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ABSTRACT

Urban areas are responsible for a large and increasing fraction of anthropogenic

greenhouse gas emissions. Accurate methods for quantifying and monitoring those

emissions are needed to suggest and evaluate mitigation policies, as well as for fun-

damental carbon cycle science as anthropogenic carbon dioxide emissions become a

dominant source of uncertainty in closing the global carbon budget. I present inves-

tigations into several factors that can impact our ability to characterize urban green-

house gas emissions using observations in the atmosphere. An automated method

is developed for estimating the mixing depth, a key meteorological variable affecting

the sensitivity of mole fraction observations to emissions fluxes, using optical remote

sensing instruments. In a long time series of mixing depth estimates in Pasadena, Cal-

ifornia, day-to-day variability is shown to be large in comparison to seasonal trends.

Significant mixing depth biases are demonstrated in meteorological models, and the

likely impacts on emissions estimation are discussed.

Optimized estimates of methane emissions in the South Coast Air Basin, Califor-

nia, are made using several flux inversion or regularization methods, with four sources

of meteorological information, and with all or some of the mole fraction observations

taken at nine within-basin observing sites associated with the LA Megacities Carbon

Project. Using the full observational dataset in a geostatistical inversion, the capa-

bility to detect seasonal and event-driven emissions changes is demonstrated with

generic meteorology, opening the door to near-real-time monitoring. Differences in

absolute methane emissions flux magnitude according to the source of driving mete-

xiii



orological information are shown to be largely removable by calibration to a trusted

model. The choice of inversion or regularization method is shown to have substantial

impacts both on the estimated emissions time series and on the capacity to detect

emissions changes, especially when the observational constraint is reduced.
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CHAPTER I

Introduction

The work presented here focuses on factors impacting observation-based estimates

of urban greenhouse gas emissions. In this introductory chapter, I provide the neces-

sary background to the more detailed discussions in chapters II, III, and IV. Section

1.1 lays out the motivation for studying urban greenhouse gas emissions. Section

1.2 explains the distinction between atmospheric observation-based estimates and

those relying on source inventories, including some of the advantages and disadvan-

tages of each approach. The next two sections discuss two of the difficulties affecting

observation-based estimates, and the tools used to face those difficulties, in more

detail: Section 1.4 covers underdetermination and statistical inverse methods, and

Section 1.3 covers atmospheric transport and transport modeling. In Section 1.5, I

discuss the context of my work within the Los Angeles Megacities Carbon Project

and provide background on the 2015-2016 Aliso Canyon natural gas leak, which is

used in Chapters III and IV as a natural experiment. Finally, Section 1.6 provides

an overview of the remainder of the dissertation.

1.1 Motivation

Urban areas are responsible for a large and increasing share of the world’s green-

house gas emissions: more than 70% of energy-related emissions as of 2010 (Rosen-
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zweig et al., 2010). Cities are also centers of effort to mitigate climate change, with

many acting more aggressively than nation-states or the international community

(Rosenzweig et al., 2010). In the US, a number of cities have developed Climate Ac-

tion Plans, setting goals and specifying actions to be taken to reduce their impacts

on the climate (Aznar et al., 2015).

These mitigation efforts will be more successful if they are informed by a clear

understanding of urban emissions. We need to know what source of greenhouse gases

within cities are most important, which are growing and how they are changing, and

what policy interventions are likely to be effective – and we need to be able to track

interventions as they are implemented, to measure their effectiveness in practice. At

a minimum, jurisdictions that set emissions targets need to know whether they are on

pace to meet those targets. As I discuss in chapter III, we may be able to track relative

changes over time with better precision than we can quantify absolute emissions fluxes.

Verification may therefore be especially feasible for the many mitigation goals which

call for a certain percentage decrease in emissions relative to a baseline year.

Continuous monitoring of urban emissions can also contribute directly to emissions

mitigation. Duren and Miller (2012) have proposed a ‘tiered’ observing system in

which a broad network of sensors across an urban area is used to establish a baseline

and to detect emissions changes over a wide area. When anomalous emissions are

detected, aircraft or vehicle-based sensors can be deployed to locate and characterize

the source and inform the relevant stakeholders. Identification of leaks in the natural

gas distribution system is one especially promising possibility.

A better understanding of urban greenhouse gas emissions would also have basic

scientific value. For example, the net exchange NL of CO2 between the atmosphere

and the terrestrial biosphere is typically calculated as the residual required to close

2



the total atmospheric carbon budget:

NL =
dC

dt
−NO − EF − EL (1.1)

where C is the carbon content of the atmosphere, NO is the net exchange with the

oceans, and EF and EL are the rates of anthropogenic emissions due, respectively, to

fossil fuel combustion and land use change. As Ballantyne et al. (2015) have shown,

while the proliferation of global monitoring sites has greatly reduced the uncertainty

in dC/dt over the past several decades, that improvement has been largely offset

by increased uncertainty in fossil fuel emissions. As a result, NL is barely better

constrained today than it was fifty years ago.

As the predominant sources of fossil fuel emissions shift to developing countries

(and become increasingly concentrated in the world’s most rapidly growing megaci-

ties), total emissions uncertainty is likely to continue to increase. We can therefore

expect poorly characterized anthropogenic CO2 emissions to remain an important fac-

tor inhibiting study of the biogeochemical carbon cycle. The same emissions driving

global climate change are also obscuring the ecosystem response to that change.

1.2 Methods for Urban Greenhouse Gas Quantification

Broadly speaking, greenhouse gas emissions can be quantified in two ways: with

“bottom-up” source inventories or with “top-down” atmospheric observations. Inven-

tories make use of information about the sources of emissions, including reported

emissions from industrial facilities, traffic data, population density, electricity and

heating fuel use, etc. Recently, some inventories have moved from global (e.g., Oda

and Maksyutov , 2011; Crippa et al., 2016) or regional scales (e.g., Gurney et al., 2009;

Maasakkers et al., 2016) to very detailed (as fine as building-scale) representations of

urban areas (Gurney et al., 2012).
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The inventory approach can be direct, but it relies on estimates of emissions from

the typical source (vehicle, fixture, facility, etc.) of a particular kind. Such estimates

may be unrepresentative if the distribution of emissions is fat-tailed (emissions are

dominated by a small subset of sources). For example, inventories systematically un-

derestimate methane emissions, seemingly because a substantial fraction of emissions

come from a small number of high-emitting fixtures, wells, facilities, etc. (Brandt

et al., 2014). Inventories can also fail if local sources in a particular area differ sys-

tematically from what is typical, or if source characteristics change over time in a

way that is not accounted for.

The “top-down” observational approach to characterizing emissions is to measure

the concentrations of those gases in the nearby atmosphere. A variety of measurement

technologies can be employed. In urban environments these have included, to give

a few examples: in situ spectroscopic instruments mounted on towers or rooftops

(McKain et al., 2012; Breon et al., 2014; McKain et al., 2015; Richardson et al., 2016;

Pugliese, 2017) or carried on research aircraft (Mays et al., 2009; Ryerson et al., 2013),

low-cost chemical sensors (Shusterman et al., 2016), flask capture of air samples for

later isotopic analysis (Clark-Thorne and Yapp, 2003; Pataki et al., 2003; Newman

et al., 2008) and remote sensing of atmospheric column abundance with terrestrial

upward-pointing (Wunch et al., 2009) or slant-path (Wong et al., 2016) as well as

satellite-borne (Kort et al., 2012; Worden et al., 2012) instruments.

Observational methods have the advantage that gases are measured even if their

sources are unknown or unusual. However, the measured concentration is at a re-

move from the quantity of interest, emissions flux from the surface, which introduces

two important difficulties. First, the relationship between flux and concentration

is mediated by the wind-driven transport of the emitted species through the atmo-

sphere. Atmospheric transport is a complex process involving motion at multiple

scales, and models of transport are uncertain and difficult to validate. Second, even
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if the flux-concentration relationship is assumed to be known, the available concen-

tration observations typically do not suffice to uniquely determine the fluxes on the

spatial and temporal scales of interest.

1.3 Atmospheric Transport

In some cases, fluxes from a region of interest can be inferred from concentration

measurements using a mass balance approach. The simplest form of mass balance

uses a one-box model: concentrations are measured upwind and downwind of an

area of interest, or box, and the difference is attributed to sources within the box.

There are two relevant meteorological parameters, which are assumed constant: the

horizontal wind speed v and the mixing depth zi. The wind speed and the size of

the box in the direction parallel to the wind together determine the ventilation time.

The lower the wind speed, the more time an air mass takes to cross the box and so

the greater the concentration increase for a given emissions flux.

The mixing depth is the vertical extent of the mixing layer, which is the part

of the atmosphere in regular contact with the surface on a time scale of about an

hour. Vertical eddies distribute atmospheric constituents, including gases and parti-

cles emitted from the surface, through the mixing layer. Mixing depths can vary from

less than 100 m at night, when mixing is driven only by the interaction of horizontal

wind with the rough surface, to as much as several kilometers when a dry surface

is heated by solar radiation. Assuming that the ventilation time is long enough for

the air to be well mixed, the mixing depth determines the height of the box in a box

model. The taller the mixing layer, the more diffuse the emitted species.

In sum, the observed difference in concentration between the upwind and down-

wind faces of a homogeneous box of length L in the direction parallel to the horizontal
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wind, containing a surface emissions flux s, is

∆C =
mair

ziρ

L

v
s (1.2)

where mair and ρ, the molar mass and density of air, are needed to convert the con-

centration to a unitless mixing ratio (e.g. parts per million) as is typically measured.

The mass balance approach is appropriate when the sources of interest are either

isolated, such as a remote oil field, or approximately homogeneous, such as a wilder-

ness. In addition, the local meteorology must be fairly simple: both the wind speed

and direction and the mixing depth must be constant over the extent of the box.

Some cities meet these criteria at least some of the time. For example, Indianapolis,

Indiana is surrounded by cropland in all directions and is located in a flat area in

which the wind is often from the west. Mass balance estimates of total CO2 and CH4

emissions from Indianapolis have been made using concentration observations from

aircraft (Mays et al., 2009; Cambaliza et al., 2015).

Many urban environments, however, are not amenable to mass balance. Large

point sources within cities, such as power plants and landfills, are typically surrounded

by other significant but nonuniform emitters: other industrial facilities, road networks,

residential and commercial buildings, natural gas distribution infrastructure, and so

on. Even cities considered as a whole often have indistinct boundaries, transitioning

continuously into other settled areas. The local meteorology may also be complex.

For example, especially in cities surrounded by mountains (e.g. Salt Lake City, see

McKain et al., 2012), an ‘urban dome’ may form. Air can remain trapped for an

extended period, accumulating emitted species, before being flushed out.

The work presented here focuses on the Los Angeles area, in which the proximity

of both the mountains to the east and the Pacific coast to the west generally results

in a sea breeze pattern of circulation (Lu and Turco, 1994, 1995). During the day,
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the temperature contrast between the land and ocean surface drives onshore winds.

Air flowing upslope may have enough energy to continue over the mountains onto the

continent, or may reach a maximum altitude and then return back over the city as

an elevated layer. Other patterns are also sometimes observed; the most important

is the Santa Ana condition, in which hot, dry winds flow down into the city from the

desert to the east.

1.3.1 Lagrangian Modeling

In order to infer emissions fluxes from concentrations in such a complex environ-

ment, physically realistic models of atmospheric transport are employed. In this work,

we use the Lagrangian transport model STILT (Stochastic Time-Inverted Lagrangian

Transport) (Lin et al., 2003). In constrast to Eulerian models, which compute vari-

ables on a grid, Lagrangian models follow air masses or parcels as they move through

the atmosphere. The modeled motion is driven by a precomputed four-dimensional

field of wind velocities and other meteorological variables. Because the field of driving

meteorology cannot resolve the fine-scale turbulence, motion in the transport model

has both a deterministic (advective) and a stochastic component. STILT separates

the parcel velocity u accordingly as

u = ū + u′ (1.3)

where u is the mean wind velocity (here, the grid-scale wind velocity from the pre-

computed field) and u′ is the stochastic part of the velocity. The stochastic velocity

in each direction is modeled as a Markov process:

u′i(t+ ∆t) = R(∆t)u′i(t) +
[
1−R2(∆t)

]1/2
N(0, σi) (1.4)
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where ∆t is the model time step, N(0, σi) is a Gaussian random velocity with standard

deviation σi, and

R(∆t) = exp(−∆t/TLi) (1.5)

describes the exponential decay in autocorrelation of the stochastic velocity over the

Lagrangian time scale TLi. The stochastic velocity varies randomly over times much

longer than TLi (R ≈ 0) and is constant over short times (R ≈ 1).

The Lagrangian timescales TLi and turbulent velocity scales σi cannot be pre-

dicted from first principles. Instead, empirical formulas are developed using a form

of dimensional analysis called similarity theory. A brief description is given here; for

a more complete overview, see Stull (1988). Variables expected to be relevant are

identified and formed into dimensionless combinations, called dimensionless groups.

Often, power laws or other simple relationships can be fit to the observed behavior of

the dimensionless groups. The mixing depth zi itself is generally the most important

length scale; since the mixing layer is defined by the presence of turbulent mixing,

its extent is determined by the same turbulent processes that control parcel motion.

Other variables relevant to turbulent motion depend on the dominant source of energy

for turbulence, which may be either buoyant forces or (wind) shear.

Buoyancy drives vertical motion in the atmosphere when less dense air is present

below more dense air. Because density is difficult to measure directly, buoyancy is

generally assessed using a proxy variable called potential temperature, defined as

θ = T

(
P

P0

)R/cp
(1.6)

where T and P are the temperature and pressure of an air parcel, P0 is a reference

pressure (usually surface pressure or 1 atmosphere), R is the ideal gas constant, and

cp is the specific heat of air. The potential temperature is the temperature the parcel

would come to if transported adiabatically to pressure P0. Correcting for the density
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effect of the water content of humid air gives the virtual potential temperature θv,

θv = θ(1 + 0.61r − rL) (1.7)

where r is the mixing ratio of water vapor and rL is the mixing ratio of liquid water.

If virtual potential temperature decreases with height, the vertical stratification

is out of equilibrium, which tends to cause convective mixing. In the mixing layer,

solar heating of the land surface causes high (virtual) potential temperatures near

the ground. The vertical velocity scale associated with the resulting buoyancy-driven

motion is the convective velocity w∗,

w∗ =
[
(g/θv)w′θ′vszi

]1/3 (1.8)

where g is acceleration due to gravity, w is the vertical component of wind velocity.

Here and in general, a prime denotes the stochastic component of a variable, an

overbar indicates an average, and the subscript s indicates the value at the surface.

The quantity w′θ′vs is the upward flux of virtual potential temperature from the

surface, which is generally the dominant source of energy for turbulence in the mixing

layer during the day, so w∗ is a relevant variable in similarity theory under those

conditions.

The second major source of turbulence in the mixing layer is wind shear, especially

at the surface. The relevant velocity scale is the friction velocity u∗,

u∗ =
[
u′w′

2

s + v′w′
2

s

]1/4
(1.9)

where u and v are the east and north components of the wind velocity. The terms

inside the square brackets express the surface flux of the horizontal components of

momentum, caused by the frictional effect of the ground as air passes over it. If
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both shear and buoyant effects are relevant, their relative importance can be included

through the Obukhov length Lob,

Lob = −ziu
3
∗

kw3
∗

(1.10)

where the dimensionless von Kármán constant k, relevant in other applications of the

Obhukov length, is about 0.4. Empirical functions expressing Lagrangian timescales

and turbulent velocity scales in terms of w∗, u∗, Lob, and zi are presented in Hanna

(1984).

1.3.2 Time-Inverted Transport

Development of large-scale (kilometers and up) Lagrangian transport modeling

was originally motivated by the need to predict the dispersal of hazardous materials

from point sources, especially in the wake of the 1986 Chernobyl nuclear disaster

(Thomson and Wilson, 2013). Applications have also been made to the transport

of volcanic ash (e.g. Stohl et al., 2011; Webster et al., 2012), insects (Burgin et al.,

2013), pathogens (Gloster et al., 2010), chemical toxins (Kinra et al., 2005), and so

on.

In the above examples, the point of origin (source) is known in advance and the

goal is to determine all downwind exposures. For our application, the opposite is

true. We are interested only in air masses that ultimately pass over the measurement

location, and the goal is to determine the upwind sources of those air masses. If

we modeled the dispersal of emissions from every possible source point in our region

of interest, most of the results would be irrelevant, because most of the modeled

parcels would never be measured. Instead, we run the transport model in a time-

reversed mode, tracking simulated air parcels backwards in time from the observation

point. Flesch et al. (1995) showed that the flux-concentration relationship derived
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from a time-reversed model is the same as that derived in forward time as long as

the model satisfies the “well-mixed criterion,” a consequence of the second law of

thermodynamics.

In order to sample the stochastic part of the motion, a large number of air parcels

are simulated backwards in time from each observation point. The sensitivity of a

given observation i to emissions fluxes is given (Lin et al., 2003) by applying the

reasoning of the earlier box model to each region j of the surface:

∆Ci =
∑
j

Hijsj, Hij =
mair

zjρj

1

Ni

Ni∑
pi=1

∆tpi,j (1.11)

where Ni is the total number of parcels and ∆tpi,j is the residence time of parcel

pi within the mixing layer1 above region j. Despite the complicated dynamics of

the transport, the flux-concentration relationship is linear in the fluxes and can be

encoded as a matrix H.

Typically, the Lagrangian transport model itself does not predict the driving me-

teorology, which must be computed in advance by a separate model. Such models

vary in horizontal, vertical, and temporal resolution and in the domain covered. Some

are run operationally, on a regular schedule, with the results archived for public use;

others must be configured for a particular application and run by the individual

researcher or team. Most employ both a dynamical representation of the relevant

physical processes and at least some weather observations, but some are better de-

scribed as using the observations to nudge or initialize the dynamics while others use

the dynamics to interpolate the observations. The choice of driving meteorology for

transport is a main subject of chapter III.
1Or, as in STILT, within some specified fraction of the mixing layer, by default the lower half.

So long as the mixing layer is truly well-mixed, the result is the same: half as many parcels are
considered to be sensitive to the surface, but each sees the flux diluted into half the volume.
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1.4 Flux Inversion

Flux inversion is the process of generating an optimal estimate of emissions flux

by combining atmospheric observations with some additional information. The ad-

ditional information may be either a prior flux estimate, usually from an inventory

(in a Bayesian inversion), or one or more models of flux patterns (in a geostatistical

inversion). In both cases, the goal is to maximize the probability of the fluxes given

the observed concentrations. By Bayes’ Theorem,

p(s|z) ∝ p(z|s)p(s) (1.12)

where z is a vector of n observed concentrations (not heights2) and s is a vector of m

fluxes to be estimated. Both p(z|s) and p(s) are generally assumed to be Gaussian3.

The conditional probability of the observations takes the form:

p(z|s) ∝ exp

[
−1

2
(z−Hs)TR−1(z−Hs)

]
(1.13)

where the Jacobian H encodes the transformation from flux space to concentration

space as computed by the transport model. It acts on the fluxes to produce the

modeled observations Hs, which are the concentrations that would be recorded if

the emitted gas were carried forward to the observation site and measured without

error. The conditional probability p(z|s) is maximized when the fluxes are such that

the forward-modeled observations are close to the actual observations. Deviations

between the actual observations and the modeled observations are weighted according

to the model-data mismatch covariance matrix R.
2The reuse of notation allows zi and z to retain their standard meanings in Chapters II and III,

respectively.
3The assumption of Gaussian errors is not unproblematic, but it is common because it allows

the probability to be maximized algebraically. Numerical methods, like the Monte Carlo technique
used for the transdimensional hierarchical inversion in Chapter IV, can accommodate non-Gaussian
error distributions.
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The prior probability of the fluxes has the form:

p(s) ∝ exp

[
−1

2
(s− s0)

TQ−1(s− s0)

]
(1.14)

In a Bayesian inversion, s0 is a fixed prior estimate of the fluxes, which may include

estimates from inventories of anthropogenic emissions and/or models of the biosphere.

In a geostatistical inversion, we set s0 = Xβ, a linear combination of p variables with

unknown “drift components” β.4 Each column of X encodes some variable, called a

model component or covariate, which is expected to be proportional to part of all

of the emissions flux. A covariate may itself be an emissions estimate, or it may be

some other explanatory factor such as population density, economic data, vegetation

(for biogenic emissions), etc.

The drift components β are taken to be unconstrained a priori, so in the geosta-

tistical case we have, in place of p(s),

p(s, β) ∝ exp

[
−1

2
(s−Xβ)TQ−1(s−Xβ)

]
(1.15)

and the goal is to optimize both the fluxes and the drift components. This difference

is important. In the Bayesian case, s0 is fixed and fluxes are assigned a low prior

probability if they deviate too much from that prior estimate. In the geostatistical

case, the scale of the prior is given by β and is allowed to vary, so fluxes are assigned

a low probability only if their pattern is poorly explained by the provided model

components X. In either case, deviations are weighted according to the prior error

covariance matrix Q.
4The terminology is carried over from applications in hydrology.
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1.4.1 Covariance Specification

The true statistics of the model-data mismatch (represented byR) and of the prior

estimate or covariates (represented by Q) are likely to be nontrivial. The model-data

mismatch may include a variety of different kinds of errors in the observations z:

• pure instrument noise, which is usually small except for low-cost sensors,

• correlated instrument error, such as drift over time,

• errors in the background concentration, which can affect all of the observations

in the domain, and

• representativeness errors, due to the location of point measurements that may

not be typical for the local area on the scale resolved by the inversion.

In addition, because the transport is uncertain, there may be errors in the modeled

observations Hs, which should also be encoded in R. Transport errors at different

observing sites may vary together (e.g., if the mixing depth is overestimated at a loca-

tion upwind of several instruments) or in an anti-correlated way (e.g., if an emissions

plume blows over one site in the real atmosphere but, due to a wind direction error,

over a different site in the model).

Similarly, errors in the prior may be independent, such as when the reported

emissions from a power plant or other point source are incorrect or when a particular

source deviates from what is typical for its category. But if a parameter in the prior is

incorrect on average, or if a widely distributed source is misspecified, then the flux will

have a positive correlation between grid cells. The spatial and temporal patterns of

such correlation can be very complex: as an extreme example, errors in motor vehicle

emissions would be expected to follow the spatial distribution of the road network

and to be more pronounced on weekdays than on weekends. On the other hand, if a
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source is mislocated, the prior flux will be too low at the true location and too high

at the erroneous location.

Unfortunately, these complex covariance structures are generally not known in any

detail, so most authors use simple forms for the covariance matrices R and Q: either

diagonal (neglecting correlation) or with a correlation that decays exponentially in

space and/or in time. Different variances may be assigned to different observations,

such as between instrument sites or according to site characteristics (e.g., lower vari-

ance for background sites). A common choice in Q is an uncertainty proportional to

the prior flux in each grid cell, often with some minimum value so that cells assigned

zero flux in the prior can still be adjusted by the inversion.

Once the structure of the covariance matrices is decided, the magnitude of the

variance and the decorrelation scales, if any, can be set using a combination of expert

judgment, sensitivity tests, and any estimates that may be available in the literature

to constrain some contributors to the covariance. Alternatively, as we do in chapters

III and IV, the covariance parameters θ can be set so as to maximize the likelihood of

the observed concentrations. In the Bayesian case, the likelihood is computed using

the prior fluxes (Michalak et al., 2005):

p(z|θ, s0) ∝ |Ψ|−1/2 exp

[
−1

2
(z−Hs0)

T (Ψ)−1(z−Hs0)

]
(1.16)

where

Ψ = HQHT + R (1.17)

is the expected total covariance due both to variations of the fluxes around s0 and to

variations of the observations. Note that the normalizing determinant factor, which

we have omitted elsewhere, is relevant here because Ψ is a function of the covariance

parameters, which are allowed to vary in the optimization.
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Maximizing the likelihood is equivalent to minimizing the cost function:

Lθ = ln |Ψ|+ (z−Hs0)
T (Ψ)−1(z−Hs0) (1.18)

The second term will be small if the variances are large compared to the errors. But if

the variances are made too large, then p(z) will be quite spread out, so the likelihood

of the observed values will not be very high even if they are near the peak.

In the geostatistical case, since no prior values are assumed either for the fluxes or

for the drift coefficients β, the likelihood is computed by integrating over all possible

values (Michalak et al., 2004):

p(z|θ) ∝
∫
β

∫
s

ds dβ p(z|s, θ)p(s, β|θ) (1.19)

which, after computing the Gaussian integrals, results in the rather messy cost func-

tion

Lθ = ln |Ψ|+ ln |XTHTΨ−1HX|

+ zT
(
Ψ−1 −Ψ−1HX

(
XTHTΨ−1HX

)
XTHTΨ−1

)
z (1.20)

In either case, the cost function must be minimized numerically, since it depends on

the covariance parameters θ in a complicated way through Ψ.

1.4.2 Optimization

Given the observations z, the sensitivity H according to the transport model, and

the covariance matrices R and Q, it remains to find the fluxes ŝ with the maximal
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posterior probability. In the Bayesian case:

p(s|z) ∝ p(z|s)p(s) ∝ exp

[
−1

2
(z−Hs)TR−1(z−Hs)− 1

2
(s− s0)

TQ−1(s− s0)

]
(1.21)

Equivalently, we seek to minimize the cost function

L =
1

2
(z−Hs)TR−1(z−Hs) +

1

2
(s− s0)

TQ−1(s− s0). (1.22)

Since the cost function for Gaussian errors is quadratic, the optimization is straight-

forward:

0 =
∂L
∂s

= −HTR−1(z−Hŝ) + Q−1(ŝ− s0) (1.23)

(Q−1 + HTR−1H)ŝ =Q−1s0 + HTR−1z (1.24)

=(Q−1 + HTR−1H)s0 + HTR−1(z−Hs0) (1.25)

which gives the Best Linear Unbiased Estimator (BLUE):

ŝ = s0 + K(z−Hs0), K = (Q−1 + HTR−1H)−1HTR−1 (1.26)

The matrix K is called the gain; it controls the degree to which the observations

influence the posterior estimate. When the model-data mismatch variance is large,

indicating low confidence in the observations, K approaches zero, and the posterior

estimate reverts to the prior.

Although the algebra is more complicated, the geostatistical case is similar; the

only conceptual difference is that the cost function must be minimized with respect

to both the fluxes and the drift coefficients β. In either case, if the dimension of the

problem is not too large, or the covariance matrices are simple (e.g., diagonal), or we

have a lot of computing resources, we can simply perform the necessary algebra and
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calculate ŝ. If the exact calculation is not tenable, we can resort again to numerical

optimization.

1.5 Local Context

The work presented here includes case studies of mixing depth observations and

methane flux estimates in and around Los Angeles, California. These investiga-

tions incorporate, build on, and contribute to the activities of the Megacities Carbon

Project (MCP), a multi-institution collaboration that aims to use Los Angeles as a

testbed for developing urban greenhouse gas monitoring and quantification methods

that can be shared to other global megacities. Chapters III and IV, in particular,

rely on collaboration resources: the network of in situ mole fraction observing sites

described in Verhulst et al. (2017), the locale-specific WRF configuration of Feng

et al. (2016) (also used for comparison in Chapter II), and the geostatistical inver-

sion methodology on which my flux inversions are based (Yadav et al., 2018). Other

MCP-affiliated observations not employed here but potentially relevant to related

future work include remote sensing and flask samples.

In October 2015, large quantities of natural gas began to leak from an underground

storage facility at Aliso Canyon, near the Porter Ranch neighborhood northwest of

downtown Los Angeles. The leak was discovered on October 23, although it may have

begun earlier, and was declared sealed on February 18, 2016. Based on aircraft-based

CH4 mixing ratio observations taken just downwind of the facility on 13 days over the

lifetime of the leak, Conley et al. (2016) reconstructed the approximate timeline of

leak magnitude, estimating the total loss at 97,100 Mg CH4. The maximum leak rate

of 60 Mg/hr as estimated by Conley et al. (2016) is comparable to the total rate of

CH4 emissions from the Los Angeles area. The leak’s position near a large urban area

with an existing measurement network, together with the independent quantification

using aircraft observations, creates a rare opportunity to test the urban observing
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system against a known anomalous methane release from a point source. In Chapters

III and IV, we evaluate the impacts of driving meteorology, observation density, and

inversion method on our ability to detect the Aliso Canyon leak without relying on

prior knowledge.

1.6 Overview of Dissertation

In the next three chapters, I report on several studies focusing on different elements

of observation-based urban greenhouse gas flux estimation. Chapter II presents an

analysis of a long (two years) time series of measurements of the mixing depth in

and near Pasadena, California, using lidar instruments. A novel automated method

is presented for extracting the mixing depth from the lidar observations. We show

that the day-to-day variability in the mixing depth is quite large, dominating over

the seasonal cycle, and that two meteorological products used to drive transport for

flux estimation consistently overestimate the mixing depth. We discuss the likely

resulting bias in flux estimates.

In Chapter III, we explicitly test the effects of the driving meteorology on CH4

flux inversions. We show that changes in the flux, including the seasonal cycle and the

effects of large emissions events, can be detected in inversions using less highly-tuned

meteorology – which could open the way to near-real-time emissions monitoring. We

also show that most of the differences in magnitude between flux estimates using dif-

ferent meteorological drivers can be attributed to overall biases in sensitivity between

those drivers, and that the fluxes can be calibrated to correct for the bias. However, a

trusted model must be chosen as a standard, because the sensitivity differences cannot

be predicted using mean values of the relevant meteorological variables. In partic-

ular, it appears that the model mixing depth bias observed in Chapter II, though

persistent, does not produce the expected magnitude of flux bias.

Chapter IV focuses on the methodology of flux estimation, and on the interac-
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tions between methodology, driving meteorology, and data coverage. I find that the

change detection demonstrated in Chapter III is possible with either geostatistical or

Bayesian inversions, or with simpler methods incorporating no prior information at

all about the pattern of emissions, so long as all of the available data is incorporated.

When the observational constraint is reduced, the choice of method becomes more

important: using a reduced observing network, only the geostatistical inversion can

reliably detect the Aliso Canyon leak event. I also find that flux estimates supported

by the full dataset and those using the most highly-tuned driving meteorology (WRF)

are less sensitive to the choice of method than those using less data and/or generic

meteorology.

Finally, Chapter V lays out the many other choices involved in flux estimation

and briefly surveys their status in the urban context. Some general conclusions are

drawn.
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CHAPTER II

Aerosol Lidar Observations of Atmospheric Mixing

in Los Angeles: Climatology and Implications for

Greenhouse Gas Observations

This chapter has been reproduced from Ware et al. (2016) under Creative Commons

license CC BY-NC-ND 4.0. The graphical design of Table 2.1 has been updated from

the published version, and the references have been merged.

2.1 Introduction

Improved understanding of sources, sinks, and controlling processes of CO2 and

other greenhouse gases (GHGs) will require robust methods for estimating surface

fluxes. Observations of GHG concentrations capture the influence of known and

unknown sources and sinks alike, making these observations an important complement

to models and inventories. Top-down GHG inversions have been used for some time to

estimate fluxes on global (Tans et al., 1990), continental (Bousquet et al., 2000), and

regional (Lauvaux et al., 2013; Peters et al., 2007; Schuh et al., 2010) scales, and there

is increasing focus on bringing a similar approach to individual cities (McKain et al.,

2012; Lauvaux et al., 2013; Breon et al., 2014; Turnbull et al., 2015). However, relating

observed concentrations to surface fluxes requires a representation of atmospheric
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transport. On the regional and urban scales, the extent and variablity of vertical

mixing is a dominant source of uncertainty (McKain et al., 2012) that can easily

overwhelm the effects of instrument error. It is therefore critical to represent vertical

mixing accurately.

The spatiotemporal structure of vertical mixing and diffusion can be complex.

However, it can be useful to approximate gases recently emitted from the surface

as being confined to and uniformly distributed throughout a near-surface layer. A

cluster of related concepts – atmospheric or planetary boundary layer (PBL), con-

vective boundary layer, mixed layer – are commonly used to describe the part of the

atmosphere which “responds to surface forcings with a timescale of about an hour or

less.” (Stull , 1988) Various specific definitions of these layers are in use (Seibert et al.,

2000), some referring to thermodynamic variables and others directly to mixing or

turbulence. Layers identified by different definitions can be conceptually distinct and

therefore need to be considered differently.

The layer relevant to the dilution of GHGs is that within which substantial ver-

tical mixing takes place. The time scale of mixing under turbulent conditions has

been estimated at tens of minutes (Stull , 1988; van Stratum et al., 2012; Pozzer and

Janssen, 2015). Nonetheless, a fully well-mixed equilibrium may not exist; we there-

fore follow Seibert et al. (2000) in referring to the mixing layer. When we refer to the

mixing height or mixing depth, we mean the altitude of the top of the mixing layer.

In addition to GHGs, the mixing depth also controls the dilution of aerosols and of

other trace gases produced primarily within the mixing layer, including those that

contribute to poor air quality. It is well known that shallow mixing contributes to air

quality exceedances as these species are trapped near the surface, and observations

such as those presented here can help in defining the presence of these conditions.

While it is difficult to measure the vertical distribution of GHGs directly, especially

on an ongoing basis, we can measure the mixing height by observing the distribution
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of aerosol. Lidar systems measure the backscatter of a laser from particulate matter in

the atmosphere, providing a vertical (or skew) profile of the concentration of scattering

particles. We make use of such an instrument, the Sigma Space Mini-Micropulse

LiDAR (MiniMPL), as well as a Vaisala CL51 ceilometer. These and other remote

sensing instruments benefit from continuous operation, making observations at a rate

of once per minute or more. New models like the MiniMPL are smaller and more

portable than earlier research lidars and have better signal-to-noise performance than

ceilometers.

Note that the mixing layer may not always coincide with the boundary layer com-

monly diagnosed by applying thermodynamic criteria to data from radiosondes (e.g.

using the parcel method). In Pasadena, comparison to results from a series of sonde

launches suggests that the mixing depth is related to, though not identical with, the

depth of the boundary layer as defined using thermodynamic criteria. This finding

is consistent with past results. Working in Indiana and the Amazon basin, respec-

tively, Coulter (1979) and Martin et al. (1988) found that mixing depths determined

using lidar observations were similar to and well-correlated with, though generally

somewhat higher than, those determined from temperature profiles. Marsik et al.

(1995) found that mixing depths from lidar in Atlanta were slightly lower that those

measured using sondes. We discuss the comparison to sonde data in greater detail in

section 2.3.3.

Given the high frequency of observations, operational use of lidar to measure the

mixing height benefits from an at least partially automated method of analysis. A

variety of schemes have been used. The simplest, the gradient method (Endlich et al.,

1979), searches for the minimum (most negative) vertical gradient of the backscatter

signal, indicating a sudden decrease in density of scatterers. Related is the inflection

point method (Menut et al., 1999), which searches for zeros of the second spatial

derivative of the backscatter. The wavelet method (Ehret et al., 1996; Davis et al.,
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1997, 2000; Baars et al., 2008), which we use, is a refinement of the gradient method

that takes into account the typical spatial scale of the boundary region at the top of the

mixing layer. The variance method (Hooper and Eloranta, 1986; Menut et al., 1999)

identifies the entrainment zone at the top of the mixing layer by detecting a maximum

in the temporal variance of backscatter, indicating the presence of turbulent vertical

mixing. The idealized-profile method (Steyn et al., 1999; Eresmaa et al., 2006;Münkel

et al., 2006) attempts to fit the vertical backscatter profile to an ideal representation

of aerosol density in and above the mixing layer – typically an error function. Some

studies have applied a combination of methods: for example, using the gradient to

refine a spatially (Lammert and Bösenberg , 2006) or temporally (Hennemuth and

Lammert , 2006) coarse estimate generated by the variance method, or using gradient

methods to select a number of candidate heights, then selecting between them by

minimizing disagreement with a physical model (Di Giuseppe et al., 2012).

In any method, the most serious challenge in automated mixing layer detection

is to distinguish between the mixing layer top and other similar boundaries in the

atmosphere, such as fog, low clouds, or residual layers of scatterers remaining aloft

from previous days (Haeffelin et al., 2012; Lewis et al., 2013). One approach to

this challenge is to use the automated system only to generate a set of candidate

heights and then rely on a human expert to distinguish between them. A person with

some knowledge of atmospheric physics can often, though not always, identify the

top of the mixing layer by visual inspection of a whole day’s backscatter data. We

take a different approach, aiming to automate the entire process in order to allow

for long-term continuous operation. Following recent work (Gan et al., 2011; Lewis

et al., 2013), we apply criteria that constrain the detected boundary to behavior

that is physically reasonable, and we automatically detect and exclude conditions in

which the instrument beam is blocked by fog or clouds. Finally, modifying a method

introduced by Lewis et al. (2013), we implement a voting scheme, processing the day’s
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data in several different ways and interpreting the degree of concurrence as a measure

of confidence that our algorithm has selected the correct boundary.

In section 2.2, we describe the backscatter data, the instrument used to obtain

them, and our automated method for extracting the mixing height. Section 2.3

presents our findings as to the climatological mixing state in the LA area and its

temporal and spatial variation. We compare the results obtained with the MiniMPL

to mixing depth estimates from a ceilometer, to a one-day sonde intensive, and to PBL

heights from models and reanalysis. Finally, in section 2.4, we discuss the implications

of our work for GHG flux estimation and suggest possible future applications.

2.2 Method

2.2.1 Instrumentation

We collected aerosol backscatter data using a Sigma Space Mini-Micropulse Li-

DAR (MiniMPL) operating at the Caltech campus in Pasadena, California. The

MiniMPL is a compact version of the standard MPL, also manufactured by Sigma

Space, that populates the NASA MPLNET lidar network. The MiniMPL inherits

many of the design features of the MPL, such as a fiber coupled detector and robust

optical train. Compared to the MPL, the MiniMPL reduces the power-aperture prod-

uct to minimize cost, size, weight, and power requirements. As a result, detection

range is limited to the troposphere while the MPL measures into the stratosphere. For

tropospheric applications such as GHG flux estimation and air quality monitoring,

however, the MiniMPL is designed to match the data quality of a standard MPL.

The MiniMPL transceiver shown in Fig. 2.1 weighs 13 kg and measures 380 x

305 x 480 mm in width, depth and height. The system consists of a laptop and the

lidar transceiver, which are connected by a USB cable and consume 100W during

normal operation. The whole system fits in a storm case with a telescopic handle and
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Figure 2.1: A complete MiniMPL lidar system consists of an optical transceiver
(shown) and a laptop running data acquisition and post-processing soft-
ware.
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wheels that can be checked in as regular luggage during a domestic or international

flight. The system’s portability allows for applications that would not be possible

with the standard MPL. In section 2.3.6, we demonstrate the feasibility of operating

the MiniMPL out of a moving car, enabling us to observe the spatial structure of the

mixing layer without the use of aircraft.

The MiniMPL’s Nd:YAG laser emits polarized 532 nm light at a 4 KHz repetition

rate and 3.5 uJ nominal pulse energy. The laser beam is expanded to the size of the

telescope aperture (80 mm) to satisfy the eye safe requirements in ANSI Z136.1.2000

and IEC 60825 standards. Laser light is scattered back toward the instrument by par-

ticles and molecules in the atmosphere and collected by an 80mm diameter receiver.

Distance to the scattering event is calculated from the time of flight. The instrument

reports the number of scattering events recorded during a user-defined accumulation

time (in our case, 30 s) originating in each vertical bin. We use a vertical range

resolution of 30 m. Although this study does not make use of it, the MiniMPL also

measures the depolarization (Flynn et al., 2007) of the scattered light with a contrast

ratio greater than 100:1.

The receiver uses a pair of narrowband filters with bandwidth less than 180 pm

to reject the majority of solar background noise. The filtered light is then collected

by a 100 um multimode fiber and fed into a Silicon Avalanche Photodetector (Si

APD) operating in photon-counting mode (Geiger mode). Photon-counting detection

enables the MiniMPL design to be lightweight and compact with high signal-to-noise

ratio (SNR) throughout the troposphere.

To further maximize the SNR, MiniMPL uses a coaxial design; the transmitter and

receiver Field of View (FOV) overlap with each other from range zero. This design

eliminates the need for a wide FOV in order to minimize the overlap distance as in

some biaxial lidar systems (Kuze et al., 1998). A wide FOV can result in measuring

multiple scattering from aerosol (Spinhirne, 1982) and can distort depolarization
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Table 2.1: Technical specifications for the MiniMPL (used in this study) and the
standard MPL.

measurements (Tatarov et al., 2000). On the other hand, a very narrow receiver

FOV could make the lidar system sensitive to external factors like shock, vibration

and temperature, making the system unsuitable for field deployment. The design of

MiniMPL balances the above requirements and constraints, with an FOV of 240 urad.

Additional technical specifications of the MiniMPL, along with those of the stan-

dard MPL for comparison, are given in table 2.1.

2.2.2 Calibration

The raw event count reported by the MiniMPL must be calibrated and normalized

in order to arrive at the quantity of interest, Normalized Relative Backscatter (NRB),
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which is approximately proportional to the concentration of scatterers at a given

distance above the instrument. First, the event count is corrected for the deadtime

of the detector, a period after each photon incidence during which no additional

photons can be detected. The likely number of missed incidences can be extrapolated

from the rate of detected photons. After the deadtime correction, the background

(no laser light) value is subtracted. The event rate is then scaled by the laser pulse

energy, which prevents changes in pulse energy from appearing as variation of the

measured backscatter. Next, a correction is applied to account for laser light, called

afterpulse, that strikes the inside of the instrument and returns to the detector without

interacting with the atmosphere.

Finally, two corrections account for the fraction of scattered photons that are

intercepted by the detector. The solid angle subtended by the collecting lens is

inversely proportional to the square of the distance to the scattering event, so the

event rate is multiplied by r2. Since the MiniMPL laser beam overlaps with the

receiver field of view from range zero, there is no need for an overlap correction in

the sense required by a biaxial instrument. However, because not all of the light

incident on the collecting lens is focused onto the photon counter, a geometric factor

calibration is still required. For historical reasons, this factor is also referred to as an

overlap correction.

These steps are summarized in the following calibration equation:

Bnr =

[
x(z)C(x(z))− bC(b)

E
− xap(z)C(xap(z))− bapC(bap)

Eap

]
z2

O(z)
(2.1)

where x(z) is the raw event rate signal at distance z from the instrument, C(x) is the

deadtime correction factor for event rate x, b is the background, E is the laser pulse

energy, xap(z) is the afterpulse signal at the time corresponding to distance z, bap

is the background of the afterpulse signal, Eap is the energy of the afterpulse, O(z)
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Table 2.2: Number of days of MiniMPL data collection without gaps longer than one
hour, by month and by concurrence score of the mixing depth estimation
algorithm.

Month Total 1/5 2/5 3/5 4/5 5/5
January 52 3 4 11 10 24
February 26 4 7 4 5 6
March 29 1 5 8 7 8
April 31 1 3 12 10 5
May 26 0 7 5 8 6
June 14 1 2 1 3 7
July 0 0 0 0 0 0
August 49 1 5 15 14 14
September 85 1 18 24 16 26
October 64 5 13 16 13 17
November 48 4 13 15 11 5
December 52 4 14 16 7 11
All Months 476 25 91 127 104 129

is the overlap correction factor at distance z, and Bnr is the Normalized Relative

Backscatter (NRB). An example vertical profile of NRB can be seen in Figure 2.3.

In order to reduce the impact of short time scale fluctuations on our mixing depth

retrieval, we apply a additional two-minute sliding average to the NRB values already

aggregated to a thirty-second accumulation time by the instrument.

2.2.3 Observations

The MiniMPL collected backscatter data at Caltech on 530 days between August

1, 2012 and October 23, 2014, operating between dawn and dusk. Of those, 54

included data gaps of longer than one hour, including late starts to data collection,

persistent midday rain or fog, or obstruction of the beam by obstacles. We exclude

those days from the analysis. The remaining 476 days are distributed across all

months other than July. Table 2.2 shows the number of days of data by month as

well as the concurrence scores of the mixing depth estimates (see section 2.2.4).

We analyze backscatter data in daily increments. Over the course of the day,

the changing backscatter profile gives a picture of the distribution of scatterers in
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the lower atmosphere (Figure 2.2a). In the Los Angeles area, the scattering signal

is typically quite strong due to the high levels of anthropogenic aerosols. Since they

are produced primarily within the mixing layer, aerosols are concentrated near the

surface. During the day, solar heating of the surface drives vertical mixing, causing the

mixing layer to deepen and carrying aerosols to higher altitudes. As surface heating

decreases in the late afternoon, the region of active vertical mixing shrinks, but the

aerosols may remain aloft for some time. Frequently, aerosols carried aloft by one

day’s mixing can still be observed the following day in a residual layer disconnected

from the surface. In the coastal mountain environment of Los Angeles, aerosols can

also be carried above the mixing layer by the dominant circulation pattern, resulting

in a sometimes complex stratification structure with thin, lofted aerosol layers (Lu

and Turco, 1994, 1995).

2.2.4 Analysis

We use a Haar wavelet covariance method to identify boundaries between layers

with high and low aerosol density. At a given height z, the wavelet covariance w is

given by integrating the product of the backscatter profile with a Haar wavelet H

centered at z:

w(z) =
1

d

∫
dz′ Bnr(z

′)H(z, z′, d) (2.2)

H(z, z′, d) =


1 z − d/2 < z′ < z

−1 z < z′ < z + d/2

0 |z′ − z| > d/2

(2.3)

The width d, or dilation, of the wavelet is chosen to correspond to the typical size of

the transition zone at the top of the mixing layer, 200 m. As illustrated in Figure

2.3, the covariance is highest where the backscatter decreases rapidly with height.
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Figure 2.2: A sample day of backscatter data (heatmap) from the MiniMPL (panel
a) and ceilometer (panel b, see section 2.3.2) with mixing heights as esti-
mated by our algorithm (black symbols: majority opinion; green symbols:
estimates initialized at other times of day). Prior to 8am, both instru-
ment beams are completely extinguished near the surface; the algorithm
recognizes the presence of fog and does not attempt to make an estimate.
In the late afternoon – and in the morning in the case of the ceilome-
ter – the various estimates disagree as to the mixing height, identifying
two different boundaries. We report the majority opinion together with
the degree of concurrence (4/5 for the MiniMPL, 2/5 for the ceilometer).
Note that MiniMPL NRB values and ceilometer backscatter values do not
use comparable scales.
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Figure 2.3: An illustration of the wavelet method. The instrument returns a vertical
profile of normalized relative backscatter (NRB, left). To compute the
wavelet covariance at a given altitude z, the backscatter profile is inte-
grated against a Haar wavelet centered at z (middle). In this example, the
covariance is given by the difference in area between the orange (upper)
shaded region and the blue (lower) region, which indicates the decrease
in backscatter over the scale of the wavelet. The resulting Haar wavelet
covariance is shown at right.

Because aerosols are concentrated within the mixing layer, such a rapid decrease in

backscatter occurs at the top of the mixing layer. We therefore use high wavelet

covariance values to identify the mixing layer top.

In order to increase the likelihood of detecting the mixing layer top rather than

some other boundary – for example, a structure within the mixing layer or a residual

layer of aerosols further aloft – each day’s data is considered as a whole. Call the

set of times during a single day at which backscatter data is available t1, . . . , tmax.

First, designate a single time tk and compute the altitude zk(tk) at which the Haar

covariance is maximum. Any later timepoints are then considered in order, beginning
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with tk+1. The altitude zk of the detected boundary is constrained to vary at a rate

no faster than v. For the MiniMPL, we set v = 100 m/min, a conservative upper

bound on typical rates of change of the mixing layer height (Stull , 1988). This is

equivalent to setting the Haar covariance to zero outside the range (zk(ti−1)− v(ti −

ti−1), zk(ti−1) + v(ti − ti−1)). In addition, a multiplicative bias factor is applied to

suppress the Haar covariance for unlikely but possible rates of change, decreasing

linearly from one at (2/3)v to zero at v. Similarly, any timepoints earlier than tk are

considered in reverse order, beginning with tk−1.

For tk = t1, an additional physical constraint is applied: the mixing layer top

must begin each day within 500 m of the ground. This aids in selecting a boundary

that is continuous with the top of the nocturnal boundary layer, as the mixing layer

should be.

This process is repeated for five values of tk distributed evenly throughout the

day, including the earliest time t1 and the latest time tmax. The result is a set of

estimates zk1(t), . . . , zkn(t) of the mixing height as a function of time.

A voting procedure is then used to select one estimate from the set. First, esti-

mates are checked for pairwise agreement according to one of several criteria. In this

study, we consider two estimates to be in agreement if they differ by no more than

one unit of instrument vertical resolution (30 m for the MiniMPL as we operate it)

as to the maximum depth of the mixing layer during the midday period. This crite-

rion is optimized for determining that maximum; other criteria, such as agreement to

within a tolerance over a specified fraction of the data period, might be better suited

for other purposes. Next, this pairwise agreement is used to calculate a concurrence

score for each estimate. An estimate E has a concurrence score equal to the fraction

of all estimates that agree with E according to the selected criterion – see Figure 2.2

for an example. A 3/10 penalty is applied to the concurrence score of any estimate

that violates the start-of-day condition, i.e. that puts the mixing layer top above
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500 m at the start of the day. This was already forbidden during processing for the

estimate beginning at t1, but it may occur in other cases, and it generally indicates

that the estimate has been fooled by a residual layer. After applying the penalty, the

estimate with the highest score is selected for reporting, and the concurrence score

can be used as a measure of confidence. Concurrence ties are broken by selecting the

estimate with the earliest start time tk; note that for concurrence scores of better

than one-half, the tied estimates necessarily agree as to the chosen criterion. We

recommend excluding estimates with scores less than one-half.

Because fog or clouds can completely extinguish the instrument beam, preventing

any information from being returned from higher altitudes, it is important that our

processing algorithm be able to detect this circumstance. Under foggy conditions, the

altitude of highest Haar wavelet covariance does not represent the top of the mixing

layer – in fact, there likely is no mixing layer – but only the maximum altitude to

which the beam was able to pierce the fog before being extinguished. This situation

is common in Pasadena in the early morning. We detect fog by checking directly for

beam extinction, i.e. a layer of very high backscatter values with close to zero signal

from above, and do not report any mixing height while fog is present.

Although the altitude of maximum Haar covariance on a foggy morning does

not represent the mixing layer top, it remains useful, since that altitude transitions

smoothly into the mixing layer top as the fog burns off. Fog, clouds, or rain that occur

in the middle of the day are more problematic, since they often produce discontinuous

changes in signal. We treat such occurrences as data gaps, and we exclude days on

which gaps, including fog or rain, persist for too much of the total data period. In

any case, we report for each day the maximum length of any gap in data, including

instrument malfunction, a late start to data gathering, or beam extinction. It is

important to check the maximum gap length before making use of the data, and to

establish a standard for maximum allowable gap length, since long gaps can produce
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nonsensical results.

2.3 Results

2.3.1 Climatology and Variation

On the basis of our estimates, we emphasize the very large daily variability in the

mixing height in the LA basin. The maximum depth of the mixing layer in afternoon

may differ by a factor of two from one day to the next. On average, the greater degree

of insolation does produce deeper afternoon mixing layers in summer than in winter.

Using backscatter data from the MiniMPL on days with concurrence scores of 4/5

or higher and without gaps longer than 1 hr, we find the mean afternoon maximum

mixing depth to be 770 m AGL in summer (June and August) and 670 m AGL in

winter (December-February).

However, as illustrated in Figure 2.4, this seasonal difference is overwhelmed by

the very large day- to week-scale variability. Within-season standard deviations in

afternoon maximum mixing height are about 220 m in both summer and winter,

representing 29% and 32% of the means, respectively. Similarly, a given day’s mixing

height cannot reliably be extrapolated from measurements made on previous days.

Across 105 cases across all seasons in which we achieve concurrence scores of 4/5 or

higher on both of two consecutive days, the root-mean-square difference in afternoon

maximum mixing depth at Caltech is 230 m.

The high variability reinforces that applications of climatological mixing depth

values are subject to large uncertainties; sustained observations like those we present

here can quantify those uncertainties. Such observations can also be used to calibrate

models or to choose between parameterization schemes in meteorological models, as

we discuss in sections 2.3.4 and 2.3.5. Comprehensive comparisons to a model and/or

to other meteorological observations over a long period could also provide a more

36



Figure 2.4: Solid curves: average diurnal cycles of mixing height in June-August (or-
ange) and December-February (blue). Shaded regions: one standard de-
viation of between-days variability. Estimates according to the MiniMPL,
retaining only days on which the concurrence score was at least 4/5.
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granular understanding of the mixing dynamics. A robust explanation is needed for

the variation we observe, which takes place too consistently and on too short a time

scale to be attributed solely to unusual events such as forest fires or the LA basin’s

periodic Santa Ana winds.

2.3.2 Ceilometer

Alongside the MiniMPL, we also operated a Vaisala CL51 ceilometer (a successor

instrument to the CL31, for details see e.g. Munkel and Rasanen (2004); McKendry

et al. (2009); Münkel et al. (2011)) at the same site. The measurement principle of

the ceilometer is similar to that of the lidar, but the overlap correction and other

calibration steps are performed by proprietary software not visible to or modifiable

by the user (Wiegner et al., 2014). The resulting quantity is referred to simply as the

backscatter profile. The CL51 operates at 910 nm, in the near-infrared; it uses a 16

s temporal bin and a 10 m vertical range resolution.

We apply a version of the same algorithm to estimate mixing depths based on

ceilometer backscatter data as we use with the MiniMPL . An example is shown in

Figure 2.2b for comparison to the MiniMPL results on the same day. As is visible

in the figure, especially in regions of low backscatter signal, the ceilometer’s signal-

to-noise performance is not as good as that of the MiniMPL. As a result, some

adjustments are necessary. First, the maximum allowed rate of change v in the mixing

layer height must be relaxed; for the ceilometer we set it to 150 m/min. This change is

necessary because noise can temporarily disguise a change in the boundary location;

the algorithm must be able to “snap back” to the true location of the boundary even

after it has moved some distance away.

Second, the ceilometer tends to show an unrealistically large signal in the near

field. He et al. (2006) note a similar artifact, which they attribute to an imperfectly

corrected overlap error (see also Wiegner et al., 2014). Such errors are caused by
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differences in the optical geometry of the outgoing beam aperture and the detector

that collects scattered photons. Because the erroneous backscatter signal associated

with the artifact decays very rapidly, it has a high wavelet covariance. The algorithm

therefore tends to detect the artifact in place of the real boundary, estimating the

mixing depth at the lowest possible altitude.

To solve this problem, and to dampen noise in general, it is standard to take the

logarithm of the ceilometer backscatter data prior to processing. Although physically

unmotivated, this preprocessing step flattens out large signals, decreasing the influ-

ence of the low-altitude artifact. Figure 2.5 shows an example of a case in which the

log transform allows the algorithm to detect the correct boundary. However, the log

transform also introduces an offset. It suppresses the magnitude of the gradient of

the backscatter more where backscatter values are higher:

d

dz
log(b(z)) =

1

b(z)

db(z)

dz
(2.4)

Backscatter decreases with height in the transition from the mixing layer to the free

troposphere above, so the strongest gradient in log(b(z)) generally occurs at a higher

altitude than the strongest gradient in b(z). This effect carries over to the wavelet

covariance method, causing a positive offset of about 50 m. The offset is due to a

methodological choice to identify the altitude of greatest relative change in scattering,

not a difference in physical reality. It should therefore be noted and compensated for

in comparisons with estimates that identify the altitude of greatest absolute change,

i.e. those that do not employ a log transform.

The effect of the log transform on the whole dataset is shown in Figure 2.5.

There are two distinct populations. On some days, the low-altitude artifact traps the

maximum mixing depth at the bottom of the instrument range. Applying the log

transform removes the effect of the artifact, allowing the true mixing depth (which is
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Figure 2.5: (a) Representative backscatter profiles from the ceilometer, with (orange,
triangular symbols) and without (blue, round symbols) applying a log
transform. The horizontal lines show the corresponding mixing height as
estimated by the algorithms: solid blue line, without transform; dashed
orange line, with transform. Note the very high backscatter values at
low altitudes in the untransformed data, which fool the algorithm into
selecting an unrealistically low mixing height. (b) Maximum afternoon
mixing depths as estimated using ceilometer data with (vertical axis) or
without (horizontal axis) applying the log transform. Days on which the
untransformed data is affected by the low-altitude artifact are indicated
by the dashed green ellipse; taking the log transform removes the effect
of the artifact. On other days (indicated by the solid pink ellipse), the
bias introduced by the transform is visible. The solid black line is the 1-1
line. Only days with concurrence scores of at least 3/5 are shown.
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variable) to be detected. On days on which the algorithm is not fooled by the artifact,

the offset introduced by the log transform is visible: applying the transform results

in an average increase of about 50 m in the estimated mixing depth.

Even with adjustments, our confidence in mixing height estimates derived from

the ceilometer is not as high as in those derived from the MiniMPL. One proxy for

confidence in a given day’s results is the degree of concurrence among estimates in

the voting procedure (see section 2.2). As can be seen in Figure 2.6, the MiniMPL

achieves unanimity (concurrence score of 5/5) or near-unanimity (score of 4/5) on

51% days for which data is available. By contrast, the ceilometer achieves a score of

4/5 or better on only 36% of days. It is for this reason that we focus our results on

estimates derived from MiniMPL observations.

2.3.3 Sonde Comparison

In September 2012, a one-day intensive campaign of sonde launches was conducted

for comparison to mixing layer information from the MiniMPL. Sondes were launched

every three hours between 7:00am and 7:00pm local time. The results are displayed

in Figure 2.7. In each case, the PBL height is extracted from the sonde using the

method of Heffter (1980). At 7:00am, morning fog is still present and the mixing

layer has not yet developed. At 10:00am, 1:00pm, and 4:00pm, the mixing height

identified using the backscatter data coincides with the sonde-derived PBL height to

within 150 m. Since the top of the mixing layer is in fact a transitional zone of 100

to 200 m thickness, it should not be considered to have a well-defined exact location.

Some discrepancy should therefore be expected even between methods that detect

substantially the same layer. In this one-day comparison, the backscatter method

displays no identifiable systematic bias with respect to the sonde method; of course,

the comparison presented is too limited to conclude that no bias exists.

We emphasize that, while the sonde comparison provides some confidence that,
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Figure 2.6: Degree of concurrence achieved by the algorithm using backscatter data
from the MiniMPL (blue, solid) or from the ceilometer (orange, dashed),
shown as a fraction of days on which both instruments were operating.
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Figure 2.7: Orange: potential temperature profiles from sonde launches, with the cor-
responding PBL height as calculated using Heffter’s method (horizontal
dashed line). Blue with triangles: contemporaneous MiniMPL backscat-
ter profiles, with the mean (center horizontal line) and range (shaded
area) of the algorithmically-estimated mixing height over the 30-minute
period surrounding the sonde launch.
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at least during the day, the layer in which elevated aerosol levels are present does

correspond to the thermodynamic boundary layer, it is in any case the former that

is of most interest for interpreting atmospheric concentrations of trace gases. For

the purpose of linking atmospheric measurements to emissions rates, the important

question is what part of the atmosphere should be considered in contact with the

surface. In other words, through what volume are species emitted from the surface

dispersed?

By 7:00pm, the mixing layer has begun to collapse and the structure is becoming

more complicated. Two distinct boundaries are visible in both the potential temper-

ature profile and the backscatter distribution, and both methods select the higher of

these. Indeed, the day’s aerosol emissions are distributed up to the higher bound-

ary at 920 m. However, with the decrease in solar heating to drive vertical motion,

the upper part of the identified layer (above about 500 m) is probably no longer

interacting with the surface. Our method has therefore failed to detect a region of

substantial, active vertical mixing. This case serves as a reminder that the mixing

layer concept is not always straightforwardly applicable, particularly in the evening

as vertical mixing tapers off. Care should be taken in interpreting and applying our

or any other mixing depth estimates around sundown, even on days – like this one –

with otherwise robust retrievals.

2.3.4 North American Regional Reanalysis (NARR) Comparison

GHG flux inversion studies typically make use of PBL heights derived from me-

teorological models or reanalysis products. We compare afternoon maximum mixing

depth estimates based on MiniMPL data to PBL height estimates from the Weather

Research and Forecasting model (WRF) and the North American Regional Reanalysis

(NARR). NARR is a reanalysis product providing a variety of atmospheric and sur-

face variables over North America at 32 km spatial resolution and at 3 hour intervals
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Table 2.3: Mean, median, 1st and 3rd quartiles, and standard deviation of afternoon
maximum PBL height (NARR) or mixing depth (MiniMPL), in km AGL,
over 227 days with concurrence score at least 4/5 and without data gaps
longer than on hour.

Method Q1 Median Mean Q3 σ σ/Mean
MiniMPL 0.63 0.75 0.84 0.98 0.27 32%
NARR 1.46 1.84 1.92 2.20 0.62 32%

(Mesinger et al., 2006). We find a large and persistent difference between afternoon

maxima of MiniMPL-derived mixing depths at Caltech and PBL height estimates at

the nearest NARR grid location. Figure 2.8 shows the distributions of these quantities

over 227 days on which the MiniMPL estimate achieves a concurrence score of at least

4/5 and without data gaps longer than one hour. The maximum NARR PBL height

exceeds the maximum MiniMPL-derived mixing depth on all but one day, differing

by a factor of two or more on 63% of days. Summary statistics are in Table 2.3.

Interestingly, although maximum NARR PBL heights are an average of 2.5 times

MiniMPL derived mixing depths, the two quantities are similarly distributed. Both

show substantial variability, with standard deviations about 32% of the respective

means, and both are skewed toward high values, with skewness 0.84 (NARR) and

0.88 (MiniMPL). However, NARR does not reproduce the detailed timing of this

variability. Even after scaling maximum NARR PBL heights down by a factor of 2.5

to account for the mean difference, a root-mean-square difference of 360 m remains

between scaled NARR estimates and MiniMPL estimates on the same days. This is

almost as large as the RMS difference of 370 m in a sample of 106 random pairs of

MiniMPL estimates and scaled NARR estimates.

We can attribute NARR’s failure to accurately represent the boundary layer in

Pasadena at least in part to its coarse spatial grid. The meteorology of the Los

Angeles basin is strongly influenced by the coastal mountain topography (see Figure

2.9), resulting in a complex pattern of circulation (Lu and Turco, 1994, 1995). It

comes as no surprise that a product unable to resolve the rapid changes in elevation
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Figure 2.8: Gaussian kernel density (smoothed relative frequency) of maximum af-
ternoon mixing depth according to the MiniMPL (pink, left peak) and
according to NARR (green, right peak) over 227 days with MiniMPL con-
currence score at least 4/5. Solid vertical lines: median; dashed vertical
lines: quartiles.
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Figure 2.9: (a) Elevation map of the Los Angeles Basin (Witt , 2015). The labeled
diamonds indicates the location of the measurement site at Caltech (in
Pasadena). The solid line shows the route taken in the mobile study; the
dashed line corresponds to the cross section in panel (b). (b) Elevation
cross section along the dashed line in panel (a); the longitude scale is the
same for both panels.

will struggle to predict PBL heights in this environment. If NARR is used to drive

a transport model for GHG flux estimation in Los Angeles or in other areas with

meteorology strongly influenced by the detailed topography, careful evaluation and

correction of mixing depth biases will be critical for avoiding large errors. Since a

biased mixing depth results in a proportional bias in flux estimates (see the general

argument in section 2.4), we would expect a 250% bias in an LA flux inversion using

NARR.

2.3.5 Weather Research and Forecasting (WRF) Comparison

Given the difficulty posed by the rapidly-varying topography of the LA basin, one

might expect a high-resolution model to better represent the mixing dynamics. We
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compare mixing depth estimates from MiniMPL data taken during a deployment of

the instrument in October-November 2015 to PBL heights from such a high-resolution

model, a WRF setup developed specifically for the Los Angeles environment by Feng

et al. (2016) to simulate CO2 concentrations. The model is initialized with NARR and

with sea surface temperatures from NCEP and uses three nested domains, with the

innermost domain covering the LA basin at a resolution of 1.3 km. Using observations

from the intensive Calnex campaign in 2010, including aircraft and ceilometer PBL

measurements, Feng et al. (2016) tested a variety of WRF configurations. We employ

only the MYNN_UCM_d03 configuration, which they found to minimize errors.

We redeployed the MiniMPL to Caltech for the three-week period of October 21 to

November 9, 2015. Of these twenty days of observations, the mixing depth estimation

algorithm achieves a concurrence score of 4/5 or better on six days and a score of

3/5 on another nine days. Although this comparison period is too short to allow

robust statistical conclusions, we make some preliminary observations. Like NARR,

WRF PBL heights show variability that is similar in relative terms to that of Mini-

MPL derived mixing heights. Over the three-week comparison period, the standard

deviation of maximum afternoon WRF PBL heights is 540 m, about 37% of the

mean. However, WRF estimates PBL heights that are greater than MiniMPL-derived

mixing depths on all but one afternoon. On average, afternoon maximum WRF PBL

height exceeds afternoon maximum MiniMPL mixing depth by 730 m. Considering

only days with high concurrence scores reduces the discrepancy considerably. The

mean difference on days with scores of 4/5 or better is 380 m, suggesting that the

concurrence voting scheme effectively identifies days that are easier to analyze.

The discrepancy we find between modeled PBL height and MiniMPL-derived mix-

ing depth is surprising given the excellent agreement reported by Feng et al. (2016).

During the 2010 Calnex campaign period, they report a mean WRF-derived daytime

PBL height (using the same MYNN_UCM_d03 configuration we use here) of 828.8
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m, in good agreement with a mean mixing depth of 835.7 m obtained from ceilometer

measurements using the gradient method. They also report substantially less variabil-

ity in modeled PBL height than in measured mixing depth. Further work, including

a model-data comparison covering a longer period, is clearly needed to resolve this

perplexing difference. While such a comparison is beyond the scope of this study, we

do note that NARR PBL height estimates for May-June 2010 are generally similar

to those from our comparison period in October-November 2015, with a mean daily

maximum of 2.1 km.

Our analysis here cannot distinguish between differences due to errors in mixing

depth estimation, errors in modeled PBL depth, or conditions under which the mixing

layer fails to correspond to the thermodynamic PBL. Still, it is prudent to expect

that the same complex stratification which can cause the mixing depth estimation

algorithm to fail might also indicate challenging conditions for the model. By selecting

days with high concurrence scores, MiniMPL observations can be used to choose

“golden days” for model analysis. Alternately, if a model is run over a long period,

days with good agreement between the model and lidar estimates can be selected for

flux estimation. For example, Figure 2.10 shows a pair of days which would not be

readily distinguished on the basis of model results alone. The additional information

provided by the lidar estimates lets us assign greater confidence to modeling on the

day with good agreement (panel a) than that with poor agreement (panel b).

Sustained lidar can also inform the choice of model configurations or parameters,

as Feng et al. (2016) and others (e.g., Nehrkorn et al., 2013a) have done with PBL

observations from limited campaigns. In addition to increasing confidence in that

choice simply by virtue of a larger volume of data, long-term observations can provide

more detailed information about how model errors depend on season or on other

meteorological conditions. For example, Lewis et al. (2013) found that PBL height as

estimated by the general circulation model GEOS-5 differs most from that measured
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Figure 2.10: Examples of days with good (panel a) and poor (panel b) agreement be-
tween MiniMPL-derived mixing depths (small circles) and PBL heights
as estimated by WRF (large diamonds). NARR PBL heights (large
triangles) show large discrepancies in both cases.
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by the lidar network MPLNET in winter. Unlike sondes, lidar data can validate not

only the depth of the mixing layer but also the timing of its development and collapse.

That timing can be critical; for example, in an urban setting, a difference of one hour

may determine whether the mixing layer begins to develop before, during, or after

the emissions peak associated with the morning rush hour.

An alternate method for integrating mixing depth observations into flux estima-

tion is to characterize a known model bias and correct for it after the modeling

stage. Zhao et al. (2009) use three months of wind profiler measurements to derive

an empirical relationship between observed and modeled PBL heights. They apply

that relationship to scale down modeled PBL height before computing fluxes, reduc-

ing the residual error by a factor of 1.5. Among the advantages of postprocessing

corrections of this kind are that they are simple to apply, allowing accuracy to be

improved even in less detailed inversions, and that they can be combined with the

strategies discussed above to further control any errors remaining after tuning model

parameterization and/or selecting out “golden days.”

2.3.6 Spatial Variation

Taking advantage of the MiniMPL’s portability, we also conducted a one-time

pilot mobile study in which backscatter data was collected over a period of about

twenty minutes as the MiniMPL was transported due west toward the Pacific coast

in the back of a passenger car. This observing strategy, which could not have been

implemented with a full-size research lidar, is made possible by the compact size

and low power requirements of the MiniMPL. Now that we have demonstrated its

feasibility, we hope that this new approach will allow for both more regular mapping

of the spatial structure of the mixing layer and more nimble mobile deployment of

lidar in response to irregular events like fires and gas leaks.

The spatial profile of aerosol backscatter near the Pacific coast is shown in Figure
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Figure 2.11: Heatmap: MiniMPL backscatter intensity near the Pacific coast (located
at longitude -118.41). Small black circles: mixing depth as estimated by
the gradient method using MiniMPL data. Large black diamonds: PBL
height as estimated by WRF. Black curve at bottom: topography (same
vertical scale).

2.11. The transition between the shallow marine layer, which extends two to three

kilometers onto land, and the convective regime that dominates further inland is

clearly visible. The vertical structure in this case is simple, with a well-defined mixing

layer of high backscatter adjacent to the ground and a sharp decrease in backscatter

at the top of that layer. The mixing depth as estimated by the minimum backscatter

gradient is indicated in the figure by the black circles (our retrieval algorithm is not

suitable, since it relies on the temporal evolution of the boundary at a fixed location).

Figure 2.11 also shows the PBL height as predicted by WRF. The WRF prediction

agrees well with the MiniMPL-derived mixing depth near the coast, but does not

increase as sharply further inland. Unlike at Caltech, in this case the WRF PBL

height is lower than the observed mixing depth. Repeated measurements of this kind
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could reveal whether the difference is consistent with time and at locations elsewhere

along the coast, both in the immediate Los Angeles area and elsewhere, which could

contribute to model development in the challenging coastal environment. Further

work characterizing the coastal transition could also aid in understanding the fate of

GHG emissions from sources like ports and marine industry.

2.4 Conclusions

Researchers have recognized that the representation of mixing dynamics is both

critical for the interpretation of top-down emissions estimates and also a major source

of uncertainty (e.g., Newman et al., 2013; Zimnoch et al., 2010). McKain et al. (2012)

advocate the use of column-integrated concentration measurements in urban studies,

among other reasons in order to avoid the impact of mixing height errors. A common

strategy (Breon et al., 2014) is to rely only on observations made during midafternoon,

when the mixing layer is at or near its maximum depth and the detailed timing of

its dynamics are less important. But we observe even afternoon maximum mixing

height in Los Angeles to vary substantially from day to day, typically differing from

the seasonal mean by 30%.

A simple dimensional argument demonstrates the impact of such variations. Sup-

pose that an instrument measures the in situ concentration of a trace gas at a par-

ticular location. This concentration is expressed as a molar fraction, or, equivalently

given the local density of dry air, as a volume concentration C in moles of gas per

unit volume, i.e. in n/L3. The goal is to use the measurement to infer a surface flux

F , expressed in moles of gas emitted or absorbed per unit area per unit time, i.e. as

n/(L2T ). On dimensional grounds, any method for relating the concentration to the

flux must incorporate some temporal information, such as the time τ during which

the sampled air mass was exposed to the flux, and also some vertical length scale.

The relevant vertical length scale is the mixing height h, which controls the height
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of the space into which the emitted gas is diluted. We therefore expect

F ∝ hC/τ (2.5)

in which case an error in the mixing height h will result in a proportional error in

the flux estimate. In detailed models, this picture is complicated to some degree by

higher-order effects, e.g. the coupling between vertical motion and horizontal wind

shear, but the essential proportionality remains. Applying sustained observations to

control mixing depth errors, whether by validating models, choosing suitable periods

for analysis, or characterizing and correcting for errors in postprocessing, is critical

for accurate GHG flux estimation.

We have focused above on determining the depth of the mixing layer, especially

at its afternoon maximum. But the mixing layer concept is not always applicable.

Even when the mixing height is applicable, it does not fully describe the complex

structure of the lower troposphere. The potential exists to extract much more infor-

mation about that structure from lidar backscatter data. Among other applications,

a more complete picture of the mixing state could contribute to our understanding

of the transport of species emitted from the surface. Here we suggest one direction

in particular for future work.

The mixing layer itself may exhibit internal structure. For example, in Los An-

geles, the sea breeze circulation pushes near-surface air inland during the day. As

a result, the air mass within the mixing layer over Pasadena in the afternoon has

traveled over downtown in the preceding hours. The time scale of this horizontal

motion, and the varying emissions rates and compositions from the traversed areas,

may create a stratification, in which fresh emissions from Pasadena are concentrated

in the lowest part of the mixing layer while those from downtown are more thoroughly

mixed throughout. If we were able to observe and understand within-layer dynamics
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of this kind, we could much more precisely link trace gases observed in the atmosphere

to their points of emission, allowing us to answer more specific questions about the

sources and composition of emissions in the urban environment.

Since the lidar is primarily sensitive to aerosols and not to trace gases, the distri-

bution of aerosol would need to be used as a proxy for the distribution of co-emitted

trace gases, assuming that the two are transported within the mixing layer in a sim-

ilar way, at least on short time scales and over small distances. That assumption

would need to be tested before it could form the basis of any future work. Challenges

notwithstanding, this is an exciting possibility for future applications, including more

detailed validation of transport models and finer-scale attribution of emissions sources

within complex urban environments like that of Los Angeles.
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CHAPTER III

Detecting Urban Emissions Changes and Events

with a Near-Real-Time-Capable Inversion System

This chapter is awaiting submission to Journal of Geophysical Research: Atmospheres.

It was coauthored with Eric A. Kort, Riley Duren, Kristal Verhulst, and Vineet Yadav.

3.1 Introduction

Recent years have seen increased efforts to quantify greenhouse gas emissions at

or below the scale of individual cities. In complement to process-based inventories

(Gurney et al., 2012), aircraft campaigns (Mays et al., 2009; Wecht et al., 2014), and

analysis of satellite data (Kort et al., 2012; Ye et al., 2017) among other methods,

a common approach has been to deploy a network of sensors within and around a

city (McKain et al., 2012; Breon et al., 2014; McKain et al., 2015; Richardson et al.,

2016; Shusterman et al., 2016; Pugliese, 2017; Verhulst et al., 2017). The density

and placement of sensors within a network, together with the local meteorology and

the spatial pattern of emissions, determines the extent to which the network is reli-

ably sensitive to emissions over the whole region of interest and within the relevant

time scale. Prospective network design studies (e.g., Kort et al., 2013; Turner et al.,

2016; Lopez-Coto et al., 2017) have attempted to ensure adequate sensitivity, but the
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standard of adequacy is necessarily relative to some particular purpose or question.

Much urban monitoring work focuses on improving the precision of absolute flux

estimates, setting goals such as “to quantify CO2 and CH4 emission rates at 1 km2

resolution with a 10% or better accuracy and precision” (Davis et al., 2017). Such

precision may be a long way off or may not be achievable in every setting; however, a

variety of other questions of interest can be answered without precisely constraining

the absolute fluxes. For example: what seasonal variations and/or secular trends exist

in emissions rates, and what fraction of emissions can be attributed to the urban

biosphere or to specific anthropogenic source sectors? An operational monitoring

system might be able to detect an unusual excursion in the urban flux, and even to

suggest a source location, even if the baseline flux is not known accurately.

In addition, observing network density interacts with a host of other factors that

also impact the precision and confidence with which the above questions can be an-

swered, including: representation of background concentrations and of the biosphere

flux contribution, the statistical method to be used and the choices made in imple-

menting that method (such as the specification of covariance parameters and the

choice of a prior), and modeling of meteorology and of transport processes. This

complex web of factors, and their interactions and contributions to the overall uncer-

tainty in modeled posterior fluxes, are only beginning to be understood, especially in

the urban setting. In this study, we focus on the meteorological driver of transport

in particular. Future work should consider other factors, including the interaction of

data density and driving meteorology with the choice of inversion methodology.

Representation of atmospheric transport is believed to be an important source of

error in estimating GHG fluxes using atmospheric (in situ or column) observations

(McKain et al., 2012; Feng et al., 2016). However, there is no generally-adopted

scheme for quantifying the effects of transport error. In inversions, some authors

simply increase the model-data mismatch covariance across the board to account for

57



transport error (e.g., Breon et al., 2014). Lin and Gerbig (2005) proposed using the

increase in the variance of modeled concentrations when the observed error statis-

tics of the wind components are incorporated as additional stochastic variability in

the transport model. Recently, Gourdji et al. (2018) showed that some of the ef-

fects of wind speed error could be mitigated by specifying an additional covariance

proportional to the discrepancy in wind speed between model and observations.

Along with quantifying transport error, it is difficult to validate transport models

or meteorological models in their role as drivers of transport. On their own, meteoro-

logical models can be validated against point observations, most commonly of wind

speed and direction and/or mixing depth. Validation of this kind is often used to

tune model parameters or to choose a boundary-layer physics scheme or other model

configuration (e.g., Nehrkorn et al., 2013b; Feng et al., 2016), but does not directly

address the fidelity of the transport or the impact on flux estimation. Deng et al.

(2017) performed a semi-direct evaluation of coupled weather-transport models by

comparing the marginal posterior likelihoods of the resulting CO2 flux estimates. Di-

rect validation of transport using controlled release of an inert tracer is also possible

(e.g., Harrison et al., 2012) but rarely included in urban studies.

Rather than focus on validating transport models or driving meteorology or quan-

tifying errors therein, we ask: with respect to what purposes or questions, if any, and to

what degree, does density in an observing network reduce the importance of the choice

of driving meteorology? Following the method of Yadav et al. (2018), we perform

geostatistical inversions of methane emissions using in situ mole fraction observations

in the South Coast Air Basin (SoCAB) in and around Los Angeles, California. We

compare inversions driven by the locally-validated WRF modeling system developed

by Feng et al. (2016) for the SoCAB to those driven by three broadly-available models

or reanalysis products: HRRR, NARR, and GDAS. The leak of large quantities of

natural gas from the Aliso Canyon storage facility beginning in October 2015 serves
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as a known-release experiment (Conley et al., 2016), allowing us to test the inversion

systems’ capacity to detect changes or unusual events.

3.2 Methods

We perform geostatistical inversions of methane flux between July 1, 2015 and

December 31, 2016, using transport driven by each of four meteorological models

or reanalysis products: WRF, HRRR, NARR, and GDAS. Each product is used to

drive the Lagrangian transport model STILT (Lin et al., 2003; Nehrkorn et al., 2010),

which estimates the sensitivity of in situ CH4 mole fraction measurements to emissions

fluxes by simulating the transport of 800 particles 60 hours back in time from each

observation. We estimate fluxes at a spatial resolution of 0.03 degrees within the

SoCAB – a total of 1826 grid cells – and at a temporal resolution of four days. The

study domain along the coast of Southern California, along with the locations of the

observing sites and the Aliso Canyon gas storage facility, is shown in Figure 3.1 along

with an example posterior CH4 flux map (from the inversion using WRF will the full

observing network).

One of the four meteorological drivers we consider, the Weather Research and

Forecasting model (WRF) as configured by Feng et al. (2016), has been extensively

validated by those authors against observations of wind speed and direction and of

PBL height in the Los Angeles area, as well as by comparing forward-modeled CO2

emissions from the detailed HESTIA inventory to in situ and flask mole fraction

observations. Those comparisons were used to select the PBL and urban surface

schemes with the best performance in the LA environment. The inner WRF domain,

which includes the region considered here, has a spatial resolution of 1.3 km.

In contrast, the NOAA High Resolution Rapid Refresh model (HRRR) (Benjamin

et al., 2016) has a resolution of 3 km over the continental United States and uses

a WRF physics model with data assimilation, but is not optimized for the local
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environment. HRRR output is available as of mid-2015, albeit with some gaps, most

notably in August 2016 when the model was upgraded to Version 2. In addition,

some STILT runs driven by HRRR fail before the full prescribed simulation period

is complete. We exclude from the HRRR inversions any observations for which the

necessary HRRR fields are not available or for which the HRRR-STILT sensitivity

calculations cover 12 hours or less.

The North American Regional Reanalysis (NARR) (Mesinger et al., 2006) and

the Global Data Assimilation System (GDAS) are much coarser, with resolutions

of 32 km and 0.5 degrees respectively, but cover larger areas (North America and

the whole globe). Given the complex topography and sea breeze circulation (Lu and

Turco, 1994, 1995), we would not expect these coarse products to accurately represent

conditions on fine scales within our estimation domain, which spans only about 200

km from east to west. However, HRRR, NARR, and GDAS are all run in a routine

operational mode, and output can be downloaded from the NOAA READY archive

in a format immediately suitable for transport modeling. For low cost, low latency

monitoring in diverse urban environments, these products are available off-the-shelf.

Our inversions process data from the surface monitoring network maintained by

the LA Megacities Carbon Project (Verhulst et al., 2017), which measures CH4 mole

fractions at nine locations within our domain. We use only observations taken between

12:00 and 16:00 local time, since the representation of vertical mixing is believed to

be most reliable in the afternoon when the mixing layer is most fully developed.

Smoothed observations from an additional site on San Clemente Island, in the Pacific

ocean off the coast of Los Angeles, are used to estimate background concentrations

(see Verhulst et al., 2017). Any excess above that background is attributed to local

sources within the SoCAB.

In order to test the impact of network density, we also perform inversions using

a reduced network and using a single observing site (in addition to the background
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Figure 3.1: Colors: Elevation map of the study domain. Circles: locations of observ-
ing sites. The three sites included in the reduced network are indicated
by their three-letter codes. The star in the western part of the domain
indicates the location of the Aliso Canyon facility. Scale bars indicate the
grid sizes for the WRF (1.3 km), HRRR (3 km), NARR (32 km), and
GDAS (0.5◦) meteorological fields, showing the coarse resolution of the
latter fields relative to the domain.
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site). The single-site inversions use the network’s most centrally-located site, at the

University of Southern California in downtown Los Angeles (USC). The reduced-

network inversions use the sites at Fullerton (FUL), in the eastern part of the domain,

and at Granada Hills (GRA), in the northwest near the Aliso Canyon facility, in

addition to the USC site. A complete description of the observing network is available

in Verhulst et al. (2017).

In all inversions, we employ a geostatistical inversion methodology similar to that

used by Yadav et al. (2018). For each four-day period, the inversion solves for emis-

sions fluxes s in each of the 1826 grid cells as well as for the magnitudes β of model

components (columns of X). The cost function to be minimized is:

L(s, β) =
1

2
(z−Hs)TR−1(z−Hs) +

1

2
(s−Xβ)TQ−1(s−Xβ)

where z are the observed enhancements (mole fraction minus background), H is the

sensitivity matrix derived from the transport model, R is the model-data mismatch

covariance matrix, and Q is the flux-space covariance matrix.

We use two model components in X: a spatially flat model of mean emissions,

and a model proportional to the distribution of emissions in the CALGEM inventory

(Zhao et al., 2009; Jeong et al., 2012). Note that CALGEM is not treated as a prior:

the total magnitude of fluxes from CALGEM is not an input to the inversion and, in

particular, solutions are not penalized for departing from that total. In addition, no

input singles out either the location or the time period of the Aliso Canyon natural

gas leak. In other words, this inversion makes use of no prior knowledge of the leak.

Both the model-data mismatch R and the flux covariance Q are taken to be

diagonal, i.e. both errors and deviations from the model components are taken to

be uncorrelated. In R, each measurement location is assigned a separate variance

σ2
i . Q is the sum of two parts, one proportional to each of the model components,
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with proportionality factors θ1 and θ2. All of the covariance parameters {σ2
i , θ1, θ2}

are estimated on the basis of the mole fraction data using the Restricted Maximum

Likelihood (RML) method (Michalak et al., 2005).

Also following Yadav et al. (2018), we estimate fluxes for two four-day periods

at a time, then discard the first of the two periods, treating it as a spin-up window.

Covariance parameters, model component magnitudes, and fluxes are therefore all

recomputed for each new time period. Since we expect no significant methane sinks

within the domain, we constrain the flux in each grid cell to be nonnegative. We use

the L-BFGS-G optimization method (Byrd et al., 1995) to minimize the cost function

subject to that constraint.

The imposition of nonnegativity breaks the Gaussianity of the posterior emissions

probability, which prevents us from calculating posterior uncertainties analytically. In

test inversions run without the nonnegativity constraint, the calculated total-basin

flux uncertainty at the 95% level was generally between 18% and 35%. However, that

uncertainty estimate does not include bias, which is substantial in some cases (see

section 3.3.1). In addition, because it is calculated over an eight-day window only, the

posterior uncertainty does not fully account for variations in the actual or modeled

sensitivity of the observations to surface fluxes. We therefore rely on the spread of flux

estimates across a number of consecutive four-day periods, rather than the calculated

uncertainty for any given period, as a more realistic estimate of variance when testing

for flux changes (see section 3.3.2).

3.3 Results

3.3.1 Basin Total Flux

Estimated whole-basin methane fluxes from each of the four inversions are shown

in Figure 3.2. When the full observing network is included, estimates using trans-
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port driven by WRF and NARR are in broad agreement with the range of baseline

emissions estimates in other studies (e.g. Wennberg et al., 2012; Peischl et al., 2013;

Wecht et al., 2014; Wong et al., 2015) (see shaded region, Figure 3.2). Emissions

estimates using HRRR are considerably higher than those using WRF, by about 96%

on average over the 18-month study period, and estimates using GDAS are somewhat

lower, by about 16% on average.

Much of the difference in estimated flux is explained by the constant difference in

overall mean total sensitivity assigned by each model to the measurement network.

We compute the mean total sensitivity Hmean for each model over the 18-month period

of the study by summing the sensitivity of the nine measurement sites, then taking

the mean over spatial flux grid cells and over observation times. In order to make a

direct comparison, we exclude (for all models) observations for which HRRR fields

are missing or for which HRRR-STILT runs failed; see Section 3.2. Treating WRF as

a transfer standard, we perform an empirical calibration, scaling the posterior fluxes

from the NARR, HRRR, and GDAS-driven inversions by the ratios of the sensitivities

computed using those models relative to those using WRF:

scal =
Hmean

Hmean,WRF

× s (3.1)

After calibration, the mean posterior emissions come into much closer alignment. The

difference in mean flux relative to the WRF inversion is reduced to 17% with HRRR

and 1% with GDAS and increases modestly to 3% with NARR. The scaled time series

are shown in figure 3.3.

If the sensitivity bias could be corrected using direct observations, our results

suggest that accurate flux estimates might be possible using more widely available

models than is generally assumed. However, several of the meteorological factors

most clearly linked to the sensitivity fail to explain the difference. STILT computes
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Figure 3.2: Points: estimated total CH4 flux time series for the South Coast Air
Basin (SoCAB), at four-day time intervals, according to inversions using
transport driven by each of four meteorological models and using the
full observing network (9 sites), a reduced network (3 sites), or a single
observing site. Curves: spline fits to each time series for visual reference
(not used in the analysis). The shaded band indicates the typical range
of estimates in past studies. The dashed vertical lines indicate the start
and end dates of the Aliso Canyon natural gas leak.
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Figure 3.3: Estimated SoCAB total CH4 flux time series in inversions using the full
observing network after calibration by scaling the fluxes by the relative
total sensitivity assigned to the observing network by each driver of the
transport model. The calibration brings the estimates into close agree-
ment overall. The shaded band indicates the typical range of estimates in
past studies. The dashed vertical lines indicate the start and end dates
of the Aliso Canyon natural gas leak.
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sensitivity to surface fluxes by tracking the amount of time simulated air parcels

spend in contact with the surface. The sensitivity of the ith observation to the jth

flux region is given by (Lin et al., 2003)

Hij =
mair

ρj

τ

zj
; τ =

1

Ni

Ni∑
pi=1

∆tpi,j (3.2)

where zj is the mixing depth, accounting for the effect of dilution, and τ is the average

time spent by the parcels within the bottom one-half of the mixing layer above the

flux region. We might therefore expect the intermodel differences in sensitivity to

be explained by systematic differences either in the mixing height or in the residence

time, i.e., the time for air to travel from the edge of the study domain to the observing

site, as driven by the wind speed.

In the STILT runs driven by each model or reanalysis product, we computed

the mean time spent in the domain by measured air parcels before encountering an

observation site (residence time) as well as the time-averaged mixing depth along the

parcel’s path. The same filtering was applied as in computing the mean sensitivities.

As shown in Table 3.1, the results do not explain the differences in sensitivity. On

average, mixing depths in HRRR are almost the same as those in WRF, and residence

times are only modestly shorter – yet the sensitivity is much less. On the contrary,

mixing depths in NARR are 80% higher on average than those in WRF, yet the

sensitivity is very similar.

Since parcels may be insensitive to the surface either because they have exited the

domain horizontally or because they are above the bottom half of the mixing layer,

we also computed the fraction of their residence time that measured parcels spent

near the surface. As shown in Table 3.1, this ‘near-surface fraction’ differs from WRF

by no more than 13% in any of the other models. The expected combined effect

of the mixing depth, residence time, and near-surface fraction is summarized on the
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WRF HRRR NARR GDAS
Mixing Depth (m) 615 612 / 99% 1109 / 180% 573 / 93%
Residence Time (min) 315 278 / 88% 250 / 79% 308 / 98%
Near-Surface Fraction 0.57 0.49 / 87% 0.65 / 115% 0.45 / 80%
Predicted Relative Sensitivity - / 77% / 51% / 84%
Total Average Sensitivity 100 53 / 53% 96 / 96% 119 / 120%

Table 3.1: First three rows: mean values of meteorological variables expected to con-
tribute to sensitivity, for STILT driven by each of four models or reanalysis
products. These variables are described in section 3.3.1, and percentages
are relative to the same variables in WRF. Fourth row: for HRRR, NARR,
and GDAS, expected sensitivity relative to that in WRF given the above
variables. Fifth row: actual total mean sensitivity. The actual relative
sensitivities are not accurately predicted on the basis of the mean meteo-
rological variables.

fourth line of Table 3.1, in which we compute the relative sensitivity predicted by

those mean variables according to

Hmean

Hmean,WRF

=
zWRF

z
× τ

τWRF

× f

fWRF

(predicted) (3.3)

where f is the near-surface fraction. The resulting prediction fails to capture the

actual differences in total mean sensitivity, which are given on the last line of Table

3.1.

Therefore, although basin-wide, 18-month-average sensitivity explains the gross

differences in estimated flux between the inversions, the basin-wide, 18-month-average

differences in the relevant underlying meteorological variables do not control the sen-

sitivity in the same way. In the transport model, the whole basin is not treated as a

single region; rather, Equation 3.2 applies separately in each 0.03-degree grid cell and

for each four-day period, and the fine-scale interactions between the variables have a

substantial effect.

An important implication is that our modeled average sensitivities could not be

calibrated to ground truth by debiasing the underlying meteorological variables in a
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basin-averaged manner. For example, using lidar observations in Pasadena, California

(colocated with one of the LA Megacities observing sites), we showed in Chapter II

that NARR persistently overestimates the mixing depth at that location, by more

than a factor of two on average, and that any local mixing depth bias in WRF was

likely much smaller. Indeed, we can see in Table 3.1 that mixing depths in NARR

are very high on average over the whole domain. However, if the estimated fluxes

in the NARR inversion were scaled to correct for this bias as suggested by Ware

et al. (2016), the result would be to introduce a large positive bias into the fluxes.

Of course, wind speed and mixing depth observations can be used to evaluate and

improve meteorological drivers of transport, as was done for the WRF configuration

employed here by Feng et al. (2016) – but our results show that a mean calibration

factor constructed from those observations could not be reliably correct.

3.3.2 Anomaly and Trend Detection

We evaluate the ability of each inversion system to detect changes in the total basin

flux, both seasonally and due to an unusual event or change. We test significance

using Welch’s unequal-variances t-test, which has similar power to a standard t-test

and is appropriate whether or not the samples to be compared have the same variance.

The significances (p-values) for all the tests described in this section are given in Table

3.2.

In all of the inversions using the full observing network, we observe a seasonal trend

in CH4 emissions. Emissions in November-December 2016 are estimated to be 38%

(NARR inversion) to 83% (GDAS inversion) higher than those in July-August. These

periods were selected so as not to overlap the timeframe of the Aliso Canyon leak, in

order to isolate the ‘normal’ seasonal difference. The estimated difference is significant

at the 95% level or better in all four inversions. The consistent detection and timing

of the seasonal change, regardless of the meteorology used to drive transport, reinforce
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its status as a robust and substantial feature of Los Angeles methane emissions.

We also test the detectability of the increase in flux during the Aliso Canyon

leak period. To remove the impact of the seasonal dependence, we compare the

period October 24 through December 27, 2015 to the corresponding period in 2016

(in an operational setting, the comparison would generally be to previous years). The

difference is significant at the 95% level in Welch’s t-test in the HRRR, NARR, and

GDAS inversions but much less significant (p=0.17) in the WRF inversion. Note

that our test of whole-basin flux totals is less sensitive than that performed by Yadav

et al. (2018), which focused only on fluxes in the area around the Aliso Canyon facility.

The tradeoff is that the whole-basin test does not require advance knowledge of the

location of a flux anomaly.

Our ability to observe the Aliso Canyon gas leak using the LAMegacities observing

network is limited by its position near the edge of the inversion domain, such that its

emissions are observable only intermittently. However, as is apparent in Figure 3.2,

this intermittency results in an increase in the variance of the retrieved fluxes, which

may be significant even, or indeed especially, when the change in mean is not. In fact,

in an F-test for difference of variance comparing October-December 2015 to 2016 as

above, the increase in retrieved flux variance during the Aliso Canyon period is nearly

as significant or more significant than the change in mean flux in the inversions driven

by HRRR, NARR, and GDAS. The increase in variance is not significant (p=0.32)

in the inversion driven by WRF, which shows the least variability relative to the

estimated flux values. These results highlight the complementary value of the two

approaches, particularly for less-optimized meteorology.

In general, the threshold for a flux event to be detectable by a given observing

and inversion system depends not only on the magnitude of the event but also on its

duration and variance. It also depends on the event’s timing, because the mean flux

and variance during the reference period used for comparison will vary according to
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a.) Seasonal Difference, Welch’s t-test
WRF HRRR NARR GDAS

Full Network 0.047* <0.001* 0.048* 0.012*
Reduced Network 0.024* <0.001* 0.075 <0.001*
USC Site Only 0.53 0.0012* 0.025* 0.015*

b.) Aliso Canyon Period, Welch’s t-test
WRF HRRR NARR GDAS

Full Network 0.17 0.025* 0.016* 0.039*
Reduced Network 0.63 0.004* 0.051 0.30
USC Site Only 0.15 0.39 0.24 0.89

c.) Aliso Canyon Period, F-test for Difference of Variance
WRF HRRR NARR GDAS

Full Network 0.32 <0.001* <0.001* 0.044*
Reduced Network 0.60 0.056 0.016* 0.021*
USC Site Only 0.45 0.21 0.36 0.82

Table 3.2: Summary of p-values of two-sided tests for changes in mean emissions (a
and b) or variance of emissions (c), comparing summer to winter of 2016 (a)
or the first 64 days of the Aliso Canyon gas leak in 2015 to the equivalent
period in 2016 (b and c). Tests significant at the 95% level are indicated
with an asterisk. Seasonal flux differences are detected in most cases even
with reduced observations; the Aliso Canyon leak is detected with the full
network in the non-WRF inversions and with the reduced network in some
cases using the test of difference of variance.
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Figure 3.4: Sensitivity (p-values) of inversions using each meteorological driver to
hypothetical flux events occurring between September 4 and October 26,
2017, as a function of the change in mean flux and variance relative to the
same period in 2016. The inversions shown here use the full observing
network (9 sites). Changes in mean flux are less significant when ac-
companied by high variance, but sufficiently large variance increases are
themselves significant in an F-test.

the seasonal cycle. By way of an example, for a hypothetical event persisting at least

from September 4 to October 26, 2017 (and compared to the corresponding period in

2016), we compute the sensitivity according to the better of Welch’s t-test and the

F-test for difference of variance for a range of flux increases and variances. The results

are shown in figure 3.4 for the inversions driven by each of the four meteorological

products. In this example, the inversions using WRF and NARR could detect a 30-

40% increase above the baseline if the variance were approximately unchanged, the

inversion using GDAS could detect a 20-30% increase, and the inversion using HRRR

could detect an increase of about 20% – but the same thresholds do not persist at

other times.
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3.3.3 Network Density

As the number of observing sites is reduced, the methane flux retrievals generally

become noisier, exhibiting greater variance even in the absence of any known flux

event. In almost all cases, robustly detecting the Aliso Canyon leak event is more

difficult with only three observing sites than with the full network. However, the

HRRR-driven inversion remains sensitive to the change in mean flux (p=0.004) and

the NARR- and GDAS-driven inversions remain sensitive to the increase in variance

(p=0.016 and p=0.021, respectively).

With only a single observing location, none of our inversions can detect a signifi-

cant change either in the mean or in the variance of the fluxes during the Aliso Canyon

leak. The USC site alone can constrain only a small part of the study domain, and

even that part only inconsistently. Figure 3.5 illustrates the decrease in measurement

constraint when the number of the number of observing sites is reduced.

By contrast, even a single measurement location is sufficient in most of our inver-

sions (excepting that using WRF) to observe the seasonal cycle. Broad and consistent

sensitivity may be less critical for this purpose than for detecting a point source event

because the seasonal difference is likely to be widely distributed throughout the do-

main. Although our study period is too short to observe it, we might expect the same

to apply to year-over-year secular changes.

3.4 Conclusions

Our results suggest that the ability of an in situ observing network to detect

changes in emissions may be less sensitive to the choice of transport driver than are

estimates of the absolute total flux. Much of the difference in absolute flux estimates

between inversions driven by divergent meteorology seems to be attributable to biases

in long-term sensitivity, which can be calibrated by comparison to a trusted model
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Figure 3.5: Heat map: sensitivity of the full observing network (9 sites), a reduced
network (3 sites), and the USC site alone to fluxes within the SoCAB
during the first four days of the Aliso Canyon natural gas leak, October
24-27, 2015, as computed by STILT driven by each of four meteorological
products. Circles: locations of observing sites. The three sites included
in the reduced network are indicated by their three-letter codes. The star
near the western edge of the domain indicates the location of the Aliso
Canyon facility. The breadth and magnitude of sensitivity degrade as
measuring locations are removed.
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chosen as a transfer standard. Debiasing with weather observations would not be

successful as the sensitivity bias is not predicted by the mean values of the relevant

meteorological variables. However, an accurate total estimate is not a prerequisite for

observing changes, including seasonally or in the case of leaks or other large anomalies.

And although our study period is not long enough to observe them, trends over the

course of years could likely be characterized in the same way.

The ability of a surface network to detect flux changes contributes to the func-

tioning of a ‘tiered’ observing system (Duren and Miller , 2012) for megacities carbon

emissions, which includes continuous monitoring at the urban scale, targeted de-

ployments to characterize significant individual sources, and regional or boundary

condition data from aircraft and satellites, as well as bottom-up inventories. A flux

inversion system run operationally could provide the first notice of events worthy of

more detailed investigation by other methods. The more quickly these events can be

identified, the better opportunity we will have to quantify and characterize them as

well as to inform stakeholders.

So far, the ability to usefully detect emissions events using urban concentration

measurements has been limited by the long time delay, typically measured in years,

between collecting initial data and producing a flux estimate. (One exception was the

near-real-time monitoring performed by Lauvaux et al. (2013) in Davos, Switzerland

in 2011-2012.) While several factors contribute to delays, one major source of latency

is the time, expense, and computational resources involved in meteorological modeling

for transport. We have demonstrated that at least some operational monitoring goals

can be met using a variety of meteorological products, including several that are made

available on a routine basis and nearly in real time. Output from HRRR is posted on

the NOAA READY archive each day, covering the previous day. Continuous archival

of GDAS has recently been supplanted by Global Forecast System (GFS) short-term

forecasts, which are initialized with GDAS but have twice the resolution both in
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space (0.25 degrees) and in time (3 hours). GFS zero-hour forecasts are finalized the

same day. With these rapidly-available meteorology products, and given the modest

computation expense involved in the geostatistical inversion itself, emissions fluxes can

be estimated as quickly as concentration data can be collected and quality-controlled.
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CHAPTER IV

Impact of Methodology Choice in an Urban

Methane Flux Inversion

4.1 Introduction

As inverse methods have become a standard tool for estimating greenhouse gas

emissions fluxes, practitioners have attempted to characterize the major sources of

error and to reduce the role of expert judgment. Early global inversions (e.g. Tans

et al., 1990; Enting et al., 1995) estimated fluxes in a few large regions, but the use

of large regions introduced aggregation error (Kaminski et al., 2001). Since then,

grid-scale inversions have become the norm, especially on the urban scale (e.g. Breon

et al., 2014; Lauvaux et al., 2016; Yadav et al., 2018), often with many more unknown

fluxes than observations are available to constrain them. The flux estimates are then

sensitive to the choice of information used to regularize the problem.

One response to this sensitivity has been to improve the quality of the inputs.

For CO2, flux priors based on disaggregation of national total emissions using proxy

variables (e.g. nightlights, population density) have been produced at 1.1 km scale

globally (Oda and Maksyutov , 2011), with refinements to as low as 30.3 m under

study (Oda et al., 2017). Truly bottom-up products, constructed from process-level

information about sources, cover a few cities (Gurney et al., 2012; Feng et al., 2016;
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Patarasuk et al., 2016) at building scale and the contiguous United States at 100 km

or finer (Gurney et al., 2009). Methane inventories are not yet as detailed, but are a

subject of active research (e.g. Maasakkers et al., 2016), especially since it has become

clear that atmospheric measurements imply higher total emissions in North America

than have been accounted for (Brandt et al., 2014).

An alternative to producing the best possible inputs is to reduce the method’s

dependence on inputs, relying on the mole fraction measurements to the greatest

possible extent. That philosophy has guided the adaptation and development of

the geostatistical method in the context of flux estimation (Michalak et al., 2004).

Although one or more plausible spatial flux patterns must still be provided, the ob-

servations are permitted to guide the relative importance of those patterns as well as

the overall flux magnitude. Advantages of the geostatistical method include reduced

sensitivity to prior error, especially bias, and that the magnitude of an inventory or

other prior estimate can be reserved as an independent point of comparison. The

main disadvantage to be expected is increased sensitivity to model-data mismatch

error, including transport error.

So far, the geostatistical and traditional Bayesian inversion methods have not

been compared side by side in the urban context. Here, we make that comparison,

estimating CH4 emissions fluxes in the South Coast Air Basin, California using both

methods. We also make estimates with two simpler regularization schemes, Tikhonov

and lasso regularization, which involve no prior information about either the magni-

tude or the pattern of fluxes. We evaluate the general features of the estimates, their

time series behavior and spatial flux patterns, and the ability to detect flux changes

and events.
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4.2 Methods

We estimate methane emissions fluxes in and around Los Angeles, California using

several methods (enumerated by Turner et al. (2018)): a Bayesian inversion using a

prior, a geostatistical inversion, and simple regressions either with Tikhonov regu-

larization or with lasso (L1 norm) regularization. All of the analyses are informed

by hourly average in situ CH4 mole fraction measurements taken at observing sites

associated with the LA Megacities Carbon Project. We perform inversions using both

the full observing network (nine sites within the domain) as well as with a reduced

network of three sites. A smoothed time series of mole fractions at the additional San

Clemente Island site, off the Pacific coast just west of Los Angeles, is subtracted as

an estimate of background. Both the observing network and the background method

are described in Verhulst et al. (2017). We restrict the observations to the afternoon

hours (16:00 to 20:00 local time), when the mixing layer is generally well-developed

and model representations of vertical mixing are considered to be most reliable.

The sensitivity of the mole fraction observations to surface fluxes is computed

with the Stochastic Time-Inverted Lagrangian Transport model (STILT) (Lin et al.,

2003; Nehrkorn et al., 2010). We drive STILT with meteorological fields from the

Weather Research and Forecasting model (WRF) as configured for the Los Angeles

area by Feng et al. (2016) and with three other models or reanalysis products: the

NOAA High Resolution Rapid Refresh model (HRRR) (Benjamin et al., 2016), the

North American Regional Reanalysis (NARR) (Mesinger et al., 2006), and the Global

Data Assimilation System (GDAS). The characteristics of these meteorological fields

are discussed in greater detail in Chapter III.

The estimation domain is the South Coast Air Basin (SoCAB), encompassing

Orange County and parts of Los Angeles, Riverside, and San Bernardino counties.

As in Chapter III, we estimate fluxes at a spatial resolution of 0.03 degrees and at a

four-day time scale. Each inversion solves two consecutive four-day periods at a time,
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then discards the first, treating it as a spin-up period. The fluxes are constrained

to be nonnegative, since we expect no significant surface methane sinks within the

domain.

All four of our methods seek to minimize a cost function L, the first term of which

depends on the deviation of the observed mole fractions z from those expected on the

basis of the estimated fluxes s:

L = L1 + L2; L1 = (z−Hs)TR−1(z−Hs) (4.1)

where R is the model-data mismatch covariance matrix. We specify a diagonal R,

assuming uncorrelated errors in the observations, but allow a different variance σ2
i

at each observation site to reflect the potentially differing magnitudes of (especially

transport) error.

Minimizing L1 alone is not sufficient to determine the fluxes uniquely because

the number of fluxes (1826 per four-day period) exceeds the number of observations

(no more than 124 per four-day period). As a result, the Jacobian matrix H of the

transport must have a nontrivial null space, so L1 is insensitive to some variations in

the fluxes. Some additional cost L2 is necessary to regularize the minimization.

A simple and widely-used method for regularizing ill-posed optimization problems

is to set L2 = γ‖s‖, where γ is a positive constant and ‖ · ‖ is a norm on the vector

to be optimized. For greenhouse gas flux inversion, this choice has the disadvantage

that it will cause any fluxes unconstrained by the observations to be set to zero – but

it can give us an idea of what information is contained purely in the observations,

since no other inputs are involved. We use two methods of this form. If ‖ · ‖ is the

Euclidean (L2) norm, the result is Tikhonov regularization:

L2 = γsT s (Tikhonov). (4.2)
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The Tikhonov cost term will tend to promote a broad distribution in space, since the

same total flux has a lower cost if spread over several grid cells. By contrast, if ‖ · ‖

is the L1 norm, we have lasso regularization (Tibshirani , 1996),

L2 = γ
∑
i

si (Lasso), (4.3)

which can promote a sparse solution with few nonzero flux values. Although unrealis-

tic for many emissions cases, we might expect sparseness to make the lasso regression

more sensitive to point sources, which could be desirable for event detection.

In the Bayesian approach, we suppose that we have a prior estimate s0 of the fluxes,

which we believe to be reasonable. The role of the observations is to identify deviations

from the prior estimate. The regularizing term is set by the prior probability of the

fluxes:

L2 = −2 ln p(s) = (s− s0)
TQ−1(s− s0) (Bayesian) (4.4)

whereQ is the prior flux covariance. Here, we set s0 equal to the gridded methane flux

inventory from the California Greenhouse Gas Emissions Measurement (CALGEM)

Project (Zhao et al., 2009; Jeong et al., 2012). We specify a diagonal prior covariance

as a linear combination of an uncertainty proportional to the prior estimate in each

grid cell, plus an additional constant variance, i.e.

Q = θ1 diag(s20) + θ2Im. (4.5)

Note that a Bayesian interpretation of Tikhonov regularization is possible, if the prior

probability of the fluxes is

p(s) = exp

{
−1

2
(s− 0)T (γIm)(s− 0)

}
(4.6)

but this is obviously not a very sensible prior in our case, since it implies zero emissions
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everywhere.

The geostatistical method (Michalak et al., 2004) differs from the Bayesian in that

the prior is replaced by a model X of the emissions, the components of which are to

be scaled by one or more initially unknown parameters β (called “drift coefficients”).

The cost function is specified as

L(s, β) = L1 + L2; L2 = (s−Xβ)TQ−1(s−Xβ) (Geostatistical) (4.7)

and the drift coefficients are optimized along with the fluxes. A crucial conceptual

difference from the Bayesian approach is that the model contains no information

about the overall scale of the fluxes – only their distribution in space and, if the

inversion covers multiple time periods, in time. The overall flux magnitude is left to

be determined by the observations. Here, we implement a near-minimal geostatisti-

cal model with only two components: the same CALGEM flux inventory as in the

Bayesian case, and a uniform flux throughout the SoCAB domain. We specify the

prior covariance Q with the same form as in the Bayesian case.

In the Bayesian and geostatistical inversions, we estimate the observation vari-

ances σ2
i for each measurement site, along with the prior covariance parameters θ1

and θ2, using the Restricted Maximum Likelihood (RML) method (Michalak et al.,

2004, 2005). The parameter values are chosen so as to maximize the likelihood of

the actually existing observations, and are computed separately for the Bayesian and

geostatistical cases and for each inversion period. We also apply RML to estimate

the observation variances and the regularization parameter γ in Tikhonov regulariza-

tion; the relevant RML cost function is derived in Appendix A. For the regression

using lasso regularization, the RML calculation is prohibitive because the probability

distribution implied by the cost function is not Gaussian. In that case we set the

observation variances to (40 ppb)2, a typical value from the Tikhonov case, and the
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regularization parameter to 1 ppb−1, which gives the lasso cost term approximately

the same magnitude as the Tikhonov term.

4.3 Results

Figure 4.1 shows the estimated flux time series using each of the four methods

(Bayesian, geostatistical, Tikhonov, and lasso) and with transport driven by each of

the four meteorological products (WRF, HRRR, NARR, and GDAS), including mole

fraction data from all nine observing sites. The characteristic features of each method

are visible. The geostatistical inversion is the only method without an absolute

flux magnitude in the regularizing cost term, which allows it to show the greatest

variation in the flux magnitude both across time and depending on the meteorological

driver. In the other three methods, the flux is more tightly constrained, trending

towards the prior in the Bayesian inversion and towards zero in the Tikhonov and

lasso regressions. With our choice of parameters, lasso regularization allows for larger

deviations from zero than does Tikhonov regularization, especially during the period

of greatly increased emissions from the Aliso Canyon natural gas leak.

The differences between methods become more pronounced as the observational

constraint is reduced. The estimated fluxes using the reduced set of three observ-

ing sites are shown in Figure 4.2. The fluxes estimated by the geostatistical method

become more variable as the importance of any given observation and its sensitivity

increase. In the Bayesian inversion, less information is available to pull the estimates

away from the prior, so the time series becomes less feature-rich, deviating substan-

tially only at times of greatly increased flux: during the Aliso Canyon leak and, in

some inversions, in late 2016. For the same reason, the regularized estimates collapse

to near zero much of the time.

As discussed in Chapter III, most of the difference in absolute flux magnitude

between the geostatistical inversions using different meteorological drivers of transport
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can be explained by the differences in total mean sensitivity assigned to the observing

network. The flux estimates can be calibrated after the fact by scaling them according

to those average differences in sensitivity. That calibration is neither necessary nor

effective in the Bayesian inversions, in which the proportionality of flux estimates to

sensitivity is diluted by the influence of the prior.

A direct comparison illuminates the impact of method choice on the flux estimate

time series. Figure 4.3 shows linear RMA regression analyses of the Bayesian and

calibrated geostatistical estimates. Each point represents the estimated fluxes during

one four-day period. The coefficient of determination r2 measures the similarity in

the shape of the time series between the two methods, irrespective of any overall offset

bias or difference of scale. Including observational data from the full LA Megacities

network results in higher r2 values, confirming our expectation that improving the

data constraint should reduce the importance of the method choice. Among inversions

making use of the full network, the highest r2 is observed when transport is driven

by WRF, the most highly-tuned and finest-resolution meteorological product.

4.3.1 Change Detection

We evaluate each method’s ability to detect emissions flux changes and events by

testing the significance of the increase due to the Aliso Canyon natural gas leak. As

in Chapter III, we compare posterior flux estimates from October 24 to December 27,

2015 to the corresponding period in 2016. We use two complementary tests: Welch’s

t-test for a difference in the mean flux between the two periods, and an F-test for

a difference in the variance of the flux estimates. Generally, the F-test is the more

effective of the two in inversions using coarse driving meteorology (NARR or GDAS),

which produce noisier flux estimates, whereas the t-test is the more effective in inver-

sions using high-resolution meteorology (WRF or HRRR). Significance statistics for

both tests are given in table 4.1.
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Figure 4.3: Scatter plots of four-day flux estimates using the calibrated geostatistical
method (horizontal axis) and the Bayesian method (vertical axis), with
the slope, offset, and r-square statistics of the RMA regression between
the two. The timeseries are most similar (highest r2) when more data is
included (left column), especially when WRF is used to drive transport.
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In analyses using the full LA Megacities observing network (nine sites within the

domain), the Aliso Canyon event is significant (p < 0.05) in at least one of our two

tests in almost every case, regardless of the inversion or regularization methodology

and using any of HRRR, NARR, or GDAS (though not WRF) to drive transport.

With only three observing sites, however, only the geostatistical method generally

retains the ability to detect the leak: by the mean flux increase when driven by

HRRR and by the increase in variance when driven by NARR or GDAS. In the

other methods, the reduced observational constraint is not sufficient to overcome the

influence of the prior (in the Bayesian inversion) or the downward pressure of the

regularization.

Contrary to what we might have expected for a sparseness-promoting method,

estimates with lasso regularization are not consistently more sensitive to the large,

localized emissions from Aliso Canyon than are those with Tikhonov regularization.

A likely reason is that the observations are too localized to ensure retrieval of the

most important sparse components of the flux (Candès and Wakin, 2008).

4.3.2 Spatial Flux Localization

Ideally, an operational CH4 monitoring system would not only detect emissions

changes at the city scale but also locate them in space, allowing for detailed follow-up

investigation. Without foreknowledge of the location of the Aliso Canyon natural gas

leak, none of the methods tested here have that capability. Figure 4.4 shows maps of

mean flux difference between the initial period of the leak, October 24 to December

27, 2015, and the corresponding comparison period in 2016. Figure 4.5 shows the

pixel-by-pixel significance of those differences in Welch’s t-test.

Several distinct patterns of flux differences are visible. Lasso regularization does

produce large, localized changes in the flux, but they are of both signs, often with

increases adjacent to decreases. Because the variance is very large, almost none of
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the changes are significant. The Bayesian inversion and the estimate using Tikhonov

regularization both concentrate the flux increase near the measurement sites, where

the sensitivity of the observations is highest. That accommodates increased observed

mole fractions with the minimum increase in flux, so as to depart as little as pos-

sible from the prior (Bayesian) or from zero (Tikhonov). Some of the changes are

significant, but not in the Aliso Canyon area.

In most of the geostatistical inversions, the flux increase is distributed broadly

over the whole domain. This is a consequence of our model X, which included a

constant flux term; by increasing the drift coefficient corresponding to the constant

term, the inversion can improve the fit to observations without incurring any other

penalty. One result is that the flux estimates increase even in regions with little

observational constraint, such as in the far east of the domain. Many of the changes

are significant, but because they result mainly from an across-the-board increase, their

spatial pattern is not informative. Interestingly, the geostatistical inversion driven by

WRF shows a flux difference pattern more similar to the Bayesian inversions, lacking

the broad increase.

4.4 Discussion

Using the same observations and geostatistical methodology we employ here and

with transport driven by the same WRF configuration, Yadav et al. (2018) were able

to identify a significant flux increase localized around the Aliso Canyon site by making

two additional interventions. First, a moderate-size region encompassing the site was

selected. Increasing the size of the region makes the test more robust to transport

error, especially wind direction error, which can cause the inversion to place the

increased flux incorrectly or inconsistently. However, in an operational monitoring

context in which the location of a flux event is not known in advance, aggregated

regions to be tested must be selected in some objective manner. A promising solution

92



is transdimensional Bayesian inversion (Lunt et al., 2016), in which the flux estimates

are made in aggregated regions the number and locations of which are treated as

additional variables to be optimized.

In addition to testing an expert-selection region, Yadav et al. (2018) filtered the

time series of flux estimates to remove periods during which the Granada Hills ob-

serving site, nearest to the leak location, had reduced sensitivity to that region. The

necessity of subselecting for adequate sensitivity suggests that the observation cover-

age is insufficient. If a denser set of mole fraction observations were available, or if an

event occurred in the interior of the domain, we might be more successful in locating

it.
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CHAPTER V

Conclusions

The effort to quantify greenhouse gas emissions at the urban scale is still new, and

there are so far no generally agreed-upon standard methods. A variety of approaches

are being explored and tested. This thesis is a contribution to that exploration,

focusing on a few of the relevant factors: what can be learned independent of the

meteorology used to drive transport, mixing-depth observations that might be applied

to evaluate that driving meteorology, and the interactions between the observation

density, inversion or regularization methodology, and choice of meteorology. But there

is a many-directional space of other possible methods and observations and of choices

we have left fixed in the work presented here.

5.1 Further Directions

Our discussion has focused on methane, but CO2 emissions at the urban scale are

also uncertain (Gately and Hutyra, 2017), and CO2 flux estimation poses a different

set of challenges. Some studies (Hutyra et al., 2015; Gurney et al., 2017) have recently

shown that the CO2 flux contribution from the urban biosphere can be substantial.

For the purpose of estimating fluxes, the biosphere contribution introduces at least

four complications:

1. An additional, non-anthropogenic component must be included in prior flux

94



estimates (in a Bayesian approach) or as an explanatory variable (in a geosta-

tistical approach). In flux inversions on larger scales, this role has generally

been filled by a process-based model. The selection and tuning of the biosphere

model then become new axes of choice in the estimation method.

2. If the goal is to quantify fossil fuel emissions, those must be separated from other

sources on the basis of their distribution in space and time, isotopic composition,

or the presence of other co-emitted gases.

3. Because plants both take up and give off CO2, the surface can be a net sink, so

negative fluxes must be allowed. The inversion may then overfit the observations

by introducing spurious dipoles – large, nearly canceling positive and negative

fluxes in adjacent regions.

4. In our inversions, we have estimated methane emissions at a temporal cadence

of four days or longer, implicitly assuming that the flux is more or less constant

on that time scale. That assumption fails for biosphere CO2 exchange in an es-

pecially pernicious manner. Photosynthetic uptake occurs during the day, when

the mixing layer is generally deeper than at night, so the resulting decrease in

mixing ratio near the surface is small. At night, plants release CO2 into a much

shallower nocturnal surface layer, causing a correspondingly larger increase in

surface mixing ratio. On average over the course of 24 hours, the mixing ratio

may be enhanced even if the net flux is zero or negative, an effect known as the

diurnal rectifier (Randall et al., 1996).

Carbon in fossil fuels is depleted of 14C, so measurements of isotopic composition

can distinguish between carbon-containing compounds originating from fossil sources

and from contemporary biogenic sources. Many studies have used isotopic analysis

(sometimes of 13C and/or isotopes of hydrogen or oxygen in addition to 14C) to

identify the dominant urban source types of CO2 (e.g., Kuc and Zimnoch, 1997;
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Djuricin et al., 2010) and CH4 (e.g., Kuc et al., 2003; Townsend-Small et al., 2012)

as well as CO (e.g., Klouda et al., 1986; Klouda and Connolly , 1995; Vimont et al.,

2017). Generally, these studies have apportioned carbon in the atmosphere without

linking it explicitly to surface fluxes, but exploratory studies (Wu et al., 2018) have

investigated the potential value of including isotopic measurements in an inversion

system. However, expense and low observation frequency are significant barriers,

since air must be captured in flasks for subsequent isotopic analysis off-site.

Apart from isotopic analysis, the presence of other co-emitted species may be used

to apportion GHG emissions. The most commonly measured tracer for fossil fuel

CO2 is CO. Because it is preferentially emitted in incomplete combustion processes,

especially in motor vehicles (Turnbull et al., 2011, 2015; Vogel et al., 2010), CO

can also be used to distinguish between mobile and stationary sources of fossil fuel

CO2. CO is considered a less accurate tracer for fossil sources overall than 14C

(Levin and Karstens , 2007), but has the advantage that it can be measured in situ at

high frequency. For methane source identification, a promising tracer is C2H6 (e.g.,

Wennberg et al., 2012; Smith et al., 2015), which is present in leaked natural gas but

is not produced by microbial sources such as ruminants, landfills, and wastewater

treatment. Nathan et al. (2018) provide a comprehensive review and assessment of

other tracers in the urban context. So far, though, no urban flux inversion study

using real data has incorporated multi-species observations.

Urban flux inversions so far, including those presented here, have relied on in situ

mole fraction observations using a relatively small number (no more than 12) of high-

precision instruments. However, a significant body of non-inversion work on urban

greenhouse gas emissions has incorporated observations of the total abundance of CO2

and/or CH4 in a column of the atmosphere (e.g., Kort et al., 2012), and flux inversions

on larger scales have used total column observations from satellites (e.g. Turner et al.,

2015). Because the mixing layer in which the local emissions are concentrated makes
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up typically only about 10% of the atmosphere, column observations must be able

to detect much smaller enhancements in order to be useful, so instrument precision

is more likely to be a significant concern than with in situ measurements. As argued

by McKain et al. (2012), though, the relationship between column abundance and

fluxes is less sensitive to the mixing depth, so errors in modeled transport may be

less impactful. Recent prospective studies have looked at what precision, field of

view, and measurement frequency future satellite observations would need in order

to spatially constrain urban CO2 (Broquet et al., 2018) or concentrated CH4 sources

(Turner et al., 2018) in an inversion framework.

High-density networks of low-cost sensors have also been receiving attention as an

alternative or supplement to expensive, high-precision spectroscopic analyzers for in

situ observations. The BErkeley Atmospheric CO2 Observing Network (BEACON)

(Shusterman et al., 2016) takes this approach, deploying low-cost sensors at schools

in the San Francisco Bay Area, California. In a study of simulated observations from

variations on the BEACON network, Turner et al. (2016) concluded that increasing

the density of observations is more important than ensuring better than moderate

precision.

In order to attribute enhanced mixing ratios or column abundances to local

sources, the background air entering the domain of interest must be characterized.

In the work presented in Chapters III and IV, we estimated background using the

method of Verhulst et al. (2017) to filter and smooth observations at an offshore site.

That approach is generally reasonable in Los Angeles, where the dominant wind pat-

tern brings in clean air from over the Pacific Ocean. Still, Verhulst et al. (2017) found

that the uncertainty of the in-basin enhancements is dominated by the background

estimate, rather than by the measurement precision at the primary observing sites.

A more sophisticated background estimation method might identify the predom-

inant wind direction at any given time and select the most appropriate upwind site,
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as was done in Indianapolis by Lauvaux et al. (2016). In some larger-scale flux inver-

sions (e.g. Lunt et al., 2016), the background has been specified in a spatiotemporally

varying way over a whole vertical curtain at the edge of the study domain, according

to the output of a global circulation model. Then each observation can be assigned a

unique background value according to when and where the sampled air masses cross

the boundary curtain according to the transport model.

As shown in Chapters III and IV, whatever observations are employed, choices

made in the course of the inversion analysis may also have a substantial effect on

the outcome. Our discussions of transport have focused on the driving meteorology,

keeping the Lagrangian model STILT fixed and running it always in its default con-

figuration. Especially on the urban scale where there may be strong sources in the

very near field of observing sites, though, the details of the transport simulation may

have more significant effects than have been recognized. So far, literature is sparse

on the choice of transport models, their configuration and parameterization, and the

effects on flux inversion. Outside the urban context, Hegarty et al. (2013) compared

several Lagrangian models by releasing a known inert tracer, and several studies (Lau-

vaux et al., 2012; Pillai et al., 2012) have compared Lagrangian to Eulerian transport

models in an inversion context.

A parallel effort has sought to characterize sources of error in detail so as to specify

covariance structures as realistically as possible. Much of that work has focused on

transport error. For example, Lin and Gerbig (2005) devised a method for estimat-

ing the additional model-data mismatch variance due to errors in the modeled wind

speed, as follows: the wind field in the driving meteorological model is compared to

observations and the statistics of the deviation, including decorrelation scales in space

and time, are computed. Those wind error statistics are then implemented as an ad-

ditional stochastic component of the wind in the transport model. The increase in

the spread of forward-modeled mole fractions Hs0 when the wind errors are included
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in H is taken as an estimate of the transport error variance and incorporated into the

model-data mismatch covariance matrix R. Gerbig et al. (2007) proposed to handle

mixing depth error in a similar way, by stochastically varying the mixing depth in

the transport model according to the observed error statistics.

5.2 Concluding Thoughts

A great deal of work remains to be done before we will fully understand the

importance of the many choices involved in observational urban greenhouse gas flux

estimation. The results presented here, together with other recent investigations in a

variety of directions, suggest that the situation is likely to be complex. Continuous

observations of the mixing depth can reveal bias in meteorological models, but that

bias may not propagate transparently into flux estimates. A high-resolution, locally

validated WRF configuration can reduce the impact of method choice, but it may not

be necessary or even beneficial in monitoring for emissions changes.

If there is a lesson to be learned, it may be that no single method is optimal

for all purposes. We will need to consider our goals and the relevant conditions and

make judicious choices in each case – including whether to prioritize the best possible

methods or to give weight to operational requirements and the establishment of a

standard for direct comparison.

99



APPENDIX

100



APPENDIX A

RML Cost Function for Tikhonov Regularization

In Tikhonov regularization, the likelihood of the observations is

p(z|θ) =

∫
ds p(z|s)p(s) (A.1)

∝ |R|−1/2γn/2
∫

ds exp

{
−1

2

[
(z−Hs)TR−1(z−Hs) + γsT s

]}
(A.2)

where n is the dimension of s, i.e., the number of fluxes to be estimated. The integral

is Gaussian, so

p(z|θ) ∝ |R|−1/2γn/2|HTR−1H + γIn|−1/2 exp

{
−1

2
zTR−1z

}
× exp

{
1

2
zTR−1H(HTR−1H + γIn)−1HTR−1z

}
(A.3)

=
[
γ−m|γR||HT (γR)−1H + In|

]−1/2
× exp

{
1

2
zTR−1

[
H(HTR−1H + γIn)−1HTR−1 − Im

]
z

}
(A.4)

where m is the number of observations (so R is m×m). Applying the matrix identity

(VTB−1V + A−1)−1VTB−1 = AVT (VAVT + B)−1 (A.5)
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gives

p(z|θ) ∝
[
γ−m|γR||HT (γR)−1H + In|

]−1/2
× exp

{
1

2
zTR−1

[
H(γ−1In)HT (H(γ−1In)HT + R)−1 − Im

]
z

}
(A.6)

=
[
γ−m|γR||HT (γR)−1H + In|

]−1/2
× exp

{
1

2
zTR−1

[
Im −R(H(γ−1In)HT + R)−1 − Im

]
z

}
(A.7)

=
[
γ−m|γR||HT (γR)−1H + In|

]−1/2
× exp

{
−1

2
zT (γ−1HHT + R)−1z

}
. (A.8)

The first factor can be simplified using the Matrix Determinant Lemma

|A−1 + UVT | = |A−1||VTAU + I|, (A.9)

such that

p(z|θ) ∝
[
γ−m|γR + HHT |

]−1/2
exp

{
−1

2
zT (γ−1HHT + R)−1z

}
(A.10)

= |Φ|−1/2 exp

{
−1

2
zTΦ−1z

}
, Φ = γ−1HHT + R. (A.11)

The cost function is therefore

Lθ = ln |Φ|+ zTΦ−1z (A.12)
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