle GLS estimate. The population structures for B are Erdés-
Rényi and Star Block. Both Algorithms 1 and 2 consistently outperform the sample
mean based method (2.12) for mean estimation, and Algorithm 2 even achieves com-

parable performance to the oracle GLS in some settings. The bottom row displays the

33



relative Frobenius error for estimating B~!. Algorithm 2 outperforms Algorithm 1
in terms of covariance estimation and is comparable to oracle model selection, which
only centers the columns with a true mean difference.

In Figure 2.3, we illustrate that Algorithm 2 can perform well using a plug-in
estimator Tin;; as in (2.16). We compare the methods when the true mean structure is
a decaying exponential; we display the correlation of the ranks of the entries of v to
the ranks of the estimates of v. Algorithm 2 with a plugin estimator 7i,;; can nearly
reach the performance of GLS with the true B. Furthermore, the plug-in version of
Algorithm 2 also consistently outperforms Algorithm 1. We also assess sensitivity to
the choice of threshold: the curve labeled “Algorithm 2”7 uses the plug-in estimate
Tinit, Whereas “Algorithm 2 with threshold multiplier” uses a plug-in estimate of the
lower bound given in (2.27) in Theorem II.4. These two-plug in estimators exhibit
similar performance, showing robustness of Algorithm 2 to the choice of the threshold
parameter. In real data analysis, we validate this further. For the top row (AR1), the
ratio of thresholds (2.27) to (2.16) is 0.75, and for the bottom row (UC), the ratio is
0.17.

In Section 2.9, we perform additional simulations to compare Algorithm 2 to two
similar methods using ROC curves, namely, the sphering method of Allen and Tib-
shirani (2012), which uses a matrix-variate model similar to ours, and the confounder
adjustment method of Wang et al. (2015), which uses a latent factor model. Our sim-
ulations show that Algorithm 2 consistently outperforms these competing methods

in a variety of simulation settings using matrix-variate data.

2.4.2 Inference for the mean difference 5

Two basic approaches to conducting inference for mean differences are paired and

unpaired t statistics. The unpaired t statistic is defined as follows. Let X = (Xj;).
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Then the jth unpaired t statistic is

T; = (EJ(.” - 5}2)) 67 nyt +nyt) Y2, where (2.32)
2 R
o = (n1+n2—2)_12 (ij—ﬁj( )> ,
k=1 iEgk
where B](-k), k=1,2, and j = 1,...,m, denotes the sample mean of group k£ and

variable j as defined in (2.12), and Gy, is the set of indices corresponding to group k.
When there is a natural basis for pairing the observations, and paired units are antic-
ipated to be positively correlated, we can calculate paired t statistics. For the paired
t statistic, suppose observations i and i’ = i + n/2 are paired, for i € {1,...,n/2}.
Note that samples can always be permuted so as to be paired in this way. Define the
paired differences d;; = X;; — Xy, for i € {1,...,n/2}. Then the paired t statistic is
dj(n/2 —1)"?/ (Z?ﬁ(dm’ - 31)2)1/2’ where d; = (n/2)7' 313 dy;.

Figure 2.4 considers estimation of the “design effect” §7 (DT B~1D)~16, as previ-
ously defined in (2.21), with § = (1, —1)”. The importance of this object is discussed
in Sections 2.3.1 and 2.3.2. The design effect is estimated via 5T(DT§*1D)*15, with

B! from Algorithm 1 or 2. The GLasso penalty parameters are chosen as

(2.33)

log'? B
I (CAK og(m v n) | | ||1>

\/m Nmin

where we sweep over the factor f4, referred to as the penalty multiplier. Figure 2.4
displays boxplots of the ratio 67 (DT B=2D)~15/67 (DT B=2D)~1§ over 250 replications
for each setting of the penalty multiplier f4. In Figure 2.4, B! follows the Erdés-
Rényi model, and A is AR1(0.8), with m = 2000, and n = 40 and 80. Figure 2.4
shows that Algorithm 2 (plots B and D) estimates the design effect to high accuracy
and is quite insensitive to the penalty multiplier as long as it is less than 1, as

predicted by the theoretical analysis. Algorithm 1 also estimates the design effect
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with high accuracy, but with somewhat greater sensitivity to the tuning parameter.
The best penalty parameter for Algorithm 1 is around 0.1, whereas reasonable penalty
parameters for Algorithm 2 are in the range 0.01 to 0.1. This is consistent with smaller
entrywise error in the sample covariance for model selection centering than for group
centering.

We next compare the results from Algorithm 2 to results obtained using paired
and unpaired t statistics. Figure 2.5 illustrates the calibration and power of plug-

in Z-scores, 7,/ S/]\E(%) derived from Algorithm 2 for three population settings. The

standard error is calculated as \/5T(DT§—1D)—15, with § = (1, —1). In the first and
second plots, the data was simulated from AR1(0.8) and Erdés-Rényi, respectively.
In the third plot, the data was simulated from B for ulcerative colitis data described
in Section 2.5. To obtain B , we apply Algorithm 2 to the ulcerative colitis data, using
a Glasso penalty of A ~ 0.5[(log(m)/m) + 3/n] in step 1, followed by group centering
the top ten genes in step 2, and using a Glasso penalty of A ~ 0.1[(log(m)/m) + 3/n]
in step 4. In all cases A is AR1(0.8). In each case, we introduce 10 variables with
different population means in the two groups, by setting v = 0.8 for those variables,
with the remaining + values equal to zero. The ideal Q-Q plot would follow the
diagonal except at the upper end of the range, as do our plug-in GLS test statistics.
The t statistics (ignoring dependence) are seen to be overly dispersed throughout the

range, and are less sensitive to the real effects.

2.4.3 Covariance estimation for A

Figure 2.6 shows the relative Frobenius error in estimating A~! as n grows, for
fixed m. The horizontal axis is n/(dlog(m)), scaled so that the curves align, where
d is the maximum node degree. Because ||[A7!||r is of order \/m, the vertical axis
essentially displays |A~'— A~ z/y/m. For estimating A~!, the rate of convergence is

of order /log(m)/n. For each of the three population structures, accuracy increases
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with respect to n.

2.5 Genomic study of ulcerative colitis

Ulcerative colitis (UC) is a chronic form of inflammatory bowel disease (IBD),
resulting from inappropriate immune cell infiltration of the colon. As part of an effort
to better understand the molecular pathology of UC, Lepage et al. (2011) reported
on a study of mRNA expression in biopsy samples of the colon mucosal epithelium,
with the aim of being able to identify gene transcripts that are differentially expressed
between people with UC and healthy controls. The study subjects were discordant
identical twins, that is, monozygotic twins such that one twin has UC and the other
does not. This allows us to simultaneously explore dependences among samples (both
within and between twins), dependences among genes, and mean differences between
the UC and non-UC subjects. The data set is available on the Gene Expression
Omnibus, GEO accession GDS4519 (Edgar et al., 2002).

The data consist of 10 discordant twin pairs, for a total of 20 subjects. Each
subject’s biopsy sample was assayed for mRNA expression, using the Affymetrix UG
133 Plus 2.0 array, which has 54,675 distinct transcripts. Previous analyses of this
data did not consider twin correlations or unanticipated non-twin correlations, and
used very different methodology (e.g. Wilcoxon testing). Roughly 70 genes were found
to be differentially expressed (Lepage et al., 2011).

We applied our Algorithm 2 to the UC genomics data as follows. First we se-
lected the 2000 most variable genes based on marginal variance and then rescaled
each gene to have unit marginal variance. We then applied step 1 of Algorithm 2,
setting A = 0.1 ~ 0.5< w + %), with m = 2000 and n = 20. For step 2 of
the algorithm, we ranked the estimated mean differences, group centered the top ten,
and globally centered the remaining genes. We then re-calculated the Gram matrix

Sp using the centered data. In step 3, following the Gemini approach, we applied
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the GLasso to Sp using a regularization parameter A ~ 0.25(x/log(m)/m +3/n). We
obtain estimated differences in means and test statistics via steps 4 through 6. A
natural analysis of these data using more standard methods would be a paired t-test
for each mRNA transcript (paired by twin pair). Such an approach is optimized for
the situation where there is a constant level of correlation within all of the twin pairs,
with no non-twin correlations. However as in Efron (2008), we wish to accommodate
unexpected correlations, which in this case would be correlations between non-twin
subjects or a lack of correlation between twin subjects. Our approach, developed in
Section 2.2, does not require pre-specification or parameterization of the dependence
structure, thus we were able to consider twin and non-twin correlations simultane-
ously. Lepage et al. note that UC has lower heritability than other forms of IBD. If
UC has a relatively stronger environmental component, this could explain the pattern
of correlations that we uncovered, as shown in Figure 2.7. The samples are ordered
so that twins are adjacent, corresponding to 2 by 2 diagonal blocks. The penalized
inverse sample correlation matrix contains nonzero entries both within twin pairs and
between twin pairs.

To also handle these unexpected non-twin correlations, we performed testing us-
ing Algorithm 2. We found only a small amount of evidence for differential gene
expression between the UC and non-UC subjects. Four of the adjusted p-values fell
below a threshold of 0.1, using the Benjamini-Hochberg adjustment; that is, four
genes satisfied 2000p;)/i < 0.1, where p; is the i order statistic of the p-values
calculated using Algorithm 2, for ¢ = 1,...,2000. Based on our theoretical and sim-
ulation work showing that our procedure can successfully recover and accommodate
dependence among samples, we argue that this is a more meaningful representation
of the evidence in the data for differential expression compared to methods that do
not adapt to dependence among samples. Specifically, in Section 2.5.1 we demon-

strate that our test statistics are properly calibrated and as a result have weaker (but
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more accurate) evidence for differential expression results. Below we argue that the
sample-wise correlations detected by our approach would be expected to artificially

inflate the evidence for differential expression.

2.5.1 Calibration of test statistics

As noted above, based on the test statistics produced by Algorithm 2, we find evi-
dence for only a small number of genes being differentially expressed. This conclusion,
however, depends on the test statistics conforming to the claimed null distribution
whenever the group-wise means are equal. In this section, we consider this issue in
more detail.

The first plot of Figure 2.8 compares the empirical quantiles of ®~!(T}) to the
corresponding quantiles of a standard normal distribution, where ® is the standard
normal cdf and the 7)s are as defined in (2.32). Plots 2 and 3 show the same informa-
tion for successive non-overlapping blocks of two thousand genes sorted by marginal
variance. Since this is a discordant twins study, we also show results for the standard
paired t statistics, pairing by twin. In all cases, the paired and unpaired statistics are
more dispersed relative to the reference distribution. By contrast, the central portion
of the GLS test statistics coincide with the reference line. Overdispersion of test
statistics throughout their range is often taken to be evidence of miscalibration (De-
vlin and Roeder, 1999). In this setting the GLS statistics are calibrated correctly

under the null hypothesis, but the paired and unpaired t statistics are not.

2.5.2 Stability of gene sets

The motivation of our Algorithm 2 is that in many practical settings a relatively
small fraction of variables may have differential means, and therefore it is advanta-
geous to avoid centering variables presenting no evidence of a strong mean difference.

Here we assess the stability of the estimated mean differences as we vary the number
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of group centered genes in Algorithm 2. To do so, we successively group center fewer
genes, globally centering the remaining genes.

The iterative process is as follows. Let B\(_i)l € R™" denote the estimate of B!
at iteration 7, let B(i) e R?*™ denote the estimates of the group means 3 on the ith
iteration, let 7(;) € R™ denote the vector of differences in group means between the two
groups, and let fi;) € R™ denote vector of global mean estimates. Let fi(B~') € R™
denote the result of applying GLS with design matrix D = 1,, to estimate the global
means.

Initialize B(l), fiy and 71y using the sample means. On the ith iteration,

1. Rank the genes according to |5;_1)|. Center the highest ranked n} genes around

B(,-_l). Center the remaining genes around fi(;_1).

2. Obtain f)’(;)l by applying GLasso to the centered data matrix from step 1.
3. Set By = B(By), fig) = A(BG;), and A = (1, —1)B).

We assess the stability of the mean estimates by comparing the rankings of the
genes across iterations of the algorithm. Table 2.2 displays the number of genes in
common out of the top ten genes on each pair of iterations of the algorithm. For
example, three genes ranked in the top ten on the first iteration of the algorithm are
also ranked in the top ten on the last iteration. Iterations six through nine produce
the same ranking of the top ten genes. Three genes are ranked among the top ten on
every iteration of the algorithm: DPP10-AS1, OLFM4, and PTN. Table 2.4 shows

simulations confirming these results.

2.5.3 Stability analysis

Table 2.3 shows the number of genes that fall below an FDR threshold of 0.1
on each iteration, for several values of the GLasso penalty A. The number of genes

below the threshold is more sensitive to the number of group-centered genes than to
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Table 2.2: Each iteration k of the algorithm produces a ranking of all 2000 genes.
For the top ten genes on each iteration, entry (7, j) of the table shows the
number of genes in common in iterations ¢ and j of the algorithm. Note
that the maximum possible value for any entry of the table is 10; if entry
(i,7) is 10, then iterations i and j selected the same top ten genes.

1 2 3 4 5 6 7 8 9
1110 10 7 S5 S5 3 3 3 3
210 10 7 5 5 3 3 3 3
37 7 10 6 5 3 3 3 3
475 5 6 10 8 5 5 5 5
5/5 5 5 8 10 7 T 7 7
6(3 3 3 5 7 10 10 10 10
73 3 3 5 7 10 10 10 10
83 3 3 5 7 10 10 10 10
93 3 3 5 7 10 10 10 10

Table 2.3: For the algorithm, this table shows the number of genes that are significant
at an FDR level of 0.1 on each iteration of the algorithm, for different values
of the GLasso penalty A. The top row shows the number of genes group
centered on each iteration.

n.group | 2000 1024 512 256 128 64 32 16 8
A=0.1]1006 913 327 14 31 1 11
A=02| 85 806 262 2 1 1 1 1 0
A=03| 778 789 303 3 11 0 0 0
A=04] 706 774 452 3 10 0 0 O
A=0.6| 657 751 587 19 11 0 0 0
A=08| 628 699 493 30 1 1 1 11

the GLasso penalty parameter. This is consistent with the first plot of Figure 2.10
where the design effect (in the denominator of the test statistics) is likewise more
sensitive to the number of group centered genes than to the GLasso penalty. When
fewer than 128 genes are group centered, the number of genes below an FDR threshold

of 0.1 is stable across the penalty parameters from A = 0.1 to A = 0.8.

2.6 Additional simulation results

Figure 2.9 demonstrates the effect of mean structure on covariance estimation.

As expected, when there is no mean structure Gemini performs competitively. As
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more mean structure is added, however, its performance quickly decays to be worse
than Algorithm 2. This also provides evidence that the plug-in estimator 7i,;; used in
Algorithm 2 is appropriately selecting genes to group center, as when there are no or
very few differentially expressed genes Algorithm 2 is still never worse than Gemini.
Algorithm 1 does not perform as well as Algorithm 2 but still tends to eventually
outperform Gemini as more mean structure is added. As the sample size increases,
the difference between Algorithm 2 and Algorithm 1 decreases as the added noise
from group centering becomes less of a factor. We still recommend using Algorithm
2 in most realistic scenarios, but this reinforces our theoretical finding that the two

algorithms have the same error rates.

2.7 Additional data analysis

As discussed in Section 2.3.1, it is particularly important that the design effect
is accurately estimated in order for the test statistics to be properly calibrated. The
first plot of Figure 2.10 displays the sensitivity of the estimated design effect (2.21)
for Algorithm 2 to the GLasso penalty parameter and the number of group centered
columns. In the case that all columns are group centered, Algorithm 2 reduces to
Algorithm 1. If we group center all genes, the estimated design effect is sensitive
to the penalty parameter, but if we group center a small proportion of genes, it
is less sensitive to the penalty parameter. This is further evidence that it may be
advantageous to avoid over-centering the data when the true mean difference vector
~v may be sparse. The second plot of Figure 2.10 shows a quantile plot comparing the
distribution of test statistics from the UC data to test statistics from a simulation
whose population correlation structure is matched to the UC data. The quantile
plot reveals that we can reproduce the pattern of overdispersion in the test statistics
using simulated data having person-person as well as gene-gene correlations. Such

correlations therefore provide a possible explanation for the overdispersion of the test
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statistics.

Figure 2.11 displays a quantile plot and inverse covariance graph for A = 0.4 and
128 group centered genes. Under these settings the test statistics appear correctly
calibrated, coinciding with the central portion of the reference line. Furthermore,
the inverse covariance graph is sparse (38 edges). In the inverse covariance graph,
there are more edges between subjects with UC than between the healthy subjects,
which could be explained by the existence of subtypes of UC inducing correlations
between subsets of subjects. The third plot of Figure 2.11 displays a sparser inverse
covariance graph, corresponding to a larger penalty A = 0.5. There are three edges
between twin pairs, and there are more edges between subjects with UC than between

those without UC.

2.7.1 Stability simulation

Table 2.4 shows the results from a simulation analogous to Table 2.2, demonstrat-
ing stability across iterations of the procedure. Iteration 1 begins by group centering
1280 genes and this number is halved in each successive iteration. We can see from the
table that the gene rankings generated by Algorithm 2 are robust to misspecifying the
number of differentially expressed genes. When the number of group centered genes
is 160 or below (iterations 4 through 8), the commonly selected genes among the top
20 genes are stable. Furthermore, the true positives remain stable as we decrease the

amount of genes centered, while the false positives decrease.

2.8 Conclusion

It has long been known that heteroscedasticity and dependence between observa-
tions impacts the precision and degree of uncertainty for estimates of mean values and
regression coefficients. Further, data that are modeled for convenience as being in-

dependent observations may in fact show unanticipated dependence (Kruskal, 1988).
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Table 2.4: Number of genes in common among genes ranked in the top 20 when
different numbers of genes are group centered. This simulation is analogous
to Table 2.2. Note that the maximum possible value for any entry of the
table is 20; if entry (4, j) is 20, then iterations i and j selected the same top
twenty genes. The first 10 genes have a difference of 1.5 and the second
10 have a difference of 1. All remaining genes have a true mean difference
of zero. We use B as estimated from the UC data, and A is from an
AR1(0.8) model. These simulations have n = 20 individuals and 2000
genes and are averaged over 200 replications. The last two rows display
the average number of true and false positives among the genes ranked in
the top 20 of each iteration.

1 2 3 4 5 6 7 8

11200 176 158 14.8 14.3 14.0 14.0 139
21176 20.0 179 16.8 16.2 159 158 15.8
311568 179 200 187 181 178 17.7 17.6
41148 16.8 187 20.0 193 19.0 189 1838
5143 16.2 181 193 20.0 196 195 194
6140 159 178 19.0 19.6 20.0 198 19.7
71140 158 17.7 189 19.5 198 20.0 19.8
81139 158 176 188 194 19.7 19.8 20.0
TP | 12.7 143 156 164 16.7 16.8 16.8 16.8
FpP| 73 57 44 36 33 32 32 32

This has motivated the development of numerous statistical methods, including gen-
eralized /weighted least squares (GLS/WLS), mixed effect models, and generalized
estimating equations (GEE). Our approach utilizes recent advances in high dimen-
sional statistics to permit estimation of an inter-observation dependence structure
(reflected in the matrix B in our model). Like GLS/GEE, we use an approach that
alternates between mean and covariance estimation, but limit it in Algorithm 1 to a
mean estimation step, followed by a covariance update, followed by a mean update,
with an additional covariance and mean update if Algorithm 2 is used. We provide
convergence guarantees and rates for both algorithms.

Estimation of dependence or covariance structures usually requires some form of
replication, and/or strong models. We require a relatively weak form of replication
and a relatively weak model. In our framework, the dependence among observa-

tions must be common (up to proportionality) across a set of “quasi-replicates” (the
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columns of X, or the genes in our UC example). These quasi-replicates may be
statistically dependent, and may have different means. We also require the preci-
sion matrices for the dependence structures to be sparse, which is a commonly used
condition in recent high-dimensional analyses.

In addition to providing theoretical guarantees, we also show through simulations
and a genomic data analysis that the approach improves estimation accuracy for the
mean structure, and appears to mitigate test statistic overdispersion, leading to test
statistics that do not require post-hoc correction. The latter observation suggests
that undetected dependence among observations may be one reason that genomic
analyses are sometimes less reproducible than traditional statistical methods would
suggest, an observation made previously by Efron (2009) and others.

Although our theoretical analysis guarantees the convergence of our procedure
even with a single observation of the random matrix X, there are reasons to expect
this estimation problem to be fundamentally challenging. One reason for this as
pointed out by Efron (2009) and subsequently explored by Zhou (2014a), is that the
row-wise and column-wise dependence structures are somewhat non-orthogonal, in
that row-dependence can “leak” into the estimates of column-wise dependence, and
vice-versa. Our results suggest that while row-wise correlations make it more difficult
to estimate column-wise correlations (and vice-versa), when the emphasis is on mean
structure estimation, even a somewhat rough estimate of the dependence structure
(B) can substantially improve estimation and inference.

We provide additional simulation and data analysis results in Section 2.6 and 2.7.
We state some preliminary results and notation in Section 3.1. We prove Theorem II.1
in Section 3.2 and Corollary I1.2 in Section 3.2.2. We prove Theorem II.3 in Section
3.3, with additional lemmas proved in Section 3.4. We prove entrywise convergence
of the sample correlation matrices for Algorithm 1 in Section 3.5. We prove Theorem

I1.4 in Section 3.6, and we prove additional lemmas used in the proof of Theorem II.4
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in Section 3.7. In Section 2.9 we provide additional comparisons between our method

and some related methods on both simulated and real data.

2.9 Comparisons to related methods

The most similar existing method to ours is the sphering approach from Allen
and Tibshirani (2012). Both methods use a preliminary demeaned version of the
data to generate covariance estimates, then use these estimates to adjust the gene-
wise t-tests. The largest difference between the procedures lies in this last step. The
sphering approach produces an adjusted data set based on decorrelating residuals
from a preliminary mean estimate and performs testing and mean estimation on
this adjusted data using traditional OLS techniques. Though their approach is well-
motivated at the population level, they do not provide theoretical support for their
plug-in procedure, and in particular do not explore how noise in the initial mean
estimate may complicate their decorrelation procedure. In contrast, our approach
uses a generalized least squares approach motivated by classical statistical results
including the Gauss Markov theorem.

The sphering approach also involves decorrelating a data matrix along both axes.
Our work, including the theoretical analysis in Zhou (2014a), suggests that when the
data matrix is non-square, attempting to decorrelate along the longer axis generally
degrades performance. For genetics applications, where there are usually many more
genes than samples, this suggests that decorrelating along the genes may hurt the
performance of the sphering method. Fortunately, for gene-level analyses it is not
necessary to decorrelate along the gene axis, since inference methods like false discov-
ery rate are robust to a certain level of dependence among the variables (genes) (Ben-
jamini and Yekutieli, 2001). Therefore, we also consider a modification of the sphering
algorithm that only decorrelates along the samples.

Confounder adjustment is another related line of work that deals with similar
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issues when attempting to discover mean differences. In particular, a part of that
literature posits models where row-wise connections arise from the additive effects of
potential latent variables. Sun et al. (2012) and Wang et al. (2015) use models of the
form

anm = anl Tj;Lxl + anrFT + Enxm

mxr

T
anr = anlarxl + anr

where Z is an unobserved matrix of r latent factors. Rewriting these equations into
the following form lets us better contrast the confounder model to our matrix-variate
setup:

X =D@B+Ta)" + WI'T + E. (2.34)

These models are generally estimated by using some form of factor analysis to estimate
[' and then using regression methods with additive outlier detection to identify [,
methodology that is quite different from our GLS-based methods.

For the two-group model, in the case of a globally centered data matrix X, the

design matrix D in (2.34) takes the form

D =1-1 ... -1 1... 1]:[_121 152], (2.35)

and 20 represents the vector of true mean differences between the groups. The vector
[ is estimated via OLS, yielding BOLS, and CATE considers whether the residual X —
D, y1 BOLS has a low-rank covariance structure plus noise. If so, T'a aims to take out
the residual low-rank structure through D(f&)T. As illustrated in simulation and data
analysis, this improves upon inference based only on BOLS. When applying the CATE
and related methods to data originated from the generative model as described in the

present paper, CATE (and in particular, the related LEAPP) method essentially seeks
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a sparse approximation of BOLS; Moreover in LEAPP, this is essentially achieved via
hard thresholding of coefficients of BOLS, leading to improvements in performance
in variable selection and its subsequence inference when the vector of true mean
differences is presumed to be sparse. In our setting, we improve upon OLS using

GLS.

2.9.1 Simulation results

Figure 2.12 compares the performance of Algorithm 2 to the sphering method of
Allen and Tibshirani (2012) and the robust regression confounder adjustment method
of Wang et al. (2015) on simulated matrix variate data motivated by the ulcerative
colitis dataset described in Section 2.5. Note that this robust regression confounder
adjustment is a minor modification of the LEAPP algorithm introduced in Sun et al.
(2012). As discussed above, we also consider a modification of Allen and Tibshirani
(2012) that only decorrelates along the rows.

We can see that across a range of dataset sizes our method consistently outper-
forms sphering in terms of sensitivity and specificity for identifying mean differences.
In some settings, CATE improves on Tsphere and t-statistics despite being applied
on misspecified models, because CATE takes out the additional rank two structure
from the mean after OLS regression and does some approximate thresholding on the
coefficients. Our method using GLS performs significantly better than CATE in the
setting of non-identity B, with edges present both within and between groups.

Figure 2.14 fixes the sample size and repeats these comparisons on different sample
correlation structures (which are described in Section 2.4). Figure 2.15 is analogous
to Figure 2.14, but with A as the identity matrix. Algorithm 2 is competitive or

superior to the competing methods across a range of topologies.
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2.9.2 Comparison on UC data

We apply both Algorithm 2 and CATE on the ulcerative colitis data to compare
their respective findings on real data. Figure 2.16 presents the test statistics from
these algorithms. The test statistics have a correlation of 0.75. As expected, both
methods find that the bulk of genes have small test statistics. Note that the regression
line of the CATE test statistics on Algorithm 2’s test statistics has a slope less than
1. This implies that Algorithm 2 generates more dispersed test statistics than CATE,
and, given that we have shown in Figures 2.5 and 2.8 that Algorithm 2 provides
well-calibrated test statistics, that it also has more power in this situation.

Using a threshold of FDR adjusted p-values smaller than 0.1, both methods find
four genes with significant mean differences. However, there is only one gene (DPP10-
AS1) that both methods identify. So, although there is significant correlation between

the test statistics, the methods do not necessarily identify the same genes.
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Figure 2.3: This figure displays the correlation between the rankings of the com-
ponents of v and 7, sorted by magnitude, denoted Corr(Ranks(7),
Ranks(7)) in the axis label. The vector of mean differences is chosen
as v7; = Cexp(—(3/2000)7), for 7 = 1,...,2000. We also present the
Algorithm 2 results with a multiplier on the threshold as described in
Section 2.2.3. In the top row, the true B is AR1(0.8), with n = 40 and
m = 2000. In the bottom row, the true B is chosen as an estimate from
the UC data, with n = 20 and m = 2000. For the top row, the group
labels are randomly assigned; for the bottom row, the first ten rows of
the data are in group one, and the other ten are in group two. The figure
is averaged over 200 replications. The top and bottom horizontal lines
represent GLS with true B and OLS, respectively. The vertical axis dis-
plays the correlation of ranks between 4 and 7, and the horizontal axis
displays the GLasso penalty parameter.
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Figure 2.4: Ratio of estimated design effect to true design effect when B! is Erdés-
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Rényi, and A is AR1(0.8). Figures (A) and (B) correspond to sample
size n = 80; (C) and (D) correspond to n = 40. Figures (A) and (C)
correspond to Algorithm 1; Figures (B) and (D) correspond to Algorithm
2, with ten columns group centered. These results are based on dimension
parameter m = 2000 and 250 simulation replications.
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Figure 2.9: Performance of Gemini, Algorithm 1, and Algorithm 2 for estimating

B under different mean and covariance structures. As the sample size
increases, we can see that Algorithm 1 improves relative to Gemini and
begins to catch up to Algorithm 2. Gemini’s performance always degrades
as the true differences grow or more differentially expressed genes are
added, while Algorithm 1 and 2 are stable. We set B~! as Erdés-Rényi
(ER) or star-block with blocks of size 4 (SB). All plots use A from an
AR1(0.8) model with m = 2000 and are averaged over 200 replications.
In the left plot the first 50 genes are differentially expressed at the level
specified on the z-axis. As indicated, the three groups of lines correspond
to n = 20, 40, and 80. In the right two columns there are m1 number of
genes with exponentially decaying true differences between groups, scaled
so that the largest difference is 5 (resulting in an average difference of
approximately 1).
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Figure 2.12: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment methods, labeled as tsphere and cate, respectively. These
are ROC curves for identifying true mean differences. An implementa-
tion of the sphering algorithm that does not adjust for A is also included,
labeled as tsphere noA. Each panel shows the average ROC curves over
200 simulations. We simulate matrix variate data with gene correlations
from an AR1(0.8) model and let s = 10 genes have true mean differences
of 0.8, 0.6, and 0.4 for the first, second and third rows, respectively. For
all of these the true B is set to B from the ulcerative colitis data (using
a repeated block structure for larger n values), described in Section 2.5

and evenly-sized groups are assigned randomly.
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Figure 2.13: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment, labeled as tsphere and cate, respectively. These are ROC
curves for identifying true mean differences. An implementation of the
sphering algorithm that does not adjust for A is also included, labeled as
tsphere noA. Each panel shows the average ROC curves over 200 simu-
lations. We simulate matrix variate data with no gene-wise correlations
(A =1) and let s = 10 genes have true mean differences of 0.8, 0.6, and
0.4 for the first, second and third rows, respectively. For all of these the
true B is set to B from the ulcerative colitis data (using a repeated block
structure for larger n values), described in Section 2.5 and evenly-sized
groups are assigned randomly.
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Figure 2.14: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment, labeled as tsphere and cate, respectively. These are ROC
curves for identifying true mean differences. An implementation of the
sphering algorithm that does not adjust for A is also included, labeled
as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with an AR1(0.8) model
for A and let s = 10 genes have true mean differences of 0.8. B is
constructed according to a Star-Block model with blocks of size 4, an
AR1(0.8), and an Erdds-Rényi random graph with d = nlogn edges. All
of these use n = 20 and randomly assign 10 observations to each group.
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Figure 2.15: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment, labeled as tsphere and cate, respectively. These are ROC
curves for identifying true mean differences. An implementation of the
sphering algorithm that does not adjust for A is also included, labeled as
tsphere noA. Each panel shows the average ROC curves over 200 simu-
lations. We simulate matrix variate data with no gene-wise correlations
(A =1) and let s = 10 genes have true mean differences of 0.6. B is
constructed according to a Star-Block model with blocks of size 4, an
AR1(0.8), and an Erdds-Rényi random graph with d = nlogn edges. All
of these use n = 40 and randomly assign 20 observations to each group.
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CATE test statistics

Algorithm 2 test statistics

Figure 2.16: Scatterplot of t-statistics for CATE and Algorithm 2 applied on the
ulcerative colitis data. The 45-degree line is included in black while red
dashed line is the linear fit.
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CHAPTER III

Theoretical results for joint mean and covariance

estimation

This chapter is joint work with Roger Fan, Kerby Shedden, and Shuheng Zhou.

In this chapter, we provide proofs of the theorems presented in Chapter 2. Sec-
tion 3.1 contains some preliminary results and notation. In Section 3.2, we prove
Theorem II.1. In Sections 3.3 and 3.4 we prove Theorem II.3. In Section 3.5, we
derive entry-wise rates of convergence for the sample covariance matrices. In Sec-

tions 3.6 and 3.7 we prove Theorem I1.4 and its auxiliary results.
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3.1 Preliminary results

In this section, we refresh notation and introduce propositions that are shared in

the proofs of the theorems. For convenience, we first restate some notation.

1, 0

D= e R"*? (3.1)
0 1,

Q= (D'B7'D)™" and Q,,,, = (D" B,,, D)™ (3.2)

A=B,! —B™" (3.3)

B(B™") = (D"B'D)"'DTB X e R¥™ (3.4)

When D has the form (3.1), the singular values are oyax(D) = 1/Mimax and oy (D) =

v/Mmin. The condition number is K(D) = Opax(D)/Omin (D) = y/Nratio Where npaio =
max(ny, ny)/ min(ny, ny).

We first state some convenient notation and bounds.

Tq = amax/amin and Ty i= bmax/bmin;

Uigninl ) = 147 < o) faftin = s (35)
iguin(B) = 1B s < I0(B) Mo/ = s, (30)
1/uin(p(A)) = 1p(A) 2 < a4z (3.7
1/uin(P(B) = 1(B) "z < b 1B 33
4l < amaslp(A)lz: 1Bl < b l0(B) (39
oAl < A4l /ain, — and[lp(B)]z < |Bla/buin. (3.10)

The eigenvalues of the correlation matrices satisfy

0 < Pmin(p(A)) <1< Pmax(p(A4)) and 0 < Yuin(p(B)) < 1 < Pmax(p(B)). (3.11)
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In the remainder of this section, we state preliminary results and highlight impor-
tant intermediate steps that are used in the proofs of Theorems II.1 and II.3. First

we state propositions used in mean estimation for Theorems II.1 and II.3.

3.1.1 Propositions

We now state propositions used in the proofs of Lemmas II1.5 and I11.6. We defer

the proof of Proposition III.1 to Section 3.2.5.

Proposition III.1. For Q as defined in (3.2) and some design matriz D,

122 < |1 Bll2/07n(D)
In the case that D is defined as in (3.1), we have |||z < || Bll2/Mmin-

Furthermore,
)\min (B)

nmax

Amin(2) = (3.12)

We state the following perturbation bound.

Theorem III.2 (Golub & Van Loan, Theorem 2.3.4). If A is invertible and || A~ E||, <

1, then A + E is invertible and

1B IATE _  IEILIATE

[(A+E)™ =A™, < < .
P ATE, 1= ATYLIE

In Proposition II1.3, we provide auxiliary upper bounds that depend on [|A|l2,
| Bl2, £(D), and oyin(D). We defer the proof of Proposition I11.3 to the end of this

section, for clarity of presentation.
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Proposition IIL.3. Let A = B, — B~

1 IBIIZIAl2
Tin (D) 1/52(D) = || Bl|2[| A2

min

50(A) = ||Qn,m - Q||2 <

(3.13)

nmax
01(8) = [2DT A, < Tuax(D) | Bll2|All2/0n (D) = Y= Bllof| All2. (3.14)

min

If|(DTB='D)"'DTAD)||;, < 1, then

D) | BII3IIAl3

5o(A) = [1(Q,,., — Q) DTA|. < all 2012012 3.15

&) = = DDA < 5Dy D) - BT, 1)
D B2 B-,||A

53(A) 1= || — ) DB, < SPL_IBIEIE Ll A, (3.16)

Omin(D) 1/6%(D) — || Bll2[[2[|Al2
The following proposition is a corollary of Proposition I11.3.

Proposition I11.4. When D has the form (3.1), and Q is as defined in (3.2),

1 B3] A-2
Nmin 1/nmtio - HBHQHA”2

Nratio
51(A) = ||@DTA|, < Vm IBlla]|All2

ratio ‘BHQ“AH2
52(A) = [|(Que — ) DTA, < Yoot B2
2(A) = [|(2, ) I VPmin 1/ Nratio — || Bll2[| All2

50(A) = ||Qn,m - QHQ <

Let K be defined as in Theorem II.1. We express the entrywise rates of conver-
gence of the sample correlation matrices f(B) and f(A), respectively, in terms of the

following quantities:

log!/? B B log!/? B
&= O K8 (m) (1+ | ||1)+ 1Bl and 7 = Cpk og (mvn)+ | H¥3-17)
vm n Nmin Vn n
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3.2 Proof of Theorem II.1 and Corollary 11.2

3.2.1 Proof of Theorem II.1

Let B, ,, € R"*" denote a fixed positive definite matrix. Let D be as defined as

in (2.4). Define A, = B}, — B~' and
Q= (D'B7'D)"" and Q,,,,, = (D" B, ,,D)~". (3.18)
Note that we can decompose the error for all j as
18;(Brb) = Billa < 1B;(B™Y) = B5lla + 18i(Brpa) = Bi(B™)[la = T+ 1L (3.19)

We will use the following lemmas, which are proved in subsections 3.2.4 and 3.2.3, to

bound these two terms on the right-hand side, respectively.

Lemma II1.5. Let & denote the event

log(m)|| B2

Nmin

& ={IBi(B™) = Bll2 < sum} s with sum = Cod? (3.20)

Then P(E) =1 —2/m?.

Lemma IIL.6. Let B, ,, € R"*" denote a fized matriz such that B, ,, > 0. Let

X; € R™ denote the jth column of X, where X is a realization of model (2.2). Let E;

denote the event
& = {13(Bt) = BBl <tamf,  with tum = Cril?Aumlla  (321)

for some absolute constant C. Then P(&) =1-2/me

The proof of (2.18) follows from the union bound P(E;nE3) = 1—P (&) —P(&3) =

1 —4/m? Next we prove (2.20). Let rpm = Spm + tnm, as defined in (2.18). Let
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§ = (1,—1) e R% Then

3Bt =l = |57 (Bi(Bik) = 67) | < 161a1B5(Bik) =811z = V2B (B =67

where we used the Cauchy-Schwarz inequality. Hence if || @(B;’ L) = Billz < rom, it
follows that |3;(B, 1) — 7| < V2rnm. The result holds by applying a union bound

over the variables j =1,....m. 0O

This completes the proof of Theorem II.1.

3.2.2 Proof of Corollary II.2 and Corollary I1.5

First note that by Proposition III.4,

sST(DTB'D)~'6 — 6" (D"B'D)'6

_ )5T ((DTé—lp)—l - (DTB—1D)—1) 5‘

< |l§ll3 |(D"B~'D)"" - (D"B'D)"!

2

—2|(p"B ')~ (D" B D) !

2

Bl |A
Nmin
Note that by Proposition III.1,
)\min B
167Q6| > ( >. (3.23)

max

Corollary I1.2 follows from (3.22) and (3.23), which provide an upper bound on the
numerator and lower bound on the denominator, respectively.

Corollary I1.5 holds because by (2.28) of Theorem I1.4,

A BI2 [ €My [B~ oo v 1 B
0" (0-0) 4 < 1Bl < 20Dy /|B"gon v 1

Tmin bmin@xznin (p(B)) Tmin
(3.24)
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3.2.3 Proof of Lemma III1.5

First, we show that

1225+ dY2 K2 Tog(m) 2015 /Ve < Sum. (3.25)

with s, as defined in (2.19). Because [|QY?||r < v2||QY2|z, it follows that

|22+ a2 K2 log(m) |01y /ve < (V2 +d 2K\ log(m)/ve) 1]y

1 B
< Cyd/log(m) |y < Cyd'? W

where the last step follows from Proposition III.1. Next, we express Bj(B_l) — B} as
BJ(B’I) - B; = 91/27)]-, where 7, = 012 (@(B’l) — ﬁ;“) )

By the bound (3.25), event £ implies {||Q2Y/2n;]jy > [|[QY2|| p+dY2K 25 /log(m)||Q|Y* /+/c}.

Therefore,

P52 = sm) < P (1905112 > 12721 + a2\ log(m) |2 /v
< P (|12l = 1221 6| > 425 log(m) |21/ Ve)
2
—c (2K log(m)|| 2}/ ve)
= er K7
—dlog(m)||} :
= 2exp < TSTEE = 2exp (—dlog(m)) = 2/m*.
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3.2.4 Proof of Lemma III.6

The proof will proceed in the following steps. First, we show that @(B; Ly —

Bj(B_l) can be expressed as V' Z;, where
V = (QmD"B,}, — QDTB™") B? e R»™
is a fixed matrix, and Z; = B~Y2X;. Second, we show that

IV]le + d2 K2 1og" (m)||V]|a/v/e < Crgi [ Alla.
Third, we use the first and second steps combined with the Hanson-Wright inequality
to show that with high probability, ||V Z;||2 is at most CN’nI;lI{zHAHg
For the first step of the proof, let Z; = B~Y2X;, and note that @(Bg}n) -

B;(B™Y) = VZ;, where V € R2*™ is a fixed matrix, because

~ ~

Bi(Byny) — Bi(B™) = [(D"B,,,,D) ' D" B, ), — QD" B~'| BV*(B~'?X;)

n,m

= [(D"B,,,D)'D"B, ., — QD"B'| BY*Z,.

For the second step of the proof, we show that ||V||p+d2K?1og"?(m)||V|]2/+/c <

Cn_ Y QHA”Q. First we obtain an upper bound on V. By the triangle inequality,

min

1@ DB, ), = QD" B |y = || QDT B, ), — QDT BT,
< (@ = ) DY (B, = B, + ([ — ) DB, + 2074,

= 0(A) + 03(A) + 61(A).
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We bound each of the three terms using Proposition I11.3,

ratio BHQHAH2
52(A) = [[(Qum — @) DTA|, < Yirtio___IBIRIAL
2(A) = [|(Q, ) I, Vomin 1/ Tatio — || Bl|2]|All2

~ Neatio || BI3IIB~ 2l All2
33(A) = ||(Qnm — Q) D"B7Y||, < Voo
3 I I, Vmin 1/ Nuatio — || Bll2]|2]| All2

(&) = [@DTA, < *ZEE B Al

Applying the above bounds yields

V/ratio 12 [ BIEIAl2 IBIEN B~
V2 < IAN1Bll + + 1B
i Vim0 \L/RA(D) [ BlLlIAllz © 1/s2(D) — | BllallzlIAll2 i

< Cngil?lIA .
For the third step of the proof, we use the Hanson-Wright inequality to bound ||V Z;|.:
P(IVZl > Crpi?18l) < P (IVZille > IV]1r + d2K2 10g"2(m) [V [1/ve)

= P(IVZlla— IVIlr > 42K log"(m) [V]1o/ve)

N

P (I1VZlls = IVIle| > a2 K> 10g"*(m) [V ]12/ve)

2
¢ (2K 108" (m)|V 12/ V)
KV

N

2 exp (Hanson-Wright inequality)

= 2exp (—dlog(m)) = 2/m?.

3.2.5 Proof of Proposition III.1

Let D = UUVT be the singular value decomposition of D, with U € R™*2 U ¢

R2*2 and V € R?2. Then (DTB~'D)~! = (VYUTB1UWVT)~! = V1 (UTB-1U) 1 g-1yT.

69



Thus

I(DTB™'D)~ Y|y = [ 1 (UTBU) " w |, (because V' is square, orthonormal)
< e HEIUTBU) Y, (sub-multiplicative property)
= Oaax (TOITTBU) 2

max

= (U BTU) " lo/omn(®) = (U B7U) /o0 (D),

min min

where oyin(D) = 0min(V), because W is the diagonal matrix of singular values of D.

Next, note that ||(UTB7U) ||z = 1/pmin(UT B~1U) and

PuinUTBTIU) = minny UTB™Un/n"n.

We perform the change of variables v = Un, under which n’n = ATUTUy = ~T~
(that is, U preserves the length of 1 because the columns of U are orthonormal).

Hence

min(UTB7'U) = min TB 1y /4T
Pmin ) cobin Y/ Y

> miny" By /yTy
v#0

= uin(B™") = 1/||B|l2.
We have shown that 1/ (U7 B71U) < || B||2, which implies that
I B~ U) " 2 < || Bll2.

Therefore

(DB D) 2 < [|Bl2/05in(D)-

min
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In the special case of the two-group design matrix, o2, (D) = Ny, SO

I(DTB=ID) " 2 < [ Bll2/mmin-
The proof of (3.12) is as follows:
1 1 1 ~ Dmin(B) - Anin(B)

)\min Q) = = = - -
( ) Amax (Qil) Amax (DTB*ID) HDug)\max(Bil) HDH§ Tmax

3.2.6 Proof of Proposition II1.3

By the definitions of Q,,, in (3.2) and A = B, — B™", we have by Theorem

IT1.2

”Qn,m - Q”2 = H(DTBn,mD)_l - QH?
~ |(p"B3D - D"B D+ DB D)~ 0|
’ 2

~|(0"B'D+ DTAD)
|IDTAD|la |23

L —[|Q2[|DTAD][

(Tmax (D)/0min (D)) [| BIIz[1All2)

1= &2(D)||Bll2[ All2

-9
2

(by Theorem I11.2)

~

In the last step we apply Proposition III.1. Thus

1 =2D)BI3IAl:
Tin (D) 1 = w2(D)[ Bl2]| All2
1 IBIIZIAl2
Tin (D) (1/52(D)) = [|Bl|2l| Al

min

||Qn,m - Q||2 <

We prove (3.14) using the submultiplicative property of the operator norm and Propo-

sition III.1:

r(D)
0min<D>

B
AP (DA =

min

QDA < |Bll2]|A -
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We prove (3.15), as follows:

1 = @) DA, < [120m = QL [P, 1A

1 IBIEIIA]2
= (D) A
afnin D) (1/62(D)) — || Bll2]| Al (D) Al
_ _#(D) IBI3IIA]Z

Tmin(D) (1/52(D)) — || Bll2l|All2

The proof of (3.16) is analogous. 0O

3.3 Proof of Theorem 11.3

(by Proposition I1I.3)

Note that the proof in the current Section follows exactly the same steps as the

proof of Theorems 3.1 and 3.2 in Zhou (2014a). Theorem II.3 Part II is proved

in Section 3.3.2. To prove Theorem I1.3 Part I, we first state Lemma III.7, which

establishes rates of convergence for estimating A~! and B~! in the operator and the

Frobenius norm. We then state the auxiliary Lemma III1.8, which is identical to that

for Theorems 11.1 and 11.2 of Zhou (2014a), except that we plug in & and 7] as defined

in (3.17). Putting these results together proves Theorem I1.3, Part I. We prove these

auxiliary results in Section 3.4.

Let X, denote the event

o (e — i) " XX (e — pj) ~
v — pii(B)] <
Z;j tr(A*) /b;;b;kj p]( ) [0
XT(I - P)X;
v. . s J . A < ~7
2 tr(B*) G;G;‘] p]( ) n

(3.26)

(3.27)

with Ay(B) and Ay(A) denoting the events defined by equations (3.26) and (3.27),

respectively.

A~

Let @ and 7] be as defined in (3.17). On event Xp(A), for all j, IT';;(A) = p;;(A) =1
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and

. 24
i (A) —pin(A)] < = 3.28
Jnax [Tin(A) = oAl < T (3.28)
On event Xy(B), for all 7, f‘jj(B) = pj;(B) =1 and
Du(B) — pye(B)] < (3.29)
max |I'; — D < —. .
jhgek Pk 1—a

Lemma II1.7. Suppose (A1) and (A2) hold. Let W, and Wy be as defined in (2.10).
Let ﬁp and ép be as defined in (2.8a) and (2.8b). For some absolute constants 18 <

C,C" < 36, the following events hold with probability at least 1 —2/(n v m)?,

Saz = |[WiA W,/ tx(B) — Ally < Camaxk(p(A))*Aga/ A o.p v 1 (3.30)
0pa = |[WaB,Wa/tr(A) — Blls < C'bumaxk(p(B))?Aan/ 1B~ o.op v 1 (3.31)

Sar = Wi AW, /tr(B) — Allp < Camaxk(p(A)2Aga/|A oop v m  (3.32)
Op.r = |[WaB,Wa/tr(A) = Bllr < Cbuaxk(p(B))*Aan/|B gy v (3.33)

and for some 10 < C,C" < 19,

L YN
o = |o(B) (WA ) - — a7 < — =
Sir = |um) (MAM) T —a fmfmm
Spr = |[tr(A) (VAVQE,,VAV2>_1—B1 < Clzzm-

Lemma III.8 follows from Theorems 11.1 and 11.2 of Zhou (2014a,b), where we

now plug in & and 7] as defined in (3.17). For completeness, we provide a sketch in

73



Section 3.4.2.

Lemma II1.8. Suppose (A1) and (A2) hold. Forey,e9 € (0,1), let
A =1l/e1, Ap=d/es,

for &, 1 as defined in (3.17), and suppose Aa,\g < 1. Then on event Xy, for 18 <
C,C" < 36,

— Aa A )\
|A® B = A® Bll» < 52| All2]| Bl + CAptmas| Bll#(p(4)*\ /A~ o5 v 1
+C' A abmax || All25(p 4/|B Yoo Vv 1
+2 lC”)\Abmax/f(p(B))zq [|B=o,0p v 1] [C)\Bamax/i(p(A))Qq [A= 0,0 v 1] ,

and for 10 < C,C" < 19,

— 3 7 A /\/\ Ao vl
IA@B " = A @ By < 2028 4o B, 4+ Ol B |, X2 J0or

Gonin P (0(A))
|B |0 Oﬂv 1 3 |A_1|0 oﬁ\/ 1 |B_1|0 oﬁ\/ 1

+ A A7 Sloagy ’ Oy ’ :
1Ay o ) T2 | s o) | | M b (0(B))

For 18 < C,C" < 36,

Ad A A
|AQB — A® Bllp < “2 22| A|lp| Blle + Ol Bllos(p(A) /1A o v m
FC N b | Al (o W
+2 [C’)\Abmax/s(p(B))Q\/m] lCABamaxm(p(A))2m] ,
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and for 10 < C,C" < 19,

— -1 _ _ Aa A A _ _ _ AL off V. TN
IA8BE ' - 47 @B < 24028 Ay B+ Oagl B Y0

AminPiin (P(A))
oM e B | Ot | | bmifwii’:&%ﬂ |
3.3.1 Proof of Theorem I1.3, Part I
We state additional helpful bounds:
(@min V Pmin(A))vm < [|Allp = <i¢ > < Vm||Allz, (3.34)
(buin Vv Pmin(B))vVn < || B||r = (29@3 ) < V| B2, (3.35)
Vitfams = (v Lo Vi A7 < VA (330
and
| 1 ) .
N - (bm v %ax(B)) VA<IB e <valB s (337)

Proof of Theorem I1.3, Part I. We plug in bounds as in (3.9) and (3.10)
into Lemma IIL.8 to obtain under (A1) and (A2),

< [|All2]|B]|29,

where
A AAg  Crek(p(A)) C'roi(p(B))

5— + A1 A oo v 1+ P, 1] 0 v 1
2 o) PV oo U ) MV P oen
Crar(p(A)) ] lcmp(B)) }

2 | TP N oA o v 1| | TN 1B v 1
o TR L | o e

—1 1

_ M 2 <\/!A!_ffv1 ) \/\Bl_ﬁvl> 4 ol)

2 m n

For the inverse, we plug in bounds as in (3.7) and (3.8) into Lemma II1.8 to obtain
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under (A1) and (A2), |[A@B ' — A'@ B

< [JA7H|2||B7Y|20", where
2

5, _ )\A AN )\B n C?"a)\B«/ |A71‘070ﬁ‘ v 1 " C/T'b)\A«/ |Bil‘070ﬁ‘ v1

3 ®min (P(A)) Pmin (p(B))
3 C’f’a)\B«/ |A_1|070ﬁ‘ vl C/Tb)\A«/ |B_1|070ﬁ‘ vl
2 mein(p<A>> @min(p(B»
—1 -1
L MAAB a2y ) (\/'A oot v 1, \/'B loott v 1) +o(1).
3 m n

The bounds in the Frobenius norm are proved in a similar manner; see Zhou (2014a)

to finish. 0O

3.3.2 Proof of Theorem II1.3, Part 11

Let B! = WQépWQ. Let A = B~ — B~ Let &o(B) denote the event given by
equations (3.34) and (3.34), which we know has probability at least 1 — 2/(n v m)?

from Lemma II1.7, and define the event

Ec={IBi(B™) = B2 < snm + o} (3.38)

where s, ,,, is as defined in (2.19) and

Nratio Bil o 1
o = CAA\/ to (180" loo v 1) (3.39)

TNmin

Under &(B), we see that

OB o v 1
1A, < AVIB ot v = o(1). (3.40)

bmin(pgnin (p(B) )
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Using Proposition III.1 and the fact that || Dlls = \/Timax, We get that
I2DT ADIl2 < mrasiol| Bll2l| A, (3.41)

From (3.40) we know that ||£||2 < 1/(nyatio|| Bl|2), which we can plug into (3.41) to
show that |QDTAD|, < 1. This implies that Cn_*|A|. <

/
nin tnm- Therefore, we

can apply Theorem II.1 to get that the conditional probability of & given &(B) is
at least 1 —4/(n v m)?,

We can then bound the unconditional probability,

P(&) < P(& | &(B))P(&(B))+ P (&(B))
< P& &(B)) + P(&(B))
4 L2

(n v m) (nvm)?

3.4 More proofs for Theorem I1.3

The proof of Lemma II1.7 appears in Section 3.4.1. The proofs of auxiliary lemmas

appear in Section 3.4.2.

3.4.1 Proof of Lemma III.7

In order to prove Lemma II1.7, we need Theorem II1.9, which shows explicit non-
asymptotic convergence rates in the Frobenius norm for estimating p(A), p(B), and
their inverses. Theorem III.9 follows from the standard proof; see Rothman et al.
(2008); Zhow et al. (2011) We also need Proposition III.11 and Lemma III.10, which

are stated below and proved in Section 3.4.2.
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Theorem II1.9. Suppose that (A2) holds. Let ﬁp and ép be the unique minimizers

defined by (2.8a) and (2.8b) with sample correlation matrices T'(A) and T'(B) as their

mput.

Suppose that event Xy holds, with

A o g v 1 =0(1) and a&y/|B7Y 5V 1=0(1).

Set for some 0 <e,e <1, Ag=a/e and Ay = 17/e. (3.42)

Then on event Xy, we have for 9 < C' < 18

and

CA A1 1
< A — gy < Do oar?

F 200m(p(4))

/ -1
< Hé—l B p<B)—1H C/\A |B ‘0,0ﬁc v 1

<
F 205 (0(B))

(3.43)

(3.44)

We now state an auxiliary result, Lemma III.10, where we prove a bound on the
error in the diagonal entries of the covariance matrices, and on their reciprocals. The

following Lemma provides bounds analogous to those in Claim 15.1 Zhou (2014a,b).

Lemma II1.10. Let W, and W, be as defined in (2.10). Let W, = /tr(B) diag(A)/>
and Wy = +/tr(A) diag(B)"2. Suppose event Xy holds, as defined in (3.26), (3.27).
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Forn = —L— <28 gnd o/ == 9= <24

1—7 6 Vi—a T 67
le — W ) < 77’\/)61" (B)«/amax, le_l _ Wl_l , < : 2 77/q/tI‘ (B)\/Clmin,
HWQ - W2H2 < /41 (A)\ boan, and va;l - W2_1H2 <+ fa/«/tr (A)\/ i

Proposition II1.11. (Zhou, 2014a). Let W and W be diagonal positive definite

matrices. Let U and ¥ be symmetric positive definite matrices. Then

P e —~ 2 ~
HW\I/W—W\I/W < (HW—W o W) H\If—\lf 2
+ HW—W 2(HW—W 2+2> 19,
N A —~ 2 ~
HW\I!W—W\IJWHFé(”W—W W ll,) qf—qJHF
2

7=, (N =l 2) e

Proofof Lemma II1.7. Assume that event Aj holds. The proof follows exactly
that of Lemma 15.3 in Zhou (2014a,b), in view of Theorem II1.9, Lemma III.10

and Proposition 15.2 from Zhou (2014a,b), which is restated immediately above in

Proposition II1.11. O

It remains to prove Lemma III.10.

Proof of Lemma II1.10. Suppose that event & holds. Then

VXU - P)X
i=1,...m (077} tI'(B)

1 <(1_m)\/(m_1)<ﬁ.

Thus for all 7,
1 (077} tI‘(B) 1

< < ,
A/ 1+7 \/XZ-T([—Pz)Xi 1—7n
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SO

a;; tr(B) _1|<<1— 1—ﬁ>\/<«/1+ﬁ—1>< P
VXTI - P)X; VI=7 V1+7 VI=7

3.4.2 Proof of Lemma III.8

In order to prove Lemma IIL.8, we state Lemma I11.12, Lemma II1.13, and Propo-

sition I11.14. Let ||-|| denote a matrix norm such that ||A® B|| = ||A||||B]|. Let

A= Wlﬁpwl &® I//I\/QEPWQ/ tI‘(A) tI‘(B) —A ® B, (345)
A= tr(A) tr(B) (WlApW1> ® (WQB,)WQ) _Al'®BL (3.46)

Lemma II1.12 is identical to Lemma 15.5 of Zhou (2014a), except that we now plug
in quantities & and 7] as defined in (3.17). Likewise, Proposition III.14 is analogous
to (20) in Theorem 4.1 of Zhou (2014a), except that we now use the centered data

matrix (I — P»)X, together with the rates &, 7.

Lemma II1.12. Let A/®\B be as in (2.11). Then for ¥ = A® B,

_— 1 - N _ _ - - ,
|A@B —s | < @amIa B+ G+ aaMIANl (347)

)\A/\)\B )\A/\)\B

|A®B - x| < 22222 jaB) + 0+ 22 22E5))A), (3.48)

Lemma III.13 is a helpful bound on the difference of Kronecker products.

Lemma II1.13. (Zhou, 2014a). For matrices Ay and By, let Ay := Ay — A and
Ap:= By — B. Then

141 @ Br — A® Bl < [[Aall|BIl + [ AsllIAL + [Aalll[ Azl
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Proposition II1.14. Under the event Xy, as defined in as defined in (3.26), (3.27),
I(I = P2) X7 — tr(A)tr(B)| < (@ A 7)tr(A)tr(B).

Proofof Lemma II1.8.  Assume that event X as defined in (3.26), (3.27) holds.
The proof follows exactly the steps in Theorems 11.1 and 11.2 in Supplementary
Material of Zhou (2014a,b). O

Proofof Lemma II1.12. By the triangle inequality and the sub-multiplicativity
of the norm ||-||, with A and A’ as defined in (3.45) and (3.46),

B ||(Wrr 4, ) @ (W5 B, ' Wa )| < 1A B~ + a7 (3.49)

Wm%mﬁ%%&@WmmmMHMWM+mw (3.50)

Following proof of Lemma 15.5 Zhou (2014a,b), we have by definition of A’, and

Proposition I11.14, and (3.49),

— 1 ~ ~ _ — / /
| 7B a7 @B < @am) (AT IBT AT + A

AAAAB

By Proposition II1.14, we have for Ay = 3, Ap = 37), where a A 1 < 24572,

’ - 1 ' I = P)X|F — tr(A) tr(B)
I(T—P)X[3  tr(A)te(B)| | (T - P)X|3tr(A)tr(B)
' an 77 < N 77
(I — P) X”F tr(A)tr(B)(1 — & A 7))
_ a A 77 Aa A Ap
‘HI P2X||2 1‘ —arns 2 (3.51)

By the triangle inequality, the definition of A in (3.45), and (3.50) and (3.51),

)\A+)\B )\A+)\B

|78 - 10 5] JANBI + (1 + 1AL
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See the proof of Lemma 15.5 Zhou (2014a,b). O

Proof of Proposition I11.14. Suppose event A; holds. Note that
E[|(I = P)X (3] = tr (I = B)E[XX"](I = Py)) = tr(A)tx(B)
Decomposing by columns, we obtain the inequality,

(1 = P2) X[ — tr(A Z (1 = P) X5 — aytx(B)

m

ZXTI P)X; — aj;tr(B Z a5t (B) < mtr(A)tr(B).

Decomposing by rows, we obtain the inequality,

111 = P2) X[ — tr(A)tr(B)| = — i) X3 — bistr(A)

< D (e = p)" XX (ei = pi) — bntr(A)} < Z qibitr(A) < dtr(A)tr(B).

=1

Therefore |||(I — P) X ||% — tr(A)tr(B)] < (& A ))tr(A)tr(B). O

3.5 Entrywise convergence of sample correlations

In this section we prove entrywise rates of convergence for the sample correlation
matrices in Theorem III1.15. The theorem applies to the Kronecker product model,
Cov(vec(X)) = A* ® B*, where for identifiability we define the sample covariance
matrices as

m tr(A)

A :@A and B* = m

B,

with the scaling chosen so that A* has trace m. Let p(A) € R™*™ and p(B) € R"*"
denote the correlation matrices corresponding to covariance matrices A* and B*,

respectively. Assume that that the mean of X satisfies the two-group model (2.4).
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Let P, be as defined in (2.13). The matrix I — P; is a projection matrix of rank n — 2

that performs within-group centering. The sample covariance matrices are defined as

1 m
- EZ (I-P)X;X](I-Py), (3.52)

S(A*) = XT(I — Py)X /n, (3.53)

where S(B*) has null space of dimension two.

Theorem II1.15. Consider a data generating random matriz as in (2.2). Let C be
some absolute constant. Let & and 1 be as defined in (3.17). Let m v n = 2. Then

with probability at least 1 — W, fora,n <1/3, and f(A) and f(B) as in (2.7),

~ ~

Vi J. |Bs(B) ~ pu(B)| < 175 + o (B)| {5 < 33,
¥i 4, |Piy(4) = pi(A)| < = (A)] s <30

We state three results used in the proof of Theorem II1.15: Proposition II1.16
provides an entrywise rate of convergence of S(B*), Proposition II1.17 provides an
entrywise rate of convergence of S(A*), and Lemma I11.18 states that these entrywise

rates imply Xy. Let
B = (I — P)B*(I - P») = Cov((I — P»)X;), (3.54)

where X is the jth column of X. Let gi]- denote the (i, 7)th entry of B.

Proposition IT11.16. Let d > 2. Then with probability at least 1 — 2/m4=2,

Vi, j |Si;(B*) — b;;.\ < ¢Bij, (3.55)
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with

log'?(m) | A*||r [ 3(1B*[lx
¢pij=C NN biibjj + — (3.56)

Proposition II1.17. Let d > 2. Then with probability at least 1 — 2/n=2,
with

Oai = (afy/n) |ix (B) = o (BY)

1/2 1/2 2 >
+ d7*Klog'*(n v m)(1/n) aii + a;“ia;‘jHBHF.

(3.58)
Lemma II1.18. Suppose that (A2) holds and that m v n = 2. The event (3.57)

defined in Proposition II11.17 implies that Xy(A) holds. Similarly, the event (3.55)
defined in Proposition III.16 implies Xo(B). Hence P (X)) =1 — —2

(mvn)2-

Proposition I11.16 is proved in section 3.5.1. Proposition II1.17 is proved in section
3.5.2. Lemma III.18 is proved in section 3.5.3. Note that Lemma III.18 follows from
Propositions I11.16 and II1.17. We now prove Theorem III.15, which follows from
Lemma III.18.

Proof of Theorem III.15. Let ¢; denote the ith column of I — P, so that

qF XX7q; is the (i,7)th entry of (I — P)X X" (I — P,). Under Xy(B), the sample
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correlation f(B ) satisfies the following bound:

N

N

N

gl XXTq;

VI XXTq;, [qF XX T
6l XX/ (tr(A*)\/0505))
VAT XXTq,] (bEtr(A%)) \/qTXXT (b tr(A®))
qf X XTq;/ (tr(A*)\/b5b%;) — pij(B)
Val XX g/ (bjtr(A%) \/ A/ a4 XX Tq;/ (b3;tr(A*))

— pij(B)

— pij(B)

pw
\/qTXXqu bitr(A*)) \/qTXXqu/ b*tr(A*))

— pij(B)

Q 1
~ T |Pij ———1
E (B >|]1_a ]

34,

where the first inequality holds by Xy(B) and the second inequality holds for & < 1/3.

Similarly, under Xy(A) we obtain an entrywise bound on the sample correlation F(A):

r

ij(A) — Pz‘j(A)‘

N

N

XTI - P)X;
VXTI - PQ)XZ-\/X]T(] ~ P)X;

XE(L = P) X/ (1x(B7)fazas; )
VAT = P)X/ (aftx(B¥) XTI = Po) X,/ (a3, te(B))

XT(1 = Py X,/ (tr(B*)\fafa%;) = pis(A)
VT = P) X/ (afte(B) /X (1= P) X,/ (a,tx(B*)

— pij(A)

— pij(A)

pij(A)

— pij(A)

VXTI = P)X,/ (a?’ftr B*))\/X].T(I — Py)X;/ (a%;tr(B*))

~

77
1-—

oo <o

where the first inequality holds by Xj(A), and the second inequality holds for 77 < 1/3.
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By Lemma III.18, the event Ay = Xy(B) n Ap(A) holds with probability at least

1 —3/(n v m)?, which completes the proof. 0O

3.5.1 Proof of Proposition II1.16

We first present Lemma II1.19 and Lemma II1.20, which decompose the rate of
convergence into a bias term and a variance term, respectively. We then combine the
rates for the bias and variance terms to prove the entrywise rate of convergence for

the sample covariance. Define

B(B*) := E[S(B*)] - B* and (3.59)

o(B*) := S(B*) — E[S(B)]. (3.60)

We state maximum entrywise bounds on B(B*) and ¢(B*) in Lemma II1.19 and
Lemma III.20, respectively. Proofs for these lemmas are provided in Section 3.5.4

and 3.5.5 respectively.

Lemma II1.19. For B(B*) as defined in (3.59),

3||B*
[1B(B*)[lmax < 1571 (3.61)

min

Lemma II1.20. Let o(B*) be as defined in (3.60). With probability at least 1 —2/m<,

|03 (B*)| = [Si;(B*) = | < Clog"?(m)

J

We now prove the entrywise rate of convergence for the sample covariance S(B*).
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Proof of Proposition I11.16. By the triangle inequality,

|Si;(B*) — bf5| < |Si;(B*) — E[Si;(B*)]| + | E[S;;(B*)] — b
= [Bij(B*)| + |oi;(B¥)|

< 9Bij,

where the last step follows from Lemmas II1.19 and 111.20. O

Remark. Note that the first term of (3.56) is of order log"?(m)/y/m, and the

second term is of order || B*||1/Mmin.

3.5.2 Proof of Proposition III.17

We express the (, j)th entry of S(A*) as a quadratic form in order to apply the
Hanson-Wright inequality to obtain an entrywise large deviation bound. Without
loss of generality, let i = 1, j = 2. The (1,2) entry of S(A*) can be expressed as a

quadratic form, as follows,

Sio(A*) = XT (I — P))Xy/n

[ 7 0 I-P)| | X,
=(1/2) | xT XTI /n
L (I - PR) 0 X,
i T 0 1 X,
= (1/2) | xT XT ® (I - P) /n.
L . 1 0 Xs

We decorrelate the random vector (X, X5) € R?™ so that we can apply the Hanson-

Wright inequality. The covariance matrix used for decorrelation is

X at, af
Cov =t ® B* =: Af 4y ® B¥,

* *
X Qo1 Q9o
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with

* *
a¥; a
* _ 11 12 c R2X2
{12y — :
* *
o1 Qg9

Decorrelating the quadratic form yields
Si2(A*) = Z2"0Z,
where Z € R?", with E[Z] = 0 and Cov(Z) = I5,x2n, and

01
© = (1/2n) | (Afy )" (Afi )" |® BY*(1 — Po)B'. (3.62)
10

To apply the Hanson-Wright inequality, we first find the trace and Frobenius norm

of ®. For the trace, note that

0 1 0 1
tr | ( ?172})1/2 ( ?1,2})1/2 = tr ?1,2} = 2a7,. (3.63)
10 10
For the Frobenius norm, note that
2 —
0 1 01
( ?1,2})1/2 ( ?1,2})1/2 = tr ?1,2} ?1,2}
10 10
F -
. afs + afaj, 2af,a3,
2afya3, i + afja3,
= 243 + 2aj, a3,
Therefore the trace of ® is
tr (@) = afy tr (E) /n, (3.64)
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and the Frobenius norm of & is
[[lF = (1/n)y/ai3 + afyad,|| Bl r- (3.65)
Applying the Hanson-Wright inequality yields

P (|512(A%) = aja tr (BY) /n| > ¢a12)

P (|S1a(a%) = atytr (B) /| + (ato/m) |ir (B) =t (B*)| > 6412
=P (‘Slg —ajytr ( ) /n‘ > dY?K log'*(n v m)||¢>||p>
< 2/(nvm)
By the union bound,
P (Vl,j |SZ]<A*) — Qi tr (B*) /TL| < ¢A,z’j)
> 1= Y P(IS5(A*) — ay tr (B*) /n| > ¢as5)
i=1j=1
> 1-2m?/(nvm)®=2/(nvm)2
O
3.5.3 Proof of Lemma III.18
For the event (3.55) from Proposition III.16,
* * 10g1/2( ) T * 7
‘SU(B ) — bZJ‘ < QZSBJ‘]‘ = K2dT0A bm’bjj + bzg — bij s
dividing by /b};b%; yields
inXTq]‘ logl/z( ) ZM’BJ‘] bij - bij

< K2dC, (3.66)

L2l (B + .
N CONG A B vme \ b /R
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By Lemma III.19,

b I1B]
bijzbijlquO( 1

so the right-hand side of (3.66) is less than or equal to &. Hence event (3.55) implies
Xy(B). Therefore, we know that P(Xy(B)) = 1 —2/m¢2.

Similarly, event (3.57) in Proposition II1.17:

|Si;(A*) = af;tr (B*) /n| < day
= (aty/m) |tr (B) =t (B)| + a2 K 10g"2(n v m)(1/n)yaz? + atas || Bl v,

implies that

XTI~ Ry)X,

tr(B*)\/a};az it

~

‘tr B) —tr (B*) 5
< |pje(A)] ( t>r(B*) +d?K log'*(n v m)\/ml l!f)

‘tr(é)—tr(B*)‘ ARKC
w(B) BBV n

(4)

= [pjt(A)]

S5

which is the event X;(A). Therefore, we get that P(Xy(A)) =1 —2/(n v m)<.

We can obtain the P(X,) by using a union bound put together P(Xy(B)) and
P(Xy(A)), completing the proof. [
3.5.4 Proof of Lemma III.19

Recall that B = (I — Py)B*(I — P,). The matrix B — B* can be expressed as

~

B—B*=(I-P)B*(I - P)—B* = —PhB"— B"P, + P,B*P,.
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By the triangle inequality, ||§ — B*||max < |[|PoB*||lmax + [|B* P2|lmax + || P2B* Ps||max-
We bound each term on the right-hand side.
First we bound || PyB*||max and || B* Py||max. Let p; denote the ith column of P,.

The (i, j)th entry satisfies
i 01 < 1B"pilloe < I1B*lellpillec = I1B* [ lIpilloc = 1B [l1/7nin,

SO ||PyB*||max < ||B*||1/Nmin- Because P, and B* are symmetric, ||PyB*||pmax =
HB*P2Hmax-
We now bound || P,B*Py||max. Let BY? denote the symmetric square root of B*.

We can express p! B*p; as an inner product (BY?p;)T(BY?p;), so

1/2

* * 1 2 *
(ByB*Py)5| = [(BY2p)"(BY?p;)| < (07 B*pi)"? (pF B*p;) (3.67)

< lpill2llpsll2 | Bllz < (| B*||2/Tmin, (3.68)

where (3.67) follows from the Cauchy Schwarz inequality, and (3.68) holds because

Vi ifie{l,... m)}
1/ny ifie{ni+1,...n}

Ipill2 =

3.5.5 Proof of Lemma II1.20

Let B2 denote the symmetric square root of B*. Let Z; = (a¥;B*)"2X;. We
express S;;(B*) as a quadratic form in order to use the Hanson-Wright inequality to

prove a large deviation bound. That is, we show that S;;(B*) = vec(Z)T®¥ vec(Z),
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with
7 = (1/m)A*® B"*(e; — p;)(e; — pi)" BY>. (3.69)
We express S;;(B*) as a quadratic form, as follows:

Sii(B*) = i( pz)TXka = %i —pi) TXka( PJ)]

= vec(Z)'®Y vec(Z)

where

r(®7) = tr(B*(e; — pj)(es — pi)" B'?) = (es — pi) " B*(ej — p;) = byj, (3.70)
y 1, .,
129l = —]4 el BY*(e; = ps)(ei — pi) " BY?| (3.71)

Loas * 1/2 ¥ 121, .,
= EHA r ((e; — pi)" B*(e; — p1)) / ((ej — pj)" B*(e; — pj)) = EHA | F

Therefore, we get that

P<VZ7J ij(B*>_ 17

< K2d1og"*(m) |97 /)

- P (vz, j [vec(2)T 1 vee(Z) — tr (B7)| < K2dlog"?(m)||®7 HF/C/>

dlog"?(m)|| V|| p/c'
> 1-2m’exp (—c min (d2 log(m)/c”, o8 |<|Z)LB]|||| [r/c ))
2

> 1-2/m2
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If the event {VZ,] Sij (B*) — R-j

< K2dlog1/2(m)H<binF/c’} holds, it follows that

~ ~

|Si5(B*) = b| < | Sis(B*) = byy| + b — by < K?dlog"*(m) || @7 p/c + by — by-

The Lemma is thus proved. O
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3.6 Proof of Theorem 11.4

3.6.1 Notation

Notation Meaning

Mean structure

neR™ Vector of grand means of each gene
~yeR™ Vector of mean differences for each gene
T
V= % [11T1 11TJ e R” Inner product with v computes global mean
nyon no TN

Outcome of model selection step

Joc{1,2,...,m} Indices selected for group centering

Jc{l,2,...,m} Indices selected for global centering

Sizes of gene subsets

mo = |Jol Number of group centered genes

my = |.Jp] Number of globally centered genes

Projection matrices

P =17 Projection matrix that performs global centering

P, (as in (3.81)) Projection matrix that performs group centering

Sample covariance matrices

S(B, Jo, J1) = TLS1(B) + m25,(B) Model selection sample covariance matrix
S1(B, Jy) = m% Djen (I = P)X; XTI (I - Py) Globally centered sample covariance matrix

Sa(B, Jo) = mio 2jen I = P)X;X] (I - P,) Group centered sample covariance matrix

Decomposition of S(B, Jy, J1)

i = S(B, Jo, Ji) — E[S(B, Jo, J1)] Bias
Si = %(I — P)My, ]\/[}FI(I - P) False negatives (deterministic)
S =21 = P)Myue™(I — P) False negatives (random)
Sty = m NI — Py)e el (I — Po)+ True negatives

mfl(l — P1)5.71€§1 (] — Pl)
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3.6.2 Two-Group Model and Centering

We begin by introducing some relevant notation for the two-group model and

centering. Define the group membership vector ¢,, € R" as
T
Oy 1= [13;1 _152] e R". (3.72)
In the two-group model, the mean matrix M can be expressed as
M = Lu" + (1/2)87", (3.73)

where p € R™ is a vector of grand means, and v € R™ is the vector of mean differences.

According to (3.73), the (7, j)th entry of M can be expressed as

pj + /2 if sample ¢ is in group one

pj —v;/2 if sample 7 is in group two.

Define the vector v € R™ as
1 T
_ 1 n
V=g [m 17 L 152] eR", (3.75)

so that for the jth column of the data matrix X; € R”,

E (v'X;) ( Z k+— Zn] Xjk> — ;. (3.76)
N2 k=ni+1
Note that
v, = (1/2)1+1)=1, and v'§,=(1/2)(1-1)=0. (3.77)

Next we define a projection matrix that performs global centering. Define the non-
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orthogonal projection matrix

P, := 1,07 e R™

Applying the projection matrix to the mean matrix yields

PIM = 1,07 (1" + (1/2)8,97) = Lop” + (1/2)(176,) 17" = 1",

with residuals

(I-P)M=M-PM=M-—1,u" =(1/2)5,~7".

Define

-1 T
nl 1nl 1n1

P, =
ny 'l

Note that P1,, = 1,, and Pd,, = 9,,, so

PM = Polop® + (1/2)Padyy™ = Lyu" + (1/2)87" = M,

and therefore (I — P2)M = 0.
Define

B=(I-P)B(I-P)

(I - P)B(I - P,)

v

oy e}
I

= (I - P)B(I - P)

n

1T

n2 -no

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)
(3.84)

(3.85)

Let Zmax, Emax, and l;max denote the maximum diagonal entries of é, §, and é,

respectively.
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3.6.3 Model Selection Centering

For a subset J < {1,...,m}, let X, denote the submatrix of X consisting of
columns indexed by J. For the fixed sets of genes Jy and .J;, define the sample

covariance

S(B,Jo, 1) =m Y (I-P) X, XF(I—-Py) +m™ Z (I-P)X X (I-P)" = 1+11.
keJo keJy

(3.86)
Note that E[S(B, Jo, J;)] = B*, with
g (n’j"o) (I—P)B(I— Py + & (n’j‘“) (I - P)B(I - P). (3.87)
Define the sample correlation matrix,
T'i(B) = (S(B, Jo, J1))i (3.88)

V(S(B, Jo, 11))ii(S(B, Jo, J1))j5

The baseline Gemini estimators Zhou (2014a) are then defined as follows, using
a pair of penalized estimators for the correlation matrices p(A) = (a;;/+/aia;;) and

B) = (bij/~/biibj;):

A\p = argmin {tr (f(A)A;l) + log |A,| + )\B’A;lh’oﬁ‘} ) (3.89a)
Ap>0

ép = argmin {tr (f‘(B)Bp_1> + log | B,| + )\A|B;1\Loﬂ} . (3.89b)
B,>0

We will focus on Bp using the input as defined in (3.88).

The proof proceeds as follows. Lemma I11.22, the equivalent of Proposition I11.16
for Algorithm 1, establishes entry-wise convergence rates of the sample covariance
matrix for fixed sets of group and globally centered genes. We use this to prove

Theorem II1.21 below in Section 3.6.4 and to prove Theorem II.4 in Section 3.6.5.
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3.6.4 Convergence for fixed gene sets

We first state a standalone result, Theorem II1.21, which provides rates of conver-
gence when S(B, Jy, J;) as in (3.86) is calculated using fixed sets of group centered
and globally centered genes, Jy and Jj, respectively. This result shows how the al-
gorithm used in the preliminary step to choose which genes to group center can be
decoupled from the rest of the estimation procedure. The proof is presented below in

Section 3.6.4.2.

Theorem II1.21. Suppose that (A1°), (A2’), and (A3) hold. Let Jy and J; denote
sets such that JonJ1 = & and Jyu J; = {1,...,m}. Let mg = |Jo| and m; = |J;|

denote the sizes of the sets. Let Tyopa > 0 satisfy

max |7]| < Tglobals (390)
Jjeh

for Tytona = C/log(m)[|(DT BT D)7/ = /s,

Consider the data as generated from model (3.73) with ¢ = BY?ZAY2, where
A e R™™ gnd B € R™™™ are positive definite matrices, and Z is an n x m random
matrix as defined in Theorem I1.1. Let A4 denote the penalty parameter for estimating

B. Suppose the penalty parameter As in (3.89b) satisfies

logl/z(m v n) | Bl

N

A= C" | CuK 3.91
4 4 \/m Nmin ( )
where C” is an absolute constant.
Suppose the number of off-diagonal entries of B! satisfies
|B™ .o < min (m,nlog(m)). (3.92)
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(I) Let E4(Jo, J1) be the event such that

C,)\A |Billo,0ff vl
< v . (3.93)

P Y _1
A) (WsB,W- — B!
tr(4) (1725 172) = o0 (B)

Then P(54(J0, Jl)) =>1- C/md
(II) With probability at least 1 — C'/m?, for all j,

~ A~ Noratio B_l 0 \/]. _ _
H@@U—@M€GM¢ o 1B oot V1) ) Aog () (D7 B- D) |12

Nmin
(3.94)
3.6.4.1 Decomposition of sample covariance matrix
The error in the sample covariance S(B, Jy, J1) can be decomposed as
S(B, Jo, i) — B = [B*— B] + [S(B, Jy, i) — BY], (3.95)

where the first term corresponds to bias and the second term to variance. We now
further decompose the variance term. The first term of S(B, Jy, J1) in (3.86) can be

decomposed as,

I=m (I - P)X;, X (I—-P)
= m_l(I - PQ)(MJO + 8Jo)(]wJo + 5J0)T(] - PQ)
=m (I = Py)ejeh (I —P)+m (I — P)Myel (I - P)

+m (I = Po)esy My (I — Py) +m™ (I — P)MyMj (I —P), (3.96)
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and the second term can be decomposed analogously, as

II=m (I - P)eses(I—P)+m ' (I—P)Mye, (I—P)

+m (I = P)esy My (I—P)+m (I —P)M,M;(I-P). (3.97)

By the above decompositions, it follows that S(B, Jy, J1) can be expressed as

S(B, Jo, Jl) = SH + SIII + SI:,£I + SI\/, (398)
with
Si=m""(I— Py)My M) (I—P)+m (I —P)MjM,(I—P). (3.99)
S =m ™ (I — Py) My, (I = Py) +m™ (I — P)Mye (I — P) (3.100)
Sy =m I = Py)eges,(I = P) +m (I — P)ejes (I —Py) (3.101)

For each of Sy, S, and Sry, the first term comes from (3.96) and the second term
comes from (3.97).
The terms Sy and Sy can be simplified, as follows. Because (I — Py)M,, = 0, it

follows that the first term of Sy is zero:
m~ (I — P)M M (I — P5) = 0.
and the first term of Sy is also zero,

m~ (I — Py) Myl (I — P5) =0,
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Therefore the terms Sy and Syyp are equal to

Su=m I —P)M;M;(I—-P), (3.102)
Str =m ™ (I — P1)MJ1€:§1(I - P). (3.103)

Let Sy = B* — B. We have thus decomposed the error in the sample covariance as

S(B,Jo, i) =B = _S_ +[(Siv— B*) + Sm + Su].- (3.104)

<

. v
bias variance

In Lemma II1.23, we provide an error bound for each term in the decomposition
(3.104).

We next state Lemma II1.22, which establishes the maximum of entry-wise er-
rors for estimating B using the sample covariance for fixed gene sets as defined in
(3.104). Lemma II1.22 is used in the proof of Theorem III.21. Following, we state

Lemma II1.23, which is used in the proof of Lemma III.22.

Lemma II1.22. Suppose the conditions of Theorem I11.21 hold. Let E(Jy, J1) denote

the event

log'?(m v n B
&40, 1) = {HS(B,JO,Jn - 51, < o) 18 } (3.105)

Then Es(Jo, J1) holds with probability at least 1 — —2

(mvn)Z-

Lemma II1.23. Let the model selection-based sample covariance S(B, Jy, J1) be as

defined in (3.86), where J; and Jy are fized sets of variables that are globally centered,
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and group centered, respectively. Let mqg = |Jo| and my = |Ji|. Define the rates

_ 3|3,

3.106
" Nmin ( )
ry = (4m) ™ I Iz (3.107)
rg = Cyd"2K?1og"?(m)m ™ (yiAJlnyl)lﬂgzzx, (3.108)
ry = Cyd" K log"*(m)ym =" || A|| . | B, - (3.109)
(1) Deterministically,
HBﬁ_B”oo <n and ||SH||00 < To. (3110)
(II) Define the events
(91 = {HSIV — Bﬁ”oo < 7’4} and 811 = {HSHIHOO < 7"3} . (3111)

Then & and &y occur with probability at least 1 — 2/md.

Lemmas I11.22 and I11.23 are proved in Section 3.7. We analyze term St in Section
3.7.2, term Syr in Section 3.7.3, term Syyp in Section 3.7.4, and term Spy in Section

3.7.5.

3.6.4.2 Proof of Theorem III1.21

Let us first define the event Egiopal, that is, the GLS error based on the true B!

is small:

Eaers = {[A(B™) = 3]l,, < v/Ioalm) (D" B D)7} (3.112)

Let &,(Jo, J1) be defined as in (3.93), denoting small operator norm error in esti-
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mating B~

Cl}‘A ’B_1|0,oﬁ vl
< V . (3.113)

54(<]07J1) = 2 bmin§02' (p(B))

r (A) (v’%é,,m)_l _ B!

Note that £,(Jo, J1) holds deterministically under event Eg(Jy, J1) as defined in (3.105)
of Lemma I11.22.

Define the event bounding the perturbation in mean estimation due to error in
estimating B~

—-1/2

E5(Jo, J1) = {H%@‘l) —5BY| <on 2Bt B

2}. (3.114)

Conditional on a fixed matrix B! that satisfies Eu(Jo, J1), event E5(Jy, J1) holds with
probability at least 1 — C'/m?, by Lemma II1.6 (used in the proof of Theorem II.1).

The overall rate of convergence follows by applying the union bound to the events
Egiobal N E4(Jo, J1) N E5(Jy, J1), as follows:

P(gclobal Y 54(‘]07 Jl)c v 55(<]07 Jl)c)

g

< P(Efopal) + P(Es(Jo, J1)°) + P(E5(Jo, J1)° | Ea(Jo, J1)) P(Es(Jo, J1))

g

+ P(€5(Jo, Jl)c ’ 54<J(), Jl)c)P(g4(J0, Jl)c)

< P(E§opal) + P(Ea(Jo, J1)°) + P(Ea(Jo, J1)°) + P(Es(Jo, 1) | E4(Jo, J1))

g

= P(Egopar) + 2P(E4(Jo, J1)°) + P(Es(Jo, J1)° | Ea(Jo, J1)),

g

where P(ggclobal

) and P(&5(Jo, J1)¢ | E4(Jo, J1)) are bounded in Theorem II.1, and
P(&4(Jo, J1)°) has high probability under Lemma III.22.
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3.6.5 Proof of Theorem I1.4

Let 4™t denote the output from Algorithm 1. By our choice of the threshold

parameter Ty as in (2.16), that is,

log"?(m) _ |IBll\ |eatio (1B oo v 1) 1/2
= ratio ,0 ] DTB_lD 111/
- c( ), 151 oot VL) 0 floglm (07 B D) 4,

we have a partition (jo, jl) such that jo is the set of variables selected for group
centering and J; is the set of variables selected for global centering. The partition
results in a sample covariance matrix S(B, Jo, jl) as defined in (3.86). Define the
init

event that the Algorithm 1 estimate 4™" is close to v in the sense that

En =

AN — |, < Tinit} - (3.115)

Note that the event £4; implies that the false negatives have small true mean differ-

ences. That is, on event €41, by the triangle inequality,

7.0, < ] Al s ] 3| < i+ Tine = 2 (3.116)
where ‘ %i}“t < Tinit by definition of £4;, and Hyjl — ?}“it < Tinit by definition of
1 oo 1 |l

the thresholding set Ji.

Under the assumptions of Theorem II1.21, Tinit < Taiobal With Tgioba1 as defined in
(3.90), so condition (3.90) of Theorem III1.21 is satisfied. Under the conditions of The-
orem II1.21, event &;(Jo, J1) as defined in Lemma I11.22 holds with high probability;
that is, the entrywise error in the sample covariance matrix is small.

Let £p denote event (2.28) in Theorem I1.4. In view of Theorem II1.9 and Lemma
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I11.10, event Ep holds on &(Jy, J1). Hence

P (&) = P (&(Jo, 1) | Ea1) P (Ear) + P (Es(Jo, 1) | E41) P (E41)
<P (gg(Jo, Jl)c | 5,41) + P (gfll)

< 2/m® +2/m?,

where the first term is bounded in Lemma II1.22 and the second in Theorem II.3.

Recall the event Egopa as defined in (3.112). Event (2.29) in Theorem II.4 holds
under the intersection of events Egopal N 55(jo, J~1) N Ep N E41. Hence the probability
of (2.29) can be bounded as follows:

P(E ot Y E5(Jo, J1)E U EG U ES))

g

< P(Eoopm) + P(ES) + P(E5(Jo, 1) | E5)P(Ep)
+ P(&(Jo, J)° | E5)P(ER) + P (%)
< P(Epa) + P(E5) + P(E5) + P(E5(Jo, J1)° | E5) + P (£5,)

g

= P(Egopar) + 2P(E5) + P(E(Jo, )7 | €8) + P (E5y)

where P(gglobal

) and P(&;(Jo, J1)¢ | £g) are bounded in Theorem 1, P(£5) is bounded
above, and P (£9;) is bounded in Theorem II.3.

3.7 Proof of Lemmas I11.22 and I11.23

We first prove Lemma II1.22 in Section 3.7.1. The rest of the section contains the
proof of Lemma II1.23, where part I is proved in Sections 3.7.2 and 3.7.3 and part II
in Sections 3.7.4 and 3.7.5.
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3.7.1 Proof of Lemma I11.22

The entrywise error in the sample covariance matrix (3.86) can be decomposed as

< ||Sw = B|, + 21ISull, + I|Sull,, + || B* = B, . (3.118)
Let 1y, = 71 + 72 + 2r3 + 4. By parts I and II of Lemma II1.23,

P(||S(B, Jo, J1) = B|l, = Tnm)
P (||Sv — B|, +21IStll, + 1Sulloe + || B = B, = ram)  (by (3.118))
P (||Stv = BE|| + 2 |Sull, + 72+ 71 = rnm)  (by (3.110))
P (||Stv = B|| , + 2 1Sll,, = 74 + 2r3)
P(||Svv — B, = r4) + P(2]|Smll,, = 2r3)  (by (3.111))

2 2 4

N

md  md  md

We show that under the assumptions of Theorem II1.21, the entrywise error in
terms St and St is O (C’ AM ) Recall that the entrywise rates of convergence of
St and Sqyp are stated in equations (3.107) and (3.108), respectively. Let s = |[supp(7)|
denote the sparsity of 7. Let mg; = |supp (7., )| denote the number of false negatives.

First, we express the entrywise rate of convergence of Sy in terms of Tgopa. By

(3.90), 17,11, < Taiobat, which implies that ||y, |5 < mo72 obal < STaoba, Where the
last inequality holds because mg; < s by definition. Therefore,
2
_ S$Tglobal slog(m
= ()™ s < Tt STy (3.119)

4dm dnm

where the last step holds because Tgoba = C4/log(m)||(DT B~ D) 1IN = et m) ||B||1/2

by assumption. Applying (A3) to the right-hand side of (3.119) implies that ro =
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0 (CA —10357”) .

Next, consider term Sypp. First note that

Y Anvn < alls 1Anly < mormoa 141l (3.120)

where the last inequality holds by (3.90). This implies that 73 is on the order

logl/Q( ) (v 1/2 10g1/2( )m1/2
T <bmax7£ AJ17J1> max HA J1 H1/2 Tm Tglobal

log(m) v/s
< O || A5 11 1 BII B2

Vo 12 (3.121)

where the last inequality holds because mg; < s < m and Tgopal = log HBHl/ 2,

Under (A2’), the right-hand side of (3.121) satisfies

log(m) /s 12 1 o111/2 Y12 xf !AJ1H log(m)
HAlH IBII5 B2, < /1o < Can|——, (3.122)
Vn ||A||1/2 m

where the last inequality holds because s < m.

3.7.2 Proof of part I of Lemma III1.23, term I

We bound the entrywise bias,

1 Bl = |E 4 W)
tr AJO HB B‘ Lo (Ajln)laxé_ B‘ (3.123)
max m max
Note that
Hé - B‘ =T =P)B(I = P) = Bllyy = |[PABPL = PiB = BP,,
<N PBP e + [1P1B e + 1 BP| - (3.124)
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We bound the first term of (3.124) as follows:

_ 1Bl

Nmin

‘(PlBPl

For the second term of (3.124),

7 (1) (1) (1) | Bll,
b; p; ‘ < ||bz||1 Hpj HOO < ”BHl Hpj HOO < e

min

(PlB)ij =

where p(-l) < —1_ by the definition of P; in (3.78). We have shown ||BP;
J Nm
o0

LLBHI Likewise, ||BPy]| .. < lBHl Therefore,
~ B
HB—B( s 1Bl (3.125)
max Nmin
Because the projection matrix P, satisfies ‘ P < %’ an analogous proof
shows that
~ 3B
HB—B‘ < 3Bl (3.126)
max Mmin
Substituting (3.125) and (3.126) into (3.123) yields
r(A r(A
15~ Bl < 208 5 5]+ A5
< (tl" (As) | tr (AJJ) 3||B||1
m m Nmin
_wr(4)3Bl,
Nmin
3Bl
) 3.127
Nmin ( )
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3.7.3 Proof of part I of Lemma II1.23, term II

In this section we prove a deterministic entrywise bound on Sy. By (3.80), it

follows that
(I = Pr)Myy M7 (T = Pr) = (1/4) |7, |15 0267
which implies
(7 = P)My ML = P, = [[(1/4) 1,15 8007 ], = (1/4) 1,5 -

Therefore Sy satisfies the maximum entrywise bound

1Stlle = lm™ (1 = P)My M7 (1= Pl = [|(4m) ™" I3 6ud ||, = (4m) ™" vl
S0
15|
Note that if J; is chosen so that ||y, ||, < 7, then |y |5 < moi72, where my, is

the number of false negatives, so

2
¥ m T
H 1H2 01 2 <

T 3.128
am S am| S (3.128)

which implies that the entrywise rate of convergence of Sy is O(72).
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3.7.4 Proof of part II of Lemma II11.23, term III

Let p; denote the ith column of Pl for i = 1,...,n. Let m; denote the kth

column of M. Let e, denote the kth column of . The term Spy can be expressed as

(St)ij = m ™" (e; — pi)" Mgl (e; — p;)

=m™ tr (e, (e — pj)(ei — pi) " My,)
=m! a{(ej — pj)(e _pi)ka
kGJl

m~ ! vec {€J1}T (Im1 ® (ej — pj)(e; — pz’)T) vec{ My, }

m " vec {Z}" (AZ2 ® BY?(e; — p;)(es — pz’)T> vec { M, }

vec {Z}T w”,

where

Yy = m (A2 @ B (e; —py)(ei —p)T ) vee (M} (3.129)

The squared Euclidean norm of 1);; is

lislly = vee My} (As ® (es —pi)(e; —ps) " Ble; — pj)(es — pi)") vee (M, } /m?
= veo (M} (A5, ®Bes = pi) e = p)" ) vee (M} /m?

=Dy >0 > aremd (e; — pi)(e; — pi)mg/m?

keJq teJq

\I;J'j Z Z are(0n )ik (n)ive/ (4m2)

k‘E]l éeJl

= Ejj Z Z apeviye/ (4m?)

keJy ey

= ijﬁlAJl%/ (4m?). (3.130)
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By the Hanson-Wright inequality (Theorem 2.1),

P (‘VQC {Z}T Wi — ||¢Z.j||2‘ > dV2K2, /log(m) ||¢ij||2> < 2exp {—dlog(m)} = Q/md.
(3.131)

Therefore

P (\(sm)ijy > (1 +d'?K? log(m)> H%Hg) =P (‘Vec {(Z3" g > iy + d2 K log(m) (|31,
<P ([vec{Z}" iy — il | > d2K2/log(m) |14

< Z/md,

where the last step follows from (3.131). By (3.130), it follows that
(1 + dY2 K2 1og(m)> [ (3.132)

SO

P <|(SIII)ij| > 7"3) < P <|(SIII)Z‘]‘| > (1 + d1/2K2\/ log(m)> ||77Z)z]||2> < Q/md, (3133)

by (3.132). By the union bound,

P (Sl > 73) < > Y P ([(Sm)i| > r3) < 2/m*.
im1j=1

3.7.5 Proof of part II of Lemma III1.23, term IV

We now analyze term Sty. To do so, we express Sty as a quadratic form in order

to apply the Hanson-Wright inequality.
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Let pgl) denote the ith column of Pf. Let p§2) denote the ith column of P} . Define

T T
Hloup = Imo®<€j —p§2)> (ej - p§~2)) and H;{obal Im1®(€j —P§1)) (ej - p§-1)> ;
(3.134)
and let
g HY
HY(Jy, J)) = | =% : (3.135)

ij
H global

where H4_ =~ e Rmonxmon, Hllobal e Rmmxmn and HY(Jy, J;) € R™*™" Recall that

group
SIV = mfl(f — P2)€JO€§O(I — PQ) + mfl(I — P1)€J15,51 (I — P1>

The second term of Spy can be expressed as a quadratic form, as follows (where ¢y

denotes the kth column of € € R™*™):

T
m (I = P)ejey, (I = P) =m™ Z (ei —p51)> ek <€j —p§1)>

k€J1
=m_ Ztr(( Y2 ) €k5£ <6jp§1)>>

keJq

T

=m™! Z 5;{ <€j _P§1)> <€i —P£1)> €k

k€J1

T

= m ! vec {ejl}T (Iml ® (ej —p§1)> (ei — p§1)> ) vec {5J1}T
= m tvec{e;}" H globa1 VeC 1€, | (3.136)

Analogously, the first term of Sy can be expressed as a quadratic form:

T
m (I = Poegyel, (I =) =m™" ) (62‘ - Pz@) ExEl (ej - p§‘2)>

keJo

= m tvec{e;, ) HI, vec{es}" . (3.137)

group
We now express Sy as a quadratic form. Let m(X) denote the matrix X with

112



reordered columns:
m(X) = lXJO XJ1] and 7(A) = Cov (vec{r(X)}). (3.138)
Then by (3.136) and (3.137),

(Stv)ij = m ™" vec {eg, } Hi,y, vee e} +m ! vec{ey, ) H o vee {ey, }T

= m  vec {m ()} HY(Jy, J) vec {r (¢)}

— ! vec {Z}T ((W(A)lﬂ ® 31/2) HY(Jy, J1) (7r(A)1/2 ® 31/2)) vec{Z},

where the last step holds by decorrelation, with Z € R™*™ as a random matrix with
independent subgaussian entries.

Note that the (7, j)th entry of Sy can be expressed as
(Stv);; = vec (2} @, ;vec{Z}, (3.139)

with

(I)i,]' _ m—l (’/T(A)l/2 ®Bl/2) Hij(Jo, Jl) (’/T(A)l/2 ®B1/2) . (3140)

Having expressed (Stv);; as a quadratic form in (3.139), we find the trace and Frobe-
nius norm of ®; ;, then apply the Hanson-Wright inequality. First we find the trace
of (I)z',j‘ Let

]mo Xmo Omo Xmiy Omo Xmo Om() Xmi

IO = and Il = . (3141)

Om1 Xmg 0m1 Xmq 0m1 Xmg Iml Xmq

Note that HY(Jy, J;) can be written as a sum of Kronecker products,

H(Jo, 1) =Ty ® (ej - p§-2)> (ei - p§2)>T +7; ® <ej —p§1)> (ei - p§1)>T, (3.142)
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hence (3.140) can be expressed as

! (7‘(‘(14)1/2 ®Bl/2) (I ® < P )> (ei —P?))T) (W(A)yg ®BI/2) (3.143)
Lot (W(A)l/Q ®Bl/2) (I1 ® <€j —p§1)> < p§1)> ) (W(A)1/2 ®B1/2) _

(3.144)

The trace of the term (3.143) is

m ((wm)m ® B'?) (z ® (&5 - ") (e - pE”)T) (T4 ® 31/2))
— o tr (W(A)I/QIOW(A)UZ ® B2 <6j B pgg)) <€z‘ B p§2)>TBl/2)

— oty (W(A)1/2IO7T(A)1/2) ir <Bl/2 (e] pg )) < p£2)>TBl/2)

_ b (Zom(A)) (( ") B (e - p§2)))

= m "t (Ag) [(T = P)B(I = By)],

~

= mfl tr (AJO) sz
Analogously, the trace of the term (3.144) is

m Lt <(7T(A)1/2®Bl/2) (L@( RICE pE”)T) (W(A)1/2®B”2))

=m~ " tr (Ay) [(I - P)B(I — P))l;

~

= m_l tr (AJl) bz]

Let bgj denote the (i, j)th entry of B* defined in (3.87). We have shown that the trace

of ®;; (as defined in (3.140)) is

tr (@) = m " tr (Agy) by +m e (Ay,) by = b (3.145)
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Next, we find the Frobenius norm of ®; ;. For convenience, define

Ay = 1(A)V2Tyr(AY?  and Ay = 7(A)V2Tiw(A)Y? (3.146)
T T
Byi; = B'? <6j - pﬁz)) <€i — p?)) B'? and By = B'? <€j - P§1)> (62‘ - p(1)> B2,

)

(3.147)
Then
_ i 2
@317 = [|m ™" (7(A)"> @ B"?) HY (Jo, i) (v(A)* @ B'?) ||,
=m [ A® Ba;j + A1 ® Bl,inQF

=m 7 tr <(-A0 ® Byij + AlBl,ij>T (A ® Baij + A1 ® Bl,ij))

= m_2 tr (AgAO ® BT BQ,ij) + m_Q tr (A{Al ® BT Bl,ij)

2,15 Lyij

+m 2t (AJ AL @ B Biyj) +m 2 tr (A A @ BT ;Bay;) . (3.148)

2,ij Lij
We now find the traces of each of the terms in (3.148). First, note that
tr (AT Ao) = tr (Zom(A)Tom(A)) = tr (A2,) = A3 (3.149)

Analogously,
tr (ATAL) = Ayl (3.150)

For the cross-term, let A, ;, denote the mg x m; submatrix of 7(A) given by columns
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of Ain Jy and rows of A in J;. Then

tr (AJ A1) = tr (Zom(A)Zi7(A))

Om1 Xmo 0m1 Xmiy

= tr (A?;OJIAJOJI)

= |4l - (3.151)

T T
tr (BY;Bu;) = tr (31/2 <€i - P§1)> (ej - pg‘l)) B (ej B p§-1)> (e,- B p§1)> Bl/2>

) (<ej _p§1))TB (ej —p§-”)) ((e - Zgl))TB (ei —p§1))>

Analogously,

(8, 80) = (65 7) (6= 0f7) ) (6= f) B (- 5) )

The cross-terms yield

tr (BlT,z'sz,z‘j) = ((ej —Pg'l))T B <6j - P§2)>) ((@ - p§2)>T B (@i —Pgl)>) = Biigjj'

116



The squared Frobenius norm of @, ; is

1 oo . s
2 2 2 2
19 jll% = p— <||AJ0||F biibjj + [ A I biibjj + 2 [|Age,n |5 biibjj)
]- 2 2 2 2
< 50 (AR + 1AL E + 2 1Ak 1) 1Bl

1 2 2
= O Al IBIE.
We now apply the Hanson-Wright inequality,

P <‘(51)ij — b,

> 7“4> =P (‘Vec {Z}T Q,; jvec{Z} —tr (P, )

> T4>
D,
< 2exp (—cmin {dIOg(m), V2 log(m) 1 jHF })

1P ;115
< 2max (m’d, exp <d1/2 log(m)rm(@i,j)>> )

The first step holds by (3.139) and (3.145).
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CHAPTER IV

Matrix-variate modeling of pitch curves in

linguistics research

This chapter is joint work with my advisors Kerby Shedden and Shuheng Zhou.

Phonetics is the branch of linguistics that considers the production and percep-
tion of speech sounds. Large volumes of speech data from human volunteers can be
readily collected for analysis. One common type of phonetic data that is of inter-
est to linguistics researchers is “pitch curve” data, in which the frequency of voiced
sounds is quantified at high temporal resolution. These curves can be seen as a form
of functional data, in that the pitch varies smoothly in time. Pitch curves are rel-
evant for addressing a variety of research questions in psycholinguistics, including
questions related to language change and the relationship between subtle acousti-
cal variations in speech and people’s perception of it. Such analyses may involve
contrasting pitch curves within and between subjects, words, word categories, and
populations of speakers.

Studies involving pitch curves require substantial data pre-processing, for exam-
ple, to segment the speech into words or word fragments by identifying consonant

boundaries of word fragments. Here we consider collections of pitch curves that have
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been pre-processed into vectors of 19 pitch measures within a word. The pitch mea-
surements are equally spaced in time within a word, but not necessarily between
words, in order to accommodate differing word durations and variation in people’s
rates of speech.

Research questions in linguistics may focus on language change within a popula-
tion over time, heterogeneity in speech patterns within a population at a particular
point in time, and relationships between production and perception of speech. Re-
search studies in this area tend to involve large numbers of recordings per subject,
since once a subject is recruited to the study it is relatively easy and inexpensive to
record them speaking many words. On the other hand, logistical and cost constraints
may limit the number of different subjects in a study. Thus, the design of linguis-
tics studies resembles that of many studies in cognitive psychology and neuroscience,
in that there are relatively few subjects, with many trials per subject. Traditional
statistical methods for repeated measures data, such as hierarchical random effects re-
gression have been widely applied in this field (Baayen et al., 2008; Clark, 1973; Quené
and Van den Bergh, 2008; Aston et al., 2010). Here we consider recently-developed
statistical approaches for analyzing matrix variate data as potential tools for use by
researchers in this area. In particular, we consider the covariance matrices and graph
structures among words, and among time points within an utterance of a word. We
argue that understanding conditional independence structures will allow researchers
to gain insights into group-wise differences in speech perception and production, and
learn about inter-individual variation in speech production and processing.

A key issue is that we require an overarching model to define how within-index as-
sociations (e.g. associations among words) can be integrated into an overall covariance
structure for the data. Previous researchers have proposed Kronecker product-based
and sum-based approaches for doing this. For example, the Gemini approach (Zhou

2014), considered and extended earlier in chapters 2 and 3 of this thesis, is a product-
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based approach to covariance modeling. The Terralasso ( Greenwald et al., 2017) and
other recently proposed approaches (Park et al., 2017) are sum-based.

Here we analyze data consisting of pitch curves in the Afrikaans language collected
from 23 female native speakers of the language (Coetzee et al., 2018). Each subject
uttered each of 93 distinct Afrikaans words four times (four trials). The order of
the 93 x 4 word presentations was randomized. The speaker’s pitch is measured at
19 time points. The original purpose of the study was to gain an understanding of
perception/production associations among Afrikaans speakers, and to consider this in
the context of intergenerational language change. Here, we focus instead on relating
acoustical similarity as inferred through the pitch curve data to pre-defined word

attributes.

4.1 Introduction to pitch curve data

4.1.1 Phonetics terminology

In phonetics, consonants can be grouped based on the physical mechanism of their
pronunciation; such categories include labial, alveolar, nasal, and fricative consonants
(Laver, 1994). Labial consonants (e.g. b and p) are pronounced with the lips; alveolar
consonants (e.g. t and d) are pronounced with the tongue behind the teeth; fricatives
(e.g. v and f) are pronounced with partial of obstruction of the air; nasal consonants
(e.g. m and n) are pronounced with air passing through the nose.

Voicing refers to whether the vocal folds (also called vocal cords) vibrate during
pronunciation. For a “voiced” pronunciation the vocal cords vibrate, whereas for a
“voiceless” pronunciation they do not. While some consonants are voiced, the vast
majority of pitch curve data is based on vowels, which are always voiced. Typically
voiced consonants in Afrikaans include b, d, w, v, m, and n. Typically voiceless

consonants in Afrikaans include p, t, f, and, and k. The International Phonetic
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Alphabet (IPA) represents sounds across multiple languages. The words selected for

the Afrikaans data (Coetzee et al., 2018) contain five IPA vowels.

4.1.2 Voicing and pitch in linguistics research

Voicing in linguistics refers to whether the vocal folds vibrate during an utterance
(Ladefoged and Disner, 2012). Prior research in linguistics has found that vowel pitch
after voiceless consonants is higher on average than after voiced consonants (House
and Fairbanks, 1953). As demonstrated by subsequent research, this finding holds in
multiple languages, including French and Italian (Kirby and Ladd, 2016).

Linguists have performed studies to investigate the reason for this phenomenon.
Hanson (2009) compared pitch after voiced and voiceless consonants to pitch after
nasal consonants, treating nasal consonants as a reference point. Nasal consonants
were chosen as a reference for physiological reasons, in particular airflow through the
nose does not disrupt pitch (Hanson, 2009).

Hanson (2009) examined English syllables, spoken in either a high pitch context
or a low pitch context (where the test syllable was embedded in a sentence, and the
researcher demonstrated how to pronounce the sentence with high pitch or low pitch).
The study found that in a high pitch context, vowel pitch after a voiceless consonant
is higher than after a nasal during the initial 100 ms of the vowel; by contrast, vowel
pitch after a voiced consonant is comparable to that after a nasal consonant.

We analyze data on vowel pitch after voiced and voiceless consonants in Afrikaans.
The purpose of the study by Coetzee et al. (2018) is to assess whether speakers of
Afrikaans speak with raised vowel pitch after voiceless consonants, compared with
voiced consonants, and whether listeners utilize this pitch difference to aid in percep-
tion of the initial consonant.

Note that in our analysis, the covariance estimation is not driven by the mean

pitch level, because (as discussed in Section 4.2), we remove mean structure through
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trial residualization (for each speaker, word, and time point, we subtract out the

mean pitch over four utterances of the word).

4.1.3 Preliminary exploration of pitch curve data

To provide a basic illustration of pitch curve data, we display the mean pitch
curves, averaged over speaker, trial, and word within initial consonant, in Figure
4.1. This graph demonstrates that mean vowel pitch curves depend on the initial
consonant. In Figure 4.2, we display the first utterance of the word “met” for each
of the speakers. These are individual raw pitch curves that have not been centered
or averaged. There is substantial heterogeneity among speakers pronouncing a given
word. Among other characteristics, we see that some speakers have higher voices,
and others have lower voices.

When we analyze the pitch curve data, we first remove several sources of variation
that are of secondary interest. For example, most people have stable speaking pitches
(e.g. based on age and gender). Also, it is desirable to remove the stable (population
averaged) pitch trajectory of a word, so that we analyze trial variation. We take this
a step further and remove stable pitch curve features at the speaker x word level,
so that we focus on variation present in individual utterances. Specifically, we center
the data using trial residualization, subtracting from each individual pitch curve the
corresponding point-wise mean pitch curve over each subject x word, taken over
the four trials. To illustrate, in Figure 4.3, we display four trials, centered by first
removing the speaker x word mean, and then averaging these residuals over speakers

and words within an initial consonant type.

4.2 Matrix-variate models for pitch curve data

In the linguistics study considered here, the raw data can be represented as an

array with four indices, corresponding respectively to speaker, word, trial, and time
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Figure 4.1: This figure displays pitch curves, averaged over speaker, trial, and word,
for each initial consonant. The consonants p, t, f, and k are typically
voiceless, whereas the consonants b, d, m, w, v, and n are typically voiced.
This figure is related to Figure 6 in Coetzee et al. (2018), which displays
pitch curves for older and younger speakers, for words starting with b, d,
m, and n. As discussed in Coetzee et al. (2018), vowel pitch is higher on
average after voiceless consonants than after voiced consonants.

point. Let X;;,; denote the pitch measurement for speaker ¢, word j, trial r, and
time t. Let ng, ny, n,., and n; denote the number of speakers, words, trials, and time
points, respectively. We describe a matrix-variate model that captures word-word

and time-time correlations, treating the trials as replicates nested within speakers by
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Figure 4.2: Pitch curves for the 23 speakers are displayed in four panels, for the word
“met.” For ease of visualization, the pitch curves for the speakers are
displayed in four panels.

words. We assume that for each speaker i, a common mean matrix M (i) € R™»*™ ig

shared across the four trials. Let X (i,7) € R™*™ denote the data for speaker i, trial

r. Under our assumption,
1 &
X(,r)—— ) X 4.1
(r) = 23 X() (@)

has expected value zero.
Forr =1,...,n, let X(i,r) € R™*™ denote speaker ¢’s data for trial . Adopting

the Gemini approach, we consider the matrix-variate model
Cov(vec(X(i,7))) = A® B, (4.2)

where A is a time-time covariance matrix and B is a word-word covariance matrix.
We will use estimation procedures with known properties to recover A and B from the
data, then use the corresponding estimated graph structures to explore word-word

and time-time associations.
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Figure 4.3: Pitch curves for each of the four trials, averaged over speaker and word
for each initial consonant (with a separate panel shown for each initial
consonant). The trials are centered as in (4.1).
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4.2.1 Model-based centering

Since most data have mean as well as covariance structures, it will usually be nec-
essary to remove the mean structure before or in parallel with covariance estimation.
One natural two-stage approach is to use a flexible regression model to capture mean
effects, and then proceed by estimating the covariance structure based on the residuals
from the regression model fit. We found that when using a 30 degree of freedom re-
gression model fit with least squares, having terms for age, voicing condition, and four
b-splines for time, along with all pairwise interactions among these terms, the Gram
matrices based on words were approximately low-rank (Figures 4.4 and 4.5). This
suggests that the mean structure was not successfully removed. We therefore adopted
the centering approach described above in (4.1), which yielded well-conditioned word

x word Gram matrices.
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Figure 4.4: Heatmap of sample covariance matrix and sorted eigenvalues when the
data is centered using a regression model including age, word voicing
condition, and four basis splines to capture the effect of time.
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Figure 4.5: Heatmap of sample covariance matrix and sorted eigenvalues for labial
words when the data is centered using a regression model including age,
word voicing condition, and four basis splines to capture the effect of time.
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4.2.2 Connections between trial differencing and trial centering

Due to the functional nature of the data, the pitch curves primarily occupy a subset
of the Euclidean space R in which the pitch curve vectors lie. As a result, time-time
Gram matrices calculated from raw data tend to have very large condition numbers.
In particular, there is often a large dominating eigenvector reflecting variation in the
typical pitches of different speakers’ voices, e.g. with females and younger speakers
tending to have higher pitched voices compared to males and older speakers. In
addition, each word has a characteristic pitch curve common to all speakers that is of
secondary interest here. We thus sought to remove these sources of variation that are
unimportant to our aims. There are several ways to do this, including model-based
approaches. We focus on a “trial-based” centering approach that removes the local
mean for a given speaker uttering a given word.

The Afrikaans data set consists of four replicates, so there are multiple possible
ways to take trial differences (e.g. trial 2 minus trial 1, trial 3 minus trial 2, etc.).
We show that the for a particular combination of trial differences defined below, the
trial differences can be expressed in terms of trial residualization (i.e. centering by
subtracting out the mean over the trials). Trial residualization also removes the mean
pitch level.

Define the matrices D(1), D(2), D(3) € R *"wns

D(1) = X(2) + X(3) — X(1) — X(4)
D(2) = X(3) + X(4) — X(1) — X(2)

D3)=X(1)+ X(3) — X(2) — X(4),

where X (r) € R™*™"s is the data for the rth trial of all speakers, r =1,... 4.
Let

S, = D(1)D(1)" + D(2)D(2)" + D(3)D(3)". (4.3)
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We show that S; can be expressed in terms of trial-centered data. Note that the

Gram matrices can be expressed as

DD =X2)X2)" + X2)X3)" - Xx2)Xx(1)" - X(2)Xx(4)"

and

DB)DB) =X XM)'+ X()XB) - X1)X2)T - X)X 4"

Summing the Gram matrices and cancelling terms yields the expression

S, = D)D" + D(2)D(2)" + D(3)D(3)"

(4.4)

1<r<4,r#¢
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(4.5)

=Y X(r)X(r)" - i (Z X(rxe"+ > X(r)X(f)T>

r=1 1<rl<4,r#¢

which is proportional to (4.4).

4.3 Covariance and precision matrices for time points and

words

Our goal is to quantify the dependencies among words and among time points,
using methods that target the conditional correlations between two words given all
other words, or between two time points given all other time points. For matrix
variate data that are dependent along only one axis, the Glasso is a widely-used
approach for doing this. If there may be dependencies along both axes, and if the
covariance matrix of the vectorized random matrix is a Kronecker product of factors
corresponding to rows and to columns, Zhou (2014) showed that the Glasso can
be applied separately to the row and column Gram matrices, but using a different
regularization parameter to account for the additional dependence. Her work also
showed that when replicates are present, less regularization is required compared to
the setting with a single realization. Furthermore, Zhou (2014) proposed a three-step
penalized algorithm in which the estimated precision matrix along one axis is used to

decorrelate the data along the other axis, improving accuracy over baseline Gemini
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estimators under specified conditions.

We treat the 20 subjects and four trials in the Afrikaans study as 20 x 4 = 80
independent random arrays with a common covariance structure. Each such array is a
ngy X n,, matrix which has been centered over the trials as discussed above in (4.1). We
then apply the Glasso method with a range of regularization parameters, separately
to the word and time Gram matrices. This approach gives us graph structures among
the words and among the time points.

Let X (i,7) € R™*™ denote the data for speaker i, trial r. Let

X(i) - ni S X(i,7) (4.6)

denote the average over trials for speaker i. To estimate the covariance matrices, we

calculate the word-word sample covariance matrix as

L LSS0 (i) - X)) (XGir) - K@) e R (47)

s M 1253021

and the time-time sample covariance as

L LSS (X(r) - X)) (XG,7) — X(3) e <™. 48

s Ty i=1r=1

Note that in this formulation, speakers and trials are taken as replicates, so each
Gram matrix is an average of ng - n; Gram matrices.

As noted above, here we are working with 4-index data (speaker, time, word,
replicate), but we wish to describe the population in terms of covariance and precision
matrices. We can form a Gram matrix, say for words, by matricizing the 4-way tensor
into a n,, x (n;-ns-n,) matrix, then forming the n,, x n,, Gram matrix. Alternatively,
we can think of the data as consisting of n, replications of a 3-way tensor, in which case

the word Gram matrix would result from matricizing the data to obtain n, distinct
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Ny X (1 - m,) matrices. In the Gemini approach, when replicates are available, their
Gram matrices are summed, so these two approaches lead to the same overall Gram
matrix. However, the theoretical regularization level differs depending on whether
the data are modeled as having independent replicates. Here, we treat speakers as

independent replicates, and regularize accordingly.

4.3.1 Glasso regularization

The inverse covariance graphs are estimated using graphical lasso. For the time-

time inverse correlation matrix, the penalty is

log(ny)

Y
g« My * Ny

A= (4.9)

where n,, is the number of words, n, is the number of speakers, and n, is the number

of replicates. For the word-word inverse correlation matrix, the penalty is

log(1.,)
Ng - Ny - nt,eff’

A= (4.10)

where n,, is the number of words, and the denominator is the product of the number
of people, trials, and effective time points per utterance. Note that the effective time
points per utterance is smaller than 19, because the pitch curves are smooth curves,
so adjacent points are dependent. Due to the stretched time scale over short vowels
versus the long vowels, we believe that n, . for the short vowels is smaller than that
for the long ones; hence we recommend using larger penalty when we interpret the
graphs over short vowels. In future work, when we run cross-validation, we will assess

whether larger penalties are selected for the short vowels.
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4.3.2 Time-time and word-word correlation and covariance

Since the pitch curves are smooth, strong local correlations along the time axis
are expected. The time-time dependence structure is informative in that it provides
a characterization of the variance function of the pitch curves as a function of time,
and reveals the extent to which local dependencies decay.

Figure 4.6 displays sample covariance, sample correlation, Glasso covariance, Glasso
inverse covariance, Glasso correlation, and Glasso inverse correlation for the labial
words. Glasso is run using a penalty five times that of of the theoretical value. In
Section A.0.1 of the Appendix, analogous figures are shown for the other word groups.

The time-time covariance matrices for each word group (labial, alveolar, nasal,
vf) indicate that the variance increases over time; that is, the pitch exhibits greater
variability at the end of the word utterance than at the beginning. This indicates
that speech may be more constrained at the beginning of a word token than at the
end.

The correlation matrices are approximately banded, and essentially all pairwise
correlations are above 0.5. In some cases the correlations decay faster at the end of
the utterance than at the beginning.

The diagonal entries of the inverse covariance matrix reflect the residual variances
of each time point when regressed on the other other time points; a small diagonal
entry corresponds to large residual variance. For each of the word groups, the diagonal
entries of the precision matrix are decreasing in time, also consistent with the early
portion of the utterance being more constrained and predictable than the later portion
of the utterance. Unless one has a strong conviction that the time-time covariance
matrix (to be estimated) is nonstationary, it is worth trying to use it decorrelate
the data along the time coordinate, so as to increase the accuracy in estimating the
Pearson correlation coefficients between and among words, (c.f. Chapter 5, on future

work). In Table 4.1, we report metrics related to the Glasso estimate of the time-time
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Word Group Avg. node degree | # edges | tr(B)/||B||r | || B2
All words (93 words) 9.3 88 4.05 5.0
Labial (26 words) 9.5 90 4.05 5.0
Alveolar (30 words) 9.8 93 4.05 5.0
Nasal words (20 words) 9.8 93 4.07 5.0
vf words (17 words) 8.4 80 4.03 5.1

Table 4.1: Metrics related to estimate of time-time correlation matrix.

Penalty | Avg. node degree | # edges | tr(A)/||All7 | |All2 | ~(A)
0.1 27.94 1299 8.89 2.83 | 1941
0.16 18.95 881 9.07 2.29 | 11.29
0.26 8.69 404 9.34 1.77 | 4.48
0.36 2.71 126 9.56 1.39 | 2.14
0.46 0.6 28 9.63 1.18 | 1.39

Table 4.2: Metrics related to estimate of word-word correlation matrix

correlation matrix. Based on the estimated effective sample using all words (n, = 3,
ny = 93, ng = 20), using the identity matrix for the word-word covariance, the
theoretical penalty is 4/log(93)/(20 = 3 = 93) = 0.03. In practice, due to dependence

on the other axis, one should use a larger penalty when estimating the time-time

inverse covariance.

4.3.3 Metrics for word-word inverse correlation estimates

We report metrics of the estimated correlation matrix for all words, using a se-
quence of Glasso penalty parameters in Table 4.2. Based on the estimated effective

sample using all words (n, = 3, nieg = 3, ns = 20), using the identity matrix for the

time-time covariance, the theoretical penalty is 4/log(93)/(20 = 3 = 3) = 0.16.
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Figure 4.6: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a labial consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as five times the value of (4.9).
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4.3.4 Analyzing edges related to long and short vowels

We illustrate that for words with long vowels, edges are driven by the vowel,
whereas for short vowels, this phenomenon does not seem to be apparent.

Figure 4.7 displays the estimated inverse covariance graph for words with long
vowels, using nodewise regression with a penalty of 0.16 and threshold of 0.08. Figure
4.8 displays an analogous plot estimated with Glasso with penalty 0.32 and threshold
of zero, and Figure 4.9 displays the analogous plot with a penalty of 0.39. We see the

presence of several strong within-vowel group edges.
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Num. edges: 16, penalty: 0.16,
threshold: 0.08, long vowels, Nodewise
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Figure 4.7: Inverse correlation edge graph for words with long vowels. Based on
the estimated effective sample (n, = 3, niex = 3 or 4, ny, = 20) and
the theoretical guidance from Zhou (2014a), we believe the theoretical
penalty should be in the range of [0.11,0.13]; in future work, we aim to
make this rigorous. The words are organized by vowel, with each circle
of words sharing a common vowel (“word” is the only word with a long

[Pl

0” vowel; in Afrikaans, it means “become”).
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Num. edges: 12, penalty: 0.30,
threshold: 0.00, long vowels, Glasso
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Figure 4.8: Inverse correlation edge graph for words with long vowels. Based on
the estimated effective sample (n, = 3, niex = 3 or 4, ny, = 20) and
the theoretical guidance from Zhou (2014a), we believe the theoretical
penalty should be in the range of [0.11,0.13]; in future work, we aim to
make this rigorous. The words are organized by vowel, with each circle
of words sharing a common vowel (“word” is the only word with a long

[Pl

0” vowel; in Afrikaans, it means “become”).
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Num. edges: 3, penalty: 0.39,
threshold: 0.00, long vowels, Glasso

@ within-group, positive B within-group, negative B between-group, positive B between—-group, negative
derd
pers bére
vier
wier
tert
dier
tier
mier
baba bate
ka dade
take maak
word
boer
doer toer
voer
O labial O alveolar @O v_f O nasal_k

# within—group edges: 2, # between—group edges: 1

Figure 4.9: Inverse correlation edge graph, estimated by Glasso, for words with long
vowels. The words are organized by vowel, with each circle of words
sharing a common vowel (“word” is the only word with a long “0” vowel;
in Afrikaans, it means “become”).
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Figure 4.10 displays a bar chart of the fraction of edges present among each pair
of long vowels. The edges are estimated using a sequence of penalty parameters
for Glasso and nodewise regression. Note that when the penalty is zero, the Glasso
estimate reduces to the inverse sample correlation, which is a fully dense matrix, so
the fraction of edges is equal to one. Figure 4.12 is the analogous display for short
vowels. For long vowels, at higher penalty (A = 0.3), the fraction of within-vowel
edges is larger than the fraction of between-vowel edges.

Among the long vowels, as we increase the penalty, the fraction of edges decreases
more rapidly for some vowel pairs than for others. For word pairs that have larger
Pearson correlation but smaller penalized inverse correlation, the words are marginally
correlated, but not conditionally correlated given the other words; that is, the rela-
tionship between those words is explained by other words. As seen in Figure 4.10, the
long vowel pairs “a”-“a” and “a”-“u” persist to a penalty of 0.4. For short vowels, by
contrast, as seen in Figure 4.12, the edges appear to be uniformly distributed among
vowel pairs.

For each pair of long vowels, Figure 4.11 displays the average absolute values of
the Pearson correlation entries among edges. Note that the edges are obtained via
the precision matrix, but the average is taken using entries of the sample correlation
matrix. For example, let F(A, A) denote the set of edges between words with a long

[Pl

a” vowel, and let |E(A, A)| denote the number of edges between words with long

[

a” vowels. Then we calculate

Wl,fl)l( > 18l (4.11)

1,j)EE(A,A)

Figure 4.13 displays the analogous plot for long vowels.
Note that as the penalty increases, the number of edges decreases, so the average

Pearson correlation is taken over the stronger entries that remain. At the highest
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Word One | Word Two | Pearson Correlation
bate maak 0.50
kaas maak 0.41
baba tier 0.37
bate maak 0.50
bate toer —0.48
boer kaas 0.28
boer mier 0.36
bére tert 0.35
bére vier 0.33
bate kaas 0.22
dade maak 0.32
derd wier 0.27
dier kaas 0.35
doer voer 0.26
doer word 0.36
kaas tert 0.28
tert vier 0.30
wier tier 0.35

Table 4.3: Word-word Pearson correlations.

penalty shown, three edges remain: bate-maak, maak-kaas, and bate-toer. Pearson
correlations between word pairs with strong edges are shown in Table 4.3.

Figure 4.14 displays the trial residual pitch curves for maak and kaas. For multiple
speakers, the variability increases towards the end of the word, flaring out over time.
The Pearson correlation between two words is high if corresponding utterances within
speakers predominantly have the same sign (e.g. if the first utterance of maak is
positive for the same time points as the first utterance of kaas, the second utterance
of maak is positive for the same time points as the second utterance of kaas, etc., and
if this pattern holds across speakers). Analgously, Figure 4.15 shows the trial residual
pitch curves for bate and maak. Figure 4.16 shows the trial residual pitch curves for

bate and toer.
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Figure 4.10: Bar chart of fraction of edges for long vowels, estimated using Glasso
and nodewise regression. For certain penalty parameters, the cross-links
between some pairs of long vowels disappear. For example, the cee-
o vowel pairs have many edges at smaller penalty parameters, but no
edges at a penalty of 0.3.
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Figure 4.11: Bar chart of average sample correlation among edges for long vowels,
estimated using Glasso and nodewise regression.
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Figure 4.12: Bar chart of fraction of edges for short vowels, estimated using Glasso
and nodewise regression.
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Figure 4.13: Bar chart of average sample correlation among edges for short vowels,
estimated using Glasso and nodewise regression.
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Figure 4.15: Trial residual pitch curves for the words bate and maak.
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Figure 4.16: Trial residual pitch curves for the words bate and toer.
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4.4 Visualization of edges

In Figure 4.18, we display the inverse correlation graph for all words, organized
by initial consonant, with the top row of circles corresponding to voiced consonants,
and the bottom row corresponding to voiceless consonants. Almost all of the edges
are between group rather than within group; that is, almost all edges are between
words starting with different consonants. Table 4.4 displays the Pearson correlations
for word pairs that have edges in Figure 4.18.

In Figure 4.19, we present a high-level summary of this edge graph, by aggregating
words with the same consonant into “supernodes.” Two supernodes are connected if
there is an edge in Figure 4.18 between two words with the corresponding consonants,
estimated by both Glasso and nodewise regression. This diagram holds for a particular
choice of penalty and threshold. We show that similar patterns hold if we perturb the
penalty, and also if we use nodewise regression instead of Glasso. In Figure 4.20, we
display a an edge graph analogous to Figure 4.18, but with a smaller penalty (0.32).
In Figure 4.21 we display the Glasso edge graph for penalty 0.32 with threshold 0.1.
In Figures 4.22, 4.23, and 4.24, we display nodewise regression graphs for three choices
of penalty parameter (0.32, 0.37, and 0.43), with threshold 0.08. The graphs illustrate
that nodewise regression estimates a similar graph structure to Glasso.

In Figure 4.20 we compare the edges for Glasso and nodewise regression; both
methods are run with a penalty of 0.32 and a threshold around 0.1 (0.1 for Glasso,
0.08 for nodewise regession). At a similar level of penalty and thresholding, the Glasso
graph is denser than the nodewise graph. In Figure 4.18, we show an analogous graph,

with a larger penalty of 0.37.
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Word One | Word Two | Pearson Correlation
kop tor 0.53
nog wond 0.56
den pen 0.49
baba ken —0.49
bate maak 0.50
bate tas 0.52
bate toer —0.48
berg mier 0.48
bied das 0.49
boet kies 0.60
bot pars 0.50
dare baba 0.48
dare tas 0.49
doer pen 0.50
kat met —0.48
ken tand 0.48
kerk piek 0.45
koet met 0.51
met vier 0.52
met wat 0.53
nek was 0.51
nek woed 0.58
padd pond 0.46
term vier 0.60

Table 4.4: Word-word pearson correlations for words with edges in Figure 4.18.
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Glasso penalty: 0.37, threshold: 0.1,
Nodewise penalty: 0.37, threshold: 0.08
# edges Glasso only: 2, # edges nodewise only: 2,
# edges in intersection: 21

O labial -
defadar moetier
O alveolar derd dean mos et
@ v_f derm dBk
O nasal_k . dadenat maak
dien B
dier nek nog
ber@eBate ns : wetweg
berg bak do%ép?(? NIeSoeM . wiel wat
bied baba wier was
boer bot woed . word
boebto,gont woeakond
peR*P%happ Vet \eg
pers pak vier
piek padd fort
piet pot e corkk vies
poel ns tenefann erkken voet
popbﬁg term tand kiem Kat voer
tert take
. tak kies kaas
tien ot
-~~~ Glasso only tier on koek kos
<<<<< Nodewise only to%é@k koetkop

—— Both

Figure 4.18: Inverse covariance graph of all words, comparing Glasso edges with node-
wise regression edges. The Glasso penalty is 0.37, followed by a threshold
of 0.1, and the nodewise regression penalty is 0.37, followed by a thresh-
old of 0.08. The words are organized by initial consonant, with typically
voiced consonants in the top row and typically voiceless consonants in

the bottom row.
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voiced

voiceless b/d t

m/n k

Figure 4.19: Diagram displaying connectivity among consonants, providing a higher-

level representation of Figure 4.18 by combining nodes within a conso-
nant type into “supernodes.” Two nodes are connected in this diagram if
there is an edge between words with the corresponding initial consonants
in Figure 4.18.
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Glasso penalty: 0.32, threshold: 0.1,
Nodewise penalty: 0.32, threshold: 0.08
# edges Glasso only: 12, # edges nodewise only: 1,
# edges in intersection: 35

O labial :
defasar moetier
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O nasal_k . dadenat maak
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Figure 4.20: Inverse covariance graph of all words, comparing Glasso edges with node-
wise regression edges. The Glasso penalty is 0.32, followed by a threshold
of 0.1, and the nodewise regression penalty is 0.32, followed by a thresh-
old of 0.08. The words are organized by initial consonant, with typically
voiced consonants in the top row and typically voiceless consonants in

the bottom row.
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Num. edges: 23, penalty: 0.37,
threshold: 0.10, Glasso
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# within—group edges: 0, # between—group edges: 23

Figure 4.21: Inverse covariance graph of all words, estimated using Glasso, organized
by initial consonant, with typically voiced consonants in the top row and
typically voiceless consonants in the bottom row.
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Num. edges: 37, penalty: 0.32,
threshold: 0.08, Nodewise
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Figure 4.22: Inverse covariance graph of all words, estimated using nodewise regres-
sion, organized by initial consonant, with typically voiced consonants in
the top row and typically voiceless consonants in the bottom row.
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Num. edges: 23, penalty: 0.37,
threshold: 0.08, Nodewise
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Figure 4.23: Inverse covariance graph of all words, estimated using nodewise regres-
sion, organized by initial consonant, with typically voiced consonants in
the top row and typically voiceless consonants in the bottom row.
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Figure 4.24: Inverse covariance graph of all words, estimated using nodewise regres-
sion, organized by initial consonant, with typically voiced consonants in
the top row and typically voiceless consonants in the bottom row.
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4.4.1 Labial and alveolar words

In Figures 4.25, 4.26, and 4.27 we show the inverse covariance graph estimated
using a sequence of Glasso penalty parameters, with a threshold of 0.1. For small
penalty values, words of all four initial consonants (b, d, p, t) are densely connected.

As the penalty increases the edges between words beginning with p and t drop off.

Num. edges: 167, penalty: 0.10,
threshold: 0.10, Glasso

@ within—group, positive M within—group, negative @ between-group, positive B between-group, negative

O labial O alveolar

# within—group edges: 42, # between-group edges: 125

Figure 4.25: Inverse covariance graph of labial and alveolar words Glasso with a
peanlty of 0.1 and a threshold of 0.1.
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Num. edges: 33, penalty: 0.25,
threshold: 0.10, Glasso
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Figure 4.26: Inverse covariance graph of labial and alveolar words Glasso with a
peanlty of 0.25 and a threshold of 0.1.
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Num. edges: 19, penalty: 0.30,
threshold: 0.10, Glasso
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Figure 4.27: Inverse covariance graph of labial and alveolar words Glasso with a
peanlty of 0.3 and a threshold of 0.1.
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4.4.2 Initial consonant connectivities

Figure 4.28 displays a bar chart of the fraction of edges between each pair of initial

consonants, for a sequence of Glasso penalty parameters. When counting edges, the

“m” and “n” are treated as a single consonant, as are the consonants “v” and “f”.

We see that even at a penatly of 0.43, edges persist between “mn” words and “w”

words.

Figure 4.29 displays the mean Pearson correlation among edges in the for each

consonant pair.
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4.4.3 Comparing Glasso and nodewise regression graphs for pairs of word

groups

We display inverse correlation graphs between each pair of word groups (labial,
alveolar, nasal, and vf). Glasso and nodewise regression were run on all the words; in
the following figures, we visualize subgraphs of the full graph. The line type indicates
whether the edge appears in both the Glasso and nodewise regression graphs or in
just one of the two. Both methods are run with a penalty of 0.32 and threshold of
0.16. We see that the edges are similar between the methods, but with more edges
for Glasso than nodewise regression. In Section A.0.3 of the Appendix, we display

analogous plots with a penalty of 0.26 and threshold 0.08.
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Num. edges: 6, penalty: 0.32,
threshold: 0.16
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Figure 4.30: Inverse covariance graph of labial and alveolar words. This graph dis-
plays a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 7, penalty: 0.32,
threshold: 0.16
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Figure 4.31: Inverse covariance graph of labial and nasal words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 1, penalty: 0.32,
threshold: 0.16
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Figure 4.32: Inverse covariance graph of labial and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 5, penalty: 0.32,
threshold: 0.16
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Figure 4.33: Inverse covariance graph of alveolar and nasal words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 2, penalty: 0.32,
threshold: 0.16

O alveolar ;
B i yoet voer Vies  jigr
V@S vet
veg
wat ¢
weg ort
wet word
wiel wond
wier wodd WO€'
ierdiendernyerd
c{Oeqloerfi dend aa
dok aae
ons n
or ak
tak dade
take tor
taLrt]él]lnn ktl?n
P

) S . o
<<<< Nodewise only tterm tert t|en tlel' toert

—— Both

# within—group edges: 1, # between—group edges: 1

Figure 4.34: Inverse covariance graph of alveolar and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 6, penalty: 0.32,
threshold: 0.16
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Figure 4.35: Inverse covariance graph of nasal and vf. This graph displays a sub-
graph of a graph for all 93 words, estimated using Glasso and nodewise
regression with thresholding.
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4.4.4 Comparison of time inverse covariance graphs for each pair of word

groups

For each pair of word groups, we compare the time-time inverse correlation graphs,
by taking intersections and set differences. We threshold each graph down to 70 edges.
In each graph, nodes are connected to approximately five nearest neighbors on each
side. The time-time edges are similar among the word groups; that is, most of the
nodes are in the intersections of the graphs. This suggests that we can consider using
a combined time-time inverse covariance matrix pooling over the words to decorre-

late along the time axis, potentially improving the word-word covariance estimates,

discussed in Zhou (2014a).
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Num. edges: 70, Glasso penalty: 0.16, Num. edges: 70, Glasso penalty: 0.15,

threshold: 0.08labial-alveolar threshold: 0.07labial-alveolar Intersection
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Figure 4.36: Time-time inverse covariance graphs for labial and alveolar words, as
well as graph intersection and set differences. The inverse correlation
matrices are thresholded so that 70 edges remain in each word group.
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Num. edges: 70, Glasso penalty: 0.17, .
threshold: 0.09labial-nasal Intersection

Num. edges: 70, Glasso penalty: 0.16,
threshold: 0.08labial-nasal
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Figure 4.37: Time-time inverse covariance graphs for labial and nasal words, as well
as graph intersection and set differences.
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Num. edges: 70, Glasso penalty: 0.16, Num. edges: 70, Glasso penalty: 0.18,

threshold: 0.08labial-vf threshold: 0.09labial-vf Intersection
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Figure 4.38: Time-time inverse covariance graphs for labial and vf words, as well as
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Num. edges: 70, Glasso penalty: 0.15, Num. edges: 70, Glasso penalty: 0.17, .
threshold: 0.07alveolar—-nasal threshold: 0.09alveolar—nasal Intersection
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Figure 4.39: Time-time inverse covariance graphs for alveolar and nasal words, as well
as graph intersection and set differences.
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Num. edges: 70, Glasso penalty: 0.15, Num. edges: 70, Glasso penalty: 0.18,

threshold: 0.07alveolar—vf threshold: 0.09alveolar—vf Intersection
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Figure 4.40: Time-time inverse covariance graphs for alveolar and vf words, as well
as graph intersection and set differences.
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Num. edges: 70, Glasso penalty: 0.18, Intersection

Num. edges: 70, Glasso penalty: 0.17,
threshold: 0.09nasal-vf
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Figure 4.41: Time-time inverse covariance graphs for nasal and vf words, as well as
graph intersection and set differences.
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4.5 Conclusion

In this chapter we analyzed multi-indexed data containing trial replicates. We
used the trial replicates to center the data, removing speaker-by-word means at each
time point. We found that among words with long vowels, the vowel appears to
be associated with the presence of word-word edges. We also found more between-
consonant edges than within-consonant edges. In future work, we will investigate
hypothesis testing of the edges to assess their validity, as well as cross-validation to
select the penalty; in addition, we will examine whether the patterns we found hold

in pitch curve data sets in other languages.
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CHAPTER V

Future Work

We now discuss directions for future work in analyzing pitch curve data.

5.0.1 Decorrelation along the time axis

One direction for future work is to use the three-step algorithm proposed in Zhou
(2014a) to decorrelate the data along the time axis in order to obtain more accurate
word-word covariance estimates. The decorrelation can be performed either using a
single time-time matrix across all words, or to separately estimate time-time matrices
for subsets of the words. Some subsets of the words have time-time covariance matri-
ces that are closer to stationary, so we can pool those words together and decorrelate

using a common time-time inverse covariance matrix.

5.0.2 Cross-validation

Another direction for future work is to perform cross-validation to validate the
choice of penalty parameter.
We consider a cross-validation procedure to select word and time penalty param-

eters, making use of the trial replicates.

1. Partition the people into pairs.
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2. For each pair of people, withhold that pair, and estimate word-word and time-
time precision matrices using the remaining people, sweeping out time and word
penalties {(\;, v;)}, with v; = kA;. Run cross-validation for values of k equal to

1,1.5,2,3, and 6

3. To evaluate the likelihood of the test set data, use the data matrix resulting
from trial differencing and person averaging (of the test set pair of people).
As discussed in Section 4.2.2, trial residualization can be expressed in terms of
three trial differencing schemes:

e (2-1)+(3-4)
e 3-1)+ (4-2)
o (1-2)+(3-4).

Run cross-validation three separate times, once using each type of trial difference

when calculating the likelihood of the test set.

When calculating the likelihood of test set data under the estimated parameters

from the training set, do the following:

1. Let A denote the time-time covariance matrix, and let B denote the word-word

covariance matrix. The matrix-variate normal likelihood is

exp (—%tr [AleTBle])
(27T)n2n4/2|A|n2/2|B|n4/2

p(X | A B) = (5.1)

2. When calculating the likelihood of the test set data, we use the unpenalized
likelihood.

log(p(X (1), X(2), X(3), X(4) | A, B)) = (5.2)
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—% Mt [AN(X(r) - X)TB (X (r) — X)] - % log |A| — % log|B| (5.3

r=1
5.0.3 Permutation tests and hypothesis testing

Another direction for future work hypothesis testing to validate edges. Some word
groups exhibit more long range temporal correlations than others. The following
permutation procedure can be used to assess whether the longer-range edges are due

to the word groups or due to chance.

Fork=1,... K,

1. Let word group 1 consist of half the labial words and half the alveolar words,
selected randomly. Let word group 2 consist of the remaining labial and alveolar

words.

2. Estimate inverse correlation matrices B~![k, 1] and B[k, 2] using each of the

two word groups, respectively.

Average the precision matrices over the permutations:
1 & 1 &
B'[1] ==Y B 'k1 d B2]=—=Y Bk2]. 5.4
=g XD wd BURI= £ 3Bk 50

We obtain graphs from B ~1] and B ~1[2] by thresholding so that each graph has 75
edges. We then compare the edges using intersection and set differences.
5.0.4 Other matrix-variate models

Another direction for future work is to fit Kronecker sum models for the covariance
or inverse covariance matrix. A related problem is model selection, in particular

assessing whether Kronecker sum or Kronecker product models better fit the data.
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5.0.5 Assessing the reasons for edges between word groups

Another direction for future research is to assess linguistic mechanisms that un-
derlie the edges, and to assess whether the word-word and time-time patterns we

found in the Afrikaans data set also appear in other languages.
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APPENDIX A

Additional Figures

A.0.1 Time-time covariance, correlation, inverse covariance, and inverse

correlation
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Time—time sample covariance, labial words Time—time sample correlation, labial words

all Wl

Glasso covariance, penalty 0.04 Glasso inv. covariance, penalty 0.04
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Glasso correlation, penalty 0.04 Glasso inv. correlation, penalty 0.04

-0.05

e : _5

Figure A.1: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a labial consonant. The sample covari-

ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as in (4.9).
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Time—time sample covariance, alveolar words Time—time sample correlation, alveolar words

250

-

Glasso covariance, penalty 0.04 Glasso inv. covariance, penalty 0.04

0.05

0.00

- %

Glasso correlation, penalty 0.04 Glasso inv. correlation, penalty 0.04

Figure A.2: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with an alveolar consonant. The sample co-
variance is calculated as in (4.8), and the Glasso penalty parameter is
chosen as in (4.9).
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Time—time sample covariance, nasal words Time—time Sample correlation, nasal words

i .

Glasso covariance, penalty 0.04 Glasso inv. covariance, penalty 0.04
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0.00

Glasso correlation, penalty 0.04 Glasso inv. correlation, penalty 0.04

(6]

o

e Wl :

Figure A.3: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a nasal consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as in (4.9).
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Time—time sample covariance, vf words Time—time sample correlation, vf words

-

Glasso covariance, penalty 0.05 Glasso inv. covariance, penalty 0.05

0.05

0.00

‘ o

Glasso correlation, penalty 0.05 Glasso inv. correlation, penalty 0.05

(53]

o

Figure A.4: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a vf consonant. The sample covariance
is calculated as in (4.8), and the Glasso penalty parameter is chosen as
in (4.9).
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Time—time sample covariance, alveolar words Time—time sample correlation, alveolar words
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Figure A.5: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with an alveolar consonant. The sample co-
variance is calculated as in (4.8), and the Glasso penalty parameter is
chosen as five times the value of (4.9).
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Time—time sample covariance, nasal words Time—time Sample correlation, nasal words
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Figure A.6: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a nasal consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as five times the value of (4.9).
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Time—time sample covariance, vf words Time—time sample correlation, vf words
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Figure A.7: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a vf consonant. The sample covariance
is calculated as in (4.8), and the Glasso penalty parameter is chosen as
five times the value of (4.9).
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A.0.2 Word-word sample correlation and covariance heatmaps, and Glasso

covariance, inverse covariance, correlation, and inverse correlation

The words are, we use an alphabetic ordering, which has the effect of grouping
them by initial consonant. In the graphs, the words are also sorted alphabetically.
For each word group, there are strong edges that survive penalization and thresh-

olding.
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Sample covariance, labial words Sample correlation, labial words
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Figure A.8: Glasso covariance, inverse covariance, correlation, and inverse correlation
for labial words. The top row of plots displays the estimated covariance
and correlation matrices. The bottom row displays the estimated inverse
covariance and inverse correlation matrices.
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Sample covariance, labial words Sample correlation, labial words
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Figure A.9: Glasso covariance, inverse covariance, correlation, and inverse correlation
for labial words. The top row of plots displays the estimated covariance
and correlation matrices. The bottom row displays the estimated inverse
covariance and inverse correlation matrices.
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Sample covariance, alveolar words Sample correlation, alveolar words
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Figure A.10: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Sample covariance, alveolar words Sample correlation, alveolar words
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Figure A.11: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Figure A.12: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Figure A.13: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Sample covariance, vf words Sample correlation, vf words
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Figure A.14: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.

199



A.0.3 Edge graphs comparing Glasso and nodewise regression, for each

pair of word groups (labial, alveolar, nasal, vf)

Num. edges: 38, penalty: 0.26,
threshold: 0.08
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<<<<< Nodewise only tterm tert t|en tler toe

—— Both

# within—group edges: 18, # between—group edges: 20

Figure A.15: Inverse covariance graph of labial and alveolar words. This graph dis-
plays a subgraph of a graph for all 93 words, estimated using Glasso
and nodewise regression with thresholding.
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Num. edges: 34, penalty: 0.26,
threshold: 0.08
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Figure A.16: Inverse covariance graph of labial and nasal words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 14, penalty: 0.26,
threshold: 0.08
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Figure A.17: Inverse covariance graph of labial and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 47, penalty: 0.26,
threshold: 0.08
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Figure A.18: Inverse covariance graph of alveolar and nasal words. This graph dis-
plays a subgraph of a graph for all 93 words, estimated using Glasso
and nodewise regression with thresholding.
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Num. edges: 32, penalty: 0.26,
threshold: 0.08
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Figure A.19: Inverse covariance graph of alveolar and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Num. edges: 34, penalty: 0.26,
threshold: 0.08
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Figure A.20: Inverse covariance graph of nasal and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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