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ABSTRACT	
	

At	the	root	of	the	hematopoietic	hierarchy	reside	the	Janus-faced	hematopoietic	

stem	 cells	 (HSC),	 capable	of	 both	 self-renewal	 and	differentiation.	 	 Aging	 impairs	HSC	

function,	 leading	 to	 increased	 self-renewal,	 reduced	 homing	 ability	 and	 a	 myeloid	

differentiation	bias.	 In	addition,	hematopoietic	cells	acquire	somatic	mutations	as	they	

age,	frequently	affecting	epigenetic	modifier	genes.	In	this	dissertation	work,	I	provide	a	

comprehensive	characterization	of	epigenomic	changes	during	normal	human	HSC	aging	

and	demonstrate	that	aged	HSCs	undergo	widespread	reduction	in	H3K27ac,	H3K4me1	

and	H3K4me3,	with	little	change	in	H3K27me3.	Age-associated	loss	of	enrichment	of	the	

activating	 histone	marks	 H3K27ac	 and	 H3K4me3	was	 particularly	 prominent	 at	 active	

enhancers	and	bivalent	promoters,	respectively.	Functional	annotation	of	enhancers	lost	

with	age	suggests	that	enhancer	deregulation	may	contribute	to	HSC	myeloid	bias	and	

the	immune	impairments	observed	in	older	individuals.	Focal	changes	in	DNA	methylation	

were	also	observed	with	age,	affecting	WNT	and	cadherin	associated	pathways,	and	at	

regions	 that	may	predispose	 to	 leukemogenesis.	DNA	5-hydroxymethylation	displayed	

age-related	gains,	targeting	GATA	and	KLF	binding	sites.	Concurrent	with	these	epigenetic	

changes	were	 transcriptional	 downregulation	and	mis-splicing	of	 epigenetic	modifiers,	

spliceosome	 components,	 transcription	 factors,	 including	many	 in	 the	 KLF	 family,	 and	

LMNA,			which		is		mutated		in		Hutchinson-Gilford		progeria		syndrome.			Together,		these



	xiv	

	results	establish	that	multiple	levels	of	epigenetic	deregulation	with	age	converge	on	key	

hematopoietic	regulatory	genes	and	pathways	contributing	to	aged	HSC	dysfunction.	
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CHAPTER	1	
	

Introduction	
	
	
Hematopoietic	stem	cells	are	impaired	with	age	
	
Hematopoietic	stem	cells		
	

HSCs	give	rise	to	the	entire	hematopoietic	system,	yet	are	extremely	rare;	only	1	

in	3,000,000	human	bone	marrow	cells	is	transplantable1.	They	are	mostly	quiescent	and	

reside	 primarily	 in	 the	 bone	marrow	niche,	 close	 to	 sinusoids.	 In	 steady-state	murine	

hematopoiesis,	 it	 appears	 that	 HSC	may	 divide	 to	 self-renew	 only	 4-5	 times	 during	 a	

mouse’s	 lifetime2-4.	 	 However,	 in	 times	 of	 stress,	 HSC	 can	 rapidly	 be	 induced	 to	

proliferate5-7.	 Advances	 in	 flow	 cytometry	 and	 identification	 of	 numerous	 cell	 surface	

markers	have	allowed	for	the	isolation	of	fairly	pure	HSC.	However,	the	criteria	for	the	

panel	 of	 cell	 surface	 antigens	 that	 define	 a	 “HSC”	 is	 frequently	 refined,	making	 some	

comparisons	across	studies	difficult.	HSCs	include	both	long-term	HSCs	(LT-HSC;	in	mouse	

(Lineage-,	CD150+,	CD48-,	CD41-)	and	in	human	(Lineage-,	CD34+,	CD38-,	CD90+,	CD45RA-

))	which	are	capable	of	permanent	long-term	reconstitution	of	the	bone	marrow,	as	well	

as	short-term	HSCs	(ST-HSC)	which	provide	only	transient	bone	marrow	reconstitution.	

While	 the	 HSC	 is	 the	 only	 cell	 capable	 of	 stable	 long-term	 reconstitution,	 other	

progenitors	such	as	the	multipotent	progenitor	(MPP)	and	ST-HSC		most		likely		are		
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	the	main	cells	contributing	to	steady-state	hematopoiesis4,8.	However,	HSC	are	the	only	

hematopoietic	stem	cell	capable	of	both	self-renewal	and	differentiation.		

Previously,	it	was	thought	that	an	“HSC	is	an	HSC	is	an	HSC”,	but	both	murine	and	

human	studies	have	now	shown	that	HSCs	are	diverse	in	their	lineage	potential.	At	least	

three	types	of	HSC	have	been	identified:	lymphoid-biased	(Ly-HSC),	myeloid-biased	(My-

HSC)	 and	 balanced	 HSC	 (Bal-HSC).	 All	 three	 types	 are	 capable	 of	 differentiating	 into	

myeloid,	 lymphoid,	 or	 erythroid	 cells,	 but	 Ly-HSC	 give	 rise	 to	 a	 higher	 proportion	 of	

lymphoid/myeloid	cells	 in	vitro	and	 in	vivo	and	the	opposite	is	true	of	My-HSC.	True	to	

their	name,	Bal-HSC	have	no	predilection	towards	either	lineage9-13.	Recently,	a	number	

of	 studies	 have	 suggested	 that	 HSC	 can	 also	 be	 biased	 towards	 the	 megakaryocytic	

lineage.	von	Willebrand	factor	(vWF)	is	a	gene	that	is	highly	expressed	in	megakaryocytes.	

HSC	 that	 highly	 express	 vWF	 give	 rise	 to	 more	 platelets	 and	 myeloid	 cells	 when	

transplanted	compared	to	HSC	with	scant	vWF14,15.	Single-cell	RNA-seq	also	identified	a	

subset	 of	HSC	 that	 highly	 express	 vWF,	 and	 cluster	with	 the	megakaryocyte-erythroid	

progenitors	 (MEPs),	 common	myeloid	 progenitors	 (CMPs),	 and	 granulocyte-monocyte	

progenitors	(GMPs)16.	Finally,	using	genetic	lineage	tracing17,	a	subset	of	LT-HSC	that	is	

restricted	 to	 the	megakaryocytic/platelet	 lineage	was	 identified.	 In	 the	 bone	marrow,	

myeloid	 and	 platelet	 biased	 HSCs	 reside	 close	 to	 sinusoidal	 endothelial	 cells	 and	

megakaryocytes,	whereas	Ly-HSCs	are	found	closer	to	Nestin-GFP+	perivascular	cells18,	

highlighting	the	importance	of	the	stem	cell	niche	in	regulating	HSC	fate.	
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Loss	of	HSC	function	with	age	
	

Aging	is	progressive	decline	leading	to	an	increased	likelihood	of	death.		It	is	the	

main	 risk	 factor	 for	 numerous	 diseases,	 including	 cancer19.	 As	 the	world’s	 population	

ages,	research	into	aging	and	its	associated	pathologies	is	vital20.	Studies	in,	C.	elegans,	

Drosophila,	 and	 mice	 have	 shown	 that	 aging	 is	 plastic;	 select	 genetic,	 chemical,	 and	

dietary	interventions	can	increase	lifespan	and	healthspan21,22.	However,	it	is	unlikely	that	

any	one	gene	is	the	Philosopher’s	stone,	as	aging	is	a	complex	process	in	which	it	can	be	

difficult	to	differentiate	the	causes	from	the	symptoms.	López-Otín	and	colleagues	have	

identified	 nine	 hallmarks	 of	 aging:	 stem	 cell	 exhaustion,	 altered	 intercellular	

communication,	 genomic	 instability,	 telomere	 attrition,	 epigenetic	 alterations,	 loss	 of	

proteostasis,	 deregulated	 nutrient	 sensing,	 mitochondrial	 dysfunction,	 and	 cellular	

senescence19.	Many	of	these	features	have	been	observed	in	aged	HSC	and	contribute	to	

loss	of	function	with	age.		

Much	of	what	is	known	about	HSC	aging	has	been	derived	from	murine	studies,	

and	while	strain-to-strain	variations	have	been	observed,	it	is	clear	that	aged	murine	HSC	

have	 altered	 reconstitution	 and	 lineage	 potential.	 Initial	 studies	 with	 flow	 cytometric	

analysis	found	that	there	is	a	3-7-fold	increase	in	the	frequency	of	HSC	in	the	bone	marrow	

of	 aged	 (22-25	 mo)	 C57BL/6J	 and	 BALB/cByJ	 mice	 compared	 to	 young	 (2-7	 mo)23,24.		

Additional	experiments	using	the	cobblestone	area-forming	cell	 (CAFC)	assay,	 in	which	

colony	development	can	be	used	to	estimate	stemness	and	primitiveness,	showed	more	

strain-to-strain	variation	with	age.	Measuring	HSC	frequency	using	the	CAFC	assay,	there	

is	an	increase	in	HSC	with	age	(>20	mo)	in	C57BL/6J	mice,	but	a	decrease	in	HSC	number	
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in	DBA/2	mice25-27.	Notably,	while	many	other	strains	have	increased	HSC	frequency	with	

age,	the	degree	to	which	it	changes	seems	to	be	strain	dependent25,28.	

Even	though	the	number	of	HSCs	increases	with	age,	their	function	declines.	Aged	

HSC	 are	 one	 fourth	 as	 efficient	 as	 young	 HSC	 at	 homing	 to	 the	 bone	 marrow	 when	

transplanted	 into	 irradiated	 mice23,29.	 Aging	 also	 increases	 HSC	 self-renewal	 under	

transplant	conditions,	impairing	their	ability	to	differentiate	and	reconstitute	the	marrow	

long-term30-32.	 The	advent	of	 refined	HSC	 cell	markers	 and	 the	 competitive	 transplant	

assay	(in	which	HSC	are	co-transplanted	with	a	fixed	number	of	“normal”	cells)	allowed	

for	a	more	detailed	examination	of	aged	HSC	function.	These	assays	showed	that	aged	

HSCs	have	decreased	B-cell	output	with	increased	myeloid	cell	frequency	as	measured	by	

flow	cytometry	of	peripheral	blood30.	Aged	HSCs	also	have	an	increase	in	gene	expression	

of	myeloid	associated	genes,	with	a	concomitant	decrease	in	lymphoid	gene	expression33.	

This	 myeloid	 skewing	 with	 age	 may	 be	 caused	 in	 part	 by	 early	 alterations	 in	 HSC	

differentiation,	as	the	granulocyte-megakaryocyte	progenitors	(GMP)	are	increased	with	

age,	 whereas	 there	 is	 a	 decrease	 with	 age	 of	 common	 lymphoid	 progenitors	 (CLP)30.	

Notably,	while	the	ability	of	Ly-HSCs	or	My-HSCs	to	generate	their	respective	linages	does	

not	change	with	age,	the	composition	of	the	HSC	pool	does.	With	age,	there	is	an	increase	

in	My-HSCs,	and	over	a	50-fold	increase	in	platelet	biased	HSCs,	with	a	decrease	in	Ly-

HSCs	and	Bal-HSCs9,10,18.	This	suggests	that	with	age,	myeloid	and	platelet	biased	HSCs	

clones	become	dominant.	Intriguingly,	the	more	times	that	an	HSC	has	divided,	the	less	

multipotent	and	more	skewed	towards	myeloid	differentiation	it	becomes4.	 	This	hints	

that	epigenetic	alterations	may	be	at	play	in	HSCs	becoming	less	potent	with	age.	
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Whether	human	HSCs	have	the	same	functional	impairments	with	age	is	unclear.	

HSCs	 from	 aged	 donors	 do	 have	 reduced	 transplantation	 success	 in	 bone	 marrow	

transplants,	 suggesting	 there	 is	 loss	 of	 function	with	 age34.	 Similar	 to	 what	 has	 been	

observed	in	mice,	there	is	an	increase	in	HSC	frequency	in	human	bone	marrow	with	age35-

37.	However,	NSG	xenotransplant	studies	of	young	and	aged	human	HSC	into	humanized	

mice	have	generated	conflicting	results,	that	are	not	always	in	concordance	with	the	aged	

murine	 HSC	 phenotype.	 Unexpectedly,	 no	 decrease	 in	 HSC	 engraftment	 or	 donor	

chimerism	was	observed	in	transplanted	aged	human	HSC	compared	to	young35,36.	Yet	

like	the	murine	studies,	one	group	found	that	the	bone	marrow	myeloid/lymphoid	ratio	

was	increased	in	mice	transplanted	with	aged	HSC	(Lin-,	CD34+,	CD38-,	CD90+,	CD45RA-)	

compared	to	young.	This	age-associated	myeloid	skewing	was	confirmed	in	vitro	using	a	

stromal	 co-culture	 system35.	However,	 in	another	 study,	where	 less	pure	HSC	 (CD34+,	

CD38-)	were	used,	mice	transplanted	with	aged	HSC	displayed	no	deficiencies	in	lymphoid	

output	and	actually	had	fewer	bone	marrow	myeloid	cells	compared	to	mice	that	received	

young	HSCs.	Colony	assays	confirmed	the	decreased	myeloid	output	 in	aged	HSCs	and	

showed	 that	 while	 aged	 individuals	 had	 fewer	 lymphoid	 progenitors,	 B-cell	 (CD19+)	

production	 was	 not	 impaired	 with	 age.	 Perhaps	 the	 conflicting	 findings	 are	 due	 to	

differences	in	the	purity	of	“HSCs”	used	in	these	studies.	However,	in	a	recent	study	that	

utilized	a	stromal	co-culture	system	and	a	highly	pure	HSC	population	(Lin-,CD34+,	CD90+,	

CD45-,	CD123-),	similar	to	that	used	by	the	researchers	who	observed	myeloid	skewing,	

no	difference	 in	myeloid/lymphoid	output	with	age	was	 found37.	Given	 the	conflicting	

results	and	the	now	known	heterogeneity	within	the	HSC	compartment,	single-cell	assays	
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using	highly	pure	HSC	will	be	needed	in	order	to	determine	if	aged	human	HSC	are	truly	

skewed	towards	myeloid	differentiation	with	age.	

	

DNA	damage	with	HSC	aging	
	

Impaired	DNA	damage	response	(DDR)	has	long	been	implicated	in	cellular	decline	

with	aging.	Quiescence	protects	HSC	from	DNA	damage	during	cell	division,	but	HSC	in	

this	 state	 rely	 on	 error-prone	 non-homologous	 end-joining	 (NHEJ)	 for	 DNA	 damage	

repair38.	The	DDR	is	clearly	important	for	HSC	function.	However,	whether	increased	DNA	

damage	 with	 age	 contributes	 to	 HSC	 loss	 of	 function	 is	 somewhat	 controversial.	

Transplant	experiments	have	shown	that	mutations	in	genes	associated	with	NHEJ	(Ku80-

/-	 mouse	 model),	 nucleotide	 excision	 repair	 (XPDTTD	 mouse	 model),	 mismatch	 repair	

(MSH2-/-	mouse	model),	or	telomere	maintenance	(mTR-/-	mouse	model)	cause	decreased	

HSC	self-renewal	and	insufficient	long-term	reconstitution39-43.	Similar	to	what	has	been	

found	with	normal	aging	in	C57/B6	mice,	mutations	in	Ku80-/-,	mTR-/-,	or	XPDTTD	also	result	

in	a	higher	frequencies	of	HSC	in	the	bone	marrow	(irrespective	of	mouse	age)40.		

Some	of	the	most	compelling	evidence	for	increased	DNA	damage	with	HSC	aging	is	

from	studies	measuring	phosphorylated	histone	H2AX	(γ–H2AX),	which	 is	a	marker	 for	

unresolved	 DNA	 double	 stranded	 breaks	 (DSB)40,44-46.	 Over	 80%	 of	 aged	 (122	 weeks)	

murine	HSCs	have	γ–H2AX	foci,	compared	to	<20%	of	young	(10	weeks)	HSCs.		Of	the	aged	

HSCs	with	foci,	70%	of	cells	had	multiple	foci40.	This	phenomena	has	been	observed	in	

human	HSC	aging,	albeit	with	a	more	modest	difference	between	young	and	aged	HSCs47.	

Use	of	the	alkaline	comet	assay,	which	is	a	single	cell	gel	electrophoresis	assay	used	to	
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measure	DNA	single	stranded	and	double	stranded	breaks,	has	also	shown	an	increase	in	

DNA	damage	with	age44,48.	After	exposure	to	gamma	radiation,	highly	purified	aged	HSC	

had	significantly	more	DNA	damage	than	young	HSC,	although	30%	of	aged	HSC	had	no	

DSB.	 Importantly,	 this	DNA	damage	was	 repaired	once	HSC	 exited	 from	quiescence44.	

Another	 group	used	heterozygosity	 at	microsatellite	 repeats	 as	 a	 surrogate	marker	of	

DNA	mutations	and	found	that	there	is	2-3	fold	increase	in	the	number	of	mutations	in	

aged	hematopoietic	progenitors	compared	to	young46.		Increased	DNA	damage	with	age	

may	contribute	to	decreased	lymphopoiesis.	A	recent	study	found	that	period	circadian	

gene	 2	 (Per2)	 mediates	 the	 induction	 of	 DNA	 replication	 stress	 signaling	 in	 HSCs.	

Expression	of	Per2	was	increased	with	radiation	and	in	non-irradiated	aged	Ly-HSCs	(but	

not	in	My-HSCs).	Genetic	deletion	of	Per2	ablated	the	age-associated	decrease	in	Ly-HSCs	

and	 B-cells49.	 Thus	 Ly-HSCs	 may	 be	 more	 sensitive	 to	 DNA	 damage	 than	 My-HSCs.	

However,	more	studies	will	be	needed	to	identify	the	role	of	DNA	damage	in	controlling	

the	lineage	potential	of	HSCs	with	aging.	

	 Recent	work	has	challenged	whether	the	DDR	contributes	to	HSC	loss	of	function	

with	age.		It	was	found	that	in	response	to	radiation,	young	and	aged	HSCs	do	not	differ	

in	their	DDR,	and	both	age-groups	bypassed	the	G1-S	cell-cycle	checkpoint,	as	has	also	

been	observed	in	embryonic	stem	cells46.	Additionally,	no	co-localization	of	DNA	damage	

response	proteins	and	γ–H2AX	in	HSC	has	been	observed,	and	γ–H2AX	has	been	shown	

to	be	associated	with	silenced	ribosomal	genes	in	HSC,	indicating	that	increased	γ–H2AX	

with	age	may	not	be	due	to	increased	DNA	damage45.		
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Metabolism	and	oxidative	stress	in	HSC	aging	
	

The	free	radical	theory	of	aging,	that	endogenous	metabolic	processes	generate	free	

radicals	 which	 contribute	 to	 aging,	 was	 first	 proposed	 in	 195650.	 In	 regards	 to	 HSCs,	

alterations	of	reactive	oxygen	species	(ROS)	and	cellular	metabolism	do	contribute	to	loss	

of	function,	although	how	they	are	involved	in	HSC	aging	is	less	clear.	The	hypoxic	niche	

protects	HSCs	from	oxidative	stress,	as	they	are	extremely	sensitive	to	ROS51-53.	Increased	

levels	of	ROS	induce	decreased	colony	forming	ability	in	vitro	and	reduced	reconstitution	

in	 vivo53.	 Studies	 using	mice	with	 a	 genetic	 deletion	 of	 Ataxia	 telangiectasia	mutated	

(ATM)	a	kinase	that	is	vital	for	maintaining	genomic	stability	in	response	to	DNA	damage,	

or	 conditional	 knockouts	 of	 FOXO1,	 FOXO3,	 and	 FOXO4,	 transcription	 factors	 that	

regulate	stress	resistance,	apoptosis,	and	cell	cycle	arrest,	have	shown	the	influence	of	

ROS	 on	 HSC	 differentiation	 and	 survival.	 Conditional	 deletion	 of	 FOXO1,	 FOXO3,	 and	

FOXO4	 (FoxO1/3/4L/L),	 causes	 myeloid	 expansion	 and	 apoptosis	 of	 the	 LT-HSC	

compartment.	 This	 phenotype	 is	 mediated	 in	 part	 by	 ROS,	 as	 treatment	 with	 the	

antioxidant	 N-acetyl-L-cysteine	 (NAC)	 restores	 HSC	 numbers	 and	 differentiation54.	

Similarly,	 ATM-/-	 HSCs	 have	 decreased	 self-renewal	 and	 repopulating	 ability,	 but	

treatment	with	NAC	abolishes	these	defects55.	Additionally,	when	HSCs	from	young	mice	

are	FACS	sorted	by	ROS	activity,	ROS-high	HSCs	display	decreased	reconstitution	ability,	

increased	mTOR	activity,	and	myeloid-bias,	all	characteristics	of	older	HSCs.56	An	initial	

study	of	hematopoietic	progenitors	(Lineage-,	Sca1+,	cKit+)	found	that	young	HSCs	have	

very	low	levels	of	ROS,	but	that	intercellular	ROS	increases	with	age53.	However,	a	more	
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recent	 study	 using	 a	 more	 purified	 HSC	 population,	 reported	 that	 aged	 HSCs	 have	

decreased	levels	of	ROS	compared	to	young57.	

Unlike	 differentiated	 cells,	 HSC	 utilize	 anaerobic	 glycolysis	 rather	 than	 oxidative	

phosphorylation	(OXPHOS)58-60.	While	not	as	energetic	as	OXPHOS,	glycolysis	generates	

less	ROS	and	may	be	an	adaptation	to	lower	oxygen	availability	in	the	niche61.	However,	

in	order	to	differentiate,	HSC	must	switch	to	OXPHOS,	which	generates	more	ATP62.	With	

age,	murine	HSCs	show	signs	of	mitochondrial	damage,	but	are	more	metabolically	active	

than	young	HSCs.	HSCs	from	aged	(24-28	months)	have	increased	NAPDH	and	ATP	levels	

with	more	OXPHOS	and	less	glycolysis	compared	to	young	(6-12	weeks)	HSC57.	Autophagy	

is	 necessary	 to	 clear	mitochondria	 and	 preserve	HSC	 regenerative	 capacity.	 HSC	 from	

mice	lacking	autophagy-related	12	(Atg12)	have	a	metabolic	profile	similar	to	aged	HSCs,	

are	myeloid	biased,	and	have	decreased	engraftment.	Furthermore,	about	33%	of	aged	

HSCs	have	high	autophagy	levels	and	are	functionally	similar	to	young	HSCs57.	Of	note,	we	

found	 that	 loss	 of	 autophagy	 drives	 these	 metabolic	 changes	 through	 epigenetic	

alteration	of	cytosines.	We	identified	differentially	methylated	regions,	consisting	of	162	

hypermethylated	and	783	hypomethylated,	in	Atg12	knockout	mice	compared	to	control.	

Notably,	regions	that	became	hypomethylated	with	loss	of	Atg12	were	associated	with	

metabolic	pathways	(Figure	S1)57.	

Studies	of	the	metabolic	mammalian	target	of	rapamycin	(mTOR)	signaling	pathway	

also	indicate	the	importance	of	metabolism	in	HSC	aging.	mTOR	signaling	is	increased	in	

HSCs	from	elderly	mice,	and	inhibition	of	mTOR	signaling	 improves	aged	HSC	function.	

HSCs	 from	 mice	 treated	 with	 rapamycin,	 an	 mTOR	 inhibitor,	 show	 increased	
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reconstitution	 ability,	 and	 decreased	 myeloid	 bias,	 resembling	 HSCs	 from	 younger	

animals63.	Conversely,	 increased	mTOR	signaling,	caused	by	deletion	of	tumor	sclerosis	

complex	(TSC),	phenocopies	HSC	aging64,65.	However,	a	recent	study	using	wild-type	HSCs	

of	the	same	purity	and	mouse	strain	as	the	previous	study,	found	no	increase	in	mTOR	

signaling	 with	 HSC	 age.	 Additionally,	 they	 observed	 decreased	 protein	 synthesis	 with	

age57.	In	summary,	while	increased	levels	of	ROS	do	cause	aging	phenotypes,	and	HSCs	

are	more	metabolically	active	with	age,	there	is	still	controversy	whether	ROS	increases	

in	aged	HSCs	and	if	age-associated	changes	involve	increased	mTOR	signaling.			

There	is	mounting	evidence	that	metabolism	may	contribute	to	HSC	lineage	fate	and	

myeloid	 bias	 with	 age.	 My-HSCs	 have	 decreased	 expression	 of	 glycolytic	 enzymes	

compared	to	Ly-HSCs,	and	Ly-HSCs	and	MY-HSCs	can	be	isolated	based	on	their	expression	

of	GRP78,	the	receptor	for	Cripto,	a	protein	known	to	regulate	glycolysis10,66.	Additionally,	

it	appears	that	Ly-HSCs	may	be	more	sensitive	to	mitochondrial	stresses.	Murine	studies	

of	 mitofusion2	 (Mfn2),	 which	 is	 involved	 in	 mitochondrial	 fusion,	 showed	 that	

perterbutations	of	Mfn2	largely	affect	only	HSC	of	the	lymphoid	potential67.		

	

Altered	WNT	signaling	and	loss	of	polarity	
	

WNT	signaling	is	critical	for	hematopoiesis.	Modulation	of	WNT	signaling	alters	HSC	

self-renewal	and	reconstitution	ability68,69.	 	HSCs	express	canonical	Wnt3a,	as	well	as	a	

number	of	other	WNT	proteins70.	With	age,	 levels	of	Wnt3a	do	not	 change	 in	murine	

HSCs,	however	there	is	increased	expression	of	Wnt5a	in	middle-aged	(10	mo)	and	old	

(20-24	mo)	HSCs	compared	to	young71.		Overexpression	of	Wnt5a	in	young	HSCs	results	
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in	an	aged	phenotype,	HSCs	have	a	decreased	regenerative	capacity	and	myeloid	skewing.	

Wnt5a	 mediates	 these	 effects	 through	 the	 Rho	 GTPase	 CDC42,	 which	 is	 critical	 for	

maintaining	cell	polarity,	or	the	distribution	of	proteins	and	organelles.71,72	Like	Wnt5a,	

expression	of	CDC42	is	increased	with	age72.		Increased	non-canonical	WNT	signaling	with	

age	 may	 contribute	 to	 epigenetic	 remodeling	 of	 HSCs.	 Aged	 HSCs	 have	 uneven	

distribution	 of	 H4K16ac	 within	 the	 nucleus.	 This	 histone	 modification	 is	 involved	 in	

regulating	 replicative	aging	 through	 the	NAD+	dependent	histone	deacetylase	SIRT273.	

Inhibition	 of	 the	 Wnt5a	 target	 CDC42	 in	 old	 HSC	 restores	 H4K16ac	 polarity	 and	

corresponds	 with	 improved	 function72.	 This	 suggests	 that	 there	 is	 loss	 of	 epigenetic	

regulation	in	aged	HSC,	which	contributes	to	impaired	function.		

In	summary,	HSCs	are	highly	quiscent	cells	that	reside	in	the	bone-marrow	niche	and	

can	rapidly	be	induced	to	proliferate	under	times	of	stress.	While	all	HSCs	are	capable	of	

both	self-renewal	and	differentiation,	a	growing	amount	of	evidence	suggests	that	HSCs	

can	 be	 “biased”	 towards	 different	 cell	 fates.	 With	 age,	 HSCs	 display	 increased	 self-

renewal,	decreased	reconstitution	ability,	and	an	increased	predispositon	to	develop	into	

myeloid,	rather	than	lymphoid	cells.	Aged	HSCs	also	become	more	metabolically	active	

and	may	 have	 impairments	 in	 the	 DNA	 damage	 reponse	 (Figure	 1.1).	 However,	most	

studies	of	HSC	aging	have	utilized	murine	models,	which	have	strain-to-strain	variations	

of	 aging	phenotypes,	 and	 it	 is	 not	 clear	 if	mouse	aging	 fully	 recapitulates	human	HSC	

aging.	
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The	aging	hematopoietic	system	
	
Impaired	immunity	with	aging	
	

Older	 individuals	 do	 not	 respond	 as	 vigorously	 to	 immune	 challenges	 as	 their	

younger	 counterparts.	 With	 age,	 there	 is	 an	 increase	 in	 the	 frequency	 of	 bacterial	

infections	 from	 species	 such	 as	 Mycobacterium	 tuberculosis	 and	 Streptococcus	

pneumonia	and	an	increase	in	susceptibility	to	viral	infections	such	as	herpes	zoster	and	

influenza74-78.	Furthermore,	the	mortality	rate	for	some	of	these	infections	is	2-3	times	

higher	in	the	elderly	compared	to	younger	individuals74-78.	Prevention	of	infection	in	older	

people	 is	 further	 complicated	 because	 the	 elderly	 have	 a	 reduced	 response	 to	

vaccination79.	This	deficient	 immune	response	 is	due	in	part	to	altered	production	and	

function	of	lymphocytes	with	age.	

Perhaps	the	most	macroscopic	change	with	immune	aging	is	the	reduction	in	the	

size	of	the	thymus,	or	age-related	thymic	involution.	The	thymus	is	composed	of	two	main	

compartments,	 the	 thymic	 epithelial	 space	 (TES),	 which	 is	 the	 primary	 site	 for	

thymopoiesis,	or	the	production	of	mature	T-cell	lymphocytes,	and	the	perivascular	space	

(PVS),	 which	 does	 not	 contain	 developing	 lymphocytes.	 In	 humans,	 thymic	 involution	

begins	as	early	as	1-year	old	and	accelerates	around	the	onset	of	puberty80.	However,	the	

overall	size	of	the	human	thymus	is	not	as	drastically	reduced	with	age	compared	to	that	

of	the	mouse,	as	adipocytes	accumulate	in	the	PVS	with	age80.	Yet	the	TES	decreases	at	

rate	of	about	3%	per	year	through	middle	age	(45	yo)	and	1%	a	year	thereafter80,81.	Even	

though	the	thymus	size	is	reduced	with	age,	it	is	still	capable	of	producing	healthy	T-cells,	

although	at	a	much	lower	rate	than	that	of	a	younger	individual82,83.		
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While	thymic	production	of	T-cells	is	reduced	with	age,	in	adult	humans	most	T-

cell	production	is	dependent	on	the	peripheral	proliferation	of	T-cells84-86.	However,	there	

is	alteration	of	both	the	CD4+	and	CD8+	T-cell	populations	with	age.		By	measuring	T-cell	

receptor	beta	(TCRB)	sequences,	it	was	found	that	there	is	a	2-5-fold	decrease	in	the	naïve	

T-cell	repertoire	with	aging87.	Furthermore,	with	age	there	is	an	oligoclonal	expansion	of	

the	naïve	and	memory	CD8+	populations87-89.	This	reduced	diversity	within	the	T-cell	pool	

may	limit	an	aged	individual’s	response	to	newly	encountered	viruses.		

Not	only	is	the	T-cell	lineage	affected	with	age,	but	so	too	is	the	B-cell	lineage.	B-

cells	 isolated	 from	human	peripheral	blood	of	aged	donors	show	reduced	class-switch	

recombination	 compared	 to	 those	 from	 younger	 donors90.	 Additionally,	 antibodies	

produced	by	B-cells	from	elderly	individuals	have	reduced	specificity	and	affinity	for	their	

target	antigens90,91.	Like	CD8+	cells,	B-cells	also	show	an	increase	in	clonality	with	aging92.		

Taken	 together,	 impairments	 in	 lymphocyte	 function	 contribute	 to	 loss	 of	 adaptive	

immunity	with	age.		

	

Increase	in	cytopenias	and	clonal	hematopoiesis		
	

With	age,	 there	 is	 an	 increase	 in	 the	 rate	of	 clonal	hematopoiesis	 and	 cytopenias.	

Specifically,	aged	individuals	have	increased	rates	of	anemia.	Data	generated	from	39,695	

Americans	revealed	that	10%	of	men	and	11%	of	women	over	65	years	old	are	anemic,	

with	the	frequency	increasing	to	greater	than	20%	in	people	over	85	years	old93.	Anemia	

can	pose	a	serious	health	risk;	elderly	anemic	individuals	have	increased	rates	of	“frailty”	

and	 mortality	 compared	 to	 non-anemic	 individuals94,95.	 	 Notably,	 while	 many	 of	 the	
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incidences	of	anemia	 in	the	elderly	are	due	to	nutritional	deficiency,	up	to	33%	of	the	

cases	have	unknown	causes93,96.	

Currently,	cytopenias	of	unknown	causes	(such	as	anemia)	that	cannot	be	classified	

as	 a	 hematological	 disorder	 or	 myelodysplastic	 syndrome	 (MDS)	 are	 categorized	 as	

idiopathic	 cytopenia	 of	 undermined	 significance	 (ICUS)97.	 A	 recent	 prospective	 study	

profiled	154	patients	with	ICUS	(median	age=53)	and	found	that	25%	went	on	to	develop	

a	myeloid	neoplasm98.		Notably,	examination	of	somatic	mutations	showed	that	36%	of	

patients	with	 ICUS	had	one	or	more	mutations,	which	has	previously	been	defined	as	

clonal	cytopenia	of	undetermined	significance	(CCUS)97,99.	The	epigenetic	modifiers	TET2,	

ASXL1,	 and	 DNMT3A	 were	 some	 of	 the	 genes	 most	 frequently	 mutated	 in	 these	

individuals,	and	they	were	older	than	those	with	ICUS	alone	(median	age=68).	

	 A	 number	 of	 recent	 studies	 have	 shown	 that	 this	 phenotype	 of	 clonal	

hematopoiesis	(one	progenitor	giving	rise	to	a	disproportionately	high	number	of	mature	

cells)	 with	 somatic	 mutations	 in	 epigenetic	 modifiers	 is	 quite	 frequent	 with	 normal	

aging100-104.	 In	a	study	by	Jaiswal	et	al.,	whole	exome	sequencing	was	performed	using	

peripheral	blood	DNA	from	17,182	individuals	ranging	from	20-108	years	old.	They	found	

a	low	incidence	of	mutations	in	people	<40	years	old,	but	an	increase	in	the	frequency	of	

mutations	with	age.	Amongst	individuals	aged	70-79,	9.5%	had	a	clonal	mutation,	with	

the	majority	of	variants	occurring	in	DNMT3A,	TET2,	and	ASXL1101.	These	findings	have	

been	recapitulated	in	a	number	of	other	studies,	and	the	phenomena	dubbed	as	clonal	

hematopoiesis	of	indeterminate	potential,	or	CHIP.	Similarly,	it	is	also	referred	to	as	age	

related	clonal	hematopoiesis	(ARCH)105.	It	is	postulated	that	the	incidence	of	CHIP	is	even	
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higher	 than	 initially	 reported	 due	 to	 the	 moderate	 sequencing	 depths	 of	 the	 initial	

studies100,103,104,106.	 While	 individuals	 with	 CHIP	 do	 not	 have	 any	 diagnosable	

hematological	ailment,	they	have	11	times	the	risk	of	developing	a	hematological	cancer,	

although	the	rate	of	progression	is	low	(0.5-1%	per	year)101.	However,	people	with	CHIP	

have	twice	the	risk	of	developing	coronary	heart	disease	compared	to	those	who	do	not	

have	CHIP102.	Thus,	while	CHIP	is	fairly	common	with	age	and	does	not	pose	an	immediate	

hematologic	risk,	it	is	still	of	clinical	significance.		

	

Myeloid	malignancies	in	aged	individuals	
	
	 Advanced	age	is	associated	with	an	increase	incidence	of	myeloid	malignancies,	

whereas	cancers	of	the	lymphoid	lineages	are	more	frequent	in	children	and	young	adults	

(Figure	1.2).	Acute	myeloid	leukemia	(AML)	is	the	most	common	acute	leukemia	in	adults,	

and	the	average	AML	patient	age	at	time	of	diagnosis	is	68	years	old107,108.	Cytogenetic	

abnormalities	and	mutations	in	NRAS,	FLT3,	TP53,	and	the	epigenetic	modifiers	DNMT3A,	

TET2,	ASXL1,	and	 IDH1/2	are	frequent	in	AML.	For	AML	diagnosis,	a	patient	must	have	

>20%	 blasts	 in	 the	 bone	 marrow,	 or	 one	 of	 the	 following	 cytogenetic	 abnormalities	

t(15;17),	t(8;21),	inv(16),	or	t(16;16)109.	Chemotherapy	is	the	standard	treatment	for	AML,	

however	older	individuals	have	higher	rates	of	treatment	related	mortality	and	a	poorer	

prognosis	 compared	 to	 people	 diagnosed	 at	 a	 younger	 age109.	 Treatment	 of	 AML	 is	

especially	 difficult	 due	 to	 the	 existence	 of	 leukemic	 stem	 cells	 (LSC),	 rare	 pathogenic	

hematopoietic	progenitors	that	harbor	mutations	and	are	not	completely	eradicated	with	

standard	chemotherapy110.	
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Another	age	related	myeloid	malignancy	is	myelodysplastic	syndrome	(MDS).	In	

the	United	States,	the	incidence	of	MDS	in	people	under	40	years	old	is	1	case	per	100,000	

individuals,	but	this	rate	increases	to	20	in	100,000	in	people	aged	70-79	years	old111.	MDS	

is	 a	 heterogeneous	 disease,	 in	 which	 patients	 present	 with	 peripheral	 cytopenias,	

hypocellular	 dysplastic	 bone	 marrow,	 and	 possible	 cytogenetic	 or	 mutational	

abnormalities112.	 Ultimately,	 this	 disease	 progresses	 to	 bone	 marrow	 failure	 or	 AML.	

Mutations	 in	 over	 40	 genes	 have	 been	 observed	 in	 MDS,	 with	 the	 spliceosome	

components	SRSF2,	SF3B1,	and	U2AF1,	and	epigenetic	modifiers	DNMT3A,	TET2,	ASXL1	

being	 the	most	 often	mutated113.	 Notably,	 aberrant	modification	 of	 cytosine	 bases	 is	

found	 in	 MDS	 and	 AML	 (see	 “Alterations	 in	 cytosine	 modifications	 in	 myeloid	

malignancies”).		

	 In	summary,	with	age	there	is	an	increase	in	clonal	hematopoiesis	and	unexplained	

cytopenias,	impaired	adaptive	immunity,	and	an	increased	frequency	to	develop	myeloid	

malignancies	 (Figure	 1.3).	 While	 both	 humans	 and	 mice	 have	 a	 decline	 in	 immune	

function	 with	 age,	 de	 novo	 CHIP,	 MDS,	 or	 AML	 have	 not	 been	 reported	 in	 mice,	

highlighting	 the	 differences	 in	 aging	 hematopoiesis	 amongst	 species.	 	 Although	 it	 is	

unclear	how	aging	predisposes	for	myeloid	malignancies,	it	is	likely	that	age-associated	

HSC	myeloid	bias	is	a	driving	factor.	Additionally,	given	the	recent	evidence	that	some	of	

the	 same	 epigenetic	modifiers	 are	mutated	with	 age	 and	 in	myeloid	 neoplasms,	 it	 is	

possible	 that	 changes	 in	 the	 epigenetic	 landscape	 with	 age	 primes	 cells	 for	 myeloid	

pathogenesis.		
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Epigenetics	 	
	
A	primer	on	epigenetics	
	

What	determines	cell	 identity?	A	HSC,	cardiomyocyte	and	β-cell	all	 contain	 the	

same	genetic	information,	yet	only	one	of	them	is	capable	of	hematopoiesis.	The	answer	

to	this	cell-fate	riddle	is	epigenetics,	heritable	modifications	to	the	genome	that	do	not	

involve	alteration	of	the	DNA	sequence	itself114.	The	term	epigenetics	was	coined	in	1942	

by	 C.H.	Waddington	 as	 a	means	 to	 describe	 how	 development	 and	 genes	 interact	 to	

produce	a	phenotype115.	In	its	contemporary	form,	epigenetics	encompasses	an	intricate	

multi-level	system	of	gene	regulation;	non-coding	RNA,	and	chemical	modifications	of	the	

proteins	 that	 package	 DNA,	 or	 even	 the	 DNA	 bases	 themselves,	 can	 all	 alter	 gene	

expression.	

	 In	order	to	accommodate	the	large	amount	of	DNA	within	each	diploid	cell	(up	to	

2	meters!),	there	is	a	complex	system	of	DNA	organization116.	DNA	molecules	are	wrapped	

around	a	protein	octamer	known	as	the	nucleosome	core.	Each	nucleosome	is	composed	

of	two	each	of	histones	H2A,	H2B,	H3,	and	H4.	There	is	also	a	fifth	histone	type,	linker	H1,	

which	binds	 to	 the	outside	of	 the	nucleosome	core.	About	147	base	pairs	of	DNA	are	

wrapped	around	each	nucleosome,	compacting	the	DNA	7-fold117-120.	The	core	histones	

are	highly	conserved	across	species,	highlighting	their	importance	for	cell	viability121.		In	

addition,	 there	 are	 numerous	 histone	 variants,	 such	 as	 H3.3,	 which	 play	 a	 role	 in	

development	and	cancer122.	Together,	the	histones	and	DNA	compose	chromatin,	which	

can	be	highly	condensed	(heterochromatin)	or	open	(euchromatin).	Heterochromatin	is	

often	associated	with	the	nuclear	 lamina,	although	 localization	to	the	 lamina	does	not	
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always	equate	with	gene	silencing123-126.	Chromatin	is	further	organized	into	topological	

associated	domains	(TADs),	large	megabase	sized	regions	of	interactive	chromatin127-129.	

	

The	histone	code	

Both	the	histone	globular	domain	and	N-terminal	tail	can	be	altered	through	the	

addition	 of	 post-transcriptional	 modifications	 (PTM).	 These	 modifications	 include	

acetylation,	 methylation,	 ubiquitinylation,	 propionylation,	 butyrylation,	 sumoylation,	

phosphorylation,	ADP	 ribosylation,	and	deamination,	and	 taken	 together	generate	 the	

“histone	code”130-138.		This	code	serves	two	purposes,	to	alter	chromatin	structure	and	to	

recruit	other	regulatory	factors.	Though	there	are	many	histone	PTM,	for	the	purpose	of	

this	study,	the	focus	will	be	on	lysine	modifications	of	histone	3	(H3)	which	are	maintained	

by	histone	“writers”	and	“erasers”.		

In	regards	to	acetylation,	histone	acetyl	transferases	(HATs)	deposit	acetyl	groups,	

whereas	histone	deactelyases	 (HDACs)	 remove	 the	modification.	 There	are	 two	major	

classes	of	HATs,	the	more	nuclear	Type-A	HATs	and	the	predominantly	cytoplasmic	Type-

B	 HATs.	 The	 Type-A	 HATs	 can	 be	 subdivided	 into	 three	 families	 based	 on	 sequence	

homology:	MYST,	GNAT,	and	CBP/p300139.	The	HDACs	are	a	diverse	group	of	proteins	that	

can	be	divided	into	four	classes,	practically	named	Class	I,	II,	 III,	and	IV.	Class	III	HDACs	

include	the	NAD+	dependent	Sirtuin	family140.	It	is	important	to	note	that	many	histone-

modifying	 enzymes	 exist	 in	 large	 multi-protein	 complexes,	 and	 perturbations	 of	 one	

component	can	affect	another141,142.	There	are	9	lysine	residues	on	human	H3	that	have	

been	shown	to	be	modified,	K4,	K9,	K14,	K18,	K27,	K36,	K56,	and	K79.	All	but	K56	and	K79	
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are	located	on	the	histone	tail.	 In	general,	histone	acetylation	is	associated	with	active	

gene	 transcription,	 however	 there	 are	 distinct	 roles	 for	 each	 acetyl	 modification	

depending	on	which	residue	it	is	present143-148.	For	example,	acetylation	of	lysine	56	of	

histone	3	 (H3K56)	 is	 important	 for	 reassembly	of	nucleosomes	during	 replication,	and	

H3K14ac	is	actually	associated	with	gene	repression	when	co-localized	with	H3K4me1	or	

H3K9me3149-151.	One	of	the	most	well	studied	PTM	is	H3K27ac,	which	is	found	at	active	

enhancers	(see	below)152.	

While	a	lysine	can	only	contain	one	acetyl	group,	mono,	di,	or	tri-methylation	of	

histone	 lysine	 residues	 is	 possible.	 Histone	 methylation	 is	 accomplished	 by	 histone	

methyltransferases	(KMTs).	All	but	one	of	the	KMTs	contains	a	Su(var)3–9	Enhancer	of	

Zeste	and	Trithorax	(SET)	domain153,154.	The	H3K79	methyltransferase	DOT1L	is	the	only	

KMT	 lacking	 a	 SET	 domain155-157.	 The	 first	 lysine	 demethylase	 (KMD),	 lysine-specific	

demethylase	 1	 (LSD1),	was	 not	 discovered	 until	 2004158.	 In	 the	 following	 years,	many	

more	 KMDs	 were	 discovered.	 Unlike	 LSD1,	 the	 other	 KMDs	 have	 a	 Jumonji	 C	 (JmjC)	

domain	and	use	Fe(II)	and	α-ketoglutarate	as	cofactors159,160.	Like	the	HATs	and	HDACs,	

many	KMTs	and	KDM	exist	in	multi-protein	complexes161-165.	Depending	on	which	amino	

acid	of	H3	is	modified,	 lysine	methylation	can	correspond	with	 increased	or	decreased	

gene	 transcription.	 For	 instance,	 tri-methylation	 of	 lysine	 27	 (H3K27me3)	 by	 the	 KMT	

enhancer	 of	 Zeste	 protein	 (EZH2)	 and	 the	 polycomb	 repressive	 complex	 (PRC2)	 is	

associated	with	gene	silencing	at	tissue	specific	sites	(facultative	chromatin)164,166,167.	Like	

H3K27me3,	tri-methylation	of	lysine	9	(H3K9me3)	by	SETDB1,	SUV39H1,	or	SUV39H2,	is	a	

marker	 of	 facultative	 heterochromatin.	 However,	 H3K9me3	 is	 also	 a	 marker	 of	
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constitutive	heterochromatin,	regions	that	are	silenced	across	multiple	cell	types153,168,169.	

In	contrast,	H3K4me2	and	H3K4me3	are	enriched	at	promoters	of	genes	that	are	actively	

transcribed,	 while	 H3K4me1	 is	 associated	 with	 poised	 enhancers145,170-173.	 Finally,	 tri-

methylation	 of	 H3K36,	 seems	 to	 be	 important	 for	 both	 transcription	 initiation	 and	

elongation174.	

After	a	lysine	has	been	modified,	the	“readers”	or	effector	proteins	either	initiate	

changes	 in	 chromatin	 accessibility	 or	 recruit	 other	 regulators.	 A	 number	 of	 different	

domains	 can	 recognize	 methylated	 or	 acetylated	 lysines,	 including	 the	 bromo,	 PHD,	

chromo,	 tudor,	 and	 PWWP	 domains175-185.	 Readers	 can	 recruit	 proteins	 for	 gene	

transcription,	 RNA	 processing,	 and	 chromatin	 remodeling186.	 For	 example,	 the	

transcription	factor	TFIID	is	recruited	to	H3K4me3	via	TATA-binding	polypeptide	factor	3	

(TAF3),	leading	to	transcription	inititation187,188.			

	

Bivalent	Promoters	
	
	 Histone	modifications	often	work	in	concert	to	control	gene	expression.	One	such	

example	 is	bivalent	promoters,	which	paradoxically	are	marked	by	both	H3K4me3	and	

H3K27me3.	 These	 regions	 were	 first	 observed	 in	 embryonic	 stem	 cells	 (ESC)	 using	

sequential	ChIP-seq	experiments.	Bernstein	et	al.	 found	that	while	the	majority	of	ESC	

transcription	start	sites	(TSS)	contained	H3K4me3	alone,	a	fraction	was	marked	by	both	

H3K4me3	and	H3K27me3.	Genes	with	bivalent	promoters	tended	to	be	lowly	expressed	

developmental	 transcription	 factors.	 Differentiation	 of	 ESC	 along	 the	 neural	 pathway	

showed	that	bivalent	genes	lost	either	H3K4me3	or	H3K27me3,	indicating	that	bivalency	
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represents	a	“poised”	state	where	genes	can	be	turned	off	or	on	with	differentiation.	This	

study	originally	concluded	that	because	most	genes	that	are	bivalently	marked	in	ESC	are	

not	 marked	 as	 such	 in	 differentiated	 cells,	 that	 bivalent	 promoters	 are	 unique	 to	

pluripotent	cells189.	However,	later	studies	have	shown	this	genomic	feature	is	present	in	

other	cell	types190-192.		

	 Given	the	role	of	bivalent	promoters	in	silencing	transcription	factors,	they	play	

an	important	role	in	development.	Most	evidence	for	this	has	come	from	studies	of	PRC2	

deficient	ESC.	Disruption	of	the	PRC2	complex	alters	H3K27me3	at	bivalent	promoters,	

increases	expression	of	lineage-specific	genes,	and	causes	aberrant	ESC	differentiation193-

198.	In	non-pluripotent	cells,	loss	of	bivalency	can	contribute	to	cancer	pathogenesis.	For	

instance,	ectopic	expression	of	 the	transcription	 factor	Lim-only	1	 (LMO1)	 is	known	to	

cause	T-ALL199.	 In	normal	T-cells,	the	LMO1	promoter	is	bivalently	marked	and	there	is	

low	 expression	 of	 LMO1.	 However,	 in	 T-ALL,	 there	 is	 loss	 of	 H3K27me3	 at	 the	 LMO1	

promoter,	 correlating	 with	 increased	 LMO1	 expression200.	 Thus,	 H3K27me3	 acts	 as	 a	

brake	at	bivalent	promoters,	and	 loss	of	this	mark	can	 lead	to	 increased	expression	of	

oncogenes.		

	

Enhancers	
	
	 Mounting	research	over	the	past	few	decades	has	shown	the	importance	of	non-

promoter	regions	in	regulating	gene	expression.	Enhancers	are	long-range	cis-regulatory	

elements	 that	 unlike	 promoters	 can	 control	 gene	 expression	 from	 great	 distances.	

Enhancers	were	first	documented	in	1981,	when	it	was	found	that	cis	viral	SV-40	genes	
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could	increase	beta-globin	gene	expression	by	200-fold201.	Later	studies	in	fish	and	mice	

showed	the	long-range	regulatory	abilities	of	enhancers	when	a	gene	regulatory	element	

of	sonic	hedgehog	(Shh)	was	identified	that	controlled	Shh	expression	from	over	1	Mb	

away202,203.	

Current	research	has	revealed	that	there	are	different	types	of	enhancers	that	can	

be	characterized	by	the	histone	modifications	present,	transcription	factors	bound,	and	

production	or	lack	thereof	enhancer	RNA	(eRNA).	Poised	enhancers	were	first	identified	

in	 ES	 and	 are	 marked	 by	 H3K4me1	 and	 H3K27me3152,204.	 Both	 PCR2	 and	 the	

acetyltransferase	 p300	 are	 bound	 at	 poised	 enhancers204,205.	 As	 their	 name	 suggests,	

poised	enhancers	are	not	highly	expressed.	Thus,	they	seem	to	serve	as	a	mechanism	of	

priming	 gene	 transcription.	 If	 a	 poised	 enhancer	 is	 demethylated	 by	 UTX,	 and	 then	

acetylated	by	a	p300,	it	becomes	an	active	enhancer.	Active	enhancers	are	distinguished	

from	poised	enhancers	by	the	presence	of	H3K27ac	and	lack	of	H3K27me3152,204.	Presence	

of	 p300	 is	 also	 used	 as	 a	 way	 to	 identify	 active	 enhancers204,206-208.	 Unlike	 poised	

enhancers,	target	genes	of	active	enhancers	are	highly	transcribed173,209.	Recently	a	third	

type	of	enhancers	“super-enhancers”	has	been	characterized.	Super-enhancers	are	large	

enhancer	regions	marked	by	H3K27ac	that	are	bound	by	the	Mediator	complex	and	cell-

type	specific	transcription	factors.	They	have	been	 identified	 in	multiple	cell	 types	and	

seem	to	mark	cell-identity	genes210,211.		However,	whether	they	are	really	a	distinct	class	

of	enhancers	or	rather	just	very	potent	active	enhancers	has	set	to	be	determined212.	

	



	23	

Given	 the	 findings	 that	 enhancers	 can	 actually	 encode	 RNA,	 there	 has	 been	 a	

movement	to	define	active	enhancers	based	on	their	ability	to	produce	eRNA206,213,214.	

eRNAs	 are	 short	 (<2	 kb)	 non-coding	 RNAs	 that	 are	 bi-directionally	 transcribed215.	 	 Of	

active	enhancers	defined	using	chromatin	marks,	about	25%	are	bound	by	RNA	Pol	II,	and	

17%	encode	RNA215.		However,	given	the	low-abundance	of	eRNA,	it	is	possible	that	some	

transcripts	 are	 undetectable,	 and	 this	 frequency	 is	 actually	 higher216.	 Transcription	 of	

eRNA	can	be	induced	by	various	stimuli.	It	is	estimated	that	there	are	40,000-65,000	eRNA	

in	 the	human	genome217.	 Importantly,	 some	eRNAs	have	been	 shown	 to	 facilitate	 the	

interaction	of	enhancers	and	 their	 target	gene	promoters	and	be	necessary	 for	 target	

gene	transcription218-222.	

Gene	regulation	by	enhancers	is	an	intricate	process	involving	multiple	transcription	

factors	and	proteins	that	aide	in	mediating	the	enhancer	and	promoter	interaction.	The	

predominant	 theory	 is	 that	 enhancers	 activate	 their	 target	 genes	 through	 chromatin	

looping	 (Figure	 1.5)223,224.	 	 If	 the	 chromatin	 surrounding	 the	 enhancer	 region	 is	

condensed,	“pioneer”	 transcription	 factors	can	bind	and	recruit	chromatin	 remodeling	

enzymes	and	other	transcription	factors206,225,226.	 	Nucleosome	repositioning	allows	for	

the	 combinatorial	 binding	 of	 other	 transcription	 factors,	 many	 of	 which	 are	 lineage	

specefic227,228.	Co-activators,	such	as	p300	and	the	Mediator	complex	are	then	required	

to	 facilitate	 the	 enhancer	 promoter	 interaction.	Mediator	 acts	 as	 bridge	 between	 the	

enhancer	 and	promoter	 and	 is	 capable	of	 recruiting	RNA	Pol	 II	 to	 the	promoter229-231.	

Cohesin	and	Ying-Yang	1	(YY1)	are	also	necessary	to	form	the	DNA	loops231,232.	Deletion	

of	an	enhancer’s	eRNA	can	diminish	the	chromatin	looping220.	
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Enhancer	deregulation	in	leukemia		
	

Alterations	of	enhancer	elements	are	present	 in	both	developmental	disorders	

and	cancer.	Indeed,	some	of	these	disorders	may	be	thought	of	as	“enhanceropathies”.	

In	 the	 hematopoietic	 system,	 translocations,	 amplifications,	 or	 mutations	 within	

enhancers	 has	 been	 shown	 to	 contribute	 to	 the	 pathogenesis	 of	 hematological	

malignancies.	 In	 T-cell	 ALL	 (T-ALL)	 at	 least	 two	 translocations	 that	 drive	 expression	of	

oncogenes	have	been	identified233,234.		The	transcription	factor	TAL1	(or	SCL)	is	a	crucial	

driver	of	 leukemogenesis	 in	T-ALL.	The	t(1;14)(p33;q11)	 translocation	disrupts	 the	TCR	

locus	and	results	in	ectopic	expression	of	TAL1	driven	by	the	TCR	enhancer233.	Similarly,	

the	 t(14;21)(q11.2;q22)	 translocation	 leads	 to	 overexpression	 of	 BHLHB1	 by	 a	 TCR	

enhancer,	which	possibly	contributes	to	leukemogenesis	by	inhibiting	E2A234.	Enhancer	

translocations	 can	 also	 cause	 myeloid	 leukemias.	 In	 patients	 with	 inv(3)/t(3;3)	 AML,	

chromosomal	rearrangement	of	the	GATA2	enhancer	leads	to	the	abnormal	expression	

of	the	proto-oncogene	EVI1	and	downregulation	of	GATA2235,236.	

	Overamplification	of	enhancers	can	also	drive	leukemogenesis.	For	example,	1.47	

Mb	downstream	of	the	MYC	 transcription	start	site	 is	an	enhancer	that	 is	activated	by	

NOTCH1	 and	 is	 required	 for	 normal	 thymocyte	 development.	 This	 enhancer	 region	

becomes	amplified	 in	5%	of	T-ALL	patients,	 leading	to	 increased	expression	of	MYC237.	

Deletion	of	this	enhancer	region	prevented	leukemia	initiation	in	a	Notch1	mouse	model.	

Finally,	somatic	mutations	can	cause	the	formation	of	oncogenic	neo-enhancers.	In	T-ALL,	

heterozygous	somatic	mutations	within	a	non-coding	region	lead	to	the	formation	of	a	
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super-enhancer.	This	neo-enhancer	 is	bound	by	MYB,	which	recruits	the	 leukemogenic	

transcriptional	complex238.	

	

Cytosine	Modifications	
	
	 Chemical	 modifications	 of	 DNA	 provide	 another	 layer	 of	 epigenetic	 control.	

Cytosine	modifications	include	5-methylcytosine	(mC),	5-hydroxymethylcytosine	(5hmC),	

5-formylcytosine	(5fC)	and	5-carboxycytosine	(5caC).	The	most	prevalent	cytosine	residue	

is	mC,	which	can	be	sequentially	oxidized	to	generate	5hmC,	5fC,	and	5caC239,240.	While	

recent	technological	advances	have	allowed	for	the	profiling	of	rare	5fC	and	5caC,	little	is	

known	about	their	function241,242.	For	the	purpose	of	this	study,	the	characteristics	and	

functions	of	mC	and	5hmC	will	be	highlighted.		

Since	its	discovery	in	1950,	diverse	roles	of	mC	have	been	observed	in	processes	

such	 as	 X-chromosome-inactivation,	 imprinting,	 tumorigenesis,	 and	 transcription	

regulation243-245.	 In	 mammalian	 genomes,	 the	 majority	 of	 mC	 is	 located	 at	 CpG	

dinucleotides,	and	70-80%	of	CpG	are	methylated246-248.	For	many	years,	 research	was	

focused	on	short	(<1kb)	regions	of	CpG	repeats	found	throughout	the	genome	called	CpG	

islands	 (CpGi)249,250.	 The	majority	 of	 housekeeping	 genes	 have	 CpGi	 in	 their	 promoter	

regions,	 although	 only	 40%	 of	 non-constitutively	 expressed	 genes	 do251.	 The	 regions	

flanking	 CpGi	 (+/-	 2kb)	 are	 known	 as	 CpG	 shores	 and	 have	 shown	 to	 be	 altered	 in	

cancer252.	Large	unmethylated	regions,	named	CpG	valleys	and	canyons,	have	also	been	

identified253-255.	 Cytosine	 methylation	 is	 performed	 by	 the	 DNA	 methyltransferases	

(DNMTs):	DNMT1,	DNMT2,	DNMT3A,	DNMT3B,	and	DNMT3L.	S-adenosyl-L-methionine	
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(SAM)	 is	used	as	the	methyl	donor.	De	novo	methylation	of	unmethylated	cytosines	 is	

completed	 by	 DNMT3A	 and	 DNMT3B,	 whereas	 DNMT1	 preferentially	 binds	

hemimethylated	DNA	and	 is	 responsible	 for	maintaining	 the	DNA	methylation	pattern	

during	replication256-258.	The	other	DNMTs	are	not	active	in	DNA	methylation	in	adults,	as	

DNMT3L	mostly	functions	during	embryogenesis,	and	DNMT2	actually	methylates	RNA259-

263.	Cytosine	methylation	is	a	stable	mark;	however,	it	can	be	removed	through	passive	

demethylation	 during	 DNA	 replication264,	 or	 using	 the	 base	 excision	 repair	 (BER)	

pathway248.	 Specifically,	 the	 mC	 oxidized	 derivatives	 5fC	 and	 5caC	 are	 recognized	 by	

thymine	DNA	glycoslyase	(TDG),	triggering	BER	and	replacement	of	the	modified	cytosine	

with	an	unmodified	cytosine	(Figure	1.6)239,265-267.		

As	far	as	the	function	of	mC,	context	is	everything.	DNA	methylation	has	various	

roles,	 depending	 on	whether	 it	 is	 located	 at	 promoters,	 gene	 bodies,	 or	 transposable	

elements.	 For	many	 years,	 it	was	 cannon	 that	methylation	 of	 promoters	 causes	 gene	

silencing268,269.	 While	 this	 is	 certainly	 true	 for	 many	 genes,	 whole	 genome	 bisulfite	

sequencing	 approaches	 have	 shown	 that	 at	 the	 genome-wide	 level,	 differences	 in	

promoter	methylation	do	not	always	strongly	correlate	with	altered	gene	expression270-

274.	 In	 contrast,	 DNA	 methylation	 at	 gene	 bodies	 positively	 correlates	 with	 gene	

expression247,275,276.		This	may	be	due	to	the	relationship	of	H3K36me3	and	mC.	Gene	body	

levels	of	H3K36me3	and	mC	positively	correlate,	and	DNMT3A/B	contain	a	PWWP	domain	

that	recognizes	H3K36me3277,278.		It	appears	that	mC	is	required	at	these	sites	to	maintain	

transcriptional	 fidelity	 and	 prevent	 spurious	 transcription	 within	 the	 gene	 body279.	

Additionally,	DNA	methylation	is	crucial	for	the	repression	of	retrotransposable	elements,	
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which	account	for	35%	of	the	genome280,281.		The	methyl-CpG-binding	protein	2	(MECP2)	

protein	 recognizes	 mC	 at	 these	 regions	 and	 recruits	 HDACs,	 leading	 to	 chromatin	

compaction	and	silencing	via	H3K9me3282,283.		

Not	long	after	mC	was	first	observed,	5hmC	was	discovered284.	Conversion	of	mC	

to	 5hmC	 is	 catalyzed	 by	 the	 2-oxoglutarate	 (2OG)	 and	 Fe(II)-dependent	 Ten	 Eleven	

Translocation	(TET)	enzymes.	There	are	three	TET	proteins,	TET1,	TET2,	and	TET3,	all	of	

which	have	been	shown	to	be	capable	of	progressive	oxidation	of	mC	to	5caC239,240,285-287.	

Even	 though	 5hmC	 is	 an	 intermediate	 cytosine	 modification,	 studies	 using	 isotopic	

labeling	of	DNA	have	suggested	that	it	is	stable	mark	and	not	just	a	transient	byproduct	

of	 DNA	 demethylation288.	 Additionally,	 expression	 levels	 of	 5hmC	 are	 tissue	 specific,	

indicating	that	it	has	biological	function	besides	DNA	demethylation289.	In	hematopoiesis,	

there	are	dynamic	changes	in	5hmC	with	normal	erythroid	differentiation,	and	alteration	

of	5hmC	via	TET2	mutation	causes	aberrant	erythroid	development290.	At	least	in	ES	cells,	

5hmC	 is	 enriched	 at	 enhancers	 and	 is	 important	 for	 regulating	 enhancer	 activity291.	

Knockdown	 of	 Tet2	 leads	 to	 loss	 of	 5hmC	 at	 enhancers,	 with	 concomitant	

hypermethylation	and	decrease	of	enhancer	target	gene	expession292.	

	

Alterations	of	cytosines	in	myeloid	malignancies	

Deregulation	 of	 the	 DNA	 methylation	 pathway	 is	 a	 common	 feature	 in	 age	

associated	myeloid	malignancies	such	as	AML,	MDS,	and	CMML.	Leukemic	blasts	have	

vast	 alteration	 of	 DNA	 methylation	 compared	 to	 normal	 hematopoietic	 cells293-296.	

Furthermore,	clinically	relevant	subsets	of	AML	patients	can	be	identified	solely	based	on	
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their	methylation	profile295.	 Initial	studies	of	DNA	methylation	utilized	promoter-based	

assays	 and	 found	 hypermethylation	 of	 promoters,	 including	 those	 involved	 in	 WNT	

signaling294-296.	 However,	 a	 recent	 study	 that	 utilized	 a	more	 genome-wide	 approach,	

found	that	gene	neighborhood	(region	2-50kb	from	the	TSS	or	TES)	methylation	predicted	

AML	epigenetic	subtype	better	than	promoter	methylation	and	that	there	is	significant	

hypomethylation	 of	 enhancers297.	 Thus,	 DNA	 methylation	 abnormalities	 may	 lead	 to	

activation	of	enhancer	elements	and	their	target	genes	in	AML.	

In	addition	to	the	extensive	methylation	alterations	seen	in	MDS,	AML,	and	CMML,	

mutations	of	DNMT3A	are	 frequently	 found	 in	patients	with	 these	diseases.	 The	DNA	

methyltransferase	is	mutated	in	10%	and	22%	of	MDS	and	AML	patients,	respectively298-

300.	A	heterozygous	mutation	of	arginine	882	to	histidine	(R882H)	composes	up	>50%	of	

these	mutations	in	AML	and	30%	in	MDS298,300.	In	AML,	the	mutation	is	associated	with	

poor	prognsosis301.	The	R882H	mutant	DNMT3A	acts	as	a	dominant	negative,	preventing	

wild-type	DNMT3A	from	homodimerizing302,303.	Studies	in	mice	have	also	shown	that	loss	

of	 DNMT3A	 leads	 to	 development	 of	myeloid	 leukemias304,305.	 The	 high	 variant	 allele	

frequencies	 in	 leukemia	 and	 the	 fact	 that	 mutations	 are	 found	 even	 in	 normal	 aged	

hematopoietic	 cells	 indicate	 that	 DNMT3A	 mutations	 may	 occur	 in	 founding	

clones100,104,306,307.	 However,	 it	 should	 be	 noted	 that	 the	 majority	 (83%)	 of	 DNMT3A	

mutations	in	CHIP	do	not	occur	at	R882101	.	

Mutations	 in	 enzymes	 necessary	 for	 DNA	 hydroxymethylation	 have	 also	 been	

observed	 in	 myeloid	 neoplasms.	 Over	 700	mutations	 in	 TET2	 in	 leukemia	 have	 been	

detected308,309.	Mutations	in	TET2	have	been	found	in	MDS	(19-26%	of	patients),	CMML	
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(20-58%	of	patients),	and	AML	(24-27%	of	patients)309-313.	Like	DNTM3A	mutations,	TET2	

mutations	may	 also	 originate	 in	 founder	 clones311.	 Though	 there	 are	 numerous	 TET2	

mutations	described,	the	majority	(~87%	in	MDS	and	CMML)	are	predicted	to	significantly	

alter	TET2	structure	and	function314.	Global	decreases	and	focal	alterations	of	5hmC	have	

been	 detected	 in	 AML	 patients	with	 TET2	mutations294,315-318.	 However,	 the	 biological	

consequences	 of	 reduced	 5hmC	 in	 leukemia	 are	 still	 being	 elucidated.	 The	

hydroxymethylation	 pathway	 is	 also	 impaired	 through	 mutation	 of	 isocitrate	

dehydrogenases	(IDHs),	the	enzymes	that	generate	α-ketoglutarate,	a	necessary	co-factor	

of	TET2.	Mutations	 in	 IDH1	and	IDH2	are	found	in	up	to	20%	of	AML	patients299,319-321.	

When	mutated,	IDH1	produces	2-hydroxyglutarate	(2-HG)	instead	of	α-ketoglutarate.	The	

oncometabolite	 2-HG	 inhibits	 the	 activity	 of	 TET2	enzymes322,323.	Notably,	 IDH1/2	 and	

TET2	mutations	are	mutually	exclusive,	 indicating	 that	 the	mutations	phenocopy	each	

other294.	

Perhaps	 the	 greatest	 evidence	 of	 the	 importance	 of	 DNA	 methylation	 and	

hydroxymethylation	 in	 myeloid	 malignancies	 is	 the	 therapeutic	 benefit	 of	 epigenetic	

drugs	in	these	diseases.	The	DNA	methyltransferase	inhibitors	(DNMTi),	azacytidine	and	

decitabine	are	used	 in	 the	 treatment	of	MDS112,324,325.	Both	 therapies	 improve	patient	

response,	and	while	their	mechanism	of	action	 is	not	 fully	understood,	 it	appears	that	

they	hypomethylate	retrotransposable	elements,	inducing	interferon	signaling	and	viral	

defense	 genes326-328.	 Additionally,	 this	 past	 year,	 the	 first	 inhibitor	 of	 mutant	 IDH,	

enasidenib,	was	FDA	approved329,330.		The	first	phase	1/2	clinical	study	showed	that	40%	
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of	 patients	 with	 refractory/relapsed	 AML	 and	 an	 IDH2	 mutation	 showed	 an	 overall	

response,	making	IDH	inhibition	a	landmark	therapy	in	AML	treatment.		

In	 all,	 epigenetics	 provides	 for	 complex	 multi-level	 regulation	 of	 the	 genome.	

Histones	can	be	post-transcriptionally	modified,	leading	to	recruitment	of	transcription	

factors,	transcription	machinery,	or	chromatin	remodeling	complexes.	Combinations	of	

histone	modifications,	such	as	H3K4me3	and	H3K27me3	at	promoter	regions	fine	tune	

gene	expression.	Over	the	past	decade,	research	into	the	function	of	enhancer	regions,	

long-range	elements	that	control	gene	expression,	has	exploded.	Enhancer	deregulation	

can	contribute	to	leukemogenesis	through	aberrant	activation	of	oncogenes.	In	addition	

to	 histone	modifications,	 cytosine	modifications	 also	 provide	 another	 level	 of	 genetic	

control.	 Like	 enhancers,	 DNA	 methylation	 can	 also	 contribute	 to	 oncogenesis,	 and	

aberrant	DNA	methylation	is	hallmark	of	age-associated	myeloid	neoplasms.	

	

Epigenetic	alterations	with	aging	
	
Histone	composition	changes	with	age	
	

An	 emerging	 feature	 of	 aging	 is	 alteration	 of	 both	 the	 type	 and	 number	 of	

histones.	In	yeast,	there	is	a	decrease	in	protein	levels	of	histone	2	(H2),	3	(H3)	and	4	(H4)	

with	replicative	aging	and	reduced	levels	of	histones	are	found	in	the	short-lived	yeast	

strains	asf1	and	rtt109.	Strikingly,	overexpression	of	H2A/H2B	but	not	H3	or	H4,	extends	

the	lifespan	of	both	asf1	and	wild-type	cells331.	In	a	later	study	the	authors	observed	that	

there	 is	 ~50%	 loss	 of	 nucleosomes	 with	 yeast	 replicative	 aging,	 which	 contributes	 to	

genomic	instability332.	In	human	fibroblasts,	there	is	also	a	decrease	in	the	total	levels	of	
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H3	and	H4	with	age333.	This	reduction	is	caused	by	a	~50%	reduction	in	the	biosynthesis	

of	H3	and	H4	with	age.	This	loss	seems	to	be	replication	dependent,	as	fibroblasts	that	

were	 forced	 to	 proliferate	 displayed	 a	 similar	 phenotype333.	 However,	 whether	 this	

phenomenon	 is	 universal	 feature	 of	 aging	will	 need	 to	 be	 determined	 by	 quantifying	

histones	in	more	tissues	with	more	biological	replicates.		

Accompanying	 this	 change	 in	 total	 histone	 levels	 with	 age	 is	 a	 shift	 in	 the	

expression	 of	 histone	 variants.	 Canonical	 histone	 3.1	 (H3.1)	 is	 replication	 dependent,	

whereas	the	variant	H3.3	 is	expressed	throughout	the	cell	cycle334,335.	 	While	originally	

identified	as	a	histone	enriched	at	pericentric	heterochromatin,	H3.3	also	plays	a	role	in	

gene	activation,	can	be	post-transcriptionally	modified,	and	appears	 to	be	 functionally	

distinct	 from	H3.1336,337.	A	growing	amount	of	research	also	shows	that	transcriptional	

alteration	and	mutation	of	H3.3	and	other	histone	variants	contributes	to	oncogenesis122.		

In	multiple	mammalian	 tissues	H3.3	accumulates	 to	near	 saturation	with	age338,339.	 	A	

study	of	H3.3	in	mouse	liver,	kidney,	heart,	and	brain,	found	that	increased	levels	of	H3.3	

with	age	correlated	with	increases	in	specific	histone	modifications339.	How	accumulation	

of	H3.3	may	alter	chromatin	structure	and	gene	expression	with	age	and	whether	it	is	also	

amasses	in	aged	quiescent	stem	cells	is	still	to	be	determined.	

	

Balance	of	repressive	and	activating	histone	modifications	in	aging	and	longevity	

	 Imbalance	of	histone	activating	and	silencing	marks	may	contribute	to	aging.	This	

is	 primarily	 supported	 by	 research	 using	 C.	 elegans	 and	 Drosophila.	 In	 these	 model	

organisms,	perturbations	of	histone	modifiers	have	been	shown	to	alter	 lifespan.	 In	C.	
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elegans,	there	is	a	decrease	in	H3K27me3	with	age.	Knockdown	of	UTX-1,	a	H3K27me3	

specific	 demethylase	 increased	 levels	 of	 H3K27me3	 and	 worm	 lifespan	 in	 a	 FoxO	

dependent	manner340.	Studies	of	H3K4me3	methyltransferases	and	demethylases	 in	C.	

elegans	have	suggested	that	maintenance	of	this	modification	is	also	important	in	aging.	

Deficiencies	in	the	H3K4me3	ASH-2	methyltransferase	complex	components	ASH-2,	WDR-

5,	and	SET-2	extended	C.	elegans	lifespan.	The	H3K4me3	methyltransferase	RBR-2	may	

also	regulate	lifespan	in	C.	elegans,	although	there	are	conflicting	reports	about	whether	

it	 extends	 or	 shortens	 lifespan341,342.	 Similar	 to	 the	 phenotype	 seen	 with	 UTX-1	

knockdown,	inactivation	of	E(z),	the	catalytic	subunit	of	PRC2	in	Drosophila,	increased	fly	

lifespan	by	33%343.	Co-mutation	of	the	Trithorax	gene	trx	largely	diminished	the	increase	

in	lifespan	of	the	E(z)	mutant343.	Additionally,	overexpression	of	the	RBR-2	homolog	 lid	

increased	fly	lifespan344.	Studies	of	the	Sirtuin	family	of	HDACs	have	shown	the	ability	of	

HDACs	to	regulate	lifespan	and	suggested	that	alteration	of	activating	acetyl	groups	may	

contribute	to	aging345,346.		

While	maintenance	of	activating	and	repressive	histone	modifications	 is	clearly	

involved	 in	modulating	 lifespan,	 discrepancies	 between	 the	model	 organisms	make	 it	

difficult	to	extrapolate	how	these	marks	are	altered	in	human	aging.	For	instance,	while	

there	is	a	global	loss	of	silencing	histone	modifications	with	age	in	C.	elegans,	in	flies	there	

is	an	increase	in	H3K9me3	and	loss	of	the	activating	mark	H3K4me3347.	Similar	to	flies,	in	

Nothobranchius	furzeri	(African	Killifish),	another	organism	used	to	study	aging,	there	is	

actually	 an	 increase	 in	 H3K27me3	 with	 age348.	 Thus,	 more	 studies	 using	 mammalian	
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models	 of	 aging	 are	 needed	 in	 order	 to	 resolve	 how	 global	 and	 local	 levels	 of	 these	

modifications	change	with	age	and	what	the	biological	consequence	is.	

	

Changes	in	cytosine	modifications	with	age	
	

Alterations	in	DNA	methylation	with	age	were	first	discovered	in	salmon,	and	since	

then	 have	 been	 found	 in	 many	 species349.	 DNA	 methylation	 profiles	 can	 accurately	

predicate	an	individual’s	age,	regardless	of	tissue	type	or	donor	sex350.	Early	studies	found	

global	hypomethylation	with	age	 in	rats	and	mice351,352.	However,	more	recent	studies	

have	not	 found	a	 significant	difference	 in	 total	mC	 levels	with	age	 in	either	mouse	or	

human	tissues353,354.	Additionally,	in	a	longitudinal	study	where	individuals	were	followed	

over	 time,	only	30%	of	participants	had	a	methylation	change	of	>10%	over	 time,	and	

there	 was	 an	 equal	 amount	 of	 cases	 of	 hypomethylation	 and	 hypermethylation	 with	

age.355	While	global	levels	of	methylation	may	not	drastically	change	with	age,	a	number	

of	 studies	 utilizing	 array-based	 technologies	 have	 identified	 focal	 regions	 of	 DNA	

hypermethylation	with	age356-360.	Both	in	mice	and	humans,	CpG	that	are	located	within	

regions	 bound	 by	 Polycomb	 group	 proteins	 (PcG)	 become	 hypermethylated	 with	

age357,358.	 Hypermethylation	 of	 bivalent	 promoters	 has	 also	 been	 observed	 in	 human	

CD4+	 T-cells	 and	 monocytes356.	 In	 contrast,	 repetitive	 elements	 appear	 to	 be	

hypomethylated	with	age361.	As	most	studies	of	methylation	in	aging	have	used	promoter-

based	assays,	little	is	known	how	DNA	methylation	changes	with	age	at	enhancer	regions.	

One	study	using	human	whole	blood	did	 find	 that	 similarly	 to	AML,	 regions	 that	were	

hypomethylated	with	age	were	enriched	at	putative	enhancers362.	Overall,	with	aging,	
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there	is	hypermethylation	of	PcG	and	bivalent	promoters,	which	may	lead	to	silencing	of	

genes,	 and	hypomethylation	of	 repetitive	 elements	which	may	 contribute	 to	 genomic	

instability	(Figure	1.7).	

While	not	as	much	is	known	about	5hmC	and	aging,	numerous	studies	have	shown	

that	it	is	altered	in	a	tissue	specific	manner	with	age.	In	the	mouse	hippocampus,	there	is	

a	global	increase	in	5hmC	with	age,	whereas	in	human	T-cells	and	whole	blood,	5hmC	is	

decreased	with	age353,354,363.	 In	T-cells,	age-associated	changes	of	5hmC	may	be	due	to	

loss	of	 the	enzymes	 that	 catalyze	mC	 to	5hmC,	 as	 reduction	of	 5hmC	 correlated	with	

decreased	expression	TET1	and	TET3363.	In	contrast,	TET	levels	are	not	disrupted	in	the	

mouse	hippocampus	with	age353.	To	date,	only	one	study	has	performed	global	profiling	

of	 5hmC	 in	 an	 aging	 context.	 They	 found	 785	 hyper-differentially	 hydroxymethylated	

regions	(DHMR)	and	846	hypo	DHMR	in	aged	human	mesenchymal	stem	cells	(MSC)364.	

However,	this	study	was	limited	to	analyzing	5hmC	within	CpG,	and	the	cells	underwent	

numerous	passages	before	being	analyzed.	Given	the	global	variations	of	5hmC	with	age,	

future	studies	will	be	need	to	determine	exactly	where	these	changes	are	localized	and	

how	they	may	contribute	to	aging.	

	

Epigenetic	changes	with	HSC	aging	
	
	 Currently,	 all	 studies	of	 epigenetic	 aging	 in	HSC	have	used	murine	models	 and	

focused	mostly	on	DNA	methylation.	Whole	genome	bisulfite	sequencing	has	shown	that	

in	murine	C57/BL6	mice,	there	is	slight,	but	significant	global	DNA	hypermethylation	with	

age33,365.	 Examination	 of	 focal	 differences	 between	 young	 and	 aged	HSC	 showed	 that	
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regions	 that	 become	 hypomethylated	 with	 age	 are	 associated	 with	 regions	 of	 open	

chromatin	in	erythroid	and	myeloid	cells	and	that	regions	that	are	hypermethylated	with	

age	are	associated	with	genes	 that	 are	active	 in	 lymphopoiesis	 and	 targets	of	PRC233.	

Notably,	 forced	proliferation	of	 young	HSCs	using	5-FU	 resulted	 in	a	DNA	methylation	

profile	similar	to	that	of	aged	HSCs,	suggesting	that	DNA	methylation	changes	with	age	

are	 proliferation	 dependent33.	 Another	 group	 observed	 that	 regions	 that	 are	

hypomethylated	with	age	are	enriched	for	Ring1b,	Scl,	Gata1,	Ldb1,	and	Runx1	binding	

sites.	 These	 transcription	 factors	 are	 known	 to	 contribute	 to	 HSC	 self-renewal.	

Additionally,	70%	of	HSC	cell-identity	genes	were	hypomethylated	with	age365.	While	site-

specific	 changes	 of	 5hmC	with	HSC	 aging	have	not	 been	profiled,	 a	 slight	 decrease	 in	

global	levels	of	5hmC	in	aged	HSCs	has	been	noted365.	

To	date,	only	one	study	has	examined	how	histone	modifications	are	altered	with	

age	in	HSCs.	Sun	et	al.	performed	ChIP-seq	for	H3K4me3,	H3K27me3,	and	H3K36me3	in	

purified	HSCs	from	young	(4	months)	and	aged	(24	months)	C57/BL6	mice	(n=1	pool	for	

each	age	group)33.	They	found	that	with	age	there	is	a	6.3%	increase	in	the	number	of	

H3K4me3	peaks	with	age.	Many	H3K4me3	peaks	were	 increased	 in	breadth	with	age,	

especially	 those	 at	 genes	 associated	with	HSC	 identity.	However,	 the	 total	 number	 of	

promoters	that	had	significantly	different	H3K4me3	with	age	was	relatively	small,	with	

267	promoters	having	an	increase	in	H3K4me3	and	73	promoters	having	a	decrease.	Yet	

they	did	observe	 that	higher	H3K4me3	signal	with	age	correlated	with	 increased	gene	

expression,	and	genes	such	as	the	HoxB	cluster	had	greater	H3K4me3	and	expression	with	

age.	 Additionally,	 genes	 that	 had	 increases	 in	 H3K4me3	 with	 age	 were	 also	
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hypomethylated,	 suggesting	 a	 convergence	 of	 multiple	 epigenetic	 marks	 with	 age.	

Changes	in	H3K27me3	with	age	were	modest,	with	526	genes	having	altered	H3K27me3	

at	 their	 promoters.	 Like	 H3K4me3,	 H3K27me3	 peaks	 were	 also	 broader	 in	 aged	 HSC	

compared	to	young.	Bivalent	promoters	were	also	found	to	change	with	age,	with	335	

bivalent	 domains	 disappearing	 and	 1,245	 bivalent	 promoters	 emerging	 in	 aged	 HSCs.	

Bivalent	promoters	that	became	silenced	with	age	were	associated	with	cell	adhesion.	

Together,	 these	 studies	 suggest	 that	 altered	 DNA	 methylation	 of	 HSC-identity	 and	

lineage-specific	 genes,	 as	 well	 as	 changes	 in	 H3K4me3	 and	 H3K27me3	 signal	 and	

spreading,	may	contribute	to	aging	HSC	phenotypes.	

	

Histone	modifications	are	altered	in	other	stem	cell	types	with	age	
	

Examination	 of	 the	 epigenome	 in	 other	 stem	 cells	 suggests	 that	 epigenetic	

deregulation	with	 age	may	be	 a	 common	 feature	of	 stem	 cells.	 Alterations	 in	 histone	

modifications	with	age	have	been	observed	in	both	skeletal	muscle	stem	cells	(MuSC)	and	

mesenchymal	stem	cells	(MSC).	Like	HSCs,	MuSC	are	mostly	quiescent	at	resting	state	and	

can	be	induced	to	proliferate	upon	tissue	damage.	With	age,	there	is	a	reduction	in	the	

number	of	quiescent	MuSC	(qMuSC)	and	a	loss	of	MuSC	function366.	Liu	et	al.,	performed	

ChIP-seq	for	H3K4me3	and	H3K27me3	in	purified	murine	qMuSC	and	found	that	similar	

to	murine	HSC	aging,	few	H3K4me3	peaks	change	with	age	and	there	is	broadening	of	

H3K27me3	 peaks	 in	 old	 qMuSC.	 In	 contrast	 to	 HSC,	 there	 is	 an	 increase	 in	 the	 total	

number	of	H3K27me3	peaks	 in	 aged	qMuSC.	 The	peaks	 that	 appeared	with	 age	were	

located	at	 intergenic	and	promoter	 regions,	which	overall	 showed	a	4-fold	 increase	 in	
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H3K27me3	 in	 aged	 qMuSC.	 	 Notably,	 they	 found	 that	 promoters	 of	 genes	 encoding	

histones	were	marked	by	H3K4me3	in	young	qMuSC	but	became	bivalently	marked	with	

age.	This	corresponded	with	a	40%	decrease	in	gene	expression	of	genes	encoding	H1,	

H3B,	H3,	and	H4367.	Another	group	also	observed	a	global	increase	in	H3K27me3	as	well	

as	H3K9me3	in	aged	qMuSC.	Additionally,	upon	activation,	aged	MuSC	had	genome-wide	

increases	 in	activating	histone	modifications,	 including	at	 the	promoter	of	Hoxa9.	This	

upsurge	 had	 functional	 consequences,	 as	 overexpression	 of	 Hoxa9	 in	 young	 animals	

resulted	in	an	aged	phenotype366.	

	 Although	the	aging	MSC	epigenome	has	not	been	profiled	in	great	detail,	it	does	

appear	that	epigenetic	alterations	may	contribute	to	loss	of	function	with	age.	With	age,	

there	is	a	decrease	in	total	levels	of	H3K9me3	in	MSC,	and	MSC	from	a	Werner	progeria	

model	also	have	less	H3K9me3	compared	to	normal	MSC368.	Epigenetic	alterations	may	

also	contribute	to	the	increased	adipogenesis	and	decreased	osteogenesis	that	is	found	

with	aging.	In	MSC,	HDAC9c	is	a	key	mediator	of	osteogenesis.	Aged	MSC	have	increased	

expression	of	EZH2	and	total	levels	of	H3K27me3.	Epigenetic	silencing	of	HDAC9c	by	EZH2	

leads	 to	 an	 increase	 in	 adipocyte	 differentiation	 at	 the	 expense	 of	 the	 osteoblast	

lineage369.	 Given	 the	 specialized	 functions	 of	 MSC,	 HSC,	 and	 MuSC,	 the	 niches	 they	

inhabit,	 and	 their	 different	 aging	 phenotypes,	 it	 is	 reasonable	 they	 do	 not	 follow	 a	

universal	 epigenetic	 shift	with	 age.	 Furthermore,	 tissue-specific	 aging	 gene	 signatures	

have	been	observed,	supporting	the	idea	that	alterations	 in	epigenetic	marks	with	age	

would	also	be	cell	type	dependent370.	While	epigenetic	remodeling	with	age	may	be	cell-
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type	specific,	 it	does	appear	that	epigenetic	alterations	may	be	a	common	mechanism	

contributing	to	stem	cell	loss	of	function	with	age.		

	 In	 sum,	 epigenetic	 remodeling	 occurs	 with	 age,	 although	 the	 biological	

consequences	of	 this	are	still	being	 investigated.	Perturbations	of	histone	 readers	and	

erasers	affect	longevity,	highlighting	the	importance	of	epigenetics	in	aging.	Additionally,	

an	imbalance	between	repressive	marks,	such	as	H3K9me3	and	H3K27me3,	and	activating	

marks	 like	 H3K4me3	 appears	 to	 be	 present	 with	 aging.	 However,	 no	 studies	 have	

examined	if	enhancers	are	altered	with	age.		Alterations	in	DNA	methylation	with	age	may	

contribute	 to	 gene	 silencing	 and	 genomic	 instability.	 While	 the	 aged	 murine	 HSC	

epigenome	profile	has	been	profiled,	it	is	unclear	if	it	is	homologous	to	human	HSC	aging.		

	

Summary	of	rational	and	thesis	aims	
	
	 The	world’s	population	is	aging.	By	2050,	over	1.5	billion	people,	or	roughly	double	

the	 current	percentage	of	 the	population,	will	 be	over	65	 years	old371.	 This	 change	 in	

demographics	will	increase	the	need	to	address	the	health	challenges	that	aging	presents.		

At	the	hematopoietic	level,	aging	is	associated	with	an	increased	rate	of	anemia	and	other	

isolated	cytopenias	of	unknown	significance,	loss	of	adaptive	immunity,	and	an	increased	

predisposition	to	develop	myeloid	malignancies	such	as	MDS	and	AML372-375.	Additionally,	

with	 aging	 there	 is	 increasing	 incidence	 of	 clonal	 hematopoiesis	 of	 indeterminate	

potential	(CHIP)	with	frequent	mutations	in	the	epigenetic	modifiers	DNMT3A,	TET2,	and	

ASXL1	as	well	as	proteins	involved	in	alternative	splicing	such	as	SF3B1	and	SRSF2.		



	39	

	 While	 many	 mechanisms	 likely	 contribute	 to	 these	 alterations	 in	 the	

hematopoietic	system	with	age,	loss	of	HSC	function	is	a	major	driver	of	hematopoietic	

decline.	Aged	HSC	have	increased	self-renewal,	decreased	homing	ability,	and	are	more	

likely	to	differentiate	into	cells	of	the	myeloid	and	erythroid	rather	than	lymphoid	lineage.	

These	 age-associated	 changes	 have	 been	 attributed	 to	 diverse	 mechanisms	 such	 as	

defective	DNA	damage	response,	altered	metabolism	and	autophagy,	and	non-canonical	

WNT	signaling.		Disruption	of	the	epigenome	has	emerged	as	a	possible	feature	of	aging.	

Across	multiple	species,	changes	in	DNA	methylation	with	age	have	been	shown	to	affect	

PcG	 targets,	 bivalent	 promoters,	 and	 repetitive	 elements.	 While	 not	 as	 well	 studied,	

alterations	in	histone	modifications	have	been	observed	with	age,	and	epigenetic	readers	

and	erasers	can	modulate	longevity.		

Given	the	growing	evidence	that	DNA	enhancer	elements	are	altered	in	cancer,	it	

would	be	beneficial	 to	 examine	 if	 they	 also	 change	with	 aging.	 Though	 select	 histone	

modifications	and	DNA	methylation	have	been	examined	in	murine	HSC	aging,	the	role	of	

enhancers	and	5hmC	in	aging	has	not	yet	been	addressed.	Furthermore,	given	the	strain-

to-strain	variabilities	in	aging	HSC	phenotypes	in	mice,	the	discrepancy	in	certain	aging	

phenotypes	 between	 mice	 and	 humans,	 and	 the	 poor	 homology	 between	 select	

epigenetic	modifications	across	species,	it	would	behoove	the	community	to	understand	

how	the	epigenome	changes	with	human	HSC	aging.	

Therefore,	the	focus	of	this	dissertation	is	(a)	to	determine	whether	the	chromatin	

structure	of	genomic	regulatory	regions	is	altered	with	human	HSC	aging,	(b)	to	examine	

if	changes	in	cytosine	modifications	with	age	predispose	for	myeloid	malignancies,	and	
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(c)	to	elucidate	the	transcriptional	consequences	of	age-associated	epigenetic	alterations.	

We	hypothesized	 that	aging	 is	associated	with	changes	 in	 the	epigenetic	 landscape	of	

human	 HSCs,	 impacting	 enhancers	 and	 other	 regulatory	 elements,	 which	 likely	

contributes	 to	aged	HSC	 loss	of	 function.	To	 this	end,	we	performed	a	comprehensive	

characterization	of	histone	and	cytosine	modifications	in	young	and	aged	HSC	collected	

from	 healthy	 donors.	We	 further	 correlated	 these	 observations	with	 gene	 expression	

levels	in	HSC.	Finally,	we	confirmed	that	in	vitro	downregulation	of	some	of	the	top	genes	

epigenetically	 downregulated	 with	 aging	 results	 in	 phenotypic	 changes	 in	 human	

hematopoietic	stem	and	progenitor	cells	that	partially	recapitulate	the	aging	phenotype.	
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Figure	1.1:	Phenotypic	and	functional	changes	with	murine	HSC	aging.	Aged	HSCs	have	
altered	 WNT	 signaling,	 show	 signs	 of	 mitochondrial	 damage,	 are	 more	 metabolically	
active	than	young	HSC,	and	have	altered	gene	expression	of	myeloid	and	lymphoid	genes.	
Increased	γ-H2AX	with	age	suggests	that	there	is	also	greater	DNA	damage	in	aged	HSC.	
While	there	is	an	increase	in	HSC	self-renewal	and	frequency	in	the	bone	marrow	with	
age,	 these	HSC	 are	 actually	 impaired.	Aged	HSC	have	decreased	 regenerative	 abilities	
when	transplanted,	and	become	skewed	towards	the	myeloid	lineages.	
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Figure	1.2:	Myeloid	leukemias	are	more	frequent	with	age.	Bar	plots	denoting	the	rates	
per	 100,000	 people	 of	 Acute	 lymphoblastic	 leukemia	 (ALL),	 Acute	 Myeloid	 Leukemia	
(AML)	 or	 other	 myeloid	 leukemias	 by	 age	 group.	 Data	 is	 from	 the	 United	 States	
Department	of	Health	and	Human	Services,	Centers	for	Disease	Control	and	Prevention	
and	National	Cancer	Institute	Wonder	database,	from	1999-2014.	
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Figure	1.3:	Hematopoiesis	is	impaired	with	age.	With	age,	there	is	a	loss	of	thymic	mass	
and	 T-cell	 function,	 although	 most	 thymopoiesis	 takes	 place	 in	 the	 periphery.	 Older	
individuals	have	higher	rates	of	cytopenias	such	as	anemia,	decreased	ability	to	respond	
to	 infections,	and	an	 increased	predisposition	to	develop	myeloid	malignances	such	as	
MDS	and	AML.	Another	feature	of	aged	hematopoiesis	 is	an	 increase	 in	clonality,	with	
epigenetic	modifiers	frequently	being	mutated.	
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Figure	 1.4:	 Unique	 combinations	 of	 histone	 marks	 and	 protein	 complexes	 define	
enhancer	 subtypes.	 Poised	 enhancers	 are	 primed	 for	 rapid	 activation	 of	 their	 target	
genes,	which	are	silenced.	They	are	defined	by	H3K4me1	and	H3K27me3,	and	are	bound	
by	P300	as	well	as	the	repressive	PRC2	complex.	 In	contrast,	active	enhancers	actively	
induce	transcription	of	their	target	genes.	These	enhancers	contain	H3K27ac	as	well	as	
many	 lineage	 specific	 transcription	 factors.	 Super	 enhancers	 are	 large	 enhancers	with	
very	high	levels	of	H3K27ac	and	are	bound	by	P300	in	addition	to	the	mediator	complex.	
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Figure	1.5:	Active	enhancers	activate	target	genes	through	chromatin	looping.	Lineage	
specific	transcription	factors,	P300,	and	Mediator	facilitate	the	binding	of	an	enhancer	to	
its	target	promoter.	Cohesion	proteins	loop	are	around	the	DNA,	bringing	the	different	
regions	 together.	 At	 least	 in	 some	 instances,	 eRNA	 helps	 to	 recruit	 Mediator	 to	 the	
enhancer	region.	
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Figure	 1.6:	 Cytosine	 modification	 pathway.	 Schematic	 of	 the	 DNA	 methylation	 and	
demethylation	 pathway.	 The	 DNMT	 family	 methylates	 cytosines,	 while	 the	 TET	
deoxygenases	sequentially	oxidize	mC	to	5-carboxylcytosine.	Non-replication	dependent	
DNA	demethylation	is	achieved	through	the	binding	of	TDG	to	5-carboxylcytosine	or	5-
formylcytosine,	and	the	subsequent	removal	of	the	cytosine	base	through	base	excision	
repair	(BER).	
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Figure	1.7:	 Focal	methylation	 changes	with	 age	 lead	 to	 altered	 gene	expression	and	
genomic	 instability.	 Whether	 total	 DNA	 methylation	 levels	 change	 with	 age	 is	
controversial.	 However,	 across	 species	 and	 tissues,	 focal	 DNA	 hypermethylation	 of	
polycomb	group	targets	 (PcG)	and	bivalent	promoters	has	been	observed.	 In	contrast,	
repetitive	elements	such	as	SINE,	LINE,	and	LTR	are	hypomethylated	with	age,	possibly	
contributing	to	genomic	instability.	
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CHAPTER	2	
	

Materials	and	methods	
	

Human	bone	marrow	samples	
	
All	aged	(65-75	yo)	samples	were	derived	from	femurs	from	individuals	undergoing	hip	

replacement	surgery	at	the	University	of	Michigan	hospital.	Donors	had	no	known	history	

of	hematological	malignancy.	Bone	marrow	mononuclear	cells	(BM	MNC)	were	isolated	

using	 ficoll	 based	 density	 centrifugation	 and	 cryopreserved.	 Additional	 bone	 marrow	

mononuclear	 cells	 were	 purchased	 from	 Allcells,	 Hemacare,	 Stemcell	 Technologies,	

University	 of	 Pennsylvania	 Stem	 Cell	 and	 Xenograft	 Core,	 and	 Cincinnati	 Children’s	

Hospital	Processing	Core	for	young	(18-30	yo)	and	middle-aged	(45-55	yo)	donors.	For	

scRNA-seq,	bone	marrow	cells	 from	young	healthy	donors	were	obtained	at	Cincinnati	

Children’s	 Hospital	 Medical	 Center	 through	 informed	 consent	 under	 an	 approved	

institutional	 review	board	 research	 protocol.	 Our	 cohort	 for	 the	 epigenomic	 and	 bulk	

transcriptome	profiling	was	composed	of	a	total	of	29	young	and	33	aged	donors.	Sex	

information	was	not	available	for	all	of	the	young	donors,	for	the	aged	cohort,	there	were	

9	males	and	24	females.	We	did	not	detect	any	significant	difference	in	HSCe	frequency	

between	sexes.	We	observed	a	slight	influence	of	sex	on	gene	expression	and	controlled	

for	this	in	the	RNA-seq	analysis	using	DESeq.
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FACS	isolation	of	HSCe	and	HSPC	
	
Miltenyi	MACS	magnetic	bead	purification	was	used	to	enrich	BM	MNC	for	CD34+	cells.	

The	 CD34+	 fraction	was	 then	 stained	with	 CD2-PE-Cy5	 (eBioscience,	 clone	 RPA-2.10),	

CD3-PE-Cy5	(eBioscience,	clone	UCHT1),	CD4-TC	PE-Cy5	(Invitrogen,	clone	S3.5),	CD7-TC	

PE-Cy5	(Invitrogen,	clone	CD7-6B7),	CD8-TC	PE-Cy5	(Invitrogen,	clone	3B5),	CD10-PE-Cy5	

(eBioscience,	clone	eBioCB-CALLA),	CD11b-PE-Cy5	(eBioscience,	clone	ICRF44),	CD14-TC	

PE-Cy5	(Life	Technologies,	clone	TuK4),	CD19-PE-Cy5	(eBioscience	clone	HIB19),	CD20-PE-

Cy5	(eBioscience,	clone	2H7),	CD56-TC	(Invitrogen,	clone	MEM-188),	Glycophorin	A-PE-

Cy5	(BD,	clone	GA-R2)	and	Thy1-biotin	(eBioscience,	clone	5E10,	followed	by	CD34-APC	

(BD,	 clone	 8G12),	 CD38-PE-Cy7	 (eBioscience,	 clone	 HIT2),	 CD123-PE	 (BD,	 clone	 9F5),	

streptavidin-APC-Cy7	(Life	Technologies),	CD45RA-FITC	(Invitrogen,	clone	MEM-56)	and	

DAPI.	HSCe	 (DAPI-,	Lin-,	CD34+,	CD38-)	and	HSPC	(DAPI-,	Lin-,	CD34+,CD38+)	were	cell	

sorted	using	either	a	BD	FACSAria	I	with	a	70	µm	nozzle	or	a	BD	FACS	SORP	Aria-Ilu.	

	

ChIP-seq	
	
HSCe	were	sorted	 into	1mL	 IMDM	20%	FBS.	For	H3K4me1,	H3K4me3,	and	H3K27me3,	

14,000-20,000	HSCe	were	 used	 per	 immunoprecipitation;	 for	H3K27ac,	 15,000-35,000	

cells	were	used	per	immunoprecipitation,	and	for	total	H3,	10,000-15,000	cells	were	used	

per	 immunoprecipitation.	 ChIP-seq	 was	 then	 performed	 using	 the	 True	 MicroChIP	

(Diagenode,	#C01010130)	kit	and	antibodies	that	had	been	validated	for	specificity	and	

reactivity	 using	 the	 MODified	 Histone	 Peptide	 Array	 (Active	 Motif,	 #13001).	 The	

manufacturer’s	protocol	was	followed	using	the	following	modifications.	After	quenching	
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with	glycine	and	washing	with	PBS,	samples	were	suspended	in	100	µL	undiluted	Lysis	

buffer	 with	 1x	 Diagenode	 protease	 inhibitor	 cocktail	 and	 5	mM	 sodium	 butyrate	 per	

10,000	cells.	Samples	used	for	H3	were	sonicated	in	1.5	mL	TPX	tubes	in	a	Bioruptor	Pico	

for	6	cycles	of	30	seconds	on	and	30	seconds	off.	All	other	samples	were	sonicated	in	a	

Bioruptor	 XL	 for	 55	 cycles	 of	 30	 seconds	 on	 and	 30	 seconds	 off.	 Chromatin	 was	

immunoprecipitated	 for	 12	 hr	 at	 4°	 C	 using	 1µg	 H3K27me3	 (Millipore	 07-449,	 lot	

#21494165),	 1µg	 H3K4me3	 (Abcam	 ab8580,	 lot	 #GR164207-1),	 0.5	 µg	 H3K4me1	

(Diagenode	C15410194,	lot	#A1862D),	0.5	µg	H3K27ac	(Abcam	ab4729,	lot	#GR155970-

2),	or	0.5	µg	H3	(Abcam	ab10799,	lot	#GR275925-1).	After	reverse	crosslinking,	DNA	was	

purified	using	the	minElute	PCR	Purification	kit	(Qiagen,	#28004)	and	eluted	in	16	µL	of	

Tris-HCl	 ph	 8.0.	 Enrichment	 was	 verified	 using	 QPCR	 with	 the	 primers	

GAGAGTCCTGGTCTTTGTCA	 and	 ACAGTGCCTAGGAAGGGTAT	 for	 H3K4me1	 and	 H3,	

AGGGAGGGAATTAATCTGAG	 and	 ACAGTGCCTAGGAAGGGTAT	 for	 H3K4me3	 and	 H3,	

TACTTGGTTTCTGCATCCTT	 and	 TCACTAAAGAAACCGTTCGT	 for	 H3K27me3	 and	 H3,	 and	

GAGCAGAGGTGGGAGTTAG	and	TCAGACCCTTTCCTCACC	for	H3K27ac.	The	remaining	DNA	

was	 then	 used	 for	 library	 preparation	 with	 the	 V1	 MicroPlex	 Library	 Preparation	 kit	

(Diagenode,	#C05010011).	For	 the	PCR	amplification,	a	 total	of	16	amplification	cycles	

was	used.	Libraries	were	purified	using	a	1:1	Ampure	bead	cleanup	and	eluted	in	16	uL	of	

Tris-HCl	ph	8.0.	Fold	enrichment	over	 input	was	then	verified	using	QPCR.	Multiplexed	

libraries	were	sequenced	either	on	an	Illumina	NextSeq	500	or	a	HiSeq-2500	sequencer.	
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ChIP-seq	alignment		
	
FastQC	was	used	to	evaluate	library	quality	376..	Libraries	with	>90%	sequence	duplication	

rate	 were	 discarded	 from	 analysis.	 	 Illumina	 adapters	 were	 trimmed	 using	 Cutadapt	

(version	1.12)377.	Reads	were	aligned	to	hg19	using	Bowtie	(version	2.2.6)378.	All	samples	

had	 at	 least	 28,000,000	 aligned	 reads.	 Only	 reads	mapping	 to	 unique	 locations	 were	

retained	for	downstream	analysis.		

	

ChIP-seq	peak	calling	
	
Peak	calling	for	individual	IPs	was	performed	using	the	callpeak	function	from	the	Model	

Based	 Analysis	 of	 ChIP-seq	 2	 (MACS2	 v.2.0.10.20131216)	 program379.	 For	 visual	

representation	and	differential	 peak	 calling,	 aligned	 reads	 for	 each	mark	 for	 each	age	

group	were	pooled	using	samtools	v1.3.1380.	Peaks	were	re-called	using	the	pooled	IP	and	

the	corresponding	pooled	Input	with	the	nomodel	option.	For	H3K4me1,	H3K4me3,	and	

H3K27ac,	a	q-value	cutoff	of	0.0001	with	the	narrow	peak	option	was	used.	Broad	peak	

calling	with	a	q-value	cutoff	(--broad-cutoff)	of	0.1	was	used	for	H3K27me3.	The	IP	and	

Input	 bedgraph	 files	 produced	 by	macs2	 peak	 calling	 were	 used	 for	 differential	 peak	

calling	with	the	macs2	bdgdiff	function,	which	adjusts	for	sequencing	depth.	To	determine	

the	 fold	 change	 for	 significant	 (log10	 likelihood	 ratio>3)	 differential	 peaks	 that	 were	

reduced	with	 age,	 the	 fold-enrichment	of	 (Pooled	 IP/Pooled	 Input)	was	 calculated	 for	

each	 histone	 modification	 and	 age	 group	 and	 normalized	 to	 reads	 per	 million.	 The	

deepTools2	multiBigwigSummary	 function	was	 then	used	 to	determine	 the	number	of	

counts	for	each	differential	peak,	for	each	pooled	sample.	The	fold	change	of	Aged/Young	
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was	then	calculated	with	gtools381.		Significant	peaks	for	each	age	group	and	differential	

peaks	(FDR<0.05,	Log10	likelihood	ratio>3,	respectively)	were	annotated	to	the	nearest	

TSS	using	 the	R	package	ChIP-enrich	 (v1.8.0)382.	 For	 the	permutation	analysis,	 random	

pools	 composed	 of	 young	 and	 aged	 samples	 were	 generated	 using	 R	 for	 H3K4me1,	

H3K4me3,	H3K27ac,	and	H3K27me3,	with	n=5,	6,	4,	and	6	samples	per	pool,	respectively.	

Peak	calling	and	differential	peak	calling	were	performed	as	described	above	(n=100		pair-

wise	 comparisons	 per	 modification,	 respectively).	 The	 FDR	 was	 calculated	 for	 each	

histone	 modification	 using	 the	 significance	 analysis	 of	 microarrays	 (SAM)	 method383.	

Briefly,	 for	 each	 modification,	 the	 median	 number	 of	 differential	 peaks	 across	 all	

permutations	was	divided	by	the	total	number	of	peaks	identified	in	young	and	aged	HSCe	

by	macs2	bdgdiff.	

	

Enhanced	reduced	representation	bisulfite	sequencing		
	
FACS	 isolated	 HSCe	 (n=5-7	 per	 age	 group)	 were	 sorted	 into	 Qiagen	 RLT+.	 DNA	 was	

extracted	using	the	Allprep	DNA/RNA	Micro	Kit	(Qiagen,	#80204)	and	2-10	ng	of	DNA	per	

sample	 was	 used	 for	 library	 preparation.	 Enhanced	 reduced-representation	 bisulfite	

sequencing	 (ERRBS)	 was	 performed	 as	 previously	 described,	 with	 the	 following	

modifications	to	accommodate	the	low	input	amount	of	DNA384.	Prior	to	adapter	ligation,	

the	methylated	adapters	were	diluted	to	150	nM,	and	for	the	gel	size	selection,	fragments	

of	150-450	bp	were	excised.	Libraries	were	sequenced	on	an	Illumina	HiSeq	2500.		
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Differentially	methylated	regions	analysis	
	
Reads	were	aligned	against	a	bisulfite-converted	human	genome	(hg19)	using	Bowtie	and	

Bismark	 (versions	 2.2.6	 and	 0.14.5,	 respectively)385.	 After	 filtering	 and	 normalizing	 by	

coverage,	a	methylDiff	object	containing	the	methylation	differences	and	 locations	 for	

cytosines	 that	 were	 present	 in	 at	 least	 3	 samples	 per	 age	 group	 (meth.min=3)	 were	

identified	using	MethylKit	(version	0.9.4)386	and	R	statistical	software	(version	3.2.1)387.	

Differentially	methylated	cytosines	(DMC)	were	then	inputted	into	the	R	package	eDMR	

(v.0.6.3.1)388,	which	was	used	to	identify	significant	DMR	(regions	with	at	least	3	CpG,	2	

of	which	are	DMC,	with	absolute	mean	methylation	difference	≥	20,	and	DMR	q-value	≤	

0.05).	DMR	were	annotated	to	hg19	using	the	following	parameters:	DMRs	overlapping	a	

gene	were	annotated	to	that	gene,	intergenic	DMRs	were	annotated	to	all	neighboring	

genes	within	 50	 kb,	 and	 if	 no	 gene	was	 present	within	 a	 50-kb	window,	 DMRs	were	

annotated	to	the	nearest	transcription	start	site389.	Functional	annotation	was	performed	

using	DAVID	version	6.7390,391.	For	the	heatmap,	the	percent	methylation	for	each	DMR	

was	calculated	for	each	sample.	The	row-scaled	values	were	than	plotted	with	heatmap.2,	

using	the	complete	clustering	method	with	the	Euclidian	distance,	and	using	lightgrey	for	

NA	values.	

	

Comparison	of	aging	DMR	to	hematopoietic	DMR	
	
To	detect	if	aging	DMR	were	associated	with	hematopoietic	identity	genes,	the	percent	

methylation	for	each	hematopoietic	identity	DMR	defined	by	Farlik	et	al.271	was	calculated	

for	each	young	and	aged	HSCe	sample	as	described	above.		The	percent	methylation	for	
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the	 remaining	 cell	 types	 was	 obtained	 from	 Farlik	 et	 al.’s	 published	 results.	 Principal	

component	analysis	and	correspondence	analysis	were	performed	with	mean	centered	

and	NA	excluded	data	using	made4392	and	plotted	with	ggplot2393.	To	assess	if	aging	DMR	

were	 associated	with	 regions	 that	 are	 differentially	methylated	 between	myeloid	 and	

lymphoid	cells,	the	same	analysis	was	performed	as	described	above,	using	the	myeloid	

vs.	lymphoid	DMR	described	by	Farlik	et	al.		

	

k-means	clustering	with	AML	blasts	
	
The	percent	methylation	for	each	age-associated	hyper	or	hypo	DMR	was	calculated	as	

described	above	 for	each	young	and	HSCe	donor	and	AML	patient394.	NA	values	were	

removed	prior	to	clustering.	The	optimal	number	of	k-means	clusters	was	calculated	using	

the	gap	statistic	method	in	factoextra395.	K-means	clustering	was	performed	using	R,	and	

the	heatmap	was	plotted	using	ComplexHeatmap396,	splitting	between	each	cluster,	and	

using	lightgrey	for	NA	values.	Boxplots	were	plotted	using	ggplot2393.		

	

hmeDIP-seq	
	
HSPC	DNA	(250-1000ng)	was	isolated	as	described	above	for	each	sample	(n=5-7	per	age	

group)	and	used	for	Hydroxymethyl-DNA	immunoprecipitation	with	sequencing	(hmeDIP-

seq)291.	DNA	was	sheared	to	200bp	using	the	Covaris	and	then	purified	using	the	Qiagen	

MinElute	PCR	purification	kit.	The	eluate	was	end	repaired	using	T4	DNA	Polymerase	(NEB	

Cat	#	M0203L),	Klenow	DNA	Polymerase	(NEB,	#M0210L),	and	T4	PNK	(NEB	Cat	#	M0201L)	

for	30	minutes	at	20°	C.	Samples	were	cleaned	using	 the	PCR	Purification	kit	 (Qiagen,	
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#28104)	and	A-Tailing	was	performed	using	Klenow	exo	3-5’	minus	(NEB,	#M0212L)	at	37°	

C	 for	 30	minutes.	 Custom	made	 Illumina	 adapters	were	 then	 ligated	 to	DNA	at	 16°	 C	

overnight	using	T4	Ligase	(NEB,	#M0202M).	After	 ligation,	samples	were	cleaned	using	

the	 MinElute	 PCR	 purification	 kit	 and	 20%	 of	 each	 sample	 was	 reserved	 as	 Input.	

Remaining	DNA	was	denatured	at	99°	C	for	10	minutes,	and	then	incubated	with	IP	buffer	

(10	mM	Sodium	Phosphate	pH	7.0,	140	mM	NaCL,	0.05%	Triton	X-100)	and	4µg/mL	5hmC	

antibody	 (Active	 Motif	 #39791,	 lot	 #15413007)	 for	 12	 hr	 at	 4°	 C.	 To	 recover	

immunoprecipitated	DNA,	20	µL	of	Dynabeads	Protein	G	(Thermofisher,	#1003D)	were	

added	to	each	IP	and	incubated	at	4°	C	for	2	hr	with	rocking.	Both	IP	and	Input	libraries	

were	then	digested	with	Proteinase	K	for	2	hr	at	55°	C	with	shaking.	Magnetic	separation	

was	then	used	to	isolate	DNA,	and	the	supernatant	was	purified	using	Ampure	cleanup.	

From	each	IP	and	Input,	5	µL	of	DNA	was	reserved	to	test	enrichment	of	5hmC	with	QPCR	

for	 two	 targets.	 The	 primer	 sets	 ACCACATGAAAGGCCAGAAC	 and	

TGGTTCAAGAGGTGCTTTGC	 and	 TGTCGACATCAGACATGGTGAG	 and	

TTTGGGAAACAGGCTTCGAG	were	used.	Remaining	DNA	was	PCR	amplified	for	12	cycles	

(98°C	for	20sec,	55°	C	for	30sec,	72°	C	for	30sec)	using	Kapa	HiFi	HotStart	ReadyMix	(Kapa	

Biosystems,	#KK2601).	The	PCR	product	was	cleaned	using	Ampure	beads	and	eluted	in	

Tris-HCl	 pH	 8.0.	 Fold	 enrichment	 was	 verified	 using	 QPCR	 using	 the	 above	 primers.	

Libraries	were	duplexed	and	sequenced	using	a	HiSeq-2500.		
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hmeDIP-seq	peak	calling	

Illumina	adapters	were	trimmed	using	Cutadapt	(version	1.12)377.	Reads	were	aligned	to	

hg19	 using	 Bowtie	 (version	 2.2.6)378.	 Uniquely	 mapping	 reads	 were	 extracted	 using	

samtools	 and	 used	 for	 peak	 calling.	 Peak	 calling	 and	 differential	 peak	 calling	 were	

performed	using	the	Peak	Prioritization	Pipeline	(PePr,	v1.1.7)397	specifying	narrow	peaks	

and	discarding	duplicate	reads.	Aligned	files	for	each	5hmC	IP	and	its	corresponding	input	

were	inputted	separately	into	PePr	in	order	to	main	inter-sample	variability.	Significant	

differentially	 hydroxymethylated	 regions	 (Benjamini-Hochberg	 FDR	 <	 0.05	 and	 a	 fold	

change	>	1)	were	annotated	as	described	above	for	DMRs.	For	comparison	to	hypo-DHMR	

in	TET2	mutated	AML,	raw	hme-SEAL	data317	for	TET2	mutated	AML	and	wild-type	TET2	

AML	 (AML-ETO)	 was	 downloaded	 from	 GEO	 and	 processed	 as	 described	 above	 for	

hmeDIP-seq.	Differential	peak	calling	between	TET2	mutant	and	wild-type	was	performed	

as	described	above.	Overlap	between	TET2	hypo-DHMR	and	aging	DHMR	was	done	using	

bedtools	intersect.	Significance	was	calculated	using	Fisher’s	exact	test.	

	

RNA-seq	
	
FACS	isolated	HSCe	were	sorted	into	Qiagen	RLT+	(n=7-10	biological	replicates).	RNA	was	

immediately	 isolated	 using	 the	 Allprep	DNA/RNA	Micro	 Kit	 (Qiagen,	 80204)	 using	 the	

manufacturer’s	 protocol	 to	 extract	 total	 RNA.	 Samples	 with	 a	 RIN>8.5	 were	 used	 for	

library	preparation.	Ribosomal	RNA	was	removed	using	RiboGone	(Clontech,	#634846).	

Stranded	 libraries	were	prepared	by	the	University	of	Michigan	Sequencing	Core	using	
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the	SMARTer	Stranded	RNA-seq	Kit	(Clontech,	#634836).	Libraries	were	sequenced	on	the	

HiSeq-2500	with	50	bp	paired-end	sequencing.		

	

RNA-seq	alignment	
	
Using	Cutadapt	(version	1.12),	all	reads	were	trimmed	to	48	basepairs	and	adapters	were	

removed377.	Reads	were	aligned	to	the	hg19	gencode	v19	reference	genome	using	the	

STAR	 aligner	 (version	 2.5.2b),	 specifying	 the	 following	 parameters:	 outFilterType=	

BySJout,	 outFilterMultimapNmax=20,	 alignSJoverhangMin=8,	 alignSJDBoverhangMin=1,	

outFilterMismatchNmax=999,	 alignIntronMin=20,	 alignIntronMax=1000000,	

alignMatesGapMax=1000000,	alignEndsType=EndToEnd398.		

	

Differential	gene	expression	analysis	
	
Gene	counts	were	calculated	using	QoRTs	(v1.0.7)399.	QoRTs	was	run	in	second	stranded	

mode	 using	 the	 hg19	 gencode	 annotation	 file	 without	 entries	 for	 ribosomal	 RNA.	

Differential	 gene	 expression	 analysis	 was	 performed	 using	 DESeq2	 v1.10.1400.	 A	

multifactor	design	was	used	in	order	to	control	for	sex	of	the	donor	as	well	as	any	batch	

effect	during	library	preparation.	Dispersions	were	calculated	using	samples	from	both	

age	groups	and	 then	contrasts	were	established	 for	pair-wise	comparisons.	 Significant	

genes	were	defined	as	having	a	fold	change	>1.5	and	p-adjusted	<0.05.	Regularized	log-

counts	(rld)	were	generated	with	DESeq2	and	then	row	z-scores	were	calculated	and	used	

to	 plot	 heatmaps	 using	 the	 R	 package	 ComplexHeatmap	 (v1.15.1)396	 with	 average	

clustering	and	correlation	distances.	
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GSEA	
	
Gene	set	enrichment	analysis	(GSEA)	was	performed	using	a	list	of	genes	pre-ranked	by	

the	Wald	statistic	(stat	column	from	DESeq2	output)401.	A	weighted	enrichment	score	was	

used	and	gene	set	size	was	limited	to	15-500	genes.	To	test	enrichment	for	the	Crews	et	

al.	aging	signature,	the	published	list	of	genes	upregulated	in	aged	HSCe	(FPKM	>	1,	p	<	

0.05,	L2FC	>	1)	was	used	as	a	gene	set	in	GSEA402.	

	

Alternative	splicing	analysis	
	
Replicate	 multivariate	 analysis	 of	 transcript	 splicing	 (rMATS)	 was	 used	 to	 examine	

alternative	splicing403.	STAR	aligned	reads	were	used	as	input	with	the	transcripts	from	

the	hg19	gencode	v19	genome	as	reference.	An	initial	splicing	cutoff	of	0.01%	was	used,	

and	data	was	then	filtered	to	extract	significant	alternatively	spliced	events	(FDR	<0.05	

and	 abs(Inclusion	Rate	Difference)	 >0.1).	 For	 comparison	 to	 skipped	 exon	 events	 that	

occur	with	inhibition	of	the	spliceosome	in	CD34+	cells404,	R	was	used	to	identify	the	exons	

that	were	both	significantly	altered	with	age	and	with	sudemycin	D6	treatment.	

	

Cell	isolation	for	scRNA-seq	
	
Mononuclear	cells	were	isolated	from	3	female	donors	aged	28-37	years	old	and	a	71-

year-old	 male	 donor	 with	 Ficoll-Paque	 (GE	 Healthcare),	 then	 enriched	 using	 CD34	

Microbeads	on	a	Automacs	Pro	 separator	 (Miltenyi,	 San	Diego,	CA).	CD34+	 cells	were	

stained	with	lineage	antibodies	conjugated	to	PerCP-Cy™5.5:	CD2	(Becton,	Dickinson	and	

Company,	 clone	 RPA-2.10),	 CD3	 (Becton,	 Dickinson	 and	 Company,	 clone	UCHT1),	 CD4	



	59	

(Becton,	Dickinson	and	Company,	clone	RPA-T4),	CD7	(Becton,	Dickinson	and	Company,	

clone	 M-T701),	 CD8	 (Becton,	 Dickinson	 and	 Company,	 clone	 RPA-T8),	 CD10	 (Becton,	

Dickinson	and	Company,	clone	HI10a),	CD11b	(Biolegend,	clone	ICRF44),	CD14	(Becton,	

Dickinson	 and	 Company,	 clone	 M5E2),	 CD19	 (eBioscience,	 clone	 HIB19),	 CD20	

(eBioscience,	 clone	 2H7),	 CD24	 (Biolegend,	 clone	ML5),	 CD56	 (Becton,	 Dickinson	 and	

Company,	 clone	 B159),	 CD66b	 (Becton,	 Dickinson	 and	 Company,	 clone	 G10F5),	

Glycophorin	 A	 (Biolegend,	 clone	 HIR2)	 and	 CD90-biotin	 (eBioscience,	 clone	 5E10).	 To	

isolate	 HSCe,	 lineage	 stained	 cells	 were	 stained	 with:	 Streptavidin	 APC-Cy7	 (Becton,	

Dickinson	 and	 Company),	 CD123-PE	 (eBioscience,	 clone	 6H6),	 CD34-APC	 (eBioscience,	

clone	 4H11),	 CD38-PE-Cy7	 (eBioscience,	 clone	 HIT2),	 CD45RA-FITC	 (Invitrogen,	 clone	

MEM-56).	Cell	sorting	was	performed	on	a	BD	FACSAria	II	with	a	100	µm	nozzle.	

	

sc-RNA-seq		
	
To	ensure	maximum	cell	integrity,	bone	marrow	was	aspirated	in	the	morning,	cells	were	

sorted	at	noon	and	loaded	on	the	microfluidics	chamber	at	2PM.	Single	cell	HSCe	were	

prepared	 using	 the	 C1™	 Single-Cell	 Auto	 Prep	 System	 (Fluidigm,	 San	 Francisco,	 CA),	

according	to	the	manufacturer’s	 instructions.	 	 In	short,	13,000-20,000	flow-sorted	cells	

were	counted	and	resuspended	at	a	concentration	of	350	cells	per	µL	PBS	then	loaded	

onto	a	primed	C1	Single-Cell	Auto	Prep	Integrated	Fluidic	Chip	for	mRNA-seq	(5-10	µm).	

After	the	fluidic	step,	cell	separation	was	visually	scored,	between	55-86	single	cells	were	

normally	captured.	Cells	were	lysed	on	chip,	reverse	transcription	and	PCR	was	performed	

using	Clontech	SMARTer®	Ultra®	Low	RNA	Kit	 for	 the	Fluidigm®	C1™	System	using	the	



	60	

mRNA-seq:	RT	+	Amp	(1771x)	according	to	the	manual.	After	the	completion	of	the	mRNA-

seq:	RT	+	Amp	(1771x)	program,	cDNAs	were	transferred	to	a	96	well	plate	and	diluted	

with	 3-6	 µL	 C1™	 DNA	 Dilution	 Reagent.	 cDNAs	 were	 quantified	 using	 Quant-iT™	

PicoGreen®	 dsDNA	 Assay	 Kit	 (Life	 Technologies,	 Grand	 Island,	 NY)	 and	 Agilent	 High	

Sensitivity	DNA	Kit	(Agilent	Technologies	(Santa	Clara,	CA).	Libraries	were	prepared	using	

Nextera	XT	DNA	Library	Preparation	Kit	(Illumina	Inc,	Santa	Clara,	CA)	on	cDNAs	with	an	

initial	concentration>180	pg/µl	that	were	then	diluted	to	100	pg/µL.	In	each	single-cell	

library	 preparation,	 a	 total	 of	 125pg	 cDNA	 was	 tagmented	 at	 55	 °C	 for	 20	 minutes.	

Libraries	were	pooled	and	purified	on	AMPure®	bead-based	magnetic	separation	before	

a	final	quality	control	using	Qubit®	dsDNA	HS	Assay	Kit	(Life	Technologies,	Grand	Island,	

NY)	and	Agilent	High	Sensitivity	DNA	Kit.	We	required	the	majority	of	cDNA	fragments	to	

be	between	375-425bp	to	qualify	for	sequencing.	Single	cell	libraries	were	subjected	to	

paired-end	 75bp	 RNA-sequencing	 on	 a	 HiSeq	 2500	 (Illumina	 Inc.,	 San	 Diego,	 CA).	 96	

scRNA-seq	libraries	were	sequenced	per	HiSeq	2500	gel	(~300	million	bp/gel).	

	

sc-RNA-seq	analysis	
	
sc-RNA-seq	data	 (n=208	cells	 from	4	donors)	was	aligned	to	 the	human	transcriptome	

(hg19)	and	quantified	as	transcripts	per	million	(TPM)	using	RSEM405.	On	average,	6,000	

transcripts	 were	 captured	 per	 cell.	 Associated	 TPM	 were	 supplied	 to	 the	 software	

AltAnalyze	for	dimensionality	reduction	and	supervised	analysis406.	 	As	part	of	the	first	

step	of	AltAnalyze,	iterative	clustering	and	guide	gene	selection	(ICGS)	was	performed	to	

discard	genes	that	had	been	covered	in	<10%	of	cells.	Out	of	the	502	genes	in	the	bulk	
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aging	 gene	 signature,	 392	were	 covered	 in	 the	 sc-RNA-seq	 cohort	 and	were	 used	 for	

singular	vector	decomposition	(SVD).	For	the	heatmap,	log2	median	normalized	TPM	were	

plotted	for	the	genes	that	were	differentially	expressed	at	the	bulk	and	single-cell	level	

between	young	and	aged	donors	(n=90	genes,	empirical	Bayes	moderated	t-test	p<0.05).	

Each	 column	 represents	1	 cell,	 and	each	 row	 is	 for	1	gene,	with	Ward	clustering	with	

cosine	similarity.	

	

Enhancer	analysis	
	
To	 identify	 differential	 and	 unchanged	 poised	 enhancers	 ((H3K4me1>H3K4me3),	

H3K27me3+,	H3K27ac-,	and	not	within	the	promoter	region),	H3K4me1	peak	calling	of	

pooled	 samples	 for	 each	 age	 group	 was	 performed	 as	 described	 above.	 Bedtools	

intersect407	was	then	used	to	discard	any	H3K4me1	tags	from	the	macs2	treatment	pileup	

where	H3K4me1	fold	enrichment/H3K4me3	fold	enrichment	<2.	The	resulting	bedgraph	

files	were	used	for	differential	peak	calling	with	macs2	bdgdiff.	Genomic	annotation	of	

the	 outputted	peaks	was	 performed	using	 the	R-package	Genomation	 (v1.2.2)408,	 and	

peaks	 within	 3	 kb	 of	 a	 TSS	 were	 removed	 from	 further	 analysis.	 Peaks	 overlapping	

H3K27me3,	but	not	H3K27ac	peaks	were	found	with	bedtools	intersect.	Active	enhancers	

were	defined	as	H3K27ac+,	(H3K4me1	>	H3K4me3),	and	not	within	the	promoter	region.	

To	 identify	 differential	 and	 unchanged	 active	 enhancers,	 differential	 peak	 calling	 of	

H3K27ac	was	performed	as	described	above.	Genomic	annotation	of	the	resulting	peak	

files	 was	 then	 performed,	 and	 peaks	 within	 3kb	 of	 a	 TSS	 were	 discarded.	 Bedtools	

intersect	 was	 used	 to	 find	 sites	 that	 overlapped	 with	 regions	 where	 H3K4me1	 fold	
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enrichment/H3K4me3	fold	enrichment	<2.	Active	and	poised	enhancers	were	annotated	

to	the	nearest	TSS	using	the	R	package	ChIP-enrich382.		

	

RNA	and	ChIP-seq	comparison	
	
For	the	genes	annotated	to	differential	peaks,	unchanged	peaks,	or	active	enhancers,	the	

gene	 expression	 log2	 fold-change	 (Old/Young)	was	 extracted	 from	 the	DESeq2	 results	

object.	Unchanged	genes	were	defined	as	genes	with	common	peaks,	but	no	differential	

peaks	between	young	and	aged	HSCe.		

	

Western	blot		
	
Western	blotting	was	performed	on	5,000	HSCe	per	donor	(n=3	per	age	group)	and	10,000	

HSCe	per	donor	with	1-2	technical	replicates	for	an	additional	5	young	and	4	aged	donors.	

HSCe	from	a	53	yo	donor	were	used	to	determine	the	linear	range	of	the	assay.	Protein	

was	 extracted	 using	 a	 modified	 trichloroacetic	 acid	 (TCA;	 MP	 Biomedicals	 #196057)	

precipitation	protocol409.	Briefly,	HSCe	were	sorted	into	10%	TCA	and	precipitated	at	4°	

C.	Extracts	were	spun	at	13,000	RPM	for	10	minutes	at	4°	C.	Supernatant	was	discarded	

and	 samples	were	washed	 twice	with	 acetone.	 Pellets	were	 resuspended	 in	 TCA	 lysis	

buffer	 (9M	 Urea,	 2%	 Triton	 x-100,	 1%	 DTT)	 and	 lithium	 dodecyl	 sulphate	 (Life	

Technologies	NuPage,	#NP0007).	For	samples	with	5,000	HSCe,	10	mM	Tris-HCl	pH	8.0	

was	also	added.	Samples	were	denatured	at	70°	C	for	10	minutes.	Protein	from	samples	

with	 10,000	 HSCe	 were	 loaded	 into	 a	 4-12%	 Bis-Tris	 gel	 (Thermo,	 #NP0322BOX),	 20	

µL/well	and	then	transferred	to	a	polyvinylidene	difluoride	(PVDF)	membrane.	Blots	were	
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imaged	on	a	BioRad	ChemiDoc.	Densitometry	was	performed	using	the	BioRad	Image	Lab	

software.	For	samples	with	5,000	HSCe,	and	the	standard	curve,	protein	was	loaded	into	

a	15%	SDS-PAGE	gel,	13	µL/well	and	then	transferred	to	a	Immobilon	FL	polyvinylidene	

difluoride	(PVDF)	membrane	(Millipore,	#IPFL10100).	Blot	was	imaged	on	a	LiCor	Odyssey	

CLx.	Densitometry	was	performed	using	the	LiCor	Image	Studio	software.	For	all	samples,	

intensity	of	H3	was	normalized	to	that	of	a	loading	control,	GAPDH.	P-value	was	calculated	

using	the	parametric	unpaired	t-test	was	performed	using	Prism	software.	The	following	

antibodies	were	used:	Rabbit	aGAPDH	(Santa	Cruz,	#SC25778,	 lot	K0615),	Mouse	aH3	

(Abcam,	#ab10799),	aMouse	IgG,	HRP	linked	(Cell	Signaling,	#7076S,	lot	32),	and	aRabbit	

IgG,	HRP	linked	(Cell	Signaling,	#7074S,	lot	26),	aRabbit	IR-Dye	800	CW	(LiCor,	#92632213	

lot	C61012-02),	and	aMouse	IR-Dye	680	RD	(LiCor,	#925-68070,	lot	C70613-11).	Power	

analysis	was	performed	using	the	Cohen	method	using	the	pwr.t.test	function	within	the	

‘pwr’	R-package410.	Effect	size	was	calculated	using	the	mean	of	the	young	donors	(n=8)	

minus	the	mean	of	the	aged	donors	(n=7)	divided	by	the	population	standard	deviation.		

	

Transcription	factor	binding	motif	analysis	
	
The	Homer	findMotifs	function	was	used	to	detect	significant	(q-value	<	0.05)	enrichment	

of	transcription	factor	binding	motifs	in	5hmC	peaks	gained	with	age225.	For	comparison	

of	HSCe	ChIP-seq	to	transcription	factor	binding	sites	in	CD34+	cells,	bedtools	intersect	

was	used	to	find	the	overlap	between	published	transcription	factor	ChIP-seq	peaks	 in	

CD34+	cells	and	H3K4me1,	H3K4me3,	H3K27me3,	H3K27ac	peaks,	and	active	enhancers	

lost	with	HSCe	aging411.	Overlap	between	transcription	factor	peaks	and	peaks	unchanged	
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with	age	was	calculated	to	determine	significance	using	Fisher’s	exact	test.	FDR	<	0.002	

was	used	as	the	significance	cutoff.		

	

Peak	visualization	
	
Peaks	were	visualized	using	the	UCSC	genome	browser.	The	macs2	SPMR	and	bdgcmp	

functions	were	used	to	generate	fold	enrichment	ChIP-seq	tracks	that	are	normalized	by	

read	 count	 and	 to	 the	 IP’s	 corresponding	 Input.	 Destranded	 RNA-seq	 tracks	 of	 the	

individual	 and	 pooled	 replicates	 were	 created	 using	 the	 STAR	 aligner	 parameters:	 --

outWigType	bedGraph		--outWigNorm	RPM	–outWigStrand	Unstranded.		

	

Gene	ontology	analysis	
	
Functional	 annotation	 of	 ChIP-seq	 peaks	 and	 enhancers	 was	 performed	 using	 the	 R	

package	 ChIP-enrich382.	 Regions	 were	 annotated	 to	 hg19	 Gene	 Ontology	 Biological	

Processes	data	sets	of	less	than	500	genes,	using	the	method=chipenrich	function.	ChIP-

seq	peaks	and	enhancers	were	annotated	to	the	nearest	TSS.	Results	with	an	FDR<0.05	

were	considered	significant.	

	

Heatmaps	and	density	plots	of	ChIP-seq	and	hmeDIP-seq	
	
Heatmaps	 of	 differential	 ChIP-seq	 peaks,	 enhancers,	 and	 bivalent	 promoters	 were	

created	using	deepTools2	(v2.5.0.1)412.	Individual	and	pooled	ChIP-seq	IP	replicates	were	

normalized	 to	 their	 corresponding	 inputs	using	 the	deepTools2	bamCompare	 function	

and	 the	options	–ratio	 log2	–outFileFormat	bigwig	–scaleFactorsMethod	 readCount412.	



	65	

The	resulting	bigwig	files	were	then	used	in	conjunction	with	deepTools2	computeMatrix	

and	plotHeatmap	to	calculate	and	plot	enrichment	at	regions	of	interest.	Heatmaps	are	

peak	centered	on	the	differential	regions.	Density	plots	of	5hmC	signal	were	created	using	

ngsPlot413.	For	ease	of	visualization,	alignments	from	all	replicates	were	pooled	for	each	

IP	and	Input	and	used	for	plotting.	IP	signal	was	normalized	to	Input	using	ngsPlot,	and	

plotted	at	the	coordinates	of	the	peak	centered	differential	peaks,	all	active	enhancers	

identified	in	young	HSCe,	and	all	annotated	gene	bodies.		

	

Boxplots	of	ChIP-seq	data	
	
For	boxplots	of	histone	modifications	 lost	with	age,	pooled	ChIP-seq	IP	replicates	were	

log2	 normalized	 as	 described	 above.	 Enrichment	 of	 each	 IP	 was	 then	 calculated	 for	

H3K4me1,	H3K4me3,	H3K27me3,	and	H3K27ac	peaks	lost	with	age	using	the	deepTools2	

computeMatrix	 function.	 For	 boxplots	 of	 genome	 wide	 H3	 enrichment,	 individual	

replicates	(n=2	young	and	n=2	aged)	were	log2	normalized	to	their	corresponding	inputs	

as	described	above.	The	deepTools2	multiBigwigSummary	bins	function	was	then	used	to	

calculate	H3	enrichment	over	150bp	bins	covering	the	whole	genome.	Boxplots	were	then	

plotted	using	base	R.	

	

Genomic	annotation	
	
The	R	package	genomation	was	used	to	annotate	ChIP	and	5hmC	peaks	to	promoters	(+/-	

1000	bp	of	TSS),	introns,	exons,	and	intergenic	regions408.	
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Bivalent	promoter	analysis	
	
The	bedtools	 intersect	 function	was	used	to	 identify	promoter	regions	(+/-	1000	bp	of	

TSS)	that	were	bound	by	both	H3K4me3	and	H3K27me3	for	each	age	group.	The	same	

function	 was	 also	 used	 to	 compare	 the	 chromosomal	 coordinates	 of	 the	 bivalent	

promoters	in	each	age	group	to	identify	bivalent	promoters	that	change	with	age.	Bivalent	

promoters	were	annotated	to	the	nearest	TSS	using	ChIP-enrich408.	

	

Targeted	genomic	sequencing	
	
Genomic	DNA	was	used	to	prepare	libraries	for	hybrid	capture	per	manufacturer	protocol	

(Agilent).	Libraries	were	quantified	and	pooled	up	to	24	samples	per	reaction	in	equimolar	

amounts	totaling	500	mg	of	DNA.	Agilent	Custom	SureSelect	In	Solution	Hybrid	Capture	

RNA	baits	were	used	to	hybridize	libraries,	targeting	443	kbp	of	exonic	DNA	with	16890	

probes	as	described	in	Lindsley	et	al414.	Each	capture	reaction	was	washed,	amplified,	and	

sequenced	on	two	 lanes	of	an	 Illumina	HiSeq	2000	100bp	paired	end	run.	Subsequent	

analysis	of	the	target	region	was	restricted	to	the	regions	corresponding	to	the	following	

genes:	ANKRD26,	CEBPA,	ETV6,	KIT,	PRPF40B,	SF3A1,	TERC,	ASXL1,	CREBBP,	EZH2,	KRAS,	

PRPF8,	 SF3B1,	 TERT,	 ATRX,	 CSF1R,	 FLT3,	 LUC7L2,	 PTEN,	 SH2B3,	 TET2,	 BCOR,	 CSF3R,	

GATA2,	MPL,	 PTPN11,	 SMC1A,	 TP53,	 BCORL1,	 CSNK1A1,	 GNAS,	 NF1,	 RAD21,	 SMC3,	

U2AF1,	BRAF,	CTCF,	GNB1,	NPM1,	RAD51C,	SRSF2,	U2AF2,	BRCC3,	CUX1,	 IDH1,	NRAS,	

RUNX1,	STAG1,	WT1,	CALR,	DDX41,	IDH2,	PHF6,	SBDS,	STAG2,	ZRSR2,	CBL,	DNMT3A,	JAK2,	

PIGA,	SETBP1,	STAT3,	CBLB,	EP300,	JAK3,	PPM1D,	SF1,	and	STAT5B.	 	
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Variant	calling	
	
Fastq	 files	were	aligned	 to	 the	hg19	version	of	 the	human	genome	with	The	Burrows	

Wheeler	Aligner	 (BWA	v0.7.12)	MEM	module	 for	paired	end	 reads415.	Duplicate	 reads	

were	 flagged	 and	 removed	 using	 Picard	 tools	 (V1.91).	 GATK	 v3.2	 was	 used	 for	 base	

recalibration	 prior	 to	 variant	 calling,	 and	 also	 for	 local	 realignments	 for	

insertion/deletions	 (indels)	 using	 the	 reference	 variant	 databases416.	 Somatic	 variants	

were	called	using	LoFreq	v2.1.1	for	all	variants	at	>=1%	variant	frequency417.	Additional	

variant	filtering	after	variant	calling	were	used	with	the	following	parameters:	VF	(variant	

frequency)	 <0.05,	 read	 depth	 at	 variant	 site	 <20,	 GQ	 and/or	 QUAL	 scores	 <30,	

IndelRepeatFilter	 >8.	 Variants	 with	 excessive	 strand	 bias	 and	 indels	 with	 VAF	 <10%	

adjacent	 to	 homopolymer	 repeats	 were	 excluded	 by	manual	 curation.	 Filtered	 called	

variants	were	first	annotated	using	ANNOVAR418.	Variants	predicted	to	alter	splicing	were	

assessed	as	described	in	Jian	et	al419.	Variants	located	outside	protein	coding	regions	or	

splice	sites	of	the	genes	listed	above,	and	synonymous	variants	that	were	not	predicted	

to	 alter	 splicing	 were	 filtered	 out.	 To	 remove	 common	 polymorphisms,	 variants	 with	

population	 frequencies	 of	 ≥1%	 in	 either	 1000	 genomes420	 or	 the	 Exome	 Aggregation	

Consortium	(ExAC	v.3.1)	were	similarly	excluded	unless	they	were	also	listed	as	confirmed	

somatic	 mutations	 in	 COSMIC421.	 Remaining	 variants	 were	 manually	 reviewed	 and	

considered	likely	somatic	coding	variants	included	in	further	analyses.	Variant	calling	and	

interpretation	were	performed	blinded	to	sample	identifiers	and	associated	phenotype	

information.	
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Lentiviral	production	and	transduction	of	CD34+	cells	
	
293FT	cells	were	maintained	according	to	supplier	instructions	(ThermoFisher	Scientific).	

A	custom	pLKO.1	containing	turboGFP	vector	was	used	to	express	shRNAs	targeting	LMNA	

(5’-GATGATCCCTTGCTGACTTAC-3’)	 and	 KLF6	 (5’-TTCAGCCTCAGAAATCAAATT-3’)	

(Millipore	Sigma).	Lentiviruses	were	produced	by	co-transfection	with	packaging	plasmids	

psPAX2	 and	 pMD2.G	 using	 polyethylenimine	 transfection	 reagent	 (Polysciences).	

Lentivirus	containing	supernatant	was	collected	48-72	hours	post-transfection,	 filtered	

through	 a	 0.45-µm	 syringe	 filter,	 and	 concentrated	 using	 PEG-it	 virus	 precipitation	

solution	(System	Biosciences,	#LV825A-1).	

Primary	human	CD34+	cells	were	freshly	isolated	from	mobilized	peripheral	blood	

obtained	from	University	of	Michigan	Comprehensive	Cancer	Center	Tissue	Procurement	

Service.	CD34+	cells	were	isolated	using	magnetic	bead	purification	as	described	for	bone	

marrow	(Miltenyi	Biotec).	Isolated	CD34+	cells	were	cultured	in	20%	FBS	containing	IMDM	

or	SFEM	II	(StemCell	Technologies,	#09605)	and	pre-stimulated	with	recombinant	human	

SCF	 (100	 ng/ml),	 FLT3-L	 (10ng/ml),	 IL-6	 (20ng/ml),	 and	 TPO	 (100ng/ml)	 (PreproTech).	

Lentiviral	 transduction	 of	 CD34+	 cells	 was	 performed	 in	 the	 presence	 of	 8	 µg/ml	

polybrene	(Millipore	Sigma,	TR-1003-G).	Four	days	post-transduction,	cells	were	sorted	

for	CD34	and	GFP	double-positive	cells	on	a	FACS	Aria	Iiu	(BD	Biosciences).	Empty	vector	

was	used	as	control	comparison.	
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Colony-forming	unity	assay	
	
Sorted,	 transduced	 CD34+	 (n=4	 and	 n=2	 biological	 replicates	 for	 LMNA	 and	 KLF6,	

respectively)	were	seeded	in	methylcellulose,	MethoCult	H4435	(StemCell	Technologies,	

#04435),	in	duplicate	onto	a	6-well	SmartDish	(StemCell	Technologies,	#27302)	at	varying	

densities	of	1000	to	1,500	cells.	Colonies	were	scored	on	a	STEMvision	after	14	days	of	

incubation	(StemCell	Technologies).		

	

Quantitative	real-time	PCR	
	
RNA	extraction	from	sorted,	transduced	CD34+	cells	was	performed	using	RNeasy	Plus	

Micro	 kit	 according	 to	 manufacturer’s	 instructions	 (Qiagen,	 #74034).	 cDNA	 was	

synthesized	using	Verso	cDNA	synthesis	kit	with	random	hexamer	priming	according	to	

manufacturer’s	instructions	(ThermoFisher	Scientific,	#AB1453).	qPCR	was	performed	in	

triplicate	 using	 SYBR	 Green	 on	 a	 QuantStudio-5	 real-time	 PCR	 system	 (Applied	

Biosystems)	 for	 n=7	 and	 n=2	 biological	 replicates	 with	 LMNA	 or	 KLF6	 knockdown,	

respectively.	 Expression	 values	 were	 normalized	 to	 GAPDH.	 In	 total,	 5	 genes	 were	

evaluated	by	qPCR:	LMNA,	KLF3,	KLF6,	BCL6,	and	EGR1.	

	

RNA-seq	of	LMNA	knockdown	

RNA	 from	FACS	 isolated	 transduced	CD34+	cells	 (n=4	donors)	was	extracted	using	 the	

Qiagen	RNeasy	Plus	Micro	kit	according	to	manufacturer’s	instructions	(Qiagen,	#74034)	

or	Trizol.	Stranded	libraries	were	prepared	by	the	University	of	Miami	Sequencing	Core	

using	the	Illuminia	TruSeq	Stranded	Total	RNA	kit	(Illumina,	#20020596).		Libraries	were	
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sequenced	on	the	NextSeq-500	with	75	bp	paired-end	sequencing.	Data	was	aligned	and	

processed	as	described	above	and	used	 for	GSEA	with	 the	 lists	of	genes	up-	or	down-

regulated	with	HSCe	aging	as	input	gene	sets.		

	
	
Statistical	analysis	

Significance	details	can	be	found	within	the	figure	legends.	For	genome-wide	sequencing	

assays,	 we	 corrected	 for	 multiple	 testing,	 and	 used	 q<0.05	 as	 a	 cutoff	 to	 determine	

significance,	 for	all	other	statistical	 tests,	we	used	a	p-value	cutoff	of	p<0.05	to	define	

significance.	In	the	figures,	∗	means	p	<	0.05,	∗∗	p	<	0.01,	∗∗∗	p	<	0.001,	and	****	p	<0.0001.	

For	comparison	of	ChIP-seq	data	to	gene	expression	data,	R-statistical	software	(v3.2.1)	

was	 used	 to	 perform	 the	 Welch	 two-sided	 two-sample	 t-test.	 For	 the	 Western	 Blot	

analysis,	a	two-sided	parametric	unpaired	t-test	was	used	to	calculate	p-values	with	Prism	

software	 (v7.0).	 For	 the	 comparison	 of	 HSCe	 ChIP-seq	 peaks	 to	 transcription	 factor	

binding	sites,	p-values	were	calculated	with	Fisher’s	Exact	test	and	corrected	for	multiple	

testing	using	the	Bonferroni	correction	methods.	
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CHAPTER	3	
	

Age-related	decrease	in	histone	activating	marks	targets	key	regulatory	
elements	

	

	 Post-transcriptional	 modifications	 of	 histones	 regulate	 gene	 function.	 Some	

modifications,	 like	 H3K27me3,	 are	 associated	with	 silenced	 gene	 promoters,	 whereas	

others,	like	H3K4me3,	mark	promoters	that	are	actively	transcribed164,172.	Combinations	

of	multiple	 histone	modifications	 can	 further	 fine-tune	 gene	 regulation.	 For	 example,	

bivalent	 promoters	 contain	 both	 H3K4me3	 and	 H3K27me3,	 and	 are	 associated	 with	

silenced	developmental	genes189.	Presence	of	H3K4me1	and/or	H3K27ac	is	a	feature	of	

enhancers,	 long-range	 gene	 regulatory	 elements	 that	 are	 frequently	 deregulated	 in	

leukemia233-238,422.			Given	that	aged	HSCs	become	skewed	towards	the	myeloid	lineage	

and	have	a	decreased	regenerative	ability23,25,30,	mechanisms	that	regulate	HSC	 loss	of	

function	with	age	are	of	particular	importance.		In	murine	HSC,	deregulation	of	H3K4me3	

and	 H3K27me3	 may	 contribute	 to	 HSC	 decline	 with	 age365.	 However,	 whether	 these	

histone	modifications,	or	those	associated	with	enhancers	are	altered	in	human	HSC	aging	

has	never	been	investigated.	We	hypothesized	that	age-acquired	deregulation	of	histone	

modifications	contributes			to	age-associated			human	HSC	dysfunction.		To	this	end,	we			

performed	chromatin		immunoprecipitation		followed		by		massively		parallel		sequencing	
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(ChIP-seq)	of	H3K4me1,	H3K4me3,	H3K27me3,	and	H3K27ac	in	young	(18-30	yo)	and	aged	

(65-75	yo)	HSCs,	to	explore	how	these	marks	change	with	age.	

	

Profile	of	histone	modifications	in	young	HSCe	

Analysis	of	H3K4me1,	H3K4me3,	H3K27me3,	and	H3K27ac	 in	 the	HSC-enriched	

lineage-negative	(Lin-)	CD34+	and	CD38-	(herein	HSCe)	fraction	from	young	donors	(n=4-

6	 per	 histone	 modification)	 by	 ChIP-seq	 identified	 regions	 that	 were	 reproducibly	

epigenetically	modified	across	multiple	biological	replicates	(Figure	3.1A).	As	expected,	

each	 modification	 had	 a	 distinct	 genomic	 localization.	 Determination	 of	 the	 baseline	

distribution	of	H3K4me1	in	young	HSCe	identified	123,344	peaks,	localized	primarily	to	

intragenic	and	intronic	regions,	whereas	for	H3K27ac	we	found	30,833	peaks,	most	which	

were	located	at	promoters	and	introns	(Figure	3.1B).	Functional	annotation	of	the	nearest	

transcription	 start	 sites	 (TSS)	 associated	with	H3K4me1	 demonstrated	 enrichment	 for	

gene	ontology	categories	in	cell	cycle,	metabolic	processes,	RNA	processing	and	kinase	

signaling,	while	H3K27ac	was	 enriched	 at	 genes	 involved	 in	 chromatin	 structure,	 RNA	

processing,	 cell	 cycle	 and	 DNA	 repair	 (Figure	 3.1A	 and	 C).	 Analysis	 of	 the	 baseline	

distribution	 for	H3K4me3	 and	H3K27me3	 in	 young	HSCe	 showed	 26,908	 and	 146,116	

peaks,	respectively.	H3K4me3	was	found	mainly	associated	with	promoter	regions	while	

H3K27me3	was	more	enriched	at	intergenic	regions	(Figure	3.1B).	Genes	marked	by	the	

presence	of	H3K4me3	in	HSCe	were	associated	with	RNA	processing,	protein	degradation,	

translation	and	DNA	damage,	whereas	regions	with	H3K27me3	were	also	associated	with	

cell	cycle	and	chromatin	organization	(Figure	3.1B-C).	
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Enhancers	in	HSCe	
	
	 Given	the	importance	of	enhancers	in	regulating	gene	activity,	we	next	identified	

and	 characterized	active	enhancers	 (H3K4me1>	H3K4me3,	H3K27ac+,	 >3kb	 from	TSS),	

poised	enhancers	(H3K4me1>H3K4me3,	H3K27me3+,	>3kb	from	TSS),	as	well	as	super-

enhancers.	 We	 identified	 13,050	 active	 enhancers	 in	 HSCe.	 Not	 surprisingly,	 these	

enhancers	 were	 annotated	 to	 genes	 associated	 with	 hematopoiesis,	 and	 included	

hematopoietic	 transcription	 factors	 such	 as	GATA2/3,	RUNX1/3,	 FLI1	 as	 well	 as	 HSCe	

identity	 genes	 such	as	CD34.	 In	 contrast,	 poised	enhancers	 (n=6,402)	were	associated	

with	 developmental	 genes,	 including	 several	 members	 of	 the	 HOX,	 SOX,	 and	 PAX	

transcription	factor	families	(Figure	3.2A).	Finally,	we	also	sought	to	identify	HSCe	super-

enhancers,	 large	 enhancer	 regions	 that	 drive	 expression	 of	 cell-type	 specific	 identity	

genes	and	are	distinct	from	active	and	poised	enhancers210,211.	Using	H3K27ac	ChIP-seq	

signal	and	the	ranking	of	super	enhancer	 (ROSE)	algorithm210,423,	we	 found	917	super-

enhancers.	 Several	 of	 the	 super-enhancers	 with	 the	 highest	 H3K27ac	 enrichment	 are	

predicted	 to	 regulate	 genes	 involved	 in	 maintaining	 HSC	 stemness,	 self-renewal,	 or	

survival,	including	MALAT1,	MIR-181C,	JARID2,	and	ETV6424-427	(Figure	3.2	B-C).		

	
Bivalent	Promoters	in	HSCe	
	

Next,	we	sought	 to	 identify	genes	 that	are	bivalently	 (H3K4me3+,	H3K27me3+)	

regulated	in	HSCe.		Bivalent	promoters	are	associated	with	developmental	genes,	and	loss	

of	 H3K4me3	 or	 H3K27me3	 at	 bivalent	 promoters	 can	 lead	 to	 silencing	 of	 tumor	

suppressor	genes,	or	activation	of	oncogenes,	respectively428-430.	Of	the	16,102	genes	that	
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contained	promoter	(-/+	1000	kb	of	TSS)	H3K4me3	or	H3K27me3	peaks	in	HSCe,	21.4%	

were	 bivalently	 marked	 (Figure	 3.3	 A-B).	 These	 bivalent	 genes	 were	 associated	 with	

developmental	 pathways	 and	 included	 several	WNT	 pathway	 signaling	 genes	 such	 as	

FZD2,	FZD4,	FZD8,	WNT1,	WNT3A,	and	WNT5A,	and	LRP5	 (Figure	3.3	C-D).	Genes	with	

bivalent	 promoters	 were	 expressed	 at	 a	 level	 similar	 to	 genes	 marked	 by	 promoter	

H3K27me3	alone,	consistent	with	previous	reports	that	bivalent	promoters	mark	silent	

developmental	 genes	 that	 are	 poised	 for	 rapid	 gene	 expression	 upon	 receiving	

differentiation	signals	(Figure	3.3E)430,431.	

	
	
Alteration	of	hematopoietic	progenitor	frequencies	with	age	
	

As	 previous	 studies	 have	 reported	 variation	 in	 frequencies	 of	 human	

hematopoietic	stem	and	progenitor	cells	in	the	bone	marrow	with	aging,	we	sought	to	

determine	if	such	a	phenotype	was	present	in	our	cohort37,432.	Using	flow	cytometry,	we	

evaluated	 the	 frequencies	 of	 HSCe,	 granulocyte-monocyte	 progenitors	 (Lin-

CD34+CD38+CD45.RA+CD123+;	 GMP),	 common-myeloid	 progenitors	 (Lin-

CD34+CD38+CD45.RA-CD123+;	 CMP)	 and	megakaryocyte-erythrocyte	 progenitors	 (Lin-

CD34+CD38+CD45.RA-CD123-;	MEP)	in	bone	marrow	from	41	young	and	55	aged	donors.	

As	observed	by	others,	we	found	an	 increase	 in	HSCe	frequency	with	age	 (p=1.59e-5),	

with	no	significant	difference	in	HSCe	frequency	between	males	and	females,	as	well	as	a	

decrease	in	the	frequency	of	GMP	with	an	increase	in	MEP	amongst	the	Lin-CD34+	and	

CD38+	 fraction	 (p<0.001)37,432.	 Of	 note,	 there	 were	 sex-dependent	 differences	 in	 the	

frequencies	of	MEP	and	CMP	in	young	donors,	and	a	decreased	frequency	of	GMP	in	aged	
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males	compared	to	females	(p<0.05)	(Figure	3.4A-D).	This	is	especially	interesting	given	

the	 increased	 incidence	of	age-associated	myeloid	malignancies	 in	males	compared	 to	

females433,434.		

	
Few	CHIP	associated	mutations	occur	in	our	cohort	
	
	 Epigenetic	modifiers	such	as	DNMT3A,	TET2,	and	ASXL1	are	frequently	mutated	in	

age	 related	 clonal	 hematopoiesis	 (ARCH)100,101,103,104.	 In	 order	 to	 understand	what	 the	

incidence	of	clonal	hematopoiesis	was	in	our	aging	cohort	and	how	this	could	impact	our	

epigenomic	studies,	we	performed	targeted	sequencing	with	100X	coverage	of	a	panel	of	

128	genes	 for	 the	donors	used	 for	genome-wide	epigenetic	or	 transcriptome	profiling	

whenever	 sufficient	material	was	 available	 (Table	 3.1).	Only	 1	 of	 a	 total	 of	 22	donors	

examined	presented	any	mutation	(variant	allele	frequency	>	0.1),	which	corresponded	

to	a	DNMT3A	mutation	with	variant	allele	frequency	(VAF)	of	0.12.	Thus,	due	to	the	low	

VAF	and	the	overall	paucity	of	mutations,	we	concluded	that	it	would	be	unlikely	that	any	

epigenetic	or	gene	expression	changes	in	the	bulk	HSCe	population	would	be	driven	by	

the	presence	of	CHIP-related	mutations	in	this	or	other	donors.	

	

Reduction	of	activating	histone	modifications	with	age	

Using	a	low-input	ChIP-seq	protocol,	we	sought	to	determine	whether	epigenetic	

profiles	 are	 reprogrammed	 with	 age.	 To	 this	 end,	 we	 assayed	 H3K4me1,	 H3K4me3,	

H3K27me3	and	H3K27ac	in	young	and	aged	HSCe.	A	direct	comparison	of	these	marks	

across	multiple	 biological	 replicates	 for	 the	 two	 age	 groups	 (n=4-7,	 per	mark	 per	 age	
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group;	 Table	 S1)	 revealed	 that	 aging	 is	 associated	 with	 widespread	 reductions	 in	

H3K4me1,	H3K27ac	and	H3K4me3,	affecting	20,786	(15%	of	young	peaks),	15,651	(35%)	

peaks	and	27,051	(45%)	peaks,	respectively	(log10	likelihood	ratio	>3).	Notably,	relatively	

few	regions	had	an	increase	in	signal	intensity	of	H3K4me1	(n=23	peaks),	H3K4me3	(n=20	

peaks),	or	H3K27ac	(n=35	peaks)	with	age.	By	contrast,	H3K27me3	displayed	only	1,748	

H3K27me3	peaks	changed	with	aging,	consisting	of	both	gains	(24%	of	differential	peaks)	

and	losses	of	H3K27me3	(76%	of	differential	peaks).	However,	despite	there	being	fewer	

H3K27me3	peaks	affected	with	aging,	these	peaks	displayed	the	greatest	magnitude	of	

change	in	signal	intensity	(Figure	3.5A-C).		

In	order	to	confirm	the	robustness	of	these	observations	and	determine	the	false	

discovery	rate	(FDR)	for	our	approach,	we	performed	100-fold	permutation	analysis	of	

young	and	aged	ChIP-seq	data	for	each	histone	modification	and	determined	the	FDR	to	

be	 0.02,	 0.14,	 0.03,	 and	 0.04	 for	 H3K4me1,	 H3K4me3,	 H3K27me3,	 and	 H3K27ac,	

respectively.	 Importantly,	 the	 Western	 blot	 analysis	 of	 HSCe	 suggested	 that	 these	

differences	are	not	due	to	a	total	reduction	in	histone	3	(H3)	with	age	(Figure	3.6A-B).	

However,	 the	 limited	 sample	 size	 may	 have	 influenced	 this	 finding.	 Post-hoc	 power	

analysis	(d=	0.31,	n=	8	young	and	n=	7	aged)	revealed	that	with	a	p	=	0.05,	there	was	a	9%	

chance	of	detecting	an	age-associated	difference	in	H3	and	the	ratio	of	Young	H3/Aged	

H3	 at	 95%	 confidence	 could	 be	 as	 high	 as	 2.13	or	 as	 low	as	 0.35.	 To	 further	 test	 the	

possibility	of	age-related	changes	in	total	H3,	we	performed	genome	wide	ChIP-seq	of	H3	

in	a	separate	cohort	of	donors.	This	independent	analysis	also	did	not	show	a	reduction	
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of	H3	either	genome	wide,	or	at	sites	with	decreased	H3K4me1,	H3K4me3,	H3K27me3,	

or	H3K27ac	signal	with	age	(Figure	3.6C-D).	

Genomic	annotation	and	gene	ontology	analysis	of	these	age-related	epigenetic	

changes	 revealed	 significant	 enrichment	 (Wald	 test,	 B-H	 corrected	 p-value	 <	 0.05)	 of	

H3K4me1	 losses	 at	 promoter	 and	 intergenic	 regions	 linked	 to	 genes	 involved	 in	

hematopoiesis-related	functions,	while	loss	of	H3K27ac,	which	was	likewise	enriched	at	

promoter	regions,	was	 instead	 linked	to	genes	associated	with	chromatin	organization	

(n=303	out	of	 499	 genes	 in	pathway),	 protein	metabolism,	 and	mRNA	processing	 and	

splicing	(Figure	3.7	and	Figure	3.8A-B).	Changes	in	H3K4me3	and	H3K27me3	were	strongly	

enriched	 at	 promoter	 regions	 and	 associated	 with	 genes	 involved	 in	 multiple	

developmental	 processes,	 including	 regulation	 of	 cell	 development,	 cell	 fate	

determination	 and	 the	 WNT	 receptor	 signaling	 pathway	 (n=247	 out	 of	 282	 genes	 in	

pathway).	In	addition,	genes	associated	with	H3K4me3	loss	were	also	enriched	for	several	

RNA	splicing	and	chromatin	modification	categories	(Figure	3.7	and	Figure	3.8A-B).		

To	 determine	 the	magnitude	 of	 these	 histone	 alterations	 with	 age	 and	 which	

genes	were	most	significantly	affected,	we	examined	the	fold	change	(FC)	of	Aged/Young	

histone	 modification	 signal	 for	 regions	 that	 had	 significant	 (log10	 likelihood	 ratio	 >3)	

reductions	of	these	marks	with	age	(Figure	S2A).	As	expected,	not	all	significant	peaks	had	

a	high	fold	change	with	age	(Figure	S2B).	Pathway	analysis	of	the	top	genes	that	were	

most	changed	with	age	(log10	likelihood	ratio	>3,	FC	<-2.0)	showed	that	even	with	these	

more	 stringent	 gene	 lists,	 regions	 with	 reduced	 H3K4me3	 or	 H3K27me3	 were	 still	

associated	 with	 multiple	 developmental	 pathways,	 whereas	 peaks	 with	 decreased	
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H3K4me1	or	H3K27ac	were	associated	with	 immune	cell	activation	and	hematopoiesis	

(Figure	S2C).	Notably,	amongst	the	most	significant	genes	that	 lost	H3K4me3	with	age	

was	lamin	A	(LMNA;	FC=	-2.8,	log10	likelihood	ratio=	25.3),	which	has	been	implicated	in	

lineage	differentiation	 in	adult	hematopoietic	cells435	and	whose	mutations	have	been	

linked	to	Hutchinson-Gilford	progeria	syndrome436,437		(Figure	3.8B).		

In	order	to	 identify	hematopoietic	transcription	factors	that	may	be	involved	in	

mediating	 these	 epigenetic	 changes,	 regions	 with	 age-related	 changes	 in	 histone	

modifications	were	compared	to	regions	bound	by	transcription	factors	in	human	CD34+	

cells411.	Regions	marked	by	loss	of	H3K4me1	were	significantly	enriched	in	transcription	

factors,	with	peaks	that	were	lost	overlapping	EGR,	FLI1,	LMO2,	LYL,	RUNX1	or	SCL	binding	

sites	 in	CD34+	cells	 (Bonferroni-adjusted	p-value<2.5e-5	for	all	comparisons).	Likewise,	

sites	with	reduced	H3K27ac	with	aging	were	bound	by	EGR,	FLI1,	GATA2,	LYL,	RUNX1,	or	

SCL	in	CD34+	cells	(p-value<8.6e-7	for	all	comparisons).	In	contrast,	regions	with	reduced	

H3K4me3	or	H3K27me3	were	not	significantly	enriched	for	transcription	factor	binding	

sites	(Figure	3.9).			

Global	epigenetic	alterations	were	compared	to	steady-state	transcript	levels	in	a	

separate	 cohort	 of	 donors	 of	 comparable	 ages.	 Genes	 with	 a	 decrease	 in	 H3K4me3,	

H3K4me1,	 and/or	H3K27ac	 signal	 in	 our	 first	 cohort	 tended	 to	 be	 expressed	 at	 lower	

levels	in	aged	HSCe	from	the	second	cohort,	while	the	opposite	was	true	for	genes	with	a	

decrease	in	H3K27me3	signal.	However,	many	genes	showed	little	to	no	change	in	gene	

expression	levels,	indicating	that	for	such	genes	the	reduction	in	these	activating	histone	
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marks	may	 be	more	 reflective	 of	 an	 age-related	 change	 in	 poise	 status	 rather	 than	 a	

change	in	active	transcription	(Figure	3.10).			

	

Age-related	epigenomic	changes	target	regulatory	elements	in	the	genome		

In	 order	 to	 determine	 whether	 aging	 is	 specifically	 associated	 with	 epigenetic	

variation	 at	 gene	 regulatory	 elements,	we	 focused	 the	 analysis	 on	 identifying	 specific	

changes	 at	 these	 regions.	 Enhancer	 deregulation	 through	 translocations,	 somatic-

mutations	 or	 overamplification	 promotes	 oncogenesis,	 including	 age	 related	 myeloid	

leukemias233-238,422.	 Enhancers	were	 defined	 as	 non-promoter	 regions	marked	by	 both	

(H3K4me1	>	H3K4me3)	and	(H3K27me3	present)	or,	by	both	(H3K4me1	>	H3K4me3)	and	

(H3K27ac	present)	for	poised	and	active	enhancers,	respectively.	Notably,	while	only	725	

out	 of	 6,402	 poised	 enhancers	 showed	 any	 age-related	 differences,	 over	 one	 third	 of	

active	enhancers	 (n=4,519)	 showed	significant	 loss	of	H3K27ac	signal	with	aging	 (log10	

likelihood	ratio	>3),	with	3,700	and	2,142	of	these	having	greater	than	a	1.5-fold	or	2-fold	

change	 of	 H3K27ac	 signal	 with	 age,	 respectively	 (Figure	 3.11).	 Amongst	 the	 genes	

associated	 with	 the	 4,519	 enhancers	 that	 had	 reduced	 H3K27ac	 were	 several	

transcription	factors	such	as	PRDM16,	RUNX3,	ETV6,	FLI1,	GATA2,	GFI1,	HIF1A,	IKZF1	and	

KLF6	and,	several	epigenetic	modifiers	such	as	BCOR,	CBX7,	DNMT3A,	DOT1L	and	KMT2A	

(Figure	3.12A).	Functional	annotation	of	all	enhancers	that	experience	an	age-related	loss	

(log10	likelihood	ratio	>	3,	no	FC	cutoff)	of	H3K27ac	revealed	they	were	significantly	(Wald	

test,	B-H	corrected	p-value	<	0.05)	enriched	 in	pathways	associated	with	B-	and	T-cell	
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signaling	 and	 myeloid	 leukemia,	 with	 25/62,	 31/92,	 and	 20/52	 of	 the	 genes	 in	 the	

respective	pathways	displaying	reduced	H3K27ac	with	age	(Figure	3.12B).		

Additionally,	 active	 enhancers	 lost	 with	 age	 frequently	 overlapped	 with	 EGR	

(15%),	GATA2	(20%),	RUNX1	(32%),	or	LYL	(10%)	binding	sites	identified	in	CD34+	cells	(p-

value<1.8e-4	 for	 all	 comparisons)	 (Figure	 3.12C-D).	 At	 the	 RNA	 level,	 steady-state	

expression	 analysis	 showed	 that	 genes	 associated	with	 these	 enhancers	 tended	 to	be	

expressed	at	 lower	 levels	 in	aged	HSCe	when	there	was	 loss	of	H3K27ac	and	at	higher	

levels	in	the	rare	instances	when	this	mark	was	gained	with	aging	(Figure	3.12E).	Not	all	

enhancers	with	 a	 decrease	 in	H3K27ac	 signal	 correlated	with	 a	 decrease	 in	 transcript	

levels	of	their	nearest	gene.	While	this	result	may	be	a	factor	of	the	limitations	inherent	

to	 annotating	 enhancers	 to	 the	 nearest	 gene,	 this	 lack	 of	 correlation	 may	 also	 be	

explained	by	data	that	shows	that	an	enhancer’s	activity	is	best	reflected	by	the	active	

transcription	of	its	associated	eRNA	than	by	the	strength	of	the	H3K27ac	signal220,221.	

Given	the	marked	difference	in	the	localization	of	H3K4me3	and	H3K27me3	marks	

with	aging,	as	well	as	their	association	with	developmental	processes,	we	hypothesized	

that	bivalent	promoters	may	 likewise	be	 specifically	 affected	during	aging.	Analysis	of	

H3K4me3	and	H3K27me3	profiles	in	young	HSCe	identified	3,967	bivalent	promoters.	Of	

these	 HSCe-specific	 bivalent	 promoters,	 1,017	 displayed	 significant	 loss	 of	 H3K4me3	

during	 aging,	 including	 several	HOXC	 cluster	 genes	 and	WNT	 factors	 (Figure	 3.13A-B).	

Pathway	 analysis	 of	 these	 bivalent	 promoters	 lost	with	 aging	 showed	 that	 they	were	

enriched	 in	genes	 involved	 in	WNT,	Hedgehog,	and	Cadherin	signaling,	as	well	as	with	

cancer-related	 pathways	 (Figure	 3.13C).	 Age-related	 switches	 from	 bivalency	 to	



	81	

repression	due	to	loss	of	H3K4me3	were	not	associated	with	a	corresponding	change	in	

expression,	which	 is	 consistent	with	 the	 fact	 that	bivalent	genes	are	not	expressed	 to	

begin	with	(Figure	3.13B	and	D).	By	contrast,	the	few	promoters	that	became	aberrantly	

bivalent	in	aged	HSCe	due	to	gain	in	H3K27me3,	did	show	a	trend	to	lower	expression	

levels	(Figure	3.13D).	

	
Summary	

This	 chapter	 describes	 the	 first	 ever	 characterization	 of	 H3K4me1,	 H3K4me3,	

H3K27me3,	 and	 H3K27ac	 in	 human	 HSCe,	 and	 the	 widespread	 remodeling	 of	 these	

modifications	 with	 age.	 We	 found	 that	 each	 histone	 mark	 had	 a	 unique	 genomic	

localization	 and	 regulated	 distinct	 classes	 of	 genes.	 Analysis	 of	 bivalent	 promoters	

showed	that	like	ESC	and	MuSC,	HSC	have	bivalent	promoters	that	are	associated	with	

mostly	silenced	developmental	genes189,367.	We	also	identified	active	enhancers	that	are	

likely	critical	for	regulating	hematopoiesis.		

Comparative	analysis	of	young	and	aged	HSCe	epigenomes	revealed	thousands	of	

regions	 that	 had	 reduced	 signal	 of	 the	 activating	 histone	 modifications	 H3K4me1,	

H3K4me3,	and	H3K27ac	with	age.	Notably,	ChIP-seq	of	these	marks	in	middle	aged	HSCe	

(45-55	yo,	n=4-5	per	modification)	suggests	that	this	reduction	occurs	gradually	with	age	

(Figure	S3).	Unlike	what	has	been	observed	in	invertebrate	models	and	murine	MuSC,	we	

observed	few	regions	with	altered	H3K27me3	with	age340,367.	However,	this	is	in	line	with	

what	has	previously	been	observed	in	murine	HSC365.	A	major	finding	in	this	study	is	that	

~1/3	of	active	enhancers	have	reduced	H3K27ac	enrichment	with	age.	These	enhancers	
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putatively	regulate	such	transcription	factors	as	RUNX3,	FLI1,	GATA2,	GFI1,	HIF1A,	and	

KLF6,	and	overall,	were	associated	with	B-	and	T-cell	receptor	signaling.	This	suggests	that	

enhancer	remodeling	with	age	may	contribute	to	impaired	lymphoid	differentiation	and	

myeloid	 skewing.	 In	 addition,	 in	 aged	 HSCe	 there	 was	 loss	 of	 H3K4me3	 at	 bivalent	

promoters	associated	with	WNT	and	cadherin	signaling.	Thus,	in	losing	H3K4me3,	these	

promoters	become	more	stably	silenced,	losing	their	potential	for	reactivation.		Finally,	

analysis	 of	 somatic	 mutations	 in	 our	 cohort	 revealed	 that	 only	 1/22	 donors	 profiled	

possessed	a	mutation.	Therefore,	 the	epigenetic	 reprogramming	we	observe	 is	mostly	

likely	not	due	to	CHIP.	
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Genes	
ANKRD26	 CEBPA	 ETV6	 KIT	 PRPF40B	 SF3A1	 TERC	
ASXL1	 CREBBP	 EZH2	 KRAS	 PRPF8	 SF3B1	 TERT	
ATRX	 CSF1R	 FLT3	 LUC7L2	 PTEN	 SH2B3	 TET2	
BCOR	 CSF3R	 GATA2	 MPL	 PTPN11	 SMC1A	 TP53	
BCORL1	 CSNK1A1	 GNAS	 NF1	 RAD21	 SMC3	 U2AF1	
BRAF	 CTCF	 GNB1	 NPM1	 RAD51C	 SRSF2	 U2AF2	
BRCC3	 CUX1	 IDH1	 NRAS	 RUNX1	 STAG1	 WT1	
CALR	 DDX41	 IDH2	 PHF6	 SBDS	 STAG2	 ZRSR2	
CBL	 DNMT3A	 JAK2	 PIGA	 SETBP1	 STAT3	 	
CBLB	 EP300	 JAK3	 PPM1D	 SF1	 STAT5B	 	
Table	3.1:	Genes	examined	for	somatic	mutations.	
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Figure	3.1:	Baseline	distribution	of	histone	modifications	 in	HSCe.	 (A)	Representative	
examples	of	ChIP-seq	peaks	identified	in	young	HSCe.	UCSC	tracks	are	normalized	to	Input	
and	reads	per	million,	each	track	is	derived	from	one	donor.	(B)	Genomic	annotation	of	
H3K4me1,	 H3K4me3,	 H3K27me3	 and	 H3K27ac	 ChIP-seq	 peaks	 in	 young	 HSCe	 (q-
value<1.0e-4	for	H3K4me1,	H3K4me3,	and	H3K27ac;	q-value<0.01	for	H3K27me3).	Peaks	
were	identified	using	pooled	ChIP-seq	replicates	(n=4-6	per	modification).	(C)	ChIP-enrich	
Gene	 Ontology	 Biological	 Processes	 functional	 annotation	 of	 genes	 annotated	 to	
H3K4me1,	H3K4me3,	H3K27me3,	 and	H3K27ac	peaks	 identified	 in	 young	HSCe.	 Select	
significant	(FDR<0.05)	categories	are	shown	for	each	modification.		
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Figure	 3.2:	 Enhancers	 in	 HSCe	mark	 cell	 identity	 genes.	 (A)	 Top	 10	 significant	 gene-
ontology	biological	processes	enriched	in	genes	annotated	to	active	enhancers	(top)	and	
poised	enhancers	(bottom),	ChIP-enrich.	(B)	Plot	of	H3K27ac	peak	rank	versus	H3K27ac	
enrichment	as	determined	by	ROSE.	Points	represent	select	super-enhancers	within	the	
top	 30	most	 significant	 super-enhancers.	 (C)	 UCSC	 tracks	 depicting	 a	 super-enhancer	
enriched	 in	 HSCe.	 Each	 track	 is	 derived	 from	 1	 donor	 and	 is	 normalized	 to	 its	
corresponding	input	as	well	as	number	of	reads.		
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Figure	3.3:	Bivalent	promoters	mark	silenced	developmental	genes.	(A)	Pie	chart	of	the	
percentage	of	genes	with	promoters	(-/+	1000	kb	of	TSS)	that	are	bivalently	marked	or	
marked	by	only	H3K4me3	or	H3K27me3.	 (B)	Density	plot	of	H3K4me3	and	H3K27me3	
signal	 over	 gene	 bodies	 of	 genes	with	 bivalent	 promoters.	 The	 log2(Pooled	 IP/Pooled	
Input)	is	shown	for	each	histone	modification.	(C)	Top	10	significant	(FDR	<	0.05)	Gene	
Ontology	Biological	Processes	associated	with	genes	annotated	to	bivalent	promoters.	(D)	
UCSC	 tracks	 depicting	 a	 bivalent	 promoter.	 Each	 track	 is	 derived	 from	1	donor	 and	 is	
normalized	 to	 reads	per	million	as	well	 as	 its	 corresponding	 input.	 (E)	Boxplots	of	 the	
regularized	 log	counts	 (DESeq2)	 for	genes	with	promoters	marked	by	H3K4me3	alone,	
H3K27me3	alone,	or	bivalently	marked.	Counts	for	each	gene	were	averaged	across	all	
donors.	Genes	with	an	expected	count	of	<1	have	negative	values.	
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Figure	3.4:	Altered	frequencies	of	hematopoietic	progenitors	with	age.	(A)	Cell	isolation	
schema	used	to	isolate	HSCe	(Lin-,	CD34+,	CD38-)	and	HSPC	(Lin-,	CD34+,	CD38+)	from	
human	healthy	bone	marrow	donors.	(B)	FACS	gating	strategy.	Shown	are	representative	
plots	for	a	young	donor	(top)	and	aged	donor	(bottom).	(C)	Plots	of	the	frequencies	of	
HSCe,	MEP,	CMP,	and	GMP	in	young	and	aged	samples.	Each	dot	is	representative	of	1	
donor	(n=41	young	and	n=55	aged).	(D)	Plots	of	the	frequencies	of	HSCe,	MEP,	CMP,	and	
GMP	in	young	and	aged	samples,	segregated	by	sex.	p-values	calculated	using	t-test	in	
Prism,	p>0.05=ns,	p	≤	0.05=*,	p≤0.01=**,	p≤0.001=***,	p≤0.0001=****.		
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Figure	 3.6:	Western	 blot	 and	ChIP-seq	 analysis	 of	 histone	 3	 (H3).	 (A)	 Representative	
Western	blot	analysis	performed	with	5,000	cells	and	imaged	with	the	LiCor	Odyssey	(left)	
and	10,000	cells	imaged	with	ECL	(right)	for	each	biological	replicate	of	young	and	aged	
HSCe	for	H3	and	GAPDH.	HSCe	from	a	53	yo	donor	were	also	used	to	establish	the	linear	
range	of	the	assay,	with	2,500-12,500	HSCe	loaded	per	lane	(left).	(B)	Densitometry	was	
performed	using	Image	Studio	(left)	and	Image	Lab	(right)	and	normalized	intensity	of	H3	
was	calculated	using	GAPDH	signal.	Each	point	is	representative	of	a	biological	replicate	
(left)	or	the	average	intensity	of	the	1-2	technical	replicates	(right).	P-value	was	calculated	
using	the	parametric	unpaired	t-test	was	performed	using	Prism	software.	(C)	Boxplots	of	
genome	wide	H3	enrichment	for	2	young	(blue)	and	2	aged	(red)	donors.	The	genome	was	
binned	into	150	bp	windows	and	log2	enrichment	of	H3	was	calculated	for	each	bin.	(D)	
Log2	enrichment	of	H3	and	H3K4me3	(leftmost),	H3K27me3	(second	from	left),	H3K4me1	
(second	from	right)	and	H3K27ac	(rightmost)	for	the	respective	histone	modifications	lost	
with	age.	Boxplots	are	of	the	log2	enrichment	of	the	Pooled	IP/Pooled	Input.			
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Figure	3.7:	Genomic	annotation	of	regions	with	age-associated	histone	modifications	
alterations.	Genomic	annotation	of	H3K4me1,	H3K4me3,	H3K27me3	and	H3K27ac	ChIP-
Seq	peaks	at	baseline	(young)	and	at	sites	that	lose	enrichment	in	these	marks	in	aged	
HSCe	compared	to	young	HSCe.		
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Figure	3.8:	Age-associated	loss	of	histone	modifications	occurs	at	genes	involved	in	key	
HSC	function.	(A)	ChIP-enrich	Gene	Ontology	Biological	Processes	functional	annotation	
of	 genes	 annotated	 to	 peaks	 that	 have	 reduced	 H3K4me1,	 H3K27ac,	 H3K4me3,	 or	
H3K27me3	 signal	 in	 aged	 HSCe	 compared	 to	 young.	 Select	 significant	 (FDR<0.05)	
annotations	are	shown.	(B)	UCSC	tracks	for	examples	of	genes	with	reduced	H3K4me1,	
H3K27ac,	H3K4me3,	or	H3K27me3	signal	with	age.	Each	track	represents	1	donor	(n=4	
aged	and	n=4	young).	 IPs	are	normalized	 to	 reads	per	million	and	their	corresponding	
Input.	
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Figure	3.9	Regions	with	age-associated	decrease	in	H3K4me1	or	H3K27ac	are	enriched	
for	hematopoietic	TF	binding.	Bar	plots	of	the	percentage	of	ChIP-seq	peaks	lost	with	age	
that	overlap	transcription	factor	ChIP-seq	peaks	identified	in	CD34+	cells.	P-values	were	
calculated	with	Fisher’s	Exact	test	and	corrected	for	multiple	testing	using	the	Bonferroni	
correction	method.	 Results	with	 Bonferroni-adjusted	 p-value<0.0002	were	 considered	
significant.	
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Figure	3.10:	Alterations	in	histone	modifications	correlate	with	altered	gene	expression	
with	age.	Violin	plots	of	the	log2	fold-change	(aged/young)	in	gene	expression	of	genes	
annotated	to	regions	where	H3K4me1,	H3K27ac,	H3K4me3,	or	H3K27me3	is	unchanged,	
lost,	or	gained	in	aged	HSCe	compared	to	young.	p-values	from	Welch	two-sample	t-test,	
p>0.05=ns,	p	≤	0.05=*,	p≤0.01=**,	p≤0.001=***,	p≤0.0001=****.	
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Figure	 3.11:	 Reduced	 H3K4me1	 and	 H3K27ac	 at	 enhancers	 with	 age.	 Heatmap	 of	
H3K4me1,	H3K27ac,	H3K4me3	and	H3K27me3	signals	at	regions	corresponding	to	active	
(top)	 and	 poised	 (bottom)	 enhancers	 that	 are	 enriched	 or	 depleted	 in	 aged	 HSCe	
compared	to	young.	The	log2(Pooled	IP/Pooled	Input)	signal	is	plotted	for	each	age	group,	
centered	on	the	differential	peak	+/-	5kb.	
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Figure	 3.12:	 Age-associated	 loss	 of	 active	 enhancers	 occurs	 at	 hematopoietic	 and	
immune	related	genes.	(A)	UCSC	genome	browser	tracks	of	the	putative	active	enhancers	
of	KLF6,	and	HIF1a	with	decreased	H3K27ac	(log10	likelihood	ratio>3)	in	aged	HSCe.	Tracks	
are	of	pooled	replicates	for	each	age	group,	normalized	to	reads	per	million	and	to	the	
corresponding	Input	for	ChIP-seq.	(B)	Bar	plot	representation	of	select	KEGG	pathways	
(FDR	<0.05)	enriched	in	active	enhancers	that	are	lost	in	aged	HSCe	compared	to	young.	
(E)	Violin	plot	of	the	log2	fold-change	(aged/young)	in	gene	expression	at	active	enhancers	
that	are	unchanged,	lost,	or	gained	in	aged	HSCe	compared	to	young.	p-values	from	Welch	
two-sample	t-test.	
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Figure	3.13:	Switch	from	bivalency	to	repression	with	aging.	(A)	Heatmap	of	H3K4me1,	
H3K27ac,	 H3K4me3	 and	 H3K27me3	 signals	 at	 regions	 corresponding	 to	 bivalent	
promoters	that	are	enriched	(top)	or	depleted	(bottom)	in	aged	HSCe	compared	to	young.	
The	 log2(Pooled	 IP/Pooled	 Input)	signal	 is	plotted	for	each	age	group,	centered	on	the	
differential	peak	+/-	5kb.	(B)	UCSC	genome	browser	tracks	illustrating	epigenetic	changes	
at	genes	that	lose	bivalent	promoters	with	age.	All	tracks	are	of	pooled	replicates	for	each	
age	 group	 (n=5-10),	 and	 normalized	 to	 reads	 per	 million.	 ChIP-seq	 tracks	 are	 also	
normalized	 to	 their	 corresponding	 Input.	 (C)	 Bar	 plot	 representation	 of	 select	 KEGG	
pathways	(FDR	<0.05)	enriched	in	bivalent	promoters	that	are	lost	in	aged	HSCe	compared	
to	young.	(D)	Violin	plot	of	the	log2	fold-change	in	gene	expression	at	bivalent	promoters	
that	are	unchanged,	lost,	or	gained	in	aged	HSCe	compared	to	young.	p-values	from	Welch	
two-sample	t-test,	p>0.05=ns,	p	≤	0.05=*,	p≤0.01=**,	p≤0.001=***,	p≤0.0001=****.
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CHAPTER	4	
	

Remodeling	of	cytosine	modifications	in	aged	HSCe	at	CTCF	and	
hematopoietic	transcription	factor	binding	sites	

	

Both	focal	and	global	alterations	in	cytosine	methylation	(mC)	have	been	observed	

in	aged	murine	HSC,	and	global	changes	in	5-hydroxymethycytosine	(5hmC)	with	age	have	

also	been	detected	in	murine	HSC	and	in	other	tissues353,363,365,438-440.	In	human	peripheral	

blood,	 mutations	 in	 the	 DNA	 methyltransferase	 DNMT3A	 and	 the	 methylcytosine	

deoxygenase	TET2	have	been	observed	with	aging100,101,103,104.	However,	whether	human	

HSC	have	altered	mC	or	5hmC	with	age	and	age-associated	methylation	changes	of	the	

same	 genes	 that	 are	 altered	 with	 murine	 HSC	 aging	 was	 unknown.	 Therefore,	 we	

examined	how	these	cytosine	modifications	change	with	age	 in	human	hematopoietic	

stem	and	progenitor	cells.	

	

Cytosine	modifications	in	young	hematopoietic	progenitors	
	
	 We	first	sought	to	characterize	mC	in	human	HSC	and	determine	if	5hmC	profiles	

in	hematopoietic	progenitors	are	similar	to	those	described	in	other	cell	types.	To	do	this,	

we	examined	the	landscape	of	two	cytosine	modifications,	mC	(n=7	donors)	and	5hmC	

(n=	7	donors).	With	enhanced	reduced	representation	bisulfite	sequencing	(ERRBS),	we	

were	able	to	measure	methylcytosine	at	3,307,233	CpGs.	These	CpG	were	mostly	located	
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at	promoter	regions	and	were	highly	enriched	for	CpG	islands	(CpGi)	(Figure	4.1A-B).		In	

HSCe,	1,314,544	of	 the	covered	CpG	were	methylated	 (average	methylation	>80%).	 In	

comparison	to	all	CpG	covered	by	ERRBS,	these	mC	were	enriched	at	gene	bodies	and	

intergenic	 regions	 (p<2.2e-16,	 binomial	 test)	 (Figure	 4.1A).	We	next	 assayed	 genome-

wide	5hmC	localization	using	hydroxymethylated	DNA	immunoprecipitation	followed	by	

massively	parallel	sequencing	(hmeDIP-seq).	Due	to	the	high	amounts	of	DNA	required	to	

assay	5hmC,	we	profiled	this	mark	using	hematopoietic	stem	and	progenitor	cells	(HSPC;	

CD34+,	CD38+,	Lineage-),	and	identified	677,620	5hmC	peaks.	Both	5hmC	peaks	and	mC	

were	localized	primarily	at	intergenic	regions	and	gene	bodies	(Figure	4.1A).	Even	though	

there	were	 comparable	 frequencies	 of	mC	 and	 5hmC	 at	 promoter	 regions,	 there	was	

greater	enrichment	of	mC	at	CpG	islands	and	shores	compared	to	5hmC	(Figure	4.1A-B).		

This	depletion	of	5hmC	at	CpG	islands	is	similar	to	what	has	been	observed	in	neuronal	

tissues441.	 Additionally,	 as	 has	 been	 observed	 in	 embryonic	 stem	 cells,	 there	 was	

enrichment	of	5hmC	upstream	of	transcription	start	sites,	with	even	higher	5hmC	signal	

at	active	enhancers,	suggesting	that	5hmC	plays	a	role	in	HSPC	gene	regulation	(Figure	

4.1C-D)291	.	

		

Focal	DNA	methylation	changes	with	age	
	

Due	to	the	methylation	changes	described	in	murine	HSC	and	the	finding	that	the	

DNA	methyltransferase	DNMT3A	is	mutated	with	normal	human	aging,	we	hypothesized	

that	with	age	there	is	remodeling	of	cytosine	modifications	in	human	HSC33,100,254,365.	To	

investigate	 this,	we	 profiled	mC	 in	 young	 and	 aged	HSCe	 using	 ERRBS	 (n=5-7	 per	 age	
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group)384.	 Comparison	 of	 cytosine	 methylation	 landscapes	 in	 young	 and	 aged	 HSCe	

revealed	focal	differences	in	DNA	methylation	in	aged	HSCe,	identifying	529	differentially	

methylated	 regions	 (DMR)	 (beta	binomial	 test,	q-value	<	0.05	and	absolute	difference	

≥20%),	encompassing	2,249	differentially	methylated	CpGs	(DMC)	(Figure	4.2A-B).		These	

DMCs	were	depleted	at	promoters	and	CpG	islands	and	enriched	at	 intergenic	regions	

(p<2.2e-16,	binomial	test)	(Figure	4.2C-D).	Few	(<2%)	of	these	intergenic	age-associated	

DMCs	localized	to	active	enhancers.	Yet	given	the	CpG	sparse	nature	of	enhancers,	this	is	

expected.	However,	previous	studies	have	shown	that	intergenic	methylation	of	cytosines	

can	occur	within	insulator	regions,	areas	that	impede	promoter	and	enhancer	interaction	

and	 are	 often	 bound	 by	 the	 transcriptional	 regulator	 CCCTF-Binding	 Factor	 (CTCF)245.	

Comparison	of	aging	DMRs	to	CTCF	ChIP-seq	data	from	CD34+	cells	shows	that	28%	of	

DMRs	 are	 within	 putative	 CTCF	 binding	 sites,	 suggesting	 that	 some	 of	 these	 age	

associated	 methylation	 changes	 may	 play	 a	 role	 in	 mediating	 long-range	 chromatin	

interactions	(Figure	4.2E)442.	Additionally,	despite	the	more	limited	nature	of	these	mC	

changes	as	compared	to	 those	of	histone	marks,	DMRs	were	significantly	enriched	 for	

pathways	relevant	to	HSC	biology	such	as	WNT,	Cadherin	and	cell	adhesion	pathways,	

which	also	displayed	age-related	changes	in	histone	modifications	(Figure	4.2F).		

	

Aging	human	and	murine	HSC	methylation	alterations	are	distinct	
	

As	global	 and	 site-specific	methylation	alterations	have	been	observed	 in	aged	

mouse	HSC,	we	next	decided	to	investigate	if	our	aging	human	HSCe	methylation	profile	

was	similar	to	that	of	murine	HSCs365.	As	the	murine	study	used	whole	genome	bisulfite	
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sequencing	(WGBS),	whereas	we	utilized	a	reduced	representation	approach,	we	limited	

the	comparison	to	those	genomic	regions	that	were	covered	by	ERRBS	in	our	cohort.	Out	

of	the	7,505	aging	murine	DMRs	described	by	Sun	et	al.,	473	were	covered	in	all	samples	

in	 our	 study.	 Hierarchical	 clustering	 and	 correspondence	 analysis	 (COA)	 using	 these	

murine	DMRs	 failed	 to	 segregate	young	and	aged	human	HSCe	 (Figure	4.3A-B).	While	

overlap	of	the	murine	and	human	DMRs	by	gene	name	did	reveal	a	subset	of	genes	(n=88)	

that	are	differentially	methylated	in	both	mouse	and	HSCe	aging,	only	51	of	these	DMRs	

became	differentially	methylated	in	the	same	direction	in	mice	and	humans	(Figure	4.3C).	

Thus,	the	majority	of	differentially	methylated	genes	are	species	dependent.	However,	

given	 the	 increased	 heterogeneity	 in	 human	 samples	 versus	 pooled	 inbreed	 mouse	

samples,	the	cell	types	used	(HSCe	vs.	long-term	HSC),	and	the	different	assays	utilized	to	

profile	DNA	methylation,	the	disparity	between	age-associated	methylation	changes	 in	

human	and	mouse	HSC	is	not	surprising.		

	
	
Methylation	changes	with	age	may	predispose	for	AML	
	
	 With	age,	there	is	an	increased	frequency	of	myeloid	malignancies,	such	as	acute	

myeloid	 leukemia	 (AML)443.	 Alterations	 of	 DNA	 methylation,	 both	 at	 promoter	 and	

enhancer	 elements	 are	 frequently	 observed	 in	 AML394,444,445.	 Therefore,	we	 sought	 to	

investigate	if	mC	changes	with	age	predispose	for	the	aberrant	methylation	observed	in	

AML.	Using	published	ERRBS	methylation	data	from	blasts	from	119	AML	patients	(15-77	

yo)	and	our	young	and	aged	HSCe	samples,	we	performed	k-means	clustering	with	the	

regions	 we	 had	 previously	 identified	 as	 being	 hypermethylated	 (n=342)	 or	
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hypomethylated	(n=187)	with	HSCe	aging	(Figure	4.4A-B)394.		We	sought	to	identify	aging	

DMRs	 that	were	also	differentially	methylated	 in	AML,	 regardless	of	patient	 age.	 	We	

stipulated	that	if	a	DMR	was	only	differentially	methylated	in	aged	AML	patients,	it	could	

simply	be	a	normal	aging	signature,	like	that	of	our	aged	HSCe	donors.	However,	if	the	

DMR	is	also	differentially	methylated	in	young	and	middle-aged	patients	it	would	indicate	

that	the	DMR	is	a	universal	feature	of	both	AML	and	aging.	Amongst	our	HSCe	cohort	and	

the	 119	 AML	 patients,	 we	 were	 able	 to	 identify	 clusters	 of	 aged-associated	

hypermethylated	and	hypomethylated	DMRs	that	were	also	differentially	methylated	in	

AML,	independent	of	patient	age.	These	hypermethylated	DMRs	included	genes	such	as	

KLF6,	RUNX1,	and	HOXC4/6,	and	hypomethylated	DMRs	included	SKI	and	SOCS1	(Figure	

4.4C-D).	

	

Altered	methylation	of	lineage	specific	regions	with	age	
	

In	 murine	 models,	 aged	 HSCs	 have	 decreased	 lymphoid	 potential	 and	

hypermethylation	of	 lymphoid-associated	genes23,438,446.	So,	we	sought	 to	determine	 if	

regions	 that	 become	 differentially	methylated	with	 human	HSCe	 aging	 are	 associated	

with	 methylation	 patterns	 found	 in	 lymphoid	 progenitors	 or	 other	 hematopoietic	

lineages.	For	this	purpose,	we	utilized	a	“hematopoietic	signature”	generated	by	Farlik	et	

al.	from	human	hematopoietic	progenitors	(LT-HSC,	MPP,	CMP,	MEP,	GMP,	CLP,	MPP0,	

MPP1,	MPP2,	and	MPP3),	which	is	capable	of	classifying	hematopoietic	progenitors	based	

on	 their	 methylation	 profile447	 (Figure	 4.5A).	 Both	 young	 and	 aged	 HSCe	 displayed	 a	

methylation	 profile	 distinct	 from	 LT-HSC	 and	 intermediate	 of	 that	 of	 lymphoid	 and	
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myeloid	progenitors	(Figure	4.5B).		Given	that	LT-HSCs	(Lineage-,	CD34+,	CD38-,	CD90+,	

CD45RA-)	are	a	purer	population	than	HSCe	(Lineage-,	CD34+,	CD38-),	it	is	reasonable	that	

our	HSCe	would	not	be	identical	to	LT-HSC	and	would	have	some	features	of	more	mature	

progenitors.	 Correspondence	 analysis	 using	 the	 hematopoietic	 signature	 partially	

segregated	 young	 and	 aged	 HSCe,	 suggesting	 that	 methylation	 of	 key	 hematopoietic	

lineage	genes	is	altered	with	age	(Figure	4.5C).	Interestingly,	when	restricting	the	analysis	

to	 regions	 that	 are	 differentially	 methylated	 between	 erythromyeloid	 and	 lymphoid	

progenitors	 (n=87	 covered	 in	 our	 cohort),	 principal	 component	 analysis	 showed	 no	

distinction	between	young	and	aged	HSCe	(Figure	4.5D).	Furthermore,	direct	comparison	

of	 aging	 DMRs	 and	 erythromyeloid	 vs.	 lymphoid	 DMRs	 revealed	 only	 2	 regions	

differentially	methylated	in	both	conditions.	Thus,	it	appears	that	with	human	HSCe	aging,	

methylation	of	myeloid	and	lymphoid	genes	is	not	dramatically	changed.	However,	aged	

HSCe	 do	 show	 a	 trend	 towards	 altered	 methylation	 when	 examining	 a	 broader	

hematopoietic	signature	derived	from	more	cell	types.			

	

Abundant	regional	gains	in	5hmC	with	age	
	

Given	that	age-associated	changes	 in	5hmC	have	been	observed	 in	murine	HSC	

and	other	tissues353,354,363-365,439,	and	that	the	methylcytosine	deoxygenase	TET2	–which	

is	 important	 for	 HSC	 function448–	 is	 frequently	 mutated	 with	 age100,103,104,	 we	

hypothesized	that	with	age	there	are	alterations	in	5hmC	in	HSC.	In	order	to	determine	

this,	we	used	hmeDIP-seq	for	genome-wide	5hmC	profiling	of	young	(n=7)	and	aged	(n=5)	

HSPC.	With	aging,	5hmC	signal	over	gene	bodies	showed	an	 increase	 in	average	5hmC	



	103	

levels,	while	 enhancer	 regions	 showed	a	 decrease	 in	 this	 cytosine	modification	 in	 the	

elderly	 cohort	 (Figure	 4.6A).	 Supervised	 analysis	 identified	 14,554	 regions	 that	 gained	

5hmC	 in	 aged	HSPCs	 (Fold	Change	>1,	 FDR	<0.05),	which	 corresponds	 to	2%	of	 5hmC	

peaks	 changing	 with	 age	 (Figure	 4.6B).	 Age-related	 hyper	 differentially	

hydroxymethylated	 regions	 (DHMRs)	 were	 enriched	 at	 intron	 and	 exons	 and	 did	 not	

overlap	 with	 regions	 that	 were	 differentially	 methylated	 with	 age	 (Figure	 4.6C-D).	

Notably,	 transcription	 factor	 binding	motif	 analysis	 revealed	 that	 hyper	 DHMRs	were	

significantly	enriched	for	binding	sites	for	the	GATA	and	KLF	transcription	factor	families,	

indicating	 that	 changes	 in	 5hmC	 at	 these	 genomic	 regions	may	 be	mediated	 by	 age-

related	 changes	 in	 the	 levels	 or	 function	 of	 these	 hematopoietic	 transcription	 factors	

(Figure	4.6E).		Notably,	hmeDIP-seq	of	middle-aged	HSPC	(n=5,	45-55	yo)	suggests	that	

the	hyper	DHMR	become	progressively	hyper-hydroxymethylated	with	age,	although	the	

increase	seems	to	accelerate	after	middle	age	(Figure	4.6F).	

As	TET2	is	frequently	mutated	in	age-associated	myeloid	malignancies309-313	and	

patients	with	TET2	mutation	show	widespread	changes	in	5hmC317,	we	hypothesized	that	

alterations	in	5hmC	with	age	may	predispose	for	AML.	To	investigate	this,	we	compared	

our	age-associated	hyper	DHMR	to	DHMR	that	become	hypo	hydroxymethylated	in	TET2	

mutant	AML	(compared	to	TET2	wild-type	AML,	n=157,926)317.	Surprisingly,	regions	that	

become	aberrantly	hydroxymethylated	 in	AMLs	with	TET2	mutations	and	 those	which	

experience	an	 increase	 in	5hmC	with	aging	appear	to	be	mutually	exclusive	 (p<1.0e-4,	

Fisher’s	exact	test).	This	suggests	that	age-associated	DHMRs	may	not	play	a	role	in	TET-

mediated	malignant	transformation.	
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Summary	

	 In	this	chapter,	the	contributions	of	the	cytosine	modifications	mC	and	5hmC	to	

HSC	aging	were	explored.	We	found	that	in	young	HSCe,	mC	is	enriched	at	gene	bodies	

and	 intergenic	 regions.	 Like	 ESC,	 young	 HSPC	 displayed	 enrichment	 of	 5hmC	 at	 gene	

bodies	and	enhancers,	suggesting	that	this	modification	is	important	for	regulating	gene	

expression	in	these	cells291.	With	age,	we	observed	few	(n=529),	but	biologically	relevant	

changes	in	mC.	Regions	that	became	differentially	methylated	with	age	were	enriched	at	

intergenic	regions	and	overlapped	with	CTCF	binding	cites,	indicating	that	they	may	act	

as	 insulators,	 preventing	 enhancer	 activation	 of	 promoters.	 Additionally,	 DMRs	 were	

associated	with	genes	involved	in	WNT	signaling	and	cell	adhesion,	genes	that	are	critical	

for	 HSC	 function	 and	 that	 are	 aberrantly	 methylated	 in	 myeloid	 malignancies296.	

Importantly,	analysis	of	 the	aging	methylation	profile	 in	AML	showed	that	some	aging	

DMRs	may	predispose	for	leukemogenesis.	While	we	observed	poor	homology	between	

our	DMRs	and	regions	that	are	differentially	methylated	with	murine	aging,	this	is	likely	

due	to	the	differences	in	cell	types	profiled	and	the	assays	used.	

	 In	contrast	to	mC,	we	observed	more	widespread	changes	 in	5hmC,	 identifying	

14,554	hyper	DHMR.	While	5hmC	was	enriched	in	gene	bodies	with	age,	the	mark	was	

decreased	at	enhancers	in	aged	HSPC,	implying	that	reduction	of	5hmC	at	these	regions	

could	be	contributing	to	enhancer	silencing	in	aged	HSCe.	Notably,	hyper-DHMRs	were	

enriched	for	binding	sites	for	the	KLF	and	GATA	family	transcription	factors,	which	also	

displayed	differentially	regulation	by	histone	modifications	with	age.	In	all,	the	data	in	this	

chapter	establish	that	with	human	HSC	aging,	there	is	widespread	epigenetic	remodeling	



	105	

of	 cytosine	modifications	 at	 regions	 that	 are	 likely	 to	 be	 important	 for	 HSC	 function.	

However,	 future	 studies	 will	 be	 needed	 to	 determine	 if	 these	 DMRs	 and	 DHMRs	

contribute	to	loss	of	HSC	function	with	age.	
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Figure	4.3:	Little	similarity	between	mC	changes	in	murine	and	human	HSC	aging.	(A)	
Heatmap	of	the	row-mean-centered	DNA	methylation	for	young	and	aged	human	HSCe	
at	the	murine	aging	DMRs	covered	in	all	human	HSCe	samples	(n=473	DMRs).	Each	row	is	
a	DMR,	and	each	column	in	a	donor.	(B)	Graphical	representation	of	the	correspondence	
analysis	performed	using	the	percent	methylation	 for	young	and	aged	human	HSCe	at	
murine	 aging	DMRs.	 Component	 1	 versus	 2	 is	 shown,	with	 each	 point	 representing	 a	
donor.	 (C)	 Venn	 diagram	 of	 the	 overlap	 by	 gene	 name	 of	 genes	 that	 differentially	
methylated	in	murine	or	human	HSC	aging.	Murine	genes	were	restricted	to	only	those	
corresponding	to	regions	also	present	in	the	human	genome.		
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CHAPTER	5	
	

Epigenetic	remodeling	with	age	is	accompanied	by	altered	expression	of	
epigenetic	modifiers	and	transcription	factors	

	
	

Crews	et	al.	previously	reported	that	changes	in	gene	expression	with	human	HSC	

aging	 are	 associated	 with	 pathways	 that	 are	 critical	 for	 HSC	 homeostasis,	 such	 as	

proteostasis	and	oxidative	phosphorylation402.	In	aged	murine	HSCs,	there	is	upregulation	

of	myeloid	differentiation	genes,	with	concurrent	downregulation	of	lymphoid	associated	

genes,	 which	 may	 explain	 the	 myeloid	 skewing	 that	 is	 seen	 with	 age438.	 Given	 the	

extensive	alterations	of	cytosine	and	histone	modifications	we	observed	in	aged	HSCe,	

we	hypothesized	that	with	age,	there	is	altered	gene	expression	of	epigenetic	modifiers.	

We	 also	 sought	 to	 determine	 if	 there	 were	 other	 transcriptional	 changes	 that	 may	

contribute	 to	 loss	 of	HSC	 function	with	 age.	 For	 this	 purpose,	we	 utilized	 RNA-seq	 to	

explore	how	the	HSCe	transcriptional	landscape	changes	with	age.

	

Human	HSCs	experience	age-related	downregulation	of	epigenetic	modifiers	and	

hematopoietic	transcription	factors	
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In	order	to	determine	if	expression	of	epigenetic	modifiers	changes	with	age,	and	

to	identify	the	core	gene	expression	signature	associated	with	HSCe	aging,	we	performed	

a	supervised	analysis	of	RNA-seq	profiles	of	young	and	aged	HSCe	(n=10	per	age	group).	

502	genes	were	differentially	expressed	with	age	(adjusted	p-value	<0.05	and	Fold	change	

≥	1.5)	(Figure	5.1A).	Amongst	these	genes	were	genes	previously	reported	as	differentially	

expressed	in	aged	murine	HSCe,	such	as	CDC4272	and	JUN365.	In	addition,	we	identified	

downregulation	 of	 certain	 splicing	 factors	 (U2AF1	 and	 SREK1),	 as	 well	 as	 age-related	

changes	in	key	hematopoietic	transcription	factors,	including	upregulation	of	GFI1b	and	

EGR1,	and	downregulation	of	HIF1A,	HSF1,	CBFB,	BCL6	and	the	KLF	factors	3,	6,	7	and	10.	

Finally,	 we	 also	 detected	 age-related	 changes	 in	 the	 expression	 of	 several	 epigenetic	

modifiers	and	co-repressors	(upregulation	of	CITED2	and	HDAC11	with	downregulation	of	

KDM3A,	SETD6,	SETD8	and	SETD1A)	(Figure	5.1B).	Downregulation	of	SETD1A,	a	mono,	di	

and	tri	H3K4	methyltransferase165,	may	explain	the	age-related	losses		of	H3K4me1	and	

H3K4me3	 seen	 in	 this	 cohort	 (Figure	 3.5),	 while	 downregulation	 of	 KLF	 transcription	

factors	 may	 result	 in	 loss	 of	 protection	 of	 their	 binding	 sites,	 rendering	 them	 more	

susceptible	to	age-related	changes	in	cytosine	modifications.		

Gene	 set	 enrichment	 analysis	 (GSEA)	 revealed	 downregulation	 of	 several	 gene	

sets	 linked	 to	 DNA	 damage	 response	 and	 lymphoid	 signaling,	 with	 concomitant	

upregulation	 of	 inflammatory	 response	 and	 IFN-related	 gene	 sets	 in	 the	 aging	 HSCe	

fraction.	In	addition,	enrichment	for	the	previously	reported	aged	human	HSCe	signature	

from	Crews	et	al402	was	also	confirmed	in	our	cohort	(Figure	5.2A-B).	In	order	to	confirm	

the	HSC-specific	nature	of	 the	aging	signature	 identified,	we	compared	 it	 to	a	publicly	
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available	dataset	of	tissue-specific	aging	profiles	and	found	very	little	overlap	with	any	of	

the	reported	signatures.	This	finding	indicates	that	the	observed	expression	changes	are	

not	a	general	signature	of	aging	but	rather	they	are	highly	specific	for	HSCe	and	clearly	

distinguishable	 not	 only	 from	 other	 tissues,	 but	 even	 from	 differentiated	 cells	 in	 the	

peripheral	blood370.	

	

Downregulation	of	genes	that	are	epigenetically	deregulated	with	age	partially	

recapitulates	aging	phenotype	

Next,	we	sought	to	determine	whether	genes	that	are	epigenetically	deregulated	

with	age	contribute	to	the	aging	HSC	phenotype.	For	this	purpose,	we	focused	on	LMNA	

and	KLF6,	two	of	the	most	significantly	downregulated	genes	in	the	aged	HSCe	signature.	

KLF6	encodes	for	the	Kruppel-like	factor	6,	a	transcription	factor	involved	in	inflammation	

and	myeloid	 differentiation449,	 while	 LMNA	 encodes	 for	 the	 lamin	 A/C	 protein	 and	 is	

mutated	in	Hutchinson-Gilford	Progeria	Syndrome,	a	disease	of	premature	aging,	in	which	

patients	have	elevated	platelet	levels,	but	no	other	overt	alterations	in	myelopoieis450.	In	

addition,	LMNA	has	been	shown	to	affect	the	differentiation	of	hematopoietic	progenitor	

cells435.	 Finally,	 deregulation	 of	 LMNA	 has	 been	 shown	 to	 alter	 the	 interaction	 of	

chromatin	with	lamin	associated	domains451,452	and	hence,	age-related	changes	in	LMNA	

could	explain	the	epigenetic	alterations	we	have	observed.	Downregulation	of	both	LMNA	

and	KLF6	could	be	explained	by	epigenetic	changes	at	their	loci.	The	LMNA	locus	displayed	

marked	reduction	of	promoter-associated	H3K4me3	as	well	as	reduction	of	H3K27ac	at	
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three	putative	enhancer	sites	with	age.	Similarly,	we	observed	loss	of	H3K27ac	at	three	

putative	enhancers	of	KLF6	in	aged	HSCe	(Figure	5.3A).		

To	 determine	 if	 these	 two	 epigenetically	 deregulated	 genes	 contribute	 to	 the	

aging	HSC	phenotype,	we	performed	shRNA-mediated	knockdown	of	LMNA	and	KLF6	in	

human	CD34+	stem	and	progenitor	cells.	We	first	tested	the	ability	of	LMNA	and	KLF6	

downregulation	to	induce	expression	changes	comparable	to	those	seen	in	aged	HSCe	in	

a	panel	of	5	genes	from	the	observed	age-related	expression	signature	(Figure	5.1).	LMNA	

knockdown	 in	CD34+	cells	 resulted	 in	 reproducible	downregulation	of	BCL6,	KLF3,	and	

KLF6,	three	of	the	genes	with	reduced	expression	in	aged	HSCe	within	72h	(n=7	biological	

replicates).	However,	expression	of	EGR1,	which	was	increased	with	HSCe	aging,	did	not	

significantly	change	with	LMNA	knockdown.	Likewise,	knockdown	of	KLF6	(n=2	biological	

replicates)	resulted	in	decreased	expression	of	LMNA	and	BCL6	but	did	not	 impact	the	

expression	levels	of	KLF3	or	EGR1	(Figure	5.3B).	Gene	set	enrichment	analysis	of	RNA-seq	

performed	on	a	subset	of	 the	samples	 in	which	LMNA	had	been	knocked	down	(n=4),	

showed	 that	 genes	 that	 were	 downregulated	 with	 HSCe	 aging	 trended	 towards	

downregulation	 with	 LMNA	 knockdown,	 while	 no	 significant	 upregulation	 trend	 was	

observed	for	genes	upregulated	with	age	(Figure	5.3D).	In	addition	to	the	effect	on	gene	

expression,	both	LMNA	and	KLF6	knockdown	resulted	in	an	increase	in	the	formation	of	

granulocyte-monocyte	 colonies	 when	 plated	 on	 methylcellulose	 (with	 or	 without	 a	

resulting	increase	in	total	colony	numbers),	demonstrating	that	downregulation	of	these	

genes	at	 least	partially	 recapitulates	 the	myeloid	differentiation	potential	 bias	 seen	 in	

aged	HSCs	(Figure	5.3C).	However,	this	phenotype	will	need	to	be	studied	in	more	detail,	
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including	 using	 a	 stromal	 co-culture	 system	 in	 order	 to	 assess	 if	 lymphoid	 output	 is	

impaired	with	LMNA	or	KLF6	downregulation.		

	

Altered	mRNA	splicing	with	HSCe	aging	

Since	the	splicing	factors	U2AF1	and	SREK1	are	differentially	expressed	with	age,	

and	mutations	of	 the	 spliceosome	components	detected	 in	MDS	have	been	 shown	 to	

cause	altered	splicing	of	hematopoietic	regulators	and	myeloid	malignancy453,454,	we	next	

investigated	whether	any	genes	are	alternatively	spliced	with	HSCe	aging.	Using	replicate	

multivariate	analysis	of	transcript	splicing	(rMATS),	we	identified	479	alternative	splicing	

events	 with	 aging,	 the	 majority	 of	 which	 were	 due	 to	 altered	 exon	 skipping	 (n=308)	

(absolute	 inclusion	difference	>	0.1,	 FDR	<0.05)	 (Figure	5.4A-B).	 Interestingly,	many	of	

these	 skipped	exon	events	 (n=136)	have	also	been	observed	 in	human	hematopoietic	

progenitors	 upon	 treatment	with	 the	 spliceosome	 inhibitor	 sudemycin	D6,	 suggesting	

that	these	age	associated	splicing	alterations	may	indeed	be	due	to	loss	of	spliceosome	

function	 with	 age	 (p<2.2e-16,	 Fisher’s	 exact	 test)404.	 Amongst	 the	 genes	 that	 were	

differentially	 spliced	 with	 age	 were	 the	 epigenetic	 modifiers	 KAT6A,	 JMJD1C,	 BRD2,	

CREBBP,	and	HDAC3.		

Notably,	we	also	detected	that	exon	10	(Ensembl	ID:	ENSE00002501713)	of	the	

H3K4me1	and	H3K4me2	methyltransferase	KMT2A	was	less	likely	to	be	skipped	in	aged	

HSCe	compared	to	young	(Inclusion	difference=-0.21,	FDR<0.05).	Additionally,	in	young	

HSCe	there	was	an	increased	presence	of	an	alternative	5’	splice	site	(5ASS)	in	exon	54	

(Ensembl	 ID:	 ENSE00003526887)	 of	 the	 H3K4me1	 methyltransferase	 KMT2C455	 (also	
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known	as	MLL3)	 compared	 to	aged	 (Inclusion	difference=0.3,	FDR<0.05).	 Interestingly,	

this	 exon	 contains	 the	 FYR	 C-terminal	 domain	 which	 in	 KMT2A	 (but	 not	 KMT2C)	 is	

important	 for	 dimerization	with	 the	 FYR	N-terminal	 domain456.	 Taken	 together,	 these	

findings	suggest	that	epigenetic	remodeling	of	histone	modifications	with	age	could	be	a	

manifestation	of	changes	in	RNA	splicing	of	epigenetic	modifiers.	However,	these	splicing	

events	will	need	to	be	validated	 in	a	new	cohort	and	then	assayed	to	determine	what	

biological	effect	they	may	have.	

	

Summary	

In	 this	 chapter,	 we	 show	 that	 there	 is	 transcriptional	 deregulation	 of	 key	

hematopoietic	 transcription	 factors	 and	 epigenetic	 modifiers	 with	 HSCe	 aging.	

Specifically,	we	observed	downregulation	of	KDM3A,	SETD6,	SETD8	and	SETD1A	with	age.	

A	decrease	 in	SETD1A	with	age	may	 lead	to	 the	observed	reductions	 in	H3K4me1	and	

H3K4me3	in	aged	HSCe.	Downregulation	of	KDM3A	(also	known	as	JMJD1B),	a	H3K9me1	

and	 H3K9me2	 demethylase	 suggests	 that	 there	 could	 also	 be	 a	 loss	 of	 silencing	 of	

constitutive	heterochromatin	with	HSC	aging,	similar	to	what	has	been	observed	in	aged	

MSC368,457.	In	addition,	we	observed	that	two	of	the	genes	that	were	most	downregulated	

with	age,	KLF6	and	LMNA,	also	had	significant	alterations	of	histone	modifications	at	their	

enhancers	 and	 promoters	 with	 age.	 Knockdown	 of	 these	 genes	 in	 CD34+	 cells	

recapitulated	 certain	 features	of	 the	 aging	HSC	phenotype,	 suggesting	 that	 epigenetic	

deregulation	with	age	may	in	fact	contribute	to	loss	of	HSC	function.	Additionally,	given	

the	importance	of	the	nuclear	lamina	in	chromatin	organization,	with	heterochromatin	
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often	 being	 localized	 to	 lamina-associated	 domains	 (LADs)452,	 it	 is	 possible	 that	

downregulation	of	LMNA	with	age	contributes	to	epigenetic	remodeling	 in	aged	HSCe.	

Like	the	genes	mentioned	above,	we	also	found	that	the	spliceosome	components	U2AF1	

and	 SREK1	were	 downregulated	 with	 age,	 prompting	 us	 to	 investigate	 if	 changes	 in	

alternative	 splicing	 occur	 with	 HSCe	 aging.	 Analysis	 of	 splicing	 using	 rMATS	 revealed	

hundreds	of	transcripts	that	are	mis-spliced	with	age,	including	many	histone	code	writers	

and	 erasers.	 This	 result	 indicates	 that	 loss	 of	 function	 of	 epigenetic	modifiers,	 due	 to	

altered	splicing,	may	contribute	to	remodeling	of	histone	modifications	in	aged	HSCe.		 	
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Figure	5.2:	DNA	damage	and	immune	pathways	are	affected	with	HSCe	aging	(A)	Gene	
Set	Enrichment	Analysis	(GSEA)	leading	edge	plots	of	gene	sets	associated	with	genes	that	
are	up-	or	(B)	down-	regulated	with	HSCe	aging.	GSEA	was	ran	using	a	list	pre-ranked	by	
the	Wald-statistic	(DESeq2),	with	the	weighted	enrichment	score.	
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Figure	5.3:	LMNA	or	KLF6	knockdown	partially	recapitulates	aging	phenotype.	(A)	UCSC	
tracks	of	pooled	replicates	of	RNA-seq	and	ChIP-seq	of	several	histone	marks	for	young	
(Y)	and	aged	(A)	HSCe	at	the	KLF6	and	LMNA	loci.	Boxes	illustrate	putative	enhancers	with	
age-associated	decrease	in	H3K27ac	(black	boxes)	and	the	LMNA	promoter	(teal	box)	with	
decreased	H3K4me3.	(B)	qPCR	quantification	of	HSCe	aging	signature	genes	with	shRNA-
mediated	knockdown	of	LMNA	(left)	or	KLF6	(right)	in	CD34+	cells	(n=7	and	2	independent	
biological	replicates,	respectively).	Error	bars	depict	the	standard	error	of	the	mean.	P-
value	 calculated	 using	 paired	 t-test,	 p>0.05=ns,	 p	 ≤	 0.05=*,	 p≤0.01=**,	 p≤0.001=***,	
p≤0.0001=****.	(C)	Representative	colony-forming	unit	(CFU)	assays	of	CD34+	cells	with	
knockdown	of	LMNA	(left)	or	KLF6	(right).	Colony	numbers	per	1,000	CD34+	cells	plated	
are	 plotted	 for	 total	 colony	 number,	 granulocyte-macrophage	 (CFU-GM),	 granulocyte-
erythrocyte-macrophage-megakaryocyte	(CFU-GEMM)	and	burst-forming	unit	erythroid	
(BFU-E).	The	average	of	2	technical	replicates	 is	plotted	for	1	representative	donor	for	
each	target.	 (D)	GSEA	 leading	edge	plots	showing	the	enrichment	of	 the	gene	sets	 for	
genes	up-	or	down-regulated	with	HSCe	aging	in	CD34+	cells	with	LMNA	knockdown	(n=4	
independent	biological	 replicates).	GSEA	was	 ran	using	 a	 list	 pre-ranked	by	 the	Wald-
statistic	(DESeq2),	with	the	weighted	enrichment	score.	 	



	122	

	

Figure	 5.4:	 Alterations	 in	 alternative	 splicing	 with	 age.	 (A)	Diagram	 of	 the	 types	 of	
alternative	splicing	events	profiled,	and	the	number	of	significant	events	found	with	HSCe	
aging	(rMATS,	absolute	inclusion	difference	>	0.1,	FDR	<0.05).	(B)	Bar	plots	of	the	age-
associated	alternative	splicing	events.	Events	with	greater	inclusion	in	aged	compared	to	
young	(-0.1	<	inclusion	difference)	are	colored	in	red.		(C)	Sashimi	plots	showing	two	age-
associated	skipped	exon	events.	Pooled	RNA	tracks	are	shown	for	each	age	group.	
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CHAPTER	6	
	

Discussion	and	future	directions	
	
	

A	loss	of	HSC	function	with	age	contributes	to	a	decline	in	adaptive	immunity,	and	

increased	 rates	 of	 idiopathic	 cytopenias	 and	 myeloid	 malignancies.	 While	 the	

contribution	of	 the	 epigenome	 to	 aged	HSC	dysfunction	has	 been	explored	 in	murine	

models,	 little	has	been	described	 in	human	HSC.	Given	 that	 the	aging	HSC	phenotype	

varies	among	mouse	strains,	and	that	genomic	elements	such	as	enhancers	are	not	always	

conserved	 among	 species,	 studying	 the	 epigenome	 in	 human	 cells	 is	 of	 particular	

importance458,459.	Advancements	in	low-cell-number	ChIP-seq	methods	have	now	made	

it	possible	to	study	the	histone	code	in	primary	cells.	In	this	dissertation,	I	present	the	first	

comprehensive	epigenomic	characterization	of	human	HSCe	with	aging.		

	

Confounding	factors	

While	 our	 findings	 suggest	 that	 the	 observed	 epigenetic	 differences	 between	

young	and	aged	individuals	are	due	to	aging,	there	are	several	confounding	factors	that	

we	were	unable	to	capture	and	hence,	address	in	this	study.	For	instance,	it	is	possible	

that	some	of	the	epigenetic	alterations	we	attributed	to	aging	may	have	been	due	to	an	

undocumented	increased	rate	of	diabetes	in	the	aged	cohort.	The	frequency	of	diabetes	
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(Type	I	and	II	combined)	increases	from	4%	in	people	aged	18-44	yo	to	25%	in	individuals	

65	years	or	older460.	Patients	with	diabetes	are	more	susceptible	to	infections	and	show	

impairments	 in	 innate	 immune	function	compared	to	those	without	the	disorder461.	 In	

addition,	 epigenetic	 alterations	 of	 DNA	 methylation	 in	 pancreatic	 tissue	 have	 been	

observed	in	diabetic	patients462.	Thus,	it	is	possible	that	some	of	the	epigenetic	changes	

we	 found,	 especially	 in	 genes	 associated	with	 immunity,	may	 be	 due	 to	 an	 increased	

prevalence	of	diabetes	in	the	aged	cohort.	In	addition,	because	there	is	a	higher	rate	of	

non-steroidal	anti-inflammatory	drug	(NSAID)	usage	in	elderly	individuals463,	some	of	the	

epigenetic	alterations	that	we	observed	may	be	attributable	to	chronic	usage	of	these	

substances	by	 individuals	 in	 the	aged	group.	As	 the	name	suggests,	 these	 compounds	

have	known	effects	on	the	hematopoietic	system.	Short-term	NSAID	treatment	causes	an	

increase	in	mobilization	of	hematopoietic	progenitors	cells	from	the	bone	marrow	niche	

to	peripheral	blood	in	mice,	baboons,	and	humans464,	and	exposure	to	common	NSAIDs,	

including	 ibuprofen,	 aspirin,	 and	 acetaminophen,	 decreases	 antibody	 production	 in	

human	peripheral	blood	 in	vitro465.	Because	NSAID	treatment	alters	 immune	response	

and	HSC	frequency,	 it	 is	possible	that	epigenetic	alterations	of	genes	 involved	in	these	

processes	in	the	aged	cohort	are	not	due	to	age	alone,	but	rather,	are	due	in	part	to	long-

term	use	of	NSAIDs.		

Another	limitation	of	this	study	is	that	we	were	unable	to	delineate	the	effects	of	

donor	sex	on	epigenetic	reprogramming	with	HSC	aging.	Given	that	lifespan	is	different	

between	males	and	females466,	that	sex-hormones	influence	HSC	function467-469,	and	that	

myeloid	malignancies	occur	more	frequently	in	males	than	females433,434,	it	is	likely	that	
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with	 age,	 there	 are	 sex-associated	 differences	 in	 the	 epigenetic	 modifications	 we	

examined.	 Unfortunately,	 due	 to	 the	 short-supply	 of	 samples	 available	 for	 epigenetic	

profiling,	we	could	not	determine	how	HSC	epigenetic	aging	differs	between	males	and	

females.	 Additionally,	 because	 there	 was	 an	 unequal	 ratio	 of	 male/female	 donors	

between	the	two	age	groups	(0.4	in	aged	group	and	1.4	in	young	group,	of	donors	with	

available	information),	it	is	possible	that	some	of	the	epigenetic	alterations	we	observed	

between	the	two	age	groups	are	a	manifestation	of	the	epigenetic	differences	between	

males	and	females.	In	order	to	address	these	concerns	in	the	future	studies,	this	study	

will	continue	to	be	extended	with	more	donors,	 taking	care	to	have	equal	numbers	of	

males	and	females	in	each	age	group.	

Owing	 to	 the	 limited	 commercial	 availability	 of	 aged	 primary	 bone	 marrow	

samples,	young	and	aged	samples	were	collected	and	processed	in	a	different	manner.	

Mononuclear	cells	from	hip	bone	marrow	aspirates	were	purchased	for	the	young	donors,	

whereas	mononuclear	cells	from	aged	donors	were	isolated	from	bone	marrow	scraped	

from	hips	 that	had	been	surgically	 removed.	Due	 to	 the	more	physical	nature	of	 their	

extraction	and	the	longer	time	required	to	isolate	them,	it	is	possible	that	aged	HSC	were	

exposed	 to	 different	 stressors,	 such	 as	 longer	 exposure	 to	 normoxic	 conditions,	 than	

young	HSC.	Additionally,	aged	bone	marrows	were	collected	primarily	 in	 the	morning,	

whereas	we	have	no	documentation	when	the	young	marrows	were	collected	and	they	

may	well	have	been	isolated	at	a	different	time	during	the	day.	Circadian	rhythms	have	

been	shown	to	influence	normal	HSC	function470	and	be	altered	in	leukemic	stem	cells	in	

myeloid	malignancies471.	At	the	epigenetic	level,	circadian	oscillations	of	both	histone	and	
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cytosine	 modifications	 have	 been	 observed,	 and	 cytosine	 modifications	 that	 are	

influenced	by	 circadian	 rhythms	are	 also	 altered	 in	murine	aging472.	 In	 regards	 to	 this	

study,	 if	the	samples	from	the	two	age	groups	were	collected	at	different	time	points,	

some	 of	 the	 observed	 epigenetic	 alterations	 may	 originate	 from	 differences	 in	 the	

circadian	cycles.	Another	confounding	factor	relating	to	sample	collection	in	this	study	is	

that	 all	 aged	 samples	 were	 collected	 from	 one	 site,	 whereas	 young	 samples	 were	

obtained	from	multiple	geographic	locations.	Environmental	factors	such	as	exposure	to	

chemicals	 and	 diet	 are	 known	 to	 influence	 the	 epigenome473.	 Therefore,	 some	of	 the	

epigenetic	 alterations	 we	 observed	 in	 the	 aged	 cohort	 may	 be	 a	 reflection	 of	 the	

environmental	differences	in	the	locations	that	donors	lived.	The	collection	of	new	aged	

samples	from	the	Miami	area,	which	not	only	has	different	environmental	exposures	but	

also	a	more	ethnically	and	socio-economically	diverse	population,	will	also	help	control	

for	this	as	the	study	is	continued	in	the	future.	

While	this	study	was	performed	on	a	highly-purified	group	of	cells,	it	is	possible	

that	shifts	of	sub-populations	within	the	HSCe	pool	occur	with	age.	Analysis	of	LT-HSC	

(Lin-,	 CD34+,	 CD38-,	 CD90+)	 and	 ST-HSC	 (Lin-,	 CD34+,	 CD38-,	 CD90+)	 revealed	 no	

significant	 differences	 in	 these	 populations	 with	 age	 (Figure	 S5).	 However,	 given	 the	

sizable	range	of	LT-HSC	frequencies	within	the	HSCe	compartment	(3-32%,	median=12%	

in	young;	1-54%,	median=12%	in	aged),	there	is	notable	intra-sample	variability	among	

the	donors.	Additionally,	as	cell	surface	markers	to	identify	My-HSC,	Ly-HSC,	or	platelet	

biased	HSC	are	not	currently	available,	we	were	unable	to	assess	if	these	populations,	or	

other	currently	unidentified	sub-fractions	of	the	HSCe	compartment,	differed	between	
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young	and	aged	donors.	Thus,	it	is	possible	that	the	epigenetic	alterations	that	we	found	

between	the	young	and	aged	group	do	not	simply	reflect	changes	within	one	cell	type	

with	age,	but	rather	are	indicative	of	a	population	shift	with	aging.	In	order	to	address	

this,	single-cell	epigenetic	assays	will	be	needed.	While	single-cell	ChIP-seq	or	hmeDIP-

seq	is	not	currently	possible,	single-cell	whole	genome	bisulfite	sequencing	could	be	used	

to	examine	the	epigenetic	heterogeneity	of	mC	within	the	HSCe	compartment.	

	

Multiple	levels	of	epigenetic	deregulation	with	age	converge	on	key	hematopoietic	

genes	and	pathways	

Despite	 the	expected	variability	associated	with	human	aging,	we	were	able	 to	

capture	reproducible	epigenetic	changes	in	multiple	biological	replicates.	We	show	that	

aging	results	in	genome-wide	changes	at	the	epigenomic	level	in	human	HSCe,	affecting	

both	 cytosine	 and	 histone	 modifications.	 These	 age-associated	 epigenetic	 changes	

converge	on	similar	genes	and	pathways,	including	hematopoietic	transcription	factors,	

epigenetic	modifiers,	and	genes	involved	in	cell	adhesion	and	WNT	signaling,	indicating	

that	 different	 layers	 of	 the	 epigenome	 are	 implicated	 in	 changes	 of	 the	 same	 key,	

biologically	 relevant	 pathways	 in	 aged	 HSCs	 (Figure	 6.1).	 This	 age-associated	 shift	 in	

epigenetic	 poise	 with	 concurrent	 altered	 gene	 expression	 was	 particularly	 evident	 at	

active	enhancers,	suggesting	that	like	what	has	been	observed	for	cancer235,236,474,475,	age-

related	dysfunction	of	human	HSC	may	also	be	mediated	 through	 the	deregulation	of	

these	long-range	regulatory	elements.	As	such,	many	of	the	putative	enhancers	that	lose	

H3K27ac	with	age	were	associated	with	genes	involved	in	lymphoid	signaling,	opening	the	
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possibility	that	HSCe	enhancer	dysfunction	may	be	one	of	the	mechanisms	through	which	

lymphoid	and	immune	function	are	compromised	with	aging.		

Previous	studies	of	DNA	methylation	in	aging	murine	and	human	hematopoietic	

cells	have	yielded	conflicting	results,	with	murine	studies	reporting	higher	methylation	

levels	 in	 aged	 HSCs	 and	 human	 studies	 finding	 decreased	methylation	 levels365,438,476.	

However,	 these	 studies	 were	 performed	 using	 cell	 populations	 of	 different	 purities,	

making	any	extrapolation	from	one	species	to	the	other	difficult.	When	examining	mC	in	

the	sorted	HSCe	fraction	from	healthy	donors,	we	detected	focal	differential	methylation	

with	 age,	 including	 both	 gains	 and	 losses	 of	 this	 cytosine	modification,	 targeting	 key	

pathways	 in	 HSC	 biology	 such	 as	 WNT	 and	 cadherin	 signaling,	 and	 cell	 adhesion.	

Remarkably,	we	found	that	select	aging	DMRs	are	also	differentially	methylated	in	AML,	

irrespective	of	patient	age.	This	finding	suggests	that	changes	in	DNA	methylation	with	

age	may	indeed	predispose	for	myeloid	malignancy	as	they	are	seen	universally	in	all	age-

ranges	of	AML.	In	contrast	to	mC,	alterations	in	5hmC	with	aging	were	more	numerous,	

but	 still	 represented	 only	 a	 fraction	 of	 total	 5hmC	peaks.	 Comparison	 of	 regions	 that	

become	hyper-hydroxymethylated	with	age	to	those	that	are	affected	by	TET2	mutation	

in	AML317,	showed	that	age-associated	DHMRs	did	not	overlap	with	AML	DHMRs	and	may	

therefore	 not	 play	 a	 role	 in	 TET-mediated	 malignant	 transformation.	 However,	 age-

associated	 DHMR	were	 very	 strongly	 enriched	 for	 GATA	 and	 KLF	 family	 transcription	

factor	binding	motifs,	suggesting	that	these	regions	may	play	a	key	regulatory	role	in	gene	

expression	in	aged	HSPC.		
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Notably,	preliminary	analysis	of	middle-aged	donors	(45-55	yo)	showed	that	many	

epigenetic	changes	occur	gradually	with	age.	In	future	studies,	prioritization	of	the	genes	

that	become	progressively	altered	with	age	may	be	beneficial	 in	 identifying	genes	that	

initiate	aging	phenotypes	in	HSC.	 	Middle-age	donors	showed	greater	heterogeneity	at	

the	 gene	 expression	 level,	 and	 less	 so	 when	 examining	 histone	 and	 cytosine	

modifications.		Given	the	small	number	of	donors	(n=4-7),	this	variation	was	difficult	to	

control	for.	Heterogeneity	in	the	middle-aged	group	may	be	a	true	representation	of	the	

biological	process	of	aging,	or	it	is	also	possible	that	hormonal	changes	and	sex-specific	

differences	in	people	of	this	age	group	contributed	to	the	observed	variation.	Estradiol	

has	been	shown	to	 increase	hematopoietic	stem	cell	self-renewal	and	retention	 in	the	

vascular	 niche467,468,	 	 while	 androgens	 increase	 erythropoieisis469.	 Thus,	 differences	 in	

hormone	levels	amongst	individuals	in	this	age-group	due	to	menopause,	andropause,	or	

hormone	therapy	replacement	therapy,	could	contribute	to	variation	of	HSC	phenotypes.		

Unfortunately,	no	such	data	was	available	for	donors	profiled	in	this	study.	In	the	future,	

epigenetic	and	transcriptome	profiling	should	be	performed	on	more	middle-age	donors,	

ideally	with	donor	hormonal	status	taken	into	account.		

	

Age-related	epigenetic	changes	may	be	a	result	of	HSC	reprogramming	

Given	 the	 reports	of	 the	development	of	 clonal	hematopoiesis	 associated	with	

aging100,101,103,104,	 it	 is	possible	 that	 the	observed	changes	 in	 the	HSCe	epigenome	and	

transcriptome	with	 age	were	 due	 to	 the	 expansion	 over	 time	 of	 a	 previously	 existing	

subpopulation	within	the	young	HSCe	fraction,	rather	than	true	HSCe	reprogramming.	In	
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order	 to	 investigate	 this,	we	performed	single-cell	RNA-seq	 (scRNA-seq)	of	HSCe	 from	

young	and	aged	donors	and	compared	the	expression	profiles	of	individual	young	cells	to	

the	age-acquired	HSCe	expression	profile	identified	by	the	bulk,	steady-state	RNA-seq	in	

our	65-75	yo	cohort.	This	preliminary	analysis	revealed	that	while	4	out	of	208	young	HSCe	

cells	 possessed	 elements	 of	 the	 aged	HSCe	 gene	 signature,	 no	 single	 young	HSCe	 cell	

displayed	 the	 complete	 aged	 HSCe	 expression	 profile	 identified	 in	 the	 bulk	 Lin-

CD34+CD38-	 compartment,	 indicating	 that	 the	 observed	 HSCe	 epigenetic	 and	

transcriptional	 changes	 are	 likely	 the	 result	 from	 at	 least	 partial	 epigenetic	

reprogramming	during	aging	rather	than	the	result	of	age-related	population	shifts	and	

selection	occurring	 in	 this	 compartment	 (Figure	S4).	However,	with	only	1	aged	and	3	

young	individuals	examined,	and	few	cells	captured,	more	donors	will	need	to	be	profiled	

with	scRNA-seq	before	any	conclusions	can	be	drawn.	

	

Alterations	in	gene	expression	and	splicing	may	contribute	to	epigenetic	

reprogramming	and	HSC	loss	of	function	

In	 addition	 to	 widespread	 epigenetic	 changes	 with	 age,	 we	 also	 observed	

alterations	in	gene	expression	of	transcription	factors	and	epigenetic	modifiers	with	age.	

In	contrast	to	murine	HSC,	we	did	not	find	an	increase	in	myeloid	gene	expression	with	

age.	 However,	 we	 did	 observe	 that	 select	 lymphoid	 associated	 gene	 pathways	 were	

downregulated	with	human	HSCe	aging.	A	possible	mechanism	that	may	explain	some	of	

the	observed	epigenetic	changes	with	age	 is	the	altered	gene	expression	or	splicing	of	

epigenetic	 modifiers	 with	 age,	 such	 as	 the	 downregulation	 of	 the	 histone	 4	 lysine	 4	
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methyltransferase	 SETD1A,	 which	may	 explain	 the	 reduced	 number	 of	 H3K4me1	 and	

H3K4me3	peaks	observed	in	aged	HSCe.	Additionally,	as	we	and	others	have	observed	

alterations	in	RNA	splicing	with	HSC	aging402,	and	the	U2AF1	and	SREK1	splicing	factors	

become	 downregulated	 with	 age,	 it	 is	 possible	 that	 aberrant	 alternative	 splicing	 of	

epigenetic	 modifiers	 with	 age	 may	 be	 contributing	 to	 age-associated	 epigenetic	

reprogramming.	However,	whether	differential	expression	or	isoform	usage	of	epigenetic	

modifiers	leads	to	alterations	in	the	epigenome	or	the	reverse	instead	is	true,	is	yet	to	be	

determined.	Future	investigation	of	the	functional	and	epigenetic	consequences	of	the	

splicing	changes	we	observed	in	KMT2A	and	KMT2C	will	help	address	this.		

	

The	aged	bone	marrow	niche	may	contribute	to	HSC	epigenetic	remodeling	with	age	

While	our	study	focused	on	HSCe	intrinsic	characteristics	of	aging,	extrinsic	signals	

from	 the	 bone	 marrow	 niche	 should	 not	 be	 ignored.	 It	 is	 possible	 that	 the	 changes	

observed	 in	 aged	 HSCe	 are	 the	 result	 of	 microenvironment	 cues	 from	 an	 aged	 bone	

marrow	niche,	which	becomes	more	adipogenic,	with	 less	bone	cell	 formation.	 	 In	this	

sense,	loss	of	HSC	function	with	age	could	be	a	type	of	“maladaptation”	to	a	deteriorating	

niche477,478.	 Bone	 marrow	 transplants	 in	 mice	 have	 shown	 that	 an	 aged	 niche	 can	

contribute	to	myeloid	skewing	of	HSC	through	CC-chemokine	ligand	5	(CCL5)	signaling479.	

Additionally,	 exposure	 of	 aged	 HSC	 to	 thrombo-cleaved	 osteoprotein	 improves	

engraftment	and	myeloid-lymphoid	balance,	while	co-infusion	of	young	endothelial	cells	

with	 aged	HSC	 can	 improve	 aged-HSC	 repopulating	 ability480,481.	However,	 the	 precise	
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mechanism	 by	 which	 the	 bone	 marrow	 niche	 may	 contribute	 to	 HSC	 epigenetic	

reprogramming	with	aging	remains	to	be	elucidated.		

	

Future	directions	to	determine	how	epigenetic	deregulation	may	contribute	to	HSC	

loss	of	function	with	age	

An	 important	 finding	 of	 our	 study	 is	 the	 involvement	 of	 multiple	 layers	 of	

epigenetic	changes	at	the	LMNA	and	KLF6	loci,	resulting	in	strong	downregulation	of	these	

genes	in	aged	HSCe.	The	potential	importance	of	this	observation	was	validated	though	

shRNA	 knockdown	 of	 LMNA	 and	 KLF6	 in	 CD34+	 cells,	 which	 partially	 recapitulated	

features	of	the	aging	HSC	phenotype.	However,	in	order	to	truly	test	our	hypothesis	that	

epigenetic	deregulation	causes	loss	of	HSC	function	with	age,	the	role	of	the	enhancer	

region	itself,	not	just	the	whole	gene	needs	to	be	assessed.	To	this	end,	future	directions	

will	 include	 using	 chromosome	 conformation	 capture–on-chip	 with	 sequencing	 (4C-

seq)482	to	confirm	the	interaction	of	the	putative	enhancers	with	their	target	promoters.	

To	 determine	 if	 deregulation	 of	 these	 enhancers	 in	 vitro	 results	 in	 an	 aged	 HSCe	

phenotype,	CRISPR-Cas9	will	be	used	to	excise	the	putative	enhancers	for	LMNA	and	KLF6	

in	peripheral	blood	CD34+	cells	from	young	donors.	Single-cell	colony	forming	assays483	

and	liquid	culture	differentiation	experiments	will	be	used	to	determine	if	disruption	of	

enhancer	 elements	 affects	 HSC	 differentiation	 into	 myeloid,	 lymphoid,	 and	 erythroid	

lineages.	Additionally,	 transplant	of	CD34+	cells	with	knockdown	of	 the	LMNA	or	KLF6	

enhancer	into	lethally	irradiated	NSG	mice	will	be	used	to	assess	if	these	enhancers	affect	

HSC	differentiation	and	regenerative	ability	in	vivo.		
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Given	 that	 nuclear	 lamins	 are	 vital	 to	 the	 nuclear	 architecture	 and	 chromatin	

organization	 of	 the	 cell,	 it	 is	 possible	 that	 age-related	 downregulation	 of	 LMNA	

contributes	to	the	wider	remodeling	of	the	HSCe	epigenome	with	aging.	Within	the	cell,	

there	 are	 both	 lamina-associated	 domains	 (LADs),	 which	 are	 associated	 with	

heterochromatin	and	are	marked	by	H3K9me3,	and	inter-LADs,	which	are	associated	with	

active	gene	expression	and	histone	marks	such	as	H3K4me1,	H3K4me3,	and	H3K27ac452.	

Modification	of	the	nuclear	lamina	or	the	chromatin	interactions	with	the	lamina	can	alter	

gene	 expression	 and	 specification.	 For	 example,	 HDAC3-mediated	 chromatin-lamina	

interactions	influence	lineage	fate	of	cardiac	stem	cells,	and	repositioning	of	the	Bcl11b	

enhancer–lamina	 interaction	 is	 important	 for	 T-cell	 fate	 determination484,485.		

Furthermore,	 disruption	 of	 LMNA	 in	 mesenchymal	 stem	 cells	 and	 hematopoietic	

progenitors	 alters	 differentiation,	 although	 whether	 this	 causes	 similar	 epigenetic	

remodeling	as	seen	with	aging,	is	unknown435,486.	In	the	future,	it	would	be	interesting	to	

perform	ChIP-seq	for	H3K4me1,	H3K4me3,	H3K27ac,	and	H3K27me3	in	young	HSCe	with	

LMNA	knockdown,	to	determine	if	loss	of	LMNA	recapitulates	the	epigenetic	alterations	

we	observed	in	aged	HSCe.		

	 Besides	KLF6	and	LMNA,	we	also	identified	several	other	genes	that	are	likely	to	

be	 important	 for	HSC	 function	and	are	promising	 candidates	 for	 future	 follow-up.	 For	

example,	 there	 is	 reduced	 H3K27ac	 signal	 at	 a	 putative	 enhancer	 of	 runt-related	

transcription	 factor	3	 (RUNX3)	with	age.	Notably,	 the	enhancer	 appears	 to	encode	an	

eRNA	and	expression	of	RUNX3	is	significantly	decreased	in	aged	HSC	compared	to	young	

(Figure	S6).	Strikingly,	knockout	of	Runx3	in	aged	mice	results	 in	the	development	of	a	
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myeloproliferative	 disorder487.	 However,	 it	 is	 not	 currently	 known	 if	 this	 putative	

enhancer	regulates	RUNX3	or	contributes	to	leukemogenesis.		CRISPR-Cas9	of	the	RUNX3	

enhancer	in	murine	progenitors	could	be	used	to	address	this.		

	 Another	avenue	that	would	be	interesting	to	pursue,	is	the	relationship	between	

epigenetic	deregulation	with	HSC	aging,	and	the	epigenetic	factors	involved	in	regulating	

HSC	lineage	potential.	As	HSC	become	progressively	myeloid	biased	with	cell	replication4,		

it	 appears	 that	HSCs	possess	 an	epigenetic	memory	 that	 is	 important	 for	determining	

lineage	 fate.	 Since	 the	 frequency	 of	myeloid	 and	 platelet	 biased	 HSCs	 increases	 with	

age9,10,18,	it	is	possible	that	the	epigenetic	alterations	that	occur	with	age	are	in	part	the	

same	as	those	that	occur	during	the	transformation	of	a	Ly-HSC	to	a	more	myeloid	skewed	

HSC.	However,	 there	are	not	currently	human	cell-surface	markers	available	 to	 isolate	

these	 different	 populations	 for	 experiments	 such	 as	 ChIP-seq.	 Although,	 forced	

proliferation	of	young	HSC	may	 recapitulate	certain	 features	of	 the	Ly-HSC	 to	My-HSC	

transition.		

	

Conclusion	

In	 summary,	 this	 comprehensive	 study	 of	 the	 epigenomic	 and	 transcriptomic	

landscapes	 of	 healthy,	 human	 HSCe	 through	 aging,	 captured	 dynamic	 age-related	

changes	 in	multiple	 layers	of	the	epigenome	in	these	cells,	all	of	which	converged	in	a	

core	 set	of	 key	developmental	 and	hematopoiesis-related	genes	and	pathways.	 These	

changes,	which	targeted	regulatory	elements	such	as	enhancers	and	bivalent	promoters,	

capture	 a	 shift	 in	 the	 epigenetic	 poise	 of	 aged	 HSCe	 likely	 to	 impact	 their	 functional	
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capabilities.	In	sum,	this	dissertation	details	the	first	ever	multifaceted	epigenetic	profiling	

of	human	HSC,	and	establishes	epigenetic	deregulation	as	a	feature	of	human	stem	cell	

aging.
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Figure	6.1:	Epigenetic	deregulation	of	HSC	may	contribute	to	loss	of	function	with	age.	
Schematic	showing	that	with	age	multiple	levels	of	the	epigenome	converge	on	similar	
pathways	and	genes,	which	may	contribute	to	HSC	myeloid	bias	and	loss	of	function	with	
age.	
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APPENDIX	

	
	
Category	 Young			 Old	
Total	no.	of	donors	 29	 33	
Male,	no.	(%)	 Information	not	available	for	all	

specimens	
9	(27%)	

Female,	no.	(%)	 Information	not	available	for	all	
specimens	

24	
(73%)	

Donors	used	for	HSCe	RNAseq	 10	 10	
Donors	used	for	ERRBS	 7	 5	
Donors	used	for	hmeDIP-seq	 7	 5	
Donors	used	for	H3K4me1	ChIP-
seq	

5	 6	

Donors	used	for	H3K4me3	ChIP-
seq	

5	 7	

Donors	used	for	H3K27me3	
ChIP-seq	

6	 6	

Donors	used	for	H3K27ac	ChIP-
seq	

4	 5	

Table	S1:	Table	of	donors	used	for	epigenetic	and	transcriptome	profiling.
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Figure	S1:	Loss	of	autophagy	results	in	epigenetic	deregulation	of	HSC.	(A)	Row-mean-
centered		heatmap	of		the		percent		methylation		for		the		945		differentially			methylated	
	regions	(DMRs)	(FDR	<	0.05,	absolute	methylation	difference	³	20%)	between	Atg12fl/fl	

and	control	mice.	Each	row	is	a	DMR	and	each	column	is	one	donor.	(B)	DAVID	functional	
annotation	 of	 hypomethylated	 DMRs	 between	 control	 and	 Atg12fl/fl	 HSCs.	 Top	 10	
significant	(FDR<0.05)	categories	are	shown.	No	significant	categories	were	identified	for	
hypermethylated	DMRs.	Modified	from	Ho	et	al.,	Nature,	2017.	
	 	

Hypomethylated DMRs 

Term Count FDR 
Phosphoprotein 379 1.2E-05 
Intracellular signaling cascade 76 1.0E-03 
Negative regulation of amine transport 6 2.1E-03 
Negative regulation of organic acid transport 6 2.1E-03 
Negative regulation of L-glutamate transport 6 2.1E-03 
Negative regulation of amino acid transport 6 2.1E-03 
Protocadherin gamma 8 2.0E-03 
Regulation of organic acid transport 7 2.9E-03 
Regulation of amino acid transport 7 2.9E-03 
Regulation of L-glutamate transport 6 6.9E-03 
Protein of unknown function DUF634 7 6.4E-03 
Regulation of anion transport 6 1.8E-02 
Sequence-specific DNA binding 50 2.5E-02 
Plasma membrane 173 2.7E-02 
Tumor necrosis factor receptor binding 8 9.4E-02 

B 
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Figure	S2:	Fold	change	of	differential	ChIP-seq	peaks.	(A)	Histograms	depicting	the	fold	
change	 (FC)	 of	 aged/young	 histone	 modification	 signal	 for	 peaks	 with	 reduced	 (log-
likelihood	ratio	<3)	H3K4me1,	H3K4me3,	H3K27me3,	and	H3K27ac.	Red	and	blue	dashed	
lines	are	drawn	at	FC=	-1.5	and	FC=	-2.0	respectively.	(B)	Table	of	the	number	of	significant	
(log-likelihood	ratio	<3)	ChIP-seq	peaks	detected	with	no	FC	cutoff,	FC	<	-1.5,	or	FC	<-2.0.	
(C)	 ChIP-enrich	 Gene	 Ontology	 Biological	 Processes	 functional	 annotation	 of	 genes	
annotated	 to	 peaks	 that	 have	 reduced	 H3K4me1,	 H3K27ac,	 H3K4me3,	 or	 H3K27me3	
signal	 and	 FC	 <	 -2.0	 in	 aged	 HSCe	 compared	 to	 young.	 Select	 significant	 (FDR<0.05)	
annotations	are	shown.	
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Figure	 S4:	 Epigenetic	 remodeling	 may	 be	 due	 to	 reprograming.	 (A)	 Single	 vector	
deconvolution	of	single-cell-RNAseq	counts	for	the	genes	differentially	expressed	in	the	
bulk	aged	HSCe	compartment	that	were	covered	at	the	single-cell	 level	(n=392	genes).	
Each	point	represents	a	single	cell	and	each	color	represents	a	different	donor	of	different	
ages.	 (B)	 Heatmap	 of	 single-cell-RNAseq	 differential	 expression	 for	 the	 90	 genes	
differentially	 expressed	 both	 in	 the	 bulk	 (FDR	 <0.05,	 fold-change>1.5)	 aged	 HSCe	
compartment	and	at	the	single-cell	level	(empirical	Bayes	moderated	t-test	p<0.05).	Each	
column	represents	a	single	HSCe	from	a	young	(n=3)	or	aged	(n=1)	donor. 	
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Figure	 S5:	 No	 significant	 change	 in	 LT-HSC	 frequency	 with	 age.	 (A)	 Plots	 of	 the	
frequencies	of	LT-HSC	and	ST-HSC	in	young	and	aged	samples.	Each	dot	is	representative	
of	1	donor	(n=37	young	and	n=45	aged).	(B)	Plots	of	the	frequencies	of	LT-HSC	and	ST-
HSC	 in	 young	 and	 aged	 samples,	 segregated	 by	 sex.	 No	 significant	 differences	 were	
detected	using	a	student’s	t-test.	
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