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GLOSSARY

Throughout this glossary, R is a Noetherian ring, and M is an R-module. Whenever we use m,
we assume that R is (Noetherian) local and m its maximal ideal.

local means Noetherian local unless otherwise specified dim(M) is the Krull dimension ofR/Ann(M)
eI(R) is the Hilbert-Samuel multiplicity of M with respect to the ideal I
grm(R) is the associated graded ring of R with respect to m
`(M) is the length of M
Hi(I;M) is the ith Koszul cohomology of M with respect to a minimal set of generators of I and
is only used when R is local or nonnegatively graded
ν(M) is the least number of generators of M
rank(M) is the torsion-free rank of M when R is a domain

R̂ is the m-adic completion of R
M̂ is the m-adic completion of M

M is i-effaceable if for every sequence of parameter ideals (xn) = In ⊆ mn, we have lim
n→∞

`(Hi(xn,M))

`(R/InR)
=

0.
The asymptotic depth of M , denoted asydepth M , is k if M is i-effaceable for all i < k and M is
not k-effaceable.
M is asymptotically Cohen-Macaulay if asydepth M = dimM .
M is Cohen-Macaulay on the punctured spectrum if MP is Cohen-Macaulay for all primes P 6= m
M is equidimensional if dim(R/P ) = dim(R) for every P ∈ min(M)

M is quasi-unmixed if M̂ is equidimensional over R̂

Lech-Stückrad-Vogel ratio is
eI(M)

`(M/IM)
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ABSTRACT

We consider relationships among Hilbert-Samuel multiplicities, Koszul cohomology,

and local cohomology. In particular, we investigate upper and lower bounds on

the ratio
eI(M)

`(M/IM)
for m-primary ideals I of the local ring (R,m) and finitely-

generated quasi-unmixed R-modules M and, in joint work with Linquan Ma, Pham

Hung Quy, Ilya Smirnov, and Yongwei Yao, show that the ratio is bounded above

by dim(R)!e(R/AnnR(M)) for all finitely-generated R-modules M and away from 0

whenever M is quasi-unmixed. We also, as independent work, give a characteriza-

tion of quasi-unmixed R-modules M whose local cohomology is finite length up to

some index in terms of asymptotic vanishing of Koszul cohomology on parameter

ideals up to the same index. We show that if M is an equidimensional module

over a complete local ring, then M is asymptotically Cohen-Macaulay if and only

if sup{`(H i(f1, . . . , fd;M)) |
√
f1, . . . , fd = m, i < d} < ∞ if and only if M is

Cohen-Macaulay on the punctured spectrum.

v



CHAPTER I

Introduction

1.1 Outline

This preface consists of statements of the main results, the necessary definitions

and notational conventions, and a brief sketch of others’ previous work together

with an explanation of how the stated results tie together. The summary of results

includes statements of joint work with Linquan Ma, Pham Hung Quy, Ilya Smirnov,

and Yongwei Yao. Proofs of those results can be found in Appendix A, and different

proofs of special cases of those results, which give more or different information than

the joint work, can be found in Chapter II of this thesis. Chapter III focuses on the

proof of Theorem III.1, which is independent work.

1.2 An overview

Broadly speaking, algebraic geometry is the study of solutions to polynomial

equations, and commutative algebra is the study of polynomial functions on these

sets of solutions. One of the primary goals of commutative algebra and algebraic

geometry is detecting and managing singularities. In Calculus, we learn that y = x2

is a very nice function, in large part because it is differentiable everywhere. We

also learn that y2 = x3 is a much worse function because it has a singularity at the

origin. We can see this different algebraically by the Implicit Function Theorem or

1



2

geometrically by graphing the two functions and seeing that y = x2 appears smooth

at the origin while y2 = x3 has a sharp corner there.

Understanding singularities in broader settings is not only of theoretical interest to

commutative algebraists and algebraic geometers but also has myriad applications,

including phylogenetics [2, 19, 1], disclosure limitation [46, 14, 25], string theory

[5], and statistics [23, 42, 22, 15, 54], for example. Mathematicians began to ex-

plore many of the tools of commutative algebra and algebraic geometry in the late

nineteenth and early twentieth centuries with only the goal of understanding pure

mathematics in mind. Then, in the same way that a rigorous notion of the limit

suddenly found an application when Newton and Leibniz invented calculus and were

then able to make vast gains in physics, the already well-developed fields of com-

mutative algebra and algebraic geometry found a wealth of applications in the wake

of the advent of computers, when the the reframing of certain biological, physical,

and statistical questions in terms of algebra became computationally tractable. The

goal of my research is to grow the understanding of the fields of commutative algebra

and algebraic geometry so that they will be broad and deep enough to answer the

questions of applied mathematicians and statisticians when they come asking.

Some primary objects of study in commutative algebra are called rings, which

describe geometric varieties. For example, the ring R = R[x, y]/(y − x2) refers to

polynomials in two variables with real numbers as coefficients with the restriction

that y = x2. The solutions in the Cartesian plane to the equation y = x2 cut out a

parabola, and the ring of functions on this parabola is R. Some tools that we use

in this thesis to study singularities of varieties are the Hilbert-Samuel multiplicity

(or simply multiplicity) and Koszul homology, which can be used to compute the

multiplicity. By computing multiplicity at different points on our variety, we can
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see whether or not the variety has a singularity at that point. The multiplicity of

R is 1 at the origin, and we know that the parabola does not have a singularity at

the origin. This relationship is true quite broadly. Under mild hypotheses, a variety

does not have a singularity at a certain point if and only if the multiplicity of its

corresponding ring is 1 at that point. Large multiplicities indicate bad singularities.

For example, the nodal curve graphed below has a multiplicity of 2, which captures

that the graph has a mild-looking singularity at the origin, and the cusp, which is

much pointier, has multiplicity 10.

nodal curve: y3 = x3 + x2 cusp: y31 = x10
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Multiplicities have applications within math in areas ranging from Banach-space

operators to Galois theory (see, for example, [29, 38, 11, 20, 32, 18, 21, 13]).

An ideal in a polynomial ring generated by some selected set S of polynomials is

the set of all finite sums of multiples of polynomials in S. Ideals can be thought of

as a generalization of the notion of the set of multiples of a number in the integers.

For example, the ideal I generated by {x5} in the ring R = R[x, y]/(y − x2) can be

thought of as all polynomials in two variables that can be expressed as the product

of x5 and some other polynomial, where we are allowed to replace any y’s with x2’s.

The ring R/I, read “R mod I”, is the set of polynomials in two variables in which

y − x2 = 0, x5 = 0, and all finite sums of multiples of y − x2 or x5 are equal to 0

as well. Setting all polynomials in I equal to 0 generalizes modular arithmetic, or

“clock arithmetic,” in which we set some integer equal to 0, or start over counting

the hours once we get to 12. Much of my research concerns the relationship between

eI(R) and `(R/I), where eI(R) denotes the multiplicity of the ideal I on the ring

R and `(R/I) is best thought of as the number of independent monomials after we

set the polynomials in I equal to 0. Precise definitions and a more sophisticated

discussion appear in Subsection 1.3.

In our example, we compute `(R/I) = 5 because there are five independent mono-

mials that do not use y and are not 0 after we insist that x5 = 0. Those monomials

are 1, x, x2, x3, and x4. It turns out that the multiplicity eI(R) = 5 also. It is the

multiplicity at the ideal generated by the variables (in our case x and y) that tells us

whether or not the variety corresponding to the ring has a singularity at the origin.

In this thesis, we will be particularly interested in the ratio
eI(R)

`(R/I)
. In the

example of the previous paragraph, we would compute
eI(R)

`(R/I)
=

5

5
= 1. The

outcome of 1 encodes the information that R either has no singularity at the origin
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(which is actually the case) or that it has a relatively mild and well-understood sort of

singularity. When
eI(R)

`(R/I)
= 1, for certain ideals I, we say that R is Cohen–Macaulay.

In 1960, Lech [35] gave an upper bound on the ratio
eI(R)

`(R/I)
independent of I. A

lower bound has been sought since at least 1996 [47]. Linquan Ma, Pham Hung Quy,

Ilya Smirnov, Yongwei Yao, and I show that this ratio is bounded away from 0 in

the greatest possible generality (Theorem I.10), solving the 21-year-old conjecture,

and bounded above for all finitely-generated modules by a constant depending only

on the ring (Theorem I.9), a result that extends Lech’s result for rings. We also

give an explanation for these bounds in terms of the Koszul homology (Theorem

I.13) that computes the multiplicity. Independently, I give a new characterization

of the property of being Cohen–Macaulay on the punctured spectrum in terms of

Koszul homology. More generally, I describe a certain type of smallness of Koszul

homology, which will be known as asymptotic depth, in terms of a finiteness condition

on another type of cohomology known as local cohomology (Theorem I.14).

1.3 Preliminaries

All rings in this thesis will be commutative Noetherian rings with unity and all

modules unital and finitely-generated, unless otherwise specified. The primary object

of study throughout this thesis is Koszul (co)homology, especially finite-length Koszul

(co)homology. Let x = x1, . . . , xr be a sequence of r elements of R, and let G be a

free R module on r free basis elements u1, . . . , ur. Let ∧iG denote the ith exterior

power of G. The Koszul complex of x = x1, . . . , xr on R, denoted K•(x;R) is

0→ ∧rG→ ∧r−1G→ · · · → ∧1G→ ∧0G→ 0
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where the map from ∧nG to ∧n−1G for 1 ≤ n ≤ r is given by

(ui1 ∧ · · · ∧ uin) 7→
n∑
j=1

(−1)j+1xn(ui1 ∧ · · · ûij · · · ∧ uin).

We may alternatively construct the Koszul complex K•(x;R) as

K•(x1;R)⊗R · · · ⊗R K•(xr;R)

where K•(xi;R) is the complex 0→ R
xi−→ R→ 0 for 1 ≤ i ≤ r. The Koszul complex

of x on an R-module M , denoted K•(x;M), is defined to be K•(x;R)⊗M .

We use Hi(x,M) to denote the ith Koszul homology module, i.e., the ith homology

module of the Koszul complex, of a sequence x on M . We define the cohomological

Koszul complex of x on R, denoted K•(x;R), to be HomR(K•(x;R), R). Then the

ith Koszul cohomology of x on the module M , denoted H i(x;M), to be the ith

cohomology of the complex K•(x;R)⊗M . Because the Koszul complex is self-dual,

i.e., K•(x;M) ∼= K•(x;M), we have H i(x,M) ∼= Hr−i(x,M). We make regular use

throughout this thesis of the fact that the depth of (x) on M can be characterized

as the least i such that H i(x;M) 6= 0. These and other well-known properties of the

Koszul complex and Koszul (co)homology can be found in [17, Chapter 17] and [9,

Section 1.6]. When we are interested only in the isomorphism class of H i(x,M), for

example when we are interested in its length and we are working over a ring that is

either local or graded, we will use H i(I,M) to mean H i(x,M) for some x minimally

generating the ideal I. Most often, x will be a system of parameters for the local

ring R.

In Chapter II, we will also be interested in the Hilbert-Samuel multiplicity over

the local ring (R,m). We will use `(N) to denote the length of an R-module N

and dim(M) to denote the Krull dimension of the R-module M , which is defined to

be the Krull dimension of the ring R/Ann(M). If M 6= 0, then `(M/IM) < ∞ if
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and only if V(I)∩ Supp(M) = {m} if and only if `(M/I tM) < ∞ for all t ≥ 0. If

d = dim(M) and `(M/IM) <∞, define the multiplicity of I on M , denoted eI(M),

by

eI(M) = d! lim
t→∞

`(M/I tM)

td
.

In particular, eI(M) is the product of d! and the leading coefficient of the Hilbert

polynomial of M with respect to I. If I is generated by a system of parameters

x1, . . . , xd on M , then Lech showed in [34] that it is equivalent to define the multi-

plicity in the following way:

eI(M) = lim
t→∞

`(M/(xt1, . . . , x
t
d)M)

td
.

We will be particularly interested in the case where dim(M) = dim(R) and
√
I = m.

We will use two facts about multiplicity with great frequency. The first is that if I

and J are two ideals with the same integral closure, then

(1.1) eI(M) = eJ(M).

The second is that if I is generated by a system of parameters x1, . . . , xd on M , then

for any α ≥ 1, there is an equality

(1.2) e(xα1 ,...,xd)(M) = α · eI(M).

More generally, if (x1, . . . , xd) and (x′1, . . . , xd) are two systems of parameters on

M , then (x1x
′
1, . . . , xd) is also a system of parameters on M , and e(x1x′1,...,xd)(M) =

e(x1,...,xd)(M)+e(x′1,...,xd)(M). We will be particularly interested in characteristic p > 0

that for any q a power of p, we have e
[q]
I (M) = qd · eI(M). Proofs of these and other

facts about multiplicity can be found in [9, Sections 4.6-4.7] and [28, Chapter 11].

Our last major object of study, which will appear in Chapter III, will be local
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cohomology. We define

ΓI(M) := {m ∈M | mI t = 0 for some t ≥ 1}.

One may verify that ΓI(M) is a submodule of M and that the functor ΓI( ) is left

exact. It, therefore, has right derived functors. Call the ith right derived functor

of ΓI( ), denoted H i
I(M), the ith local cohomology module of M with support in

I. It is equivalent to define H i
I(M) in terms of Koszul cohomology. Again with

x = x1, . . . , xr, let I = (x) and xt = (xt1, . . . , x
t
r). Then

H i
I(M) ∼= lim−→

t

H i(K•(xt,M))

where the maps in the direct limit system are induced by the maps on complexes

K•(xi;M) given below

xti

0 −−−→ R −−−→ R −−−→ 0

ID
y xi

y
0 −−−→ R −−−→ R −−−→ 0.

xt+1
i

Local homology depends only on the radical of I. In particular, there is a map

from each ith Koszul homology module on each system of parameters on M to the

local cohomology module H i
m(M). When M is equidimensional (defined below),

`(H i
m(M)) < ∞ for all i < dim(M) if and only if M is Cohen-Macaulay on the

punctured spectrum. For proofs of these and other facts about local cohomology, see

[30].

1.4 Definitions and Notation

We include below definitions and notation that are either particular to this thesis

(Definitions I.1 and I.3) or about which there is not uniformity within the commuta-
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tive algebra literature (Definitions I.4-I.6.). Unless otherwise specified, R will denote

the local (Noetherian) ring (R,m), and M a finitely generated R-module.

Definition I.1. We say that M is i-effaceable if for every sequence of parameter

ideals (xn) = In ⊆ mn, we have lim
n→∞

`(H i(xn,M))

`(R/InR)
= 0.

Remark I.2. As a result of I.12, using `(M/InM) in the denominator for the definition

of i-effaceable in place of `(R/In) yields an equivalent condition when dim(M) =

dim(R) and R is a module-finite over a regular ring.

Definition I.3. The asymptotic depth of M , denoted asydepth M , is k if M is

i-effaceable for all i < k and M is not k-effaceable. We say that M is asymptotically

Cohen-Macaulay if asydepth M = dimM .

Definition I.4. We say that M is equidimensional if dim(R/P ) = dim(R) for every

P ∈ min(M). In particular, this condition forces dim(M) = dim(R).

Definition I.5. We say that M is quasi-unmixed if M̂ is equidimensional over R̂,

where −̂ denotes m-adic completion. Again, this condition forces dim(M) = dim(R).

Definition I.6. We say that M is Cohen-Macaulay on the punctured spectrum if MP

is Cohen-Macaulay for all primes P 6= m. This property is elsewhere called locally

Cohen-Macaulay.

Definition I.7. We say that M is generalized Cohen-Macaulay if `(H i
m(M)) < ∞

for all 0 ≤ i < dim(M).

Remark I.8. Recall that whenever M is equidimensional, which will quite often be an

assumption throughout this thesis, the conditions Cohen-Macaulay on the punctured

spectrum and generalized Cohen-Macaulay are equivalent.
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1.5 Summary of the relevant literature and statements of main results

Lech’s inequality states that for any local ring (R,m, κ) of dimension d and any

m-primary ideal I,
eI(R)

`(R/I)
≤ d! · em(R) [35, Theorem 3]. Lech’s inequality is used

as an invaluable tool in many areas of commutative algebra, such as in the study of

the minimal number of generators of ideals [7], of first Hilbert coefficients [43], and

of reduction numbers [51]. There has additionally been recent interest in improving

Lech’s inequality, most notably in [24] and [27].

In light of Lech’s inequality, some natural questions to ask are (1) when the same

or a similar inequality holds for finitely generated modules over local rings (2) when

there is a lower bound for the ratio
eI(M)

`(M/IM)
for finitely generated modules M over

R, and (3) whether there is an explanation for such an inequality in terms of lengths

of Koszul cohomology modules. Theorem I.9 gives an affirmative answer to question

(1) in all cases.

Theorem I.9. Let M be a finitely generated module over the local ring (R,m, κ) of

dimension d. Then

eI(M)

`(M/IM)
≤ d! · em(R/AnnR(M)).

Theorem I.9 is stated and proved as Theorem A.14 Appendix A.

Substantial work exists exploring questions (2) and (3). Study of the relation-

ship between `(M/IM) and eI(M) arose in the context of Buchsbaum modules and

generalized Cohen-Macaulay modules and, separately, in generalizing Bezout’s the-

orem [10, 3, 52, 48, 44]. It was originally conjectured by Stückrad and Vogel in

1996 that sup√
I=m

{
`(M/IM)

eI(M)

}
< ∞ whenever M is quasi-unmixed, at which point

they also showed that condition to be necessary [47]. In 2000, Allsop and Tuân Hoa

proved the conjecture when dim(M) ≤ 3 or M is generalized Cohen-Macaulay [3, 4].
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Theorem I.10 is the general case.

Theorem I.10. Let M be a finitely generated quasi-unmixed module over the local

ring (R,m, κ). Then sup√
I=m

{
`(M/IM)

eI(M)

}
<∞.

Theorem I.10 is stated and proved as Theorem A.5 in Appendix A.

We also obtain as a corollary of Theorems I.10 and I.9 control of the relationship

between colengths of m-primary ideals and their integral closures:

Theorem I.11. Let M be a finitely generated quasi-unimxed module over the local

ring (R,m, κ). Then sup√
I=m

{
`(M/IM)

`(M/ĪM)

}
< ∞ where Ī denotes the integral closure

of I.

Note that inf√
I=m

{
`(M/IM)

`(M/ĪM)

}
= 1 and is achieved when I = Ī. More generally, we

may replace Ī with any ideal J such that Ī = J̄ in the theorem statement above.

We will, in particular, be interested in bounding
`(M/JM)

`(M/IM)
from above when J is

a minimal reduction of I. In the more general formulation, Theorem I.11 is stated

and proved as Lemma A.16 in Appendix A.

An additional corollary of Theorems I.10 and I.9 follows:

Corollary I.12. Let (R,m, κ) be a Noetherian local ring that is either equal char-

acteristic or in which char(κ) is a parameter, and let M be a finitely-generated R-

module. Then sup√
I=m

{
`(R/I)

`(M/IM)

}
<∞.

Corollary I.12 is stated and proved as Corollary A.20.

Question (3) arises in light of the following equality due to Serre [45] and Lech’s

limit formula, which was generalized to the module case by Northcott [34, 40]. Fix

a local ring R of dimension d and a parameter ideal (x1, . . . , xd) of R. Serre’s result
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[45] is that

(1.3) eI(R) =
d∑
i=0

(−1)i`(Hd−i(x1, . . . , xd;R)).

The Lech-Northcott limit formula states that

lim
mini{ni}→∞

e(x
n1
1 ,...,x

nd
d )(M)

`(M/(xn1
1 , . . . , x

nd
d )M)

= 1.

Because Hd(x1, . . . , xd;M) ∼= M/(x1, . . . , xd)M , we are led to two possibilities: ei-

ther the lengths of the higher Koszul cohomology modules on (xn1
1 , . . . , x

nd
d ) are

all small relative to the length of M/(xn1
1 , . . . , x

nd
d )M when the ni are large or the

lengths of the cohomology modules are arbitrarily large relatively to the length of

M/(xn1
1 , . . . , x

nd
d )M but close in size to each other so that their lengths cancel in the

alternating sum. A result of Kirby’s is that when M/(x1, . . . , xr)M is finite length,

sup
r≥d
i≤r
nj>0

{
`(H i(xn1

1 , . . . , x
nr
r ;M))

n1 · · ·nr

}
< ∞ [31], which one might interpret as evidence for

the former explanation. Theorem I.13 demonstrates that that explanation is, in fact,

correct when M is quasi-unmixed and represents a generalization of Kirby’s result.

Theorem I.13. [33] Let (R,m, κ) be a Noetherian local ring of dimension d and M

a finitely generated quasi-unmixed R-module. Then for every k ≥ 0,

sup√
(x1,...,xd+k)=m

0≤i≤d+k

{
l(Hi(x1, . . . , xd;M))

l(M/(x1, . . . , xd+k)M)

}
<∞.

Another natural question is whether the Lech-Northcott formula holds when the

sequence of parameter ideals given by powers of a fixed system of parameters is re-

placed by any sequence of parameter ideals in increasingly high powers of the maximal

ideal. Example III.9 demonstrates that it does not in general. Moreover, Theorem

III.1 gives, under mild hypotheses, precise conditions on when lim
n→∞

`(H i(In,M))

`(M/InM)
= 0
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for all sequences of parameter ideals In ⊆ mn and all i < dim(M), a condition that

directly implies that lim
n→∞

eIn(M)

`(M/InM)
= 1 by Serre’s formula (1.3).

Theorem I.14. If M is an equidimensional module over the complete local ring

(R,m, κ) of dimension d ≥ 1, then the following three conditions are equivalent:

1. asydepth(M) ≥ k,

2. sup{`(H i(f1, . . . , fd;M)) |
√
f1, . . . , fd = m, i < k} <∞,

3. `(H i
m(M)) <∞ for all i < k.

Note: It is separately well-known that condition 3 is equivalent to depthPMP ≥

height(P ) + k − d for all prime ideals P 6= m. It is surprising that requiring that

certain Koszul cohomology modules grow slowly, as in the definition of aymptotic

depth, actually forces it them to have finite length.

Theorem I.14 is stated and proved as Theorem III.1 in Chapter III.



CHAPTER II

Bounds on the Lech-Stückrad-Vogel Ratio

Let (R,m, κ) be a local ring and M 6= 0 a finitely generated R-module. We call

eI(M)

`(M/IM)
the Lech-Stückrad-Vogel ratio. This chapter discusses upper and lower

bounds on the Lech-Stückrad-Vogel ratio as well as the ratios
`(H i(I;M))

`(M/IM)
as I

varies among m-primary ideals. Lemma II.1 reduces the mixed characteristic case

of Lech’s inequality to the equal characteristic case. Hanes gave a novel argument

in the equal characteristic case [24], and so this lemma combines with that work to

recover Lech’s result. The remainder of this chapter provides alternative proofs of the

primary results from the paper “Lech’s inequality and Stückrad-Vogel’s conjecture,”

which is joint work with Linquan Ma, Pham Hung Quy, Ilya Smirnov, and Yongwei

Yao, in special cases. The proofs of the special cases are either simpler than in the

joint paper or give more information on the bounds of interest.

2.1 On Lech’s inequality

Lemma II.1. Let (R,m, κ) be a local ring and I an m-primary ideal. Let S = grmR,

and let n be the maximal idea of S. Then for each m-primary ideal I or R, there

exists a homogeneous n-primary ideal J such that
eI(R)

`(R/I)
≤ eJ(S)

`(S/J)
.

14
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Proof. Let

J :=
I +m2

m2
⊕ (m2 ∩ I) +m3

m3
⊕ (m3 ∩ I) +m4

m4
⊕ · · · ,

and set n = mS. We note that dim(R) = dim(S). We also note that em(R) = en(S)

because for each t, `(S/nt) = `(R/m⊕m/m2⊕· · ·mt−1/mt) = `(R/mt). We further

claim that `(R/I) = `(S/J). We observe that

S

J
=
R

m
⊕ m

(I ∩m) +m2
⊕ m2

(I ∩m2) +m3
⊕ · · · ⊕ mr

(I ∩mr) +mr+1

where r is the least positive integer such that mr+1 ⊆ I. It is clear that `(S/J) is

the sum of the lengths of the direct summands given above. But `(R/I) is also the

sum of the lengths of those summands because they are the factors in an m-adic

filtration of R/I. Each such factor is naturally described as
mk

(I +mk+1) ∩mk
, but

(I ∩mk) +mk+1 = (I +mk+1) ∩mk.

Lastly, we must show that eI(R) ≤ eJ(S). To do this, we observe that for each t,

`(R/I t) is given by the sum

`

(
R

I t

)
= `

(
R

m

)
+ `

(
m

I t +m2

)
+ `

(
m2

(m2 ∩ I t) +m3

)
+ · · ·

because these are the factors of an m-adic filtration of M/I tM . Meanwhile,

[J t]k =
(I +m)a1(m2 ∩ I +m3)a2(m3 ∩ I +m4)a3 · · · (mf ∩ I +mf+1)af

mk+1

some f ∈ N where a1 + 2a2 + · · ·+ faf = k. Each term of [J t]k has degree at least k

because of the constraint on the sum of the ai. Every term b of the numerator of the

right-hand side above has f factors of the form i+pu for i ∈ I∩mu−1 and pu ∈ mu. If

any such factor has pu = 0 for all u, then b ∈ I t. But if any pu 6= 0, then every term in

the expansion of b divisible by pu is in mk+1. It follows that b ∈ I t+mk+1. Therefore,

(I +m)a1(m2∩ I +m3)a2(m3∩ I +m4)a3 · · · (mf ∩ I +mf+1)af ⊆ (I t +mk+1)∩mk =
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(mk ∩ I t) + mk+1. It follows that `([S/J t]k) ≥ `

(
mk

(mk ∩ I t) +mk+1

)
for every

t ≥ 0 and every k ≥ t, from which it follows that `(S/J t) ≥ `(R/I t) and so that

eJ(S) ≥ eI(R), completing the proof.

Because grmR contains the field R/m, the above lemma reduces Lech’s inequal-

ity to the equal characteristic case. We now work towards special cases of Lech’s

inequality for finitely generated R-modules in II.2 through II.4.

Let R be any ring, M be a finitely-generated R-module, and I an ideal of R such

that `(R/I) <∞. Let ν(M) denotes the minimal number of generators of M as an

R-module. Then by tensoring the surjection Rν(M) → M with R/I, it is immediate

from the right exactness of the tensor that `(M/IM) ≤ ν(M) · `(R/I). When R is

a domain, let rkR(M) denote the torsion-free rank of M as an R-module.

Lemma II.2. Let (R,m, κ) be a complete local domain of dimension d, M a finitely

generated d-dimensional module over R, and I an m-primary ideal of R. Suppose

either that

1. M = A ⊆ R is generated by a regular sequence or

2. R is unramified regular.

Then rkR(M) · `(R/I) ≤ `(M/IM).

Proof. If d = 0, then R is a field, in which case the claim is trivial, and so we assume

d > 0. We first reduce to the case where M is torsion-free. Let T be the torsion

submodule of M . Because M � M/T and rkR(M) = rkR(M/T ), it is sufficient to

show that `(M/T⊗RR/I) ≥ h·`(R/I). Let h =rkR(M). Assuming M is torsion-free,

we now consider the short exact sequence

0→M → Rh → C → 0,
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where C is a torsion module. We now tensor the above sequence with R/IR to

obtain

(2.1) 0→ Tor1(C,R/IR)→M/IM → (R/IR)h → C/IC → 0.

Serre showed that dim(C) < d implies that χ(C,R/I) = 0 [45], , and theorems

of Lichtenbaum’s [36, Theorems 1 and 2] imply that if either C = R/A with A

generated by a regular sequence or if R is unramified regular, then χi(M,R/I) ≥ 0

for i > 0. It follows that

`(C/IC)− `(Tor1(C,R/IR)) = χ0(C,R/IR)− χ2(C,R/IR) = −χ2(C,R/IR) ≤ 0

or, equivalently, that `(C/IC) ≤ `(Tor1(C,R/IR). Hence, using 2.1

h · `(R/IR) ≤ `(M/IM),

as desired.

Lemma II.3. If (R,m, κ) is any local ring, then `(R/I) ≤ `(m/Im) for all m-

primary ideals I ≤ 0 of R. The restriction I 6= 0 is only needed when dim(R) = 0.

Proof. When we tensor short exact sequence 0 → m → R → κ → 0 with any

m-primary ideal I, we obtain 0 → Tor1(R/I,R/m) → m/Im → R/I → κ → 0,

from which it follows that `(m/Im) = `(R/I) + `(Tor1(R/I,R/m))− `(κ) ≥ `(R/I)

because Tor1(R/I,R/m) 6= 0.

Theorem II.4. If the conditions of II.2 are satisfied or if M = m, then

eI(M)

`(M/IM)
≤ d! · em(R).

Proof. We compute eI(M) = h ·eI(R) ≤ d! ·em(R) ·h · `(R/I) ≤ d! ·em(R) · `(M/IM)

where the last inequality follows from II.2 or II.3.
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2.2 Upper bounds on the ratios
`(H i(I;M))

`(M/IM)
and

`(M/IM)

eI(M)

For the remainder of Chapter II, we will give bounds on the above ratios in special

cases. Recall from Appendix A that both are bounded whenever M is quasi-unmixed.

In all of the questions described in the remainder of this chapter, we may replace the

local ring (R,m) by R(t) so that the residue field of R is infinite. This replacement

can only increase the suprema we study, and so we will always assume in the proofs

throughout the remainder of this chapter that the residue field of R is infinite, which

guarantees that every minimal reduction of every m-primary ideal R is generated by

dim(R) elements [28].

We reproduce from [33] a key lemma for the convenience of the reader.

Lemma II.5. [33] Let (R,m) be a local ring and M a finitely generated R-module.

If (y1, . . . , yn) ⊆ (x1, . . . , xd) are m-primary ideals of R, then for all 0 ≤ i ≤ d,

l(Hi(x1, . . . , xd;M)) ≤
d∑

k=0

(
d

k

)
l(Hi−k(y1, . . . , yn;M))

Proof. If f = f1, . . . , fs is any sequence of elements of R and f− = f1, . . . , fs−1, then

there is a short exact sequence for each 0 ≤ i ≤ s− 1

0→
Hi(f

−;M)

fsHi(f
−;M)

→ Hi(f ;M)→ AnnHi−1(f−;M)(fs)→ 0.

Using that each yj ∈ (x1, . . . , xd) so that yjHi(x1, . . . , xd, y1, . . . , yj−1;M) = 0 for

1 ≤ j ≤ n and y1Hi(x1, . . . , xd;M) = 0, it follows from the first injection in the short

exact sequence above that

l(Hi(x1, . . . , xd;M)) ≤ l(Hi(x1, . . . , xd, y1;M)) ≤ s ≤ l(Hi(x1, . . . , xd, y1, . . . , yn;M)).

Now using that for 1 ≤ j ≤ d− 1,

l

(
Hi(x1, . . . , xj, y1, . . . , yn;M)

xj+1Hi(x1, . . . , xj, y1, . . . , yn;M)

)
≤ l(Hi(x1, . . . , xj, y1, . . . , yn;M))
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and that

l

(
Hi(y1, . . . , yn;M)

x1Hi(x1, y1, . . . , yn;M)

)
≤ l(Hi(x1, y1, . . . , yn;M)),

l(Hi(x1, . . . ,xd, y1, . . . , yn;M))

≤ l(Hi(x1, . . . , xd−1, y1, . . . , yn;M)) + l(Hi−1(x1, . . . , xd−1, y1, . . . , yn;M)).

and that, by iterating, the previous expression is bounded above by

d∑
k=0

(
d

k

)
l(Hi−k(y1, . . . , yn;M)),

completing the proof.

Lemma II.6. Fix a quasi-unmixed local ring (R,m, κ) of dimension d. If
`(Hi(J ;R))

`(R/J)

is bounded for all 0 ≤ i ≤ d and all parameter ideals J , then
`(Hi(I;R))

`(R/I)
is bounded

for all 0 ≤ i ≤ d+ k and all m-primary ideals I with at most d+ k generators.

Proof. Fix an m-primary ideal I minimally generated by at most d + k generators

and an index i. Let I0 be a minimal reduction of I. By Lech’s inequality, 1.3, and

our hypotheses,

`(R/I) ≥ eI(R)

d!em(R)
=

eI0(R)

d!em(R)
≥ CR · `(R/I0)

for some positive constant CR, which exists by I.10. A bound from above for

`(Hi(I;R))

`(Hi(I0;R))
for each 0 ≤ i ≤ d + k independent of I follows from II.5. It is clear

that if I is generated by fewer than d+ k elements, the bound is only smaller, so it

is sufficient to consider the case in which I is generated by exactly d + k elements.

We combine the two bounds described above to see

`(H i(I;R))

`(R/I)
≤ CR ·

`(H i(I;R))

`(R/I0)
≤ CR ·

∑k
j=0

(
k
j

)
`(H i+j(I0;R))

`(R/I0)
,

which is bounded independent of I0 by assumption.
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Lemma II.7. [16, discussion following the Special Lemma] Let R be a ring of char-

acteristic p > 0 and N a finitely generated R-module of dimension d. There exist

prime cyclic filtrations of the N1/pe for j ≥ 0 and a constant CN such that the only

primes occurring in any of these filtrations are a finite family P1, . . . , Pk and such

that R/Pi occurs at most CNp
ed times in the filtration of N1/pe for 1 ≤ i ≤ k. Fur-

thermore, whenever dim(R/Pi) = d, R/Pi occurs at most ped times in the prime

cyclic filtration of N1/pe for each e ≥ 0.

An precise explanation of how this statement follows from Dutta’s discussion can

be found in [6].

Theorem II.8. If M is a finitely generated module over the local ring (R,m, κ) of

equal characteristic p > 0, then for each k ≥ 0,

sup√
I=m

νR(M)≤d+k
0≤i≤d

{
`(H i(I;M))

`(R/I)

}
<∞.

Proof. The question is unaffected by completion, and so we assume that M = M̂ .

Let R/P1, . . . , R/Pn be the (not necessarily distinct) factors appearing in a prime

cyclic filtration of M . We note that for each 0 ≤ i ≤ d and every m-primary ideal I,

`(H i(I;M))

`(R/I)
≤
∑n

j=1 `(H
i(I;R/Pj))

`(R/I)
≤

n∑
j=1

`(H i(I;R/Pj))

`(R/(I + Pj))

we may assume that M = (R,m, κ), a d-dimensional local domain, which we have

taken to be complete, and that every module of dimension < d satisfies the outcome

of the theorem. By II.6, it suffices to consider the case k = 0, and so we fix a

parameter ideal I.

We consider the map 0 → Rpd → R1/p → N → 0 with dim(N) < d. The long

exact sequence for Koszul cohomology yields for each i ≥ 0

H i−1(I;N)→ H i(I;Rpd)→ H i(I;R1/p)
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from which we see

`(H i(I;R)) ≤ `(H i−1(I;N))

pd
+
`(H i(I;R1/p)

pd
=
`(H i−1(I;N))

pd
+
`(H i(I [p];R))

pd
.

By iterating, we find that for each e ≥ 1

`(H i(I;R)) ≤

(
e∑
j=0

`(H i−1(I [pj ];N))

p(j+1)d

)
+
`(H i(I [pe];R))

ped

=

(
e∑
j=0

`(H i−1(I;N1/pj))

p(j+1)d

)
+
`(H i(I [pe];R))

ped
.

Because d′ ≤ d− 1, it follows from II.7

e∑
j=0

`(H i−1(I;N1/pj))

p(j+1)d
≤

k∑
r=1

(
CN ·

e∑
j=0

pj(d−1) · `(H i−1(I;R/Pr))

p(j+1)d

)

=
k∑
r=1

(
CN ·

e∑
j=0

`(H i−1(I;R/Pr))

pj+d

)
.

Because each dim(R/Pr) < d, by the inductive hypothesis there exists some Br such

that
`(H i−1(I;R/Pr)

`(R/I)
≤ `(H i−1(I;R/Pr)

`(R/(I + Pr))
≤ Br independent of I. Set B = maxr Br.

Separately, lim
e→∞

`(H i(I [pe];R))

ped
= 0, which is shown in forthcoming work of Bhatt,

Hochster, and Ma [6]. Hence, for each parameter ideal I and each 0 ≤ i < d,

`(H i(I;R))

`(R/I)
≤ lim

e→∞

(
CN ·

(
e∑
j=0

k ·B
pd+j

)
+
`(H i(I [pe];R))

ped

)

=
Cn · k ·B
pd(1− 1/p)

+ 0 =
CN · k ·B
pd(1− 1/p)

,

where k ·B depends only on the cokernel of the map Rpd ↪→ R1/p and not on I.

Corollary II.9. If i = 1, then the same proof, together with the fact that H0(I;N) ↪→

H0
m(N) for each parameter ideal I, shows that

`(H1(I;R)) ≤
∞∑
j=0

(
`(H0

m(N))

pd+j

)
=

`(H0
m(N))

pd(1− 1/p)
.
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Lemma II.10. [3] Fix a module M over (R,m, κ) with dim(R) = dim(M) and

|κ| =∞. Then sup√
I=m

{
`(M/IM)

eI(M)

}
= sup

I parameter

{
`(M/IM)

eI(M)

}
.

Proof. The inequality sup√
I=m

{
`(M/IM)

eI(M)

}
≥ sup

I parameter

{
`(M/IM)

eI(M)

}
is automatic

because parameter ideals are m-primary. To see the other inequality, fix an m-

primary ideal I and a minimal reduction J of I, which will be parameter because κ

is infinite. If
`(M/JM)

eJ(M)
≤ C, then using 1.3

`(M/IM) ≤ `(M/JM) ≤ C · eJ(M) = C · eI(M).

Corollary II.11. With notation as above, if
Cn · k ·B
1− 1/p

< 1, then inf√
I=m

eI(R)

`(R/I)
> 0.

Proof. If I is parameter, then if follows from Serre’s expansion of multiplicity as the

alternating sum of the lengths of Koszul homology modules 1.3 and the positivity

of χ1(I;R) =
∑d

i=1(−1)i+1`(H1(I;R)) [45] that, with the same notation as above,

eI(R)

`(R/I)
≥ 1− Cn · k ·B

1− 1/p
. If

Cn · k ·B
1− 1/p

< 1, then we obtain a bound on
eI(R)

`(R/I)
from

below whenever I is parameter. By II.10, this bound in the case when I is parameter

is also a bound whenever I is m-primary.



CHAPTER III

Characterizing finite length local cohomology in terms of
bounds on Koszul homology

The purpose of this chapter is to prove Theorem III.1:

Theorem III.1. If M is an equidimensional module over the complete local ring

(R,m, κ) of dimension d ≥ 1, then the following three conditions are equivalent:

1. asydepth(M) ≥ k,

2. sup{`(H i(f1, . . . , fd;M)) |
√
f1, . . . , fd = m, i < k} <∞,

3. `(H i
m(M)) <∞ for all i < k.

We note that condition 2, which requires an absolute bound on the lengths of

Koszul homology modules, is prima facie much stronger than condition 1, which

merely requires that these lengths grow somewhat slowly. For that reason, their

equivalence is quite surprising.

3.1 The regular case

We first address the case in which either R contains a field or in which the char-

acteristic of κ is a parameter in R. We will then separately discuss the modifications

necessary for the remaining mixed-characteristic case. In the former case, we will

begin by showing that over a large class of complete rings if M is asymptotically

23
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Cohen-Macaulay, then M is generalized Cohen-Macaulay. We first reduce to the

case where R is regular and then show that if M is asymptotically Cohen-Macaulay,

then M must be torsion-free. Once we have that M is torsion-free, we show that we

may quotient by a non-zero element of M and preserve the asymptotically Cohen-

Macaulay property, at which point we are prepared to show that M is generalized

Cohen-Macaulay by induction.

Lemma III.2. If it is true that all M that are asymptotically Cohen-Macaulay over

a complete unramified regular local ring are also generalized Cohen-Macaulay, then

the same holds over any complete local ring R of mixed characteristic with the char-

acteristic of the residue field a parameter in R or of equal characteristic.

Proof. Suppose M is asymptotically Cohen-Macaulay over R satisfying the hypothe-

ses of the theorem. By Cohen’s structure theorem, R is module finite over an un-

ramified complete regular local ring S. Every parameter ideal In of S is a parameter

ideal in R, and every finitely generated R-module M is also a finitely generated S-

module, and H i
R(In;M) = H i

S(In;M). Because `(R/In) ≤ νS(R) · `(S/In) for each

n ≥ 1, where νS(R) denotes the minimal number of generators of R as an S mod-

ule, and so
`(H i(In;M))

`(S/In)
≤ νS(R) · `(H

i(In;M))

`(R/In)

n→∞−−−→ 0, which is to say that M

is asymptotically Cohen-Macaulay over S. By assumption, then, M is generalized

Cohen-Macaulay over S, from which it follows that M is generalized Cohen-Macaulay

over R.

Lemma III.3. If R = k[[x1, . . . , xd]] with d ≥ 3, then M = (x1, . . . , xd−1)R is not

asymptotically Cohen-Macaulay. If R = V [[x1, x2, . . . , xd−1]] where V = (V, p, k) is

a complete discrete valuation ring, then neither of M = (p, x1, . . . , xd−2) nor M =

(x1, . . . , xd) is asymptotically Cohen-Macaulay. Furthermore, if M = (ps, x1, . . . , xd−2)
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for some s > 1 is not asymptotically Cohen-Macaulay. In all cases, N = R/M is

also not asymptotically Cohen-Macaulay.

Proof. Before giving the general proof, we will compute in detail the case of d = 3

with R = k[[x, y, z]] as a guiding example: Let

In = (zn
4 − znxn, yn − znx, xn+1 − xzn4−n + yzn).

It is easy to see that `(R/(In + (x, y))) = n4, and the computation below will show

that `(R/In) ≤ (n4 +2n)+(2n+1)2(3n). We claim that x2n+1, y2n+1, yz2n, xz3n, and

zn
4+2n are elements of In, and so the elements zi with i < n4 + 2n and ziyjzk with

i < 3n; j, k < 2n + 1 span the quotient R/In as a k vector space (though they will

not in general form a basis).

The claimed inclusions can be seen in the following identities:

yz2n = zn(xn+1 − xzn4−n + yzn) + x(zn
4 − znxn)

xz3n = −z2n(yn − znx) + ynz2n

xn+1 + yzn = (xn+1 − xzn4−n + yzn) + zn
4−4n(xz3n)

znxn+1 = zn(xn+1 + yzn)− yz2n

xnyn = xn(yn − znx) + znxn+1

y2n+1 = yn+1(yn − znx) + ynx(yzn + xn+1)− x2(xnyn)

xnyzn = −y(zn
4 − znxn) + yzn

4

x2n+1 = xn(xn+1 − xzn4−n + yzn) + xn+1zn
4−n − xnyzn

zn
4+2n = z2n(zn

4 − znxn)− xnz3n
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Elements on the left can be seen to be in In as they are put in terms of elements

already known to be in In on the righthand side of each equation.

Because R is regular, H i(In;R) = 0 for i < 3, and so the long exact sequence of

Koszul cohomology yields

0→ H1(In; k[[z]])→ H2(In;M)→ 0.

Because zn
4

is not a zerodivisor on k[[z]] and In = (zn
4
, 0, 0), we have thatH1(In;N) ∼=

H0(0, 0; k[[z]]/(zn
4
) ∼= R/(In + (x, y)), whose length is n4. From the long exact se-

quence above, n4 must also be the length of H2(In;M). Now because

lim
n→∞

`(H2(In;M))

`(R/In)
≥ lim

n→∞

n4

n4 + 2n+ (2n+ 1)2(3n)
= 1 > 0,

M is not 2-effaceable and so in particular is not asymptotically Cohen-Macaulay.

We now prove the cases in which ps with s > 1 is not a generator of M in

all dimensions ≥ 3. Let R = k[[x, y, z, v1, . . . , vd−3]], M = (x, y, v1, . . . , vd−3)R, or

R = V [[y, z, v1, . . . , vd−3]] and M = (p, y, v1, . . . , vd−3), in which case we will denote

p by x below, or R = V [[x, y, v1, . . . , vd−3]] and M = (x, y, v1, . . . , vd−3) in which

case we will denote p by z below. In all cases, take N = R/M . From the short

exact sequence 0 → M → R → N → 0 and the fact that R is regular, we know

H i(In;R) = 0 for all i < d, and so H i(In;M) ∼= H i−1(In; k[[z]]) or ∼= H i−1(In;V )

for all i ≤ d − 1. We aim to show that N is not 1-effaceable and so that M is not

2-effaceable.

We define In = (f1, . . . , fd) where f1 = zt − znxn, f2 = xn+1 − xzt−n + yzn,

f3 = yn + v1z
n − v2z

n + · · ·+ (−1)i+1viz
n + · · ·+ (−1)d−2vd−3z

n + (−1)d−3xzn, and

fi+3 = vni − vizt−n + (vi+1 − vi+2 + · · ·+ (−1)d+i(vd−3) + (−1)d+i+1(x))n − vizn + xn

for 1 ≤ i ≤ d− 3 and some t ∈ N.
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As in the 3-dimensional case, we may use the first two equation to show that yz2n

and xn+1zn − xzt ∈ In. We then find

(
d−3∑
j=1

(−1)j+1viz
3n) + (−1)d−1(xz3n) = z2nf3 ∈ In.

We will now show by induction on i that viz
3ni+1+ni+···+n and

(
d−3∑
j=i+1

(−1)j+1vjz
3n2+n) + (−1)d−j(xz3n2+n)

are elements of In for all 1 ≤ i ≤ d− 3. If i = 1, then, using that modulo In

v1z
3n ≡ (

d−3∑
j=2

(−1)j+1vjz
3n) + (−1)d−1(xz3n)

implies that modulo In,

(v1z
3n)n ≡ ((

d−3∑
j=2

(−1)j+1viz
3n) + (−1)d−1(xz3n))n.

We compute

v1z
3n2+n = vz3n2−n(zt−znxn)+z3n2

f4+((v1z
3n)n−(

d−3∑
j=2

(−1)j+1viz
3n)+(−1)d−1(xz3n)n),

where the right-hand side consists of elements known to be in In. It follows that

(
∑d−3

j=2(−1)jvjz
3n2+n) + (−1)d(xz3n2+n) = −z3n2

f3 + v1z
3n2+n ∈ In.

For the inductive step, we compute

vi+1z
3ni+2+ni+1+···+n2+n

= z3ni+2+ni+1+···+n2−n(zt − znxn) + z3ni+2+ni+1+···+n2

fi+1 + (vi+1z
3ni+2+ni+1+···+n2+n)n

−

(
(
d−3∑
j=i+2

vjz
3ni+2+ni+1+···+n2+n) + (−1)d−1xz3ni+2+ni+1+···+n2+n

)n

∈ In,

from which it follows that

(
d−3∑
j=i+2

(−1)jvjz
3ni+2+ni+1+···+n2+n) + (−1)d(xz3ni+2+ni+1+···+n2+n)

= −z3ni+2+ni+1+···+n2+nf3 + v1z
3ni+2+ni+1+···+n2+n ∈ In.
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In particular, when i+ 1 = d− 3, then we have that

vd−3z
3nd−2+nd−1+···+n2+n − xz3nd−2+nd−1+···+n2+n ∈ In.

We are now prepared to see

xz3nd−1+nd−1+···+n2+n = vd−3z
3nd−2+nd−1+···+n2−n(zt − znxn)

+ z3nd−1+nd+···+n2

(vn+1
d−3 − vd−3z

t−n + xzn)

+ vd−3((xz3nd−2+nd−1+···+n2+n)n − (vd−3z
3nd−2+nd−1+···+n2+n)n),

which shows that both xz3nd−1+nd−1+···+n2+n and vd−3z
3nd−1+nd−1+···+n2+n are elements

of In. In particular, the elements xz3nd−1+nd−1+···+n2+n, yz3nd−1+nd−1+···+n2+n and

viz
3nd−1+nd−1+···+n2+n are in In for all 1 ≤ i ≤ d− 3. It follows that modulo In

(xn+1)3nd−1+nd−1+···+n2+n ≡ (xzt−n − yzn)3nd−1+nd−1+···+n2+n ≡ 0

and then that

zt+(3nd−1+nd−1+···+n2+n)

= z(3nd−1+nd−1+···+n2+n)(zt − znxn) + (xn−1zn)(xz3nd−1+nd−1+···+n2+n) ∈ In.

We also note that modulo In

(yn)3nd−1+nd−2+···+n2+n ≡ ((
d−3∑
j=1

(−1)j+1viz
n) + (−1)d−3xzn)3nd−1+nd−1+···+n2+n ≡ 0.

We will now show by induction on k that

v
(n+1)(3nd−1+nd−1+···+n2+n)
d−3−k ∈ In.

When k = 0, we use fd to see that

v
(n+1)(3nd−1+nd−1+···+n2+n)
d−3 ≡ (vd−3z

t−n+xn−vd+3z
n+xn)(n+1)(3nd−1+nd−1+···+n2+n) ≡ 0 mod In.
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For the inductive step, we see using fd−k that modulo In

v
(n+1)(3nd−1+nd−1+···+n2+n)
d−3−k ≡ (vd−3−kz

t−n + vd−2−k − vd−1−k + · · ·

· · ·+ (−1)3+k(vd−3) + (−1)d+i+1(x)n − vizn + xn)(n+1)(3nd−1+nd−1+···+n2+n) ≡ 0.

The attentive reader will notice that efforts have not been made to keep mini-

mal the degrees of polynomials appearing in the above expressions. It is now clear

that R/In is spanned by xzj, yzj, and viz
j for j < (3nd−1 + nd−2 + · · ·+ n2 + n)

and 1 ≤ i ≤ d − 3 together with zj for j < t+ (3nd−1 + nd−2 + · · ·+ n2 + n)

and xαxy
αyvα1

1 · · · v
αd−3

d−3 with αy < n(3nd−1 + nd−2 + · · · + n2 + n) and αx, αi <

(n+ 1)(3nd−1 + nd−1 + · · ·+ n2 + n). Hence,

`(R/In) ≤ t+ (3nd−1 +nd−2 + · · ·+n2 +n) + ((n+ 1)(3nd−1 +nd−2 + · · ·+n2 +n))d.

The term t+ (3nd−1 + nd−1 + · · ·+ n2 + n) counts powers of z, and

((n+ 1)(3nd−1 + nd−2 + · · ·+ n2 + n))d

bounds ways to pick an allowable monomial that is not a power of z. One sees

directly from the Koszul complex that `(H1(In;N)) = t. Any choice of t much larger

than ((n+ 1)(3nd−1 + nd−2 + · · ·+ n2 + n))d, for example t = nd
d+1, will give

lim
n→∞

`(H1(In;N))

`(R/In)
= lim

n→∞

`(H2(In;M))

`(R/In)

= lim
n→∞

t

t+ ((n+ 1)(3nd−1 + nd−2 + · · ·+ n2 + n))d
= 1.

This computation demonstrates that neither N nor M is asymptotically Cohen-

Macaulay.

We now consider the final case: R = V [[x1, . . . , xd−1]], M = (ps, . . . , xd−2), and

N = R/M =
V

(ps)
[[xd−1]]. Using the short exact sequence 0 → ps−1N → N →
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V

(ps−1)
→ 0 and the fact that

V

(ps−1)
[[xd−1]] has depth 1, we obtain an injection

H1(I; ps−1N) ↪→ H1(I; ps−1N) from the long exact sequence of Koszul cohomology

for every parameter ideal I. The result now follows from the isomorphism ps−1N ∼=

k[[xd−1]] and the previous cases.

Proposition III.4. Suppose R = k[[x1, . . . , xd]] with d ≥ 3 and M = (x1, . . . , xd−h)R

or that R = V [[x1, . . . , xd−1]] and M = (x1, . . . , xd−h) or M = (p, x1, . . . , xd−h−1) or

M = (ps, x1, . . . , xd−h−1) for some s > 1 and 1 ≤ h < d − 1. Then neither M nor

N = R/M is asymptotically Cohen-Macaulay. In particular, there exists a sequence

of parameter ideals In such that lim
n→∞

`(Hh+1(In;M))

`(R/InR)
6= 0 and lim

n→∞

`(Hh(In;N))

`(R/InR)
6= 0.

Proof. We will proceed by induction on h. The base case h = 1 is Lemma III.3. For

the inductive step, we consider the following short exact sequences

0→ (x1, . . . , xd−(h+1))R→ (x1, . . . , xd−h)R→ (xd−h)k[[xd−h, . . . , xd]]→ 0

or

0→ (x1, . . . , xd−(h+1))R→ (ps, x1, . . . , xd−(h+1))R→ (ps)V [[xd−(h+1), . . . , xd−1]]→ 0

or

0→ (x1, . . . , xd−(h+1))R→ (x1, . . . , xd−h)R→ (xd−h)V [[xd−h, . . . , xd−1]]→ 0

or

0→ (ps, x1, . . . , xd−h)R→

(ps, x1, . . . , xd−(h−1))R→ (xd−(h−1))V [[xd−(h−1), . . . , xd]]→ 0
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for some s ≥ 1. Call the module appearing as the cokernel in each of these sequences

aC where a = xd−h, p
s, or xd−(h−1) and C = k[[xd−h, . . . , xd]], V [[xd−(h+1), . . . , xd−1]],

or V [[xd−h, . . . , xd−1]], the middle term of each sequence D, and the left-hand term

E. We observe that the depth of E is h+ 2, and the depths of D and aC are h+ 1.

We, therefore, have

0→ Hh+1(In;D)→ Hh+1(In; aC)

which shows that (xd−h)C ∼= C is not (h+1)-effaceable since D is not by the inductive

hypothesis and the latter injects into the former.

We now consider another short exact sequence:

0→ E → R→ C → 0

for each C and E defined above. Because R has depth d > h+ 2 by assumption, the

long exact sequence of Koszul homology yields

0→ Hh+1(In;C)→ Hh+2(In;E)→ 0,

and so E is not (h+ 2)-effaceable because C is not (h+ 1)-effaceable, completing the

proof.

Proposition III.5. In the same setting as above,

k[[x1, . . . , xd]]

(xd)
∼= k[[x1, · · · , xd−1]],

V [[x1, . . . , xd−1]]/(ps) ∼=
V

(ps)
[[x1, . . . , xd−1]] for s ≥ 1,

and

V [[x1, . . . , xd−1]]/(xd−1) ∼= V [[x1, . . . , xd−2]]

are not (d− 1)-effaceable for d ≥ 2.
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Proof. We call the modules we aim to show are not (d − 1)-effaceable N and the

generator of the principle ideal by which we are quotienting in each case a. We note

that the techniques of the previous lemma do not work here because aR ∼= R. Using

the short exact sequence 0→ R
a−→ R→ N → 0, we get the long exact sequence

0→ Hd−1(In;N)→ R/In → R/In → N/InN → 0

from which we see that `(Hd−1(In;N)) = `(N/InN). It is therefore sufficient to

give a family of ideals In such that lim
n→∞

`(R/((a) + In))

`(R/In)
6= 0. We have previously

discussed such families for d ≥ 3 since

`(R/((a, x1, . . . , xd−2) + In)) ≤ `(R/((a) + In)).

For d = 2, we may use the family In = (xn+1
1 − x1x

n
2 , x

n3

2 + xn1 ) with x2 = p when

R = V [[x1]]. It is clear that `(R/((x1)+In)) = n3, and because neither x1 nor xn1−xn2

is a zerodivisor on R/(xn
3

2 + xn1 ), we may compute

`(R/In) = `(R/(x1, x
n3

2 )) + `(R/(xn1 − xn2 , xn
3

2 + xn1 )) = n3 + n2.

Of course, lim
n→∞

n3

n3 + n2
= 1 6= 0.

Lemma III.6. Suppose (R,m, κ) is a complete unramified regular local ring of di-

mension d ≥ 2. If M is dimension d and asymptotically Cohen-Macaulay, then

M/H0
m(M) is torsion-free.

Proof. By Cohen’s structure theorem, R = k[[x1, . . . , xd]] or R = V [[x1, . . . , xd−1]]

where V = (V, p, k), a complete discrete valuation ring. Because H0
m(M) is finite

length, either M and M/H0
m(M) are both asymptotically Cohen-Macaulay or nei-

ther is because the difference between any `(H i(In;M)) and `(H i(In;M/H0
m(M)))
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is bounded by (
(
d
i

)
+
(
d
i−1

)
) · `(H0

m(M)) from the long exact sequence of Koszul coho-

mology while `(R/In)→∞. We may, therefore, replace M by M/H0
m(M). Suppose

T 6= 0 is the torsion submodule of M . T cannot be supported only at the maximal

ideal because then T ⊆ H0
m(M) = 0. Let P ⊆ R, a prime ideal of height h < d, be

minimal in Supp(T ). We will show that M is not h-effaceable.

Let (y1, . . . , yh) or (p, y1, . . . , yh−1) be local generators of P that extend to a

system of parameters y1, . . . , yd or p, y1, . . . , yd−1 of R, and form the regular ring

S = k[[y1, . . . , yd]] if R is equal characteristic or S = V [[y1, . . . , yd−1]] if R is mixed

characteristic. (By clearing denominators, we may without loss of generality assume

that the local generators of P are elements of R.) This can be done in equal character-

istic by prime avoidance by choosing each yi a minimal generator of P not in the min-

imal primes of (y1, . . . , yi−1) for each h+1 ≤ i ≤ d. In mixed characteristic, we choose

yi to avoid (p, y1, . . . , yi−1) and the minimal primes of ((y1, . . . , yi−1) + P 2)RP ∩ R

for h + 1 ≤ i ≤ d − 1 so that p will also be a parameter in S. Because P was a

minimal prime of T , we have S/(P ∩ S) ↪→ R/P ↪→ T ↪→ M . More concretely, we

have S̄ = S/(P ∩S) = k[[yh+1, . . . , yd]] ↪→M or S̄ = S/(P ∩S) = V [[yh+1, . . . , yd−1]].

We aim to use these injections to split off as a direct summand of M over a smaller

regular ring a torsion module of the form we have studied in earlier lemmas. Let M ′

be a maximal submodule of M disjoint from S̄ and N = M/M ′. Then S̄ ↪→ N is an

essential extension, and a retraction of the inclusion of S̄ into N lifts to a retraction

of the map to M .

We begin with the equal characteristic case. For each i ≤ h, there exists k ≥ 1

such that (yi)
kN ∩ k[[yh+1, . . . , yd]] = (yi)

n−k(ykiN ∩ k[[yh+1, . . . , yd]]) = 0 by the

Artin-Rees Lemma. But (yi)
kN ∩ k[[yh+1, . . . , yd]] = 0 implies that (yi)

kN = 0 be-

cause the extension is essential. Therefore, after replacing each yi with ykii , we may
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assume without loss of generality that yiN = 0 for all i ≤ h and view N as a mod-

ule over k[[yh+1, . . . , yd]]. Now because Frac(k[[yh+1, . . . , yd]]) is a maximal essential

extension of k[[yh+1, . . . , yd]], we may view N as a finitely generated submodule of

Frac(k[[yh+1, . . . , yd]]), i.e. N ∼= k[[yh+1, . . . , yd]][
1
f
] for some f ∈ k[[yh+1, . . . , yd]].

Equivalently, the essential extension we have been studying may be described as

k[[yh+1, . . . , yd]]
f−→ k[[yh+1, . . . , yd]]. Choosing t � 0, we may take f to be part of a

basis of k[[yh+1, . . . , yd]] over k[[yth+1, . . . , y
t
d]], which means that our map splits as a

maps of A = k[[yth+1, . . . , y
t
d]] modules.

In mixed characteristic, we consider the case of p ∈ P and p /∈ P separately. We

first assume p /∈ P . Call Ā = V [[yh+1, . . . , yd−1]]. Because Ā injects into M , Ā(p)

injects into M(p). Because Ā(p) is a discrete valuation ring, MP must be free over

Ā(p), and so we may choose an element u of a free basis of M(p) over A(p) and note

that u /∈ pM(p). Then A(p) ↪→ M(p) given by 1 7→ u is a splitting. Now because

Hom(M(p), Ā(p)) ∼= Hom(M, Ā)(p), the retraction M(p) � Ā(p) with u → 1 gives a

map α : M → Ā with α(u) /∈ (p)Ā. Therefore, there exists a map θ : M ↪→ F where

F is a free Ā module and θ(u) /∈ (p)F . Now because
⋂
t(p, y

t
h+1, . . . , y

t
d−1)F = (p)F

and θ(u) /∈ (p)F , we may choose t sufficiently large that θ(u) /∈ (p, yth+1, . . . , y
t
d−1)F ,

which is to say that θ(u) is not in the maximal ideal of B := V [[yth+1, . . . , y
t
d−1]]

expanded to F . Because F is free over Ā and Ā is free over B, F is free over B. It

follows that there is a retraction F � Ā as B modules. Composing with a retraction

Ā� B and restriction to M , we obtain a splitting of B ↪→M as B modules.

Lastly, we suppose p ∈ P , in which case Ā = k[[yh, . . . , yd−1]]. Fix k so that

pkM = 0 but pk−1M 6= 0. As in the previous cases, we replace each yi with some

ykii for h < i ≤ d − 1 so that each yiM = 0, and think of M as a module over

B =
V

(pk)
[[yh, . . . , yd−1]]. For each t ≥ 0, set Bt =

V

(pk)
[[yth, . . . , y

t
d−1]]. We aim to
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find a t such that a copy of Bt splits from M as a Bt-module. Because B(p) is a

0-dimensional Gorenstein ring, it splits from M(p). As in the previous case, this gives

a map α : M → B with an element u ∈ M such that α(u) /∈ (p)B. Again, choose

t sufficiently large that α(u) /∈ (p, yt1, . . . , y
t
s)B. Now B is free over Bt and α(u) is

not in the expansion of the maximal ideal of Bt to B, so there is a Bt module map

B → Bt such that α(u) 7→ 1, and so the composite map M → B → Bt sends u to 1,

which gives a splitting of Bt from M as a Bt module.

We now have a module of the form of of III.4 or III.5 as a direct summand

of M over an unramified regular ring, which we will rename A. Because R is

module finite over A, a system of parameters in A is a system of parameters in

R, and so it is sufficient to find a sequence of parameter ideals In in A such that

lim
n→∞

`(Hd−h(In;M))

`(R/InR)
6= 0. Because R is module finite over A, by II.2, it is sufficient

to show that lim
n→∞

`(Hd−h(In;M))

`(A/InA)
6= 0, and we know that lim

n→∞

`(Hd−h(In;M))

`(A/InA)
6= 0

because by III.4 and III.5 and the fact that Koszul homology splits over direct sums.

It follows that M is not (d − h)-effaceable and in particular is not asymptotically

Cohen-Macaulay, a contradiction.

Lemma III.7. Let (R,m, κ) be a complete Cohen-Macaulay local ring of dimension

d that is either equal characteristic or in which char(k) is a parameter, M a finitely

generated d dimensional module over R, and x ∈ R a non-unit, non-zerodivisor on

M . If M is asymptotically Cohen-Macaulay over R, then M/xM is asymptotically

Cohen-Macaulay over (R/x, µ).

Proof. Fix R, M and x as in the theorem statement. Using the short exact sequence
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0→ syz1(M)→ Rh →M → 0, from the long exact sequence of cohomology we have

0→ H i(I + (xN);M)→ H i+1(I + (xN); syz1(M))→ 0

for every i < d − 1 and every parameter I of R. It follows that syz1(M) is asymp-

totically Cohen-Macaulay whenever M is. Similarly, from

0→ syz1(M/xM)→ (R/x)g →M/xM → 0

with g ≤ h, we have

0→ H i(J ;M/x)→ H i+1(J ; syz1(M/xM))→ 0

for all i < d − 2. It follows that if M/xM is not i-effaceable for some i < d − 2,

then syz1(M/xM) ∼= syz1(M)/x · syz1(M) is not i+ 1-effaceable. But syz1(M) must

be asymptotically Cohen-Macaulay because M is. Therefore, we may assume by

induction that i = d− 2.

Let ε > 0. We aim to show that there exists N ′ ∈ N such that for all parameter

ideals I ′ ⊆ µN
′
,
`(Hd−2(I ′;M/xM))

`((R/x)/I ′(R/x))
< ε. We claim that syz1(M) is quasi-unmixed.

Fix P ∈ min(syz1(M)) and fix an unramified regular ring A over which R is module

finite. By Lemma III.2, syz1(M) is also asymptotically Cohen-Macaulay over A and

so by Lemma III.6 torsion-free. Hence, A ∩ P must also be an associated prime

of A, which is to say A ∩ P = 0 because A is regular. But then d = dim(A) =

dim(A/(A ∩ P )) = dim(R/P ), as desired. It, therefore, follows from Theorems 1.1

and 1.4 that there exists a constant csyz1(M) such that `(R/I) ≤ csyz1(M)·eI(syz1(M))

for any m-primary ideal I of R. Now because M is asymptotically Cohen-Macaulay

over R, we may fix N ∈ N such that for all parameter ideals I ⊆ mN , we have

`(Hd−1(I;M))

`(R/I)
<

ε · csyz1(M)

2 · νR(syz1(M))
where νR denotes the least number of generators

as an R module. Fix an arbitrary parameter ideal J̄ ⊆ µN and fix a (d−1)-generator
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lift J of J̄ to R with J ⊆ mN . Note that for any t ≥ 1, J + (xt) is a parameter ideal

of R. For each t ≥ N , we observe

`(Hd−2(J̄ ;M/xM))

`(R/(J + (x)))
=
t · `(Hd−1(J + (x);M))

t · `(R/(J + (x)))

≤ t · `(Hd−1(J + (x);M))

`(R/(J + (xt)))

=
t · `(Hd−1(J + (x);M))

`(Hd−1(J + (xt);M))
· `(H

d−1(J + (xt);M)

`(R/(J + (xt)))

<
t · `(Hd−1(J + (x);M))

`(Hd−1(J + (xt);M))
·

ε · csyz1(M)

2 · νR(syz1(M))
.

Hence, it suffices to show that there exists t ≥ N such that

`(Hd−1(J + (x);M))

`(Hd−1(J + (xt);M))/t
≤ 2 · νR(syz1(M))

csyz1(M)

.

From 0 → syz1(M) → Rh → M → 0 and the fact that R is Cohen-Macaulay, the

long exact sequence of Koszul cohomology gives

0→ Hd−1(J + (x);M)→ syz1(M)

(J + (x))syz1(M)

from which it follows that `(Hd−1(J + (x);M)) ≤ νR(syz1(M)) · `(R/(J + (x))). We

now consider for each t ≥ 1 the short exact sequence

0→ Hd−2(J ;M)

xt ·Hd−2(J ;M)
→ Hd−2(J ;M/(xt)M)→ AnnM/JM(xt)→ 0,

from which we see that

`(Hd−1(J + (xt);M)) = `(Hd−2(J ;M/(xt)M)) ≥ `

(
Hd−2(J ;M)

xt ·Hd−2(J ;M)

)
.

Because Hd−1(J ;M) is a one-dimensional R/J module, there exists some T ∈ N such

that for all t ≥ T ,

`

(
Hd−2(J ;M)

xt ·Hd−2(J ;M)

)
/t ≥ e(x)(H

d−2(J ;M))/2.
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Now Hd−2(J ;M) ∼= Hd−1(J ; syz1(M)) ∼=
syz1(M)

Jsyz1(M)
because R is Cohen-Macaulay

and J is generated by (d− 1) elements. It follows that

e(x)(H
d−2(J ;M)) = e(x)

syz1(M)

Jsyz1(M)
≥ e(J+(x))(syz1(M))) ≥ csyz1(M) · `(R/(J + (x)).

Hence,

`(Hd−1(J + (x);M))

`(Hd−1(J + (xt);M))/t
≤ 2 · νR(syz1(M)) · `(R/(J + (x)))

csyz1(M) · `(R/(J + (x))
=

2 · νR(syz1(M))

csyz1(M)

as desired.

Theorem III.8. If (R,m, κ) is any complete (Noetherian) local ring that is either

equal characteristic or mixed characteristic with char(k) a parameter in R and M

is dimension d and asymptotically Cohen-Macaulay, then M is generalized Cohen-

Macaulay.

Proof. We assume that M is asymptotically Cohen-Macaulay. By III.2, we may

assume that R is regular and unramified. Having replaced M by M/H0
m(M), we

may assume that M is torsion-free by III.6. Because all torsion-free modules of

dimension 1 are Cohen-Macaulay, we may assume that d − 1 > 0. Fix a prime P

of R of height d − 1. We aim to show that some system of parameters on MP is a

regular sequence on MP . We claim that depthMP > 0. If MP has depth 0, then P is

an associated prime of M (equivalently, of MP ). Then because M is torsion-free, P

must be an associated prime of R, but because R is regular, P = 0, but P has height

d−1 > 0. Therefore, we may fix x1, . . . , xh a system of parameters of MP with x1 not

a zero-divisor and, by prime avoidance, x1 /∈ (char(k)) in the mixed characteristic

case. By III.7, M/x1M is asymptotically Cohen-Macaulay. Because x1 /∈ (char(k)),

char(k) remains a parameter in R/x1 in the mixed characteristic case, and so M/x1M
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is locally Cohen-Macaulay by induction. Hence (M/x1M)P ∼= MP/x1MP is Cohen-

Macaulay. Now because x2, . . . , xh is a system of parameters on RP/x1RP , it must

also be a regular sequence. It follows that x1, . . . , xh is a regular sequence on MP .

Example III.9. We now give an application of the above theorem. In particular,

we give an example showing that
`(R/In)

eIn(R)
need not approach 1 as In → ∞. Let

R = ( k[x,y,z]
x3+y3+z3

sk[u, v])[w] localized at the homogeneous maximal ideal. Because

R is normal, it is in particular S2, and so its only nonvanishing Koszul homology

modules are i = 3, 4. It is not generalized Cohen-Macaulay and so not asymptotically

Cohen-Macaulay. Therefore, we may pick a sequence of parameter ideals In such that

H2(In;R)

`(R/In)
6→ 0. It follows that

eIn(R)

`(R/In)
=
H3(In;R)−H2(In;R)

H3(In;R)
6→ 1.

We will now undertake the backward direction of one of this chapter’s main the-

orems. In particular, we will now show that if M is equidimensional, then M gener-

alized Cohen-Macaulay implies M asymptotically Cohen-Macaulay.

Lemma III.10. Let (R,m, κ) be a complete (Noetherian) local ring of dimension d,

and let M be at finitely generated R-module. Then for each 0 ≤ s < d,

`(Hs(I;M)) ≤
s∑
r=0

(
d

s+ r

)
`(Hr

m(M)).

Proof. By Cohen’s structure theorem, R ∼= T/J for some regular local ring (T, n) of

dimension d + h and ideal J of T of height h. Let A• be a dualizing complex for R

over T . Fix a parameter ideal I of R, fix a set of parameters that generate I. By

tensoring the Koszul complex on our set of generators of I with HomR(M,A•), we

get the grid below.
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0 0y y
0 −−−→ HomR(M,A0) −−−→ · · · −−−→ HomR(M,Ad) −−−→ 0y y

...
...

...y y
0 −−−→ HomR(M(di),A0) −−−→ · · · −−−→ HomR(M(di),Ad) −−−→ 0y y

...
...

...y y
0 −−−→ HomR(M,A0) −−−→ · · · −−−→ HomR(M,Ad) −−−→ 0y y

0 0

where the horizontal maps are the standard maps induced by applying HomR(M, ),

and the vertical maps are the maps in the Koszul complex. Taking this double

complex as the E0 page of a spectral sequence, we will first compute the homology

of the rows first using local duality and obtain the E1 page below:
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0 0y y
Hd
n(M)∨ · · · H0

n(M)∨y y
...

...
...y y

Hd
n(M(di))∨ · · · H0

n(M(di))∨y y
...

...
...y y

Hd
n(M)∨ · · · H0

n(M)∨y y
0 0

Each Hj
n(M)∨ is finite length for j < d since Hj

n(M) =Hj
m(M) andM is generalized

Cohen-Macaulay as an R module. Because the E0 page is only possibly nonzero in a

(d+1)× (d+1) grid, the E∞ = Ed. We will use Bkij to indicate the module in the ith

row and the jth column of the the kth page of the spectral sequence with homology

computed first by rows. For k ≥ 2, Bkij = ker(Bk−1
ij → Bk−1

i+k−1,j−(k+2))/im(Bk−1
ij →

Bk−1
i−(k−1),j+k+2). In particular, for each k > 0, `(Bkij) ≤ `(Bk−1

ij ), and so `(Bkij) ≤(
d
i

)
`(Hd−j

m (M)).

We now run the spectral sequence by taking homology of the columns first. The

E1 page is below:
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0 −−−→ H0(I; HomR(M,A0)) −−−→ · · · −−−→ H0(I; HomR(M,Ad)) −−−→ 0

...
...

...

0 −−−→ Hi(I; HomR(M,A0)) −−−→ · · · −−−→ Hi(I; HomR(M,Ad)) −−−→ 0

...
...

...

0 −−−→ Hd(I; HomR(M,A0)) −−−→ · · · −−−→ Hd(I; HomR(M,Ad)) −−−→ 0

Because Aj = HomT (R,Ej+h) where Ej+h is the sum of the injective hulls of the

T/P for P height j+h in T and I is height d+h, for every j < d one of the generators

of I is not an element of any of the P of height j+h by prime avoidance and so acts

invertible on Aj and so on HomR(M,Aj). It follows that the grid above is 0 except

in column d. It follows that the E1 = E∞.

We now fix some 0 < s ≤ d. For each I, we must have

(3.1) `(Hs(I; Hom(M,Ad))) =
d−s∑
r=0

`(Bds+r,d−r) ≤
d−s∑
r=0

(
d

s+ r

)
`(Hr

m(M)).

We note that this bound in independent of I.

Now let E = E(T/n), the injective hull of T/n. Because Ad ∼= HomT (R,E), we
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have HomR(M,Ad) ∼= HomR(M,E), and so for each 1 ≤ i ≤ d,

`(Hi(I; Hom(M,Ad))) = `(Hi(I; Hom(M,E)))

= `(Hom(H i(I; Hom(M,E)), E)))

= `(Hom(Hi(K
•(I;R)⊗ (M∨)), E))

= `((Hi(K
•(I;R)⊗M∨))∨)

= `(Hi(K
•(I;R)⊗M∨∨))

= `(Hi(K
•(I;R)⊗M))

= `(Hi(I;M))

= `(Hd−i(I;M))

where ∨ := Hom( , E) and K• indicates the Koszul complex. We may, therefore,

rewrite 3.1 for 0 ≤ s < d as

(3.2) `(Hs(I;M)) ≤
s∑
r=0

(
d

r

)
`(Hr

m(M)).

Theorem III.11. Let (R,m, κ) be a complete (Noetherian) local ring of dimension

d, and let M be at finitely generated R-module. If M is generalized Cohen-Macaulay

and equidimensional, then M is asymptotically Cohen-Macaulay. Furthermore, in

this case

sup{`(Hs(I;M)) | I parameter , 0 ≤ s < d} <∞.

Proof. Whenever M is generalized Cohen-Macaulay and equidimensional, then for

each 0 ≤ i ≤ d− 1, `(Hr
m(M)) <∞ and so the result follows from 3.2.

Theorem III.12. If M is an equidimensional finitely generated module over the

complete local ring (R,m, κ) where either R is equicharacteristic or char(k) is a

parameter in R, then the following three conditions are equivalent:
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1. M is asymptotically Cohen-Macaulay,

2. sup{`(H i(f1, . . . , fd;M)) |
√
f1, . . . , fd = m, i < d} <∞,

3. M is generalized Cohen-Macaulay.

Proof. This theorem follows immediately from III.8 and III.11 together with the fact

that 2 obviously implies 1.

Corollary III.13. If M is an equidimensional module over the complete local ring

(R,m, κ) of dimension d ≥ 1 and either R is equicharacteristic or char(κ) is a

parameter in R, then the following three conditions are equivalent:

1. asydepth(M) ≥ k,

2. sup{`(H i(f1, . . . , fd;M)) |
√
f1, . . . , fd = m, i < k} <∞,

3. `(H i
m(M)) <∞ for all i < k.

Proof. As above, it is clear that condition (2) implies condition (1). To see that (1)

implies (3), fix a regular ring (A, n) over which (R,m, κ) is module finite, and take

0→ syz1
A(M)→ Aν →M → 0

for v = νA(M). We first establish the result over A. If k < d − 1, then for any

parameter ideal I of A, Hk(I;M) ∼= Hk+1(I;M), and H i
n(M) ∼= H i+1

n (syz1
A(M)). We

may, then, without loss of generality assume k = d−1, which is the result of Theorem

III.1, using the fact that syz1
A(M) is also equidimensional. If condition (1) is satisfied

over R, then it is certainly satisfied over A because every system of parameters in A

is a system of parameters in R. It then follows that `(H i
m(M)) = `(H i

n(M)) <∞ for

all i < k, which is to say that condition (3) is satisfied over R. Lastly, it is immediate

from equation 3.2 that (3) implies (2).
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3.2 The Gorenstein case

In this section, we will assume that (R,m, κ) is mixed characteristic and that

char(κ) is not a parameter in R. This section will both complete the proof of III.1

and also will give a roadmap for an alternative proof in the equal characteristic case

than the one described in the previous section. We first notice that is characteristic

independent, and so the we alredy know that `(H i
m(M)) < ∞ for all i < k implies

sup{`(H i(f1, . . . , fd;M)) |
√
f1, . . . , fd = m, i < k} < ∞ implies asydepth(M) ≥ k

in all characteristics. The proof that we need to alter is the one that shows that

asydepth(M) ≥ k implies that `(H i
m(M)) < ∞. We first reduce to the case where

R is Gorenstein by modifying Lemma III.2.

Lemma III.14. If it is true that all finitely-generated modules M that are asymp-

totically Cohen-Macaulay over a Gorenstein ring of the form
V [[x1, . . . , xd]]

(psx1)
where p

generates the maximal ideal of the discrete valuation ring V and s ≥ 1 are generalized

Cohen-Macaulay, then the same holds over any complete local ring R in which the

characteristic of the residue field of R is not a parameter in R.

Proof. Suppose M is asymptotically Cohen-Macaulay over R satisfying the hypothe-

ses of the lemma. By Cohen’s structure theorem, R is a module finite extension of

a ring S =
V [[x1, . . . , xd]]

(psx1)
as described in the lemma statement. Every param-

eter ideal In of S is a parameter ideal in R, every finitely generated R-module

M is also a finitely generated S-module, and H i
R(In;M) = H i

S(In;M). Because

`(R/In) ≤ νS(R) · `(S/In) for each n ≥ 1, where νS(R) denotes the minimal number

of generators of R as an S-module,
`(H i(In;M))

`(S/In)
≤ νS(R) · `(H

i(In;M))

`(R/In)

n→∞−−−→ 0,

which is to say that M is asymptotically Cohen-Macaulay over S. By assumption,

then, M is generalized Cohen-Macaulay over S, from which it follows that M is
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generalized Cohen-Macaulay over R.

Lemma III.15. Let R =
V [[x1, . . . , xd]]

(psx1)
where (V, pV ) is a discrete valuation ring

and s ≥ 1, and let M be a finitely-generated R-module. Then there exists a sequence

of parameter ideals In ⊆ mn such that

`(M/InM)

`(R/In)
6→ 0.

Proof. Because `(R/In) ≤ s`(R/In + (px1)) and `(M/InM) ≥ `(M/(In + (px1))M),

we may assume that s = 1. By taking a prime cyclic filtration of M , there exists

some prime P of R such that M � R/P . By possibly quotienting further, we may

replace M by R/P and assume that dim(R/P ) = 1. Let z be an element of R whose

image is a parameter in R/P , call x = x1, and extend z to z, x − p, y, v1, . . . , vd−3

so that z, x, y, v1, . . . , vd−3 is a system of parameters in Ra = V/(p)[[x1, . . . , xd]]

and p, y, v1, . . . , vd−3 is a system of parameters in Rb = V [[x2, . . . , xd]]. Following

the argument of III.14, we may replace R by
V [[x, y, z, v1, . . . , vd−3]]

(px)
. Set In =

(f1, . . . , fd) where f1 = zt − zn(x− p)n, f2 = (x− p)n+1 − (x− p)zt−n + yzn,

f3 = yn + v1z
n − v2z

n + · · ·+ (−1)i+1viz
n + · · ·+ (−1)d−2vd−3z

n + (−1)d−3(x− p)zn,

and

fi+3 = vni − vizt−n + (vi+1− vi+2 + · · ·+ (−1)d+ivd−3 + (−1)d+i+1(x− p))n− vizn +xn

for 1 ≤ i ≤ d− 3 and some t ∈ N.

First suppose that p ∈ P . Then set A = k[[z]] ↪→ R/P , a regular ring over which

R/P is module finite. If p /∈ P , then R/P is a module-finite extension of the regular

ring A = V . In either case, it follows from II.2 that `(R/(P + In)) ≥ `(A/In) = t.

We now follow identically the computations of Lemma III.3 with x replaced by x−p
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to see that that

((x− p)n+1)3nd−1+nd−1+···+n2+n,

zt+(3nd−1+nd−1+···+n2+n),

(yn)3nd−1+nd−2+···+n2+n,

and

viz
3ni+1+ni+···+n

for 1 ≤ i ≤ d− 3 are elements of In. Multiplying the first element by x or by p, we

have

(xn+2)3nd−1+nd−1+···+n2+n

and

(pn+2)3nd−1+nd−1+···+n2+n

elements of In as well. Similarly,

(x− p)z3nd−1+nd−1+···+n2+n

yz3nd−1+nd−1+···+n2+n

and

viz
3nd−1+nd−1+···+n2+n

for 1 ≤ i ≤ d−3 are elements of In, and, multiplying the first of these three elements

by x or p, we have that

x2z3nd−1+nd−1+···+n2+n

and

p2z3nd−1+nd−1+···+n2+n

are elements of In.
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Hence, counting spanning elements of R/In as in Lemma III.3, R/In is spanned

by x2zj, p2zj, yzj, and viz
j for j < (3nd−1 + nd−2 + · · ·+ n2 + n) and 1 ≤ i ≤

d − 3 together with zj, pzj, and xzj for j < t+ (3nd−1 + nd−2 + · · ·+ n2 + n) and

xαxpy
αyvα1

1 · · · v
αd−3

d−3 and pαxpy
αyvα1

1 · · · v
αd−3

d−3 with αy < n(3nd−1 + nd−2 + · · ·+ n2 + n)

and αxp, αi < (n+ 2)(3nd−1 + nd−1 + · · ·+ n2 + n). Therefore,

`(R/In) ≤ 3(t+(3nd−1 +nd−2 + · · ·+n2 +n))+((n+2)(3nd−1 +nd−2 + · · ·+n2 +n))d,

and so, if limIn→∞
`(M/InM)

`(R/In)
exists, then

lim
In→∞

`(M/InM)

`(R/In)

≥ t

3(t+ (3nd−1 + nd−2 + · · ·+ n2 + n)) + ((n+ 2)(3nd−1 + nd−2 + · · ·+ n2 + n))d

= 1/3

for every t >> nd
2
.

Theorem III.16. Let (R,m, κ) be a Gorenstein ring of dimension d in which char(κ)

is not a parameter in R and M a finitely-generated quasi-unmixed R-module. Then

for all 0 ≤ k ≤ d, asydepth(M) ≥ k implies that `(H i
m(M)) <∞ for all 0 ≤ i < k.

Proof. Suppose that asydepth(M) ≥ k but that `(H i
m(M)) = ∞ for some 0 ≤ k ≤

d, and assume that k is minimal with respect to this property. Notice that for

each parameter ideal I, H i+1(I; syz1(M)) ∼= H i(I;M), and so by replacing M by

syzd−k−1(M), we have a counterexample when k = d− 1 and `(H i
m(M)) <∞ for all

0 ≤ i < d− 1. We now return to the spectral sequence from Lemma 3.2 in order to

improve equation 3.2. Below is the E2 page of the spectral sequence run by taking
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homology of columns first omitting maps, which will not be of interest to us:

0 0

H0(I; Hd
n(M)∨) · · · H0(I; H0

n(M)∨)

...
...

...

H i(I; Hd
n(M)∨) · · · H i(I; H0

n(M)∨)

...
...

...

Hd(I; Hd
n(M)∨) · · · Hd(I; H0

n(M)∨)

0 0

We may from here improve equation 3.2 in the case of s = d− 1 to

|`(Hd−1(I;M))−Hd(I;Hd−1
m (M))| ≤

d−1∑
r=0

`(Hr(I;Hr−1
m (M))),

which is to say that controlling the lengths of the Hd−1(I;M) is the same task as

controlling the lengths of the Hd(I;Hd−1
m (M)) because each of the `(H i

m(M)) <∞.

More precisely, the task remaining to us is to show that if dim(Hd−1
m (M)) > 0, then

there exists a sequence of parameter ideals In such that
`(Hd−1

m (M)/InH
d−1
m (M))

`(R/In
6→

0 as In →∞. Because dim(Hd−1
m (M)) ≤ d− 1, the result follows from lemma III.14

and III.15.

Combining III.13 and III.16, we have now shown the entirety of III.1.
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APPENDIX A

Lech’s inequality and Stückrad-Vogel’s conjecture

Patricia Klein, Linquan Ma, Pham Hung Quy, Ilya Smirnov, and Yongwei Yao

A.1 Abstract

Let (R,m) be a Noetherian local ring of dimension d and let M be a finitely gener-

ated R-module. We prove that the set
{
l(M/IM)
e(I,M)

}
√
I=m

is bounded below by 1/d!e(R)

where R = R/AnnRM . Moreover, when M is quasi-unmixed (i.e., M̂ is equidimen-

sional), this set is bounded above by a finite constant depending only on M . The

lower bound extends a classical inequality of Lech to all finitely generated modules,

and the upper bound answers a question of Stückrad-Vogel in the affirmative.

A.2 Introduction

In [35], Lech proved a simple inequality relating the Hilbert-Samuel multiplicity

and the colength of an ideal. It states that if (R,m) is a Noetherian local ring of

dimension d and I is any m-primary ideal of R, then we have

e(I, R) ≤ d!e(R)l(R/I),

where e(I, R) denotes the Hilbert-Samuel multiplicty of I and e(R) = e(m, R). In

the same paper Lech conjectured that for every flat local extension (R,m)→ (S, n)
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of Noetherian local rings, one has e(R) ≤ e(S). This conjecture is wide open in

general, and Lech obtained a partial estimate, using the above inequality, that we

have e(R) ≤ d!e(S) where d = dimR [35]. We refer to [27] for some generalizations

of Lech’s inequality and to [37] for recent progress on Lech’s conjecture.

If we consider the set
{
l(R/I)
e(I,R)

}
√
I=m

of positive numbers, then the above Lech’s

inequality is simply saying that this set is bounded below by 1
d!e(R)

(and thus is

bounded away from 0). The infimum of this set was investigated by Mumford in

his study of local stability [39]. In a different direction, Stückrad and Vogel studied

the supreme of
{
l(R/I)
e(I,R)

}
√
I=m

in [47]. A fundamental question they asked is that

whether the supreme is finite, and they conjectured the following [47, Theorem 1

and Conjecture]:

Conjecture A.1 (Stückrad-Vogel). Let (R,m) be a Noetherian local ring and let M

be a finitely generated R-module. Let e(I,M) be the Hilbert-Samuel multiplicity1 of

M with respect to I. Set

n(M) = sup√
I=m

{
l(M/IM)

e(I,M)

}
.

Then n(M) <∞ if and only if M is quasi-unmixed (i.e., M̂ is equidimensional).

Stückrad and Vogel proved the “only if” direction in general and the graded case

of the “if” direction [47, Theorem 1]. In this paper we settle this conjecture in the

affirmative. Furthermore, motivated by Conjecture A.1, it is quite natural to ask

that whether the classical Lech’s inequality can be extended to all finitely generated

modules, i.e., whether there is a lower bound on the set
{
l(M/IM)
e(I,M)

}
√
I=m

for a finitely

generated R-module M . We also answer this question in the affirmative. In sum,

our main result is the following:
1In this paper, we define the Hilbert-Samuel multiplicity of a finitely generated module M with respect to I to

be e(I,M) = limn→∞ t!
lR(M/InM)

nt where t = dimM . This is always a positive integer even when dimM < dimR.
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Main Theorem. (Theorem A.5 and Theorem A.14) Let (R,m) be a Noetherian

local ring of dimension d and let M be a finitely generated R-module. Set

m(M) = inf√
I=m

{
l(M/IM)

e(I,M)

}
and n(M) = sup√

I=m

{
l(M/IM)

e(I,M)

}
.

Then we have

m(M) ≥ 1

d!e(R)

where R = R/AnnRM . Moreover, if M is quasi-unmixed, then we also have

n(M) <∞.

We remark that, if dimM = d, then our Main Theorem implies that the set{
l(M/IM)
e(I,M)

}
√
I=m

is bounded below by 1
d!e(R)

, which is independent of M (and in gen-

eral, the lower bound m(M) only depends on AnnRM). One cannot expect the same

for the upper bound n(M). For example, take R = k[[x, y]] and let Mt = mt = (x, y)t,

then Mt are all faithful R-modules of rank one, but clearly

n(Mt) ≥
l(Mt/mMt)

e(m,Mt)
=
l(mt/mt+1)

e(R)
= t+ 1.

Therefore there cannot exist a constant c such that n(Mt) ≤ c works for all Mt.

This paper is organized as follows: in Section 2 we prove Conjecture A.1, which

is the second part of the Main Theorem, and in Section 3 we extend the classical

Lech’s inequality and prove the first part of the Main Theorem. Some applications

will be given in Section 4.

A.3 Finiteness of n(M): resolving Stückrad-Vogel’s conjecture

To prove the Stückrad-Vogel’s conjecture, we need the concept of extended degree

of a finitely generated module introduced by Vasconcelos in [50] [49].
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Definition A.2. Let (R,m) be a Noetherian local ring. Let M(R) denote the

category of finitely generated R-modules. An extended degree onM(R) with respect

to an m-primary ideal I is a numerical function

Deg(I, •) :M(R)→ R

satisfying the following conditions:

1. Deg(I,M) = Deg(I,M) + l(H0
m(M)), where M = M/H0

m(M);

2. Deg(I,M) ≥ Deg(I,M/xM) for every generic element x ∈ I −mI of M ;

3. If M is Cohen-Macaulay then Deg(I,M) = e(I,M).

The original definition in [49] only deals with the case I = m. The above definition

was taken from [12, Definition 5.3]. The first question is that, given a Noetherian

local ring (R,m), whether an extended degree function exist. This was settled in

the affirmative by Vasconcelos [50],[49], who showed that the following homological

degree is an example of extended degree.2

Definition A.3. Let (R,m) be a homomorphic image of a Gorenstein local ring

(S, n) of dimension n, and let M be a finitely generated R-module of dimension d.

Then the homological degree, hdeg(I,M), of M with respect to an m-primary ideal

I is defined by the following recursive formula

hdeg(I,M) = e(I,M) +
n∑

i=n−d+1

(
d− 1

i− n+ d− 1

)
hdeg(I,ExtiS(M,S)).

We note that the above definition is recursive on dimension since dim ExtiS(M,S) ≤

n − i < d = dimM for all i = n − d + 1, . . . , n. For a long time, the homological

degree is the only explicit extended degree found in general. Until quite recently

2Here again, Vasconcelos’s papers [50],[49] focus on the case I = m, and in fact the main case Vasconcelos
considered is the graded case. However the proofs in [50],[49] work in the general set up, and we refer to [12] for
more details.
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in [12], Cuong and the third author discovered another extended degree, defined in

terms of their Cohen-Macaulay deviated sequence {Ui(M)}d−1
i=0 . Roughly speaking,

Ui(M) is the unmixed component of M/(xi+2, . . . , xd)M for certain carefully cho-

sen system of parameters x1, . . . , xd of M (note that Ud−1(M) is just the unmixed

component of M), it is shown in [12, Theorem 4.4] that this is independent of the

choice of x1, . . . , xd as long as x1, . . . , xd is a C-system of parameters of M , which

always exists when R is a homomorphic image of a Cohen-Macaulay local ring. Thus

{Ui(M)}d−1
i=0 are a sequence of finitely generated R-modules depending only on M .

We refer to [12, Section 4] for more details on this.

Definition A.4. Let (R,m) be a homomorphic image of a Cohen-Macaulay local

ring. Let M be a finitely generated R-module of dimension d and let Ui(M), 0 ≤

i ≤ d− 1, be the Cohen-Macaulay deviated sequence of M . We define the unmixed

degree of M with respect to an m-primary ideal I, udeg(I,M), as follows:

udeg(I,M) = e(I,M) +
d−1∑
i=0

δi,dimUi(M)e(I, Ui(M)).

It was shown in [12, Theorem 5.18] that udeg(I, •) is an extended degree. We

make an elementary but important observation that, for a fixed finitely generated

module M , hdeg(I,M) (resp. udeg(I,M)) is a finite sum
∑

i e(I,Mi), where {Mi}

only depends on M (this is clear from definition for udeg(I,M), and is easily seen by

induction for hdeg(I,M)). Therefore by the associativity formula for multiplicities,

for a fixed finitely generated R-module M , there exists a finite collection of prime

ideals Λ(M) = Λ (allowing repetition) such that

(A.1) hdeg(I,M) =
∑
P∈Λ

e(I, R/P ), and similarly for udeg(I,M).

Now we are ready to state and prove our main result in this section:



56

Theorem A.5. Let (R,m) be a Noetherian local ring and let M be a finitely generated

quasi-unmixed R-module. Then we have

n(M) = sup√
I=m

{
l(M/IM)

e(I,M)

}
<∞.

Proof. First of all by [47, Theorem 1], it is enough to prove n(R) < ∞ where R is

a complete local domain with infinite residue field. We now consider Deg(I,M) =

hdeg(I,M) (or Deg(I,M) = udeg(I,M)), this is an extended degree and thus by

Definition A.2 (2), we know that for every generic element x ∈ I −mI we have

Deg(I, R) ≥ Deg(I, R/xR).

Therefore for a generic sequence of elements x1, . . . , xd of I (we may choose xi suffi-

ciently general such that x1, . . . , xd is a system of parameters of R), we have

Deg(I, R) ≥ Deg(I, R/x1R) ≥ · · · ≥ Deg(I, R/(x1, . . . , xd))

= l(R/(x1, . . . , xd)) ≥ l(R/I),

where the equality is because R/(x1, . . . , xd) is Cohen-Macaulay and thus

Deg(I, R/(x1, . . . , xd)) = e(I, R/(x1, . . . , xd)) = l(R/(x1, . . . , xd)).

Thus it is enough to prove that

sup√
I=m

{
Deg(I, R)

e(I, R)

}
<∞.

At this point we invoke (A.1), it is enough to prove that for every P ∈ SpecR,

(A.2) sup√
I=m

{
e(I, R/P )

e(I, R)

}
<∞.

In order to prove (A.2), we use induction on dimR. If dimR = 0, (A.2) is obvious.

In the general case, if dimR/P = dimR (i.e., P = 0) then (A.2) is again obvious.
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Now we assume dimR/P < dimR, we pick 0 6= x ∈ P and a minimal prime Q of (x)

such that Q ⊆ P . Since R is a complete local domain, R/(x) is equidimensional, in

particular dimR/(x) = dimR/Q and thus e(I, R/(x)) ≥ e(I, R/Q). Now we write:

e(I, R/P )

e(I, R)
=
e(I, R/P )

e(I, R/Q)
· e(I, R/Q)

e(I, R/(x))
· e(I, R/(x))

e(I, R)
≤ e(I, R/P )

e(I, R/Q)
· e(I, R/(x))

e(I, R)
.

Since dimR/Q < dimR, sup√I=m

{
e(I,R/P )
e(I,R/Q)

}
< ∞ by induction, which means

there exists a constant c1 such that e(I,R/P )
e(I,R/Q)

≤ c1 for all m-primary ideal I. Since x

is a nonzerodivisor in a complete local ring R, by Lemma A.6 below, we know that

there exists a constant c2 such that e(I,R/(x))
e(I,R)

≤ c2 for all m-primary ideal I. Thus

putting c = c1c2 we see that

e(I, R/P )

e(I, R)
≤ c

for all m-primary ideals I. This finishes the proof.

Lemma A.6. Let (R,m) be a Noetherian complete local ring and let x be a nonze-

rodivisor on R. Then there exists a constant k such that for all m-primary ideals I,

we have

e(I, R/(x)) ≤ k · e(I, R).

Proof. We consider the short exact sequence:

0→ R

In : x

·x−→ R

In
→ R

In + (x)
→ 0

Note that if y ∈ In : x, then xy ∈ In ∩ (x). By Huneke’s uniform Artin-Rees

lemma [26], there exists a constant k such that for all I ⊆ R, In ∩ (x) ⊆ In−kx.

Thus xy ∈ In−kx and hence y ∈ In−k since x is a nonzerodivisor. This shows that

In : x ⊆ In−k for all m-primary ideals I. By the short exact sequence above, we

know that

l

(
R

In + (x)

)
≤ l

(
R

In

)
− l
(

R

In−k

)
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Now we let n→∞ and compute the corresponding Hilbert function, we see that

e(I, R/(x)) ≤ k · e(I, R)

for all m-primary ideal I.

A.3.1 Localization and local flat extension

Theorem A.7. Let (R, ) be a Noetherian ring and M be a finite R-module. Assume

that R/Ann(M) is catenary and locally equidimensional. Then for any p ∈ Supp(M),

then nRp(Mp) ≤ nR(M).

Proof. Without loss of generality, we assume that M is faithful, and by easy induction

we may assume that dim(R/p) = 1. As Rp has infinite residue field, it suffices to

show

n(M) ≥
lRp(Mp/IMp)

e(I,Mp)

for all ideals I generated by a system of parameters in Rp.

For any such ideal, by prime avoidance, we can find elements x1, . . . , xd−1 ∈ R

such that they form a part of a system of parameters in R and I is generated by their

images in Rp. So, perhaps abusing notation, we will call I = (x1, . . . , xd−1) ⊆ R.

Suppose x ∈ R is such that (I, x) is m-primary. Since x1, . . . , xd−1, x form a

system of parameters, we have

l(M/(I, x)M) ≥ e(x,M/IM) =
∑

Q∈Min(M/IM)

e(x,R/Q)l(MQ/IMQ),

where the last equality holds by the associativity formula. By Lech’s associativity

formula for parameter ideals

e((I, x),M) =
∑

Q∈Min(M/IM)

e(x,R/Q) e(IRQ,MQ).
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Therefore, by definition,

n(M) ≥ l(M/(I, x)M)

e((I, x),M)

≥
∑

Q∈Min(M/IM) e(x,R/Q)lRQ(MQ/IMQ)∑
Q∈Min(M/IM) e(x,R/Q) e(IRQ,MQ)

.

Now, let y /∈ p be an element that belongs to all p 6= Q ∈ MinM/IM and z ∈ p

but not in any other element of Min(M/IM). Observe that for any n we can use

x = yn + z to complete I to a system of parameters. In this case∑
Q e(x,R/Q)lRQ(MQ/IMQ)∑
Q e(x,R/Q) e(IRQ,MQ)

=
e(yn, R/p)lRp(Mp/IMp) +

∑
p6=Q e(z,R/Q)lRQ(MQ/IMQ)

e(yn, R/p) e(IRp,Mp) +
∑

p6=Q e(z,R/Q) e(IRQ,MQ)
.

Since e(yn, R/p) = n e(y,R/p), if we pass to the limit as n approaches infinity we

obtain that

n(M) ≥
lRp(Mp/IMp)

e(IRp,Mp)
.

As a corollary, we show that the invariant n(−) is non-decreasing under local flat

extension.

Corollary A.8. Let (R,m) be a local ring and (S, n) be a faithfully flat extension of

R. Suppose M is a finite R-module such that R/Ann(M) is locally equidimensional

and catenary. Then n(M) ≤ n(M ⊗R S).

Proof. Let P be a minimal prime of mS. By the theorem

nSP ((M ⊗R S)P ) ≤ nS(M ⊗R S),

so we may assume that S is local and mS is n-primary. For any m-primary ideal its

extension IS is n-primary ideal and tensoring the composition series with S we see

that

lR(M/IM)lS(S/mS) = lS(M/IM ⊗R S)



60

for any finite R-module M . Thus e(I)lS(S/mS) = e(IS) and

n(M) = sup
I

lR(M/IM)

e(I)
= sup

I

lS ((M ⊗R S)/I(M ⊗R S))

e(IS)
≤ n(M ⊗R S).

Question A.9. Let (R,m) → (S, n) be a local flat map and M a finitely generated

R-module. Is it true that n(M⊗RS) ≤ n(M) n(S/mS)? (Here we may either assume

infinite residue fields or just define n(−) with parameter ideals.)

For example, is it true when S is module-finite and free over R. A concrete case

could be S = R[x]/(x2). The above question has a positive answer if both M and

S/mS are CM, as 1 = 1 · 1. We also have the following

Lemma A.10. Let (R,m) be a local ring and (S, n) be a faithfully flat extension of

R. Suppose M 6= 0 is an R-module with lR(M) <∞. Then n(M⊗RS) ≤ n(S/mS) =

n(M) n(S/mS).

Proof. Say l(M) = c, hence M has a filtration of length c with each consecutive

quotient isomorphic to R/m. Thus there is an induced filtration of M ⊗ S of length

c with each consecutive quotient isomorphic to S/mS.

Let I be any n-primary ideal of S. Via the above filtration, we see

l((M ⊗ S)/I(M ⊗ S))

e(I,M ⊗ S)
≤ c · l((S/mS)/I(S/mS))

c · e(I, S/mS)

=
l((S/mS)/I(S/mS))

e(I, S/mS)
≤ n(S/mS).

Therefore n(M ⊗R S) ≤ n(S/mS) = n(M) n(S/mS).

Lemma A.11. Let (R,m) be a local ring and (S, n) be a faithfully flat extension of

R. Suppose M 6= 0 is a finitely generated R-module, and denote MS = M ⊗R S.

Then for all (full) sop x of M and all (full) sop y of S/mS,

lS(MS/(x, y)MS)

e((x, y),MS)
≤ n(M) n(S/mS).
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Proof. Denote N = M/xM , so that N has finite length over R. By Lemma A.10

and associativity formula, we see

lS(MS/(x, y)MS) = lS(NS/(y)NS)

≤ e((y), NS) n(S/mS)

=
∑
P

e((y), S/P )l(NSP ) n(S/mS) (associativity formula)

=
∑
P

e((y), S/P )l(MSP /(x)MSP ) n(S/mS)

≤
∑
P

e((y), S/P ) e((x),MSP ) n(M) n(S/mS)

= e((x, y),MS) n(M) n(S/mS) (associativity formula)

Therefore lS(MS/(x,y)MS)
e((x,y),MS)

≤ n(M) n(S/mS).

A.3.2 Modding out by a sop

We say that a sequence x is a (partial or full) sop on an R-module M if x is a

(partial or full) sop on R/Ann(M).

Theorem A.12. Let (R,m) be a Noetherian local ring with infinite residue field and

M be a finite R-module. Then for any x = x1, . . . , xc that form a (partial) sop of

M , we have n(M/(x)M) ≤ n(M).

Proof. Without loss of generality, we assume M is a faithful R-module. Hence x is

a partial sop on R as well. Choose any y = y1, . . . , yd−c such that x, y together form

a (full) sop of R, where d = dim(R).

As e((y),M/xM) ≥ e((x, y),M), we have

l(M/(x, y)M)

e((y),M/xM)
≤ l(M/(x, y)M)

e((x, y),M)
≤ n(M).

Since |R/m| =∞, we see n(M/(x)M) ≤ n(M).
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A.4 The lower bound: a generalization of Lech’s inequality

Our goal in this section is to generalize the classical Lech’s inequality to all finitely

generated R-modules, thus proving the first part of our Main Theorem in the intro-

duction. We first prove a lemma.

Lemma A.13. Let (R,m, k) be a complete local domain with an algebraically closed

residue field. Let M be a finitely generated R-module with dim(R) = dim(M) and

let J be an integrally closed m-primary ideal. Then we have

l(M/JM) ≥ l(R/J) dimK(M ⊗R K),

where K denotes the fraction field of R.

Proof. First of all, if we let T (M) denote the torsion part of M , then we have

0→ T (M)→M →M ′ → 0

where M ′ is torsion-free. Since l(M/JM) ≥ l(M ′/JM ′) while dimK(M ⊗R K) =

dimK(M ′⊗K), if the lemma holds for M ′ then it also holds for M . Thus in the rest

of the proof we assume M is torsion-free. In this case dimK(M ⊗K) = rankM .

By [41, Corollary 2.2], we have

l(M/JM) ≥ l̄(R/J) · rankM,

where l̄(R/J) denote the length of the longest chain of integrally closed ideals between

J and R. Therefore it is enough to show l̄(R/J) = l(R/J). To prove this it is enough

to find an integrally closed ideal J ′ ⊇ J in R such that l(J ′/J) = 1, because then

l̄(R/J) = l(R/J) follows from an easy induction. Let R→ S be the normalization of

R. Since R is a complete local domain, S is local by [28, Proposition 4.8.2] and thus
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S = (S, n) is a normal local domain with R/m = S/n = k since k is algebraically

closed. Now by [53, Theorem 2.1], there exist a chain

JS = J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jn = n

such that

1. Each Ji is integrally closed in S;

2. l(Ji+1/Ji) = 1 for every i.

Since J is integrally closed in R and S is integral over R, by [28, Proposition 1.6.1]

we know

J0 ∩R = JS ∩R = J̄ = J.

Let t = max{i|Ji ∩ R = J}, obviously 0 ≤ t < n. Set J ′ = Jt+1 ∩ R, it is easy

to see that J ′ ⊇ J is integrally closed in R (one can use [28, Proposition 1.6.1]

again). Moreover, l(J ′/J) > 0 by our choice of t while J ′/J ↪→ Jt+1/Jt shows that

l(J ′/J) ≤ l(Jt+1/Jt) = 1. Thus we have l(J ′/J) = 1.

We are ready to state and prove the following generalization of Lech’s inequality.

Theorem A.14. Let (R,m, k) be a Noetherian local ring of dimension d. Then for

every finitely generated R-module M and every m-primary ideal I, we have

e(I,M) ≤ d!e(R)l(M/IM)

where R = R/AnnRM .

Proof. First of all we can replace R by R, this does not change the left hand side of

the inequality, and the right hand side only possibly decreases because dimR ≤ d.

Therefore we may assume AnnRM = 0 and thus dimM = d. We next take a flat

local extension (R,m, k) → (R′,m′, k′) such that m′ = mR′ and k′ = R′/m′ is the
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algebraic closure of R/m = k (such R′ always exists: it is a suitable gonflement of R;

see [8]). Then R→ R′ → R̂′ is a faithfully flat extension with mR̂′ = m
R̂′ , so passing

from R to R̂′ and replacing M by M ⊗R R̂′ do not affect both sides of the inequality.

Therefore without loss of generality, we may assume (R,m, k) is a complete local

ring of dimension d with k = k̄ and dimM = d.

By the associativity formula of multiplicity, we have

e(I,M) =
∑

dimR/P=d

lRP (MP )e(I, R/P ) =
∑

lRP (MP )e(IR/P ,R/P ).

Using Lech’s inequality [35] for each R/P , we have

(A.3) e(I,M) ≤
∑

d!e(R/P )l
(

(R/P )/(IR/P )
)
lRP (MP ).

Claim A.15. For every minimal prime P of R, we have

(A.4) l
(

(R/P )/(IR/P )
)
· lRP (MP ) ≤ l(M/IM) · lRP (RP ).

Proof of Claim. Clearly we have lRP (MP ) ≤ lRP (RP ) · lRP (MP/PMP ), because

lRP (MP/PMP ) is the minimal number of generators of MP as an RP -module. There-

fore

l
(

(R/P )/(IR/P )
)
· lRP (MP ) ≤ l

(
(R/P )/(IR/P )

)
· lRP (MP/PMP ) · lRP (RP ).

Now R/P is a complete local domain with algebraically closed residue field k = k̄

and M/PM is a finitely generated R/P -module. Applying Lemma A.13 and noting

that dimκ(P )(M/PM)⊗ κ(P ) = lRP (MP/PMP ), we have

l
(

(R/P )/(IR/P )
)
· lRP (MP/PMP ) ≤ l

(
M/PM

(IR/P )(M/PM)

)

≤ l

(
M

(I + P )M

)
≤ l(M/IM).
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Putting the above two inequalities together we get

l
(

(R/P )/(IR/P )
)
· lRP (MP ) ≤ l(M/IM) · lRP (RP ).

This finishes the proof of the Claim.

Finally, we plug in (A.4) to (A.3) and apply the associativity formula of multi-

plicity to get:

e(I,M) ≤
∑

d!e(R/P )lRP (RP )l(M/IM)

= d!l(M/IM)

 ∑
dimR/P=d

lRP (RP )e(R/P )


= d!e(R)l(M/IM).

This finishes the proof.

A.5 Some applications

Lemma A.16. If (R,m) a Noetherian local ring and M is a finitely generated quasi-

unmixed R-module, then

sup√
I=m

I⊆J⊆Ī

{
l(M/IM)

l(M/JM)

}
<∞

where Ī denotes integral closure of I.

Proof. With notation as in (A.5), we use (A.5) and (A.14) to see

l(M/IM) ≤ n(M)e(I,M) = n(M)e(J,M) ≤ n(M)d!e(R)l(M/JM).

In the above lemma, we particularly have in mind the case where J is a minimal

reduction of I or in characteristic p > 0 to show that

sup√
I=m
J=I∗

{
l(M/IM)

l(M/JM)

}
<∞
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where I∗ is the tight closure of I.

Lemma A.17. Let (R,m) be a local ring and M a finitely generated R-module. If

(y1, . . . , yn) ⊆ (x1, . . . , xd) are m-primary ideals of R, then for all 0 ≤ i ≤ d,

l(Hi(x1, . . . , xd;M)) ≤
d∑

k=0

(
d

k

)
l(Hi−k(y1, . . . , yn;M))

Proof. If f = f1, . . . , fs is any sequence of elements of R and f− = f1, . . . , fs−1, then

there is a short exact sequence for each 0 ≤ i ≤ s− 1

0→
Hi(f

−;M)

fsHi(f
−;M)

→ Hi(f ;M)→ AnnHi−1(f−;M)(fs)→ 0.

Using that each yj ∈ (x1, . . . , xd) so that yjHi(x1, . . . , xd, y1, . . . , yj−1;M) = 0 for

1 ≤ j ≤ n and y1Hi(x1, . . . , xd;M) = 0, it follows from the first injection in the short

exact sequence above that

l(Hi(x1, . . . , xd;M)) ≤ l(Hi(x1, . . . , xd, y1;M)) ≤ s ≤ l(Hi(x1, . . . , xd, y1, . . . , yn;M)).

Now using that for 1 ≤ j ≤ d− 1,

l

(
Hi(x1, . . . , xj, y1, . . . , yn;M)

xj+1Hi(x1, . . . , xj, y1, . . . , yn;M)

)
≤ l(Hi(x1, . . . , xj, y1, . . . , yn;M))

and that

l

(
Hi(y1, . . . , yn;M)

x1Hi(x1, y1, . . . , yn;M)

)
≤ l(Hi(x1, y1, . . . , yn;M)),

l(Hi(x1, . . . ,xd, y1, . . . , yn;M))

≤ l(Hi(x1, . . . , xd−1, y1, . . . , yn;M)) + l(Hi−1(x1, . . . , xd−1, y1, . . . , yn;M)).

and that, by iterating, the previous expression is bounded above by

d∑
k=0

(
d

k

)
l(Hi−k(y1, . . . , yn;M)),

completing the proof.
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Theorem A.18. Let (R,m, κ) be a Noetherian local ring of dimension d and M a

finitely-generated quasi-unmixed R-module. Then for every k ≥ 0,

sup√
(x1,...,xd+k)=m

0≤i≤d+k

{
l(Hi(x1, . . . , xd+k;M))

l(M/(x1, . . . , xd+k)M)

}
<∞.

Proof. Using A.17 and A.16, we may assume k = 0. As in the proof of (A.14),

we may make a flat local extension so that R is complete with algebraically closed

residue field. Let R/P1, . . . , R/Pk be the (not necessarily distinct) factors appearing

in a prime cyclic filtration of M . We note that for each 0 ≤ i ≤ d,

l(Hi(x1, . . . , xd;M))

l(M/(x1, . . . , xd)M)
≤
∑k

j=1 l(Hi(x1, . . . , xd;R/Pj))

l(M/(x1, . . . , xd)M)

≤
k∑
j=1

l(Hi(x1, . . . , xd;R/Pj))

l(M/((x1, . . . , xd) + Pj)M)
.

Now each M/PjM is a finitely generated faithful module over the complete local

domain R/Pj with infinite residue field. It then follows from (A.16) and (A.13) that

we may replace each term l(M/((x1, . . . , xd) + Pj)M) by l(R/((x1, . . . , xd) + Pj)R)

without impacting whether the supremum we study is finite. We have now reduced

to the case of M = R a complete local domain of dimension n ≤ d.

Fix A a regular local ring of which R is a module-finite extension. We will first

prove the claim for any finitely generated A-module N . Let (y1, . . . , yn) any system

of parameters in A. We note that for each i > 1 and each j ≥ 0,

Hi(y1, . . . , yn; syzj−1(N)) ∼= Hi−1(y1, . . . , yn; syzj(N)),

and so by taking syzygies repeatedly, may assume that i = 1. But then the long

exact sequence for homology gives

0→ H1(y1, . . . , yn;N)→ syz1(N)/(y1, . . . , yn)syz1(N),
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and we know that l(syz1(N)/(y1, . . . , yn)syz1(N)) ≤ νA(syz1(N)) · l(A/(y1, . . . , yn))

where ν denotes the minimal number of generators. With R playing the role of N ,

we have now bounded the desired ratio for systems of parameters coming from A.

We now scaffold the general case. Let (y1, . . . , yn) be a minimal reduction of

(x1, . . . , xd) ∩ A in A. Because (y1, . . . , yn) ⊆ (x1, . . . , xd) ∩ A ⊆ (y1, . . . , yn) in

A, we may use (A.16) to bound the
l(R/(y1, . . . , yn)R)

l(R/(x1, . . . , xd))
≤ νA(R) · l(A/(y1, . . . , yn))

l(A/(x1, . . . , xd) ∩ A)

independent of the choices of the xi and yj. It, therefore, suffices to bound the

l(Hi(x1, . . . , xd;R)) for 0 ≤ i ≤ d from above in terms of the l(Hj(y1, . . . , dn;R)) for

0 ≤ j ≤ n. The result now follows from (A.17) using that each yj ∈ (x1, . . . , xd) for

1 ≤ j ≤ n so that l(Hi(x1, . . . , xd;R)) ≤
∑n

k=0

(
n
k

)
l(Hi−k(y1, . . . , yn;R)) completing

the proof.

In [6], it is shown that whenever R is a complete local domain of character-

istic p > 0 and dimension d ≥ 1 with perfect residue field, for every parameter

ideal I = (x1, . . . , xd) of R,
Hi(x1, . . . , xd;R

1/pe)

l(R/I [pe])

e→∞−−−→ 0 for each 1 ≤ i ≤ d. The

characteristic-free application below together with the fact that Hi(x
pe

1 , . . . , x
pe

d ;R) ∼=

Hi(x1, . . . , xd;R
1/pe) for 0 ≤ i ≤ d shows that the convergence to 0 occurs indepen-

dent of the parameter ideal I.

Theorem A.19. Let R be a quasi-unmixed local ring of dimension d ≥ 1. For every

ε > 0, there exists t0 such that for all t ≥ t0, all parameter ideals I = (x1, . . . , xd) of

R, and all 1 ≤ i ≤ d,

Hi(x
t
1, . . . , x

t
d;R)

l(R/(xt1, . . . , x
t
d))

< ε

Proof. Fix R as in the statement of the theorem and ε > 0. We replace R by R(s) so

that the residue field of R is infinite. Because we consider only finitely many i, it is

sufficient to fix some 1 ≤ i ≤ d. By tensoring the dualizing complex for R with the
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Koszul complex on It = (xt1, . . . , x
t
d), we obtain a spectral sequence that bounds the

lengths of the Koszul homology modules Hi(x
t
1, . . . , x

t
d;R) in terms of the lengths of

the Koszul homology modules of the duals of the local cohomology modules H i
m(R)

with 1 ≤ i < d. More precisely,

l(Hi(x
t
1, . . . , x

t
d;R)) ≤

d−i∑
j=0

l(Hj(x
t
1, . . . , x

t
d;H

d−i−j
m (R)∨)).

The details of this computation can be found in [6]. The duals Hd−i−j
m (R)∨ for

1 ≤ i ≤ d and 0 ≤ j ≤ d − i have strictly lower dimension than R. By taking a

prime cyclic filtration of each Hd−i−j
m (R)∨, it suffices to show that

l(Hj(x
t
1, . . . , x

t
d;D))

l(R/It)
< ε/d.

for 0 ≤ j ≤ d − 1 and (D,m) a domain of dimension d′ ≤ d − 1 that is a proper

quotient of R. By A.18, we fix

CD,d = sup√
(x1,...,xd)=m

0≤i≤d

{
l(Hi(x1, . . . , xd;D))

l(D/(x1, . . . , xd)D)

}
<∞,

and by A.16 we fix

BD = sup√
I=m

I⊆J⊆Ī

{
l(D/I)

l(D/J)

}
<∞.

Let J = (y1, . . . , yd′) be a minimal reduction of I in D and Jt = (yt1, . . . , y
t
d′), and

compute for every t ≥ 1

l(Hj(x
t
1, . . . , x

t
d;D))

l(R/It)
≤ CD,dl(D/It)

l(R/It)
≤ CD,dl(D/Jt)

l(R/It)
≤ td

′
CD,dl(D/J)

l(R/It)

≤ td
′
CD,dl(D/J)

e(It;R)
≤ td

′
CD,dl(D/J)

tde(I;R)
≤ BDCD,dl(D/I)

te(I;R)
≤ BDCD,dl(D/I)

tn(R)l(R/I)
≤ BDCD,d

tn(R)
.

We may, therefore, take t0 ≥
dBDCD,d
n(R)ε

.

Lastly, we return to A.13 to give a result that omits the hypothesis that the

ideal of interest be integrally closed at the cost of precision in the inequality. Define
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Assh(M) = {P ∈ Ass(M) | dim(R/P ) = dim(R)} for any finitely-generated R-

module.

Corollary A.20. Let (R,m, κ) be a Noetherian local ring that is either equal char-

acteristic or in which char(κ) is a parameter, and let M be a finitely-generated R-

module of dimension d. Then sup√
I=m

{
`(R/I)

`(M/IM)

}
<∞.

Proof. Because completing does not change any of the length computations, we may

assume that R and M are complete. We may also replace R by R(t) so that the

residue field of R is infinite. Because R is either equal characteristic or char(κ) is

a parameter, R is module finite over some regular local ring A. Because l(R/I) ≤

νA(R)l(A/(I∩A)), we may without loss of generality assume that R is a regular local

ring. Let T be the torsion submodule of M and M = M/T . Because l(M/IM) ≥

l(M/IM), we may assume that M is a torsion-free R-module. Recall that because

R is a regular local ring with infinite residue field, sup√I=m

{
`(R/I)

e(I, R)

}
= 1. It then

follows from Theorem A.14 (to obtain the first inequality) that for every m-primary

ideal I of R

l(M/IM) ≥ e(I,M)

d!e(R)
≥ rkR(M)

e(I, R)

d!e(R)
≥ rk(M)

l(R/I)

d!e(R)
,

as desired.

The same cannot be hoped for if R is not module-finite over a regular ring. If

R = V [[x]]/(px) where V = (V, p) a complete discrete valuation ring, M = R/(x) ∼=

V , and In = (p − xn) for each positive integer n, then l(R/In) = n + 1 while

l(M/InM) = 1 for all n ≥ 1.
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