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ABSTRACT

This dissertation addresses theory, methodology, and applications for joint mean

and covariance estimation with matrix-variate data. Chapters 2 and 3 consider joint

mean and covariance estimation in the Kronecker product model, which has natural

methodological connections to large-scale screening and differential mean analysis in

various application areas including genomics. It has been proposed that complex

populations, such as those that arise in genomics studies, may exhibit dependencies

among observations as well as among variables. This gives rise to the challenging

problem of analyzing unreplicated high-dimensional data with unknown mean and

dependence structures. Matrix-variate approaches that impose various forms of (in-

verse) covariance sparsity allow flexible dependence structures to be estimated, but

cannot directly be applied when the mean and covariance matrices are estimated

jointly. We present a practical method utilizing generalized least squares and pe-

nalized (inverse) covariance estimation to address this challenge. We establish con-

sistency and obtain rates of convergence for estimating the mean parameters and

covariance matrices. The advantages of our approaches are: (i) dependence graphs

and covariance structures can be estimated in the presence of unknown mean struc-

ture, (ii) the mean structure becomes more efficiently estimated when accounting for

the dependence structure among observations; and (iii) inferences about the mean

parameters become correctly calibrated. We use simulation studies and analysis of

genomic data from a twin study of ulcerative colitis to illustrate the statistical con-

vergence and the performance of our methods in practical settings. Several lines of

evidence show that the test statistics for differential gene expression produced by our

xxi



methods are correctly calibrated and improve power over conventional methods.

Chapter 4 uses matrix-variate techniques to gain insight into pitch curve data that

plays an important role in linguistics research. These curves can be viewed as large

multi-indexed data arrays with distinct covariance behaviors along each index. We

estimate covariance and inverse covariance matrices and graphs, and we connect edge

structures to word properties.
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CHAPTER I

Introduction

1.1 Matrix-variate data

In the setting of matrix-variate data, correlations exist between both rows (obser-

vations) and columns (variables) of a data matrix (Efron, 2009; Allen and Tibshirani ,

2012). Data with correlations along multiple axes exists in a broad range of research

fields, including environmental statistics (spatial and temporal correlations), neuro-

science (correlations among experimental trials, neurons, and time), and genomics

(correlations between people and genes). Such correlations affect both the accuracy

and calibration of inferences, resulting in under- or over-estimates of standard errors

(Allen and Tibshirani , 2012). We focus on the problem of jointly estimating mean

and covariance structures while accounting for such correlations.

In Chapters 2 and 3, we consider data in which the covariance matrix of each

column is proportional to a common matrix B. This allows information to be pooled

across the columns in order to estimate B. We present algorithms for estimation and

inference in this setting, including associated theory on rates of convergence of mean

and covariance parameters. A special case of this model is the Kronecker product

model, in which correlations between entries of the data matrix are decomposed into

factors that depend on rows and factors that depend on columns. Our method builds

on the Gemini estimator introduced by Zhou (2014a), which estimates covariance
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matrices when both rows and columns of the data matrix are dependent. In the

setting where correlations exist along only one axis of the array, researchers have

proposed various covariance estimators and studied their theoretical and numerical

properties (Banerjee et al., 2008; Fan et al., 2009; Friedman et al., 2008; Lam and

Fan, 2009; Meinshausen and Bühlmann, 2006; Peng et al., 2009; Ravikumar et al.,

2011; Rothman et al., 2008; Yuan and Lin, 2007; Zhou et al., 2010; Ren et al., 2015).

We build on this work to jointly estimate mean and covariance parameters for matrix-

variate data. For matrix-variate data with two way dependencies, e.g., in the space-

time data, prior work depended on a large number of replicates to obtain certain

convergence guarantees, see for example Dutilleul (1999), Werner et al. (2008) and

Tsiligkaridis et al. (2013).

In Chapter 4, we investigate a tensor modeling framework which accounts for mean

and trial specific variations in a large scale linguistic data, where non-i.i.d. replicates

are available. In particular, we analyze linguistics pitch curve data using a Kronecker

product covariance model while allowing individual mean matrices. The goals are to

examine word-word and time-time correlation matrices, inverse correlation matrices,

and associated graphical models. By contrast with the previous chapters, the pitch

curve data contains a limited number of replicates, which allows us to use a novel

trial differencing idea to remove the complex mean matrices. We investigate whether

edges are associated with characteristics of the words, including initial consonant,

vowel type, and voicing using rigorous statistical methods to be introduced in Section

1.2.1 and 1.2.2. In particular, we hierarchically decompose the words by consonants

and/or by vowels while analyzing edges between individual words as well as word

groups categorized by initial consonant or vowel properties.

In Chapter 5, we discuss future work. One direction for future work is to consider

hypothesis testing for edges in linguistics pitch curve data, as well as cross-validation

for model selection. Another direction is to apply additive covariance models to
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pitch curve data, including the Kronecker sum model for the precision matrix of the

vectorized data matrix. The precision matrix is sparser than in the case of the Kro-

necker product model, and the graph (for normally distributed data) has a Cartesian

product structure, which has a simple interpretation. Prior work on optimization al-

gorithms for the Kronecker sum model of the precision matrix includes the Biraphical

Lasso (Kalaitzis et al., 2013) and Tensor Graphical Lasso (Greenwald et al., 2017).

Another avenue for future work is to apply the decorrelation procedure proposed by

Zhou (2014a), in which we use the estimated time-time inverse correlation matrix to

decorrelate the data along the time axis, with the aim of improving the estimate of

the word-word covariance and inverse covariance matrices.

1.2 Organization of the thesis

• In Chapter 2, we present two algorithms for joint mean and covariance estima-

tion in the setting of matrix-variate data. We assess the performance of the

algorithms using simulations, and we apply the algorithms to data arising from

a genomic study of ulcerative colitis in twin pairs.

• In Chapter 3, we present theoretical results for the algorithms defined in Chap-

ter 2. We prove rates of convergence of the estimated mean and covariance

parameters.

• In Chapter 4, we analyze linguistics pitch curve data with trial replicates.

• In Chapter 5, we discuss future work, including cross-validation and applying

additional matrix-variate methods to linguistics pitch curve data.

Chapters 2 and 3 were accepted for publication in the Journal of the American

Statistical Association (Hornstein et al., 2018). We aim to send chapter 4 to NIPS

this May. With all future work which entails further analysis using cross validation,
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permutation and another linguistics dataset in Chapter 5, we aim to eventually send

the paper to a journal.

In the remaining two subsections of the introduction, we introduce matrix-variate

graphical modeling and nodewise regression.

1.2.1 Matrix-variate graphical modeling

Graphical modeling plays a key role in the thesis, in particular in Chapter 4.

Consequently, we now provide a definition of matrix-variate graphical models. The

following paragraphs in this subsection defining matrix-variate graphical modeling

are quoted verbatim from Zhou (2014a).

First recall the following definition concerning the classical Gaussian graphical

model for a random vector.

Definition 1.2.1. Let V “ pV1, . . . , Vnq
T be a random Gaussian vector, which we

represent by an undirected graph G “ pV , F q. The vertex set V :“ t1, . . . , nu has one

vertex for each component of the vector V . The edge set F consists of pairs pj, kq

that are joined by an edge. If Vj is independent of Vk given the other variables, then

pj, kq R F .

Now let V “ t1, . . . , nu be an index set which enumerates rows of X according

to a fixed order. For all i “ 1, . . . ,m, we assign to each variable of a column vector

xi exactly one element of the set V by a rule of correspondence g : xi Ñ V such

that gpxijq “ j, j “ 1, . . . , n. The graphs GipV , F q constructed for each random

column vector xi, i “ 1, . . . ,m according to Definition 1.2.1 will share an identical

edge set F , because the normalized column vectors x1{
?
a11, . . . , x

m{
?
amm follow

the same multivariate normal distribution Nnp0, Bq. Hence, graphs G1, . . . , Gm are

isomorphic and we write Gi » Gj, @i, j. Due to the isomorphism, we use GpV , F q

to represent the family of graphs G1, . . . , Gm. Hence, a pair p`, kq which is absent in

F encodes conditional independence between the `th row and the kth row given all
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other rows. Similarly, let Γ “ t1, . . . ,mu be the index set which enumerates columns

of X according to a fixed order. We use HpΓ, Eq to represent the family of graphs

H1, . . . , Hn, where Hi is constructed for row vector yi, and Hi » Hj, @i, j. Now

HpΓ, Eq is a graph with adjacency matrix ΥpHq “ ΥpA´1q as edges in E encode

nonzeros in A´1. And GpV , F q is a graph with adjacency matrix ΥpGq “ ΥpB´1q.

The Kronecker product, HbG, is defined as the graph with adjacency matrix ΥpHqb

ΥpGq (Weichsel , 1962), where clearly missing edges correspond to zeros in the inverse

covariance A´1 b B´1, and H b G represents the graph of the p-variate Gaussian

random vector vectXu, where p “ mn.

1.2.2 Nodewise regression

In addition to using Glasso, we also estimate edges using nodewise regression.

Meinshausen and Bühlmann (2006) proposed variable selection via nodewise regres-

sion, in which each variable is regressed on each other variable via `1 penalized regres-

sion. The edges correspond to the nonzero entries of the regression coefficients (i.e. an

edge exists between vertices i and j if either the regression coefficient of variable i on

j is nonzero, or the regression coefficient of variable j on i is nonzero). Meinshausen

and Bühlmann (2006) proved variable selection consistency of nodewise regression.

We now explain nodewise regression in more detail. Let rX P Rnˆm denote a

centered and scaled data matrix,so that the sample correlation matrix pΓ P Rmˆm can

be expressed as

pΓ “
1

n
rXT

rX. (1.1)

Let pΓpiq P Rpm´1qˆpm´1q denote the submatrix of pΓ obtained by excluding the ith

column and ith row. Let pγpiq denote the ith column of pΓ excluding the diagonal

entry. The regression coefficient for the ith variable is obtained by solving the `1
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penalized least squares problem,

pβi “ arg minβ:βPRm´1

"

1

2
βT pΓpiqβ ´ xpγpiq, βy ` λ‖β‖1

*

. (1.2)

Afterwards, the inverse correlation matrix is reconstructed by first obtaining a matrix

rΘ,

rΘ´j,´j “ ´ppΓjj ´ pΓj,´j pβ
j
q
´1
pβj, and rΘjj “ ppΓjj ´ pΓj,´j pβ

j
q
´1, (1.3)

then projecting rΘ onto the space of symmetric matrices.

Using nodewise regression with a refit to obtain an estimate of the inverse co-

variance matrix was proposed by Yuan (2010); Loh and Wainwright (2012). In Zhou

et al. (2011), they combine a multiple regression approach with ideas of threshold-

ing and refitting: first they infer a sparse undirected graphical model structure via

thresholding of each among many `1-norm penalized regression functions of (1.2);

they then estimate the covariance matrix and its inverse using the maximum like-

lihood estimator. They show that under suitable conditions, this approach yields

consistent estimation in terms of graphical structure and fast convergence rates with

respect to the operator and Frobenius norm for the covariance matrix and its inverse.

Finally, they also derive an explicit bound for the Kullback Leibler divergence.

In the present work, our nodewise regression with thresholding procedure follows

from ideas of Zhou et al. (2011) and Zhou (2010); in future work, we plan to further

exploit the MLE refit procedure using the model (edge set) obtained through nodewise

regression in combination with thresholding. See also Dempster (1972); Zhou (2010).

Since our input matrix is positive semidefinite, the methods of Loh and Wainwright

(2012), Yuan (2010), and Zhou et al. (2011) would all work to obtain Θ.
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CHAPTER II

Joint mean and covariance estimation of

matrix-variate data

This chapter is joint work with Roger Fan, Kerby Shedden, and Shuheng Zhou.

2.1 Introduction

Understanding how changes in gene expression are related to changes in biologi-

cal state is one of the fundamental tasks in genomics research, and is a prototypical

example of “large scale inference” (Efron, 2010). While some genomics datasets have

within-subject replicates or other known clustering factors that could lead to depen-

dence among observations, most are viewed as population cross-sections or conve-

nience samples, and are usually analyzed by taking observations (biological samples)

to be statistically independent of each other. Countering this conventional view,

Efron (2009) proposed that there may be unanticipated correlations between samples

even when the study design would not suggest it. To identify and adjust for unantic-

ipated sample-wise correlations, Efron (2009) proposed an empirical Bayes approach

utilizing the sample moments of the data. In particular, sample-wise correlations

may lead to inflated evidence for mean differences, and could be one explanation for
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the claimed lack of reproducibility in genomics research (Leek et al., 2010; Allen and

Tibshirani , 2012; Sugden et al., 2013).

A persistent problem in genomics research is that test statistics for mean pa-

rameters (e.g. t-statistics for two-group comparisons) often appear to be incorrectly

calibrated (Efron, 2005; Allen and Tibshirani , 2012). When this happens, for example

when test statistics are uniformly overdispersed relative to their intended reference

distribution, this is usually taken to be an indication of miscalibration, rather than

reflecting a nearly global pattern of differential effects (Efron, 2007). Adjustments

such as genomic control (Devlin and Roeder , 1999) can be used to account for this;

a related approach is that of Allen and Tibshirani (2012). In this work we address

unanticipated sample-wise dependence, which can exhibit a strong effect on statisti-

cal inference. We propose a new method to jointly estimate the mean and covariance

with a single instance of the data matrix, as is common in genetics. The basic idea

of our approach is to alternate for a fixed number of steps between mean and covari-

ance estimation. We exploit recent developments in two-way covariance estimation

for matrix-variate data (Zhou, 2014a). We crucially combine the classical idea of

generalized least squares (GLS) (Aitken, 1936) with thresholding for model selection

and estimation of the mean parameter vector. Finally, we use Wald-type statistics to

conduct inference. We motivate this approach using differential expression analysis

in a genomics context, but the method is broadly applicable to matrix-variate data

having unknown mean and covariance structures, with or without replications. We

illustrate, using theory and data examples, including a genomic study of ulcerative

colitis, that estimating and accounting for the sample-wise dependence can systemat-

ically improve the calibration of test statistics, therefore reducing or eliminating the

need for certain post-hoc adjustments.

With regard to variable selection, another major challenge we face is that vari-

ables (e.g. genes or mRNA transcripts) have a complex dependency structure that
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exists together with any dependencies among observations. As pointed out by Efron

(2009) and others, the presence of correlations among the samples makes it more

difficult to estimate correlations among variables, and vice versa. A second major

challenge is that due to dependence among both observations and variables, there is

no independent replication in the data, that is, we have a single matrix to conduct

covariance estimation along both axes. This challenge is addressed in Zhou (2014a)

when the mean structure is taken to be zero. A third major challenge that is unique

to our framework is that covariance structures can only be estimated after removing

the mean structure, a fact that is generally not considered in most work on high

dimensional covariance and graph estimation, where the population mean is taken to

be zero. We elaborate on this challenge next.

2.1.1 Our approach and contributions

Two obvious approaches for removing the mean structure in our setting are to

globally center each column of the data matrix (containing the data for one vari-

able), or to center each column separately within each group of sample points to be

compared (subsequently referred to as “group centering”). Globally centering each

column, by ignoring the mean structure, may result in an estimated covariance matrix

that is not consistent. Group centering all genes, by contrast, leads to consistent co-

variance estimation, as shown in Theorem II.3 with regard to Algorithm 1. However,

group centering all genes introduces extraneous noise when the true vector of mean

differences is sparse. We find that there is a complex interplay between the mean and

covariance estimation tasks, such that overly flexible modeling of the mean structure

can introduce large systematic errors in the mean structure estimation. To mitigate

this effect, we aim to center the data using a model selection strategy. More specifi-

cally, we adopt a model selection centering approach in which only mean parameters

having a sufficiently large effect size (relative to the dimension of the data) are tar-
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geted for removal. This refined approach has theoretical guarantees and performs

well in simulations. The estimated covariance matrix can be used in uncertainty as-

sessment and formal testing of mean parameters, thereby improving calibration of

the inference.

In Section 2.2, we define the two group mean model, which is commonly used in

the genomics literature, and introduce the GLS algorithm in this context. We bound

the statistical error for estimating each column of the mean matrix using the GLS

procedure so long as each column of X shares the same covariance matrix B, for which

we have a close approximation. It is commonly known that genes are correlated, so

correlations exist across columns as well as rows of the data matrix. In particular, in

Theorem II.1 in Section 2.3.1, we establish consistency for the GLS estimator given

a deterministic pB which is close to B in the operator norm, and present the rate of

convergence for mean estimation for data generated according to a subgaussian model

to be defined in Definition 2.2.1. Moreover, we do not impose a separable covariance

model in the sense of (2.1).

What distinguishes our model from those commonly used in the genomics liter-

ature is that we do not require that individuals are independent. Our approach to

covariance modeling builds on the Gemini method (Zhou, 2014a), which is designed

to estimate a separable covariance matrix for data with two-way dependencies. For

matrices A P Rmˆm and B P Rnˆn, the Kronecker product A b B P Rmnˆnm is the

block matrix for which the pi, jqth block is aijB, for i, j P t1, . . . ,mu. We say that an

nˆm random matrix X follows a matrix variate distribution with mean M P Rnˆm

and a separable covariance matrix

Xnˆm „ Ln,mpM,Amˆm bBnˆnq, (2.1)

if vec tX u has mean vec tM u and covariance Σ “ AbB. Here vec tX u is formed by

10



stacking the columns of X into a vector in Rmn. For the mean matrix M , we focus on

the two-group setting to be defined in (2.4). Intuitively, A describes the covariance

between columns while B describes the covariance between rows of X. Even with

perfect knowledge of M , we can only estimate A and B up to a scaling factor, as

Aη b 1
η
B “ Ab B for any η ą 0, and hence this will be our goal and precisely what

we mean when we say we are interested in estimating covariances A and B. However,

this lack of identifiability does not affect the GLS estimate, because the GLS estimate

is invariant to rescaling the estimate of B´1.

2.1.2 Related work

Efron (2009) introduced an approach for inference on mean differences in data with

two-way dependence. His approach uses empirical Bayes ideas and tools from large

scale inference, and also explores how challenging the problem of conducting inference

on mean parameters is when there are uncharacterized dependences among samples.

We combine GLS and variable selection with matrix-variate techniques. Allen and

Tibshirani (2012) also consider this question and develop a different approach that

uses ordinary least squares (OLS) through the iterations, first decorrelating the resid-

uals and then using OLS techniques again on this adjusted dataset. The confounder

adjustment literature in genomics, including Sun et al. (2012) and Wang et al. (2015),

can also be used to perform large-scale mean comparisons in similar settings that in-

clude similarity structures among observations. These methods use the same general

matrix decomposition framework, where the mean and noise are separated. They

exploit low-rank structure in the mean matrix, as well as using sparse approximation

of OLS estimates, for example where thresholding. Our model introduces row-wise

dependence through matrix-variate noise, while the confounder adjustment literature

instead assumes that a small number of latent factors also affect the mean expression,

resulting in additional low-rank structure in the mean matrix. Section 2.9 contains
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detailed comparisons between our approach and these alternative methods.

Our inference procedures are based on Z-scores and associated FDR values for

mean comparisons of individual variables. While we account for sample-wise correla-

tions, gene-gene correlations remain, which we regard as a nuisance parameter. Our

estimated correlation matrix among the genes can be used in future work in combi-

nation with the line of work that addresses FDR in the presence of gene correlations.

This relies on earlier work for false discovery rate estimation using correlated data,

including Owen (2005); Benjamini and Yekutieli (2001); Cai et al. (2011); Li and

Zhong (2014); Benjamini and Hochberg (1995); Storey (2003). Taking a different

approach, Hall et al. (2010) develop the innovated higher criticism test statistics to

detect differences in means in the presence of correlations between genes. Our esti-

mated gene-gene correlation matrix can be used in combination with this approach;

we leave this as future work. Another line of relevant research has focused on hy-

pothesis testing of high-dimensional means, exploiting assumed sparsity of effects,

and developing theoretical results using techniques from high dimensional estimation

theory. Work of this type includes Cai and Xia (2014); Chen et al. (2014); Bai and

Saranadasa (1996); Chen et al. (2010). Hoff (2011) adopts a Bayesian approach,

using a model that is a generalization of the matrix-variate normal distribution.

Our method builds on the Gemini estimator introduced by Zhou (2014a), which

estimates covariance matrices when both rows and columns of the data matrix are

dependent. In the setting where correlations exist along only one axis of the array,

researchers have proposed various covariance estimators and studied their theoretical

and numerical properties (Banerjee et al., 2008; Fan et al., 2009; Friedman et al., 2008;

Lam and Fan, 2009; Meinshausen and Bühlmann, 2006; Peng et al., 2009; Raviku-

mar et al., 2011; Rothman et al., 2008; Yuan and Lin, 2007; Zhou et al., 2010; Ren

et al., 2015). Although we focus on the setting of Kronecker products, or separable

covariance structures, Cai et al. (2016) proposed a covariance estimator for a model
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with several populations, each of which may have a different variable-wise covariance

matrix. Our methods can be generalized to this setting. Tan and Witten (2014) use

a similar matrix-variate data setting as in (2.1), but perform biclustering instead of

considering a regression problem with a known design matrix.

2.1.3 Notation and organization

Before we leave this section, we introduce the notation needed for the technical

sections. Let e1, . . . , ep be the canonical basis of Rp. For a matrix A “ paijq1ďi,jďm,

let |A| denote the determinant and trpAq be the trace of A. Let ‖A‖max “ maxi,j |aij|

denote the entry-wise max norm. Let ‖A‖1 “ maxj
řm
i“1 |aij| denote the matrix

`1 norm. The Frobenius norm is given by ‖A‖2
F “

ř

i

ř

j a
2
ij. Let ϕipAq denote

the ith largest eigenvalue of A, with ϕmaxpAq and ϕminpAq denoting the largest and

smallest eigenvalues, respectively. Let κpAq be the condition number for matrix A.

Let |A|1,off “
ř

i‰j |aij| denote the sum of the absolute values of the off-diagonal entries

and let |A|0,off denote the number of non-zero off-diagonal entries. Let amax “ maxi aii.

Denote by rpAq the stable rank ‖A‖2
F {‖A‖

2
2. We write diagpAq for a diagonal matrix

with the same diagonal as A. Let I be the identity matrix. We let C,C1, c, c1, . . .

be positive constants which may change from line to line. For two numbers a, b,

a^ b :“ minpa, bq and a_ b :“ maxpa, bq. Let paq` :“ a_ 0. For sequences tanu, tbnu,

we write an “ Opbnq if |an| ď C|bn| for some positive absolute constant C which is

independent of n and m or sparsity parameters, and write an — bn if c|an| ď |bn| ď

C|an|. We write an “ Ωpbnq if |an| ě C|bn| for some positive absolute constant C

which is independent of n and m or sparsity parameters. We write an “ opbnq if

limnÑ8 an{bn “ 0. For random variables X and Y , let X „ Y denote that X and Y

follow the same distribution.

The remainder of the paper is organized as follows. In Section 2.2, we present our

matrix-variate modeling framework and methods on joint mean and covariance esti-
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mation. In particular, we propose two algorithms for testing mean differences based

on two centering strategies. In Section 2.3, we present convergence rates for these

methods. In Theorems II.3 and II.4, we provide joint rates of convergence for mean

and covariance estimation using Algorithms 1 and 2, respectively. We also empha-

size the importance of the design effect (c.f. equation (2.15)) in testing and present

theoretical results for estimating this quantity in Corollary II.2 and Corollary II.5.

In Section 2.4, we demonstrate through simulations that our algorithms can out-

perform OLS estimators in terms of accuracy and variable selection consistency. In

Section 2.5, we analyze a gene expression dataset, and show that our method corrects

test statistic overdispersion that is clearly present when using sample mean based

methods (c.f. Section 2.4.2). Sections 2.6 and 2.7 contain additional simulation and

data analysis results. We conclude in Section 2.8. Proofs are presented in Chapter

3. In Section 2.9 we provide additional comparisons between our method and some

related methods on both simulated and real data.

2.2 Models and methods

In this section we present our model and method for joint mean and covariance

estimation. Our results apply to subgaussian data. Before we present the model, we

define subgaussian random vectors and the ψ2 norm. The ψ2 condition on a scalar

random variable V is equivalent to the subgaussian tail decay of V , which means

P p|V | ą tq ď 2 expp´t2{c2q, for all t ą 0. For a vector y “ py1, . . . , ypq P Rp, denote

by ‖y‖2 “
a

řp
i“1 y

2
i .

Definition 2.2.1. Let Y be a random vector in Rp. (a) Y is called isotropic if for

every y P Rp, Er|xY, yy|2s “ ‖y‖2
2. (b) Y is ψ2 with a constant α if for every y P Rp,

‖xY, yy‖ψ2 :“ inftt : ErexppxY, yy2{t2qs ď 2u ď α‖y‖2.
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Our goal is to estimate the group mean vectors βp1q, βp2q, the vector of mean

differences between two groups γ “ βp1q ´ βp2q P Rm, the row-wise covariance matrix

B P Rnˆn, and the column-wise covariance matrix A P Rmˆm. In our motivating

genomics applications, the people by people covariance matrix B is often incorrectly

anticipated to have a simple known structure, for example, B is taken to be diagonal if

observations are assumed to be uncorrelated. However, we show by example in Section

2.5 that departures from the anticipated diagonal structure may occur, corroborating

earlier claims of this type by Efron (2009) and others. Motivated by this example,

we define the two-group mean model and the GLS algorithm, which takes advantage

of the covariance matrix B.

The model. Our model for the matrix-variate data X can be expressed as a mean

matrix plus a noise term,

X “M ` ε, (2.2)

where columns (and rows) of ε are subgaussian. Let u, v, P Rn be defined as

u “ p1, . . . , 1
loomoon

n1

, 0, . . . , 0
loomoon

n2

q P Rn and v “ p0, . . . , 0
loomoon

n1

, 1, . . . , 1
loomoon

n2

q P Rn. (2.3)

Let 1n P Rn denote a vector of ones. For the two-group model, we take the mean

matrix to have the form

M “ Dβ “

»

—

–

1n1β
p1qT

1n2β
p2qT

fi

ffi

fl

P Rnˆm, where D “

„

u v



P Rnˆ2 (2.4)

is the design matrix and β “ pβp1q, βp2qqT P R2ˆm is a matrix of group means. Let

γ “ βp1q ´ βp2q P Rm denote the vector of mean differences. Let d0 “ | supppγq| “

|tj : γj ‰ 0u| denote the size of the support of γ. To estimate the group means, we
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use a GLS estimator,

pβp pB´1
q :“ pDT

pB´1Dq´1DT
pB´1X P R2ˆm, (2.5)

where pB´1 is an estimate of the observation-wise inverse covariance matrix. Through-

out the paper, we denote by pβpB´1q the oracle GLS estimator, since it depends on the

unknown true covariance B. Also, we denote the estimated vector of mean differences

as pγp pB´1q “ δT pβp pB´1q P Rm, where δ “ p1,´1q P R2.

2.2.1 Matrix-variate covariance modeling

In the previous section, we have not yet explicitly constructed an estimator of

B´1. To address this need, we model the data matrix X with a matrix-variate

distribution having a separable covariance matrix, namely, the covariance of vec tX u

follows a Kronecker product covariance model. When ε (2.2) follows a matrix-variate

normal distribution Nn,mp0, A b Bq, as considered in Zhou (2014a), the support of

B´1 encodes conditional independence relationships between samples, and likewise,

the support of A´1 encodes conditional independence relationships among genes. The

inverse covariance matrices A´1 and B´1 have the same supports as their respective

correlation matrices, so edges of the dependence graphs are identifiable under the

model Covpvecpεqq “ AbB. When the data is subgaussian, the method is still valid

for obtaining consistent estimators of A, B, and their inverses, but the interpretation

in terms of conditional independence does not hold in general.

Our results do not assume normally distributed data; we analyze the subgaussian

correspondent of the matrix variate normal model instead. In the Kronecker product

covariance model we consider in the present work, the noise term has the form ε “

B1{2ZA1{2 for a mean-zero random matrix Z with independent subgaussian entries

satisfying 1 “ EZ2
ij ď ‖Zij‖ψ2

ď K. Clearly, vec t ε u “ A b B. Here, the matrix A
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represents the shared covariance among variables for each sample, while B represents

the covariance among observations which in turn is shared by all genes.

For identifiability, and convenience, we define

A˚ “
m

trpAq
A and B˚ “

trpAq

m
B, (2.6)

where the scaling factor is chosen so that A˚ has trace m. For the rest of the paper A

and B refer to A˚ and B˚, as defined in (2.6). Let SA and SB denote sample covariance

matrices to be specified. Let the corresponding sample correlation matrices be defined

as

pΓijpAq “
pSAqij

a

pSAqiipSAqjj
and pΓijpBq “

pSBqij
a

pSBqiipSBqjj
. (2.7)

The baseline Gemini estimators (Zhou, 2014a) are defined as follows, using a pair of

penalized estimators for the correlation matrices ρpAq “ paij{
?
aiiajjq and ρpBq “

pbij{
a

biibjjq,

pAρ “ arg min
Aρą0

!

tr
´

pΓpAqA´1
ρ

¯

` log |Aρ| ` λB|A
´1
ρ |1,off

)

, and (2.8a)

pBρ “ arg min
Bρą0

!

tr
´

pΓpBqB´1
ρ

¯

` log |Bρ| ` λA|B
´1
ρ |1,off

)

, (2.8b)

where the input are a pair of sample correlation matrices as defined in (2.7).

Let xM denote the estimator of the mean matrix M in (2.1). Denote the centered

data matrix and the sample covariance matrices as

Xcen “ X ´ xM, for xM to be specified in Algorithms 1 and 2,

SB “ XcenX
T
cen{m, and SA “ XT

cenXcen{n. (2.9)

17



Define the diagonal matrices of sample standard deviations as

xW1 “
?
ndiagpSAq

1{2
P Rmˆm, xW2 “

?
mdiagpSBq

1{2
P Rnˆn, (2.10)

and {AbB “
´

xW1
pAρxW1

¯

b

´

xW2
pBρ
xW2

¯

{‖Xcen‖2
F . (2.11)

2.2.2 Group based centering method

We now discuss our first method for estimation and inference with respect to the

vector of mean differences γ “ βp1q ´ βp2q, for βp1q and βp2q as in (2.4). Our approach

in Algorithm 1 is to remove all possible mean effects by centering each variable within

every group.

Algorithm 1: GLS-Global group centering

Input: X; and Gp1q,Gp2q: indices of group one and two, respectively.

Output: pA´1, pB´1, {AbB, pβp pB´1q, pγ, Tj for all j

1. Group center the data. Let Yi denote the ith row of the data matrix. To esti-

mate the group mean vectors βp1q, βp2q P Rm: Compute sample mean vectors

rβp1q “
1

n1

ÿ

iPGp1q

Yi and rβp2q “
1

n2

ÿ

iPGp2q

Yi; set pγOLS
“ rβp1q ´ rβp2q.(2.12)

Center the data by Xcen “ X ´ xM, with xM “

»

—

–

1n1
rβp1qT

1n2
rβp2qT

fi

ffi

fl

.

2. Obtain regularized correlation estimates. (2a) The centered data matrix used

to calculate SA and SB for Algorithm 1 is Xcen “ pI ´ P2qX, where P2 is
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the projection matrix that performs within-group centering,

P2 “

»

—

–

n´1
1 1n11

T
n1

0

0 n´1
2 1n21

T
n2

fi

ffi

fl

“ uuT {n1 ` vv
T
{n2, (2.13)

with u and v as defined in (2.3). Compute sample covariance matrices

based on group-centered data: SA “
1
n
XT

cenXcen “
1
n
XT pI ´ P2qX and

SB “
1
m
XcenX

T
cen “

1
m
pI ´ P2qXX

T pI ´ P2q.

(2b) Compute (2.7) to obtain penalized correlation matrices pAρ and pBρ using

the Gemini estimators as defined in (2.8a) and (2.8b) with tuning param-

eters to be defined in (2.23).

3. Rescale the estimated correlation matrices to obtain penalized covariance

pB´1
“ mxW´1

2
pBρ
xW´1

2 and pA´1
“ p‖Xcen‖2

F {mq
xW´1

1
pAρxW

´1
1 . (2.14)

4. Estimate the group mean matrix using the GLS estimator as defined in (2.5).

5. Obtain test statistics. The jth test statistic is defined as

Tj “
pγjp pB

´1q
b

δT pDT
pB´1Dq´1δ

, with δ “ p1,´1q P R2, (2.15)

and pγjp pB
´1q “ δT pβjp pB

´1q, for j “ 1, . . . ,m. Note that Tj as defined in (2.15)

is essentially a Wald test and the denominator is a plug-in standard error of

pγjpB
´1q.
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2.2.3 Model selection centering method

In this section we present Algorithm 2, which aims to remove mean effects that

are strong enough to have an impact on covariance estimation. The strategy here is

to use a model selection step to identify variables with strong mean effects.

Algorithm 2: GLS-Model selection centering

Input: X, and Gp1q,Gp2q: indices of group one and two, respectively.

Output: pA´1, pB´1, {AbB, pβp pB´1q, pγ, Tj for all j

1. Run Algorithm 1. Use the group centering method to obtain initial estimates

pγinit
j “ pβ

p1q
j ´ pβ

p2q
j for all j “ 1, . . . ,m. Let pB´1

init and pBinit be as obtained in

(2.14).

2. Select genes with large estimated differences in means. Let rJ0 “ tj : |pγinit
j | ą

2pτinitu denote the set of genes which we consider as having strong mean effects,

where

pτinit —

˜

log1{2m
?
m

`
‖ pBinit‖1

nmin

¸

d

nratio| pB
´1
init|0,off

nmin

`
a

logm‖pDT
pB´1

initDq
´1‖1{2

2 ,

(2.16)

with nmin “ n1 ^ n2, nmax “ n1 _ n2, and nratio “ nmax{nmin.

3. Calculate Gram matrices based on model selection centering. Global cen-

tering can be expressed in terms of the projection matrix P1 “ n´11n1
T
n . Com-

pute the centered data matrix

Xcen,j “

$

’

’

&

’

’

%

Xj ´ P2Xj if j P rJ0

Xj ´ P1Xj if j P rJ c0 ,
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where Xcen,j denotes the jth column of the centered data matrix Xcen. Compute

the sample covariance and correlation matrices with Xcen following (2.9) and

(2.7).

4. Estimate covariances and means. (4a) Obtain the penalized correlation ma-

trices pBρ and pAρ using Gemini estimators as defined in (2.8a) and (2.8b)

with tuning parameters of the same order as those in (2.23).

(4b) Obtain inverse covariance estimates pB´1, pA´1 using (2.14).

(4c) Calculate the GLS estimator pβp pB´1q as in (2.5), as well as the vector of

mean differences pγp pB´1q “ δT pβp pB´1q, for δ “ p1,´1q P R2.

5. Obtain test statistics. Calculate test statistics as in (2.15), now using pB´1 as

estimated in Step 4.

Remarks. In the case that γ is sparse, we show that this approach can perform

better than the approach in Section 2.2.2, in particular when the sample size is small.

We now consider the expression pτinit in (2.16) as an upper bound on the threshold in

the sense that it is chosen to tightly control false positives. In Section 2.4.2 we show

in simulations that with this plug-in estimate pτinit, Algorithm 2 can nearly reach the

performance of GLS with the true B. Since this choice of pτinit acts as an order on the

threshold we need, the plug-in method can also be applied with a multiplier between

0 and 1. When we set pτinit at its lower bound, namely,

a

logm‖pDT
pB´1

initDq
´1‖1{2

2 , where pB´1
init is obtained as in Step 3 from Algorithm 1,

we anticipate many false positives. In Figure 2.3, we show that the performance of

Algorithm 2 is stable in the setting of small n and sparse γ for different values of pτinit,

demonstrating robustness of our methods to the multiplier; there we observe that the

performance can degrade if the threshold is set to be too small, eventually reaching

21



the performance of Algorithm 1.

Second, if an upper bound on the number of differentially expressed genes is known

a priori, one can select a set of genes qJ0 to group center such that the cardinality

| qJ0| is understood to be chosen as an upper bound on d0 “ | supppγq| based on prior

knowledge. We select the set qJ0 by ranking the components of the estimated vector

of mean differences pγ. In the data analysis in Section 2.5 we adopt this strategy in

an iterative manner by successively halving the number of selected genes, choosing at

each step the genes with largest estimated mean differences from the previous step.

We show in this data example and through simulation that the proposed method is

robust to the choice of | qJ0|.

Finally, it is worth noting that these algorithms readily generalize to settings with

more than two groups, in which case we simply group center within each group. This

is equivalent to applying the method with a different design matrix D. In fact, we

can move beyond group-wise mean comparisons to a regression analysis with a fixed

design matrix D, which includes the k-group mean analysis as a special case.

2.3 Theoretical results

We first state Theorem II.1, which provides the rate of convergence of the GLS

estimator (2.5) when we use a fixed approximation of the covariance matrix B. We

then provide in Theorems II.3 and II.4 the convergence rates for estimating the group

mean matrix β P R2ˆm for Algorithms 1 and 2 respectively. In Theorem II.3 we

state rates of convergence for the Gemini estimators of B´1 and A´1 when the input

sample covariance matrices use the group centering approach as defined in Algorithm

1, while in Theorem II.4, we state only the rate of convergence for estimating B´1,

anticipating that the rate for A´1 can be similarly obtained, using the model selection

centering approach as defined in Algorithm 2.
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2.3.1 GLS under fixed covariance approximation

We now state a theorem on the rate of convergence of the GLS estimator (2.5),

where we use a fixed approximation B´1
n,m to B´1, where the operator norm of ∆n,m “

B´1
n,m ´ B´1 is small in the sense of (2.17). We will specialize Theorem II.1 to the

case where B´1 is estimated using the baseline method in Zhou (2014a) when X

follows subgaussian matrix-variate distribution as in (2.1). We prove Theorem II.1 in

Section 3.2.

Theorem II.1. Let Z be an n ˆ m random matrix with independent entries Zij

satisfying EZij “ 0, 1 “ EZ2
ij ď ‖Zij‖ψ2

ď K. Let Z1, . . . , Zm P Rn be the columns

of Z. Suppose the jth column of the data matrix satisfies Xj „ B1{2Zj. Suppose

Bn,m P Rnˆn is a positive definite symmetric matrix. Let ∆n,m :“ B´1
n,m ´ B´1.

Suppose

‖∆n,m‖2 ă
1

pnmax{nminq ‖B‖2

, where nmin “ n1 ^ n2 and nmax “ n1 _ n2. (2.17)

Then with probability at least 1´ 8{pm_ nq2, for some absolute constants C, C 1,

@j, ‖pβjpB´1
n,mq ´ β

˚
j ‖2 ď rn,m :“ sn,m ` tn,m, where (2.18)

sn,m “ C
a

logm‖B‖2{nmin and tn,m “ C 1‖∆n,m‖2{n
1{2
min; (2.19)

and ‖pγpBn,mq ´ γ‖8 ď
?

2

˜

C

d

logm‖B‖2

nmin

` C 1n
´1{2
min ‖∆n,m‖2

¸

. (2.20)

Remarks. If the operator norm of B is bounded, that is ‖B‖2 ă W , then con-

dition (2.17) is equivalent to ‖∆n,m‖2 ă 1{pWnratioq. The term tn,m in (2.19) re-

flects the error due to approximating B´1 with B´1
n,m, whereas sn,m reflects the error

in estimating the mean matrix (2.5) using GLS with the true B´1 for the random

design X. The term sn,m is Op
a

logm{nq, whereas tn,m is Op1{
?
nq. The domi-

nating term sn,m in (2.19) can be replaced by the tighter bound, namely, s1n,m “
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C 1 log1{2
pmq

a

δT pDTB´1Dq´1δ, with δ “ p1,´1q P R2. This bound correctly drops

the factor of ‖B‖2 present in (2.19) and (2.20), while revealing that variation aligned

with the column space of D is especially important in mean estimation.

Note that the condition (2.17) is not stringent, and that the pB estimates used in

Algorithms 1 and 2 have much lower errors than this. When M “ 0 is known, SA

and SB can be the usual Gram matrices, and the theory in Zhou (2014a) guarantees

that tn,m as defined in (2.19) has rate CA
a

logm{m, with CA “
?
m‖A‖F { trpAq.

However in our setting, M in general is nonzero. In Sections 2.2.2 and 2.2.3 we

provide two constructions for SA and SB, which differ in how the data are centered.

These constructions have a different bound tn,m, as we will discuss in Theorems II.3

and II.4.

In Section 2.4, we present simulation results that demonstrate the advantage of

the oracle GLS and GLS with estimated pB (2.5) over the sample mean based (OLS)

method (c.f. (2.12) and (2.32)) for mean estimation as well as the related variable

selection problem with respect to γ. There, we scrutinize this quantity and its esti-

mation procedure in detail.

Design effect. The “design effect” is the variance of the “oracle” GLS estimator

(2.5) of γj using the true B, that is,

δT pDTB´1Dq´1δ “ VarppγjpB
´1
qq, @j “ 1, . . . ,m. (2.21)

The design effect reflects the potential improvement of GLS over OLS. It appears

as a factor above in s1n,m, so it contributes to the rate of mean parameter estimation

as characterized in Theorem II.1. Lower variance in the GLS estimator of the mean

difference contributes to greater power of the test statistics relative to OLS. The

design effect also appears as a scale factor in the test statistics for pγ (2.15), and

therefore it is particularly important that the design effect is accurately estimated in
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order for the test statistics to be properly calibrated. In a study focusing on mean

differences, it may be desirable to assess the sample size needed to detect a given

effect size using our methodology. Given the design effect, our tests for differential

expression are essentially Z-tests based on the GLS fits, followed by some form of

multiple comparisons adjustment.

Corollary II.2. Let Ω “ pDTB´1Dq´1, pΩ “ pDT
pB´1Dq´1, and ∆ “ pΩ ´ Ω. Under

the conditions of Theorem II.1, the relative error in estimating the design effect is

bounded as ∣∣∣δT pΩδ ´ δTΩδ
∣∣∣

δTΩδ
ď 2C 1

κpBq ‖B‖2 ‖∆‖2

nratio

, (2.22)

with probability 1´ C{pm_ nqd, for some absolute constants C,C 1.

We prove Corollary II.2 in Section 3.2.2. Corollary II.2 implies that given an

accurate estimator of B´1, the design effect is accurately estimated and therefore

suggests that traditional techniques can be used to gain an approximate understand-

ing of the power of our methods. We show that B´1 can be accurately estimated

under conditions in Theorems 3 and 4. If pilot data are available that are believed

to have similar between-sample correlations to the data planned for collection in a

future study, Corollary II.2 also justifies using this pilot data to estimate the design

effect. If no pilot data are available, it is possible to conduct power analyses based

on various plausible specifications for the B matrix.

2.3.2 Rates of convergence for Algorithms 1 and 2

We state the following assumptions.

(A1) The number of nonzero off-diagonal entries of A´1 and B´1 satisfy

ˇ

ˇA´1
ˇ

ˇ

0,off
“ opn{ logpm_ nqq pn,mÑ 8q and

ˇ

ˇB´1
ˇ

ˇ

0,off
“ o

`

rm{ logpm_ nqs _
“

n2
{‖B‖2

1

‰˘

pn,mÑ 8q.
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(A2) The eigenvalues of A and B are bounded away from 0 and `8. We assume

that the stable ranks satisfy rpAq, rpBq ě 4 logpm_ nq, where rpAq “ ‖A‖2
F { ‖A‖

2
2.

Theorem II.3. Suppose that (A1) and (A2) hold. Consider the data as generated

from model (2.2) with ε “ B1{2ZA1{2, where A P Rmˆm and B P Rnˆn are positive

definite matrices, and Z is an n ˆ m random matrix as defined in Theorem II.1.

Let C,C 1, C1C2, C
2, C3 be some absolute constants. Let CA “

?
m‖A‖F { trpAq and

CB “
?
n‖B‖F { trpBq. (I) Let λA and λB denote the penalty parameters for (2.8b)

and (2.8a) respectively. Suppose

λA ě C

˜

CAK
log1{2

pm_ nq
?
m

`
‖B‖1

nmin

¸

and λB ě C 1

˜

CBK
log1{2

pm_ nq
?
n

`
‖B‖1

nmin

¸

.(2.23)

Then with probability at least 1´ C2{pm_ nq2, for {AbB as define in (2.11),

‖{AbB ´ AbB‖2 ď ‖A‖2‖B‖2δ,

‖{AbB
´1
´ A´1

bB´1‖2 ď ‖A´1‖2‖B´1‖2δ
1,

where δ, δ1 “ O

ˆ

λA

b

|B´1|0,off _ 1` λB

b

|A´1|0,off _ 1

˙

.

Furthermore, with probability at least 1´ C3{pm_ nq2,

‖{AbB ´ AbB‖F ď ‖A‖F‖B‖Fη, (2.24)

where η “ O

ˆ

λA

b

|B´1|0,off _ n{
?
n` λB

b

|A´1|0,off _m{
?
m

˙

. (2.25)

The same conclusions hold for the inverse estimate, with η being bounded in the same

order as in (2.25). (II) Let pβ be defined as in (2.5) with pB´1 being defined as in

(2.14) and D as in (2.4). Then, with probability at least 1´C{md the following holds
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for all j,

‖pβjp pB´1
q ´ β˚j ‖2 ď C1λA

d

nratio p|B´1|0,off _ 1q

nmin

` C2

a

logm‖pDTB´1Dq´1‖1{2
2 .

(2.26)

We prove Theorem II.3 part I in Section 3.3; this relies on rates of convergence

of pB´1 and pA´1 in the operator and the Frobenius norm, which are established in

Lemma III.7. We prove part II in Section 3.3.2.

Remarks. We find that the additional complexity of estimating the mean matrix

leads to an additional additive term of order 1{n appearing in the convergence rates

for covariance estimation for B and A. In part I of Theorem II.3, λA is decomposed

into two terms, one term reflecting the variance of SB, and one term reflecting the

bias due to group centering. The variance term goes to zero as m increases, and the

bias term goes to zero as n increases. To analyze the error in the GLS estimator

based on pB´1, we decompose ‖pβjp pB´1q ´ β˚j ‖2 as

‖pβjp pB´1
q ´ β˚j ‖2 ď ‖pβjp pB´1

q ´ pβjpB
´1
q‖2 ` ‖pβjpB´1

q ´ β˚j ‖2,

where the first term is the error due to not knowing B´1, and the second term is the

error due to not knowing β˚j . The rate of convergence given in (2.26) reflects this

decomposition. For Algorithm 2, we have analogous rates of convergence for both

mean and covariance estimation. Simulations suggest that the constants in the rates

for Algorithm 2 are smaller than those in (2.26).

We state the following assumptions for Theorem II.4 to hold on Algorithm 2.

(A1’) Suppose (A1) holds. Let the number of nonzero off-diagonal entries of B´1

satisfy

|B´1|0,off ď max
´

m, n2

‖B‖21
, n logm

¯

.

(A2’) Suppose (A2) holds, and n ě logm p‖A‖2 ‖B‖2 bmax{C
2
Aq.
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(A3) Let supppγq “ tj : γj ‰ 0u. Let s “ |supppγq| denote the sparsity of γ.

Assume that s “ O

ˆ

CA
‖B‖2

n
b

m
logm

˙

.

Remarks. When B is dense in the sense that ‖B‖1 —
?
n ‖B‖2, the new condition

|B´1|0,off ď n logm is vacuous. Condition (A2’) is mild, because the condition on the

stable rank of B already implies that n ě logm.

Theorem II.4. Suppose that (A1’), (A2’), and (A3) hold. Consider the data as

generated from model (2.4) with ε “ B1{2ZA1{2, where A P Rmˆm and B P Rnˆn are

positive definite matrices, and Z is an n ˆm random matrix as defined in Theorem

II.3. Let λA denote the penalty parameter for estimating B. Suppose λA is as defined

in (2.23). Let

τinit —
a

logm‖pDTB´1Dq´1‖1{2
2 . (2.27)

Then with probability at least 1´ C2{pm_ nq2, for output of Algorithm 2,

∥∥∥∥tr pAq
´

xW2
pBρ
xW2

¯´1

´B´1

∥∥∥∥
2

ď

C 1λA
b

|B´1|0,off _ 1

bminϕ2
minpρpBqq

, and (2.28)

‖pβjp pB´1
q ´ β˚j ‖2 ď C2

a

logm‖pDTB´1Dq´1‖1{2
2 , (2.29)

for all j, for absolute constants C, C2, C 1, and C2.

We prove Theorem II.4 in Section 3.6.5. In Section 3.6.4 we also show a stan-

dalone result, namely Theorem III.21, for the case of fixed sets of group and globally

centered genes. This result shows how the algorithm used in the preliminary step to

choose which genes to group center can be decoupled from the rest of the estimation

procedure in Algorithm 2, so long as certain conditions hold. The proof of Theorem

II.4 indeed validates that such conditions hold for the output of Algorithm 1. It is

worth noting that a similar rate of convergence for estimating A could also be derived,

but we focus on B in our methodology and applications, and therefore leave this as

an exercise for interested readers.
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We specialize Corollary II.2 to the case where B´1 is estimated using Algorithm

2.

Corollary II.5. Under the conditions of Theorem II.4, we have with probability 1´

C{m2 ∣∣∣δT pΩδ ´ δTΩδ
∣∣∣

δTΩδ
ď 2C 1

nratio

λminpBq
κpBqλA

b

|B´1|0,off _ 1, (2.30)

for some absolute constants C and C 1.

Remarks. The right-hand-side of (2.30) goes to zero because of the assumptions

(A1’), (A2’), and (A3), which ensure that the factor λA
b

|B´1|0,off _ 1 goes to zero.

We conduct simulations to assess the accuracy of estimating the design effect in

Section 2.4.2.

2.4 Simulations

We present simulations to compare Algorithms 1 and 2 to both sample mean based

analysis and oracle algorithms that use knowledge of the true correlation structures

A and B. We show these results for a variety of population structures and sample

sizes. We construct covariance matrices for A and B from one of:

• AR1pρq model. The covariance matrix is of the form B “ tρ|i´j|ui,j, and the

graph corresponding to B´1 is a chain.

• Star-Block model. The covariance matrix is block-diagonal with equal-sized

blocks whose inverses correspond to star structured graphs, where Bii “ 1, for

all i. In each subgraph, a central hub node connects to all other nodes in the

subgraph, with no additional edges. The covariance matrix for each block S in

B is generated as in Ravikumar et al. (2011): Sij “ ρ “ 0.5 if pi, jq P E and

Sij “ ρ2 otherwise.
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• Erdős-Rényi model. We use the random concentration matrix model in Zhou

et al. (2010). The graph is generated according to a type of Erdős-Rényi random

graph. Initially we set B´1 “ 0.25Inˆn. Then, we randomly select d edges and

update B´1 as follows: for each new edge pi, jq, a weight w ą 0 is chosen

uniformly at random from rwmin, wmaxs where wmin “ 0.6 and wmax “ 0.8; we

subtract w from B´1
ij and B´1

ji , and increase B´1
ii and B´1

jj by w. This keeps B´1

positive definite. We then rescale so that B´1 is an inverse correlation matrix.

2.4.1 Accuracy of pγ and its implication for variable ranking

Table 2.1 displays metrics that reflect how the choice of different population struc-

tures B can affect the difficulty of the mean and covariance estimation problems.

Column 2 is a measure discussed by Efron (2007). Column 3 appears directly in the

theoretical analysis, reflecting the entry-wise error in the sample correlation pΓpBq.

Columns 4 analogously reflects the entry-wise error for the Flip-Flop procedure in

Zhou (2014a), and is included here for completeness. Column 5 displays the value of
a

δT pDTB´1Dq´1δ, where δ “ p1,´1q P R2, which represents the standard deviation

of the difference in means estimated using GLS with the true B´1. Column 6 displays

what we call the standard deviation ratio, namely

d

uTBu

δT pDTB´1Dq´1δ
, (2.31)

where u “ p1{n1, . . . , 1{n1
looooooomooooooon

n1

,´1{n2, . . . ,´1{n2
loooooooooomoooooooooon

n2

q P Rn and δ “ p1,´1q P R2, which re-

flects the potential efficiency gain for GLS over sample mean based method (2.12)

for estimating γ. Note that the standard deviation ratio depends on the relationship

between the covariance matrix B and the design matrix D. In Table 2.1, the first

n{2 individuals are in group one, and the following n{2 are in group two. The values

in Column 6 show that substantial improvement is possible in mean estimation. For
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B ρ2
B ‖B‖F {trpBq |ρpBq´1|1,off sd GLS sd ratio

n “ 80
1 AR1(0.2) 0.00 0.12 32.92 0.27 1.00
2 AR1(0.4) 0.00 0.13 75.24 0.33 1.02
3 AR1(0.6) 0.01 0.16 148.12 0.40 1.07
4 AR1(0.8) 0.04 0.24 351.11 0.46 1.32
5 StarBlock(4, 20) 0.02 0.18 101.33 0.35 1.51
6 ER(0.6, 0.8) 0.01 0.14 92.75 0.17 1.21
n “ 40
1 AR1(0.2) 0.00 0.16 16.25 0.38 1.01
2 AR1(0.4) 0.01 0.19 37.14 0.45 1.03
3 AR1(0.6) 0.03 0.23 73.12 0.53 1.12
4 AR1(0.8) 0.08 0.33 173.33 0.53 1.47
5 StarBlock(2, 20) 0.04 0.25 50.67 0.50 1.51
6 ER(0.6, 0.8) 0.02 0.21 47.24 0.25 1.23

Table 2.1: Assessment of the difficulty of estimating B´1 and the potential gain from
GLS. The total correlation ρB is the average squared off-diagonal value
of the correlation matrix ρpBq. The fourth column is the design effect as
defined in (2.21). The last column (sd ratio) presents the ratio of the stan-
dard deviation of the difference in sample means in (2.12) to the standard
deviation of the GLS estimator of the difference in means. The first three
columns of the table reflect the difficulty of estimating B, whereas the last
two columns reflect the potential improvement of GLS over the sample
mean based method (2.12). In the notation StarBlockpa, bq, a refers to the
number of blocks, and b refers to the block size.

an AR1 covariance matrix, the standard deviation ratio increases as the AR1 param-

eter increases; as the correlations get stronger, the potential improvement in mean

estimation due to GLS grows. For the Star Block model with fixed block size, the

standard deviation ratio is stable as n increases.

In Figure 2.1, we use ROC curves to illustrate the sensitivity and specificity for

variable selection in the sense of how well we can identify the support for ti : γi ‰ 0u

when we threshold pγi at various values. To evaluate and compare different methods,

we let pγ be the output of Algorithm 1, Algorithm 2, the oracle GLS, and the sample

mean based method (2.12). These correspond to the four curves on each plot of the

top two rows of plots. We find that Algorithm 1 and Algorithm 2 perform better than

the sample mean based method (2.12), and in some cases perform comparably to the
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Figure 2.1: ROC curves. For each plot, the horizontal axis is false positive rate (FPR)
and the vertical axis is true positive rate (TPR), as we vary a threshold
for classifying variables as null or non-null. The covariance matrices A
and B are both AR1 with parameter 0.8, with m “ 2000 and n “ 40,
80, and 160 in column one, two, and three, respectively. Ten variables
in γ have nonzero entries. On each trial, the group labels are randomly
assigned, with equal sample sizes. The marginal variance of each entry of
the data matrix is equal to one. For the first row of plots, the magnitude
of each nonzero entry of γ is 0.2, and for the second and third rows of
plots, the magnitude of each nonzero entry of γ is 0.3. In the first two rows
we display ROC curves for Algorithms 1 and 2 with penalty parameters
chosen to maximize area under the curve. The third row displays an ROC
curves for Algorithm 1, sweeping out penalty parameters.

oracle GLS. Plots in the third row of Figure 2.1 illustrate the sensitivity of Algorithm 1

to the choice of the graphical lasso (GLasso) penalty parameter (2.23); the simulations
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are run using the glasso R package (Friedman et al., 2008) to estimate B via (2.8b).

The performance can degenerate to that of the sample mean based method (2.12), if

the penalty is too high.
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Figure 2.2: Performance of centering methods as n and m are varied, with n shown
on the horizontal axis. In the first column of plots, the number of edges
is proportional to

a

m{ logpmq. In the second and third columns of plots,
the number of edges is proportional to m. In the first two columns of plots,
B´1 is an Erdős-Rényi inverse covariance matrix. In the third column,
B´1 is star block with blocks of size 10. The first row of plots shows
RMSE for estimating γ, whereas the second row shows average relative
Frobenius error in estimating B´1. All panels are based on 250 simulation
replications.

In the top row of Figure 2.2 we plot the root mean squared error (RMSE) when

estimating the mean differences γ for Algorithm 1, Algorithm 2, OLS (i.e. sample

means) and the oracle GLS estimate. The population structures for B are Erdős-

Rényi and Star Block. Both Algorithms 1 and 2 consistently outperform the sample

mean based method (2.12) for mean estimation, and Algorithm 2 even achieves com-

parable performance to the oracle GLS in some settings. The bottom row displays the
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relative Frobenius error for estimating B´1. Algorithm 2 outperforms Algorithm 1

in terms of covariance estimation and is comparable to oracle model selection, which

only centers the columns with a true mean difference.

In Figure 2.3, we illustrate that Algorithm 2 can perform well using a plug-in

estimator pτinit as in (2.16). We compare the methods when the true mean structure is

a decaying exponential; we display the correlation of the ranks of the entries of γ to

the ranks of the estimates of γ. Algorithm 2 with a plugin estimator pτinit can nearly

reach the performance of GLS with the true B. Furthermore, the plug-in version of

Algorithm 2 also consistently outperforms Algorithm 1. We also assess sensitivity to

the choice of threshold: the curve labeled “Algorithm 2” uses the plug-in estimate

pτinit, whereas “Algorithm 2 with threshold multiplier” uses a plug-in estimate of the

lower bound given in (2.27) in Theorem II.4. These two-plug in estimators exhibit

similar performance, showing robustness of Algorithm 2 to the choice of the threshold

parameter. In real data analysis, we validate this further. For the top row (AR1), the

ratio of thresholds (2.27) to (2.16) is 0.75, and for the bottom row (UC), the ratio is

0.17.

In Section 2.9, we perform additional simulations to compare Algorithm 2 to two

similar methods using ROC curves, namely, the sphering method of Allen and Tib-

shirani (2012), which uses a matrix-variate model similar to ours, and the confounder

adjustment method of Wang et al. (2015), which uses a latent factor model. Our sim-

ulations show that Algorithm 2 consistently outperforms these competing methods

in a variety of simulation settings using matrix-variate data.

2.4.2 Inference for the mean difference pγ

Two basic approaches to conducting inference for mean differences are paired and

unpaired t statistics. The unpaired t statistic is defined as follows. Let X “ pXijq.
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Then the jth unpaired t statistic is

Tj “

´

rβ
p1q
j ´ rβ

p2q
j

¯

pσ´1
j pn

´1
1 ` n´1

2 q
´1{2, where (2.32)

pσ2
j “ pn1 ` n2 ´ 2q´1

2
ÿ

k“1

ÿ

iPGk

´

Xij ´
rβ
pkq
j

¯2

,

where rβ
pkq
j , k “ 1, 2, and j “ 1, . . . ,m, denotes the sample mean of group k and

variable j as defined in (2.12), and Gk is the set of indices corresponding to group k.

When there is a natural basis for pairing the observations, and paired units are antic-

ipated to be positively correlated, we can calculate paired t statistics. For the paired

t statistic, suppose observations i and i1 “ i ` n{2 are paired, for i P t1, . . . , n{2u.

Note that samples can always be permuted so as to be paired in this way. Define the

paired differences dij “ Xij ´Xi1j, for i P t1, . . . , n{2u. Then the paired t statistic is

djpn{2´ 1q1{2{
´

řn{2
i“1pdij ´ djq

2
¯1{2

, where dj “ pn{2q
´1

řn{2
i“1 dij.

Figure 2.4 considers estimation of the “design effect” δT pDTB´1Dq´1δ, as previ-

ously defined in (2.21), with δ “ p1,´1qT . The importance of this object is discussed

in Sections 2.3.1 and 2.3.2. The design effect is estimated via δT pDT
pB´1Dq´1δ, with

pB´1 from Algorithm 1 or 2. The GLasso penalty parameters are chosen as

λA “ fA

˜

CAK
log1{2

pm_ nq
?
m

`
‖B‖1

nmin

¸

(2.33)

where we sweep over the factor fA, referred to as the penalty multiplier. Figure 2.4

displays boxplots of the ratio δT pDT
pB´1Dq´1δ{δT pDTB´1Dq´1δ over 250 replications

for each setting of the penalty multiplier fA. In Figure 2.4, B´1 follows the Erdős-

Rényi model, and A is AR1p0.8q, with m “ 2000, and n “ 40 and 80. Figure 2.4

shows that Algorithm 2 (plots B and D) estimates the design effect to high accuracy

and is quite insensitive to the penalty multiplier as long as it is less than 1, as

predicted by the theoretical analysis. Algorithm 1 also estimates the design effect
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with high accuracy, but with somewhat greater sensitivity to the tuning parameter.

The best penalty parameter for Algorithm 1 is around 0.1, whereas reasonable penalty

parameters for Algorithm 2 are in the range 0.01 to 0.1. This is consistent with smaller

entrywise error in the sample covariance for model selection centering than for group

centering.

We next compare the results from Algorithm 2 to results obtained using paired

and unpaired t statistics. Figure 2.5 illustrates the calibration and power of plug-

in Z-scores, pγj{xSEppγjq derived from Algorithm 2 for three population settings. The

standard error is calculated as

b

δT pDT
pB´1Dq´1δ, with δ “ p1,´1). In the first and

second plots, the data was simulated from AR1p0.8q and Erdős-Rényi, respectively.

In the third plot, the data was simulated from pB for ulcerative colitis data described

in Section 2.5. To obtain pB, we apply Algorithm 2 to the ulcerative colitis data, using

a Glasso penalty of λ « 0.5rplogpmq{mq ` 3{ns in step 1, followed by group centering

the top ten genes in step 2, and using a Glasso penalty of λ « 0.1rplogpmq{mq ` 3{ns

in step 4. In all cases A is AR1(0.8). In each case, we introduce 10 variables with

different population means in the two groups, by setting γ “ 0.8 for those variables,

with the remaining γ values equal to zero. The ideal Q-Q plot would follow the

diagonal except at the upper end of the range, as do our plug-in GLS test statistics.

The t statistics (ignoring dependence) are seen to be overly dispersed throughout the

range, and are less sensitive to the real effects.

2.4.3 Covariance estimation for A

Figure 2.6 shows the relative Frobenius error in estimating A´1 as n grows, for

fixed m. The horizontal axis is n{pd logpmqq, scaled so that the curves align, where

d is the maximum node degree. Because ‖A´1‖F is of order
?
m, the vertical axis

essentially displays ‖ pA´1´A´1‖F {
?
m. For estimating A´1, the rate of convergence is

of order
a

logpmq{n. For each of the three population structures, accuracy increases
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with respect to n.

2.5 Genomic study of ulcerative colitis

Ulcerative colitis (UC) is a chronic form of inflammatory bowel disease (IBD),

resulting from inappropriate immune cell infiltration of the colon. As part of an effort

to better understand the molecular pathology of UC, Lepage et al. (2011) reported

on a study of mRNA expression in biopsy samples of the colon mucosal epithelium,

with the aim of being able to identify gene transcripts that are differentially expressed

between people with UC and healthy controls. The study subjects were discordant

identical twins, that is, monozygotic twins such that one twin has UC and the other

does not. This allows us to simultaneously explore dependences among samples (both

within and between twins), dependences among genes, and mean differences between

the UC and non-UC subjects. The data set is available on the Gene Expression

Omnibus, GEO accession GDS4519 (Edgar et al., 2002).

The data consist of 10 discordant twin pairs, for a total of 20 subjects. Each

subject’s biopsy sample was assayed for mRNA expression, using the Affymetrix UG

133 Plus 2.0 array, which has 54,675 distinct transcripts. Previous analyses of this

data did not consider twin correlations or unanticipated non-twin correlations, and

used very different methodology (e.g. Wilcoxon testing). Roughly 70 genes were found

to be differentially expressed (Lepage et al., 2011).

We applied our Algorithm 2 to the UC genomics data as follows. First we se-

lected the 2000 most variable genes based on marginal variance and then rescaled

each gene to have unit marginal variance. We then applied step 1 of Algorithm 2,

setting λ “ 0.1 « 0.5

ˆ

b

logpmq
m

` 3
n

˙

, with m “ 2000 and n “ 20. For step 2 of

the algorithm, we ranked the estimated mean differences, group centered the top ten,

and globally centered the remaining genes. We then re-calculated the Gram matrix

SB using the centered data. In step 3, following the Gemini approach, we applied
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the GLasso to SB using a regularization parameter λ « 0.25p
a

logpmq{m` 3{nq. We

obtain estimated differences in means and test statistics via steps 4 through 6. A

natural analysis of these data using more standard methods would be a paired t-test

for each mRNA transcript (paired by twin pair). Such an approach is optimized for

the situation where there is a constant level of correlation within all of the twin pairs,

with no non-twin correlations. However as in Efron (2008), we wish to accommodate

unexpected correlations, which in this case would be correlations between non-twin

subjects or a lack of correlation between twin subjects. Our approach, developed in

Section 2.2, does not require pre-specification or parameterization of the dependence

structure, thus we were able to consider twin and non-twin correlations simultane-

ously. Lepage et al. note that UC has lower heritability than other forms of IBD. If

UC has a relatively stronger environmental component, this could explain the pattern

of correlations that we uncovered, as shown in Figure 2.7. The samples are ordered

so that twins are adjacent, corresponding to 2 by 2 diagonal blocks. The penalized

inverse sample correlation matrix contains nonzero entries both within twin pairs and

between twin pairs.

To also handle these unexpected non-twin correlations, we performed testing us-

ing Algorithm 2. We found only a small amount of evidence for differential gene

expression between the UC and non-UC subjects. Four of the adjusted p-values fell

below a threshold of 0.1, using the Benjamini-Hochberg adjustment; that is, four

genes satisfied 2000pppiq{i ă 0.1, where pppiq is the ith order statistic of the p-values

calculated using Algorithm 2, for i “ 1, . . . , 2000. Based on our theoretical and sim-

ulation work showing that our procedure can successfully recover and accommodate

dependence among samples, we argue that this is a more meaningful representation

of the evidence in the data for differential expression compared to methods that do

not adapt to dependence among samples. Specifically, in Section 2.5.1 we demon-

strate that our test statistics are properly calibrated and as a result have weaker (but
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more accurate) evidence for differential expression results. Below we argue that the

sample-wise correlations detected by our approach would be expected to artificially

inflate the evidence for differential expression.

2.5.1 Calibration of test statistics

As noted above, based on the test statistics produced by Algorithm 2, we find evi-

dence for only a small number of genes being differentially expressed. This conclusion,

however, depends on the test statistics conforming to the claimed null distribution

whenever the group-wise means are equal. In this section, we consider this issue in

more detail.

The first plot of Figure 2.8 compares the empirical quantiles of Φ´1pTjq to the

corresponding quantiles of a standard normal distribution, where Φ is the standard

normal cdf and the Tjs are as defined in (2.32). Plots 2 and 3 show the same informa-

tion for successive non-overlapping blocks of two thousand genes sorted by marginal

variance. Since this is a discordant twins study, we also show results for the standard

paired t statistics, pairing by twin. In all cases, the paired and unpaired statistics are

more dispersed relative to the reference distribution. By contrast, the central portion

of the GLS test statistics coincide with the reference line. Overdispersion of test

statistics throughout their range is often taken to be evidence of miscalibration (De-

vlin and Roeder , 1999). In this setting the GLS statistics are calibrated correctly

under the null hypothesis, but the paired and unpaired t statistics are not.

2.5.2 Stability of gene sets

The motivation of our Algorithm 2 is that in many practical settings a relatively

small fraction of variables may have differential means, and therefore it is advanta-

geous to avoid centering variables presenting no evidence of a strong mean difference.

Here we assess the stability of the estimated mean differences as we vary the number
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of group centered genes in Algorithm 2. To do so, we successively group center fewer

genes, globally centering the remaining genes.

The iterative process is as follows. Let pB´1
piq P Rnˆn denote the estimate of B´1

at iteration i, let pβpiq P R2ˆm denote the estimates of the group means β on the ith

iteration, let pγpiq P Rm denote the vector of differences in group means between the two

groups, and let pµpiq P Rm denote vector of global mean estimates. Let pµpB´1q P Rm

denote the result of applying GLS with design matrix D “ 1n to estimate the global

means.

Initialize pβp1q, pµp1q and pγp1q using the sample means. On the ith iteration,

1. Rank the genes according to |pγpi´1q|. Center the highest ranked n1i genes around

pβpi´1q. Center the remaining genes around pµpi´1q.

2. Obtain pB´1
piq by applying GLasso to the centered data matrix from step 1.

3. Set pβpiq “ pβp pB´1
piq q, pµpiq “ pµp pB´1

piq q, and pγpiq “ p1,´1qpβpiq.

We assess the stability of the mean estimates by comparing the rankings of the

genes across iterations of the algorithm. Table 2.2 displays the number of genes in

common out of the top ten genes on each pair of iterations of the algorithm. For

example, three genes ranked in the top ten on the first iteration of the algorithm are

also ranked in the top ten on the last iteration. Iterations six through nine produce

the same ranking of the top ten genes. Three genes are ranked among the top ten on

every iteration of the algorithm: DPP10-AS1, OLFM4, and PTN. Table 2.4 shows

simulations confirming these results.

2.5.3 Stability analysis

Table 2.3 shows the number of genes that fall below an FDR threshold of 0.1

on each iteration, for several values of the GLasso penalty λ. The number of genes

below the threshold is more sensitive to the number of group-centered genes than to
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Table 2.2: Each iteration k of the algorithm produces a ranking of all 2000 genes.
For the top ten genes on each iteration, entry pi, jq of the table shows the
number of genes in common in iterations i and j of the algorithm. Note
that the maximum possible value for any entry of the table is 10; if entry
pi, jq is 10, then iterations i and j selected the same top ten genes.

1 2 3 4 5 6 7 8 9
1 10 10 7 5 5 3 3 3 3
2 10 10 7 5 5 3 3 3 3
3 7 7 10 6 5 3 3 3 3
4 5 5 6 10 8 5 5 5 5
5 5 5 5 8 10 7 7 7 7
6 3 3 3 5 7 10 10 10 10
7 3 3 3 5 7 10 10 10 10
8 3 3 3 5 7 10 10 10 10
9 3 3 3 5 7 10 10 10 10

Table 2.3: For the algorithm, this table shows the number of genes that are significant
at an FDR level of 0.1 on each iteration of the algorithm, for different values
of the GLasso penalty λ. The top row shows the number of genes group
centered on each iteration.

n.group 2000 1024 512 256 128 64 32 16 8
λ “ 0.1 1006 913 327 14 3 1 1 1 1
λ “ 0.2 865 806 262 2 1 1 1 1 0
λ “ 0.3 778 789 303 3 1 1 0 0 0
λ “ 0.4 706 774 452 3 1 0 0 0 0
λ “ 0.6 657 751 587 19 1 1 0 0 0
λ “ 0.8 628 699 493 30 1 1 1 1 1

the GLasso penalty parameter. This is consistent with the first plot of Figure 2.10

where the design effect (in the denominator of the test statistics) is likewise more

sensitive to the number of group centered genes than to the GLasso penalty. When

fewer than 128 genes are group centered, the number of genes below an FDR threshold

of 0.1 is stable across the penalty parameters from λ “ 0.1 to λ “ 0.8.

2.6 Additional simulation results

Figure 2.9 demonstrates the effect of mean structure on covariance estimation.

As expected, when there is no mean structure Gemini performs competitively. As

41



more mean structure is added, however, its performance quickly decays to be worse

than Algorithm 2. This also provides evidence that the plug-in estimator pτinit used in

Algorithm 2 is appropriately selecting genes to group center, as when there are no or

very few differentially expressed genes Algorithm 2 is still never worse than Gemini.

Algorithm 1 does not perform as well as Algorithm 2 but still tends to eventually

outperform Gemini as more mean structure is added. As the sample size increases,

the difference between Algorithm 2 and Algorithm 1 decreases as the added noise

from group centering becomes less of a factor. We still recommend using Algorithm

2 in most realistic scenarios, but this reinforces our theoretical finding that the two

algorithms have the same error rates.

2.7 Additional data analysis

As discussed in Section 2.3.1, it is particularly important that the design effect

is accurately estimated in order for the test statistics to be properly calibrated. The

first plot of Figure 2.10 displays the sensitivity of the estimated design effect (2.21)

for Algorithm 2 to the GLasso penalty parameter and the number of group centered

columns. In the case that all columns are group centered, Algorithm 2 reduces to

Algorithm 1. If we group center all genes, the estimated design effect is sensitive

to the penalty parameter, but if we group center a small proportion of genes, it

is less sensitive to the penalty parameter. This is further evidence that it may be

advantageous to avoid over-centering the data when the true mean difference vector

γ may be sparse. The second plot of Figure 2.10 shows a quantile plot comparing the

distribution of test statistics from the UC data to test statistics from a simulation

whose population correlation structure is matched to the UC data. The quantile

plot reveals that we can reproduce the pattern of overdispersion in the test statistics

using simulated data having person-person as well as gene-gene correlations. Such

correlations therefore provide a possible explanation for the overdispersion of the test

42



statistics.

Figure 2.11 displays a quantile plot and inverse covariance graph for λ “ 0.4 and

128 group centered genes. Under these settings the test statistics appear correctly

calibrated, coinciding with the central portion of the reference line. Furthermore,

the inverse covariance graph is sparse (38 edges). In the inverse covariance graph,

there are more edges between subjects with UC than between the healthy subjects,

which could be explained by the existence of subtypes of UC inducing correlations

between subsets of subjects. The third plot of Figure 2.11 displays a sparser inverse

covariance graph, corresponding to a larger penalty λ “ 0.5. There are three edges

between twin pairs, and there are more edges between subjects with UC than between

those without UC.

2.7.1 Stability simulation

Table 2.4 shows the results from a simulation analogous to Table 2.2, demonstrat-

ing stability across iterations of the procedure. Iteration 1 begins by group centering

1280 genes and this number is halved in each successive iteration. We can see from the

table that the gene rankings generated by Algorithm 2 are robust to misspecifying the

number of differentially expressed genes. When the number of group centered genes

is 160 or below (iterations 4 through 8), the commonly selected genes among the top

20 genes are stable. Furthermore, the true positives remain stable as we decrease the

amount of genes centered, while the false positives decrease.

2.8 Conclusion

It has long been known that heteroscedasticity and dependence between observa-

tions impacts the precision and degree of uncertainty for estimates of mean values and

regression coefficients. Further, data that are modeled for convenience as being in-

dependent observations may in fact show unanticipated dependence (Kruskal , 1988).
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Table 2.4: Number of genes in common among genes ranked in the top 20 when
different numbers of genes are group centered. This simulation is analogous
to Table 2.2. Note that the maximum possible value for any entry of the
table is 20; if entry pi, jq is 20, then iterations i and j selected the same top
twenty genes. The first 10 genes have a difference of 1.5 and the second
10 have a difference of 1. All remaining genes have a true mean difference
of zero. We use B as estimated from the UC data, and A is from an
AR1p0.8q model. These simulations have n “ 20 individuals and 2000
genes and are averaged over 200 replications. The last two rows display
the average number of true and false positives among the genes ranked in
the top 20 of each iteration.

1 2 3 4 5 6 7 8
1 20.0 17.6 15.8 14.8 14.3 14.0 14.0 13.9
2 17.6 20.0 17.9 16.8 16.2 15.9 15.8 15.8
3 15.8 17.9 20.0 18.7 18.1 17.8 17.7 17.6
4 14.8 16.8 18.7 20.0 19.3 19.0 18.9 18.8
5 14.3 16.2 18.1 19.3 20.0 19.6 19.5 19.4
6 14.0 15.9 17.8 19.0 19.6 20.0 19.8 19.7
7 14.0 15.8 17.7 18.9 19.5 19.8 20.0 19.8
8 13.9 15.8 17.6 18.8 19.4 19.7 19.8 20.0

TP 12.7 14.3 15.6 16.4 16.7 16.8 16.8 16.8
FP 7.3 5.7 4.4 3.6 3.3 3.2 3.2 3.2

This has motivated the development of numerous statistical methods, including gen-

eralized/weighted least squares (GLS/WLS), mixed effect models, and generalized

estimating equations (GEE). Our approach utilizes recent advances in high dimen-

sional statistics to permit estimation of an inter-observation dependence structure

(reflected in the matrix B in our model). Like GLS/GEE, we use an approach that

alternates between mean and covariance estimation, but limit it in Algorithm 1 to a

mean estimation step, followed by a covariance update, followed by a mean update,

with an additional covariance and mean update if Algorithm 2 is used. We provide

convergence guarantees and rates for both algorithms.

Estimation of dependence or covariance structures usually requires some form of

replication, and/or strong models. We require a relatively weak form of replication

and a relatively weak model. In our framework, the dependence among observa-

tions must be common (up to proportionality) across a set of “quasi-replicates” (the
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columns of X, or the genes in our UC example). These quasi-replicates may be

statistically dependent, and may have different means. We also require the preci-

sion matrices for the dependence structures to be sparse, which is a commonly used

condition in recent high-dimensional analyses.

In addition to providing theoretical guarantees, we also show through simulations

and a genomic data analysis that the approach improves estimation accuracy for the

mean structure, and appears to mitigate test statistic overdispersion, leading to test

statistics that do not require post-hoc correction. The latter observation suggests

that undetected dependence among observations may be one reason that genomic

analyses are sometimes less reproducible than traditional statistical methods would

suggest, an observation made previously by Efron (2009) and others.

Although our theoretical analysis guarantees the convergence of our procedure

even with a single observation of the random matrix X, there are reasons to expect

this estimation problem to be fundamentally challenging. One reason for this as

pointed out by Efron (2009) and subsequently explored by Zhou (2014a), is that the

row-wise and column-wise dependence structures are somewhat non-orthogonal, in

that row-dependence can “leak” into the estimates of column-wise dependence, and

vice-versa. Our results suggest that while row-wise correlations make it more difficult

to estimate column-wise correlations (and vice-versa), when the emphasis is on mean

structure estimation, even a somewhat rough estimate of the dependence structure

(B) can substantially improve estimation and inference.

We provide additional simulation and data analysis results in Section 2.6 and 2.7.

We state some preliminary results and notation in Section 3.1. We prove Theorem II.1

in Section 3.2 and Corollary II.2 in Section 3.2.2. We prove Theorem II.3 in Section

3.3, with additional lemmas proved in Section 3.4. We prove entrywise convergence

of the sample correlation matrices for Algorithm 1 in Section 3.5. We prove Theorem

II.4 in Section 3.6, and we prove additional lemmas used in the proof of Theorem II.4
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in Section 3.7. In Section 2.9 we provide additional comparisons between our method

and some related methods on both simulated and real data.

2.9 Comparisons to related methods

The most similar existing method to ours is the sphering approach from Allen

and Tibshirani (2012). Both methods use a preliminary demeaned version of the

data to generate covariance estimates, then use these estimates to adjust the gene-

wise t-tests. The largest difference between the procedures lies in this last step. The

sphering approach produces an adjusted data set based on decorrelating residuals

from a preliminary mean estimate and performs testing and mean estimation on

this adjusted data using traditional OLS techniques. Though their approach is well-

motivated at the population level, they do not provide theoretical support for their

plug-in procedure, and in particular do not explore how noise in the initial mean

estimate may complicate their decorrelation procedure. In contrast, our approach

uses a generalized least squares approach motivated by classical statistical results

including the Gauss Markov theorem.

The sphering approach also involves decorrelating a data matrix along both axes.

Our work, including the theoretical analysis in Zhou (2014a), suggests that when the

data matrix is non-square, attempting to decorrelate along the longer axis generally

degrades performance. For genetics applications, where there are usually many more

genes than samples, this suggests that decorrelating along the genes may hurt the

performance of the sphering method. Fortunately, for gene-level analyses it is not

necessary to decorrelate along the gene axis, since inference methods like false discov-

ery rate are robust to a certain level of dependence among the variables (genes) (Ben-

jamini and Yekutieli , 2001). Therefore, we also consider a modification of the sphering

algorithm that only decorrelates along the samples.

Confounder adjustment is another related line of work that deals with similar
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issues when attempting to discover mean differences. In particular, a part of that

literature posits models where row-wise connections arise from the additive effects of

potential latent variables. Sun et al. (2012) and Wang et al. (2015) use models of the

form

Xnˆm “ Dnˆ1β
T
mˆ1 ` ZnˆrΓ

T
mˆr ` Enˆm

Znˆr “ Dnˆ1α
T
rˆ1 `Wnˆr

where Z is an unobserved matrix of r latent factors. Rewriting these equations into

the following form lets us better contrast the confounder model to our matrix-variate

setup:

X “ Dpβ ` ΓαqT `WΓT ` E. (2.34)

These models are generally estimated by using some form of factor analysis to estimate

Γ and then using regression methods with additive outlier detection to identify β,

methodology that is quite different from our GLS-based methods.

For the two-group model, in the case of a globally centered data matrix X, the

design matrix D in (2.34) takes the form

DT
nˆ1 “

„

´1 ¨ ¨ ¨ ´1 1 ¨ ¨ ¨ 1



“

„

´1Tn1
1Tn2



, (2.35)

and 2β represents the vector of true mean differences between the groups. The vector

β is estimated via OLS, yielding pβOLS, and CATE considers whether the residual X´

Dnˆ1
pβOLS has a low-rank covariance structure plus noise. If so, pΓpα aims to take out

the residual low-rank structure throughDpxΓαqT . As illustrated in simulation and data

analysis, this improves upon inference based only on pβOLS. When applying the CATE

and related methods to data originated from the generative model as described in the

present paper, CATE (and in particular, the related LEAPP) method essentially seeks
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a sparse approximation of pβOLS; Moreover in LEAPP, this is essentially achieved via

hard thresholding of coefficients of pβOLS, leading to improvements in performance

in variable selection and its subsequence inference when the vector of true mean

differences is presumed to be sparse. In our setting, we improve upon OLS using

GLS.

2.9.1 Simulation results

Figure 2.12 compares the performance of Algorithm 2 to the sphering method of

Allen and Tibshirani (2012) and the robust regression confounder adjustment method

of Wang et al. (2015) on simulated matrix variate data motivated by the ulcerative

colitis dataset described in Section 2.5. Note that this robust regression confounder

adjustment is a minor modification of the LEAPP algorithm introduced in Sun et al.

(2012). As discussed above, we also consider a modification of Allen and Tibshirani

(2012) that only decorrelates along the rows.

We can see that across a range of dataset sizes our method consistently outper-

forms sphering in terms of sensitivity and specificity for identifying mean differences.

In some settings, CATE improves on Tsphere and t-statistics despite being applied

on misspecified models, because CATE takes out the additional rank two structure

from the mean after OLS regression and does some approximate thresholding on the

coefficients. Our method using GLS performs significantly better than CATE in the

setting of non-identity B, with edges present both within and between groups.

Figure 2.14 fixes the sample size and repeats these comparisons on different sample

correlation structures (which are described in Section 2.4). Figure 2.15 is analogous

to Figure 2.14, but with A as the identity matrix. Algorithm 2 is competitive or

superior to the competing methods across a range of topologies.
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2.9.2 Comparison on UC data

We apply both Algorithm 2 and CATE on the ulcerative colitis data to compare

their respective findings on real data. Figure 2.16 presents the test statistics from

these algorithms. The test statistics have a correlation of 0.75. As expected, both

methods find that the bulk of genes have small test statistics. Note that the regression

line of the CATE test statistics on Algorithm 2’s test statistics has a slope less than

1. This implies that Algorithm 2 generates more dispersed test statistics than CATE,

and, given that we have shown in Figures 2.5 and 2.8 that Algorithm 2 provides

well-calibrated test statistics, that it also has more power in this situation.

Using a threshold of FDR adjusted p-values smaller than 0.1, both methods find

four genes with significant mean differences. However, there is only one gene (DPP10-

AS1) that both methods identify. So, although there is significant correlation between

the test statistics, the methods do not necessarily identify the same genes.
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Figure 2.3: This figure displays the correlation between the rankings of the com-
ponents of γ and pγ, sorted by magnitude, denoted Corr(Rankspγq,
Ranksppγqq in the axis label. The vector of mean differences is chosen
as γj “ C expp´p3{2000qjq, for j “ 1, . . . , 2000. We also present the
Algorithm 2 results with a multiplier on the threshold as described in
Section 2.2.3. In the top row, the true B is AR1(0.8), with n “ 40 and
m “ 2000. In the bottom row, the true B is chosen as an estimate from
the UC data, with n “ 20 and m “ 2000. For the top row, the group
labels are randomly assigned; for the bottom row, the first ten rows of
the data are in group one, and the other ten are in group two. The figure
is averaged over 200 replications. The top and bottom horizontal lines
represent GLS with true B and OLS, respectively. The vertical axis dis-
plays the correlation of ranks between pγ and γ, and the horizontal axis
displays the GLasso penalty parameter.
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Figure 2.4: Ratio of estimated design effect to true design effect when B´1 is Erdős-
Rényi, and A is AR1p0.8q. Figures (A) and (B) correspond to sample
size n “ 80; (C) and (D) correspond to n “ 40. Figures (A) and (C)
correspond to Algorithm 1; Figures (B) and (D) correspond to Algorithm
2, with ten columns group centered. These results are based on dimension
parameter m “ 2000 and 250 simulation replications.
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Figure 2.5: Quantile plots of test statistics. Ten genes have nonzero mean differences
equal to 2, 0.8, and 1 in the three plots, respectively. In each plot A is
AR1p0.8q. Covariance structures for B are as indicated. In the third plot,

the true B is set to pB for the ulcerative colitis data, described in Section
2.5. For the first two plots there are n “ 40 samples and m “ 2000
variables. For the third plot there are n “ 20 samples and m “ 2000
variables. Each plot has 250 simulation replications.
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Figure 2.6: Relative Frobenius error in estimating A´1, as n varies. In each plot
the matrix B is AR1p0.8q and A is as indicated. The vertical axis is
relative Frobenius error, and the horizontal axis n{pd logpmqq, where d is
the maximum node degree. The GLasso penalty is chosen to minimize
the relative Frobenius error. Each point is based on 250 Monte Carlo
replications.
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Figure 2.9: Performance of Gemini, Algorithm 1, and Algorithm 2 for estimating
B under different mean and covariance structures. As the sample size
increases, we can see that Algorithm 1 improves relative to Gemini and
begins to catch up to Algorithm 2. Gemini’s performance always degrades
as the true differences grow or more differentially expressed genes are
added, while Algorithm 1 and 2 are stable. We set B´1 as Erdős-Rényi
(ER) or star-block with blocks of size 4 (SB). All plots use A from an
AR1p0.8q model with m “ 2000 and are averaged over 200 replications.
In the left plot the first 50 genes are differentially expressed at the level
specified on the x-axis. As indicated, the three groups of lines correspond
to n “ 20, 40, and 80. In the right two columns there are m1 number of
genes with exponentially decaying true differences between groups, scaled
so that the largest difference is 5 (resulting in an average difference of
approximately 1).
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Figure 2.11: Quantile plot and inverse covariance graphs. The first two plots corre-
spond to λ “ 0.4 and 128 group centered genes. The third plot corre-
sponds to λ “ 0.5 and 128 group centered genes. Green circles corre-
spond to twins with UC, orange circles to twins without UC. Twins are
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Figure 2.12: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment methods, labeled as tsphere and cate, respectively. These
are ROC curves for identifying true mean differences. An implementa-
tion of the sphering algorithm that does not adjust for A is also included,
labeled as tsphere noA. Each panel shows the average ROC curves over
200 simulations. We simulate matrix variate data with gene correlations
from an AR1p0.8q model and let s “ 10 genes have true mean differences
of 0.8, 0.6, and 0.4 for the first, second and third rows, respectively. For
all of these the true B is set to pB from the ulcerative colitis data (using
a repeated block structure for larger n values), described in Section 2.5
and evenly-sized groups are assigned randomly.
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Figure 2.13: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment, labeled as tsphere and cate, respectively. These are ROC
curves for identifying true mean differences. An implementation of the
sphering algorithm that does not adjust for A is also included, labeled as
tsphere noA. Each panel shows the average ROC curves over 200 simu-
lations. We simulate matrix variate data with no gene-wise correlations
(A “ I) and let s “ 10 genes have true mean differences of 0.8, 0.6, and
0.4 for the first, second and third rows, respectively. For all of these the
true B is set to pB from the ulcerative colitis data (using a repeated block
structure for larger n values), described in Section 2.5 and evenly-sized
groups are assigned randomly.
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Figure 2.14: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment, labeled as tsphere and cate, respectively. These are ROC
curves for identifying true mean differences. An implementation of the
sphering algorithm that does not adjust for A is also included, labeled
as tsphere noA. Each panel shows the average ROC curves over 200
simulations. We simulate matrix variate data with an AR1p0.8q model
for A and let s “ 10 genes have true mean differences of 0.8. B is
constructed according to a Star-Block model with blocks of size 4, an
AR1p0.8q, and an Erdős-Rényi random graph with d “ n log n edges. All
of these use n “ 20 and randomly assign 10 observations to each group.
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Figure 2.15: Performance of Algorithm 2 (GLS) relative to sphering and confounder
adjustment, labeled as tsphere and cate, respectively. These are ROC
curves for identifying true mean differences. An implementation of the
sphering algorithm that does not adjust for A is also included, labeled as
tsphere noA. Each panel shows the average ROC curves over 200 simu-
lations. We simulate matrix variate data with no gene-wise correlations
(A “ I) and let s “ 10 genes have true mean differences of 0.6. B is
constructed according to a Star-Block model with blocks of size 4, an
AR1p0.8q, and an Erdős-Rényi random graph with d “ n log n edges. All
of these use n “ 40 and randomly assign 20 observations to each group.
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Figure 2.16: Scatterplot of t-statistics for CATE and Algorithm 2 applied on the
ulcerative colitis data. The 45-degree line is included in black while red
dashed line is the linear fit.
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CHAPTER III

Theoretical results for joint mean and covariance

estimation

This chapter is joint work with Roger Fan, Kerby Shedden, and Shuheng Zhou.

In this chapter, we provide proofs of the theorems presented in Chapter 2. Sec-

tion 3.1 contains some preliminary results and notation. In Section 3.2, we prove

Theorem II.1. In Sections 3.3 and 3.4 we prove Theorem II.3. In Section 3.5, we

derive entry-wise rates of convergence for the sample covariance matrices. In Sec-

tions 3.6 and 3.7 we prove Theorem II.4 and its auxiliary results.
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3.1 Preliminary results

In this section, we refresh notation and introduce propositions that are shared in

the proofs of the theorems. For convenience, we first restate some notation.

D “

»

—

–

1n1 0

0 1n2

fi

ffi

fl

P Rnˆ2 (3.1)

Ω “ pDTB´1Dq´1 and Ωn,m “ pD
TB´1

n,mDq
´1 (3.2)

∆ “ B´1
n,m ´B

´1 (3.3)

pβp pB´1
q “ pDT

pB´1Dq´1DT
pB´1X P R2ˆm (3.4)

When D has the form (3.1), the singular values are σmaxpDq “
?
nmax and σminpDq “

?
nmin. The condition number is κpDq “ σmaxpDq{σminpDq “

?
nratio where nratio “

maxpn1, n2q{minpn1, n2q.

We first state some convenient notation and bounds.

ra :“ amax{amin and rb :“ bmax{bmin;

1{ϕminpAq “ ‖A´1‖2 ď ‖ρpAq´1‖2{amin “
1

aminϕminpρpAqq
, (3.5)

1{ϕminpBq “ ‖B´1‖2 ď ‖ρpBq´1‖2{bmin “
1

bminϕminpρpBqq
, (3.6)

1{ϕminpρpAqq “ ‖ρpAq´1‖2 ď amax‖A´1‖2, (3.7)

1{ϕminpρpBqq “ ‖ρpBq´1‖2 ď bmax‖B´1‖2 (3.8)

‖A‖2 ď amax‖ρpAq‖2, ‖B‖2 ď bmax‖ρpBq‖2, (3.9)

‖ρpAq‖2 ď ‖A‖2{amin, and ‖ρpBq‖2 ď ‖B‖2{bmin. (3.10)

The eigenvalues of the correlation matrices satisfy

0 ă ϕminpρpAqq ď 1 ď ϕmaxpρpAqq and 0 ă ϕminpρpBqq ď 1 ď ϕmaxpρpBqq. (3.11)
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In the remainder of this section, we state preliminary results and highlight impor-

tant intermediate steps that are used in the proofs of Theorems II.1 and II.3. First

we state propositions used in mean estimation for Theorems II.1 and II.3.

3.1.1 Propositions

We now state propositions used in the proofs of Lemmas III.5 and III.6. We defer

the proof of Proposition III.1 to Section 3.2.5.

Proposition III.1. For Ω as defined in (3.2) and some design matrix D,

‖Ω‖2 ď ‖B‖2{σ
2
minpDq

In the case that D is defined as in (3.1), we have ‖Ω‖2 ď ‖B‖2{nmin.

Furthermore,

λminpΩq ě
λminpBq

nmax

. (3.12)

We state the following perturbation bound.

Theorem III.2 (Golub & Van Loan, Theorem 2.3.4). If A is invertible and ‖A´1E‖p ă

1, then A` E is invertible and

‖pA` Eq´1
´ A´1‖p ď

‖E‖p‖A´1‖2
p

1´ ‖A´1E‖p
ď
‖E‖p‖A´1‖2

p

1´ ‖A´1‖p‖E‖p
.

In Proposition III.3, we provide auxiliary upper bounds that depend on ‖∆‖2,

‖B‖2, κpDq, and σminpDq. We defer the proof of Proposition III.3 to the end of this

section, for clarity of presentation.
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Proposition III.3. Let ∆ “ B´1
n,m ´B

´1.

δ0p∆q :“ ‖Ωn,m ´ Ω‖2 ď
1

σ2
minpDq

‖B‖2
2‖∆‖2

1{κ2pDq ´ ‖B‖2‖∆‖2

(3.13)

δ1p∆q :“
∥∥ΩDT∆

∥∥
2
ď σmaxpDq‖B‖2‖∆‖2{σ

2
minpDq “

?
nmax

nmin

‖B‖2‖∆‖2. (3.14)

If ‖pDTB´1Dq´1DT∆D‖2 ă 1, then

δ2p∆q :“
∥∥pΩn,m ´ ΩqDT∆

∥∥
2
ď

κpDq

σminpDq

‖B‖2
2‖∆‖2

2

1{κ2pDq ´ ‖B‖2‖∆‖2

(3.15)

δ3p∆q :“
∥∥pΩn,m ´ ΩqDTB´1

∥∥
2
ď

κpDq

σminpDq

‖B‖2
2‖B´1‖2‖∆‖2

1{κ2pDq ´ ‖B‖2‖2‖∆‖2

(3.16)

The following proposition is a corollary of Proposition III.3.

Proposition III.4. When D has the form (3.1), and Ω is as defined in (3.2),

δ0p∆q “ ‖Ωn,m ´ Ω‖2 ď
1

nmin

‖B‖2
2‖∆‖2

1{nratio ´ ‖B‖2‖∆‖2

δ1p∆q “
∥∥ΩDT∆

∥∥
2
ď

?
nratio
?
nmin

‖B‖2‖∆‖2

δ2p∆q “
∥∥pΩn,m ´ ΩqDT∆

∥∥
2
ď

?
nratio
?
nmin

‖B‖2
2‖∆‖2

2

1{nratio ´ ‖B‖2‖∆‖2

Let K be defined as in Theorem II.1. We express the entrywise rates of conver-

gence of the sample correlation matrices pΓpBq and pΓpAq, respectively, in terms of the

following quantities:

rα “ CAK
log1{2

pmq
?
m

ˆ

1`
‖B‖1

n

˙

`
‖B‖1

nmin

and rη “ CBK
log1{2

pm_ nq
?
n

`
‖B‖1

n
.(3.17)
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3.2 Proof of Theorem II.1 and Corollary II.2

3.2.1 Proof of Theorem II.1

Let Bn,m P Rnˆn denote a fixed positive definite matrix. Let D be as defined as

in (2.4). Define ∆n,m “ B´1
n,m ´B

´1 and

Ω “ pDTB´1Dq´1 and Ωn,m “ pD
TB´1

n,mDq
´1. (3.18)

Note that we can decompose the error for all j as

‖pβjpB´1
n,mq ´ β

˚
j ‖2 ď ‖pβjpB´1

q ´ β˚j ‖2 ` ‖pβjpB´1
n,mq ´

pβjpB
´1
q‖2 “: I` II. (3.19)

We will use the following lemmas, which are proved in subsections 3.2.4 and 3.2.3, to

bound these two terms on the right-hand side, respectively.

Lemma III.5. Let E2 denote the event

E2 “

!

‖pβjpB´1
q ´ β˚j ‖2 ď sn,m

)

, with sn,m “ C3d
1{2

d

logpmq‖B‖2

nmin

. (3.20)

Then P pE2q ě 1´ 2{md.

Lemma III.6. Let Bn,m P Rnˆn denote a fixed matrix such that Bn,m ą 0. Let

Xj P Rn denote the jth column of X, where X is a realization of model (2.2). Let E3

denote the event

E3 “

!

‖pβjpB´1
n,mq ´

pβjpB
´1
q‖2 ď tn,m

)

, with tn,m “ rCn
´1{2
min ‖∆n,m‖2. (3.21)

for some absolute constant rC. Then P pE3q ě 1´ 2{md.

The proof of (2.18) follows from the union bound P pE2XE3q ě 1´P pE2q´P pE3q ě

1 ´ 4{md. Next we prove (2.20). Let rn,m “ sn,m ` tn,m, as defined in (2.18). Let
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δ “ p1,´1q P R2. Then

|pγjpB
´1
n,mq´γj| “

ˇ

ˇ

ˇ
δT

´

pβjpB
´1
n,mq ´ β

˚
j

¯
ˇ

ˇ

ˇ
ď ‖δ‖2‖pβjpB´1

n,mq´β
˚
j ‖2 “

?
2‖pβjpB´1

n,mq´β
˚
j ‖2,

where we used the Cauchy-Schwarz inequality. Hence if ‖pβjpB´1
n,mq ´ βj‖2 ď rn,m, it

follows that |pγjpB
´1
n,mq ´ γj| ď

?
2rn,m. The result holds by applying a union bound

over the variables j “ 1, . . . ,m. l

This completes the proof of Theorem II.1.

3.2.2 Proof of Corollary II.2 and Corollary II.5

First note that by Proposition III.4,

∣∣∣δT pDT
pB´1Dq´1δ ´ δT pDTB´1Dq´1δ

∣∣∣ “ ∣∣∣δT ´pDT
pB´1Dq´1

´ pDTB´1Dq´1
¯

δ
∣∣∣

ď ‖δ‖2
2

∥∥∥pDT
pB´1Dq´1

´ pDTB´1Dq´1
∥∥∥

2

“ 2
∥∥∥pDT

pB´1Dq´1
´ pDTB´1Dq´1

∥∥∥
2

ď 2
‖B‖2

2 ‖∆‖2

nmin

. (3.22)

Note that by Proposition III.1,

|δTΩδ| ě
λminpBq

nmax

. (3.23)

Corollary II.2 follows from (3.22) and (3.23), which provide an upper bound on the

numerator and lower bound on the denominator, respectively.

Corollary II.5 holds because by (2.28) of Theorem II.4,

∣∣∣δT ´pΩ´ Ω
¯

δ
∣∣∣ ď 2

‖B‖2
2

nmin

¨

˝

C 1λA
b

|B´1|0,off _ 1

bminϕ2
minpρpBqq

˛

‚ď 2C 1
κpBq

nmin

λA

b

|B´1|0,off _ 1

(3.24)
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3.2.3 Proof of Lemma III.5

First, we show that

‖Ω1{2‖F ` d1{2K2
a

logpmq‖Ω‖1{2
2 {
?
c ď sn,m, (3.25)

with sn,m as defined in (2.19). Because ‖Ω1{2‖F ď
?

2‖Ω1{2‖2, it follows that

‖Ω1{2‖F ` d1{2K2
a

logpmq‖Ω‖1{2
2 {
?
c ď

´?
2` d1{2K2

a

logpmq{
?
c
¯

‖Ω‖1{2
2

ď C3d
1{2
a

logpmq‖Ω‖1{2
2 ď C3d

1{2

d

logpmq‖B‖2

nmin

,

where the last step follows from Proposition III.1. Next, we express pβjpB
´1q ´ β˚j as

pβjpB
´1
q ´ β˚j “ Ω1{2ηj, where ηj “ Ω´1{2

´

pβjpB
´1
q ´ β˚j

¯

.

By the bound (3.25), event Ec2 implies t‖Ω1{2ηj‖2 ą ‖Ω1{2‖F`d1{2K2
a

logpmq‖Ω‖1{2
2 {
?
cu.

Therefore,

P p‖Ωηj‖2 ě sn,mq ď P
´

‖Ωηj‖2 ą ‖Ω1{2‖F ` d1{2K2
a

logpmq‖Ω‖1{2
2 {
?
c
¯

ď P
´

ˇ

ˇ‖Ω1{2ηj‖2 ´ ‖Ω1{2‖F
ˇ

ˇ ą d1{2K2
a

logpmq‖Ω‖1{2
2 {
?
c
¯

ď 2 exp

¨

˚

˝

´c
´

d1{2K2
a

logpmq‖Ω‖1{2
2 {
?
c
¯2

K4‖Ω1{2‖2
2

˛

‹

‚

“ 2 exp

ˆ

´d logpmq‖Ω‖2

‖Ω1{2‖2
2

˙

“ 2 exp p´d logpmqq “ 2{md.

l
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3.2.4 Proof of Lemma III.6

The proof will proceed in the following steps. First, we show that pβjpB
´1
n,mq ´

pβjpB
´1q can be expressed as V Zj, where

V “
`

Ωn,mD
TB´1

n,m ´ ΩDTB´1
˘

B1{2
P R2ˆm

is a fixed matrix, and Zj “ B´1{2Xj. Second, we show that

‖V ‖F ` d1{2K2 log1{2
pmq‖V ‖2{

?
c ď rCn

´1{2
min ‖∆‖2.

Third, we use the first and second steps combined with the Hanson-Wright inequality

to show that with high probability, ‖V Zj‖2 is at most rCn
´1{2
min ‖∆‖2.

For the first step of the proof, let Zj “ B´1{2Xj, and note that pβjpB
´1
n,mq ´

pβjpB
´1q “ V Zj, where V P R2ˆm is a fixed matrix, because

pβjpB
´1
n,mq ´

pβjpB
´1
q “

“

pDTB´1
n,mDq

´1DTB´1
n,m ´ ΩDTB´1

‰

B1{2
pB´1{2Xjq

“
“

pDTB´1
n,mDq

´1DTB´1
n,m ´ ΩDTB´1

‰

B1{2Zj.

For the second step of the proof, we show that ‖V ‖F`d1{2K2 log1{2
pmq‖V ‖2{

?
c ď

rCn
´1{2
min ‖∆‖2. First we obtain an upper bound on V . By the triangle inequality,

‖Ωn,mD
TB´1

n,m ´ ΩDTB´1‖2 “
∥∥Ωn,mD

TB´1
n,m ´ ΩDTB´1

∥∥
2

ď
∥∥pΩn,m ´ ΩqDT

pB´1
n,m ´B

´1
q
∥∥

2
`
∥∥pΩn,m ´ ΩqDTB´1

∥∥
2
`
∥∥ΩDT∆

∥∥
2

“ δ2p∆q ` δ3p∆q ` δ1p∆q.
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We bound each of the three terms using Proposition III.3,

δ2p∆q “
∥∥pΩn,m ´ ΩqDT∆

∥∥
2
ď

?
nratio
?
nmin

‖B‖2
2‖∆‖2

2

1{nratio ´ ‖B‖2‖∆‖2

δ3p∆q “
∥∥pΩn,m ´ ΩqDTB´1

∥∥
2
ď

?
nratio
?
nmin

‖B‖2
2‖B´1‖2‖∆‖2

1{nratio ´ ‖B‖2‖2‖∆‖2

δ1p∆q “
∥∥ΩDT∆

∥∥
2
ď

?
nratio
?
nmin

‖B‖2‖∆‖2.

Applying the above bounds yields

‖V ‖2 ď

?
nratio
?
nmin

‖∆‖2‖B‖1{2
2

ˆ

‖B‖2
2‖∆‖2

1{κ2pDq ´ ‖B‖2‖∆‖2

`
‖B‖2

2‖B´1‖2

1{κ2pDq ´ ‖B‖2‖2‖∆‖2

` ‖B‖2

˙

ď rCn
´1{2
min ‖∆‖2.

For the third step of the proof, we use the Hanson-Wright inequality to bound ‖V Zj‖2:

P
´

‖V Zj‖2 ą rCn
´1{2
min ‖∆‖2

¯

ď P
´

‖V Zj‖2 ą ‖V ‖F ` d1{2K2 log1{2
pmq‖V ‖2{

?
c
¯

“ P
´

‖V Zj‖2 ´ ‖V ‖F ą d1{2K2 log1{2
pmq‖V ‖2{

?
c
¯

ď P
´

|‖V Zj‖2 ´ ‖V ‖F | ą d1{2K2 log1{2
pmq‖V ‖2{

?
c
¯

ď 2 exp

¨

˚

˝

´

c
´

d1{2K2 log1{2
pmq‖V ‖2{

?
c
¯2

K4‖V ‖2
2

˛

‹

‚

(Hanson-Wright inequality)

“ 2 exp p´d logpmqq “ 2{md.

l

3.2.5 Proof of Proposition III.1

Let D “ UΨV T be the singular value decomposition of D, with U P Rnˆ2, Ψ P

R2ˆ2, and V P R2ˆ2. Then pDTB´1Dq´1 “ pVΨUTB´1UΨV T q´1 “ VΨ´1pUTB´1Uq´1Ψ´1V T .
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Thus

‖pDTB´1Dq´1‖2 “ ‖Ψ´1
pUTB´1Uq´1Ψ´1‖2 (because V is square, orthonormal)

ď ‖Ψ´1‖2
2‖pUTB´1Uq´1‖2 (sub-multiplicative property)

“ σ2
maxpΨ

´1
q‖pUTB´1Uq´1‖2

“ ‖pUTB´1Uq´1‖2{σ
2
minpΨq “ ‖pUTB´1Uq´1‖2{σ

2
minpDq,

where σminpDq “ σminpΨq, because Ψ is the diagonal matrix of singular values of D.

Next, note that ‖pUTB´1Uq´1‖2 “ 1{ϕminpU
TB´1Uq and

ϕminpU
TB´1Uq “ min

ηPR2
ηTUTB´1Uη{ηTη.

We perform the change of variables γ “ Uη, under which ηTη “ γTUTUγ “ γTγ

(that is, U preserves the length of η because the columns of U are orthonormal).

Hence

ϕminpU
TB´1Uq “ min

γPcolpUq,γ‰0
γTB´1γ{γTγ

ě min
γ‰0

γTB´1γ{γTγ

“ ϕminpB
´1
q “ 1{‖B‖2.

We have shown that 1{ϕminpU
TB´1Uq ď ‖B‖2, which implies that

‖pUTB´1Uq´1‖2 ď ‖B‖2.

Therefore

‖pDTB´1Dq´1‖2 ď ‖B‖2{σ
2
minpDq.
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In the special case of the two-group design matrix, σ2
minpDq “ nmin, so

‖pDTB´1Dq´1‖2 ď ‖B‖2{nmin.

The proof of (3.12) is as follows:

λminpΩq “
1

λmax pΩ´1q
“

1

λmax pDTB´1Dq
ě

1

‖D‖2
2 λmaxpB´1q

“
λminpBq

‖D‖2
2

“
λminpBq

nmax

.

l

3.2.6 Proof of Proposition III.3

By the definitions of Ωn,m in (3.2) and ∆ “ B´1
n,m ´ B´1, we have by Theorem

III.2

‖Ωn,m ´ Ω‖2 “ ‖pDTBn,mDq
´1
´ Ω‖2

“

∥∥∥`DTB´1
n,mD ´D

TB´1D `DTB´1D
˘´1

´ Ω
∥∥∥

2

“

∥∥∥`DTB´1D `DT∆D
˘´1

´ Ω
∥∥∥

2

ď
‖DT∆D‖2‖Ω‖2

2

1´ ‖Ω‖2‖DT∆D‖2

(by Theorem III.2)

ď
pσ2

maxpDq{σ
4
minpDqq ‖B‖2

2‖∆‖2q

1´ κ2pDq‖B‖2‖∆‖2

.

In the last step we apply Proposition III.1. Thus

‖Ωn,m ´ Ω‖2 ď
1

σ2
minpDq

κ2pDq‖B‖2
2‖∆‖2

1´ κ2pDq‖B‖2‖∆‖2

“
1

σ2
minpDq

‖B‖2
2‖∆‖2

p1{κ2pDqq ´ ‖B‖2‖∆‖2

.

We prove (3.14) using the submultiplicative property of the operator norm and Propo-

sition III.1:

∥∥ΩDT∆
∥∥

2
ď
‖B‖2

σ2
minpDq

σmaxpDq‖∆‖2 “
κpDq

σminpDq
‖B‖2‖∆‖2.
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We prove (3.15), as follows:

∥∥pΩn,m ´ ΩqDT∆
∥∥

2
ď ‖Ωn,m ´ Ω‖2

∥∥DT
∥∥

2
‖∆‖2

ď

„

1

σ2
minpDq

‖B‖2
2‖∆‖2

p1{κ2pDqq ´ ‖B‖2‖∆‖2



σmaxpDq‖∆‖2 (by Proposition III.3)

“
κpDq

σminpDq

‖B‖2
2‖∆‖2

2

p1{κ2pDqq ´ ‖B‖2‖∆‖2

.

The proof of (3.16) is analogous. l

3.3 Proof of Theorem II.3

Note that the proof in the current Section follows exactly the same steps as the

proof of Theorems 3.1 and 3.2 in Zhou (2014a). Theorem II.3 Part II is proved

in Section 3.3.2. To prove Theorem II.3 Part I, we first state Lemma III.7, which

establishes rates of convergence for estimating A´1 and B´1 in the operator and the

Frobenius norm. We then state the auxiliary Lemma III.8, which is identical to that

for Theorems 11.1 and 11.2 of Zhou (2014a), except that we plug in rα and rη as defined

in (3.17). Putting these results together proves Theorem II.3, Part I. We prove these

auxiliary results in Section 3.4.

Let X0 denote the event

@i, j

ˇ

ˇ

ˇ

ˇ

ˇ

pei ´ piq
TXXT pej ´ pjq

trpA˚q
a

b˚iib
˚
jj

´ ρijpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ď rα (3.26)

@i, j

ˇ

ˇ

ˇ

ˇ

ˇ

XT
i pI ´ P2qXj

trpB˚q
a

a˚iia
˚
jj

´ ρijpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ď rη, (3.27)

with X0pBq and X0pAq denoting the events defined by equations (3.26) and (3.27),

respectively.

Let rα and rη be as defined in (3.17). On event X0pAq, for all j, pΓjjpAq “ ρjjpAq “ 1
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and

max
j,k,j ­“k

|pΓjkpAq ´ ρjkpAq| ď
2rη

1´ rη
(3.28)

On event X0pBq, for all j, pΓjjpBq “ ρjjpBq “ 1 and

max
j,k,j ­“k

|pΓjkpBq ´ ρjkpBq| ď
2rα

1´ rα
. (3.29)

Lemma III.7. Suppose (A1) and (A2) hold. Let xW1 and xW2 be as defined in (2.10).

Let pAρ and pBρ be as defined in (2.8a) and (2.8b). For some absolute constants 18 ă

C,C 1 ă 36, the following events hold with probability at least 1´ 2{pn_mq2,

δA,2 :“ ‖xW1
pAρxW1{ trpBq ´ A‖2 ď CamaxκpρpAqq

2λB

b

|A´1|0,off _ 1 (3.30)

δB,2 :“ ‖xW2
pBρ
xW2{ trpAq ´B‖2 ď C 1bmaxκpρpBqq

2λA

b

|B´1|0,off _ 1 (3.31)

δA,F :“ ‖xW1
pAρxW1{ trpBq ´ A‖F ď CamaxκpρpAqq

2λB

b

|A´1|0,off _m (3.32)

δB,F :“ ‖xW2
pBρ
xW2{ trpAq ´B‖F ď C 1bmaxκpρpBqq

2λA

b

|B´1|0,off _ n; (3.33)

and for some 10 ă C,C 1 ă 19,

δ´A,2 :“

∥∥∥∥trpBq
´

xW1
pAρxW1

¯´1

´ A´1

∥∥∥∥
2

ď

CλB
b

|A´1|0,off _ 1

aminϕ2
minpρpAqq

δ´B,2 :“

∥∥∥∥trpAq
´

xW2
pBρ
xW2

¯´1

´B´1

∥∥∥∥
2

ď
C 1λA

a

|B´1|0,off _ 1

bminϕ2
minpρpBqq

δ´A,F :“

∥∥∥∥trpBq
´

xW1
pAρxW1

¯´1

´ A´1

∥∥∥∥
F

ď
CλB

a

|A´1|0,off _m

aminϕ2
minpρpAqq

δ´B,F :“

∥∥∥∥trpAq
´

xW2
pBρ
xW2

¯´1

´B´1

∥∥∥∥
F

ď
C 1λA

a

|B´1|0,off _ n

bminϕ2
minpρpBqq

.

Lemma III.8 follows from Theorems 11.1 and 11.2 of Zhou (2014a,b), where we

now plug in rα and rη as defined in (3.17). For completeness, we provide a sketch in
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Section 3.4.2.

Lemma III.8. Suppose (A1) and (A2) hold. For ε1, ε2 P p0, 1q, let

λA “ rη{ε1, λB “ rα{ε2,

for rα, rη as defined in (3.17), and suppose λA, λB ă 1. Then on event X0, for 18 ă

C,C 1 ă 36,

‖{AbB ´ AbB‖2 ď
λA ^ λB

2
‖A‖2‖B‖2 ` CλBamax‖B‖2κpρpAqq

2
b

|A´1|0,off _ 1

`C 1λAbmax‖A‖2κpρpBqq
2
b

|B´1|0,off _ 1

`2

„

C 1λAbmaxκpρpBqq
2
b

|B´1|0,off _ 1

 „

CλBamaxκpρpAqq
2
b

|A´1|0,off _ 1



,

and for 10 ă C,C 1 ă 19,

‖{AbB
´1
´ A´1

bB´1‖2 ď
λA ^ λB

3
‖A´1‖2‖B´1‖2 ` CλB‖B´1‖2

a

|A´1|0,off _ 1

aminϕ2
minpρpAqq

` C 1λA‖A´1‖2

a

|B´1|0,off _ 1

bminϕ2
minpρpBqq

`
3

2

«

CλB

a

|A´1|0,off _ 1

aminϕ2
minpρpAqq

ff«

C 1λA

a

|B´1|0,off _ 1

bminϕ2
minpρpBqq

ff

;

For 18 ă C,C 1 ă 36,

‖{AbB ´ AbB‖F ď
λA ^ λB

2
‖A‖F‖B‖F ` CλBamax‖B‖FκpρpAqq2

b

|A´1|0,off _m

`C 1λAbmax‖A‖FκpρpBqq2
b

|B´1|0,off _ n

`2

„

C 1λAbmaxκpρpBqq
2
b

|B´1|0,off _ n

 „

CλBamaxκpρpAqq
2
b

|A´1|0,off _m



,
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and for 10 ă C,C 1 ă 19,

‖{AbB
´1
´ A´1

bB´1‖F ď
λA ^ λB

3
‖A´1‖2‖B´1‖F ` CλB‖B´1‖F

a

|A´1|0,off _m

aminϕ2
minpρpAqq

` C 1λA‖A´1‖F

a

|B´1|0,off _ n

bminϕ2
minpρpBqq

`
7

5

«

CλB

a

|A´1|0,off _m

aminϕ2
minpρpAqq

ff«

C 1λA

a

|B´1|0,off _ n

bminϕ2
minpρpBqq

ff

.

3.3.1 Proof of Theorem II.3, Part I

We state additional helpful bounds:

pamin _ ϕminpAqq
?
m ď ‖A‖F “

˜

m
ÿ

i“1

ϕ2
i pAq

¸1{2

ď
?
m‖A‖2, (3.34)

pbmin _ ϕminpBqq
?
n ď ‖B‖F “

˜

m
ÿ

i“1

ϕ2
i pBq

¸1{2

ď
?
n‖B‖2, (3.35)

?
m{amax “

ˆ

1

amax

_
1

ϕmaxpAq

˙

?
m ď ‖A´1‖F ď

?
m‖A´1‖2, (3.36)

and

?
n{bmax “

ˆ

1

bmax

_
1

ϕmaxpBq

˙

?
n ď ‖B´1‖F ď

?
n‖B´1‖2. (3.37)

Proof of Theorem II.3, Part I. We plug in bounds as in (3.9) and (3.10)

into Lemma III.8 to obtain under (A1) and (A2),
∥∥∥{AbB ´ AbB∥∥∥

2
ď ‖A‖2‖B‖2δ,

where

δ “
λA ^ λB

2
`
CraκpρpAqq

ϕminpρpAqq
λB

b

|A´1|0,off _ 1`
C 1rbκpρpBqq

ϕminpρpBqq
λA

b

|B´1|0,off _ 1

` 2

„

CraκpρpAqq

ϕminpρpAqq
λB

b

|A´1|0,off _ 1

 „

C 1rbκpρpBqq

ϕminpρpBqq
λA

b

|B´1|0,off _ 1



“
λA ^ λB

2
` log1{2

pm_ nq

˜

c

|A´1|0,off _ 1

m
`

c

|B´1|0,off _ 1

n

¸

` op1q.

For the inverse, we plug in bounds as in (3.7) and (3.8) into Lemma III.8 to obtain
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under (A1) and (A2),
∥∥∥{AbB´1

´ A´1 bB´1
∥∥∥

2
ď ‖A´1‖2‖B´1‖2δ

1, where

δ1 “
λA ^ λB

3
`
CraλB

a

|A´1|0,off _ 1

ϕminpρpAqq
`
C 1rbλA

a

|B´1|0,off _ 1

ϕminpρpBqq

`
3

2

«

CraλB
a

|A´1|0,off _ 1

ϕminpρpAqq

ff«

C 1rbλA
a

|B´1|0,off _ 1

ϕminpρpBqq

ff

—
λA ^ λB

3
` log1{2

pm_ nq

˜

c

|A´1|0,off _ 1

m
`

c

|B´1|0,off _ 1

n

¸

` op1q.

The bounds in the Frobenius norm are proved in a similar manner; see Zhou (2014a)

to finish. l

3.3.2 Proof of Theorem II.3, Part II

Let pB´1 “ xW2
pBρ
xW2. Let p∆ “ pB´1 ´ B´1. Let E0pBq denote the event given by

equations (3.34) and (3.34), which we know has probability at least 1 ´ 2{pn _mq2

from Lemma III.7, and define the event

E4 “

!

‖pβjp pB´1
q ´ β˚j ‖2 ď sn,m ` t

1
n,m

)

, (3.38)

where sn,m is as defined in (2.19) and

t1n,m :“ CλA

d

nratio

`

|B´1
0 |0,off _ 1

˘

nmin

. (3.39)

Under E0pBq, we see that

‖p∆‖2 ď
C 1λA

a

|B´1|0,off _ 1

bminϕ2
minpρpBqq

“ op1q. (3.40)
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Using Proposition III.1 and the fact that ‖D‖2 “
?
nmax, we get that

‖ΩDT
p∆D‖2 ď nratio‖B‖2‖p∆‖2, (3.41)

From (3.40) we know that ‖p∆‖2 ď 1{pnratio‖B‖2q, which we can plug into (3.41) to

show that ‖ΩDT
p∆D‖2 ă 1. This implies that rCn

´1{2
min ‖p∆‖2 ď t1n,m. Therefore, we

can apply Theorem II.1 to get that the conditional probability of E4 given E0pBq is

at least 1´ 4{pn_mq2.

We can then bound the unconditional probability,

P pEc4q ď P pEc4 | E0pBqqP pE0pBqq ` P pE0pBq
c
q

ď P pEc4 | E0pBqq ` P pE0pBq
c
q

ď
4

pn_mq2
`

2

pn_mq2
.

l

3.4 More proofs for Theorem II.3

The proof of Lemma III.7 appears in Section 3.4.1. The proofs of auxiliary lemmas

appear in Section 3.4.2.

3.4.1 Proof of Lemma III.7

In order to prove Lemma III.7, we need Theorem III.9, which shows explicit non-

asymptotic convergence rates in the Frobenius norm for estimating ρpAq, ρpBq, and

their inverses. Theorem III.9 follows from the standard proof; see Rothman et al.

(2008); Zhou et al. (2011) We also need Proposition III.11 and Lemma III.10, which

are stated below and proved in Section 3.4.2.
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Theorem III.9. Suppose that (A2) holds. Let pAρ and pBρ be the unique minimizers

defined by (2.8a) and (2.8b) with sample correlation matrices pΓpAq and pΓpBq as their

input.

Suppose that event X0 holds, with

rη
b

|A´1|0,off _ 1 “ op1q and rα
b

|B´1|0,off _ 1 “ op1q.

Set for some 0 ă ε, ε ă 1, λB “ rα{ε and λA “ rη{ε. (3.42)

Then on event X0, we have for 9 ă C ă 18

∥∥∥ pAρ ´ ρpAq∥∥∥
2
ď

∥∥∥ pAρ ´ ρpAq∥∥∥
F
ď CκpρpAqq2λB

b

|A´1|0,off _ 1,∥∥∥ pBρ ´ ρpBq
∥∥∥

2
ď

∥∥∥ pBρ ´ ρpBq
∥∥∥
F
ď CκpρpBqq2λA

b

|B´1|0,off _ 1,

and

∥∥∥ pA´1
ρ ´ ρpAq´1

∥∥∥
2
ď

∥∥∥ pA´1
ρ ´ ρpAq´1

∥∥∥
F
ă

CλB
b

|A´1|0,off _ 1

2ϕ2
minpρpAqq

, (3.43)

∥∥∥ pB´1
ρ ´ ρpBq´1

∥∥∥
2
ď

∥∥∥ pB´1
ρ ´ ρpBq´1

∥∥∥
F
ď

CλA
b

|B´1|0,off _ 1

2ϕ2
minpρpBqq

. (3.44)

We now state an auxiliary result, Lemma III.10, where we prove a bound on the

error in the diagonal entries of the covariance matrices, and on their reciprocals. The

following Lemma provides bounds analogous to those in Claim 15.1 Zhou (2014a,b).

Lemma III.10. Let xW1 and xW2 be as defined in (2.10). Let W1 “
a

trpBq diagpAq1{2

and W2 “
a

trpAq diagpBq1{2. Suppose event X0 holds, as defined in (3.26), (3.27).
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For η1 :“ rη?
1´rη

ď
λB
6

and α1 :“ rα?
1´rα

ď
λA
6

,

∥∥∥xW1 ´W1

∥∥∥
2
ď rη

a

tr pBq
?
amax,

∥∥∥xW´1
1 ´W´1

1

∥∥∥
2
ď

rη

1´ rη
{
a

tr pBq
?
amin,∥∥∥xW2 ´W2

∥∥∥
2
ď rα

a

tr pAq
a

bmax, and
∥∥∥xW´1

2 ´W´1
2

∥∥∥
2
ď

rα

1´ rα
{
a

tr pAq
a

bmin.

Proposition III.11. (Zhou, 2014a). Let xW and W be diagonal positive definite

matrices. Let pΨ and Ψ be symmetric positive definite matrices. Then

∥∥∥xW pΨxW ´WΨW
∥∥∥

2
ď

´∥∥∥xW ´W
∥∥∥

2
` ‖W‖2

¯2 ∥∥∥pΨ´Ψ
∥∥∥

2

`

∥∥∥xW ´W
∥∥∥

2

´
∥∥∥xW ´W

∥∥∥
2
` 2

¯

‖Ψ‖2∥∥∥xW pΨxW ´WΨW
∥∥∥
F
ď

´∥∥∥xW ´W
∥∥∥

2
` ‖W‖2

¯2 ∥∥∥pΨ´Ψ
∥∥∥
F

`

∥∥∥xW ´W
∥∥∥

2

´
∥∥∥xW ´W

∥∥∥
2
` 2

¯

‖Ψ‖F .

Proof of Lemma III.7. Assume that event X0 holds. The proof follows exactly

that of Lemma 15.3 in Zhou (2014a,b), in view of Theorem III.9, Lemma III.10

and Proposition 15.2 from Zhou (2014a,b), which is restated immediately above in

Proposition III.11. l

It remains to prove Lemma III.10.

Proof of Lemma III.10. Suppose that event X0 holds. Then

max
i“1,...,m

ˇ

ˇ

ˇ

ˇ

ˇ

a

XT
i pI ´ P2qXi

a

aii trpBq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

´

1´
a

1´ rη
¯

ł

´

a

1` rη ´ 1
¯

ď rη.

Thus for all i,

1
a

1` rη
ď

a

aii trpBq
a

XT
i pI ´ P2qXi

ď
1

a

1´ rη
,
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so

ˇ

ˇ

ˇ

ˇ

ˇ

a

aii trpBq
a

XT
i pI ´ P2qXi

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

1´
a

1´ rη
a

1´ rη

¸

ł

˜

a

1` rη ´ 1
a

1` rη

¸

ď
rη

a

1´ rη
.

l

3.4.2 Proof of Lemma III.8

In order to prove Lemma III.8, we state Lemma III.12, Lemma III.13, and Propo-

sition III.14. Let ‖¨‖ denote a matrix norm such that ‖AbB‖ “ ‖A‖‖B‖. Let

∆ :“ xW1
pAρxW1 bxW2

pBρ
xW2{ trpAq trpBq ´ AbB, (3.45)

∆1 :“ trpAq trpBq
´

xW1
pAρxW1

¯´1

b

´

xW2
pBρ
xW2

¯´1

´ A´1
bB´1. (3.46)

Lemma III.12 is identical to Lemma 15.5 of Zhou (2014a), except that we now plug

in quantities rα and rη as defined in (3.17). Likewise, Proposition III.14 is analogous

to (20) in Theorem 4.1 of Zhou (2014a), except that we now use the centered data

matrix pI ´ P2qX, together with the rates rα, rη.

Lemma III.12. Let {AbB be as in (2.11). Then for Σ “ AbB,

∥∥∥{AbB´1
´ Σ´1

∥∥∥ ď prα ^ rηq‖A´1‖‖B´1‖` p1` rα ^ rηq‖∆1‖ (3.47)∥∥∥{AbB ´ Σ
∥∥∥ ď λA ^ λB

2
‖A‖‖B‖` p1` λA ^ λB

2
q‖∆‖. (3.48)

Lemma III.13 is a helpful bound on the difference of Kronecker products.

Lemma III.13. (Zhou, 2014a). For matrices A1 and B1, let ∆A :“ A1 ´ A and

∆B :“ B1 ´B. Then

‖A1 bB1 ´ AbB‖ ď ‖∆A‖‖B‖` ‖∆B‖‖A‖` ‖∆A‖‖∆B‖.
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Proposition III.14. Under the event X0, as defined in as defined in (3.26), (3.27),

ˇ

ˇ‖pI ´ P2qX‖2
F ´ trpAqtrpBq

ˇ

ˇ ď prα ^ rηqtrpAqtrpBq.

Proof of Lemma III.8. Assume that event X0 as defined in (3.26), (3.27) holds.

The proof follows exactly the steps in Theorems 11.1 and 11.2 in Supplementary

Material of Zhou (2014a,b). l

Proof of Lemma III.12. By the triangle inequality and the sub-multiplicativity

of the norm ‖¨‖, with ∆ and ∆1 as defined in (3.45) and (3.46),

trpAq trpBq
∥∥∥´xW´1

1
pA´1
ρ
xW´1

1

¯

b

´

xW´1
2

pB´1
ρ
xW´1

2

¯
∥∥∥ ď ‖A´1‖‖B´1‖` ‖∆1‖ (3.49)∥∥∥´xW1

pAρxW1

¯

b

´

xW2
pBρ
xW2

¯

{ trpAq trpBq
∥∥∥ ď ‖A‖‖B‖` ‖∆‖. (3.50)

Following proof of Lemma 15.5 Zhou (2014a,b), we have by definition of ∆1, and

Proposition III.14, and (3.49),

∥∥∥{AbB´1
´ A´1

bB´1
∥∥∥ ď prα ^ rηq

`

‖A´1‖‖B´1‖` ‖∆1‖
˘

` ‖∆1‖.

By Proposition III.14, we have for λA ě 3rα, λB ě 3rη, where rα ^ rη ď λA^λB
3

,

ˇ

ˇ

ˇ

ˇ

1

‖pI ´ P2qX‖2
F

´
1

trpAq trpBq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

‖pI ´ P2qX‖2
F ´ trpAq trpBq

‖pI ´ P2qX‖2
F trpAq trpBq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

rα ^ rη

‖pI ´ P2qX‖2
F

ˇ

ˇ

ˇ

ˇ

ď
rα ^ rη

trpAq trpBqp1´ rα ^ rηq

thus

ˇ

ˇ

ˇ

ˇ

trpAq trpBq

‖pI ´ P2qX‖2
F

´ 1

ˇ

ˇ

ˇ

ˇ

ď
rα ^ rη

1´ rα ^ rη
ď
λA ^ λB

2
. (3.51)

By the triangle inequality, the definition of ∆ in (3.45), and (3.50) and (3.51),

∥∥∥{AbB ´ AbB∥∥∥ ď
λA ` λB

2
‖A‖‖B‖` p1` λA ` λB

2
q‖∆‖;
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See the proof of Lemma 15.5 Zhou (2014a,b). l

Proof of Proposition III.14. Suppose event X0 holds. Note that

Er‖pI ´ P2qX‖2
F s “ tr

`

pI ´ P2qErXX
T
spI ´ P2q

˘

“ trpAqtrp rBq

Decomposing by columns, we obtain the inequality,

ˇ

ˇ‖pI ´ P2qX‖2
F ´ trpAqtrpBq

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

‖pI ´ P2qXj‖2
2 ´ ajjtrpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

m
ÿ

j“1

ˇ

ˇXT
j pI ´ P2qXj ´ ajjtrpBq

ˇ

ˇ ď

m
ÿ

j“1

rηjjajjtrpBq ď rηtrpAqtrpBq.

Decomposing by rows, we obtain the inequality,

ˇ

ˇ‖pI ´ P2qX‖2
F ´ trpAqtrpBq

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

‖pei ´ piqTX‖2
2 ´ biitrpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i“1

ˇ

ˇpei ´ piq
TXXT

pei ´ piq ´ biitrpAq
ˇ

ˇ ď

n
ÿ

i“1

rαiibiitrpAq ď rαtrpAqtrpBq.

Therefore |‖pI ´ P2qX‖2
F ´ trpAqtrpBq| ď prα ^ rηqtrpAqtrpBq. l

3.5 Entrywise convergence of sample correlations

In this section we prove entrywise rates of convergence for the sample correlation

matrices in Theorem III.15. The theorem applies to the Kronecker product model,

CovpvecpXqq “ A˚ b B˚, where for identifiability we define the sample covariance

matrices as

A˚ “
m

trpAq
A and B˚ “

trpAq

m
B,

with the scaling chosen so that A˚ has trace m. Let ρpAq P Rmˆm and ρpBq P Rnˆn

denote the correlation matrices corresponding to covariance matrices A˚ and B˚,

respectively. Assume that that the mean of X satisfies the two-group model (2.4).
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Let P2 be as defined in (2.13). The matrix I ´P2 is a projection matrix of rank n´ 2

that performs within-group centering. The sample covariance matrices are defined as

SpB˚q “
1

m

m
ÿ

j“1

pI ´ P2qXjX
T
j pI ´ P2q, (3.52)

SpA˚q “ XT
pI ´ P2qX{n, (3.53)

where SpB˚q has null space of dimension two.

Theorem III.15. Consider a data generating random matrix as in (2.2). Let C be

some absolute constant. Let rα and rη be as defined in (3.17). Let m _ n ě 2. Then

with probability at least 1´ 3
pm_nq2

, for rα, rη ă 1{3, and pΓpAq and pΓpBq as in (2.7),

@i ­“ j,
∣∣∣pΓijpBq ´ ρijpBq∣∣∣ ď rα

1´ rα
` |ρijpBq|

rα

1´ rα
ď 3rα,

@i ­“ j,
∣∣∣pΓijpAq ´ ρijpAq∣∣∣ ď rη

1´ rη
` |ρijpAq|

rη

1´ rη
ď 3rη.

We state three results used in the proof of Theorem III.15: Proposition III.16

provides an entrywise rate of convergence of SpB˚q, Proposition III.17 provides an

entrywise rate of convergence of SpA˚q, and Lemma III.18 states that these entrywise

rates imply X0. Let

rB :“ pI ´ P2qB
˚
pI ´ P2q “ CovppI ´ P2qXjq, (3.54)

where Xj is the jth column of X. Let rbij denote the pi, jqth entry of rB.

Proposition III.16. Let d ą 2. Then with probability at least 1´ 2{md´2,

@i, j
ˇ

ˇSijpB
˚
q ´ b˚ij

ˇ

ˇ ď φB,ij, (3.55)
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with

φB,ij “ C
log1{2

pmq
?
m

‖A˚‖F
?
m

b

rbiirbjj `
3‖B˚‖1

nmin

. (3.56)

Proposition III.17. Let d ą 2. Then with probability at least 1´ 2{nd´2,

@i, j
ˇ

ˇSijpA
˚
q ´ a˚ij tr pB˚q {n

ˇ

ˇ ą φA,ij, (3.57)

with

φA,ij “ pa
˚
ij{nq

ˇ

ˇ

ˇ
tr
´

rB
¯

´ tr pB˚q
ˇ

ˇ

ˇ
` d1{2K log1{2

pn_mqp1{nq
b

a˚2
ij ` a

˚
iia
˚
jj‖ rB‖F .

(3.58)

Lemma III.18. Suppose that (A2) holds and that m _ n ě 2. The event (3.57)

defined in Proposition III.17 implies that X0pAq holds. Similarly, the event (3.55)

defined in Proposition III.16 implies X0pBq. Hence P pX0q ě 1´ 3
pm_nq2

.

Proposition III.16 is proved in section 3.5.1. Proposition III.17 is proved in section

3.5.2. Lemma III.18 is proved in section 3.5.3. Note that Lemma III.18 follows from

Propositions III.16 and III.17. We now prove Theorem III.15, which follows from

Lemma III.18.

Proof of Theorem III.15. Let qi denote the ith column of I ´ P2, so that

qTi XX
T qj is the pi, jqth entry of pI ´ P2qXX

T pI ´ P2q. Under X0pBq, the sample
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correlation pΓpBq satisfies the following bound:

ˇ

ˇ

ˇ

pΓijpBq ´ ρijpBq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

qTi XX
T qj

a

qTi XX
T qi

b

qTj XX
T qj

´ ρijpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

qTi XX
T qj{

`

trpA˚q
a

b˚iib
˚
jj

˘

a

qTi XX
T qi{ pb˚iitrpA

˚qq

b

qTj XX
T qj{

`

b˚jjtrpA
˚q
˘

´ ρijpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

qTi XX
T qj{

`

trpA˚q
a

b˚iib
˚
jj

˘

´ ρijpBq
a

qTi XX
T qi{ pb˚iitrpA

˚qq

b

qTj XX
T qj{

`

b˚jjtrpA
˚q
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρijpBq
a

qTi XX
T qi{ pb˚iitrpA

˚qq

b

qTj XX
T qj{

`

b˚jjtrpA
˚q
˘

´ ρijpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
rα

1´ rα
` |ρijpBq|

ˇ

ˇ

ˇ

ˇ

1

1´ rα
´ 1

ˇ

ˇ

ˇ

ˇ

ď 3rα,

where the first inequality holds by X0pBq and the second inequality holds for rα ď 1{3.

Similarly, under X0pAq we obtain an entrywise bound on the sample correlation pΓpAq:

ˇ

ˇ

ˇ

pΓijpAq ´ ρijpAq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XT
i pI ´ P2qXj

a

XT
i pI ´ P2qXi

b

XT
j pI ´ P2qXj

´ ρijpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XT
i pI ´ P2qXj{

´

trpB˚q
a

a˚iia
˚
jj

¯

a

XT
i pI ´ P2qXi{ pa˚iitrpB

˚qq

b

XT
j pI ´ P2qXj{

`

a˚jjtrpB
˚q
˘

´ ρijpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XT
i pI ´ P2qXj{

´

trpB˚q
a

a˚iia
˚
jj

¯

´ ρijpAq

a

XT
i pI ´ P2qXi{ pa˚iitrpB

˚qq

b

XT
j pI ´ P2qXj{

`

a˚jjtrpB
˚q
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρijpAq
a

XT
i pI ´ P2qXi{ pa˚iitrpB

˚qq

b

XT
j pI ´ P2qXj{

`

a˚jjtrpB
˚q
˘

´ ρijpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
rη

1´ rη
` |ρijpAq|

ˇ

ˇ

ˇ

ˇ

1

1´ rη
´ 1

ˇ

ˇ

ˇ

ˇ

ď 3rη,

where the first inequality holds by X0pAq, and the second inequality holds for rη ă 1{3.
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By Lemma III.18, the event X0 “ X0pBq X X0pAq holds with probability at least

1´ 3{pn_mq2, which completes the proof. l

3.5.1 Proof of Proposition III.16

We first present Lemma III.19 and Lemma III.20, which decompose the rate of

convergence into a bias term and a variance term, respectively. We then combine the

rates for the bias and variance terms to prove the entrywise rate of convergence for

the sample covariance. Define

BpB˚q :“ ErSpB˚qs ´B˚ and (3.59)

σpB˚q :“ SpB˚q ´ ErSpB˚qs. (3.60)

We state maximum entrywise bounds on BpB˚q and σpB˚q in Lemma III.19 and

Lemma III.20, respectively. Proofs for these lemmas are provided in Section 3.5.4

and 3.5.5 respectively.

Lemma III.19. For BpB˚q as defined in (3.59),

‖BpB˚q‖max ď
3‖B˚‖1

nmin

. (3.61)

Lemma III.20. Let σpB˚q be as defined in (3.60). With probability at least 1´2{md,

|σijpB
˚
q| “

ˇ

ˇSijpB
˚
q ´ b˚ij

ˇ

ˇ ă C log1{2
pmq
‖A˚‖F
trpA˚q

b

rbiirbjj.

We now prove the entrywise rate of convergence for the sample covariance SpB˚q.
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Proof of Proposition III.16. By the triangle inequality,

ˇ

ˇSijpB
˚
q ´ b˚ij

ˇ

ˇ ď |SijpB
˚
q ´ ErSijpB

˚
qs| `

ˇ

ˇErSijpB
˚
qs ´ b˚ij

ˇ

ˇ

“ |BijpB˚q| ` |σijpB˚q|

ď φB,ij,

where the last step follows from Lemmas III.19 and III.20. l

Remark. Note that the first term of (3.56) is of order log1{2
pmq{

?
m, and the

second term is of order ‖B˚‖1{nmin.

3.5.2 Proof of Proposition III.17

We express the pi, jqth entry of SpA˚q as a quadratic form in order to apply the

Hanson-Wright inequality to obtain an entrywise large deviation bound. Without

loss of generality, let i “ 1, j “ 2. The p1, 2q entry of SpA˚q can be expressed as a

quadratic form, as follows,

S12pA
˚
q “ XT

1 pI ´ P2qX2{n

“ p1{2q

„

XT
1 XT

2



»

—

–

0 pI ´ P2q

pI ´ P2q 0

fi

ffi

fl

»

—

–

X1

X2

fi

ffi

fl

{n

“ p1{2q

„

XT
1 XT

2



¨

˚

˝

»

—

–

0 1

1 0

fi

ffi

fl

b pI ´ P2q

˛

‹

‚

»

—

–

X1

X2

fi

ffi

fl

{n.

We decorrelate the random vector pX1, X2q P R2n so that we can apply the Hanson-

Wright inequality. The covariance matrix used for decorrelation is

Cov

¨

˚

˝

»

—

–

X1

X2

fi

ffi

fl

˛

‹

‚

“

»

—

–

a˚11 a˚12

a˚21 a˚22

fi

ffi

fl

bB˚ “: A˚t1,2u bB
˚,
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with

A˚t1,2u “

»

—

–

a˚11 a˚12

a˚21 a˚22

fi

ffi

fl

P R2ˆ2.

Decorrelating the quadratic form yields

S12pA
˚
q “ ZTΦZ,

where Z P R2n, with ErZs “ 0 and CovpZq “ I2nˆ2n, and

Φ “ p1{2nq

¨

˚

˝

pA˚t1,2uq
1{2

»

—

–

0 1

1 0

fi

ffi

fl

pA˚t1,2uq
1{2

˛

‹

‚

bB1{2
pI ´ P2qB

1{2. (3.62)

To apply the Hanson-Wright inequality, we first find the trace and Frobenius norm

of Φ. For the trace, note that

tr

¨

˚

˝

pA˚t1,2uq
1{2

»

—

–

0 1

1 0

fi

ffi

fl

pA˚t1,2uq
1{2

˛

‹

‚

“ tr

¨

˚

˝

»

—

–

0 1

1 0

fi

ffi

fl

A˚t1,2u

˛

‹

‚

“ 2a˚12. (3.63)

For the Frobenius norm, note that

∥∥∥∥∥∥∥pA˚t1,2uq1{2
»

—

–

0 1

1 0

fi

ffi

fl

pA˚t1,2uq
1{2

∥∥∥∥∥∥∥
2

F

“ tr

¨

˚

˝

»

—

–

0 1

1 0

fi

ffi

fl

A˚t1,2u

»

—

–

0 1

1 0

fi

ffi

fl

A˚t1,2u

˛

‹

‚

“ tr

¨

˚

˝

»

—

–

a˚2
12 ` a

˚
11a

˚
22 2a˚12a

˚
22

2a˚12a
˚
22 a˚2

12 ` a
˚
11a

˚
22

fi

ffi

fl

˛

‹

‚

“ 2a˚2
12 ` 2a˚11a

˚
22,

Therefore the trace of Φ is

tr pΦq “ a˚12 tr
´

rB
¯

{n, (3.64)
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and the Frobenius norm of Φ is

‖Φ‖F “ p1{nq
b

a˚2
12 ` a

˚
11a

˚
22‖ rB‖F . (3.65)

Applying the Hanson-Wright inequality yields

P p|S12pA
˚
q ´ a˚12 tr pB˚q {n| ą φA,12q

ď P
´
ˇ

ˇ

ˇ
S12pA

˚
q ´ a˚12 tr

´

rB
¯

{n
ˇ

ˇ

ˇ
` pa˚12{nq

ˇ

ˇ

ˇ
tr
´

rB
¯

´ tr pB˚q
ˇ

ˇ

ˇ
ą φA,12

¯

“ P
´ˇ

ˇ

ˇ
S12pAq ´ a

˚
12 tr

´

rB
¯

{n
ˇ

ˇ

ˇ
ą d1{2K log1{2

pn_mq‖Φ‖F
¯

ď 2{pn_mqd.

By the union bound,

P p@i, j |SijpA
˚
q ´ aij tr pB˚q {n| ă φA,ijq

ě 1´
m
ÿ

i“1

m
ÿ

j“1

P p|SijpA
˚
q ´ aij tr pB˚q {n| ą φA,ijq

ě 1´ 2m2
{pn_mqd ě 2{pn_mqd´2.

l

3.5.3 Proof of Lemma III.18

For the event (3.55) from Proposition III.16,

ˇ

ˇSijpB
˚
q ´ b˚ij

ˇ

ˇ ă φB,ij “ K2d
log1{2

pmq
?
m

CA

b

rbiirbjj `
ˇ

ˇ

ˇ
b˚ij ´

rbij

ˇ

ˇ

ˇ
,

dividing by
a

b˚iib
˚
jj yields

ˇ

ˇ

ˇ

ˇ

ˇ

qiXX
T qj

trpA˚q
a

b˚iib
˚
jj

´ ρijpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ă K2dCA
log1{2

pmq
?
m

d

rbiirbjj
b˚iib

˚
jj

`

ˇ

ˇ

ˇ
bij ´rbij

ˇ

ˇ

ˇ

a

b˚iib
˚
jj

. (3.66)
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By Lemma III.19,

rbij “ bij

„

1`O

ˆ

‖B‖1

n

˙

,

so the right-hand side of (3.66) is less than or equal to rα. Hence event (3.55) implies

X0pBq. Therefore, we know that P pX0pBqq ě 1´ 2{md´2.

Similarly, event (3.57) in Proposition III.17:

ˇ

ˇSijpA
˚
q ´ a˚ij tr pB˚q {n

ˇ

ˇ ă φA,ij

“ pa˚ij{nq
ˇ

ˇ

ˇ
tr
´

rB
¯

´ tr pBq
ˇ

ˇ

ˇ
` d1{2K log1{2

pn_mqp1{nq
b

a˚2
ij ` a

˚
iia
˚
jj‖ rB‖F ,

implies that

ˇ

ˇ

ˇ

ˇ

ˇ

XT
j pI ´ P2qXt

trpB˚q
a

a˚jja
˚
tt

´ ρjtpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ă |ρjtpAq|

ˇ

ˇ

ˇ
tr
´

rB
¯

´ tr pB˚q
ˇ

ˇ

ˇ

trpB˚q
` d1{2K log1{2

pn_mq
b

ρjtpAq2 ` 1
‖ rB‖F
trpB˚q

“ |ρjtpAq|

ˇ

ˇ

ˇ
tr
´

rB
¯

´ tr pB˚q
ˇ

ˇ

ˇ

trpB˚q
` d1{2KCB

‖ rB‖F
‖B˚‖F

b

ρjtpAq2 ` 1
log1{2

pn_mq
?
n

ď rη,

which is the event X0pAq. Therefore, we get that P pX0pAqq ě 1´ 2{pn_mqd.

We can obtain the P pX0q by using a union bound put together P pX0pBqq and

P pX0pAqq, completing the proof. l

3.5.4 Proof of Lemma III.19

Recall that rB “ pI ´ P2qB
˚pI ´ P2q. The matrix rB ´B˚ can be expressed as

rB ´B˚ “ pI ´ P2qB
˚
pI ´ P2q ´B

˚
“ ´P2B

˚
´B˚P2 ` P2B

˚P2.
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By the triangle inequality, ‖ rB ´ B˚‖max ď ‖P2B
˚‖max ` ‖B˚P2‖max ` ‖P2B

˚P2‖max.

We bound each term on the right-hand side.

First we bound ‖P2B
˚‖max and ‖B˚P2‖max. Let pi denote the ith column of P2.

The pi, jqth entry satisfies

|pTi b
˚
j | ď ‖B˚pi‖8 ď ‖B˚‖8‖pi‖8 “ ‖B˚‖1‖pi‖8 “ ‖B˚‖1{nmin,

so ‖P2B
˚‖max ď ‖B˚‖1{nmin. Because P2 and B˚ are symmetric, ‖P2B

˚‖max “

‖B˚P2‖max.

We now bound ‖P2B
˚P2‖max. Let B1{2 denote the symmetric square root of B˚.

We can express pTi B
˚pj as an inner product pB1{2piq

T pB1{2pjq, so

|pP2B
˚P2qij| “ |pB

1{2piq
T
pB1{2pjq| ď

`

pTi B
˚pi

˘1{2 `
pTj B

˚pj
˘1{2

(3.67)

ď ‖pi‖2‖pj‖2‖B‖2 ď ‖B˚‖2{nmin, (3.68)

where (3.67) follows from the Cauchy Schwarz inequality, and (3.68) holds because

‖pi‖2 “

$

’

’

&

’

’

%

1{
?
n1 if i P t1, . . . , n1u

1{
?
n2 if i P tn1 ` 1, . . . , nu.

l

3.5.5 Proof of Lemma III.20

Let B1{2 denote the symmetric square root of B˚. Let Zj “ pa
˚
jjB

˚q´1{2Xj. We

express SijpB
˚q as a quadratic form in order to use the Hanson-Wright inequality to

prove a large deviation bound. That is, we show that SijpB
˚q “ vecpZqTΦij vecpZq,
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with

Φij
“ p1{mqA˚ bB1{2

pej ´ pjqpei ´ piq
TB1{2. (3.69)

We express SijpB
˚q as a quadratic form, as follows:

SijpB
˚
q “

1

m

m
ÿ

k“1

pei ´ piq
TXkX

T
k pej ´ pjq “

1

m

m
ÿ

k“1

tr
“

pei ´ piq
TXkX

T
k pej ´ pjq

‰

“
1

m

m
ÿ

k“1

XT
k pej ´ pjqpei ´ piq

TXk

“
1

m
vecpXqT

`

Imˆm b pej ´ pjqpei ´ piq
T
˘

vecpXq

“ vecpZqTΦij vecpZq

where

trpΦij
q “ trpB1{2

pej ´ pjqpei ´ piq
TB1{2

q “ pei ´ piq
TB˚pej ´ pjq “ rbij, (3.70)

‖Φij‖F “
1

m
‖A˚‖F‖B1{2

pej ´ pjqpei ´ piq
TB1{2‖F (3.71)

“
1

m
‖A˚‖F

`

pei ´ piq
TB˚pei ´ piq

˘1{2 `
pej ´ pjq

TB˚pej ´ pjq
˘1{2

“
1

m
‖A˚‖F

b

rbiirbjj.

Therefore, we get that

P
´

@i, j
ˇ

ˇ

ˇ
SijpB

˚
q ´rbij

ˇ

ˇ

ˇ
ď K2d log1{2

pmq‖Φij‖F {c1
¯

“ P
´

@i, j
ˇ

ˇvecpZqTΦij vecpZq ´ tr
`

Φij
˘ˇ

ˇ ď K2d log1{2
pmq‖Φij‖F {c1

¯

ě 1´ 2m2 exp

˜

´cmin

˜

d2 logpmq{c12,
d log1{2

pmq‖Φij‖F {c1

‖Φij‖2

¸¸

ě 1´ 2{md´2.
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If the event
!

@i, j
ˇ

ˇ

ˇ
SijpB

˚q ´rbij

ˇ

ˇ

ˇ
ď K2d log1{2

pmq‖Φij‖F {c1
)

holds, it follows that

ˇ

ˇSijpB
˚
q ´ b˚ij

ˇ

ˇ ď

ˇ

ˇ

ˇ
SijpB

˚
q ´rbij

ˇ

ˇ

ˇ
` |b˚ij ´

rbij| ď K2d log1{2
pmq‖Φij‖F {c1 ` |bij ´rbij|.

The Lemma is thus proved. l
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3.6 Proof of Theorem II.4

3.6.1 Notation

Notation Meaning

Mean structure

µ P Rm Vector of grand means of each gene

γ P Rm Vector of mean differences for each gene

ν “ 1
2

„

1
n1

1Tn1

1
n2

1Tn2

T

P Rn Inner product with ν computes global mean

Outcome of model selection step

J0 Ă t1, 2, . . . ,mu Indices selected for group centering

J1 Ă t1, 2, . . . ,mu Indices selected for global centering

Sizes of gene subsets

m0 “ |J0| Number of group centered genes

m1 “ |J1| Number of globally centered genes

Projection matrices

P1 “ 1nν
T Projection matrix that performs global centering

P2 (as in (3.81)) Projection matrix that performs group centering

Sample covariance matrices

SpB, J0, J1q “
m1

m
S1pBq `

m0

m
S2pBq Model selection sample covariance matrix

S1pB, J1q “
1
m1

ř

jPJ1
pI ´ P1qXjX

T
j pI ´ P1q Globally centered sample covariance matrix

S2pB, J0q “
1
m0

ř

jPJ0
pI ´ P2qXjX

T
j pI ´ P2q Group centered sample covariance matrix

Decomposition of SpB, J0, J1q

SI “ SpB, J0, J1q ´ E rSpB, J0, J1qs Bias

SII “
1
m
pI ´ P1qMJ1M

T
J1
pI ´ P1q False negatives (deterministic)

SIII “
1
m
pI ´ P1qMJ1ε

T pI ´ P1q False negatives (random)

SIV “ m´1pI ´ P2qεJ0ε
T
J0
pI ´ P2q` True negatives

m´1pI ´ P1qεJ1ε
T
J1
pI ´ P1q
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3.6.2 Two-Group Model and Centering

We begin by introducing some relevant notation for the two-group model and

centering. Define the group membership vector δn P Rn as

δn :“

„

1Tn1
´1Tn2

T

P Rn. (3.72)

In the two-group model, the mean matrix M can be expressed as

M “ 1nµ
T
` p1{2qδnγ

T , (3.73)

where µ P Rm is a vector of grand means, and γ P Rm is the vector of mean differences.

According to (3.73), the pi, jqth entry of M can be expressed as

mij “

$

’

’

&

’

’

%

µj ` γj{2 if sample i is in group one

µj ´ γj{2 if sample i is in group two.

(3.74)

Define the vector ν P Rn as

ν “
1

2

„

1
n1

1Tn1

1
n2

1Tn2

T

P Rn, (3.75)

so that for the jth column of the data matrix Xj P Rn,

E
`

νTXj

˘

“
1

2
E

˜

1

n1

n1
ÿ

k“1

Xjk `
1

n2

n
ÿ

k“n1`1

Xjk

¸

“ µj. (3.76)

Note that

νT1n “ p1{2qp1` 1q “ 1, and νT δn “ p1{2qp1´ 1q “ 0. (3.77)

Next we define a projection matrix that performs global centering. Define the non-
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orthogonal projection matrix

P1 :“ 1nν
T
P Rnˆn. (3.78)

Applying the projection matrix to the mean matrix yields

P1M “ 1nν
T
`

1nµ
T
` p1{2qδnγ

T
˘

“ 1nµ
T
` p1{2qpνT δnq1nγ

T
“ 1nµ

T , (3.79)

with residuals

pI ´ P1qM “M ´ P1M “M ´ 1nµ
T
“ p1{2qδnγ

T . (3.80)

Define

P2 “

»

—

–

n´1
1 1n11

T
n1

n´1
2 1n21

T
n2

fi

ffi

fl

. (3.81)

Note that P21n “ 1n and P2δn “ δn, so

P2M “ P21nµ
T
` p1{2qP2δnγ

T
“ 1nµ

T
` p1{2qδnγ

T
“M, (3.82)

and therefore pI ´ P2qM “ 0.

Define

qB “ pI ´ P1qBpI ´ P1q “

´

qbij

¯

(3.83)

rB “ pI ´ P2qBpI ´ P2q “

´

rbij

¯

(3.84)

B̆ “ pI ´ P1qBpI ´ P2q “

´

b̆ij

¯

. (3.85)

Let qbmax, rbmax, and b̆max denote the maximum diagonal entries of qB, rB, and B̆,

respectively.
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3.6.3 Model Selection Centering

For a subset J Ă t1, . . . ,mu, let XJ denote the submatrix of X consisting of

columns indexed by J . For the fixed sets of genes J0 and J1, define the sample

covariance

SpB, J0, J1q “ m´1
ÿ

kPJ0

pI´P2qXkX
T
k pI´P2q

T
`m´1

ÿ

kPJ1

pI´P1qXkX
T
k pI´P1q

T
“: I` II .

(3.86)

Note that E rSpB, J0, J1qs “ B7, with

B7 “
tr pAJ0q

m
pI ´ P2qBpI ´ P2q `

tr pAJ1q

m
pI ´ P1qBpI ´ P1q. (3.87)

Define the sample correlation matrix,

pΓijpBq “
pSpB, J0, J1qqij

a

pSpB, J0, J1qqiipSpB, J0, J1qqjj
. (3.88)

The baseline Gemini estimators Zhou (2014a) are then defined as follows, using

a pair of penalized estimators for the correlation matrices ρpAq “ paij{
?
aiiajjq and

ρpBq “ pbij{
a

biibjjq:

pAρ “ arg min
Aρą0

!

tr
´

pΓpAqA´1
ρ

¯

` log |Aρ| ` λB|A
´1
ρ |1,off

)

, (3.89a)

pBρ “ arg min
Bρą0

!

tr
´

pΓpBqB´1
ρ

¯

` log |Bρ| ` λA|B
´1
ρ |1,off

)

. (3.89b)

We will focus on pBρ using the input as defined in (3.88).

The proof proceeds as follows. Lemma III.22, the equivalent of Proposition III.16

for Algorithm 1, establishes entry-wise convergence rates of the sample covariance

matrix for fixed sets of group and globally centered genes. We use this to prove

Theorem III.21 below in Section 3.6.4 and to prove Theorem II.4 in Section 3.6.5.

97



3.6.4 Convergence for fixed gene sets

We first state a standalone result, Theorem III.21, which provides rates of conver-

gence when SpB, J0, J1q as in (3.86) is calculated using fixed sets of group centered

and globally centered genes, J0 and J1, respectively. This result shows how the al-

gorithm used in the preliminary step to choose which genes to group center can be

decoupled from the rest of the estimation procedure. The proof is presented below in

Section 3.6.4.2.

Theorem III.21. Suppose that (A1’), (A2’), and (A3) hold. Let J0 and J1 denote

sets such that J0 X J1 “ H and J0 Y J1 “ t1, . . . ,mu. Let m0 “ |J0| and m1 “ |J1|

denote the sizes of the sets. Let τglobal ą 0 satisfy

max
jPJ1
|γj| ď τglobal, (3.90)

for τglobal “ C
a

logpmq‖pDTB´1Dq´1‖1{2
2 —

b

logpmq
n

.

Consider the data as generated from model (3.73) with ε “ B1{2ZA1{2, where

A P Rmˆm and B P Rnˆn are positive definite matrices, and Z is an n ˆm random

matrix as defined in Theorem II.1. Let λA denote the penalty parameter for estimating

B. Suppose the penalty parameter λA in (3.89b) satisfies

λA ě C2

«

CAK
log1{2

pm_ nq
?
m

`
‖B‖1

nmin

ff

. (3.91)

where C2 is an absolute constant.

Suppose the number of off-diagonal entries of B´1 satisfies

|B´1
|0,off ď min pm,n logpmqq . (3.92)
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(I) Let E4pJ0, J1q be the event such that

∥∥∥∥tr pAq
´

xW2
pBρ
xW2

¯´1

´B´1

∥∥∥∥
2

ď

C 1λA
b

|B´1|0,off _ 1

bminϕ2
minpρpBqq

. (3.93)

Then P pE4pJ0, J1qq ě 1´ C{md.

(II) With probability at least 1´ C 1{md, for all j,

‖pβjp pB´1
q ´ β˚j ‖2 ď C1λA

d

nratio p|B´1|0,off _ 1q

nmin

` C2

a

logpmq‖pDTB´1Dq´1‖1{2
2 .

(3.94)

3.6.4.1 Decomposition of sample covariance matrix

The error in the sample covariance SpB, J0, J1q can be decomposed as

SpB, J0, J1q ´B “
“

B7 ´B
‰

`
“

SpB, J0, J1q ´B
7
‰

, (3.95)

where the first term corresponds to bias and the second term to variance. We now

further decompose the variance term. The first term of SpB, J0, J1q in (3.86) can be

decomposed as,

I “ m´1
pI ´ P2qXJ0X

T
J0
pI ´ P2q

“ m´1
pI ´ P2qpMJ0 ` εJ0qpMJ0 ` εJ0q

T
pI ´ P2q

“ m´1
pI ´ P2qεJ0ε

T
J0
pI ´ P2q `m

´1
pI ´ P2qMJ0ε

T
J0
pI ´ P2q

`m´1
pI ´ P2qεJ0M

T
J0
pI ´ P2q `m

´1
pI ´ P2qMJ0M

T
J0
pI ´ P2q, (3.96)
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and the second term can be decomposed analogously, as

II “ m´1
pI ´ P1qεJ1ε

T
J1
pI ´ P1q `m

´1
pI ´ P1qMJ1ε

T
J1
pI ´ P1q

`m´1
pI ´ P1qεJ1M

T
J1
pI ´ P1q `m

´1
pI ´ P1qMJ1M

T
J1
pI ´ P1q. (3.97)

By the above decompositions, it follows that SpB, J0, J1q can be expressed as

SpB, J0, J1q “ SII ` SIII ` S
T
III ` SIV, (3.98)

with

SII “ m´1
pI ´ P2qMJ0M

T
J0
pI ´ P2q `m

´1
pI ´ P1qMJ1M

T
J1
pI ´ P1q. (3.99)

SIII “ m´1
pI ´ P2qMJ0ε

T
J0
pI ´ P2q `m

´1
pI ´ P1qMJ1ε

T
J1
pI ´ P1q (3.100)

SIV “ m´1
pI ´ P2qεJ0ε

T
J0
pI ´ P2q `m

´1
pI ´ P1qεJ1ε

T
J1
pI ´ P1q (3.101)

For each of SII, SIII, and SIV, the first term comes from (3.96) and the second term

comes from (3.97).

The terms SII and SIII can be simplified, as follows. Because pI ´ P2qMJ0 “ 0, it

follows that the first term of SII is zero:

m´1
pI ´ P2qMJ0M

T
J0
pI ´ P2q “ 0.

and the first term of SIII is also zero,

m´1
pI ´ P2qMJ0ε

T
J0
pI ´ P2q “ 0,
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Therefore the terms SII and SIII are equal to

SII “ m´1
pI ´ P1qMJ1M

T
J1
pI ´ P1q, (3.102)

SIII “ m´1
pI ´ P1qMJ1ε

T
J1
pI ´ P1q. (3.103)

Let SI “ B7´B. We have thus decomposed the error in the sample covariance as

SpB, J0, J1q ´B “ SI
loomoon

bias

`
“`

SIV ´B
7
˘

` SIII ` SII

‰

looooooooooooooomooooooooooooooon

variance

. (3.104)

In Lemma III.23, we provide an error bound for each term in the decomposition

(3.104).

We next state Lemma III.22, which establishes the maximum of entry-wise er-

rors for estimating B using the sample covariance for fixed gene sets as defined in

(3.104). Lemma III.22 is used in the proof of Theorem III.21. Following, we state

Lemma III.23, which is used in the proof of Lemma III.22.

Lemma III.22. Suppose the conditions of Theorem III.21 hold. Let E6pJ0, J1q denote

the event

E6pJ0, J1q “

#

‖SpB, J0, J1q ´B‖8 ď CAK
log1{2

pm_ nq
?
m

`
‖B‖1

nmin

+

. (3.105)

Then E6pJ0, J1q holds with probability at least 1´ 8
pm_nq2

.

Lemma III.23. Let the model selection-based sample covariance SpB, J0, J1q be as

defined in (3.86), where J1 and J0 are fixed sets of variables that are globally centered,

101



and group centered, respectively. Let m0 “ |J0| and m1 “ |J1|. Define the rates

r1 “
3 ‖B‖1

nmin

, (3.106)

r2 “ p4mq
´1 ‖γJ1‖

2
2 , (3.107)

r3 “ C3d
1{2K2 log1{2

pmqm´1
`

γTJ1AJ1γJ1
˘1{2

qb1{2
max, (3.108)

r4 “ C4d
1{2K log1{2

pmqm´1 ‖A‖F ‖B‖2 . (3.109)

(I) Deterministically,

∥∥B7 ´B∥∥
8
ď r1 and ‖SII‖8 ď r2. (3.110)

(II) Define the events

EI “
 
∥∥SIV ´B

7
∥∥
8
ď r4

(

and EII “ t‖SIII‖8 ď r3u . (3.111)

Then EI and EII occur with probability at least 1´ 2{md.

Lemmas III.22 and III.23 are proved in Section 3.7. We analyze term SI in Section

3.7.2, term SII in Section 3.7.3, term SIII in Section 3.7.4, and term SIV in Section

3.7.5.

3.6.4.2 Proof of Theorem III.21

Let us first define the event Eglobal, that is, the GLS error based on the true B´1

is small:

Eglobal “

!∥∥
pγpB´1

q ´ γ
∥∥
8
ă
a

logpmq‖pDTB´1Dq´1‖1{2
2

)

. (3.112)

Let E4pJ0, J1q be defined as in (3.93), denoting small operator norm error in esti-
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mating B´1:

E4pJ0, J1q “

$

&

%

∥∥∥∥tr pAq
´

xW2
pBρ
xW2

¯´1

´B´1

∥∥∥∥
2

ď

C 1λA
b

|B´1|0,off _ 1

bminϕ2
minpρpBqq

,

.

-

. (3.113)

Note that E4pJ0, J1q holds deterministically under event E6pJ0, J1q as defined in (3.105)

of Lemma III.22.

Define the event bounding the perturbation in mean estimation due to error in

estimating B´1:

E5pJ0, J1q “

!
∥∥∥pγp pB´1

q ´ pγpB´1
q

∥∥∥
8
ă Cn

´1{2
min

∥∥∥ pB´1
´B´1

∥∥∥
2

)

. (3.114)

Conditional on a fixed matrix pB´1 that satisfies E4pJ0, J1q, event E5pJ0, J1q holds with

probability at least 1´ C{md, by Lemma III.6 (used in the proof of Theorem II.1).

The overall rate of convergence follows by applying the union bound to the events

Eglobal X E4pJ0, J1q X E5pJ0, J1q, as follows:

P pEcglobal Y E4pJ0, J1q
c
Y E5pJ0, J1q

c
q

ď P pEcglobalq ` P pE4pJ0, J1q
c
q ` P pE5pJ0, J1q

c
| E4pJ0, J1qqP pE4pJ0, J1qq

` P pE5pJ0, J1q
c
| E4pJ0, J1q

c
qP pE4pJ0, J1q

c
q

ď P pEcglobalq ` P pE4pJ0, J1q
c
q ` P pE4pJ0, J1q

c
q ` P pE5pJ0, J1q

c
| E4pJ0, J1qq

“ P pEcglobalq ` 2P pE4pJ0, J1q
c
q ` P pE5pJ0, J1q

c
| E4pJ0, J1qq,

where P pEcglobalq and P pE5pJ0, J1q
c | E4pJ0, J1qq are bounded in Theorem II.1, and

P pE4pJ0, J1q
cq has high probability under Lemma III.22.
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3.6.5 Proof of Theorem II.4

Let pγinit denote the output from Algorithm 1. By our choice of the threshold

parameter τinit as in (2.16), that is,

τinit “ C

˜

log1{2
pmq

?
m

`
‖B‖1

nmin

¸

d

nratio p|B´1|0,off _ 1q

nmin

`C
a

logpmq‖pDTB´1Dq´1‖1{2
2 ,

we have a partition p rJ0, rJ1q such that rJ0 is the set of variables selected for group

centering and rJ1 is the set of variables selected for global centering. The partition

results in a sample covariance matrix SpB, rJ0, rJ1q as defined in (3.86). Define the

event that the Algorithm 1 estimate pγinit is close to γ in the sense that

EA1 “
 
∥∥
pγinit

´ γ
∥∥
8
ă τinit

(

. (3.115)

Note that the event EA1 implies that the false negatives have small true mean differ-

ences. That is, on event EA1, by the triangle inequality,

∥∥γ
rJ1

∥∥
8
ď

∥∥∥γ
rJ1
´ pγinit

rJ1

∥∥∥
8
`

∥∥∥pγinit
rJ1

∥∥∥
8
ď τinit ` τinit “ 2τinit, (3.116)

where
∥∥∥pγinit

rJ1

∥∥∥
8
ă τinit by definition of EA1, and

∥∥∥γ
rJ1
´ pγinit

rJ1

∥∥∥
8
ă τinit by definition of

the thresholding set rJ1.

Under the assumptions of Theorem III.21, τinit ď τglobal with τglobal as defined in

(3.90), so condition (3.90) of Theorem III.21 is satisfied. Under the conditions of The-

orem III.21, event E6pJ0, J1q as defined in Lemma III.22 holds with high probability;

that is, the entrywise error in the sample covariance matrix is small.

Let EB denote event (2.28) in Theorem II.4. In view of Theorem III.9 and Lemma
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III.10, event EB holds on E6pJ0, J1q. Hence

P pEcBq “ P pE6pJ0, J1q
c
| EA1qP pEA1q ` P pE6pJ0, J1q

c
| EcA1qP pEcA1q

ď P pE6pJ0, J1q
c
| EA1q ` P pEcA1q

ď 2{md
` 2{md,

where the first term is bounded in Lemma III.22 and the second in Theorem II.3.

Recall the event Eglobal as defined in (3.112). Event (2.29) in Theorem II.4 holds

under the intersection of events Eglobal X E5p rJ0, rJ1q X EB X EA1. Hence the probability

of (2.29) can be bounded as follows:

P pEcglobal Y E5p rJ0, rJ1q
c
Y EcB Y EcA1q

ď P pEcglobalq ` P pEcBq ` P pE5p rJ0, rJ1q
c
| EBqP pEBq

` P pE5p rJ0, rJ1q
c
| EcBqP pEcBq ` P pEcA1q

ď P pEcglobalq ` P pEcBq ` P pEcBq ` P pE5p rJ0, rJ1q
c
| EBq ` P pEcA1q

“ P pEcglobalq ` 2P pEcBq ` P pE5p rJ0, rJ1q
c
| EBq ` P pEcA1q ,

where P pEcglobalq and P pE5p rJ0, rJ1q
c | EBq are bounded in Theorem 1, P pEcBq is bounded

above, and P pEcA1q is bounded in Theorem II.3.

3.7 Proof of Lemmas III.22 and III.23

We first prove Lemma III.22 in Section 3.7.1. The rest of the section contains the

proof of Lemma III.23, where part I is proved in Sections 3.7.2 and 3.7.3 and part II

in Sections 3.7.4 and 3.7.5.
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3.7.1 Proof of Lemma III.22

The entrywise error in the sample covariance matrix (3.86) can be decomposed as

‖SpB, J0, J1q ´B‖8 ď
∥∥SpB, J0, J1q ´B

7
∥∥
8
`
∥∥B7 ´B∥∥

8
(3.117)

ď
∥∥SIV ´B

7
∥∥
8
` 2 ‖SIII‖8 ` ‖SII‖8 `

∥∥B7 ´B∥∥
8
. (3.118)

Let rn,m “ r1 ` r2 ` 2r3 ` r4. By parts I and II of Lemma III.23,

P p‖SpB, J0, J1q ´B‖8 ě rn,mq

ď P
`
∥∥SIV ´B

7
∥∥
8
` 2 ‖SIII‖8 ` ‖SII‖8 `

∥∥B7 ´B∥∥
8
ě rn,m

˘

(by (3.118))

ď P
`
∥∥SIV ´B

7
∥∥
8
` 2 ‖SIII‖8 ` r2 ` r1 ě rn,m

˘

(by (3.110))

“ P
`
∥∥SIV ´B

7
∥∥
8
` 2 ‖SIII‖8 ě r4 ` 2r3

˘

ď P
`
∥∥SIV ´B

7
∥∥
8
ě r4

˘

` P p2 ‖SIII‖8 ě 2r3q (by (3.111))

ď
2

md
`

2

md
“

4

md
.

We show that under the assumptions of Theorem III.21, the entrywise error in

terms SII and SIII isO

ˆ

CA

b

logpmq
m

˙

. Recall that the entrywise rates of convergence of

SII and SIII are stated in equations (3.107) and (3.108), respectively. Let s “ |supppγq|

denote the sparsity of γ. Let m01 “ |supp pγJ1q| denote the number of false negatives.

First, we express the entrywise rate of convergence of SII in terms of τglobal. By

(3.90), ‖γJ1‖8 ď τglobal, which implies that ‖γJ1‖
2
2 ď m01τ

2
global ď sτ 2

global, where the

last inequality holds because m01 ď s by definition. Therefore,

r2 “ p4mq
´1 ‖γJ1‖

2
2 ď

sτ 2
global

4m
ď C

s logpmq

4nm
‖B‖2 , (3.119)

where the last step holds because τglobal “ C
a

logpmq‖pDTB´1Dq´1‖1{2
2 —

b

logpmq
n
‖B‖1{2

2

by assumption. Applying (A3) to the right-hand side of (3.119) implies that r2 “
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O

ˆ

CA

b

logpmq
m

˙

.

Next, consider term SIII. First note that

γTJ1AJ1γJ1 ď ‖γJ1‖
2
2 ‖AJ1‖2 ď m01τ

2
global ‖AJ1‖2 , (3.120)

where the last inequality holds by (3.90). This implies that r3 is on the order

log1{2
pmq

m

´

qbmaxγ
T
J1
AJ1γJ1

¯1{2

ď qb1{2
max ‖AJ1‖

1{2
2

˜

log1{2
pmqm

1{2
01

m

¸

τglobal

ď C
logpmq
?
n

?
s

m
‖AJ1‖

1{2
2 ‖B‖

1{2
2

qb1{2
max, (3.121)

where the last inequality holds because m01 ď s ď m and τglobal —

b

logpmq
n
‖B‖1{2

2 .

Under (A2’), the right-hand side of (3.121) satisfies

logpmq
?
n

?
s

m
‖AJ1‖

1{2
2 ‖B‖

1{2
2

qb1{2
max ď

a

logpmq

?
s

m
CA
‖AJ1‖

1{2
2

‖A‖1{2
2

ď CA

c

logpmq

m
, (3.122)

where the last inequality holds because s ď m.

3.7.2 Proof of part I of Lemma III.23, term I

We bound the entrywise bias,

∥∥B7 ´B∥∥
max

“

∥∥∥∥tr pAJ0q

m
rB `

tr pAJ1q

m
qB ´B

∥∥∥∥
max

ď
tr pAJ0q

m

∥∥∥ rB ´B∥∥∥
max

`
tr pAJ1q

m

∥∥∥ qB ´B∥∥∥
max

. (3.123)

Note that

∥∥∥ qB ´B∥∥∥
max

“ ‖pI ´ P1qBpI ´ P1q ´B‖max “ ‖P1BP1 ´ P1B ´BP1‖max

ď ‖P1BP1‖max ` ‖P1B‖max ` ‖BP1‖max . (3.124)
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We bound the first term of (3.124) as follows:

∣∣∣pP1BP1qij

∣∣∣ ď ∥∥∥pp1qi ∥∥∥
2

∥∥∥pp1qj ∥∥∥
2
‖B‖2 ď

‖B‖2

nmin

.

For the second term of (3.124),

pP1Bqij “
∣∣∣bTi pp1qj ∣∣∣ ď ‖bi‖1

∥∥∥pp1qj ∥∥∥
8
ď ‖B‖1

∥∥∥pp1qj ∥∥∥
8
ď
‖B‖1

nmin

,

where
∥∥∥pp1qj ∥∥∥

8
ď 1

nmin
by the definition of P1 in (3.78). We have shown ‖BP1‖max ď

‖B‖1
nmin

. Likewise, ‖BP1‖max ď
‖B‖1
nmin

. Therefore,

∥∥∥ qB ´B∥∥∥
max

ď 3
‖B‖1

nmin

. (3.125)

Because the projection matrix P2 satisfies
∥∥∥pp2qj ∥∥∥

8
ď 1

nmin
, an analogous proof

shows that ∥∥∥ rB ´B∥∥∥
max

ď
3 ‖B‖1

nmin

. (3.126)

Substituting (3.125) and (3.126) into (3.123) yields

∥∥B7 ´B∥∥
max

ď
tr pAJ0q

m

∥∥∥ qB ´B∥∥∥
max

`
tr pAJ1q

m

∥∥∥ rB ´B∥∥∥
max

ď

ˆ

tr pAJ0q

m
`

tr pAJ1q

m

˙

3 ‖B‖1

nmin

“
tr pAq

m

3 ‖B‖1

nmin

“
3 ‖B‖1

nmin

. (3.127)
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3.7.3 Proof of part I of Lemma III.23, term II

In this section we prove a deterministic entrywise bound on SII. By (3.80), it

follows that

pI ´ P1qMJ1M
T
J1
pI ´ P1q “ p1{4q ‖γJ1‖

2
2 δnδ

T
n ,

which implies

∥∥pI ´ P1qMJ1M
T
J1
pI ´ P1q

∥∥
8
“

∥∥p1{4q ‖γJ1‖2
2 δnδ

T
n

∥∥
8
“ p1{4q ‖γJ1‖

2
2 .

Therefore SII satisfies the maximum entrywise bound

‖SII‖8 “
∥∥m´1

pI ´ P1qMJ1M
T
J1
pI ´ P1q

∥∥
8
“

∥∥p4mq´1 ‖γJ1‖
2
2 δnδ

T
n

∥∥
8
“ p4mq´1 ‖γJ1‖

2
2 ,

so

‖SII‖8 “ r2.

Note that if J1 is chosen so that ‖γJ1‖8 ď τ , then ‖γJ1‖
2
2 ď m01τ

2, where m01 is

the number of false negatives, so

‖γ1‖2
2

4m
ď
m01

4m
τ 2
ď
τ 2

4
. (3.128)

which implies that the entrywise rate of convergence of SII is Opτ 2q.
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3.7.4 Proof of part II of Lemma III.23, term III

Let pi denote the ith column of P T
1 , for i “ 1, . . . , n. Let mk denote the kth

column of M . Let εk denote the kth column of ε. The term SIII can be expressed as

pSIIIqij “ m´1
pei ´ piq

TMJ1ε
T
J1
pej ´ pjq

“ m´1 tr
`

εTJ1pej ´ pjqpei ´ piq
TMJ1

˘

“ m´1
ÿ

kPJ1

εTk pej ´ pjqpei ´ piq
Tmk

“ m´1 vec tεJ1u
T
`

Im1 b pej ´ pjqpei ´ piq
T
˘

vec tMJ1u

“ m´1 vec tZuT
´

A
1{2
J1
bB1{2

pej ´ pjqpei ´ piq
T
¯

vec tMJ1u

“ vec tZuT ψij,

where

ψij :“ m´1
´

A
1{2
J1
bB1{2

pej ´ pjqpei ´ piq
T
¯

vec tMJ1u . (3.129)

The squared Euclidean norm of ψij is

‖ψij‖2
2 “ vec tMJ1u

T
`

AJ1 b pei ´ piqpej ´ pjq
TBpej ´ pjqpei ´ piq

T
˘

vec tMJ1u {m
2

“ vec tMJ1u
T
´

AJ1 b
qbjjpei ´ piqpei ´ piq

T
¯

vec tMJ1u {m
2

“ qbjj
ÿ

kPJ1

ÿ

`PJ1

ak`m
T
k pei ´ piqpei ´ piq

Tm`{m
2

“ qbjj
ÿ

kPJ1

ÿ

`PJ1

ak`pδnqiγkpδnqiγ`{
`

4m2
˘

“ qbjj
ÿ

kPJ1

ÿ

`PJ1

ak`γkγ`{
`

4m2
˘

“ qbjjγ
T
J1
AJ1γJ1{

`

4m2
˘

. (3.130)
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By the Hanson-Wright inequality (Theorem 2.1),

P
´
∣∣∣vec tZuT ψij ´ ‖ψij‖2

∣∣∣ ą d1{2K2
a

logpmq ‖ψij‖2

¯

ď 2 exp t´d logpmqu “ 2{md.

(3.131)

Therefore

P
´

|pSIIIqij| ą
´

1` d1{2K2
a

logpmq
¯

‖ψij‖2

¯

“ P
´∣∣∣vec tZuT ψij

∣∣∣ ą ‖ψij‖2 ` d
1{2K2

a

logpmq ‖ψij‖2

¯

ď P
´
∣∣∣vec tZuT ψij ´ ‖ψij‖2

∣∣∣ ą d1{2K2
a

logpmq ‖ψij‖2

¯

ď 2{md,

where the last step follows from (3.131). By (3.130), it follows that

´

1` d1{2K2
a

logpmq
¯

‖ψij‖2 ď r3, (3.132)

so

P p|pSIIIqij| ą r3q ď P
´

|pSIIIqij| ą
´

1` d1{2K2
a

logpmq
¯

‖ψij‖2

¯

ď 2{md, (3.133)

by (3.132). By the union bound,

P p‖SIII‖8 ą r3q ď

m
ÿ

i“1

m
ÿ

j“1

P p|pSIIIqij| ą r3q ď 2{md´2.

3.7.5 Proof of part II of Lemma III.23, term IV

We now analyze term SIV. To do so, we express SIV as a quadratic form in order

to apply the Hanson-Wright inequality.
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Let p
p1q
i denote the ith column of P T

1 . Let p
p2q
i denote the ith column of P T

2 . Define

H ij
group “ Im0b

´

ej ´ p
p2q
j

¯´

ej ´ p
p2q
j

¯T

and H ij
global “ Im1b

´

ej ´ p
p1q
j

¯´

ej ´ p
p1q
j

¯T

,

(3.134)

and let

H ij
pJ0, J1q “

»

—

–

H ij
group

H ij
global

fi

ffi

fl

, (3.135)

where H ij
group P Rm0nˆm0n, H ij

global P Rm1nˆm1n, and H ijpJ0, J1q P Rmnˆmn. Recall that

SIV “ m´1
pI ´ P2qεJ0ε

T
J0
pI ´ P2q `m

´1
pI ´ P1qεJ1ε

T
J1
pI ´ P1q.

The second term of SIV can be expressed as a quadratic form, as follows (where εk

denotes the kth column of ε P Rnˆm):

m´1
pI ´ P1qεJ1ε

T
J1
pI ´ P1q “ m´1

ÿ

kPJ1

´

ei ´ p
p1q
i

¯T

εkε
T
k

´

ej ´ p
p1q
j

¯

“ m´1
ÿ

kPJ1

tr

ˆ

´

ei ´ p
p1q
i

¯T

εkε
T
k

´

ej ´ p
p1q
j

¯

˙

“ m´1
ÿ

kPJ1

εTk

´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T

εk

“ m´1 vec tεJ1u
T

ˆ

Im1 b

´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T
˙

vec tεJ1u
T

“ m´1 vec tεJ1u
T H ij

global vec tεJ1u
T . (3.136)

Analogously, the first term of SIV can be expressed as a quadratic form:

m´1
pI ´ P2qεJ0ε

T
J0
pI ´ P2q “ m´1

ÿ

kPJ0

´

ei ´ p
p2q
i

¯T

εkε
T
k

´

ej ´ p
p2q
j

¯

“ m´1 vec tεJ0u
T H ij

group vec tεJ0u
T . (3.137)

We now express SIV as a quadratic form. Let πpXq denote the matrix X with
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reordered columns:

πpXq “

„

XJ0 XJ1



and πpAq “ Cov pvec tπpXquq . (3.138)

Then by (3.136) and (3.137),

pSIVqij “ m´1 vec tεJ0u
T H ij

group vec tεJ0u
T
`m´1 vec tεJ1u

T H ij
global vec tεJ1u

T

“ m´1 vec tπ pεquT H ij
pJ0, J1q vec tπ pεqu

“ m´1 vec tZuT
``

πpAq1{2 bB1{2
˘

H ij
pJ0, J1q

`

πpAq1{2 bB1{2
˘˘

vec tZu ,

where the last step holds by decorrelation, with Z P Rnˆm as a random matrix with

independent subgaussian entries.

Note that the pi, jqth entry of SIV can be expressed as

pSIVqij “ vec tZuT Φi,j vec tZu , (3.139)

with

Φi,j “ m´1
`

πpAq1{2 bB1{2
˘

H ij
pJ0, J1q

`

πpAq1{2 bB1{2
˘

. (3.140)

Having expressed pSIVqij as a quadratic form in (3.139), we find the trace and Frobe-

nius norm of Φi,j, then apply the Hanson-Wright inequality. First we find the trace

of Φi,j. Let

I0 “

»

—

–

Im0ˆm0 0m0ˆm1

0m1ˆm0 0m1ˆm1

fi

ffi

fl

and I1 “

»

—

–

0m0ˆm0 0m0ˆm1

0m1ˆm0 Im1ˆm1

fi

ffi

fl

. (3.141)

Note that H ijpJ0, J1q can be written as a sum of Kronecker products,

H ij
pJ0, J1q “ I0 b

´

ej ´ p
p2q
j

¯´

ei ´ p
p2q
i

¯T

` I1 b

´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T

, (3.142)
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hence (3.140) can be expressed as

m´1
`

πpAq1{2 bB1{2
˘

ˆ

I0 b

´

ej ´ p
p2q
j

¯´

ei ´ p
p2q
i

¯T
˙

`

πpAq1{2 bB1{2
˘

(3.143)

`m´1
`

πpAq1{2 bB1{2
˘

ˆ

I1 b

´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T
˙

`

πpAq1{2 bB1{2
˘

.

(3.144)

The trace of the term (3.143) is

m´1 tr

ˆ

`

πpAq1{2 bB1{2
˘

ˆ

I0 b

´

ej ´ p
p2q
j

¯´

ei ´ p
p2q
i

¯T
˙

`

πpAq1{2 bB1{2
˘

˙

“ m´1 tr

ˆ

πpAq1{2I0πpAq
1{2
bB1{2

´

ej ´ p
p2q
j

¯´

ei ´ p
p2q
i

¯T

B1{2

˙

“ m´1 tr
`

πpAq1{2I0πpAq
1{2
˘

tr

ˆ

B1{2
´

ej ´ p
p2q
j

¯´

ei ´ p
p2q
i

¯T

B1{2

˙

“ m´1 tr pI0πpAqq

ˆ

´

ei ´ p
p2q
i

¯T

B
´

ej ´ p
p2q
j

¯

˙

“ m´1 tr pAJ0q rpI ´ P2qBpI ´ P2qqsij

“ m´1 tr pAJ0q
rbij.

Analogously, the trace of the term (3.144) is

m´1 tr

ˆ

`

πpAq1{2 bB1{2
˘

ˆ

I1 b

´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T
˙

`

πpAq1{2 bB1{2
˘

˙

“ m´1 tr pAJ1q rpI ´ P1qBpI ´ P1qqsij

“ m´1 tr pAJ1q
qbij.

Let b7ij denote the pi, jqth entry of B7 defined in (3.87). We have shown that the trace

of Φi,j (as defined in (3.140)) is

tr pΦi,jq “ m´1 tr pAJ0q
rbij `m

´1 tr pAJ1q
qbij “ b7ij. (3.145)
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Next, we find the Frobenius norm of Φi,j. For convenience, define

A0 “ πpAq1{2I0πpAq
1{2 and A1 “ πpAq1{2I1πpAq

1{2 (3.146)

B2,ij “ B1{2
´

ej ´ p
p2q
j

¯´

ei ´ p
p2q
i

¯T

B1{2 and B1,ij “ B1{2
´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T

B1{2.

(3.147)

Then

‖Φi,j‖2
F “

∥∥m´1
`

πpAq1{2 bB1{2
˘

H ij
pJ0, J1q

`

πpAq1{2 bB1{2
˘∥∥2

F

“ m´2 ‖A0 b B2,ij `A1 b B1,ij‖2
F

“ m´2 tr
´

pA0 b B2,ij `A1B1,ijq
T
pA0 b B2,ij `A1 b B1,ijq

¯

“ m´2 tr
`

AT0A0 b BT2,ijB2,ij

˘

`m´2 tr
`

AT1A1 b BT1,ijB1,ij

˘

`m´2 tr
`

AT0A1 b BT2,ijB1,ij

˘

`m´2 tr
`

AT1A0 b BT1,ijB2,ij

˘

. (3.148)

We now find the traces of each of the terms in (3.148). First, note that

tr
`

AT0A0

˘

“ tr pI0πpAqI0πpAqq “ tr
`

A2
J0

˘

“ ‖AJ0‖
2
F . (3.149)

Analogously,

tr
`

AT1A1

˘

“ ‖AJ1‖
2
F . (3.150)

For the cross-term, let AJ0J1 denote the m0ˆm1 submatrix of πpAq given by columns
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of A in J0 and rows of A in J1. Then

tr
`

AT0A1

˘

“ tr pI0πpAqI1πpAqq

“ tr

¨

˚

˝

»

—

–

0m0ˆm0 AJ0J1

0m1ˆm0 0m1ˆm1

fi

ffi

fl

πpAq

˛

‹

‚

“ tr
`

ATJ0J1AJ0J1
˘

“ ‖AJ0J1‖
2
F . (3.151)

Next,

tr
`

BT1,ijB1,ij

˘

“ tr

ˆ

B1{2
´

ei ´ p
p1q
i

¯´

ej ´ p
p1q
j

¯T

B
´

ej ´ p
p1q
j

¯´

ei ´ p
p1q
i

¯T

B1{2

˙

“

ˆ

´

ej ´ p
p1q
j

¯T

B
´

ej ´ p
p1q
j

¯

˙ˆ

´

ei ´ p
p1q
i

¯T

B
´

ei ´ p
p1q
i

¯

˙

“ qbjjqbii. (3.152)

Analogously,

tr
`

BT2,ijB2,ij

˘

“

ˆ

´

ej ´ p
p2q
j

¯T

B
´

ej ´ p
p2q
j

¯

˙ˆ

´

ei ´ p
p2q
i

¯T

B
´

ei ´ p
p2q
i

¯

˙

“ rbjjrbii. (3.153)

The cross-terms yield

tr
`

BT1,ijB2,ij

˘

“

ˆ

´

ej ´ p
p1q
j

¯T

B
´

ej ´ p
p2q
j

¯

˙ˆ

´

ei ´ p
p2q
i

¯T

B
´

ei ´ p
p1q
i

¯

˙

“ b̆iib̆jj.

(3.154)
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The squared Frobenius norm of Φi,j is

‖Φi,j‖2
F “

1

m2

´

‖AJ0‖
2
F
qbiiqbjj ` ‖AJ1‖

2
F
rbiirbjj ` 2 ‖AJ0,J1‖

2
F b̆iib̆jj

¯

ď
1

m2
C
`

‖AJ0‖
2
F ` ‖AJ1‖

2
F ` 2 ‖AJ0J1‖

2
F

˘

‖B‖2
2

“ C
1

m2
‖A‖2

F ‖B‖
2
2 .

We now apply the Hanson-Wright inequality,

P
´∣∣∣pSIqij ´ b

7

ij

∣∣∣ ą r4

¯

“ P
´∣∣∣vec tZuT Φi,j vec tZu ´ tr pΦi,jq

∣∣∣ ą r4

¯

ď 2 exp

ˆ

´cmin

"

d logpmq, d1{2
a

logpmq
‖Φi,j‖F
‖Φi,j‖2

*˙

ď 2 max
´

m´d, exp
´

d1{2
a

logpmqr1{2
pΦi,jq

¯¯

.

The first step holds by (3.139) and (3.145).
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CHAPTER IV

Matrix-variate modeling of pitch curves in

linguistics research

This chapter is joint work with my advisors Kerby Shedden and Shuheng Zhou.

Phonetics is the branch of linguistics that considers the production and percep-

tion of speech sounds. Large volumes of speech data from human volunteers can be

readily collected for analysis. One common type of phonetic data that is of inter-

est to linguistics researchers is “pitch curve” data, in which the frequency of voiced

sounds is quantified at high temporal resolution. These curves can be seen as a form

of functional data, in that the pitch varies smoothly in time. Pitch curves are rel-

evant for addressing a variety of research questions in psycholinguistics, including

questions related to language change and the relationship between subtle acousti-

cal variations in speech and people’s perception of it. Such analyses may involve

contrasting pitch curves within and between subjects, words, word categories, and

populations of speakers.

Studies involving pitch curves require substantial data pre-processing, for exam-

ple, to segment the speech into words or word fragments by identifying consonant

boundaries of word fragments. Here we consider collections of pitch curves that have
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been pre-processed into vectors of 19 pitch measures within a word. The pitch mea-

surements are equally spaced in time within a word, but not necessarily between

words, in order to accommodate differing word durations and variation in people’s

rates of speech.

Research questions in linguistics may focus on language change within a popula-

tion over time, heterogeneity in speech patterns within a population at a particular

point in time, and relationships between production and perception of speech. Re-

search studies in this area tend to involve large numbers of recordings per subject,

since once a subject is recruited to the study it is relatively easy and inexpensive to

record them speaking many words. On the other hand, logistical and cost constraints

may limit the number of different subjects in a study. Thus, the design of linguis-

tics studies resembles that of many studies in cognitive psychology and neuroscience,

in that there are relatively few subjects, with many trials per subject. Traditional

statistical methods for repeated measures data, such as hierarchical random effects re-

gression have been widely applied in this field (Baayen et al., 2008; Clark , 1973; Quené

and Van den Bergh, 2008; Aston et al., 2010). Here we consider recently-developed

statistical approaches for analyzing matrix variate data as potential tools for use by

researchers in this area. In particular, we consider the covariance matrices and graph

structures among words, and among time points within an utterance of a word. We

argue that understanding conditional independence structures will allow researchers

to gain insights into group-wise differences in speech perception and production, and

learn about inter-individual variation in speech production and processing.

A key issue is that we require an overarching model to define how within-index as-

sociations (e.g. associations among words) can be integrated into an overall covariance

structure for the data. Previous researchers have proposed Kronecker product-based

and sum-based approaches for doing this. For example, the Gemini approach (Zhou

2014), considered and extended earlier in chapters 2 and 3 of this thesis, is a product-
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based approach to covariance modeling. The Terralasso (Greenwald et al., 2017) and

other recently proposed approaches (Park et al., 2017) are sum-based.

Here we analyze data consisting of pitch curves in the Afrikaans language collected

from 23 female native speakers of the language (Coetzee et al., 2018). Each subject

uttered each of 93 distinct Afrikaans words four times (four trials). The order of

the 93 ˆ 4 word presentations was randomized. The speaker’s pitch is measured at

19 time points. The original purpose of the study was to gain an understanding of

perception/production associations among Afrikaans speakers, and to consider this in

the context of intergenerational language change. Here, we focus instead on relating

acoustical similarity as inferred through the pitch curve data to pre-defined word

attributes.

4.1 Introduction to pitch curve data

4.1.1 Phonetics terminology

In phonetics, consonants can be grouped based on the physical mechanism of their

pronunciation; such categories include labial, alveolar, nasal, and fricative consonants

(Laver , 1994). Labial consonants (e.g. b and p) are pronounced with the lips; alveolar

consonants (e.g. t and d) are pronounced with the tongue behind the teeth; fricatives

(e.g. v and f) are pronounced with partial of obstruction of the air; nasal consonants

(e.g. m and n) are pronounced with air passing through the nose.

Voicing refers to whether the vocal folds (also called vocal cords) vibrate during

pronunciation. For a “voiced” pronunciation the vocal cords vibrate, whereas for a

“voiceless” pronunciation they do not. While some consonants are voiced, the vast

majority of pitch curve data is based on vowels, which are always voiced. Typically

voiced consonants in Afrikaans include b, d, w, v, m, and n. Typically voiceless

consonants in Afrikaans include p, t, f, and, and k. The International Phonetic
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Alphabet (IPA) represents sounds across multiple languages. The words selected for

the Afrikaans data (Coetzee et al., 2018) contain five IPA vowels.

4.1.2 Voicing and pitch in linguistics research

Voicing in linguistics refers to whether the vocal folds vibrate during an utterance

(Ladefoged and Disner , 2012). Prior research in linguistics has found that vowel pitch

after voiceless consonants is higher on average than after voiced consonants (House

and Fairbanks , 1953). As demonstrated by subsequent research, this finding holds in

multiple languages, including French and Italian (Kirby and Ladd , 2016).

Linguists have performed studies to investigate the reason for this phenomenon.

Hanson (2009) compared pitch after voiced and voiceless consonants to pitch after

nasal consonants, treating nasal consonants as a reference point. Nasal consonants

were chosen as a reference for physiological reasons, in particular airflow through the

nose does not disrupt pitch (Hanson, 2009).

Hanson (2009) examined English syllables, spoken in either a high pitch context

or a low pitch context (where the test syllable was embedded in a sentence, and the

researcher demonstrated how to pronounce the sentence with high pitch or low pitch).

The study found that in a high pitch context, vowel pitch after a voiceless consonant

is higher than after a nasal during the initial 100 ms of the vowel; by contrast, vowel

pitch after a voiced consonant is comparable to that after a nasal consonant.

We analyze data on vowel pitch after voiced and voiceless consonants in Afrikaans.

The purpose of the study by Coetzee et al. (2018) is to assess whether speakers of

Afrikaans speak with raised vowel pitch after voiceless consonants, compared with

voiced consonants, and whether listeners utilize this pitch difference to aid in percep-

tion of the initial consonant.

Note that in our analysis, the covariance estimation is not driven by the mean

pitch level, because (as discussed in Section 4.2), we remove mean structure through
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trial residualization (for each speaker, word, and time point, we subtract out the

mean pitch over four utterances of the word).

4.1.3 Preliminary exploration of pitch curve data

To provide a basic illustration of pitch curve data, we display the mean pitch

curves, averaged over speaker, trial, and word within initial consonant, in Figure

4.1. This graph demonstrates that mean vowel pitch curves depend on the initial

consonant. In Figure 4.2, we display the first utterance of the word “met” for each

of the speakers. These are individual raw pitch curves that have not been centered

or averaged. There is substantial heterogeneity among speakers pronouncing a given

word. Among other characteristics, we see that some speakers have higher voices,

and others have lower voices.

When we analyze the pitch curve data, we first remove several sources of variation

that are of secondary interest. For example, most people have stable speaking pitches

(e.g. based on age and gender). Also, it is desirable to remove the stable (population

averaged) pitch trajectory of a word, so that we analyze trial variation. We take this

a step further and remove stable pitch curve features at the speaker ˆ word level,

so that we focus on variation present in individual utterances. Specifically, we center

the data using trial residualization, subtracting from each individual pitch curve the

corresponding point-wise mean pitch curve over each subject ˆ word, taken over

the four trials. To illustrate, in Figure 4.3, we display four trials, centered by first

removing the speaker ˆ word mean, and then averaging these residuals over speakers

and words within an initial consonant type.

4.2 Matrix-variate models for pitch curve data

In the linguistics study considered here, the raw data can be represented as an

array with four indices, corresponding respectively to speaker, word, trial, and time
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Figure 4.1: This figure displays pitch curves, averaged over speaker, trial, and word,
for each initial consonant. The consonants p, t, f, and k are typically
voiceless, whereas the consonants b, d, m, w, v, and n are typically voiced.
This figure is related to Figure 6 in Coetzee et al. (2018), which displays
pitch curves for older and younger speakers, for words starting with b, d,
m, and n. As discussed in Coetzee et al. (2018), vowel pitch is higher on
average after voiceless consonants than after voiced consonants.

point. Let Xi,j,r,t denote the pitch measurement for speaker i, word j, trial r, and

time t. Let ns, nw, nr, and nt denote the number of speakers, words, trials, and time

points, respectively. We describe a matrix-variate model that captures word-word

and time-time correlations, treating the trials as replicates nested within speakers by
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Figure 4.2: Pitch curves for the 23 speakers are displayed in four panels, for the word
“met.” For ease of visualization, the pitch curves for the speakers are
displayed in four panels.

words. We assume that for each speaker i, a common mean matrix Mpiq P Rnwˆnt is

shared across the four trials. Let Xpi, rq P Rnwˆnt denote the data for speaker i, trial

r. Under our assumption,

Xpi, rq ´
1

nr

nr
ÿ

r“1

Xpi, rq (4.1)

has expected value zero.

For r “ 1, . . . , nr let Xpi, rq P Rnwˆnt denote speaker i’s data for trial r. Adopting

the Gemini approach, we consider the matrix-variate model

CovpvecpXpi, rqqq “ AbB, (4.2)

where A is a time-time covariance matrix and B is a word-word covariance matrix.

We will use estimation procedures with known properties to recover A and B from the

data, then use the corresponding estimated graph structures to explore word-word

and time-time associations.
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Figure 4.3: Pitch curves for each of the four trials, averaged over speaker and word
for each initial consonant (with a separate panel shown for each initial
consonant). The trials are centered as in (4.1).
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4.2.1 Model-based centering

Since most data have mean as well as covariance structures, it will usually be nec-

essary to remove the mean structure before or in parallel with covariance estimation.

One natural two-stage approach is to use a flexible regression model to capture mean

effects, and then proceed by estimating the covariance structure based on the residuals

from the regression model fit. We found that when using a 30 degree of freedom re-

gression model fit with least squares, having terms for age, voicing condition, and four

b-splines for time, along with all pairwise interactions among these terms, the Gram

matrices based on words were approximately low-rank (Figures 4.4 and 4.5). This

suggests that the mean structure was not successfully removed. We therefore adopted

the centering approach described above in (4.1), which yielded well-conditioned word

ˆ word Gram matrices.
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Figure 4.4: Heatmap of sample covariance matrix and sorted eigenvalues when the
data is centered using a regression model including age, word voicing
condition, and four basis splines to capture the effect of time.
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Figure 4.5: Heatmap of sample covariance matrix and sorted eigenvalues for labial
words when the data is centered using a regression model including age,
word voicing condition, and four basis splines to capture the effect of time.
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4.2.2 Connections between trial differencing and trial centering

Due to the functional nature of the data, the pitch curves primarily occupy a subset

of the Euclidean space R19 in which the pitch curve vectors lie. As a result, time-time

Gram matrices calculated from raw data tend to have very large condition numbers.

In particular, there is often a large dominating eigenvector reflecting variation in the

typical pitches of different speakers’ voices, e.g. with females and younger speakers

tending to have higher pitched voices compared to males and older speakers. In

addition, each word has a characteristic pitch curve common to all speakers that is of

secondary interest here. We thus sought to remove these sources of variation that are

unimportant to our aims. There are several ways to do this, including model-based

approaches. We focus on a “trial-based” centering approach that removes the local

mean for a given speaker uttering a given word.

The Afrikaans data set consists of four replicates, so there are multiple possible

ways to take trial differences (e.g. trial 2 minus trial 1, trial 3 minus trial 2, etc.).

We show that the for a particular combination of trial differences defined below, the

trial differences can be expressed in terms of trial residualization (i.e. centering by

subtracting out the mean over the trials). Trial residualization also removes the mean

pitch level.

Define the matrices Dp1q, Dp2q, Dp3q P Rntˆnwns

Dp1q “ Xp2q `Xp3q ´Xp1q ´Xp4q

Dp2q “ Xp3q `Xp4q ´Xp1q ´Xp2q

Dp3q “ Xp1q `Xp3q ´Xp2q ´Xp4q,

where Xprq P Rntˆnwns is the data for the rth trial of all speakers, r “ 1, . . . , 4.

Let

S1 “ Dp1qDp1qT `Dp2qDp2qT `Dp3qDp3qT . (4.3)
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We show that S1 can be expressed in terms of trial-centered data. Note that the

Gram matrices can be expressed as

Dp1qDp1qT “ Xp2qXp2qT `Xp2qXp3qT ´Xp2qXp1qT ´Xp2qXp4qT

`Xp3qXp2qT `Xp3qXp3qT ´Xp3qXp1qT ´Xp3qXp4qT

´Xp1qXp2qT ´Xp1qXp3qT `Xp1qXp1qT `Xp1qXp4qT

´Xp4qXp2qT ´Xp4qXp3qT `Xp4qXp1qT `Xp4qXp4qT ,

Dp2qDp2qT “ Xp3qXp3qT `Xp3qXp4qT ´Xp3qXp1qT ´Xp3qXp2qT

`Xp4qXp3qT `Xp4qXp4qT ´Xp4qXp1qT ´Xp4qXp2qT

´Xp1qXp3qT ´Xp1qXp4qT `Xp1qXp1qT `Xp1qXp2qT

´Xp2qXp3qT ´Xp2qXp4qT `Xp2qXp1qT `Xp2qXp2qT ,

and

Dp3qDp3qT “ Xp1qXp1qT `Xp1qXp3qT ´Xp1qXp2qT ´Xp1qXp4qT

`Xp3qXp1qT `Xp3qXp3qT ´Xp3qXp2qT ´Xp3qXp4qT

´Xp2qXp1qT ´Xp2qXp3qT `Xp2qXp2qT `Xp2qXp4qT

´Xp4qXp1qT ´Xp4qXp3qT `Xp4qXp2qT `Xp4qXp4qT .

Summing the Gram matrices and cancelling terms yields the expression

S1 “ Dp1qDp1qT `Dp2qDp2qT `Dp3qDp3qT

“ 3
4
ÿ

r“1

XprqXprqT ´
ÿ

1ďr,`ď4,r‰`

XprqXp`qT . (4.4)
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Let

X “
1

4

4
ÿ

r“1

Xprq. (4.5)

Then

4
ÿ

r“1

pXprq ´XqpXprq ´XqT “
4
ÿ

r“1

XprqXprqT ´ 4XpX
T
q

“

4
ÿ

r“1

XprqXprqT ´
1

4

˜

4
ÿ

r“1

XprqXprqT `
ÿ

1ďr,`ď4,r‰`

XprqXp`qT

¸

“
3

4

4
ÿ

r“1

XprqXprqT ´
1

4

ÿ

1ďr,`ď4,r‰`

XprqXp`qT ,

which is proportional to (4.4).

4.3 Covariance and precision matrices for time points and

words

Our goal is to quantify the dependencies among words and among time points,

using methods that target the conditional correlations between two words given all

other words, or between two time points given all other time points. For matrix

variate data that are dependent along only one axis, the Glasso is a widely-used

approach for doing this. If there may be dependencies along both axes, and if the

covariance matrix of the vectorized random matrix is a Kronecker product of factors

corresponding to rows and to columns, Zhou (2014) showed that the Glasso can

be applied separately to the row and column Gram matrices, but using a different

regularization parameter to account for the additional dependence. Her work also

showed that when replicates are present, less regularization is required compared to

the setting with a single realization. Furthermore, Zhou (2014) proposed a three-step

penalized algorithm in which the estimated precision matrix along one axis is used to

decorrelate the data along the other axis, improving accuracy over baseline Gemini
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estimators under specified conditions.

We treat the 20 subjects and four trials in the Afrikaans study as 20 ˆ 4 “ 80

independent random arrays with a common covariance structure. Each such array is a

ntˆnw matrix which has been centered over the trials as discussed above in (4.1). We

then apply the Glasso method with a range of regularization parameters, separately

to the word and time Gram matrices. This approach gives us graph structures among

the words and among the time points.

Let Xpi, rq P Rnwˆnt denote the data for speaker i, trial r. Let

Xpiq “
1

nr

nr
ÿ

r“1

Xpi, rq (4.6)

denote the average over trials for speaker i. To estimate the covariance matrices, we

calculate the word-word sample covariance matrix as

1

ns

1

nr

ns
ÿ

i“1

nr
ÿ

r“1

`

Xpi, rq ´Xpiq
˘ `

Xpi, rq ´Xpiq
˘T
P Rnwˆnw (4.7)

and the time-time sample covariance as

1

ns

1

nr

ns
ÿ

i“1

nr
ÿ

r“1

`

Xpi, rq ´Xpiq
˘T `

Xpi, rq ´Xpiq
˘

P Rntˆnt . (4.8)

Note that in this formulation, speakers and trials are taken as replicates, so each

Gram matrix is an average of ns ¨ nt Gram matrices.

As noted above, here we are working with 4-index data (speaker, time, word,

replicate), but we wish to describe the population in terms of covariance and precision

matrices. We can form a Gram matrix, say for words, by matricizing the 4-way tensor

into a nwˆpnt ¨ns ¨nrq matrix, then forming the nwˆnw Gram matrix. Alternatively,

we can think of the data as consisting of ns replications of a 3-way tensor, in which case

the word Gram matrix would result from matricizing the data to obtain ns distinct
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nw ˆ pnt ¨ nrq matrices. In the Gemini approach, when replicates are available, their

Gram matrices are summed, so these two approaches lead to the same overall Gram

matrix. However, the theoretical regularization level differs depending on whether

the data are modeled as having independent replicates. Here, we treat speakers as

independent replicates, and regularize accordingly.

4.3.1 Glasso regularization

The inverse covariance graphs are estimated using graphical lasso. For the time-

time inverse correlation matrix, the penalty is

λ “

d

logpnwq

ns ¨ nr ¨ nw
, (4.9)

where nw is the number of words, ns is the number of speakers, and nr is the number

of replicates. For the word-word inverse correlation matrix, the penalty is

λ “

d

logpnwq

ns ¨ nr ¨ nt,eff

, (4.10)

where nw is the number of words, and the denominator is the product of the number

of people, trials, and effective time points per utterance. Note that the effective time

points per utterance is smaller than 19, because the pitch curves are smooth curves,

so adjacent points are dependent. Due to the stretched time scale over short vowels

versus the long vowels, we believe that nt,eff for the short vowels is smaller than that

for the long ones; hence we recommend using larger penalty when we interpret the

graphs over short vowels. In future work, when we run cross-validation, we will assess

whether larger penalties are selected for the short vowels.
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4.3.2 Time-time and word-word correlation and covariance

Since the pitch curves are smooth, strong local correlations along the time axis

are expected. The time-time dependence structure is informative in that it provides

a characterization of the variance function of the pitch curves as a function of time,

and reveals the extent to which local dependencies decay.

Figure 4.6 displays sample covariance, sample correlation, Glasso covariance, Glasso

inverse covariance, Glasso correlation, and Glasso inverse correlation for the labial

words. Glasso is run using a penalty five times that of of the theoretical value. In

Section A.0.1 of the Appendix, analogous figures are shown for the other word groups.

The time-time covariance matrices for each word group (labial, alveolar, nasal,

vf) indicate that the variance increases over time; that is, the pitch exhibits greater

variability at the end of the word utterance than at the beginning. This indicates

that speech may be more constrained at the beginning of a word token than at the

end.

The correlation matrices are approximately banded, and essentially all pairwise

correlations are above 0.5. In some cases the correlations decay faster at the end of

the utterance than at the beginning.

The diagonal entries of the inverse covariance matrix reflect the residual variances

of each time point when regressed on the other other time points; a small diagonal

entry corresponds to large residual variance. For each of the word groups, the diagonal

entries of the precision matrix are decreasing in time, also consistent with the early

portion of the utterance being more constrained and predictable than the later portion

of the utterance. Unless one has a strong conviction that the time-time covariance

matrix (to be estimated) is nonstationary, it is worth trying to use it decorrelate

the data along the time coordinate, so as to increase the accuracy in estimating the

Pearson correlation coefficients between and among words, (c.f. Chapter 5, on future

work). In Table 4.1, we report metrics related to the Glasso estimate of the time-time
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Word Group Avg. node degree # edges trpBq{‖B‖F ‖B‖2

All words (93 words) 9.3 88 4.05 5.0
Labial (26 words) 9.5 90 4.05 5.0

Alveolar (30 words) 9.8 93 4.05 5.0
Nasal words (20 words) 9.8 93 4.07 5.0

vf words (17 words) 8.4 80 4.03 5.1

Table 4.1: Metrics related to estimate of time-time correlation matrix.

Penalty Avg. node degree # edges trpAq{‖A‖F ‖A‖2 κpAq
0.1 27.94 1299 8.89 2.83 19.41
0.16 18.95 881 9.07 2.29 11.29
0.26 8.69 404 9.34 1.77 4.48
0.36 2.71 126 9.56 1.39 2.14
0.46 0.6 28 9.63 1.18 1.39

Table 4.2: Metrics related to estimate of word-word correlation matrix

correlation matrix. Based on the estimated effective sample using all words (nr “ 3,

nw “ 93, ns “ 20), using the identity matrix for the word-word covariance, the

theoretical penalty is
a

logp93q{p20 ˚ 3 ˚ 93q “ 0.03. In practice, due to dependence

on the other axis, one should use a larger penalty when estimating the time-time

inverse covariance.

4.3.3 Metrics for word-word inverse correlation estimates

We report metrics of the estimated correlation matrix for all words, using a se-

quence of Glasso penalty parameters in Table 4.2. Based on the estimated effective

sample using all words (nr “ 3, nt,eff “ 3, ns “ 20), using the identity matrix for the

time-time covariance, the theoretical penalty is
a

logp93q{p20 ˚ 3 ˚ 3q “ 0.16.
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Figure 4.6: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a labial consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as five times the value of (4.9).
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4.3.4 Analyzing edges related to long and short vowels

We illustrate that for words with long vowels, edges are driven by the vowel,

whereas for short vowels, this phenomenon does not seem to be apparent.

Figure 4.7 displays the estimated inverse covariance graph for words with long

vowels, using nodewise regression with a penalty of 0.16 and threshold of 0.08. Figure

4.8 displays an analogous plot estimated with Glasso with penalty 0.32 and threshold

of zero, and Figure 4.9 displays the analogous plot with a penalty of 0.39. We see the

presence of several strong within-vowel group edges.
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Num. edges: 16, penalty: 0.16, 
threshold: 0.08, long vowels, Nodewise

# within−group edges: 6, # between−group edges: 10
labial alveolar v_f nasal_k

within−group, positive within−group, negative between−group, positive between−group, negative

Figure 4.7: Inverse correlation edge graph for words with long vowels. Based on
the estimated effective sample (nr “ 3, nt,eff “ 3 or 4, ns “ 20) and
the theoretical guidance from Zhou (2014a), we believe the theoretical
penalty should be in the range of r0.11, 0.13s; in future work, we aim to
make this rigorous. The words are organized by vowel, with each circle
of words sharing a common vowel (“word” is the only word with a long
“o” vowel; in Afrikaans, it means “become”).
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Figure 4.8: Inverse correlation edge graph for words with long vowels. Based on
the estimated effective sample (nr “ 3, nt,eff “ 3 or 4, ns “ 20) and
the theoretical guidance from Zhou (2014a), we believe the theoretical
penalty should be in the range of r0.11, 0.13s; in future work, we aim to
make this rigorous. The words are organized by vowel, with each circle
of words sharing a common vowel (“word” is the only word with a long
“o” vowel; in Afrikaans, it means “become”).
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Figure 4.9: Inverse correlation edge graph, estimated by Glasso, for words with long
vowels. The words are organized by vowel, with each circle of words
sharing a common vowel (“word” is the only word with a long “o” vowel;
in Afrikaans, it means “become”).
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Figure 4.10 displays a bar chart of the fraction of edges present among each pair

of long vowels. The edges are estimated using a sequence of penalty parameters

for Glasso and nodewise regression. Note that when the penalty is zero, the Glasso

estimate reduces to the inverse sample correlation, which is a fully dense matrix, so

the fraction of edges is equal to one. Figure 4.12 is the analogous display for short

vowels. For long vowels, at higher penalty (λ “ 0.3), the fraction of within-vowel

edges is larger than the fraction of between-vowel edges.

Among the long vowels, as we increase the penalty, the fraction of edges decreases

more rapidly for some vowel pairs than for others. For word pairs that have larger

Pearson correlation but smaller penalized inverse correlation, the words are marginally

correlated, but not conditionally correlated given the other words; that is, the rela-

tionship between those words is explained by other words. As seen in Figure 4.10, the

long vowel pairs “a”-“a” and “a”-“u” persist to a penalty of 0.4. For short vowels, by

contrast, as seen in Figure 4.12, the edges appear to be uniformly distributed among

vowel pairs.

For each pair of long vowels, Figure 4.11 displays the average absolute values of

the Pearson correlation entries among edges. Note that the edges are obtained via

the precision matrix, but the average is taken using entries of the sample correlation

matrix. For example, let EpA,Aq denote the set of edges between words with a long

“a” vowel, and let |EpA,Aq| denote the number of edges between words with long

“a” vowels. Then we calculate

1

|EpA,Aq|

ÿ

pi,jqPEpA,Aq

|Sij|. (4.11)

Figure 4.13 displays the analogous plot for long vowels.

Note that as the penalty increases, the number of edges decreases, so the average

Pearson correlation is taken over the stronger entries that remain. At the highest
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Word One Word Two Pearson Correlation
bate maak 0.50
kaas maak 0.41
baba tier 0.37
bate maak 0.50
bate toer ´0.48
boer kaas 0.28
boer mier 0.36
bêre tert 0.35
bêre vier 0.33
bate kaas 0.22
dade maak 0.32
derd wier 0.27
dier kaas 0.35
doer voer 0.26
doer word 0.36
kaas tert 0.28
tert vier 0.30
wier tier 0.35

Table 4.3: Word-word Pearson correlations.

penalty shown, three edges remain: bate-maak, maak-kaas, and bate-toer. Pearson

correlations between word pairs with strong edges are shown in Table 4.3.

Figure 4.14 displays the trial residual pitch curves for maak and kaas. For multiple

speakers, the variability increases towards the end of the word, flaring out over time.

The Pearson correlation between two words is high if corresponding utterances within

speakers predominantly have the same sign (e.g. if the first utterance of maak is

positive for the same time points as the first utterance of kaas, the second utterance

of maak is positive for the same time points as the second utterance of kaas, etc., and

if this pattern holds across speakers). Analgously, Figure 4.15 shows the trial residual

pitch curves for bate and maak. Figure 4.16 shows the trial residual pitch curves for

bate and toer.
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Figure 4.10: Bar chart of fraction of edges for long vowels, estimated using Glasso
and nodewise regression. For certain penalty parameters, the cross-links
between some pairs of long vowels disappear. For example, the εæ-
o vowel pairs have many edges at smaller penalty parameters, but no
edges at a penalty of 0.3.
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Figure 4.11: Bar chart of average sample correlation among edges for long vowels,
estimated using Glasso and nodewise regression.
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Figure 4.12: Bar chart of fraction of edges for short vowels, estimated using Glasso
and nodewise regression.
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Figure 4.13: Bar chart of average sample correlation among edges for short vowels,
estimated using Glasso and nodewise regression.
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Figure 4.14: Trial residual pitch curves for the words maak and kaas.
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Figure 4.15: Trial residual pitch curves for the words bate and maak.
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Figure 4.16: Trial residual pitch curves for the words bate and toer.
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Figure 4.17: Trial residual pitch curves for the words wier and tier.
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4.4 Visualization of edges

In Figure 4.18, we display the inverse correlation graph for all words, organized

by initial consonant, with the top row of circles corresponding to voiced consonants,

and the bottom row corresponding to voiceless consonants. Almost all of the edges

are between group rather than within group; that is, almost all edges are between

words starting with different consonants. Table 4.4 displays the Pearson correlations

for word pairs that have edges in Figure 4.18.

In Figure 4.19, we present a high-level summary of this edge graph, by aggregating

words with the same consonant into “supernodes.” Two supernodes are connected if

there is an edge in Figure 4.18 between two words with the corresponding consonants,

estimated by both Glasso and nodewise regression. This diagram holds for a particular

choice of penalty and threshold. We show that similar patterns hold if we perturb the

penalty, and also if we use nodewise regression instead of Glasso. In Figure 4.20, we

display a an edge graph analogous to Figure 4.18, but with a smaller penalty (0.32).

In Figure 4.21 we display the Glasso edge graph for penalty 0.32 with threshold 0.1.

In Figures 4.22, 4.23, and 4.24, we display nodewise regression graphs for three choices

of penalty parameter (0.32, 0.37, and 0.43), with threshold 0.08. The graphs illustrate

that nodewise regression estimates a similar graph structure to Glasso.

In Figure 4.20 we compare the edges for Glasso and nodewise regression; both

methods are run with a penalty of 0.32 and a threshold around 0.1 (0.1 for Glasso,

0.08 for nodewise regession). At a similar level of penalty and thresholding, the Glasso

graph is denser than the nodewise graph. In Figure 4.18, we show an analogous graph,

with a larger penalty of 0.37.
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Word One Word Two Pearson Correlation
kop tor 0.53
nog wond 0.56
den pen 0.49

baba ken ´0.49
bate maak 0.50
bate tas 0.52
bate toer ´0.48
berg mier 0.48
bied das 0.49
boet kies 0.60
bot pars 0.50
dare baba 0.48
dare tas 0.49
doer pen 0.50
kat met ´0.48
ken tand 0.48
kerk piek 0.45
koet met 0.51
met vier 0.52
met wat 0.53
nek was 0.51
nek woed 0.58

padd pond 0.46
term vier 0.60

Table 4.4: Word-word pearson correlations for words with edges in Figure 4.18.
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 # edges Glasso only: 2, # edges nodewise only: 2, 
# edges in intersection: 21
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Both

Figure 4.18: Inverse covariance graph of all words, comparing Glasso edges with node-
wise regression edges. The Glasso penalty is 0.37, followed by a threshold
of 0.1, and the nodewise regression penalty is 0.37, followed by a thresh-
old of 0.08. The words are organized by initial consonant, with typically
voiced consonants in the top row and typically voiceless consonants in
the bottom row.
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b/d
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   m/n     k
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voiced 

voiceless 

Figure 4.19: Diagram displaying connectivity among consonants, providing a higher-
level representation of Figure 4.18 by combining nodes within a conso-
nant type into “supernodes.” Two nodes are connected in this diagram if
there is an edge between words with the corresponding initial consonants
in Figure 4.18.
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Figure 4.20: Inverse covariance graph of all words, comparing Glasso edges with node-
wise regression edges. The Glasso penalty is 0.32, followed by a threshold
of 0.1, and the nodewise regression penalty is 0.32, followed by a thresh-
old of 0.08. The words are organized by initial consonant, with typically
voiced consonants in the top row and typically voiceless consonants in
the bottom row.
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Figure 4.21: Inverse covariance graph of all words, estimated using Glasso, organized
by initial consonant, with typically voiced consonants in the top row and
typically voiceless consonants in the bottom row.
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Figure 4.22: Inverse covariance graph of all words, estimated using nodewise regres-
sion, organized by initial consonant, with typically voiced consonants in
the top row and typically voiceless consonants in the bottom row.
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Figure 4.23: Inverse covariance graph of all words, estimated using nodewise regres-
sion, organized by initial consonant, with typically voiced consonants in
the top row and typically voiceless consonants in the bottom row.
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Figure 4.24: Inverse covariance graph of all words, estimated using nodewise regres-
sion, organized by initial consonant, with typically voiced consonants in
the top row and typically voiceless consonants in the bottom row.
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4.4.1 Labial and alveolar words

In Figures 4.25, 4.26, and 4.27 we show the inverse covariance graph estimated

using a sequence of Glasso penalty parameters, with a threshold of 0.1. For small

penalty values, words of all four initial consonants (b, d, p, t) are densely connected.

As the penalty increases the edges between words beginning with p and t drop off.
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Figure 4.25: Inverse covariance graph of labial and alveolar words Glasso with a
peanlty of 0.1 and a threshold of 0.1.
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Figure 4.26: Inverse covariance graph of labial and alveolar words Glasso with a
peanlty of 0.25 and a threshold of 0.1.
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Figure 4.27: Inverse covariance graph of labial and alveolar words Glasso with a
peanlty of 0.3 and a threshold of 0.1.
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4.4.2 Initial consonant connectivities

Figure 4.28 displays a bar chart of the fraction of edges between each pair of initial

consonants, for a sequence of Glasso penalty parameters. When counting edges, the

“m” and “n” are treated as a single consonant, as are the consonants “v” and “f”.

We see that even at a penatly of 0.43, edges persist between “mn” words and “w”

words.

Figure 4.29 displays the mean Pearson correlation among edges in the for each

consonant pair.

Figure 4.28: Fraction of edges between each pair of initial consonants as we vary the
Glasso penalty.
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Figure 4.29: Mean absolute value of Pearson correlation among edges between each
pair of initial consonants.
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4.4.3 Comparing Glasso and nodewise regression graphs for pairs of word

groups

We display inverse correlation graphs between each pair of word groups (labial,

alveolar, nasal, and vf). Glasso and nodewise regression were run on all the words; in

the following figures, we visualize subgraphs of the full graph. The line type indicates

whether the edge appears in both the Glasso and nodewise regression graphs or in

just one of the two. Both methods are run with a penalty of 0.32 and threshold of

0.16. We see that the edges are similar between the methods, but with more edges

for Glasso than nodewise regression. In Section A.0.3 of the Appendix, we display

analogous plots with a penalty of 0.26 and threshold 0.08.
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Figure 4.30: Inverse covariance graph of labial and alveolar words. This graph dis-
plays a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure 4.31: Inverse covariance graph of labial and nasal words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure 4.32: Inverse covariance graph of labial and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure 4.33: Inverse covariance graph of alveolar and nasal words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure 4.34: Inverse covariance graph of alveolar and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure 4.35: Inverse covariance graph of nasal and vf. This graph displays a sub-
graph of a graph for all 93 words, estimated using Glasso and nodewise
regression with thresholding.
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4.4.4 Comparison of time inverse covariance graphs for each pair of word

groups

For each pair of word groups, we compare the time-time inverse correlation graphs,

by taking intersections and set differences. We threshold each graph down to 70 edges.

In each graph, nodes are connected to approximately five nearest neighbors on each

side. The time-time edges are similar among the word groups; that is, most of the

nodes are in the intersections of the graphs. This suggests that we can consider using

a combined time-time inverse covariance matrix pooling over the words to decorre-

late along the time axis, potentially improving the word-word covariance estimates,

discussed in Zhou (2014a).
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Figure 4.36: Time-time inverse covariance graphs for labial and alveolar words, as
well as graph intersection and set differences. The inverse correlation
matrices are thresholded so that 70 edges remain in each word group.
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Figure 4.37: Time-time inverse covariance graphs for labial and nasal words, as well
as graph intersection and set differences.
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Figure 4.38: Time-time inverse covariance graphs for labial and vf words, as well as
graph intersection and set differences.
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Figure 4.39: Time-time inverse covariance graphs for alveolar and nasal words, as well
as graph intersection and set differences.
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Figure 4.40: Time-time inverse covariance graphs for alveolar and vf words, as well
as graph intersection and set differences.
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Figure 4.41: Time-time inverse covariance graphs for nasal and vf words, as well as
graph intersection and set differences.
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4.5 Conclusion

In this chapter we analyzed multi-indexed data containing trial replicates. We

used the trial replicates to center the data, removing speaker-by-word means at each

time point. We found that among words with long vowels, the vowel appears to

be associated with the presence of word-word edges. We also found more between-

consonant edges than within-consonant edges. In future work, we will investigate

hypothesis testing of the edges to assess their validity, as well as cross-validation to

select the penalty; in addition, we will examine whether the patterns we found hold

in pitch curve data sets in other languages.
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CHAPTER V

Future Work

We now discuss directions for future work in analyzing pitch curve data.

5.0.1 Decorrelation along the time axis

One direction for future work is to use the three-step algorithm proposed in Zhou

(2014a) to decorrelate the data along the time axis in order to obtain more accurate

word-word covariance estimates. The decorrelation can be performed either using a

single time-time matrix across all words, or to separately estimate time-time matrices

for subsets of the words. Some subsets of the words have time-time covariance matri-

ces that are closer to stationary, so we can pool those words together and decorrelate

using a common time-time inverse covariance matrix.

5.0.2 Cross-validation

Another direction for future work is to perform cross-validation to validate the

choice of penalty parameter.

We consider a cross-validation procedure to select word and time penalty param-

eters, making use of the trial replicates.

1. Partition the people into pairs.
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2. For each pair of people, withhold that pair, and estimate word-word and time-

time precision matrices using the remaining people, sweeping out time and word

penalties tpλi, νiqu, with νi “ kλi. Run cross-validation for values of k equal to

1, 1.5, 2, 3, and 6.

3. To evaluate the likelihood of the test set data, use the data matrix resulting

from trial differencing and person averaging (of the test set pair of people).

As discussed in Section 4.2.2, trial residualization can be expressed in terms of

three trial differencing schemes:

• (2 - 1) + (3 - 4)

• (3 - 1) + (4 - 2)

• (1 - 2) + (3 - 4).

Run cross-validation three separate times, once using each type of trial difference

when calculating the likelihood of the test set.

When calculating the likelihood of test set data under the estimated parameters

from the training set, do the following:

1. Let A denote the time-time covariance matrix, and let B denote the word-word

covariance matrix. The matrix-variate normal likelihood is

ppX | A,Bq “
exp

`

´1
2
tr
“

A´1XTB´1X
‰˘

p2πqn2n4{2|A|n2{2|B|n4{2
. (5.1)

2. When calculating the likelihood of the test set data, we use the unpenalized

likelihood.

logpppXp1q, Xp2q, Xp3q, Xp4q | A,Bqq “ (5.2)
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´
1

2

4
ÿ

r“1

tr
“

A´1
pXprq ´XqTB´1

pXprq ´Xq
‰

´
np
2

log |A| ´
nt
2

log |B| (5.3)

5.0.3 Permutation tests and hypothesis testing

Another direction for future work hypothesis testing to validate edges. Some word

groups exhibit more long range temporal correlations than others. The following

permutation procedure can be used to assess whether the longer-range edges are due

to the word groups or due to chance.

For k “ 1, . . . , K,

1. Let word group 1 consist of half the labial words and half the alveolar words,

selected randomly. Let word group 2 consist of the remaining labial and alveolar

words.

2. Estimate inverse correlation matrices pB´1rk, 1s and pB´1rk, 2s using each of the

two word groups, respectively.

Average the precision matrices over the permutations:

pB´1
r1s “

1

K

K
ÿ

k“1

pB´1
rk, 1s and pB´1

r2s “
1

K

K
ÿ

k“1

pB´1
rk, 2s. (5.4)

We obtain graphs from pB´1r1s and pB´1r2s by thresholding so that each graph has 75

edges. We then compare the edges using intersection and set differences.

5.0.4 Other matrix-variate models

Another direction for future work is to fit Kronecker sum models for the covariance

or inverse covariance matrix. A related problem is model selection, in particular

assessing whether Kronecker sum or Kronecker product models better fit the data.
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5.0.5 Assessing the reasons for edges between word groups

Another direction for future research is to assess linguistic mechanisms that un-

derlie the edges, and to assess whether the word-word and time-time patterns we

found in the Afrikaans data set also appear in other languages.
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APPENDIX
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APPENDIX A

Additional Figures

A.0.1 Time-time covariance, correlation, inverse covariance, and inverse

correlation
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Figure A.1: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a labial consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as in (4.9).
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Figure A.2: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with an alveolar consonant. The sample co-
variance is calculated as in (4.8), and the Glasso penalty parameter is
chosen as in (4.9).
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Figure A.3: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a nasal consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as in (4.9).
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Figure A.4: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a vf consonant. The sample covariance
is calculated as in (4.8), and the Glasso penalty parameter is chosen as
in (4.9).
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Figure A.5: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with an alveolar consonant. The sample co-
variance is calculated as in (4.8), and the Glasso penalty parameter is
chosen as five times the value of (4.9).
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Figure A.6: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a nasal consonant. The sample covari-
ance is calculated as in (4.8), and the Glasso penalty parameter is chosen
as five times the value of (4.9).
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Figure A.7: Time-time sample covariance (top left), sample correlation (top right),
Glasso covariance (middle left), Glasso inverse covariance (middle right),
Glasso correlation (bottom left), and Glasso inverse correlation (bottom
right), for words beginning with a vf consonant. The sample covariance
is calculated as in (4.8), and the Glasso penalty parameter is chosen as
five times the value of (4.9).

191



A.0.2 Word-word sample correlation and covariance heatmaps, and Glasso

covariance, inverse covariance, correlation, and inverse correlation

The words are, we use an alphabetic ordering, which has the effect of grouping

them by initial consonant. In the graphs, the words are also sorted alphabetically.

For each word group, there are strong edges that survive penalization and thresh-

olding.
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Figure A.8: Glasso covariance, inverse covariance, correlation, and inverse correlation
for labial words. The top row of plots displays the estimated covariance
and correlation matrices. The bottom row displays the estimated inverse
covariance and inverse correlation matrices.

193



0

100

200

300

400

Sample covariance, labial words

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sample correlation, labial words

0

100

200

300

400

Glasso covariance, penalty 0.09

−0.005

0.000

0.005

0.010

0.015

0.020

Glasso inv. covariance, penalty 0.09

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Glasso correlation, penalty 0.09

0.0

0.5

1.0

Glasso inv. correlation, penalty 0.09

Figure A.9: Glasso covariance, inverse covariance, correlation, and inverse correlation
for labial words. The top row of plots displays the estimated covariance
and correlation matrices. The bottom row displays the estimated inverse
covariance and inverse correlation matrices.

194



0

100

200

300

Sample covariance, alveolar words

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sample correlation, alveolar words

0

100

200

300

Glasso covariance, penalty 0.09

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Glasso inv. covariance, penalty 0.09

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Glasso correlation, penalty 0.09

0.0

0.5

1.0

1.5

Glasso inv. correlation, penalty 0.09

Figure A.10: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.

195



0

100

200

300

Sample covariance, alveolar words

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sample correlation, alveolar words

0

100

200

300

Glasso covariance, penalty 0.18

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Glasso inv. covariance, penalty 0.18

0.0

0.2

0.4

0.6

0.8

1.0

Glasso correlation, penalty 0.18

0.0

0.5

1.0

Glasso inv. correlation, penalty 0.18

Figure A.11: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Figure A.12: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Figure A.13: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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Figure A.14: Glasso covariance, inverse covariance, correlation, and inverse correla-
tion for labial words. The top row of plots displays the estimated covari-
ance and correlation matrices. The bottom row displays the estimated
inverse covariance and inverse correlation matrices.
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A.0.3 Edge graphs comparing Glasso and nodewise regression, for each

pair of word groups (labial, alveolar, nasal, vf)
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Figure A.15: Inverse covariance graph of labial and alveolar words. This graph dis-
plays a subgraph of a graph for all 93 words, estimated using Glasso
and nodewise regression with thresholding.
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Figure A.16: Inverse covariance graph of labial and nasal words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.

201



baba
bak

bate
ben

bêrebergbiedboerboetbons
bont

bot

fort

padd
pak
papp

pars
pas

pen pers piek piet poelpoetpond
pons

pot

veg
vet

vierviesvoer
voet

was
wat
weg

wet
wiel

wier woed woer
wond

word

Num. edges: 14, penalty: 0.26, 
threshold: 0.08

# within−group edges: 10, # between−group edges: 4

labial
v_f

Glasso only
Nodewise only
Both

Figure A.17: Inverse covariance graph of labial and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure A.18: Inverse covariance graph of alveolar and nasal words. This graph dis-
plays a subgraph of a graph for all 93 words, estimated using Glasso
and nodewise regression with thresholding.
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Figure A.19: Inverse covariance graph of alveolar and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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Figure A.20: Inverse covariance graph of nasal and vf words. This graph displays
a subgraph of a graph for all 93 words, estimated using Glasso and
nodewise regression with thresholding.
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