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ABSTRACT

Wormlike micelles (WLMs) are formed by reversible self-assembly of amphiphilic

(e.g. surfactant) molecules usually with the aid of salt which acts to screen the

electrostatic repulsion between the micelles to achieve giant structures. Their unique

dynamics such as reversible scission give them interesting rheological properties which

are sought in several industrial applications. It is therefore imperative to understand

and predict these phenomena in WLMs using constitutive equations that incorporate

reversible scission into the deformation dynamics of WLMs.

We compare the predictions of the Vasquez-Cook-McKinley (VCM) (2007) model

which treats WLMs as Hookean dumbbells that break at half-length to form two

shorter dumbbells, to an analogous Brownian dynamics (BD) simulation of the same

physical model. We find a discrepancy between their predictions and trace it to the

absence in the VCM model of the internal position of the nascent breakage point

in the long micelle, which is needed to satisfy microscopic reversibility of breakage

and fusion. We correct this deficiency in the VCM model by extending an ensemble-

averaged bead-spring phase space model of Wiest et al. (1989) to include reversible

scission of two-spring chains. The revision tracks the conformations of the two halves

of the long micelle and transmits this information to the short micelles upon breakage

and thereby recovers complete agreement with the BD results.

We extend the reversible scission kinetics to the slip-link tube model of Likht-

man (2005) originally formulated for single polymer chains with entanglements. This

facilitates the simulation of entangled WLMs and enables us to study the effects of en-

tanglements on WLM rheology. We observe increased stresses for start-up shear flows

xv



in the entangled WLMs when breakage time was equal to reptation time. We propose

that reversible scission acts as a means of constraint release which re-orientates chain

segments in the velocity gradient direction and prevent retraction in the tube thereby

causing increased stress. However, stress overshoot caused by the relaxation of the

peak stress to a lower steady stress was observed in the fast-breaking regime. This

suggests that reversible scission functions as both stress relaxation and constraint

release mechanisms.

We then investigate strain hardening, a nonlinear rheological property. We ex-

plore different kinds of WLMs for strain hardening and systematically study their

strain hardening dependence on salt concentration and temperature. By measuring

stress relaxation following a step strain, we observe that strain hardening is prevalent

over a temperature range of 15 - 25 C for a solution of cetyl trimethyl ammonium

bromide (CTAB) with the added hydrotrope, sodium salicylate at hydrotrope-to-

surfactant concentration ratios between 0.5 - 3.0. The extent of strain hardening

upon nonlinear step-strain deformation varies non-monotonically as a function of salt-

to-surfactant ratio for different temperatures. A transition from strain hardening to

softening or linear response is observed at strains that are dependent on temperature

and concentration. Strain hardening was also observed in solutions of CTAB and

hydrotrope, sodium 3-hydroxy-2-naphthoate. However, solutions of anionic sodium

lauryl sulfate surfactants without hydrotrope but simple salt, sodium chloride strain

softened, indicating that the hydrotrope is crucial to obtaining strain hardening in

step strains. The results indicate a stress relaxation mechanism that is more com-

plex than that of simple disentanglement and reversible scission, possibly involving

strain-induced associations between micelles facilitated by hydrotropes that may act

as physical crosslinkers.
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CHAPTER I

Introduction

1.1 Background

Wormlike micelles (WLMs) are a class of complex fluids that have generated sig-

nificant scientific interest in recent decades and have been used in various industrial

applications. Unlike ordinary polymers, wormlike micelles have a dynamic struc-

ture that forms a viscoelastic network from the reversible self-assembly of constituent

molecules without the need of chemical cross-linking. The wormlike micelle structure

can be influenced by the local fluid environment thereby making their structure and

hence, rheology tunable to desired applications [1]. For instance, some wormlike mi-

celle fluids exhibit changes in their microstructure and rheology with salinity, light,

heat, pH, electricity among other stimuli [2]. The tunability of the rheology of worm-

like micelles and the reversibility of their structure have made them attractive and

suitable for many applications.

Wormlike micelles (WLMs) have been employed in drilling and pumping opera-

tions because of their ability to regain viscosity after exposure to high shear-rates.

Thus, they can be re-used several times unlike polymer-based fluids that reduce in

performance once their irreversible cross-links are broken. WLMs are better drag

reducers than polymers in heat-exchangers and pipe flows because of the aforemen-

tioned reason coupled to their shear- and thermo- thickening properties [2, 3, 4]. In
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biomedical applications, WLMs have been used for encapsulation and targeted re-

lease of drugs to pathological sites due to their responsiveness to stimuli such as pH,

temperature, and redox potential [2]; and also their biodegradability, surface tension

reduction and solubility [5]. In the cosmetic industry, they are used as major con-

stituents of shampoos for their detergency, viscosity and foaming ability [4]. They are

also used in many consumer products like coatings, lubricants, adhesives, and thin

films. In electronic industry, they are used in making masks and photoresists and

serve as tools for extreme high-resolution lithography [4, p. 176] in the production of

integrated circuits.

Although, WLMs have been used in many industrial products and processes,

industrialists still face many challenges in using them in some applications because

some micellar properties could be disadvantageous to production process and even

products themselves. For instance, strain hardening WLM fluids tend to clog filling

nozzles over time. They resist flow and increase their stiffness when moderate force

is applied to clear the clog. The clogging of lines can lead to downtime in production

thus resulting in financial losses [6]. Knowledge of the nonlinear rheological behavior

of WLMs is also needed to overcome the challenge of excessive thinning in enhanced

oil recovery. The entangled WLMs are disintegrated into spherical micelles as they

pass through the pore throat of the oil reservoir. The spherical micelles may not

reform into entangled wormlike micelles by the time they pass through the next layer

of pores, thereby causing reduced recovery [2]. Hence, it is essential to understand

the the microstructural changes that cause these rheological properties in wormlike

micelles.

Detailed understanding of the rheology of WLMs could be used to better design

products by fine-tuning their rheology to suit the desired applications. This knowl-

edge would ultimately lead to higher quality products and reduced costs of production.

It is therefore of economic necessity to understand the relationship between the mi-
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crostructure and rheology and be able to predict the stress response of micelles to

deformation and flow for their intended applications. For this, constitutive equations

are formulated from well-founded theories. However, many of the existing theories

and constitutive equations have been developed for polymers and do not include the

unique reversibility of structure and rheology observed in wormlike micelles. There is

therefore the need to formulate models that include reversibility of structure to allow

for accurate prediction of wormlike micelle dynamics.

1.2 Micelles

1.2.1 Molecular Structure and Formation

Micelles are molecular aggregates formed by the reversible assembly of amphiphilic

molecules in solution [7]. Amphiphilic molecules (or amphiphiles) typically have a

hydrophilic (water-loving) head and a hydrophobic (water-hating) tail [7, 4]. Am-

phiphiles could be surfactants, block co-polymers, colloids or polyelectrolytes and

serve as building blocks for their aggregation into macromolecular structures. The

amphiphilic molecules assemble to form micelles at concentrations slightly above the

critical micelle concentration (cmc). The structure of the micelles formed depend on

the packing parameter of the amphiphilic molecules which is defined as p = v/al,

where v is volume of the hydrophobic tail with length, l and a is the area occupied

by the hydrophilic head-group at the micelle surface. Figure 1.1 shows the expected

micelle aggregate structure by packing parameter. When p < 1/3, the amphiphiles

assemble into spherical aggregates and when 1/3 < p < 1/2, they form wormlike

structures. They assembly into vesicles between 1/2 and 1 and bilayers at about 1.

The structure of the aggregates also depend upon factors such as surfactant con-

centration, ionic strength, type of solvent, temperature and presence of counterion

and/or co-surfactant [9, 10, 11, 12]. The assumed configuration is maintained by

3



Figure 1.1: Amphiphilic molecules aggregate into different micelle structures based
on their packing parameter. Reproduced (“Adapted” or “in part”) from [8] with
permission of The Royal Society of Chemistry.

competing forces: attractive van der Waals interactions between the hydrophobic

tails that are opposed by hydrocarbon-water interfacial force, and the repulsion be-

tween the hydrophilic head groups [13]. Spherical aggregates are favored because it

leaves the hydrophilic head of the micelle exposed to the water while it shields the

hydrophobic tails from the water at the center of the micelle. An increase in sur-

factant concentration beyond a second cmc (also referred to as the critical wormlike

micelle concentration (cwmc) [14]) can lead to a one-dimensional uniaxial growth of

the micelles. This growth causes a sphere-to-worm/rodlike transition [15] leading to

the formation of cylindrical geometries known as rods [11] with semi-spherical end

caps [16]. The co-existence of spherical and wormlike micelles have been observed

directly by cryogenic transmission electron microscopy (cryo-TEM) [15, 17, 18, 12]

and indirectly by fluorescence [19]. The rods elongate as aggregation progresses and

become flexible on a length-scale of the order of the persistent length [10] and are

referred to as threadlike or wormlike micelles. The persistent length is the charac-

teristic length for which there is no tangential correlation in the direction along the
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Figure 1.2: Chemical structures of common surfactants and salts used in making
wormlike micelles. Cationic cetyl trimethyl ammonium bromide (CTAB) and anionic
sodium lauryl sulfate (SLS) surfactants are depicted in (A) and (B) respectively. (C)
and (D) represents the chemical structures of hydrotropic salts, sodium salicylate
(NaSal) and sodium 3-hydroxy-2-naphthoate (SHNC) respectively.

contour of the micelle. Typically, micelle sizes are described in units of their Kuhn

segments; the kuhn length, denoted by bK , is a statistical length that equals double

the persistent length [20].

Cetyl trimethyl ammonium bromide (CTAB)/NaSal and cetyl pyridinium chlo-

ride (CPyCl)/NaSal solutions are examples of surfactant-based micelle systems that

have been studied extensively in the literature [13]. The structures of common worm-

like micelle constituents are shown in Fig. 1.2. Certain salts, known as hydrotropes,

are mostly aromatic salts that have the extraordinary ability of dissolving hydrophobic

moieties and penetrating the micelle head group. In the formation of cationic CTAB-

NaSal wormlike micelles, salicylate ions (Sal−) from the hydrotropic salt, sodium

salicylate (NaSal) have been reported to intercalate with cetyl trimethyl ammonium

(CTA+) head-groups [21, 10, 22] by binding to them at the hydrophobic-hydrophilic
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Figure 1.3: Cation-π and hydrophobic interaction in surfactant wormlike micelles
that contain hydrotropes. Reprinted (adapted) with permission from [23]. Copyright
(2011) American Chemical Society.

interface. They occupy the region between the outer head group and hydropho-

bic tails. The binding to the micelle head group is possible because of their size

and the cation-π interaction, portrayed in Fig. 1.3, between the phenyl ring(s) of

the hydrotrope and the cations of the surfactant head group [23]. The salicylate

ions are relatively larger moieties compared to halide ions. They therefore act as a

co-surfactant [9] in promoting aggregation. The presence of hydrotropes cause an

electrostatic screening of the oppositely charged surfactant headgroups. This screen-

ing significantly reduces the repulsion in the head groups thereby facilitating further

aggregation. The hydrophobic interaction produces the curvature while the cation-

π interaction allows the micelles to stack longitudinally in one direction to form

wormlike micelles even at relatively low surfactant concentrations. Sodium salicylate

(NaSal) also bind strongly with CPyCl and is reported [21] to form long wormlike

micelles at the cmc without intermediary spherical micelles formed in the process.

Anionic surfactants have also formed long threadlike micelles with bivalent and

trivalent counterions [9] and cationic hydrotropes [24]. WLMs have been reported to

be formed with anionic surfactants like sodium hexadecyl sulfate using quaternary am-
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monium salts such as n-pentyl-N,N-diethyl-N-methylammonium bromide (C5Et2MeNBr)

and alkyl toluidine halides such as N,N-dimethyl-N-ethyl-p-toluidine bromide (Me2EttolBr)

and p-toluidine hydrochloride [22, 24] via hydrophobic and anion-π interactions.

Mixed surfactant systems in which one acts as a co-surfactant have also led to the for-

mation of wormlike micelles [9]. For example, we study the nonlinear rheological be-

havior of sodium lauryl ether (3) sulfate (SLE3S)/sodium lauryl sulfate (SLS)/sodium

chloride (NaCl) mixed-anionic surfactant wormlike micelle in Chapter IV. A number

of possibilities exist with forming hybrid wormlike micelles by combining polymers

and surfactants [25], proteins [2], polyelectrolytes [25, 26] and colloids. These hy-

brid combinations and variations are used to achieve different functionalities for the

wormlike micelles.

1.2.2 Equilibrium Reaction Kinetics

As mentioned in Section 1.2.1, micelles form by assembling to form aggregates.

The initial aggregates are bound together by hydrophobic interactions. They aggre-

gate further by cation-π electrostatic interactions when hydrotropes are present. In

addition, less common CH-π and π-π interactions also contribute to the assembly.

The CH-π interactions occur between the C-H groups along the surfactant tails and

phenyl rings while the π-π interactions occur between the phenyl rings themselves.

However, these interactions are through Coloumbic and van der Waals forces which

are weak compared to the covalent bonds found in polymeric assemblies. The cation-

π binding strength is a factor of the nature of the cation, π system, geometry of

interaction and solvation [27, 28, 29]. In solution, the strength of the cation-π bond

is reduced with increasing polarity of the solvent [27]. Cation-π interaction con-

tribute binding energies of the order of 0.844 kT per phenyl ring in aqueous media

[28]. Therefore, these non-covalent bonds are easily perturbed by Brownian motion

and thermal fluctuations. This perturbation causes the interacting species to dif-
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fuse far beyond the van der Waals contact distance thereby leading to disaggregation

and break-down of assembled structures. The continuous interplay between aggrega-

tion by non-covalent interactions and Brownian perturbation leads to the reversible

scission of the wormlike micelle structure in equilibrium.

Reversible scission is a stress relaxation mechanism for the wormlike micelles.

The breaking of long micelles into smaller pieces allow for quicker relaxation of the

shorter micelles by chain stretch relaxation and reptation. Reptation is the curvilinear

diffusion of the micelles in what appears to be in a snake-like motion to free itself of the

constrictions imposed by surrounding micelles [30, 11]. Bond- and end- interchange

are reaction mechanisms similar to reversible scission. Fig. 1.4 depicts the reaction

mechanisms in equilibrium. During reversible scission, the wormlike micelles are

assumed to break and fuse end-to-end along the longitudinal axis causing them to

shorten and lengthen respectively. End interchange occurs when a micelle collides into

another and breaks off with a part of it, thus getting new ones in the process. On the

other hand, bond interchange occurs when two micelles cross each other to form an

intermediary four-fold junction before dissociating into two micelles, each with a new

set of links from the other. Both end and bond interchange conserve the total number

of micelles. Therefore, they do not contribute much to the relaxation of the micelles

to equilibrium when a perturbation that changes the total number of micelles is felt

like in a temperature jump (T-jump) experiment [12, 31]. For this reason, reversible

scission is a more important reaction mechanism in micelle dynamics and would be

the focus of this study.

1.2.3 Structural Features

Micelles exist in three concentration regimes: dilute, semi-dilute and concentrated.

In dilute concentrations, the micelles are shorter than the inter-micelle distance and

cannot feel the influence of surrounding micelles. Beyond an overlap concentration c*,
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Figure 1.4: Schematic showing micellar reaction mechanisms: reversible scission (top),
end interchange (middle) and bond interchange (bottom). Reproduced from [12] with
permission from Taylor & Francis Group, LLC.

the micelles are longer than the inter-micelle distance and start to impose topological

constraints on the diffusion of one another, thereby restricting their motion to a tube-

like region. This causes the micelles to entangle with one another in what is referred

to as the “loosely” entangled and semi-dilute regime [32]. Upon further aggregation,

or increased concentration, the micelles elongate and become very entangled and

form viscoelastic networks. This is the concentrated regime with tight entanglements.

From concentrations above C∗, the linear wormlike micelles entangle with one another

(and can also form branches) but maintain an isotropic configuration without a long-

range orientational order [7]. Wormlike micellar (WLM) systems in this semi-dilute

regime have been shown to have pronounced viscoelasticity [10, 13]. In addition to

reversible scission, entangled wormlike micelles can slide along those entanglement

points which are physically connected to relax stress.

Structural features such as rings are predicted to occur in the concentration region
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just below the strongly entangled regime. Rings can link up and interlock to form

a ring-network which could affect the rates of bond-interchange and other processes.

This mechanism has been linked to shear thickening process [7]. Branches have been

observed in wormlike micelles using experimental techniques such as Cryo-TEM [33].

The occurrence of branches would change the rheology of wormlike micelles in and

out of equilibrium. It affords the wormlike micelles a leeway to relieve stress through

a grid-like network of veins and sliding branch points. Introducing branches have

caused a failure of the reptation-reaction model of Cates. This was resolved but

can only be applied in wormlike micelles with relatively low counterion binding, high

hydrophobicity and low ionic strength (affinity) [7].

1.3 Rheology of Wormlike Micelles

1.3.1 Linear Rheology of Wormlike Micelles

Rheological properties of micellar solutions are similar to those of polymers [34]

however, their uniqueness lies in the reversibility of their structure via reversible

scission. Wormlike micelles, when present at semi-dilute concentrations, exhibit pro-

nounced viscoelasticity [10, 31]. In this concentration regime, the average micelle

length is longer than the inter-micelle distance and leads to the formation of en-

tanglements between the micelles. The implication is that the time for reptation is

comparable to the wait time for a scission to occur along the contour of the long

wormlike micelles. The timescales of these processes are observable within the time-

frame of macroscopic rheological experiments. In small amplitude oscillatory shear

flows, the linear viscoelastic response of many wormlike micelles are thus explained

by a combination of reversible scission and reptation [34]. The linear rheology can be

described by a two-mode Maxwell model with characteristic times scales for reptation

and breakage represented by τrep and τb respectively [34].
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1.3.1.1 Relaxation Times

Micelles at dilute concentrations, generally have low viscosities and exhibit New-

tonian or near-Newtonian behavior unless they form long wormlike micelles [34, 35].

The micelle chains are relatively short that they reptate out of the surrounding con-

strictions before scission can occur along the chain. Reptation is thus the dominant

stress relaxation mechanism [36, 11] when τb >> τrep, and deviation from Maxwellian

behavior is observed. This has been reported in surfactant solutions at low volume

fractions [10] or concentrations [36] of surfactant and salt and at low salt-to-surfactant

concentration ratios. A plot of the frequency sweep exhibits a minimum in the loss

modulus (G”) curve at high frequencies which is roughly the inverse of the break-up

time, τb [37]. This linear viscoelastic behavior of this category of wormlike micelles is

akin to those of unentangled, unbreakable flexible polymers.

However, at semi-dilute and concentrated regimes, entanglement networks are

formed and stress relaxation is by competing mechanisms of reversible scission and

reptation [36]. The linear viscoelastic response of such micelles resemble that of semi-

dilute to concentrated flexible-chain polymer solutions [36]. The wormlike micelles are

sufficiently long that they break along their contour before they can reptate out of the

surrounding constrictions. The stress decay can be modeled by a single exponential

when chain scission is faster than reptation, i.e. τb << τrep. The characteristic time

of the relaxation was predicted [30] to be equal to the geometric mean of the times

for scission and reptation, τ = (τbτrep)
1/2 . The signature representation for this is a

perfect semi-circle plot of the relationship of the G” and G’ known as the Cole-Cole

plot.

Mono-exponential and Maxwellian behavior have been observed in wormlike mi-

celle systems with high salt concentrations [38] where long and entangled worm-

like micelles are present. The extent of agreement to this Maxwellian behavior de-

pends on the micelle length, entanglement density, the concentration of free salt
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ions in the bulk, and the ratio of salt to surfactant in the wormlike micelle com-

plex [36, 38]. However, in some systems, such as cetyltrimethylammonium p-toluene

sulfonate (CTApTS) with or without the hydrotrope, sodium p-toluene sulfonate

(NapTS), the single mode Maxwell response has been reported to be independent of

the salt-to-surfactant concentration ratios [38].

1.3.1.2 Plateau Modulus

In linear rheological experiments of Shikata and coworkers, the relaxation time τ

has been reported to depend on the concentration of the free dissociated hydrotrope

ions, C∗
S. The plateau modulus, G0

N is reported to be proportional to the square of the

surfactant concentration, CD for cationic [38, 25], anionic [24] and hybrid surfactant-

polymer [39] wormlike micelles. This scaling was observed to be G0
N ∝ C9/4 in

wormlike solutions involving CTAB and simple salts like potassium bromide (KBr)

[40, 41, 42] and hydrotropes like chlorobenzoates [43]. The free hydrotrope ions in bulk

aqueous phase act as catalysts for crossing-through reaction of two wormlike micelles

at entanglement points, effectively controlling the entanglement release mechanism

[38]. Presence of strong binding salt ions and the formation of branched micellar

networks introduce new relaxation dynamics to the wormlike micelles. It allows for

stress to be relaxed by the free-sliding of the branch points along the cylindrical

structure of the wormlike micelles which complicates the dependence of viscosity and

relaxation time on salt concentration [35].

1.3.1.3 Zero-shear Viscosity

The zero-shear viscosity scales with a power law dependence on surfactant concen-

tration, η0 ∝ Cα with α decreasing with increasing ionic strength [43] suggesting that

it is controlled by electrostatic interactions [44]. The dependence of the zero-shear

viscosity on the salt concentration is logarithmically or semi-logarithmically plotted
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as the “salt curve”. Three types of dependences are observed. (i) the zero-shear vis-

cosity increases to a maximum viscosity where it plateaus till phase separation occurs

[45, 46] (ii) a single maximum in viscosity and (iii) double maxima of the zero-shear

viscosities are observed with a minimum at intermediate concentrations.

The first type of salt curve has been observed in dilute solutions of sodium oleate

(NaOA) with potassium chloride (KCl) or triethylammonium chloride (Et3NHCl)

[47]. The viscosity plateau was attributed to the electrostatic screening of the head

group interactions till the head group area reaches a minimum, upon which further

salt addition has no effect [45, 47].

The second behavior is reported for anionic wormlike micelle solutions with sim-

ple salts e.g. SLE3S/SLS/NaCl and sodium lauryl ether (1) sulfate (SLE1S)/NaCl

(Chapter IV, [48]), anionic surfactants with hydrotropes [49, 24], mixed anionic-

cationic surfactant wormlike micelles [50, 51, 52], mixtures of nonionic and ionic

surfactant micelles [9, 53, 54, 55], zwitterionic with anionic or cationic surfactants

[56]. The decrease in viscosity from the maximum was attributed to the formation of

branches [57, 46, 58, 59] that allow faster relaxation and a reduction in the micelle

length as a result of increased scission [45, 58, 57].

In the third kind of salt curve, observed in wormlike micelles composed of cationic

surfactants, e.g. CTAB (Chapter IV, [48]) and CPyCl [60, 61] and hydrotropic salts,

e.g. NaSal, the left peak of the cationic salt curve was attributed to elongation of the

micelles and formation of highly entangled wormlike micelles [48]. The rheological

behavior observed before this peak was similar to that of an entangled polymer. The

relaxation could not be described by a single Maxwell time but with a continuous

spectrum of relaxation times. It is indicative of multiple relaxation processes due

to configurational fluctuations of the flexible chains [60]. At the regions beyond the

first maximum, the linear rheology can be described as Maxwellian suggesting the

importance of micelle kinetics in the relaxation in this region. The zero-shear viscosity,
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η0 then reduces towards a minimum. Although this reduction in viscosity is not

predicted by the reptation-reaction model of Cates [62, 63], we believe it is attributed

to a reduction of the wormlike micelle contour length due to dense entanglements and

an increase in the rate of scission [33, 64] leading to shorter micelles and also aiding the

relaxation of stress. The relative decrease in viscosity was associated to the formation

of crosslinks between the micelles hence, branching [65] in which the branch points

can slide along the micelles. The increased branching can lead to the formation of a

saturated and multi-connected network [62]. The rise of η0 to the second maximum

has been subject to much debate [62, 47]. Some authors [63, 66, 67, 68] attribute it to

increase in micelle branching density while others [33, 48] attribute it to the increased

entanglement density or the formation of higher-order assemblies e.g. micelle bundles.

The structural relaxation time, τR is observed to decrease after the first maximum to

a minimum and increase again. However, the plateau elastic modulus, G0 is relatively

insensitive to the parameter [44, 69].

1.3.2 Nonlinear rheology of wormlike micelles

Interesting and more complicated nonlinear rheological behaviors are observed

as the applied deformation exceeds the small strain limit and shear rates become

strong enough to perturb the equilibrium structure [47]. WLM solutions exhibit

nonlinear rheological properties such as shear banding [70, 71, 21], flow-induced phase

transitions [33, 72], shear thinning, shear thickening [47] and strain hardening [73,

74, 75, 48].

1.3.2.1 Strain Hardening

Strain hardening is a solid-like behavior in which the WLMs resist deformation and

exhibit an increased stiffness with increasing deformation. Strain hardening in shear

is usually probed by performing step strain experiments and is defined by a nonlinear

14



stress relaxation modulus that increases relative to the response within the linear

strain limit. A lower nonlinear relaxation modulus relative to the linear response

indicates strain softening. Strain hardening has been observed at and near equal

molar concentrations of CTAB with hydrotrope, NaSal [73, 74]. Shikata et al. [73]

showed that strain hardening in aqueous solutions of CTAB with added hydrotrope,

NaSal depends on the salt-to-surfactant concentration ratio. They observed that at

low concentration of free salicylate ion, C∗
S, the relaxation modulus increases with

strain [73] and the stress and viscosity growth function, η+ = σ(t,
.
γ)/

.
γ increase

with increasing rate of shear. They proposed that the strain hardening occurs due

to a mechanism of entanglement relaxation [73] that cannot be predicted by Cates’

nonlinear model [76] which involves reversible scission and chain retraction [75]. They

noted that quantitatively similar results were obtained over the range of temperatures

studied (10 - 15 0C).

Brown, Burghardt, and Venerus [74] further investigated the CTAB/NaSal solu-

tion at equal molar concentrations and observed that the Lodge-Meissner rule held for

strains where strain hardening was observed. The Lodge-Meissner rule states that the

ratio of first normal stress difference to shear stress is equal to the imposed step shear

strain at all times. They [74] showed that the relaxation moduli were factorable into

time- and strain- dependent functions in the strain hardening regime (2.0 < γ < 3.5).

The strain-dependent function is calculated as the amount of vertical shift on a log-

log plot needed for the nonlinear stress relaxation curve to superimpose on the linear

relaxation curve. This shift as a function of strain is the damping function. Such fac-

torability has been observed in some polymers and the damping function is usually a

strain softening function [77]. For a CTAB/NaSal surfactant solution, beyond a strain

of 350% (3.5 < γ < 4.0), Brown, Burghardt, and Venerus observed a time-dependent

collapse of the relaxation modulus from a strain hardening to a strain softening or

linear response at a critical time after the step strain [74].
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In step strain experiments, strain hardening has been observed in wormlike mi-

celles of CTAB with the hydrotrope NaSal at equal molar concentrations [74] and at

a hydrotrope-to-surfactant molar concentration ratio, CS/CD of 1.5. [73]. However,

the mechanism and conditions necessary for strain hardening in wormlike micelles is

not clearly understood. The dependence of strain hardening on parameters such as

salt concentration and temperature have not been studied extensively.

In start-up shear flows, an increase in the shear stress growth coefficient (de-

fined as the ratio of shear stress to shear rate) relative to the linear response is also

termed “strain hardening” [75, 25, 26]. In such start-up shear flow experiments on

CTAB/NaSal wormlike micelles, Inoue, Inoue, and Watanabe [75] observed strain

hardening at shear rates higher than a critical shear rate. They suggested that the

molecular origin of strain hardening in the CTAB/NaSal system was the suppression

of chain retraction due to sticky cross-links which act as long-lived entanglements

[75]. They reported that strain hardening was strongly dependent on the effective

elastic modulus — defined as the ratio of the shear stress growth function (after in-

ception of steady shear flow) to strain — and independent of C∗
S at very high shear

rate. This was attributed to the finite extensibility of the network strands described

by three-chain model [75].

1.3.2.2 Shear Thickening

Shear thickening, that is, an apparent increase in viscosity with increasing shear

rates [78] has been observed in wormlike micelle solutions when the solutions are

sheared beyond a critical shear rate, .
γc or critical shear stress, σc [47]. This behavior

has been observed in CTAB solutions with hydrotropes, NaSal and sodium tosylate.

However, it was not observed with sodium benzoate although the three hydrotropes

had similar chemical structures except for their polar head group. Therefore, it was

concluded that shear thickening depended on the strength of the cation-π bonds
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formed in the wormlike micelles and whether the hydrotrope ions intercalated in the

surfactant head group [79].

The critical shear rate, .
γc increases with temperature, T and decreases with in-

creasing surfactant concentration, C [80]. It varies with both parameters according to
.
γc ≈ Cαexp(−Ea/kBT ) where Ea is the activation energy [81, 47]. Upon shearing the

solutions beyond the critical shear rate or stress, a wait time, tind is observed before

a 20-50 fold increase in viscosity [80, 47]. It then takes another tsat for the viscosity

to attain a steady value. tind and tsat depend on the shear and thermal histories of

the solutions. tind is the time for shear-thickening transition ranging from seconds

to minutes. During this time, shear-induced structures are formed in the solution

which leads to the increase in viscosity. A power-law dependence of tind ≈ .
γ
−m on

the shear rate is reported [82, 83]. Flow-induced structures have not been reported

for purely extensional flows [47]. However, in mixed shear and extensional flows, ob-

tained by flowing the wormlike micelles through micro-posts, the formation of stable

flow-induced structured phase was obtained [84, 33].

Shear thickening and the actual morphology of the shear-induced structures formed

in dilute surfactant solutions have been explained with two arguments: the shear-

induced transition and the shear-induced phase. In the shear-induced transition ar-

gument, two structures - short rod-like micelles and aligned wormlike micelles- are

believed to co-exist in the same phase. As the shear rate exceeds .
γc, the small rod-like

micelles aggregate further and align under flow. The geometry gap is thus filled with

aligned wormlike micelles. tind and tsat are then said to represent the time for aggre-

gation of rod-like micelles to a critical aggregation size and the time for the growth

of aligned wormlike micelles respectively [80, 85, 82, 47]. The shear-induced phase

argument postulates that a flow-induced phase separation of the wormlike micelles

occur and results in a highly viscous gel phase and a low viscosity sol phase containing

smaller micelles [78, 47, 33, 79, 80, 86]. Both points of views have been supported
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by rheo-optical techniques such as flow birefrigence [82], Rheometry on Small Angle

Light Scattering (Rheo-SALS) [87, 88, 89] and Rheometry on Small Angle Neutron

Scattering (Rheo-SANS) [86, 85, 81, 90, 91].

1.3.2.3 Shear banding

Shear banding occurs as a result of the stratification of the flow into distinct

regions of varying shear rates, viscosities and morphologies [92]. It is observed on

a shear stress-shear rate flow curve as a discontinuity between two critical shear

rates, .
γc1 and .

γc2 in which a stress plateau [47] or non-monotonic trend occurs [93].

Newtonian behavior is typically observed at shear rates below .
γc1 and above .

γc2

[47]. The flow in the aforementioned regions are homogeneous and stable. However,

at shear rates between both critical shear rates, .
γc1 <

.
γ <

.
γc2, a negative slope

in the flow curve implies decreasing stress with increasing shear rate. The initially

homogeneous flow becomes mechanically unstable [94]. The non-monotonic flow curve

is thus attributed to mechanical instability [94, 47] which can be exacerbated by

concentration fluctuations [95]. This mechanism has been invoked to explain shear

banding in semi-dilute micelle solutions [47].

Another explanation of the stress plateau informed by Rheo-SANS [72, 96, 80],

Rheo-SALS [97] and birefringence studies [96, 82] under shear attribute the stress

plateau to an isotropic-nematic phase transition in concentrated wormlike micelle so-

lutions near the equilibrium isotropic/nematic phase boundary [94]. The region before

the plateau was characterized as a homogeneous flow of isotropic micelles while that

after the plateau was determined to be homogeneous flow of nematic micelles. The

flow region spanning the stress plateau was characterized as an inhomogeneous and

biphasic (isotropic/nematic) flow with shear rates relative to the proportions of both

phases [94]. Start-up experiments [94] reveal both the flow-induced phase transition

occur on a different timescale, t > τR than the mechanical instability which occurs
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after stress overshoots at about τR [94]. The shear bands were reportedly triggered

by shear causing non-equilibrium phase transitions. However, both mechanisms of

phase transitions and mechanical instabilities seem intertwined [94, 47].

Shear bands have been observed along the gradient and vorticity directions and

are referred to as gradient [93, 47, 80, 97, 82, 92, 98] and vorticity shear banding re-

spectively [93, 99, 80, 92, 98]. Gradient banding have been linked to micelle alignment

and concentration fluctuations [93, 100]. Vorticity banding have been attributed to

normal stress differences across bands, viscoelastic instabilities (in curved streamlines)

and fluctuating slip in the high shear rate band [93, 101, 102]. Shear banding has also

been associated with long transients that are longer than the relaxation times [99],

elastic instabilities [103, 104], oscillating bands [101, 93], spatiotemporal rheo-chaos

[105] and interfacial instabilities [93, 106, 101, 102, 107].

1.3.3 Constitutive Equations

Macromolecules form transient networks that have the ability to break and re-

combine dynamically in solution and are known to exhibit remarkably different rheo-

logical properties from ordinary polymers solutions including shear thickening, shear

banding, strain hardening and thixotropy [108]. To accurately predict these unique

rheological properties, the constitutive equations used to describe the stress-strain re-

lationships of these macromolecules have to reflect the reversibility of their structure.

Hence, there is the need to develop constitutive equations for wormlike micelles that

include reversible scission. Unlike polymer solutions, whose response to different de-

formations have been studied and reported in classical texts [20, 77, 109], few models

include both reversible scission and deformation dynamics in their description of the

stress response of micelles. In this section, we would briefly review theories for poly-

mer rheology, transient network theories that include reversibility of structure and

theories for wormlike micelles that aim to build on ideas from polymer and transient
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network theories.

1.3.3.1 Tube Model and Reptation Theory for Polymers

A flexible polymer chain in a semi-dilute or concentrated solution is surrounded

by other chains that constrict its motion. The effect of the surrounding chains can be

represented as a tube [109]. The chain is in a random walk configuration, therefore

the tube also follows a random walk configuration. The tube has a diameter, a with a

step-length, b [7]. The polymer chain can therefore only free itself of the constraints by

a curvilinear diffusion along the axis of the tube known as reptation [110, 30, 7]. The

curvilinear diffusion constant, Dc is inversely proportional to the chain length, L, i.e.

Dc = D0/L, where D0 = kBT/ζ is the diffusivity or mobility constant, independent of

L [30]. The fraction of the original tube remaining at time, t after a small step-strain,

γ is [109]

µ(t) =
∑
p=odd

8

p2π2
exp[−tp2/τrep] (1.1)

where τrep = L2/Dcπ
2 is the reptation time.

If the polymer is suddenly deformed by applying a small shear strain, γ, the

deformation tensor, Eij = δij + γδixδjy. The corresponding stress tensor, σij has the

following non-zero deviatoric components,

σyx = σxy = G(t− t1)γ (1.2)

Linearity demands that the other deviatoric components of σij are zero by symme-

try [7]. G(t) is the linear step-strain response. Applying a time-dependent shear

strain, γ(t), the strain can be fragmented into infinitesimally small strains, .
γ(t′)dt′

by linearity. The stress response is therefore, dσxy(t) = G(t− t′)
.
γ(t′)dt′ which can be
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integrated to give the constitutive equation for linear deformations

σxy(t) =

t∫
−∞

G(t− t′)
.
γ(t′)dt′ (1.3)

If a nonlinear step-strain is suddenly applied at t1, the modulus becomes a factor

of both time and strain. The stress response is of the form,

σyx = σxy = G(t− t1, γ)γ (1.4)

In contrast to the linear case, the other deviatoric components of σij do not varnish

by symmetry. First and second normal stress differences are defined as N1 = σxx−σyy

and N2 = σyy − σzz respectively. The stress response of the deformed polymer chain

in the tube, and assuming independent alignment approximation [109] is given as

σpol
ij (t) = G0

t∫
−∞

.
µ(t− t′)Qij(E

tt′

mn)dt
′ (1.5)

where tensor Qij is a function of deformation tensor, Ett′
mn which represents the defor-

mation felt by the tube segments between times t′ and t. The product, G0Qij gives

the stress contribution [7]. Further details about the proof of Eq. (1.5) can be found

in the text by Doi and Edwards [109].

1.3.3.2 Cates’ Reptation-Reaction Model

Cates’ reptation-reaction model [30] was introduced in Section 1.3.1.1. In this

model, he incorporated micelle kinetics into the reptation theory developed by [109]

and summarized in Section 1.3.3.1. The model is based on the following assumptions:

(i) scission occurs at a fixed probability per unit length per unit time anywhere along

the length of the chain, L (ii) fusion occurs at a rate proportional to the product
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of the concentrations of the fusing subchains, and (iii) successive scission and fusion

events are uncorrelated, i.e. a chain is equally likely to fuse with a random chain in

the vicinity as it is with the chain it recently dissociated from [30]. Based on these

assumptions, the micelle kinetics yields a distribution of lengths of micelles in steady

state given by,

N(L) = (2c1/c2)exp(−L/
−
L) (1.6)

where, c1 and c2 are the rate constants for scission and fusion respectively.
−
L, the

mean chain length depends on the rate constants according to

−
L = ρc2/2c1 (1.7)

ρ is the contour length of micelles per unit volume of solution

ρ =

∞∫
0

LN(L)dL (1.8)

with N(L)dL being the number density of chains of length L ± 1/2dL. The charac-

teristic time for a chain of mean length,
−
L to break in two is defined as

τb = (c1
−
L)−1 (1.9)

When τb << τrep, reversible scission occurs before the chain ends can reptate out of

the tube. Therefore, the dominant relaxation mechanism for a tube segment not close

to a chain end is such that when the chain breaks along the contour, at a distance λ

from the tube segment, the newly formed chain end reptates past the tube segment

before it is fused with a neighboring chain [30]. The largest distance, λ at which a

break can occur for relaxation by this mechanism is given by λ2 ∼= Dc(L)τb. Assuming
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the length of the newly broken chain, L is of mean length,
−
L, then

λ2 ∼= D0

−
L
−2

/c1 =
−
L
2

ζ (ζ << 1) (1.10)

where ζ = τb/τrep. Taking λ as the mean chain length,
−
L and substituting Eq. (1.10)

in Eq. (1.9), the relaxation time for the tube segment by the described mechanism is

obtained as [30]

τ ∼= (c1λ)
−1 ∼= D

−1/2
0 c

−1/2
1

−
L (1.11)

Eq. (1.11) can be re-written as

τ ≃ (τbτrep)
1/2 (ζ ≤ 1) (1.12)

When
−
ζ = τ)b/τ << 1, the relaxation function µ(t) = exp[−t/τ ] is a mono-exponential

decay with a single relaxation time [30, 7] as discussed in Section 1.3.1.1. When

ζ < N−1
T , where NT is the number of tube segments per average micelle chain, the

dominant relaxation mechanism is no longer reptation but contour length fluctuations

(CLF) or “breathing” [7]. CLF accounts for changes in the contour length of the tube

in time [32]. In the breathing regime, the mean stress relaxation time is corrected as

[30]

τ ≃ τ
3/4
b τ 1/4repN

1/4
T (1.13)

The time for stress relaxation by breathing relative to reptation is set by the number

of entanglements,
−
Z on the average micelle of chain length,

−
L [32]. Deviations from

Maxwell behavior such as an up-turn in the storage and loss moduli at high frequency

is observed [7].

Cates [76] extended his reptation-reaction model [30] to describe nonlinear effects

by assuming that (i) nonlinear effects of the flow are introduced only through the

effects on micelle diffusion. Such effects on scission/fusion rates are neglected; and
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(ii) stress contribution is dominated by micelle entropy [76]. The constitutive equation

is given as [7] in terms of the deviatoric part of the polymer stress

σpol,dev
ij =

15

4
G0

[
Wij −

δij
3

]
(1.14)

Wij(t) =

t∫
−∞

B(ν(t′))exp

− t∫
t′

D(ν(t”))

Qij(E
tt′

mn)dt
′ (1.15)

ν(t) = Wij(t)Kij(t) (1.16)

Qij(Emn) =

⟨
EikukEjlul
|Eimum|

⟩
0

(1.17)

The Cates’ nonlinear reptation-reaction model predicts nonlinear rheological proper-

ties such as flow-instabilities characteristic of shear banding [111]. The shear banding

behavior is reviewed in Section 1.3.2.3.

Further modifications were applied to the Cates’ reptation-reaction model to suit

pairwise associating polymers [112], and including new physics previously neglected:

breathing with high frequency Rouse modes [113, 114], contour length fluctuations

[115, 32], longitudinal relaxation of stress along the tube [115], (convective and

reptation-driven) constraint release [116, 117, 115, 118, 32], chain stretch [118], mi-

celle bending modes, constraint release or tube rearrangement, correlations of micelle

lengths after reversible scission with that before it occurred; with a view of accurately

predicting the micelle rheology even in the crossover regime between “loosely” and

“tightly” entangled micelle solutions [32].

1.3.3.3 Transient Network Theories

Several approaches have been considered to include micelle reaction kinetics such

as reversible scission in constitutive equations. Bond interchange for instance, pro-

ceeds through a four-armed intermediate to exchange two interior bonds without the
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need of a chain end (see Section 1.2.2). Therefore, in such a case the tube model

might be inapplicable [76], and network theories capable of tracking the state and

dynamics of chain segments in a network would be more suitable. Transient network

theories are based on classical network theories for rubber elasticity. In the network

theories for rubber (and other solids), the chemical crosslinks are treated as junctions

that move connected network segments together. However, for macromolecular liq-

uids, the junctions are treated as temporary, in the sense that they can be created

and destroyed [20].

These transient network theories can be categorized into single-, two- and three-

species models. The single species models incorporate reversible scission into their

constitutive equations by defining a kinetic or reactionary term and coupling it with

the equation for the deformation dynamics. Bautista et. al [119] coupled a ki-

netic equation for the creation and destruction of structure to the Upper Convected

Maxwell equation. Their model could predict thixotropy, rheopexy and creep in

transient stress cycles. Hernández Cifre et. al [120] presented a pseudo-two-species

model of two ensembles of dumbbells, one for ‘active’ chains which are connected to

the network by both ends and the other for ‘dangling’ chains which connect to the

network by one end only. There is no explicit exchange of species in their model.

However, transition probabilities were defined for the association of dangling chains

to the network to form active chains and vice versa. The ensembles were thus differ-

entiated by characterizing the attached beads of the dangling and active chains with

a friction coefficient that lowers its effective diffusivity. The model predicts shear

thickening and shear thinning. Although the single species models have been able to

predict some nonlinear rheological phenomena, they have two major disadvantages.

First, the models do not account for the topological changes of the species or network

during reversible scission and secondly, there is no interaction (exchange) of species

during the reversible scission.
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Two-species and three-species models account for the exchange in species by intro-

ducing equations for the evolution of the number densities of the interacting species.

One of such models is proposed by van den Brule et al. [108] based on the model

of Tanaka and Edwards [121]. Van den Brule and coworkers performed Brownian

dynamics simulations of cross-linked gels modeled as polymeric networks. In their

work, the dynamics of the system is governed by the association and dissociation

of “crosslinks” in the polymer network and Brownian motion. They represented the

macromolecules as Hookean dumbbells with two beads and a spring, and nodes which

connect to beads within a critical distance and move together with them in the fluid.

The chains exist in two states: ‘dangling’ and ‘active’. Van den Brule et al. assumed

linear spring force law and a fixed rate of dissociation of the beads from the nodes.

Despite these limitations, they observed shear thickening behavior of the polymeric

network. The shear thickening was attributed to higher association probability of long

dangling segments to the network before they can completely relax to equilibrium.

The higher association probability results from the quicker retraction of the long

dangling segments due to their higher elasticity compared to shorter segments. Also,

a retracting long segment has a larger configuration space to explore and a greater

chance of re-associating with the network than a short segment. Thus, the probability

of association increases with segment length [108].

Vaccaro and Marrucci [122] employed closure approximations to obtain a con-

stitutive equation for similar structures simulated by [108]. They observed shear

thickening at the onset of nonlinear response followed by shear thinning at higher

shear rates. Tripathi et al. [123] incorporated finite extensibility of the chains, a

stretch-induced dissociation rate, and a shear-induced rate of association of dangling

chains to the elastic network described in previous work [108, 120]. They also ob-

served shear thickening followed by shear thinning at higher shear rates and scaling

of the network relaxation time and zero-shear viscosity that were comparable to those
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obtained in experiments [123].

1.3.3.4 Macroscopic Constitutive Equations

The constitutive equation of Bautista et al. [124] relies on the formulation of

a parameter, namely shear band intensity coefficient, to make predictions without

relating the parameter to the microstructure of the wormlike micelles.

Cates [112] improved on their earlier model [30] to account for interactions of

pairwise associating polymers with end-groups such that ‘monomers’ could combine

into ‘dimers’ and ‘dimers’ could break into ‘monomers’. With this framework, he was

able to establish relationships between the zero-shear viscosity and the equilibrium

ratio of dimers to monomers. Despite the possible predictions including shear banding

[111] made by this model, the fundamental fixed-tube assumption [30] implies that the

chains do not stretch even during nonlinear flows [76]. To permit chain stretch with

deformation, the Vasquez-Cook-McKinley (VCM) model [125] incorporated reversible

scission into the elastic network response of a discrete, two-species wormlike micelle

model. Similar to Cates’ [112], they modeled the micelles as two different species,

one of length L that breaks to form two strands of equal length, L/2; these strands

can rejoin to form a species of length L. The reversible scission in this model was

developed as a simplification of the reaction kinetics proposed by Cates [30]. Germann

et al. [126] refined the work of [125] to produce a three-species model in which short

micelles of length, L could combine to form intermediate micelles of length, 2L which

can further join to form a longer micelle of length, 4L.

The VCM model was able to predict flow instability of the shear-banding type.

However, we believe dimensionality problems in the formulation of the model would

pose errors in the predictions by the model. Comparisons of the VCM model to

analogous Brownian dynamics (BD) simulations in Chapter II reveal inadequacies in

depicting the micelle reversible scission kinetics using dumbbell models.
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1.4 Organization of the Dissertation

In this dissertation, we seek to understand nonlinear rheological phenomena in

wormlike micelles. We employ rheological experiments, simulations and theory to

achieve this.

In Chapter II, we validate the predictions of the Vasquez-Cook-McKinley (VCM)

constitutive equations using parallel Brownian dynamics (BD) simulations. Based on

our findings, we develop a novel constitutive equation that addresses the shortcomings

of the VCM model and can accurately predict nonlinear rheological behaviors in

transient and steady states. The method can be extended to nonlinear force-extension

relationships.

In Chapter III, we incorporate slip-springs into the BD simulation developed in

Chapter II to simulate wormlike micelles in the semi-dilute and concentrated regimes.

The slip-springs act as entanglements to the simulated micelle chains. We study

the effects of the entanglements on the micelle rheology vis-a-vis reversible scission

kinetics.

In Chapter IV, we investigate systematically the effect of salt concentration and

temperature on the strain hardening of different kinds of wormlike micelle solutions

by performing step-strain measurements on a rheometer. We analyze the findings and

provide insights into plausible mechanisms of stain hardening in wormlike micelles.

Finally, in Chapter V we conclude and give future directions for the work based

on our findings.
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CHAPTER II

A Nonlinear Kinetic-Rheology Model for

Reversible Scission and Deformation of Worm-like

micelles

2.1 Introduction

While many simple and sophisticated nonlinear constitutive equations have been

developed for polymer solutions and melts, few are available for solutions of worm-like

micelles. Since worm-like micelles behave as “living polymers,” many aspects of their

dynamics are similar to those of polymers, and theories for polymers can inform the

development of models for the dynamics and rheology of worm-like micelles. This

strategy has been particularly successful in the development of a theory for the linear

rheology of entanglement wormlike micelles by Cates [1]. Cates’ theory for the linear

rheology of worm-like micelles accounts for the distribution of micelle lengths and

their linear relaxation times, resulting from the combination of breakage, rejoining,

and reptation of the micelles in their entanglement tubes. This linear model of Cates,

especially when generalized to account for additional relaxation dynamics [2], provides

a semi-quantitative description of the linear rheology of entangled solutions of worm-

like micelles, and so provides a sound basis for development of a model for nonlinear

rheology. The major difficulty in the development of constitutive models for worm-like
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Figure 2.1: Reveersible scission of wormlike micelles in the VCM model. Two short
dumbbells of length, L fuse to form a longer dumbbell of length, 2L. The long
dumbbell can also break in the middle to give two shorter dumbbells each of length,
L.

micelles is in accounting simultaneously for their dynamic breakage and re-formation,

and their nonlinear dynamics produced by flow. A few nonlinear constitutive models

that account for both aspects of the dynamics are available, however. The nonlinear

model by Cates and coworkers [3, 4] modifies the Doi-Edwards theory by including

micelle breakage and rejoining, but suffers from the limitations of the Doi-Edwards

theory in its neglect of chain stretching dynamics in fast flows. The “VCM” model

of Vasquez, Cook, and McKinley, on the other hand, is derived from equations of

ordinary dumbbell dynamics, modified to allow fusion of short dumbbells into long

ones as depicted in Fig. 2.1. This two-species model, while ignoring entanglements,

is able to allow for fully nonlinear stretching dynamics of micelles, and includes a

phenomenological description of shear-induced breakage. It also could be readily

extended to a multi-species model, which would allow for a range of micelle lengths,

rather than just the short and long species of the original VCM model. This opens

up the intriguing possibility of linking the nonlinear VCM constitutive equation to

the rather well-developed theories for the linear rheology of wormlike micelles, which

originated from the work of Cates in 1987 discussed above.

To realize this vision, the VCM model would need to be extended beyond its

current (but easily alleviated) restriction to two micelle species. While this gener-
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alization would be not be difficult conceptually, and in fact the extension to three

species has already been carried out by Germann et al. [5], it would necessitate the

use of considerably greater computational resources, especially if many, rather than

a few, micelle species, are to be tracked. A more serious conceptual difficulty is the

need to include entanglement interactions among micelles, which would be required

in any physically realistic model of worm-like micelles at concentrations beyond the

very dilute. A final issue is in the validation and improvement of the VCM model

itself, even in its two-species version. As we discuss below, the VCM model, while

originally derived from a kinetic theory in phase space, contains some ad hoc steps

and errors in its derivation. The theory has been re-derived on a thermodynamically

sound basis by Germann et al. [5] using the Poisson bracket formalism, yielding

similar equations as those of the original VCM model, but the bracket formulation

involves ensemble averaged quantities, not necessarily rigorously related to averages

over the dynamics of individual micelles.

Therefore, in this work, we carry out Brownian dynamics (BD) simulations of the

original physical model underlying the VCM model, that is, we simulate Hookean

dumbbells that can can fuse into two-spring chains, and break again into individual

dumbbells, while subjected to flow. We show that the rheological properties predicted

by these BD simulations in shear flow disagree with the predictions of the VCM model

for the same set of input parameters. We find that the key problem in the VCM model

is its loss of information regarding the conformation of individual dumbbells when

they fuse into a longer dumbbell or when this longer dumbbell is broken down again

into the shorter dumbbells. We show how the VCM model can be re-derived more

rigorously, by retaining conformations of the individual shorter species as they are

combined into the longer species. This allows the predictions of the revised “VCM-R”

model to match those of the BD simulations. The work therefore sets the stage for

physically more detailed extensions of the VCM model, hopefully advancing towards
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the goal of a quantitative theory. The paper is arranged as follows: in Section 2.2, we

develop a Brownian dynamics simulation method to test the predictions of the VCM

model. We compare the predictions of the BD simulations to the VCM model and

discuss the results in Section 2.3.1. We then proceed to offer a revision of the VCM

in Section 2.4 that give results consistent with the predictions of an analogous BD

simulation.

2.2 Formulation of the two-species Brownian Dynamics sim-

ulation

We first consider the dynamics of a chain of N beads connected by N-1 mass-

less springs. In the absence of excluded volume and hydrodynamic interaction, the

equation of motion for each bead, i, in the bead-spring chain is given by Langevin

equation [6]
dri
dt

= κ · ri +
1

ζ
Fsp

i +

(
6kBT

dtζ

)1/2

ni (2.1)

where ri is the position vector of bead, i, ζ is the bead drag coefficient per bead,

κ is the transpose of the velocity gradient tensor, i.e., κ = (∇v)T , and Fsp
i is the

force-extension relation for the springs in the chains. The last term in Eq. (2.1) is

the Brownian force which represents the rate of thermal bombardment of the micelles

by the solvent. n is a three-dimensional vector with each component generated from

random numbers that are uniformly distributed between -1 and 1 and with zero

mean. kB and T represent the Boltzmann constant and temperature respectively.

The springs in the bead-spring chains are considered to be Hookean, similar to the

VCM model. Therefore,

Fsp
i = HQi (2.2)
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where Qi = ri+1 − ri is the connecting vector between consecutive beads (or spring

vector) and the linear spring constant, H is given by

H = 2kBTβ
2
s ; with β2

s =
3

2NK,sb2K
(2.3)

where β2
s controls the elasticity of the spring and NK,s is the number of Kuhn seg-

ments, of length, bK in a spring. To represent the VCM model, consider two ensem-

bles of micelles: long and short, that exchange species during breaking and rejoining

events. As in the VCM model, a micelle of the long species, twice the size of those

of the short species, breaks to give two of the short species; that is A ⇄ 2B, where

A and B denotes long and short species respectively (see Fig. 2.1). We therefore

represent the evolution of the number density of long (nA) and short (nB) species by

Eq. (2.4) assuming homogeneous, unidirectional flows and no spatial variation.

dnA

dt
=
cB
2
n2
B − cAnA (2.4a)

dnB

dt
= −cBn2

B + 2cAnA (2.4b)

where NA0 is the dimensional number density of long species chains at equilibrium.

cA = cAeqλ1A and cB = cBeqλ1ANA0 are the rates for breaking and rejoining of long

and short chains respectively. The above equations are identical to the corresponding

equations of the VCM model.

Given the dimensional number density of long species of micelles in equilibrium

are represented by NA0, the number of chains that will break in a given time step

∆t is given as cAnANA0∆t while the number of recombination events is given by

0.5cBn
2
BNA0∆t. The number of springs in a long-species chain is chosen such that in

a scission event, a long-species chain (which is selected at random) is broken in the

middle resulting in two short-species chains with equal number of springs in each of

them. One of the newly formed short chains takes the configuration of the first to
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middle bead of the long-species chain that broke while the other short chain assumes

the configuration of the middle bead to the last. When a fusion event is to occur, two

short-species chains are each selected at random, and either of the end beads of each

co-fusing chain are merged into a single bead with equal probabilities. The newly

formed chain maintains the relative bead positions of each of the two fusing chains;

and the spring vectors of the co-fusing short-species chains are used to propagate

the new bead positions across the entire fused chain. This ensures that the relative

extensions and internal configurations of each fusing chain are maintained in the

resulting long-species chain. 500 chains are each contained in the ensemble of long

and short species at the beginning of the simulations. The time step used for the

simulations was 10−3 in dimensionless time units.

2.3 Results and Discussion

2.3.1 Comparison of VCM model predictions to Brownian Dynamics (BD)

results

The VCM model accounts for both long and short species wormlike micelles as

dumbbells in which two short dumbbells can fuse into one long one. We note that

Cates [7] has also presented a model for two (polymeric) species that can fuse end-

to-end. Therefore, each short-species chain is chosen to have one spring and two

beads (a dumbbell) in our two-species Brownian dynamics (BD) simulation. We can

implement the fusion such that the orientation of the newly formed long dumbbell is

in the direction of the resultant vector of the connecting spring vectors of the fusing

short dumbbells. We represent this schematically in Fig. 2.2. The length of the long

dumbbell is taken as the sum of the lengths of the connecting spring vectors of the

fusing short dumbbells. However, the breakage of the long dumbbell into two shorter

ones is not so easily handled. The simplest approach is to break the long chain in
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Figure 2.2: Implementation of VCM-type reversible scission in BD simulations where
(A) two short dumbbells fuse end-to-end, and the formed long chain has an end-to-
end vector equal to the sum of the connecting vectors of the fusing short dumbbells
and (B) a long dumbbell breaks in the middle along its contour such that the newly
formed short dumbbells have lengths equal to half that of the original long species
and each inherits the orientation of the long dumbbell. The gray bead and springs
in (A) represent the part of the fusing dumbbells that morphs into the long species.
The gray bead in (B) denotes the point along the contour of the long dumbbell where
the scission occurs leading to the formation of two short species dumbbells.

the middle to give two shorter dumbbells each with length equal to half that of the

broken long dumbbell. However, this approach is not microscopically reversible and

so will not be consistent with equilibrium thermodynamics, as we illustrate next. This

thermodynamic problem can be remedied readily by tracking an internal variable in

the long dumbbell, as shown shortly.
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2.3.1.1 VCM comparison to BD simulations under equilibrium conditions

Dumbbells of varying initial conformations were allowed to equilibrate using the

aforementioned reversible scission scheme represented in Fig. 2.2. At equilibrium,

κ = 0, therefore, the ensemble average stress tensor is given as [8]

⟨FspQ⟩αeq = Nα0kBTδ (2.5)

where α = A,B. The stress can be normalized by the modulus G = Nα0kBT which

gives a normalized stress of δ at equilibrium. Therefore the isotropic stress com-

ponents which are the diagonal terms of are unity while other non-diagonal terms

are zero. We observed that the normalized isotropic stresses for both micelle species

were not equal to unity during reversible scission when there is no flow as shown in

Fig. 2.3. However, the normalized isotropic stress fluctuated about unity for both

micelle species when reversible scission was prevented by setting the scission rate is

set to zero. This shows that the breaking dumbbells in the middle to give equal-length

shorter dumbbells and fusing short dumbbells into longer dumbbells by adding the

end-to-end vectors of the short micelles violates thermodynamic equilibrium as we

surmised above.

We can repair the thermodynamic problem while preserving the dumbbell de-

scription of both the long and short chains by noting that a chain with 3 beads

and 2 springs has the same (longest Rouse) relaxation time as a dumbbell with the

same number of Kuhn segments as the two-spring chain. We therefore incorporate

an internal bead within the long ”dumbbell,” making it a chain with 3 beads and 2

springs. However, to retain similarity to the VCM model, for which the long chain is

a dumbbell, in our BD simulations the end-to-end vector of the long species is used in

computing the stress contributed by the long chain, rather than taking the stress to

be the sum of the contributions from the two springs making up the long chain. Thus,
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Figure 2.3: Evolution of normalized isotropic stress component for equal numbers of
long (denoted by A) and short (B) dumbbells equilibrating without shear flow and
with and without reversible scission. The reversible scission is implemented using
the scheme described in Fig. 2.2. The dashed line indicates the rate of scission given
along the right axis while the stress normalized by the modulus (Gα = Nα0kT ) of each
species is recorded on the left axis. Between 0 and 20 Rouse times, a scission rate,
cAeqλ1A = 1 is allowed, where λ1A is the longest relaxation time of the long species
micelles and cAeq is the rate of scission of the long micelles at equilibrium. Between
20 and 40 Rouse times, the reversible scission is turned off by setting cAeqλ1A = 0 and
reversible scission is reinstated after 40 Rouse times.
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Figure 2.4: Fusion of two short dumbbells into a two-spring chain. The position of the
middle bead is always tracked in the simulation and therefore the chain is broken at
that bead position when scission occurs. The stress of the long dumbbell is calculated
using the two end-to-end vectors of the two-spring chain (details in text). Fusion can
occur in (A) with springs aligned end-to-end roughly parallel, with bead 2 fusing with
bead 3 or (B) roughly anti-parallel in folded fashion with bead 2 fusing with bead 4.
We take these two cases to occur with equal probability.

for the long chain, the internal bead is ignored in computing the stress, and is only

used as a marker to determine the lengths and orientations of the short dumbbells

formed upon breakage of the long chain.

The reversible scission mechanism is shown in Fig. 2.4. When fusion of two short

dumbbells occurs, we fuse them with equal probability in the approximately parallel

and anti-parallel configurations. Thus, the stress contributions from the long chains,

σA and short chains, σB are computed as

σA = nAHA

⟨
(r3 − r1)(r3 − r1)

⟩
A

(2.6a)
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Figure 2.5: Similar to Fig. 2.3 but with reversible scission mechanism described in
Fig. 2.4.

σB = nBHB

⟨
(r2 − r1)(r2 − r1)

⟩
B

(2.6b)

where each vector, ri is the bead position in a chain drawn from the ensemble of

A chains in Eq. (2.6a), and from the ensemble of B chains in Eq. (2.6b). With

these definitions, our BD model has the same relaxation times and formulas for stress

contributions as in the VCM model for both the long and short chains. Using the

same breakage and fusion rates, the only difference between our model and the VCM

model is then in the flow-induced conformations of long and short chains. Using the

reversible scission mechanism described above (see Fig. 2.4), we find in Fig. 2.5 that

the normalized isotropic stresses for the long and short micelles fluctuate about unity

during reversible scission thereby satisfying thermodynamic equilibrium.
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2.3.1.2 VCM comparison to BD simulations under flow conditions

Based on the findings in Section 2.3.1.1, we therefore compare the VCM model

predictions to the BD simulations using the end-to-end stresses of the 2-spring chains

for the stresses of the long dumbbells as described earlier (see Fig. 2.4). When cA, cB =

0, that is, there is no reversible scission, for a Weissenberg number, Wi =
.
γλeff = 1

where λeff is the effective relaxation time of the system [9], defined by Eq. (2.7), both

the VCM model and Brownian dynamics simulations give the same results as shown

in Fig. 2.6. Here,

λeff =
λ1A

1 + λ1AcAeq

(2.7)

where λ1A is the longest relaxation time of the long micelles and cAeq is the rate of

scission of the long micelles at equilibrium. In this work, we take the rate of scission

cA = cAeq to be a constant, independent of the micelle configuration, although a de-

pendence on configuration or stress could readily be included, as is done in the VCM

model. The agreement of the methods is expected because without reversible scis-

sion, the VCM model becomes two sets of non-interacting Upper-Convected Maxwell

(UCM) models. The two-species BD simulation also gives two non-interacting en-

sembles of micelles whose averaged stress responses fluctuate slightly about the UCM

model predictions due to the finite size of the ensemble.

Figure 2.7 shows discrepancies in the predictions of the BD simulation and the

VCM model when reversible scission occurs. In the results depicted in the figure,

there are equal numbers of long and short species at equilibrium, the dimensionless

rate of scission of long species is taken as cAeqλA1 = 1 and the shear rate corresponds

to a Weissenberg number of unity. The discrepancy in the predictions is mainly due to

the relatively higher stresses for the short micelle species in the VCM model compared

to that of the BD simulations. The higher stress arises in the VCM model because the

short micelles resulting from the scission of a long micelle are taken to have the same
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Figure 2.6: Comparison of stress contributions from equal numbers of long (A) and
short (B) chains (i.e. n0

B = 1) for Brownian Dynamics simulation and for the Vasquez-
Cook-McKinley (VCM) model [9] without reversible scission at Weissenberg number
of unity. The ratio of relaxation times of short to long chains is taken to be ϵ = 0.5
in both the simulations and the VCM model.
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conformation tensor as the long micelles from which they arose. Similarly, when short

chains fuse, in the VCM model, the fused short chains contribute their conformation

tensor to that of the long chains created from them, without accounting for the change

in conformation resulting from the end-to-end joining of the short chains. The BD

simulations track the conformations of the individual springs in the long chain, which

then influences the configuration distribution of the short chains that result from

long-chain scission. Similarly, the conformations of short chains are retained when

those chains are merged into long chains, since the long chain is represented in the

BD model by two explicit short chains, rather than by a dumbbell, as is the case in

the VCM model.

We also note here that while the VCM equations are nominally derived from a

phase space kinetic theory, the derivation is not rigorous. In particular, in each of Eqs.

1a and 1b of Vasquez et al. [9], a term appears involving the product of two micelle

distribution functions. This nonlinear term cannot be integrated out with a single

conformation integral and would require two three dimensional integrals, one over the

conformation space of each configuration function. In fact, Eqs. 1a and 1b in Vasquez

et al. [9] are dimensionally incompatible with Eqs. 4a and 4b, since each configuration

function has units of inverse real volume and inverse configurational volume. The

coefficient c′B of the product of two distribution functions must therefore have units

of configuration volume needed to make the equation dimensionally balanced, but

these units are incompatible with the units required for the corresponding coefficient

c′B in Eqs. 4a and 4b. The basic problem is that the effect of scission and fusion on

the configuration distribution functions of the species is not addressed at a detailed

level in the VCM model. Thus the final equations, which are dimensionally self-

consistent despite the dimensional inconsistencies in the steps of its derivation, should

be regarded as phenomenological, rather than resting on a clear physical theory. This

lack of a rigorous derivation from phase space means that the model predictions
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Figure 2.7: The same as Fig. 2.6, except with reversible scission present (dimensionless
equilibrium breakage rate, cAeqλA = 1).

cannot be related to the dynamics of the individual micelle species in any precise

way.

2.4 Formulation of VCM-R, the revised two-species reversible

scission model

To rectify the discrepancies in the predictions of the VCM model and the BD

simulations, we now present a two-species reversible scission model, the “VCM-R”

model, based on the multi bead-spring model of Wiest et al. [10] and the reaction

dynamics of the VCM model [9]. In the revised model, depicted in Fig. 2.8, the

wormlike micelles are represented by a series of beads and springs which can break

at the middle along the contour of the chain to give two shorter micelles. The short
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Figure 2.8: Scission of micelle represented with (N − 1) springs at the middle to
form two shorter micelles each with (N − 1)/2 springs. The fusion of the two short
micelles can occur between any of their end beads to form a long micelle with springs
aligned in a roughly parallel or anti-parallel folded configuration similar to Fig. 2.4a
and Fig. 2.4b respectively. The relative orientations of the short micelles are retained
in the long micelle. In the particular case shown in this figure, N = 5, therefore, the
long micelle is a four-spring chain while the short micelles are two-spring chains.

micelles can also fuse to give long ones. We develop the model for chains with arbitrary

numbers of springs, but will later apply it to the case where the long chains have only

two spring, and the short chains have only one. For simplicity, we restrict ourselves,

however, to the case where breakage always occurs only at the mid-point of the long

chains, so that there are only two species, although this could obviously be generalized.

This gives a more realistic model compared to the VCM model where both long and

short species are considered dumbbells. This also allows for a direct comparison of the

stress to that of the BD simulations without losing the configurations of the micelle

species during reversible scission.

The evolution equation for the configurational distribution function, ψ of the
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micelles is given by Eq. (2.8) [8]

∂ψα

∂t
= −

∑
jα

∂

∂Qjα

·
{
κ · Qjαψα − 1

ζ

∑
kα

Ajk ×
[
kBT

∂ψα

∂Qkα

+HfkαQkαψα

]}
(2.8)

where α = A,B denoting the long and short species respectively and the matrix A

is the Rouse matrix describing the connections of the springs. The summations over

j and over k are over all spring vectors in the chain, which is the number of beads

minus 1. Integrating Eq. (2.8) over the configuration space, dQjα gives the evolution

equations for the number densities of the long and short species, which is Eq. (2.4),

valid under the assumption of homogeneous flow. Calculating the second moments

of the configurational distribution function, ψ by multiplying Eq. (2.8) by the dyad

QiQj and integrating over all QN−1 degrees of freedom gives Eq. (2.9) after adding

the rate of formation and loss of the respective < QiQj > for long and short species

micelles due to scission and fusion of micelles.

d

dt
(nA < QiQj >A) = κ · nA < QiQj >A +nA < QiQj >A ·κT + (2kBT/ζA)nAAijδ

− (H/ζA)
N−1∑
k

fkA[AiknA < QkQj >A +AjknA < QiQk >A]

+
cB
2
n2
B < QiQj >B −cAnA < QiQj >A (2.9a)

d

dt
(nB < QiQj >B) = κ ·nB < QiQj >B +nB < QiQj >A ·κT +(2kBT/ζB)nBAijδ

− (H/ζB)

NB−1∑
k

fkB[AiknA < QkQj >A +AjknA < QiQk >A]

− cBn
2
B < QiQj >B +2cAnA < QiQj >A (2.9b)

where δ is the second order unit tensor, N and NB = (N + 1)/2 are the number of

beads in the long and short chains respectively, and fkα represents the force-extension
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relationship for the spring. For Finite Extensible Nonlinear Elastic (FENE) springs

with the Peterlin approximation, it is given as

fkα = [1− (< Q2
kα > /Q2

0)]
−1 (2.10)

For Hookean springs, the maximum extension of the spring, Q0 is infinite, and there-

fore, fkα = 1. The initial conditions for the revised model are

< QiQj >α= n0
α

Q2
0

b+ 3
δijδ at t = −∞ (2.11)

where b = HQ2
0/kBT is a dimensionless finite extensibility parameter, H is defined by

Eq. (2.3) and n0
α represents the equilibrium number density of species, α. Note that

Eqs. (2.9a) and (2.9b) include evolution equations for all dyads < QiQj > including

dyads for which i ̸= j. Thus, the above equations include the evolution of cross

correlations in orientations of different springs in a multi-spring chain. Inclusion of

these cross terms strongly differentiates this model from the VCM model in which

the long chain is represented by a dumbbell, which is incapable of tracking such

cross-correlations, and their influence on the response of the chain to flow.

Note also that the last two terms in both Eqs. (2.9a) and (2.9b) are creation

and destruction terms arising from scission and fusion of micelles. For the creation

term in the long micelle (second to last term in Eq. (2.9a)), cross terms involving

springs from two different short micelles are here set to zero, implying that the two

short micelles can fuse either “head-to-head” or “head-to-tail” with equal probability,

which cancels out any contribution to this cross-correlation from fusion of the short

micelles. This implies that two B chains that are roughly parallel to each other are

just as likely to fuse into a “back-folded” or nearly anti-parallel configuration as they

are to fuse into a relatively straight or nearly parallel configuration. If a bias towards

fusion into straight configurations is desired, then any equation for a spring-spring
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cross-term < QiQj > with i ̸= j for species A would need to contain contributions

from fusion of species B. An expression for this contribution would then need to be

developed based on the distribution or configurations of species B and the probability

of fusion into a “straight” configuration. We avoid this difficulty here by assuming

that the rate of fusion (or of scission) is not influenced by the orientations of the

springs involved.

Thus, we set the term < QiQj >B in Eq. (2.9a) to zero if i and j are not either

both less than NB or both greater than or equal to NB. Also, if they are both greater

than or equal to NB, we simply subtract NB−1 from each subscript, since the B chain

is described by spring subscripts less than NB. We note the head-tail symmetry of

both the long and short chains reduces significantly the number of tensors that need

to be tracked. Equations (2.9a) and (2.9b) are integrated in time as a set of coupled

nonlinear ordinary differential equations using the fourth-order Runge-Kutta method.

The stress contributions from the long and short species are calculated as

σA = nA

N−1∑
k=1

HfkA < QkQk >A (2.12a)

σB = nB

NB−1∑
k=1

HfkB < QkQk >B (2.12b)

We also note that the above formulation is readily extended to multi-spring chains

that can break at any bead along their contour, creating species that range from one-

spring chains up to some assigned maximum number N − 1. However, the number

of equations to be solved grows rapidly, since for each species, the self-correlations

and cross-correlations of all spring vectors need to be tracked. Symmetry reduces

the number of equations by a numerical pre-factor, but the number of equations

scales roughly as N3. One limit where breakage occurs so that only chains containing

1, 2, 4, 8, etc. springs are allowed and these only break in the middle, but the number of

equations still increases asN3 because of the cross-correlations. The cross-correlations
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are avoided in normal bead-spring chains by using normal modes, but when breakage

and rejoining are considered, it does not seem obvious how to carry out such an

analysis. Thus, for large numbers of micelle species, it may actually be cheaper to

carry out Brownian dynamics simulations, which though slow, have better scaling

properties when the number of species becomes large.

Comparison of revised two-species VCM-R constitutive equation to anal-

ogous Brownian Dynamics simulation

In comparing the revised constitutive equation to the BD simulation, N = 3

and NB = 2 were used, that is, the long species were represented with 3 beads and 2

springs which could break to give short species, which are dumbbells. We also take the

springs to be Hookean. This case is chosen for simplicity to reduce computation time

and because this case corresponds most closely with the VCM model. Theoretically,

any value could be used for N . The stresses in the BD simulation are calculated as

a sum of the stress contributions from individual segments of the chain and given by

Eq. (2.13).

σA = nA

N−1∑
k=1

H ⟨QkQk⟩A (2.13a)

σB = nB

NB−1∑
k=1

H ⟨QkQk⟩B (2.13b)

Note that we now compute the stress for the long chain as the sum of the contributions

from each of the springs in that chain, rather than using the end-to-end vector of the

whole molecule, as we did earlier, since our new VCM-R model explicitly tracks the

configurations of each spring in the two-spring chain.

In the absence of reversible scission, the revised model gives the same predictions

as the corresponding two-species Brownian Dynamics simulation (with stress from

the long chain given by the contributions from each of the two springs) as shown in
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Figure 2.9: Comparison of stress contributions from long and short chains for Brow-
nian Dynamics simulation and for the revised Vasquez-Cook-McKinley (VCM-R)
model without reversible scission at a Weissenberg number of unity.

Fig. 2.9. This is because without reversible scission, the revised model becomes a set

of decoupled equations for Rouse chains with multiple beads and springs. Similarly,

the analogous BD simulations gives predictions that fluctuate about a mean value

corresponding to the multi-bead-spring Rouse chain prediction. Figure 2.10 shows

agreement between the VCM-R reversible scission model and the BD simulations in

the stress response of the long and short micelles during shear with reversible scission

characterized by a dimensionless breakage rate, cAeqλ1A of unity. The agreement is

achieved because both the revised model and the simulation accurately account for

the internal configurations of the long and short micelles.

In general, exchange of species during reversible scission leads to a relaxation of

stress and a corresponding reduction in the ensemble-averaged steady stress of the
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Figure 2.10: Similar to Fig. 2.9 but with dimensionless scission rate, cAeqλ1A = 1

long micelles. The stretched chains resulting from the scission of long micelle species

are more stretched than the short chains and so boost the instantaneous stress of the

short chains before these chain segments relax at a quicker rate as a short micelle than

they do when they are in the long micelle. Also, fusion events involving relatively

relaxed short micelles reduce the ensemble-average stress of the long micelles.

2.5 Summary and Future Work

We have demonstrated that the implementation of reversible scission of micelles

with both species represented as dumbbells, as in the VCM model, differs in its pre-

dictions from predictions of Brownian dynamics simulations of nominally the same

physical model. This discrepancy occurs because the VCM dumbbell model lacks
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the internal degrees of freedom needed to accurately describe reversible scission in

wormlike micelles. To repair this, multiple bead-spring chains are needed even in the

simplest two-species model to accurately describe the exchange of species during the

scission and recombination events. We accomplished this by using differential equa-

tions for end-to-end vector dyads developed by Wiest et al. to develop a constitutive

equation that tracks the internal configurations of the wormlike micelles during re-

versible scission. The constitutive equation can describe chains with Hookean springs

exactly, as shown by comparison with Brownian dynamics simulations of the same

two-species model, and could account approximately for non-linear chains, for ex-

ample by using finitely extensible nonlinear elastic (FENE) chains with appropriate

closure approximations. Future work should explore calculations with a FENE spring,

and with models with more than two species. It should also be possible to include

scission and fusion rates that depend on average stress and orientation of the micelles.
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CHAPTER III

Effect of Entanglements on the Rheology of

Worm-like Micelles

3.1 Introduction

Wormlike micelles and polymers in the semi-dilute and concentrated regimes feel

the topological constraints of neighboring chains as they diffuse. The topological

constraints form a tube around the polymer thus leaving reptation [1] of the chain

out of the tube as the primary means of stress relaxation [2]. At concentrations above

the overlap concentration, C∗, entanglements form as the polymers are longer than

the inter-polymer distance (see Section 1.2.3). The topological entanglements apply

a potential on the monomers of the polymer network at all points along the contour

of the chain thereby confining their fluctuations to the constricting tube [3]. In the

theory of rubber elasticity, these entanglements were treated as slip-links which can

slide along the contour of the polymer between crosslinks in a polymer network [4, 5].

The “slip-tube” model [6] was developed by Rubinstein and Panyukov [6] using

ideas of earlier models: the Affine Network model [7, 8, 9], Phantom Network model

[10, 11], Constrained-Junction model [12, 13], “Edwards Tube model” [3] and the

Non-affine Tube model [14]. The Rubinstein and Panyukov [6] model accounts for

the redistribution of length stored by network chains along their confining tube by
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considering tube contour length fluctuations, first introduced in the analysis of Doi

and Edwards [2]. In the slip-tube model, permanent crosslink junction points between

network chains and virtual chains are substituted with slip-links that are attached on

one end to the network chain and to virtual chains on the other [6]. The virtual chains

act as the entanglements and impose a confinement potential on the network chain.

The virtual chains are attached to an affinely deformed nonfluctuating elastic back-

ground. The slip-links are not allowed to cross one-another, therefore, the segments

of network chain must pass through the slip-links in a fixed order. Thus, network

chain segments locally free themselves of the constraints as they diffuse through the

slip-links [6].

The slip-tube model was successful in giving predictions that matched experimen-

tal data of both PDMS (poly dimethyl siloxane) and natural rubbers. However, it

does not include the disentanglement and re-entanglement at the chain ends. Likht-

man [15] adapted this model to a melt of linear chains by adding these additional

processes to the slip-tube model. They did this by allowing the slip-links to slide off

the chain ends, therefore destroying them and regenerating new entanglements along

the chain. The entanglements were thus represented by slip links tethered to anchor

points by a spring of parabolic form in Likhtman’s single-chain slip link model [15].

The single-chain slip-link model was able to predict linear rheological behavior for

polymers.

In this work, we incorporate micelle reaction kinetics into the slip-link model [15]

and report the effects of entanglements on wormlike micelles dynamics. In what

follows, we present a Brownian dynamics (BD) simulation of a two-specie multi-chain

slip-link model involving the reversible scission of micelles.
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3.2 Formulation of the model

The BD simulations of wormlike micelle chains are carried out as described in

Section 2.2 but, with additional constraints from entanglements represented by the

slip-links. The system is depicted in Fig. 3.1. This following description of the slip

link model including Eqs. (3.1), (3.2), (3.5) and (3.6), are taken, with little change,

from the work of Likhtman [15]. Added to these equations are rules for accounting

for breakage and rejoining of chains, and for tracking the locations of slip links during

this process. The slip links travel in straight lines between monomers of the micelle

chain. The location of the slip-link is tracked with a continuous variable, x = 0..N .

The micelle chain monomers experience the entanglements as a mean field potential

given as U = 3kBT/(2Nsb
2
k)(ri − ai)

2 where ri and ai are the position vectors for the

micelle bead and anchor point i respectively. Ns is the number of Kuhn segments in

the virtual springs [15]. The potential energy of the micelle chain is therefore a sum

of the contributions of potentials from the micelles and the virtual springs.

Uα =
3kBT

2Nk,sb2k

Nα−1∑
i=0

(ri+1 − ri)2 +
3kBT

2Nsb2K

Zα∑
j=1

(aj − sj(xj, {r}))2 (3.1)

where

sj(xj, {r}) = rtrunc(xj) + (xj − trunc(xj))(rtrunc(xj)+1 − rtrunc(xj)) (3.2)

is the position of the slip-link j on the micelle chain. Nk,s is the number of Kuhn

segments in a micelle spring, and trunc(x) is the nearest integer less than or equal to

x. Zα = Nα/Ne is the number of slip links per chain on micelle species, α. Nα and

Ne are the number of beads in species α and Ne is the number of monomers (Kuhn

segments) between entanglements (slip links).

The wormlike micelles break and recombine dynamically in solution. When scis-
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Figure 3.1: Schematic of entangled wormlike micelles. The wormlike micelle is repre-
sented by a chain of spherical beads (positioned at ri) and springs (bead numbered 1
to Nm). The entanglements, represented by green springs are connected to the worm-
like micelle chain via slip-links, located at position xj that slides along the micelle
contour. The slip-link exerts an additional potential on the micelle chain at Sj and
each slip link is attached to the affinely deformed elastic background at an by anchor
point, ai represented by a cross. Reprinted from [16], with the permission of AIP
Publishing.
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sion occurs, the long micelle breaks at the middle of the chain; thus, the newly formed

shorter (daughter) micelles retain their topological entanglements after scission. As

a result, the micelle is freed of entanglements beyond the point of scission along the

micelle contour. Therefore,

ZB1 = ZA − ZA|xj>xNB
; ZB2 = ZA − ZA|xj<xNB

; 0 ≤ xj ≤ NA (3.3)

where ZB1 and ZB2 represent the number of slip-links per daughter micelles 1 (span-

ning beads 1 to NB = trunc(NA/2)) and 2 (from beads NB + 1 to NA) resulting

from the scission of micelle species, A. Similarly, during fusion, the newly formed

micelle contains a sum of the slip-links present in each other fusing micelle chains,

ZA = ZB1 + ZB2. The slip link and anchor positions, sj and aj are maintained rel-

ative to their positions and orientations in the breaking/recombining micelle(s). As

in Chapter II, A ⇄ 2B, where A and B denotes long and short species respectively.

The evolution of the number density of long (nA) and short (nB) species, assuming

homogeneous, unidirectional flows and no spatial variation is therefore given as

dnA

dt
=
cB
2
n2
B − cAnA (3.4a)

dnB

dt
= −cBn2

B + 2cAnA (3.4b)

where cA = cAeqλ1A and cB = cBeqλ1ANA0 are the rates for breaking and rejoining of

long and short chains respectively. Eq. (3.4) is identical to Eq. (2.4) in Chapter II.

NA0 is the number of long chains at equilibrium.

The equations for the motion of the micelle beads and slip-links are then given by
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Eq. (3.5) and Eq. (3.6)

ζ
dri
dt

=
3kBT

Nk,sb2K
(ri+1−2ri+ri−1)+fi(t)+

3kBT

Nsb2K

∑
j:trunc(xj)=i

(1−(xj−trunc(xj)))(aj−sj)

+
∑

j:trunc(xj)=i−1

3kBT

Nsb2K
(xj − trunc(xj))(aj − sj) (3.5)

ζs
dxj
dt

=
3kBT

Nsb2K
(rtrunc(xj)+1 − rtrunc(xj))(aj − sj) + gj(t) (3.6)

fi(t) and gj(t) are Brownian forces from the bombardment of the micelle beads and

slip-links respectively by solvent molecules. They have a zero-mean and variances

given by Eq. (3.7) and Eq. (3.8) respectively.

< fi(t)fj(t
′) >= 6kBTζIδ(t− t′)δij (3.7)

where I is the unit tensor.

< gi(t)gj(t
′) >= 6kBTζsδ(t− t′)δij (3.8)

The stress is computed (Eq. (3.9))as an ensemble average of the stress contributions

from the individual springs in the wormlike micelles.

σA = nA

N−1∑
k=1

H ⟨QkQk⟩ (3.9a)

σB = nB

NB−1∑
k=1

H ⟨QkQk⟩ (3.9b)

where NA and NB are the number of beads in chains A and B respectively. In absence

of reversible scission, this formulation is a two-specie multi-chain equivalent of the

single-chain slip-link model [15]. It is noteworthy to mention that in contrast to [15, 6],

we do not prevent the slip-links from passing through each other in these simulations.
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Allowing them to pass through each other was acknowledged as producing “a very

small” difference by Likhtman [15].

In our simulations, for simplicity, we represent the wormlike micelles as Hookean

beads and springs. NA was chosen to be 13 with Z = 3 implying that the long

micelles have one entanglement for every four beads, in line with the recommendation

of Likhtman [15]. This places the system in the semi-dilute regime. Nk,s and Ns were

set to 6, i.e. 6 Kuhn segments per spring in the micelles and virtual chains. The

simulations were run using with a time step of λR|(NA−1)/250, where λR|(NA−1) is the

shortest Rouse time of the relaxation spectrum for long micelles (Eq. (3.10) for Rouse

chains) and an ensemble of 5,000 long and short chains each. Cruz, Chinesta, and

Régnier reported that a BD simulation time-step of λR|(N−1)/500 for an ensemble

of 5,000 ordinary Rouse chains provides a good compromise between computational

cost and accuracy [17]. We find that a time step that is twice as big for an ensemble

of 5,000 chains each for each species chain seems to be a good compromise between

speed and accuracy for our simulations.

λR|(NA−1) =
ζNk,.sb

2
K

24kBT sin2 ((NA − 1)π/2NA)
(3.10)

3.3 Results and Discussion

In the absence of reversible scission, that is, simulating as the chains as unbreak-

able ordinary polymers, Fig. 3.2 shows that the presence of entanglements lead to in-

creased stress. There is over a four-fold increase in the steady stress of the long species

due to the additional forces that the three entanglements exert on the monomers of

the polymer. An initial stress overshoot is observed in the stress response curve in-

dicative of a nonlinear response of the polymers to the deformation. In this case, the

additional effect of the potentials from the entanglements lead to nonlinear stretch-

ing of the polymers at a rate faster than they can relax the stretch by reptation.
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This in turn causes the polymer to feel stresses beyond their steady values hence the

stress overshoot. However, at long enough times, say about three times the longest

Rouse times, λRA, the effect of the relaxation by reptation on the stretched polymers

leads to a down-turn in the transient stress. At about 6λRA, the instantaneous stress

approaches a steady state value. The stress seems not to reach its steady value at

this point but oscillates about it for up to 20 Rouse times. Occurrence of such long

transients after stress overshoots have been reported [18] for entangled polymer-like

micelle solutions under start-up shear flow.

The dynamics of the short polymers (blue curves in Fig. 3.2) reveal that the

impact of an additional entanglement on the polymer is minimal compared to the

case of 3 entanglements described above. The added potential of the entanglement

to the 6-spring polymer chains caused less than a two-fold increase in steady stress.

The transient stress response did not exhibit stress overshoot. This implies that the

polymers were only stretched moderately and they could relax the stretch relatively

quickly, with little influence of entanglements. The relaxation is possible because (i)

the short micelles are not sufficiently entangled to produce nonlinear stretching of the

chains as in the case of the long polymers, and (ii) the relaxation time is an order of

magnitude smaller than the inverse of the shear rate, λRB < 1/
.
γ therefore, the short

micelles can relax much of their stress before becoming highly stretched.

We now investigate the effect of reversible scission along with entanglements on

the transient stress response of wormlike micelles in Fig. 3.3. We observe that the

transient stress in the wormlike micelles with entanglements (continuous lines) in-

creased significantly relative to wormlike micelles without entanglements. For similar

reasons explained above, the stress increase as a result of the additional forces from

the entanglements caused the chains to become highly stretched. There is therefore

about a five-fold increase in the steady stress of the entangled long wormlike mi-

celles compared to the unentangled ones. The relative increase in steady stress of the
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Figure 3.2: Transient stress response to start-up shear flow at Weissenberg number of
unity based on the longest Rouse relaxation time of the long species. Increased steady
stresses were observed in long and short species of 12 and 6 Hookean springs with 3
and 1 slip-links per chain respectively. Continuous lines represent the stress response
of polymers with entanglements while the dashed lines represent the stress response
of those without entanglements. A stress overshoot due to nonlinear stretching of
the polymer chains was obtained for the long species that is sufficiently entangled to
produce an overshoot. Stresses were averaged over an ensemble of 103 chains each for
long and short polymers.
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Figure 3.3: Transient stress response of wormlike micelles at conditions similar to
Fig. 3.2 but with reversible scission at a scission rate of cAeqλ1A = 1.

entangled micelles is slightly higher than that of the unentangled ones. A direct com-

parison of the stress response of the entangled wormlike micelles (continuous lines)

and entangled unbreakable polymers (dashed lines) is shown in Fig. 3.4. This result

is striking because it is counter-intuitive that reversible scission can lead to increase

stress despite being a stress relaxation mechanism. We would offer explanations as

to why this is possible in this simulated case below.

First, let’s focus again on Fig. 3.3 to explain the interplay between the effects of

reversible scission and entanglements. In the foregoing discussion, we explained that

reptation is a slow relaxation process that cannot free the chains fast enough from their

topological constrictions (and entanglements) before thy become highly stretched by

the flow and entanglement forces. The rate of scission employed in entangled wormlike
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Figure 3.4: Comparison of the transient stress response of wormlike micelles -with
and without reversible scission- at Weissenberg number of unity. Continuous lines
represent the stress response of entangled wormlike micelles while the dashed lines
represent the stress response of entangled polymers in which the reversible scission is
shut off. Stress overshoot is absent in entangled wormlike micelles due to additional
relaxation mechanism of reversible scission.

micelles of Fig. 3.3 is cAeqλ1A = 1, where cAeq is the equilibrium scission rate and λ1A

or τrep is the longest Rouse relaxation time (or time for reptation). A dimensionless

scission rate of one implies τb = τrep. Therefore, in our simulation results shown in

Fig. 3.3, we can assume reptation as the dominant mode of relaxation. However, this

does not explain the discrepancy in stress when making direct comparison between

entangled wormlike micelles and polymers (see Fig. 3.4) for this particular case where

relaxation is of the order of the reptation time in both cases.

The discrepancy can be explained by the effect of reversible scission. During

reversible scission, the highly stretched long wormlike micelles break into shorter
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pieces that (i) do not relax the stretch fast enough by reptation and (ii) contain

entanglements of their own that imposes additional stress on them. The short micelles

in the simulation described in Fig. 3.3 have between 0 and 3 entanglements with an

average entanglement number,
−
Z = 1.5 on the 6-spring chain. Therefore, unlike in

the polymer case, without exchange of species, additional stresses from unrelaxed

entangled shorter micelles contribute to the total stress in the long micelles. As

a result, the longer micelles cannot relax the high stress at the peak of the stress

overshoot given the time for reptation and scission to a lower steady state value (as

in the polymeric case). Consequently, the transient stress response curve plateaus by

smoothing out the “overshoot” to steady state. It is possible that the stress relaxes

to the final steady stress after several Rouse times. This behavior is reminiscent of

flow-induced gel phases formed in shear thickening wormlike micelle solutions. They

have been reported to take several hours or days to achieve steady stress [19, 20, 21].

Based on these findings, we anticipate that the entangled wormlike micelles have to

be in the fast-breaking regime, τb << τrep for the effects of reversible scission in stress

relaxation to be effective.

An alternative explanation is that the reversible scission acts as a form of “con-

straint release” for the wormlike micelles. In the entangled polymer case (without

reversible scission), the entanglements cause disorientation of the springs, thereby

allowing the shear flow to stretch them. The long chains then orientate in the flow

direction. Thus, there is little drag force on them and they retract in the “tube”

leading to the overshoot and large drop in stress. However, in entangled wormlike

micelles, the reversible scission causes new ends to be formed and allow for nearby

slip-links to easily disentangle from the chain. The chain can reptate out of the new

ends, free of the “tubular” constraints imposed by the slip-links and orientate freely

in the flow. The freedom of chain segments to explore new conformations allow them

diffuse across the gradient direction and lead to higher stress. Therefore, breaking
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and rejoining of micelles act like constraint release and also prevent the retraction in

the tube created by the slip links. This kind of behavior has been reported for entan-

gled polymers with convective constraint release [22]. In our simulation, we have not

explicitly implemented constraint release in the traditional sense [23, 24, 22, 25], it

therefore suggests that reversible scission acts as a mechanism of constraint release.

We observed in Fig. 3.5 that as the dimensionless scission rate, cAeqλ1A is increased

from 1 to 10, the transient stress increases. Additionally, we observe that for cAeqλ1A =

10, the transient stress peaked after 3 Rouse times (of the long chains) at a stress of

about 5 and 7 times the steady stress values obtained when cAeqλ1A = 1 for long and

short chains respectively. The transient stress then reduced to a steady stress which

is roughly the same as the steady stress for cAeqλ1A = 2, thereby creating a stress

overshoot in the start-up flow curve. Therefore, we conclude that reversible scission,

controlled by the scission rate, is partly responsible for the initial increase in stress

of entangled wormlike micelles in response to start-up flow. The other factor is the

entanglement effects. However, at very high scission rates, when the breakage time

τb = 1/cA is about an order of magnitude lower than the reptation time, τrep, the role

of reversible scission as a mechanism of stress relaxation becomes more significant in

lowering the stress from its initial peak value. Hence, we can state that the stress

response in entangled wormlike micelles is an interplay between entanglement and

reversible scission. The initial stress to the peak value is by stretching of the chains

by entanglements coupled with reversible scission acting as a means of constraint-

release thus reorienting the micelles along the flow gradient direction. The subsequent

relaxation is by reversible scission and reptation.

3.4 Summary

We present a novel formulation for simulating entangled wormlike micelles by in-

corporating reversible scission in an established slip-link model. This enables us add
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Figure 3.5: Comparison of the transient stress response of wormlike micelles with
varying scission rates at Weissenberg number of unity. The long micelles have 12
springs with an average of 6 slip links per chain and short micelle chains have 6
springs with an average of 3 slip links per chain. The transient stresses of long chains
are shown in (A) while the comparison for the short chains are in (B).
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entanglement dynamics to the existing reversible scission and reptation dynamics for

wormlike micelles. We therefore study the effects of reversible scission and entan-

glements on the rheology of wormlike micelles. We find that entanglements cause

increased steady stress and stress overshoot in polymer species with sufficient entan-

glements (about one entanglement per four beads). In entangled wormlike micelles,

reversible scission on the order of Rouse time leads to an even higher steady stress

without stress overshoot, for same conditions as in polymers. Reversible scission in

the fast-breaking regime, where breakage times are much more faster than reptation

is needed for the stress relaxation effects to be significant, causing a corresponding

decrease in steady stress and therefore, the occurrence of a stress overshoot.
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CHAPTER IV

Concentration and Temperature Dependence of

Strain Hardening in CTAB/NaSal Surfactant

Solutions

4.1 Introduction

Surfactant molecules can reversibly self-assemble into micelles at concentrations

above the critical micelle concentration (cmc). The structure of the micelles depends

upon factors such as surfactant concentration, ionic strength, type of solvent, tem-

perature and presence of counterion and/or co-surfactant [1, 2, 3]. In ionic micellar

solutions, electrostatic screening of the charged head-groups induces the growth of

micelles by lowering the effective area that each head-group occupies on the surface

of the micelle, thereby favoring lower curvature of the micelle surface. This allows

the micelles to grow rapidly and transform from spherical to cylindrical morpholo-

gies at much lower surfactant concentrations. The screening is achieved by adding

a suitable counterion, co-surfactant, and/or salt [4]. Upon addition of salts, the

aggregation number therefore typically increases, leading to the formation of giant

wormlike micelles (WLMs) [5]. Certain salts can have additional effects on surfac-

tant micelles. For example, hydrotropes, which are aqueous salts of organic molecules

(mostly aromatics), have the exceptional ability to solubilize hydrophobic compounds
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[4]. Hydrotropes tend to be incorporated into the region of the micelle spanning the

head group and the outer tail region due to their charge, hydrophobicity and size [5].

These micelles, when present at semi-dilute concentrations, exhibit pronounced vis-

coelasticity [2, 6]. They break and recombine dynamically which gives them stability

in high-shear-rate applications [7]. Wormlike micelles (WLMs) relax stress primarily

by two mechanisms: reversible scission (breaking and reforming along the micelle

chain) and reptation - the snake-like motion of the wormlike micelle to free itself of

the constrictions imposed by surrounding micelles [8, 3].

In small amplitude oscillatory shear flows, the linear viscoelastic response of many

wormlike micelles is explained by a combination of reversible scission and reptation [9].

The stress decay can be modeled by a single exponential when chain scission is faster

than reptation. WLM solutions also exhibit nonlinear rheological properties such

as shear banding [10, 11, 4], flow-induced phase transitions [12, 13], shear thinning,

shear thickening and strain hardening [14, 15, 16]. Shear-induced structures with

entangled, branched and multi-connected micellar bundles have been reported [12]

to form when wormlike micelles are subjected to high shear rates and strains. These

shear-induced structures formed under strong shear flows have been invoked to explain

shear-thickening [17].

Strain hardening in shear is usually probed by performing step strain experiments

and is defined by a nonlinear stress relaxation modulus that increases relative to the

response within the linear strain limit. A lower nonlinear relaxation modulus rela-

tive to the linear response indicates strain softening. Shikata et al. [14] showed that

strain hardening in aqueous solutions of cetyltrimethylammonium bromide (CTAB)

with added hydrotrope, sodium salicylate (NaSal) depends on the salt-to-surfactant

concentration ratio. Brown, Burghardt, and Venerus [15] further investigated the

CTAB/NaSal solution at equal molar concentrations and observed that the relax-

ation moduli were factorable into time- and strain- dependent functions in the strain
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hardening regime (2.0 < γ < 3.5). The strain-dependent function is calculated as the

amount of vertical shift on a log-log plot needed for the nonlinear stress relaxation

curve to superimpose on the linear relaxation curve. This shift as a function of strain

is the damping function. Such factorability has been observed in some polymers and

the damping function is usually a strain softening function [18]. For a CTAB/NaSal

surfactant solution, beyond a strain of 350% (3.5 < γ < 4.0), Brown, Burghardt, and

Venerus observed a time-dependent collapse of the relaxation modulus from a strain

hardening to a strain softening or linear response at a critical time after the step

strain [15]. In start-up shear flows, an increase in the shear stress growth coefficient

(defined as the ratio of shear stress to shear rate) relative to the linear response is

also termed “strain hardening” [16, 19, 20]. In such start-up shear flow experiments

on CTAB/NaSal wormlike micelles, Inoue, Inoue, and Watanabe [16] observed strain

hardening at shear rates higher than a critical shear rate.

In step strain experiments, strain hardening has been observed in wormlike mi-

celles of CTAB with the hydrotrope NaSal at equal molar concentrations [15] and at

a hydrotrope-to-surfactant molar concentration ratio, CS/CD of 1.5 [14]. However,

the mechanism and conditions necessary for strain hardening in wormlike micelles is

not clearly understood. A detailed study of the salt dependence of strain harden-

ing is yet to be conducted, to the best of our knowledge. The dependence of strain

hardening on parameters such as temperature has also not been studied. In this pa-

per, we use stress relaxation after a sudden step strain to explore strain hardening

in CTAB/NaSal wormlike micelles over a wide range of salt-to-surfactant concentra-

tion ratios, from 0.3-5.0. We also investigate the effects of temperature on strain

hardening by performing experiments within the range 15 - 25 ◦C. We introduce a

quantitative measure for strain hardening and extend previous work [14, 15] to give

a more complete picture of the effect of hydrotrope concentration and temperature

on strain hardening. For comparison and contrast, we also present step-strain results
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of other wormlike micelle solutions without the hydrotrope but in the presence of

a simple salt, namely sodium lauryl ether- 1 sulfate (SLE1S) with sodium chloride,

and a mixture of sodium lauryl ether- 3 sulfate (SLE3S) and sodium lauryl sulfate

(SLS) with NaCl. We conclude with a discussion and propose a mechanism for strain

hardening in worm-like micelle solutions.

4.2 Experimental Section

Cetyl trimethylammonium bromide (CTAB) and sodium salicylate (NaSal) were

purchased from Sigma-Aldrich. Sodium chloride and high performance liquid crys-

tallography (HPLC) grade water were purchased from Fisher-Scientific. Sodium 3-

Hydroxy-2-naphthoate (SHNC) was purchased from TCI America. Sodium lauryl

sulfate (SLS), sodium lauryl ether- 3 sulfate (SLE3S) and sodium lauryl ether-1 sul-

fate (SLE1S) were generously donated by Procter & Gamble. The CTAB-hydrotrope

wormlike micellar solutions were prepared by weighing the desired amount of sur-

factant and dissolving it in double filtered HPLC-grade water using 0.22 micron

membrane filters. The appropriate amount of hydrotrope to make the desired salt-

to-surfactant ratio, CS/CD, was then added to the solution. The mixture was then

left to equilibrate at a constant temperature in a water bath for five days. The bath

temperature was set higher than the Krafft temperature, the minimum temperature

above which micellization occurs. CTAB/NaSal solutions have Krafft temperatures

ranging between 22 and 25 ◦C [21]. Therefore, they were equilibrated at 25 ◦C. The

CTAB/SHNC solutions were equilibrated at 40 ◦C. The CTAB/NaSal solutions were

prepared with fixed surfactant concentration CD = 0.1 mol/L and varying NaSal

concentrations to obtain molar concentration ratios CS/CD ranging from 0.3 - 5.0.

Three CTAB/SHNC solutions were prepared: 60 mM CTAB/ 30 mM SHNC, 100

mM CTAB/ 50 mM SHNC and 75 mM CTAB / 24 mM SHNC giving hydrotrope-to-

surfactant concentration ratios of 0.5, 0.5 and 0.32 respectively. The linear rheology
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and large amplitude oscillatory shear (LAOS) of 75 mM CTAB / 24 mM SHNC

wormlike micelle solution has been studied in the literature [22]. The mixed-anionic

wormlike micelle solution contained 42 wt.% sodium lauryl ether- 3 sulfate (SLE3S),

24 wt.% sodium lauryl sulfate (SLS), 3.5 wt.% sodium chloride (NaCl) and 30.5 wt%

deionized water. The second anionic wormlike micelle solution was composed of 10

wt.% sodium lauryl ether-1 sulfate (SLE1S), 3.15 wt% sodium chloride(NaCl) and

86.85 wt% deionized water.

Rheological measurements were performed using a stress-controlled AR-G2 rheome-

ter from TA Instruments with a cone-and-plate geometry. The cone had a diameter

of 40 mm, an angle of 1◦59′ and a truncation gap of 44 microns. A 50 mm diameter

solvent trap was used to prevent evaporation of the sample during measurements.

Strain sweep experiments were performed at a frequency of 6.28 rad/s to determine

the onset of the nonlinear regime. These showed that the onset of the nonlinear

regime was at a strain of around unity for the entire concentration range explored.

A frequency sweep from 0.03 to 100 rad/s at a constant strain amplitude of 5 %

was used to measure the linear viscoelastic spectrum of the solution. The plateau

modulus is strain-insensitive in the linear strain limit, where we measure our linear

moduli. The linear plateau moduli, G0 and relaxation times, τ were determined from

these data. The linear plateau moduli were estimated from the nearly frequency-

independent high frequency storage moduli. The plateau moduli for CTAB/NaSal

wormlike micelles with CS/CD = 0.3−0.8 were nearly constant in the 0.3−10.0 rad/s

frequency range while solutions for which CS/CD = 0.9− 1.4 and CS/CD = 1.5− 5.0

were almost constant within the frequency ranges of 2.0− 80.0 and 2.0− 20.0 rad/s

respectively. The relaxation time was taken as the inverse of the frequency at which

storage (G’) and loss (G”) moduli were equal. Strain hardening was investigated by

applying a step strain to the wormlike micelles and then the transient response of the

relaxation modulus. The “rise-time” to achieve the desired strain was less than 0.1 s
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for all measurements. The temperature was held constant at the desired value using a

Peltier plate system. To determine the temperature dependence of strain hardening,

the experiments were conducted at 15, 20 and 25 ◦C. Limited studies were performed

for the CTAB/SHNC solutions to discover if they exhibit strain hardening behavior.

Step-strain experiments were repeated three times for each surfactant/salt mixture,

with good reproducibility for the same mixture. However, significant variation was

observed for different remixes of the same composition. As described below, these

mix-to-mix variations are quantified by computing the standard error for between 2-5

remixes of the same composition.

4.3 Results

The results are organized as follows. First, we present the linear viscoelastic

data of the wormlike micelle solutions. Then, the nonlinear stress relaxation data

for the SLES wormlike micelles that lack a hydrotrope are shown. Finally, the stress

relaxation data of the CTAB wormlike micelle solutions that contain a hydrotrope

are presented with their concentration and temperature dependencies.

4.3.1 Linear viscoelasticity

The linear viscoelastic response for the CS/CD = 1.2 CTAB/NaSal wormlike

micelle solution at 25 ◦C is shown in Fig. 4.1. A single-mode Maxwell model [2] fit

to the curves yields relaxation times of τ = 0.87, 0.09 and 0.14 s and plateau moduli

G0
N = 54.2, 399 and 160 Pa for CTAB/NaSal, SLE3S/SLS/NaCl and SLE1S/NaCl

wormlike micelle solutions respectively. We observed modest deviations from the

single-mode Maxwell model at high frequencies. Figure 4.2 shows the dependence

of the steady shear viscosity on shear rate for the CTAB/NaSal, SLE1S/NaCl and

SLE3S/SLS/NaCl solutions. Plotting the low-shear-rate (i.e., the zero-shear-rate)

values of the shear viscosities against salt concentration gives the so-called “salt curve”
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Figure 4.1: Linear viscoelastic moduli of 0.1 M CTAB with NaSal at salt to surfactant
concentration ratio, CS/CD = 1.2. The measurement was taken at 25 ◦C. Continuous
and dashed lines are single-mode Maxwell model fits to the storage and loss moduli
respectively.
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Figure 4.2: Dependence of the steady shear viscosity on shear rate (symbols) and
complex viscosity on angular frequency (lines) for 0.1 M CTAB / 0.12 M NaSal,
SLE3S (42 wt%) / SLS (24 wt%), 3.5 wt% NaCl in 30.85 wt% deionized water and
10 wt% SLE1S with 3.15 wt% NaCl in 86.85 wt% deionized water are shown in the
inset at 25 ◦C.
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[23]. The salt curve for 0.1 M CTAB with varying NaSal concentration reveals two

peaks at CS/CD values of 0.6 and 2.2 with a minimum at CS/CD = 1.1 as shown in

Fig. 4.3a which is similar to what has been observed in previous work [24, 25]. The

salt curves for SLE3S/SLS/NaCl and SLE1S/NaCl in Fig. 4.3b each show a single

peak, consistent with findings in previous work [26, 27, 28]. The zero shear viscosities

rise as salt concentration increases to peak values of 45 and 20 Pa.s corresponding to

3.5 and 3.15 wt% NaCl for SLE3S/SLS and SLE1S solutions, respectively.

4.3.2 Stress relaxation

The stress relaxation curves for anionic SLE1S and SLE3S wormlike micellar so-

lutions with simple salt, NaCl and no added hydrotrope are shown in Fig. 4.4. The

figure shows a progressive strain softening as the magnitude of strain increases above

the linear strain limit of about 100 %. The relaxation curves can be shifted vertically

and superimposed over the linear strain response and thus show time-strain separabil-

ity, similar to the behavior of entangled polymer solutions and melts. The relaxation

curves on the log-log plot in Fig. 4.4 were vertically shifted to superimpose them onto

the linear strain (strain < 20%) response. The vertical shift required for superposition

as a function of strain, γ is known as the damping function [18] h(γ) and is shown

in Fig. 4.5 for SLE3S/SLS/NaCl and SLE1S/NaCl. The SLE3S/SLS/NaCl solution

shows more strain softening (i.e. faster decrease in h with γ) than does SLE1S/NaCl.

The damping function for the single-mode Giesekus model (SM-GM) [29] at long time

given by eq. 4.1 was fit to the damping functions obtained from the stress relaxation

curves.

h(γ) =
1

1 + α(1− α)γ2
(4.1)

where α is the anisotropic mobility parameter which represents the anisotropy in

the relaxation rate of micelles along the direction of the orientation relative to that

perpendicular to it. The SLE3S/SLS/NaCl and SLE1S/NaCl data were fit with
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Figure 4.3: Dependence of zero shear viscosity on (a) NaSal to CTAB concentra-
tion ratio for CTAB/NaSal solutions at 25 ◦C and (b) weight percentage of NaCl in
SLE1S/NaCl and SLE3S/SLS/NaCl solutions. The error bars in (a) represent the
standard deviation from the mean of the zero-shear viscosities for 2, 2, 3, 2, 5, 3
and 2 samples each of solutions of CS/CD = 0.6, 0.8, 1.0, 1.2, 1.5, 1.6 and 1.8 WLMs
respectively.
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Figure 4.4: Stress relaxation curves at strains of 20, 200, 350 and 500% for (a)
SLE3S/SLS with 3.5 wt% NaCl and (b) SLE1S with 3.15 wt% NaCl anionic wormlike
micelle solutions at 25 ◦C.
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Figure 4.5: Damping function (h) as a function of strain (γ) for SLE3S/SLS with 3.5
wt% NaCl and SLE1S with 3.15 wt% NaCl at 25 ◦C. Fits to eq. 4.1 are shown.

anisotropy factors, α of 0.3 and 0.18 respectively. The relaxation curves for the

CTAB/hydrotrope wormlike micelles on the other hand, are not time-strain sepa-

rable and transition with time after the step strain from strain hardening to strain

softening or back to the linear response. Similar trends were observed for other salt

concentrations and temperatures.

Figure 4.6 shows stress relaxation curves exhibiting strain hardening for CTAB/NaSal.

For CS/CD = 1.2 (Fig. 4.6a), the relaxation curve at 100 % strain superimposes on

that of 20 % indicating that both strains are in the linear regime consistent with the

strain sweep measurements (see Fig. D.1). A slight hardening response is observed at

200% strain while at 300 and 350 % strains, the relaxation moduli shows pronounced
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strain hardening with moduli two and five times higher, respectively, than the linear

response obtained at strains of 100 % and less. At a strain of 385 %, the initial

pronounced hardening gradually wanes as the relaxation modulus decreases to the

linear response. The relaxation curve at 400 % strain is roughly the same as the

linear response at t = 0.1 s but then softens significantly with increasing time. Strain

softening is also observed at 500 % strain; the relaxation modulus, G(t, γ) is about

3 times lower in magnitude than the linear response. For some temperatures, salt

concentrations and strains, we observe a transition of the relaxation modulus from

strain hardening to strain softening similar to the findings of Brown, Burghardt, and

Venerus [15]. As shown in Fig. 4.6b, the 0.1 M CTAB/NaSal solution at CS/CD = 0.4

exhibits only strain softening as the strain increases over the range 100-500 %. The

pattern of decay of the nonlinear relaxation moduli with time is different however,

from that seen for CS/CD = 1.2. The time dependence of the step strain response at

20 % strain can be modeled by a single exponential decay. In contrast, the response

to 100 % strain shows two distinct relaxation periods. Figure 4.7 shows the response

of the CTAB/SHNC wormlike micelles to step strain at 25 ◦C. The 60 mM CTAB /

30 mM SHNC solution exhibited strain hardening between 300 - 400% strains. How-

ever, the hardening transitioned to softening in about 1 s. The 75 mM CTAB/ 24

mM SHNC wormlike micelles experienced early “collapse” in the relaxation modu-

lus before 0.1 s and was strain softening for all strains investigated. The nonlinear

relaxation moduli displayed two distinct relaxation periods similar to Fig. 4.6b at

CS/CD = 0.4. The 100 mM CTAB / 50 mM SHNC solution displayed progressive

strain softening with increasing strain. This was in contrast to the behavior exhibited

by the 60 mM CTAB / 30 mM SHNC wormlike micelles despite both solutions having

the same hydrotrope-to-surfactant concentration ratio.
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Figure 4.6: Nonlinear shear modulus at 25 ◦C for 0.1 M CTAB with NaSal at salt-
to-surfactant concentration ratios (a) [NaSal]/[CTAB] = 1.2 and (b) [NaSal]/CTAB]
= 0.4.
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Figure 4.7: Nonlinear shear relaxation modulus after varying step strains at 25 ◦C
for (a) 60 mM CTAB with 30 mM SHNC (b) 75 mM CTAB with 24 mM SHNC and
(c) 100 mM CTAB with 50 mM SHNC wormlike micelle solutions.
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4.3.2.1 Hydrotrope-to-Surfactant Concentration Dependence

Within the whole range of salt-to-surfactant concentration ratios of CTAB/NaSal

micelle solutions studied here, namely 0.3 - 5.0, the relaxation curves shows strain

hardening over the range CS/CD = 0.5−3.0. Thus, the relaxation behaves differently

over the range CS/CD = 0.3 − 0.5 than for CS/CD = 1.2, as illustrated in Fig. 4.6.

Within the hardening regime, CS/CD = 0.5 − 3.0, the change in hydrotrope con-

centration affects the magnitude of strain hardening and variation of the relaxation

modulus with time after the step strain. For example, at a typical nonlinear strain of

350 % and fixed temperature of 20 ◦C, Fig. 4.8 shows that the initial strain hardening

for CS/CD = 0.5 quickly collapses within 1 s to strain softening with two relaxation

periods, while at CS/CD = 1.0, the hardening persists throughout the relaxation.

A slight but persistent hardening is observed in CS/CD = 1.5 while the significant

hardening at CS/CD = 2.0 lasts for about 10 s before strain softening.

To better quantify the magnitude of strain hardening, we define the “extent of

hardening”, δ in eq. 4.2 and plot it as a function of the salt-to-surfactant concentration

ratio in Fig. 4.9. The time, t = 0.1s used in the definition of this parameter was chosen

to be short enough to capture the maximum modulus attained at the applied strain.

The time is also about a decade longer than the time for the motor to apply the

strain, thus avoiding errors due to motor-induced stress overshoots or ringing.

Extent of hardening, δ =
G(γ = 3.5, t = 0.1s)

G(γ = linear, t = 0.1s)
(4.2)

Figure 4.9 shows the dependence of the extent of hardening on salt-to-surfactant

concentration ratio.
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Figure 4.8: Stress relaxation after strains of 20 % (closed symbols) and 350 % (open
symbols) for CTAB/NaSal solutions at (A) CS/CD = 0.5 and 1.0 and (B) CS/CD =
1.5 and 2.0. Measurements were taken at 20 ◦C.
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Figure 4.9: Strain hardening parameter as a function of salt-to-surfactant concentra-
tion ratio for CTAB/NaSal wormlike micelle solutions at three temperatures. Also
shown are individual data points for identical solutions calculated from the data of
Shikata et al.[14] (δ evaluated at γ = 3.6 and 1 s) and T ≈ 10 − 15 0C and Brown
et al.[15] at γ = 3.5 and an unspecified temperature. The error bars represent the
standard error of the mean for repeated experiments on independently mixed solu-
tions. The number of mixes represented in each error bar is given in the caption of
Fig. 4.3a. The CS/CD = 0.6 20 ◦C datapoint has an error bar which is very small
thus inconspicuous.
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Figure 4.10: Stress relaxation after a step-strain of 385 % for CTAB/NaSal solution
with salt-to-surfactant ratio of unity at 15, 20 and 25 ◦C.

4.3.2.2 Temperature Dependence

The relaxation of the wormlike micelles (at fixed salt concentration) varies with

temperature upon nonlinear deformation. Generally, the relaxation time increased

as the temperature decreased. Notably, the strain hardening at 385 % strain for

the CTAB/NaSal at CS/CD = 1.0 and 25 ◦C is lost to a collapse of the relaxation

modulus and transition to strain softening at about 0.4 s at 15 and 20 ◦C as shown in

Fig. 4.10. This shows that temperature is an important parameter controlling strain

hardening and that the temperature dependence of strain hardening is complex.
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4.4 Discussion

Chain retraction and reptation have been described as the dominant mechanism

of stress relaxation in some polymers [30]. These relaxation modes coupled with

reversible scission have been used to explain the relaxation mechanism in wormlike

micelles [9]. In this work, we observed strain hardening across a range of wormlike mi-

celle solutions. The zero-shear viscosities varied non-monotonically with hydrotrope

concentration as shown in Fig. 4.3a. The undulations observed in these properties

suggest that changes in the equilibrium structure of these wormlike micelle solutions

occur with increasing hydrotrope concentration. We therefore anticipate that ad-

ditional relaxation processes might occur in the wormlike micelles upon nonlinear

deformation. Our results significantly extend the earlier results of Shikata et al. [14]

and of Brown et al. [15]. In particular, we comprehensively measured the effect

of hydrotrope-to-surfactant concentration ratio and determined the temperature de-

pendence of the transition from strain hardening to linear, and strain softening in

CTAB/NaSal solutions. Despite having similar zero-shear viscosities, the wormlike

micelle solution with added hydrotrope (CTAB/NaSal solution at CS/CD = 1.2) ex-

hibited strain hardening while that with a simple salt (SLES/SLS with 3.5 wt% NaCl)

did not show strain hardening behavior across the same range of applied strains. We

also observed strain hardening in 60 mM CTAB / 30 mM SHNC wormlike micelles.

This indicates that strain hardening is most likely to occur in wormlike micelles with

hydrotropes.

The strain hardening observed could be due to alignment and packing of the

erstwhile isotropic wormlike micelle network into bundles at high strain which would

tend to fortify their strength and allow them to bear moderate nonlinear strains up

to around 350%. Similar behavior has been observed in naturally occurring semi-

flexible polymer networks like filamentous actin (F-actin) in the presence of actin-

binding protein (ABP) sucrin [31]. The F-actin/sucrin networks have comparable
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Figure 4.11: Relaxation time obtained from single decay exponential fits of the ter-
minal region of nonlinear relaxation curves (closed squares) and relaxation modulus
at t = 0.1s (open circles) as functions of the applied strain for CTAB/NaSal solution
at CS/CD = 1.1 at 25 ◦C. The relaxation time is fit by a power law with exponent
b = 0.16 and the modulus was fit by an exponential function with growth constant
β = 0.02, as indicated in the legend. The relaxation time decreases and does not fit
the trend at strains of 385 - 500 % while the relaxation modulus collapse dramatically
at 500 % strain.
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sizes and flexibility[32] to giant micelles. The plateau modulus of F-actin/sucrin

solutions increases with increasing strain much like the shear modulus at early times

for CTAB/NaSal solution shown in Fig. 4.11. Gardel et al. showed that the sucrin

simultaneously cross-links and bundles the actin filaments by connecting to them

at regular intervals thus arranging the actin filaments in parallel conformations to

one another. They exhibit over a decade increase in effective elasticity, thus strain

hardening at constant nonlinear strain [31]. The strain hardening was reportedly lost

at lower concentration of sucrin or F-actin similar to strain hardening lost in the case

of CTAB/NaSal at low hydrotrope concentration.

The mechanism of strain hardening in semi-flexible polymer networks is not to-

tally resolved. However, it has been attributed to tension generated in the network

bundles due to nonlinear stretching of filaments, increase in mechanical cross-linking

and bending rigidity of the bundles [31]. Cardiel et al. observed the formation of

flow-induced structured phases containing entangled, branched and multi-connected

bundles when solutions of CTAB/NaSal were subjected to high strains and strain

rates by flowing them through micro-channels containing an array of micro-posts

[12]. The existence of temporary sticky crosslinks acting as long-lived entanglements

in the micelle network has in fact been suggested as an explanation of strain hardening

in start-up shear flows of CTAB/NaSal solutions [16].

The nonlinear relaxation curves show a typical terminal relaxation time which

was fit to a single exponential. At early times during the relaxation, some curves

could not be fit by a single exponential. An exponential with two or three decay

constants would need to be used to obtain a good fit depending on how quickly the

modulus relaxed. This was common in the region of low hydrotrope concentration

where the relaxation was prolonged with noticeable variation in decay rates of the

modulus (see Fig. 4.6b). Under step stains, the micelles could form strain-induced

structures transiently in short time through bundling of micelles or where shorter
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micelles or free hydrotropes could form cross-links between micelles, which are not

readily broken by moderate strains and persists for an extended period of time relative

to an entanglement. These physical crosslinks would enhance the rigidity and overall

elasticity of the wormlike micelle bundle and hence, the transient micellar network.

Following this argument, we postulate that the strain hardening occurs due to the

dynamics of micelle bundles formed during flow. Sudden application of a large de-

formation on the micelle networks would lead to build-up of stresses in the wormlike

micelle bundles especially at the interconnecting bridges (physical crosslinks) which

have reduced degrees of freedom and therefore cannot instantaneously relax the stress.

We anticipate relaxation modes of the wormlike micelle bundles that differ from those

for individual unbundled micelles. There is a possibility of bending and twisting of

the micelle bundles thereby causing internal sliding of bridges in the bundles. In ad-

dition to the established reversible scission and reptation, other relaxation processes

present for bundles may include relaxation of stresses in the bridges, unbinding of

the bridges and fracture of the bundles , as described by Broedersz and Mackintosh

for bundles of actin filaments [32]. Some of the relaxation modes could potentially

occur within similar timescales and compete to be the dominant mechanism of relax-

ation or occur in different timescales. The wormlike bundle model of Broedersz and

Mackintosh takes into account competing deformation mechanisms by employing a

parameter that describes the relative importance between the crosslink shearing and

filament stretching [32]. The fracture of the wormlike micelle bundles could be re-

sponsible for the abrupt and pronounced reduction of the shear modulus. This could

occur due to simultaneous rupture of many crosslinkers due to the accumulated ten-

sion surpassing their stiffness. The disintegration of the micelle bundles would free

individual wormlike micelles to continue their relaxation.

Figure 4.8 shows three different regimes for the effect of hydrotrope-to-surfactant

ratio on stress relaxation at a moderate nonlinear strain of 350 % and 20 ◦C. The
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first regime (CS/CD < 1) is characterized by an initial strain hardening where the

modulus is quickly relaxed in less than about 1 s to strain softening with a multi-stage

relaxation of stress. The second regime (1 ⩽ CS/CD ⩽ 1.6) exhibits a consistent strain

hardening. The third regime (CS/CD > 1.6) shows a prolonged strain hardening

that reduces in about 10 s to strain softening with a single-stage relaxation. We

hypothesize that the differences in the regimes may be explained by the stiffness of the

transient structures formed and their relaxation times and mechanisms. A potential

explanation for the strain hardening behavior of Regime I wormlike micelles is that

micelle bundles of moderate stiffness are formed transiently leading to the initial

hardening. Many of these bundles could then rupture as their strength is overcome

by the strain applied. This rupture would lead to a sudden decrease in modulus

and relaxation of the stress which dominates the first stage of relaxation. The latter

stages of the relaxation would then be a combination of further unbundling and

internal relaxation of the stresses in the micelle bundles and reversible scission and

reptation of unbundled micelles, which we expect to dominate the final stage of the

multi-stage relaxation. In Regime II, we propose that the transient strain-induced

structures formed have greater stiffness than Regime I micelles and withstand the

moderate strains of 350 % consistently through the relaxation. We anticipate that

the internal bundle relaxations, unbundling, reversible scission and reptation occur in

similar timescales and would compete for dominance of the stress relaxation process.

The Regime III micelles on the other hand, we propose would form strain-induced

structures of intermediate rigidity with a hybrid (of Regimes I and II) relaxation.

The Regime III structures soften like those of Regime I at relatively longer times but

the relaxation processes are much like that of Regime II. We remain uncertain what

controls the rigidity and strength of these strain-induced structures.

The excess salt concentration defined by Shikata et al. [14] as the concentration

of free hydrotropes not bound in the surfactant-hydrotrope complex was investigated
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as a correlating variable for the strain hardening behavior. We found that the ex-

cess salt concentration - which was calculated as the difference in salt and surfactant

concentration- did not better correlate the results. We noted previously in ?? that dif-

ferent relaxation behaviors were observed for CTAB/SHNC wormlike micelles at the

same salt-to-surfactant ratio. Similarly, the results reported in Fig. 4.7b and Fig. 4.7c

have nearly identical excess salt concentration of −0.05mol/dm3 but also show re-

markable difference in stress relaxation behaviors. Figure 4.7 illustrates that quali-

tatively similar relaxation processes of strain hardening, abrupt softening with mul-

tistage relaxation and softening with single relaxation are observed in CTAB/SHNC

wormlike micelles akin to those of CTAB/NaSal. However, the kind of hydrotrope

used could have different effect on the strain hardening and relaxation behavior for a

particular salt-to-surfactant concentration ratio and this is a potential area of interest

for future work.

As strain is initially increased, the terminal relaxation time is observed to increase

progressively as shown in Fig. 4.11. Following a power law growth with τR ≈ γ0.16.

The initial shear modulus attained at the applied strain before significant relaxation

of stress, which is the extent of strain hardening varies with strain by the relation-

ship G(γ) ≈ exp(βγ) where β = 0.02 for CS/CD = 1.1. Hence, the micelle network

stiffness increases exponentially with increasing nonlinear strain until a critical strain

of about 400% at which the bundle strength is overcome leading to strain softening.

This transition from strain hardening to softening can occur abruptly in time, as ob-

served under some conditions in our experiments. The strain and time at which the

‘collapse’ of the hardening relaxation curve occurs varies with the salt-to-surfactant

concentration ratio, CS/CD and temperature. This could be as a result of the changes

in the morphology of the micelles formed as the concentration of hydrotrope is varied

ultimately altering the dynamics of the micelles under shear flow. Changes in hy-

drotrope concentration have been reported to change micelle flexibility, stiffness and

100



size [33, 34, 2, 5].

We therefore propose that the hardening is the result of the stiffness and length

of the micelles, size and the density of entanglements coupled with the availability of

sufficient free (unbound) hydrotropes in solution that can easily act as crosslinkers to

align and bundle the wormlike micelles into formidable transient network structures

under flow. We observed that the transition from strain hardening to strain softening

occurs between 300-400 % strain for most of the CTAB/NaSal solutions. Interestingly,

at CS/CD = 1 and γ = 385% , we observe in Fig. 4.10 a time dependent transition

from hardening to softening, with the modulus crossing the linear response at 0.3 s, at

15 and 20 ◦C. However, at 25 ◦C, the solution remains strain hardening at all times

at this higher temperature. However, we could not establish a simple relationship

between the extent of strain hardening and either concentration or temperature.

It is noteworthy that we observed a striking correlation between the extent of

hardening and the linear plateau modulus for a set of CTAB/NaSal wormlike micelles

of different hydrotrope-to-surfactant concentration ratios. However, the correlation

was largely lost when averaged over different independent mixes of wormlike micelle

solutions at the same hydrotrope-to-surfactant concentration ratio. Figure 4.12 shows

the averaged plateau modulus and extent of hardening as functions of the hydrotrope-

to-surfactant concentration ratio for independently re-mixed samples of the wormlike

micelle solutions. The error bars which represent the standard error of the means

were significant. The large error bars in the plateau modulus in Fig. 4.12 could

be as a result of the sensitivity to sample preparation, despite the care we have

taken. Error bars of relatively similar magnitude of were also obtained for the zero-

shear viscosity shown in Fig. 4.3 but they are less conspicuous, because they are

plotted on a log scale, as is common in the field. This limit to reproducibility is

not unique to our work. Calabrese et al. [35] also noted that it could be extremely

difficult to replicate precisely some parameters from different sample preparations
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Figure 4.12: Plateau modulus, G0 and extent of hardening, δ (defined in text) at 25 ◦C
as functions of the ratio of concentration of NaSal to CTAB. The error bars represent
the standard error of the mean of the plateau modulus and extent of hardening for
different re-mixes. The number of samples represented in each error bar is given in
the caption to Fig. 4.3a.

of wormlike micelles such as cross-over modulus and zero-shear viscosity in their

study. The strain hardening in CTAB/NaSal wormlike micelles showed a general

increase in the extent of hardening with increasing hydrotrope concentration up to

about equimolar concentration of hydrotrope and surfactant, followed by a drop to a

near-linear response at CS/CD = 1.5 and a meager increase afterwards. This trend

was consistent between the remixed wormlike micelle solutions. To go beyond these

observations regarding the sources of strain hardening and its collapse, the structure

of the micelle solution under conditions of non-linear deformation will need to probed

by techniques such as neutron or x-ray scattering.
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4.5 Summary

We performed step-strain experiments on both anionic wormlike micellar solu-

tions with a simple salt (NaCl) and cationic wormlike micelle solutions with added

hydrotropic salt (NaSal and SHNC) and observed strain hardening only with the

hydrotropic salts. The CTAB/NaSal wormlike micelles exhibited strain hardening

over the range, CS/CD = 0.5 − 3.0. Limited studies of the CTAB/SHNC wormlike

micelles showed strain hardening for 60 mM CTAB / 30 mM SHNC which transi-

tioned to strain softening in time at 25 ◦C. We observed a temperature dependence

of both strain hardening and of the transition in the stress relaxation curves from

strain hardening to strain softening or linear response. The critical strain and time

at which this transition occurs varies with concentration and temperature. The com-

plex dependence of strain hardening on salt concentration, temperature, strain, and

time that we observe remain to be explained. We postulate that the formation of

strain-induced structures such as micelle bundles, with hydrotropes possibly bridging

micelles together, are responsible for strain hardening, the anomalous transition to

softening and the complex dependencies of strain hardening on the above variables

in these wormlike micelles. Presumably structural probes that are complementary to

rheology, such as time-resolved neutron scattering, will be required to provide a con-

vincing explanation for these phenomena, which are likely related to shear thickening,

shear-induced structures, and other phenomena in worm-like micellar solutions.
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CHAPTER V

Conclusion and Future Work

5.1 Conclusion

In this thesis, we investigated the nonlinear rheological behavior of wormlike mi-

celles over different concentration regimes using Brownian dynamics (BD) simula-

tions, theoretical development of constitutive equations and step-strain experiments

on a rheometer. These methods provided us better insights into the role of reversible

scission and entanglements in the transient shear stress response in dilute and semi-

dilute wormlike micelles, and strain hardening in wormlike micelles over a wide con-

centration range.

In Chapter II, we demonstrated that the implementation of reversible scission

of micelles required a more detailed multi-bead-spring model with sufficient inter-

nal degrees of freedom that track the dynamics of the interacting chain segments.

We showed the inadequacy of representing both species of interacting wormlike mi-

celles as dumbbells, as in the Vasquez-Cook-McKinley (VCM) model by replicating

the formulation of their problem in an analogous BD simulations. We observed an

over-prediction of the transient stress of short micelle species by the VCM model in

comparison to parallel BD predictions. We observe the source of this discrepancy to

be the loss of configurational information of the relative short micelle segments in the

long species when the long species are treated as dumbbells. Therefore, the micelle
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reaction kinetic involving fusion of short dumbbells to longer dumbbells lack the re-

quired internal degrees of freedom needed to accurately describe reversible scission

in wormlike micelles. We fix this by implementing long species micelles as multiple

bead-spring chains that break in the middle to give shorter micelles each of equal

length. We therefore track all internal chain segments and accurately describe the

exchange of species during the scission and recombination events.

We then employed the differential equations for end-to-end vector dyads of Wiest,

Wedgewood, and Bird [1] to develop a constitutive equation that tracks the internal

configurations of the wormlike micelles during reversible scission. The constitutive

equation can describe chains with Hookean springs exactly, as shown by compari-

son with Brownian dynamics simulations of the same two-species model, and could

account approximately for non-linear chains for example, using finitely extensible

nonlinear elastic (FENE) chains with appropriate closure approximations.

In Chapter III, we advance the wormlike micelle reversible scission simulation of

Chapter II to include the effect of topological entanglements present at semi-dilute mi-

celle concentrations. We formulated the novel model for simulating entangled worm-

like micelles by incorporating reversible scission in an established slip-link model. We

studied the effects of reversible scission vis-a-vis entanglements on the rheology of

wormlike micelles. We find that entanglements increase steady stress and produced

a stress overshoot in polymers with sufficient entanglements (about one entangle-

ment per four beads). However, in entangled wormlike micelles, reversible scission

on the order of Rouse time led to higher steady stress, for same conditions as in

polymers, without the occurrence of the stress overshoot. Reversible scission in the

fast-breaking regime, where breakage times are much more faster than reptation is

needed for the stress relaxation effects to be significant. Increased scission rates led

to a corresponding decrease in steady stress which produced a stress overshoot.

In Chapter IV, we performed step-strain experiments on both anionic wormlike
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micellar solutions with a simple salt (NaCl) and cationic wormlike micelle solutions

with added hydrotropic salt (NaSal and SHNC). We observed strain hardening only in

wormlike micelles that contained hydrotropes. The CTAB/NaSal wormlike micelles

exhibited strain hardening over the range, CS/CD = 0.5− 3.0. We performed limited

studies of the CTAB/SHNC wormlike micelles; they revealed a strain hardening tran-

sition to strain softening for 60 mM CTAB / 30 mM SHNC at 25 ◦C. We observed a

temperature dependence of both strain hardening and of the transition in the stress

relaxation curves from strain hardening to strain softening or linear response. The

critical strain and time at which this transition occurs varied with concentration and

temperature.

The complex dependence of strain hardening on salt concentration, temperature,

strain, and time that we observe remain to be explained. We postulate that the

formation of strain-induced structures such as micelle bundles, with hydrotropes pos-

sibly bridging micelles together, are responsible for strain hardening, the anomalous

transition to softening and the complex dependencies of strain hardening on the above

variables in these wormlike micelles. We note that employing complementary experi-

ments that can probe the structure of micelles such as time-resolved neutron scatter-

ing, might be able to provide a convincing explanation for these phenomena, which

are likely related to shear thickening, shear-induced structures, and other phenomena

in worm-like micellar solutions.

5.2 Future Work

5.2.1 Advances on Modeling and Simulation of Worm-like Micelles

The constitutive equations developed in Chapter II could be used to explore cal-

culations with FENE spring, and with multiple-species models. It should also be

possible to include scission and fusion rates that depend on average stress and orien-
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tation of the micelles. The study could also be extended to other equilibrium micelle

kinetics such as end and bond interchange and structural features such as rings and

micelle branches.

5.2.2 Dynamics and rheology of microstructure for strain hardening worm-

like micelles

5.2.2.1 Background

In our previous studies reported herein, we observed strain hardening in cationic

systems of CTAB/NaSal in water between a salt to surfactant concentration ratio,

CS/CD of 0.5-2.0. The magnitude of strain hardening (Eq. (4.2)) however did not

have a simple relationship with salt concentration. Our results defies the conclusion in

literature of [2] that strain hardening occurred in cationic wormlike micelle systems

with low concentration of free (unassociated) hydrotrope ions, C∗
S. We observed

higher magnitudes of strain hardening at C∗
S values lower and higher than CS/CD =

1.5 corresponding to C∗
S = 0.5. We observed an anomalous transition in the stress

relaxation curves from strain hardening to strain softening or linear response. The

critical strain and time at which this transition occurred varied with concentration and

temperature. This anomalous transition was observed to be temperature dependent,

occurring at a strain of 3.85 and a low temperature of 15 0C but hardening at 25 0C

for the same strain and salt and surfactant concentrations. This could be a promising

tool for switching between a strain hardening and softening behavior and vice versa

for the same wormlike micelle in potential applications. It is therefore necessary to

understand the mechanism of this strange phenomenon.

5.2.2.2 Scientific Importance

We seek to understand the mechanism of strain hardening in wormlike micelles by

performing in-situ neutron scattering with rheology (Rheo-SANS). Wormlike micelles
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are formed by the reversible self-assembly of amphiphilic molecules. The wormlike mi-

celles aggregate to form viscoelastic networks. Hence, they are applied in oil recovery,

drug delivery, drag reduction etc. [3]. This is due to their interesting nonlinear rheo-

logical properties particularly shear banding, shear thickening and strain hardening.

Of these properties, strain hardening is the least understood. We studied [4] the con-

ditions necessary for strain hardening in surfactant wormlike micelles including CTAB

with added hydrotrope, NaSal. We observed a complex dependence of the extent of

hardening to the hydrotrope-to-surfactant concentration ratio and temperature. We

also observed an anomalous transition from strain hardening to softening or linear

response, similar to that reported by Brown et al. [5]. In addition, we observed the

transition depended on temperature. This transition has potential applications where

strain hardening and softening behaviors were needed and temperature could be used

as a switch between them. Unlike the Rheo-SALS (Rheology with Small Angle Light

Scattering) which can track the dynamics of the micellar contour length, Rheo-SANS

is particularly suited for tracking the dynamics of macromolecular chains and aggre-

gates at a globular and individual (few Kuhn lengths) scale in-situ as the shear is

been applied to them. Takeda et al. [6] used Rheo-SANS to observe transitions in

the morphology of CTAB/NapTS micelles from short to long wormlike micelles then

to long micelles with entanglements corresponding to Newtonian to shear thickening

then shear thinning behavior. We observed a correlation of the extent of hardening

and the linear plateau modulus, an equilibrium and linear property of the worm-

like micelles, which relates to the number density of entanglements. We therefore

hypothesize that strain-hardening phenomenon is connected to the existence and dy-

namics of the entanglements, perhaps the interconnection of entangled micelles to

form wormlike micelle bundles. However, the factual explanation of the mechanism

of strain hardening is still elusive.
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5.2.2.3 Preliminary Work

The conditions under which wormlike micelle solutions of CTAB and NaSal ex-

hibit strain hardening have been examined by performing step strain measurements

on a rheometer. We observed complex relationships between the extent of strain hard-

ening - defined as the ratio of nonlinear to linear relaxation modulus at short times

(0.1 s) - and both concentration and temperature. The ALV CGS-3 dynamics light

scattering instrument with a compact goniometer system and a laser of wavelength

632.8 nm could be used to obtain equilibrium properties of the wormlike micelles.

Using this, relaxation times, mesh size and size distributions of the wormlike micelles

in equilibrium are obtained by varying the scattering angle gradually between 0 and

90 ◦. These equilibrium properties can be obtained from the translation diffusion

coefficient as the slope of a plot of relaxation rate and scattering vector, q2 [7, 8].

The wormlike micelle size is determined by solving iteratively the Yamakawa-Fujii

equation which models the wormlike micelles as a worm-like cylinder [9]. Using an

Anton-Paar MCR 702 rheometer with a SALS option, and circular Couette and par-

allel plate geometries, the contour length dynamics of the wormlike micelles during

nonlinear step strains (where strain hardening occurs) can be probed.

5.2.2.4 Choice of Instrument

To carry out the in-situ neutron scattering and rheological studies of the worm-

like micelles, the use of the general SANS (GP-SANS CG-2) instrument at HFIR

because of the high intensity neutron flux is required. Secondly, the two-meter (2

m) sample environment is spacious enough to allow for an MCR 301 rheometer to

sit along the beam line. The services of the Biophysical characterization laboratory

could be requested to prepare deuterated NaSal hydrotropes from perdeuterated sal-

icylic acid. The NaSal hydrotropes tend to aggregate around entanglements. The

contrast observed would be used as a means of observing the structural changes in
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the entanglement and their dynamics.

5.2.2.5 Experiment Plan

The samples are four different hydrotrope-to-surfactant concentration ratios (0.6,

1.0, 1.5 and 1.8) of the CTAB/NaSal wormlike micelles. For each of the concentra-

tion ratios, prepare a batch with the surfactant and hydrotrope dissolved in D2O

with 99.9% purity. The second batch of sample would be prepared with CTAB and

perdeuterated NaSal in water. The perdeuterated salicylic acid would be reacted

with sodium hydroxide to get the perdeuterated sodium salt of the acid, NaSal. The

samples would be allowed to equilibrate for 2 days. Rheology measurements with

in-situ neutron scattering in the velocity gradient-vorticity plane could be run using

Titanium based Couette shear cells for all samples. Experiments at equilibrium (no

flow) would be used as a control in comparison to the scattering data with flow. Each

of the runs should take an hour to complete. For each of the samples, perform a linear

step strain measurement at 10 % strain and nonlinear strains for (350, 385 and 500

% strains). Each of these would take an hour to complete. Then run a set of step

strain experiments for the sodium lauryl ether (1) sulfate (SLE1S)/ NaCl wormlike

micelle solution that was observed [4] not to exhibit strain hardening as a control

for the experiments. These experiments would be run at 25 ◦C. Step strain experi-

ments at hydrotrope-to-surfactant concentration ratio of 1, strains of 10 and 385 %

at 20 ◦C would be performed to investigate the hardening-softening transition. The

q-range for the experiments are 0.005 - 0.3 −1. It should require about 4 days to run

these experiments on the CG-2 GP-SANS instrument at HFIR, Oak Ridge National

Laboratory. The rheological data generated should be collected on the Anton-Paar

RheoCompass software. The neutron scattering intensities would be detected on a

square meter detector and the data collected on the Mantidplot software and used

in generating 2-D SANS patterns. The 2-D scattering pattern should then be ana-
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lyzed using SASview (http://www.sasview.org/). The data would be reduced to a

1-D scattering intensity vs q plot [10] and fit to theoretical models that model the

structures as wormlike cylinders [11] and take account of micelle flexibility [12, 13].

5.2.2.6 Spatial and Temporal Resolution of Microstructure and Stress

The orientation of the wormlike micelles can be tracked from the SANS mea-

surements using the alignment factor, Eq. (5.1) which is an order parameter that

quantifies the flow-induced alignment of the micelles. Alignment factor values range

between 0 and 1. A value of zero represents isotropic configuration of the wormlike

micelles while a value of 1 represent full alignment in the direction of flow. A nematic

fluid has a typical alignment factor of about 0.7 [14].

∣∣Af

∣∣ (q∗) = ∫ 2π

0
I(q∗, ϕ) cos 2(ϕ− ϕ0)]dϕ∫ 2π

0
I(q∗)dϕ

(5.1)

where q is the scattering angle, ϕ is the azimuthal angle with respect to the direction

of flow, ϕ0 is the segmental orientation given by the minimum in I(q∗, ϕ) which is the

annular average scattering intensity consequently averaged over q range corresponding

to the segmental length of the wormlike micelles [15]. The principle axis of scattering,

ϕ0 defines the microstructure[14]. The stress relaxation curve is to be estimated in

time using the stress-SANS rule as given by Eq. (5.2).

σp
12 = G0(CAf )

(1/2) sin (2ϕ0) (5.2)

Similar method of obtaining derived parameters explained in equilibrium section

above would be employed for step strain experiments. Helgeson [16] reported writing

a computer program to fit their data with the Schurtenberger model [12, 17, 18].

113



5.2.2.7 Safety Considerations

The chemical formula of cetyl trimethylammonium bromide is [(C16H33)N(CH3)3]Br

and that of sodium salicylate is C7D5NaO3 (salicylic acid C7D6O3). The chemical

formula of sodium lauryl ether (1) sulfate (SLE1S) is CH3(CH2)11(OCH2CH2)1OSO3Na.

All samples to be tested on the GP-SANS are in solution state. The samples are in

powdered form before preparation.
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APPENDIX A

Two-species Brownian dynamics (BD) Simulations

of Wormlike Micelles using Springs with a

Non-linear Force-Extension Relationship

A.1 Introduction

In order to predict many of the nonlinear rheological phenomena discussed in

Section 1.3.2, nonlinear force-extension relationships, also referred to as “spring laws”

are used to represent the entropic springs in multi-bead-spring Brownian dynamics

simulations. The nonlinear spring laws ensures that the dynamics of the springs are

closer to reality by permitting the springs to extend to a maximum extension (see

Fig. A.1). This is unlike the Hookean springs whose extension (or chain stretch)

vary linearly with applied force thereby allowing them to stretch infinitely. Hookean

springs are suitable for linear rheology studies and low shear rate flows. Nonlinear

spring laws are more suited to capture nonlinear flows where shear rates are high and

deformation is huge.
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Figure A.1: Force-extension relationship for different springs employed in Brownian
dynamics (BD) simulations. Figure reproduced from [4].

A.2 Simulation setup

The wormlike micelle chains are represented as a series of beads connected by

entropic springs. The beads are subjected to constant bombardment by solvent

molecules which we depict as stochastic forces are they diffuse in the medium. The

resulting Langevin equation of motion Eq. (A.1a) [1, 2] for each inertia-less bead (i.e.

overdamped dynamics) of every bead-spring chain is solved using Somasi’s predictor-

collector algorithm [3].
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dr
dt

=
1

ζ
Fflow

i +
1

ζ
[FS

i+1 − FS
i ] +

1

ζ
FR

i (A.1a)

Fflow
i = ζ(κ(ri) · ri + v′

i) (A.1b)

FS
I =

kBT (α
∧
r − β

∧
r
3
)

bK(1−
∧
r
2
)

(A.1c)

FR
I =

√
6kBTζ

∆t
ni (A.1d)

where ri is the position vector of the ith bead in a bead, ζ is the drag coefficient, κ is

the transpose of the velocity gradient tensor, v′
i accounts for the variation in the local

flow field around ri due to intra-molecular hydrodynamic interaction with surrounding

beads [4], FR
I is the Brownian force, Fflow

i is the drag force due to flow, and FS
i and

FS
i+1 represents forces due to i and i + 1th springs. In the absence of hydrodynamic

interaction, as is the case in our simulation results presented here, v′
i = 0. The

Cohen-Pade approximation of the inverse Langevin function [5], Eq. (A.1c) is used to

represent the spring-force law. α and β have values of 3 and 1 respectively due to their

independence with coarse-graining [2]. The equations were made dimensionless by

scaling length with the Kuhn length (bK), force with kBT/bk and time with ζb2K/kBT

[2].

Two-specie reversible scission of wormlike micelles

We simulate the micelle reversible scission kinetics as described in Section 2.2.

Additionally, we include shear-induced scission into kinetics following the VCM model

[6]. The shear-induced scission is implemented using Larson’s Partially Extended

Convected (PEC) model given by the second term on Eq. (A.2a) [7, 6].

cA = cAeq +
1

3
ξµ

(
.
γ
=
:

RgA

nA

)
(A.2a)

cB = cBeq (A.2b)
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where ξ is the shear-induced breakage rate, RgA is the ensemble average radius of

gyration tensor for the long species micelles defined as Eq. (A.3) and µ = λA/λeff =

1+cAeq. λA and λeff are the relaxation times for the long species and the cooperative

(effective) network relaxation time [6].

RgA =

⟨
1

2N2
A

 NA∑
i

NA∑
j

(Rij)
2

⟩ (A.3)

The simulation was run using a time-step of 10−3 dimensionless time. The number

of Kuhn segments per spring, Nk,s = 6, shear-induced scission rate, ξ = 0.3, and,

the number of springs in long species chains, NA = 6. The equilibrium number of

long chains at equilibrium, NA0 = 100 while the ratio of short to long chains at

equilibrium, NB0 = 1. The simulation was run and averaged for an ensemble of 100.

The stress was calculated as Eq. (A.4)

σA = nA

NA−1∑
k=1

⟨
FS

kQk

⟩
A

(A.4a)

σB = nB

NB−1∑
k=1

⟨
FS

kQk

⟩
B

(A.4b)

A.3 Results

In Figure A.2a, we observe that the number densities of long and short chains

fluctuate about 1. This indicates that at a Weissenberg number of unity and ξ = 0.3,

the flow does not induce much scission of the long micelles. We observe a moderate

stress overshoot of the transient stress in Fig. A.2b. However, atWi = 10, we observe

a higher number density of short species (see Fig. A.3a) despite the ratio of short to

long chains at equilibrium, NB0 = 1. This is because of the higher scission rates

from the contribution of the flow to the scission of long species micelles. At this very

high shear rate, we observe a pronounced overshoot of the transient stress curve in

120



Fig. A.3b.

The blue stress curve in Figure A.4 can be described as gentle rise from zero

to a steady shear stress value of about 40 in about 0.3 dimensionless time for a

breakage time of 0.02. As the breakage rate increased 200 fold, the red curve in

Fig. A.4 shows a substantial reduction in stress values obtained. This agrees with the

theory that breaking and recombination of wormlike micelle chains is a mechanism

for relieving stress. It suggests that the more breaking and recombination events

occurring a systems, the lower the stress that would be felt in the system. Figure A.5

shows plots of the dimensionless steady shear stress, σ12s.s =
∑

α=A,B σ12αs.s/Gα and

viscosity values σ12s.s/
.
γ. with dimensionless shear rate. The viscosity curve depicts

a shear thinning behavior because the viscosity reduced with increasing shear rate.

The steady shear stress rose steadily to a plateau with a tendency of an upturn at

higher dimensionless shear rates. These results are in line with known rheological

responses. The stress plateau has been attributed to shear banding and mechanical

instabilities. See further details in Section 1.3.2.3.
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Figure A.2: Normalized number density (top) and dimensionless stress (bottom)
against dimensionless time at Weissenberg number, Wi = 1.
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Figure A.3: Normalized number density (top) and dimensionless stress (bottom)
against dimensionless time at Weissenberg number, Wi = 10.
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Figure A.4: Normalized number density (top) and dimensionless stress (bottom)
against dimensionless time at Weissenberg number, Wi = 100. Nk,s = 10 and cAeq =
3.5 in this simulation. The overshoot is not visible beacuse it is plotted on a semi-log
scale to accommodate both graphs.

Figure A.5: Dimensionless steady shear stress (black squares) and viscosity (red cir-
cles) against dimensionless shear rates. Same parameters are used in this simulation
as Fig. A.4

124



APPENDIX B

Development of Constitutive Equation for

Two-species Reversible Scission and Deformation

of Rigid Micelles

B.1 Constitutive Equations Development

The formulation of this constitutive equation assumes that two short species

dumbbells fuse into a longer dumbbell twice the size of the short dumbbells simi-

lar to the VCM model. We also assume that after the fusion of two short dumbbells,

the average isotropic stress of the long species is unaffected and only the deviatoric

stresses are perturbed by the addition of short species dumbbells. Let S be the tensor

for the short chains containing the deviatoric stress contribution of the short chains.

We define S as

S =
⟨
Q⃗Q⃗
⟩
s
/Q2

s0 − 1/3δ
=

(B.1)

where
⟨
Q⃗Q⃗
⟩
s
is the ensemble average of the end-to-end vector of short chains, ⟨..⟩

represents ensemble average. Q2
s0 is the end-to-end length of short chains at equilib-

rium and 1/3δ
=
is the isotropic stress contribution. Similarly, for long chains,

L =
⟨
Q⃗Q⃗
⟩
l
/Q2

l0 − 1/3δ
=

(B.2)
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where
⟨
Q⃗Q⃗
⟩
l
is the ensemble average of the end-to-end vector of long chains, Q2

l0 is

the end-to-end length of long chains at equilibrium.

When two short dumbbells fuse into a longer dumbbell, the isotropic parts combine

as

n⃗s → 2n⃗s (B.3)

√
trSn⃗s → 2

√
trSn⃗s (B.4)

where
√
trS is the length of the short dumbbell. After fusing, the new tensor is the

product

2
√
trSn⃗s · 2

√
trSn⃗s = 4trSn⃗sn⃗s (B.5)

By multiplying the mean square end-to-end vector of the short chains at equilibrium,

the new (fused) tensor in dimensional terms is 4trSQ2
s0n⃗sn⃗s. Since, S = trSn⃗sn⃗s,

then

4trSn⃗sn⃗s = 4SQ2
s0 (B.6)

Substituting Eq. (B.1) in Eq. (B.6) gives

4

(⟨
Q⃗Q⃗
⟩
s
− 1/3Q2

s0δ
=

)
= 4

⟨
Q⃗Q⃗
⟩a
s

(B.7)

where
⟨
Q⃗Q⃗
⟩a
s
represents the anisotropic part of the fused stress tensor. Following our

initial assumption, we obtain the total stress of the resultant fused dumbbell from

two short dumbbells by adding the anisotropic contribution to the isotropic stress

of the long dumbbells. Therefore, stress contribution to long species micelles from

fusion of short species micelles is

Stress gained = 4
⟨
Q⃗Q⃗
⟩a
s
+ 1/3Q2

l0δ
=

(B.8)
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Similarly, a long dumbbell can break to give two short chains. Thus,

√
trLn⃗l → 1/2

√
trLn⃗l (B.9)

where
√
trL is the length of the long dumbbell. The new tensor is therefore

1/2
√
trLn⃗l · 1/2

√
trLn⃗l = 1/4trLn⃗ln⃗l (B.10)

Given L = trLn⃗ln⃗l,

1/4trLn⃗ln⃗l = 1/4LQ2
l0 (B.11)

Substituting Eq. (B.2) in Eq. (B.11) gives

1/4

(⟨
Q⃗Q⃗
⟩
l
− 1/3Q2

l0δ
=

)
= 1/4

⟨
Q⃗Q⃗
⟩a
l

(B.12)

where
⟨
Q⃗Q⃗
⟩a
s
represents the anisotropic part of the fused stress tensor. Similarly, we

add the anisotropic contribution of the broken long dumbbell to the isotropic stress

of the short dumbbells. Therefore, stress contribution to short species micelles from

scission of short species micelles is

Stress gained = 1/4
⟨
Q⃗Q⃗
⟩a
l
+ 1/3Q2

s0δ
=

(B.13)

From Section 2.2, we obtained Eq. (2.4) as

dnA

dt
=
cB
2
n2
B − cAnA (B.14a)

dnB

dt
= −cBn2

B + 2cAnA (B.14b)

where cA and cB are the rates for breaking and rejoining of long and short chains

respectively. The above equations are identical to the corresponding equations of
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the VCM model. Therefore, the constitutive equation is obtained by multiplying the

rates in Eq. (B.14) by the respective stress contributions Eqs. (B.8) and (B.13) and

adding to the Upper-Convected Maxwell equation for dumbbells.

nA
∇
σA+

nA

λA
(σA −GAδ) =

(
1

2
cBn

2
B

[
4HB

⟨
Q⃗Q⃗
⟩a
B
+

1

3
HAQ

2
A0δ

])
−cAnAHA

⟨
Q⃗Q⃗
⟩
A

(B.15a)

nB
∇
σAB+

nB

λB
(σB −GBδ) =

(
2cAnA

[
1

4
HA

⟨
Q⃗Q⃗
⟩a
A
+

1

3
HBQ

2
B0δ

])
−cBnBHB

⟨
Q⃗Q⃗
⟩
B

(B.15b)

where subscripts s and l have been substituted with B and A respectively for consis-

tency with previous equations. Hα = 2kBTβsα
2 is the Hookean spring constant and

βsα
2 = 3/(2Nk,sαb

2
k) is the elasticity of the spring in species α.

B.2 Result

Figure B.1 shows that both BD simulations and the model give matching pre-

dictions in the absence of reversible scission. This is because the equations becomes

uncoupled Maxwell equations, see Section 2.4 for details. In Fig. B.2, we observe

over-prediction of the stress response for long chains by the Rigid Micelles (“VCM-

R1”) model and an under-prediction of that of the short micelles. This discrepancy

is likely as a result of the underlying assumption of the model which states that the

stress tensor quadruples when two chains fuse. That is, the radius of gyration and the

gyration tensor always increases in fusion events. Thus, the model cannot capture

fusion events that result in “back-folding”, see Fig. 2.4. The model however, may be

suitable for predicting the dynamics of very rigid “rod-like” micelles in which case

the fusion can only be by end-to-end interaction such that the radius of gyration

increases.
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Figure B.1: Comparison of stress contributions from long (subscript A) and short
(subscript B) chains for Brownian Dynamics (BD) simulation and for Rigid Micelles
(marked VCM-R1) model without reversible scission at Weissenberg number of unity.
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Figure B.2: Similar to Fig. B.1 but with VCM model predictions (marked VCM) and
with scission rate, cAeqλ1A = 1.
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APPENDIX C

Modified Rouse Linear Entangled Polymers

(Rolie-Poly) Model

C.1 Rouse Linear Entangled Polymers (Rolie-Poly) Model

The Rolie-Poly model is an advancement of the reptation theory and tube model.

The Rolie-Poly equation is a single-mode approximation of a more complex GLAMM

(Graham Likhtman McLeish Milner) [1] model. It was developed by Likhtman and

coworkers in order to provide a simpler, less tedious and computationally compatible

equation that would mitigate the difficulty and expense of coupling the GLAMM

in other CFD applications, yet providing the underlying physics to get qualitatively

similar rheological predictions [2]. The Rolie-Poly model is given as Eq. (C.1) [2].

∇
σ
=
+

1

τd

(
σ
=
− I

=

)
+

2

τ
R

(
1− λ−1

) [
σ
=
+ β(λ2)δ

(
σ
=
− I

=

)]
= 0

=
(C.1)

where
∇
X
=

=
.

X
=
− ∇

−
v
−
T · X

=
− X

=
· ∇
−
v
−
. The constitutive equation is modeled towards

the description of fast flows in entangled polymers. Therefore, it incorporates faster

relaxation mechanisms like contour length fluctuations (CLF), convective constraint

release (CCR), and chain stretch, which are on shorter time scales compared to rep-

tation [2, 3]. Convective constraint release (CCR) is the removal of the topological
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constraints (entanglements) imposed by surrounding chains on the primitive chain

by convection of the shearing flow [4, 5]. CCR occurs at a rate porportational to

the inverse of the shear rate and is the dominant mechanism of stress relaxation in

nonlinear flows or large step strain experiments [2, 5].

C.2 Modified Rouse Linear Entangled Polymers (Rolie-Poly)

Model

The Rolie-Poly model successfully predicts transient overshoots in startup shear

with unique undershoots at shear rates in concordance with Osaki’s [6] experiments.

Likhtman et al. [2] predicted shear damping function in good agreement with the

original Doi-Edwards theory [2]. It has also been modified by Cromer et al. [7] and

Adams et al. [3] to study concentration fluctuations and inhomogeneities leading to

shear banding.

To investigate effect of concentration, we introduce finite extensibility to the

stretch characterized by the maximum extensibility parameter, λmax. The relation

between maximum stretch and concentration given by λmax = λmax0

−
ϕ
c

where λmax0 is

the maximum chain stretch at equilibrium. We therefore obtain a modified Rolie-Poly

model, with a nonlinear spring constant, ks, which is of the FENE-P type i.i. Finitely

Extending Nonlinear Elastic with Peterlin approximation [7, 8].

∇
Q
=
+

1

τd

(
Q
=
− I

=

)
+

2

τ
R

ks
(
1− λ−1

) [
Q
=
+ β(λ2)δ

(
Q
=
− I

=

)]
= 0

=
(C.2)

σ
=p

= G(ϕ)

(
ksQ

=
− I

=

)
(C.3)

ks =
(
λ2max − 1

)
/
(
λ2max − λ2

)
(C.4)

We refer to Eqs. (C.2) to (C.4) as the modified Rolie-Poly equation. τd and τR are
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the disentanglement and Rouse times respectively. λ = l/l0 =
√
trQ

=
/3 is the stretch

parameter and λmax = lm/l0 is the maximum stretch of the tube. l and lm are

the instantaneous and maximum tube length containing an entanglement segment

respectively and l0 is the equilibrium tube length. Q
=

is the orientation tensor [9, 10]

and
∇
Q
=

is as defined previously in Section C.1. G(ϕ) is the plateau modulus [7].

β is an adjustable parameter from 0 to 1 that proportional to the rate at which

entanglement constraints are released by the convection of flow (CCR) [2, 11]. An

alternative nonlinear spring constant [2] could be used in the modified Rolie-Poly

model:

ks =
(
λ2max

)
/
(
λ2max − λ2

)
(C.5)

Modification of the Rolie-Poly equation by Adams et al. [12] to include diffusion

and solvent stress has been used to predict transient banding in entangled polymers.

This has been noted by Berret [13], Cates [14] and Ravindranath [15]. However, the

predictions of Adams et al. did not match experiments quantitatively, they required

large entanglement number, Z=265 while experiments observed banding between 15

and 50 [3]. The entanglement number is defined as the ratio of the disengagement to

Rouse time, [3, 16]

Z =
1

3

τd
τR

(C.6)

where τd and τR have definitions as in Eq. (C.2) above.

C.3 Modelling of the modified Rolie-Poly model

The modified Rolie-Poly model was non-dimensionalized as follows: t∗ = t/τR,

σ
=

∗
p
= σ

=p
/G, .

γ
∗
=

.
γτR and τ ∗d = τd/τR. Optimal values of CCR parameter, β = 1

and δ = −0.5 were set to fit transient and steady-state predictions of GLAMM in

concordance with Likhtman [2]. The ratio of reptation to Rouse time, τ ∗d = 100

which corresponds to entanglement number Z = 33.3. Initial values used were: λ =

134



1, t∗ = 0, Q11 = 1, Q12 = 0, Q22 = 1 and Q33 = 1. Other elements of Q
=

not mentioned above were set to zero.

The step strain could be modelled as an instantaneous jump in strain from zero

to a finite strain using a step function. However, this method does not simulate the

experimental conditions. In experiments, the rheometer cannot perform a step ramp

to the desired strain due to instrument and geometry inertia. Also, during the rapid

ramp-up of shear, the chains are stretched rapidly but at the same time some of the

stress developed is relaxed almost instantaneously by the fast modes of relaxation

such as retraction. However, the use of a step function as a ’switch’ and/or ’shutting

off’ of the fast-mode relaxations during this period would cause some of the physics to

be lost and the make the model less realistic. We therefore model using a high shear

rate of 250 to reach the desired strain in a very short time (about 0.02 dimensionless

time to reach a strain of 2.5). Note: .
γ = dγ/dt. The lag of 0.01 dimensionless time

to get to a strain of 2.5 during the ’step’ proves of some fast mode relaxation. Time

step of 10−6 was used in modeling. The equations were solved using Euler integration

in FORTRAN. Once the strain, γ reached the desired value, the shear rate, .
γ was

turned to zero thereby keeping the strain constant at that value. The stress is then

outputted from the equations. Stress relaxation modulus is then computed. This

code was run for different maximum extensibilities (λmax = 5, 10 and 20) and strains

of 1, 2.5 and 4.

In the modelling of startup flow, same equations and initial values were used. The

code was repeated for maximum extensibilities, λmax of 5 and 10 for different shear

rates ranging between 0.0001 and 200. The model was re-run for Z=50. Unlike in the

step strain runs, strain is not controlled and is allowed to build-up. The evolution of

stress and stress relaxation modulus are outputted from the model.
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C.4 Results and Analysis

Figure C.1a shows the variation of shear stress with shear rate. As the shear rate

is increased, the stress increases up to a critical shear rate where the shear stress

becomes invariant with changes in shear rate. This leads to the formation of a stress

plateau which spans about three decades between 10−2 ≤ Wi ≤ 100. This indicates

that within the stress plateau, different shear rates can co-exist at the same stress.

Under this condition, the entangled polymer solution separates into distinct bands

of bands of fluids each moving at different shear rates. We cannot ascertain how

many of such distinct bands could form with this model. However, we know that at

least two bands would form in a bid to maintain a mean shear rate along the flow

curve. A high shear band with a magnitude proximate to that of the upper critical

shear rate and another low shear band about the would exist with a value about

the lower critical shear rate. In our model, we observe the lower and upper critical

shear rates to be Weissenberg numbers (Wi =
.
γτR) of 0.04 and 0.4 respectively.

The stress plateau is an indicator of occurrence of shear banding. Although, the

modified Rolie-Poly model does not include reversible scission, it accurately predicts

the stress plateau is as observed in experiments of Lopez-Barron [17, Fig 2(a)] and

Miller [18, Fig 7]. The modified Rolie-Poly model presented in this work is in essence

a monotonic constitutive equation capable of qualitatively predicting shear banding

in entangled polymers and wormlike micelles.

The modified Rolie-Poly model predicts shear thinning from the plot of viscosity

as a function of shear rate (see Fig. C.1b) in line with experiments of Miller [18, Fig

4]. The observed reduction of viscosity is due to the alignment of the micelles in

the direction of flow thereby reducing their resistance to flow (viscosity). The zero-

shear viscosity defined as the steady viscosity as very low shear rate of the wormlike

micelles depends on the ratio of the reptation time to the Rouse time. In essence,

the number of entanglements, Z. This informs us that the resistance offered by the
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(a)

(b)

Figure C.1: (A) Shear banding of wormlike micelles predicted by stress plateau (B)
Shear thinning of wormlike micelles as shear rate increases.
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entanglement network is a significant contributor to viscosity in the linear regime.

Similar dependence is seen in Miller’s experiments in which he varied the concentra-

tions of the wormlike micelles in the experimental runs. This reinforces the existence

of inter-relationships between entanglement, concentration and viscoelasticity.

The startup shear curve (FigureC.2b) at moderate shear rates .
γ = 1 and .

γ = 10

agrees qualitatively with the experiments of Lopez-Barron [17, see Fig 2(b)] predicting

mild stress overshoots at moderate shear rates. The gentle slope at the onset of the

overshoot indicates the build-up of stress due to straining of the entanglements. It also

predicted the sharp peak of stress overshoots observed by Lopez-Baron [17, see Fig.

6(a)] at high shear rates. The peak is formed as a result of excessive instantaneous

strain applied on the entanglement network leading to a stress overshoot. This is then

quickly relaxed by the retraction of the wormlike micelles towards their equilibrium

length. Lopez-Barron and coworkers identified the region after the overshoot as a

metastable state with some inhomogeneities that heralds the formation of shear bands

before reaching a plateau. However, the modified Rolie-Poly model failed to predict

this metastable state which is characterized by long transients. Instead, it proceeds

to steady state after the overshoot. This inadequacy suggests the need for further

improvement of the model.

The relaxation mechanism after step strain observed from the modified Rolie-Poly

(figure C.3a) indicated strain hardening at high strains of γ = 4 (green line) at early

times of about 0.01 - 0.1 dimensionless time. This is due to the increase in stress

relaxation modulus relative to the linear response represented by the (blue line) at

γ = 1. The relaxation was not mono-exponential in time. This indicates the presence

of more than one mode of relaxation: the fast modes e.g. retraction and the slow

modes e.g. reptation. This is in line with the measurements of Brown et al. [19] (see

fig. 2b of reference) and Fig. 4.6 in Section 4.3.2. Additionally, strain hardening is

observed during start-up shear (Figure C.2a) at a shear rate of 40 (equivalent to strain
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(a)

(b)

Figure C.2: Modulus exhibits (A) hardening and (B) pronounced stress overshoot in
start-up flow at high shear rate of 40.
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of 4 at 0.1 dimensionless time). The mild strain hardening in is followed by strain

softening attributed to the quick retraction of the chain segments into their tubes

towards the equilibrium length. The relaxation then progresses slowly by reptation

at about 2 dimensionless time. The model predicted no dependence on the finite

extensibility on the relaxation mechanism (not shown). This is attributed to the

high rate of convective constraint release which reduces the effect of chain stretch

drastically thereby causing the effect of finite extensibility of the chain during stretch

(i.e. deformation) insignificant in the relaxation mechanism of stress.

The model also predicts the Lodge-Meissner relationship holds for the entangled

polymer solutions (see figure C.3b). The Lodge-Meissner rule states that the ratio of

the first normal stress difference to the shear rate following a step strain is constant

that equals the applied strain [19]. Modified Rolie-Poly however violates this rela-

tionship at long times and large strains. A plausible culprit is the shear banding of

stress into layers of high and low shear rates. This causes an increase in the ratio of

first normal stress difference to shear stress compared to the strain at the low band

regions. Similar views are held by Brown et al.[19]. The result agrees with the pre-

dictions of the modified Rolie-Poly model and the step strain experiments of Larson

et al. [20] and Brown et al. [19].

C.5 Summary

Nonlinear rheological phenomena such as stress plateau, shear thinning, strain

hardening and softening and the Lodge-Meissner relationship have been predicted

by the modified Rolie-Poly model. The modified Rolie-Poly presented herein is an

example of a monotonic constitutive equation that predicts shear banding. A mild

strain hardening following a step strain was observed followed by a multi-process

relaxation. Stress overshoot in the transient for shear startup flow was adequately

predicted by the model. However, it failed at predicting the long metastable tran-
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(a) Stress relaxation moduli at different strains

(b) Lodge-Meissner relation

Figure C.3: Modified Rolie-Poly prediction of the Lodge-Meissner relation for different
rates.
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sient observed in the post-overshoot relaxation at high shear rates in some entangled

wormlike micelles. The model predicted the Lodge-Meissner relationship but failed

at high strains and long times quintessential of highly entangled systems. The modi-

fied Rolie-Poly predicted that the magnitude of the finite extensibility of the micelle

chains did not influence the relaxation mechanism. Rather, it showed that the mech-

anism was strain dependent. Strain hardening was observed for large deformations

followed by significant strain softening due to quick relaxation of stress by retraction

of the chain segments. This was in agreement with experiments in literature [19].

The modified Rolie-Poly model has shown promise in predicting nonlinear phe-

nomena in entangled systems. We look forward to further modification of the model

to enhance its predictions in areas where it is lacking. The first stop being to use

the alternative nonlinear spring constant [Eq. (C.5)], and observing the predictions.

Depending on the outcome of results from the alternative spring constant, we would

consider coupling diffusion and solvent stress into the model. Alongside the computa-

tional work, effort would be made to advance experiments. Preliminary results have

been obtained for step strain experiments (not included in interest of space). We plan

on finalizing the experiments in a couple of weeks then move on to optical measure-

ments and determination of causes of shear banding to augment our understanding

of this weird but interesting phenomenon and verify our theoretical predictions.

C.6 Outlook

The effect of the CCR in the Rolie-Poly and GLAMM models is to relax the

chain stretch [2]. We hypothesize that having chains with the ability to stretch

to infinity limits the ability of the CCR (even at maximum rate) to relax the chain

stretch. Hence, the need of very large values of Z to observe shear banding phenomena

at β < 1 as in Adams’ [3] model. We aim at modifying the diffusive Rolie-Poly

(DPR) model of Adams in the future to include finite extensibility with a view of
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obtaining quantitative agreement of the DPR with experiments. If they agree, we

would attempt to obtain the value of CCR parameter, β at which transient and steady

state banding occur. This could lead to an independent way of obtaining β. With a

clearer understanding of the effect of the constitutive relations of these parameters,

by setting β = 1, we can attempt to obtain a strictly monotonic constitutive equation

that would predict shear banding phenomenon. The possibility of predicting shear

banding with a strictly monotonic constitutive equation has been debated between

opponents and adherents of the tube model [21, 22, 23, 7]. One can observe the

dependence of β in the modified Rolie-Poly equation (Eq. (C.2)) is analogous to the

CCR rate cv in the GLAMM model [1] and β in Marrucci’s model [4]. In summary,

the Rolie-Poly model has shown promise in predicting many nonlinear phenomena

observed in experiments.
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APPENDIX D

Supplementary Rheological Data for CTAB/NaSal

Surfactant Solutions

D.1 Strain Sweep

A sample strain sweep data is shown in Fig. D.1. The storage (G’) and loss

(G”) moduli become strain dependent at strains above 100 %. They strain soften till

about 300 % strain before strain hardening as evident from the increase in G’ and

G”. The G’ curve drastically reduced after strains above 400 %. The trend of the G’

curve is reminiscent of the linear to strain softening then strain hardening followed

by a collapse to strain softening of the stress relaxation curves as strain increased

(Fig. 4.6a).

D.1.1 Stress Relaxation for 0.1 M CTAB 0.11 M NaSal wormlike micelles

The stress relaxation curves for CTAB/NaSal CS/CD = 1.1 wormlike micelles are

presented in Fig. D.2.
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Figure D.1: Strain dependence of storage and loss moduli at a frequency of 6.28 rad/s
for 0.1 mol/L CTAB and 0.12 M NaSal at 25 ◦C.
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Figure D.2: Stress relaxation curves with varying strains for 0.1 M CTAB and 0.11
M NaSal at 25 ◦C.
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D.2 Equilibration time for 0.1 M 0.16 M NaSal wormlike

micelles at 25 ◦C.

We performed repeated step strain measurements on the wormlike micelles with

delay times of 120 s after each run to determine if any hysteresis occurred after

the equilibration time used for the experiments at 25 ◦C. The result is presented in

Fig. D.3 and we observe that the equilibration time of 120 s was sufficient for the

wormlike micelles to reorient themselves to their equilibrium structure without the

strain history affecting the subsequent stress relaxation experiments. The delay time

required to achieve the equilibrium structure increases with decreasing temperature.

The delay time required for the wormlike micelles was checked for the wormlike mi-

celles at a certain temperature by performing similar experiments. The minimum

delay time used for any experiment was 120 s and as a convenient rule of thumb at

least 1.2 times the required value obtained from such experiment was used in cases

where it was above 120 s. [1]
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Figure D.3: Stress relaxation curves with varying strains for a sample of 0.1 M CTAB
and 0.16 M NaSal at 25 ◦C. The experiments were performed consecutively at strains
of 20, 350, 350 and 20 % with wait times of 120 s between each experiment.
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