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ABSTRACT 

 

 

Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver 

disease among youth in the United States. This recent rise of NAFLD may be partially due to 

perinatal programming, where in utero exposures alter the lifelong health trajectory of offspring. 

Maternal pregnancy diet and endocrine disrupting chemical exposure have been identified as 

drivers of perinatal programming. However, the potential for maternal diet to modify the impact 

of perinatal chemical exposure is not well understood. This dissertation examined whether 

perinatal exposure to two common environmental toxicants, bisphenol A (BPA) and high fat 

diets (HFDs), would affect NAFLD incidence in offspring. A longitudinal mouse exposure study 

and a human birth cohort were used to investigate this hypothesis and to evaluate the translation 

of findings across species.  

Oral exposure to one of six diets: Control, Western HFD, Mediterranean HFD or each 

diet with 50g BPA/kg added, occurred pre-gestation through lactation. All mice were weaned 

onto the Control diet, thus isolating exposure to the perinatal period. Offspring NAFLD was 

assessed via hepatic steatosis and hepatic oxidative response at postnatal day 10 (PND10) and 

10-months. Hepatic triglyceride (TG) levels were altered by perinatal HFD in dams, but in 

offspring perinatal exposures affected metabolic outcomes not hepatic TGs. Hepatic histology 

from 10-month offspring highly correlated with hepatic TG levels, validating the TG findings. 

Hepatic 8-isoprostane (8-iso) levels differed by perinatal exposure in PND10 and 10-month 

offspring, but alterations were age and sex-specific. Perinatal HFD and BPA minimally impacted 
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offspring redox parameters (EhGSH, EhCys, S-glut), suggestive of greater homeostatic control 

of these parameters compared to lipid oxidation. Dam metabolic phenotype significantly altered 

offspring hepatic steatosis and oxidative response, even when perinatal HFD and BPA did not, 

emphasizing the critical role of the maternal environment on offspring health.  

The impact of maternal BPA exposure and gestational Mediterranean diet adherence 

(MDS) on the metabolic health of peripubertal youth was examined in a well-established human 

birth cohort. Youth metabolic and oxidative health was assessed via metabolic risk score (MRS) 

and serum 8-iso. Maternal pregnancy average and Trimester 2 BPA were associated with a 

suggestive decrease in youth MRS driven by boys, but a suggestive increase in 8-iso levels 

driven by girls. Maternal MDS did not affect youth MRS, but altered youth serum 8-iso in 

opposite directions based on sex. Additional youth characteristics (peripubertal BPA, MDS, 

vigorous activity, and pubertal status) contributed to predictive models of MRS and 8-iso, 

underscoring the impact healthy lifestyle behaviors may have, potentially even modifying 

perinatal programming.  

The unexpected lack of protection exerted by the Mediterranean diet in both mouse and 

human studies, suggests the beneficial effect observed in adults may not apply to perinatal 

exposure. Greater impact of HFDs in mice but BPA in humans highlights the need to carefully 

scrutinize findings before translating across species. Despite this difference, sex-specific effects 

occurred in both species, emphasizing the importance of investigating perinatal programming in 

all offspring. This research suggests that perinatal BPA and HFD exposure may be insufficient to 

induce perinatal programming of NAFLD. The significant impact of dam metabolic phenotype in 

mice and peripubertal behaviors in humans on metabolic and oxidative outcomes suggest 

NAFLD risk can be altered and potentially prevented at multiple life stages.
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CHAPTER 1 

 

Introduction 

 

Rationale & Significance 

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease 

among children and adolescents in the U.S. [1–3]. NAFLD prevalence has increased with the 

concomitant rise in worldwide obesity and insulin resistance (IR); it is now regarded to be the 

hepatic precursor of metabolic syndrome [4]. Rising rates of childhood obesity are concerning 

due to the 2-6 fold increased risk of obese children becoming obese adults [5,6]. An estimated 

9% of U.S. children have NAFLD, but prevalence rises to 38% among obese children [7–9]. 

NAFLD describes a continuum of liver diseases, beginning with simple hepatic steatosis and 

steatohepatitis, advancing to fibrosis, cirrhosis and in some cases hepatocellular carcinoma [10–

12]. Of concern, hepatocellular carcinoma incidence has increased, now occurring in the absence 

of cirrhosis in up to 50% of cases [13,14].  

Simple steatosis and steatohepatitis are reversible with intensive lifestyle change, similar 

to current recommendations for pre-diabetes and early type 2 diabetes (T2DM): regular exercise 

and a healthy diet [15,16]. NAFLD prevalence is higher among: males than females, individuals 

of Mexican-American descent compared to those of non-Hispanic African and Caucasian 

descent, and individuals with concomitant metabolic disease (e.g. obesity, dyslipidemia, T2DM 
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and IR in the absence of overt T2DM) [17]. Improved understanding of contributors to NAFLD 

could help identify early biomarkers of disease. Early detection, while hepatic damage is still 

reversible, could reduce morbidity and improve quality of life for the 75-100 million individuals 

estimated to have NAFLD in the U.S. [18]. 

 

NAFLD: Pathogenesis, Diagnosis, and Treatment 

Pathogenesis of NAFLD 

 The liver plays a central role in energy homeostasis and nutrient metabolism. These 

functions are so energy-intensive, the liver accounts for almost 25% of the body’s total metabolic 

rate under basal conditions [19]. In healthy, fasted individuals, the liver relies on -oxidation of 

free fatty acids (FFAs) as it’s primary fuel source, while releasing glucose into circulation to 

supply metabolic fuel to peripheral, glucose-dependent tissues [19]. In healthy livers, uptake of 

circulating non-esterified fatty acids is mediated by fatty acid transport proteins (FATPs) and 

CD36; in the hepatocyte cytosol, the fatty acids are converted to acyl-CoAs, facilitated by fatty 

acylCoA synthetases (ACSs). Acyl-CoAs are also formed via de novo lipogenesis (DNL), the 

conversion of glucose to palmitic acid, catalyzed by acetyl-CoA carboxylase (ACC) and fatty 

acid synthase (FAS). ACS activates palmitic acid to palmitoyl-CoA. Acyl-CoAs are 

progressively esterified to a glycerol backbone resulting in triglyceride (TG) synthesis. These 

TGs can be packaged with apolipoproteinB 100 (apoB 100) to form very low density 

lipoproteins (VLDLs), which are secreted into circulation thus transporting TGs to peripheral 

tissues [20].   

 NAFLD begins as simple steatosis, lipid accumulation in hepatocytes. This hepatic lipid 

accumulation can result from increased FFA uptake from peripheral tissue and a higher rate of 
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DNL, both resulting in increased hepatic triglyceride levels. Elevated rates of -oxidation and 

higher VLDL production are not capable of compensating for the increased TG synthesis, which 

results in hepatic TG accumulation [20–23]. Hepatic alterations associated with NAFLD, such as 

increased FFAs, ceramide, JNK1, SOCS, TNF, and NF-B levels, interfere with intracellular 

insulin signaling cascades [24–26].  In healthy individuals, insulin binding to the insulin receptor 

triggers an intracellular phosphorylation cascade (e.g. PI3K, AKT/PKB). Insulin signaling 

cascades induce GLUT4 translocation to the cellular membrane of skeletal muscle, facilitating 

glucose uptake, they also increase lipogenic gene expression and decrease gluconeogenic gene 

expression. In adipose tissue, insulin has a potent inhibitory affect on lipolysis, but this inhibitory 

effect is suppressed in NAFLD patients, resulting in greater efflux of FFA out of adipose tissue 

[27]. Thus, NAFLD and IR appear to be mutually exacerbating conditions. 

Although NAFLD is known to run in families, it appears that heritability accounts for 

only 0.26-0.27 variance in disease prevalence in people of African, Caucasian, and Hispanic 

descent [28]. The gene locus, PNPLA3, is associated with a 3.24 increased in odds of NAFLD; 

single nucleotide polymorphisms (SNPs) vary by racial-ethnic background and likely impacts the 

difference in prevalence rates [29,30]. More than 10 SNPs have now been associated with 

increased incidence of NAFLD, but combined they only account for ~5% variance [29,31]. This 

leaves a large potential role for environmental influences, gene x environment interactions and 

epigenetic programming in NAFLD.  

Animal models have been used to investigate the molecular, tissue-specific changes that 

occur during NAFLD development and progression. Although rodents develop hepatic steatosis, 

the full range of human NAFLD phenotypes are not replicated in murine models [32,33], which 

has complicated the translation of findings from animal models to relevant clinical outcomes. 
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Many genetically modified mouse models mimic the histologic appearance of steatosis; for 

example, ob/ob and db/db mice exhibit steatosis resulting from obesity [32,34], increased levels 

of long-chain fatty acids and TGs occur in CD36-/- mice leading to steatosis and unchecked 

hepatic gluconeogenesis [35], additional mouse knock outs promote steatosis by promoting 

hepatic de novo lipogenesis. HFD-feeding of adult C57BL6/J mice induces hepatic steatosis, 

insulin resistance, and induction of multiple lipogenic transcription factors: SREBP-1c, PPAR, 

and LXR [33,36].  

 

Diagnosis of NAFLD 

 Clinical diagnosis of NAFLD is often challenging, since many patients are asymptomatic 

or have generic symptoms, like fatigue or mild abdominal discomfort in the upper right quadrant 

[18,37–40]. NAFLD is often discovered during clinical treatment for other metabolic diseases, 

such as diabetes mellitus, hyperlipidemia, hypertension or as an incidental finding during 

abdominal imaging for an unrelated condition [18,38–40]. Liver biopsy is the current, gold 

standard diagnostic measure of NAFLD [41]. Less invasive methods of diagnosis like radiologic 

procedures (e.g. ultrasound, CT, MRI) and common serum metabolite measures (e.g. ALT, AST, 

ALP, ferritin) have been investigated. Unfortunately, current serum metabolite panels are only 

predictive of NAFLD in 50% of patients [41–46], so are unable to predict early steatosis better 

than the odds of chance alone.  

Following a clinical diagnosis of NAFLD in human patients, staging of the disease is 

performed based on three main criteria: (1) the amount of hepatocyte ballooning, a measure of 

lipid accumulation per cell, (2) the level of hepatic inflammation, and (3) the extent of fibrosis 

that has occurred in the liver [41]. Simple steatosis, the early stage of NAFLD, is characterized 
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by macrovesicular triglyceride accumulation localized to the perivenular region in more than 5% 

of hepatocytes [47–51]. Progression of NAFLD from simple steatosis to steatohepatitis (NASH) 

occurs in about 1/3 of cases, and is characterized by scattered intralobular and mild portal 

inflammation, hepatocellular ballooning, increased steatosis in up to 66% of hepatocytes, and 

mitochondrial abnormalities. As NASH progresses, steatosis becomes panacinar, portal and 

intralobular inflammation increase, cellular disarray and early fibrosis become apparent [47,51–

53]. NASH can lead to hepatic cirrhosis and hepatocellular carcinoma (HCC). Over a 10 year 

period, hepatic cirrhosis develops in 5-20% of NASH cases [51]. At these more advanced stages 

of NAFLD, steatosis and inflammatory markers often become less apparent [54–56]. 

Interestingly, pediatric NAFLD can have a different histological presentation than the 

disease in adults. Although simple steatosis presents similarly in people of all ages, pediatric 

NASH occurs in two distinct patterns. Type I NASH mimics adult histopathology with 

increasing steatosis, hepatocellular ballooning, and perisinusoidal fibrosis, without portal 

involvement. In contrast, Type 2 NASH presents as steatosis accompanied by portal 

inflammation and fibrosis in the absence of hepatocellular ballooning and perisinusoidal fibrosis. 

Type 2 NASH is unique among children, with one study of pediatric NAFLD, reporting 16% of 

cases as simple steatosis, 17% as Type 1 NASH, but 51% as Type 2 NASH [57]. Compared to 

Type 1 NASH, cases of Type 2 NASH were more common among children who were younger, 

had more severe obesity, were male, or were of Asian, Hispanic, or Native American descent 

[51].  

 

Treatment of NAFLD 
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Pharmaceutical efforts to create a therapy for NAFLD, including pioglitazone, 

pentoxifylline, and vitamin E, have been less than 50% effective [31,37]. A confluence of 

multiple lipogenic, inflammatory, and fibrogenic pathways in the development and progression 

of NAFLD may explain the difficulty in diagnosis and treatment of NAFLD [58]. While efforts 

to find a pharmaceutical therapy for NAFLD continues, lifestyle intervention studies have 

reported some success. A systematic review of exercise intervention studies (8-48 week long) in 

NAFLD patients reported reduction of intrahepatic triglyceride levels in exercising participants 

independent of weight loss. The effect on fat mobilization was 30.2% in exercise interventions, 

but increased to 49.8% in participants assigned to diet and exercise interventions, suggesting an 

additional benefit from the combined intervention [59].  

 

Prevalence of NAFLD 

Many chronic diseases, including NAFLD, may result from fetal epigenetic 

reprogramming [60–62]. The Developmental Origins of Health and Disease (DOHaD) paradigm 

states that the fetal environment impacts gene regulation via epigenetic mechanisms, to optimally 

prepare the fetus for life in the environment into which it will be born [63,64]. Despite evidence 

that even healthy pregnancies produce an oxidizing state [65], early life programming as a driver 

of oxidative stress (OS) response and later chronic disease development has not been studied. 

One murine study found maternal malnutrition during pregnancy resulted in increased lipid 

oxidation in prostate tissue of young adult male offspring [14], but few studies have examined 

the impact on offspring hepatic function or the potential for prenatal exposures to reprogram 

redox-regulated IR gene expression. In utero diet and chemical exposures have been implicated 

as modifiers of fetal epigenetic programming [66–68]. Exposure to endocrine disrupting 
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chemicals (EDCs) is especially concerning since reprogramming can impact enzyme expression 

levels, hormone regulation, and homeostatic processes across the lifespan. 

 

Perinatal Programming of NAFLD 

 Metabolic diseases, including NAFLD, can be developmentally programmed. Maternal 

pre-gestational obesity is associated with increased hepatic lipid storage in infants [69,70]. 

Elevated placental transfer of fatty acids and glucose, early in pregnancy before subcutaneous 

adipose tissue develops to store excess nutrients, has been proposed as a potential rationale for 

the intrahepatic storage of excess lipids in infants of obese mothers [71]. In non-human primates 

perinatally exposed to a HFD, third trimester fetuses have 3-fold greater hepatic TGs and 

elevated levels of nuclear (8-OH—dG) and cytosolic (4-hydroxy-2-nonenal, HNE) oxidative 

stress, without increased body adiposity [72]. Fetal hepatic steatosis not only poses a health 

threat to young offspring, it also increases NAFLD risk into adulthood, with reports of worsened 

NAFLD phenotypes in adult mice [73,74].  Some researchers have proposed that the alterations 

in fetal liver function may be central to metabolic programming [74–76] 

Originally proposed in the mid-1990s, the Barker Hypothesis posits that offspring health 

can be altered by the in utero environment [67,77,78]. A mismatch between the fetal and 

postnatal environments increases the risk of chronic disease later in life; this paradigm is now 

known as prenatal programming. Although Barker’s original hypothesis focused on the effect of 

maternal diet during pregnancy on offspring’s cardiovascular health, the hypothesis has been 

expanded to include exposure to chemicals [79]. As the field of Environmental Health Sciences 

incorporated the concept of prenatal programming into its list of potential exposure-disease 
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relationships, the Barker Hypothesis became more widely known as the Developmental Origins 

of Health and Disease (DOHaD) hypothesis [80]. 

Epigenetics, heritable alterations in gene regulation without changing the genetic code, 

has been proposed as the underlying mechanism, by which these altered phenotypes may occur 

on a molecular basis. Epigenetics includes multiple types of gene regulatory mechanisms, 

including DNA methylation, histone modification, and non-coding RNA [81,82], all of which 

can be affected by the intrauterine environment [83]. DNA methylation is the most thoroughly 

studied mechanisms and refers to the bonding of a methyl group to a cytosine followed by a 

guanine (CpG) residue in the DNA code [82,84]. Methylation of CpG sites is generally 

associated with decreased gene expression; thus, DNA methylation is a method of regulating 

gene transcription via repression of RNA transcripts [84]. 

This epigenetic regulation of gene expression is especially sensitive to external exposures 

(e.g. diet, chemicals, stress) during periods of reprogramming. There are two waves of extensive 

epigenetic reprogramming that occur during early fetal development. Shortly after fertilization 

the first wave of global demethylation begins with active demethylation of the paternal genome 

begins, followed by the slower, passive demethylation of the maternal genome [63,85]. 

Repetitive elements and some specific gene loci do not completely demethylate during this first 

wave [86]; imprinted genes retain their parent-of-origin methylation marks, while transposons 

only partially demethylate on both parental genomes [63]. The second wave of epigenetic 

reprogramming only occurs in the primordial germ cells of the fetus, so will impact the next 

generation, if the fetus has offspring of its own. This reprogramming occurs while the primordial 

germ cells migrate to the genital ridge, occurring between gestational days 11.5-12.5 in mice. All 

parental, imprinted marks are erased; de novo methylation is established according to fetal sex 
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[87,88]. In mice, male de novo methylation occurs between gestational days 16.0-18.5. In 

females, germ cell development is halted following meiosis I; re-methylation occurs after birth in 

the mature oocyte [89]. Tissue-specific DNA methylation, which drives the specialized structure 

and function of different tissues, occurs later in development, during organogenesis [85]. These 

tissue-specific marks are relatively stable, however, fluctuation of DNA methylation in somatic 

tissues happens during sensitive periods of rapid growth and development, including pregnancy 

and puberty [63].  

Recently, a few new concepts have been posited to advance the understanding of 

epigenetics as a mechanism underlying environmental exposures and subsequent health effects. 

One such paradigm is the ‘Seed and Soil Model’ where ‘soil’ represents the potential epigenetic 

modifications in a genomic region, that will impact gene expression via alteration of basal gene 

expression or modification of the magnitude of response of the gene to an acute stimulus. The 

‘seed’ signifies a cellular signal, which could be homeostatic, toxicant-, pathogen-, pathology-

induced [90]. This paradigm emphasizes the importance of considering the cumulative effects of 

epigenetic changes at a particular genic locus to elucidate the impact of environmental exposures 

on exposure-triggered disease states. For instance, environmental exposures could lead to 

changes in basal gene expression via epigenetic reprogramming of the gene’s response to a 

normal, homeostatic stimulus. Or environmental exposures could reprogram a genic locus’ 

magnitude of response to a toxicant or other acute stimulus. In this paradigm, a receptive 

epigenetic soil will produce a more robust response following stimulus activation, due to the 

cumulative effect of epigenetic modifications favoring gene expression; non-receptive soil will 

produce a more moderate response [91]. 
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A second, recently proposed conceptual framework suggests that non-genomic signaling, 

acting as ‘readers, writers, and erasers’ of epigenomic signals can alter developmental 

reprogramming. These processes are controlled by proteins: histone methyltransferase (HMT, 

‘writers’), histone demethylases (HDM, ‘erasers’), and effector proteins (‘readers’). Intracellular 

phosphorylation cascades can regulate several HMTs; post-translational phosphorylation of 

HDMs alters their function, often triggering their dissociation from chromatin. Finally, 

phosphorylation of effector proteins alters their intracellular localization. This non-genomic 

regulation of enzymes that control epigenetic modifications is posited as a mechanism by which 

endocrine disrupting chemicals may alter epigenetic marks [92]. Non-genomic activity of the 

estrogen receptor, for instance, includes rapid kinase activation, triggering intracellular 

phosphorylation cascades [93]. These signals begin by ER activation on the extracellular 

membrane, thus triggering signaling pathways that are independent of ER localization to the 

nucleus. This type of non-genomic ER signaling has a demonstrated role in hormone-mediated 

gene transcription [29], and has been linked to alterations in health of the reproductive tract and 

mammary gland development.  

 

Bisphenol A Impacts Perinatal Programming  

  Over 70,000 new synthetic chemicals have been introduced to the market since 1970, less 

than 10% of which have undergone rigorous, unbiased analysis of their potential impacts on 

human health [94]. Considered a high production volume chemical by the U.S. EPA, produced in 

excess of 1 million pounds per year in the U.S., bisphenol A (BPA) [95] is now classified as an 

endocrine disrupting chemical (EDCs) [68,96–98]. Exposure to EDCs, exogenous chemicals that 

alter normal hormonal function, is especially concerning due to the potential for developmental 
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endocrine dysregulation with metabolic repercussions later in life. More than 95% of U.S. adults 

and children have detectable levels of BPA in their urine [99], suggesting exposure is widespread 

and likely chronic in the general population.  

 BPA has been associated with increased risk of obesity and associated metabolic diseases 

in both animal and human studies. In adults, urinary BPA levels are associated with increased 1.5 

odds of obesity, 1.28 odds of abdominal obesity, and 1.37 odds of IR [100]. Among pre-

menopausal women, urinary BPA levels were linked to increased fat mass and serum leptin 

levels [101]. In NHANES analyses from 2003-2006, adults with higher urinary BPA were more 

likely to be obese and have more abdominal adiposity compared to those with the lowest quartile 

of BPA levels [102]. Independent of risk factors, such as age, gender, race-ethnicity, BMI, 

diabetes, and smoking status, urinary BPA was also positively associated with hypertension 

[103]. The same trend was observed in U.S. children, with odds of obesity 2.5 times higher 

amongst youth in the top quartile of urinary BPA level compared to the lowest quartile [104]. 

Higher quartiles of urinary BPA in 6-18 year old children were associated with 1.64-2.01 greater 

odds of obesity, and 1.37-1.55 greater odds of increased waist circumference to height ratio, 

without impacting circulating glucose, insulin, or cholesterol levels [105]. These studies were all 

conducted with cross-sectional data, so causality cannot be determined; it is possible that 

individuals with greater adiposity are exposed to higher BPA levels.  

 Prenatal BPA exposure in human birth cohorts has been associated with decreased BMI 

early in life. In 2-5 year old children, maternal urinary BPA from pregnancy was associated with 

a non-significant lower BMI, especially in girls, but urinary BPA at 2 years was linked to a more 

rapid increase in BMI from 2-5 years [106]. Another cohort confirmed these findings, with 

prenatal urinary BPA from mothers was inversely associated with BMI in girls at 9 years; 
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urinary BPA in 9 year olds was associated with waist circumference, overall fat mass, and 

overweight-obesity status in youth of both sexes [107]. Trimester 2 maternal urinary BPA has 

also been linked to a 7.9 mmHg increase in diastolic blood pressure (DBP) in children at 4 years 

[108]. Sex-specific impacts of perinatal BPA exposure have been observed in murine studies 

also. Adult male mice perinatally exposed to human-relevant doses of BPA resulted in dose 

dependent increases in body and liver weights; however, in adult female mice BPA exposure was 

associated with decreased body and liver weights, serum leptin and lipids [109]. Male mice 

prenatally exposed to BPA from gestational days 9-16 had increased IR, reduced glucose 

tolerance, and altered calcium signaling in the pancreatic islets of Langerhans at 6 months [110]. 

In 30-day old male offspring, pancreatic -cell mass and proliferation were greater and apoptosis 

lower if perinatally exposed to BPA; these pancreatic alterations were accompanied by increased 

circulating insulin, c-peptide, and leptin levels in these fasted, PND30 offspring. By PND120, 

pancreatic -cell mass was decreased in BPA-exposed male offspring [111], suggestive of 

pancreatic burnout early in life, which may explain diabesogenic outcomes observed following 

prenatal BPA exposure [112]. 

 BPA exposure has been shown to alter epigenetic marks, suggesting that 

developmental epigenetic programming may underlie the increased metabolic risks observed in 

perinatally exposed offspring. In viable yellow agouti (Avy) mice, hypomethylation was observed 

at the Avy locus the [113], and later global hypomethylation was reported in PND22 offspring, 

perinatally exposed to 50ng, 50g, or 50mg BPA/kg diet [114]. Female 10-month offspring from 

this same perinatal mouse exposure study, had altered DNA methylation at Jak-2, Rxr, Rfxap, 

and Tmem238; methylation at all of these loci mediated the connection between perinatal BPA 

and metabolic outcomes, including body weight, body fat phenotype, and energy expenditure 
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[115]. Investigation of differential DNA methylation following perinatal BPA reported 

hypomethylation in neuronal pathways associated with metabolic function and energy regulation 

[116], further supporting the potential mechanistic role of epigenetic modification in offspring 

altered metabolic function. Genome-wide analyses have also reported altered DNA methylation 

by perinatal BPA in both mice and humans [117,118]. BPA exposure has been linked to 

epigenetic modifications in other mouse and human cohorts [119–124], suggesting widespread 

physiologic impacts may result from epigenetic alterations during development.   

 

High Fat Diets and Perinatal Programming 

Increasing evidence shows that maternal nutrition impacts the intrauterine metabolic 

environment and successive fetal epigenetic programming [66,125–127]. For example, studies in 

animal models demonstrate that maternal diet modulation, including caloric [128,129] and 

protein restriction [130,131], over-nutrition [132,133], and micronutrient supplementation [134], 

alters DNA methylation at candidate gene loci and globally at cytosine-guanine (CpG) 

dinucleotides and repetitive elements.  

Maternal high fat diet (HFD), in murine and non-human primate models, is associated 

with offspring adult obesity due to hyperphagia and a preference for high fat, high sugar foods 

[133,135]. Further work in rodents found that offspring prenatally exposed to HFD had increased 

hepatic steatosis in adulthood [136]. Thus, intrauterine exposure to a maternal HFD is known to 

increase risk of metabolic disease and NAFLD development in offspring. It then follows that 

maternal diet could modify the metabolic health effects of perinatal EDC exposures (like BPA). 

Interest in this synergy led to the nutrient-toxicant study design of this thesis research. All HFDs 

used in murine models examining diet-induced-obesity, NAFLD, and other metabolic outcomes 
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mimic a human Western diet, with a fat content of 45-65% total calories, composed largely of 

saturated fatty acids (SFA).  

 Epidemiologic studies suggest that Western and Mediterranean HFDs are both associated 

with altered risk of NAFLD. A prospective study of adolescents found a Western diet to be 

associated with NAFLD [137]. Conversely, consumption of a Mediterranean diet among adults 

with biopsy-confirmed NAFLD reduced hepatic steatosis and improved insulin sensitivity even 

without weight loss [138]. These findings suggest that composition of the HFD may be a critical 

component of disease risk. This was the basis for my hypothesis that Western HFD would 

exacerbate hepatic steatosis and lipid peroxidation resulting from perinatal BPA exposure, while 

Mediterranean HFD would have a mitigating effect.  

 

Study Overview 

Research Objectives 

The early stage of NAFLD, ‘simple steatosis’, is characterized by hepatic lipid 

accumulation and increased hepatocellular oxidation [58]. Thus, this dissertation was designed to 

examine the hypothesis that perinatal BPA exposure, modified by maternal diet, would 

increase hepatic lipid accumulation and hepatic oxidative response in offspring, thereby 

raising lifetime risk of NAFLD (Figure 1.1). Further, it was hypothesized that maternal 

consumption of a Western-style HFD concurrent with the perinatal BPA exposure would 

increase offspring NAFLD incidence, via either greater magnitude of response or earlier onset of 

morbidity. On the other hand, maternal Mediterranean HFD intake during perinatal BPA 

exposure was hypothesized to protect offspring against hepatic lipid accumulation and oxidative 

responses (Figure 1.2).  
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These hypotheses were examined in both a perinatal mouse exposure study and an 

established human birth cohort study, providing an opportunity to compare results across species 

and to determine if mouse study findings would translate to a human population. This 

dissertation aimed to examine (1) whether perinatal BPA and HFD exposures would increase 

hepatic lipid accumulation in mouse offspring, (2) if the exposures would alter hepatic oxidative 

response in these mouse offspring, and (3) whether maternal BPA levels and Mediterranean diet 

adherence during pregnancy would impact metabolic health and serum lipid oxidation in 

peripubertal human youths (Figure 1.3).  

 

Mouse Experimental Design 

 The perinatal mouse exposure study was conducted using a well-established viable 

yellow agouti (Avy) mouse colony, in which 250 generations of sibling mating, with forced 

heterozygosity for the Avy allele, have produced a genetically invariant background. At 8-10 

weeks of age, wild-type (a/a), virgin dams were randomized to one of six experimental diets: 

Control, Control + 50 g BPA/kg diet, Western HFD, Western + 50 g BPA/kg diet, 

Mediterranean HFD, or Mediterranean + 50 g BPA/kg diet. BPA, supplied by the National 

Toxicology Program (NTP, Durham, NC), was mixed into sucrose, creating a 0.1% BPA/sucrose 

mixture, which was mailed to Harlan Teklad for incorporation into the pellets of the three BPA-

containing experimental diets. After two weeks on their respective diets, dams (n=122) were 

mate-paired with virgin Avy/a colony males (average: 7.5 weeks old). Dams remained on their 

assigned diets through pregnancy and lactation.  

On postnatal day 21 (PND21), all offspring were weaned onto the Control diet, which 

they remained on for the duration of the study. In each litter, one male and one female a/a 
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offspring was randomly selected for longitudinal follow-up to 10 months. All remaining a/a 

offspring were sacrificed at postnatal day 10 (PND10). Outcome measurements, hepatic lipid 

accumulation and oxidative response, were assessed in offspring at both PND10 and 10-months 

(Figure 1.4). 

 

Mouse Design Decisions 

 The selection of a representative model species for physiologic research is imperative, to 

facilitate data interpretation and translation to human health outcomes. Agouti mice are 93% 

homologous with C57BL/6J and 7% homologous with C3H/HeJ mouse strains [139,140]. 

C57BL/6J are prone to aging associated obesity, glucose intolerance, insulin resistance, and 

readily develop diet-induced hepatic steatosis [32,141,142]. Additionally, reactive oxygen 

species (ROS) and gene expression of oxidative stress loci in liver and retroperitoneal adipose 

tissues have been observed to increase in HFD-fed male C57BL/6J mice prior to the 

development of insulin resistance or obesity [143]. Thus, it is reasonable to expect that diet-

induced hepatic steatosis and an early hepatic oxidative response could occur in the a/a offspring 

followed in this study. This viable yellow agouti mouse model has been extensively used to 

examine the epigenetic and phenotypic effects of perinatal BPA exposure [113,114,117,140,144–

146], including a BPA dose-range finding study to determine which mouse perinatal exposure 

level would result in human-relevant levels in mouse offspring liver samples [114]. Further, 

concurrent nutrient exposure has been shown to modify the impact of perinatal BPA exposure in 

these mice [113]. So agouti mice are not only expected to develop the physiologic outcomes of 

interest, but responsiveness to perinatal BPA and dietary exposures have previously been 
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demonstrated in this strain. This suggests the viable yellow agouti mouse model is a good choice 

for examining the potential for perinatal programming of NAFLD. 

 Toxicology studies often examine chemicals at doses levels of magnitude above than 

common human exposure dose. While this is helpful for determining overt toxicity, studies have 

suggested that endocrine disrupting chemicals, like BPA, often follow non-monotonic dose 

response curves; low dose exposures can exert hormone-like effects, triggering physiological 

cascades of response [147–149]. The BPA dose in this study was chosen based on offspring 

hepatic BPA levels in a previous perinatal exposure study in this agouti mouse colony [114]. 

This previous study used the same experimental design, with oral BPA introduced pre-gestation 

through lactation via the maternal diet. In 10-month mouse offspring, hepatic BPA levels 

averaged 2.0 ng/g, which is within the range of human fetal liver tissue (mean: 10.8 ng/g) and 

human maternal serum at delivery (mean: 5.9 ng/mL) (Table 1.1). Ingestion is a major route of 

BPA exposure in humans [147,150,151], and since this study examined potential modification of 

BPA-related health effects by diet, BPA was incorporated into the mouse food pellets. Many 

murine models of BPA exposure introduce the chemical via intraperitoneal (IP) injection or 

gavage a bolus dose directly into the stomach; these methods ensure exposure dose is identical 

across animals and consistent daily in each individual animal. Unlike carefully quantified 

injected doses, ingestion inherently introduces variation into animal dosing due to inter-

individual differences in intestinal absorption, uptake, and hepatic processing, but this more 

realistically mimics human BPA exposure. This study was designed to ensure BPA introduction 

in the mouse study was relevant to human exposure in route as well as dose.  

 When animal models are used to examine the impact of diet on a particular health 

outcome, traditionally one aspect of the diet is altered at a time. For instance, if comparing the 
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contribution of various lipid species in a diet, two diets composed of 45% calories from fat 

would be designed with one diet composed entirely of saturated fatty acids (SFA) and the second 

composed of monounsaturated fatty acids (MUFA); this allows direct comparison of the health 

effects of SFA vs. MUFA. This type of dietary comparison, altering only lipid composition, was 

considered for this dissertation research. However, since the perinatal mouse exposure study was 

designed to mimic human exposure (already discussed regarding BPA), it was determined that 

designing diets representative of human consumption patterns would provide more translatable 

results. Protein source and relative amount within the diet (20g/100g food) were held constant 

between the Control, Western HFD, and Mediterranean HFD. Lipid composition, carbohydrate 

content, vitamin and mineral levels were altered to reflect the differences observed in traditional 

Western and Mediterranean-style diets among free-living human populations. These diets are 

described in depth in Chapter 2. A challenge and common criticism of using human-relevant, 

experimental diets like this is that if differences are observed between dietary groups, it will be 

difficult to determine which aspect of the diet is driving the effect. However, the aim of this 

study was to examine if a common dietary pattern as a whole affected metabolic health outcomes 

in offspring, which component of the diet drove the effect was not part of the question. Humans 

eat complex diets with nutrients coming from many distinct food sources, so studies that use high 

levels of supplementation of a specific dietary nutrient are not able to determine if a complete 

human diet would result in a similar health effect. For example, a mouse consuming standard 

chow (e.g. AIN93-G) with omega-3 fatty acids added is not equivalent to a mouse consuming a 

complete Mediterranean-style diet.  

 

Human Birth Cohort Study 
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 This dissertation was built upon an existing, well-established human birth cohort study, 

which initially recruited mothers in 1997-2005 at hospitals serving low-to-moderate income 

areas. The Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT), a more 

than 20 year collaboration with the Instituto Nacional de Salud Publica (INSP) in Mexico, 

recruited 236 mothers during a Trimester 1 (T1) clinic visit and an additional 14 mothers at 

delivery. Trimester-specific maternal BMI, urine samples, and dietary intake data were collected 

for the 236 mothers. Urinary BPA levels were quantified in spot urine samples from all three 

trimesters. Mediterranean diet scores (MDS) were computed from self-reported food frequency 

questionnaire data also collected in all three trimesters. A pregnancy average value was 

calculated for each mother’s urinary BPA and MDS in order to make data comparisons between 

this human birth cohort and the mouse exposure study, which provided experimentally constant 

exposures across pregnancy.  

 The 250 children followed from birth, in this study, were re-recruited for peripubertal 

clinic visits in 2010-2012, when they were 8-14 years old. Although research data was collected 

on these children at multiple clinic visits from birth through early childhood, this study only 

focused on the impact of prenatal exposures on peripubertal outcomes. Metabolic health in 

peripubertal youth was assessed via Metabolic Risk Score (MRS) and serum 8-isoprostane. The 

use of 8-isoprostane as a measure of lipid oxidation in this human cohort was a key determinant 

in the decision to include an 8-isoprostane outcome measure in the perinatal mouse exposure 

study, to improve data interpretation and translation from the mouse to human study in this 

dissertation (Figure 1.4).  

 

Species Specificity & Translation 



 

 

20  

Mouse studies can provide insight into mechanisms and pathways that are not easily 

accessible via bioavailable and ethical testing in humans. However, consideration of the 

translatability of animal results to human studies is critical for improvements in clinical and 

public health measures. Understanding human health is the main goal of biomedical research. 

Animal models are used to access tissues, time points, and to undergo exposures that would be 

unethical to conduct in people. This thesis aimed to make experimental study design between the 

longitudinal mouse exposure study and human birth cohort as comparable as possible, in order to 

provide clinically relevant, translatable results. This dissertation included multiple efforts to 

enhance data translation between the mouse and human findings. Design decisions in the 

perinatal mouse exposure study that were planned to mimic the ELEMENT birth cohort, include: 

(1) using an oral route of BPA exposure, (2) creating humanized HFDs for the mice, (3) using a 

Mediterranean diet score (MDS) to quantify human diet adherence, and (4) measuring the same 

marker of lipid peroxidation, 8-isoprostane, in both species.  

Another benefit of simultaneously investigating a scientific question across multiple 

species is the ability to compare the effect genetics may play on the exposure-health outcome 

relationship. The mice used for this study are genetically identical [153], so the genetic 

variability observed in humans is automatically controlled for in the mouse study. On the other 

hand, translating the mouse findings to an actual human birth cohort is instructive, because it 

allows findings to be investigated within the inherent genetic heterogeneity of human 

populations. The insights gained from examining mice and humans in a similar experimental 

design can provide a more complete picture of the exposure-health outcome relationship from 

the molecular level of physiologic mechanisms in the mice to biomarker trends that can be 

applied in human epidemiologic studies.   
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Figure 1.1 Conceptual Framework of this Dissertation  

 

 

This dissertation aimed to investigate if perinatal BPA exposure would be associated with 

increased incidence of NAFLD among offspring later in life, and whether this association could 

be modified by maternal diet during pregnancy. 
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Figure 1.2 Original Dissertation Hypothesis 
 

 
 
The original hypothesis of this dissertation research was that perinatal BPA exposure, modified 
by maternal diet, would increase hepatic lipid accumulation and hepatic oxidative response in 
offspring, thereby raising lifetime risk of NAFLD. Perinatal Western HFD exposure was 
expected to increase the steatotic and oxidative effects of BPA, while Mediterranean HFD 
exposure was predicted to prevent the NAFLD-inducing impact of perinatal BPA.  
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NAFLD	Outcomes	
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Bisphenol	A	

Western	HFD	

Mediterranean	HFD	
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1.  Hepatic	Steatosis:	Triglycerides	
2.  Hepatic	Histology:	OilRedO,	H&E	stain	

Hepatic	Oxidative	Response	
1.  Hepatic	Lipid	Oxidation:	8-isoprostane	
2.  Hepatic	Redox	Parameters:		

	 	EhGSH,	EhCys,	S-glut	
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Figure 1.3 Conceptual Diagram of Dissertation Aims 
 

 

Parallel	investigation	of	a	mouse	model	and	human	birth	cohort	study	provides	the	
opportunity	to	examine	perinatal	programming	of	NAFLD	across	species.	Invasive,	tissue-
specific	measurements	were	possible	in	the	mouse	offspring,	while	only	minimally	invasive	
techniques	were	used	in	the	human	study.	However,	examining	the	same	type	and	timing	of	
exposures	between	species	allowed	a	comparison	of	findings,	to	determine	if	mouse	study	
results	would	translate	to	a	human	population.		
	

Conceptual	Goal	of	This	Research	
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Figure 1.4 Comparison of Mouse and Human Experimental Designs and Study Measurement 
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PND10	Offspring	
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• 60	females	
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10-month	Offspring	
• 138	total	
• 69	females	
• 69	males	

Mating	Pairs	
	

§ 122	original	pairs	
§ 101	litters	(3	all	pups	died)	
§ 98	viable	mating	pairs	

Offspring	at	Birth	
	

§ 705	total	pups	
§ 115	died	by	Day	3	(16.3%)	
§ 590	survived	(83.7%)	

Offspring	that	Died		
	

§ 5	died	before	10-months	
§ 4	females,	1	male	
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Figure	1.2	Mouse	Tracking	Across	Generations		

Measure	Category	
Mice	by	Age	
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• Relative	mWAT	Weight	
• Serum	Leptin	
• Serum	Insulin	

• Serum	Resistin	
• Serum	PAI-1	

Hepatic	Lipid	
Outcomes	
(Chapter	2)	

• Liver	Triglycerides	 • Liver	Triglycerides	
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• Urinary	BPA	(specific-gravity	adjusted)		
													pubertal	clinic	visit	
• Mediterranean	Diet	Score	
													pubertal	clinic	visit	

Demographic	&	
Metabolic	
Characteristics	

(Chapter	4)	
	

• Maternal	Age	
• Educational	Attainment	
• Trimester	1	BMI	
• Gestational	Weight	Gain	

• Youth	Age	
• Pubertal	status	
• BMI	
• Skinfold	thicknesses	
• Physical	Activity:	vigorous	&	non	

Metabolic	
Outcome	
(Chapter	4)	

Not	Applicable	 • Metabolic	Risk	Score	

Oxidative	
Outcome	
(Chapter	4)	

Not	Applicable	 • Serum	8-isoprostane	
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Table 1.1 Comparison of Mouse Hepatic BPA Levels with Human BPA Exposure Levels 
 

Subjects Tissue Age 
Range 

Total BPA 
Conjugated BPA 

Mean (SD) 
Total BPA 
Mean (SD) 

Reference 

Mice (50μg BPA) Liver 10 mos. <LOQ – 11.3 ng/g 0.3 (0.3) ng/g 2.0 (3.5) ng/g Anderson et al, 2012 

Human: M&F Liver Fetal <LOQ – 96.8 ng/g 3.2 (8.0) ng/g 10.8 (18.5) ng/g Nahar et al, 2013 

Human: maternal Serum Delivery 0.5 – 22.3 ng/mL n/a 5.9 (0.94) ng/mL Padmanabhan et al, 2008 

Human: M&F Urine 40-59 yr <LOQ – 28.0 ng/mL n/a 3.5 (1.3) ng/mL LaKind & Naiman, 2015 
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CHAPTER 2 

 

Perinatal Exposure to Experimental Diets and Bisphenol A Alters  

Metabolic Outcomes in Dams and Offspring, but Increases Hepatic Steatosis Only in Dams 

 

 

ABSTRACT 

Non-alcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide. Perinatal 

development has been identified as a critical window for altered lifelong health trajectory, and 

evidence supports a role for perinatal programming in chronic metabolic diseases, including 

obesity, type 2 diabetes, and metabolic syndrome. To examine the role two common exposures, 

diet and bisphenol A (BPA), play on perinatal programming of NAFLD across the life course, 

we developed a longitudinal mouse model that uses a human-relevant dose of oral BPA coupled 

with intake of Western or Mediterranean style diets in dams, from pre-gestation through 

lactation. We assessed hepatic steatosis via quantification of hepatic triglycerides (TGs) and 

metabolic health via body weight, relative organ weights, and serum hormone levels in dams and 

offspring, at postnatal day 10 (PND10) and 10-months. In dams, consumption of the Western or 

Mediterranean diets increased hepatic TGs 1.7-2.4 fold (p < 0.005), independent of BPA intake. 

However, among offspring, perinatal exposures had a greater impact on metabolic outcomes than 

on hepatic steatosis. At PND10, serum leptin levels were elevated (2.6-4.8 fold, p < 0.03) in pups 
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exposed to the Mediterranean diet, with sex-specific effects on body and organ weights (p < 

0.10). Similarly, at 10-months sex-specific increases in body (p < 0.10), organ weight (p < 0.02), 

and hormone levels (p < 0.005) were observed; however, they occurred mainly in mice 

perinatally exposed to the combination diets, Western+BPA or Mediterranean+BPA. These 

findings suggest that perinatal exposure to experimental diets and low-dose BPA may not be 

sufficient to program NAFLD later in life. Further, the impact of perinatal exposures on 

offspring metabolic health may differ by offspring life stage. Finally, alterations in dam 

phenotype by exposure appear to impact offspring health trajectory, suggestive of a need to 

better characterize mothers in future perinatal exposure studies. 

 

INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of liver disease 

among U.S. children and adults [1–3]. NAFLD prevalence has increased coincident with the rise 

in global obesity and insulin resistance (IR) and is likely a metabolic precursor to type 2 diabetes 

(T2DM) and metabolic syndrome (MetSyn) [4]. An estimated 9% of U.S. children have NALFD, 

but prevalence estimates rise to 38% among obese children [5], who will suffer a prolonged 

morbidity from these early-life alterations in hepatic function. NAFLD describes a range of 

pathologic states, beginning with simple hepatic steatosis and steatohepatitis, advancing to 

fibrosis, cirrhosis and in some cases hepatocellular carcinoma. If detected early at the simple 

steatosis stage, the condition is reversible [6], making steatosis a prime target for public health 

intervention. Thus, improved understanding of early life factors that contribute to hepatic 

steatosis is critical for slowing the incidence of youth NAFLD. 
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Many perinatal conditions alter fetal developmental trajectory and culminate in adult 

metabolic pathologies. Maternal disease states, nutritional deficit or excess, lifestyle choices, 

substance abuse, and environmental exposure to endocrine disrupting chemicals (EDCs) have all 

been associated with increased risk of offspring metabolic disease [7]. For instance, maternal 

pre-gestational weight/obesity and gestational weight gain are associated with increased risk of 

metabolic syndrome, insulin resistance, and obesity in offspring, in animal models and 

epidemiologic studies [8–11]. Perinatal diet, a contributing factor in maternal obesity, plays a 

major role in organizing the fetal developmental trajectory and offspring metabolism and health 

later in life [12,13]. In particular, in utero overnutrition has been associated with increased 

hepatic steatosis in offspring, suggestive of a prenatal programming component to NAFLD [14–

16]. However, based on these studies, it is unclear if all hypercaloric diets would have the same 

steatotic effect. 

Perinatal exposure to a Western-style high fat diet (HFD) is associated with a well-

documented increase in offspring hepatic steatosis and metabolic alterations, in animal models 

[17–21]. Similarly, in human adolescents consumption of a Western HFD is associated with 

increased risk of steatosis [22,23]. On the other hand, adherence to a Mediterranean HFD in 

human adults is associated with reversal of biopsy-confirmed NAFLD, significantly reducing 

hepatic steatosis and improving insulin sensitivity, even without weight loss [24–26]. A recent 

article even proposed the Mediterranean diet as the “diet of choice” for NAFLD patients [27]. 

However, perinatal exposure to a Mediterranean-style HFD has never been conducted in a 

murine model. The potential ability of a maternal Mediterranean HFD to protect against hepatic 

steatosis in offspring is appealing as a low-cost, high-gain public health intervention.  
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In addition to diet, perinatal exposure to the EDC bisphenol A (BPA) has been associated 

with fetal programming of metabolic diseases [28], including NAFLD [29–31]. BPA, a high 

production volume synthetic chemical found predominantly in polycarbonate plastics and epoxy 

resins [32], has been shown to cross the placenta in both humans and murine models [33–35]. 

We previously reported reduced expression of BPA-specific biotransformation enzymes (e.g. 

UGT2B15, SULT1A1, and STS) in human fetal tissue [35], suggestive of impaired fetal ability to 

metabolize BPA, making even low-dose exposures concerning. Perinatal exposure to low-dose 

BPA via either dam drinking water or subcutaneous pump is associated with greater body weight 

and hepatic lipid accumulation in offspring [36,37]. In both of these studies, dam BPA exposure 

began after conception, but a wave of fetal reprogramming occurs in the first few hours to days 

post-fertilization [38,39]; the later BPA exposures miss this critical window.    

Recognizing that human BPA exposure does not occur in a sterile environment, recent 

studies have begun to investigate the potential interaction between BPA and diet. Two murine 

models of perinatal oral BPA exposure with a post-weaning HFD challenge have reported 

greater hepatic damage in offspring exposed to both [40,41].  We built on these experiments by 

providing simultaneous perinatal exposure to diet and BPA, thus mimicking the concurrent 

exposure human mothers experience. Furthermore, to assess the potential impact of a diet-BPA 

interaction when background diet varied, we added low-dose BPA to a control diet and to 

Western and Mediterranean experimental diets. 

We examined the impact of perinatal experimental diets, with and without BPA, on 

hepatic steatosis and metabolic outcomes in dams and in offspring across the life-course (PND10 

and 10-months). Hepatic steatosis was assessed via hepatic triglyceride (TG) quantification in 

dams, PND10 and 10-month offspring; liver histology (OilRedO and H&E vacuolation) was 
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used to validate hepatic TG levels in 10-month offspring. Metabolic outcomes included body 

weight, relative organ weights, and serum hormone levels, for all mice. We hypothesized that 

perinatal Western diet would increase hepatic TGs and trigger metabolic alterations, while 

Mediterranean diet would minimize these changes. We also evaluated whether adding BPA to 

experimental diets would exacerbate hepatic steatosis. This study advances our understanding of 

factors that contribute to developmental programming of hepatic steatosis and related metabolic 

alterations in five ways, investigating: timing of exposure, comparison of two different 

experimental diets, effects of concurrent diet and BPA intake, impact of these exposures and 

interactions at two offspring life stages, and importance of maternal phenotype in offspring 

health trajectory. 

 

METHODS 

Experimental Design 

Mice used for this study originated in the Dolinoy Lab viable yellow agouti (Avy) mouse 

colony. The colony has been maintained by sibling mating for over 250 generations with forced 

heterozygosity for the Avy allele, producing a genetically invariant background with 93% 

homology to C57BL/6J and 7% homology to C3H/HeJ [42,43]. Mice were housed in 

polycarbonate-free cages with enrichment, in a climate-controlled room with a 12hr light-dark 

cycle, in accordance with the Institute for Laboratory Animal Research (ILAR) guidelines [44]. 

Mice were treated humanely and provided ad libitum access to food and water 24-hours a day, in 

accordance with the University of Michigan’s University Committee on Use and Care of 

Animals (UCUCA) policies on cage enrichment, cleaning, maintenance, and daily mouse health 

checks [45]. This study protocol (PRO00004797) was approved by UCUCA. 
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To reduce the effect of parity and age, virgin, 8-10 week old, wild-type (a/a) dams were 

randomly assigned to one of six exposure groups: Control, Control + 50 g BPA/kg diet, 

Western, or Western + 50 g BPA/kg diet, Mediterranean, or Mediterranean + 50 g BPA/kg 

diet. After two weeks on their respective diets, virgin a/a dams (10-12 weeks of age) were mated 

with young, virile Avy/a males (7.5 weeks old on average).  Dams remained on their assigned 

diets from pre-gestation through lactation (Figure 2.1), such that dams were directly exposed to 

their assigned diet for an average of 8-9 weeks. All offspring were weaned onto the Control diet 

at postnatal day 21 (PND21). 

Mating a/a females with Avy/a males generates litters of approximately 50% a/a and 50% 

Avy/a pups. Mice with the Avy allele have a range of coat colors from yellow to pseudoagouti 

(brown), that phenotypically display differences in epigenetic marks in the Agouti gene promoter 

[46–48]; wild type a/a mice have black coats and are thus easily distinguishable by eight days of 

age. To avoid confounding from the obesity and metabolic abnormalities observed in the Avy/a 

mice [49–51], only a/a pups were followed in this study. Offspring coat color was recorded at 

postnatal day 8 to determine which pups would be followed longitudinally. One male and one 

female a/a pup per litter were maintained for longitudinal testing to 10 months of age (10-

month). All other a/a pups were sacrificed at postnatal day 10 (PND10). Offspring sacrifices 

were conducted in the afternoon (2-5pm) to normalize diurnal hormone fluctuations. To further 

standardize measurements, 10-month females were only sacrificed when in estrus, confirmed by 

vaginal cytology [52]. Sacrificing offspring at 10 months approximates human middle age, prior 

to aging-related health decline [53]. 

 

Composition of Experimental Diets 
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Experimental diets were modifications of the standard AIN93G mouse diet [54,55]. Like 

AIN93G, the Control diet contains casein as the sole protein source, but the soybean oil was 

replaced with corn oil to remove the potential epigenetic programming effect of phytoestrogens 

in the soybean oil [56,57]. The Mediterranean and Western diets differed from the Control diet in 

their lipid ratio, carbohydrate profile, vitamin and mineral content; protein content was kept 

constant between all three diets.  

Mouse diets were formulated on a per weight basis at the University of Michigan and 

manufactured by Harlan Teklad (Madison, WI). The Mediterranean diet was based on a 

traditional Cretan diet which included high nut, fruit and vegetable content [58–60]. The Western 

diet was based on U.S. dietary intake as recorded in NHANES II [61,62]. This resulted in a 

Western diet composed of more saturated fats (butter and palm oil), lower fiber / higher sugar 

carbohydrates, higher salt, and lower antioxidant content [61,62] (Table S2.1, Figure 2.2). Both 

experimental diets were formulated by nutrient content (grams) per kilogram diet.  

 

Bisphenol A (BPA) Exposure 

The choice of 50 ug BPA/kg dose was based on a previous BPA dose range finding study 

[63], which found an intake of 50 g BPA/kg diet produced on average 2.02 ng BPA/g liver. 

This is within the human exposure levels measured in in human fetal liver samples (range: below 

limit of quantification to 96.8 ng BPA/g liver) [63]. BPA was supplied by the National 

Toxicology Program (NTP, Durham, NC). To create a 0.1% BPA/sucrose mixture, BPA (0.01 g) 

was mixed into sucrose (9.99 g) in glass containers. Harlan Teklad incorporated this mixture at 

0.05 g/kg into three of the six experimental diets: Control+BPA, Western+BPA, and 

Mediterranean+BPA.  
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Body and Tissue Weights 

To decrease variation and reduce human error, a strict protocol was followed for all 

sacrifices, necropsies, animal and tissue weighing [45]. The liver was dissected and separated by 

lobe; all analyses were run on the left lobe. Dam body weight was recorded three times 

throughout the study: (1) pre-gestation, at initial exposure to the study diets, (2) at mate-pairing, 

two weeks later, and (3) at sacrifice, four days post-weaning. Two weight change periods were 

calculated: dam pre-pregnancy weight change (pre-gestation to mate-pairing), and gestational 

weight gain (mate-pairing to sacrifice). Organ weights were measured for dam liver and 

mesenteric white adipose tissue (mWAT). mWAT, a component of visceral WAT that does not 

include gonadal fat, was separated from abdominal organs (stomach, pancreas, spleen, intestines) 

prior to weighing. 

Total body and liver weights were also recorded for PND10 offspring. Mice at PND10 

have negligible mWAT, so no adipose weights were recorded for the pups. 10-month offspring 

body, liver, and mWAT weights were measured during necropsy. Relative liver and mWAT 

weights were calculated as a ratio of: absolute organ weight / total body weight. All weights 

were measured on a SLF103 balance (Fisher Scientific) to the hundredths digit.  

 

Hepatic Triglycerides (TG) 

TG levels were quantified via the previously published TG extraction protocol [64], using 

the Sigma Triglyceride Determination Kit (TRO100). Samples were analyzed in triplicate 

(sensitivity 0.0625 mg/mL, 10.5% CV).  
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Liver Histology 

 Two histologic staining methods were used to validate hepatic TG quantification and to 

independently analyze hepatic lipid accumulation and lesions in 10-month offspring liver tissue: 

(1) OilRedO, and (2) hematoxylin and eosin (H&E). Tissue samples were frozen or fixed 

(respectively) during necropsy, then transferred to the University of Michigan In-Vivo Animal 

Core (IVAC) for histologic staining and analysis. Slides were read by a board-certified 

veterinary pathologist. 

Tissue reserved for OilRedO staining was embedded in optimal cutting temperature 

(OCT) compound, flash frozen in liquid nitrogen, and stored at -80oC. Frozen, OCT-embedded 

tissue was thinly sliced by microtome. The standard AbCam OilRedO kit (ab150678) protocol 

was followed to stain lipids on each slide. OilRedO staining was scored from 1-4 based on the 

amount of micro- and/or macro-vesicular vacuolation, multifocal or diffuse: 1 = minimal, 2 = 

mild, 3 = moderate, 4 = severe. 

To prepare liver samples for H&E staining, thin sections of liver were fixed in 10% 

neutral-buffered formalin during necropsy. In livers with visible gross masses, the boundary 

between mass and normal-appearing tissue was included in the fixed sections, to analyze the 

potential invasive properties of the mass. Once at the IVAC, samples were transferred to 70% 

ethanol, routinely processed and stained with H&E for histopathology. Lipid vacuolation was the 

primary outcome of interest, but additional morphologic changes were observed by the 

veterinary pathologist, including: hepatocyte hypertrophy, multinucleated hepatocytes, 

proliferative alterations (hepatocellular adenoma, nodular hyperplasia, mixed cell, clear cell, and 

eosinophillic foci), and non-proliferative alterations (cell infiltrates, oval cell and Kupffer cell 

hyperplasia, and inflammation). Morphologic changes were also scored on a 4-point scale based 
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on the percent of tissue affected: 1 = minimal (0-9%), 2 = mild (10-19%), 3 = moderate (20-

49%), 4 = marked (>50%).  

 

Serum Hormone Analyses 

Hormone levels were measured in blood samples collected via closed chest cardiac 

exsanguination [65], on semi-fasted mice. Whole blood was allowed to clot, serum separated, 

and stored at -80oC. On average, more than 650 L of whole blood was collected from dams, 

100 L from PND10 pups, and 1565 L from 10-month offspring. For dams and PND10 

offspring, Millipore Mouse ELISA kits were used to quantify serum leptin (EZML-82K, 

sensitivity 0.05 ng/mL, 3.0% CV) and insulin (EZRMI-13K, sensitivity 0.2 ng/mL, 6.0% CV) 

levels. Due to low serum volume from PND10 offspring, only leptin was analyzed. 

Serum from 10-month offspring was analyzed on a Luminex xMAP (ThermoFischer), at 

the MDRC Chemistry Lab. Six serum hormones were simultaneously measured via the 

Multiplex Mouse Adipokine Magnetic Bead Panel (MADKMAG-71K), with intra-assay %CV 

<10% and inter-assay %CV <20%. Assay sensitivity varied by hormone: leptin (4.2 pg/mL), 

insulin (13.0 pg/mL), resistin (1.1 pg/mL), IL-6 (2.3 pg/mL), PAI-1 (4.0 pg/mL), and TNF (5.3 

pg/mL). All hormone levels reported in this paper are the average of duplicate measures for each 

mouse.  

 

Statistical Analyses 

Values for all variables were inspected; values outside of a biologically plausible range 

were discarded. A probability plot of residuals was used to test the normality of each variable’s 

distribution. Right-skewed variables were ln-transformed. The effects of diet and BPA on liver 
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TG levels, serum hormones, body and organ weights were analyzed by ANOVA, followed by 

Tukey’s post-hoc analyses; this allowed comparison across all six perinatal exposure groups. 

Significance was pre-set at p < 0.05. 

Previous studies have reported sexually dimorphic metabolic responses to prenatal 

exposures [66,67], so cross-sectional PND10 and 10-month offspring comparisons were sex-

stratified. Results from the initial independent t-tests and ANOVAs suggested that experimental 

diets might have a larger effect than BPA on both dams and offspring. One-way ANOVAs were 

also run to compare all six perinatal exposure groups among dams, PND10 and 10-month 

offspring (Tables 2.2, S2.2, S2.3, S2.4, S2.5). We ran linear mixed models (LMM) to determine 

predictors of hepatic TGs, with perinatal diet and BPA exposure included as separate variables. 

This allowed us to examine the independent effects of experimental diets and BPA, and to 

examine the interaction of diet*BPA on metabolic outcomes. 

‘Cohort’ was significantly correlated to many dam and 10-month offspring variables, so 

was added to these models as a random intercept. However, ‘Cohort’ did not improve effect sizes 

or model fit (by AIC) in PND10 models, and since no PND10 variable means differed by cohort, 

we decided to remove it from those models. Some PND10 mice had littermates included in the 

models, so ‘Litter ID’ was included as a random effect in PND10 models. The range in litter size 

(3-11pups) was large in this study. ‘Litter size’ was included in all PND10 and 10-month 

models, as an a priori factor that could influence offspring metabolic health. Other variables 

previously identified as covariates for offspring metabolic changes were tested in regression 

models. Final models were selected based on the model with the largest effect size on perinatal 

exposure variables: experimental diets and BPA. All analyses were conducted in SAS 9.4 (Cary, 

NC, USA). 
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RESULTS 

Reproductive Outcomes 

Days to delivery averaged 27.7 days across all dams (n=97), with no difference by 

perinatal exposure group. On average, seven pups were born per litter across all exposure groups; 

however, 2.7-fold more Control+BPA pups died than Control (p = 0.0149) (Table 2.2). Pup 

deaths within the first three days of life is not unusual, especially in large litters, so the number 

of surviving pups per litter on postnatal day 4 (PND4) was also assessed. Initial litter size 

impacts in utero nutrient availability, while the number of living pups per litter can affect 

lactation nutrient availability and maternal care. Living pup litter size was 1.5-fold greater in 

Control compared to Control+BPA litters (p = 0.0075), consistent with the higher death rate 

among Control+BPA pups. The proportion of male and female pups did not differ by perinatal 

exposure group, with 51% male pups on average. Although Control+BPA (58.4%) and 

Mediterranean (57.8%) litters contained a greater percent of Avy/a offspring than Control (48.4%) 

litters, the differences were not significant. Pup deaths prior to PND4 may have occurred 

disproportionately in a particular sex or genotype group, but it was not possible to determine, 

since some dead offspring were not retrievable. 

 

Metabolic Outcomes 

Dams’ Response to Experimental Diets 

Dam body weight did not differ at initial exposure (Table S2.2). But pre-pregnancy 

weight change, during the first two weeks on the experimental diets, was greater in Western and 

Mediterranean diet groups (Figure S2.1). Dams on the Control and Control+BPA diets lost 

weight (-0.22 to -0.55g), while the other four groups gained weight (0.15 to 0.79g), especially 
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dams on Western (p = 0.0006), Western+BPA (p = 0.0001), and Mediterranean (p = 0.0062) 

diets. This exposure-derived weight gain led to greater mean pre-gestation body weights in 

Western (19.63g), Western+BPA (19.42g), and Mediterranean (19.66g) dams compared to 

Controls (18.55g), but the differences were not significant. Gestational weight gain did not differ 

between the six exposure groups, and although Western, Western+BPA, and Mediterranean 

dams remained heavier, on average (27.42g), than Control dams (25.72g), the differences were 

not significant at sacrifice, four days after pup weaning (Figure S2.2).  

Relative liver weight in dams did not differ by diet nor BPA exposure; on average, dam 

livers composed 5.0-5.5% of their overall body weight. However, greater relative mWAT (3.2-

3.3%) was collected from Western (p = 0.0035), and Western+BPA (p = 0.0078), compared to 

Control dams (2.4%). Exposure groups associated with greater pre-gestational body weight gain 

were the same as the groups that had higher relative mWAT at sacrifice.  

Post-partum, semi-fasting serum insulin levels in dams on Mediterranean and Western 

diet trended lower (~1.5ng/mL) than Control and Control+BPA (~2.5ng/mL) serum insulin 

levels, but the differences were not significant. Serum leptin levels were consistent in dams 

across all dietary exposure groups, ranging from about 4.5-5.9 ng/mL.  

Hepatic TGs did not differ by BPA exposure in dams. However, hepatic TGs were 

significantly higher in dams exposed to the Western (p = 0.0077), Western+BPA (p = 0.0410), 

Mediterranean (p = 0.0001), or Mediterranean+BPA (p = 0.0365) diets, compared to Control 

(Figure 2.3, Table S2.2). Control+BPA hepatic TGs trended higher than Control TGs, but 

hepatic TGs in Mediterranean+BPA and Western+BPA groups trended lower than their 

respective diets without BPA, suggestive of a potential interaction between these experimental 

diets and BPA. 
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PND10 Offspring’s Response to Experimental Diets  

PND10 offspring (n = 118) were exposed to experimental diets and BPA via maternal in 

utero transfer for at least three weeks and via mother’s milk for 10 days. The experimental diets 

did not impact body weight or relative liver weight in PND10 females (n = 60) or males (n = 58). 

Control+BPA males had lower average body weight (4.74g) compared to Control males (5.78g, 

p = 0.0434) at PND10; addition of BPA to the Mediterranean and Western diets did not result in 

decreased body weight (Table S2.3). Body weight did not differ among PND10 females based on 

perinatal exposure group. At this early age, average body weight did not differ by offspring sex, 

with males averaging 5.53g and females averaging 5.68g (p = 0.4130). Despite the lower body 

weight in Control+BPA males, relative liver weight did not differ between Control+BPA and 

Control males, comprising 3% total body weight in both groups. There were no differences in 

relative liver weight among other male or any female perinatal exposure groups either (Table 

S2.3).  

 Serum leptin levels were consistently highest among both female and male PND10 

offspring exposed to the Mediterranean diet. Female Mediterranean diet pups had average serum 

leptin levels 2.6-fold higher than Control females (p = 0.0011), while males exposed to the 

Mediterranean had levels 4.8-fold greater than Control males (p = 0.0284) (Table S2.3). 

Variation of leptin levels was greatest among Mediterranean offspring of both sexes, suggestive 

of inconsistency in hormonal response between individual Mediterranean mice. Serum leptin 

levels did not differ by Western diet or BPA exposure in female or male PND10 offspring.  

Hepatic TG levels were highest among Mediterranean PND10 offspring of both sexes. 

Mediterranean males had 7.3-fold greater hepatic TG levels compared to Control males (p < 

0.0001) (Table S2.3).  Although not significant, hepatic TGs were 1.6-fold higher among 
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Mediterranean females compared to Controls. As observed in the PND10 serum leptin levels, 

variation in hepatic TG levels was largest among Mediterranean pups of both sexes at PND10, 

suggestive of considerable inconsistency in hepatic TG storage between individual 

Mediterranean mice (Figure 2.4A & B). Neither perinatal Western diet nor BPA exposure altered 

hepatic TG levels in either sex. 

  

10-Month Offspring’s Response to Experimental Diets 

 By 10-months of age (n = 138), offspring had not been exposed to the experimental diets 

or BPA for more than nine months, since weaning. Body weight at 10-months did not differ by 

perinatal exposure. As expected, male offspring (44.87g) weighed more than females (34.63g), 

on average, at 10-months (Table S2.4). Females perinatally exposed to Western (3.8%), 

Western+BPA (3.7%) and Mediterranean (3.8%) diets, had greater relative liver weights 

compared to Control females (3.1%, p < 0.02). Relative liver weight did not differ by perinatal 

exposure in 10-month males. However, males perinatally exposed to the Western+BPA diet had 

greater relative mWAT (4.1%) compared to Control males (3.4%, p = 0.0235). Relative mWAT 

weight did not differ by perinatal exposure in 10-month females.  

Perinatal diet impacted serum leptin levels among 10-month males; Western+BPA serum 

leptin was 1.6-fold higher and Mediterranean was 1.5-fold higher than Control levels (p < 0.02) 

(Table S2.4). Western+BPA males also had 1.6-fold higher serum resistin levels compared to 

Control males (p = 0.0046). Among 10-month males, serum insulin and PAI-1 levels did not 

differ by perinatal exposure group.  However, in 10-month females, serum PAI-1 levels were 

1.6-fold greater in Mediterranean+BPA than Controls (p = 0.0043). No other serum hormones 

differed by perinatal exposure, among female offspring at 10-months. 
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Hepatic TGs were 2.4-fold higher in females perinatally exposed to the 

Mediterranean+BPA diet compared to Control females (p = 0.0118) (Table S2.4). Although all 

female experimental diet groups had hepatic TGs greater than Control, no other group 

differences were significant. Hepatic TGs did not differ by perinatal exposure group among male 

offspring at 10-months (Figure S2.4). 

 

Comparison of Hepatic Steatosis Measures in 10-month Offspring 

 H&E vacuolation and OilRedO staining were highly correlated to hepatic TG levels, in 

10-month offspring of both sexes (Table 2.3), indicating that hepatic TG quantification is an 

accurate proxy measure of hepatic lipid accumulation. The full range of scores, from 0 

(negligible) to 4 (severe lipid accumulation), was observed in both male and female 10-month 

offspring (Figure 2.5). 

 Hepatocellular response to perinatal exposures was sexually dimorphic, with multiple 

morphologic lesions differing significantly among experimental diets in female 10-month 

offspring, but not males (Table S2.5). Hepatocellular vacuolation was 1.7-fold greater in 

Mediterranean+BPA females compared to Controls (p = 0.0258), consistent with the observed 

hepatic TG difference. Surprisingly, OilRedO score was 2.3-fold higher among Control females 

than Western+BPA females (p = 0.0124), suggestive of less lipid accumulation in Western+BPA 

exposed offspring. Perinatal exposure did not impact hepatic steatosis, as measured by 

vacuolation or OilRedO score, in male offspring at 10-month (Table S2.5).  

 Hepatic adenomas were observed in 11 male mice, spread across five of the experimental 

exposure groups, including Control (Table S2.5). No adenomas were found in any female mice, 

but proliferative lesions differed by perinatal exposure groups. Proliferative lesions were only 
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observed in Control+BPA and Mediterranean+BPA females. Non-proliferative lesions also 

differed by perinatal exposure group in 10-month females; Control females had more non-

proliferative responses than Western, Western+BPA, and Mediterranean (p < 0.02). 

 

Predictive Modeling of Liver Triglycerides 

Dam Liver Triglycerides 

 Linear mixed models (LMM) were used to explore the contribution of perinatal 

experimental diets, perinatal BPA, and the interaction of these two concurrent exposures (Table 

2.4). Both experimental diets were associated with increased dam hepatic TG levels; Western 

dams had 11.24 mg/g (p = 0.0009) and Mediterranean dams had 18.02 mg/g (p = 0.0518) higher 

TGs than Control dams. BPA did not affect dam hepatic TG levels (p = 0.2279), but the 

Mediterranean*BPA interaction term had 13.24 mg/g (p = 0.0634) lower TG levels than 

Mediterranean dams. Every one gram increase in dam body weight at sacrifice was associated 

with 1.43 mg/g (p = 0.0116) greater hepatic TGs. Other potential covariates did not contribute 

significantly to the model, including: dam gestational weight gain, dam serum leptin, or insulin 

levels. 

 

PND10 Offspring Liver Triglycerides  

 Sex-stratified LMMs predicting Ln-transformed hepatic TGs in PND10 offspring 

included litter size as a covariate (Table 2.5). Neither perinatal experimental diets, BPA, nor their 

interaction terms significantly contributed to hepatic TG levels in female PND10 offspring. 

Western PND10 males had 5.9% (p = 0.0543) and Mediterranean males had 18.2% (p < 0.0001) 

greater TGs than Control males. Perinatal BPA exposure did not affect male PND10 hepatic TG 

levels, but the Mediterranean*BPA interaction term decreased TG levels by 12.7% (p = 0.0150) 
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compared to Mediterranean males.  Of note, the same two maternal factors associated with dam 

hepatic TGs, pre-gestational weight change and post-partum body weight, impacted hepatic TGs 

in PND10 males. PND10 male hepatic TGs increased by 4.8% (p = 0.0761) for every one-gram 

increase in dam body weight at sacrifice, but decreased by 4.6% (n.s.) for every one-gram 

change in pre-gestational weight. Although not significant, dam post-partum weight and pre-

gestational weight change improved model fit for PND10 females also (5.3% and -10.7%, 

respectively). Other potential covariates did not contribute significantly to the models, including 

all of the other PND10 variables (body weight, relative liver weight, and serum leptin levels) and 

dam variables (relative liver and mWAT weights, gestational weight gain, serum leptin, and 

insulin levels). 

 

10-month Offspring Liver Triglycerides  

 Similar to PND10 models, sex-stratified LMMs predicting Ln-transformed hepatic TGs 

in 10-month offspring included litter size as a covariate (Table 2.6). Perinatal exposure to neither 

experimental diet nor BPA alone significantly contributed to female 10-month offspring hepatic 

TG levels. However, the Mediterranean*BPA interaction term had 15.2% (p = 0.0309) higher 

TG levels than Mediterranean females. Also in females, hepatic TGs were associated with a 

24.6% (p = 0.0547) increase for every 1% increase in 10-month female relative mWAT weight. 

Although it did not contribute significantly to the model (p = 0.4143), presence of hepatic 

nodular hyperplasia improved model fit for 10-month female hepatic TGs. In 10-month males, 

neither perinatal diet nor BPA were significant predictors of Ln-transformed hepatic TGs. 

However, the best-fit model included the same covariates as the 10-month female model: 10-

month relative mWAT (25.4% increase, p = 0.1418) and nodular hyperplasia (6.3% increase, p = 
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0.0265). No other factors measured in 10-month offspring or their mothers (dams) were 

predictive of hepatic TGs in 10-month offspring of either sex. 

 

DISCUSSION 

 This longitudinal exposure study aimed to determine the life-course impact of perinatal 

experimental diets and BPA on offspring hepatic steatosis and metabolic health. Although dam 

hepatic TG levels differed by diet, alterations in metabolic outcomes were more pronounced than 

the effect on hepatic steatosis in offspring at PND10 and 10-months. Of note, the perinatal 

exposure that impacted offspring health outcomes differed by offspring age. At PND10, only the 

Mediterranean diet was associated with increased serum leptin (all offspring) and elevated 

hepatic TGs (males only); however, the large variation of these measures suggested considerable 

inter-individual differences in mouse response to the Mediterranean diet. In 10-month offspring, 

perinatal exposure to experimental diets+BPA was associated with sex-specific alterations in 

relative organ weights and serum hormone levels; this lasting impact of perinatal exposures, after 

>9 months on a Control diet supports the theory that offspring metabolic health can be 

developmentally programmed. Although not the original subjects of interest in this study, dam 

hepatic and metabolic responses to both experimental diets were marked and also predicted 

hepatic TG levels in PND10 offspring. Thus, dams may be an important group to phenotype in 

future murine models and epidemiological studies of perinatal exposures.  

 

Reproductive Outcomes 

We found no effect of perinatal diet on reproductive outcomes, including time to 

delivery, litter size, and percentage of male pups or Avy/a pups per litter. A 2009 systematic 
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review of perinatal HFD exposure outcomes also reported no difference in litter size or offspring 

birth weight between HFD and Control groups [68]. However, a recent study in C57BL/6J mice 

reported that HFD (60% fat, mostly lard) consumption, independent of dam obesity, was 

associated with decreased ovarian function due to depleted primordial follicles, and impaired 

fertility with fewer litters and smaller litter sizes [69]. The discrepancy may result from 

differences in fat content of the HFDs. The experimental diets in our study contained 42% of 

calories from fat, mimicking human HFDs, which rarely contain more than 45% kcal from fat 

[70]. The 60% fat diet used in the recent C57BL/6J study [69] is common in murine models of 

diet-induced metabolic disease, but it may not be directly applicable to human health.  

Perinatal BPA exposure is associated with decreases in uterine receptivity, implantation 

[71], and increases in offspring mortality [72]. Consistent with these findings, we observed 

greater Day 3 pup mortality in the Control+BPA offspring. However, the increased mortality did 

not occur in Western+BPA or Mediterranean+BPA groups, suggestive of a diet*BPA interaction. 

A potential mechanism for and implications of this interaction are examined later in this 

Discussion. 

 

Dam Metabolic & Hepatic Outcomes 

Irrespective of BPA content, dams consuming the Western or Mediterranean 

experimental diets had increased hepatic TGs compared to Control dams. Adult C57BL/6J mice 

are known to develop hepatocellular ballooning and hepatic simple steatosis after 7-8 weeks on a 

high fat diet [73–75]. However, the impact of HFDs on hepatic steatosis has not been reported in 

pregnant dams. While many studies use perinatal HFD exposure to investigate effects on 

offspring health [76], potential alterations in maternal health and physiology are rarely published. 
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In this study, dams were exposed to the experimental diets for an average of 8-9 weeks, so the 

observed hepatic steatosis aligned with the previously reported time to develop steatosis in non-

pregnant adult mice.   

Dams exposed to the Western, Western+BPA, or Mediterranean diets had greater pre-

gestational weight gain and relative mWAT weight. Weight gain on HFDs has previously been 

attributed to gains in adiposity, not lean mass [74]. The increased relative mWAT weight, 

without increases in relative liver weight, among dams on the experimental diets suggests that 

increased adiposity contributed to the greater pre-gestational weight gain compared to Control 

dams. Gestational weight gain is associated with an increased risk of overweight in children (2-

18 years) in many human birth cohort studies [77]. However, a large prospective cohort study in 

the Netherlands reported maternal pre-gestational obesity increased odds of childhood obesity, 

but excessive gestational weight gain had a more limited impact on children’s outcomes [78]. 

This distinction may explain the lack of effect the differential pre-gestational weight gain had on 

mouse offspring; none of the study dams were obese prior to mate-pairing. The clarification that 

some, not all, dam weight measures may impact offspring health trajectory supports the need to 

better characterize the maternal environment and metabolism when studying the potential 

perinatal programming of offspring metabolic disease.  

 

PND10 Metabolic & Hepatic Outcomes 

 Perinatal exposure to experimental diets in this study impacted hepatic TGs only in male 

PND10 offspring. This sexually dimorphic response has been previously observed in mice and 

rats [79,80], with male offspring consistently more likely to develop hepatic steatosis following 

perinatal HFD exposure than females. Among youth (2-19 years) accidental deaths in San Diego 
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County, males were also more likely to have hepatic steatosis (15%) than females (9%) [81], 

suggesting the sex-specific difference in rates of hepatic steatosis may translate to human 

populations.   

Metabolic outcomes at PND10 were most pronounced in offspring perinatally exposed to 

the Mediterranean diet. Although maternal HFD during pregnancy has been associated with 

increased serum leptin in 12-week old offspring [82], we only observed this elevated leptin 

response among Mediterranean diet offspring; the Western diet had no effect. The difference in 

offspring age, 12-weeks vs. PND10, may contribute to the dissimilar effect of perinatal exposure 

on offspring leptin levels. Breast milk contains leptin and is thought to contribute to regulation of 

food intake in offspring prior to weaning [83–85], so the serum leptin levels in our PND10 

offspring likely reflected variations in leptin from mother’s milk, not endogenously produced 

leptin as seen in 12-week old offspring. Among adults, elevated leptin may be indicative of 

leptin resistance, failure to regulate food intake despite high circulating leptin levels, often 

observed in metabolic conditions (obesity, MetSyn, T2DM) [86]. However, the postnatal leptin 

surge that occurs in the first two weeks of life in rodents is necessary for establishing 

hypothalamic pathways that will control food intake [87] and for the maturation of other organs 

involved in energy homeostasis, including the kidney, pancreas, ovary, and thymus [88]. Thus, 

elevated leptin levels in PND10 offspring exposed to the Mediterranean diet likely have a greater 

impact on organ development than on life long metabolic health.  

 

10-month Metabolic & Hepatic Outcomes 

 This study was designed to investigate the perinatal programming of hepatic steatosis. To 

strengthen potential findings, three measures of steatosis were included, quantification of hepatic 
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TGs, OilRedO staining of hepatic lipids, and analysis of hepatocellular vacuolation via 

histopathology. We observed hepatic steatosis among 10-month offspring, but it did not differ 

strongly by perinatal exposure group, suggesting it may have been normal, age-related steatosis. 

C57BL/6J mice are known to develop hepatic cysts and adenomas [89,90]; this age-related 

pathology has been previously observed in our viable yellow agouti colony, with 10.5% of non-

agouti, a/a 10-month male Controls displaying neoplastic lesions and over 50% of 10-month 

females and males exhibiting simple steatosis [42]. The presence of hepatic adenomas in only 

10-month males, not females, in our study is consistent with the higher background incidence of 

hepatic tumors in male C57BL/6J mice [91] .  

Strikingly, histopathologic evaluation of hepatic tissue found Control offspring had more 

non-proliferative changes than offspring perinatally exposed to the experimental diets. This may 

suggest Control mice retained the ability to regenerate and repair injured tissue more at 10-

months than did other groups. Thus, although age-related damage may be occurring, Control 

livers may still be able to respond to environmental stressors, returning to a healthier state, 

whereas livers perinatally exposed to experimental diets may not be able to repair as easily, and 

thus amass more tissue damage. 

Perinatal exposure to diet+BPA combinations (Western+BPA and Mediterranean+BPA) 

had the greatest effect on 10-month offspring metabolic outcomes. This response differed from 

both dams and PND10 offspring, suggesting that various perinatal exposures may impact 

offspring health at different ages. HFD consumption has been associated with increased relative 

liver weight in adult animals [92], we observed this effect in 10-month female offspring. 

However, in our mice, they had not been exposed to the experimental diets since weaning, 

suggesting that perinatal HFD exposure can also impact relative liver weight across the life 
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course. Interestingly, the increased liver weight did not translate to greater hepatic TGs, so mass 

was not necessarily due to increased lipid accumulation. The borderline increase in body weight 

and significant increase in relative mWAT weight among Western+BPA males at 10-months 

suggests that these males accumulated more visceral adipose across their life, due to the 

combined exposure in early life. These Western+BPA males also had the highest serum leptin 

and resistin levels and the lowest serum PAI-1, suggesting that the greater mWAT mass was 

metabolically active. 

 

Multifaceted Effects of the Experimental Diets & BPA 

Effects of the six perinatal exposures were much more complex than our original 

hypotheses. The Western diet had the expected, adipogenic effect [17–19] in dams, but barely 

impacted offspring. Conversely, we expected our Mediterranean diet would protect against 

metabolic and hepatic alterations, but in dams it was generally indistinguishable from the 

adipogenic effect of the Western diet, and was the only diet to increase PND10 hepatic TGs. 

Individual components of the Mediterranean diet (fish oil, olive oil, and polyphenols) have been 

investigated, but a complete Mediterranean diet has never been created for mice. A previous 

comparison of two purified perinatal diets found that maternal diets high in saturated fat 

promoted offspring hyperphagia, but equivalent consumption of a fish oil diet did not [93]. 

Further, a recent study in rats, reported that adding fish oil to a HFD in dams during pregnancy, 

prevented insulin resistance in adult male offspring, independent of body weight [94]. In adult 

mice predisposed to hepatic steatosis, daily 2% DHA/EPA supplementation reduced hepatic TGs 

by almost 40% [95], further supporting the health benefits of a fish-oil enriched diet.  
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On the other hand, consumption of olive oil, the primary fat component in the 

Mediterranean diet, is associated with increased steatosis in mice [96,97]. In mice, olive oil 

decreases activity of carnitine palmitoyltransferase I (CPT1), the rate limiting step for 

mitochondrial fatty acid -oxidation. This depression of CPT1 activity does not occur in humans 

consuming olive oil, thus may partially explain the differential outcome of the diet between the 

two species. In human studies, Mediterranean diet is associated with reversal of biopsy-

confirmed NAFLD in adults, significantly reducing hepatic steatosis and improving insulin 

sensitivity, even without weight loss [26,98]. A proteomics analysis reported that tissue 

oxidation and atherosclerotic plaque formation was delayed in mice consuming olive oil, despite 

increased hepatic steatosis and insulin resistance; the authors attributed this paradoxical response 

to the differential regulation of 80 hepatic antioxidant enzymes, including heat shock proteins, 

superoxide dismutase, glutathione peroxidase 1, thioredoxin peroxidase 2, fatty acid binding 

protein, carboxylesterase, and apolipoprotein A1 [97]. Thus, the hepatic steatosis observed in 

mice consuming olive oil may be protective, as it does not appear to induce the detrimental 

metabolic alterations. This protective antioxidant effect may also explain why mice perinatally 

exposed to Mediterranean diet in this study did not exhibit altered hepatic or metabolic responses 

at 10-months.  

In this entire study, perinatal BPA exposure on a Control diet (Control+BPA) only 

impacted pup Day 3 mortality and body weight in PND10 offspring; no effects were observed in 

dams or 10-month offspring. Perinatal low-dose BPA exposure has been associated with lower 

birth weight in murine models [99]; we observed this decreased body weight at PND10, but only 

among male offspring. Our findings support the previously reported detrimental effect of 

perinatal BPA exposure on reproductive outcomes [71,72,99], but suggest that maternal diet may 
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have a greater impact on offspring health trajectory, than BPA exposure. This is good news from 

a public health standpoint; in general, people have more control over the food they eat than over 

food and beverage packaging. Perinatal BPA exposure may not be sufficient to alter offspring 

health trajectory, an additional postnatal stressor or dietary challenge may be required. A theory 

of developmental “priming” by perinatal EDC exposure has been proposed, suggesting that 

exposure-induced changes in gene methylation may prime the loci for increased transcription in 

response to a later challenge [100]. Two mouse studies that examined perinatal BPA exposure 

followed by a postnatal HFD challenge reported greater hepatic TGs in offspring exposed to both 

the BPA and HFD [40,41], supportive of BPA’s potential priming effect. Thus, perinatal low-

dose BPA exposure may increase offspring susceptibility to hepatic steatosis, but postnatal diet 

may be required to trigger the pathologic response. 

In contrast to the lack of metabolic or hepatic response to the Control+BPA diet, the 

diet*BPA combination diets, especially Western+BPA, significantly impacted organ weights and 

serum hormone levels in a sex-specific manner among 10-month offspring. In 10-month males, 

the predicted aggravation of Western diet by BPA was observed; the effect was not seen in 10-

month females. This is consistent with previous reports of prenatal programming of metabolic 

disease by maternal HFD occurring in male offspring, without effect in females [19,101]. The 

Mediterranean+BPA diet had a distinctly different effect on mice at all ages. Among dams, 

Mediterranean+BPA exposure was similar to Western and Western+BPA effects, and associated 

with increased weight gain and hepatic TGs, but decreased serum insulin. Among PND10 

offspring of both sexes, however, adding BPA to the Mediterranean diet seemed protective 

against adipogenic effects of Mediterranean.  
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Interestingly, perinatal BPA exposure was also protective, when combined with maternal 

over-nutrition in a sheep model of perinatal exposure also [102,103]. We recently reported that 

prenatal exposure to BPA protected overfed sheep offspring from the increased blood pressure 

and greater left ventricle area observed in overfed offspring not exposed to BPA [102]. Gene 

network analysis identified a reversal of overfeeding effects on gene expression, by prenatal 

BPA exposure, at FABP4, A2M, APOD, HLA-C [104], suggestive of greater fatty acid uptake in 

adipocytes, more cytokine transport, and greater circulating high-density lipoproteins. Multiple 

animal models now suggest a diet*BPA interaction, so future perinatal BPA exposure studies 

should include multiple background diets to elucidate this interaction. Human populations are 

simultaneously exposed to BPA and a variety of diets; improved understanding this interaction 

may be critical for interpretation of epidemiologic data on BPA exposure.  

 

Challenges & Limitations 

 Assessing the impact of perinatal exposures across time in offspring can be challenging 

in the same mouse. In order to assess hepatic steatosis in offspring at multiple time points 

(PND10 and 10-months), an invasive biopsy procedure would have been required at PND10, to 

follow the same mouse to 10-months. Although liver tissue regenerates [105], we decided 

against this study design due to the added stress (metabolic and mental) that surgery induces. 

Instead we analyzed sex-matched littermates at PND10 and 10-months to approximate the effects 

over time. Non-invasive tissue samples could be collected at multiple time points from the same 

mouse to avoid the littermate challenge.  

 This study investigated phenotypic outcomes in dams, PND10, and 10-month offspring. 

However, subtle changes could have occurred due to perinatal exposures that would be apparent 
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at a molecular level. Perinatal exposure to both HFDs and BPA has been associated with 

alterations in epigenetic modifications and differential gene expression. Future analyses of 

nucleic acids may reveal changes in metabolic and/or hepatic regulation.  

 

Study Innovation & Future Directions 

 Due to widespread interest in perinatal programming of NAFLD, human birth cohorts 

and animal models are simultaneously exploring the epidemiological factors and molecular 

pathways involved in altering offspring health trajectories. However, most studies focus on 

offspring outcomes and do not explore the impact perinatal exposures can have on the directly 

exposed mothers. Mothers are commonly considered the route of exposure for a developing 

fetus, but the predictive power of maternal phenotype is often overlooked. In this study, dam pre-

gestational weight change and post-partum body weight impacted models predicting PND10 

hepatic TGs. Detailed characterization of maternal metabolic phenotype during pregnancy in 

human birth cohorts could provide additional insight into factors affecting perinatal 

programming. Maternal adaptation to a diet or chemical exposure may be triggering the altered 

health trajectory in offspring, not the exposure itself. For instance, we know maternal pre-

gestational weight increases risk of offspring metabolic dysregulation [8–11], maternal diet may 

be responsible for increased maternal pre-gestational weight, so the impacts attributed to the diet 

exposure, may actually result from the mom’s diet-altered weight status. 

 

 

CONCLUSION 
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In this study, we examined the potential role of perinatal diet and BPA, two common daily 

exposures, on developmental programming of NAFLD, assessed via hepatic TGs and associated 

metabolic outcomes. This is the first study, examining perinatal programming of NAFLD, to 

begin exposures prior to gestation, to provide diet and BPA exposures concurrently, and to 

investigate the potential interaction of BPA with multiple background diets. The differential 

response of dams, PND10 and 10-month offspring to the six experimental diets suggests that 

environmental exposures can exert dissimilar effects at different ages and life stages. The hepatic 

and metabolic effects of these perinatal diets differed not only by mouse age, but also by 

offspring sex and diet composition. The substantial impact of experimental diets on maternal 

phenotype and the subsequent effect of maternal phenotype on PND10 offspring hepatic TGs, 

suggests that detailed characterization of maternal factors would improve our understanding of 

developmental programming. To build on these insights, future studies should consider 

beginning perinatal exposures prior to gestation, continuing to explore diet*EDC interactions, 

including more detailed maternal phenotyping measures, increasing the number of offspring 

evaluations (between PND10 and 10-months), and incorporating molecular analyses with 

phenotypic outcomes.  
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Figure	2.1	Experimental	Design	of	Longitudinal	Mouse	Exposure	Study	

 
Wild	type	(a/a),	virgin	dams	(8-10	weeks	of	age)	were	randomly	assigned	to	one	of	six	
experimental	diets.	They	were	mate-paired	two	weeks	later	with	young	(7.5	week	old),	
virile,	Avy/a	males.	Dams	remained	on	their	assigned	experimental	diet	throughout	
pregnancy	and	lactation.	Offspring	were	exposed	to	the	diet	in	utero	and	via	mother’s	milk.	
All	offspring	were	weaned	onto	the	Control	diet	at	postnatal	day	21	(PND21).	Thus,	10M	
offspring	had	not	been	exposed	to	their	perinatal	experimental	diet	for	over	nine	months	at	
the	time	of	sacrifice	and	tissue	collection.	Sacrifices	were	performed	at	three	time	points:	
(1)	dams:	4	days	post-weaning	(PND25),	(2)	offspring:	at	PND10,	and	(3)	offspring:	at	10M.	
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Table 2.1 Composition of Experimental Diets: Mice Perinatal Exposures 
 

Diet Ingredients 
3 Experimental Mouse Diets 

Control Western  Mediterranean  

MACRONUTRIENTS 

Calories (Kcal/g chow) 3.98 4.72 4.53 
% Calories from Fat 16 40 42 
        PUFA : SFA : MUFA 1 : 0.2 : 0.5 1 : 1.9 : 1.6 1 : 1.3 : 5.6 
Protein (casein) (g/100g chow) 20 19 19 
Carbohydrate Content (g/100g chow)    
        Cornstarch 40 14 23 
        Sucrose 10 25.5 9.2 
        Cellulose 5 2 8 

VITAMINS & MINERALS 

Vitamin A (IU/kg chow) 4000 4000 8000 
Vitamin C (mg/kg chow) 0 0 500 
Vitamin D (IU/kg chow) 1000 400 1000 
Vitamin E (IU/kg chow) 75 25 75 
Folic Acid (mg/kg chow) 2 1 4 
Sodium (mg/kg chow) 1039 7000 1039 
Potassium (mg/kg chow) 3600 3600 8000 
Magnesium (mg/kg chow) 513 513 850 

 
The Control diet is equivalent to AIN-93G, except that corn oil replaced soybean oil as the 
source of fat. The experimental Mediterranean and Western diets were designed to reflect 
the nutrient content of human dietary patterns in Crete and the U.S., respectively. Nutrient 
content of the mouse diets were achieved on a per weight basis.  
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Figure 2.2 Lipid Composition of the Three Experimental Mouse Diets 
 

 
This figure illustrates the difference in lipid sources used to create each of the study’s three 
experimental diets. Corn oil was the sole lipid source in the Control diet. Saturated fats 
composed >60% of the Western diet, contributed largely by butter and palm oil. In the 
Mediterranean diet, olive oil was the main source; fish oil was also added to reflect the 
higher n-3 PUFA content of human Mediterranean diets. 
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Figure	2.2	Lipid	Composition	of	Three	Mouse	Experimental	Diets	
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Table 2.2 Reproductive Outcomes by Perinatal Exposure Group 
 

Reproductive Outcomes 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* Control Western Mediterranean 

Delivery Time (days) 
No 25.29 (10.00) 30.50 (12.04) 26.55 (9.23) 

0.2502 
n.s. Yes 24.62 (5.47) 30.67 (8.33) 28.56 (9.51) 

Litter Size (pups) 
No 7.20 (1.15) 7.43 (1.95) 6.85 (2.37) 

0.6141 n.s. 
Yes 6.52 (1.72) 6.53 (2.53) 7.38 (1.63) 

Dead Pups (pups / litter) 
No 0.73 (0.88) 0.64 (0.84) 1.25 (1.71) 

0.0223 Cont vs. CBPA = 0.0149 
Yes 2.00 (1.76) 1.33 (2.23) 0.38 (0.81) 

Live Pups (pups / litter) 
No 6.47 (0.99) 6.79 (1.76) 5.60 (2.60) 

0.0037 Cont vs. CBPA = 0.0075 
Yes 4.52 (2.66) 5.20 (2.04) 7.00 (1.59) 

Male Pups (% / litter) No 47.71 (19.58) 51.90 (16.12) 53.02 (17.56) 
0.8532 n.s. 

Yes 51.34 (23.20) 45.71 (20.90) 45.71 (20.90) 

Avy/a Offspring (% / litter) No 48.38 (17.10) 50.27 (17.28) 58.38 (17.80) 
0.4245 n.s. 

Yes 57.77 (28.14) 45.94 (27.43) 49.44 (14.32) 

 
*Only significant (p < 0.05) or borderline significant (p < 0.10) comparisons are provided; all others are not significant (p > 
0.10). The definition of the reproductive outcome variables presented in this table are as follows: ‘Delivery Time’ = the number 
of days from mate-pairing to delivery, ‘Litter Size’ = the number of pups initially delivered, ‘Dead Pups’ = the number of pups 
per litter that died within the first 3 days of life, ‘Live Pups’ = the number of pups per litter that were alive from day 3 onwards. 
Dam sample size varied slightly by experimental exposure group: Control = 15, Western = 14, Mediterranean = 20, 
Control+BPA = 21, Western+BPA = 15, Mediterranean+BPA = 16. 
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Figure 2.3 Dam Hepatic Triglyceride Levels, Four Days After Weaning Offspring (25 Days 
Post-Partum) 
 

 
Average hepatic triglycerides (TGs) in dams (n=97), four days after weaning offspring, by 
experimental exposure group. a Denotes the average TGs of Control dams; groups that do 
not differ significantly from Control are also marked with ‘a’. b Denotes exposure groups 
with average TGs that differ significantly (p < 0.05) from Control.   
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Figure 2.4 PND10 Offspring Hepatic Triglyceride Levels by Exposure Group 

 

 
Average hepatic triglycerides (TGs) in PND10 offspring (n = 118), by experimental 
exposure group: Panel A = female PND10 offspring (n = 60), Panel B = male PND10 
offspring (n = 58). a Denotes the average TGs of Control PND10 offspring; groups that do 
not differ significantly from Control are also marked with ‘a’. b Denotes exposure groups 
with average TGs that differ significantly (p < 0.05) from Control.   
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Table 2.3 Correlation of Three Hepatic Steatosis Measures in 10-Month Offspring 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Pearson’s 
Correlation 

Hepatic TGs 
(mg/g) 

OilRedO  
(score) 

Vacuolation  
(score) 

Female 10-month Offspring 

Hepatic TGs (mg/g) Coefficient 1.000 0.4130 0.6189 
 p-value --- 0.0006 <0.0001 

OilRedO (score) Coefficient 0.4130 1.000 0.6453 
 p-value 0.0006 --- <0.0001 

Vacuolation (score) Coefficient 0.6189 0.6453 1.000 
 p-value <0.0001 <0.0001 --- 

Male 10-month Offspring 

Hepatic TGs (mg/g) Coefficient 1.000 0.2758 0.4163 
 p-value --- 0.0239 0.0005 

OilRedO (score) Coefficient 0.2758 1.000 0.5826 
 p-value 0.0239 --- <0.0001 

Vacuolation (score) Coefficient 0.4163 0.5826 1.000 
 p-value 0.0005 <0.0001 --- 
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Figure 2.5 Histopathologic Measures of Hepatic Steatosis at 10-Months 
 

 
Hepatic steatosis ranged from negligible to severe (>50% of tissue affected) in liver 
samples from the 10-month offspring. (A) OilRed0 staining, score 0: no visible lipid 
accumulation, (B) OilRedO staining, score 4: severe accumulation, (C) H&E staining, score 
1: minimal (<9% tissue affected), (D) H&E staining, score 4: severe. 
   

Figure	2.4	Histolopathologic	Measures	of	Hepatic	Steatosis	at	10-Months	
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Table 2.4 Impact of Experimental Diet Exposure on Dam Hepatic Liver Triglyceride Levels 
25 Days Post-Partum. 
 

Experimental Diet 
Model 1 Model 2 Model 3 

Change in 
TGs 

p-value 
Change in 

TGs 
p-value 

Change in 
TGs 

p-value 

Western 15.49 0.0058 11.85 0.0343 11.24 0.0009 

Mediterranean 19.98 0.0002 18.65 0.0003 18.02 0.0518 

BPA 5.29 0.2918 6.37 0.1978 6.05 0.2279 

Western*BPA -9.71 0.1891 -8.76 0.2317 -8.63 0.2410 

Mediterranean*BPA -13.58 0.0589 -13.73 0.0503 -13.24 0.0634 

 
Linear mixed effect models with ‘Cohort’ as a random effect were run to assess the impact 
of experimental diet components and their interaction on dam (n=97) hepatic TG levels, 25 
days post-partum. Effect size p-values were bolded if significant (p < 0.05) or borderline 
significant (p < 0.10) to highlight the experimental diet components that contribute to 
model prediction of hepatic TG levels.  

• Model 1: includes only the experimental diet variables, no additional covariates.  
• Model 2: adjusted for dam body weight, 25 days post-partum.  
• Model 3: additionally adjusted for dam pre-gestational body weight change.  
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Table 2.5 Impact of Perinatal Experimental Diet Exposure on Hepatic Liver Triglyceride 
Levels in PND10 Offspring, Sex-Stratified 
 

Experimental Diet 
Model 1 Model 2 Model 3 

% Change 
TGs 

p-value 
% Change 

TGs 
p-value 

% Change 
TGs 

p-value 

Female PND10 Offspring 

Western -1.7 0.6680 -3.60 0.3820 -3.53 0.3926 

Mediterranean 6.7 0.1194 5.48 0.2034 6.14 0.1620 

BPA 2.2 0.6113 2.31 0.5836 3.38 0.4377 

Western*BPA 1.3 0.8214 2.71 0.6479 2.70 0.6489 

Mediterranean*BPA -7.3 0.2367 -6.47 0.2883 -8.02 0.2048 

Male PND10 Offspring 

Western 6.80 0.0265 5.47 0.0586 5.92 0.0543 

Mediterranean 17.75 <0.0001 17.43 <0.0001 18.16 < 0.0001 

BPA 4.53 0.1679 4.84 0.1165 5.29 0.1061 

Western*BPA -6.73 0.1396 -5.78 0.1678 -6.19 0.1539 

Mediterranean*BPA -12.29 0.0145 -11.77 0.0132 -12.73 0.0150 

 
Linear mixed effect models were run to assess the impact of perinatal experimental diet 
components and their interaction on Ln-transformed hepatic TG levels in PND10 offspring. 
Models were sex-stratified (female: n=48, male: n=55), and all included ‘Litter ID’ as a 
random effect. Effect size p-values were bolded if significant (p < 0.05) or borderline 
significant (p < 0.10) to highlight the experimental diet components that contribute to 
model prediction of hepatic TG levels.  

• Model 1 adjusted for litter size.  
• Model 2 additionally adjusted for dam body weight, 25 days post-partum.  
• Model 3 additionally adjusted for dam pre-gestational body weight change. 
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Table 2.6 Impact of Perinatal Experimental Diet Exposure on Hepatic Liver Triglyceride 
Levels in 10-month Offspring, Sex-Stratified 
 

Experimental Diet 
Model 1 Model 2 Model 3 

% Change 
TGs 

p-value 
% Change 

TGs 
p-value 

% Change 
TGs 

p-value 

Female 10-month Offspring 

Western 3.21 0.5067 4.08 0.3914 4.22 0.3765 

Mediterranean 0.69 0.8881 0.64 0.8944 0.59 0.9022 

BPA -4.13 0.4263 -3.66 0.4716 -2.55 0.6281 

Western*BPA 2.36 0.7378 1.74 0.8021 5.85 0.9341 

Mediterranean*BPA 15.28 0.0318 14.71 0.0355 15.21 0.0309 

Male 10-month Offspring 

Western -6.70 0.1430 -6.86 0.1344 -5.00 0.2639 

Mediterranean -1.99 0.6466 -2.09 0.6318 -1.27 0.7635 

BPA 2.39 0.6000 2.13 0.6415 2.32 0.5993 

Western*BPA 1.95 0.7649 1.07 0.8703 1.08 0.8644 

Mediterranean*BPA -5.00 0.4396 -4.75 0.4632 -3.40 0.5878 

 
Linear mixed effect models were run to assess the impact of perinatal experimental diet 
components and their interaction on Ln-transformed hepatic TG levels in 10-month 
offspring. Models were sex-stratified (female: n=65, male: n=67) and all included ‘Cohort’ 
as a random effect. Effect size p-values were bolded if significant (p < 0.05) or borderline 
significant (p < 0.10) to highlight the experimental diet components that contribute to 
model prediction of hepatic TG levels.  

• Model 1 adjusted for litter size.  
• Model 2 additionally adjusted for relative mWAT in 10-month offspring.  
• Model 3 additionally adjusted for the presence of nodular hyperplasia in 10-month 

offspring. 
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Supplemental Information 

 
 

Table S2.1 Complete Composition of Three Experimental Diets 
 

Ingredient  
Experimental Exposure Diets 

Control Western Mediterranean 

Main Ingredients (g/100g food) 

Fat Source 7 20.5* 21.4 

Casein 20 19 19 

Cornstarch 40 14 23 

Dyestrose 13.2 13.2 13.2 

Sucrose 10 25.5 9.2 

Cellulose 5 2 8 

Mineral Mix 3.5 3.8 3.8 

Vitamin Mix 1 1.1 1.1 

Composition of Fat Source (g/100g food) 

Corn Oil 100 29 4 

Butter, anhydrous 0 33 4 

Palm Oil 0 30 0 

Olive Oil 0 8 91 

Menheden (Fish) Oil 0 0 1 

Vitamins (unit/kg food) 

Nicotinic acid (mg) 30 30 30 

Pantothenate (mg) 15 15 15 

Pyridoxine (mg) 6 6 6 

Thiamin (mg) 5 5 5 

Riboflavin (mg) 6 6 6 

Folic acid (mg) 2 1 4 

Biotin (mg) 0.2 0.2 0.2 

Vitamin B12 (ug) 25 10 10 

Vitamin K (ug) 900 900 900 

Vitamin E (IU) 75 25 75 

Vitamin A (IU) 4000 4000 8000 

Vitamin D (IU) 1000 400 1000 

Choline (mg) 1000 1000 1000 

Vitamin C (mg) 0 0 500 
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Table S2.1 Complete Composition of Three Experimental Diets, Continued 
 

Ingredient  
Experimental Exposure Diets 

Control Western Mediterranean 

Minerals (unit/kg food) 

Calcium (mg) 5000 5000 5000 

Phosphorus (mg) 3000 3000 3000 

Magnesium (mg) 513 513 850 

Sodium (mg) 1039 7000 1039 

Potassium (mg) 3600 3600 8000 

Chloride (mg) 1631 1631 1631 

Sulfur (mg) 300 300 300 

Iron (mg) 45 45 45 

Zinc (mg) 38 38 38 

Manganese (mg) 10 10 10 

Copper (mg) 6 6 6 

Iodine (mg) 0.2 0.2 0.2 

Molybdenum (mg) 0.15 0.15 0.15 

Selenium (mg) 0.15 0.15 0.15 

Silicon (mg) 5 5 5 

Chromium (mg) 1 1 1 

Fluoride (mg) 1 1 1 

Nickel (mg) 0.5 0.5 0.5 

Boron (mg) 0.5 0.5 0.5 

Lithium (mg) 0.1 0.1 0.1 

Vanadium (mg) 0.1 0.1 0.1 

 
* Bolded text is used to emphasize nutrients in the Western and Mediterranean diet that 
differ significantly from the Control diet. These differences reflect nutrient differences in 
human Western and Mediterranean dietary intake patterns. 
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Figure S2.1 Pre-Gestational Body Weight Change in Dams by Exposure Group: First Two 
Weeks of Exposure 
 

 
Dams were exposed to one of six experimental diets for two weeks prior to mate-pairing. 
Body weight changed as the dams adjusted to their new diets. This figure illustrates the 
average weight change by exposure group; error bars denote the SEM for each group. a 
Denotes the average TGs of Control PND10 offspring; groups that do not differ significantly 
from Control are also marked with ‘a’. b Denotes exposure groups with average TGs that 
differ significantly (p < 0.05) from Control. c Denotes the exposure group with average TGs 
that differ from Control with borderline significance (p < 0.10). 
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Figure S2.2 Body Weight Change in Dams by Exposure Group: Initial Exposure to Offspring 
Weaning 

 
Dam body weight was measured at three times: (1) start of exposure to experimental diets, 
at 8-10 weeks of age, (2) at mate-pairing, two weeks later, (3) and four days after their 
pups were weaned (PND25). Mean body weight of dams in each exposure group is plotted 
above with the SEM designated by the error brackets.  
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Table S2.2 Dam Metabolic Outcomes  
 

Metabolic Outcomes in Dams 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* Control Western Mediterranean 

Exposure Body Weight (grams) 
No 19.10 (1.15) 18.97 (1.95) 19.22 (2.37) 

0.6141 n.s. 
Yes 18.91 (1.72) 18.64 (2.53) 18.64 (1.63) 

Mate-Pairing Body Weight (grams) 
No 18.55(0.88) 19.63 (0.84) 19.66 (1.71) 

0.0223  
Yes 18.68 (1.76) 19.42 (2.23) 18.74 (0.81) 

Post-Weaning Body Weight (grams) 
No 25.99 (2.54) 27.84 (4.10) 27.17 (1.91) 

0.0960 Cont vs. West = 0.0728 
Yes 25.45 (2.13) 27.25 (2.54) 25.86 (2.46) 

Exposure Weight Change (grams) 

 
No 

 
-0.55 (0.99) 

 
0.66 (0.91) 

 
0.39 (0.86) 

0.0004 

Cont vs. West = 0.0006 
Cont vs. WBPA = 0.0001 
Cont vs Med = 0.0062 
Cont vs. MBPA = 0.0560 

Yes -0.22 (1.14) 0.79 (1.08) 0.15 (1.17) 

Pregnancy Weight Change (grams) 
No 7.46 (1.92) 9.01 (3.35) 7.26 (1.43) 

0.1420 Cont vs. West = 0.0903 
Yes 6.62 (3.01) 7.65 (2.49) 7.07 (1.99) 

Relative Liver Weight  
(liver weight / body weight) 

No 0.054 (0.007) 0.055 (0.007) 0.050 (0.006) 
0.1446 Cont vs. Med = 0.0842 

Yes 0.054 (0.007) 0.051 (0.008) 0.055 (0.009) 

Relative Mesenteric Adipose Weight 
(MAT weight / body weight) 

No 0.025 (0.005) 0.033 (0.008) 0.028 (0.008) 
0.0065 

Cont vs. West = 0.0035 
Cont vs. WBPA = 0.0078 Yes 0.026 (0.007) 0.032 (0.010) 0.025 (0.006) 

Serum Insulin Levels (ng/dL) 
No 2.64 (2.60) 1.33 (0.54) 1.69 (1.28) 

0.1913 
Cont vs. West = 0.0433 
Cont vs. WBPA = 0.0730 
Cont vs. MBPA = 0.0782 

Yes 2.41 (1.46) 1.59 (1.17) 1.59 (1.03) 

Serum Leptin Levels (ng/dL) 
No 5.16 (4.20) 4.54 (2.46) 5.63 (4.34) 

0.9598 n.s. 
Yes 5.93 (4.28) 5.76 (3.99) 5.59 (3.92) 

Hepatic TG levels (mg/g) 

 
No 14.64 (12.11) 29.66 (15.66) 34.98 (16.60) 

0.0030 

Cont vs. West = 0.0077 
Cont vs. WBPA = 0.0410 
Cont vs. Med = 0.0001 
Cont vs. MBPA = 0.0365 

Yes 20.24 (15.00) 25.48 (13.98) 25.74 (13.17) 

 
*Only significant (p < 0.05) or borderline significant (p < 0.10) comparisons are shown; all others are not significant (n.s.). 
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Table S2.3 PND10 Offspring Metabolic Outcomes  
 

Metabolic Outcomes 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* Control Western Mediterranean 

PND10 Female Offspring 

PND10 Body Weight (grams) 
No 5.97 (0.54) 5.71 (0.75) 5.34 (0.95) 

0.5371 Cont vs. Med = 0.0955 
Yes 5.43 (1.14) 5.55 (0.90) 5.89 (1.17) 

Relative Liver Weight  
(liver weight / body weight) 

No 0.030 (0.003) 0.029 (0.005) 0.030 (0.005) 
0.4358 n.s. 

Yes 0.029 (0.005) 0.032 (0.008) 0.027 (0.004) 

Serum Leptin Levels (ng/dL) 
No 3.40 (2.13) 2.15 (1.60) 8.84 (6.77) 

0.0668 Cont vs. Med = 0.0284 
Yes 5.47 (4.38) 7.21 (6.93) 7.48 (6.42) 

Hepatic TG levels (mg/g) 
No 3.68 (2.50) 2.34 (1.23) 5.71 (2.42) 

0.1859 n.s. 
Yes 4.01 (3.26) 4.63 (3.45) 5.04 (2.63) 

PND10 Male Offspring 

PND10 Body Weight (grams) 
No 5.78 (0.67) 5.71 (0.99) 5.59 (0.89) 

0.2075 Cont vs. CBPA = 0.0434 
Yes 4.74 (0.74) 5.98 (1.33) 5.44 (1.59) 

Relative Liver Weight  
(liver weight / body weight) 

No 0.026 (0.004) 0.027 (0.006) 0.031 (0.004) 
0.3109 Cont vs. Med = 0.0691 

Yes 0.026 (0.005) 0.029 (0.005) 0.026 (0.007) 

Serum Leptin Levels (ng/dL) 
No 2.40 (3.23) 4.62 (5.65) 11.55 (7.82) 

0.0063 Cont vs. Med = 0.0011 
Yes 1.66 (1.80) 3.91 (2.71) 5.38 (5.23) 

Hepatic TG levels (mg/g) 
No 1.63 (0.60) 4.56 (5.26) 11.93 (9.17) 

0.0007 
Cont vs. Med < 0.0001 
Cont vs. MBPA = 0.0803 Yes 2.85 (1.38) 2.73 (1.07) 5.09 (2.71) 

 
*Only significant (p < 0.05) or borderline significant (p < 0.10) comparisons are shown; all others are not significant (n.s.).  
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Table S2.4 10-Month Offspring Metabolic Outcomes 
 

Metabolic Outcomes 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* Control Western Mediterranean 

10-month Female Offspring 

Body Weight (grams) 
No 32.92 (8.02) 35.44 (8.23) 36.50 (7.48) 

0.7765 n.s. 
Yes 34.25 (6.94) 32.85 (5.97) 35.46 (4.48) 

Relative Liver Weight  
(liver weight / body weight) 

No 0.031 (0.007) 0.038 (0.006) 0.038 (0.006) 
0.0356 

Cont vs. West = 0.0122,  
Cont vs. WBPA = 0.0166, 
Cont vs. Med = 0.0092 

Yes 0.033 (0.005) 0.037 (0.007) 0.034 (0.007) 

Relative Mesenteric Adipose Weight 
(MAT weight / body weight) 

No 0.040 (0.014) 0.037 (0.011) 0.040 (0.013) 
0.8011 n.s. 

Yes 0.038 (0.008) 0.036 (0.008) 0.043 (0.015) 

Serum Leptin (ng/dL) 
No 8.47 (4.33) 8.90 (5.55) 12.54 (6.26) 

0.3579 n.s. 
Yes 8.62 (3.21) 10.60 (5.20) 11.16 (4.31) 

Serum Insulin (ng/dL) 
No 1.59 (1.58) 2.58 (3.95) 3.22 (2.35) 

0.6845 n.s. 
Yes 1.95 (3.16) 2.98 (2.67) 1.86 (0.88) 

Serum Resistin (ng/dL) 
No 1.99 (9.63) 2.47 (1.29) 2.56 (1.09) 

0.1663 n.s. 
Yes 1.88 (0.55) 2.07 (0.72) 1.63 (0.42) 

Serum PAI-1 (ng/dL) 
No 7.73 (1.91) 6.82 (4.20) 6.13 (2.55) 

0.0020 Cont vs. MBPA = 0.0043 
Yes 7.89 (2.55) 6.73 (2.71) 12.37 (5.59) 

Hepatic Triglycerides (mg/g) 
No 5.79 (4.30) 8.10 (7.11) 7.47 (8.16) 

0.1228 Cont vs. MBPA = 0.0118 
Yes 6.64 (8.72) 7.13 (7.72) 13.62 (5.45) 
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Table S2.4 10-Month Offspring Metabolic Outcomes, continued 
 

Metabolic Outcomes 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* 

Control Western Mediterranean 

10-month Male Offspring 

Body Weight (grams) 
No 43.41 (5.49) 44.15 (4.89) 45.69 (5.53) 

0.5703 Cont vs. WBPA = 0.0846 
Yes 44.30 (2.40) 46.78 (4.16) 44.70 (4.77) 

Relative Liver Weight  
(liver weight / body weight) 

No 0.036 (0.009) 0.041 (0.007) 0.043 (0.016) 
0.6172 n.s. 

Yes 0.039 (0.010) 0.039 (0.004) 0.038 (0.009) 

Relative Mesenteric Adipose Weight 
(MAT weight / body weight) 

No 0.034 (0.006) 0.034 (0.010) 0.035 (0.008) 
0.1575 Cont vs. WBPA = 0.0235 

Yes 0.036 (0.010) 0.041 (0.007) 0.033 (0.007) 

Serum Leptin (ng/dL) 
No 10.02 (3.09) 12.74 (4.51) 14.63 (4.51) 

0.0448 
Cont vs. WBPA = 0.0021 
Cont vs. Med = 0.0213 
Cont vs. MBPA = 0.0965 

Yes 11.93 (6.35) 16.13 (4.12) 13.24 (5.11) 

Serum Insulin (ng/dL) 
No 5.02 (3.77) 5.48 (3.04) 6.11 (3.44) 

0.9551 n.s. 
Yes 5.20 (2.62) 6.23 (2.84) 5.91 (5.26) 

Serum Resistin (ng/dL) 
No 1.23 (0.60) 1.64 (0.74) 1.57 (0.55) 

0.0496 Cont vs. WBPA = 0.0046 
Yes 1.25 (0.45) 2.00 (0.78) 1.38 (0.63) 

Serum PAI-1 (ng/dL) 
No 11.40 (6.98) 8.41 (3.48) 8.96 (4.74) 

0.5564 Cont vs. WBPA = 0.0774 
Yes 10.07 (6.01) 7.78 (4.40) 8.98 (2.69) 

Hepatic Triglycerides (mg/g) 
No 9.38 (8.59) 4.85 (4.05) 10.66 (10.37) 

0.1815 n.s. 
Yes 13.52 (10.41) 7.61 (5.96) 6.39 (6.59) 

 
*Only significant (p < 0.05) or borderline significant (p < 0.10) comparisons are shown; all others are not significant (n.s.).  
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Table S2.5 10-Month Offspring Hepatic Lesions Assessed via Histopathology 

Hepatic Lesion 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* Control Western Mediterranean 

10-month Female Offspring 

Continuous Variables: Mean (SD) 

Oil Red O 
No 2.10 (0.57) 1.58 (1.31) 1.91 (1.04) 

0.0591 Cont vs. WBPA = 0.0124 
Yes 1.67 (1.12) 0.91 (0.83) 2.25 (1.22) 

Hepatocellular Vacuolation 
No 1.50 (0.85) 1.25 (1.29) 1.55 (1.37) 

0.0424 Cont vs. MBPA = 0.0258 
Yes 1.56 (1.01) 1.18 (1.25) 2.58 (0.69) 

Hepatocellular Hypertrophy 
No 2.30 (1.70) 1.50 (1.38) 0.91 (1.30) 

0.0231 
Cont vs. WBPA = 0.0096 
Cont vs. Med = 0.0291 Yes 1.33 (1.22) 0.64 (1.03) 2.42 (1.73) 

Proliferative 
No 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

0.0061 
Cont vs. CBPA = 0.0063 
Cont vs. MBPA = 0.0263 Yes 0.44 (0.73) 0.00 (0.00 0.33 (0.49) 

Non-Proliferative 

 
No 4.30 (4.11) 1.58 (2.15) 1.27 (1.10) 

0.0132 

Cont vs. West = 0.0217 
Cont vs. WBPA = 0.0153 
Cont vs. Med = 0.0126 
Cont vs. BPA = 0.0819 

Yes 2.11 (2.57) 1.36 (1.21) 4.33 (3.63) 

Discrete Variables (Presence/Absence): Frequency (%) 
Chi-squared 

p-value 
 

Adenoma  
No 0 0 0 

n.s. n.s. 
Yes 0 0 0 

Nodular Hyperplasia  
No 0/10 (0.00) 0/12 (0.00) 0/11 (0.00) 

0.0122 n.s. 
Yes 2/9 (22.22) 0/11 (0.00) 4/12 (33.33) 

Oval Cell Hyperplasia 
No 5/11 (45.45) 1/12 (8.33) 1/12 (8.33) 

0.0094 n.s. 
Yes 3/11 (27.27) 1/11 (9.09) 8/12 (66.67) 

Kupffer Cell Hyperplasia 
No 5/11 (45.45) 1/12 (8.33) 2/12 (16.67) 

0.0299 n.s. 
Yes 2/11 (18.18) 2/11 (18.18) 8/12 (66.67) 

Cell Infiltrates 
No 8/11 (72.73) 9/12 (75.00) 9/12 (75.00) 

0.7327 n.s. 
Yes 7/11 (63.64) 9/11 (81.82) 11/12 (91.67) 

Eosinophilic Foci 
No 0/11 (0.00) 0/12 (0.00) 0/12 (0.00) 

0.3398 n.s. 
Yes 1/11 (9.09) 0/11 (0.00) 0/12 (0.00) 

Mixed Cell Foci 
No 0 0 0 

n.s. n.s. 
Yes 0 0 0 
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Table S2.5 10-Month Offspring Hepatic Lesions Assessed via Histopathology, continued 
 

Hepatic Lesion 
Perinatal 

BPA 
Exposure 

Experimental Diet: Mean (SD) 
ANOVA 
p-value 

Tukey’s 
p-values* Control Western Mediterranean 

10-month Male Offspring 

Continuous Variables: Mean (SD) 

Oil Red O 
No 1.67 (0.98) 1.40 (0.52) 1.83 (1.19) 

0.7078 n.s. 
Yes 1.90 (1.20) 1.75 (1.06) 2.08 (0.79) 

Hepatocellular Vacuolation 
No 1.50 (1.38) 1.40 (0.97) 1.80 (1.23) 

0.9471 n.s. 
Yes 1.58 (1.00) 1.75 (0.75) 1.75 (1.14) 

Hepatocellular Hypertrophy 
No 2.25 (1.22) 2.30 (1.42) 2.20 (1.55) 

0.3538 Cont vs. WBPA = 0.0478 
Yes 2.75 (1.29) 1.67 (1.07) 2.75 (1.36) 

Proliferative 
No 0.83 (1.27) 0.50 (0.85) 1.10 (1.45) 

0.5303 n.s. 
Yes 1.10 (1.45) 0.75 (1.22) 0.25 (0.62) 

Non-Proliferative 
No 6.33 (5.00) 2.80 (3.65) 4.00 (4.82) 

0.1704 
Cont vs. WBPA = 0.0136 
Cont vs. West = 0.0573 Yes 4.60 (4.06) 1.92 (2.64) 5.00 (4.77) 

Discrete Variables (Presence/Absence): Frequency (%) 
Chi-squared 

p-value 
Tukey’s 

p-values* 

Adenoma  
No 1/12 (8.33) 2/12 (16.67) 2/10 (20.00) 

0.4076 n.s. 
Yes 3/10 (30.00) 3/12 (25.00) 0/12 (0.00) 

Nodular Hyperplasia  
No 7/12 (58.33) 5/12 (41.67) 3/10 (30.00) 

0.2804 n.s. 
Yes 5/10 (50.00) 3/12 (25.00) 2/12 (16.67) 

Oval Cell Hyperplasia 
No 7/12 (58.33) 4/12 (33.33) 2/10 (20.00) 

0.1349 n.s. 
Yes 5/11 (45.45) 6/12 (50.00) 1/12 (8.33) 

Kupffer Cell Hyperplasia 
No 7/12 (58.33) 4/12 (33.33) 2/10 (20.00) 

0.1826 n.s. 
Yes 6/11 (54.55) 6/12 (50.00) 2/12 (16.67) 

Cell Infiltrates 
No 10/12 (83.33) 10/12 (83.33) 9/10 (90.00) 

0.8363 n.s. 
Yes 8/11 (72.73) 10/12 (83.33) 10/12 (83.33) 

Eosinophilic Foci 
No 0/12 (0.00) 1/12 (8.33) 0/10 (0.00) 

0.2093 n.s. 
Yes 2/11 (18.18) 0/12 (0.00) 0/12 (0.00) 

Mixed Cell Foci 
No 0/12 (0.00) 1/12 (8.33) 0/10 (0.00) 

0.6153 n.s. 
Yes 0/11 (0.00) 1/12 (8.33) 1/12 (8.33) 

*Only significant (p < 0.05) or borderline significant (p < 0.10) comparisons are shown; all others are not significant (n.s.). 
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Figure S2.3 Variation in Body Size, Liver Health and Mesenteric Adiposity at 10-Months 

 
A female and male mouse perinatally exposed to the Control+BPA diet had very different 
hepatic responses to the exposure. The female mouse (left) weighed only 25.1g, had a 
relative liver weight of 3.6%, relative MAT weight of 2.1%, and a dark red, healthy liver 
with only minimal vacuolation and hypertrophy. In contrast, the male mouse (right) 
weighed 47.4g, had a relative liver weight of 5.9%, relative MAT weight of 3.3%, and a 
yellowish-pink liver, riddled with masses and moderate to severe hyperplasia. This 
example is indicative of the range of responses observed within the same perinatal 
exposure group, across all study groups. So although many hepatic outcomes did not differ 
by perinatal exposure, there was a wide range of responses among the individual study 
animals. 
  

Figure	S2.3	Variation	in	Body	Size,	Liver	Health,	and	Mesenteric	Adiposity	at	10-
Months	

10-Month	Control+BPA	Female	 10-Month	Control+BPA	Male	
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CHAPTER 3 

 

Perinatal High Fat Diets and Bisphenol A Exposure  

Differentially Alters Maternal Metabolic Parameters that  

Affect Metabolic Health and Redox Markers in Postnatal Offspring 

 

 

ABSTRACT 

Metabolic diseases can be developmentally programmed, with exposures during perinatal 

development altering life long disease risk. Perinatal exposure to bisphenol A (BPA), a 

ubiquitous high production volume chemical used in polycarbonate plastics and epoxy resins, 

has been associated with perinatal metabolic programming and alterations in tissue oxidation. 

Maternal high fat diet (HFD) during pregnancy is known to alter offspring metabolic health, but 

the potential for HFD to modify perinatal BPA exposure has not been examined. This study 

investigated whether perinatal exposure to BPA and HFDs altered offspring metabolic health at 

postnatal day 10 (PND10) and 10-months, and whether these alterations were accompanied by 

changes in the hepatic redox environment or markers of lipid peroxidation. Dams were 

randomized to one of six experimental diets from pre-gestation through lactation; a Control diet, 

one of two HFDs, or each of these diets with 50 g BPA/kg diet added. Offspring were weaned 

onto the Control diet and followed to postnatal day 10 (PND10) or 10-months of age. Perinatal 
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exposure to HFD increased body weight and relative mWAT weight in dams and 10-month 

offspring; serum leptin levels were elevated in HFD-exposed offspring at PND10 and 10-

months. This impact of perinatal HFD extended to hepatic lipid peroxidation, with elevated 8-

isoprostane-prostaglandin F2 (8-iso-PGF2) levels observed in offspring perinatally exposed to 

HFDs. Hepatic S-glutathionylation (S-glut), protein-bound glutathione, was highly variable but 

decreased in HFD-exposed dams and 10-month female offspring. Glutathione and cysteine redox 

potentials (EhGSH and EhCys) were not impacted by perinatal HFD, but perinatal BPA exposure 

was associated with more oxidizing EhGSH in PND10 females. Perinatal BPA did not have the 

anticipated detrimental effect on offspring metabolic health or hepatic lipid peroxidation. In this 

study, a human-relevant dose of BPA did not perinatally program alterations in metabolic health, 

hepatic redox environment, or lipid peroxidation; the minimal impact only occurred at PND10, 

while offspring were still exposed to BPA. Perinatal HFD did have programming effects, 

consistently altering metabolic health and hepatic 8-iso-PGF2 at PND10 and 10-months, but 

there was no evidence of diet-modification of BPA effects. Hepatic redox potentials at 10-

months did not differ by perinatal exposure, suggesting the redox environment was not 

perinatally programmed, but likely remains sensitive to ongoing changes in physiologic and 

postprandial states, and environmental stressors. 

 

INTRODUCTION 

 Prevalence of chronic metabolic diseases is increasing worldwide. Metabolic disease 

risk can be elevated due to perinatal exposures [1–3]. This process, known as 

developmental programming, proposes that in utero exposures can alter lifelong offspring 

health trajectory [4,5]. Perinatal exposures to bisphenol A (BPA) and to a maternal high fat 
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diet (HFD) have both been associated with increased risk of offspring metabolic disease.  

Perinatal BPA exposure has been associated with increased body weight, adiposity, 

impaired glucose homeostasis and insulin resistance in offspring [6,7]. Maternal HFD 

during pregnancy has been correlated with altered birth weight, growth trajectory, 

neuroendocrine function, and energy homeostasis [8–10]. Metabolic disease has been 

associated with a classical definition of oxidative stress [11,12], whereby an imbalanced 

redox environment leads to a preponderance of oxidizing equivalents. However, these 

classical oxidative stress biomarkers only provide a qualitative characterization, whereas 

intracellular redox potentials (Eh) are a more sensitive gauge of overall redox environment 

[13–16]. Under normal, healthy conditions, the post-translational modifications of protein 

thiol groups into reduced and oxidized states occurs in stable non-equilibrium [14,17,18].  

As this homeostatic balance shifts towards a more oxidized environment, protein thiol 

groups oxidize, which can alter protein function, thus disrupting cell signaling and redox 

sensing [14,18]. Perinatal programming of Eh has not been investigated.    

Perinatal exposure to bisphenol A (BPA) is associated with altered developmental 

programming of metabolic disease [6,19–23] and with increased classic measures of 

oxidation in adult mice [24–27]. Free BPA can induce reactive oxygen species (ROS) via 

enzymatic (peroxidase/H2O2, CYP450/NADPH) and non-enzymatic (HOCl/-OCL, 

CO2/peroxynitrite) radical generation [28–31]. Levels of other radical species (peroxides, 

superoxides, and hydroxyl radicals) are often observed following BPA exposure, likely due 

to ROS acting on intracellular glutathione or NADPH [29,30]. However these measures do 

not give insight into the redox environment; the impact of BPA exposure on redox 

parameters has never been examined. BPA has been shown to cross the placenta and is 
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measureable in breast milk in both human and murine models [32–35], making it an good 

model exposure to study for potential impact on perinatal programming of tissue oxidation. 

BPA is a synthetic, high-production volume chemical, used in a wide range of consumer 

products including the polycarbonate plastics and epoxy resins used in food packaging 

[36,37]. Therefore, a substantial portion of human BPA exposure occurs via ingestion. 

These combined factors suggest that maternal ingestion of a human-relevant dose of BPA 

during the perinatal period would be an ideal way to test whether developmental 

programming of hepatic redox imbalance and lipid oxidation can occur. 

Maternal diet during pregnancy has also been linked to altered risk of metabolic 

disease in offspring [8,9,38]. Among adult rodents and humans, Western-style HFDs have 

been associated with increased classical oxidative stress measures across a variety of tissue 

types, including liver [39–44].  Western HFDs contain high total and saturated fat, high 

sugar / low fiber, high salt, and low antioxidant content [45–48]. On the other hand, a 

Mediterranean-style HFD has been clinically recommended to prevent, slow or reverse 

progression of metabolic disease [49], due to the associations of Mediterranean diet 

consumption with improved insulin sensitivity, reduction in hepatic steatosis, plasma lipids 

and oxidative stress in adults [50–54]. A Mediterranean HFD contains a comparable 

percent of total fat as Western HFDs, but monounsaturated fat from olive oil is the main 

component not saturated fat; the diet is also characterized by high fiber, low salt, and high 

micronutrient content [55–57]. In human adults, adherence to a Mediterranean diet has 

been associated with decreased oxidative stress, measured by an increased GSH/GSSG ratio 

[58].  However, a complete Mediterranean diet has not been investigated in animal models, 
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so the potentially disparate effect of the two HFDs, on the perinatal programming of 

offspring oxidative outcomes, has not yet been examined.  

 To date, studies analyzing the association between metabolic health and oxidative 

response or examining the response to BPA or HFD exposures have used the classical 

measures of oxidative stress mentioned above. Unfortunately, these measures are usually 

qualitative, characterizing the downstream responses to elevated ROS, without shedding 

light on the redox environment. To address this gap, direct quantification of the redox 

environment based on changes in the GSH/GSSG and Cys/CySS redox couples has been 

proposed [14–16,59]. Intracellular GSH is considered the most reliable indicator of changes 

in intracellular redox state because of its abundance and direct involvement in cellular 

redox biochemistry [60]. Measuring thiol concentrations is critical to understanding the 

redox environment, but levels of these thiols fluctuate considerably over time [61,62]. 

Calculating Eh, from intracellular thiol concentrations, provides a useful measure of steady 

state perturbations, which can trigger altered intracellular signaling, changes in protein 

activity, or transcriptional regulation [14–16]. The redox environment is tightly controlled 

to maintain homeostasis. Rapid response of thiols to oxidative insults is expected, but due 

to their short turnover time, they quickly maintain stable non-equilibrium, which would 

suggest that redox environment could not be perinatally programmed. A recent study 

examining perinatal exposure to phthalates used Eh to examine embryonic alterations 

following perinatal exposure [62], so this study will build on that precedent.  

 A common measure of lipid peroxidation, F2-isoprostane, 8-iso-prostaglandin F2,  

(8-iso-PGF2), has been used to examine oxidative outcomes during pregnancy and birth 

[63–65]. Since prenatal programming was not expected to alter the redox environment, 8-
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iso-PGF2 will also be measured in this study, to determine if this lipid metabolism marker 

can be impacted by perinatal exposures. Urinary and plasma 8-iso-PGF2 have been widely 

used in human epidemiologic studies [11,66]. Despite its widespread use as a marker of 

lipid peroxidation, and its identification by the NIEHS Biomarkers of Oxidative Stress Study 

(BOSS) as an ideal marker [67–69], 8-iso-PGF2 has inaccurately been assumed to be 

exclusively associated with increased reactive oxygen species (ROS) because they are often 

positively correlated, but the direct connection is rarely measured. The half-life of serum 8-

iso-PGF2 is 4-6 minutes in rodents, suggesting that elevated ROS levels would need to be 

maintained for extended periods if the 8-iso-PGF2 were actually formed predominantly 

from the non-enzymatic free radical initiated peroxidation of arachidonic acid [59,70]. 

Recent findings suggest that 8-iso-PGF2 may also result from prolonged inflammation, 

catalyzed by the ROS-independent prostaglandin-endoperoxidase synthetase (PES) [59,70]. 

This inflammation-induced mechanism for lipid peroxidation/lipid metabolism is most 

likely to remain relevant over the longer-term evaluation periods used in this longitudinal 

study design.  

Since prenatal programming has become a concern in the rising prevalence of 

metabolic diseases, it is timely to examine if alterations in redox environment occurred, 

indicating a potential programming of lifelong redox response. To examine whether 

offspring hepatic redox environment or lipid peroxidation could be perinatally 

programmed by maternal diet or BPA, we designed a perinatal exposure study with 

longitudinal offspring follow-up. BPA, a daily exposure for many U.S. women, shares an oral 

route of exposure with maternal diet, so it was incorporated into diet pellets, to examine 

the impact of various diets (Control, Mediterranean, and Western) with and without 
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simultaneous BPA exposure. Hepatic redox environment was assessed by redox potentials 

(EhGSH, EhCys) and S-glutathionylation (S-glut), while hepatic lipid peroxidation was 

measured by 8-isoprostane-prostaglandin F2 (8-iso-PGF2) to determine if redox 

parameters and inflammation-induced lipid peroxidation responded similarly to perinatal 

exposures. This is the first study to examine the potential for perinatal programming of 

redox parameters by two common developmental exposures, BPA and maternal diet. 

Examining oxidative responses in dams and offspring at two time points, postnatal day 10 

(PND10) and 10-months, provided further insight into the impact perinatal exposures can 

have across generations and in offspring across time. This study aimed to explore whether 

perinatal BPA and HFD exposures could: affect the hepatic redox environment of offspring 

postnally, impact hepatic lipid peroxidation in offspring across time, and if changes in 

redox environment or lipid peroxidation were associated with alterations in offspring 

metabolic health. 

 

METHODS 

Experimental Design 

This study used mice from a viable yellow agouti (Avy) mouse colony, maintained for 

over 250 generations. Mating of agouti males (Avy/a) with wild type females (a/a) maintains 

forced heterozygosity of the Avy allele. Agouti mice have been extensively characterized 

previously [71,72]. Briefly, litter composition approximates 50% Avy/a and 50% a/a offspring; 

Avy/a mice, heterozygous for the Avy allele, display a range of coat colors from yellow, mottled, 

to pseudoagouti and develop obesity and diabetes in adulthood. Coat color and disease severity 

vary based on epigenetic marks in the cryptic promoter of the Agouti gene. Wild type a/a mice 
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have black coats and remain lean throughout life [73–76]. This study only followed a/a offspring 

to avoid potential confounding from adult-onset obesity and diabetes in Avy/a mice. Per the 

Institute for Laboratory Animal Research (ILAR) guidelines [77], mice were treated humanely, 

provided enrichment in their polycarbonate-free cages, and given ad libitum access to food and 

water 24 hours a day, in a climate-controlled room with a 12-hour light-dark cycle. The study 

protocol was approved by the University of Michigan’s University Committee on Use and Care 

of Animals (UCUCA) [78]. 

Virgin, 8-10 week old, a/a dams were randomly assigned to one of six experimental 

diets: Control, Control + 50 g BPA/kg diet, Mediterranean, Mediterranean + 50 g BPA/kg, 

Western, or Western + 50 g BPA/kg diet. Dams were mate-paired with young, virile Avy/a 

males (average: 7.5 weeks old) and remained on their assigned experimental diet throughout 

pregnancy and lactation. At postnatal day 21 (PND21), all offspring were weaned onto the 

Control diet with TBHQ (Figure 3.1). Offspring were followed to two static time points of 

analysis. To standardize measurements and normalize diurnal fluctuations, all sacrifices were 

conducted in the afternoon (2-5pm) and 10-month females were sacrificed while in estrus, 

determined by vaginal cytology [79].  

To assess the potential for perinatal exposures to program alterations in hepatic Eh and 

lipid peroxidation in adult offspring, one male and one female a/a pup per litter were followed to 

10-months of age. Agouti mice at 10-months are analogous to middle aged humans [80], 

providing insight into adult offspring health prior to aging-related declines. All other a/a pups 

were sacrificed at postnatal day (PND10). In rodents, serum leptin levels surge at PND10 [81]; 

this surge has been associated with hypothalamic programming, that may alter satiety, food 

intake, and energy homeostasis for the offspring’s lifespan [82,83]. Thus, alterations in leptin 
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levels at PND10 could impact offspring metabolic health into adulthood. PND10 data provides 

insight at an early time point, when young offspring are still exposed to the experimental diets 

via mother’s milk, and provides a comparison for metabolic outcomes among 10-month 

offspring. 

 

Experimental Diet Composition 

 The Control diet was a modification of the standard AIN93G mouse diet [84,85]. Corn oil 

replaced soybean oil in the Control diet to prevent potential developmental programming by 

phytoestrogens in soybean oil (the standard fat source in AIN93G), [86,87]. The Western and 

Mediterranean experimental diets differed from Control in their lipid, carbohydrate, vitamin, and 

mineral compositions, reflecting distinctions in human dietary patterns. Casein was the sole 

source of protein and was consistently provided in all three experimental diets. The Western diet, 

based upon NHANES II dietary intake data [47,48], simulated U.S. dietary intake with high 

saturated fat, sugar, and sodium but low fiber and antioxidant content. In contrast, the 

Mediterranean diet was based on the traditional Cretan diet, which includes high fruit, vegetable, 

and nut intake [56,57,88]. Mouse diets were designed on a nutrient / kg weight basis at the 

University of Michigan and were manufactured by Harlan Teklad (Madison, WI). Additional 

information on diet formulation has been previously reported (Chapter 2).  

A human-relevant, oral dose of BPA was incorporated into the pelleted mouse diets. A 

previous study, using mice from this same agouti colony, reported that 50 g BPA/kg diet 

produced an average 2.02 ng BPA/g liver [89]; this falls within the range of BPA levels assessed 

in human fetal liver samples (< LOQ to 96.8 ng BPA/g liver) [35]. BPA, supplied by the 

National Toxicology Program (NTP, Durham, NC), was mixed into sucrose in glass containers to 
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create a 0.1% BPA/sucrose mixture. Harlan Teklad, incorporated this BPA mixture into three of 

the six experimental diets at 0.05 g/kg, creating in the Control+BPA, Mediterranean+BPA, and 

Western+BPA diets. 

To avoid masking the impact of perinatal BPA and HFD on tissue Eh and lipid 

peroxidation, TBHQ was removed from all six perinatal experimental diets. The preservative 

tert-butylhydroquinone (TBHQ) has potent antioxidant properties that prevent fatty acid 

rancidity in chow, thereby increasing shelf life [84,85]. TBHQ potently activates nuclear factor 

erythroid factor 2 (Nrf2), a redox sensitive transcription factor that binds to antioxidant response 

elements (ARE) in genes involved in responding to oxidative injury and inflammation [90]. Nrf2 

activation by TBHQ has been associated with preserving microvascular endothelial function 

[91], attenuating hypertension and inflammatory response in the paraventricular nucleus [92], 

and decreasing hepatic ischemia-reperfusion injury [93], in murine models. This dissertation was 

designed to investigate the lifelong impact of perinatal exposure to BPA and/or HFD, so the 

exposures ended and TBHQ removal was no longer necessary once offspring transitioned out of 

the perinatal period. 

 

Body Weight and Tissue Collection  

 Dam body weight was recorded at three times: initial exposure (pre-gestation), mate-

pairing (2 weeks after exposure), and sacrifice (4 days post-weaning). Dam pre-gestational 

weight change (initial exposure to mate-pairing) and gestational weight gain (mate-pairing to 

sacrifice) were calculated from the three dam body weight measures. PND10 and 10-month 

offspring body weights were recorded at sacrifice only. Liver and mesenteric white adipose 

tissue (mWAT) were recorded for dams and 10-month offspring. At PND10, mice have 



 

 

109  

negligible mWAT, so only liver weights were recorded. Percent liver and mWAT weights were 

calculated by: absolute organ weight / total body weight * 100%. All body and organ weights 

were measured using a SLF103 balance (Fisher Scientific), to the hundredths digit. 

During necropsy, the liver was dissected and separated by lobe; all analyses were 

conducted on left lobe tissue. A 5-10mg liver aliquot was placed into 300 L of HPLC 

preservation buffer (5% perchloric acid, 0.2M boric acid, and 10M -glutamylglutamate [-EE]) 

[94], to preserve the in vivo oxidation state of the hepatic tissue and to prevent further tissue 

oxidation during storage. Sample aliquots were flash frozen in liquid nitrogen and stored at -

80oC until HPLC processing.  

 

Hepatic Redox Environment via HPLC 

 Reverse-phase HPLC analysis was used to quantify hepatic concentration of soluble 

thiols and protein-bound glutathione, as previously described [94]. Supelcosil LC-NH2 column 

(Sigma-Aldrich, St. Louis, MO) was used to measure thiol concentrations on a Waters 2695 

Alliance Separations Module. HPLC mobile phases were composed of (A) 80% HPLC grade 

methanol (Fisher Scientific) and 20% ddiH20, and (B) 62.5% methanol, 12.5% glacial acetic acid 

(Fisher Scientific), and 214 mg/mL sodium acetate trihydrate (Sigma-Aldrich) in ddiH20 with a 

gradient flow rate of 1.0 mL/min. Peak visualization, via fluorescence detection at 335 and 518 

nm, was performed using a Waters 2474 fluorescence detector. Waters Empower software 

(Waters, Milford, MA) processed and compiled the peak visualization data.  

The area under the curve (AUC) was resolved for each peak to quantify soluble thiol 

concentrations in each sample. AUC was normalized to the sample-specific internal standard, 

cellular volume and protein concentration, assessed via bicinchoninic acid assay (BCA assay, 
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Thermo Fisher) adapted for a microplate reader [95,96]. The soluble thiols measured in this 

study, reduced glutathione (GSH), oxidized glutathione disulfide (GSSG), reduced cysteine 

(Cys), and oxidized (CysS), were reported as intracellular concentrations (M). Eh for 

GSSG:GSH and CysS:Cys were calculated for each redox couple using the Nernst equation. At 

pH 7.4, the E0 = -264 mV and RT/nF = 30, so: Eh = -264 + 30*log([GSSG]/[GSH]2) and Eh = -

264 + 30*log([CysS/Cys]2).  

Hepatic S-glutathionylation (S-glut), a measure of protein-bound GSH, was quantified 

via further processing of the protein pellet remaining from the first derivation [94], used to 

quantify redox couples above. Briefly, a chloroform:methanol extraction was used to cleave the 

disulfide bonds formed between hepatic proteins and GSH; thus freeing GSH into solution. The 

solution was derivatized via 150 L of 2X HPLC buffer and 150 L of 15.4 mg/mL 

dithiolthreitol (DTT, Sigma-Aldrich). Dansyl chloride was added to 300 L of aqueous layer 

from the derivatized sample. Samples were analyzed via the same reverse-phase HPLC method 

described above. GSH peaks in this second derivative were normalized to internal standard and 

protein concentrations, and reported as nmol/mg liver tissue. 

 

Hepatic Lipid Peroxidation via 8-iso-PGF2 

During necropsy, a 15-20mg liver aliquot was immersed in a microcentrifuge tube filled 

with 0.005% BHT, to prevent oxidation during storage. Serum samples were stored at -80oC 

until all samples could be sent to Cayman Chemical for testing at once. Samples were transferred 

to Cayman Chemical (Ann Arbor, MI, USA) on dry ice and 8-iso-PGF2 analyses were 

conducted via enzyme immunoassay (EIA) kit (No. 516351), with a sensitivity of 2.7 pg/mL and 
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an intra-assay %CV of 9.5%. Hepatic 8-iso-PGF2 measures were adjusted by total protein 

content of the liver, thus adjusting for sample-specific cellular concentration.  

 

Statistical Analyses  

All values were examined for biological plausibility; statistical outliers, defined as values 

1.5 times the interquartile range, were removed prior to further analyses. Variable distribution 

was examined for normality via a Q-Q probability plot of the residuals. EhGSH and EhCys were 

normally distributed, but thiol concentrations (GSH, GSSG, Cys, CysS, S-glut), and 8-iso-PGF2 

distributions were right skewed (Table S1). Skewed variables were ln-transformed for univariate 

analyses. The impact of perinatal BPA and HFD on hepatic 8-iso-PGF2 and redox parameters 

were analyzed by one-way ANOVA, with Tukey’s post hoc analyses, to compare means from all 

six perinatal exposure groups. ANOVAs were conducted cross-sectionally, comparing 

differences between group means among mice of each age: dams, PND10, and 10-months.  

Univariate analyses were conducted via generalized linear models between continuous 

predictor variables (i.e. dam and offspring metabolic parameters) and tissue oxidation measures. 

To examine whether the two measures of hepatic oxidative response (8-iso-PGF2 and redox 

parameters) were correlated, Kendall’s tau correlation matrices were computed. Sexually 

dimorphic responses to perinatal exposures occurred, so cross-sectional comparisons were sex-

stratified for PND10 and 10-month offspring. Significance was pre-determined at p < 0.05. 

Borderline significance (p < 0.10) and suggestive significance (p < 0.20) were also highlighted to 

assess biological patterns that occurred, but may not have reached statistical significance. All 

analyses were conducted in SAS 9.4 (Cary, NC, USA). 
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RESULTS 

Metabolic Characteristics Altered by Perinatal Exposures 

 Perinatal exposure to HFDs, but not BPA, affected the metabolic health of dams and 

offspring. HFD exposure was consistently associated with increased body weight, relative 

mWAT weight, and altered serum hormone levels (Table 3.1) in mice at all three time points. 

Among dams, body weight and relative mWAT weight were higher in the Mediterranean, 

Western, and Western+BPA groups, while relative liver weight was decreased by these diets. 

This supports the theory that greater postpartum maternal body weight is due to increased 

adiposity, not gain in lean mass. Although leptin levels usually increase with gains in adipose 

tissue, no difference was observed in this study; serum leptin levels did not differ by exposure 

group. However, consistent with decreased intracellular fuel needs in individuals on hyper 

caloric diets, postpartum serum insulin levels were lower in dams on the HFDs than Control. 

Gestational BPA exposure did not impact dam metabolic health. 

 Perinatal HFD exposure had a minimal impact on body weight and relative liver weight 

in offspring at PND10. Unlike dams, where HFDs were associated with increased body weight, 

at PND10, body weight tended to be lower among HFD-exposed pups compared to Control 

offspring. PND10 serum leptin levels were affected by perinatal exposure to HFDs, especially 

the Mediterranean diet. PND10 females perinatally exposed to Mediterranean diet had 2.6-fold 

higher leptin levels, while 4.8-fold higher levels were observed in males. High variation among 

the leptin measures in Mediterranean offspring supports tremendous inter-individual variation, 

suggesting individual mice responded differently to the same diet. Although not significant, the 

other HFDs tended to have greater serum leptin levels also in PND10 offspring of both sexes. 

Since the PND10 leptin surge impacts neural circuitry in the hypothalamus, the increased leptin 
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levels following perinatal HFD exposure may alter offspring metabolic health across their 

lifespan. The only PND10 metabolic outcome impacted by perinatal BPA exposure was male 

body weight; Control+BPA males weighed 82% less than Control males, consistent with 

previous reports of low birth weight following perinatal BPA exposure. However, the lack of 

more widespread alterations based on perinatal BPA suggests that the 50 g BPA/kg diet dose 

does not offspring metabolic health, in this mouse model. 

 Perinatal exposure to HFDs, but not BPA, was associated with altered metabolic health 

effects in adult offspring, at 10-months. Mice at 10-months had not been exposed to the 

experimental diets for over 9 months, which suggests altered health outcomes at this age may be 

the result of perinatal programming. Despite the elevated serum leptin levels observed at PND10 

among HFD-exposed offspring, body weight and mWAT weight were not systematically 

elevated at 10-months as would be expected if energy homeostasis had been altered by the 

increased leptin surge. The only perinatal effect on 10-month weights was observed in males 

perinatally exposed to Western+BPA diet, which had an 8% greater body weight and 22% higher 

mWAT weight compared to Controls. This is consistent with previous reports of metabolic 

programming occurring in male offspring, but not females. Of note, perinatal HFD exposure was 

associated with elevated serum leptin levels in offspring at 10-months, just as it was at PND10. 

This tended to be true of serum insulin also, with non-significantly greater insulin levels 

observed in 10-month offspring perinatally exposed to HFDs. Although these findings were not 

statistically consistent at 10-months, the biologic trend of altered metabolic outcomes occurring 

subsequent to perinatal HFD exposure suggests that maternal diet during pregnancy may impact 

offspring health into adulthood. 

  



 

 

114  

Hepatic Soluble Thiol Concentrations 

 Rapidly changing soluble thiol concentrations play an important role in many cell 

activities, like intracellular signaling, enzyme activity, and transcription factor binding. The 

selective reduction and oxidation of protein thiols for these cellular processes means thiol levels 

vary considerably. This large variation is apparent in the thiols measured in this study (Figure 

3.2), making them challenging to use them as reliable markers of the overall redox environment. 

This natural variation in thiol concentrations may also be masking differences in hepatic 

concentrations based on perinatal exposure group.  

 

Hepatic Redox Potentials 

 Evaluating Eh, instead of variable soluble thiols, provides value as a quantitative measure 

of perturbations to the steady state redox environment (Table 3.2, Figure 3.3). Hepatic EhGSH 

was consistently about -230 mV in PND10 and 10-month offspring perinatally exposed to the 

Control diet: -233.1 + 8.0 mV in PND10 females, -229.6 + 9.5 mV in PND10 males, -229.4 + 

7.4 mV in 10-month females, and -229.3 + 7.8 mV in 10-month males. This EhGSH falls 

between highly reduced cellular proliferation conditions (-240 to -250 mV) and more oxidized 

differentiation conditions (-200 to -220 mV) that have been determined from a large variety of 

different species, cells and tissues. This suggests Control offspring livers are healthy and in a 

natural state of tissue repair and regeneration (Figure S3.1). Hepatic EhGSH and EhCys did not 

differ by perinatal exposure among dams or 10-month offspring. However, in offspring at 

PND10 perinatal exposures did impact hepatic (Eh). 

 Among PND10 females, perinatal BPA exposure was associated with decreased EhGSH: 

Control+BPA (-216.7 + 23.2 mV), Mediterranean+BPA (-208.7 + 36.7 mV), and Western+BPA 
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(-220.8 + 22.1 mV). These levels suggest differentiating redox conditions. At this young age, 

differentiating conditions are not entirely unexpected since the pups are undergoing rapid growth 

and development at PND10. However, the consistent reduction in EhGSH, towards a more 

oxidized environment, only among BPA-exposed offspring, supports the theory that the BPA 

exposure may trigger steady state perturbations that result in more hepatic tissue repair. Of note, 

perinatal BPA exposure did not have the same oxidizing effect in PND10 males. Perinatal 

Mediterranean diet exposure was associated with a decreased EhGSH (-216.8 + 8.8 mV) in 

males. 

 These oxidizing shifts in EhGSH were aligned with metabolic health alterations in male, 

but not female, PND10 offspring. In PND10 females, EhGSH was altered by perinatal BPA 

exposure, but serum leptin levels differed by perinatal HFD exposure, not BPA. However, in 

PND10 males, perinatal Mediterranean diet exposure was associated with a more oxidized 

EhGSH and increased relative liver weight and serum leptin levels. Since these measures were 

collected cross-sectionally, they are not evidence of causation; the association does suggest that 

the Mediterranean diet was able to affect both the redox environment and metabolic outcomes. 

These impacts no longer exist in 10-month offspring, though, so the Mediterranean diet may be 

exerting a direct effect at PND10 that does not continue into adulthood via perinatal 

programming. 

 

Hepatic Protein S-glutathionylation  

 Hepatic S-glut represents a measure of GSH bound to intracellular proteins. Among dams 

and 10-month females, HFDs were associated with decreased S-glut levels. S-glut is thought to 

protect protein thiols from irreversible oxidation, thus maintaining their ability to respond to 
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alterations in redox environment. Thus, decreased S-glut levels could impair a tissue’s redox 

responsiveness, which in turn could alter intracellular signaling and regulatory functions. The 

decreased S-glut observed in 10-month offspring may be an age-related decline in the ability to 

maintain redox homeostasis.  

 

Hepatic 8-iso-PGF2 Levels 

 Under inflammatory conditions, prostaglandin endoperoxide synthase can synthesize 8-

iso-PGF2, resulting in elevated levels. Hepatic 8-iso-PGF2 varied by perinatal diet in mice at all 

time points. Among dams, those exposed to the Western+BPA diet had 1.46-fold greater 8-iso-

PGF2 levels compared to Controls. Perinatal HFD exposure altered 8-iso-PGF2 in offspring at 

both PND10 and 10-months. In PND10 females, Mediterranean diet pups had 1.35-fold higher 8-

iso-PGF2 than Controls; levels were 1.59-fold higher in Western diet pups and 1.57-fold higher 

in Western+BPA pups. Female 10-month offspring also had elevated 8-iso-PGF2 levels, if they 

were perinatally exposed to a HFD, with 1.26- to 1.42-fold greater 8-iso-PGF2 than Controls. In 

contrast, perinatal exposure to the Mediterranean and Mediterranean+BPA diets were associated 

with decreased 8-iso-PGF2 levels (0.66- and 0.70-fold, respectively) in PND10 males. But 

among 10-month males, perinatal HFDs were again associated with increased 8-iso-PGF2 

levels. Perinatal BPA exposure only affected 8-iso-PGF2 levels in 10-month males, who had 

1.41-fold greater levels than Controls. Thus, the metabolic alterations observed in offspring, 

following perinatal HFD exposure, were mirrored by increased hepatic 8-iso-PGF2 levels in 

HFD exposed offspring. It is often posited that metabolic dysfunction is accompanied by 

increased systemic inflammation. The findings in this study are consistent with the theory. 
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Sex-Specific Effects in Metabolic and Oxidative Outcomes 

At PND10, mean hepatic EhGSH and S-glut differ between female and male offspring 

(Table 3.4). PND10 males have a suggestively more reduced EhGSH (-226.8 mV) than females 

(-222.4 mV), but alterations in signaling pathways have not been observed in Eh changes of less 

than 15 mV. So although EhGSH differs significantly by PND10 sex, the difference is unlikely to 

have a biological impact. On the other hand, PND10 females had a significantly greater S-glut, 

with 250.7 + 392.5 nmol/mg liver tissue, compared to males (66.7 + 245.4 nmol/mg). But the 

variance of S-glut within each sex exceeds the group mean, suggesting this measure is highly 

variable at PND10, and the sex difference may be an artifact of measurement timing, not a 

biologically relevant difference. At 10-months, S-glut levels were higher in males (1.1 nmol/mg) 

than females (0.9 nmol/mg). Hepatic 8-iso-PGF2 levels did not differ by offspring sex at 

PND10 or 10-months. 

 At PND10, there were few differences in metabolic parameters by offspring sex, but by 

10-months, every parameter differed (Table 3.4). At PND10, relative liver weight was greater in 

females (2.95%) than in males (2.73%), but body weight and serum leptin did not differ by sex. 

At 10-months, every metabolic outcome differed by sex; males had greater body weight, percent 

liver weight, serum leptin, and serum insulin levels, while females had a greater percent mWAT 

weight than males. Thus, sex-specific results were more apparent and biologically relevant in 

metabolic outcomes than in hepatic redox parameters or lipid peroxidation. 

 

DISCUSSION 

A major objective of this study was to investigate the potential to alter perinatal 

programming of the hepatic redox environment through dietary intervention and 
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environmental (chemical) stimuli.  In offspring at both PND10 and 10-months post partum, 

hepatic 8-iso-PGF2 levels, a biomarker of lipid peroxidation, were more impacted by 

perinatal exposure than were redox parameters, suggestive of a greater susceptibility to 

perinatal programming in 8-iso-PGF2. Multiple dam metabolic and oxidative parameters 

were observed to impact oxidative responses in offspring, emphasizing the critical impact 

the maternal physiologic states could have on developing offspring.  

 The differential response of hepatic 8-iso-PGF2 levels and redox parameters to 

perinatal maternal diet and BPA exposure, suggests that the redox environment itself is not 

altered long term by perinatal exposure, but that mechanisms underlying the regulation of 

8-iso-PGF2 levels may be altered. Isoprostanes are prostaglandin-like molecules, produced 

via free-radical induced auto-oxidation of arachidonic acid, in a cyclooxygenase (COX) free 

process or through a free radical-independent prostaglandin-endoperoxidase synthetase 

pathway [97,98].  Formation of 8-iso-PGF2 is rate-limited by the presence of molecular 

oxygen and free radicals in the tissue [99]; however, dietary intake may also alter 8-iso-

PGF2 levels. Although urinary 8-iso-PGF2 levels were not affected by a 2-day, very low fat 

diet (5%) [100] or the consumption of a fast food meal [101], levels increased following 

elevated consumption of conjugated linoleic acid (CLA) via diet [102] or supplementation 

[103,104]. CLA is a metabolic precursor to arachidonic acid; thus, the increased 8-iso-PGF2 

levels likely reflect an abundance of the parent molecule, arachidonic acid. Despite the 

reported association between elevated 8-iso-PGF2 levels and metabolic diseases [105–

110], 8-iso-PGF2 has a short half life: 16 minutes in humans [111,112], and 4 minutes in 

rodents, with 80% elimination by four hours [113]. Thus, continuous production of 8-iso-

PGF2 due to an excess of dietary precursors or molecular oxygen and free radicals would 
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be necessary to maintain the association between 8-iso-PGF2 and chronic metabolic 

disease over time. Studies reporting the link between metabolic disease and 8-iso-PGF2 do 

not control for dietary intake and since ROS production is not chronically sustained, 

elevated 8-iso-PGF2 over extended periods is likely due to synthesis via inflammation-

induced PES enzymes. 

 Although free radicals and reactive oxygen species alter the intracellular redox 

environment, driving the formation of more oxidizing equivalents, the redox state of thiols 

is tightly controlled by numerous enzymes. For instance, GSH biosynthesis is determined 

by availability of amino acid precursors [114,115] and -glutamate cysteine ligase (GCLc) 

activity [14,114], while GSH conjugate degradation is regulated by -glutamyl 

transpeptidase and GSSG reduction is regulated by glutathione disulfide reductase 

[116,117]. Redox couples and their respective redox potentials play a critical role in 

intracellular signaling and redox sensing [15,18], so are carefully regulated to maintain 

cellular homeostasis [14,17,18]. Numerous studies conducted in monocultured cells and 

tissues from a variety of different species have shown that shifts in redox potential as small 

as +/- 15 mV are sufficient to change cellular functions from proliferation to differentiation 

to apoptosis (Figure S1). Even though measurements in tissues containing multiple cell 

types may exhibit smaller Eh changes, it is likely that redox shifts within individual cell 

types can be significantly greater. Evidence of this homeostatic control was also observed 

in human plasma, where the antioxidant capacity of the GSH:GSSG redox pair was retained 

through age 45, despite linear oxidation of Cys:CysS with age [118]. The 10-month old mice 

in this study are equivalent to human middle age, so their GSH:GSSG antioxidant capacity 

may still be tightly controlled, accounting for the minimal impact of perinatal exposures on 
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EhGSH. Further supporting the independent signaling role of each redox pair (e.g. 

GSH:GSSG, Cys:CysS), evidence suggests redox pairs are individually affected by oxidative 

changes to the intracellular environment [16,119,120]. In this study, the independent 

response was observed in the different impact of perinatal exposures, dam metabolic and 

oxidative responses on offspring EhGSH and EhCys. At 1.6-2.4 minutes in human plasma 

[121,122], the half-life of GSH is even shorter than that of 8-iso-PGF2, making GSH even 

more acutely responsive to environmental alterations, such as postprandial state, 

xenobiotic stress, and inflammatory cascades. This rapid turnover and tight homeostatic 

control of redox parameters results in a rapid return to baseline, ensuring that intracellular 

signaling continues. 

 Protein S-glut is a reversible post-translational modification that protects cysteine 

residues from irreversible oxidation and may also play a critical role in relaying redox 

signals [123–125]. Preventing oxidation of protein thiols protects their ability to respond 

to changes in redox environment, preserving the capacity for intracellular signaling, 

appropriate protein function, and transcriptional regulation [123–126]. The decreased S-

glut levels observed in dams and 10-month females perinatally exposed to the HFDs in this 

study, suggest that the hepatic GSH reserve might be depleted in these animals. The lack of 

differential impact of perinatal HFD on 10-month males suggests a potential sexually 

dimorphic response; however, a sex-specific analysis did not find a biologically relevant 

difference in S-glut levels among 10-month females and males. Offspring at 10-months had 

not been exposed to the perinatal diets for more than nine months, suggesting that 

differences observed among 10-month female S-glut levels might be perinatally 

programmed. This was the only measure of the redox environment impacted at 10-months; 
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it warrants additional investigation to confirm these findings. HFD exposure has been 

linked to elevations in classical oxidative stress markers [40–43] and was associated with 

increased inflammation-induced lipid peroxidation, thus it is possible that perinatal 

exposure to a HFD could perinatally program post-translational modifications in hepatic 

tissue. However, in this situation, programming would be expected to protect against the 

increased stress presented by the HFD. Instead, the depressed S-glut levels observed in this 

study could reflect an increased lifelong GSH demand, required to maintain redox 

homeostasis in a regularly stressed tissue. Since S-glut levels in PND10 offspring varied 

drastically, no pattern of sex-specific or perinatal exposure-specific differences could be 

identified. The lack of impact on PND10 S-glut by perinatal exposures further suggests that 

the exposures do not alter S-glut regulation directly. 

 Perinatal HFD exposure altered oxidative responses, especially hepatic 8-iso-PGF2, 

in offspring at PND10 and 10-months. Postprandial oxidative stress can result from 

sustained hyperglycemia or hyperlipidemia [127] and may contribute to the differences in 

hepatic 8-iso-PGF2 observed in this study according to perinatal HFD exposure. Dietary 

studies in human adults have reported increased reactive oxygen species following intake 

of glucose [128], cream [129], and a high fat, high carbohydrate meal [130]. Few studies 

have examined the impact of maternal diet during pregnancy on offspring oxidative 

response, but a study in C57BL/6J mice reported that dam HFD intake during gestation was 

associated with increases in serum 8-OHdG and hepatic 3-nitrotyrosine levels in offspring 

at 8 weeks [131]. This is consistent with our findings that the Western and Mediterranean 

HFD increased hepatic 8-iso-PGF2 in offspring at PND10 and 10-months. Perinatal HFD 

exposure had a greater impact on hepatic 8-iso-PGF2 than redox parameters in offspring 
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at PND10 or 10-months. Although perinatal BPA has been linked to altered offspring 

metabolic health [6,19–23], and to increased oxidative outcomes in adult animals [24–27], 

no studies had investigated the potential to impact offspring redox environment. The 

results of this study suggest that perinatal exposure to a human-relevant dose of BPA may 

not induce perinatal programming of oxidative responses later in life.  

 Sexually dimorphic responses to perinatal HFD and BPA occurred in both metabolic 

and oxidative offspring outcomes, but the differences were only biologically relevant in the 

metabolic outcomes among 10-month offspring. In murine models, maternal HFD during 

pregnancy has previously been associated with sex-specific effects in offspring metabolic 

health [132–134]. The differential effect of estrogen sulfotransferase (EST) by sex has been 

associated with altered risk of type 2 diabetes; in females EST ablation improves insulin 

sensitivity, while decreasing hepatic lipogenesis and gluconeogenesis, while in males EST 

ablation was linked to decreased islet -cell mass and glucose-activated insulin secretion, 

aggravating the diabetic phenotype [135]. EST sulfonates and deactivates estrogens, thus 

regulating estrogen homeostasis. Induction of EST can occur by Nrf2 activation following 

hepatic ischemia-reperfusion injuries; in females this induction inhibits estrogen activity, 

whereas in males EST ablation exacerbated the injury [136]. Based on these sexually 

dimorphic effects of EST activity, differences in redox parameters and 8-iso-PGF2 could be 

expected. However, no biologically relevant differences were observed in this study, which 

suggests these results were estrogen-independent. 

 In this study, dam metabolic parameters were consistently associated with oxidative 

response in PND10 and 10-month offspring (Figure 3.4), although the exact changes 

differed by age and offspring sex (Tables 3.4, 3.5, 3.6). The predictive dam metabolic 
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parameters: gestational weight gain, dam body weight, percent liver weight, and serum 

insulin, have all previously been associated with metabolic alterations in offspring.  

Maternal pre-pregnancy obesity and gestational weight gain have been linked to increased 

risk of childhood obesity and metabolic comorbidities [137–140], but few studies have 

examined their effect on offspring oxidative responses. A human birth cohort study 

reported maternal pre-pregnancy obesity was associated with increased oxidative 

outcomes in newborn umbilical cord plasma, assessed by malondialdehyde and nitric oxide 

levels [141]. These results are supported by our study findings; dam body weight was 

consistently associated with oxidizing changes in dams, PND10, and 10-month offspring in 

this study. 

 Dam oxidative parameters (8-iso-PGF2 and redox parameters) were also associated 

with oxidative response in offspring at both PND10 and 10-months. Together with the 

impact of dam metabolic parameters, this suggests that the maternal physiologic 

environment during pregnancy may be as important if not more important than other 

perinatal exposures (like diet and BPA exposure). Interestingly, despite the fact that dams 

were directly exposed to the six experimental diet groups for a minimum of 8 weeks, the 

exposures had a negligible impact on dam 8-iso-PGF2 and redox parameters. Thus, the 

impact of dam oxidative parameters on offspring oxidative response does not appear to be 

a ‘translation’ of perinatal exposure effect through the dam, but rather a physiologic 

response to the dam’s redox state. 

 Given the high global rates of metabolic disease, this study examined the relevant 

question of whether oxidative response could be perinatally programmed, thus providing a 

potential mechanism for the perinatal programming of metabolic diseases. Although two 
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different markers of oxidative response, hepatic 8-iso-PGF2 and GSH-based redox 

parameters, were measured in this study, further insight could be provided by assessing 

additional markers of oxidative response, including enzyme levels, antioxidant capacity, 

and levels of reactive oxygen and nitrogen species. Although BPA did not have a strong 

impact on offspring oxidative response, in this study, other common chemical exposures 

might induce perinatal programming. Offspring oxidative response was only investigated in 

hepatic tissue, in this study; investigation into the potential for oxidative programming in 

other tissues is warranted. Despite the need to examine these additional avenues before 

complete understanding of perinatal effects on oxidative response, the experimental design 

of this study has multiple strengths. In vivo study of oxidative response is critical due to the 

sensitivity of redox parameters to minute physiologic changes and exocrine cell signaling, 

which cannot be captured by in vitro models. Examining offspring at multiple ages allows 

assessment of changes in response over time, and provides the opportunity to introduce 

post-natal interventions, like diet or chemical challenges. 

 Study limitations include the oral dosing of BPA, the single static time point used to 

assess perinatal programming, and the use of a non-specific biomarker of lipid 

peroxidation, 8-iso-PGF2. The ingested route of BPA exposure was chosen to mimic human 

BPA exposure, which commonly occurs via food packaging. A trade-off of designing a 

human-relevant exposure study is that the exact quantity of BPA ingested by each animal is 

not known, mice ate ad libitum. So although mice in three experimental diet groups had 

access to 50 g BPA/kg diet, their BPA body burden may have differed considerably. This 

may partially account for the lack of altered health effects observed following perinatal 

BPA exposure in this study.  To better assess the potential for perinatal programming, 
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intermediate time points assessing metabolic, redox, and lipid peroxidation outcomes 

would have provided additional insight. Other life periods, such as peripuberty, have been 

identified as sensitive to environmental exposures; measuring offspring health at 

peripuberty and other times prior to 10-months might have illuminated trends or 

demonstrated a consistent impact across time, both of which would be instructive for 

translation to human health outcomes.  

Lastly, although 8-iso-PGF2 has been widely used in human epidemiology studies as 

a marker of classic oxidative stress, the potential for 8-iso-PGF2 to be synthesized via two 

distinct pathways makes mechanistic interpretation difficult. This lack of biomarker 

specificity occurs because 8-iso-PGF2 can be produced via non-enzymatic oxidation of 

arachidonic acid by ROS or via inflammation-induced PES enzymes. However, the time 

course for these two mechanisms differs; ROS generation is a rapid response, whereas 

inflammation-induced changes can occur over a more sustained time frame. In this study, 

since 8-iso-PGF2 levels remained high at 10-months, the biomarker likely reflects the 

prolonged inflammatory response associated with altered metabolic health. Despite these 

limitations, this study advanced understanding of perinatal programming. 

 In conclusion, perinatal exposure to HFDs was associated with increased hepatic 8-

iso-PGF2 in offspring at PND10 and 10-months, but with no changes in redox parameters. 

Exposure to the HFDs had a greater impact than perinatal BPA exposure, supporting the 

importance of maternal diet during pregnancy. Although direct exposure to the HFDs and 

BPA had a negligible effect on dams, dam metabolic and oxidative parameters were 

associated with offspring hepatic 8-iso-PGF2 and redox parameters. Associations were 

sex-specific and age-dependent. Given the inconsistent impact of perinatal exposures on 
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offspring redox parameters, the role of postnatal diet and chemical exposures may have a greater 

effect on redox imbalance. Comparing the influence of perinatal and postnatal exposures on 

metabolic disease risk is a critical next step in understanding the link between oxidative 

responses early in life and metabolic disease development. 
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Figure	3.1	Experimental	Design	of	Mouse	Perinatal	Exposure	Study	
	

	
Primiparous,	wild	type	(a/a)	dams	were	randomly	assigned	to	one	of	six	experimental	
diets	at	8-10	weeks	of	age.	The	antioxidant	preservative,	TBHQ,	was	removed	from	all	six	
experimental	diets.	Two	weeks	later,	these	dams	were	mate-paired	with	virile,	young	(7.5	
week	old),	Avy/a	males.	Dams	had	ad	libitum	access	to	their	assigned	experimental	diet	
from	pre-gestation	through	lactation.	At	postnatal	day	21	(PND21),	all	offspring	were	
weaned	onto	the	Control	diet	with	TBHQ.	Mice	were	sacrificed	for	examination	of	hepatic	
oxidation	measures	at	three	time	points:	(1)	dams	at	PND25:	4	days	after	weaning,	(2)	
offspring	at	PND10:	still	exposed	to	mother’s	milk,	and	(3)	offspring	at	10-months:	not	
exposed	to	the	experimental	diets	for	nine	months.	
	

Figure	3.1	Experimental	Design	of	Longitudinal	Mouse	Exposure	Study	
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Table 3.1 Metabolic Characteristics of the Mouse Population  
 

Mouse 
Exposure 

Group 
N 

Body Weight % Liver Weight % mWAT Weight Serum Leptin Serum Insulin 

Mean SD p Mean SD p Mean SD p Mean SD p Mean SD p 

Dams 

ALL GROUPS      0.096d     0.145e     0.007b     0.960     0.191e 

Control 15 25.99 2.54 -- 5.43 0.70 -- 2.47 0.53 -- 5.16 4.20 -- 2.64 2.60 -- 
Con+BPA 19 25.45 2.13 0.572 5.43 0.69 0.994 2.59 0.68 0.628 5.93 4.28 0.599 2.41 1.46 0.697 
Mediterranean 18 27.17 1.91 0.219 4.98 0.01 0.084d 2.84 0.75 0.148e 5.63 4.34 0.746 1.69 1.28 0.111e 

Med+BPA 16 25.86 2.46 0.899 5.52 0.90 0.715 2.53 0.64 0.806 5.59 3.92 0.771 1.59 1.03 0.078d 

Western 14 27.84 4.10 0.073d 5.49 0.72 0.812 3.29 0.81 0.004b 4.54 2.46 0.699 1.33 0.54 0.043c 

West+BPA 15 27.25 3.16 0.212 5.06 0.83 0.177e 3.20 0.98 0.008b 5.76 3.99 0.684 1.59 1.17 0.073d 

Female PND10 Offspring 

ALL GROUPS       0.537     0.436     --     0.067d     -- 
Control 13 5.97 0.54 -- 2.99 0.34 -- -- -- -- 3.40 2.13 -- -- -- -- 

Con+BPA 6 5.43 1.14 0.231 2.92 0.53 0.798 -- -- -- 5.47 4.38 0.492 -- -- -- 
Mediterranean 11 5.34 0.95 0.096d 3.00 0.53 0.963 -- -- -- 8.84 6.77 0.028c -- -- -- 
Med+BPA 11 5.89 1.17 0.831 2.68 0.44 0.155e -- -- -- 7.48 6.42 0.104e -- -- -- 
Western 10 5.71 0.75 0.499 2.92 0.51 0.747 -- -- -- 2.15 1.60 0.622 -- -- -- 
West+BPA 9 5.55 0.90 0.293 3.18 0.75 0.398 -- -- -- 7.21 6.93 0.138e -- -- -- 

Male PND10 Offspring 

ALL GROUPS      0.208     0.319     --     0.006b   -- 
Control 9 5.78 0.67 -- 2.59 0.44 -- -- -- -- 2.40 3.23 . -- -- -- 
Con+BPA 10 4.74 0.74 0.043c 2.63 0.52 0.873 -- -- -- 1.66 1.80 0.754 -- -- -- 
Mediterranean 6 5.59 0.89 0.744 3.13 0.45 0.069d -- -- -- 11.55 7.82 0.001a -- -- -- 
Med+BPA 11 5.44 1.59 0.495 2.56 0.71 0.915 -- -- -- 5.38 5.23 0.209 -- -- -- 
Western 14 5.71 0.99 0.874 2.73 0.56 0.543 -- -- -- 4.62 5.65 0.319 -- -- -- 
West+BPA 8 5.98 1.33 0.713 2.92 0.45 0.220 -- -- -- 3.91 2.71 0.541 -- -- -- 
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Table 3.1 Metabolic Characteristics of the Mouse Population, Continued  
 

Mouse 
Exposure 

Group 
N 

Body Weight % Liver Weight % mWAT Weight Serum Leptin Serum Insulin 

Mean SD 
p-

value 
Mean SD 

p-
value 

Mean SD p-value Mean SD 
p-

value 
Mean SD 

p-
value 

Female 10-month Offspring 

ALL GROUPS     0.777   0.036c   0.801    0.358   0.685 
Control 10 32.92 8.02 -- 3.07 0.71 -- 4.03 1.36 -- 8.47 4.33 -- 1.59 1.58 -- 
Con+BPA 9 34.25 6.94 0.679 3.25 0.47 0.534 3.83 0.83 0.717 8.62 3.21 0.947 1.95 3.16 0.767 
Mediterranean 11 36.50 7.48 0.243 3.80 0.57 0.009b 4.01 1.26 0.970 12.54 6.26 0.071d 3.22 2.35 0.176e 

Med+BPA 12 35.46 4.48 0.395 3.39 0.66 0.237 4.25 1.54 0.671 11.16 4.31 0.220 1.86 0.88 0.816 
Western 12 35.44 8.23 0.399 3.76 0.57 0.012c 3.72 1.09 0.538 8.90 5.55 0.842 2.58 3.95 0.388 
West+BPA 11 32.85 5.97 0.983 3.74 0.69 0.017c 3.59 0.80 0.397 10.60 5.20 0.340 2.98 2.67 0.247 

Male 10-month Offspring 

ALL GROUPS     0.570   0.617   0.158e    0.045c   0.955 
Control 12 43.41 5.49 -- 3.60 0.95 -- 3.37 0.58 -- 10.02 3.09 -- 5.02 3.77 -- 
Con+BPA 10 44.30 2.40 0.659 3.90 1.05 0.489 3.56 1.00 0.570 11.93 6.35 0.344 5.20 2.62 0.906 
Mediterranean 12 45.69 5.53 0.239 4.32 1.62 0.087d 3.52 0.77 0.647 14.63 4.51 0.021c 6.11 3.44 0.475 
Med+BPA 12 44.70 4.77 0.503 3.79 0.90 0.650 3.32 0.72 0.882 13.24 5.11 0.097d 5.91 5.26 0.553 
Western 10 44.15 4.89 0.712 4.08 0.68 0.267 3.39 0.97 0.964 12.74 4.51 0.179e 5.48 3.04 0.768 
West+BPA 12 46.78 4.16 0.085d 3.88 0.37 0.495 4.12 0.73 0.024c 16.13 4.12 0.002b 6.23 2.84 0.417 

 
One-way ANOVAs compared group means of metabolic characteristics by perinatal exposure group. The p-value in the ‘All 
Groups’ rows represents the significance of the ANOVA comparing all six exposures. Subsequent p-values represent the 
significance of each exposure group mean compared to the Control group mean, assessed via Tukey’s post-hoc analysis. 
 
To highlight trends of potential biological importance, a wide range of p-values were annotated in this Table: Significance was 
defined as: a p<0.001, b p<0.01, c p<0.05. Borderline significant p-values were defined as: d p< 0.10. Suggestive p-values were 
defined as: e p<0.20. 
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Table 3.2 Comparison of Hepatic Lipid Peroxidation and Redox Potentials by Perinatal Exposure Group 
 

Perinatal  
Exposure 

N 
8-iso-PGF2  (g/mg) EhGSH (mV) EhCys (mV) S-glut (nmol/mg) 

Mean SD p Mean SD p Mean SD p Mean SD p 

Dams  

All Groups    0.2582    0.9835   0.6218   0.4142 
Control 15 156.81 88.61  -- -223.56 10.57 -- -151.16 32.29 -- 38.95 43.00 -- 
Con+BPA 19 170.51 70.62 0.6734 -221.37 11.62 0.6204 -144.08 18.04 0.4640 27.62 26.45 0.2359 
Mediterranean 18 171.06 54.38 0.6611 -222.68 14.56 0.8458 -157.85 36.66 0.5063 22.03 18.96 0.0815d 

Med+BPA 16 170.66 87.38 0.6783 -222.85 10.12 0.8776 -148.00 18.09 0.7503 32.14 28.85 0.4922 
Western 14 158.43 74.43 0.9633 -223.52 12.48 0.9942 -159.53 24.44 0.4331 22.12 18.89 0.1027e 

West+BPA 16 228.74 145.54 0.0333a -220.61 16.07 0.5275 -151.63 29.08 0.9623 21.31 22.38 0.0820d 

PND10 Females 

All Groups     0.0049b    0.1315e   0.7337   0.6756 
Control 13 193.78 96.64 -- -233.07 7.99 -- -209.68 34.55 -- 118.84 238.13 -- 
Con+BPA 6 196.35 102.69 0.9554 -216.67 23.24 0.1200e -184.52 46.22 0.1998e 447.61 532.13 0.1112e 

Mediterranean 11 261.82 100.61 0.0782d -225.54 10.15 0.3859 -203.55 44.88 0.7046 279.54 350.47 0.3750 
Med+BPA 11 181.76 85.89 0.7522 -208.68 36.72 0.0065b -215.18 38.43 0.7341 194.00 262.84 0.6609 
Western 10 307.67 88.29 0.0050b -225.03 14.85 0.3674 -212.35 36.13 0.8724 256.57 380.35 0.4465 
West+BPA 9 303.27 80.76 0.0085b -220.82 22.13 0.1848e -206.28 38.14 0.8423 315.26 612.36 0.2791 

PND10 Males 

All Groups     0.1270e    0.2901   0.9552   0.8044 
Control 9 287.53 75.17 -- -229.60 9.45 -- -202.96 45.16 -- 110.44 297.73 -- 
Con+BPA 10 252.24 113.59 0.4712 -223.68 20.99 0.3388 -213.49 34.86 0.5900 16.85 23.49 0.4367 
Mediterranean 6 190.67 78.73 0.0883d -216.78 8.78 0.0722d -195.64 43.11 0.7422 3.69 2.17 0.4359 
Med+BPA 11 202.39 56.16 0.0792d -230.01 10.80 0.9465 -207.77 43.92 0.8014 22.08 45.27 0.4627 
Western 14 258.28 150.04 0.5204 -226.59 10.56 0.6009 -205.63 37.16 0.8836 132.92 432.95 0.8412 
West+BPA 8 322.59 96.84 0.4983 -231.65 11.57 0.7535 -197.73 44.46 0.7998 72.61 111.15 0.7649 
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Table 3.2 Comparison of Hepatic Lipid Peroxidation and Redox Potentials by Perinatal Exposure Group, Continued 
 

10-month Females 

All Groups     0.3584    0.9048   0.5521   0.3141 
Control 10 147.86 48.26 -- -229.38 7.40 -- -141.30 22.53 -- 1.14 0.72 -- 
Con+BPA 9 159.22 34.08 0.7488 -227.34 8.05 0.4769 -147.94 18.67 0.4951 0.95 0.41 0.2714 
Mediterranean 11 206.86 113.39 0.0842d -229.52 4.13 0.9609 -145.32 17.45 0.6585 0.82 0.13 0.0739d 

Med+BPA 12 210.07 88.87 0.0637d -229.64 6.77 0.9216 -135.47 10.98 0.5110 0.98 0.23 0.3450 
Western 12 186.97 80.96 0.2395 -230.44 3.73 0.7195 -145.10 22.87 0.7084 0.86 0.22 0.1208e 

West+BPA 11 192.32 55.65 0.1908e -230.45 3.68 0.7169 -152.88 22.74 0.2369 0.75 0.13 0.0368c 

10-month Males 

All Groups     0.0495c    0.9375   0.9079   0.7477 
Control 10 161.48 41.91 -- -229.25 7.77 -- -152.56 27.09 -- 1.22 0.52 -- 
Con+BPA 8 226.99 104.77 0.0349c -229.62 8.48 0.9365 -148.29 33.21 0.7536 0.98 0.31 0.2057 
Mediterranean 10 173.03 57.61 0.6913 -228.33 9.22 0.8373 -152.60 29.00 0.9975 1.07 0.34 0.4008 
Med+BPA 10 233.90 99.21 0.0151c -230.37 5.59 0.8066 -139.99 21.09 0.3573 1.21 0.16 0.9774 
Western 8 218.20 54.13 0.0666d -225.60 16.81 0.4412 -143.53 26.46 0.4910 1.15 0.23 0.7110 
West+BPA 7 171.46 45.57 0.7314 -229.95 8.90 0.8866 -143.43 25.09 0.5223 1.21 0.16 0.9953 

 
The effect of perinatal HFD and BPA on lipid oxidation or redox parameters was analyzed via one-way ANOVA, with Tukey’s 
post-hoc analysis. Means and standard deviations (SDs) presented in this table represent average and distribution by perinatal 
exposure group. The ‘All Groups’ p-values represent the values for the overall ANOVA for each mouse age and sex group. 
Additional p-values represent the comparison between the mean of each perinatal exposure group and the Control group 
mean, as analyzed by Tukey’s post hoc analyses. To highlight trends of potential biological importance, a wide range of p-
values were annotated in this Table: Significance was defined as: a p<0.001, b p<0.01, c p<0.05. Borderline significant p-values 
were defined as: d p< 0.10. Suggestive p-values were defined as: e p<0.20. 
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Figure 3.2 Hepatic Intracellular Thiol Concentrations in Dams and Offspring 
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Figure 3.3 Hepatic Glutathione and Cysteine Redox Potentials in Dams and Offspring  
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Figure 3.4 Hepatic 8-iso-PGF2 Levels in Offspring by Perinatal Exposure Group 
  

 
Perinatal exposure to HFDs impacted offspring hepatic 8-iso-PGF2 levels at both PND10 
and 10-months. This bar chart illustrates differences between group means by perinatal 
exposure group; error bars represent the standard error of the mean (SEM) for each group. 
Average hepatic 8-iso-PGF2 values that differ from the Control mean are marked: * p < 
0.05, ^ p < 0.10. 
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Table 3.3 Summary of Findings: Impact of Perinatal Exposures on Hepatic 8-iso-PGF2 and 
Redox Parameters in Offspring at PND10 and 10-months 
 

Hepatic 
Oxidation 
Measures 

Perinatal Exposure Groups compared to Sex-Specific Controls 

CBPA Med MBPA West WBPA CBPA Med MBPA West WBPA 

PND10 Females PND10 Males 

8-iso --  --   --   -- -- 

Eh GSH  --  --  --  -- -- -- 

    GSH --   -- -- -- -- -- -- -- 

    GSSG -- --  -- -- -- -- -- -- -- 

Eh Cys  -- -- -- -- -- -- -- -- -- 

   Cys -- -- -- -- -- -- --  -- -- 

   CysS -- -- --  -- -- --  -- -- 

S-glut -- -- -- -- -- -- --  -- -- 

 10-month Females 10-month Males 

8-iso --   --   --   -- 

Eh GSH -- -- -- -- -- -- -- -- -- -- 

    GSH  -- -- -- -- -- -- -- -- -- 

    GSSG  -- -- -- -- -- -- -- -- -- 

Eh Cys -- -- -- -- -- -- -- -- -- -- 

   Cys -- -- --  -- -- --  -- -- 

   CysS --   --  -- --  -- -- 

S-glut --  --   -- -- -- -- -- 

 
Data from one-way ANOVAs and Tukey’s post-hoc analyses are summarized here. 

• Group mean was higher among the designated exposure group, compared to the 
Control group:  = p < 0.05,  = p < 0.10,  = p < 0.20. 

• Group mean was lower in the designated exposure group, than in the Control group: 
 = p < 0.05,  = p < 0.10,  = p < 0.20. 
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Table 3.4 Differences in Hepatic Lipid Peroxidation and Redox Potentials by Offspring Sex 
 

PND10 Offspring 

Variable Female (n=60) Male (n=58) T-test 
p-value* 

F-test 
p-value** Category Name Mean SD Mean SD 

Lipid Oxidation Liver 8-iso-PGF2 239.70 103.00 253.10 109.50 0.4966 0.6404 

Redox 
Parameters 

Liver EhGSH -222.40 21.72 -226.80 13.09 0.1815e 0.0002a 

Liver EhCys -207.00 38.53 -204.90 39.50 0.7719 0.8492 

Liver S-glut 250.70 392.50 66.72 245.40 0.0040b 0.0007a 

Metabolic 
Parameters 

Body Weight 5.68 0.90 5.53 1.12 0.4151 0.0943d 

Percent Liver Weight 2.95 0.52 2.73 0.55 0.0284c 0.6109 

Serum Leptin 5.93 5.66 4.59 5.32 0.2072 0.6560 

10-month Offspring 

Variable Female (n=65) Male (n=68) T-test 
p-value* 

F-test 
p-value** Category Name Mean SD Mean SD 

Lipid Oxidation Liver 8-iso-PGF2 185.60 77.25 196.00 74.49 0.4312 0.7673 

Redox 
Parameters 

Liver EhGSH -229.40 5.85 -228.90 9.54 0.7073 0.0005a 

Liver EhCys -144.00 18.94 -147.50 26.36 0.4581 0.0256c 

Liver S-glut 0.93 0.38 1.14 0.38 0.0043b 0.9236 

Metabolic 
Parameters 

Body Weight 34.63 6.81 44.87 4.67 0.0001a 0.0026b 

Percent Liver Weight 3.52 0.66 3.92 1.00 0.0066b 0.0010b 

Percent mWAT Weight 3.91 1.17 3.55 0.82 0.0439c 0.0042b 

Serum Leptin 10.05 4.98 13.14 4.91 0.0006a 0.9195 

Serum Insulin 2.37 2.62 5.67 3.54 0.0001a 0.0180c 

 
*Independent t-tests were used to compare variable means between offspring sexes. 
** Equality of Variance was assessed via F-test, where the null hypothesis is no difference in variance between sexes. 
To highlight trends of potential biological importance, a wide range of p-values were annotated in this Table: Significance was defined as: a 
p<0.001, b p<0.01, c p<0.05. Borderline significant p-values were defined as: d p< 0.10. Suggestive p-values were defined as: e p<0.20. 
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Table 3.5 Non-parametric Correlations between Hepatic Lipid Peroxidation and Redox Potentials in Dams and Offspring 

Measure 
Kendall’s 

Tau 
8-iso-
PGF2 

Eh GSH Eh Cys S-glut 
8-iso-
PGF2 

Eh GSH Eh Cys S-glut 

 Dams (n=97)  

8-iso-PGF2 
Coefficient 1.0000 0.0313 0.0885 0.1425  

p-value n/a 0.6565 0.2250 0.0419 

Eh GSH 
Coefficient 0.0313 1.0000 0.4712 -0.2939 

p-value 0.6565 n/a  <0.0001a <0.0001a 

Eh Cys 
Coefficient 0.0885 0.4712 1.0000 -0.0167 

p-value 0.2250 <0.0001a n/a 0.8154 

S-glut 
Coefficient 0.1425 -0.2939 -0.0167 1.0000 

p-value 0.0419 <0.0001a 0.8154 n/a 

 PND10 Females (n=60) PND10 Males (n=58) 

8-iso-PGF2 
Coefficient 1.0000 0.0961 -0.0418 0.1300 1.0000 0.0790 0.1378 0.0013 

p-value n/a 0.2783 0.6370 0.1612  n/a 0.3857 0.1299e 0.9887 

Eh GSH 
Coefficient 0.0961 1.0000 0.0147 0.1286 0.0790 1.0000 0.2594 -0.3338 

p-value 0.2783  n/a 0.8683 0.1656 0.3857  n/a 0.0044b 0.0003a 

Eh Cys 
Coefficient -0.0418 0.0147 1.0000 0.4168 0.1378 0.2594 1.0000 -0.3701 

p-value 0.6370 0.8683 n/a <0.0001a 0.1299e 0.0044b n/a <0.0001a 

S-glut 
Coefficient 0.1300 0.1286 0.4168 1.0000 0.0013 -0.3338 -0.3701 1.0000 

p-value 0.1612 0.1656 <0.0001a n/a 0.9887 0.0003a <0.0001a n/a 

 10-month Females (n=65) 10-month Males (n=68) 

8-iso-PGF2 
Coefficient 1.0000 -0.0370 0.1631 0.0093 1.0000 0.0564 0.2134 0.0472 

p-value  n/a 0.6897 0.1020e 0.9662  n/a 0.6911 0.1453e 0.6700 

Eh GSH 
Coefficient -0.0370 1.0000 -0.0904 -0.1327 0.0564 1.0000 -0.0109 0.1614 

p-value 0.6897  n/a 0.3646 0.1527 0.6911  n/a 0.9416 0.1057e 

Eh Cys 
Coefficient 0.1631 -0.0904 1.0000 0.1791 0.2134 -0.0109 1.0000 -0.1436 

p-value 0.1020e 0.3646 n/a 0.0726d 0.1453e 0.9416 n/a 0.1499e 

S-glut 
Coefficient 0.0093 -0.1327 0.1791 1.0000 0.0472 0.1614 -0.1436 1.0000 

p-value 0.9662 0.1527 0.0726d n/a 0.6700 0.1057e 0.1499e n/a 

Kendall’s Tau, a non-parametric, rank-based correlation method was used due to the non-normal distributions of hepatic 8-iso and S-glut 
dams and offspring. To highlight trends of potential biological importance, a wide range of p-values were annotated in this Table: 
Significance was defined as: a p<0.001, b p<0.01, c p<0.05. Borderline significant p-values were defined as: d p< 0.10. Suggestive p-values 
were defined as: e p<0.20. 
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Table 3.6 Dam Univariate Analysis of Variables Impacting Hepatic Lipid Peroxidation and Redox Potentials 
 

Variable 
Ln-(8-iso-PGF2) EhGSH EhCys Ln-(S-glut) 

Effect 
Estimate 

p-value 
Effect 

Estimate 
p-value 

Effect 
Estimate 

p-value 
Effect 

Estimate 
p-value 

Mediterranean Diet 0.108 0.3934 -0.425 0.8902 -5.592 0.4110 -0.144 0.7198 
Western Diet 0.181 0.1723e 0.320 0.9198 -7.963 0.2598 -0.370 0.3778 
BPA 0.151 0.1538e 1.604 0.5303 8.382 0.1399e -0.086 0.7980 

Litter Size (# of pups) -0.111 0.2888 -0.104 0.3118 -0.102 0.3409 0.152 0.0989d 

Time to Delivery (days) -0.151 0.1464e -0.068 0.5132 -0.130 0.2235 0.014 0.4402 
Percent Male Pups 0.003 0.9790 0.072 0.4840 0.037 0.7268 0.007 0.4518 
Percent Avy/a Pups -0.054 0.6074 -0.154 0.1341e -0.080 0.4537 0.000 0.9666 

Dam Body Weight @ Exposure 0.071 0.4915 0.191 0.0622d 0.175 0.0999d 0.091 0.3697 
Dam Pre-Gestational Weight Change 0.161 0.1183e -0.064 0.5377 -0.004 0.9718 0.153 0.3121 
Dam Body Weight @ Mate-Pairing 0.177 0.0869d 0.144 0.1609e 0.169 0.1122e 0.151 0.1238 
Dam Pregnancy Weight Gain -0.215 0.0378c -0.053 0.6070 -0.032 0.7659 0.013 0.8373 
Dam Body Weight @ Sacrifice -0.084 0.4211 0.040 0.7010 0.071 0.5050 0.067 0.2647 
Dam Percent Liver Weight -0.268 0.0090b -0.242 0.0173c -0.091 0.3960 52.91 0.0171c 
Dam Percent mWAT Weight 0.061 0.5600 0.073 0.4768 0.129 0.2266 9.35 0.6330 
Dam Serum Insulin -0.295 0.0093b 0.100 0.3869 0.015 0.9005 -0.133 0.3108 
Dam Serum Leptin -0.089 0.4114 -0.040 0.7104 0.044 0.6934 0.081 0.0754d 

 
Single linear regression models were performed to assess the univariate association between potential predictive variables 
and outcomes measures of lipid oxidation or redox parameters. To highlight trends of potential biological importance, a wide 
range of p-values were annotated in this Table: Significance was defined as: a p<0.001, b p<0.01, c p<0.05. Borderline 
significant p-values were defined as: d p< 0.10. Suggestive p-values were defined as: e p<0.20. 
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Table 3.7 PND10 Offspring Sex-Stratified Univariate Analysis of Variables Impacting Hepatic Lipid Peroxidation and Redox 
Potentials  
 

Variable 
Ln-(8-iso-PGF2) EhGSH EhCys Ln-(S-glut) 

Effect 
Estimate 

p-value 
Effect 

Estimate 
p-value 

Effect 
Estimate 

p-value 
Effect 

Estimate 
p-value 

FEMALE PND10 OFFSPRING 

Mediterranean Diet 0.106 0.5334 10.784 0.1168e -7.626 0.5352 0.573 0.4584 
Western Diet 0.549 0.0027b 4.858 0.4914 -7.736 0.5437 0.185 0.8148 
BPA -0.156 0.3073 13.542 0.0154c 3.461 0.7335 0.193 0.7592 

Litter Size (# of pups) -0.021 0.8753 -0.265 0.0411c 0.018 0.8891 0.020 0.9305 
Time to Delivery (days) 0.069 0.6027 0.055 0.6752 -0.232 0.0739d -0.070 0.0414c 

PND10 Body Weight @ Sacrifice -0.041 0.7584 -0.381 0.0027b -0.081 0.5400 -0.660 0.0695d 

PND10 Percent Liver Weight 0.072 0.5851 -0.051 0.7000 0.183 0.1628e 70.43 0.2467 
PND10 Serum Leptin 0.083 0.5551 -0.208 0.1344e -0.171 0.2217 -0.093 0.0987d 

Dam Body Weight @ Exposure 0.278 0.0318c -0.027 0.8376 -0.210 0.1079e -0.203 0.3553 
Dam Pre-Gestational Weight Change -0.122 0.3536 -0.146 0.2646 0.016 0.9056 -0.410 0.1145e 
Dam Body Weight @ Mate-Pairing 0.067 0.6134 -0.028 0.8334 -0.365 0.0041b -0.331 0.0049b 

Dam Pregnancy Weight Gain -0.018 0.8895 -0.024 0.8549 -0.286 0.0267c -0.440 0.0021b 

Dam Body Weight @ Sacrifice 0.075 0.5706 -0.086 0.5126 -0.318 0.0132c -0.388 0.0003a 

Dam Percent Liver Weight -0.220 0.0916d 0.014 0.9160 -0.054 0.6824 -49.97 0.2761 
Dam Percent mWAT Weight 0.177 0.1767e 0.060 0.6506 -0.184 0.1586e -90.48 0.0552d 

Dam Serum Insulin -0.263 0.0929d -0.041 0.7954 0.089 0.5762 0.171 0.6563 
Dam Serum Leptin -0.115 0.4080 -0.039 0.7821 -0.237 0.0845d -0.208 0.0157c 

Dam Liver 8-iso-PGF2 0.344 0.0072b 0.156 0.2346 0.113 0.3881 0.006 0.0254c 

Dam Liver EhGSH (mV) 0.132 0.3131 -0.069 0.6013 -0.177 0.1764e -0.003 0.9181 
Dam Liver EhCys (mV) 0.054 0.6911 -0.073 0.5900 -0.248 0.0632d -0.026 0.0415c 
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Table 3.7 PND10 Offspring Sex-Stratified Univariate Analysis of Variables Impacting Hepatic Lipid Oxidation and Redox 
Parameters, Continued  
 

MALE PND10 OFFSPRING 

Mediterranean Diet -0.264 0.0880d 0.973 0.829 5.321 0.697 -0.234 0.7013 
Western Diet 0.004 0.978 -2.113 0.618 6.052 0.637 0.289 0.6085 
BPA 0.032 0.793 -2.931 0.403 -4.251 0.688 0.300 0.5242 

Litter Size (# of pups) -0.154 0.247 -0.283 0.0330c -0.108 0.425 -0.151 0.3068 
Time to Delivery (days) -0.225 0.0890d -0.112 0.409 -0.172 0.201 0.019 0.4291 
PND10 Body Weight @ Sacrifice -0.105 0.434 -0.031 0.820 -0.011 0.934 0.215 0.3098 
PND10 Percent Liver Weight 0.007 0.957 0.257 0.0535d 0.233 0.0808d -52.44 0.2129 
PND10 Serum Leptin -0.201 0.1412e 0.049 0.721 0.052 0.708 -0.023 0.6233 

Dam Body Weight @ Exposure 0.226 0.0879d 0.164 0.223 -0.055 0.686 -0.002 0.9858 
Dam Pre-Gestational Weight Change -0.403 0.0017b 0.048 0.723 -0.026 0.847 0.119 0.5991 
Dam Body Weight @ Mate-Pairing -0.045 0.736 0.283 0.0328c -0.006 0.965 0.017 0.8804 
Dam Pregnancy Weight Gain -0.314 0.0162c -0.472 0.0002a -0.149 0.269 0.002 0.9732 
Dam Body Weight @ Sacrifice -0.291 0.0268c -0.339 0.0100c -0.173 0.1969e 0.012 0.8603 
Dam Percent Liver Weight -0.178 0.1810e -0.110 0.416 -0.137 0.308 -8.674 0.7350 
Dam Percent mWAT Weight -0.105 0.431 -0.155 0.251 0.027 0.841 12.858 0.6541 
Dam Serum Insulin 0.169 0.290 -0.048 0.768 -0.157 0.335 0.167 0.5128 
Dam Serum Leptin 0.042 0.766 -0.046 0.750 -0.072 0.617 0.012 0.8536 

Dam Liver 8-iso-PGF2 0.371 0.0041b 0.080 0.553 0.170 0.206 -0.004 0.1364 

Dam Liver EhGSH (mV) 0.108 0.419 0.149 0.268 0.194 0.1487e 0.008 0.7628 
Dam Liver EhCys (mV) 0.068 0.630 -0.104 0.464 -0.080 0.574 0.004 0.6899 

 
Single linear regression models were performed to assess the univariate association between potential predictive variables 
and outcomes measures of lipid oxidation or redox parameters. To highlight trends of potential biological importance, a wide 
range of p-values were annotated in this Table: Significance was defined as: a p<0.001, b p<0.01, c p<0.05. Borderline 
significant p-values were defined as: d p< 0.10. Suggestive p-values were defined as: e p<0.20. 
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Table 3.8 10-month Offspring Sex-Stratified Univariate Analysis of Variables Impacting Hepatic Lipid Peroxidation and Redox 
Potentials 
 

Variable 
Ln-(8-iso-PGF2) EhGSH EhCys Ln-(S-glut) 

Effect 
Estimate 

p-value 
Effect 

Estimate 
p-value 

Effect 
Estimate 

p-value 
Effect 

Estimate 
p-value 

FEMALE 10-month OFFSPRING 

Mediterranean Diet 0.250 0.0246c -1.232 0.518 4.070 0.531 0.007 0.9565 
Western Diet 0.191 0.0842d -2.087 0.308 -5.082 0.477 -0.126 0.3933 

BPA 0.073 0.419 0.604 0.706 -0.427 0.939 0.026 0.8192 

Litter Size (# of pups) -0.147 0.242 -0.069 0.615 0.179 0.224 0.005 0.8876 
Time to Delivery (days) -0.127 0.315 -0.069 0.616 0.013 0.928 -0.002 0.8107 
10M Body Weight @ Sacrifice 0.001 0.995 -0.199 0.1459e 0.209 0.1537e 0.014 0.1087e 

10M Percent Liver Weight 0.121 0.338 0.085 0.538 -0.142 0.335 -5.862 0.4982 
10M Percent mWAT Weight -0.059 0.639 -0.274 0.0427c 0.016 0.912 2.183 0.6511 
10M Serum Leptin 0.087 0.501 -0.218 0.1173e -0.008 0.956 0.000 0.4549 
10M Serum Insulin -0.031 0.810 -0.198 0.1546e -0.149 0.323 0.000 0.9595 
10M Serum Resistin 0.106 0.414 -0.042 0.767 -0.180 0.232 0.000 0.3798 

Dam Body Weight @ Exposure 0.007 0.955 0.243 0.0741d -0.036 0.807 0.062 0.1575e 

Dam Pre-Gestational Weight Change 0.180 0.1512e 0.006 0.965 -0.007 0.961 -0.019 0.7319 
Dam Body Weight @ Mate-Pairing 0.066 0.602 0.212 0.1199e -0.072 0.626 0.012 0.6322 
Dam Pregnancy Weight Gain -0.241 0.0534c -0.138 0.314 0.017 0.910 0.012 0.7118 
Dam Body Weight @ Sacrifice -0.112 0.375 0.037 0.791 -0.010 0.944 0.024 0.3443 
Dam Percent Liver Weight -0.100 0.429 -0.054 0.697 0.182 0.216 9.055 0.2427 
Dam Percent mWAT Weight 0.118 0.350 -0.196 0.1510e 0.025 0.868 3.195 0.6712 
Dam Serum Insulin 0.101 0.455 -0.221 0.1320e 0.192 0.218 0.068 0.0640d 

Dam Serum Leptin 0.136 0.287 -0.010 0.942 -0.095 0.529 -0.013 0.4195 

Dam Liver 8-iso-PGF2 -0.053 0.679 0.055 0.691 -0.014 0.924 -0.001 0.3367 

Dam Liver EhGSH (mV) 0.223 0.0768d 0.137 0.323 -0.090 0.548 -0.002 0.6785 
Dam Liver EhCys (mV) 0.179 0.1646e 0.171 0.226 -0.152 0.320 -0.001 0.6855 
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Table 3.8 10-month Offspring Sex-Stratified Univariate Analysis of Variables Impacting Hepatic Lipid Peroxidation and Redox 
Potentials, Continued 
 

MALE 10-month OFFSPRING 

Mediterranean Diet 0.058 0.569 0.118 0.971 3.395 0.713 0.019 0.8648 
Western Diet 0.039 0.706 1.788 0.600 7.314 0.453 0.110 0.3546 
BPA 0.114 0.1666e -2.120 0.430 6.062 0.438 0.005 0.9557 

Litter Size (# of pups) 0.143 0.244 -0.207 0.1403e 0.127 0.391 -0.024 0.3861 
Time to Delivery (days) -0.205 0.0933d -0.237 0.0908d 0.062 0.675 0.008 0.2183 
10M Body Weight @ Sacrifice -0.070 0.573 -0.026 0.855 -0.043 0.771 0.001 0.9124 
10M Percent Liver Weight 0.036 0.768 0.030 0.833 0.104 0.482 -1.372 0.7533 
10M Percent mWAT Weight 0.122 0.323 -0.142 0.316 -0.182 0.215 1.157 0.8371 
10M Serum Leptin -0.054 0.664 -0.067 0.640 0.030 0.843 -0.000 0.7130 
10M Serum Insulin -0.057 0.645 0.082 0.569 0.000 0.998 -0.000 0.6430 
10M Serum Resistin -0.112 0.366 0.159 0.264 -0.014 0.926 -0.000 0.6040 

Dam Body Weight @ Exposure -0.030 0.810 0.161 0.255 -0.293 0.0432c 0.030 0.2545 
Dam Pre-Gestational Weight Change -0.075 0.544 0.132 0.353 0.144 0.329 -0.003 0.9531 
Dam Body Weight @ Mate-Pairing -0.084 0.497 0.248 0.0761d -0.190 0.1957e 0.005 0.8020 
Dam Pregnancy Weight Gain 0.067 0.587 -0.094 0.509 0.007 0.962 0.048 0.0280c 
Dam Body Weight @ Sacrifice 0.011 0.927 0.091 0.523 -0.135 0.360 0.054 0.0045b 

Dam Percent Liver Weight -0.016 0.895 -0.175 0.214 -0.009 0.952 12.166 0.0966d 

Dam Percent mWAT Weight -0.008 0.949 0.203 0.1495e -0.157 0.286 7.329 0.1549e 

Dam Serum Insulin 0.058 0.665 -0.283 0.0571d 0.238 0.1244e 0.037 0.2003 
Dam Serum Leptin 0.067 0.597 0.205 0.1573e 0.014 0.926 -0.007 0.5937 

Dam Liver 8-iso-PGF2 -0.217 0.0819d -0.018 0.901 -0.216 0.1549e -0.000 0.1661e 

Dam Liver EhGSH (mV) 0.172 0.1640e 0.294 0.0342c -0.045 0.760 0.003 0.4654 
Dam Liver EhCys (mV) 0.047 0.710 0.310 0.0300c -0.189 0.213 0.000 0.8766 

 
Single linear regression models were performed to assess the univariate association between potential predictive variables 
and outcomes measures of lipid oxidation or redox parameters. To highlight trends of potential biological importance, a wide 
range of p-values were annotated in this Table: Significance was defined as: a p<0.001, b p<0.01, c p<0.05. Borderline 
significant p-values were defined as: d p< 0.10. Suggestive p-values were defined as: e p<0.20. 
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Figure	3.υ	 Associations	between	Dam	Metabolic	Parameters	and	Oxidative	Outcomes	in	
Dams,	PND10,	and	10-month	Offspring	
	

	
	
Multiple	dam	metabolic	parameters	had	consistent	effects	on	oxidative	outcomes	in	mice	
across	generation	and	offspring	age.	Oxidative	outcomes	are	grouped	by	their	general	
impact	on	the	redox	environment:	reducing	or	oxidizing.	Arrows	between	the	dam	diagram	
(left	column)	and	oxidative	outcome	boxes	represent	general	trends;	it	does	not	imply	that	
every	oxidative	response	in	the	box	is	associated	with	the	metabolic	parameter,	just	that	
the	impact	of	the	metabolic	parameter	corresponds	to	one	or	more	of	the	outcomes	in	the	
box.	For	example,	greater	gestational	weight	gain	(GWG)	is	associated	with	decreased	8-iso	
in	dams,	PND10	males,	and	10-month	females;	GWG	is	also	associated	with	decreased	
EhGSH	in	PND10	males,	decreased	EhCys	in	PND10	females,	and	increased	s-glut	in	10-
month	males,	all	of	which	result	in	a	reducing	redox	environment.	In	PND10	and	10-month	
offspring,	dam	body	weight	is	associated	with	both	reducing	and	oxidizing	outcomes.	
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Supplemental Information 
 
 
Table S3.1 Distributions of Hepatic Lipid Oxidation and Redox Parameters in Dams and 
Offspring 
 

Hepatic Measure N Mean SD Min. 25% 50% 75% Max. 

Dam Levels 

8-iso (pg/mg) 95 176.77 91.73 8.71 123.71 155.23 201.15 575.04 

EhGSH (mV) 95 -222.39 12.43 -250.58 -228.49 -223.94 -217.58 -192.51 

     GSH (uM) 96 3229.60 1987.46 292.88 1793.76 3112.16 4464.68 7742.00 

     GSSG (uM) 95 197.33 118.98 14.49 96.80 203.88 284.29 562.73 

EhCys (mV) 90 -151.49 26.77 -225.15 -165.37 -144.91 -133.68 -107.16 

     Cys (uM) 95 140.54 265.78 0.00 18.56 38.56 132.59 1508.23 

     CysS (uM) 95 29.95 72.78 0.00 6.24 15.04 28.03 639.35 

S-glut (nmol/mg) 97 27.31 27.49 0.32 3.11 25.12 43.78 162.17 

PND10 Offspring Levels 

8-iso (pg/mg) 118 246.27 105.99 14.06 171.92 239.85 308.09 652.75 

EhGSH (mV) 117 -224.56 18.10 -254.44 -235.68 -229.07 -219.10 -114.13 

     GSH (uM) 117 5068.36 3051.27 63.31 2126.61 5645.79 7706.09 9911.53 

     GSSG (uM) 117 468.24 390.03 12.90 104.68 410.62 678.86 2020.42 

EhCys (mV) 117 -205.96 38.85 -269.88 -234.42 -220.36 -171.21 -125.56 

     Cys (uM) 117 1795.93 2040.61 25.35 141.31 1405.59 2221.24 9741.66 

     CysS (uM) 117 80.54 112.59 0.46 26.75 41.43 79.42 675.86 

S-glut (nmol/mg) 111 157.89 338.05 0.38 3.60 6.25 68.79 1833.28 

10-month Offspring Levels 

8-iso (pg/mg) 133 190.96 75.74 84.04 139.36 175.25 214.32 510.79 

EhGSH (mV) 107 -229.15 7.83 -239.62 -233.80 -231.55 -227.36 -188.76 

     GSH (uM) 107 5780.99 2010.15 512.50 4957.41 6120.13 6976.98 9576.17 

     GSSG (uM) 107 452.86 188.78 45.63 380.26 465.75 556.42 1109.45 

EhCys (mV) 96 -145.72 22.90 -213.41 -156.04 -140.13 -129.28 -105.45 

     Cys (uM) 107 66.99 214.78 3.43 14.49 26.05 46.09 2176.87 

     CysS (uM) 107 10.89 12.11 0.00 3.17 7.23 14.43 67.11 

S-glut (nmol/mg) 109 1.03 0.39 0.10 0.80 0.96 1.21 2.89 

  



 

 

146  

Figure S3.1 Glutathione Redox Potentials of this Mouse Study Population 

 
 
This figure is modified from Hansen & Harris, 2012 [94]. The three boxplots at the bottom: 
dams, PND10, and 10-months, represent the distribution of glutathione redox potentials 
(EhGSH). The box represents the interquartile range (IQR) of each age group’s EhGSH, the 
line in the box represents the median, and the whiskers represent the minimum and 
maximum. This illustrates the median and IQR are similar across all ages. 
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CHAPTER 4 
 

Trimester-Specific Influences of Prenatal Bisphenol A and Mediterranean Diet  

on Metabolic Risk Score and Serum Lipid Oxidation in Human Adolescents 

 

 

ABSTRACT 

Prenatal programming of metabolic syndrome (MetSyn) may contribute to the growing 

prevalence of MetSyn worldwide. Gestational diet and exposure to bisphenol A (BPA) are 

associated with altered MetSyn risk in children. To examine the prenatal programming impact of 

maternal BPA exposure and the potential protective effect adherence to a Mediterranean diet 

(MDS) might have on MetSyn risk in youth, we re-enrolled 250 maternal-child dyads from a 

longitudinal human birth cohort, Early Life Exposure in Mexico to ENvironmental Toxicants 

(ELEMENT). Predictive models analyzed the impact of pregnancy-average and trimester-

specific maternal urinary BPA levels, MDS, and the BPA*MDS interaction on metabolic risk 

score (MRS) and serum lipid oxidation (8-isoprostane, 8-iso) levels in peripubertal youth. 

Pubertal status, urinary BPA, diet, physical activity and other youth characteristics were included 

in linear regression analyses to examine the potential for postnatal alteration of prenatal 

programming effects. In models of all youth, maternal pregnancy average and second trimester 

(T2) urinary BPA were associated with suggestive (p<0.20) decreases in youth MRS (-0.36 and -

0.29, respectively); while the pregnancy average BPA*MDS interaction was associated with a 
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suggestive increase in MRS (0.065, p<0.20). These associations were driven by boys; no 

relationship was observed among exposures and MRS in girls. Maternal MDS did not impact 

youth MRS. Among all youth, maternal pregnancy average and T2 urinary BPA was associated 

with increased serum 8-iso levels (16.8%, p<0.20, and 20.1%, p<0.10, respectively). In this case, 

the associations, between prenatal exposures and youth 8-iso, were driven by girls. Maternal 

pregnancy average and T2 MDS impacted youth serum 8-iso, but in opposite directions by sex; 

MDS was associated with increased 8-iso in girls, but decreased 8-iso in boys. Pregnancy 

average and T2 maternal BPA were suggestive predictors of both youth health outcomes (MRS 

and serum 8-iso), supportive of the second trimester as a critical window in the prenatal 

programming of MetSyn. Although sex-specific differences were observed, maternal MDS only 

impacted youth 8-iso, while the BPA*MDS interaction contributed more to youth MRS. The 

contribution of youth BPA exposure, MDS, vigorous physical activity levels, and pubertal status 

to predictive models of youth MRS and 8-iso supports the theory that healthy lifestyle behaviors 

during peripuberty may alter the effect of prenatal programming. Thus, a child’s health trajectory 

at birth may be modified later in life. 

 

INTRODUCTION 

Prenatal programming of metabolic syndrome (MetSyn) has been reported in 

experimental and epidemiologic studies [1–6]. The maternal metabolic environment during 

pregnancy, including maternal obesity [7,8], under nutrition [9,10], and glucocorticoid levels 

[10,11] has been linked to an increased risk of offspring MetSyn. Perinatal exposure to the 

endocrine disrupting chemical (EDC), bisphenol A (BPA) has also been associated with 

increased MetSyn risk in offspring [12–15]. Youth MetSyn development is known to be 
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impacted by lifestyle behaviors, such as diet, leisure-time physical activity, and parental health 

literacy [16,17], but prenatal programming suggests that disease risk can also be affected before 

birth. This amplified risk of MetSyn at birth can increase lifelong morbidity, thus altering the 

child’s health trajectory. Pediatric MetSyn is associated with greater odds of obesity and poor 

cardiovascular health in childhood [18,19], and with a 2- to 3-fold greater risk of MetSyn, Type 

2 Diabetes (T2DM), and atherosclerosis in adulthood [20]. Improved understanding of 

environmental factors capable of prenatally programming MetSyn is warranted. 

Prenatal BPA exposure has been associated with alterations in early life health outcomes, 

such as decreased birth weight, increased birth length [21], increased blood pressure at 4 years 

[22]. Animal models of perinatal BPA exposure report increased MetSyn development in 

adulthood [23–25], suggestive of the potential for this prenatal programming in humans, also. 

The ability of prenatal BPA to alter offspring metabolism is concerning, because urinary BPA 

levels are measurable in >95% of pregnant mothers in the U.S. [26,27]. BPA crosses the placenta 

[28,29], and reduced fetal expression of BPA-specific biotransformation enzymes (e.g. 

UGT2B15, SULT1A1, and STS) [30], suggests an impaired fetal ability to metabolize BPA. BPA 

is present in food and beverage packaging in the form of epoxy resins and polycarbonate plastics 

[31–33]. Thus, studying the interaction of BPA exposure and maternal diet during pregnancy 

will more accurately model concurrent real-world exposures, rather than investigating BPA or 

diet independently. 

Prenatal programming research often focuses on exposures that increase disease risk, 

such as BPA, but a healthy maternal diet may exert a protective effect on offspring, conferring 

resilience against disease later in life. A Mediterranean-style diet is clinically recommended to 

prevent and reverse progression of metabolic diseases in adults [34]. Mediterranean diet 
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consumption has been associated with better glycemic control [35], improved lipid profiles [36], 

and a decreased risk of metabolic diseases [37–40]. A meta-analysis reported Mediterranean diet 

adherence in adults was protective against many MetSyn factors, including waist circumference, 

systolic and diastolic blood pressure, circulating HDL-C, triglycerides, and glucose [41].  

Despite the overwhelming metabolic health benefits attributed to Mediterranean diet adherence 

in adults, the affect of perinatal Mediterranean diet exposure on offspring MetSyn has not been 

examined. Maternal Mediterranean diet consumption during pregnancy is associated with 

protection against low birth weight (LBW) and low placental weight [42]. LBW has been 

associated with greater risk of coronary heart disease [43] and insulin resistance [44] in 

adulthood.  If maternal Mediterranean diet intake can reduce the incidence of LBW, intake may 

also be associated with decreased metabolic disease later in life. This link, between maternal 

consumption of a Mediterranean diet during pregnancy and offspring metabolic health, has not 

been investigated.   

Diagnosing MetSyn in children is challenging, due to developmental changes in 

anthropometric variables, blood pressure, and serum lipids as children grow [45]. Age-specific 

diagnostic criteria are recommended to define pediatric MetSyn [46]. Pubertal development 

compounds the challenge of diagnosing MetSyn in youth. Pubertal changes include sex-specific 

fat accumulation and distribution, a ~30% decrease in insulin sensitivity, with a concurrent 

increase in insulin secretion [45,47,48]. We used both a Metabolic Risk Score [49] and a 

measure of lipid oxidation, serum 8-isoprostane [50], to analyze MetSyn in this study population. 

Oxidative stress, defined as an imbalance of oxidizing and reducing molecules, has been 

implicated as an underlying risk factor in the pathogenesis of many chronic metabolic diseases, 

including MetSyn [51,52].  
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Among U.S. youth, 12-19 years old, MetSyn prevalence is greatest among Hispanic boys 

(12.9%) and girls (8.2%), compared to non-Hispanic white and black children [53,54]. The 

reason for this disproportionate risk is not well understood. To address the lack of evidence in 

human studies supporting the theory that MetSyn can be prenatally programmed by maternal diet 

and EDC exposure, this study examines the effect of prenatal BPA exposure and Mediterranean 

diet on metabolic risk and serum lipid oxidation levels in Hispanic youth. To assess whether 

current, peripubertal exposures and health characteristics could impact the prenatal 

programming, youth BPA, diet, blood pressure, serum hormone, lipid, and lipid oxidation levels, 

physical activity, and pubertal status data were collected from adolescents participating in the 

Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT) human birth cohort in 

Mexico City. A secondary analysis investigated the potential effect modification of prenatal BPA 

on adolescent metabolic health by maternal Mediterranean diet adherence during pregnancy. 

 

METHODS 

Study Population 

The human birth cohort, Early Life Exposures in Mexico to ENvironmental Toxicants 

(ELEMENT) is built on a 23-year collaboration with the Instituto Nacional de Salud Publica 

(INSP) in Mexico. The 250 mother-child dyads included in this study were originally recruited 

from hospitals serving low-to-moderate income populations from 1997–2005 [55–59]. Most 

mothers (n=236) were recruited during their first trimester (T1) prenatal visit; maternal height, 

weight, urine samples, and questionnaires on food intake and demographic data were collected at 

each trimester of pregnancy. The additional 14 mothers were recruited at the time of delivery, so 

pregnancy values are not available.  
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The children have been continuously followed from birth through childhood to 

adolescence. At the adolescent visit, conducted in 2010-2012, experienced study personnel 

collected biological samples, anthropometry, physical activity and food frequency questionnaires 

(Figure 4.1). Youth re-recruitment for this study included 132 girls and 118 boys; MRS was 

calculated for 99% of boys and girls. Serum 8-isoprostane was measured in 97% of boys and 

96% of girls, dependent on serum sample volume.  All participants provided informed consent 

prior to enrollment; the study protocols were approved by the research and ethics committees of 

INSP and the University of Michigan. 

 

Urinary Bisphenol A (BPA) Analysis 

 Spot urine samples from mothers at Trimester 1 (n=119), Trimester 2 (n=200), and 

Trimester 3 (n=225) prenatal clinic visits were analyzed for total (free + glucuronidated) BPA at 

NSF International (Ann Arbor, MI, USA) via isotope dilution-liquid chromatography-tandem 

mass spectrometry (ID-LC-MS/MS) [55]. The NSF protocol was developed based on the Centers 

for Disease Control and Prevention (CDC) Laboratory Procedure Manuals (method no. 6301.01; 

revised: April 13, 2009); thus measurements correspond to urinary BPA levels measured in 

NHANES [60]. Specific gravity (SG) was measured with a digital refractometer (ATAGO, 

Company Ltd, Tokyo, Japan) in all urine samples to adjust for variability in urine output and 

concentration between study participants. Youth urinary BPA levels (n = 242) were assessed at 

NSF International by the same ID-LC-MS/MS method as maternal urinary samples. We have 

previously published additional details of the BPA analysis method [55].  

 

Mediterranean Diet Score (MDS) Adherence 
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Mothers completed an interviewer-administered food frequency questionnaire (FFQ) at 

their prenatal clinic visits in all three trimesters (n=227, 234, 235, respectively). The FFQ used 

for this study was a 116 item, semi-quantitative FFQ, validated among 134 women in Mexico 

City [61], based on the 131-item Harvard FFQ [62]. Study youth (n=250) completed FFQs, 

similar to the FFQs their mothers completed during pregnancy [63]. Youth MDS was calculated 

based on these FFQs, and was added to predictive models to adjust for youth’s current diet. 

Foods were compiled into food groups prior to coding into the MDS. Mediterranean diet 

scoring was first proposed by Trichopoulou [64–66]. This original MDS uses scoring criteria 

from 0-9 points (lowest to highest adherence). One point is given for above-median consumption 

of the five beneficial food categories: fish, legumes, fruits & nuts, vegetables, and cereal 

(assumed to be whole grain), and for below-median consumption of the three detrimental food 

categories: meat, poultry, and dairy (assumed to be whole fat). Individuals received an additional 

point if their daily alcohol consumption was within a moderate range (2-25g/day for women) 

[64].  

Multiple variations on the Trichopoulou MDS have been proposed by other authors, 

including adding categories for high-fat convenience foods, desserts, and sugar sweetened 

beverages [67]. We applied these variations, but the additions did not improve the MDS effect 

size or model fit, assessed by Akaike Information Criterion (AIC).  A 2011 comparison [165] of 

10 Mediterranean diet indices, including the Trichopoulou MDS and the aforementioned 

alterations, found that the Trichopoulou MDS had the highest correlation (r=0.84) with the core 

factors determining ‘adherence to the Mediterranean diet’. Since Trichopoulou MDS best 

characterized core Med diet factors and our models did not improve when adding additional food 

groups, we used the Trichopoulou MDS to assess maternal Med diet adherence, in this study 
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[67].  The only variation we made was to remove the alcohol consumption category, since 

alcohol intake was negligible amongst both pregnant women and adolescents; thus the MDS in 

this study ranges from 0-8 points (Figure S4.1, Table S4.1). 

 

Youth Serum Metabolic Markers 

 Fasting glucose, triglycerides (TG) and HDL-C were measured with a biochemical 

analyzer (Cobas Mira Plus, Roche Diagnostics, Basel, Switzerland) on-site, in Mexico City. 

Following venous blood collection, serum aliquots were frozen at -80oC and shipped from INSP 

in Mexico City to the Michigan Diabetes Research Center (MDRC) Chemistry Lab for analysis. 

Serum leptin was measured via RIA (Millipore), IGF-1 by chemiluminescence immunoassay 

(Immulite 1000). Youth metabolic health was assessed via a Metabolic Risk Score (MRS), 

previously validated for diagnosing MetSyn in youth [49]. Sex-specific z-scores, based on this 

sample, were calculated for four adolescent metabolism variables: waist circumference, fasting 

glucose, fasting lipids (TG/HDL-C), and average blood pressure ((SBP+DBP)/2). The sex-

specific MRSs, calculated by averaging the four z-scores, were normalized to zero. 

 

Youth Serum Lipid Oxidation 

  Quantitation of serum 8-isoprostane was performed to assess oxidative stress in study 

adolescents. Serum samples were stored at -80oC with 0.005% BHT to prevent oxidation during 

storage, then transferred on dry ice to Cayman Chemical (Ann Arbor, MI, USA). The 8-

isoprostane analyses were conducted via a competitive enzyme immunoassay (EIA) kit (No. 

516351), with sensitivity 2.7 pg/mL and intra-assay %CV 9.5%. The NIEHS initiative, 

Biomarkers of Oxidative Stress Study (BOSS) determined that F2-isoprostanes were readily 
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quantifiable markers of lipid peroxidation that relate to disease-relevant measures [68,69]. Other 

recent reviews of oxidative stress measures deemed 8-isoprostane to be a highly accurate 

measure of lipid peroxidation [70–72]. 

 

Model Covariates 

Maternal Characteristics 

Trimester-specific and post-partum maternal height and weight were measured on a 

professional scale (PAME, Puebla) to the nearest 0.1cm and 0.1kg, respectively. Maternal 

Trimester 1 (T1) BMI and gestational weight gain were calculated from these measures. Pre-

pregnancy BMI and gestational weight gain have been positively associated with infant birth 

weight [73], macrosomia, large for gestational age (LGA) [74], and child obesity [75–78]. Thus, 

both of these measures were examined as potential confounders in generalized linear models 

(GLM). 

 At baseline, mothers completed questionnaires on maternal education, length of time in 

Mexico City, and smoking history. In this cohort, maternal education is used as a proxy for 

socio-economic status; the two factors are highly correlated, but maternal education data was 

collected on more mothers. Study personnel recorded maternal age-at-pregnancy, parturition 

status, and delivery type (vaginal or Cesarian section).  

 

Youth Characteristics 

Peripubertal youth returned to the clinic for a single follow-up visit at 8-14 years of age. 

Youth height (to 0.1cm) and weight (to 0.1kg) were measured on a professional scale (PAME, 

Puebla). Waist circumference was measured to the nearest 1mm in a consistent location, guided 
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by sex-specific diagrams of measuring tape placement. All anthropometric data were obtained 

after adolescents removed clothing and shoes, remaining in their undergarments and a hospital 

gown. Seated blood pressure measurements were taken in duplicate and the average systolic 

blood pressure (SBP) and diastolic blood pressure (DBP) levels were used in analyses. Fasting, 

venous blood samples were collected from adolescents and analyzed for serum hormone levels 

(leptin, IGF-1). 

 Youth in this study were peripubertal. A dichotomous puberty variable (Yes/No) was 

added to predictive models of youth MRS and 8-iso. The variable was a composite of physician-

assessed Tanner stages, recorded for all youth (n=250) during the study clinic visit. Tanner 

staging is a five-point scale of physical pubertal development based on pubic hair (boys and 

girls), breast (girls), and genital (boys) development [56,58,79].  

Advancement through Tanner stages during pubertal development is associated with the 

decreased insulin sensitivity of adolescence [80]. Sex-specific changes in circulating leptin levels 

also occur at puberty. Pre-pubertal boys and girls have similar leptin levels that increase with 

age; at puberty, leptin levels rise in girls and fall in boys, mirrored by sex-stratified changes in 

fat mass [81]. Insulin-like growth factor-1 (IGF1) levels also increase at puberty, triggered by 

increased gonadal sex steroid levels [82].  

Physical activity has been associated with decreased risk of MetSyn and insulin 

resistance in youth [83]. At the adolescent visit of this study, youth completed a self-reported 

physical activity questionnaire, previously validated in Mexican youth [84,85]. Responses were 

coded into vigorous (e.g. swimming, running, soccer) or moderate activities (e.g. walking, 

cleaning) and cumulative measures were created by adding the hour per week spent in each type 

of activity. 
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Statistical Analysis 

 Normality of all variables was investigated via Q-Q plots of residuals; right-skewed 

variables were Ln-transformed, including urinary BPA and serum 8-isoprostane. The 

distributions of the prenatal exposures (urinary BPA and MDS) were explored and intraclass 

correlation coefficients (ICCs) were calculated to compare exposure measures across trimesters, 

T1 vs. T2, T1 vs. T3, T2 vs. T3. Independent t-tests were performed on all study variables to 

determine which variables differed by youth sex.  

Generalized linear models (GLMs) were constructed to predict the two youth health 

outcomes of interest, (1) MRS and (2) serum 8-iso. To examine if prenatal timing of 

environmental exposures alters metabolic programming in offspring, trimester-specific models 

were run. For example, these models examined whether maternal Trimester 1 urinary BPA, 

MDS, and BPA*MDS impacted adolescent MRS and allowed comparison to the impact of 

Trimester 3 BPA, MDS, BPA*MDS on MRS. Pregnancy averages of urinary BPA and MDS 

were calculated for each mother, and models using these average exposures were also estimated. 

For instance, this model examined whether average maternal urinary BPA, MDS, and 

BPA*MDS across pregnancy altered adolescent MRS. Analyzing pregnancy average values may 

improve confidence in the associations observed between the prenatal exposures and youth 

metabolic health outcomes; potential variability inherent in spot urine samples is balanced by 

averaging values across pregnancy. Significant results in pregnancy average models, but not 

trimester-specific models, could also suggest that timing of the exposures (BPA & MDS) is less 

critical than the magnitude of exposure across pregnancy. Finally, due to previous studies 

identifying sexually dimorphic effects of BPA, sex-stratified models were run, in addition to 
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models including all adolescents. Predictive models did not differ if the 14 youth whose mother’s 

were recruited at delivery were excluded, thus all 250 mother-child dyads were included in the 

modeling process. 

Unadjusted models included the main prenatal exposure variables: maternal trimester-

specific urinary BPA, MDS, and BPA*MDS interaction, for both youth MRS and serum 8-iso 

outcomes. The BPA*MDS interaction term was added to all models to determine if maternal 

MDS modified the effect of prenatal BPA exposure on youth MRS or serum 8-isoprostane. 

Maternal education, youth puberty status, youth BPA and MDS were added to subsequent 

models as a priori covariates. Additional maternal and youth characteristics were investigated as 

potential model covariates, including: maternal trimester-1 BMI, maternal pregnancy weight 

gain, youth serum leptin and IGF-1, youth vigorous and moderate physical activity. In this study, 

predictive variables were sex specific; maternal T1 BMI contributed significantly in models for 

adolescent girls, while vigorous physical activity of adolescent boys significantly impacted 

models. 

Statistical significance was determined a priori at p < 0.05. Borderline significance (p < 

0.10) and suggestive significance (p < 0.20) were also used to assess data trends in this study. All 

analyses were conducted in SAS 9.4 (Cary, NC, USA). 

 

RESULTS 

Study Population 

 Mother’s age at recruitment into the ELEMENT cohort ranged from 14 – 44 years, 

averaging 26.8 years. A high school education was attained by 86% of the mothers. Maternal 

BMI at the T1 clinic visit averaged 25.9 kg/m2, and mothers gained an average of 2.6 kg during 
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pregnancy. Female adolescents comprised 52.8% of youth in the cohort. Only 34.8% of female 

youth had begun puberty, but 49.2% of males had entered puberty according to physician-

assessed Tanner staging (Table 4.1). 

Few variables differed significantly by youth sex. Maternal T1 urinary BPA was slightly 

greater among girls (1.60 ng/mL) than boys (1.46 ng/mL), but was only borderline significant (p 

= 0.059). BPA did not differ significantly in T2, T3, or youth urinary samples. Maternal 

adherence to the MDS did not differ by sex, at any trimester, nor did any other maternal 

covariates. Adolescent health outcomes of interest (MRS and serum 8-isoprostane) did not differ 

by youth sex, but other youth health measures did. Systolic blood pressure was greater in boys 

than girls (p = 0.016), while serum triglycerides (p < 0.001), serum leptin (p < 0.001), and serum 

IGF-1 levels (p < 0.001) were higher in girls compared to boys (Table S4.2).  

 

Maternal Exposures - Comparison Across Trimesters 

Median, specific-gravity adjusted, BPA measurements ranged from 1.14-1.48 ng/mL in 

maternal urine, but levels did not differ by trimester (Table 4.3). In all trimesters, the distribution 

of maternal urinary BPA was highly variable, illustrated by the large ICCs (Table S4.3, Figure 

S4.2A). The median MDS adherence of mothers did not differ across trimesters (Table 4.3). 

Although the ICCs comparing trimester 1 MDS to trimesters 2 and 3 were low (-0.03 & 0.11, 

respectively), the higher ICC comparing trimesters 2 and 3 (0.44, p < 0.05) suggests that 

maternal diets fluctuated more between T1 and T2, then stabilized in the second two trimesters 

of pregnancy (Table S4.3, Figure S4.2B).  

 

Adolescent Metabolic Risk Score & Serum 8-Isoprostane Levels 
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 Metabolic Risk Score (MRS) was normally distributed amongst the Mexican youth in this 

study. Median MRS amongst all youth was -0.02, with a range from -1.65 to 2.00. Since MRS 

was calculated as a sex-specific z-score, there were no differences by sex. Adolescent serum 8-

isoprostane levels were non-normal; a few children had high serum levels, right-skewing the 

data. Median 8-isoprostane measurements did not differ by youth sex; both boys and girls had 

extreme high values (Figure S4.2).  

 Adolescent MRS differed by youth age at re-enrollment, pubertal status, and serum leptin 

levels (Table 4.2). Among all youth, age was directly associated with increased MRS (p = 

0.036); this relationship was driven by boys (p = 0.044), not girls (p = 0.427). Similarly, youth 

who had entered puberty had significantly greater MRS (p = 0.000) than pre-pubertal youth; this 

was true amongst both girls (p = 0.001) and boys (p = 0.046). Higher serum leptin levels are 

associated with greater MRS in all youth (p = 0.000). Adolescent MRS did not differ by maternal 

age at pregnancy, educational attainment, and Trimester 1 BMI. Serum 8-isoprostane levels in 

youth did not differ by any maternal or adolescent factors (Table S4.4).  

 

Predictive Modeling of Adolescent Metabolic Risk Score 

Among all youth, average maternal urinary BPA and the BPA*MDS interactions across 

pregnancy trimesters tended to predict MRS. Average, Ln-transformed urinary BPA was 

associated with a suggestive decrease in MRS (-0.359, p = 0.132), while the BPA*MDS 

interaction associated with a suggestive increase in MRS (0.065, p = 0.191). Average BPA in T2 

was also associated with a suggestive decrease in MRS (-0.287, p = 0.183) among all youth. The 

relationships did not exist between T1 or T3 BPA and youth MRS. Maternal MDS adherence 

during pregnancy did not impact youth metabolic risk score in any adjusted models (Table 4.4).  
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Among male youth, the average maternal urinary BPA and the BPA*MDS interaction 

across pregnancy did not predict youth MRS, but suggestive changes were observed in trimester-

specific models, adjusted for a priori and predictor covariates. T2 maternal urinary BPA was 

associated with a suggestive decrease in MRS (-0.63, p = 0.147) among males. The BPA*MDS 

interaction had a differential effect on male youth, depending on the trimester. Trimester 1 

BPA*MDS was associated with a suggestive decrease in male MRS (-0.11, p = 0.188); but T2 

BPA*MDS was associated with a suggestive increase in MRS (0.14, p = 0.140) in male youth. 

Neither prenatal BPA, MDS, nor their interaction (BPA*MDS) significantly predicted MRS in 

adjusted models for female youth (Table 4.4).  

Pubertal status and T1 maternal BMI were both positively associated with increased MRS 

in all youth across all trimesters and the pregnancy average model. In models including all youth, 

adolescent MDS and vigorous physical activity were negatively associated with MRS. 

Interestingly, these predictive covariates varied by sex. Adolescent pubertal status and T1 

maternal BMI were significant in female youth; both were associated with increased risk of MRS 

in girls across all three trimesters. Youth MDS and vigorous physical activity were significant 

predictors in male models, but were negatively associated with MRS (Table 4.4). 

 

Predictive Modeling of Adolescent Serum 8-isoprostane 

Maternal average Ln-BPA and T2 Ln-BPA were suggestive of associations with serum 8-

isoprostane in all youth.  In adjusted models for all youth, maternal average Ln-BPA was 

associated with a suggestive 16.8% (p = 0.190) increase in youth serum 8-isoprostane; T2 Ln-

BPA was associated with a borderline 20.1% (p = 0.085) increase. Of note, these are the same 

time periods (pregnancy average and T2) that were predictive of youth MRS; thus, T2 may be a 
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perinatal period that is particularly sensitive to BPA exposure. However, the direction of 

association differs by youth outcome. Greater maternal BPA exposure is associated with higher 

8-isoprostane levels in youth; in contrast, maternal BPA exposure is associated with lower youth 

MRS. Neither maternal MDS nor the interaction of BPA*MDS were predictive of 8-isoprostane 

in models including both boys and girls (Table 4.5).  

Among male youth, only T1 maternal Ln-BPA was a suggestive predictor of serum 8-

isoprostane, with T1 Ln-BPA associated with a suggestive 39.4% increase (p = 0.102). Maternal 

MDS, pregnancy average and T2, was negatively associated with male 8-isoprostane. Maternal 

average MDS was associated with a significant 10.2% decrease (p = 0.008), and T2 MDS with a 

suggestive 5.2% decrease (p = 0.180) in male 8-isoprostane levels. The interaction of BPA*MDS 

did not predict 8-isoprostane levels in male youths (Table 4.5).  

In female youth, pregnancy average and T2 Ln-BPA were suggestive predictors of serum 

8-isoprostane. Pregnancy average Ln-BPA was associated with a suggestive 19.7% increase (p = 

0.182), while T2 Ln-BPA was associated with a borderline 24.0% increase (p = 0.067) in female 

8-isoprostane. Maternal MDS was positively associated with 8-isoprostane levels in female 

youth. Pregnancy average MDS was associated with a suggestive 4.2% increase (p = 0.123), T2 

MDS with a significant 6.5% increase (p = 0.020), and T3 MDS with a suggestive 2.9% increase 

(p = 0.189) in female 8-isoprostane. Of note, this association between maternal MDS and youth 

8-isoprostane is in the opposite direction in male and female youth; these opposing, sex-specific 

relationships are a likely reason no association is observed in models that combine boys and 

girls. T2 BPA*MDS was associated with a borderline 4.4% decrease (p = 0.093) in 8-isoprostane 

among girls. The interaction is not a significant predictor at any other time point (Table 4.5). 
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In the adjusted model of T2 exposures predicting serum 8-isoprostane in all youth, youth 

urinary BPA negatively associated with serum 8-isoprostane. BPA measured in youth urine did 

not significantly contribute to any other models. Including youth MDS improved pregnancy 

average, T1, and T2 models of male 8-isoprostane, but had no impact in models predicting 

female 8-isoprostane levels. Youth vigorous physical activity improved prediction of 8-

isoprostane in males only, in pregnancy average and T3 models. These findings suggest that 

peripubertal exposures (e.g. BPA) and behavior (e.g. diet and physical activity) can impact the 

relationship between prenatal exposures and peripubertal serum 8-isoprostane. Of note, pubertal 

status had no effect on models of youth serum 8-isoprostane, supportive of a peripuberty-

independent variation in lipid oxidation. Pubertal status was still included in these models as an a 

priori covariate, due to the innumerable physiologic changes occurring during this 

developmental transition. 

 

DISCUSSION 

This is the first human study to accomplish a long-term follow up of prenatal BPA and 

dietary exposures, which not only explores the EDC-diet interaction, but also examines the 

impact on multiple measures of metabolic health during the peripubertal transition. We examined 

the potential impact of prenatal BPA and maternal dietary intake on peripubertal metabolic risk 

and serum lipid oxidation (Figure 4.2). Maternal urinary T2 BPA was associated with a 

suggestive decrease in MRS among boys only. Similarly, when male and female youth were 

combined, pregnancy average and T2 BPA were suggestive of decreases in youth MRS. On the 

other hand, pregnancy average and T2 maternal urinary BPA were associated with suggestive 

increases in serum 8-isoprostane among girls and all youth combined. Interestingly, maternal 
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MDS contributed to pregnancy average and T2 models of 8-isoprostane in both boys and girls, 

but the direction of association differed. The interaction of maternal BPA*MDS was associated 

with suggestive increases in MRS in boys and all youth combined, but was associated with a 

borderline decrease in serum 8-isoprostane in girls. Youth characteristics, such as urinary BPA, 

MDS, vigorous physical activity, and pubertal status, improved models of youth MRS and 8-

isoprostane, supporting the theory that prenatal programming may be altered by later life 

exposures and behavior. The peripubertal transition may be a developmental period that is 

particularly sensitive to this potential reprogramming. 

This is the first report of prenatal BPA impacting peripubertal serum lipid peroxidation in 

humans. In another pregnancy cohort, one interquartile range increase in urinary BPA was 

associated with a 8.79% (p = 0.02) increase in urinary 8-isoprostane in the mothers [87]. A 

recent study reported that prenatal BPA exposure was associated with increased levels of a 

different marker of oxidative stress, 3-nitrotyrosine levels, in cord blood samples [86], but did 

not follow children after birth. Precedence for perinatal BPA exposure leading to later life 

oxidative stress has been reported in murine models, where perinatal BPA was correlated with 

higher oxidative stress markers into puberty [88] and adulthood [89], even when BPA exposure 

stopped at weaning. The brief half life of 8-isoprostane, 16 minutes in humans [90], suggests that 

the 8-isoprostane measured in peripubertal youth cannot be the same 8-isoprostane generated 

prenatally. Thus, the positive association between prenatal BPA exposure and youth serum 8-

isoprostane levels may be due to confounding by postnatal characteristics. In this study, the 

association between prenatal exposures and youth serum 8-isoprostane was impacted by 

concurrent youth exposures and behavior, suggestive of a significant impact of postnatal 

confounders. 
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The minimal impact of prenatal BPA on peripubertal MRS was unexpected. Studies in 

human children [91,92] and adults [93,94] have reported increased urinary BPA levels are 

correlated with increased waist circumference and impaired insulin sensitivity. In murine 

models, prenatal low-dose BPA exposure has been associated with a detrimental effect on male 

offspring, including increased body weight, liver weight, abdominal fat mass, serum insulin and 

leptin accompanied by decreased glucose tolerance [23]. On the other hand, the CHAMACOS 

birth cohort reported BPA levels at 9 years were associated with increased adiposity at that age, 

but prenatal BPA exposure was inversely correlated to 9 year old adiposity [95]. These 

conflicting effects support the theory that the timing and life-stage of exposure to BPA are 

critical in determining the health impact [58,96]. Despite our original hypothesis that prenatal 

BPA would be associated with increased peripubertal MRS, a recent study investigating the 

impact of prenatal and concurrent BPA exposure on adolescent lipid profile (total cholesterol, 

triglycerides, HDL-C) in this ELEMENT cohort also found no BPA effect [56]. Trimester 3 BPA 

levels were not correlated to other metabolic outcomes in ELEMENT youth, including: serum 

hormones, pubertal status [57], BMI z-score, and skinfold thickness measures [59]. These 

variable findings in the ELEMENT and CHAMACOS birth cohorts warrant additional 

investigation into the potential of prenatal BPA exposure on offspring metabolic risk in late 

childhood. 

Maternal, specific-gravity adjusted urinary BPA levels in this study were within the range 

of previously reported maternal urinary BPA levels (0.5 – 3.5 ng/mL) [97–99]; the ICC also 

correspond to previously reported ICC for BPA measures across trimesters of pregnancy (0.19-

0.32) [98]. Although spot urine collections have been criticized as an inaccurate method of 

measuring BPA exposure, due to the BPA’s short half-life, maternal urinary BPA was consistent 
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across trimesters when considering the population as a whole. Previous investigation into BPA 

levels within the ELEMENT cohort found no difference in urine samples collected in morning 

compared to afternoon; BPA levels also did not differ by child age, 8-10 vs. 11-13yrs [55]. 

Despite consistent average BPA levels in all three trimesters, predictive effects on youth 8-iso 

were trimester-specific in LMMs. Thus, timing of BPA exposure may be more important than 

the level of BPA exposure when determining the potential impact on offspring oxidation status. 

Across the study population of ELEMENT mothers, average maternal MDS was 

consistent across all three trimesters. Maternal adherence to a Mediterranean diet during 

pregnancy altered lipid oxidation in both boys and girls, but had an opposite direction of effect. 

Surprisingly, maternal MDS during pregnancy did not impact MRS in youth of either sex. The 

interaction term of trimester-specific BPA*MDS had a minimal contribution to predictive 

models of youth MRS or 8-iso. However, among boys only, including youth MDS as a covariate 

in predictive models of MRS and 8-iso improved model fit. This again suggests that postnatal 

confounders can alter the health trajectory of youth after the initial period of prenatal 

programming.  

Longitudinal, observational studies have many strengths, built into their study design. 

Repeated maternal urinary BPA and Med diet adherence measures allowed comparison of 

exposures across all three trimesters of pregnancy. The trimester-specific measures allowed 

evaluation of critical windows of susceptibility to each exposure; this proved insightful, since 

Trimester 1 and 2 BPA exerted a greater effect, while only Trimester 3 MDS was predictive of 

youth health outcomes. All predictive models were adjusted for youth BPA and MDS to account 

for current exposures. The suggestive contribution of youth MDS, especially among boys, to 

youth metabolic health outcomes, supports the theory that postnatal diet may alter youth health 
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risk. Thus, although prenatal programming may alter health trajectory, this study suggests the 

peripubertal period may provide a chance to alter that trajectory again. Examining peripubertal 

health effects in both girls and boys allowed sex-specific comparisons. BPA is known to have 

sexually-dimorphic effects on offspring, so sex-stratified analyses allowed an investigation into 

potential differences in metabolic programming. 

Limitations of this study include the spot sample urine collection for BPA measurement 

and the cross-sectional measure of health outcomes. Urinary BPA concentrations vary by recent 

exposure; thus, a single urine sample may not be representative of a subject’s regular BPA level. 

However, averaging BPA measures across the three trimesters of pregnancy may have reduced 

this potential inaccuracy. The fact that pregnancy average models often reflected the suggestive 

results in T2 models, supports the validity of these findings. Health outcome measures at a single 

time point in adolescence cannot provide insights into possible alterations metabolic health over 

time. Comparison of offspring metabolic health measures from birth through puberty would be 

more instructive for determining if prenatal exposures impact offspring health at specific times, 

or if trajectory of MRS and/or serum 8-iso changes over time based on prenatal BPA exposure.  

Contradictory trends in youth metabolic health suggest the causes, prevention, and 

treatment strategies are complex. Understanding the contribution that the in utero environment 

plays on youth metabolic health is critical to improve future interventions.  Results from this 

study suggest a sexual-dimorphism in the impact of both prenatal BPA and diet exposures.. The 

significant impact of puberty on MRS reinforces the knowledge that the pubertal transition is a 

sensitive period for potential metabolic disease development. This sensitive life stage may be a 

second chance to “reprogram” future health risks. Children whose metabolic disease 
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susceptibility was increased due to perinatal exposures, may be able to lower their risk through 

conscientious health decisions during puberty.  
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Figure	4.1.	Study	Participant	Recruitment	and	Follow-Up	Timeline	
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in	Trimester	1	of	pregnancy,	but	14	mothers	were	recruited	at	delivery.	Thus,	prenatal	
exposure	measures	(urinary	BPA	and	diet	intake)	were	not	measured	in	these	14	mothers.	
Youth	were	re-recruited	during	the	peripubertal	transition	(8-14	years).	Adolescent	
metabolic	health	was	assessed	via	Metabolic	Risk	Score	and	serum	8-isoprostane,	among	
132	girls	and	118	boys.	
  

Study	Participants:	Recruitment	&	Follow-Up	
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	 Total	Youth:	

N	=	250	
	

Girls:	132	
Boys:	118	

Maternal		
Recruitment	

	
236	Moms:	Trimester	1	
		14	Moms:	Delivery	

Adolescent		
Re-Recruitment	

	
250	Youth:	8-14	years	

		132	Girls	
•  131:	Metabolic	
Risk	Score	

	

•  127:	Serum							
8-isoprostane	

118	Boys	
•  117:	Metabolic	
Risk	Score	

	

•  115:	Serum						
8-isoprostane	
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Table 4.1 Characteristics of the ELEMENT Study Population (n=250) 

Maternal Characteristics  Adolescent Characteristics 

Variable N %  Variable N % 

Education (years)    Sex   

        < 9 89 35.6          Female 132 52.8 

        10 – 12 126 50.4          Male 118 47.2 

        > 12 35 14.0  Pubertal Status: Females 

Delivery Type            Pre-Pubertal 86 65.2 

        Vaginal Birth 149 59.6          Pubertal 46 34.8 

        C-section 99 39.6  Pubertal Status: Males 

        Missing Data 2           Pre-Pubertal 60 50.8 

Trimester 1 BMI (kg/m2)          Pubertal 58 49.2 

        <18.5 5 2.0  Adolescent BMI (kg/ m2) 

        >18.5 to <25.0 100 40.0          <18.5 118 47.2 

        >25.0 to <30.0 83 33.2          >18.5 to <25.0 114 45.6 

        >30.0 to <35.0 29 11.6          >25.0 to <30.0 15 6.0 

        > 35.0 6 2.4          >30.0 to <35.0 3 1.2 

        Missing Data 27 10.8          > 35.0 0 0.0 

 

Maternal Characteristics 

Variable N Mean SD (Range) 

Age at Recruitment (years) 250 26.82 5.63 (14.00 – 44.00) 

Breastfeeding (weeks) 250 8.10 5.86 (0.00 – 30.00) 

Trimester 1 BMI (kg/m2) 223 25.85 3.95 (17.26 – 40.48) 

Pregnancy Weight Gain (kg) 215 2.59 3.75 (-10.00 – 18.70) 

Adolescent Characteristics 

Variable N Mean SD (Range) 

Age at Clinic Visit (years) 250 10.32 1.67 (8.10 – 14.70) 

Adolescent BMI (kg/m2) 250 19.38 3.60 (13.33 – 33.38) 

Serum Leptin (ng/mL) 248 11.25 8.98 (1.40 – 62.20) 

Serum IGF-1 (ng/mL) 248 257.07 104.54 (92.90 – 606.00) 

 



 

 

183  

Table 4.2 Distribution of Adolescent Metabolic Risk Score (-2 to 2) across background characteristics of ELEMENT mother-
child dyads. 
 

Variable 
All Youth (n=250) Girls (n=132) Boys (n=118) 

N Mean SD P* N Mean SD P* N Mean SD P* 

Maternal Characteristics 

Age at Pregnancy             

     15-24 years 101 0.005 0.625 0.648 51 0.020 0.594 0.667 50 -0.011 0.661 0.881 

     25-34 years 117 -0.026 0.595  60 -0.044 0.546  57 -0.007 0.646  

     35-44 years 30 0.092 0.692  20 0.088 0.764  10 0.099 0.556  

Education             

     < 10 years 88 0.035 0.645 0.735 50 0.034 0.611 0.847 38 0.036 0.696 0.619 

     10-12 years 125 -0.030 0.596  64 -0.009 0.578  61 -0.051 0.617  

     > 12 years 35 0.025 0.638  17 -0.058 0.670  18 0.103 0.616  

Trimester 1 BMI             

     < 18 1 -0.525 . 0.578 0 . . 0.461 1 -0.525 . 0.352 

     18-24.9 103 -0.052 0.634  48 -0.124 0.537  55 0.012 0.707  

     25 - 29.9 84 0.016 0.632  51 0.099 0.639  33 -0.113 0.608  

     30 - 34.9 25 -0.002 0.551  15 0.047 0.612  10 -0.076 0.464  

     > 35 8 0.287 0.867  3 -0.066 1.397  5 0.499 0.437  

Gestational Weight Gain              

     < 6 kg 48 0.029 0.639 0.622 28 0.063 0.649 0.039 20 -0.020 0.638 0.170 

     6 - 8.5 kg 66 -0.008 0.629  34 -0.195 0.541  32 0.191 0.662  

     >8.5 - 11 kg 55 -0.105 0.549  28 -0.096 0.598  27 -0.114 0.504  

     >11 kg 52 0.050 0.714  27 0.264 0.626  25 -0.181 0.743  
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Table 4.2 Distribution of Adolescent Metabolic Risk Score (-2 to 2) across background characteristics of ELEMENT mother-
child dyads, Continued 
 

Variable 
All Youth (n=250) Girls (n=132) Boys (n=118) 

N Mean SD P* N Mean SD P* N Mean SD P* 

Youth Characteristics 

Age at Re-enrollment             

     8-10 172 -0.050 0.651 0.036 93 -0.021 0.661 0.427 79 -0.083 0.641 0.044 

     11-12 54 0.039 0.528  25 -0.024 0.408  29 0.093 0.616  

     13-14 22 0.303 0.464  13 0.208 0.392  9 0.440 0.546  

Pubertal Status**             

     Prepubertal 144 -0.116 0.617 0.000 85 -0.115 0.632 0.001 59 -0.117 0.601 0.046 

     Pubertal 104 0.162 0.584  46 0.215 0.469  58 0.120 0.663  

Serum Leptin             

     <5 62 -0.512 0.411 0.000 18 -0.700 0.329 0.000 44 -0.435 0.419 0.000 

     5 - 8 64 -0.135 0.495  30 -0.255 0.388  34 -0.030 0.557  

     >8 - 15 60 0.129 0.519  39 0.014 0.509  21 0.343 0.478  

     > 15 62 0.529 0.527  44 0.450 0.503  18 0.722 0.546  

Physical Activity (METS)             

     < 17 62 -0.021 0.723 0.828 35 -0.060 0.676 0.583 27 0.030 0.789 0.993 

     17 - 26 62 -0.045 0.596  38 -0.060 0.623  24 -0.022 0.563  

     >26 - 40 58 0.054 0.628  27 0.122 0.606  31 -0.005 0.651  

     > 40 66 0.018 0.525  31 0.039 0.465  35 -0.001 0.579  

 
*p-values represent significance from the Wald test for linear trend, which uses an ordinal indicator entered into a model as a 
continuous variable. For binary variables, p-value is a measure of significance from an Independent t-test. 
** Sex-specific prepubertal (<1) and pubertal (>1) status was determined by physician-assessed Tanner staging for boys 
(genital or pubic hair development) and girls (breast or pubic hair development). 
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Table 4.3 Distribution of Exposure Variables from Prenatal and Adolescent Exposure Periods  
 

Urinary BPA (ng/mL), specific-gravity adjusted 

Analyte N GM GSD Min. 25% 50% 75% Max. 

Maternal Measures 

Pregnancy Average 229 1.13 2.11 0.00 0.70 1.08 1.80 9.16 

     Trimester 1 198 1.57 2.22 0.23 0.87 1.48 2.76 23.40 

     Trimester 2 200 1.66 2.14 0.24 1.04 1.46 2.50 30.29 

     Trimester 3 225 1.28 1.99 0.31 0.80 1.14 1.83 23.38 

Youth Measures 

8-14 Years 242 1.63 2.16 0.40 0.92 1.40 2.57 27.67 

         

Mediterranean Diet Score (0-8) 

Analyte N Mean SD Min. 25% 50% 75% Max. 

Maternal Measures 

Pregnancy Average 236 4.71 1.15 1.67 4.00 4.67 5.33 7.67 

     Trimester 1 227 4.68 1.54 2 4 5 6 8 

     Trimester 2 234 4.65 1.46 1 4 5 6 8 

     Trimester 3 235 4.77 1.55 0 4 5 6 8 

Youth Measures 

8-14 Years 250 3.76 1.47 0 3 4 5 8 
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Table 4.4 Percent Change in Youth Metabolic Risk Score per 1-Unit Urinary Ln-BPA Increase 

 

Significance:  ap < 0.05, bp < 0.10, cp < 0.20 

Model 1: Adolescent serum 8-isoprostane ~ Maternal, trimester-specific urinary, specific-gravity adjusted BPA  

Model 2: additionally adjusted for: maternal education (grade), youth pubertal status (Yes/No), adolescent urinary BPA and 

Mediterranean diet score adherence (0-8).  

Model 3: Model 2 + additionally adjusted for maternal T1 BMI (kg/m2), and adolescent vigorous physical activity (hours/week).  

Pregnancy 
Timing 

Adolescent Metabolic Risk Score 

Model 1: Unadjusted Model 2: A priori Covariates Model 3: Predictor Covariates 

N 
BPA 

%  

MDS 

%  

BPA*MDS 

%  
N 

BPA 

%  

MDS 

%  

BPA*MDS 

%  
N 

BPA 

%  

MDS 

%  

BPA*MDS 

%  

All Youth 

Average 225 -0.376b 0.044 0.066 218 -0.259 0.043 0.041 206 -0.359c 0.041 0.065c 

Trimester 1  196 -0.101 0.000 0.009 189 -0.086 0.000 0.006 185 -0.095 0.001 0.016 

Trimester 2 197 -0.324c -0.013 0.066c 190 -0.324c -0.007 0.062c 182 -0.287c 0.007 0.055 

Trimester 3 222 -0.139 0.032 0.016 215 -0.066 0.031 0.00 206 -0.138 0.025 0.015 

Girls 

Average 119 -0.262 0.071c 0.038 116 -0.181 0.043 0.025 109 -0.215 0.047 0.029 

Trimester 1  106 -0.186 0.011 0.032 103 -0.215 -0.005 0.043 103 -0.221 0.006 0.045 

Trimester 2 107 -0.113 0.047 0.012 104 -0.262 0.007 0.041 98 -0.179 0.033 0.016 

Trimester 3 115 0.278 0.060 -0.058 112 0.391 0.044 -0.080c 107 0.337 0.042 -0.078 

Boys 

Average 106 -0.599c 0.013 0.118c 102 -0.400 0.047 0.066 97 -0.581 0.038 0.109 

Trimester 1  90 0.174 -0.012 -0.059 86 0.436 0.024 -0.132c 85 0.373 0.023 -0.109c 

Trimester 2 90 -0.043 -0.002 0.017c 86 -0.728b -0.025 0.152b 84 -0.629c -0.015 0.136c 

Trimester 3 107 -0.422c 0.006 0.070 103 -0.286 0.032 0.040 99 -0.382 0.024 0.057 
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Table 4.5 Percent Change in Youth Serum 8-isoprostane per 1-Unit Urinary Ln-BPA Increase  

 

Significance:  ap < 0.05, bp < 0.10, cp < 0.20 

Model 1: Adolescent serum 8-isoprostane ~ Maternal, trimester-specific urinary, specific-gravity adjusted BPA  

Model 2: additionally adjusted for: maternal education (grade), youth pubertal status (Yes/No), adolescent urinary BPA and 

Mediterranean diet score adherence (0-8).  

Model 3: Model 2 + additionally adjusted for maternal T1 BMI (kg/m2), and adolescent vigorous physical activity (hours/week).  

Pregnancy 
Timing 

Adolescent Serum 8-isoprostane 

Model 1: Unadjusted Model 2: A priori Covariates Model 3: Predictor Covariates 

N 
BPA 

%  

MDS 

%  

BPA*MDS 

%  
N 

BPA 

%  

MDS 

%  

BPA*MDS 

%  
N 

BPA 

%  

MDS 

%  

BPA*MDS 

%  

All Youth 

Average 219 0.192c 0.000 -0.035c 212 0.157 -0.018 -0.025 200 0.168c -0.011 -0.028 

Trimester 1 192 0.162c -0.002 -0.024 185 0.079 -0.019 -0.004 184 0.080 -0.019 -0.005 

Trimester 2 186 0.114c 0.011 -0.009 185 0.203b 0.009 -0.025 177 0.201b 0.011 -0.023 

Trimester 3 216 0.054 0.010 0.001 209 0.078 -0.001 -0.001 200 0.077 0.004 -0.001 

Girls 

Average 115 0.212c 0.038c -0.043c 112 0.218c 0.034c -0.044c 105 0.197c 0.042c -0.037 

Trimester 1 103 -0.040 0.005 0.008 100 -0.089 0.004 0.019 100 -0.090 0.002 0.019 

Trimester 2 103 0.239b 0.066a -0.048b 100 0.237b 0.064a -0.046b 94 0.240b 0.065a -0.044b 

Trimester 3 111 0.205 0.034b -0.034 108 0.186 0.024 -0.027 103 0.172 0.029c -0.023 

Boys 

Average 104 0.249 -0.055c -0.043 100 0.126 -0.103a -0.008 95 0.150 -0.102a -0.016 

Trimester 1 89 0.544a -0.011 -0.092a 85 0.381c -0.041 -0.052 84 0.394c -0.041 -0.055 

Trimester 2 89 0.084 -0.027 0.009 85 0.228 -0.056c -0.011 83 0.218 -0.052c -0.007 

Trimester 3 105 -0.089c -0.014 0.038 101 -0.034 -0.033 0.029 97 -0.020 -0.033 0.029 
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Figure	4.2	Impact	of	Prenatal	BPA	and	Mediterranean	Diet	Exposure	on	Adolescent	
Metabolic	Health	

	
This	analysis	investigated	the	potential	for	prenatal	programming	of	adolescent	metabolic	
health	within	the	ELEMENT	human	birth	cohort.	Maternal	exposure	to	BPA	and	adherence	
to	a	Mediterranean	diet	(MDS)	during	pregnancy	significantly	altered	adolescent	serum	
lipid	oxidation,	but	not	Metabolic	Risk	Score.	In	addition	to	diet’s	direct	effect,	maternal	
MDS	also	modified	the	effect	of	prenatal	BPA	on	lipid	oxidation.	Maternal	T1	BMI,	youth	
puberty	status	and	vigorous	physical	activity	also	impacted	adolescent	metabolic	health	
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Part	2:	Conceptual	Diagram	–	what	Actually	happened	in	our	study!	

Maternal	Exposures	
during	Pregnancy	
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Mediterranean	Diet	

Adolescent	Outcomes:	
Metabolic	Health	
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Supplemental Information 

 

Table S4.1 Mediterranean Diet Score Calculations 
 

Food Group 
Median Daily Intake (grams) Scoring 

T1 T2 T3 > Median < Median 

Beneficial Foods 

Fish 44.36 44.36 41.04 1 0 

Legumes 131.50 135.07 135.07 1 0 

Fruits & Nuts 1214.80 1350.19 1074.34 1 0 

Vegetables 799.66 722.37 667.86 1 0 

Whole Grains 12.95 15.27 12.95 1 0 

Detrimental Foods 

Meat 218.41 205.96 204.52 0 1 

Poultry 78.57 78.57 78.57 0 1 

Dairy 1102.68 1280.71 1268.00 0 1 

 
To compute the trimester-specific Mediterranean Diet Score (MDS) for each ELEMENT 
mother in this study, the median daily intake (grams) was calculated for each of the eight 
food groups: fish, legumes, fruits & nuts, vegetables, whole grains, meat, poultry, and dairy. 
For beneficial foods, above median consumption was scored as ‘1’; below median intake of 
detrimental foods was scored ‘1’. Thus, MDSs ranged from 0-8 depending on adherence to 
the diet; greater adherence received a higher score, while poor adherence warranted a 
lower score.  
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Figure	S4.1	Mediterranean	Diet	Score	Calculation	Workflow	
	

	
Self-reported	dietary	data	was	collected	via	food	frequency	questionnaire	(FFQ).	Mothers	
completed	an	FFQ	at	a	clinic	visit	during	each	trimester	of	pregnancy.	FFQ	responses	
corresponded	to	food	intake	in	servings/day	quantities.	Intake	of	each	food	was	then	
converted	from	servings/day	to	grams/day.	Gram/day	intake,	of	foods	within	each	food	
group,	was	summed	(e.g.	apples,	bananas,	oranges,	etc.	were	added	to	create	a	total	Fruit	
intake	value).	Median	gram/day	quantities	were	computed	for	each	of	the	eight	food	
groups.	Consumption	of	each	food	group	was	compared	to	the	group	median	and	scored	(0	
or	1)	based	on	whether	the	food	was	beneficial	or	detrimental.	Scores	for	all	eight	food	
groups	were	summed	to	create	the	Mediterranean	Diet	Score	(MDS).	MDS	values	ranged	
from	0	to	8.	

Data	Calculations	
1.  Convert	FFQ	code	to	servings/day	
2.  Convert	servings/day	to	grams/day	

Collect	self-reported	dietary	data:	via	
administration	of	the	Food	Frequency	
Questionnaire	(FFQ)	to	study	subjects	

Data	Collection	

Diet	Score	Creation	
1.  Assign	food	group	score:	

intake	to	median	(0	or	1)	
2.  Add	food	group	scores:	

sum	=	MDS	(0	to	8)	

Fruit     Vege    Meat    Dairy . . . . .  MDS 
    1           0            0           1                    4 
    1           1            1           1                    7 
    0           0            1           0                    2 
    1           1            0           1                    5 
    0           1            0           1                    5 
    1           0            1           1                    6 
    1           0            1           0                    3 

Food	Group	Creation	
1.  Add	foods	(gram/day)	within	same	

food	group	for	total	group	intake	
2.  Calculate	trimester-specific	median	

daily	intake	(grams)	of	food	groups	

Group   Foods in Group 
Fruit   papaya, mango, pineapple, etc. 
Vegetable   squash, spinach, tomatoes, etc. 
Legumes   black, fava, garbanzo beans, etc. 
Dairy   whole milk, oaxaca cheese, etc. 
Meat   beef, pork, chorizo, lamb, etc. 

Group   Foods in Group 
Fruit   papaya, mango, pineapple, etc. 
Vegetable   squash, spinach, tomatoes, etc. 
Legumes   black, fava, garbanzo beans, etc. 
Dairy   whole milk, oaxaca cheese, etc. 
Meat   beef, pork, chorizo, lamb, etc. 
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Table S4.2 Sex-Stratification of Prenatal Exposures, Youth Health Outcomes, and Study Covariates 

 

  

Males Females Betweena  
Sex  

p-value N Median IQR Range N Median IQR Range 

Exposures 

T1_BPA_grav (ng/mL) 92 1.46 0.81 - 2.13 0.23 - 10.47 107 1.60 0.89 - 3.10 0.40 - 23.40 0.059* 

T2_BPA_grav (ng/mL) 91 1.33 0.94 - 2.00 0.24 - 12.21 109 1.57 1.11 - 2.67 0.57 - 17.60 0.111 

T3_BPA_grav (ng/mL) 108 1.00 0.72 - 1.66 0.31 - 12.81 117 1.36 0.92 - 2.14 0.47 - 23.38 0.111 

P20_BPA_grav (ng/mL) 113 1.37 0.90 - 2.43 0.40 - 27.67 129 1.46 0.94 - 2.81 0.42 - 20.44 0.545 

T1_MDS (score: 0-8) 107 4.00 3.00 - 5.00 0.00 - 8.00 120 4.00 2.00 - 5.00 1.00 - 8.00 0.642 

T2_MDS (score: 0-8) 109 4.00 3.00 - 5.00 1.00 - 8.00 125 4.00 3.00 - 5.00 0.00 - 8.00 0.412 

T3_MDS (score: 0-8) 110 4.00 3.00 - 5.00 0.00 - 7.00 125 4.00 3.00 - 5.00 0.00 - 8.00 0.909 

P20_MDS (score: 0-8) 118 4.00 3.00 - 5.00 1.00 - 7.00 132 4.00 3.00 - 5.00 0.00 - 8.00 0.277 

Health Outcomes 

Serum 8-isoprostane (pg/mL) 115 478.91 365.46 - 614.06 202.80 - 1364.78 127 469.26 391.21 - 571.98 203.96 - 1044.43 0.552 

Metabolic Risk Score (-2 to 2) 117 -0.01 -0.41 to 0.34 -1.67 to 1.99 131 -0.03 -0.44 to 0.44 -1.29 to 1.47 0.997 

Maternal Covariates 

Highest Education (years) 118 12.00 9.00 - 12.00 3.00 - 20.00 132 11.00 9.00 - 12.00 2.00 - 21.00 0.256 

Age at Pregnancy (years)  118 26.00 23.00 - 30.00 16.00 - 44.00 132 26.50 23.00 - 31.00 14.00 - 40.00 0.650 

Pre-Pregnancy BMI (kg/m2) 105 24.69 22.82 - 28.34 17.26 - 38.45 118 25.98 23.61 - 27.92 18.00 - 40.48 0.270 

Pregnancy Weight Gain (kg) 102 3.00 0.98 - 5.00 -10.00 to 13.50 113 2.20 0.35 - 4.00 -9.90 to 18.70 0.611 
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Table S4.2 Sex-Stratification of Prenatal Exposures, Youth Health Outcomes, and Study Covariates, Continued 

 

 

Males Females Betweena  
Sex  

p-value N Median IQR Range N Median IQR Range 

Adolescent Covariates 

Age (years) 118 9.95 8.98 - 11.73 8.10 - 14.40 132 9.95 8.80 - 11.88 8.10 - 14.70 0.820 

BMI (kg/m2) 118 18.78 16.79 - 20.87 14.06 - 31.44 132 19.01 16.64 - 22.18 13.33 - 33.38 0.180 

Waist Circumference (cm) 118 68.4 62.19 - 76.49 50.10 - 95.60 132 69.93 64.43 - 79.13 50.50 - 111.00 0.123 

Systolic Blood Pressure (mmHg) 118 104.5 96.75 - 111.00 79.00 - 127.00 132 101 91.00 - 110.00 79.00 - 123.00 0.016** 

Diastolic Blood Pressure (mmHg) 118 67 61.00 - 71.00 49.00 - 83.00 132 67 60.00 - 70.00 44.00 - 82.00 0.847 

Serum Glucose (mg/dL) 117 88 83.00 - 93.50 49.00 - 63.00 131 86 80.00 - 91.00 58.00 - 146.00 0.185 

Serum HDL (mg/dL) 117 60 51.50 - 67.00 33.00 - 98.00 131 57 50.00 - 64.00 31.00 - 104.00 0.118 

Serum Triglycerides (mg/dL) 117 70 53.00 - 90.50 21.00 - 245.00 131 81 65.00 - 121.00 35.00 - 269.00 0.000** 

Serum Leptin (ng/mL) 117 6.5 3.60 - 10.80 1.40 - 34.20 131 10.7 6.30 - 18.50 2.40 - 62.20 0.000** 

Serum IGF-1 117 206 165.50 - 270.00 92.90 - 568.00 131 250 198.00 - 359.00 102.00 - 606.00 0.000** 

   

 a Independent t-tests were used to compare each variable by youth sex.  

   P-values that reflect significant differences by sex are bolded: * p < 0.10, ** p < 0.05 
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Table S4.3 Comparison of Prenatal Exposures (BPA & MDS) Across Trimesters 

 

Intraclass Correlation Coefficient (ICC) between Trimesters 

 Trimester 1 (T1) Trimester 2 (T2) Trimester 3 (T3) 

N Coefficient (95% CI) N Coefficient (95% CI) N Coefficient (95% CI) 

Urinary BPA (ng/mL), 
SG-adjusted 

183 0.24 (0.10-0.37) 196 0.32 (0.19-0.44) 196 0.12 (-0.02-0.26) 

MDS 210 0.11 (-0.03-0.24) 233 0.44 (0.33-0.54) 211 -0.03 (-0.17-0.10) 
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Figure S4.2 Trimester-Specific Distributions of Prenatal Exposures: Urinary BPA Levels and 
Mediterranean Diet Score 
 

 

 
	

A	 B	

Maternal	Urinary	BPA	(ng/mL)	 Mediterranean	Diet	Score	(0-8)	

A	 B	

Maternal	Urinary	BPA	(ng/mL)	 Mediterranean	Diet	Score	(0-8)	
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Table S4.4 Distribution of Adolescent Serum 8-isoprostane (pg/mL) across background characteristics of ELEMENT mother-
child dyads. 
 

Variable 
All Youth (n=250) Girls (n=132) Boys (n=118) 

N Mean SD P* N Mean SD P* N Mean SD P* 

Maternal Characteristics 

Age at Pregnancy             

     15-24 years 98 523.7 188.4 0.236 48 500.5 151.3 0.798 50 546.1 217.4 0.191 

     25-34 years 114 492.4 172.7  59 499.3 167.1  55 484.9 179.7  

     35-44 years 30 468.9 140.8  20 473.8 152.2  10 459.1 121.9  

Education             

     < 10 years 85 506.1 198.7 0.514 48 494.4 174.8 0.989 37 521.4 227.5 0.376 

     10-12 years 123 508.4 169.7  63 497.7 153.6  60 519.6 185.8  

     > 12 years 34 469.8 135.7  16 492.1 128.6  18 450.1 142.3  

Trimester 1 BMI             

     < 18 1 444.7 . 0.987 0 . . 0.937 1 444.7 . 0.976 

     18-24.9 100 503.6 198.4  47 496.3 159.2  53 510.1 229.0  

     25 - 29.9 81 509.4 170.5  48 506.1 174.8  33 514.3 166.6  

     30 - 34.9 25 489.7 135.0  15 490.3 125.0  10 488.9 155.7  

     > 35 8 472.5 166.6  3 501.1 200.8  5 455.4 165.6  

Gestational Weight Gain              

     < 6 kg 48 495.4 159.0 0.534 28 486.7 125.5 0.677 20 507.7 199.6 0.176 

     6 - 8.5 kg 63 517.1 180.9  32 479.9 157.4  31 555.6 197.6  

     >8.5 - 11 kg 53 524.5 219.2  27 528.8 203.0  26 520.1 239.0  

     >11 kg 51 469.4 145.5  26 508.4 154.7  25 428.8 125.8  

  



 

 

196  

Table S4.4 Distribution of Adolescent Serum 8-isoprostane (pg/mL) across background characteristics of ELEMENT mother-
child dyads, Continued 
 

Variable 
All Youth (n=250) Girls (n=132) Boys (n=118) 

N Mean SD P* N Mean SD P* N Mean SD P* 

Youth Characteristics 

Age at Re-enrollment             

     8-10 168 501.3 181.4 0.312 90 498.6 157.9 0.277 78 504.4 206.2 0.794 

     11-12 53 523.8 167.9  25 517.1 165.5  28 529.7 172.9  

     13-14 21 454.5 149.0  12 429.7 137.3  9 487.5 165.7  

Pubertal Status**             

     Prepubertal 141 503.2 191.9 0.913 84 500.3 165.5 0.651 57 507.4 226.7 0.921 

     Pubertal 100 500.7 152.4  43 486.8 143.7  58 511.1 159.0  

Serum Leptin             

     <5 59 483.7 169.5 0.284 17 475.7 183.2 0.411 42 486.9 165.8 0.641 

     5 - 8 64 534.8 200.9  30 524.1 144.3  34 544.3 242.0  

     >8 - 15 60 480.5 166.1  39 466.9 143.7  21 505.6 202.8  

     > 15 59 507.4 162.1  41 510.7 169.4  18 499.7 148.2  

Physical Activity (METS)             

     < 17 60 518.8 167.2 0.742 34 548.6 176.4 0.150 26 479.8 148.6 0.726 

     17 - 26 60 494.1 198.9  36 482.5 161.4  24 511.6 247.5  

     >26 - 40 57 510.2 181.9  26 476.4 131.4  31 538.7 213.4  

     > 40 65 487.1 158.3  31 469.3 146.5  34 503.3 168.9  

 
*p-values represent significance from the Wald test for linear trend, which uses an ordinal indicator entered into a model as a 
continuous variable. For binary variables, p-value is a measure of significance from an Independent t-test. 
** Sex-specific prepubertal (<1) and pubertal (>1) status was determined by physician-assessed Tanner staging for boys 
(genital or pubic hair development) and girls (breast or pubic hair development). 
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CHAPTER 5 

 

Discussion 

 

Significance of Research Findings  

Global disease burden from chronic metabolic diseases, like NAFLD, continues to rise. 

NAFLD is now the most common liver disease amongst children and adults in the U.S., with 

incidence rising concomitantly with obesity. In the U.S., recommendations to prevent and 

decrease prevalence of childhood obesity have traditionally focused on altering personal 

behaviors, (e.g. poor diet quality, hypercaloric intake, physical inactivity) and more recently on 

altering the socio-political environment (e.g. safe access to healthy food, places to exercise, 

affordable healthcare, healthy default options) [1–3]. Despite initial publication more than 50 

years ago, the influence of the in utero environment on offspring metabolic health has still not 

been incorporated into medical or policy recommendations. First identified following World War 

II, via natural experiments in free-living human populations (e.g. the Seige of Leningrad [4] and 

the Dutch Hunger Winter [5,6]), the potential for maternal exposures to affect offspring 

metabolic health was later codified into the Barker Hypothesis [7]. Over the past decade, popular 

media has raised awareness regarding the potential for perinatal exposures to increase 

susceptibility to chronic diseases later in life. However, an incomplete understanding of the 
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mechanism underlying this perinatal programming and a lack of clearly/proven beneficial 

interventions has hindered adoption of recommendations.  

Over the past decade, BPA has become a substance of concern [8–13], garnering 

increased media and societal attention. Concern regarding the potential health effects of BPA 

stem from studies reporting obesogenic [14–16], diabetogenic [17], reproductive [18] effects, 

adipogenic proliferation [19] and oxidative stress [20]. Conflicting results, such as lean 

phenotype [21,22] vs. obesogenic agent, have muddled overarching conclusions about BPA’s 

potential threat to human health [23,24]. Despite acknowledging that infants and children are 

exposed to the highest BPA levels, the FDA’s 2008 report concluded that health risks associated 

with BPA exposure were only of negligible to some concern [25]. However, Health Canada’s 

determination of BPA as a “dangerous substance” [26,27] led to the voluntary removal of BPA 

from many infant products in the U.S., including infant formula packaging and baby bottles 

[28,29]. In the U.S., no government regulations on safe consumption levels have been passed 

since 1982, when the NTP determined the lowest adverse effect level (LOAEL) of BPA to be 50 

mg BPA/kg body weight/day [30]. In 2014 the FDA re-reviewed BPA literature and again 

concluded that it is a chemical of minimal concern [31]. Without a commitment to discontinue 

the manufacture and use of BPA in consumer products, complete elimination of exposure is 

challenging on an individual level.  

BPA was detectable in the plasma of all pregnant women (0.5-22.3 ng/mL) assessed in 

Southeast Michigan in 2006 [32]. Documentation of BPA crossing the placenta [33,34] and 

transferring in breast milk [35], combined with lower levels of BPA metabolizing enzymes in 

fetal livers [36] emphasize potential increased risk of BPA exposure during fetal and infant 

development. To address mothers’ challenge to avoid BPA during pregnancy, this dissertation 
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aimed to investigate maternal diet as a potential method for mitigating the detrimental 

developmental effects previously reported from perinatal BPA exposure. If maternal diet could 

help prevent the detrimental health effects, the unavoidable exposure might be of less concern. 

Thereby providing an inexpensive, generally accessible ‘treatment’ to the general public, for a 

difficult-to-avoid exposure.  

The main goal of this dissertation was to examine if perinatal BPA exposure could 

perinatally program NAFLD in offspring and whether this relationship could be modified by 

maternal pregnancy diet. This research revealed that perinatal HFD had a greater impact on 

hepatic steatosis in mouse offspring at PND10 and 10M than did perinatal BPA exposure (Figure 

5.1, Figure 5.2). Interestingly, perinatal HFD was predictive of PND10 hepatic 8-isoprostane 

also, but by 10M, perinatal BPA exposure was the main predictor of hepatic 8-isoprostane. When 

analogous outcomes were investigated in the human birth cohort, ELEMENT, a similar trend 

was observed. Prenatal BPA was a significant contributor in models predicting adolescent serum 

8-isoprostane, with trimester specific impact of maternal MDS adherence. These findings were 

more pronounced in male youth, compared to females. However, the opposite trend was 

observed when predicting youth Metabolic Risk score; then T2 BPA was predictive of risk only 

in female youth, not males. Again, trimester specific maternal MDS adherence improved models, 

supporting a critical role for the inclusion of diet as a co-exposure in future toxiciology studies, 

especially investigating chemicals that share the main route of exposure to the body as food: 

ingestion. 

The impact of perinatal BPA exposure on hepatic steatosis was not as pronounced as we 

expected. During necropsy, 26.6% of all 10M offspring were observed to have some level of 

hepatic masses, visible to the naked eye, of those with gross masses, 26.5% of the offspring were 
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in the Control group. Hepatic histology results for nodular hyperplasia, as read by a certified 

doctor of veterinary medicine, followed a similar trend; 15.6% of all 10M offspring presented 

with moderate to severe hyperplasia, 20% of these were Control mice. The steatotic effect of our 

Control diet was unexpected. To avoid the potential epigenetic programming effect of 

phytoestrogens in soybean oil [37], the default lipid source in standard mouse chow, we 

substituted corn oil  Corn oil consumption in rats and mice has previously been reported to 

induce hepatic steatosis [38,39]. Thus, our Control lipid may have been more steatotic than either 

experimental HFD for the study mice. This would help to explain the high prevalence of hepatic 

hyperplasia in all exposure groups, including offspring perinatally exposed to the Con and CBPA 

diets.  

Perinatal BPA exposure had a greater impact on offspring 8-iso than on the metabolic 

outcomes: liver triglycerides or MRS in mice and humans, respectively. Diet did not modify the 

effect of BPA on 8-iso, liver TGs, or MRS in mice or humans. However, perinatal HFD 

exposures in mice were independently significant predictors of metabolic parameters and redox 

potentials in dams and PND10 offspring. This suggests that perinatal diet may exert a larger 

impact on offspring lifelong health than perinatal BPA exposure. Another recent study also 

reported no effect of 50 g BPA/kg/day on hepatic or serum triglyceride levels compared to 

Controls, in adult male Wistar rats exposed for 35 weeks [40]. Some researchers have questioned 

if the concern over BPA exposure is overblown [23], the findings of this mouse study imply that 

efforts focused on improving maternal diet may be more critical than eliminating BPA exposure 

during pregnancy.  

Most toxicology studies investigating the health effects of BPA exposure do not account 

for the diet consumed during exposure. The liver is the main site of xenobiotic and nutrient 
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metabolism; thus the liver is an ideal tissue in which to examine the potential interaction between 

EDC exposure and dietary intake. The wide variation in human dietary consumption patterns and 

differing response to diet between mouse and rat strains may explain some of the previously 

reported conflicting study results. This project examined the potential importance of BPA and 

diet interactions during pregnancy by providing three different background diets to mouse moms 

(dams) and by rating adherence to a Med diet in ELEMENT mothers. Results from this project 

suggest that maternal pregnancy diet did not modify of the relationship between BPA and 

offspring health outcomes in either mice or humans. In fact, perinatal diet altered offspring 

metabolic health and oxidation status more than perinatal BPA exposure.  

In order to scientifically isolate the impact of exposures during the perinatal period, 

offspring were not exposed to BPA or HFDs after weaning. This study design differs from many 

other studies that use a later life challenge following perinatal exposure [45–47], to determine if 

exposed offspring react differently to stressors compared to their non-exposed colony-mates. 

This experimental difference in timing (concurrent vs. delayed HFD exposure) may underscore 

the dissimilarity in findings in this thesis from previous studies. Metabolic and redox 

homeostasis are basic cellular functions required for species survival. Both outcomes have many, 

overlapping regulatory pathways to help ensure homeostasis is maintained; if an environmental 

exposure or stressor affects a usual metabolic pathway, another, redundant pathway can be 

upregulated. Without these compensatory mechanisms, mammals would not have survived and 

adapted to as many habitats and climate alterations as we have. A distinct difference in our 

evolutionary environment and the modern world is the frequency with which environmental 

stressors occur today. Humans and most mammals evolved to respond to one or two stressors at 

a time with a significant recovery time between stressors when the body was able to return to 
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metabolic and redox homeostasis. The constant bombardment of chemical, dietary, and physical 

stressors we face on a daily basis now likely overwhelms our system, mimicking a state of 

repeated and often overlapping challenges (like the HFD challenge following perinatal BPA 

exposure). Oxidative stress and metabolic disturbances may be unfairly blamed for the 

development of chronic diseases, when they are actually the body’s natural, physiologic attempt 

to return to homeostasis in a world where the natural system cannot keep pace.  

 

Study Strengths and Limitation 

 This dissertation had many strengths that set it apart from traditional environmental 

health sciences research. Cross-species comparisons were built into the study design of both the 

mouse and human studies, which increased translatability of our findings (Table 5.1). Murine 

and human birth cohort studies are often conducted by separate research teams with different 

measurement or analysis methods. Planning to correlate both studies from the beginning allowed 

us to select a lipid peroxidation measure, 8-isoprostane, which could be used on both mouse and 

human biological specimens. Creating the Mediterranean and Western HFDs for mice based on 

human dietary consumption patterns was a further attempt to make the mouse and human studies 

comparable.  

A unique component of this mouse study was the addition of maternal diet as a potential 

modifier of the perinatal BPA exposure. Traditional toxicology studies take one of two forms: 

(1) dose-range finding studies, or (2) physiology-based pharmacokinetic (PBPK) studies. Dose-

range finding studies aim to identify the level of toxicant at which adverse health effects occur; 

PBPK studies aim to understand how the toxicant works once inside the body. While it is critical 

to understand the level of toxic effects and modes of absorption, digestion, metabolism and 
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excretion for individual toxicants, these studies rarely account for dietary intake. People eat 

every day, so understanding nutrient toxicant interactions will be critical for realistic PBPK 

models. For lipophilic compounds, like BPA, the quantity and type of dietary fat consumed may 

alter the amount of BPA required to elicit a toxic response. Quantity and type of dietary fat likely 

also impacts the absorption and metabolism of BPA. This study was one of the first to begin 

investigating these critical nutrient-toxicant interactions. 

However, during the experimental study design phase of planning this thesis project, 

considerations and concessions were made in order to make this study as translatable to human 

cohort studies as possible. For example, we examined both the directly exposed dams and the 

indirectly exposed pups, thus mimicking a human birth cohort study design. Instead of altering 

one dietary component at a time, as is often done in mouse studies, we developed new mouse 

diets to match the macronutrient and vitamin content to human Western and Mediterranean 

HFDs as closely as possible. The dose of BPA falls within the average human exposure range. 

Physiologic measures commonly collected in human birth cohorts, like maternal pre-pregnancy 

weight, weight gain during pregnancy, early life child weight were recorded in this study also. 

Although findings from the longitudinal mouse exposure study did not translate exactly 

to findings in the human birth cohort, mice provide several experimental benefits. They have a 

shorter lifespan, thus making longitudinal studies more time-efficient; they also have 100% 

dietary compliance, removing the variability and uncertainty found in human diet and toxicology 

studies. It is also easier to study tissues of interest, e.g. liver and adipose, in mice, because all 

tissues are available following IACUC-approved sacrifice; whereas, in human birth cohorts, 

these same tissues would require invasive biopsy sampling. Although protein-coding regions of 
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mice and human genomes are 85% genetically homologous, there are species-specific 

differences not only in sequence but in regulatory control [43,44].  

However, results from the ELEMENT cohort did not find Med diet adherence to be a 

strong predictor of offspring MRS or serum 8-iso. A different type of dietary analysis in human 

birth cohorts might reveal an increased importance of diet on youth health outcomes. We also 

only examined health outcomes during the pubertal transition, at which time many changes in 

metabolic and oxidative health are naturally occurring, which may have masked effects of both 

prenatal BPA and/or diet. Investigations into the impact of maternal pregnancy diet on 

prepubertal children or young adults after the pubertal transition may yield a greater magnitude 

of effect.  

Unexpected results in my study findings highlight the importance of carefully thinking 

through physiological differences between species. Although we share the vast majority of our 

genome with other mammals, like mice, we evolved to inhabit different ecological niches (thus 

evolved with different ideal diets and environmental conditions). These evolutionary adaptations 

can lead to differences in metabolism of certain nutrients, like mono-unsaturated fatty acids 

(MUFA). The unexpected detrimental effect of perinatal Med diet exposure observed in the 

perinatal mouse exposure study may result from a species-specific difference in metabolizing 

enzymes. Mice are not as efficient at metabolizing monounsaturated fatty acids (MUFAs) as 

humans [41,42]. Oleic acid, the main lipid component of olive oil, comprised 89% of the 

humanized Med diet we developed for the mice. The increase in hepatic liver triglycerides 

observed in both male and female mice perinatally exposed to Med HFD may be the result of 

their inability to metabolize the lipid, not because of a broader hepatotoxic effect that would 

translate to human pathology in NAFLD.  
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 Sample sizes in mouse exposure subgroups posed a limitation for some statistical 

comparisons. Although group sample sizes in the longitudinal mouse exposure study was based 

on power calculations from previous longitudinal phenotyping experiments on agouti mice in the 

Dolinoy Lab, larger sample sizes per group would have improved the ability to identify 

significant correlations. Since prenatal programming is known to have sexually dimorphic 

effects, many analyses were sex-stratified; further stratification by perinatal exposure group left 

group totals at 10-12 mice. Future studies would benefit from increasing the number of mice in 

each subgroup to improve power. An additional challenge of these studies is the redundancy of 

metabolic pathways. Metabolism on a cellular level is comprised of very ancient, largely 

conserved pathways; metabolism is a basis, evolutionarily necessary function, so nature created 

multiple backup paths. This means that observing phenotypic changes in mice or even basic 

physiologic measures (like liver triglycerides or 8-isoprostane quantification) may not accurately 

portray the scale of metabolic disruption on a cellular level, if another redundant pathway is able 

to adapt to include the inactive pathway. 

 

Future Directions and Applications 

Further Research Directions 

Although epigenetic modifications have been identified as a mechanism of 

developmental programming, the data has not yet become clinically useful, nor applied to human 

health risk assessments. Current challenges hampering the application of epigenetic data include 

(1) many studies evaluate a single type of epigenetic modification (e.g. DNA methylation), but 

integration of all epigenetic changes will be necessary to fully understand the relevance to human 

health outcomes [48,49]. (2) Variability between tissues, species, study paradigms can be 
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considerable, so epigenetic data should be confirmed across multiple types of studies to ensure 

findings from experimental models translate to human physiologic responses and health 

outcomes of interest [50]. (3) Inconsistencies in epigenetic response to environmental exposure 

between experimental animal model strain, sex, life stage, and inter-individual variation are well-

documented, thus studies will need to cover a range of these factors to make data useful [49]. (4) 

Much of the current epigenetic data is associative, with studies reporting a correlation between 

an exposure or disease state and an alteration in an epigenetic mark. Designing studies to assess 

causality of the would strengthen support for the connection between epigenetic modifications 

and pathogenesis of disease; for example, “pharmacologically blocking a specific epigenetic 

modification to eliminate or decrease the detrimental health. 

 Over the past decade, the integral role of the intestinal microbiome in obesity and its 

related metabolic conditions has been elucidated; NAFLD is no exception [59–61]. High fat, 

high fructose foods have been implicated in gut microbiome alterations and breakdown of the 

intestinal barrier, resulting in metabolic endotoxemia and low-grade systemic inflammation [62–

66]. These diet-induced alterations are associated with increased risk of obesity and NAFLD. 

Animal models suggest the intestinal microbiome can contribute to NAFLD pathogenesis in 

multiple ways, by impacting energy homeostasis [67–71], choline metabolism [72,73], and the 

endocannabinoid system [74,75]. Regulation of energy homeostasis is altered due to increased 

carbohydrate fermentation into short chain fatty acids (SCFAs), which stimulates hepatic de 

novo lipogenesis (DNL), resulting in greater hepatic triglyceride accumulation (simple steatosis) 

[67–71]. Choline is required to synthesize very-low-density lipoproteins (VLDLs), which are the 

transport vesicles responsible for lipid export from the liver [72,73]. Intestinal endocannabinoids 

help regulate inflammation (inflammatory signaling cascades) and maintain integrity of the gut 
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barrier [74,75]. Administration of probiotics (mainly Lactobacilius and Bifidobacterium) have 

demonstrated beneficial impacts in animal models of NAFLD, improving hepatic steatosis, 

insulin resistance & sensitivity, hepatic inflammation [76–80]. A recent meta-analyses found that 

pre-biotic and probiotic consumption were associated with decreased BMI, body weight, and fat 

mass, suggesting this may be an additional therapeutic avenue for metabolic diseases, including 

NAFLD [81,82]. More work is needed to identify optimal probiotic strains for therapeutic use in 

NAFLD, but results are encouraging and suggest addition of probiotic therapy to diet and 

exercise interventions could enhance NAFLD treatment. 

In addition to impacting the development of NAFLD, intestinal microbiota are sensitive 

to ingested environmental exposures, including. A recent study examined the impact of 10-weeks 

of oral BPA exposure on the intestinal microbiome of adult male CD-1 mice. Microbial species 

diversity decreased in BPA-exposed mice, similar to the mice exposed to a HFD, with increased 

growth of Proteobacteria, Helicobacteraceae, and reduced populations of Firmicutes and 

Clostridia; these patterns are representative of microbial dysbiosis and have been associated with 

obesity and T2DM [84]. Although this study was small in sample size (only 4 mice per exposure 

group), the effects were significant and warrant additional investigation. In another study, 

perinatal exposure to 50ug/kg body weight/day of C3H/HeN mice was associated with greater E. 

coli colony formation, and decreased Bifidobacertium spp. and Clostridium species, in the 

Firmicutes phylum among offspring at postnatal day 45 [85]. These alterations in intestinal 

microbiome preceded insulin resistance, which was not observed until PND160 and M1 

macrophage inflammation, not observed until PND170 [85], supportive of microbiome dysbiosis 

as an early marker of later metabolic alterations. 
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Public Health Relevance 

The rise in U.S. NAFLD prevalence poses a challenge due to the potential increase in 

young people affected by serious co-morbidities, decreased quality of life, and increased life-

long medical bills. Studies are just beginning to explore the healthcare and quality of life costs 

associated with NAFLD [53]. Health-related quality of life is lower amongst NAFLD patients 

than those with other liver conditions, such as alcoholic liver disease, autoimmune or viral 

hepatitis (HBV & HCV), and cholestatic liver disease [55,56]. NAFLD patients had impairments 

in general health, physical functioning, bodily pain, vitality, role performance, and mental health; 

detriments were more pronounced in female patients, compared to males [56]. Physical health 

component scores (PCS) decreased with NAFLD severity; patients with cirrhosis had the lowest 

PCS, followed by non-alcoholic steatoheptitis patients, while those with simple steatosis had the 

least physical impairment. Interestingly, the mental component score did not differ by disease 

severity [57]. Compared to the general population, NAFLD patients have decreased lifespan 

largely attributable to cardiovascular disease and hepatocellular carcinoma [51].  

The growing economic burden of NAFLD in the U.S. is apparent in a study of Medicare 

beneficiaries. The study found that in a five-year period, the number of outpatient visits doubled 

and expenses increased by 38%, although Medicare payments only increased by 12%, leaving 

NAFLD patients responsible for an increasing percentage of their growing health care costs. A 

cost of care model analyzing the projected health care costs by major practice category, 

estimated that per-capita costs of liver-related conditions would increase from 2% in 2000 to 

11% in 2050, due to aging of the Baby Boomer generation [54]. NAFLD is associated with many 

cardio-metabolic comorbidities, which also contributed to the overall increase in per capita 

healthcare costs due to aging: heart & vascular conditions (44%), kidney disorders (55%), 
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gastrointestinal conditions (21%), endocrine conditions (20%) [54]. The studies above only 

account for medical costs associated with adult NAFLD, but growing childhood NAFLD rates 

are concerning due to the long period of medical dependence and thus much larger lifetime 

healthcare expense.  

The need for liver transplants has been dropping in the U.S. due to decreases in hepatitis 

C, alcoholic fatty liver, autoimmune conditions, primary biliary cholangitis, and primary 

sclerosing cholangitis, transplant need due to NAFLD-induced cirrhosis is rising and is likely 

under-diagnosed [52]. Within the last 10 years, the supply of healthy livers available for donor 

transplant has decreased. This supply and demand discrepancy led to trials of “non-ideal” donor 

options. Unfortunately, hepatic steatosis is now present in 37-51% of donated livers; this is 

associated with a 3.7-fold increased risk of poor initial graft function and elevated risk of graft 

failure, decreasing chances of the recipient surviving [52].  

Expanding the public health relevance of NAFLD to the global arena, rates of NAFLD 

are rapidly increasing in East Asian countries. The greatest population growth is predicted to 

occur in this region over the next decade and with some of the highest rates of NAFLD increase 

globally [58], the East Asian region is at risk for epidemic proportions of NAFLD. Improved 

understanding of the early, reversible stages of NALFD (steatosis and steatohepatitis) will 

support the creation of better non-invasive biomarkers that can help clinically diagnose NAFLD 

earlier in the disease course. Deeper characterization of the molecular pathways involved in these 

early stages will hopefully lead to new therapies that assist in the reversal or prevention of 

disease progression. 
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Table 5.1 Cross-Species Comparisons: Strengths and Limitations 

 
Species Comparison 

Mice Humans 

Strengths 

▪ Genetically identical background 

▪ Controlled laboratory environment 

▪ Short lifespan facilitates 

longitudinal study 

▪ Access to internal tissue samples 

▪ BPA & diet exposure during 

perinatal period only 

▪ Creation of humanized diets for 

mice 

▪ Discrete, consistent level of 

exposures 

▪ Repeated maternal exposure 

measures in each trimester of 

pregnancy 

▪ Species of interest – insights could 

be translated for clinical use 

 

Limitations 

▪ Lipid metabolism differs from 

humans 

▪ NAFLD disease progression also 

differs 

▪ Genetic heterogeneity 

▪ BPA & diet exposures continue after 

prenatal period 

▪ Exposure levels vary over time and 

between individuals 

▪ Limited to bioavailable tissue 

specimens 

Combined 

Benefits 

▪ Ability to compare genetically identical background to heterogeneity inherent in 

human populations – helps to identify role of environment on health outcomes 

▪ Limiting exposure to perinatal period in mice clarifies potential fetal 

programming outcomes, which may be more difficult to discern in humans with 

continuous exposure 

▪ Measurement of BPA & diet during all three trimesters of pregnancy provides 

insight into trimester-specific effects that may occur with different prenatal 

exposures 
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Figure 5.1 Translation of Study Findings from Longitudinal Mouse Study to Human Birth 

Cohort 
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Figure 5.2 Summary of Dissertation Findings 
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