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ABSTRACT

We investigate relationships between the algebraic parts of L-values of weight two

eigenforms f and g satisfying a congruence modulo a prime p, but whose signs in the

functional equation are −1 and +1, respectively. By fixing an imaginary quadratic

field satisfying certain hypotheses, we use the formula of Gross-Zagier and an explicit

Waldspurger-type formula of Gross to give a certain congruence between Heegner

points on GL2-type abelian varieties and toric periods on definite quaternion alge-

bras. Such a relation may be viewed as a congruence between the algebraic parts of

L′(f/K, 1) and L(g/K, 1), and are known as Jochnowitz congruences. This general-

izes earlier work of Bertolini-Darmon and Vatsal to all level raising congruences for

which such a sign change occurs.
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CHAPTER I

Introduction

1.1 Congruence phenomena

The theory of special values of L-functions suggests that certain values of analyt-

ically defined functions should be related to algebraic invariants of geometric Galois

representations. Let GQ = Gal(Q/Q) denote the absolute Galois group of Q. Let

ρ : GQ → GLn(Qp) be an irreducible p-adic Galois representation coming from the

étale cohomology of a smooth projective variety X/Q with good reduction at p. Let

I` denote the inertia group at a prime ` and Frob` a geometric Frobenius element.

Then the L-function of ρ, defined by

L(ρ, s) =
∏

` prime

(det(1− Frob``
−s)
∣∣
V I`

)−1,

converges in some right half plane. Then, adding in certain explicit factors, the

Langlands philosophy suggests that the completed L-function Λ(ρ, s) should satisfy

a functional equation (and thus analytic continuation) of the form

Λ(ρ, s) = ε(ρ)Λ(ρ∗, k − s)

for some integer k, where ρ∗ denotes the dual representation, ε(ρ) = ±1 is the global

root number of ρ.
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When ρ is self-dual, for example occurring in the middle-dimensional cohomology

of a Shimura variety X, one expects the central value (or more generally, the lead-

ing Taylor coefficient at the central point) to encode arithmetic information about

algebraic cycles on X.

Fixing a GQ-stable lattice in V , one can define the mod p representation

ρ : GQ → GL(Fp),

well-defined up to semisimplification. Suppose now that we have two such self-dual

representations ρ, ρ′ such that their mod p representations are equivalent. We say

that ρ and ρ′ are congruent modulo p if such an equivalence holds. In this case, the

Euler factors of their L-functions also satisfy a congruence modulo p for almost all

primes `. It is then reasonable to expect that the critical values of their L-functions

are congruent as well, possibly up to some explicit factors. Morally, one should be

able to normalize the values by a transcendental period Ω such that the algebraic

part , defined as

Lalg(ρ, k/2) =
L(ρ, k/2)

Ω
,

of their central critical values satisfy a congruence mod p. Such congruences were

suggested by Koblitz for classical modular forms in [22].

When the signs of the functional equations for ρ and ρ′ are both equal to +1, then

this construction suggests the existence of p-adic L-functions interpolating L-values

in certain families of representations. When the signs are both −1, one might instead

expect congruences between the derivatives of the L-functions. There has been some

progress in that direction by Howard [16, 17] on Gross-Zagier type theorems in Hida

families. When the signs of the functional equation differ the central L-value of the

one with sign −1 vanishes, while we expect the central L-value of the one with sign
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+1 to be typically nonzero. In this case, one might predict that the algebraic part

of the central L-value with sign +1 should satisfy a congruence with the algebraic

part of the central derivative of the one with sign −1. We refer to such congruences

as Jochnowitz congruences , as Jochnowitz [20] first predicted such phenomena

in general for classical modular forms.

1.2 The 2-dimensional case

Suppose that ρ = ρf is the 2-dimensional p-adic representation associated to a

weight 2 newform on Γ0(N). For simplicity of exposition, suppose that f has rational

Fourier coefficients. Then associated to f is an elliptic curve E = Ef defined over Q

and the rational p-adic Tate module V = Tp(E) ⊗Q is the geometric realization of

ρ. The Birch and Swinnerton-Dyer (BSD) conjecture predicts that

ords=1L(f, s) = rkZE(Q).

1.2.1 The Gross-Zagier formula

Suppose now that the imaginary quadratic field K = Q(
√
−D) isatisfies the

Heegner hypothesis for N , so all primes dividing N split in K. Then the L-

function of base change of ρ to K, denoted by L(f/K, s), satisfies a functional equa-

tion of the form

L(f/K, s)
.
= ε(f/K)L(f/K, 2− s),

where the dot above the equal sign means up to explicit positive constant.

The sign of the functional equation ε(f/K) = ±1 decomposes as a product of

local signs

ε(f/K) =
∏
ν

εν(f/K)
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indexed by the places of K. Explicitly, ε∞(f/K) = −1 and εν(f/K) = +1 for finite

ν prime to N . The local sign at a split prime agrees with its conjugate, so the

Heegner hypothesis forces the global sign to be −1.

The sign forces the central value L(f/K, 1) to vanish, and so the BSD conjecture

predicts that there should be a point of infinite order in E(K). On the other hand,

the Heegner hypothesis also implies that there is an ideal N of OK such that

OK/N ∼= Z/NZ.

Then

C

OK
→ C

N−1OK
(1.1)

defines a cyclic isogeny of degree N between elliptic curves with complex multipli-

cation by OK , hence defines a point P on the modular curve X0(N) parametrizing

such isogenies of generalized elliptic curves. The theory of complex multiplication

implies that (1.1) is actually defined over the Hilbert class field, H, of K. Then the

trace

PK =
∑

σ∈Gal(H/K)

P σ ∈ Div(X0(N))(K)

gives a K-rational point on E under the modular parametrization

X0(N)→ E.

One might hope that the constructed point, called the Heegner point associated

to K, is such a non-torsion point.

Theorem I.1. (Gross-Zagier)

Let 〈 , 〉NT denote the Néron-Tate height pairing on E. Then

L′(f/K, 1)
.
= 〈PK , PK〉NT .
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The Néron-Tate height pairing is non-degenerate on E(K) ⊗Q, and as a conse-

quence we see that

L′(f/K, 1) = 0 ⇔ PK is torsion in E(K).

1.2.2 Jochnowitz congruences in S2(Γ0(N))

On the other hand, suppose that f is congruent to another Hecke eigenform g of

weight 2 whose global sign is +1. Then, as above, one expects the central L-value

L(g/K, 1) to be typically nonzero. In this case, as explained above, one should expect

to be able to define an algebraic part of L(g/K, 1) whose reduction mod p should

satisfy a Jochnowitz congruence encoding “mod p” information about the image of

the Heegner point PK on E.

An Eisenstein congruence

Mazur [25] gave the first systematic construction of such congruences for modular

forms. For a weight 2 newform f of prime level N and a prime p dividing the

numerator of N−1
12

, earlier work of Mazur [24] implies that f satisfies a congruence

with the weight 2 Eisenstein series g of level N . Let χ be the odd quadratic character

corresponding to an imaginary quadratic field K of discriminant −D prime to N .

Then the central value of the Rankin L-function L(g, χ, 1) divided by an appropriate

period is essentially the square of the class number hK by a result of Waldspurger

[42].

When N is inert in K, Mazur uses modular symbols to define the algebraic part

of L(f, χ, 1) which satisfies a congruence with hK . As a consequence, Mazur proves

finiteness of the K-rational points on certain p-Eisenstein quotients of J0(N) and

their corresponding Tate-Shafarevich groups.

When N splits in K, the sign of the functional equation for L(f/K, 1) is −1. In
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particular, this forces

L(f/K, 1) = L(f, 1)L(f, χ, 1) = 0.

In this case, Mazur instead relates the p-divisibility of hK to the p-divisibility of the

Heegner point on the p-Eisenstein quotient of J0(N) associated to f .

In fact, Mazur’s work was one of the motivations for Jochnowitz to predict the

existence of such congruences in general.

The irreducible case

Let K = Q(
√
−D) be the imaginary quadratic field of discriminant −D. Suppose

that N satisfies the Heegner hypothesis relative to K, so all primes dividing N split

in K. Let q - ND be a prime which is inert in K.

Let E/Q be an elliptic curve and let

f = e2πiz +
∑
n≥2

an(f)e2πinz ∈ S2(Γ0(N))

be the normalized weight 2 newform associated to f by the work of Wiles [43],

Taylor-Wiles [38], and Breuil-Conrad-Diamond-Taylor [6].

Let p ≥ 5 be a prime for which the mod p representation

ρf,p : Gal(Q/Q)→ GL(E[p]) ∼= GL2(Fp)

is irreducible.

Suppose that f satisfies a congruence modulo p with a normalized Hecke eigenform

g = e2πiz +
∑
n≥2

an(g)e2πinz ∈ S2(Γ0(Nq))q-new

arising by raising the level of f in the sense of Ribet [28]. Let Fg = Q(an(g)) be the

number field generated by the Hecke eigenvalues of g. Then for some prime P of Fg
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lying over p, we have

a`(f) ≡ a`(g) (mod P), for all primes ` - Nq.

Then the local signs for g/K behave similarly to those of f/K except at q, where

εq(g/K) = −1. In particular, the global root number is +1. This is the simplest

such setting in which one can expect a Jochnowitz-type congruence to hold.

A special value formula of Gross [10] gives the central value of L(g/K, 1) in terms

of a toric period on the definite quaternion algebra B ramified at q and ∞. Let

Cl(B) denote the set of conjugacy classes of oriented Eichler orders of level N in B.

Since B is definite, the Jacquet-Langlands correspondence gives rise to a form

ψ : Cl(B)→ C

with the same Hecke eigenvalues as g. One can define the analogue of a Heegner

point

xK ∈ Z[Cl(B)]

on B, that we refer to as a definite Heegner point.

Theorem I.2. (Gross special value formula)

Extend ψ linearly to Z[Cl(B)]. Then, up to an appropriate normalization of ψ, one

has

L(g/K, 1)
.
= (ψ(xK))2 ∈ Fg.

When looking at the two special value formulae, one might then expect a relation-

ship between the p-divisibility of the Heegner point PK in E(K) and the P-divisibility

of ψ(xK). Instead, since the definite Heegner points depend on the local behavior of

B at q, our theorem relates the local p-divisibility of PK in E(Kq) to that of ψ(xK).

The main result of this thesis is the following:
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Theorem I.3.

Let PK ∈ E(K) denote the Heegner point associated to K. Let q be a level-raising

prime for f modulo p. If there exists a level-raised form g at q for which ψ(xK) is a

P-adic unit, then PK 6∈ pE(Kq).

Moreover, if either:

• q 6≡ 1 (mod p), or

• q ≡ 1 (mod p) and a Frobenius element Frobq of GQ does not act by a scalar

on E[p],

then the converse holds as well.

Remark I.4. The full strength of our theorem actually implies that one only needs

to check the reduction of ψ(xK) modulo P for a single level-raised eigenform. See

Section 5.3 for details.

A slightly weaker version of Theorem I.3 was first proven when q ≡ −1 (mod p)

independently by Bertolini-Darmon [4] and Vatsal [39]. The methods of Bertolini-

Darmon in their proof of the anticyclotomic Iwasawa main conjecture for elliptic

curves [5] essentially give a proof in the case that p - q2− 1, and was more explicitly

discussed in Zhang’s proof of Kolyvagin’s conjecture [44]. A related result in the case

p - q2 − 1 is discussed in the work of Gross-Parson [11], relating the indivisibility of

PK in E(Kq) instead to the p-Selmer rank of the abelian variety associated to g. The

primes q in the first two cases are called Kolyvagin and admissible, respectively. The

final case q ≡ 1 (mod p) has not been treated before, and so we refer to such primes

as residual. The residual case introduces a new difficulty in the failure of a certain

mod p multiplicity one theorem (see Prop. IV.4). Our methods closely follow the

somewhat simpler argument of Vatsal [39].
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Such congruences have been instrumental in studying the µ-invariants of anti-

cyclotomic p-adic L-functions, as in Vatsal [39] and Pollack-Weston [26]. More re-

cently, Jochnowitz congruences have been used in proving converses to the work of

Gross-Zagier [12] and Kolyvagin [23], e.g., Zhang [44] and Skinner-Zhang [37], and in

deducing the p-part of the BSD formula in the case of rank 1 from the work of Kato

[21] and Skinner-Urban [36] in rank 0. See Zhang [44] and Berti-Bertolini-Venerucci

[1] for such examples.



CHAPTER II

Modular forms on quaternion algebras

In this chapter we briefly recall the definition and classification of quaternion

algebras and their role in the study of classical modular forms.

2.1 Quaternion algebras

Definition II.1. A quaternion algebra B over a field F is a four-dimensional

central simple algebra over F . That is, the center Z = Z(B) is equal to F and B

has no nontrivial two-sided ideals.

Wedderburn’s theorem implies that every central simple algebra over a field F is

isomorphic to a matrix ring over a division algebra. In particular, by a dimension-

counting argument we can conclude that any quaternion algebra B/F must be iso-

morphic to either the 2× 2 matrix algebra M2(F ) or a division algebra over F with

center F .

Example II.2.

• Since there are no nontrivial division algebras over an algebraically closed field,

the only quaternion algebra over C is M2(C).

• Over R, as is well-known, the only two quaternion algebras are M2(R) and the

Hamiltonian quaternion algebra H := R⊕Ri⊕Rj⊕Rk with the multiplication

10
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determined by ij = −ji = k and i2 = j2 = −1.

• Let F be a nonarchimedean local field with uniformizer π and residue field of

order q. Then there are only 2 isomorphism classes of quaternion algebras: the

split quaternion algebra M2(F ) and the nonsplit quaternion algebra B given

by B = F (ζ) ⊕ F (ζ)x with center F and multiplication determined by the

identities x2 = π and xζ = −ζx, where ζ is a nontrivial trace zero element of

the unique unramified quadratic extension of F .

For a quaternion algebra B over a number field F , we can consider the quaternion

algebra B ⊗ Fν for each place ν of F . We say that B ramifies at ν if B ⊗F Fν is

nonsplit (i.e., not isomorphic to M2(Fν)) and split otherwise.

Class field theory implies that B ramifies at only finitely many places, and in

fact the isomorphism class of B is completely determined by the set of ramified

places. Moreover, B must be ramified at an even number of places. Define the

discriminant ∆ = ∆B to be the (formal) product of all places at which B ramifies,

so ∆ is a squarefree product of an even number of finite and/or real infinite places.

Given such a product ∆ there is a unique quaternion algebra B over F ramified at

exactly those places. We will denote this quaternion algebra by B(∆).

Define the absolute discriminant D = DB of B to be the product of all finite

primes dividing ∆. For a quaternion algebra B/Q, we say that B is definite if

B is ramified at ∞ and is indefinite otherwise. In particular, B is definite or

indefinite depending on whether D is divisible by an odd or even number of primes,

respectively.

Nonsplit quaternion algebras may become split after passing to an extension of

the base field. The following theorems allow us to recognize precisely when this

happens in the case of a quadratic extension.
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Theorem II.3. (Albert-Brauer-Hasse-Noether)

Let F be a number field and B a quaternion algebra over F . Suppose K is a quadratic

extension of F . There is an embedding of K into F if and only if all primes ramified

in B are inert or ramified in K.

Proposition II.4. Let F,B, and K be as in the above theorem. K splits B, i.e.,

B ⊗F K ∼= M2(K), if and only if K embeds in B.

2.1.1 Orders and class groups

Similar to the ring of integers inside of a number field, a quaternion algebra also

admits certain integral structures.

Definition II.5. Let F be a number field or nonarchimedean local field. An order

O of a quaternion algebra B/F is an OF -submodule of B such that O is a subring

of B and O ⊗Q = B.

A maximal order is an order that is not properly contained in any other order.

In general, there are many maximal orders for a given quaternion algebra.

For a simple example, the subring M2(Z) of the split quaternion algebra M2(Q)

over Q is a maximal order. A key example that will be used later in this thesis is

the following:

Example II.6. The endomorphism ring of a supersingular elliptic curve E/Fp is

a maximal order in a quaternion algebra over Q. More specifically, End0(E) :=

End(E)⊗Q is the (unique) definite quaternion algebra ramified at p and ∞.

Definition II.7. An Eichler order of B is an intersection of any two maximal

orders. The level of an Eichler order is its index in either of the maximal orders

containing it.
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Example II.8. In the split quaternion algebra M2(Q), the order
a b

c d

 ∈M2(Z)

∣∣∣∣
a b

c d

 ≡
∗ ∗

0 ∗

 (mod N)


is an Eichler order of level N . It is, in fact, the unique Eichler order of level N up

to conjugation.

Definition II.9. For any order O of B, let I and J be two right fractional ideals

of O. We say that I and J are in the same right ideal class of O if there exists

an element α ∈ B× with αI = J . The set of right ideal classes of O is denoted by

Cl(O).

Lemma II.10. [41, III.5]

The set of right ideal classes of O is naturally in bijection with

B×\B×(Af )/Ô×. (2.1)

When B is definite and R is an Eichler order of level N with N prime to ∆, the

set Cl(R) admits an alternate description.

Definition II.11. Let B,R, and N be as above. An orientation on R is a choice

of surjective homomorphism

φ : R→ Z/NZ.

The pair (R, φ) is referred to as an oriented Eichler order .

Remark II.12. We note that an orientation on R can equivalently be described as a

collection of local orientations

φ` : R⊗ Z` → Z/`v`(N)Z, ` | N. (2.2)

In this setting we may also describe Cl(R) in terms of the structure of oriented

Eichler orders.
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Lemma II.13. Cl(R) is in natural bijection with the set of conjugacy classes of

oriented Eichler orders of level N .

Proof. The bijection is obtained via the map

B×(Af )→ {conjugacy classes of oriented Eichler orders of level N}

b 7→ (bR̂×b−1 ∩B),

noting that the orientation on R naturally induces an orientation on bR̂×b−1 ∩B via

the local orientations described above, cf. [2, Section 1].

As a consequence of the above lemma, the set Cl(R) does not depend on the choice

of Eichler order R, but rather only on B and N . When the value of N is clear, we

will take the convention of writing Cl(B) rather than Cl(R).

2.2 Modular forms on GL2

We briefly recall the fundamentals of classical modular forms and modular curves.

Readers already familiar with the theory should feel free to skip ahead to the next

section. Due to the variety of comprehensive resources on the topic, e.g., [9], any

proofs will be short and/or omitted.

Let H denote the upper half-plane, and let SL2(Z) denote the group of 2 × 2

matrices with integer entries and determinant 1. We note that SL2(Z) acts on H by

fractional linear transformations.

Definition II.14. A subgroup Γ ⊆ SL2(Z) is called a congruence subgroup if it

contains Γ(N) for some positive integer N , where

Γ(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣
a b

c d

 ≡
1 0

0 1

 (mod N)

 .

The subgroup Γ(N) is called the principal congruence subgroup of level N .
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We will generally only concern ourselves with specific congruence subgroups. Con-

sider the families of congruence subgroups

Γ0(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣
a b

c d

 ≡
∗ ∗

0 ∗

 (mod N)


and

Γ1(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣
a b

c d

 ≡
1 ∗

0 1

 (mod N)


Definition II.15. For any integer k and γ ∈ SL2(Z), the weight k operator [γ]k

acts on a complex valued function f : H → C via

f |[γ]k = (cz + d)−kf(γz),

where γ =

a b

c d

.

Throughout this thesis, we will be interested in certain functions on the upper

half-plane that are invariant under this operator for a fixed k and all γ ∈ Γ, for some

congruence subgroup Γ. In particular, we will only consider congruence subgroups

of the form Γ0(N) for certain N , so from this point onwards we will always assume

Γ denotes such a congruence subgroup unless otherwise stated.

Note that

1 1

0 1

 ∈ Γ and the weight k operator


1 1

0 1



k

sends f(z) to

f(z + 1). Hence every function f : H → C invariant under the action the action of

[γ]k for all γ ∈ Γ admits a Fourier expansion of the form

f(q) =
∞∑

n=−∞

an(f)qn, q = e2πiz. (2.3)

We note there is similarly an action of SL2(Z) on P1(Q), again via fractional linear

transformations.
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Definition II.16. A cusp for Γ is an orbit Γs for the action of Γ on s ∈ P1(Q).

We will often denote a cusp by a distinguished element of the orbit.

Example II.17. The only cusp for the action of Γ = SL2(Z) on P1(Q) is ∞.

Since every congruence subgroup is of finite index in SL2(Z), we see from the

example above that there are always finitely many cusps.

If s is a cusp other than ∞, let γ ∈ SL2(Z) such that γ∞ = s. Then f |[γ]k

also admits a Fourier expansion similar to (2.3). We refer to this q-expansion as the

Fourier expansion at the cusp s.

We say that f is holomorphic at a cusp s if the Fourier coefficients of the expansion

at s are zero for all n < 0. In particular, f is holomorphic at s if the Fourier expansion

converges at q = 0.

Definition II.18. For any congruence subgroup Γ, we define the space of modular

forms of level Γ and weight k, denotedMk(Γ), by the space of functions f : H → C

satisfying:

• f is holomorphic on H,

• f |[γ]k = f for all γ ∈ Γ,

• f is holomorphic at all cusps.

The space of cusp forms of level Γ and weight k, denoted Sk(Γ), is the subspace

ofMk(Γ) consisting of forms that vanish at the cusp, i.e., a0(f) = 0. A cusp form is

normalized if a1(f) = 1.

2.2.1 Hecke algebra and eigenforms

Spaces of modular forms of a fixed weight and level come naturally equipped with

the action of a particular algebra of operators. Let Γ denote a congruence subgroup

of the form Γ0(N).
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Let p be a prime not dividing N . Let αp denote the element

1 0

0 p

. The double

coset ΓαpΓ decomposes as a disjoint union

ΓαΓ =
⊔
i

Γβi

of right cosets. Then we can define the action of the pth Hecke operator , Tp on

Mk(Γ)

Tpf =
∑
i

f [βi]k.

For any prime power pr we may define the Hecke operator Tpr inductively by

Tprf = TpTpr−1 − pk−1〈p〉Tpr−2

with the convention that T1 = 1 and 〈p〉 = 0 if p | N .

By explicit computation, one can check that the Hecke operators and diamond

operators all commute with one another. As a consequence, we may define a Hecke

operator Tn for any positive integer n via

Tn =
∏
pr||N

Tpr .

Definition II.19. The Hecke algebra T = T(N) of level N is the Z-algebra

generated by all of the Tn.

There is an additional operator on Sk(Γ). Let wN =

 0 −1

N 0

. The double

coset decomposition

ΓwNΓ =
⊔
i

Γwi

gives rise to the Atkin-Lehner operator , denoted WN . Explicitly,

WNf = N1−k/2
∑
i

f [wi]k.
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It can be checked that W 2
N = (−1)k, and so WN is an involution when k is even. WN

commutes with the Hecke operators Tn for n with (n,N) = 1, but not with all Hecke

operators in general.

We say that a cusp form f ∈ Sk(Γ0(N)) is an eigenform if it is an eigenfunction

for the action of all Hecke operators.

We define an inner product on Sk(Γ0(N)) by

〈f, g〉 =

∫
H\Γ0(N)

f(z)g(z)
dxdy

yk−2
, (2.4)

where z = x+ iy.

The Petersson inner product of (2.4) is self-adjoint under the action of the

Hecke operators, and so Sk(Γ0(N)) has a basis of eigenforms.

Fix a positive integer N . For any positive integer M | N such that (N,N/M) = 1

and d |M , there is a degeneracy map

ιd,M,N : Sk(Γ0(N/M))→ Sk(Γ0(N))

given by

ιd,M,N(f(z)) = f(dz).

We say that a cusp form in the space spanned by the image of all such degeneracy

maps is old at M , and denote the space of such forms by Sk(Γ0(N))M−old. The or-

thogonal complement of the forms that are old at M under the Petersson inner prod-

uct (2.4) is the space of forms that are new at M and denote it by Sk(Γ0(N))M−new.

Both subspaces are preserved by the action of T.

Of particular interest is the case when M = N . In this case, we drop the M

from the notation and simply refer to the subspaces as the old and new subspaces of

Sk(Γ0(N)).
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We say that a cusp form f is a newform if it is an eigenform for all Hecke

operators and new at all divisors of N .

For any normalized cusp form f ∈ Sk(Γ1(N)), its L-function , denoted L(f, s) is

the complex-valued function defined by the Dirichlet series

L(f, s) =
∑
n=1

an(f)

ns
. (2.5)

It is known (cf. [9, Section 5]) that the Fourier coefficients of f satisfy

an(f) = O(nk/2) (2.6)

and so L(f, s) converges absolutely and uniformly in the right half-plane <(s) >

k/2 + 1.

We define the completed L-function of f to be (essentially) the Mellin transform

of f . Explicitly, we define it to be

Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s). (2.7)

The completed L-function satisfies a simple functional equation.

Theorem II.20. [9, Section 5]

Let k be a positive even integer. Suppose f ∈ Sk(Γ0(N)) is an eigenform for the

Atkin-Lehner involution WN with eigenvalue ε. Let ε(f) = ε · ik. Then Λ(f, s)

satisfies the functional equation

Λ(f, s) = ε(f)Λ(f, k − s). (2.8)

Since the Atkin-Lehner involution WN commutes with the Hecke operators T`

for ` prime to N , we can see that an eigenform for all of the Hecke operators is

automatically an eigenform for WN . In particular, the L-function of any eigenform

satisfies a functional equation of the form (2.8).
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We will study the sign ε(f) of the functional equation more carefully in Chapter

III.

2.2.2 Modular curves and the Eichler-Shimura construction

The connection between modular forms and elliptic curves arises from the former’s

connection to certain moduli spaces of elliptic curves. Let Γ = Γ0(N), and let

H∗ = H ∪P1(Q).

Definition II.21. The open modular curve of level Γ is

YΓ := Γ\H.

It is a smooth Riemann surface and admits a canonical compactification

XΓ := Γ\H∗,

called the modular curve of level Γ. XΓ is a smooth, compact Riemann surface

and admits an algebraic structure, hence is an algebraic curve over C.

For Γ = Γ(N), Γ1(N), or Γ0(N), respectively, we will denote the (compactified)

modular curve of level Γ by X(N), X1(N), or X0(N), respectively.

An enhanced elliptic curve of level Γ0(N) defined over a field F is an elliptic

curve E/F together with a cyclic N -isogeny

E → E ′ (2.9)

defined over F . The open modular curve Y0(N) is a coarse moduli space for enhanced

elliptic curves of level Γ0(N). Its compactification X0(N) similarly admits a moduli

interpretation as a moduli space of generalized enhanced elliptic curves. Using this

moduli interpretation, one can see thatX0(N) is defined over Q and admits a smooth,

proper model over Z
[

1
N

]
.
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X0(N) admits an action of the Hecke algebra T. We could equivalently describe

a point (2.9) on the open curve Y0(N) by the pair

(E,C) (2.10)

where C = ker(E → E ′). Then the action of the Hecke operator Tp is given by

Tp(E,C) =
∑
D

(E/C, (C +D)/D) (2.11)

where the sum is indexed over cyclic subgroups D of E[p] such that C ∩D = 0. One

can extend the action the cusps of X0(N) in order to give a correspondence

Tp : E → Div(E). (2.12)

This correspondence in turn gives rise to an endomorphism of the Jacobian, J0(N),

of X0(N) via Albanese or Picard functoriality. The choice differs by the action of an

Atkin-Lehner involution. Since we will primarily concern ourselves with newforms,

we note that the choice only differs by a sign, so we take the convention of Albanese

functoriality.

Let f be a weight 2 newform in S2(Γ0(N)). We define the prime ideal associated

to f to be

If = ker(T→ C) (2.13)

where T→ C is the map sending a Hecke operator Tp to its eigenvalue ap(f).

The abelian variety associated to f is

Af = J0(N)/IfJ0(N) (2.14)

where

IfJ0(N) =
∑
T

TJ0(N)
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for all T ∈ If . We say that Af is the optimal quotient of J0(N) attached to f via

Eichler-Shimura construction.

It is known that Af is an abelian variety defined over Q of dimension

[Q(an(f)) : Q]

with an embedding T/If ↪→ End(Af ). In particular, when f has rational coefficients

Af is an elliptic curve over Q.

We say that an abelian variety defined over Q is modular if it is isogenous to

some Af . By work of Wiles [43], Taylor-Wiles [38], and Breuil-Conrad-Diamond-

Taylor [6] it is now known that all abelian varieties of GL2-type are modular. In

particular, all elliptic curves over Q have an associated newform f with rational

coefficients such that E is isogenous to Af . Let cond(E) denote the conductor of E.

For a prime p, we define

ap =



p+ 1−#E(Fp) if E has good reduction at p

1 if E has split multiplicative reduction at p

−1 if E has nonsplit multiplicative reduction at p

0 if E has additive reduction at p

.

As a corollary, we have

L(E, s) = L(f, s), (2.15)

where

L(E, s) =
∏

p|cond(E)

(1− app−s)−1
∏

p-cond(E)

(1− app−s + p1−2s), (2.16)

It follows from Theorem II.20 that we also have analytic continuation and a func-

tional equation of L(E, s).
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2.2.3 Galois representations associated to modular forms

Let f ∈ S2(Γ0(N)) be a normalized eigenform. Then a construction of Shimura

[35] gives rise to a compatible family of semisimple 2-dimensional p-adic representa-

tions

ρf,p : GQ → GL2(Qp) (2.17)

such that

• ρf,p is unramified away from Np,

• tr(ρf,p(Frob`)) = a`(f) for primes ` - Np,

• det(ρf,p) = χp, where χp is the p-adic cyclotomic character.

Let Tp(J0(N)) denote the p-adic Tate module of J0(N). Let Ff = Q(an(f)) be

the number field generated by the Fourier coefficients of f and let p be a prime of

Ff above p. Let Ff,p denote the corresponding p-adic completion.

The action of T on J0(N) gives rise to an action on Tp(J0(N)). Then we define

ρf,p to be the semisimplification of

{x ∈ Tp(J0(N))⊗ Ff,p |T`x = a`(f)x for all primes ` - Np}.

We note that the image of ρf,p actually lies in GL2(Ff,p) by construction. Let V be

the underlying space of the representation ρ = ρf,p. By choosing a GQ-stable lattice

inside V it is also possible to define a residual representation

ρf,p : GQ → GL2(Fp).

We may define the L-function associated to ρ by

L(ρ, s) =
∏
p

det(1− ρ(Frobp)p
−s ∣∣

V Ip
)
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where Ip denotes the inertia group at p. It can be checked that if f has rational

coefficients, so E = Af is an elliptic curve over Q, that

L(ρf,p, s) = L(E, s) = L(f, s).

2.3 Modular forms on definite quaternion algebras

Let A denote the ring of adeles over Q and let Af be the ring of finite adeles.

Let B be a definite quaternion algebra B/Q of absolute discriminant D. We can

define an algebraic group, also denoted by B×, over Q defined by its functor of points

as follows: given a Q-algebra A, B×(A) = (B ⊗Q A)×.

For any integer S, let A
(S)
f :=

∏′
`-S Q` be the ring of prime-to-S adeles. For any

prime ` - D, we have B ⊗ Z` ' M2(Q`). Let O be a maximal order in B. Then, up

to conjugation, we have O ⊗ Z` = M2(Z`) for each ` - D. Fix isomorphisms

ι` : B ⊗ Z` = M2(Q`)

such that ι`(O ⊗ Z`) = M2(Z`) for each such `. We will, in general, omit ι` and

simply use this fixed identification throughout.

For any compact open subgroup K ⊂ Ô×, we can consider the double coset space

B×\B×(Af )/K. (2.18)

We will often work with compact open subgroups of the form K =
∏

`K`. For any

positive integers N with (N,D) = 1, one can consider the following compact open

subgroups:

K0(N) =

(x`) ∈ Ô× |x` ≡

∗ ∗
0 ∗

 (mod N) for all ` | N

 ,

K1(N) =

(x`) ∈ Ô× |x` ≡

∗ ∗
0 1

 (mod N) for all ` | N

 .

(2.19)
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These are the quaternionic analogues of the congruence subgroups Γ0(N) and Γ1(N),

respectively.

When B is definite and K = K0(N), the double coset space (2.18), sometimes

referred to as the Gross curve of level N in the literature, is the analogue of a

modular curve in the classical modular form setting. However, unlike the classical

case, the following lemma implies that this space is finite.

Remark II.22. Some authors use the term Gross curve to refer to a certain disjoint

union X of genus 0 curves indexed by the elements of XK . Then we have the

identification Pic(X) ∼= Z[XK ].

Lemma II.23 ([15, Thm 2.8]).

For any compact open subgroup K, B×\B×(Af )/K is finite.

If R is the order of O determined by the same local congruence conditions as

K0(N) in (2.19), then R is an Eichler order of level N in B with R̂× = K0(N). Then

the Gross curve of level N is precisely the class group Cl(B) by Lemma II.10.

For a compact open subgroup K of B, we can now define quaternionic modular

forms of level K as certain functions on XK . A modular form of weight 2

and level K on B is a function

φ : B×\B×(Af )/K → C.

The C-vector space of such functions is denoted by MB
2 (K). The space of cusp

forms of weight 2 and level K on B is the subspace ofMB
2 (K) that is orthogonal

to the constant functions, and is denoted SB2 (K).

The space SB2 (K0(N)) also has an inner product on it, that we again call the

Petersson inner product. Let R be an Eichler order of level N in B, and Cl(B) =
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Cl(R) the set of conjugacy classes of Eichler orders of level N , so

SB2 (K0(N)) ↪→ Hom(Cl(B),C).

Pick representatives {xi} of B̂× for the elements of Cl(B). Let

Γi =
xiR̂

×x−1
i ∩B×

{±1}
(2.20)

and set wi = #Γi. Then for any two forms g1, g2 ∈ SB2 (K0(N)), we define the

Petersson inner product on B by

〈g1, g2〉 =
∑
i

wig1(xi)g2(xi). (2.21)

2.4 The Jacquet-Langlands correspondence

As in the case of classical modular forms, we can define the action of Hecke

operators on quaternionic modular forms. Let K be an open compact subgroup of

the form K0(N).

Let πq denote the element of B×(Af ) that is the identity at all places except at

q, where it is

q 0

0 1

. Let zq ∈ B×(Af ) be the identity at all places except at q,

where it is

q 0

0 q

.

We first define the operators Tq for primes q - D. The double coset space KπqK

breaks up as a finite disjoint union of left cosets

KπqK =
⊔
i

gi,qK.

Then we can define the action of Tq on MB
2 (K) via

(Tqf)(x) =
∑
i

f(xgi,q).
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The Hecke operators Tq for q | D are defined similarly, replacing πq with an

element of reduced norm q in B ⊗Qq.

The Z-algebra generated by the Hecke operators Tq is the Hecke algebra of level

K for B, denoted TB = TB(N). We can then define eigenforms in the quaternionic

setting to be those that are eigenfunctions for all of the Hecke operators.

Theorem II.24. (Jacquet-Langlands correspondence, [2, Theorem 1.2])

Let B be a definite quaternion algebra over Q of absolute discriminant D and N a

positive integer with (D,N) = 1. Then there is an injective map of Hecke modules

SB2 (K0(N)) ↪→ S2(Γ0(DN),C)

whose image is the subspace consisting of forms which are new at all primes dividing

D.

Let ψ ∈ SB2 (K0(N)), and let F = Fψ denote the number field generated by all

of the Hecke eigenvalues of ψ. Consider the space SB2 (K0(N), F ) of quaternionic

modular forms whose image lies in F×. The subspace

SB2 (K0(N), F )ψ ⊂ SB2 (K0(N), F )

on which the Hecke operators act via the eigenvalues of ψ is preserved by the action

of the Hecke operators. This gives an F -structure on this subspace, and so there must

be a nontrivial element of SB2 (K0(N), F )ψ. This gives us the following corollary to

the above theorem:

Corollary II.25. Let f be a weight 2 eigenform of level Γ0(N) and q a prime dividing

N such that f is new at q. Let Ff be the number field generated by all of the Hecke

eigenvalues of f . Then there is an eigenform ψ ∈ SB(q∞)
2 (K0(N/q), Ff ) with the

same Hecke eigenvalues as f .
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Due to the lack of a Fourier expansion in the quaternionic setting, there is no

canonical normalization for the eigenform ψ. Instead, ψ is well-defined up to scaling

by an element of F×f . We will take a fixed normalization later, but we hold off on

this for now.



CHAPTER III

Heegner points and special value formulae

We briefly recall certain special points on the modular and Gross curves from

the previous chapter, and their role in special value formulae for the L-functions of

weight 2 modular forms.

3.1 Heegner points on X0(N)

The moduli interpretation of the open modular curve Y0(N) allows us to construct

points defined over certain extensions of imaginary quadratic fields.

Definition III.1. A Heegner point on X0(N) is a point corresponding, via the

moduli interpretation, to an isogeny between elliptic curves with complex multipli-

cation by the same order in an imaginary quadratic field.

Let K be an imaginary quadratic field of discriminant −D with ring of integers

OK , and let Oc ⊂ OK be the order of conductor c, with c prime to N . Then Heegner

points corresponding to elliptic curves with complex multiplication by Oc exist if and

only if N satisfies the so-called Heegner hypothesis relative to K. We say that

the Heegner point is of conductor c if it corresponds to an isogeny between elliptic

curves with complex multiplication by Oc.

Definition III.2. We say that N satisfies the Heegner hypothesis relative to K

29



30

if every prime dividing N splits or is ramified in K, and every prime p with p2 | N

splits in K.

In particular, N satisfies the Heegner hypothesis relative to K if and only if there

exists an ideal N of OK with OK/N ∼= Z/NZ.

Fix such an N and let Nc = N∩Oc. Since N is prime to the conductor of Oc, we

have Oc/Nc
∼= Z/NZ. Then, for any projective Oc-module a ⊂ K, the cyclic isogeny

C/a→ C/N−1a (3.1)

of complex elliptic curves determines a C-point on X0(N). Since End(C/a) =

End(C/N−1a) = Oc, this is in fact a Heegner point. The isomorphism class of

the Heegner point depends only on the class of a in Pic(Oc), so for a fixed ideal

N there are precisely #Pic(Oc) such points. The theory of complex multiplication

implies that these points are actually defined over certain abelian extensions of K.

Let Ôc = Oc ⊗ Ẑ denote the profinite completion of Oc. Then the ring class

field of conductor c, denoted Kc is the abelian extension of K associated to the

subgroup K×Ô×c C× ⊂ A×K by class field theory. We have a canonical isomorphism

Gal(Kc/K) ∼= Pic(Oc). (3.2)

Theorem III.3. (Main theorem of complex multiplication)

Let a, b be projective Oc-submodules of K. Let σb ∈ Gal(Kc/K) denote the cor-

responding automorphism of Kc under the isomorphism (3.2). Then the following

hold:

1. Kc = K(j(C/a)).

2. Any elliptic curve with complex multiplication by Oc is of the form C/a for some

projective Oc-submodule a ⊂ K.
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3. σb(j(C/a)) = j(C/b−1a).

Since the function field of X0(N) is generated by j(z) and j(Nz), we obtain the

following corollary.

Corollary III.4. All Heegner points of conductor c are of the form (3.1) and are

defined over Kc.

Throughout this thesis, we will primarily be concerned with Heegner points of

conductor 1. Let H be the Hilbert class field of K. Let

PK =
∑

σ∈Gal(H/K)

P σ ∈ Div(X0(N))(K) (3.3)

for any Heegner point P of conductor 1. We will refer to PK as the Heegner point

for K.

Remark III.5. It should be noted that PK is well-defined as long as the ideal N

is fixed. Changing N has the effect of possibly changing PK by the action of an

Atkin-Lehner involution on J0(N). The image of PK on a modular abelian variety

associated to a weight 2 newform of level N is thus well-defined up to ±1. Since this

is the case of interest to us, and the sign is unimportant in our situation, we ignore

the subtlety here and fix an ideal N once and for all.

We will also use PK to denote the image of the Heegner point on J0(N) under the

embedding

X0(N)→ J0(N)

x 7→ (x)− (∞).

3.2 Heegner points on definite quaternion algebras

Definite quaternion algebras, like their indefinite counterpart, also admit certain

special points, following [2].
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Let B be a definite quaternion algebra and N a positive integer prime to the

discriminant of B. Let R ⊂ B be an oriented Eichler order of level N .

Let K be an imaginary quadratic field of discriminant prime to N and ∆(B)

such that all primes dividing ∆(B) are nonsplit in K. Then we have an embedding

K ↪→ B by Theorem II.3.

Definition III.6. Let Oc denote the order of OK of conductor c. We say that an

embedding f : K ↪→ B is optimal relative to Oc if

f(K) ∩R = f(Oc).

If K satisfies the Heegner hypothesis (Definition III.2), then OK has a surjection

OK � Z/NZ that we will also refer to as an orientation on OK . Our choice of ideal

N of the previous section thus fixes an orientation on OK , and thus on all orders Oc

of K.

An optimal embedding f : K → B relative to Oc is said to be oriented if the

orientation on Oc induces the fixed orientation on R. That is, if the diagram

K B

Oc R

Z/NZ

(3.4)

commutes, where the bottom two arrows are the orientations on Oc and R.

Definition III.7. A definite Heegner point on B of conductor c is an optimal

oriented embedding relative to Oc for some oriented Eichler order R. We put an

equivalence relation on the set of definite Heegner points on B by identifying two

optimal oriented embeddings if they differ by conjugation by an element of B×.
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Remark III.8. Heegner points on definite quaternion algebras are known by several

names in the literature, including Gross points and special points.

Let Hc denote the set of Heegner points on B of conductor c. Then it is known

[2, Lemma 2.5] that Hc is a principal homogeneous space for Pic(Oc), noting that

we have fixed our orientation on K. Hence #Hc = #Pic(Oc), and so there is an

abstract (non-canonical) bijection between Heegner points of conductor c on X0(N)

and on definite quaternion algebras.

As in the case of Heegner points on X0(N), given a Heegner point x of conductor

1 on B we can define the definite Heegner point of K by

xK =
∑

σ∈Gal(H/K)

xσ ∈ Z[H] (3.5)

where the action of Gal(H/K) is given by the action of Pic(OK) ∼= Gal(H/K) when

viewing H1 as a principal homogeneous space.

There is also a degeneracy map

Hc → Cl(B) (3.6)

sending a Heegner point to the conjugacy class of the oriented Eichler order defining

it. The size of the fiber in H over a class in Cl(B) under (3.6) is precisely #Γ, where

Γ is as in (2.20).

3.3 The central sign of L(f/K, s)

Before we can give special value formulae for the L-functions associated to a weight

2 eigenform f ∈ S2(Γ0(N)), we determine the sign ε(f) of the functional equation

(2.8) in terms of N and K.

The sign ε(f) decomposes as a product of local signs

ε(f) =
∏
p≤∞

εp(f) (3.7)
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over all places p.

The local sign at ∞ is always -1 [32, Prop. 1], and the sign εp(f) = ±1 for p is

determined by the local behavior of ρf at p. In particular, if ρf is unramified at p

then εp(f) = 1. See [32] for explicit computations of the signs when f has rational

coefficients.

We may also consider the base change L-function L(f/K, s), defined by

L(f/K, s) = L(ρf |GK , s), (3.8)

where GK = Gal(K/K) is considered as a subgroup of GQ.

If f has rational coefficients, so E = Af is an elliptic curve, then L(f/K, s) =

L(E/K, s) is nothing more than the Hasse-Weil L-function of the base change of E

to K. In particular, we have a factorization

L(E/K, s) = L(E, s)L(EK , s), (3.9)

where EK denotes the quadratic twist of E by K.

A careful study of Rankin L-series gives the following, cf. [12, Ch. IV].

Theorem III.9. [19, Thm. 19.14]

Assume (N,D) = 1. Let

Λ(f/K, s) = N2D2(2π)−2sΓ(s)2L(f/K, s).

Then Λ(f/K, s) converges absolutely in a right half plane and admits an analytic

continuation to all of C. In particular, it satisfies the functional equation

Λ(f/K, s) = ε(f/K)Λ(f/K, 2− s), (3.10)

where ε(f/K) = ±1.
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The sign ε(f/K) of (3.10) similarly decomposes as a product of local signs

ε(f/K) =
∏
ν≤∞

εν(f/K),

where the product is taken over the places of K. We again have ε∞(f/K) = −1, and

the classification of local signs at finite primes is similar to the above. In particular,

εν(f/K) = 1 for all finite ν - N .

Proposition III.10. Suppose that either:

1. all primes dividing N split in K, or

2. N = Mq, where all primes dividing M split in K and q is inert in K.

Then ε(f/K) = −1 or ε(f/K) = 1, respectively.

Proof. (Sketch)

Let p | N be a prime that splits in K. Write (p) = pp in K. Then the local behavior

of ρf |GK at p and p is the same, as ρf is defined over Q and the corresponding

decomposition groups are conjugate in GQ. Hence

εp(f/K) = εp(f/K).

If q ‖ N , then the abelian variety Af associated to f has toric reduction at q over

Q. If q is inert in K, then the reduction at q becomes split over K, which implies

that εq(f/K) = −1, cf. [32, Prop. 3].

3.4 Special value formulae for L(f/K, s)

Let f be a weight 2 eigenform on Γ0(N) and K = Q(
√
−D) an imaginary

quadratic field of discriminant −D. Write N = N+N−, where N+ is divisible by

the primes which split in K and N− is split by the primes which are inert in K.

Assume N− is squarefree. Then the general theory of special values of L-functions
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suggests that the leading term of the Taylor expansion of L(f/K, s) at s = 1 should

be related to the arithmetic of certain level N+ structures in the quaternion algebra

ramified at N− (and possibly ∞, depending on whether N− is divisible by an even

or odd number of primes).

The cases we will be primarily interested in are when N satisfies either of the

conditions of Proposition III.10.

3.4.1 The Gross-Zagier theorem

Suppose all primes dividing N split in K. Then N satisfies the Heegner hypothesis

relative to K and, using our notation above, we have N− = 1. Since the sign of the

functional equation for L(f/K, s) is −1, we have

L(f/K, 1) = −L(f/K, 1). (3.11)

In particular the central L-value L(f/K, 1) must vanish. By the philosophy above

one expects to understand the central derivative L′(f/K, 1) in terms of level N

structure on the split quaternion algebra GL2. This is precisely what the results of

Gross-Zagier [12] provide.

Let Af be the abelian variety associated to f . There is a canonical height pairing

〈 , 〉NT : E(K)× E(K)→ C (3.12)

called the canonical Néron-Tate height pairing . On the restriction to the

diagonal, the pairing satisfies

〈P, P 〉NT = 0 ⇔ P is torsion in E(K).

Then the main theorem of [12] relates the canonical Néron-Tate height of the image

of the Heegner point (3.3) on Af under the modular parametrization to the central

derivative L′(f/K, 1).
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Theorem III.11. (Gross-Zagier formula)

Let f be a weight 2 newform on Γ0(N). Let K = Q(
√
−D) be an imaginary quadratic

field of discriminant −D. Suppose that all primes dividing N split in K. Then

L′(f/K, 1) =
8π2〈f, f〉Γ0(N)

hKu2
K

√
D
〈PK , PK〉NT

where 〈 , 〉Γ0(N) denotes the Petersson inner product on X0(N), hK = #Cl(K), and

uK = 1
2
#O×K.

Corollary III.12. Let f,N, and K be as above. Then

L′(f/K, 1) 6= 0 ⇔ PK is non-torsion in E(K).

3.4.2 The Gross formula

We now let g be an eigenform of level N satisfying the second condition of Propo-

sition III.10. We write N = Mq, where all primes dividing M split in K and q is

inert in K. In this case, the sign of the functional equation is +1, and so expects the

central L-value L(g/K, 1) to be related to some quantity on the quaternion algebra

B = B(q∞) ramified at q and ∞.

The following theorem, due originally to Gross when N = 1 [10] and generalized to

arbitray N by Daghigh [7], gives a precise formula for L(g/K, 1). It may be viewed as

an explicit Waldspurger formula [42] for the associated automorphic representation.

Theorem III.13. (Gross formula)

Let xK be the image of the definite Heegner point (3.5) in Cl(B) under the map (3.6).

Let ψ : Cl(B)→ C be the Jacquet-Langlands transfer of g to B (cf. Corollary II.25).

Then

L(g/K, 1) =
(ψ(xK))2

u2
K

√
D

8π2〈g , g〉Γ0(N)

〈ψ , ψ〉B
,

where 〈 , 〉Γ0(N) and 〈 , 〉B denote the Petersson inner products on X0(N) and B,

respectively.
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We define the algebraic part of L(g/K, 1) to be

Lalg(g/K, 1) =
(ψ(xK))2

u2
K

√
D

.

Note that Lalg(g/K, 1) is nonzero if and only if L(g/K, 1) is.

Lalg(g/K, 1) is only defined up to a nonzero scalar, as ψ is. Since we will be

interested in the reduction of Lalg(g/K, 1) at a prime P of Q, we will take a fixed

normalization; we normalize ψ to be P-adically integral and containing a P-adic

unit. As an immediate consequence of our choice, we have the following:

Lemma III.14. Suppose P ∩ Z = pZ and p - 6D. Then Lalg(g/K, 1) ≡ 0 (mod P)

if and only if ψ(xK) ≡ 0 (mod P).

Remark III.15. The choice of transcendental period used to define Lalg(g/K, 1) may

seem a bit unusual in light of the availability of Hida’s canonical period Ωcan
g [14].

Our choice differs from Ωcan
g by the ratio of 〈ψ, ψ〉B and a congruence number for

g on Γ0(N). This choice is more natural from the point of view of Iwasawa the-

ory, as our definition of Lalg(g/K, 1) resembles the theta elements used to define an

anticyclotomic p-adic L-function for g, cf. [39, Section 3].



CHAPTER IV

Congruences and multiplicity one theorems

We briefly review some results of Mazur and Ribet regarding congruences between

eigenforms and mod p multiplicity one results.

4.1 Reduction of CM points on X0(N)

We briefly recall the behavior of the reduction of the Heegner points on X0(N).

Suppose K is an imaginary quadratic field satisfying the Heegner hypothesis relative

to N , so all primes dividing N split in K. Let q - N be an inert prime in K. Recall

that we have fixed an ideal N ⊂ OK of index N with cyclic quotient.

The following result of Ribet will allow us to view these reduced points in terms

of definite Heegner points, following [39, Section 6.8]. We omit the proof, though we

will recall one direction of the bijection below in the case of a supersingular point

coming from the reduction of a Heegner point.

Proposition IV.1. ([30, Prop. 3.3])

Let Σ ⊂ X0(N)(Fq2) denote the set of points on X0(N) coming from supersingular

elliptic curves via the moduli interpretation. Let B denote the definite quaternion

algebra ramified at q and ∞. Then there is a bijection between Σ and the set of

conjugacy classes of oriented Eichler orders of level N in B.

39
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Let c be prime to N and let Oc be the order of conductor c in OK . Let E be an

elliptic curve with CM by Oc. Since we have fixed N, the ideal Nc = N ∩ Oc is of

index N and has cyclic quotient. The reduction Ẽ of E at q is supersingular since

q is inert in K and prime to N . Recall that the endomorphism ring End(Ẽ) is a

maximal order in the definite quaternion algebra B = B(q∞) ramified at q and ∞.

Let C ⊂ E be the kernel of the multiplication by Nc map [Nc] on E. Since all

supersingular points modulo q are defined over Fq2 , the reduction of the pair (E,C)

gives rise to a point in X0(N)(Fq2). Conjugation by [Nc] gives rise to an embedding

End(Ẽ/C) ↪→ End0(Ẽ) = B.

Then R = End(Ẽ/C)∩End(Ẽ) is an Eichler order of level N in B and the reduction

map gives rise to an embedding Oc = End(E) ↪→ R. This, in turn, induces an

optimal embedding K ↪→ B relative to Oc. We may then define an orientation on R

so that the optimal embedding is compatible with the orientation on Oc determined

by Nc.

This construction is somewhat unsatisfying, as we have an constructed an Eichler

order R ⊂ B that depends on the choice of isomorphism End0(Ẽ) ∼= B. By fixing a

single Heegner point (E0, E0[N]) of conductor 1, for any other Heegner point (E,C)

as above we can choose an isogeny E → E0. Conjugating by the isogeny gives an

embedding End(Ẽ) ↪→ End0(Ẽ0) ∼= B, and so we may compare the various Eichler

orders constructed above. In particular, since the embedding of each Eichler order

is only defined up to conjugation, the reduction of (E,C) gives a construction of a

definite Heegner point on B in the sense of Definition III.7.
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4.2 Raising the level

As alluded to in the introduction, given a weight 2 newform f of level N and a

prime q - N we are interested in weight 2 eigenforms of level Nq that are congruent

to f . The seminal theorem of Ribet [28] gives necessary and sufficient conditions for

such a prime to exist:

Theorem IV.2. ([28])

Let P be a prime of Q lying above p. If p - Nq and ρf,p is irreducible, then there is

a modular form

g = q +
∑
n≥2

an(g)qn ∈ S2(Γ0(Nq))q−new

satisfying

an(f) ≡ an(g) (mod P), for all n with (n, q) = 1,

if and only if

aq(f) ≡ ±(q + 1) (mod P).

Moreover, g is new at all primes exactly dividing N and aq(g) = ε where ε = ±1 is

such that

q + 1− εaq(f) ∈ P.

Remark IV.3. It should be noted that if q 6≡ −1 (mod p), then there is a unique

choice of ε that satisfies the congruence. When q ≡ −1 (mod p), each choice of

ε = ±1 gives rise to a different level-raised form. This ambiguity will be of importance

in Chapter V.

Due to the well-known nature of the result, we opt to highlight the key ingredients

of the proof. For an in-depth treatment, see [31].
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Proof. (Sketch)

Let T(Nq) be the Hecke algebra of level Nq. The subspace S2(Γ0(Nq))q−new of

cuspforms that are new at q is stable under the action of T(Nq) ⊂ End(S2(Γ0(Nq))).

Let T(Nq) denote the image of T(Nq) in End(S2(Γ0(Nq)))q−new.

One has two degeneracy maps

X0(Nq) ⇒ X0(N)

induced by duality by from the degeneracy maps

S2(Γ0(N)) ⇒ S2(Γ0(Nq)).

Correspondingly, the degeneracy maps induce a map

α : J0(N)2 → J0(Nq) (4.1)

by Albanese functoriality whose image is, by definition, the q-old subvariety J0(Nq)q−old

of J0(Nq).

In turn, using the principal polarization on J0(Nq), one can define the abelian

subvariety J0(Nq)q−new by

J0(Nq)q−new =
(
ker(J0(Nq)→ J0(Nq)q−old)

)∨ ⊂ J0(Nq).

The q-new and q-old subvarieties are complementary in the sense that their internal

sum generates J0(Nq) and they have finite intersection.

Let mf ⊂ T(N) be the maximal ideal associated to f modulo P, and let Vf =

J0(N)[mf ]. Then V 2
f is a subgroup scheme of J0(N)2. One checks that the kernel of

α is supported at Eisenstein primes of T(N), and so V 2
f ∩ ker(α) = 0. As a result,

we may view V 2
f as a subgroup scheme of the q-old subvariety of J0(Nq).

Embedding Vf in its square under the embedding

v 7→ (v,−εv)
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thus allows us to embed Vf in the q-old subvariety of J0(Nq). By explicit compu-

tation, one can check that the Hecke operators of level Nq then act on Vf via the

morphism

χ : T(Nq)→ k

T` 7→ t` , ` - q

Tq 7→ ε

where t` denotes the reduction modulo P of the Hecke eigenvalue at ` for f .

This gives a construction of a form of level Nq congruent to f , but one needs to

then check that the form is new at q. It is enough to show that the image of Vf

embedded in J0(Nq)q−old actually lies in the intersection with the q-new subvariety,

as this then implies that χ factors through T(Nq) and is thus the reduction of a form

new at q. This can be done by explicit computation of the image, see [31, Lemma 2]

for details.

4.3 A mod p multiplicity theorem

We next turn to a related result on the dimension of a certain space of mod p

modular forms. Let N be a positive integer, and q a prime number not dividing N .

Let J0(Nq)0 denote the connected component of the identity in the special fiber of the

Néron model of J0(Nq) over Qq. Then work of Raynaud [27] and Deligne-Rapoport

[8] gives an exact sequence

0→ T → J0(Nq)0 π→ J0(N)2 → 0, (4.2)

where T/Fq is a torus. Then the character group

X = Hom(T,Gm)
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can be identified with the set of degree 0 divisors supported on the supersingular

locus of X0(N)(Fq2) [30, Prop. 3.1]. Our primary goal is then to compute the

dimension of the g-isotypic part of X, where g is a Hecke eigenform of level Nq. The

following result of Ribet computes the dimension in the cases of interest to us. It

is a generalization of an earlier result of Mazur [30, Theorem 6.4] that showed that

handled certain cases when the dimension is at most 1.

The theorem below implies that the dimension essentially behaves on the local

behavior of the residual P-adic representation ρg at q.

Proposition IV.4. ([29, Prop. 1])

Suppose that p - 2N , g is new at q, and ρg is irreducible modulo a prime P of Q. Let

m denote the maximal ideal of T(Nq) determined by g modulo P. Let k = T(Nq)/m.

Then dimk(X/mX) = 1 unless ρg is unramified at q and ρg(Frobq) = ±1. In the

latter case, dimk(X/mX) = 2.

Proof. (Sketch)

Since g is new at q, the Jacquet-Langlands correspondence (Corollary II.25) and

Proposition IV.1 combine to give a map

ψ : X → Fg

where Fg is the field generated by the Hecke eigenvalues of g. Normalizing ψ to be

P-adically integral and containing a P-adic unit, its reduction gives a nonzero map

ψ : X → k

which factors through the g-isotypic part ofX. In particular, we have dimk(X/mX) ≥

1.

On the other hand, Grothendieck [13] showed that there is an inclusion

Hom(X/mX,µp) ↪→ J0(Nq)[m] (4.3)
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of k[Gal(Qq/Q)]-modules. Since p > 2, J0(Nq)[m] ∼= ρg is 2-dimensional (cf. [24,

Ch. II, Prop. 14.2]). Thus the dimension of X/mX is at most 2.

Suppose dimk(X/mX) = 2, so (4.3) is an isomorphism. Hom(X/mX,µp) is un-

ramified at q, hence ρg is as well, with Frobq acting via qTq. Since g is new at q, Tq

acts via the negative of the Atkin-Lehner involution wq on T , hence Frobq acts on

Hom(X/mX,µp) via ±q. If the dimension is 2, then the determinant of Frobq acts

via q2 on the left side of (4.3), while det(ρg(Frobq)) = q. Thus q ≡ 1 (mod p).

Conversely if ρg is unramified at q, then comparing determinants again implies

that q ≡ 1 (mod p). Since ρg is unramified at q, Ribet’s results on level-lowering

[30, Theorem 8.2] imply that there is form of level N congruent modulo P to g. In

particular, viewing J0(N)2 as isogenous to a subvariety of J0(Nq) by (4.1), we have

J0(N)2[m] 6= 0. Since the kernel of α is Eisenstein and ρg irreducible, we get an

identification

J0(N)2[m] ∼= J0(Nq)[m].

Let ε = ±1 be such that ρg(Frobq) = ε. It can be checked that J0(N)2[m] lies in the

subspace

{(x,−εx) |x ∈ J0(N)} ⊂ J0(N)2.

Then one can define a subgroup W ⊂ J0(N)[p] whose image under the diagonal

or antidiagonal embedding (chosen to be compatible with the embedding above) is

precisely J0(N)[m]. Then Frobq acts on W by ε, which forces both the Frobenius

and Verschiebung endomorphisms on the reduction of J0(N) to act via ε.

By an explicit description [29, Lemma 1] of the map π in terms of the Frobenius

and Verschiebung endomorphisms, we have J0(Nq)[m] ∈ ker(π ◦ α̃), where α̃ denotes

the reduction of α. Since the image of α̃ lands in the connected component of the
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identity, this gives an inclusion

J0(Nq)[m] ⊂ T

which implies that dimk(X/mX) = 2.



CHAPTER V

Jochnowitz congruences

We are now prepared to give the proof of the Jochnowitz congruence for a weight

2 newform of level Γ0(N). Let f =
∑
an(f)e2πinz be a normalized weight 2 newform

on Γ0(N). Suppose that g =
∑
an(g)e2πinz is a normalized weight 2 eigenform on

Γ0(Nq) that is new at q and congruent modulo p to f for some prime q. Explicitly,

suppose there is a prime P of Q lying over p such that

a`(f) ≡ a`(g) (mod P), for all primes ` - pq.

As explained in Chapter I, one expects a congruence between the special values of

the L-functions of f and g at their central critical points. Let K be an imaginary

quadratic field satisfying the Heegner hypothesis for N . Suppose further that q is

inert in K. Then the global root number of f/K is −1, while that of g/K is +1.

Then L(f/K, 1) = 0 while L(g/K, 1) should typically be nonzero. The Jochnowitz

perspective then predicts a congruence between the algebraic parts of L′(f/K, 1)

and L(g/K, 1). In light of the special value formulae of Chapter III, we may view

this as a relation between the Heegner point on the f -isotypic part of J0(N) and the

algebraic part of L(g/K, 1).

47
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5.1 Preliminaries

Let E = Ef denote the optimal quotient of J0(N) associated to f via the Eichler-

Shimura construction, and let π : X0(N) → E be a modular parametrization of

minimal degree. For ease of exposition we assume f has rational Fourier coefficients,

so E is an elliptic curve. We do remark that all results in this chapter have analogues

for modular GL2-type abelian varieties with the same proofs, cf. [44, Section 6]. Let

k = Fp, and let ρf denote the two-dimensional p-adic Galois representation attached

to f . Recall that ρf = ρf,p : GQ → GL(Tp(E)) ∼= GL2(Zp) satisfies

• ρf is unramified away from Np.

• tr(ρf (Frob`)) = a`(f) for primes ` - Np.

• det(ρf ) = χp, where χp is the p-adic cyclotomic character.

Let Vf = E[p], so ρf : GQ → GL(Vf ). Let K be an imaginary quadratic field of

discriminant −D. Let T = T(N) denote the Hecke algebra of level N , and let m

denote the maximal ideal of T cut out by f modulo p. Thus T/m ∼= k. The following

theorem of Mazur implies that the representation occurs in J0(N) with multiplicity

one. See also the discussion in Section 5 of [30].

Theorem V.1. [24, Ch. II, Prop. 14.2]

Let Vf be the mod p representation associated to f as above. Assume that Vf is

irreducible and p - 2N . Then

J0(N)[m] ∼= Vf ∼= E[p],

where J0(N)[m] = {x ∈ J0(N) |x ∈ ker(φ) for all φ ∈ m}.

We will make the following assumptions:

Assumption V.2. The triple (f,K, p) satisfies:
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• (Heegner hypothesis) All primes dividing N split in K.

• p - 2ND.

• ρf is irreducible.

• p does not divide the order of the Shimura subgroup

ker(J1(N)→ J0(N)).

Theorem V.3. (Jochnowitz congruence, informal version) Let PK denote the trace

of the Heegner point of level N in E(K). Then

PK ∈ pE(Kq) ⇔ P | Lalg(g/K, 1).

In view of Theorem IV.2 on raising the level of ρf , we divide the level-raising

primes into three distinct classes.

Definition V.4. Let q be a level-raising prime which is inert in K.

• We say q is admissible if q 6≡ ±1 (mod p).

• We say q is Kolyvagin if q ≡ −1 (mod p).

• We say q is residual if q ≡ 1 (mod p).

Under our hypotheses, the following lemma shows that testing the divisibility of

a rational point locally is equivalent to testing the divisibility over the residue field.

Proposition V.5. Let L be a finite unramified extension of Qq. Let m denote the

maximal ideal of the ring of integers of L. Let κ denote the residue field.

Suppose E1, E2 are elliptic curves over L with good reduction. For any isogeny

φ : E1 → E2 defined over L of degree prime to q, we have

E2(L)

φ(E1(L))
∼=

E2(κ)

φ̃(E1(κ))
,

where φ̃ denotes the reduction of φ.
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Proof. One has the commutative diagram

0 Ê1(m) E1(L) E1(κ) 0

0 Ê2(m) E2(L) E2(κ) 0

φ̂ φ φ̃
(5.1)

where Êi denotes the formal group associated to Ei and φ̂ denotes the induced isogeny

on formal groups.

An application of the snake lemma gives the exact sequence

coker
(
φ̂
)
−→ E2(L)

φ(E1(L))
−→ E2(κ)

φ̃(E1(κ))
−→ 0. (5.2)

Since φ∨ ◦ φ and φ ◦ φ∨ give the multiplication by deg(φ) maps on E1 and E2,

respectively, it follows that φ̂∨ ◦ φ̂ and φ̂ ◦ φ̂∨ give the multiplication by deg(φ)

maps on Ê1(m) and Ê2(m), respectively. But L/Qq is unramified, hence the formal

logarithm gives isomorphisms

Êi(m)
∼−→ OL, i = 1, 2.

The latter is a pro-q group, hence multiplication by deg(φ) is an isomorphism. In

particular, φ̂ is an isomorphism and (5.2) gives the result.

The strategy of the proof is to construct two nontrivial maps

Z[Σ]0 → k,

where Σ ⊂ X0(N)(Fq2) denotes the points on the modular curve arising from su-

persingular elliptic curves and the superscript denotes the degree zero divisors. The

first map essentially comes from Kummer theory and the second from the Jacquet-

Langlands transfer of g to the definite quaternion algebra ramified at q and∞. After

checking that both maps are equivariant for the action of the Hecke algebra, we may
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then conclude that the maps are nonzero multiples of one another by Proposition

IV.4. When the mod p multiplicity one fails, we must take a slightly more careful

approach.

5.2 Galois cohomology and the Kummer map

Let F be a number field, and let V be a finite dimensional p-adic vector space

admitting a geometric action of GF . Let ρ : GF → GL(V ) be the aforementioned

Galois representation, so ρ is unramified outside a finite set of places. Fix a GF -stable

lattice T ⊂ V with T ⊗Q ' V , and define

Tπ := T/πT,

where π is a uniformizer of the p-adic field underlying V . Let N be the conductor

of ρ. Let ` 6= p be a prime not dividing N , and let λ be a prime of F lying above `.

Let Fλ denote the completion of F at λ, and kλ the residue field of Fλ.

With B = V, T, or Tπ, the singular quotient of H1(Fλ, B) is

H1
s (Fλ, B) = H1(Iλ, B)Iλ ,

where Iλ denotes the inertia subgroup of GFλ .

Similarly, we define the finite part of H1(Fλ, B) to be

H1
f (Fλ, B) = ker

(
H1(Fλ, B)→ H1

s (Fλ, B)
)
.

The following lemma provides a simple method to compute the finite part in terms

of coinvariants of B.

Lemma V.6. [33, Lemma B.2.8]

Let Frobλ ∈ Gal(F nr
λ /Fλ) denote the Frobenius automorphism. For any Zp[GFλ ]-

module that is a discrete torsion Zp-module, we have

H1
f (Fλ, B) ∼= BIλ/(Frobλ − 1)BIλ .
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Proof. It follows from the inflation-restriction sequence that

H1
f (Fλ, B) ∼= H1(F ur

λ /Fλ, B
Iλ). (5.3)

Since Gal(F ur
λ /Fλ) is pro-cyclic with topological generator Frobλ, one can check easily

that evaluating a cocycle at Frobλ gives rise to the isomorphism

H1(F ur
λ /Fλ, B

Iλ) ∼= BIλ/(Frobλ − 1)BIλ .

We now consider the case where (ρ, V ) = (ρf , Tp(E) ⊗ Q) is the representation

considered above. Then, using our notation above, we can let T = Tp(E), π = p, and

Tπ ∼= Vf . Let Frobq denote the Frobenius element of Gal(Qnr
q /Qq) ∼= Gal(Fq/Fq), so

Frob2
q is the corresponding Frobenius element for Gal(Knr

q /Kq) ∼= Gal(Fq/Fq2).

Lemma V.7. Let q be a level raising prime for ρf such that q is inert in K. Then

H1
f (Kq, Vf ) ∼=



k if q admissible

k ⊕ k if q Kolyvagin

k if q residual and ρf (Frobq) 6= ±1

k ⊕ k if q residual and ρf (Frobq) = ±1.

Proof. By Assumption V.2, ρf is unramified at q. Hence there is a filtration

0 ⊂ k(1) ⊂ Vf , (5.4)

with Vf/k(1) ∼= k.

If q is admissible, so p - (q2 − 1), then k and k(1) have distinct Galois actions, so

there is a canonical decomposition

Vf ∼= k ⊕ k(1) (5.5)
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as GKq -modules. Hence

H1
f (Kq, Vf ) ∼= H1

f (Kq, k)⊕H1
f (Kq, k(1))

∼= k ⊕ 0 by Lemma V.6

∼= k.

If q is Kolyvagin, then the characteristic polynomial of Frobq acting on Vf is

x2 − aq(f)x+ q ≡ x2 − 1 (mod p). (5.6)

Hence Vf decomposes as

Vf ∼= k+ ⊕ k− (5.7)

where k± denotes the ±1-eigenspaces of Vf for the action of Frobq. Using a similar

computation as above, we obtain

H1
f (Kq, Vf ) ∼= H1

f (Kq, k+)⊕H1
f (Kq, k−) ∼= k ⊕ k.

Finally, if q is residual, then the characteristic polynomial of Frobq on Vf is

x2 − aq(f)x+ q ≡ (x− ε)2 (mod p), (5.8)

where ε = ±1 is such that p | (q + 1− εaq(f)). Hence

ρf (Frobq) =

ε ∗
0 ε

 . (5.9)

Using Lemma V.6, we see that H1
f (Kq, Vf ) is isomorphic to k if and only ρf (Frobq) 6=

±1, and is isomorphic to k2 otherwise.

For any isogeny ψ : E ′ → E of defined over Kq, one has the local Kummer map

E(Kq)

ψ(E ′(Kq))
↪→ H1(Kq, ker(ψ)). (5.10)
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If ψ is of degree prime to q, then ker(ψ) is unramified at q and the image of the

Kummer map is precisely the finite part of H1(Kq, ker(ψ)). That is,

E(Kq)

ψ(E ′(Kq))

∼−→ H1
f (Kq, ker(ψ)) ⊂ H1(Kq, ker(ψ)). (5.11)

In this case, the map (5.11) can be described explicitly. Let P ∈ E(Kq) and let

Q ∈ E ′(Kq) such that ψ(Q) = P . Then the image of P is the cocycle

σ 7→ (σ − 1)Q ∈ H1(Kq, ker(ψ)), (5.12)

noting that the cocycle does not depend on the choice of Q. The identification

H1
f (Kq, ker(ψ)) ∼=

ker(ψ)

(Frob2
q − 1) ker(ψ)

of Lemma V.6 sends a cocycle to its evaluation on a topological generator, thus (5.11)

can be written

P 7→ (Frob2
q − 1)Q. (5.13)

Let W = k(1) ⊂ Vf be the subspace in the filtration (5.4). Let EW = E/W and

φ : EW → E (5.14)

be the dual of the natural isogeny E → EW . Both W and its Cartier dual W∨ ∼=

ker(φ) are finite flat group schemes defined over Kq, hence φ and its dual are similarly

defined over Kq. There is a commutative diagram

E(Kq)

pE(Kq)

E(Kq)

φ(EW (Kq))

H1
f (Kq, Vf ) H1

f (Kq, k),

∼ ∼ (5.15)

noting that the Weil pairing shows that W∨ is constant and isomorphic to k over

Kq.
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Since φ and [p] have degree prime to q, we may use Proposition V.5 to rewrite

the above diagram as
E(Fq2 )

pE(Fq2 )

E(Fq2 )

φ(EW (Fq2 ))

H1
f (Kq, Vf ) H1

f (Kq, k).

∼ ∼

(5.16)

Remark V.8. We note that since Vf is unramified at p, (5.3) gives a canonical iden-

tification

H1
f (Kq,W ) ∼= H1(Fq2 ,W ). (5.17)

for any GKq -submodule W ⊂ Vf . As a consequence, one may think of Proposition V.5

as giving a canonical identification of the Kummer map over Kq and the analogous

map on the reduced curve. In particular, we could have written (5.16) purely in

terms of the geometry of the reduction E/Fq2 .

When Vf is decomposable, we can actually say something stronger.

Lemma V.9. If Vf admits a decomposition of GKq-modules

Vf ∼= W1 ⊕W2, (5.18)

then, for i = 1, 2, let Ei = E/Wi and φi : Ei → E be the isogenies defined similarly

to the above. Then there is a commutative diagram

E(Fq2 )

pE(Fq2 )

E(Fq2 )

φ1(E1(Fq2 ))
⊕ E(Fq2 )

φ2(E2(Fq2 )

H1
f (Kq, Vf ) H1

f (Kq,W
∨
1 )⊕H1

f (Kq,W
∨
2 )

∼

∼

∼

∼

(5.19)

Proof. The top row is the only map that is not obviously an isomorphism. It is

enough to show

φ1(E1(Fq2)) ∩ φ2(E2(Fq2)) ⊂ pE(Fq2),

but this is an immediate consequence of E
[p]−→ E being the pullback of the two covers

Ei → E.
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5.3 The main theorem

Let ε = ±1 be the value such that

p | (q + 1− εaq(f)). (5.20)

Let g ∈ S2(Γ0(Nq)) be the level-raised form of Theorem IV.2 satisfying

a`(g) ≡ a`(f) (mod P) for ` - q, aq(g) = ε. (5.21)

We note that there is a unique choice of ε if p - (q+1). If p | (q+1), so q is Kolyvagin,

then each choice of sign gives rise to a different level-raised form.

Let Wε be the maximal GKq -submodule of Vf whose Cartier dual is constant over

Kq and such that Frobq acts on W∨
ε by ε. Let EWε := E/Wε and φ : EWε → E be

the dual of the natural isogeny E → EWε , as in (5.14).

Explicitly, if q is admissible or is residual and ρf (Frobq) 6= ±1, then Wε is the

subspace k(1) of (5.4). If q is Kolyvagin, then Wε is the −ε-eigenspace of Vf . Finally,

if q is residual and ρf (Frobq) = ε, then Wε = Vf .

The Kummer map for the reduced isogeny φ̃ over Fq2 is best understood via

geometric class field theory, particularly using the method of Frobenius substitution

(cf. [34], [39]). Since W∨
ε is constant over Fq2 , the map φ̃ is Galois with group W∨

ε .

Hence Frobenius substitution gives a map

E(Fq2) −→ W∨
ε . (5.22)

This map can be viewed as the “reduced” Kummer map in light of Remark V.8.

By pulling (5.22) back along the modular parametrization π : X0(N) → E, we

get a map

X0(N)(Fq2)→ W∨
ε .
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As discussed at the beginning of the chapter, let Σ ⊂ X0(N)(Fq2) denote the points

on the modular curve arising from supersingular elliptic curves. Restricting the above

map to Σ and extending linearly, we obtain a map

F : Z[Σ]→ W∨
ε .

Remark V.10. We emphasize that, by construction, the evaluation of (5.22) on a

point of E in the image of Σ under the modular parametrization agrees with the

evaluation of F on any point in its preimage under π.

Before we discuss this further, we must briefly recall some basic results of geo-

metric class field theory.

Theorem V.11 ([40, Thm 1.17]).

Let X be a smooth projective curve over a finite field F. Then there is a bijective

correspondence between geometrically connected Galois covers of X and finite F-

rational subgroup schemes of Jac(X)(F) whose Cartier duals are constant.

Under this correspondence, pullback of a finite Galois cover along a nonconstant

map of curves can be described in terms of the above theorem. Let X1 → X2 be

a nonconstant map of curves and let X ′2 → X2 be a finite connected Galois cover.

Then the above theorem gives a subgroup scheme Z ⊂ Jac(X2) that corresponds to

this cover. Then the pullback, X ′1, of the cover to X1 corresponds to the image of Z

under the natural map Jac(X2)→ Jac(X1) induced from Picard functoriality. Under

this construction, X ′1 is connected if and only if Z ∩ ker(Jac(X2)→ Jac(X1)) = 0.

We can define a cover Xε of X0(N) by pulling back the cover EWε → E along

the modular parametrization. Xε is only well-defined up to fixing an embedding

X0(N)→ J0(N), so we take the natural embedding P 7→ (P )− (∞), where∞ is the

cusp at infinity on X0(N). Then Xε → X0(N) is a Galois cover with Gal(Xε/X0(N))



58

canonically isomorphic to Gal(EWε/E) ∼= W∨
ε . Moreover, Xε is connected since E is

the optimal quotient associated to f .

By functoriality, it follows immediately that using the Frobenius reciprocity map

from the cover Xε/X0(N) gives the same map Z[Σ]→ W∨
ε as the cover EWε/E.

In order to apply the mod p multiplicity results of Mazur and Ribet, we must first

verify the Hecke equivariance of the map F . Let T(N) denote the Hecke algebra (of

level N), and let T` denote the `th Hecke operator for each rational prime `.

Proposition V.12. Let P ∈ X0(N)(Fq2). The map F satisfies the following prop-

erties:

1. For any Hecke operator T` with (`, q) = 1, one has

F (T`P ) = t`F (P ),

where t` denotes the image of T` in T/m ∼= k.

2. F commutes with the action of the Frobenius element Frobq. Explicitly,

F (FrobqP ) = FrobqF (P ) = εF (P ).

3. F is surjective.

Proof. The first two statements follow from the explicit description (5.13) of the map

F and the fact that T` and φ are defined over Fq, respectively (cf. [39, Lemma 6.13]).

For the last, we need to use a theorem of Ihara [18] that states that the fundamen-

tal group of the modular curve X(N)/Fq2 is generated by the Frobenius elements

of supersingular points. In particular, let Σ(N) ⊂ X(N)(Fq2) denote the supersin-

gular points on X(N)(Fq). Theorem 1 of [18] implies that for any finite connected

unramified Galois cover X → X(N), the corresponding Frobenius reciprocity map,
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extended linearly and restricted to Z[Σ(N)], is surjective. Let X ′ε denote the pull-

back of the cover Xε to X(N). Then X ′ε is an unramified Galois cover of X(N),

which is connected if ker(J0(N) → J(N)) does not contain an element of order p.

But J0(N)→ J(N) factors as

J0(N)→ J1(N)→ J(N)

and the kernel of the first map is the Shimura subgroup, which p does not divide by

assumption, while the second map is known to be injective since X(N)→ X1(N) is

totally ramified at ∞. Hence X ′ε is a connected unramified Galois cover, and so

Z[Σ(N)]→ Gal(X ′ε/X(N)) ∼= Gal(Xε/X0(N)) ∼= W∨
ε (5.23)

is surjective. Since the image of Σ(N) under the natural map X(N)→ X0(N) is Σ,

the functorial properties of the reciprocity map give the surjectivity of F .

Let B = B(q∞) denote the definite quaternion algebra ramified at q and∞. Since

g is new at q, the Jacquet-Langlands correspondence (see Corollary II.25) gives rise

to a map

Cl(B)→ Fg (5.24)

with an equivariant action of the Hecke algebra T(Nq) of level Nq factoring through

the maximal ideal mg associated to g modulo P. As in Chapter III, we normalize

ψ so that the image is P-adically integral and contains a P-adic unit. Let ψ be the

reduction of ψ modulo P.

Proposition V.13. Let P̃K denote the reduction of the Heegner point PK modulo q.

Let xK be the image of the definite Heegner point 3.5 in Cl(B). If q is not residual

or ρf (Frobq) 6= ±1, then

F (P̃K) = ψ(xK)
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up to a unit in k.

Proof. Let X = Z[Σ]0 ∼= Z[Cl(B)]0, where the isomorphism is given by Proposition

IV.1. In order to apply Proposition IV.4, we need to show that T(Nq), rather than

T(N), acts compatibly on F . For Hecke operators T` ∈ T(Nq) with (`, q) 6= 1, the

action of T` is induced from the action of the corresponding Hecke operator in T(N)

(cf. p. 444-445 of [30]). By [30, Prop. 3.8], the qth Hecke operator Tq of T(Nq) acts

on a point of X by Frobq, hence

F (Tqx) = F (Frobqx)

for all x ∈ X. It follows from Proposition V.12 that the restriction of F to the degree

0 divisors factors through X/mgX. Since g is not Eisenstein modulo P (equivalently,

mg is not Eisenstein), we have an isomorphism

Z[Σ]

mgZ[Σ]
∼=

Z[Σ]0

mgZ[Σ]0
= X/mgX.

Hence F factors as
Z[Σ] W∨

ε

Z[Σ]
mgZ[Σ]

X/mgX
∼

(5.25)

ψ similarly factors through X/mgX as in (5.25). Then W∨
ε is constant over Fq2 ,

and by the assumption that either q is not residual or ρf (Frobq) 6= ±1, we have an

isomorphism W∨
ε
∼= k over Fq2 . Fix such an isomorphism. Then, as F and ψ factor

through the mg-isotypic part of the degree 0 divisors, Proposition IV.4 implies that

F and ψ must be nonzero multiples of one another.

Let P be a Heegner point of conductor 1 for K on X0(N). Recall that PK is

defined as

PK =
∑

σ∈Gal(H/K)

P σ.
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The reduction of P modulo q gives rise to a definite Heegner point on B of conductor

1 as in Section 4.1. Let P be the image of the definite Heegner point under the map

(3.6). Both P and P admit an action of Gal(H/K), the first being the natural Galois

action and the latter being the action on the definite Heegner points as a principal

homogeneous space. These actions are equivariant with respect to the reduction map

by [3, Lemma 4.2], and so extending linearly, the reduction of PK corresponds to the

image of the definite Heegner point xK of (3.5). In particular, up to a unit in k, we

have

F (P̃K) = F

 ∑
σ∈Gal(H/K)

P̃ σ


= ψ

 ∑
σ∈Gal(H/K)

P
σ


= ψ(xK).

Recall that ψ(xK) is nonzero if and only if Lalg(g/K, 1) ≡ 0 (mod P) by Lemma

III.14. On the other hand, recall that F is defined as the mod p Kummer map (5.22).

Since W∨
ε is constant over Fq2 and of the same dimension as H1

f (Kq,W
∨
ε ), we may

fix an isomorphism

H1
f (Kq,W

∨
ε ) ∼= W∨

ε

of k-modules. In particular, we have a commutative diagram

Z[Σ]
E(Fq2 )

φWε (EWε (Fq2 ))

W∨
ε H1

f (Kq,W
∨
ε )

F ∼

∼

(5.26)

Then from the above we see that F (P̃K) is nonzero if and only if P̃K is nonzero in

H1(Fq2 ,W
∨
ε ). But by (5.16) and Remark V.8, this happens if and only if the image
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of π̃(PK) is zero in

E(Fq2)

φ(EWε(Fq2))
.

Remark V.14. The following diagram may be helpful to summarize much of the

above.

PK J0(N)(Kq)
E(Kq)

pE(Kq)
H1
f (Kq, E[p])

PK J0(N)(Kq)
E(Kq)

φ(EWε (Kq))
H1
f (Kq,W

∨
ε )

P̃K Z[Σ] J0(N)(Fq2)
E(Fq2 )

φ(EWε (Fq2 ))
H1(Fq2 ,W

∨
ε )

∈ ∼

∈ ∼

∼ ∼

∈

F

∼

If p - q + 1, then our choice of Wε gives that all vertical maps in the two rightmost

columns are isomorphisms. If p | q + 1, then there are two such maps F depending

on the choice of ε, and may decompose the diagram in terms of direct sums as in the

decomposition (5.7).

We are now prepared to state and prove the main result. To maximize readabil-

ity we break it into three pieces, each corresponding to one class of primes in the

trichotomy of level-raising primes introduced in Definition V.4. For the rest of the

thesis, let X = Z[Σ]0 ∼= Z[Cl(B)]0 be as in the proof of Proposition V.13.

Theorem V.15. (Jochnowitz congruence, admissible case)

Let q be an admissible prime relative to (f,K, p) and let g be a level-raised form at q.

Then PK is locally divisible by p in E(Kq) if and only if Lalg(g/K, 1) ≡ 0 (mod P).

Proof. Applying the procedure above gives rise to a map

F : X → k
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that realizes the right vertical map of (5.16). Since q is admissible, H1
f (Kq, Vf ) ∼= k

by Lemma V.7, and so all arrows in (5.16) are isomorphisms. Since F (P̃K) = 0 if

and only if PK ∈ pE(Kq) and Lalg(g/K, 1) ≡ 0 (mod P) if and only if ψ(xK)) = 0,

the result follows from Proposition V.13.

Theorem V.16. (Jochnowitz congruence, Kolyvagin case)

Let q be a Kolyvagin prime relative to (f,K, p). Let ε = ±1 be such that the sign of

E/Q is −ε. Let g be a level-raised form at q whose Hecke eigenvalue at q is ε. Then

PK is locally divisible by p in E(Kq) if and only if Lalg(g/K, 1) ≡ 0 (mod P).

Proof. Recall that f has two distinct level-raised forms of level Nq when q is Koly-

vagin. Let g± ∈ S2(Γ0(Nq))q−new be two level-raised forms whose Hecke eigenvalues

at q are ±1, respectively. Let

Vf = k+ ⊕ k−

be the decomposition into ±1-eigenspaces. Then applying the procedure of this

section for each of the two subspaces k± gives rise to two distinct maps

F± : X → H1
f (Kq, k∓).

We note that we are using the natural isomorphism k∨±
∼= k∓ over Qq induced by the

autoduality of Vf under the Weil pairing. Let E± = E/k± and let φ± : E± → E be

the corresponding isogenies. Then Lemma V.9 gives the diagram

E(Fq2 )

pE(Fq2 )

E(Fq2 )

φ+(E+(Fq2 ))
⊕ E(Fq2 )

φ−(E−(Fq2 )

H1
f (Kq, Vf ) H1

f (Kq, k−)⊕H1
f (Kq, k+)

∼

∼

∼

∼

(5.27)

where the right vertical map is essentially determined by F− ⊕ F+ in light of (5.26).

Proposition V.13 then implies that F±(P̃K) = 0 if and only if Lalg(g+/K, 1) ≡

Lalg(g−/K, 1) ≡ 0 (mod P). The result then follows from the following lemma:
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Lemma V.17. Lalg(g−ε/K, 1) ≡ 0 (mod P).

Proof. (Proof of the lemma)

By the work of Kolyvagin [23], the Heegner point lies in the ε-eigenspace of E(K)⊗

Z/pZ for the action of complex conjugation. Since q is Kolyvagin, Frobq lies in the

conjugacy class of complex conjugation, and hence Frobq acts on the image of PK in

E(K)⊗ Z/pZ by ε.

In particular, again recalling that F factors through mg 3 p, we have

F−ε(P̃K) = F−ε(εFrobq(P̃K))

= Frobq · F−ε(εP̃K) by Prop. V.12

= −εF−ε(εP̃K)

= −ε2F−ε(P̃K)

= −F−ε(P̃K).

Since p is odd, this forces F−ε(P̃K) to vanish. Then Lalg(g−ε/K, 1) ≡ 0 (mod P) by

Prop. V.13.

Theorem V.18. (Jochnowitz congruence, residual case)

Let q be a residual prime relative to (f,K, p) and let g be a level-raised form at q.

Then PK is locally divisible by p in E(Kq) only if Lalg(g/K, 1) ≡ 0 (mod P). If

ρf (Frobq) 6= ±1, then the converse holds as well.

Proof. If ρf (Frobq) 6= ±1, then the result follows from an argument identical to that

of Theorem V.15.

Assume that q is residual and ρf (Frobq) = ±1. In this setting, since g comes from

level raising a newform at level prime to q, the mod P representation ρg is equivalent
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to ρf and thus is unramified at q. Hence Proposition IV.4 implies that X/mgX is

2-dimensional over k. In particular, there are #k + 1 distinct nonzero maps

X/mgX → k

up to multiplication by a scalar. Since Vf is constant over Kq, applying the procedure

above with Wε = Vf gives a surjective map

F : X/mgX � Vf ∼= k2. (5.28)

For any one-dimensional subspaces W ⊂ Vf (noting again that W is constant over

Kq and stable under Frobq and the action of the Hecke algebra), we can apply the

process to W to obtain a surjective map

FW : X/mgX � W ∼= k. (5.29)

Moreover, for any two distinct such subspaces W1 and W2, FW1 and FW2 cannot

be scalar multiples of one another by Lemma V.9, as this would contradict the

surjectivity of (5.28). Since there are #k + 1 distinct one-dimensional subspaces of

Vf , it follows that any nonzero map X/mgX → k must be a constant multiple of the

map FW for some one dimensional subspace W ⊂ Vf . Hence ψ is, up to unit, equal

to FW for some W . In particular, Lalg(g/K, 1) 6= 0 (mod P) if and only if the image

of the reduction of the Heegner point under FW is nonzero. But by (5.16), we see

that FW (P̃K) 6= 0 implies that PK is indivisible by p in E(Kq).
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