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Abstract 

Hydrophobically modified ethylene oxide urethane (HEUR) rheology modifiers, which are wa-

ter-based polyurethane formulations manufactured by Dow Coating Materials, a division of the 

Dow Chemical Company, are often added to interior and exterior water-based Latex paint for-

mulations to control their viscosity.  The thickening efficiency of the HEUR rheology modifier 

is controlled by the pH of the solvent, as this affects the protonation-deprotonation equilibrium 

of the amine hydrophobe group at the end of the rheology modifier polymer chain.  The prin-

cipal quantity characterizing this equilibrium is the acid dissociation constant (pKa) of the hy-

drophobe group, which identifies the transition between high and low viscosity of the suspen-

sion.  To gain a better understanding of the functioning of the hydrophobe molecular groups, 

and to develop novel hydrophobes that meet specific performance characteristics, it is im-

portant to accurately predict the pKa based on first principles calculations, and use it as a first 

evaluation criterion for a rapid screening of candidate hydrophobe molecules.  

A main source of error in the pKa calculation is the value of solvation free energy of the mole-

cule in its charged state.  We therefore develop new methods to increase the accuracy of the 

solvation free energy calculation for charged species without excessive increase the computa-

tional expense.  This includes a hybrid cluster-continuum model approach, where explicit sol-

vent molecules are added to the traditionally employed continuum solvation model, and a mo-

lecular dynamics (MD sampling procedure that eliminates the costly energy minimization step.  
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Using test molecules for pKa calculations, we systematically examine the convergence behav-

ior in terms of number of explicit water molecules that need to be included in the cluster-con-

tinuum model, the influence of the dielectric constant attributed to the continuum, and the 

placement of a counter ion for charge neutrality for the accurate calculation of the solvation 

free energy.  We establish that the MD sampling method yields results comparable the energy 

minimization procedure during density functional theory (DFT) calculations, but at 100 times 

the speed.  When calculating the solvation free energy and the pKa calculation of a known 

hydrophobe, ethoxylated bis(2-ethylhexy)amine, we find that including explicit water mole-

cules and a fragment of the latex polymer in its local environment both significantly improve 

the results.  

Finally we develop an informatics-based approach that employs a transferable machine learn-

ing (ML) model, trained and validated on a limited amount of experimental data, to predict the 

solvation free energies of new ionic species at a reasonable computational cost.  We compare 

three different ML methods – linear ridge regression, support vector regression and random 

forest regression, and find that the model trained by the random forest regression method yields 

the predictions with the lowest mean absolute error.  A feature selection analysis shows that the 

atomic fraction feature, which reflects the chemical constitution of the hydrophobe, plays the 

most important role in the solvation free energy prediction.  Adding the Wiener index, a meas-

ure of the molecular topology, and the solvent accessible surface area of the molecules further 

improve the performance of the model.  Accordingly, our ML model predicts the solvation 

energies of ionic species, including our test hydrophobe molecule, with similar accuracy as 
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atomistic modeling using first-principles calculations.
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Chapter 1  

Introduction 

1.1 Background and Motivation 

Aqueous polymer systems, such as containing emulsion polymer binders used for coating sur-

faces, typically draw on thickeners to obtain target rheological properties, like the specific de-

gree of viscosity needed for the proper formulation and application. Traditional thickeners used 

in such coating emulsions, e.g., cellulose, are non-associating thickeners. 1 However, in the last 

two decades, a new, improved class of thickeners known as associative thickeners have been 

found to be superior to cellulose, offering properties including improved flow and leveling in 

aqueous systems. 2 

Thickeners are called associative because their thickening function involves hydrophobic as-

sociations among hydrophobic groups in the thickener molecules, as well as between these 

hydrophobic groups in and other hydrophobic surfaces. Commonly used associative thickeners 

have a polymeric backbone with hydrophobic functional groups either attached to or incorpo-

rated into the backbone. The backbone can be neutral, such as poly(ethylene oxide) (PEO) and 

poly(acrylamide) (PAM), or charged, such as poly(acrylic acid) (PAA) or partially hydrolyzed 

poly(acrylamide) (PHPAM). The hydrophobic groups are typically classified as aliphatic, 

fluorinated, or aromatic. 3 
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Among the commercially available associative thickeners are hydrophobically modified eth-

ylene oxide urethane (HEUR) rheology modifiers, which are water-based polyurethane formu-

lations manufactured by Dow Coating Materials, a division of the Dow Chemical Company. 

They are added to interior and exterior latex (water-based) paint formulations to control the 

viscosity of the paint. 4 The structure of the HEUR molecule is shown in Figure 1. It is com-

posed of a polyurethane polyether backbone and two amine hydrophobes on each end of the 

backbone.  

 

Figure 1-1. Structure of HEUR rheology modifier. 

Ethoxylated bis(2-ethylhexy)amine is one of the potential candidates for the hydrophobe group 

on HEUR molecules. It is a tertiary amine with a NCO reactive group as shown in Figure 2. 

Indeed, ethoxylated bis(2-ethylhexy)amine provides a unique mechanism for controlling the 

thickening function of the HEUR molecules, because, depending on the acidity of the aqueous 

solution, the nitrogen atom on the hydrophobe molecule can either protonate of deprotonate.  

In a basic environment, most of the ethoxylated bis(2-ethylhexy)amine remains in its deproto-

nated form, which is more hydrophobic and thereby promotes attraction of the amine to the 

latex particle surface, effectively anchoring the HEUR molecule to it.  This results in a thick-

ening of the suspension.  Conversley, when lowering the pH of the solvent, the ethoxylated 

Amine 
hy-
dro-

Urethane PEO Urethane 
Amine 

hy-
dro-
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bis(2-ethylhexy)amine protonates.  The ionized form of the group interacts favorably with the 

dipole of the water molecule and is more easily solvated, which causes the HEUR molecules 

to detach from the latex surface, and hence reversing the thickening effect.  The governing 

factor that reveals the point of transition between the two behaviors is the acid dissociation 

constant Ka, or, as it is reported most commonly, the negative logarithm of this constant, pKa.  

In view of further elucidating this process, understanding the underlying mechanisms, and ul-

timately, achieve a predictive design capability based on a computational approach, it is imper-

ative to be able to accurately calculate the pKa values for arbitrary hydrophobe molecules. 

 

Figure 1-2. Molecular Structure of ethoxylated bis(2-ethylhexy)amine. 

1.2 Project Overview 

Over the past decade, accurate pKa predictions using quantum chemical methods have been 

attempted numerous times.  The most common approach is to calculate the pKa using a ther-

modynamic cycle involving the gas-phase reaction free energy and solvation free energies of 

all reaction partners.  The calculation details for this approach are outlined in the next section.  

While the calculation of the gas-phase reaction energies is straightforward, as it only involves 

the reaction partners themselves, the accurate calculation of free energies in solution remains 

difficult, because the interactions with the solvent must also be accounted for.  In early pKa 
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calculations of the solvation free energy, 5–7 a continuum model was used to represent the sol-

vent, which simply amounted to a uniform effective medium with a fixed dielectric constant. 

This model has been shown to deliver solvation free energies with an accuracy of ±1 kcal/mol 

for neutral solutes, 8 but the mean unsigned errors for ionic species are around 4 kcal/mol. 9 

Since a variation in the solvation free energy by 1.36 kcal/mol results in an unit change of the 

pKa value, 7 an error of 4 kcal/mol in the solvation free energy calculation is too large to al-

low for reliable prediction of pKa values.  Consequently, in more recent investigations, the 

continuum model has been refined by adding explicit solvent molcules to directly account for 

local solute solvent interactions that prominently contribute to the solvation energy. 10–12 This 

cluster-continuum model generally yields more accurate results.  Both approaches are well 

documented in a recent review article by Ho and Coote. 13 However, there are no reported 

studies of pKa calculations that account for the influence of the local environment beyond ex-

plicit solvent molecules.  The overall goal of this thesis is to develop a method so that the 

solvation free energy and pKa of the hydrophobe molecule on the HEUR rheology modifier 

could be accurately calculated without significant increase of computational effort. Specific 

objectives and milestones towards accomplishing this goal are: 

 Gain a fundamental understanding of how to calculate pKa and solvation free energy.  

 Develop an improved method based on the traditional continuum model to calculate 

the solvation free energy more accurately without increasing much computational ef-

fort.  
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 Apply the method to study the solvation free energy and pKa of the hydrophobe mole-

cule on HEUR rheology modifier and study how the surroundings affect these proper-

ties.  

 Develop an ML approach to further decrease the computational cost and give accurate 

prediction of the solvation free energy, and get an idea of the effectiveness of the hy-

drophobe molecular design.  

1.3 Thesis Overview 

The contents of the thesis are divided into 5 chapters. The results of three main projects are 

presented in Chapter 2, 3, and 4. 

Chapter 2 presents the study of solvation free energy calculations with our hybrid cluster-con-

tinuum model. We calculate the solvation free energies of novel molecules using two differ-

ent approaches; analyze the advantages for each of them and discuss the possible factors that 

could influence the calculation accuracy.  

In Chapter 3 we apply the model we have developed in Chapter 3 to study the solvation free 

energy and pKa value of the hydrophobe molecule. Besides the influence of explicit solvent 

molecule, we also study the influences to the solvation free energy and pKa value, which 

could be brought by the Latex particle.  

In Chapter 4 we further decrease the computation effort/time by developing an informatics 

based ML model to predict the solvation free energies from some pre-existed solvation data. 

We also discuss the keys that affect the prediction accuracy and possible ways to further im-

prove the model performance.  
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Chapter 5 gives a final summary, including major findings and achievements in this thesis 

study. An outlook for future research in this field is also suggested.   

1.4 References 
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Chapter 2  

Hybrid Method for the Calculation of the Solvation Free Energy of Or-

ganic Molecules in Aqueous Solutions 

2.1 Introduction 

Accurate prediction of the solvation free energies is essential in many fields of study, ranging 

from chemical reactions in solutions to the design of functional molecules in chemistry and 

biochemistry. However, the reliable determination of the solvation free energies for ionic spe-

cies can be computationally challenging.  Over the past decade, much theoretical effort has 

been put into the development of methods to calculate the solvation free energy.  Explicit 

solvation models involve actual solvent molecules in the calculation. This provides descrip-

tive and realistic details of the solvation environment, which in principle should give an accu-

rate result. However, the explicit representation of a dense solvent molecule configuration 

embedding the solute creates a large number of degrees of freedom and makes it difficult for 

first-principles calculation codes to find the fully relaxed complex structure. 1 Unlike the 

computationally expensive explicit models, continuum-based, or implicit solvent models, are 

easy to utilize. Examples are the polarizable continuum solvation model (PCM), 2 its varia-

tions like IPCM and SCIPCM, 3 and the SMx solvation models. 4–9 In these models, actual 

solvent molecules are represented by a uniform polarizable medium of fixed dielectric con-

stant, and the solute molecule is embedded in a suitably shaped cavity. The main shortcoming 
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of implicit models is that they are inadequate for ionic species, mostly because of the failure 

to properly account for the strong localized solute-solvent interactions. Even for the recent 

SMD solvation model, where an additional correction term has been introduced to correct for 

these localized interactions, the average deviation between calculated and measured solvation 

energies is still of the order of 4 kcal/mol. 10 To overcome this shortcoming, cluster-contin-

uum models, where explicit solvent molecules are added to the continuum model, have been 

devised in recent solvation free energy calculations. 11–15 

Cluster-continuum model approaches towards the calculation of solvation free energies in 

aqueous solution have been undertaken previously for species such as H+, OH- and F- by 

Zhan, 11, 13, 14 and for H+ and Cu2+ by Bryantsev. 15 These studies produced results close to the 

experimental solvation free energies are reported upon adding a seemingly arbitrary and rela-

tively small number of solvent molecules in the cluster-continuum model. However, the range 

of increments in added solvent molecules in these studies is likely too narrow to prove con-

vergence for the reported solvation energy magnitudes. In Zhan’s work for H+ solvation free 

energy calculation, only three different cluster sizes, i.e., H+(H2O), H+(H2O)4 and H+(H2O)10 

were considered. Similarly, Bryantsev examined four different sizes of cluster H+(H2O), 

H+(H2O)6, H+(H2O)10 and H+(H2O)14.  Both authors claimed that their optimized structures 

are the most stable ones, but they only obtained comparable optimized geometries for 

H+(H2O)4. The optimized geometries for H+(H2O)10 were very different between these inde-

pendent studies, even though the level of theory and basis set that these researchers were us-

ing, B3LYP/6-31++G(d,p) for Zhan and B3LYP/6-311++G(d,p) for Bryantsev, are almost 

identical, notwithstanding the fact that B3LYP is not the optimal functional that we should 
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use because it does not describe the Van der Waals interactions well. 16 This suggests that it 

must be really difficult to find the optimized geometry and that multiple stable structures may 

exist when the size of the cluster becomes large.  It also suggests that the experimentally 

measured solvation free energy may indeed reflect an average of multiple possible stable 

clusters. 

It is of great importance for the cluster-continuum model to establish convergence in the en-

ergy calculations as a function of the number of explicit solvent molecules, i.e., to determine 

the minimum number of explicit water molecules beyond which addition of more water mol-

ecules no longer improves the accuracy of the calculation. In the present work we systemati-

cally explore this aspect from two different computational approaches – DFT geometry opti-

mization approach and MD sampling approach, using small solvated molecules. The DFT ge-

ometry optimization approach is similar to the methods used by Zhan and Bryantsev. We 

have improved this method by adding more clusters with different sizes and we also find 

multiple stable geometries for these clusters to calculate the solvation free energy as the size 

of the cluster increases. We further increase the number of water molecules contained in the 

cluster of the hybrid model, up to three coordination layers around the solute molecule, when 

using the MD sampling approach. Finally, we examine the importance of maintaining charge 

neutrality in these calculations by placing a counter ion to the solute molecule in the cluster, 

and how do decide on the location of this counter ion.  To our knowledge, this issue has been 

ignored in all of the previous studies described in the literature. 
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2.2 Theory and Methodology 

2.2.1 Calculation Formalisms 

Traditional thermodynamic cycles for solvation free energy calculations with the cluster-con-

tinuum model, as shown in Scheme 1, have been discussed thoroughly in recent works.  15, 17 

Scheme 1-1: Thermodynamic cycle for solvation free energy calculation using the cluster-continuum model.  

 

The top equation in this thermodynamic cycle describes gas-phase reactions between the so-

lute A and a cluster of n water molecules (H2O)n, 

𝐴(𝑔) + (𝐻ଶ𝑂)௡(𝑔) → 𝐴(𝐻ଶ𝑂)௡(𝑔)    ∆𝐺௖௟௨௦௧,௚,  (1) 

where ∆𝐺௖௟௨௦௧,௚ is the free energy of forming the gas-phase solute-water cluster 𝐴(𝐻ଶ𝑂)௡. It 

is defined with an ideal gas at 1 atm as the standard state.  The vertical equations in the ther-

modynamic cycles describe the solvation processes, i.e., the immersion into immersion into 

the continuum with the dielectric constant of the solvent, 

𝑋(𝑔) → 𝑋(𝑎𝑞)   ∆𝐺௦௢௟௩(𝑋) .  (2) 

Here 𝑋 represents either the solute molecule, the water cluster, or the solute-water cluster. 

The ∆𝐺௦௢௟௩(𝑋) are the solvation free energies associated with these processes.  

The bottom equation describes the aqueous-phase reactions between the solute 𝐴 and the 

clusters of water molecules, 

𝐴(𝑎𝑞) + (𝐻ଶ𝑂)௡(𝑎𝑞) → 𝐴(𝐻ଶ𝑂)௡(𝑎𝑞)    ∆𝐺௖௟௨௦௧,௔௤   (3) 
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The final product 𝐴(𝐻ଶ𝑂)௡(𝑎𝑞) on the bottom right of the cycle is the hybrid cluster-contin-

uum representation of solute in the aqueous phase. The formation of a cluster of solvated 

molecule in liquid water does not involve any change in free energy, i.e. ∆𝐺௖௟௨௦௧,௔௤ = 0. 18 

Completing the thermodynamic cycle in Scheme 1 requires that all free energy changes add 

up to zero. Oftentimes, calculated gas-phase free energies are defined with an ideal gas at 1 

atm as the standard state,, whereas the solvation free energies are associated with the 1 M 

(gas) → 1 M (solution) process. Therefore, a correction term ∆𝐺௖௢௥௥  is needed to account for 

the changes in standard reference state. Accordingly, the solvation free energy of a given so-

lute is calculated from the cluster formation free energy in the gas phase, the solvation free 

energies of the clusters and the standard state correction: 

∆𝐺௦௢௟௩(𝐴) = ∆𝐺௖௟௨௦௧,௚ + ∆𝐺௦௢௟௩(𝐴(𝐻ଶ𝑂)௡) − ∆𝐺௦௢௟௩((𝐻ଶ𝑂)௡) + ∆𝐺௖௢௥௥   (4) 

In this work, we assume that there are no significant changes in the geometry and vibrational 

energy upon transitioning from the gas phase to the aqueous phase. Only electronic contribu-

tions are taken into consideration in the DFT calculations. It has been shown that the use of 

vibrationally corrected free energies of solvation does not necessarily improve the quality of 

the calculated free energy of solvation, as long as solvation induced changes in the geometry 

and frequencies are small. 19, 20 Therefore the solvation free energy included in the solvation 

process 𝐴(𝑔) → 𝐴(𝑎𝑞) can be written as: 

∆𝐺௦௢௟௩(𝐴) = 𝐸௔௤(𝐴) − 𝐸௚(𝐴)  (5) 

Here 𝐸௔௤(𝐴) and 𝐸௚(𝐴) are the electronic energies of 𝐴 in the aqueous phase and gas phase 

respectively. Notice that without the above assumption, we need to carry out the frequency 
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calculations to obtain the vibrational energies and they are done at the 1 atm standard state in 

Gaussian09, which is different from the standard state for the 1 M (gas) → 1 M (solution) 

solvation process. Thus we need a correction term for the changes in standard state. But now 

since we assume there are no vibration energy changes between the gas phase and the aque-

ous phase, all calculations are done at the same standard state (1 M) and we no longer need 

the correction term.  

Similar to what we did in Equation 5, furthermore we assume that the vibrational energy 

change on the two sides of Equation 3 is negligible. 19, 20 Then we can get: 

𝐸௔௤(𝐴) = 𝐸௔௤(𝐴(𝐻ଶ𝑂)௡) − 𝐸௔௤((𝐻ଶ𝑂)௡)  (6) 

Therefore we can simplify the calculation of the solvation free energy of 𝐴 in the following 

form: 

∆𝐺௦௢௟௩(𝐴) = 𝐸௔௤(𝐴(𝐻ଶ𝑂)௡) − 𝐸௔௤((𝐻ଶ𝑂)௡) − 𝐸௚(𝐴) (7) 

2.2.2 Cluster Configurations 

To generate the initial configurations for solvation, we first carry out molecular dynamics 

(MD) simulations starting with a random placement of solute and solvent molecules.  This 

procedure is used to produce a dense configuration of the solute and water molecules, in equi-

librium at room temperature, and hence, exhibiting the corresponding degree of thermal dis-

order.  Figure 1 shows a system with one solute molecule (NH4
+) and 215 water molecules in 

a simulation box of 18.856 Å edge length, subject to periodic boundary conditions at 

298.15K, before and after equilibration using MD simulations.  During equilibration, the vol-

ume of the simulation box is kept constant achieving a density remains of 0.963g/cm3. 
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Figure 2-1. Structures of NH4+ and 215 water molecules before (a) and after equilibration using MD simulations 

(b). 

From this point onwards, we have two different approaches to generate a structural model of 

the solvation cluster.  Our goal is to construct a solvent configuration surrounding the solute 

molecule that is sufficiently detailed to comprise all essential local molecular interactions.  

One approach is that we extract a cluster that contains about two concentric coordination 

shells of water molecules surrounding the solute molecule from the MD simulation.  Then we 

further eliminate molecules to reach the target cluster size and optimize the geometry using 

DFT energy minimization, ultimately resulting in the free energy of the fully relaxed cluster 
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at zero Kelvin. The other approach is that we sample a large number of distinct clusters from 

a series of different instantaneous configurations produced by the MD simulations and only 

carry out single point calculations to get a statistical distribution of cluster energies, reflecting 

the systems natural sampling of energies at finite temperatures. To this end, the calculation is 

repeated many times for configurations collected along the MD trajectory, appropriately 

spaced in time.  Each configuration represents a snapshot of a structure subject to thermal 

motion, and from the distribution of calculated solvation energies we can evaluate room-tem-

perature thermal averages. The first approach tends to result in specific molecular configura-

tions constrained by coordination requirements that strongly depend on the cluster size.  The 

second approach is computationally more efficient, thus allowing us to consider larger clus-

ters, and at the same time it accounts for the effects of thermal disorder.  Importantly, we have 

ascertained that the two approaches yield equivalent results. 

2.2.3 Computational Methods 

The AMBER force field 21 in LAMMPS 22 is used to describe the interactions between all 

species in the MD simulations. All DFT calculations are carried out using Gaussian09 23, em-

ploying the M06-2X functional with the 6-31++G(d,p) basis set.  The M06-2X functional is a 

highly non-local functional with double amount of non-local exchange (2X), and it is parame-

terized only for non-metals. We choose M06-2X because it was parameterized to allow for an 

approximate modeling of vdW interactions at short-range, 24 which is of great importance for 

our calculations about clusters.  

The solution phase free energies are determined using self-consistent reaction field (SCRF) 

calculations based on the SMD model. SMD is a continuum solvation model based on the 
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quantum mechanical charge density of a solute molecule interacting with a continuum de-

scription of the solvent. In the SMD model a reaction field calculation is performed using the 

integral equation formalism model (IEFPCM) with radii and non-electrostatic terms from 

Truhlar and co-workers. 10  

2.3 Results and Discussion 

In the following sections, we analyze the calculations of solvation free energies of cations 

(NH4
+, CH3NH3

+) and anions (OH-, SH-) using the two different approaches introduced 

above, and examine how the number of explicit water molecules included in the cluster-con-

tinuum model, the inclusion of a counter ion to achieve charge balance in the system, and the 

placement of this counter ion affects the reliability of the calculations. When carrying out ge-

ometry optimization, we vary the number of explicit water molecules from 1 to 12. For the 

direct MD sampling approach as many as 48 explicit water molecules are included in the cal-

culations. 

2.3.1 Geometry Optimization Approach.  

In this approach, the maximum number of water molecules that we include in a cluster is 12 

because for small solute molecules, 12 water molecules are about two concentric coordina-

tion layers around it. The significant local solute-solvent interactions are well considered. 

Moreover, the computational cost of geometry optimization involving van der Waals interac-

tions increases significantly with the number of molecules in the system. The solution-phase 

free energy of the solute A can be calculated from the difference between the solution-phase 

free energy of the cluster A(H2O)n and that of the water cluster (H2O)n.  
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2.3.1.1 Water Clusters. 

Most stable geometries of the water clusters (H2O)n, with n = 2 to 12, in the solvent configu-

ration, as obtained using M06-2X/6-31++G(d,p) calculations are shown in Figure 2.  The 

structures of these optimized water clusters are similar to those in the gas phase predicted by 

others, such as a linear dimer and a cyclic trimer, tetramer, and pentamer structure. When 

there are five or fewer water molecules included in a cluster, the minimum-energy geometries 

of the clusters tend to be two-dimensional regular polygons, as this maximizes the number of 

hydrogen bonds. The prism hexamer marks the transition from two-dimensional cyclic struc-

tures to three-dimensional structures. 25 Bryantsev claimed the cyclic hexamer to be the most 

stable geometry for a cluster of six water molecules, which should not be the case because the 

cyclic hexamer only have six hydrogen bonds compared to the nine hydrogen bonds in the 

prism hexamer. Notice that we cannot observe any three-dimensional structures as the most 

stable configurations when n<6 because the bond angle of the water molecule is about 109°, 

the out-of-plane water molecule cannot form more than one hydrogen bond with the in-plane 

water molecules. The structures of the octamer and decamer are the same as those described 

in Bryantsev’s work. 15  
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Figure 2-2. Solution-phase structures of water molecule clusters containing 2 to 12 water molecules. 

The calculated solution-phase energies and the solvation free energies of water clusters are 

shown in Table 1. When the number of water molecules included in the cluster increases, the 

solvation free energy of water clusters per molecule decreases because of the commensurate 

number of hydrogen bonds that form within the clusters. Bryantsev and coworkers observed 

similar trends. 15 

Table 2-1. Solution-phase free energies (hartree), solvation free energies (kcal/mol) of water clusters, and solvation 

free energies (kcal/mol) of water clusters per molecule. 

𝑛 𝐺௦((𝐻ଶ𝑂)௡) ∆𝐺௦௢௟௩((𝐻ଶ𝑂)௡) ∆𝐺௦௢௟௩((𝐻ଶ𝑂)௡)/𝑛 

1 -76.41 -9.03 -9.03 

2 -152.82 -14.77 -7.39 

3 -229.24 -13.68 -4.56 
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4 -305.66 -16.67 -4.17 

6 -458.50 -19.30 -3.22 

8 -611.34 -19.11 -2.39 

10 -764.17 -23.41 -2.34 

12 -917.01 -28.75 -2.39 

 

2.3.1.2 Test Solute Molecules 

In the following we discuss the results of solvation free energy calculations for four test mo-

lecular groups, NH4
+, CH3NH3

+, HS- and OH-, i.e., two cations and two anions.  These mole-

cules are sufficiently small to be completely enveloped in water molecules at an affordable 

computational cost, while still providing a meaningful variation in size.  The cations share a 

common protonation/deprotonation group, namely amine.  The anions are structurally simple 

but vary in size and electronegativity of the chalcogen.  Finally, for all molecules solvation 

free energies are available in the literature for comparison. 

2.3.1.3 Ion/Water Cluster. 

For each ion/water cluster A(H2O)n (n=1 to 12), four to six initial conformations are extracted 

from the MD simulations. We keep the n nearest water molecules around A and eliminate the 

rest. The final solution-phase free energy is the average of these conformations after geome-

try optimization. Compared to previous studies where only one conformation was used, 26 we 

find that taking the average of more than one conformation improves the reliability of the 

solvation free energy calculation. Such an approach was also used to successfully calculate 

the acid dissociation constants of dicarboxylic acids by Marenich. 27 
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Figure 3 shows the distribution of water molecules around the central solute NH4
+. Each peak 

represents one concentric layer of water molecules. The first two concentric layers contain 12 

water molecules, which is the reason why we choose n = 1 to 12.  

 
Figure 2-3. Distribution of water molecules around the solute ion NH4+. The black dashed line is the cutoff for the 

closest two concentric layers. 

Examples of optimized solution-phase geometries of cluster NH4
+/(H2O)n, n = 1 to 12, as ob-

tained using M06-2X/6-31++G(d,p) calculations are shown in Figure 4. And their corre-

sponding electronic energies are summarized in Table 2.  
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Figure 2-4. Solution-phase structures of NH4+/(H2O)n clusters containing 1 to 12 water molecules. For each 

number of water molecules, the electronic energy of the cluster decreases from left to right. 

Table 2-2. Solution-phase free energies (hartree) of NH4+/(H2O)n clusters; a, b, c correspond to different confor-

mations of the solvation cluster as shown in Fig. 4. 
n 𝐺௦((𝑁𝐻ସ

ା𝐻ଶ𝑂)௡) (𝑎) 𝐺௦ (𝑏) 𝐺௦  (𝑐) 

1 -133.41421   

2 -209.83217   

3 -286.24427 -286.24967  

4 -362.66316 -362.66491 -362.66783 

6 -515.49830 -515.50068 -515.50788 

8 -668.34189 -668.34365  

10 -821.18180 -821.18255  

12 -974.01937 -974.02124  
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The low-energy structure has been previously reported by Wang et al. 28–30  Our results for 

small ammonium clusters (n=1-3) in the solution agree with the previous work by Pickard, 29 

but above n = 4 we observe different low-energy structures. Instead of the previously reported 

cluster where the four water molecules bond to one hydrogen each on the ammonium cation, 

29 we find NH4
+/(H2O)4  has the minimum-energy structures shown in Fig. 4 (4c), where the 

water molecules tend to form more hydrogen bonds among each other. If we compare the 

three low-energy structures for NH4
+/(H2O)4 . Fig. 4 (4a) has four hydrogen bonds, results in 

the highest electronic energy. Fig. 4 (4b) has five hydrogen bonds with lower electronic en-

ergy and Fig. 4 (4c) has six hydrogen bonds and the lowest electronic energy. The minimum-

energy structures for larger ammonia clusters NH4
+/(H2O)n (n>4) follow the same rule. Clus-

ters have lower energies if they form more hydrogen bonds.  

One of the advantages of our methodology is that the solvation free energy of the charged so-

lute can be calculated directly from the solution-phase energies of the clusters and the gas-

phase energy of the solute, we do not need to calculate the gas-phase cluster formation en-

ergy. This helps to reduce the amount of calculation and further reduce the error.  We calcu-

late the gas-phase energy of the NH4
+ ion, 𝐸௚(𝑁𝐻ସ

ା), as -56.867 hartree using the same func-

tional and basis set M06-2X/6-31++G(d,p). Combining the solution-phase energies of (H2O)n  

and NH4
+/(H2O)n , we get the solvation free energy of NH4

+ ion using Equation 7 shown in 

Figure 5.  
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Figure 2-5. Solvation free energy of NH4+ ion as a function of the number of water molecules in the cluster. The 

black line is the experimental value from the Minnesota solvation database. 31, 32 The red line is our calculated 

result, where the red dots are the average solvation free energy for each number of water molecule, and the error 

bar represents the standard error.  

The label n = 0 indicates that the solvation free energy is calculated using the traditional con-

tinuum model. It is about 3 kcal/mol higher than the experimental value. After we add one 

water molecule to the ammonia ion, the solvation free energy drops below the experimental 

value by a significant amount, i.e., it increases in magnitude as a result of the formation of 

hydrogen bonding in configurations that permit unobstructed access of water molecules to the 

solute molecule.  As we increase the number of water molecules included in the cluster, the 

solvation free energy increases and, gradually approaches the experimental value. When the 

size of the cluster exceeds four water molecules, the calculated results start to converge and 

oscillate around the experimental value. Therefore, the minimum number of explicit water 

molecules one should include in the ammonia water cluster is four. At and beyond this num-

ber the calculated solvation energy of the ammonia is sufficiently close to the experimental 

value -85.2 kcal/mol to be deemed an accurate result.  
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We apply the same method and obtain the corresponding results for CH3NH3
+, HS- and OH- 

ions as shown in Figure 6.  For each case, the solvation free energy is higher than the experi-

mental value when evaluated using the continuum model, and drops as soon as explicit water 

molecules are included in the structure.  Values start to converge when the size of the ion/wa-

ter cluster increases and contains between four and eight water molecules. The converged 

values are in good agreement with the experimental solvation free energy in all cases, except 

for the OH- ion.  For this ion we obtain a value that is about 7.3 kcal/mol below the experi-

mental solvation free energy.  The reason for this discrepancy is further analyzed below.  The 

number of explicit water molecules needed for the CH3NH3
+ ion is around eight, which is 

larger than for the other cases (n ≈ 4).  This is to be expected simply based on the larger size 

of the CH3NH3
+ ion compared to those of the other three ions. More water molecules are 

needed to adequately account for all possible local solute-solvent interactions.  
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Figure 2-6. Solvation free energy of CH3NH3+, HS- and OH- ions as a function of the number of water molecules 

in the cluster. 

The geometry optimization approach is very accurate for calculating the solvation free energy 

of small ions, because the configuration necessary to satisfy all local bonding requirements 

can be achieved with a relatively small water cluster. The final converged values yield a very 

good estimate for the solvation free energy. However, when the solute ion gets larger, we find 
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that more and more explicit water molecules need to be added to achieve convergence with 

this calculation approach. This significantly increases the computation time. Take for exam-

ple the ammonia ion, the CPU time (eight processors) to optimize the geometry of 

NH4
+/(H2O)1 cluster is about 6 minutes. But it takes at least 3 days of CPU time (optimization 

time varies for different initial structures) to finish the geometry optimization of large 

NH4
+/(H2O)12 cluster. In order to treat larger solute ions we endeavored to find a more effi-

cient approach, in which the computational effort is significantly reduced.  

2.3.2 Direct MD Sampling Approach. 

The most time consuming aspect of the geometry optimization approach is to determine the 

minimum-energy configuration, and this process becomes increasingly more costly the larger 

the solvation cluster has to be.  Instead, for each cluster size, we only carry out single point 

calculations at the M06-2X/6-31++G(d,p) level to get two groups of aqueous-phase energies 

for a large number of water clusters and ion-water clusters, sampled from the MD trajectories 

of a pure water system and a system containing the solute surrounded by water, respectively 

(Fig.7 (a) and (b)).  It is to be expected that the free energies calculated for the same clusters 

in their optimized geometries lie just beyond the low-energy tails of these distributions, i.e., 

quantities that cannot be pinpointed with great certainty.  On the other hand, the target solva-

tion energy is obtained as the difference between the energies of the water and water-ion clus-

ter.  Hence, for as long as the standard deviations in the two distributions are comparable, the 

same difference can be obtained by subtracting the average values of the two distributions 

from each other. 
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Figure 2-7. Aqueous-phase energy of NH4+/(H2O)40 cluster (a), aqueous-phase energy of (H2O)40 cluster (b), 

and the solvation free energy distribution of NH4+ calculated from these clusters (c). 

A Shapiro-Wilk’s test (p>0.05) of the histograms in Fig. 7 (a) and (b) shows that these ener-

gies approximate normal distributions very well, confirming the visual impression.  Further-

more, with 0.0123 Hartree and 0.0131 Hartree, respectively, the variances of the two distribu-

tions are very similar.  They differ by only 0.5 kcal/mol, which is well within the uncertainty 

attributed to achieving convergence when using the above geometry optimization approach.  

Consequently, instead of calculating the difference between estimated tail end values of the 

distributions in Fig. 7 (a) and (b), we calculate the average difference between the two distri-

butions, for which we employ the statistical equivalence that the average of all differences 

among values in a distribution is equal to the difference in the averages.  Take for example 

the n=40 case: 100 cluster configurations are sampled from different moments in time of the 

MD simulations for both (H2O)40 clusters and NH4
+/(H2O)40 clusters, allowing us to calculate 

100 aqueous-phase energies for each of the two clusters (Fig.7 (a) and (b)).  Subtracting each 

energy of the (H2O)40 clusters from each energy of the NH4
+/(H2O)40 clusters yields 10,000 



 

 

28

(100×100) solvation free energy values.  The distribution of these values for the ammonia ion 

embedded in 40 explicit water molecules is shown in the form of a histogram in Fig. 7 (c).  

The average value of this distribution is equal to the difference between the averages of distri-

butions 7(a) and 7(b). 33  In addition, the variance in the distribution provides a measure of 

the thermal effects at finite temperatures. 

The average value of the distribution in Fig. 7 (c) is a better approximation of the solvation 

free energy for NH4
+ calculated from the n=40 case compared to taking the difference of the 

minimum-energy aqueous-phase configurations of the two clusters calculated using the above 

geometry optimization approach. This is because with increasing cluster size it becomes more 

difficult to ascertain that the minimum-energy configuration has indeed been achieved during 

geometry optimization.  For complex structures, the configuration could likely become stuck 

in a local energy minimum. Furthermore, the MD sampling approach allows us to signifi-

cantly increase the number of explicit water molecules included in the cluster.  As a repre-

sentative example, Figure 8 shows the average solvation free energy of ammonia ion as a 

function of the number of water molecules in the cluster generated by the direct MD sam-

pling method up to n = 48. 
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Figure 2-8. Solvation free energy of NH4+ ion as a function of the number of water molecules in the cluster calcu-

lated with the direct MD sampling method. Fit lines serve as a guide to the eye. The initial drop is fitted using a 

polynomial, whereas the approach towards the convergence value is fitted using an exponential function. 

It can be seen that the solvation energy first drops with the increase of the number of water 

molecules. It reaches its minimum at 10 water molecules and then increases until 28 water 

molecules are included in the cluster. At this point the solvation free energy starts to fluctuate 

about the convergence value of about -85.5 kcal/mol, which again, is very close to the experi-

mental value -85.2 kcal/mol.  

Compared to the geometry optimization approach, the computation time for the solvation free 

energy of the NH4
+/(H2O)12 cluster is about 200 times faster. This direct MD sampling 

method allows us to calculate the solvation free energy of large clusters, such as 

NH4
+/(H2O)48 . The computation time of single point calculation for the NH4

+/(H2O)48  cluster 

is still about 10 times faster than that of geometry optimization for the NH4
+/(H2O)12 cluster. 

We apply the same approach to the other ions. We observe convergence when the number of 

water molecules gets large in all cases. The converged solvation free energy for the CH3NH3
+ 

ion is about -73.2 kcal/mol, 3.2 kcal/mol higher than the experimental value. The converged 
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solvation free energy for the OH- ion is about -95.6 kcal/mol, 9.1 kcal/mol higher than the ex-

perimental value. However, the converged solvation free energy for the HS- ion is about 

35.2 kcal/mol higher, which is quite different from the experimental value and suggests a pro-

cedural insufficiency in our calculations.  Whether we perform a geometry optimization or 

MD trajectory sampling, seemingly results for the small negatively charged ions exhibit the 

strongest deviations from experimental values. 

We consider two possible causes for this discrepancy - the fact the dielectric constant in the 

hybrid model may differ from that used for the effective medium in the continuum model, 

and the fact that the requirement for charge neutrality in the system had so far been ignored in 

our approach, as well as in the literature.  The calculations in solution phase above are all us-

ing the same dielectric constant of -78.5533𝜀଴, which is the default dielectric constant for 

continuum water solution model in Gaussian09.  Since we are using the hybrid model, which 

includes explicit water molecules in addition to the effective medium of the default contin-

uum model. The dielectric constant should shift towards the dielectric constant appropriate 

for an explicit molecular model, which is equal to the dielectric constant of vacuum. Figure 9 

shows how the solvation free energy changes with different dielectric constant of the NH4
+ 

and HS- system.  
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Figure 2-9. Solvation free energy of OH- ion as a function of the number of water molecules in the cluster calculated 

with the direct MD sampling method. 

For both systems, the dielectric constants have a minor influence on the solvation energy, es-

pecially when it is not very different from the default value.   Hence, we conclude that this 

does not explain the large difference between the calculated and the experimental solvation 

energy of the HS– particle. 

Another possible cause is the need for including the counter ion explicitly into the molecular 

configuration, so as to achieve charge neutrality in the system. In a real solution, there cannot 

be only one type of ionic species. The counter ion, which has the opposite charge of the so-

lute ion, must also exist. The position of the counter ion, or the distance between the counter 
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ion and the central solute ion may have an influence on the resulting solvation energy.  In ad-

dition to the central solute ion and the water molecules, we add one OH– and one H3O+ as the 

counter ion to the positive charged and negative charged system, respectively.  To begin with, 

we place the counter ion at a close distance from its counterpart. To calculate the solvation 

free energy we include the necessary terms for the counter ion in equation 2 to yield 

∆𝐺௦௢௟௩(𝐴) = 𝐺௦(𝐴(Hଶ𝑂)௡𝐶) − 𝐺௦((𝐻ଶ𝑂)௡) − 𝐺௚(𝐴) − ∆𝐺௦௢௟௩(𝐶) (3) 

where C is the counter ion OH– or H3O+, for ∆𝐺௦௢௟௩(𝐶) we use the experimental value, 

△Gsolv(OH–)= -104.7kcal/mol and △Gsolv(H3O+)= -110.3kcal/mol. 31, 32 

Then we pull the counter ion away from the central ion and repeat the calculation for differ-

ent distances.  In the HS- ion case, HS- and H3O+ start with a distance around 3.0 Å. Upon in-

creasing this distance, the convergence value of the solvation energy approaches the experi-

mental value, and begins to level out at around 10.0Å. The final result is around -

77.1kcal/mol, 5.0kcal/mol lower than the experimental value when we have more than 32 wa-

ter molecules in the cluster. This is a huge improvement compared to the no counter ion situa-

tion.  Figure 10 shows a comparison between the solvation energies of HS- ion without the 

counter ion, with the counter ion close to the central ion, and with the counter ion far away 

from the central ion. 
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Figure 2-10. Solvation energy of HS- without the counter ion (gray), with the counter ion close to the central ion 

(yellow) and with the counter ion far away from the central ion (blue), respectively. 

For NH4
+ ion and CH3NH3

+ ion, adding a counter ion does not result in a significant improve-

ment of the accuracy for the solvation free energy calculation. For the OH- ion, when the 

counter ion is located farther away from the central ion, the solvation free energy converges 

closer to the experimental value when the number of water molecules is larger than 28.  The 

error decreases from 9.1kcal/mol to 4.9kcal/mol, which indicates a good improvement.  

As for the calculation speed, if we compare the CPU time (8 processors) that it takes to get 

the solvation free energy for the NH4
+/(H2O)12 cluster, the MD sampling approach (20 

minutes) is about 200 times faster than the DFT geometry optimization approach (3 days).  

Based on our findings, the MD sampling approach requires a larger number of explicit water 

molecules for convergence compared DFT geometry optimization.  We attribute this to the 

fact that in configurations removed from the energy minimum, charge and dipole interactions 

are as not ideally balanced as they would be with molecular positioning and orientation, and 
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additional coordination layers are required to compensate for electrical field leakage. To illus-

trate this, consider how much the low-energy configurations of the NH4
+/(H2O)6 cluster in 

Figure 4 differ from to those of the NH4
+/(H2O)8 cluster.  This shows how an increasing num-

ber of H2O molecules the environment surrounding the solute provide more effective shield-

ing to the field emanating from the central charged species, and results in the convergence of 

local electrostatic interactions.  However, despite the larger number of water molecules to ac-

count for, the CPU time it takes to get the solvation free energy for the NH4
+/(H2O)48 cluster 

is about 11 hours, still a much shorter time than is required for smaller size of clusters to relax 

using the DFT geometry optimization approach. 

2.4 Conclusions 

A hybrid cluster/continuum model is devised to calculate solvation energy of four ionic mo-

lecular groups in aqueous solution.  This approach combines a higher accuracy resulting from 

the consideration of detailed local interactions that are specific to the structure of each solute 

molecule, while maintaining the computational speed resulting from an effective medium for-

mulation.  As the starting configurations we extract water solute clusters of the desired sizes 

from a large bulk configuration generated using MD simulation, subject to periodic boundary 

conditions.  A systematic variation of the number of water molecules included in these calcu-

lations reveals that, depending on the solute size, between four and ten explicit water mole-

cules must be included in the hybrid model in order to account for the most essential local in-

teractions.  The larger the solute, and the more complex its structure, the larger is this thresh-

old number of explicit solvent molecules.  In a first approach, the cluster geometry is opti-
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mized using DFT energy minimization, which yields very accurate solvation energy evalua-

tions about NH4
+, CH3NH3

+, HS- ions and good approximation about OH-.  However, this ap-

proach is very time-consuming and can only be reasonably applied to small ions.  To encom-

pass a wider range of molecular sizes and structures, we explored a second approach based on 

DFT single point calculations of a large number of configurations of a given system, sampled 

along the trajectory from an MD simulation.  This procedure yields distributions of solvation 

energies with comparable variances.  Since the desired measure is constructed from the dif-

ference between the solvation energies of a water and a water/solute cluster, we can use the 

most probable value of each distribution instead of the lowest energy value. Eliminating the 

need for energy minimization in DFT calculations improves the calculation speed and finite 

temperature can also be accounted for. The solvation energy tends to converge beyond certain 

size of clusters. Finally, the inclusion of a counter ion to achieve charge balance has proven 

necessary for the accurate calculation of the solvation energy calculation in the case of some 

systems like HS- and OH-.  In that case, it is also important to identify the correct distance be-

tween the counter ion and the central ion. 
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Chapter 3  

Accurate Acid Dissociation Constant Calculations for Hydrophobes in the 

Rheology Modifiers 

 Introduction 

Aqueous polymer systems, such as containing emulsion polymer binders used for coating sur-

faces, typically draw on thickeners to obtain target rheological properties, like the specific de-

gree of viscosity needed for the proper formulation and application. Traditional thickeners used 

in such coating emulsions, e.g., cellulose, are non-associating thickeners. 1 However, in the last 

two decades, a new, improved class of thickeners known as associative thickeners have been 

found to be superior to cellulose, offering properties including improved flow and leveling in 

aqueous systems. 2 

Thickeners are called associative because their thickening function involves hydrophobic as-

sociations among hydrophobic groups in the thickener molecules, as well as between these 

hydrophobic groups in and other hydrophobic surfaces. Commonly used associative thickeners 

have a polymeric backbone with hydrophobic functional groups either attached to or incorpo-

rated into the backbone. The backbone can be neutral, such as poly(ethylene oxide) (PEO) and 

poly(acrylamide) (PAM), or charged, such as poly(acrylic acid) (PAA) or partially hydrolyzed 

poly(acrylamide) (PHPAM). The hydrophobic groups are typically classified as aliphatic, 

fluorinated, or aromatic. 3 
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Among the commercially available associative thickeners are hydrophobically modified eth-

ylene oxide urethane (HEUR) rheology modifiers, which are water-based polyurethane formu-

lations manufactured by Dow Coating Materials, a division of the Dow Chemical Company. 

They are added to interior and exterior latex (water-based) paint formulations to control the 

viscosity of the paint. 4 The structure of the HEUR molecule is shown in Figure 1. It is com-

posed of a polyurethane polyether backbone and two amine hydrophobes on each end of the 

backbone.  

 

Figure 3-1. Structure of HEUR rheology modifier. 

Ethoxylated bis(2-ethylhexy)amine is one of the potential candidates for the hydrophobe group 

on HEUR molecules. It is a tertiary amine with a NCO reactive group as shown in Figure 2. 

Indeed, ethoxylated bis(2-ethylhexy)amine provides a unique mechanism for controlling the 

thickening function of the HEUR molecules, because, depending on the acidity of the aqueous 

solution, the nitrogen atom on the hydrophobe molecule can either protonate of deprotonate.  

In a basic environment, most of the ethoxylated bis(2-ethylhexy)amine remains in its deproto-

nated form, which is more hydrophobic and thereby promotes attraction of the amine to the 

latex particle surface, effectively anchoring the HEUR molecule to it.  This results in a thick-

ening of the suspension.  Conversley, when lowering the pH of the solvent, the ethoxylated 

Amine 
hy-
dro-

Urethane PEO Urethane 
Amine 

hy-
dro-
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bis(2-ethylhexy)amine protonates.  The ionized form of the group interacts favorably with the 

dipole of the water molecule and is more easily solvated, which causes the HEUR molecules 

to detach from the latex surface, and hence reversing the thickening effect.  The governing 

factor that reveals the point of transition between the two behaviors is the acid dissociation 

constant Ka, or, as it is reported most commonly, the negative logarithm of this constant, pKa.  

In view of further elucidating this process, understanding the underlying mechanisms, and ul-

timately, achieve a predictive design capability based on a computational approach, it is imper-

ative to be able to accurately calculate the pKa values for arbitrary hydrophobe molecules. 

 

Figure 3-2. Molecular Structure of ethoxylated bis(2-ethylhexy)amine. 

Over the past decade, accurate pKa predictions using quantum chemical methods have been 

attempted numerous times.  The most common approach is to calculate the pKa using a ther-

modynamic cycle involving the gas-phase reaction free energy and solvation free energies of 

all reaction partners.  The calculation details for this approach are outlined in the next section.  

While the calculation of the gas-phase reaction energies is straightforward, as it only involves 

the reaction partners themselves, the accurate calculation of free energies in solution remains 

difficult, because the interactions with the solvent must also be accounted for.  In early pKa 
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calculations of the solvation free energy, 5–7 a continuum model was used to represent the sol-

vent, which simply amounted to a uniform effective medium with a fixed dielectric constant. 

This model has been shown to deliver solvation free energies with an accuracy of ±1 kcal/mol 

for neutral solutes, 8 but the mean unsigned errors for ionic species are around 4 kcal/mol. 9 

Since a variation in the solvation free energy by 1.36 kcal/mol results in an unit change of the 

pKa value, 7 an error of 4 kcal/mol in the solvation free energy calculation is too large to al-

low for reliable prediction of pKa values.  Consequently, in more recent investigations, the 

continuum model has been refined by adding explicit solvent molcules to directly account for 

local solute solvent interactions that prominently contribute to the solvation energy. 10–12 This 

cluster-continuum model generally yields more accurate results.  Both approaches are well 

documented in a recent review article by Ho and Coote. 13 However, there are no reported 

studies of pKa calculations that account for the influence of the local environment beyond ex-

plicit solvent molecules.  In this study, we focus on the accurate pKa prediction of ethoxylated 

bis(2-ethylhexy)amine, considering its local environment, not only explicit water molecules 

but also a fragment of the latex polymer that the hydrophobe could be in contact with.  Using 

the computational procedure described in our previous chapter, which involves a combination 

of density functional theory (DFT) calculations and molecular dynamics (MD) simulations, 

we first ascertain convergence in the energy calculations, i.e., establish the minimum number 

of explicit water molecules and the shortest latex segment needed to obtain pKa values that no 

longer change in a considerable way upon further increasing the complexity of the structure.  

We then examine in detail the most significant contributions to the calculated pKa value and 
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document the extent to which different computational strategies improve the results.  Finally, 

we analyze our findings in terms of the effectiveness of the hydrophobe molecular design. 

 Theory and Methodology 

3.2.1 pKa Calculations 

For acid dissociation reaction 

𝐻𝐴ା
(𝒂𝒒)

∆ீ೏೐೛ೝ೚೟,ೌ೜
°

ሱ⎯⎯⎯⎯⎯⎯⎯ሮ 𝐴(௔௤) + 𝐻(௔௤)
ା   (1) 

the pKa is defined as  

𝑝𝐾௔ = −𝑙𝑜𝑔𝐾௔,  (2) 

and since at equilibrium, the standard free energy of deprotonation of 𝐻𝐴ା in the aqueous 

phase can be written as 

∆𝐺ௗ௘௣௥௢௧,௔௤
° = −𝑅𝑇𝑙𝑛𝐾௔ = −2.303𝑅𝑇𝑙𝑜𝑔𝐾௔  (3) 

The pKa of an acid 𝐻𝐴ା is then given by 

𝑝𝐾௔ =
ଵ

ଶ.ଷ଴ଷோ்
∆𝐺ௗ௘௣௥௢௧,௔௤

°   (4) 

where 𝑅 is the ideal gas constant and 𝑇 is the temperature, 𝑅𝑇 is equal to 0.593 kcal/mol at 

room temperature (298 K).  To compute the free energy associated protonation-deprotonation 

reaction in aqueous solution it is impractical and unnecessary to replicate the naturally occur-

ring atomic-scale rearrangements during this process.  Instead, it is sufficient to consider the 

beginning state (hydriphobe and proton) and ending state (protonated hydrophobe) of this re-

action.  Calculating the free energy change associated with the protonation of the isolated 

hydorphobe molecule, which corresponds to the reaction in the gas phase, is straightforward, 

as it only involves the reaction partners themselves.  To obtain the corresponding quantity for 
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the reaction occurring in aqueous solution requires the additional knowledge of the solvation 

free energies of reactants and product.  This can be illustrated using the thermodynamic cycle 

shown in Scheme 1. 

Scheme 2-1. Thermodynamic cycle for pKa calculation. 

 

In this thermodynamic cycle, the upper equation is the acid dissociation reaction in the solu-

tion as shown in Eqn. 1 and the lower equation is the corresponding reaction in the gas phase. 

The bridges that connect these two reactions are the solvation processes of every participant 

in the reaction. Since the sum of the Gibbs free energy following a complete thermodynamic 

cycle must vanish, the standard deprotonation free energy in the aqueous phase can be written 

as: 

∆𝐺ௗ௘௣௥௢௧,௔௤
° = ∆𝐺ௗ௘௣௥௢௧,௚

° + ∆𝐺௦௢௟௩
° (𝐴) + ∆𝐺௦௢௟௩

° (𝐻ା) − ∆𝐺௦௢௟௩
° (𝐻𝐴ା)  (5) 

where ∆𝐺ௗ௘௣௥௢௧,௚
°  is the standard gas-phase deprotonation free energy, also known as the gas-

phase basicity, GB, and ∆𝐺௦௢௟௩
°  represents the solvation free energy.  

3.2.2 Gas-phase Basicity 

From the bottom equation of the thermodynamic cycle in Scheme 1 we know that 

𝐺𝐵 =  𝐺௚(𝐴) + 𝐺௚(𝐻ା) − 𝐺௚(𝐻𝐴ା) = ቀ𝐻௚(𝐴) − 𝐻௚(𝐻𝐴ା)ቁ − T ቀ𝑆௚(𝐴) − 𝑆௚(𝐻𝐴ା)ቁ +

𝐺௚(𝐻ା) = ቀ𝑈௚(𝐴) − 𝑈௚(𝐻𝐴ା)ቁ − T ቀ𝑆௚(𝐴) − 𝑆௚(𝐻𝐴ା)ቁ + 𝐺௚(𝐻ା) (6) 
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Assuming the thermal contribution to the energies of 𝐴 and 𝐻𝐴ା cancel out, we only care 

about the energy difference at 0 K.  The electronic energy and zero-point energy (ZPE) are a 

realistic measure of the energy difference. 14 The gas-phase basicity is then represented as  

𝐺𝐵 =  ൣ𝐸௚(𝐴) + ZPE(𝐴)൧ − ൣ𝐸௚(𝐻𝐴ା) + ZPE(𝐻𝐴ା)൧ + 𝐺௚(𝐻ା)  (7) 

where 𝐸௚(𝐴) and 𝐸௚(𝐻𝐴ା) are the gas-phase electronic energies of the deprotonated and pro-

tonated forms of the molecules, which are calculated at the optimized geometry from DFT 

calculations, and ZPE(𝐴) and 𝑍𝑃𝐸(𝐻𝐴ା) are their respective zero-point energies which can 

be obtained from the vibrational frequency calculations using the DFT method.  The free en-

ergy term for 𝐻ା, 𝐺௚(𝐻ା), can be calculated using the standard equations of thermodynamics 

and the Sackur-Tetrode equation. 15 A proton contains no electronic, vibrational or rotational 

energy.  Only translational energy contributes to the internal energy of the proton 𝑈௚(𝐻ା), 

which is equal to 3/2RT, i.e., 1/2RT for each translational degree of freedom.  The enthalpy of 

the proton, 𝐻௚(𝐻ା) = 𝑈௚(𝐻ା) + 𝑃𝑉 = 𝑈௚(𝐻ା) + 𝑅𝑇 = 5/2𝑅𝑇, or 1.48 kcal/mol at 298K.  

Use of the Sackur-Tetrode equation yields the entropy, 𝑇𝑆௚(𝐻ା) = 7.76 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙.  Finally 

since 𝐺௚(𝐻ା) = 𝐻௚(𝐻ା) − 𝑇𝑆௚(𝐻ା), the Gibbs free energy of the proton is equal to -6.28 

kcal/mol. 

All the DFT calculations are carried out using Gaussian09 16 at the M06-2X/6-31++G(d,p) 

level. M06-2X functional is a highly non-local functional with double amount of non-local 

exchange (2X), and it is parameterized only for nonmetals.  We chose M06-2X because it is 

parameterized to allow for an approximate modeling of van der Waals (vdW) interactions at 
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short range, 17 which is of great importance for our calculations pertaining to molecular clus-

ters when we calculate the solvation free energies.  

3.2.3 Solvation Free Energies 

From Equation 5 we know that three solvation free energies are needed to calculate the stand-

ard deprotonation free energy in the aqueous phase, i.e., the solvation free energies of the 

neutral molecule, the proton, and the charged molecule.  

The widely accepted solvation free energy of the proton, ∆𝐺௦௢௟௩
° (𝐻ା), is equal to -265.9 

kcal/mol, which was determined by Tissandier al. in 1998 using correlations between the 

solvation free energy of neutral ion pairs and experimental ion-water clustering data. 18 Kelly 

et al. confirmed this value in 2006 using a similar method but a larger data set. 19 The solva-

tion free energy of a proton can also be calculated using the approach described below.  How-

ever, in this project we did not conduct this part of calculation and used -265.9 kcal/mol for 

all calculations reported in this paper. 

While the continuum model for the calculation of the solvation free energy of the solute mol-

ecule yields relative accurate results for the solute in its charge-neutral, the method incurs a 

significant error when the solute is charged. Therefore limit use of the traditional continuum 

model to calculating ∆𝐺௦௢௟௩
° (𝐴) in water. Assuming that there are no significant changes in 

the geometry and vibrational energy upon transitioning from the gas phase to the aqueous 

phase, only electronic contributions are considered in the DFT calculations.  In fact, it has 

been shown that the use of vibrationally corrected free energies of solvation does not neces-

sarily improve the quality of the calculated free energy of solvation, as long as solvation in-

duced changes in the geometry and frequencies are small. 20, 21 We also prove below that the 
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small geometry change and vibrational energy difference indeed have negligible influence on 

the solvation free energy calculations of amines.  Therefore, the solvation free energy of the 

neutral solute ∆𝐺௦௢௟௩
° (𝐴) can be expressed as: 

∆𝐺௦௢௟௩(𝐴) = 𝐺௔௤(𝐴) − 𝐺௚(𝐴) ≈ 𝐸௔௤(𝐴) − 𝐸௚(𝐴)  (8) 

where 𝐸௔௤(𝐴) and 𝐸௚(𝐴) are the electronic energies of 𝐴 in the aqueous phase and gas phase 

respectively.  

To improve the calculation accuracy when calculating ∆𝐺௦௢௟௩
° (𝐻𝐴ା) we use the cluster-con-

tinuum model, which includes enough explicit solvent molecules to adequately account for 

local solute-solvent interactions. The thermodynamic cycle for solvation free energy calcula-

tions with the cluster-continuum model is shown in Scheme 2.  

Scheme 2-1. Thermodynamic cycle for solvation free energy calculation using the cluster-continuum model. 

 

Assuming again that there are no significant changes in geometry and vibrational energy in 

going from the gas phase to the aqueous phase, only the electronic contributions of the energy 

are taken into consideration, we obtain the equation to calculate the solvation free energy of 

𝐻𝐴ା as detailed in our previous chapter, 

∆𝐺௦௢௟௩(𝐻𝐴ା) = 𝐸௔௤(𝐻𝐴ା(𝐻ଶ𝑂)௡) − 𝐸௔௤((𝐻ଶ𝑂)௡) − 𝐸௚(𝐻𝐴ା)  (9) 
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where 𝐸௔௤(𝐻𝐴ା(𝐻ଶ𝑂)௡) is the electronic energy of the solute-water cluster in the aqueous 

phase, 𝐸௔௤((𝐻ଶ𝑂)௡) is the electronic energy of the water cluster in the aqueous phase and 

𝐸௚(𝐻𝐴ା) is the electronic energy of the charged solute in the gas phase. 

Similarly, to account for the chemical effects of Latex molecules when the hydrophobe is ad-

jacent to a Latex particle surface, we include a Latex polymer segment explicitly in the mo-

lecular configuration and use the cluster-continuum model to calculate both ∆𝐺௦௢௟௩
° (𝐴) and 

∆𝐺௦௢௟௩
° (𝐻𝐴ା).  The underlying formalism is essentially identical to that in Equation 9, except 

that we substitute the water cluster with the Latex polymer segment.  

All of the aqueous phase free energies are determined using self-consistent reaction field 

(SCRF) calculations based on the SMD model. SMD is a continuum solvation model (SM) 

that treats the solvent as a uniform polarizable medium of fixed dielectric constant having a 

solute molecule placed in a suitably shaped cavity. The letter "D" in the acronym stands for 

"density" to denote that the full solute electron density is used without defining partial atomic 

charges. In the SMD model a reaction field calculation is performed using the integral equa-

tion formalism of the polarizable continuum model (IEF-PCM) with radii and non-electro-

static terms from Truhlar and coworkers. 9 

 Results and Discussion 

In the following, we calculate the pKa of the hydrophobe molecule ethoxylated bis(2-

ethylhexy)amine using the method introduced above.  We describe the selection process that 

led to the choice of the M06-2X/6-31++G(d,p) level calculations for the determination of pKa 

values, which is based on a series of gas-phase basicity calculations for test molecules using 
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different combinations of functional and basis set.  Then we use this functional and basis set 

to calculate the gas-phase basicity and the solvation free energy of the hydrophobe molecule.  

When calculating the solvation free energy, we systematically examine how adding explicit 

solvent molecules and explicit surrounding particle in the environment like the Latex segment 

affect the reliability of the calculations.  Finally we compare our calculated pKa with the ex-

perimental rheology data from the Dow Chemical Company. 

3.3.1 Gas-phase Basicity Calculation  

3.3.1.1 Functional/Basis Set Selection  

First we validate the DFT calculation procedure for determining gas-phase basicity using var-

ious test molecules for which experimental data are available.  Most of the test molecules 

share a common protonation/deprotonation group with the hydrophobe molecule, namely 

amine.  The results are summarized in Table 1, and a more intuitive representation is provided 

in Figure 3.  

Table 3-1. Gas-phase basicity for test molecules with different methods in Gaussian09. The experimental values 

are from “Evaluated gas phase basicities and proton affinities of molecules: An update”.22 

Molecule 

Gas-phase Basicity (kcal/mol) 

Experi-
ment 

B3LYP/ 

6-
31G(d,p)  

B3LYP/ 

6-
31++G(d,p)  

CBS
-

QB3  

M06/6-
31 

++G(d,p)  

M06-2X/ 

6-
31++G(d,p)  

H2O  159.0 164.9 157.3 
162.

7 
157.6 158.4 

NH3 195.6 202.6 196.9 
200.

1 
196.1 196.2 

CH3NH2 205.7 212.4 207.6 
210.

2 
206 206.5 

C2H5NH2 208.5 216.1 211.1 213. 209.4  209.5 
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4 

n- C3H7NH2 210.1 217.3 212.3 
214.

6 
210.5  210.8 

(CH3)3N 217.3 222.2 218.6 
219.

8 
215.9  217.3 

(CH3)2NH 212.8    212.0 212.9 

(n-
C3H7)2NH 

219.7    219.6 220.2 

 

Figure 3-3. Calculated gas-phase basicity values vs. experimental gas-phase basicity values. 

We first confirm that diffuse functions are necessary for accurate gas-phase basicity calcula-

tions. If we compare the data from B3LYP/6-31G(d,p) (green crosses) with those from 

B3LYp/6-31++G(d,p) (blue asterisks), we find that adding the diffuse functions significantly 

decreases the mean unsigned error between the calculated gas-phase basicity and the experi-

mental value from 6.55 kcal/mol to 1.83 kcal/mol.  This is because the gas-phase basicity for 
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the molecules we are testing is a property that is closely related to the protonation and depro-

tonation of atoms with lone pairs of electrons, like nitrogen or oxygen, in which case adding 

diffuse functions dramatically improves the calculation result. 23 In addition, it is also neces-

sary to include the diffuse functions in the solvation free energy calculations that involve 

long-range interactions between the solute and its surrounding molecules.  As mentioned in 

the previous section, the M06-2X functional takes into account of the Van der Waals interac-

tion, which is of great importance in accounting for dispersive interactions for our solvation 

free energy calculations.  By comparing the black circles and the blue asterisks data in Figure 

3, we also find that M06-2X functional results in a slightly more accurate gas-phase basicity 

calculation compared to the B3LYP functional.  The mean unsigned error of M06-2X func-

tional with diffuse basis set 6-31++G(d,p) is only 0.49 kcal/mol.  Bryantsev et al. conducted 

similar evaluations of B3LYP and M06-class density functionals for predicting the binding 

energies of neutral, protonated and deprotonated water clusters, and concluded that the M06-

class density functionals yielded more accurate binding energies. 10 Overall, we have con-

cluded that the M062X/6-31++G(d,p) method leads to the most accurate results among these 

approaches.  The gas-phase basicity values we obtain for the test molecules using M062X/6-

31++G(d,p) are very close to the experimental values, with an average error of 0.75 kcal/mol.  

We therefore apply this functional and basis set for both the gas-phase basicity and solvation 

free energy calculations of the hydrophobe molecules. 

3.3.1.2 Gas-phase Basicity of the Hydrophobe Molecule  

To calculate the gas-phase basicity, we first determine the optimized geometry and vibrational 

characteristics of the ethoxylated bis(2-ethylhexy)amine in both deprotonated and protonated 
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states using standard numerical procedures for minimizing the energy of the configurations.  

The M062X/6-31++G(d,p) optimized geometries of the neutral ethoxylated bis(2-

ethylhexy)amine (deprotonated form) and that of the charged ethoxylated bis(2-

ethylhexy)amine (protonated form) are shown in Figure 4. 

 

Figure 3-4. Optimized geometry of the ethoxylated bis(2-ethylhexy) amine in deprotonated state (a) and protonated 

state (b). 

It can be seen that the two optimized geometries are quite similar, except that there is an addi-

tional proton connected to the nitrogen atom in the protonated form.  Accordingly, we expect 

comparable energies for the two different forms.  The calculated electronic and zero-point en-

ergies for the deprotonated form is -839.0169 Hartree and 0.5561 Hartree, respectively.  

Those for the protonated form are -839.4077 Hartree and 0.5721 Hartree, respectively.  Based 

on Eqn. 7, we determine the gas-phase basicity of ethoxylated bis(2-ethylhexy) amine to be 

228.91 kcal/mol. 
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3.3.2 Solvation Free Energy Calculation 

3.3.2.1 Continuum model 

Generally, the continuum model can deliver accurate solvation free energies for neutral so-

lutes. 8 We have verified this with some of our test molecules.  The solvation free energies of 

the test amines calculated using the continuum model are shown in Table 2.  

Table 3-2. Calculated solvation free energies (in kcal/mol) for neutral test molecules using the continuum model. 

The experimental values are from the Minnesota solvation database. 19, 24  

A. Molecule B. Experiment 
C. Calculated 

I 
D. Calculated II E. Calculated III 

NH3 -4.29 -4.31 -4.38 -4.54 

CH3NH2 -4.56 -4.33 -4.53 -4.48 

(CH3)2NH -4.29 -4.08 -4.46 -4.20 

(CH3)3N -3.23 -3.37 -3.81 -3.36 

 

Note that besides the column containing the experimental data, Table 2 has three columns for 

the calculated data.  All of them use the same SMD continuum model.  Column C assumes 

that there are no geometry changes upon transitioning from the gas phase to the aqueous 

phase, i.e. we use the optimized geometry in the aqueous phase for the energy calculations of 

both phases.  Conversely, for the data listed in column D, geometry optimization is carried 

out separately for both gas and aqueous phase to get the solvation free energy.  Finally, col-

umn E also does not take the geometry change into account, but it includes the vibrational en-

ergy part for the solvation free energy calculation.  We can see that for NH3, the calculated 

result from column C has a minimum error of 0.02 kcal/mol, for CH3NH2 including the ge-

ometry changes gives us a slightly more accurate result with an error of 0.03 kcal/mol, for 
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(CH3)2NH adding vibrational energy term yields the most accurate result with an error of 

0.09 kcal/mol, and finally for (CH3)2N columns C and E have very similar results with an er-

ror of 0.14 kcal/mol and 0.13 kcal/mol respectively. The overall mean unsigned error for the 

three calculation methods are 0.15 kcal/mol, 0.22 kcal/mol and 0.14 kcal/mol, respectively, 

with negligible differences. Therefore, including the geometry change or the vibrational en-

ergy term does not produce a significant improvement for these solvation free energy calcula-

tions.  When calculating solvation free energies for amines, it is reasonably accurate to apply 

the continuum model and only consider the electronic energy difference between the gas and 

aqueous phase using the same geometry that is optimized in the aqueous phase.  

We use the same method for the solvation free energy calculation of the ethoxylated bis(2-

ethylhexy) amine in the deprotonated state.  The aqueous-phase electronic energy is -

839.0208 Hartree.  Recall that the gas-phase electronic energy that we have calculated in the 

previous section is equal to -839.0169 Hartree.  Using the continuum model, the calculated 

solvation free energy of the deprotonated ethoxylated bis(2-ethylhexy) amine is thus -2.45 

kcal/mol based on Eqn. 8.  

We have also done tests with the solvation free energies of the corresponding charged solutes.  

The results are shown in Table 3.  

Table 3-3. Calculated solvation free energies (in kcal/mol) for charged test molecules using the continuum model. 

The experimental values are from the Minnesota solvation database.19, 24 

A. Molecule B. Experiment 
C. Calculated 

I 
D. Calculated II E. Calculated III 

NH4
+ -85.2 -82.1 -82.1 -82.6 

CH3NH3
+ -76.4 -74.1 -74.2 -74.3 
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(CH3)2NH2
+ -68.6 -67.2 -67.4 -67.5 

(CH3)3NH+ -61.1 -61.6 -61.7 -62.0 

 

Comparing the calculated solvation free energies with one another, the differences are all 

within 0.5%.  This further proves that including the geometry change or vibrational energy 

difference does not necessarily improve the accuracy of solvation free energy calculations, 

even for the charged solutes.  However, the mean unsigned error increases to 1.8 kcal/mol for 

the charged test amines.  Therefore we endeavor to improve the implicit continuum model by 

adding explicit surrounding solvent molecules.  The calculated solvation free energy of the 

protonated ethoxylated bis(2-ethylhexy) amine using the continuum model is -57.06 

kcal/mol. Below we examine how surrounding the hydrophobe with explicit water molecules 

in the environment affects this value.  

3.3.2.2 Explicit Solvent Effect 

We first add explicit water molecules around the protonated ethoxylated bis(2-ethylhexy) 

amine to take the significant local solute-solvent interactions into account.  To calculate the 

solvation free energy with the influence of explicit solvent effect we use Equation 9.  In our 

case solute 𝐻𝐴ା is the protonated ethoxylated bis(2-ethylhexy) amine.  𝐸௔௤(𝐻𝐴ା(𝐻ଶ𝑂)௡), 

𝐸௔௤((𝐻ଶ𝑂)௡) are the aqueous-phase electronic energies of the solute-water cluster and water 

cluster, respectively, and 𝐸௚(𝐻𝐴ା) is the gas-phase electronic energy of the solute molecule.  

The underlying theory and computational details can be found in our previous chapter. 
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We carry out molecular dynamics (MD) simulations starting with a random placement of the 

protonated ethoxylated bis(2-ethylhexy) amine and water molecules.  Figure 5 shows a sys-

tem with one protonated ethoxylated bis(2-ethylhexy) amine, one OH- counter ion (to keep 

the system charge neutral) and 1860 water molecules in a simulation box of 34.8 Å edge 

length, subject to periodic boundary conditions at 298.15 K, as the initial conditions for the 

MD simulations.  The number of water molecules and the size of the simulation box are cho-

sen so that the configuration is dense and the solute molecules in the periodic boundary con-

dition are far away enough and not affected by each other.  During equilibration, the volume 

of the simulation box is kept constant with a density of 1.20 g/cm3. The AMBER force 

fieldCORNELL et al., 1995, #61377 in LAMMPSPLIMPTON, 1995, #58695 is used to describe the interactions 

between all species in the MD simulations. 
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Figure 3-5. MD simulation system of the protonated ethoxylated bis(2-ethylhexy) amine (left bottom), the counter 

ion (top right in green) and 1860 water molecules. 

From this point onwards, we use two different approaches to generate a structural model of 

the solvation cluster.  Our goal is to construct a solvent configuration surrounding the solute 

molecule that is sufficiently detailed to comprise all essential local molecular interactions.  In 

the first approach, which involves geometry optimization, we extract a cluster that contains as 

many as six water molecules surrounding the protonated ethoxylated bis(2-ethylhexy) amine 

from the MD simulation.  We keep the water molecules nearest to the protonation/deprotona-

tion site – the nitrogen atom of the ethoxylated bis(2-ethylhexy) amine – and eliminate the 

rest.  We are able to include up to six water molecules because the computational cost of ge-

ometry optimization involving van der Waals interactions increases significantly with the 
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number of molecules in the system.  We then optimize the geometry using DFT energy mini-

mization, resulting in the free energy of a fully relaxed cluster at zero Kelvin.  For each so-

lute-solvent cluster 𝐻𝐴ା(𝐻ଶ𝑂)௡ (n=1 to 6), four to six initial configurations are extracted 

from the MD simulations.  The final aqueous-phase free energy is the average of these con-

figurations after geometry optimization, which improves the reliability of the solvation free 

energy calculation.  Representative examples of optimized aqueous-phase geometries, as ob-

tained using M06-2X/6-31++G(d,p) calculations are shown in Figure 6.  The calculated solv-

ation free energies of the protonated ethoxylated bis(2-ethylhexy) amine based on these opti-

mized structures are plotted in Figure 7 as a function of the number of explicit water mole-

cules in the system.  

 

Figure 3-6. Aqueous-phase structures of protonated ethoxylated bis(2-ethylhexy) amine/water clusters containing 

(a) 1 water molecule, (b) 2 water molecules, (c) 3 water molecules (d) 4 water molecules and (e) 6 water molecules. 
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Figure 3-7. Solvation free energy of the protonated ethoxylated bis(2-ethylhexy) amine as a function of the number 

of water molecules in the cluster, calculated by using the geometry optimization approach. The black squares are 

the average solvation free energy for each number of water molecules, and the red line is an exponential fit for the 

data when n>1. 

From Fig.6 (a) we can see that the stable low-energy configuration for the solute/one-water 

cluster is the one in which the water molecule forms a hydrogen bond with the nitrogen atom, 

intrinsically the most effective way to satisfy the local solute-solvent coordination needs.  As 

we increase the number of water molecules included in the cluster, the water molecules wrap 

around the nitrogen atom to form a more impermeable shield for the field emanating from the 

protonated site.  Figure 7 shows that the solvation energy increases and levels off as the num-

ber of water molecules included in the cluster increases. Similar to the approach taken by 

Bryantsev to determine the solvation free energy of H+ and Cu+, 10 we estimate the solvation 
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free energy of the protonated ethoxylated bis(2-ethylhexy) amine by extrapolating the calcu-

lated energies to infinite water molecules using an exponential fit function, which is equal to -

54.18 kcal/mol. 

The most time consuming aspect of the geometry optimization approach is to determine the 

minimum-energy configurations, and this process becomes increasingly more costly as the 

solvation cluster gets larger.  For example, the CPU time (eight processors) to optimize the 

geometry of the cluster containing the protonated ethoxylated bis(2-ethylhexy) amine and six 

water molecules is about 29 days and 7 hours.  In order to treat larger clusters, we must resort 

to a more efficient approach – the MD sampling approach, in which the computational effort 

is significantly reduced.  Instead of the lengthy geometry optimization, we only carry out sin-

gle point calculations at the M06-2X/6-31++G(d,p) level to get two groups of aqueous-phase 

energies for a large number of water clusters and protonated hydrophobe-water clusters, sam-

pled from the MD trajectories of a pure water system and a system containing the solute sur-

rounded by water.  By taking the average of the difference distribution from these two groups 

of energy, we get the solvation free energy of the protonated ethoxylated bis(2-ethylhexy) 

amine as a function of the number of water molecules in the cluster as shown in Figure 8. 
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Figure 3-8. Solvation free energy of the protonated ethoxylated bis(2-ethylhexy) amine as a function of the number 

of water molecules in the cluster calculated by using the MD sampling approach. The black squares are the average 

solvation free energy for each number of water molecules, and the red line is an exponential fit. 

It can be seen that the calculated solvation free energy of the protonated ethoxylated bis(2-

ethylhexy) amine is very high when the number of water molecules included in the cluster is 

small. It gradually decreases with increasing number of water molecules.  Again, extrapolat-

ing the observed trend towards the convergence value using an exponential fit, we obtain for 

the solvation energy of the protonated ethoxylated bis(2-ethylhexy) amine a value of  -51.13 

kcal/mol, comparable to that calculated using the geometry optimization approach.  Based on 

our findings, the MD sampling approach requires a larger number of explicit water molecules 

for convergence compared DFT geometry optimization.  We attribute this to the fact that in 

configurations removed from the energy minimum, charge and dipole interactions are as not 

ideally balanced as they would be with molecular positioning and orientation, and additional 
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coordination layers are required to compensate for electrical field leakage.  However, despite 

the larger number of water molecules to account for, the CPU time it takes to get the solva-

tion free energy for the cluster of protonated ethoxylated bis(2-ethylhexy) amine and 28-wa-

ter molecules is about 1 day and 1 hour, which is one and a half orders of magnitude shorter 

than is required for smaller size of clusters to relax using the DFT geometry optimization ap-

proach. 

3.3.2.3 Explicit Latex Particle Sample Effect 

After studying the effects of explicit solvent molecules on the solvation free energy of the hy-

drophobe molecule ethoxylated bis(2-ethylhexy) amine, we now examine how the presence 

of a Latex polymer segment influences its solvation free energy.  

First we create a Latex polymer fragment large enough to be significant, but still small 

enough to accommodate computationally.  The main components of the Latex particle are 

methyl methacrylate (MMA) and butyl arcylate (BA).  We use MMA trimer and BA trimer as 

simple representations for the Latex particle. The geometry-optimized structure of these two 

trimers are shown in Figure 9.  Since both MMA trimer and BA trimer are neutral molecules, 

we can use the continuum model to get their minimum aqueous-phase energies, i.e., -

1077.5608 Hartree and -1313.3568 Hartree, respectively.  These energies are used in our 

solvation free energy calculations later.  
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Figure 3-9. Geometry optimized structures of MMA trimer (a) and BA trimer (b). 

To calculate the solvation energy of the protonated ethoxylated bis(2-ethylhexy) amine adja-

cent to an explicit MMA trimer, we use the formalism of Equation 9, but we substitute the ex-

plicit water cluster with the MMA trimer.  Equation 9 then becomes  

∆𝐺௦௢௟௩(𝐻𝐴ା) = 𝐸௔௤(𝐻𝐴ା(𝑀𝑀𝐴)ଷ) − 𝐸௔௤((𝑀𝑀𝐴)ଷ) − 𝐸௚(𝐻𝐴ା)  (10) 

Similar to what is described in the previous section, we first carry out MD simulations.  This 

time we start with a protonated ethoxylated bis(2-ethylhexy) amine, a MMA trimer, a counter 

ion OH- and 1843 water molecules in the simulation box subject to the periodic boundary 

conditions. The volume of the box is the same, with an edge length of 34.8 Å, and it remains 

constant during the equilibration.  After the MD simulation, we extract the cluster that con-

tains the protonated ethoxylated bis(2-ethylhexy) amine and the MMA trimer and perform the 

geometry optimization using DFT method. The configurations before and after the optimiza-

tion are shown in Figure 10. 
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Figure 3-10. Geometry optimized structures of MMA trimer (a) and BA trimer (b). 

For the configuration in Fig.10 (b) we determine the aqueous-phase energy of 𝐻𝐴ା(𝑀𝑀𝐴)ଷ, 

𝐸௔௤(𝐻𝐴ା(𝑀𝑀𝐴)ଷ) as -1917.0646 Hartree.  We then calculate the solvation free energy of the 

protonated ethoxylated bis(2-ethylhexy) amine ∆𝐺௦௢௟௩(𝐻𝐴ା) using Equation 10 and obtain -

60.30 kal/mol. 

Using the same method, we also calculated the solvation free energy of the deprotonated eth-

oxylated bis(2-ethylhexy) amine with the presence of explicit MMA trimer, as well as the 

solvation free energy of protonated/deprotonated ethoxylated bis(2-ethylhexy) amine with the 

presence of explicit BA trimer. The results are summarized in Table 4. 

Table 3-4. Calculated solvation free energies of the ethoxylated bis(2-ethylhexy) amine with and without the explicit 

Latex particle sample. A represents the deprotonated form and HA+ represents the protonated form. 

 
Without Ex-
plicit Latex 

Sample 

With Explicit 
MMA Trimer 

With Explicit 
BA Trimer 

∆𝐺௦௢௟௩(𝐴) (kcal/mol) -2.45 -10.83 -3.26 

∆𝐺௦௢௟௩(𝐻𝐴ା) (kcal/mol) -57. 06 -60.30 -52.76 

∆𝐺௦௢௟௩(𝐴) − ∆𝐺௦௢௟௩(𝐻𝐴ା) 
(kcal/mol) 

54.61 
49.47 49.50 
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We can see that the presence of the MMA trimer lowers the solvation free energies of both 

the deprotonated and protonated forms of the hydrophobe, but it influences the deprotonated 

form more.  The presence of the BA trimer also decreases the solvation free energy of the 

deprotonated form a bit but it increases the solvation free energy of the protonated form, 

making it less soluble.  However, the the solvation energies of the deprotonated and proto-

nated forms of the hydrophobe interacting with these Latex fragments are very close: 49.47 

kcal/mol and 49.50 kcal/mol, respectively, which indicates that the two types of Latex frag-

ments have for all practical purposes the same influence on the pKa of the ethoxylated bis(2-

ethylhexy) amine, and for further analyses we can limit ourselves to one of the trimer types, 

as the two are essentially interchangeable .   

Next we study whether the chain length of the Latex particle has a significant influence on 

the solvation free energy of the ethoxylated bis(2-ethylhexy) amine.  We examine this by in-

creasing the repeating units of our earlier samples up to five.  Take MMA for an example, Ta-

ble 5 shows the calculated solvation free energies of the ethoxylated bis(2-ethylhexy) amine 

interacting with MMA polymer segments of different lengths. 

Table 3-5. Calculated solvation free energies of the ethoxylated bis(2-ethylhexy) amine with explicit Latex polymer 

segments (MMA)n of different lengths (n=3, 4 ,5). A represents the deprotonated form and HA+ represents the 

protonated form. 

  (MMA)3  (MMA)4  (MMA)5 

∆𝐺௦௢௟௩(𝐴) (kcal/mol) -10.83 -9.09 -10.87 

∆𝐺௦௢௟௩(𝐻𝐴ା) (kcal/mol) -60.30 -58.60 -60.04 

∆𝐺௦௢௟௩(𝐴) − ∆𝐺௦௢௟௩(𝐻𝐴ା) 
(kcal/mol) 

49.47 
49.51 49.17 
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We find that increasing the number of repeat units of MMA polymer has little influence on 

the solvation free energies of the ethoxylated bis(2-ethylhexy) amine.  The differences be-

tween the solvation free energies of deprotonated and protonated hydrophobe groups are also 

very small, which means that increasing the chain length of Latex particle hardly influences 

the pKa calculation outcomes.  Note that all calculations involving explicit fragments were 

done without explicit water molecules for the ease of the computation.    

3.3.3 Comparison of the pKa Calculation Results with Experimental Data 

Combining the calculations we have done in Section 3.1 and Section 3.2, we get the pKa of 

the ethoxylated bis(2-ethylhexy) amine using Equations 4 and 5. Recall that the solvation free 

energy of H+ is a constant equal to -265.9 kcal/mol and the gas-phase basicity is always 

228.91 kcal/mol for the ethoxylated bis(2-ethylhexy) amine. Using the solvation free energy 

of the protonated ethoxylated bis(2-ethylhexy) amine we have calculated in Section 3.2.1, we 

get 12.9 for the pKa for the ethoxylated bis(2-ethylhexy) amine on the basis of the continuum 

model.  Applying the hybrid cluster-continuum model results in a pKa value of 11.1 using the 

geometry optimization approach, and 8.86 using the MD sampling approach.  Finally, taking 

into account the effect that the presence of a Latex polymer segment has on the pKa calcula-

tion results we observe the following progression: the pKa of the ethoxylated bis(2-ethylhexy) 

amine without any Latex particle is 12.9.  With (MMA)3 adjacent to the hydrophobe it is 9.43 

and with (BA)3 it is 9.45.  The difference between these two polymer segment types is negli-

gible.  Adding either of them changes the  pKa by 3.5 compared to the original implicit con-

tinuum model.  Furthermore, the pKa is 9.43, 9.46, and 9.28 for the calculations that involve 

(MMA)3, (MMA)4, and (MMA)5, respectively, which again represents very small differences.  
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Figure 11 shows the experimental pKa of the ethoxylated bis(2-ethylhexy) amine inferred 

from the Brookfield viscosity test as the inflection point of the Henderson-Hasselbalch equa-

tion fitting the data.  The pH value of the solution at which the rise in viscosity is steepest is 

generally considered to coincide with the changeover between protonated and deprotonated 

states of the hydrophobe.  Calculated pKa results are shown in the same figure as symbols la-

beled (b) through (e), showing the improvements that each procedural refinement described 

above has resulted in.  

 

Figure 3-11. Brookfield viscosity of a solution that contains 1.2% ethoxylated bis(2-ethylhexy) amine HEUR and 

28.8% Latex as a function of the solvent pH measured by the Dow Chemical Company are shown as black 

squares.The value labeled with (a) is the experimental pKa derived from the viscosity curve,  the value labeled (b) 

is the calculated pKa using the continuum model, (c) is the calculated pKa using the cluster-continuum model 

containing explicit water using the DFT geometry optimization approach, (d) is the calculated pKa using the cluster-

continuum model containing explicit water using the MD sampling approach, (e) is the calculated pKa using the 

cluster-continuum model containing explicit Latex fragments using the DFT geometry optimization approach. The 

plot on the top right is the deprotonation fraction vs. (pH – pKa), derived from the Henderson-Hasselbalch equation. 
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Theoretically, the pKa is equal to the current pH value of the solution when the depronated 

fraction of the ethoxylated bis(2-ethylhexy) amine is equal to 0.5 according to the Henderson-

Hasselbalch model.  We can see that the experimental data follows a curve of similar shape as 

the theoretical curve on the top right.  Thus the experimental pKa can be read from the point 

with the steepest slope on the curve, which is around pH = 7.7.  At the beginning, when we 

only apply the continuum model for our calculations, the resulting pKa value differs from the 

experimental one by 5.2.  After applying the hybrid cluster-continuum model and take into 

account the explicit solvent effect, we achieve a significant improvement.  The MD sampling 

approach yields a pKa value that more closely matches the experimental one than the DFT ge-

ometry optimization approach.  Considering the effect of explicit Latex particle segments will 

also give us a closer result to the experimental value compared to only considering about the 

explicit water molecules using the same calculation method.  

 Conclusions 

HEUR thickeners are widely used in the Latex paint to control its rheological properties. The 

depronation/protonation of the hydrophobe on the HEUR molecules controls the thickening 

functionality. We have used different models, and considering different environments sur-

rounding the hydrophobe ethoxylated bis(2-ethylhexy) amine when calculating the corre-

sponding pKa . Our analysis shows that the traditional continuum model cannot provide an 

accurate prediction of the pKa
.  Instead, we need to include the explicit surrounding molecules 

to properly account for local interactions and thereby improve the calculation accuracy.  

Based on our finds, adding either explicit water molecules or explicit Latex particle frag-

ments to the system improves the pKa calculation for ethoxylated bis(2-ethylhexy) amine.  
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When using the same DFT geometry optimization approach, surrounding the hydrophobe 

with explicit Latex fragments results in a pKa value that matches the experimental one more 

closely than surrounding it with explicit water molecules.  However, the calculated pKa that 

matches the experimental value best is obtained when surrounding the hydrophobe with ex-

plicit water molecules and using the MD sampling approach. The future work could include 

both explicit water and Latex sample in the solvation free energy calculation. This could be a 

challenging task because the degree of freedom increases significant thus it would be really 

difficult to find the low-energy structure for the DFT geometry optimization approach. Even 

the MD sampling approach may require a large number of water molecules to converge 

which could also be very computationally expensive.  
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Chapter 4  

Accurate Acid Dissociation Constant Calculations for Hydrophobes in the 

Rheology Modifiers 

4.1 Introduction 

Accurate prediction of the solvation free energies is essential in many fields of study, ranging 

from chemical reactions in solutions to the design of functional molecules in chemistry and 

biochemistry.  However, the reliable determination of the solvation free energies for ionic 

species can be computationally challenging.  Typical neutral molecules have a solvation free 

energy of less than 10 kcal/mol, while many small charged ions exhibit values in the 50-100 

kcal/mol range. This means that achieving a small absolute error, which is important for ex-

ample in pKa calculations 1, is of great difficulty.  Over the past decade, much theoretical ef-

fort has been put into the development of methods to calculate the solvation free energy.  Tra-

ditional explicit solvation models are very computationally expensive because of the large 

number of configurational degrees of freedom. Thus it is really difficult to find the fully re-

laxed complex structure. 2  Continuum-based implicit solvent models 1, 3–5 represent actual 

solvent molecules as a uniform polarizable medium of fixed dielectric constant, and the so-

lute molecules is embedded in a suitably shaped cavity.  While producing reasonable results 

for neutral solute molecules, these have been found to be inadequate for ionic species because 
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of the failure to account for the strong localized solute-solvent interactions.  The recently de-

veloped hybrid cluster-continuum model, which combines the explicit and implicit model by 

adding explicit solvent molecules to the continuum model, has improved calculation accuracy 

and speed. 6–10 However, it is still not computationally efficient enough, especially when deal-

ing with large solute species requiring a great number of surrounding water molecules.  In 

such cases DFT calculations, especially when attempting geometry optimization, become im-

practical.  Therefore, it is advisable to explore an informatics-based machine learning (ML) 

model, which is trained using a limited amount of experimental data, to predict the solvation 

free energy accurate and fast, especially for the charged species.  

ML has been widely applied in materials informatics recently due to its low computational 

cost. Investigators use ML techniques to train models based on known properties learned 

from the existing data (also called training data in the ML field) to make predictions of the 

properties for the new data. Typically training an ML model involves two steps – first extract-

ing key features from materials in an existing dataset, which are quantitative attributes that 

describe their relevant characteristics; and then mapping these features to the property of in-

terest.  The first step requires significant expertise and knowledge of the materials and the 

second step is purely numerical in nature. 11 There are numerous features that can be used to 

train the model, such as basic atomic information that can be gained from the chemical for-

mula, molecular geometry information that can be described by the chemical graph theory, or 

energies that need to be calculated using first-principles calculations.  It is very important to 

choose the right features that are effectually related to the property of interest in order for the 
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model to give an accurate prediction of the property.  Usually features extracted from mole-

cules should fulfill several basic requirements: (1) complete, (2) descriptive, (3) simple and 

(4) unique. 12 The goal in creating a “complete” representation is to provide enough infor-

mation that is relevant to the property of interest to sufficiently differentiate materials.  For 

example, the atom type by itself cannot be a complete choice of features for solvation free en-

ergy predictions since many solutes share the same type of atoms.  “Descriptive” means simi-

lar materials should have similar features.  For example, the electronegativity difference be-

tween elements in a compound could be a good feature for its formation energy prediction.  

One would expect similar electronegativity differences for bonds with similar formation ener-

gies.  “Simple” means that the computational representation of the features should be fast to 

accomplish.  This is more important when we are trying to use features that are calculated us-

ing the first-principles method.  If the computational cost of describing features themselves is 

very high, then we lose the point of using the informatics-based approach.  Lastly “unique” 

means any material should have exactly one representation.  The features should be invariant 

to certain transformations.  If a given material has multiple representations, it is possible to 

predict different properties for the same material. 

Studies of solvation free energy prediction using ML techniques have been carried out re-

cently by Moorthy 13 and Bao Wang. 14  Moorthy did a classification study of solvation free 

energies of organic molecules using ML methods like support vector machine, random forest 

and decision tree.  His analysis was performed with easily obtainable features such as atom 

count, topological measures, surface area, and molecular access system (MACCS) finger-
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prints that account for the presence of absence of particular functional groups, atoms or frag-

ments in different molecules.  Different models were built by selecting different subsets of 

features from the 188 total features.  These models correctly classified >95% of the mole-

cules as having highly favorable or less favorable solvation free energies.  Despite the good 

classification accuracy, Moorthy did not carry out feature importance analysis so it remains 

unknown whether all the 188 features are equally important or some are actually not that nec-

essary.  In addition, further regression analysis can be done to predict the specific solvation 

free energy of a molecule instead of doing classification only, which is more important in 

many chemistry and biochemistry studies.  Wang has made a great contribution to the solva-

tion free energy prediction using the ML approach.  He extracted features from the solvation 

free energy calculation procedure employed in the implicit solvent model, e.g., electrostatic 

features like atomic charge and reaction field energy, as well as nonpolar features like atomic 

surface area.  For each target molecule, he adopted an ML algorithm to search for its nearest 

neighbor, based on the selected features.  Then from the features of nearest neighbors so de-

termined, he constructed a functional of solvation free energy, which is employed to predict 

the solvation free energy of the target molecule. 14    He also analyzed the importance of the 

nonpolar features to show that they are necessary to improve the prediction results.  However, 

the polar features require first-principles calculations and the analysis failed to show whether 

all of them are of equal importance or not.  

In this study, we apply ML techniques to predict the solvation free energies, mainly for 

charged species.  In contrast to Moorthy’s work, we start with fewer features that we think 

are the keys to the solvation free energy to keep the model simple.  We then gradually add 
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features and examine whether they provide noticeable improvement to the accuracy of the 

prediction results.  For the feature selection, unlike what Wang did in his work, we try to 

avoid using results from first-principles calculations to lower the computational cost and 

make it easier for possible future software development.  More importantly, the electrostatic 

term dominates the total solvation free energy of the molecule, although it does not always 

indicate a high affinity to the solvent. 15  We compare the performance of three different ML 

methods – linear ridge regression, support vector regression, and random forest regression in 

terms of solvation free energy prediction accuracy.  We train each model with the help of the 

scikit-learn package in Python.  We find that using the atomic fraction extracted form the 

chemical formula, the Wiener index that is gained from the molecular topology, and the sol-

vent accessible surface area (SASA) are sufficient to give a relatively accurate prediction 

with the random forest regression method.  Compared to the 4 kcal/mol mean unsigned error 

for ions from the recent continuum solvation model based on electron density (SMD), 16 our 

ML model performs quite well with a mean unsigned error of 4.43 kcal/mol for charged mol-

ecules.  Finally we have tried to use our model to predict the solvation free energy of the hy-

drophobe molelecule on the HEUR rheology modifier, and it shows a good agreement with 

our previous result calculated using first-priciples methods. 

4.2 Theory and Methodology 

4.2.1 Data Set 

The Minnesota solvation database – version 2012 17 is used to train our ML model.  It con-

tains 3037 experimental solvation free energies for 790 unique solutes (541 neutrals and 249 

singly-charged ions) in 92 solvents (including water).  The database focuses on the solvation 
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free energy of organic molecules and all of the 790 solutes in this database contain at most 

the following elements: H, C, N, O, F, Si, P, S, Cl, Br, I.  In this work, we are not going to use 

all these 3037 experimental data because we focus on the solvation free energies of singly 

charged ions in the water.  We expect very different solvation free energies between neutral 

and charged solutes, and therefore we believe it is better to use different models to predict 

their solvation free energies.  After removing the data for which the solutes are neutral mole-

cules and the solvent is not water, 112 aqueous free energies of solvation for 112 singly 

charged ions are retrieved.  All data are experimentally measured and available in the litera-

ture. 16, 18, 19 

4.2.2 Feature Selection 

As mentioned above, feature selection is very important to build an ML model that can accu-

rately predict the target property.  Ideally, we want to choose the features in which the prop-

erty of interest is fundamentally rooted.  Instead of applying all of the available features from 

software like PaDEL-Descriptor, we use representative features from three main feature cate-

gories for chemoinformatics: physico-chemical features, 2D molecular features, and 3D mo-

lecular features. 

4.2.2.1 Physico-chemical Features 

This category contains a lot of features that may be easily obtained from the chemical for-

mula like atom count, molecular weight, atomic fraction, etc., or features that need to be cal-

culated using first-principles calculations like the reaction field energy and atomic charge 

used in Bao Wang’s study. 14  We believe that different atoms and their atomic fractions have 

different effects on the solvation free energy.  For example, one fully expects to find that the 



 

 

78

solvation free energy of NH4
+ is different from that of H3O+ because they contain different 

atoms.  The same is true for methylamine and n-propylamine as they have different atomic 

fractions.  However, adding too many of these features may not be effective, as they could be 

strongly correlated, and the additional features increase the complexity of the model while it 

does not help much to improve the prediction accuracy.  For example, adding the electronega-

tivity as an additional feature might not be a good idea since this characteristic is straightfor-

wardly mapped to the period table of elements and may therefore already by reflected in the 

atom type information.  The features that need to be calculated from the first-principles simu-

lations are computationally expensive, which is discrepant from the “simple” feature selec-

tion principle.  Furthermore, they may also be violating the “unique” feature selection princi-

ple.  For example, when the molecule size increases, first-principles calculations with differ-

ent initial configurations may give different results for the atomic charges, and this could re-

sult in different properties for the same molecule.  We first choose the atomic fraction as the 

representative for this category of features.  To be specific, we define a material using a vec-

tor wherein nth component of the vector represents the atomic fraction of the nth element from 

the database (n ≤ 10, in the order of H, C, N, O, F, Si, P, S, Cl, Br, I). For example, the atomic 

fraction features for H3O+ would be [0.75, 0, 0, 0.25, 0, 0, …]. In the future, more features 

from this category may be examined/added to train the model if they are not already highly 

correlated with the atomic fraction. 

4.2.2.2 2D Molecular Features 

This category usually contains features that can be extracted from the molecular topology.  

Indeed the feature selection is not “complete” by just including the physico-chemical features 
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for our solvation free energy prediction model sometimes. For example, isomers with the 

same atomic fraction may have different solvation free energies.  Therefore, adding topologi-

cal features is necessary.  We choose one of the classical topological features, the Wiener in-

dex as our 2D molecular feature.  The Wiener number is the sum of the distances between all 

pairs of vertices in a graph.  To calculate the Wiener number, we first need to map the mole-

cule to a graph.  The nodes in the graph are the non-hydrogen atoms in the molecules and the 

edges are the bonds in the molecules.  Then we find the distance matrix of the graph and we 

compute the Wiener number by adding the entries in the upper triangular part of the distance 

matrix.  The Wiener index is the average of the distances between all pairs of vertices in a 

graph. For a graph having n vertices, 𝑀𝑒𝑎𝑛 𝑊𝑖𝑒𝑛𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 = 𝑊𝑖𝑒𝑛𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟/ ቀ
𝑛
2

ቁ.  In 

the future, more features from this category like the Hosoya index, Randić’s molecular con-

nectivity index may also be examined/added to train the model.  

4.2.2.3 3D Molecular Features 

This category usually contains finer features that describe the geometry of the materials com-

pared to the 2D molecular features.  We add the solvent accessible surface area feature like 

both Moorty and Bao Wang did in their studies for our model training.  According to Junmei 

Wang’s study, the solvent accessible surface area is one of the most important features to de-

scribe the solvation free energy very well.  Good results have been achieved by just using this 

feature. 15 However, due to the “complete” feature selection principle, we believe that it is 

necessary to include the features we have discussed in the previous sections, since different 

molecules may have similar solvent accessible surface areas.  We use the GePol method that 

is described in Pascual-ahuir’s work 20 to calculate the solvent accessible surface area.  In 



 

 

80

short, it is a numerical method in which a set of points is placed reasonably uniformly on the 

surface of the spheres surrounding each atom.  Any point on a sphere that lay within the vol-

ume of another sphere is discarded, and the ratio of the exposed surface area to the total area 

of all the spheres is set equal to the number of nondiscarded points divided by the original 

number of points.  More details of this method can be found in his paper “GEPOL: An im-

proved description of molecular surfaces. III. A new algorithm for the computation of a sol-

vent-excluding surface.” 20 

4.2.3 ML Methods 

We have tried different ML methods to train the model so as to accurately connect the fea-

tures we have extracted in the previous section and the solvation free energy property. 

4.2.3.1 Linear Ridge Regression 

In statistics, linear regression is a linear approach for modeling the relationship between a 

scalar dependent variable y and one or more explanatory variables x. In our case, we have a 

set of molecular features 𝒙ଵ, … , 𝒙ே ∈ 𝑅ெ, 𝑁 is the number of sample data and 𝑀 is the num-

ber of features, and corresponding target solvation free energies 𝑦ଵ, … 𝑦ே.  A linear regression 

model assumes that the relationship between y and x is linear. We want to learn a function 

𝑓(𝒙௜ , 𝝎) = 𝝎்𝒙௜ to predict future solvation free energies, where 𝝎 is the model parameter 

with dimension 𝑀 that we need to determine to minimize the error between the predicted 

value and the 𝑁 real property value. We find 𝝎 using the standard linear least-squares optimi-

zation algorithms, which is to minimize the cost function: 𝐿(𝝎) =  ∑ (𝑦௜ −ே
௜ 𝝎்𝒙௜)ଶ.  In the 

ridge regression procedure another term is added to in the cost function to penalize for size of 
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the regression coefficient, 𝐿(𝝎) =  ∑ (𝑦௜ −ே
௜ 𝝎்𝒙௜)ଶ + 𝜆‖𝝎‖ଶ.  𝜆 is referred to as a hyperpa-

rameter in the cost function, which requires tuning to achieve the best performance of the 

model.    

4.2.3.2 Support Vector Regression 

The goal of support vector regression is to find a function 𝑓(𝒙) = 𝝎்𝒙 + 𝑏 that deviates 

from 𝑦 by a value within the 𝜀 band for each training data point 𝒙. It also uses slack variables 

𝜉 to overcome noise and outliers in the data. (Figure 1)  

 

Figure 4-1. Picture of ε band with slack variables for support vector regression.21 

The support vector regression is formulated as minimization of the following functional: 

min   
ଵ

ଶ
‖𝒘‖ଶ + 𝐶 ∑ (𝜉௜ + 𝜉௜

∗௡
௜ୀଵ ), 

subject to 𝑦௜ − 𝑓(𝒙௜) ≤ 𝜀 + 𝜉௜
∗;     𝑓(𝒙௜) − 𝑦௜ ≤ 𝜀 + 𝜉௜  ;      𝜉௜ ,  𝜉௜

∗ ≥ 0. 

This optimization problem can be transformed into a dual problem and its solution is given 

by 
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𝑠. 𝑡.  ෍(𝛼௜ − 𝛼௜
∗) = 0;  

ே

௜ୀଵ

 0 ≤ 𝛼௜ ≤ 𝐶;    0 ≤ 𝛼௜
∗ ≤ 𝐶 

Where 𝐾(𝒙௜ , 𝒙௝) is called the kernel function that maps 𝒙 to a high-dimensional space. We 

will be tuning hyperparameters 𝐶, the kernel function type 𝐾 and the kernel coefficient 

gamma for the kernel function later in the discussion section.  

4.2.3.3 Random Forest Regression 

Random forests, proposed by Breiman, is an ensemble learning method that operates by con-

structing a number of decision trees at training time. Every node in the decision trees is a con-

dition on a single feature, designed to split the dataset into two so that similar response values 

end up in the same set. For classification, the measure based on which the optimal condition 

is chosen is Gini impurity or information gain. And for regression trees it is residual sum of 

squares (RSS): 𝑅𝑆𝑆 = ∑ (𝑦௜ − 𝑦௅തതത)ଶ
௟௘௙௧ +  ∑ (𝑦௜ − 𝑦ோതതത)ଶ

௥௜௚௛௧ , where 𝑦௅തതത and 𝑦ோതതത are the mean 

value of the property of interest for the left node and right node, respectively. To make it 

clearer, next we illustrate how to construct a simple regression tree using just two features -- 

solvent accessible surface area (SASA) and Wiener number (W). We choose 10 random sam-

ples from the pre-existed data set as shown in Table 1. A 2D feature plot is also shown in Fig-

ure 2(a). Then we tried to find the best horizontal and vertical split of the data by taking the 

average SASA and W between each adjacent data point and calculate their corresponding 

RSS. In this scenario either the horizontal split at W=15 or the vertical split at SASA=107.63 

will result in a minimum RSS. We choose the vertical split as our first branch of the regres-

sion tree. (Figure 2(b)) Now we have the most simple regression tree with only one layer. 

Then we continue splitting to construct the second layer of the tree. For the left branch, since 
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only two data points left it is easy to split them. They share the same Wiener number so we 

split them at SASA=73.21. By far the left branch has reached to the end, which are usually 

called leaf in the regression tree. The values on the leaf are the solvation free energy for that 

data. By applying the same optimization algorithm, we can find the best split for the right 

branch, which is at SASA=164.24. Then the SASA>164.24 branch reach the leaf and we can 

get the solvation free energy of this leaf as -54.6 kcal/mol. So far we have finished construct-

ing the second layer of the regression tree (Figure 2(c)). Similarly, we could continue con-

structing the third layer of the regression tree by finding the best split as W=35. (Figure 2(d)) 

If we stop here, we will end up with a regression tree with three layers. We could also keep 

going until we separate every single sample in the data. Later we will be tuning this hyperpa-

rameter -- number of layers (max_depth). A random forest is simply composed by multiple 

regression trees like this. Each time a regression tree could use different combinations of fea-

tures and select different samples from the original data for the data splitting. If we are trying 

to predict the solvation free energy of a new molecule, we first see which leaf will this mole-

cule end up with for all of the regression trees. The final predicted solvation free energy is the 

average value of the solvation free energy on the leaf. We will also be tuning this hyperpa-

rameter – number of trees (n_tree) in the later section.  

Table 4-1. 10 random samples selected from the original data set. 
 Molecule SASA (Å2) Wiener Number Gsolv 

1 3-methylphenol 138.66 61.0 -71.1 

2 1,1,1,3,3,3-hexafluoropro-

pan-2-ol 

147.92 111.0 -65.5 
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3 triethlamine 165.41 48.0 -54.6 

4 dimethylether 87.05 4.0 -79.7 

5 aniline 130.40 42.0 -72.4 

6 formicacid 59.38 4.0 -76.2 

7 3-chloroaniline 163.07 61.0 -74.7 

8 piperidine 128.21 27.0 -64.2 

9 3-aminoaniline 146.46 61.0 -65.8 

10 4-methoxyaniline 160.46 90.0 -71.2 
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Figure 4-2. (a) 10 random samples selected from the original data set. And the first split (b), second split (c), third 

split (d) of the data. The numbers on the leaves (end of the branch) are the solvation free energies. 

4.2.4 Workflow 

To illustrate how the training and predicting work, we have summarized a workflow as 

shown in Figure 1 below.  
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Figure 4-3. Workflow of the solvation free energy prediction using ML techniques. 

We start from the molecules of which the experimental solvation free energies are stored in 

the Minnesota solvation database. The first step to build the solvation free energy prediction 

model is to select and extract useful features that we have discussed in previous sections from 

these molecules. Then we train the model using different ML methods to find the mapping 

between these features and the solvation free energy value. At last, we apply this model on 

the new molecules that we are interested in and predict its solvation free energy.  

4.3 Results and Discussion 

In this section we describe how we tune and train the models using each of the three ML 

methods based on pre-existing data.  We compare the accuracy of these methods and pick the 

one with the lowest test mean absolute error (MAE). We also carry out feature importance 
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analysis to show which of the features are more important for the accurate model and which 

are not. We also show why it is not guaranteed that including as many features as one can to 

train the model necessarily improves its predictive accuracy.  And finally we show that our 

ML prediction of the solvation free energy for a ethoxylated bis(2-ethylhexy)amine hydro-

phobe molecule is comparable to that calculated using the first-principles methods.  

4.3.1 Regression Model Selection  

As mentioned in Section 2.1, regression models with the ability to predict the solvation free 

energy of molecules are developed based on a dataset comprised of 112 ions and their solva-

tion free energies.  A 5-fold cross-validation method is applied to these data to prevent from 

overfitting.  One cannot evaluate the quality of a model by examining the error it achieves on 

the data on which it was trained.  Therefore we divided the original data set into five subsets 

of the same size. Each time we picked four out of five subsets as the training dataset, which 

we will use to train our model, and the leftover subset is used as a test dataset to check the 

quality of our model.  We repeat this process five times until all subsets have been used as a 

test dataset once.  All of the features that have been mentioned in the previous section are 

used to find the best training method.  

Before we start to train our model, we first need to tune the hyperparameters within the 

model so that it gives us the best results.  As opposed to regular model parameters, which are 

used to relate selected features to the predicted property, hyperparameters are those that as-

certain proper convergence in the parameter optimization and confine their values to within 

allowed parameter ranges.  For example, in the linear ridge regression method, 𝜆 is hyperpa-

rameter in the model that penalizes for exagerated size of the regression coefficient and thus 
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prevents from overfitting.  When 𝜆 = 0, the linear ridge regression becomes the normal linear 

regression and there is no penalty for a large regression coefficient, which will likely cause 

the overfitting of the model.  On the other hand, a really large 𝜆 will force the minimization 

to focus on minimizing ‖𝛽‖ଶ, thus diverting from the true fit and this is usually called under-

fitting.  Figure 2 shows the validation curve for the linear ridge regression method, which 

tells us how the training error and validation error change with the choice of different hy-

perparameter 𝜆. Notice that in Python, the MAE score is simply the negative value of the 

mean absolute error. The sign is flipped because of the “greater is better” principle in the Py-

thon scoring system. 

 

Figure 4-4. Validation curve with linear ridge regression. Orange line and blue line show how the training error and 

validation error change with the hyperparameter λ, respectively. 

We can see that when 𝜆 is small, the model has a small training error and a really large vali-

dation error. This means that the model is overfitted -- it describes the 80% of data used for 
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training relatively well but fails to give good predictions to the remaining 20% of validation 

data. When we increase the value of 𝜆, the training error goes up because we emphasize the 

term that generalizes the model more and more.  Mathematically, we are far from minimizing 

the term purely based on the training dataset ∑ (𝑦௜ −௡
௜ 𝑿𝒊

்𝛽)ଶ.  As for the validation error, it 

has a minimum value near 𝜆 = 0.1, which is a balancing point in the tradeoff between mini-

mizing ∑ (𝑦௜ −௡
௜ 𝑿𝒊

்𝛽)ଶ and minimizing the regularization term ‖𝛽‖ଶ. With the help of the 

GridSearchCV function in Python, we fine-tune the hyperparameter 𝜆 equal to 0.193 for the 

model that gives us the best prediction capability. 

We apply a similar technique to the support vector regression and random forest regression 

method.  Everything is the same except that they are much more complicated methods with 

many more hyperparameters. We only include the tuning of most important ones here – Pen-

alty parameter of the error term (C), kernel type (k_type), kernel coefficient (gamma) for the 

support vector regression method, and number of regression trees in a random forest (n_tree), 

maximum depth of the regression tree (max_depth), the minimum number of samples re-

quired to split an internal node (min_split) for the random forest regression method. We use 

the default settings for the rest of the hyperparameters in Python. We adjust the above set of 

hyperparamters by trying out a wide range of values so that we have a grid of hyperparam-

ters.  Instead of getting a 2D plot in Figure 2, we try each combination of the hyperparameter 

in the grid and find the following combination gives us the best result: C=0.5, k_type = ‘lin-

ear’, gamma = 10-5 for support vector regression and n_tree = 50, max_depth = 20, min_split 

= 2 for random forest regression.  
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Now we have found the best hyperparameters for all ML methods. We then use the three ML 

methods with their best hyperparameters to train the models. We record the performance of 

the two models in Table 1.   

Table 0-2. Summary of model performance with different ML method. 
Model # ML Method Hyperparameters Prediction Result 

(MAE) 

1 Linear Ridge Regres-

sion 

𝜆=0.193 4.99 kcal/mol 

2 Support Vector Regres-

sion 

C=0.5, k_type= ‘linear’, 

gamma = 10-5 

5.67 kcal/mol 

3 Random Forest Regres-

sion 

n_tree=50, 

max_depth=20, 

min_split=2 

4.43 kcal/mol 

 

It is clear that the third model, the random forest regression, has the lowest mean absolute er-

ror, which is equal to 4.43 kcal/mol. This is a very promising result since the mean absolute 

error of solvation free energies calculated by the first-principles calculation is 4 kcal/mol. Our 

third model therefore has a prediction accuracy on par with the traditional first-principles cal-

culations, but the required computational effort is much less and the calculation speed is 

much faster.  Before we conclude that this is the go-to model for the solvation free energy 

prediction.   

Next we conduct and additional analysis to further prove that random forest regression is in-

deed superior to the other two regression methods.  Figure 3 shows the learning curves of the 
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three methods.  A learning curve shows the validation and training score of a method as a 

function of the number of training samples.  
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Figure 4-5. Learning curves with linear ridge regression (top), support vector regression (middle) and random forest 

regression (bottom). Green line and red line show how the training error and validation error change with the num-

ber of training samples, respectively. 

The validation error decreases in all three cases. The decrease of the validation error is due to 

the model’s ability to generalize.  Only random forest regression has a slightly increasing 

training score, which means the training error decreases as we increase the size of the training 

data. The other two regression methods, linear ridge and support vector, both have increasing 

training error with increasing training samples. This means that, as the data get more com-

plex, it is more difficult for these two methods to learn a model that correctly represents all 

the training data.  Thus the random forest regression method is superior.  There is some more 

important information we can get from the learning curve.  We can see that although both 

training error and validating error of the random forest regression method decrease as the 

sample size increases, the training error is still much smaller than the validation error even for 

the maximum number of training samples we have included here.  This means that adding 

more training samples most likely increases generalization and further decreases the valida-

tion error, make the model better the more it is trained.  After all, 112 is a really small number 

for the size of the ML data.  This suggests that measuring more solvation free energies of ions 

and increasing the original dataset will further improve the accuracy of our model.  

4.3.2 In-depth Discussion of Feature Selection  

After establishing the best ML method along with well-tuned hyperparameters for the solva-

tion free energy prediction, we now discuss the importance of selecting the right number of 

features and type of feature to include in the model training in terms of prediction accuracy.  

Previously, we used all three types of features in the model training – (1) atomic fraction, (2) 
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Wiener number and (3) the SASA of the molecule. Table 2 shows how different combinations 

of these features affect the solvation free energy prediction.  

Table 4-3. Summary of model performance with different combinations of features. 
Combination 

# 

Selected Fea-

ture(s) 

MAE 

(kcal/mol) 

1 (1), (2), (3) 4.43 

2 (1) 5.76 

3 (2) 7.17 

4 (3) 6.38 

5 (1), (2) 4.34 

6 (1), (3) 4.91 

7 (2), (3) 7.02 

We can see that using only one of features from (1) (2) (3) does not give a good prediction re-

sult.  This because none of them individually can describe the solvation free energy well.  

Adding either (2) or (3) to (1) improves the result with a mean absolute error of less than 5 

kcal/mol, while combining (2) and (3) still results in a model with poor performance. From 

this we know that feature (1) atomic fraction plays a more important role in the solvation free 

energy prediction compared to the other two features.  If we take a further look on Table 2, 

using only feature (1) and (2) actually gives us a very similar, even slightly better result than 

using all of them.  This shows that it is not guaranteed that adding more features necessarily 

increases the performance of the model.  Sometimes it may not be best to include as many 
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features as possible.  The reasons for this could be: (1) the additional features might be irrele-

vant to the property of interest, (2) they are just highly correlated with the previous features, 

or (3) the training sample size is just not big enough to differentiate between these features.  

In our case, it is more likely to be the latter two reasons because using the model with each 

feature individually actually yields a better result than just guessing the average solvation free 

energy for all molecules, in which case the MAE is 8.45 kcal/mol.  This means that each of 

them does give us positive information about the solvation free energy.  If we look more 

closely into the Wiener number and the SASA of the molecules, they actually convey similar 

information. For example, a large molecule generally yields a bigger Wiener number as well 

as a bigger SASA.  To this extent they are correlated.  Most importantly, we only have 112 

pre-existed data, and 80% of them are used for model training, the small sample size may not 

allow us to differentiate between the two features very well.  We believe that by increasing 

the size of the pre-existed data, combination #1 would have a better performance than combi-

nation #5, where only feature (1) and (2) are included.  In this study, we still keep all of the 

three features for our solvation free energy prediction model.  In the future, additional fea-

tures are encouraging to be examined and added to the model if they indeed improve the 

model performance, however it is not recommended to add arbitrary features randomly to the 

model without careful consideration.  
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4.3.3 Solvation Free Energy Prediction of the Charged Hydrophobe Molecule on the 
HEUR Rheology Modifier  

We have developed the ML based solvation free energy prediction model. Now we can apply 

this model to predict the solvation free energies of molecules of interest of which the solva-

tion free energy has not been measured. In our previous paper we have calculated the solva-

tion free energy of the charged hydrophobe molecule, ethoxylated bis(2-ethylhexy) amine on 

the HEUR rheology modifier as -54.18 kcal/mol.  To make the prediction using our new ML 

model, we first extract features from the hydrophobe molecule.  The chemical formula of pro-

tonated ethoxylated bis(2-ethylhexy) amine is C18H40O1N1. Thus the corresponding atomic 

fraction vector is: [0.6667, 0.3, 0.0167, 0.0167, 0, 0, …].  Its Wiener number is 930 and the 

solvent accessible surface area is 395.678 Å2.  Then we can predict its solvation free energy 

as -55.77 kcal/mol, which is only 1.59 kcal/mol different from the first-principles calculation 

result.  

4.4 Conclusions 

In conclusion, we have applied three different machine learning techniques to predict the 

solvation free energies of charged species.  We found that after tuning the hyperparameters, 

the random forest regression leads to a model that predicts the solvation free energies most 

accurately, with a mean absolute error of 4.43 kcal/mol.  Compared to the traditional first-

principles calculations, which has a comparable mean absolute error of 4 kcal/mol, our ma-

chine-learning based model greatly reduces the computational cost and time without losing 

much accuracy.  Our analysis was performed with easily obtainable features: The atomic frac-



 

 

97

tion feature plays the most important role in the solvation free energy prediction, adding Wie-

ner number and solvent accessible surface area of the molecules further improves the perfor-

mance of the model.  In the future, increasing the sample size and adding more clearly non-

correlated features that are relevant to the solvation free energy could further improve the 

model performance.  Finally we use our model to predict the solvation free energy of the hy-

drophobe molecule on the HEUR rheology modifier, and it shows a good agreement with the 

previous result calculated using the first-principles method with only 1.59 kcal/mol differ-

ence.  
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Chapter 5  

Conclusion 

A hybrid cluster/continuum model is devised to calculate solvation energy of four ionic mo-

lecular groups in aqueous solution.  This approach combines a higher accuracy resulting from 

the consideration of detailed local interactions that are specific to the structure of each solute 

molecule, while maintaining the computational speed resulting from an effective medium for-

mulation. As the starting configurations we extract water solute clusters of the desired sizes 

from a large bulk configuration generated using MD simulation, subject to periodic boundary 

conditions.  A systematic variation of the number of water molecules included in these calcu-

lations reveals that, depending on the solute size, between four and ten explicit water mole-

cules must be included in the hybrid model in order to account for the most essential local in-

teractions.  The larger the solute, and the more complex its structure, the larger is this thresh-

old number of explicit solvent molecules.  In a first approach, the cluster geometry is opti-

mized using DFT energy minimization, which yields very accurate solvation energy evalua-

tions about NH4
+, CH3NH3

+, HS- ions and good approximation about OH-.  However, this ap-

proach is very time-consuming and can only be reasonably applied to small ions.  To encom-

pass a wider range of molecular sizes and structures, we explored a second approach based on 

DFT single point calculations of a large number of configurations of a given system, sampled 

along the trajectory from an MD simulation.  This procedure yields distributions of solvation 
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energies with comparable variances.  Since the desired measure is constructed from the dif-

ference between the solvation energies of a water and a water/solute cluster, we can use the 

most probable value of each distribution instead of the lowest energy value. Eliminating the 

need for energy minimization in DFT calculations improves the calculation speed and finite 

temperature can also be accounted for. The solvation energy tends to converge beyond certain 

size of clusters. Finally, the inclusion of a counter ion to achieve charge balance has proven 

necessary for the accurate calculation of the solvation energy calculation in the case of some 

systems like HS- and OH-.  In that case, it is also important to identify the correct distance be-

tween the counter ion and the central ion.  

HEUR thickeners are widely used in the Latex paint to control its rheological properties. The 

depronation/protonation of the hydrophobe on the HEUR molecules controls the thickening 

functionality. We have used different models, and considering different environments sur-

rounding the hydrophobe ethoxylated bis(2-ethylhexy) amine when calculating the corre-

sponding pKa . Our analysis shows that the traditional continuum model cannot provide an 

accurate prediction of the pKa
.  Instead, we need to include the explicit surrounding molecules 

to properly account for local interactions and thereby improve the calculation accuracy.  

Based on our finds, adding either explicit water molecules or explicit Latex particle frag-

ments to the system improves the pKa calculation for ethoxylated bis(2-ethylhexy) amine.  

When using the same DFT geometry optimization approach, surrounding the hydrophobe 

with explicit Latex fragments results in a pKa value that matches the experimental one more 

closely than surrounding it with explicit water molecules.  However, the calculated pKa that 
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matches the experimental value best is obtained when surrounding the hydrophobe with ex-

plicit water molecules and using the MD sampling approach.  

We have applied three different machine learning techniques to predict the solvation free en-

ergies of charged species.  We found that after tuning the hyperparameters, the random forest 

regression leads to a model that predicts the solvation free energies most accurately, compara-

ble to the traditional first-principles calculations, which has a comparable mean absolute error 

of 4 kcal/mol, our machine-learning based model greatly reduces the computational cost and 

time without losing much accuracy.  Our analysis was performed with easily obtainable fea-

tures: The atomic fraction feature plays the most important role in the solvation free energy 

prediction, adding Wiener number and solvent accessible surface area of the molecules fur-

ther improves the performance of the model. We use our model to predict the solvation free 

energy of the hydrophobe molecule on the HEUR rheology modifier, and it shows a good 

agreement with the previous result calculated using the first-principles method with only 1.59 

kcal/mol difference.  

In the future, for the theoretical solvation free energy calculations, Bayesian analysis could be 

applied to the MD sampling method to further reduce the number of samples we need to get 

from the MD simulation, this could greatly increase the calculation speed. And it could help 

us to determine the number of explicit water molecules needed to reach the convergence of 

the solvation free energy. As for the pKa study of the hydrophobe molecule, we could include 

both explicit water and Latex sample fragment in the solvation free energy calculation, and 

see how the solvation free energy and pKa change with such local environment. This could be 

a challenging task because the degree of freedom increases significant thus it would be really 
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difficult to find the low-energy structure for the DFT geometry optimization approach. MD 

sampling method would be a better approach, but it may require a large number of water mol-

ecules to converge. Lastly, the prediction accuracy of the machine learning model could be 

further improved by increasing the sample size and adding more clearly non-correlated fea-

tures that are relevant to the solvation free energy.  

As soon as we validate a more accurate way to calculate/predict pKa, we could examine more 

candidate amine hydrophobe molecules as well as construct a series of new candidate mole-

cules and evaluate their usefulness based on their pKa. Once we have identified a most prom-

ising subset of candidate hydrophobe molecules we could simulate the protonation/deproto-

nation process and idenfity the charge regulation mechanisms for given hydrophobe molecu-

lar architectures.  The insights gained in this detailed investigation will advance our funda-

mental understanding of thickener functionality and efficacy, and will allow for a rational de-

sign of novel hydrophobe on the thickener.  


