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ABSTRACT

Surfaces that remain uncontaminated by liquids and solids have been investigated over the last two
decades to address numerous disparate engineering challenges. The applications for such materials
include: self-cleaning surfaces, drag-reducing coatings for ships, fog-resistant windows, efficient
heat exchangers, ice-shedding wind turbines and powerlines, membranes that allow for facile clean-
up of oil spills, and inexpensive microfluidic diagnostic devices. Researchers have employed a
multitude of approaches, such as textured porous solids that entrap air, lubricant-infused surfaces,
covalently attached monolayers, or compliant elastomers, to effectively repel high- and low-surface
tension liquids including water, oils, and solvents, as well as undesired solid materials including ice,
dirt, and minerals. However, the limited longevity of these surfaces has impeded their widespread
usage. Damaging environmental conditions, such as mechanical abrasion, elevated temperature,
ultraviolet light, harsh solvents, extended immersion under elevated liquid pressure, and micro-
organisms, can all rapidly degrade the functionality of these materials in the real world.

This dissertation presents the systematic design of liquid- and solid-repellent surfaces with
improved resistance to these damaging conditions, and explores some of their applications. The
first research chapter outlines a novel fabrication methodology for hyperbranched, hierarchical
nanowire structures with independently controllable geometry at each length scale. This novel
process was utilized for the fabrication of superomniphobic surfaces with low adhesion to very
low-surface-tension liquids, such as heptane. These surfaces also demonstrated high resistance to
wetting under pressure. The next three chapters discuss the systematic design of repellent surfaces
which are more scalable, and resist a broader range of damaging conditions. The first demonstrates
the methodical identification of spray-coating formulations that produce mechanically robust and
thermally healable superhydrophobic surfaces, based on the optimization of partial miscibility
between hydrophobic small molecules and polymer matrices. These coatings far exceeded the
durability of commercial superhydrophobic coatings, and are being adapted for marine drag
reduction applications.
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Though exceptionally durable, the superhydrophobic coatings were not capable of repelling
low-surface-tension liquids (i.e., not “superomniphobic”) and were not transparent. To address
these limitations and improve on the limited lifetime of existing superomniphobic or omniphobic
surfaces, a smooth, transparent, substrate-independent “omniphobic” coating was also developed.
Optimization of phase-separation was used again to maximize the repellency and abrasion resistance
of the coatings. Lastly, covalently-attached polydimethylsiloxane thin films, deposited using a fast
and facile vapor-phase methodology, were shown to repel even ultra-low-surface-tension fluorinated
liquids, as well as a variety of solids, such as marine algae. These films exhibited high liquid
mobility and low solid adhesion forces due to their liquid-like nature. Due to their thermal stability
and conductivity, these films are promising for heat-transfer applications, particularly for facilitating
efficient drop-wise condensation of low-surface-tension solvents, which has not been extensively
studied.

The following three chapters discuss inexpensive open-channel microfluidic devices fabricated
from pressure-resistant superomniphobic fluorinated paper or superhydrophobic/oleophobic textured
silicon. These devices could even confine fast-flowing low-surface-tension liquids, such as hexane.
This enabled the first demonstration, in open-channel devices, of the chemical lysis and detection
of E. coli bacteria and the fabrication of hydrophilic or hydrophobic polymer microparticles via
flow-focusing emulsification. The final chapter reports novel superhydrophobic cell-culture vessels
that readily generated spheroidal cancer cell colonies for in vitro biological studies and therapeutic
assays. This methodology improved replication of physiological conditions compared to conventional
two-dimensional culture techniques, while providing greater stability than state-of-the-art hanging
drop plates.
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CHAPTER 1

Introduction

1.1 Introductory Remarks
Liquid-repellent surfaces have recently garnered much attention for their applications in self-

cleaning paints,1 marine drag reduction,2 stain resistant clothing,3 and oil-water separation.4 There
are numerous methods to reduce a surface’s interactions with a wide range of liquids, to the point
that droplets readily roll or slide from it when it is inclined.

Superhydrophobic surfaces (SHSs), which imitate the leaves of the lotus plant (Nelumbo nucifera),
combine rough surface texture with non-wetting surface chemistry to cause the entrapment of
micro-pockets of air beneath contacting water. The water beads up into nearly-spherical droplets
which can readily bounce off the surface.1 The addition of re-entrant microscale geometry can also
enable the repulsion of a broad range of lower-surface-tension liquids, such as oils or organic solvents,
yielding “superomniphobic” surfaces (SOSs).5,6 To improve the pressure resistance, one may replace
the air in rough textured surfaces with a preferentially wetting non-volatile lubricant, causing most
immiscible contacting liquids to slide readily from the surface.7,8 Finally, liquid-repellent smooth
surfaces may be produced by chemical modification with densely packed monolayers of low surface
energy molecules, spin coating, or polymer grafting.9–13 Over the last several decades, numerous
examples of surfaces with high liquid repellency have been demonstrated using one of these general
strategies.

However, each of these approaches has distinct drawbacks hindering its widespread adoption
and/or liquid repellency. This thesis primarily focuses on addressing these drawbacks with these
approaches that limit their ability to produce robust surfaces. These surfaces fabricated in this work
successfully withstood a broad variety of harsh environmental conditions, and show promise in
applications such as marine drag reduction and condensation heat transfer. Some of the resulting
surfaces are also capable of resisting the adhesion of various solid contaminants, greatly increasing
their versatility.
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1.2 Wettability on Smooth and Textured Surfaces
The wettability of a liquid on a surface is easily quantified by observing the contact angle θ, at

the base of the droplet (Figure 1.1). Liquids of varying surface tension and polarity exhibit a broad
range of interactions with surfaces depending on their roughness, surface energy, and chemical
homogeneity, from completely spreading into a thin film (θ ≈ 0◦) to completely beading up into a
perfectly spherical, mobile droplet (θ ≈ 180◦) (Figure 1.2).

By utilizing carefully engineered micro- /nano-texture and surface chemistry, one can selectively
induce these wettabilities with liquids with varying surface tensions and polarities. One may also
geometrically pattern these surface properties to independently spatially confine different liquids at
various length scales.

1.2.1 Equilibrium Contact Angle and Surface Tension

Figure 1.1: A liquid droplet sitting on a smooth, chemically homogeneous surface theoretically exhibits an
equilibrium intrinsic contact angle, θE , which is determined by the balance of the surface tension forces
acting on the three-phase contact line at the base of the droplet.

Figure 1.2: The conventional contact angle ranges for describing wetting behavior. These are representative
images taken from a contact angle goniometer of water droplets on a broad range of surfaces. The four
on the left are smooth surfaces with decreasing surface energy: plasma-cleaned glass, polycaprolactone,
polydimethylsiloxane, and spin-coated fluorodecyl POSS (see Chapter 4). The surface on the far right is a
near-perfect superhydrophobic surface, silicon nanograss treated with perfluorodecyltrichlorosilane, with θ >
170◦ and ∆θ ≈ 0◦ (see Chapter 8). Equivalent terms exist for describing behavior with oils (“oleo-”) and other
low γLV liquids (“omni-”).
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Table 1.1: The surface tension of the various liquids used throughout this work. Values are taken from [8,
15–17]

Liquid γLV (mN/m)

Water 72.1
Diidomethane 67.0
Formamide 57.0
Propylene glycol 45.6
Chloroform 26.7
n-Hexadecane 27.5
n-Decane 23.4
n-Octane 21.1
n-Hexane 17.9
Toluene 27.9
Ethanol 22.1
1-Propanol 20.9
2-Propanol 23.3
Methanol 22.1
Acetone 23.5
Polydimethyl siloxane 19.9
Krytox 100 16.0
Methoxyperfluorobutane 13.0

This equilibrium contact angle is related to the surface energy balance between the solid-vapor,
liquid-vapor, and solid-liquid interfaces, as described by Young’s equation14

cos θE =
γSV − γSL

γLV
(1.1)

where θE is the equilibrium intrinsic contact angle that a liquid with surface tension γLV exhibits on
a solid with surface energy γSV and a solid-liquid interfacial tension γSL . Table 1.1 lists surface
tension values for various liquids, including those used in this work. Table 1.2 lists surface energy
values for selected solids.
The γLV is generally simple to measure via a variety of methods, including the pendant drop method,
in which a liquid with known density is suspended from a needle such that its shape is controlled
by the opposing forces of gravity and surface tension. A numerical fit to its profile is then used
to calculate its surface tension using the Young-Laplace equation.19 This may also be extended to
interfacial tension between two liquids, if the pendant drop is immersed in another liquid, which is
useful for studies of emulsions, for example.20

The γSV may be characterized by measuring the contact angles of one or more liquids of known
surface tension. A relatively crude, but very simple, technique is the Zisman method. The contact
angles of series of chemically similar liquids with varying surface tension (for example, linear
alkanes of varying length) are measured, and the intercept of the linear fit yields the highest γLV
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Table 1.2: The approximate surface energies of various solids. Values are taken from [17, 18]

Solid γSV (mJ/m2)

CF3 monolayer 9
CH3 monolayer 23
Polytetrafluoroethylene 19
Polypropylene 31
Polystyrene 34
Poly(methyl methacrylate) 41
Cellulose 89
Glass ∼310
Titanium dioxide ∼530
Silicon oxide ∼1240

liquid that would yield θ=0◦, or an approximation of the solid surface energy. This estimate of γSV
is referred to as the critical surface tension (γc).21 Over the last few decades, numerous refinements
have been made to account for the specific interactions between solids and liquids, including polar
and dispersion bonding. The simplest of these is the Fowke’s method, which uses the contact angles
determined with one polar liquid (typically water) and one non-polar liquid (typically diiodomethane
or hexadecane), with known dispersive and polar surface tension components, to infer γSV. This
method is reasonably accurate for relatively low-surface energy materials, such as hydrophobic
polymers, as long as they do not wet with the non-polar probe liquid. High surface energy materials
such as clean ceramics and metals are far more difficult to accurately measure and reported values
in the literature vary widely. Very high surface energy solid materials are extremely prone to
accumulating a molecular layer of lower surface energy contaminants if not stored in an ultra-high
vacuum environment.22 This makes it nearly impossible to measure them in their native state, and
experimentally determined values may diverge widely from theoretical values.17 Finally, from
measured γLV and γSV values for a solid-liquid pair, one may infer the γSL depending on the contact
angles.

From equation 1.1, one may conclude that liquids exhibiting low surface tension (γLV) such as
ethanol (γLV = 22 mN/m versus 72 mN/m for water) are generally more prone to spreading into a thin
film on a given solid material, as this is energetically favorable. Similarly, a liquid with a given γLV
exhibits higher contact angles on a surface with lower γSV. In the case of water, surfaces are termed
hydrophilic when θE < 90 ◦, and hydrophobic when θE > 90◦. For a smooth surface, the maximum
intrinsic contact angle with water is θE ≈ 120◦, which occurs on a perfluorinated monolayer with
γSV ≈ 9 J/m2, somewhat higher than the often cited critical surface tension determined by Zisman
(γc ≈ 6 J/m2).21,23 Fluorinated monolayers are the most liquid repellent, as fluorine is the most
electronegative element and has limited polarizability. This minimizes intermolecular forces between
a dense trifluoromethylated surface and any contacting liquid.24 There are no known materials that
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exhibit θE > 90◦ with liquids with γLV . 40 mN/m.5

1.2.2 Contact Angle Hysteresis and Sliding Angle
In practice, a single equilibrium contact angle is very rarely observed. Virtually all surfaces exhibit
some chemical heterogeneity or physical roughness, which causes local variations in the liquid-solid
adhesion and therefore variation in the contact angle.25–28 Reproducibly measuring static contact
angles is also highly challenging. Typically, the drop will adopt just one of many metastable states
close to the equilibrium contact angle, biased by exactly how the drop is deposited on the surface –
for example, whether or not the drop is pushed into or pulled away from the surface.29

For the purpose of comparing surfaces, it is preferable to measure and report the complete
range of metastable contact angles possible on the surface. That is, the dynamic contact angles as
measured by the sessile drop technique (Figure 1.3).30 A droplet is held simultaneously in contact
with a microsyringe and the surface. Liquid is gradually added to the droplet until the contact line
begins to move outward at a constant contact angle – this is the advancing contact angle, θa. Then
liquid is slowly withdrawn from the droplet until the contact line moves inward at a constant receding
contact angle, θr . The difference between the two is referred to as the contact angle hysteresis
(∆θ = θa − θr). The exact relationship between θa, θr , and θE is complex and dependent on the
specific properties of the surface.26

Figure 1.3: A range of contact angles may be measured on most substrates, from the receding angle to the
advancing angle, observed on a sessile drop which is expanded/contracted or on a drop which is sliding on an
inclined surface.

Generally, smooth uniform surfaces with repellent chemistry (composed of alkyl, fluoroalkyl,
or methylsiloxane functional groups) or textured surfaces with robust composite interfaces (see
Section 1.2.3.2 below) will exhibit the lowest ∆θ. Minimal ∆θ maximizes the droplet mobility
– a ∆θ ≈ 0◦ indicates that the surface has very few energetic barriers to droplet motion.31 This
relationship between the hysteresis and the angle a substrate must be tilted to allow a droplet to slide
is reasonably well captured by the simple Furmidge relation for smooth surfaces.25,32
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sinα =
γLVw

mg
(cos θr − cos θa) (1.2)

where w is the width of the droplet, γLV is the surface tension of the liquid, m is the mass of the
droplet, g is the acceleration due to gravity, and α is the sliding angle (Figure 1.3).

1.2.3 Wetting on Textured Surfaces

1.2.3.1 Wenzel

Figure 1.4: The possible wetting states on rough surfaces with features smaller than the capillary length
of the liquid are: the fully wetted Wenzel state, in which the liquid fully penetrates into the surface texture,
or the composite Cassie-Baxter state, in which air pockets are entrapped beneath the liquid. Typically the
apparent contact angle θ∗ is greater on the latter, and the droplets are more mobile.

The effect of roughness on wettability was shown in the early 20th century to follow what is now
referred to as the Wenzel equation33

cos θ∗ = r cos θE, (1.3)

Following this relation, the macroscopic apparent contact angle θ∗ is the intrinsic contact angle
of the surface material enhanced by the surface roughness. That is to say, a roughened “philic”
material (θE < 90◦) exhibits a decreased contact angle, which may even approach 0◦. A roughened
“phobic” material (θE > 90◦) exhibits an increase in contact angle. However, in either case, an
increase in r inevitably increases the solid-liquid contact area, and also increases the length and
tortuosity of the contact line. This inevitably increases the ∆θ, and droplets in the Wenzel state on
rough surfaces are generally completely immobile, with θr approaching 0◦. One notable exception
is when the surface texture is conformally coated with a liquid lubricant.34

1.2.3.2 Cassie-Baxter

Certain surfaces may be sufficiently rough and be composed of materials with sufficiently low
surface energy to enable microscale air pockets to be entrapped beneath the liquid (Figure 1.4).
This is known as a composite wetting state, or the Cassie-Baxter state.35 The apparent macroscopic
contact angle is then effectively a weighted average of the contact angles of the liquid on the wetted
solid and the air pockets, which is described by Equation 1.6, the Cassie-Baxter equation.

6



This is a special case of the generic formulation for the contact angle on a heterogeneous surface
comprised of distinct patches (Equation 1.4).36 A liquid droplet floating in zero gravity in contact
with air, affected only by surface tension forces, becomes a sphere, as this minimizes the surface free
energy of the drop. Thus, the contact angle of any liquid on air is 180◦, which may be substituted
into the equation as cos 180◦ = −1, to yield Equation 1.6.

The φs term is the areal fraction of the wetted solid, which is the projected area of the wetted
patches divided by the projected area of the overall composite interface, and is always < 1. Each
wetted patch is effectively in the Wenzel state, where rφ is now strictly the Wenzel roughness of only
the fraction of solid in contact with the liquid (Figure 1.4).

cos θ∗ =
∑

riφi cos θi (1.4)

cos θ∗ = rφφs cos θE + (1 − φs) cos 180◦ (1.5)

cos θ∗ = rφφs cos θE + φs − 1 (1.6)

For a surface with given geometry, the minimum θE required to maintain a liquid in the Cassie
state is readily calculated by equating the apparent contact angles given by equations 1.3 and 1.6, then
solving for θE . This is represented on the θ∗ vs. θE plot in Figure 1.5. This θE is termed the “critical
contact angle”, θc. The Cassie-Baxter state is only the global minimum-energy configuration when
θE ≥ θc. However, it is possible for meta-stable Cassie-Baxter states to exist even when θE < θc, as
described in the following section.

Figure 1.5: The transition between the Cassie-Baxter and Wenzel states on a given surface texture occurs
when the Young’s contact angle drops below a critical contact angle θc. Adapted from [37]
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1.2.4 Repelling Low Surface Tension Liquids
Recall that low γLV liquids exhibit θE < 90◦ even on the lowest surface energy solid material, a
perfluorinated monolayer. This means that a pillar array structure with smooth vertical sidewalls will
never be able to suspend a low surface tension liquid in the Cassie-Baxter state, as the net surface
tension force will point downward into the texture. However, it has been demonstrated that surfaces
with overhanging, or “re-entrant”, texture features can produce Cassie-Baxter states with low γLV

liquids (Figure 1.6).5,38–40 Since these liquids intrinsically wet the material used to fabricate these
re-entrant structures, they necessarily exhibit a metastable Cassie-Baxter state (Figure 1.5).41,42

The re-entrance of a surface feature may be defined by the minimum texture angle, ψmin. ψ is
defined as 180◦ for a flat surface, 90◦ for a vertical wall, and 0◦ on the underside of a completely
overhanging surface feature, such as a “microhoodoo”, a pillar topped with a flat cap. As long as
ψmin ≤ θE of the target liquid on the material of the surface, it may theoretically be suspended in the
Cassie-Baxter state. It has been shown that so-called “doubly re-entrant”, umbrella-like surface
features with ψmin ≈ −89◦, fabricated from un-modified silicon with very high surface energy can
suspend even liquids with θE ≈ 0◦, such as perfluorodecalin due to the texture alone, though with
high ∆θ due to the high wetted area of the flat circular caps.43

Figure 1.6: Liquids cannot be maintained in the Cassie-Baxter state unless the minimum texture angle ψmin
is less than the equilibrium contact angle of the liquid. Left: on a non- re-entrant surface with (ψmin ≥ 90◦),
it is possible to suspend a liquid with an equilibrium contact angle 90d ≥ θ1 ≤ ψmin. Middle: however, a
second lower γLV liquid with θ2 < 90◦ will spontaneously wet. Right: the same low-γLV liquid on a re-entrant
texture with ψmin ≤ θ2 is now stable.

1.2.5 Robust Non-Wetted States
The breakthrough pressure (Pb) is defined as the applied pressure at which a given composite
interface is disrupted by sagging of the liquid-vapor interface or displacement of the local contact
line into the texture, causing a transition from the Cassie-Baxter state to the Wenzel state. For a
given surface, Pb will vary depending on the properties of the contacting liquid. To isolate this
effect, we use a non-dimensional robustness parameter, A∗ which is given as follows:

A∗ =
Pb

Pref
(1.7)
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That is, the breakthrough pressure normalized by the minimum pressure applied by a millimetric
scale droplet. This minimum pressure, Pref, is determined by the properties of the liquid, as

Pref = 2γLV`cap = 2γLV

√
γLV

ρ
(1.8)

where γLV is the surface tension of the liquid, `cap is the capillary length, and ρ is the density of the
liquid. An A∗ � 1 indicates a robust composite interface, whereas an A∗ < 1 indicates spontaneous
wetting. A∗ may be calculated for periodic geometries, such as arrays of pillars, microhoodoos, and
cylindrical fibers.40

Naturally, larger diameter pores in a superhydrophobic or superomniphobic texture reduces the
robustness of the Cassie-Baxter state. However, on a non-wetted surface with a simple periodic
geometry, such as a pillar array, the only way to increase θ and decrease ∆θ, is to reduce φs, the
solid-liquid contact area, by increasing the spacing of the texture elements. One may define D∗, the
feature spacing ratio, or the inverse of φs, and rewrite the Cassie-Baxter equation (1.6) in terms of
this parameter. The apparent contact angle θ∗ increases with increasing D∗.

cos θ∗ =
1

D∗
(rφ cos θE + 1) − 1 (1.9)

The form ofD∗ depends on the geometry of the texture elements. For a square array of square-capped
pillars or hoodoos,

D∗ =
(W + D)2

(W)2
(1.10)

where D is half of the edge-to-edge spacing, and W is half of the width of the square top. For a
square array of circular-capped pillars or hoodoos,

D∗ =
4 (R + D)2

π(R)2
(1.11)

where D is half of the edge-to-edge spacing, and R is the radius of the circular top. For parallel
cylindrical fibers,

D∗ =
R + D

R
(1.12)

where D is half of the edge-to-edge spacing, and R is the radius of the fiber.
In all these cases, a trade-off arises between robustness and droplet mobility. However, a solution

comes from the original inspiration for artificial superhydrophobic surfaces: the leaves of the lotus
plant, Nelumbo nucifera, which exhibits both extremely high droplet mobility and high robustness.
The leaves exhibit hierarchical structures, as is common in nature, formed from microscale bumps
which are themselves covered in nanoscale crystals of hydrophobic wax. This second level of texture
increases the effective D∗ and therefore increases θ∗ and decreases ∆θ, but without increasing the
length scale of the largest pores.44–46 This is schematically illustrated in Figure 1.7. The D∗ of
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hierarchical textures increases multiplicatively, i.e.,

D∗hierarchical =
n∏

i=1
D∗i (1.13)

where n is the number of hierarchical levels. Extending the concept of hierarchical texture to
multiple scales of re-entrant texture, e.g., spherical microparticles on a mesh of cylindrical wires,
also can yield extremely robust, low-∆θ Cassie-Baxter states with very low-γLV liquids.47 This
concept is also systematically explored in the work presented in Chapter 2.

Figure 1.7: While increasing the spacing ratio D∗ of a single-level texture (I to Ib) increases liquid repellence
only by compromising the non-wetted state robustness, adding hierarchical texture elements can achieve both
aims. Repeatedly covering the original pillar array with smaller pillars (II, III) dramatically reduces the area
wetted by the liquid, marked in blue, while maintaining the largest effective pore size DI , and therefore also
the breakthrough pressure, of the original array.

1.2.5.1 Measurement of Breakthrough Pressure

Resistance to wetting under pressure may be experimentally measured by various methods, including
immersion in a column of liquid, impacting droplets from varying heights, or measurement with
drops with very small volumes and high curvatures.48 The hydrostatic pressure applied by a column

10



of liquid is readily calculated as
P = ρgh (1.14)

where ρ is the density of the liquid, g is the acceleration due to gravity, and h is the height of the
liquid above the sample. The wetting state on an immersed textured surface is frequently difficult
to observe, as not all textures will exhibit an evident reflective layer of air, or “plastron”. Droplet
impact is frequently used as an alternative, as there is a clear transition between a droplet rebounding
in the Cassie-Baxter state, or remaining pinned in the Wenzel state. However, the exact applied
pressure of a droplet impacting from a height h is more complex. The lower bound is the dynamic
pressure in equation 1.15, as

P =
1
2
ρV2 (1.15)

where ρ is the density of the liquid and V is the impact velocity. However, the instantaneous pressure
has been claimed to be higher due to shockwaves propagating in the droplet. One such estimate is
referred to as the water hammer pressure,49,50 which may be calculated as

P = kρCV (1.16)

where k is a constant determined by the impact geometry, and is typically taken to be 0.2 for a
spherical droplet impacting a planar surface, ρ is the density of the liquid, C is the velocity of sound
in the liquid, and V is the velocity of the droplet. In our work, however, the droplet impact pressure
was assumed to be equivalent to that in Equation 1.15, as a conservative estimate.

Contact angle measurements with small droplets may also be used to measure wetting under
elevated pressures. A curved liquid meniscus generates a pressure due to the surface tension, known
as the Laplace pressure. This is given by

P = 2
γLV

R
(1.17)

where γLV is the surface tension of the liquid and R is the radius of curvature of the interface.
Spherical drops of decreasing volume therefore exhibit increasing Laplace pressures, and this is a
relatively convenient and controlled method to apply higher pressures. However, this method may
not be well-defined when the drop diameter approaches the length scale of the textured surface
geometry, and the assumptions of the wetting state equations of a randomly textured, homogeneous
surface no longer hold. Additionally, the exact pressure when the droplet begins to wet and no
longer adopts a spherical geometry is poorly defined.

1.2.6 Terminology for Describing Wettability
The response of a liquid on a surface is conventionally categorized as “phobic” or “philic” in terms
of static contact angle, as in Figure 1.2. This highlights whether or not a liquid spontaneously wets a
surface or beads up. This definition, however, is incomplete for describing the suitability of surfaces
with engineered wettability for many applications, as it ignores the mobility of liquid droplets on the
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surface. While increasing droplet mobility is generally correlated with increasing contact angle,
particularly with the onset of the Cassie-Baxter state, many exceptions exist. Surfaces with very
high θE (> 150◦) may also exhibit θ∗r ≈ 0◦, resulting in droplets which are completely adhered
to the surface despite entrapped air pockets. This may or may not be a desirable behavior. Such
surfaces should clearly not be deemed “superhydrophobic” with no qualifiers simply because the
θE > 150◦. Conversely, there are a growing number of smooth surfaces that are capable of readily
shedding low-γLV liquids, but with θE < 90◦, and are commonly referred to as “omniphobic”.8,51

Alternatively, Cheng, et al. referred to their surface exhibiting low ∆θ with linear alkanes as
“statically oleophilic” but “dynamically oleophobic”, which is less concise but perhaps more
precise.52 The conventions in the literature are therefore not always consistent, and a meaningful
presentation of a surface with engineered wettability must include dynamic contact angle data to
accurately convey information.25,26 Table 1.3 contains some of the commonly used nomenclature
in literature and examples of surfaces which fall into these categories. Throughout this thesis, we
report dynamic contact angles, or at least the closely-related droplet sliding or roll-off angles, to
avoid ambiguity where possible.

1.3 Overview of Research
The design and optimization of SHSs/SOSs fabricated by a diverse array of methods has been well

studied.1–6,40,57,62–69 However, most natural and artificial SHSs/SOSs suffer from poor mechanical
durability, including the hierarchically structured hyperbranched surfaces reported in Chapter 2;
their surface features typically are so fragile that they can be easily removed even by the swipe of
a finger.65 There are limited reports of SHSs/SOSs demonstrated to survive the harsh conditions
experienced in a wide array of engineering applications. Chapter 3 details the development of
several mechanically robust, scalable superhydrophobic spray-coatings. The optimal porous but
coalesced texture was found to form due to the partial phase separation of low-γSV fillers from
resilient polymer matrices. Such blends were systematically identified using Hansen Solubility
Theory. The superhydrophobicity of these surfaces was retained after significant abrasion damage
under an industry-standard rotary abrasion test, and could be recovered by heating after damage
from numerous other chemically and physically damaging exposures. However, the surface feature
length scale of these surfaces were primarily in the tens to hundreds of micrometers, which limited
their resistance to wetting under high pressures, their transparency, and their ability to reduce drag
in turbulent flows. These issues are partly addressed with the addition of hierarchical nanostructure
to these surfaces and the reduction of their overall roughness, as discussed in Section 3.7.

Additionally, wetting due to applied pressure is exacerbated by low liquid surface tension. It
is possible to modify the durable spray-coatings to produce superomniphobic surfaces capable of
repelling some low-γLV liquids, but not without compromising their mechanical robustness (see
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Table 1.3: Some possible liquid wettabilities, organized generally from wettable to non-wettable. Water is
distinct from all other liquids because of its anomalously high γLV and high polarity. Oils tend to be non-polar,
moderate surface tension liquids such as medium chain alkanes, e.g., hexadecane. “Omni-” includes much
lower γLV liquids such as polar solvents, silicone oil, and fluorinated liquids, but not necessarily simultaneously.
Adapted from the dissertation of Kevin Golovin.

Designation Repels θ (◦) ∆θ (◦) Examples

Superomniphilic None θE ≈ 0◦ –
Ultra-clean smooth polar solids
(oxides, metals). Roughened high
surface energy solids, e.g., paper.

Superoleophilic Water θE ≈ 0◦ –

Roughened intermediate
surface-energy polymers exhibit
intermediate contact angles with

water but wet with oil.

Hydrophilic-
Oleophobic

Oils but not water θE � 0◦ –

Counter-intuitive surfaces with
responsive functional groups capable
of selectively wetting with polar

liquids and repelling non-polar ones
with lower γLV, e.g.,

fluoro-compounds embedded in
hydrogels or tethered
fluorosurfactants.4,53

Hydrophobic Water θE > 90◦ – Smooth polyethylene.54 Also tend to
be oleophilic.

Sticky superhy-
drophobic

Water θ∗ > 150◦ ∆θ∗ � 10◦ †
Superhydrophobic surfaces with
(deliberately) introduced wetting

defects. Tend to be superoleophilic.55

Superhydrophobic Water θ∗ > 150◦ ∆θ∗ ≈ 0◦ Several leaves, including the lotus.56
Also tend to be (super)oleophilic.

Oleophobic Oils 90◦ < θ∗ � 150◦ – Roughened PTFE1

Superoleophobic Oils θ∗ > 150◦ ∆θ∗ < 10◦ †
Micro-hoodoos, electrospun

systems.40 Some authors prefer
“superamphiphobic”57,58

Omniphobic All – ∆θ∗ ≈ 0◦
Perfluorinated lubricated surfaces,

grafted liquid-like films, and smooth
perfluorinated films.8,51,59

Superomniphobic All θ∗ > 150◦ ∆θ∗ < 10◦ † Hierarchcial perfluorinated re-entrant
texture47,60,61

†No broad consensus in the surface science community.
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Section 4.2.2 and Figure 4.11). In Chapter 4, we demonstrate smooth, all-solid, and substrate-
independent coatings produced from the similar materials to the durable superhydrophobic surface
described above, also optimized for partial miscibility. These coatings exhibited low sliding angles
with liquids with broadly varying γLV, from water to silicone oil, were invulnerable to wetting under
impact, and were transparent. This approach addressed drawbacks inherent to lubricated systems
and molecular monolayer approaches mentioned above. Lubricated surfaces can result in relatively
pressure-stable repellency to a broad range of liquids immiscible with the infused inert liquid, but
the addition of a liquid component to the system compromises mechanical durability and long term
retention of non-wetting properties. Covering a substrate with self-assembled monolayers of low
surface energy molecules also requires careful processing and is highly dependent on matching
surface chemistry with the reactive molecule to achieve smooth, uniform coverage. The coatings
described here may be applied with simple methods to a broad range of materials to render them
omniphobic.

However, these smooth coatings remained vulnerable to elevated temperatures, and abrasion
resistance was only moderately improved compared to textured superomniphobic or lubricated
surfaces. They also could not repel solvents that strongly swelled the matrix polymer or dissolved
the fluorinated filler. In subsequent work, presented in Chapter 5, it was found that a grafted layer
of poly(dimethyl siloxane) on silicon and glass substrates achieved similarly low ∆θ with a broad
range of liquids, even ultra-low-γLV fluorinated lubricants. This surface treatment was found to be
comparatively invulnerable to elevated temperatures and light abrasion. The ultrathin liquid-like
layers also reduced adhesion to various solid contaminants, as well as permitted the easy removal of
films of marine algae.

Additionally, liquid-repellent surfaces may be spatially patterned to confine liquids into domains
or channels. This has applications in open-channel microfluidic devices, which have the potential
to be much less expensive and easier to fabricate than their closed-channel counterparts. This is
especially true when they are produced on inexpensive substrates such as fluorinated paper, with
wettable channels deposited using simple printing methods. The work in Chapters 6, 7, and 8
focused on extending the capability of open-channel microfluidic devices to contain low-γLV liquids,
enabling a number of applications thus far unexplored on open-channel devices.

The final chapter reports another application of robust, hierarchically textured superhydrophobic
surfaces: culture plates capable of readily generating free-floating spheroidal clusters of cancer
cells for in vitro biological studies and therapeutic assays which have improved accuracy over
conventional two-dimensional culturing methods. Compared to commonly used hanging drop plates,
which suspend droplets from hydrophobic surfaces, these superhydrophobic plates are significantly
more resistant to droplet loss due to impact during routine handling.
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CHAPTER 2

Rational Design of Hyperbranched Nanowire
Systems for Tunable Superomniphobic Surfaces

Enabled by Atomic Layer Deposition

This chapter is paraphrased from a published article in ACS Nano,61 and was a collaborative effort
with Prof. Neil Dasgupta. The fabrication method was primarily developed by Ashley Bielinski,
who is an equal first author on the manuscript. It is included here as a systematic experimental
demonstration of some of the wettability parameters outlined in Section 1.2.

2.1 Introduction
As discussed in the introductory chapter, superomniphobic surfaces display contact angles

θ∗ > 150◦ and low contact angle hysteresis with virtually all high and low surface tension liquids,
including water, oils, solvents, acids, bases, and alcohols. Over the last decade, such surfaces have
attracted immense commercial and academic interest due to their potential to impact a large number
of applications such as self-cleaning surfaces,70 non-fouling surfaces,71 stain-free clothing and
chemical-resistant protective wear,72 drag reduction,73 corrosion prevention,74 and separation of
liquids.75 Previous work has discussed the significance of surface energy, roughness, and the critical
role of re-entrant texture in obtaining surfaces that can repel low surface tension liquids such as oils,
solvents and alcohols.5,39,42 Previous work has also discussed how hierarchical scales of texture (i.e.,
texture on two or more length scales) can yield high contact angles and decrease the contact angle
hysteresis of superomniphobic surfaces by reducing the solid-liquid contact area.46,47,76

Here, we report a method for the systematic design and fabrication of hierarchical zinc oxide
nanowire structures which may be tuned to selectively repel liquids of various surface tensions.
This is enabled by independent tuning of the geometric parameters at each hierarchical level.77

Figure 2.1 describes the three levels of branched hierarchy, along with the nanowire spacing, size,
and orientation design parameters that are manipulated at each level (Dx , Rx , and θx , respectively,
where x indicates the level of hierarchy). Branched NWs with tunable density and orientation were
grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for
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Figure 2.1: Diagram showing three successive levels of hierarchy along with the size, density, and orientation
design parameters that can be controlled at each level.

NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows
for the rational design and optimization of three-level hierarchical structures, in which the geometric
parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled
relationships between geometry and contact angles for a variety of liquids, which is supported by
mathematical models. The most repellent superomniphobic surface was designed with three levels
of hierarchy and achieved the following advancing/receding contact angles with water: 172◦/170◦,
hexadecane: 166◦/156◦, octane: 162◦/145◦, and heptane: 160◦/130◦ (Table 2.1).

Prior to this work, it had not been possible to fabricate superomniphobic surfaces with three or
more hierarchical scales of texture where the size, spacing, and angular orientation of features within
each scale of texture can be independently varied and rationally controlled. This capability would
enable the systematic study of the parameters that affect the robustness of superomniphobicity.78,79

Achieving such independent control over the geometry requires new approaches that overcome
the limitations of conventional top-down lithographic processes. Most current approaches to the
assembly of hierarchical NW structures onto a substrate begin with either a patterning step such
as lithography or self-assembly, or rely on stochastic processes such as random attachment or
supersaturated phase transformations.80–86 Patterning steps are limited by resolution, scalability,
substrate compatibility, and cost. In particular, challenges arise when non-planar substrates are used,
as photolithography is line-of-sight limited. Random attachment or supersaturation methods are
simple and low-cost, but they lack the control over the feature size, orientation, and spacing needed
to enable materials by design. While complex hierarchically-branched nanostructures can be formed
using a variety of colloidal synthesis approaches,87–89 the formation of ordered assemblies spanning
multiple length scales and over large area substrates remains challenging using solution-phase
chemistry alone. In particular, the ability to produce tunable 3D features on the surface of high
aspect ratio substrates requires extremely conformal deposition processes, as each sequential level
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of hierarchy must be assembled on the previous nonplanar surface.
For bottom-up NW growth, directed heterogeneous nucleation on nonplanar substrates requires

control over the substrate surface chemistry and crystallographic texture. The rational growth of
branched and hyperbranched NWs has been previously demonstrated using sequential seeding
processes that rely on either solution- or vapor-phase deposition (typically sputtering or evaporation)
of catalyst seeds onto NW surfaces.90–94

However, these approaches are limited in their ability to simultaneously control seed size,
density and crystallographic orientation, especially over high-aspect ratio surfaces with both concave
and convex features. This becomes increasingly challenging with multiple levels of hierarchy.
Additionally, the use of high temperature and/or high vacuum processes limits the scalability
and substrate compatibility of these approaches. To overcome this limitation, we used atomic
layer deposition (ALD) to independently control the interfacial composition, morphology, and
microstructure of seed layers between three different levels of hierarchy, which directed subsequent
heterogeneous nucleation and growth of hyperbranched structures.

2.2 Rational Design of Superomniphobic Surfaces
Superomniphobic rough surfaces featuring hierarchical scales of texture are critical for achieving

very high contact angles while maintaining a stable and robust composite interface with low
surface tension liquids. The porosity of the largest texture scale determines the robustness of the
Cassie-Baxter state, or its resistance to liquid impingement under pressure. As a consequence,
adding multiple levels of texture reduces the solid-liquid contact area, φs, without compromising the
surface’s robustness against wetting.47,77,95 We have previously shown that re-entrant or overhanging
texture is also critical for enabling the Cassie-Baxter state with low surface tension liquids, such
as oils and organic solvents, for which the Young’s contact angle is θ � 90◦.5,6,74 The nanowire
growth method demonstrated in this work is ideally suited to fabricating surfaces with multi-level
hierarchical scales of re-entrant texture.

Ideally, achieving a composite interface with a low φs also minimizes contact angle hysteresis, ∆θ,
or the difference observed between the maximum or advancing contact angle (θ∗a) and the minimum
or receding contact angle (θ∗r ) measurable on different surfaces. This is because any contacting
liquid has effectively no interaction with the entrapped air. Surfaces with minimal ∆θ allow liquid
droplets to easily roll or even bounce off.47,77,95 Our capability of adding multiple levels of branched
nanowires, as illustrated in Figure 2.1, has the potential to significantly reduce φs, increase θ∗ and
decrease ∆θ simultaneously without increasing the largest length scale of porosity, which would
compromise the robustness of the composite interface. By controlling the individual geometric
parameters of each level of hierarchical texture in this study, we demonstrate that model-based
design of materials with tunable contact angles, contact angle hysteresis, and Cassie-Baxter state
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robustness is feasible. Overall, this new technique could prove to be a powerful platform for the
systematic design of superomniphobic structures.

2.3 Materials and Methods
2.3.1 Atomic Layer Deposition
Atomic Layer Deposition (ALD) is a vapor-phase thin film deposition process based on sequential
exposure of a substrate to precursors that undergo self-limiting surface reactions.96 The precursor
sequence can be altered over the course of film deposition to create laminar structures or compositional
variations with sub-nanometer resolution.97 The deposition process is not line-of-sight limited,
enabling conformal coverage of ultra-high aspect ratio (> 2000:1) structures with negligible
thickness variation.98 We demonstrate here the power of ALD to control the hydrothermal synthesis
of hyperbranched nanostructures on non-planar surfaces. The atomic scale control of thickness,
position, and crystal structure provided by ALD enables independently programmable control of
feature size, density, and orientation within each level of the hierarchical structure, as shown in
Figure 2.1. Furthermore, this low-temperature approach can be scaled to a wide range of substrates,
including flexible plastics and paper.99 The details of the ALD apparatus used may be found in
previously published articles from the Dasgupta group.93,99

2.3.2 Substrates, Seed Layer, and Dense Unbranched Nanowires
The hierarchical nanostructure synthesis procedure starts with the hydrothermal growth of ZnO
NWs on planar silicon wafers or arrays of cylindrical microposts. The microposts were fabricated
via conventional photolithographic techniques in the Lurie Nanofabrication Facility. Clean silicon
wafers were spin coated with a 3 µm layer of Dow Megaposit SPR 220 photoresist, which was
patterned into arrays of circular dots. The patterned surface was then anisotropically etched
using a conventional Bosch Deep Reactive Ion Etch (DRIE) process in an STS Pegasus 4, which
involves alternating cycles of plasma etching and passivation. ALD ZnO films were deposited onto
substrates as a nanocrystalline seed layer to promote heterogeneous nucleation. It was deposited at a
substrate temperature of 150 ◦C using diethyl zinc and DI water as the precursors, resulting in a
polycrystalline wurtzite film which increased in thickness at 2.0Å/cycle. Grains in the seed layer
with crystallographic orientation provide thermodynamically favorable nucleation sites for ZnO
NWs.100 The final dimensions of the pillar arrays are noted in Table 2.1 and an example is shown in
Figure 2.2.

After the seed layer was deposited, the NWs were grown using a low temperature, atmospheric
pressure hydrothermal growth procedure, which has been previously published.99,100 The samples
were immersed in a solution of zinc nitrate hexahydrate (25 mM), hexamethylenetetramine (25 mM),
and polyethylenimine (5 mM) in DI water. The hydrothermal growth was performed at 90 ◦C and
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Figure 2.2: (a,b) SEM images showing silicon micropost arrays with a smooth, highly conformal seed layer
of ZnO deposited by ALD. The scalloped side walls from the cyclic Bosch etch process can be clearly seen.

Figure 2.3: SEM images of silicon microposts with ZnO nanowires.

ambient pressure for 30 to 90 minutes. Varying time yielded varying lengths of nanowires. The
substrates were suspended facing at a downward angle in the solution to prevent homogeneously
nucleated precipitate from settling on the surface.

We have previously shown that properties of the ALD seed layer, including grain orientation,
roughness, and surface stress effects, can be precisely tuned, allowing for rational control of the
resulting NW array properties such as axial orientation, density, and size. Control of NW growth is
possible regardless of the starting substrate material or geometry, including hierarchical growth on
high-aspect ratio surfaces. Figure 2.3 shows examples of single nanowires of varying size on silicon
microposts.

2.3.3 Perpendicular Nanowires with Tunable Spacing
Hierarchical structures require the sequential growth of branched NWs with independent control of
size, orientation, and spacing. This necessitates that the initial “trunk” nanowires are sufficiently
spaced (D2 in Figure 2.1) as well as perpendicularly oriented to the substrate (θ2 = 90◦) to allow
subsequent branches to fit. We developed a new ALD seeding technique that decoupled the NW
orientation and density, unlike in our previous work.99 As shown in Figure 2.4a, ALD was used
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Figure 2.4: (a) Diagram of the low-density NW growth procedure showing the ZnO seed layer, partial TiO2
overlayer, and hydrothermal NW growth. (b) 90◦ cross-section SEM image of low-density NWs grown with
4 cycles of TiO2 over a 100 cycle ZnO seed layer showing NW orientation perpendicular to the substrate.
(c–e) top-down SEM images of NWs grown with 3, 4, and 5 cycles of TiO2 over a 100 cycle ZnO seed layer
showing decreased array density, increased D2 values, with increased number of TiO2 cycles. The increase in
diameter observed with the decrease in density is a result of decreased steric hindrance and decreased mass
transport limitations in the growth solution at the base and sides of the nanowires.

to first deposit a ZnO seed layer with preferential texture to enable perpendicular NWs. Then, a
second incomplete monolayer was deposited on top of the ZnO seed layer consisting of 3–5 cycles
of amorphous ALD TiO2, which does not seed ZnO NW growth. It was deposited at a substrate
temperature of 200 ◦C using tetrakis(dimethylamido)titanium and DI water as the precursors,
resulting in an amorphous film that grew in thickness at 0.6 Å /cycle. Thus, the incomplete TiO2

layer partially blocks nucleation sites on the ZnO seed layer, while still leaving some exposed
crystalline regions to the growth solution. Due to the self-limiting nature of ALD, the surface fraction
of the seed layer that is masked from the solution can be precisely and reproducibly controlled with
sub-monolayer precision by varying the number of ALD TiO2 overlayer cycles.

Figures 2.4c–e shows the progressive decrease in NW density as the number of TiO2 overlayer
cycles is increased from 3 to 5. This can be accomplished irrespective of substrate material and
geometry, by simply “encoding” the recipe for NW growth in the ALD seed layer. This enables
independent control of inter-NW spacing, D2, as determined by the TiO2 partial interlayer, while
maintaining perpendicular orientation, θ =∼ 90◦, which is determined by the ZnO seed layer,
shown in Figure 2.4b. When using thinner TiO2 overlayers (1–2 cycles), the NW density remains
nearly identical to that on the initial seed layer, suggesting insufficient blocking of active sites
for heterogeneous nucleation. For thicker overlayers of ≥ 6 cycles, the NW density continues to
decrease until a continuous TiO2 overlayer forms, at which point the density is effectively zero.
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Figure 2.5: HRTEM and annular diffraction patterns (inset) of (a) single-crystalline ZnO NW, (b) ZnO
NW with epitaxial ALD ZnO film growth, and (c) ZnO NW with amorphous ALD TiO2 blocking layer and
polycrystalline ALD ZnO seed layer. (d) EDX analysis for element mapping, and (e) dark field STEM image
of ZnO NW with ALD TiO2 and ZnO films, where the red box shows the area analyzed in (d).

2.3.4 Branched Nanowires
Sequential deposition of a ZnO seed layer on uncoated ZnO nanowires was not successful, as
epitaxial growth was observed despite the low temperature (150 ◦C) used, thereby merely enlarging
the initial NWs. The epitaxial growth behavior was confirmed using high-resolution transmission
electron microscopy (HRTEM), shown in Figure 2.5. NW arrays were grown on planar silicon
substrates, coated with the desired ALD films, and then transferred to TEM grids for study. Three
samples were observed. The first was a control sample of as-grown ZnO NWs. The second had a
shell of 50 cycles of ZnO deposited on the ZnO NWs, and the third had an inner shell of 100 cycles
of TiO2 followed by an outer shell of 50 cycles of ZnO.

In order to block epitaxial growth, we devised a method to deposit an interlayer between the
initial low-density NW array and the second ZnO seed layer for the branches as shown in Figure 2.6a.
For this, we used thin (50–100 cycle) ALD TiO2 interlayers. Unlike the incomplete TiO2 films used
for the low-density synthesis, > 50 cycles of TiO2 creates a complete film that totally encapsulates
the surface, creating a core-shell structure. Figure 2.5c shows that the addition of an amorphous
TiO2 interlayer between the core NW and ALD ZnO layer disrupts epitaxial growth, resulting in
a nanocrystalline ZnO outer shell. This ability to synthesize coaxial core-shell-shell NWs with
programmable thickness, composition, and crystallinity is uniquely enabled by the ALD process.93
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Figure 2.6: (a) Diagram of ALD interlayer procedure for branched NW seeding, starting with an array
of low-density ZnO NWs, then adding: (i) ALD TiO2 blocking layer, (ii) ALD ZnO seed layer, then
(iii) Hydrothermally grown NWs. (b) Cross-section SEM of branched ZnO NWs. (c) Cross-section SEM and
diagram of a split branched NW and showing the NW core, ALD TiO2 blocking layer, ALD ZnO seed layer,
and ZnO branches. (d) Top-down SEM of branched ZnO NWs.

Figure 2.5d shows EDX elemental mapping for the boxed region of the ZnO NW with coaxial
TiO2-ZnO shell imaged in the lower magnification dark-field STEM image in Figure 2.5e. This
elemental map shows that the ALD films coat the NW conformally and that the shell interfaces
remain distinct. For the TEM samples, 100 cycles (6 nm) of TiO2 was used for the blocking layer as
it was easier to image than the 3 nm film used in the standard synthesis procedure.

2.3.5 Hierarchical Structures
The two strategies detailed above: partial blocking of the ZnO seed layer, and blocking of epitaxial
growth, may be combined to fabricate highly hierarchical structures with independently tunable
parameters (Figure 2.6). The thickness of the partial blocking TiO2 layer controls “trunk” nanowire
geometry (R2, D2, and θ2), and the number of cycles of the second epitaxially-blocked ZnO seed
layer controls the “branch” geometry (R3, D3, and θ3). SEM images of branched ZnO NWs with
large inter-trunk spacing is shown in Figure 2.6b. Figure 2.6c shows a cross-sectional SEM image of
a single branched NW that fractured along its axis, in which the core NW, amorphous TiO2 blocking
layer, nanocrystalline ZnO shell seed layer, and ZnO branches can all be clearly resolved.

Figure 2.7 shows SEM images of branched NWs grown perpendicular to the surface of silicon
microposts. The SEM images demonstrate that the synthesis method described above for branched
NWs with controlled density is suitable for growth on textured substrates with high aspect-ratios,
and is not line-of-sight dependent. These posts were synthesized using standard photolithography
and anisotropic dry etching for simplicity, however, the substrate versatility of this approach allows
for conformal coating of virtually any micro- or nano-structured surface fabricated from various
materials. Figures 2.7b,c shows that the control of NW size, orientation, and inter-NW density can
be independently controlled and maintained along the entire surface of these textured structures. For
example, by increasing the number of ALD TiO2 overlayer cycles before the ZnO NW “trunk” layer
growth, Figure 2.7c demonstrates that a larger inter-NW spacing of the trunks can be conformally
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Figure 2.7: SEM images of various hyperbranched structures with three levels of hierarchy (a) 45◦ view of
branched ZnO NWs on silicon microposts (seeded by a 4 cycle TiO2 overlayer), (b) branched NWs grown
with higher density “trunks” (seeded by a 4 cycle TiO2 overlayer) (c) branched NWs grown with lower density
“trunks” (seeded by a 5 cycle TiO2 overlayer).

achieved along the micropost surface. The resulting hyperbranched structures thus allow for
individual control of each level of hierarchy in this three-level structure, as proposed in Figure 2.1,
enabling the design and optimization of surface texture for structural omniphobicity, which is
described in the following section.

2.3.6 Fluoro-silanization
A low-surface-energy coating is necessary to render the hierarchical structures non-wettable by
most liquids. The lowest surface energy material is a trifluoromethyl monolayer, so a fluorinated
silane was chosen as the modifying layer. A final overlayer of 50 cycles of Al2O3 was deposited
on each sample to prepare the surface for silanization, as silanes react best with hydroxyl-rich
oxide surfaces such as Al2O3, SiO2, and TiO2. Al2O3 was deposited at a substrate temperature
of 150 ◦C using trimethylaluminum and DI water as the precursors. The Al2O3 was amorphous
as-deposited and had a growth rate of 1.0Å/cycle. The samples were then cleaned and activated
with oxygen plasma for 30 minutes (30W, Harrick Plasma PDC-001). A simple vapor-phase
silanization was carried out by covering the sample on a 125 ◦C hot plate next to a cuvette of
(heptadecafluoro-1,1,2,2-tetrahydrodecyl)-1-trichlorosilane for 2 hours. The samples were then
rinsed with 2,3-dihydrodecafluoropentane (Dupont Vertrel XF) and isopropyl alcohol (Fisher
Scientific) and dried with compressed air prior to measurement.
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2.3.7 Characterization Methods

2.3.7.1 Electron Microscopy

A TESCAN Mira 3 scanning electron microscope was used for the SEM images. The TEM images,
STEM image, and EDS analysis were performed using an FEI Titan 80-300 transmission electron
microscope, which was operated at 300 kV and fitted with a spherical aberration corrector for the
objective lens.

2.3.7.2 Contact Angle Measurements

Contact angle measurements were performed with a Ramé-Hart 200-F1 contact angle goniometer
using the sessile drop technique, as described in Section 1.2.2. Deionized water, as well as
hexadecane, decane, octane, hexane, and heptane (purchased from Fisher Scientific) were used as
probe liquids. Advancing and receding contact angles were obtained by measuring the angle while
the liquid was slowly added to or removed from a ∼3 µL droplet in contact with the sample and a
micrometer syringe. At least three measurements were performed per sample and the standard error
was ±2◦.

2.3.7.3 Breakthrough Pressure Measurement

Droplets of hexadecane were released from ameasured height above the sample from amicro-syringe.
The droplet impact was recorded with a high-speed camera (Fastec Imaging HiSpec 1). Droplets
that did not rebound completely were considered to have exceeded the breakthrough pressure and
partially wetted the texture. As discussed in the introductory chapter, the minimum pressure exerted
by an impinging droplet released from a height h may be estimated by Equation 1.15. The highest
pressure at which droplets completely rebounded was normalized with Pref to yield an experimentally
measured robustness parameter A∗ for hexadecane on each surface.

2.4 Results
To demonstrate the application of these structures as a platform for systematically designing

superomniphobic surfaces, we performed a series of experiments to establish the relationship
between hierarchical scales of texture and liquid repellency. In all cases, the outer surface of
structures was modified by surface functionalization with a perfluorinated monolayer (see methods).
This allowed for a consistent surface energy for all of the fabricated samples, enabling quantitative
comparison of purely geometric effects on the obtained contact angles. On smooth planar samples,
this perfluorinated monolayer treatment yielded advancing and receding contact angles with water,
hexadecane, octane, and heptane of 117◦/92◦, 67◦/54◦, 51◦/41◦, and 43◦/39◦ respectively, consistent
with a highly fluorinated surface. Subsequent modification of the surface geometry using the
aforementioned technique allowed us to rationally design surfaces with hierarchical scales of texture
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that maximize the robustness of the composite interface (allowing lower surface tension liquids to
be supported in the Cassie-Baxter state) and minimize the contact angle hysteresis (allowing liquid
droplets to easily roll from the surface).

A complete list of measured contact angles on the different surfaces fabricated in this work
is reported in Table 2.1. The nanostructures were deposited on both planar silicon and silicon
microposts of varying dimensions, hereafter specified by the post diameter × the edge-to-edge
spacing in micrometers. The deep reactive ion etching (DRIE) fabrication method for the microposts
produced a characteristic scalloped profile on the vertical surfaces (Figure 2.2).101 The nanotextures
include planar ALD films, unbranched nanowires (NWs), and branched nanowires with decreasing
“trunk” density, hereafter referred to as BNW-3, BNW-4, BNW-5, and BNW-7, with the number
referring to the number of TiO2 cycles in the overlayer (Table 2.1, Figure 2.8).

Figure 2.8: SEM images of representative samples from Table 2.1. From left to right: planar, unbranched
NWs, BNW-3, BNW-4, BNW-5, and BNW-7.

To characterize the porosity of these disparate surfaces, we use the spacing ratio D∗.40 D∗ is
effectively the inverse of the solid contact area φs, and in the case of these hierarchical arrays, it is
given as:

D∗ =
4
π

(
(R + D)2

R2

)
(2.1)

Here R and D refer to the size and spacing parameters shown in Figure 2.1. The apparent contact
angle, θ ∗, on a composite interface increases with increasing values of D∗. This is typically
accompanied with a simultaneous reduction in the contact angle hysteresis. The Cassie-Baxter
equation (Equation 1.6) can be re-written in terms of the spacing ratio as:

cos θ∗ = −1 +
1

D∗
(1 + rφ cos θ) (2.2)

For each level of additional texture, the D∗ parameter can be determined by multiplying the D∗

values of each individual scale of texture. For example D∗ values for NWs on a micropost array
would be D∗microposts × D∗NWs (Figure 2.1).

Planar ALD coated silicon microposts with low values of D∗ (< 20), exhibit larger contact angle
hysteresis even with the liquids that they are able to support in the Cassie-Baxter state. Their large
planar tops are wetted by the liquids, resulting in a high values of φs, and subsequently larger
contact angle hysteresis (for example, ∆θ > 28◦ even for water). These samples are highlighted in
Figure 2.9a,b within region i. Adding non-wetted, hierarchical texture significantly reduces the
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Table 2.1: Contact angles on fluorosilanized samples with different combinations of microscale geometries
(planar and microposts with varying spacing) and nanoscale geometries (planar ALD coatings, unbranched
nanowires, and branched nanowires with increasing inter-nanowire spacing)

Nanoscale
Geometry

Microscale geometry:
Radius × edge-to-edge

spacing (µm)

Contact angles (θ∗a/θ∗r ,◦)

Water Hexadecane Octane Heptane

planar planar 117/92 67/54 51/41 43/39

post, 13×32 167/139 163/127 109/0 –

post, 13×17 167/130 162/120 123/0 –

post, 23×27 161/116 163/116 116/0 116/0

post, 23×17 162/109 162/106 122/0 102/0

unbranched
NWs

planar 172/166 108/0 – –

post 13×32 169/166 164/131 117/0 –

post 13×17 167/163 165/116 158/101 –

post 23×27 169/154 165/115 130/0 120/0

post 23×17 170/161 162/99 162/99 113/0

BNW-3 planar 174/168 150/0 – –

post, 13×32 170/168 162/128 167/121 –

post, 13×17 169/167 163/114 163/101 –

post, 23×27 168/158 160/121 159/103 –

post, 23×17 170/168 160/99 160/89 94/0

BNW-4 planar 173/169 161/102 144/0 –

post, 5×45 172/170 166/156 162/145 160/130

post, 5×30 172/170 164/152 162/142 159/130

post, 13×32 171/169 165/146 162/119 161/110

BNW-5 planar 172/170 164/108 122/0 –

post, 13×32 171/169 167/149 159/105 0/0

post, 13×17 170/167 167/139 159/102 129/0

post, 23×27 169/162 167/137 157/95 129/0

post, 23×17 169/165 166/127 158/90 129/0

BNW-7 planar 174/171 135/0 – –
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Figure 2.9: Advancing and receding contact angles with (a) water and (b) hexadecane versus the spacing
ratio (D∗) for planar, unbranched, and branched NWs of varying density on planar and micropost substrates.
Generally, contact angles increase and contact angle hysteresis decreases with increasing values of D∗ as long
as a composite interface is maintained. Samples may be separated into four groups based on their receding
hexadecane contact angles as highlighted in the figure. (i) contains microposts without nanowires, exhibiting
a high hysteresis Cassie-Baxter state with water and hexadecane. (ii) contains nanowires on planar substrates
with insufficient re-entrant texture or which are too sparse, exhibiting the Wenzel state with hexadecane. (iii)
contains hierarchical structures with lower receding hexadecane contact angles than the non-hierarchical
posts in (i), due to nanotexture with insufficient re-entrance being wetted by hexadecane and (iv) contains
hierarchical structures (mostly branched nanowires on microposts) with reduced hysteresis with hexadecane
compared to (i).

contact angle hysteresis due to the decreased φs. The optimal samples are those with three levels
of hierarchy, including BNW-4s and BNW-5s on microposts, located in region iv of Figure 2.9a,b.
They produce significantly lower contact angle hysteresis with both water and hexadecane than
planar ALD on posts (∆θ as low as ∼1◦ and 10◦ respectively). As a consequence, low surface
tension liquids readily roll or even bounce from these surfaces.

For a hierarchical texture to improve contact angle hysteresis over the microposts alone, the
nano-texture itself must exhibit a greater receding contact angle with the liquid than a planar surface.
For these highly rough nanotextures, this is equivalent to whether or not they maintain a composite
interface with the contacting liquid. Liquids in the Wenzel state on nanowires exhibit effectively zero
θ∗r (e.g., arrays of NWs or BNW-3s on planar substrates in Figure 2.9a,b, region ii). Hierarchical
arrays of NWs or BNW-3s on microposts, therefore, exhibit hexadecane contact angle hysteresis
values greater than those of planar microposts despite their significantly higher D∗ (samples in
Figure 2.9a,b region iii). However, as NWs and BNW-3s exhibit a robust composite interface with
water, these samples exhibit very low hysteresis superhydrophobicity compared to planar coated
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Figure 2.10: Robustness factor A∗ measured with hexadecane droplet impact tests versus the spacing ratio
D∗. The solid colored lines are theoretical A∗ values for hexadecane calculated over varying inter-hoodoo
spacing (D) for arrays of hoodoos, each corresponding to a fixed hoodoo cap radius, R, (labeled on the plot).
For samples with the same type of texture, e.g., planar ALD coated posts of varying inter-post spacing D,
increasing D∗ decreases the robustness of the composite interface, following this theoretical trend. To obtain
excellent superomniphobicity, it is critical to circumvent this trade-off and simultaneously maximize A∗ and
D∗. This is done by introducing hierarchical texture – e.g., unbranched nanowires on posts have increased A∗
and D∗ compared to planar ALD coated posts, and the A∗, D∗ values for BNW-4s on posts, with three levels
of hierarchy, are increased even further.

Figure 2.11: Representative photographs from the contact angle goniometer of the advancing contact angles
with water, hexadecane, decane, and octane on a sample of BNW-4s on 13×32 posts.
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microposts. To achieve low hysteresis superomniphobicity, therefore, it is not sufficient to add
nanowires of any arbitrary geometry to a microstructured substrate.

As mentioned in the introduction, the robustness parameter, A∗ = Pb/Pref, may be used to
characterize the resistance to wetting of superomniphobic surfaces.5,6,77 Robust Cassie-Baxter states
are characterized by A∗ � 1. A∗ may be directly measured or calculated for regular geometries. For
the purposes of calculating robustness, the geometries produced in this work may be approximated
as “micro-hoodoos”, which are posts with overhanging horizontal caps.6 As derived in our previous
work, the robustness factor A∗ for micro-hoodoos may be calculated as

A∗ ≈
(

1
H∗
+

1
T∗

)−1
(2.3)

where

H∗ =
2Redge`cap cos θ

D2(1 +
√

D∗)

(
(1 − cos θ) +

H
Redge

)
(2.4)

and

T∗ =
`cap sin(θ − ψmin)

D(1 +
√

D∗)
(2.5)

where Redge is the radius of curvature of the edge of the overhanging surface, D is the edge-to-edge
spacing between post tops, R is the radius of the hoodoo caps, D∗ is the spacing ratio defined in
Equation 3, and ψmin is the minimum texture angle for a given surface, which is defined from
the horizontal such that it is 90◦ for a vertical wall, and 0◦ for the bottom of an overhang on a
“micro-hoodoo”.

A robust composite interface with very high breakthrough pressure is predicted by high values
of the robustness factor (A∗ � 1), while A∗ < 1 indicates complete wetting. We have previously
shown that the A∗ parameter is capable of providing an a priori estimation of the stability of the
composite Cassie-Baxter state on various textured surfaces.5,40 In this work, A∗ was determined
experimentally by observing the lowest surface tension liquid supported in the Cassie-Baxter state,
as well as by measuring breakthrough pressures with impacting hexadecane droplets (details in
Methods section). If the inherent Young’s contact angle (θ) for the contacting liquid on the planar
surface falls below the ψmin, the Cassie-Baxter state is no longer possible, as the net surface traction
points downward into the texture. For example, the unbranched NWs on a planar substrate have a
ψmin close to 90◦, and therefore only maintain water in the Cassie-Baxter state. On the etched posts
(ψmin ∼55◦ due to the scalloped texture on the walls), water and hexadecane are supported in the
Cassie-Baxter state, while lower surface tension liquids such as octane (γLV = 21.6 mN/m) are in
the wetted state (e.g., octane θ∗a/θ∗r = 109◦/0◦ on 13×32 posts). Therefore, A∗ � 1 for water and
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hexadecane, while A∗ < 1 for lower surface tension liquids such as octane. To allow these liquids to
be maintained in the Cassie-Baxter state, the ψmin values for the texture must be reduced.

The addition of a single level of NWs to the micropost arrays leads to an effective reduction
in the average ψmin, as the nanowire tips point horizontally from the post walls. This leads to
an increased robustness of the Cassie-Baxter state with lower surface tension liquids, though the
contact angle hysteresis for some low surface tension liquids increased relative to the unmodified
posts due to wetting of the vertically oriented nanowires on the post tops, as previously discussed.
On relatively closely spaced post arrays (lower D∗) with NWs, octane was observed to be in the
Cassie-Baxter state (θ∗a/θ∗r = 158◦/101◦ on 13×17 posts with NWs), but continued to wet sparser
arrays (θ∗a/θ∗r = 117◦/0◦ on 13×32 posts with NWs).
Generally, a higher fraction of downward facing NWs enables the average ψmin to be closer to 0◦, the
value for a micro-fabricated hoodoo structure (on which all liquids with a finite contact should exhibit
the Cassie-Baxter state). To demonstrate control over these geometric parameters, we demonstrate
that branched NWs with sufficient spacing grown on microposts (Figure 2.7) yielded an increase in
robustness over unbranched NWs on microposts. All post arrays coated in branched NWs yielded
the Cassie-Baxter state with octane, and some even with heptane, whereas unbranched nanowires
on posts with higher spacing were readily wet by octane. On samples with the optimum “trunk”
spacing, (labeled as D2 in Figure 2.1), even heptane could be supported in the Cassie-Baxter state
with low enough hysteresis that it was mobile on the surface (γLV = 20.1 mN/m, θ∗a/θ∗r = 160◦/130◦

on 5×45 posts with BNW-4s). However branched nanowires with denser or sparser “trunk” spacing
(BNW-3 or BNW-5 respectively) yielded reduced robustness, and heptane was found to wet in all
cases, again highlighting the need for tunable control of the hierarchical geometry at each length
scale.

The results of the hexadecane droplet impact tests correlate with the decreasing surface tension
of the liquids supportable in the Cassie-Baxter state (Figure 2.10). The robustness factor values
generally increased from A∗ < 1 for NWs and BNW-3s on planar substrates, to A∗ ≈ 1 for planar
coated posts, to A∗ > 1 for the various geometries that were wet only with heptane (unbranched
NWs, BNW-3s, and BNW-5s on microposts). The A∗ values increased further still for samples with
the optimal three levels of hierarchy, i.e., with BNW-4 on microposts. Figures 2.11 & 2.12a show
the capability of this optimal surface to support a range of different low surface tension liquids in a
robust Cassie-Baxter state. Figure 2.12b shows a hexadecane droplet bouncing completely from this
surface, highlighting the low contact angle hysteresis (high D∗ values) and high robustness to liquid
breakthrough (high A∗ values) obtained simultaneously on this optimal surface. The colored lines
overlaid on Figure 2.10 are the theoretical A∗ predictions for hexadecane calculated for arrays of
hoodoos (ψmin = 0◦) with different fixed cap radii R, varying values of inter-hoodoo spacing D to
yield varying spacing ratio D∗ values, H = 30 µm, and Redge = 25 nm. Note that for surfaces with a
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Figure 2.12: (a) Top: photograph of ∼3 µL dyed liquid droplets on a micropost array with branched NWs
(BNW-4s on 13×32). (b) Frames from a high-speed video of a ∼10 µL hexadecane droplet completely
bouncing from the sample in (a) after being dropped onto it from 5 cm.

single scale of texture, such as the micro-hoodoo surface, A∗ is inversely proportional to D∗. This is
also reflected in the experimental data for samples with varying micropost geometry but the same
nanostructure (e.g., BNW-4s on varying micropost arrays with varying dimensions). Ultimately,
Figure 2.10 highlights how careful design and controlled fabrication of hierarchical texture can
allow one to overcome this inherent tradeoff between contact angle and robustness on surfaces with
a single scale of texture, and thereby simultaneously maximize both A∗ and D∗.

2.5 Conclusion
Here we demonstrated a new method to programmably control individual geometric parameters

in multi-level hierarchically branched nanostructures, using ALD to seed NW growth and modify
material interfaces. This synthesis enables rational design and control of tunable superomniphobic
surfaces, where the geometric parameters associated with feature size, separation, and orientation
can be individually controlled for each level of hierarchy. While single-level NW arrays on planar
substrates were sufficient to hold water in a Cassie-Baxter state and allow it to bounce off, additional
levels of hierarchy were needed to design a surface that could also repel low surface tension liquids
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such as hexadecane, octane, and heptane. The tunable control over contact angle and contact angle
hysteresis demonstrates the power of this synthesis approach for the design and optimization of
hierarchical nanostructures.
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CHAPTER 3

Designing Self-Healing Superhydrophobic Surfaces
with Exceptional Mechanical Durability

This chapter is primarily adapted from an article published in ACS Applied Materials and Interfaces
which was equally co-authored with Kevin Golovin.102

3.1 Introduction
Superhydrophobic surfaces (SHSs) have garneredmuch attention over the last few decades for their

ability to be self-cleaning,1 drag-reducing,2 stain-resisting,3 and anti-fouling.71 By trapping pockets
of air in their porous texture, SHSs display water contact angles θ∗ > 150◦ and low roll-off angles
(θroll-off).6 The design and optimization of such surfaces have beenwell- studied.1–3,5,6,40,62–69,71,103,104

However, most natural and artificial SHSs suffer from poor mechanical durability, as their fragile
and porous surface texture can be easily removed even by the swipe of a finger.65 Only a few SHSs
have been reported to exhibit mechanical durability, as characterized by sand impact,57,105–108 rubbing
with a soft cloth,3,109–111 tape peel tests,62,106,112–114 or sandpaper abrasion.64,65,67–69,106,110,115–126

However, all such reports present single material systems. The development of design criteria to aid
in the systematic fabrication of durable SHSs, generalizable to multiple chemistries or fillers, is
expected to be extremely useful to the field. In the first part of this work, we develop such criteria.

Even the most durable SHSs will eventually become damaged by extreme or repeated mechanical
abrasion, which damages a SHS’s low surface energy and/or texture. SHSs that can regenerate
both their surface texture and chemistry,21,109,127 akin to the lotus leaf’s ability to regenerate its
nano-structured wax,1 would be highly desirable. Herein we also report mechanically durable SHSs
that exhibit physical and chemical self-healing. The developed surfaces can fully recover their
water-repellency even after being abraded, scratched, burned, plasma cleaned, flattened, sonicated
and chemically attacked. These surfaces, and the design parameters used to develop them, may find
immediate usage in a wide range of academic and industrial sectors across the globe.
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3.2 Fabrication Methods and Materials
3.2.1 Materials and Synthesis
All solvents, pre-polymers, and crosslinking agents were used as-received. Fluorinated solvents
HCFC-225ca/cb (Asahiklin-225, Asahi Glass Co.) and HFC-43-10mee (Vertrel XF, DuPont)
were purchased from Techspray and TMC Industries, respectively. Poly(methyl methacrylate)
(PMMA), polystyrene (PS, 45 kDa or 1.2 kDa) and polyisobutylene (PIB) were purchased from
Scientific Polymer. Luxecolor 4FVBA fluorinated polyol resin (FPU, 55% solids in n-butyl
acetate) was purchased from Helicity Technologies. Desmophen 670BA polyol was provided
by Covestro. Isocyanate crosslinkers Desmodur N3200 and Wannate HMDI (4,4’-Diisocyanato-
methylenedicyclohexane) were provided by Covestro and Wanhua Chemical Group, respectively.
Crosslinker ratios were 9.7 and 3.4 wt% respectively with FPU, and 28.5 wt% N3200 with 670BA.
Propylene glycol, a chain-extending agent that increases the modulus of the final cross-linked
polyurethane network, was obtained from MP Biomedicals. A polyurethane elastomer (Vytaflex
40) was purchased from Smooth-On, and was prepared according to manufacturer directions.
CNR (chlorinated polyisoprene) was provided by Covestro. Poly(dimethyl siloxane) elastomer
(Dow Corning Sylgard 184) was obtained from Krayden, and a 10:1 base:crosslinker ratio was
used according to manufacturer directions. Acrylate-terminated perfluoropolyether resin (CN4001,
purchased from Sartomer USA) was mixed with 5 wt% radical photoinitiator (Irgacure 2022,
provided by BASF Corporation) to yield a UV-curable fluorinated polymer matrix. Cyanoacrylate
adhesive (3M Scotch-Weld SF-100) was purchased from Pack-n-Tape. Two-part epoxy adhesive
(Selleys Araldite 90 seconds) was used in an approximate 1:1 volume ratio of the components, per
manufacturer instructions.

Fluorodecyl and fluorooctyl polyhedral oligomeric silsesquioxanes (F-POSS, FO-POSS) were
prepared at the Air Force Research Laboratory by condensing perfluorinated triethoxysilanes, as
previously reported.128 Octaisobutyl polyhedral oligomeric silsesquioxane (IB-POSS) was purchased
from Hybrid Plastics. Eicosane was purchased from Acros Organics.

3.2.2 Coating Sample Fabrication
Spray coating solutions were prepared by solubilizing the filler, polymer or pre-polymer, and
cross-linker or photoinitiator (if applicable) at an overall solution concentration of 100 mg/mL. The
fraction of filler in the total solution was varied from 0 to 50 wt%. The solvents used for F-POSS
and FO-POSS blends were: pure Vertrel XF (for FPU and PFPE), pure AK-225 (for SF100, 670BA,
PMMA, chain-extended FPU and PDMS), 50:50 Chloroform:Vertrel XF (for Vytaflex 40, PS and
Araldite epoxy) and 50:50 AK-225:Hexane for PIB. Pure chloroform was used for IB-POSS blends
with 670BA and FPU. Pure toluene was used for blends of eicosane and CNR.
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No significant effect on spray coating morphology was observed between these solvents, as they
have similar volatility and surface tension. The solutions were applied to 10 cm × 10 cm 6061
aluminum sheets with an ATD Tools 6903 high-volume-low-pressure spray gun. 20 mL of coating
solution was applied to each plate, which resulted in coatings that were approximately 100 µm thick.
However, because the surfaces were both porous and extremely rough, the thickness could not be
well-defined, and during abrasion tests the percent mass loss was tracked instead (see below). Spray
coated samples were held at room temperature for at least one day and then cured as necessary
prior to further testing (polyurethanes: 80 ◦C for two days; PDMS: 150 ◦C for 1 h; epoxy and
cyanoacrylate: room temperature for > 2 h; PFPE acrylate resin: 15 min simultaneous exposure to
254 and 365 nm UV mercury lamps under N2 atmosphere).

3.3 Characterization Methods
3.3.1 Hansen Solubility Parameters
The miscibility of hydrophobic fillers within the polymeric binders was analyzed with the aid of the
HSPiP software package and associated database of Hansen solubility parameters. All solvents were
used without further purification, including acetone, THF, chloroform, ethylene glycol, toluene,
cyclohexane, hexane, dodecane, DMSO, ethanol, n-butyl acetate, MEK and o-fluorotoluene (Fisher),
as well as 1-hexanol, chlorobenzene, perfluorodecalin, hexafluorobenzene, p-chlorobenzotrifluoride,
diisopropylamine, and pentafluorobutane (Sigma-Aldrich). Additionally, deionized water, AK-225,
and Vertrel XF were used.

Cross-linked polymers and elastomers were swollen in a selected number of solvents until a
consistent mass was achieved. Samples were weighed and then the solvent was extracted using a
vacuum oven at 100 ◦C. The goodness of a solvent was determined by ranking the swelling ratio
(divided by the mass of the solvent) from 1 to 6, with 1 assigned to solvents that swelled the polymer
the most. These were then input into the HSPiP software in order to determine the center and
radius of the given system, or to determine other solvents necessary to better define the radius of the
Hansen sphere. The results of the Hansen sphere determination are tabulated in Table 3.1 (fillers),
Table 3.2 (binders from this work), and Table 3.3 (binders from the HSPiP database).

3.3.1.1 The Hansen Miscibility Sphere for F-POSS

To determine the Hansen sphere for F-POSS, we found solubility maxima in a wide variety of
fluorinated solvents. F-POSS is completely immiscible in all alkanes, whereas it dissolves in
fluorinated alkanes to an extent, in agreement with the Hansen theory.130 We evaluated seven pure
fluorinated solvents (Table 3.1) and 27 mixtures of those solvents to get the F-POSS Hansen sphere
(Figure 3.1a).

As stated in Section 3.2.2, we sprayed our coatings at a concentration of 100 mg/mL, and the
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Table 3.1: Hansen Solubility parameters for the three previously unreported fillers determined in this chapter.
Hansen parameters for IB-POSS (18.0 ± 0.1, 2.1 ± 0.2, 2.7 ± 0.3, 4.3) were sourced from the literature.129

F-POSS FO-POSS Eicosane

Water × × ×

Ethanol × × ×

Ethylene Glycol × × ×

Hexanol × × –
Acetone × × ×

Chlorobenzene × × –
Chloroform × × X

THF × × –
MEK × × ×

MIBK × × X
nBA × × X

Toluene × × X
Cyclohexane × × X

Hexane × × X
Dodecane × × X

Diisopropylamine × × X
Asahiklin-225 X X –

Vertrel XF X X –
Perfluorodecalin X × –

DMF × × ×

DMSO × × ×

Acetic acid × × –
Hexafluorobenzene X X –

o-Fluorotoluene × × –
p-Chlorobenzo-trifluoride × × –

Pentafluorobutane × X –
PGMEA - - ×

δD (MPa1/2) 14.7 ± 0.1 13.6 ± 0.1 15.9 ± 0.3
δP (MPa1/2) 0.0 ± 0.8 1.9 ± 0.6 3.0 ± 0.6
δH (MPa1/2) 0.0 ± 1.2 0.0 ± 0.5 3.9 ± 0.4
Ro (MPa1/2) 3.2 5.1 6.0
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Table 3.2: Hansen parameters for the five previously unreported binders evaluated in this work.

Vytaflex Desmophen
FPU FPU-PG PFPE SF-100 40 670BA

Water × × × × × ×

Ethanol × × × × × ×

Ethylene Glycol × × × × × ×

Hexanol × – × × × ×

Acetone X X × X X X
Chlorobenzene X X × X X X

Chloroform X X × X X X
THF X X × X X X
MEK X X × X X X
nBA X X × X X X

Toluene X X × X X X
Cyclohexane × × × × × ×

Hexane × × × × × ×

Dodecane × × × × × ×

Diisopropylamine × × × X × -
Asahiklin-225 X X X X × X

Vertrel XF × × X × × ×

Perfluorodecalin × × X × × ×

DMF × – × X × X
DMSO × – × X × X

Acetic acid X – – - X -

δD (MPa1/2) 16.0 ± 0.2 17.3 ± 0.4 12.6 ± 0.2 17.1 ± 0.3 18.0 ± 0.5 18.0 ± 0.7
δP (MPa1/2) 9.5 ± 0.5 7.0 ± 0.7 4.4 ± 0.8 7.2 ± 0.3 4.9 ± 0.6 8.7 ± 0.6
δH (MPa1/2) 3.6 ± 0.5 4.6 ± 1.2 0.1 ± 1.2 6.4 ± 0.4 9.9 ± 1.0 5.9 ± 0.8
Ro (MPa1/2) 9.3 5.2 5.1 8.4 4.4 8.4

Table 3.3: Hansen solubility parameters for binders present in the HSPiP database.

Araldite Pergut
PMMA PS PIB PDMS (Epoxy) (CNR)

δD (MPa1/2) 18.6 18.9 16.9 17 14 17.4
δP (MPa1/2) 10.5 8.1 2.5 2.9 7.4 9.5
δH (MPa1/2) 5.1 4.6 4.0 2.6 9.4 3.8
Ro (MPa1/2) 8 10.3 7.2 5.7 13.7 10
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Figure 3.1: Solubility data for F-POSS. (a) The Hansen sphere for F-POSS, constructed using seven pure
fluorinated solvents and 27 mixtures. See Table 3.1 for the coordinates of the sphere. (b) The Hansen radius
and dispersive component as a function of F-POSS solubility concentration. As expected, forcing higher
concentrations of F-POSS to be solubilized decreased the radius of the sphere, and shifted the center closer
to the best solvent, hexafluorobenzene. (c) The change in F-POSS radius and dispersive component as a
function of concentration. Other than the 1 mg/mL concentration, all other spheres had essentially no polar
or H-bonding components. The 1 mg/mL sphere was centered at (δD = 13.88 ± 0.05, δP = 0.15 ± 0.55,
δH = 0.60 ± 1.10 MPa1/2). The radius was Ro = 5.1 MPa1/2.

highest percentage of F-POSS in any coating was 50 wt%. Thus, our method for ranking F-POSS
solubility was as follows: Any solvent that dissolved at least 50 mg/mL F-POSS was ranked a
1 (in the HSPiP program), and any solvent with less than 1 mg/mL solubility was ranked a 6.
Solvents with F-POSS solubility in between these limits were graded from values of 2–5 based on
interpolation. Because F-POSS has essentially no polar or H-bonding components, trends between
concentration, radius and dispersive components became apparent (Figure 3.1b). We also modified
our rankings for different concentrations, which effectively shrank the sphere and shifted it towards
better solvents for F-POSS as the concentration was increased (Figure 3.1c).

The highly perfluorinated arms of the POSS cage make both the polar and hydrogen bonding
solubility parameters of F-POSS effectively zero. However, for consistency, we always chose
the Hansen sphere that maximized the fit and minimized the residuals, for both F-POSS and all
binders evaluated. This is why we report values of 0.03 MPa1/2 for both polar and hydrogen
bonding components of F-POSS (Table 3.1). Careful mixtures of solvents with identical dispersive
components, but slightly differing polar and hydrogen bonding components, confirmed that F-
POSS is only dispersive in nature. Moreover, although the dispersive component of F-POSS was
found to be δD = 14.26 ± 0.1 MPa1/2, by far the best solvent for F-POSS is hexafluorobenzene.
Hexafluorobenzene appears close to the edge of the F-POSS Hansen sphere due to the approximation
of the hydrogen bonding parameter. In 3-parameter Hansen space, δ2

H = 2δaδb, where δa is
the proton acceptor component, and δb is the proton donor component.131 Thus, although many
fluorinated solvents are known to have large proton donor components,132 most have a zero proton
acceptor component, resulting in a net zero hydrogen bonding parameter.
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3.3.2 Wettability Analysis

3.3.2.1 Dynamic Contact Angles

Advancing and receding contact angle measurements were obtained via the sessile drop method using
a Ramé-Hart 200 F1 contact angle goniometer. A water droplet suspended from a vertical dispensing
needle was brought into contact with the substrate, and its volume increased and decreased to
obtain the advancing and receding contact angles. A circular drop profile on the live video feed in
the DROPImage Advanced software was used to obtain contact angle data. At least three points
were measured across the substrate for each reported contact angle. Droplet roll-off angles, θroll-off,
were obtained by placing at least five 25 µL water droplets distributed across the surface with a
micropipette, and using the manual tilting stage of the goniometer to gradually increase the angle.
The tilt angle was recorded when each droplet rolled off, and the average across the droplets was
calculated. Droplets that did not roll off were recorded as θroll-off = 90◦ for averaging purposes.
Large error bars were observed for some abraded samples, which arose from averaging areas that
wet with areas that remained superhydrophobic.

3.3.2.2 Breakthrough Pressure

Pressure stability was measured both statically and dynamically. Static pressure testing was done
using a pressure tank (TCP Global) with a 7 cm head of deionized water. The pressure was regulated
using compressed air. Samples were submerged and the pressure was raised to the set level for
60 seconds at a ramp rate of no more than 5 psi/s. After the pressure was released, samples were
removed to determine if they remained dry. Due to the inhomogeneity of the surfaces, breakthrough
was considered to have occurred when the sample was fully wetted upon removal from the water
tank. Dynamic pressure testing was done using impacting water droplets and a high-speed camera
(Fastec Imaging HiSpec 1) at 2,000 frames per second. Breakthrough was considered to have
occurred when the droplet did not rebound from the surface upon impact. As the maximum droplet
height for our experimental setup was 1.7 m, corresponding to an impact velocity of 5.7 m/s, many
surfaces exhibited breakthrough pressures too high to measure using droplet impact.

3.3.3 Imaging and Metrology
Scanning electron micrographs were obtained with a Philips XL30 SEM after sputter coating the
samples with gold to reduce charging effects. Two-dimensional height-maps (2.4 mm × 2.4 mm) of
the surfaces were obtained with an Olympus LEXT OLS4000 3D Laser Measuring Microscope
with a 10× objective, and at least five height maps were collected for each reported data set. This
data was subsequently analyzed to yield statistical topographical parameters using MATLAB (see
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Section 3.4.2 below). The root-mean-squared roughness, Sq, was found using

Sq =

√
1
xy

∑
x

∑
y

h2
x,y (3.1)

where hx,y is the height of the surface at point (x,y), after the mean height has been set to zero.

3.4 Design Criteria
3.4.1 The Miscibility Parameter (S∗)
The lowest possible surface energy, γSV ≈ 9 mN/m, is achieved with a monolayer of –CF3 groups.23

Chemically grafting such monolayers requires specific substrate chemistry. Moreover, the thin
monolayer only renders the uppermost surface hydrophobic, and any surface degradation will
expose the higher surface energy material underneath. In contrast, the incorporation of highly
perfluorinated compounds within a coating allows one to achieve equally low surface energies
without the need for chemical grafting.128,130 Moreover, these unbound species can diffuse to the
surface, restoring the low surface energy after mechanical or chemical attack, thereby reducing the
formation of hydrophilic defects upon damage.65 Such coatings can be universally applied to any
substrate, and impart low surface energy throughout the entire thickness of the coating. In this work,
we fabricated a library of SHSs using sprayed blends of polymeric binders and hydrophobic fillers.
Due to its low surface energy, γSV ≈ 10 mN/m, we primarily focused on systems incorporating
1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (F-POSS),128 although
the developed design parameters are generalizable to other material systems, as we show. Spray
coating was chosen as the primary methodology for the application of the superhydrophobic coatings
because it is inexpensive, scalable, and allows control over the surface energy and texture of our
coatings via simple changes in experimental parameters.

The cohesive energy of any material species can be broken into its dispersive, polar, and hydrogen
bonding Hansen solubility parameters, (δD, δP, δH).130 A miscibility sphere can be experimentally
constructed for any compound, with its center at some point in a 3D space defined by these three
solubility parameters, and its volume encompassing all good solvents and excluding all poor solvents.
We first determined the miscibility spheres for several hydrophobic fillers and a wide variety of
binders (Figure 3.2), by screening their solubility in a large number of solvents (Tables 3.1-3.3).

The overlap between the Hansen spheres of the binder and filler is indicative of their chemical
compatibility, and the extent to which they phase separate and form texture during the spray-coating
process. In order to quantify a polymer’s miscibility with the filler, we developed the miscibility
parameter S∗, which is given as

S∗ =
∆R − Rbinder + Rfiller

2Rfiller
(3.2)

Here, ∆R is the distance in 3D solubility space between the centers of the filler’s sphere and the
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Figure 3.2: Visualization of the S∗ parameter for three binders in 3D Hansen space. FO-POSS: fluorooctyl
polyhedral oligomeric silsesquioxane. FPU: fluorinated polyurethane. F-POSS: fluorodecyl polyhedral
oligomeric silsesquioxane.

binder’s sphere, with their radii denoted by Rfiller and Rbinder, respectively.
Similar to Hansen’s Relative Energy Difference value,130 S∗ is defined such that the filler is

completely immiscible with a binder when the two spheres do not overlap (S∗ > 1.0, also see
schematic in Figure 3.2). Alternately, binders with S∗ < 0 have solubility spheres that completely
encompass the filler’s sphere, and are hence fully miscible (at a given concentration, see Figure 3.1).
In between these two extremes is the regime of partial miscibility. As we show below, this
behavior greatly affects the ability of an SHS to maintain water repellency after mechanical abrasion
(Section 3.5.1).

The S∗ parameter allows one to predict whether the filler will phase separate from the binder
during spray coating. This phase separation manifests in the sprayed surface’s root-mean-squared
roughness, Sq. For example, we determined the solubility spheres for a polyurethane and an epoxy,
which are both commonly used hydrophilic adhesives (Tables 3.2 and 3.3). For the epoxy, S∗ ≈ 0.2
with F-POSS, and an epoxy + 5 wt% F-POSS blend, when sprayed, resulted in a smooth surface
with Sq = 0.8 µm. Conversely, for the polyurethane, S∗ ≈ 1.6, and a polyurethane + 5 wt% F-POSS
blend, when sprayed in the exact same manner, resulted in a very rough surface (Sq = 41 µm). The
polymer matrices used in this work were always smooth when sprayed by themselves as described
above. Thus, immiscibility alone can induce roughness during the spray coating process. However,
a large Sq does not guarantee superhydrophobicity.133

3.4.2 The Superhydrophobic Potential (P∗)
Water on SHSs can exist in the Cassie-Baxter state, in which air pockets are trapped in the surface’s
porous texture.35 However, water can displace these air pockets, leaving the surface in a wetted,
Wenzel state.33 SHSs should ideally be designed such that the Cassie-Baxter state is energetically
preferred.1 We developed a method to predict when the Cassie-Baxter state would be energetically
favorable over the Wenzel state using only the topographical statistics of a given surface. Because
each binder/filler combination exhibited a distinct, characteristic surface morphology, we wished to
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Figure 3.3: (a) The parameter RSm is shown by filling in each periodic ‘element’. (b) The autocorrelation
function of a surface versus the distance along the surface examined. In this work, a value of e−1 was used as
a cutoff.

develop universal metrics that characterize surfaces with widely varying topographies. To do so, we
measured three statistical surface properties: peak periodicity, RSm, auto-correlation length, Sal,
and the Wenzel roughness, r .33

RSm represents the length along the surface between large surface features, and can be thought
of as the center-to-center distance between texture elements.134 RSm is defined as,

RSm =
1
m

m∑
i=1

Xi (3.3)

where Xi is the length of a peak (Figure 3.3a).135 A peak was defined such that its height is > 10%
of the maximum height, and its length is > 1% of the total sampling length. This allows one to
separate genuine texture features from noise. In Figure 3.3a the noise and valid Xi are labeled.

The second statistical parameter, Sal, is the shortest autocorrelation length. An autocorrelation
function can be constructed for any surface by evaluating the self-similarity of heights when small
perturbations in distance are made.133 In effect, Sal represents the distance at which a peak becomes
a valley or vice versa. In this work we used the popular cutoff in the autocorrelation function of e−1

(Figure 3.3b). Before defining the porosity of random surfaces using the above statistical parameters,
we first briefly make the connection to the canonical surface of micro-pillars. Such surfaces are
often studied for their simple geometry but relatively good water repellency. Square pillars can be
defined by their width 2R and the spacing in between pillars 2D (Figure 3.4). If water is placed
on such a surface (with θ ≥ 90◦), it may be able to support a composite solid-liquid-air interface,
which will be contingent upon the dimensions of R and D. Should the composite interface be stable,
the fraction of solid in contact with the air is given by φs = 2R/(2R + 2D) in the one dimensional
case. Converting to two dimensions simply involves squaring φs.

For a randomly rough surface we must resort back to the statistical lengths of RSm and Sal. The
one-dimensional solid fraction may be defined as φs = Sal/RSm. In our previous work,5 we found it
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Figure 3.4: (a) A diagram illustrating the dimensions R andD on a simple pillar array surface. Representations
of RSm and Sal on (b), a LEXT height-map, and (c), an SEM of a randomly textured spray-coated surface.

instructional to define the porosity of a surface as the inverse of φs,
D∗stat = (RSm/Sal)

2 (3.4)

where the second power is added to convert from properties measured along one-dimensional height
profiles to the porosity of a two-dimensional surface.6 Larger values of D∗stat indicate surfaces with
higher porosity. Note that we use the two dimensional form, and that we average the measured RSm

and Sal values over the entire two-dimensional surface.
For the Cassie-Baxter state to be favored over the wetted, Wenzel state, it must be the global

energy minimum.136 For a given surface topography, the free energies of the two states can be
balanced (i.e., equating Equation 1.3 with Equation 1.6). The non-wetted state is energetically
preferred only if the intrinsic contact angle, θE , exceeds a critical value, θc. This critical intrinsic
contact angle is given by136

cos θc = (φs − 1)/(r − φs) (3.5)

where φs is the fraction of solid in contact with water (note D∗stat ≈ φ
−1
s , and we assume rφ = 1.0).

Stated differently, and recalling that intrinsic water contact angles cannot exceed 120◦,5 there exists
some minimal texture that any surface, regardless of chemistry, must exhibit in order to achieve an
energetically favorable Cassie-Baxter state. Substituting this maximum contact angle as θc yields,

cos θc = cos 120◦ = (1/D∗stat − 1)/(r − 1/D∗stat) (3.6)

or

− 0.5 = (1 − D∗stat)/(rD∗stat − 1). (3.7)

We can then define a surface’s superhydrophobic potential, P∗, such that only for values of P∗ < 1.0
is the Cassie-Baxter state the global energy minimum. Doing so yields,

P∗ = 2(D∗stat − 1)(rD∗stat − 1). (3.8)
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For any surface that exhibits P∗ > 1.0, the wetted state is energetically preferred, regardless of
surface chemistry. Note that water can exist in a metastable Cassie-Baxter state through the addition
of re-entrant texture,5 and hence a value of P∗ > 1.0 does not necessarily indicate wetting. P∗ is
useful because surfaces are often created with a given topography, and then subsequently rendered
superhydrophobic by applying a low surface energy layer on top.1 As such, measuring P∗ allows
one to determine a priori if such a surface will become superhydrophobic before applying such a
(often expensive) low surface energy monolayer. Moreover, if a surface is superhydrophobic in spite
of a P∗ > 1.0 value, one can say with certainty that water will exist in a metastable state, and such a
surface should be used with caution. By measuring the dynamic contact angles on many surfaces,
both wetted and non-wetted, we probed the effectiveness of P∗.

When water initially advances on a SHS, it displays θ∗a.137 If any texture elements become
wetted, the apparent angle at which water recedes, θ∗r , will be much lower than θ∗a. Thus, θ∗a can
be thought of as a measure of the SHS’s inherent porosity (i.e., fraction of air pockets), ignoring
how stable the air pockets may be, and θ∗r gives an indication of their stability.54 We measured θ∗r
for more than fifty combinations of F-POSS and various polymeric binders, as a function of P∗

(Figure 3.5a). These binders included both cross-linked networks, such as urethanes, acrylates,
epoxies, and cyanoacrylates, as well as linear polymers such as polystyrene, polymethylmethacrylate
and polyisobutylene (Section 3.2, Table 3.4). We observed a high θ∗r only for systems with a stable
Cassie-Baxter state, i.e., P∗ < 1.0. This was confirmed by the sharp jump in θ∗r at a value of
P∗ = 1.0. The specific value of P∗ = 1.0, corresponding to an intrinsic contact angle θE ≈ 120◦,
indicated that all the surfaces had a high percentage of F-POSS at the solid-liquid interface, although
there were vast differences in topography. Thus, we were able to predict if an F-POSS-containing
surface could be superhydrophobic solely by measuring P∗. Without measuring P∗, there is no easy
way to determine if a randomly textured surface has the potential to become superhydrophobic, a
priori.

Moreover, for surfaces with P∗ < 1.0, recasting the Cassie-Baxter relation (Equation 1.6)35 in
terms of D∗stat effectively predicted θ∗a (Figure 3.5b). We observed that the predictive power of D∗stat
and P∗ extended to other SHSs not containing F-POSS. These SHSs included polymer blends with
other hydrophobic fillers like eicosane, octa-isobutyl POSS (IB-POSS) and fluoro-octyl POSS (FO-
POSS), as well as other SHSs such as three commercially available superhydrophobic formulations
(Section 3.2, Tables 3.1-3.3), lithographically fabricated microstructures,60 textured metals treated
with self-assembled monolayers,138,139 and binders filled with hydrophobic particles.140 As such,
the design parameters developed in this work are applicable to SHSs produced using a wide range
of binders, fillers, and fabrication techniques.
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Figure 3.5: (a) The apparent receding contact angle versus the P∗ parameter. The sharp transition at P∗ = 1.0
is consistent with an intrinsic contact angle of θE = 120◦. (b) Measured and predicted apparent advancing
contact angles versus the statistical porosity parameter, D∗stat. This plot includes all the different systems
from Table 3.4. The inset shows an SEM micrograph of the FPU + 15 wt% F-POSS sprayed surface, with
representative RSm and Sal values indicated.

3.5 Durability of Superhydrophobic Surfaces
3.5.1 Overview of Abrasion Testing
We utilized the industry standard of rotary Taber abrasion (Section 3.5.2) to evaluate the
mechanical durability of our sprayed binder/filler blends. The stresses generated by Taber abrasion
can be estimated using a cylinder-cylinder Hertzian contact mechanics analysis (Figure 3.6a,
Section 3.5.3).141 Depending on the elastic modulus of the coating, the exerted shear stress
ranged from tens to hundreds of kilopascals (Figure 3.6a). Due to the porosity of the surface,
the texture elements experienced shear stresses on the order of a few megapascals. This is
similar or greater than the less systematic durability characterization techniques employed in the
literature.64,65,67–69,106,110,115–126 For example, in a recent report,69 a durable SHS was abraded with
sandpaper along a total length of 800 cm, without degradation of high contact angle. We reproduced
such an evaluation for our FPU/F-POSS blend, which maintained high contact angles, as well as
low roll-off angles, even after 1 kilometer (100,000 cm) of abrasion using the same sandpaper and
applied load (Figure 3.7). Thus, we are confident that the surfaces created in this work can also
withstand other metrics of mechanical durability reported elsewhere. The details of these two testing
methods are included below.

One hundred rotary Taber abrasion cycles was sufficient to differentiate durable and non-durable
SHSs, i.e., non-durable surfaces were either completely removed or wetted by water after 100
abrasion cycles. For each binder with a given S∗ we varied P∗ by adjusting the amount of hydrophobic
filler in the blend. Combining the S∗ and P∗ parameters allowed us to construct a phase diagram for
the different possible surfaces created when spraying the binder/filler blends (Figure 3.8). Here we
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denote surfaces with a (×) when the water roll-off angle was θroll-off > 15◦ (not superhydrophobic),
and surfaces that exhibited θroll-off < 15◦ (superhydrophobic) as (�) if not durable or (•) if durable.
These two regions were demarcated by a line at P∗ = 1.0, i.e., we never observed a SHS for which
P∗ > 1.0.

Only surfaces that exhibited θroll-off < 15◦ after 100 abrasion cycles are shown as green circles
(•) in Figure 3.8. All such surfaces exhibited partial miscibility with the hydrophobic fillers
(0 ≤ S∗ ≤ 1.0). Low surface energy species are known to preferentially migrate to the solid-air
interface.4 For binders with S∗ > 1.0, the final surface was always very mechanically weak, with
a powdery consistency, because the filler was completely immiscible with such binders. Finally,
we noted that increasing the amount of filler within a sprayed blend was not always efficacious.
As the binder can be much more mechanically resilient than the filler molecules, any excess filler
within the blend, beyond what is required to achieve superhydrophobicity (P∗ < 1.0), can lower the
overall durability. For example, a perfluorinated polyether, PFPE, with 25 wt% F-POSS remained
superhydrophobic after abrasion, but PFPE with 35 wt% F-POSS did not, although the S∗ and P∗

values were equivalent. Overall, choosing components that satisfy S∗ < 1.0 helps ensure that the
final surface will be durable, and choosing a sufficient filler content such that P∗ < 1.0 assures
that the surface will exhibit a robust Cassie-Baxter state. We then continued Taber abrasion of our
partially miscible blends (Table 3.4).

3.5.2 Abrasion Testing Methods
Abrasion testing, based on ASTM standard D4060, was performed with a Taber Model 5135 Rotary
Abraser with CS-10 resilient abrasive wheels. 250 g weights were placed on the rear of the wheel
arms such that the applied normal load was 60 g. The sample was then rotated relative to the freely
spinning abrasion wheels such that a shearing abrasion action occurred within a defined area. Excess
debris was removed continuously with a vacuum nozzle just above the substrate. The result was a

Figure 3.6: A schematic of the forces experienced during Taber abrasion, estimated using Hertzian contact
mechanics, assuming a cylinder/cylinder configuration (see Section 3.5.3.141 (b) The shear stress experienced
during Taber abrasion as a function of depth into the coating. The inset shows the rotary Taber abraser.
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Figure 3.7: The 25 µL water roll-off angle for the FPU/F-POSS coating versus the number of sandpaper
abrasion cycles, mimicking a previously reported durability characterization.69 The inset shows the linear
Taber abrasion machine, modified to perform sandpaper abrasion.

ring-shaped region on the sample that was consistently mechanically damaged.
The manual sandpaper abrasion test which is commonly performed in the literature, such as in

[69], was automated using a Taber Model 5750 Linear Abraser. A 2.5 × 2.5 cm spray coated sample
was mounted facing downwards on the reciprocating head, and brought in contact with 240 grit
sandpaper, with an applied load of 250 g. The sample was then moved laterally under load across
the sandpaper, and the test was continued until water droplets were pinned. Water roll-off angles
were measured periodically to confirm the retention of superhydrophobicity (Figure 3.7b).

3.5.3 Derivation of Hertzian Contact Mechanics of Rotary Taber Abrasion
Although it is an industrial standard for measuring the mechanical durability of coatings, Taber
abrasion has rarely been used to evaluate superhydrophobic surfaces. Here we briefly show the
relevant contact stresses involved in Taber abrasion. During the abrasion process, two wheels
are constantly rubbed against the coated surface. According to Hertzian contact mechanics, this
situation can be modeled by cylinder/cylinder contact (Figure 3.6a), in which the lower surface is
given an infinite radius of curvature.141 In such a case, the area of contact between the abrading
wheel and the coated surface is an ellipse, with half-width b given as,

b =

√
4RF[E2(1 − υ2

1) + E1(1 − υ2
2)]

πLE1E2
(3.9)

Here R is the radius of the wheel (49 mm), F is the normal load (60 g), L is the length of
abrasion (10 mm), and E1, υ1, E2, and υ2 are the elastic moduli and Poisson ratios of the wheel and
coating, respectively. The maximum pressure exerted on the coating is given as,

Pmax = 2F/πbL (3.10)

Although this pressure can compress the surface, the main degradation occurs because of the
shear stresses generated. If we define x as the direction tangential to the rotation during Taber
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Figure 3.8: A design parameter phase diagram for all the surfaces developed in this work (see Table 3.4).
Only surfaces with P∗ < 1.0 can be superhydrophobic (θroll-off < 15 ◦), and additionally only surfaces with
S∗ < 1.0 can be mechanically durable (θroll-off < 15 ◦after 100 abrasion cycles). The non-SHS that exhibited
P∗ < 1.0 was a blend of FPU/FO-POSS. For this blend, θE = 91◦, although the sprayed texture required
θc = 114◦. This is an example of sufficient texture for an SHS but insufficiently low surface energy.

abrasion, and z as normal to the coating, the principal stresses are given as,

σx = −2υ2Pmax

[√
z2

b2 + 1 − |z/b|

]
(3.11)

and
σz = −Pmax(z2/b2 + 1)−1/2 (3.12)

and finally, the shear stress in the xz-direction (the direction of abrasion) is
τxz =

1
2
|σx − σz | (3.13)

These stresses are dependent on the modulus of the coating, measurable using standard tensile
testing.142 Using the modulus measured for FPU resulted in a maximum shear stress experienced
of τxz ≈ 120 kPa. Solving for the solid fraction via the Cassie-Baxter equation using the contact
angles of water on our surfaces gives a local shear stress of a few MPa at the texture elements during
abrasion.

3.5.4 Abrasion Testing Results
We compared the durability of these systems to three commercially available, and purportedly
durable, SHSs (Figure 3.9a). None of the commercial coatings maintained a low θroll-off after 100
abrasion cycles. We extended the abrasion testing of our partially miscible binder/filler blends
exhibiting 0 <S∗ < 1 and found them to be quite resilient to mechanical wear (Figure 3.9b). Whereas
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all other evaluated SHSs became wettable within 100 abrasion cycles, the non-wetting properties of
our surfaces fabricated from partially miscible, spray-coated blends endured significantly longer.

When blended with F-POSS, coatings incorporating the PFPE, SF-100, and FPU binders
remained superhydrophobic for up to about 400, 500, and 800 Taber abrasion cycles, respectively.
Combinations of the polyurethane Desmophen 670BA and IB-POSS, or the FPU and FO-POSS,
both exhibited θroll-off < 15◦ for ≈ 800 cycles. In fact, all such systems only became wettable once
almost the entire coating was abraded away. For example, a 100 µm-thick FPU/F-POSS coating
maintained θroll-off < 15◦ even when > 90 µm of its thickness was removed. Note that the coating
mass loss was not linear with the number of abrasion cycles, as larger loosely-adhered aggregates
were removed first.

Table 3.4: Surface properties of the coatings developed in this work, before and after 100
rotary Taber abrasion cycles.

F-POSS Initial Initial Initial 100 cycle 100 cycle 100 cycle 100 cycle

Base (%) P∗ D∗stat θ
∗
a (◦) θ∗r (◦) θroll-off (◦) θ∗a (◦) θ∗r (◦) θroll-off (◦) mass loss (%)

NeverWet - 1.79 7.4 165 162 1 132 32 54 17

Ultra Ever Dry - 1.36 4. 161 152 1 155 0 90 14

Cytonix WX 2100 - 1.04 1.4 164 156 18 122 77 90 6

FPU (S∗ = 0.64) 0 1.84 7.2 115 66 55 - - - -
FPU 1 0.99 14.3 106 67 90 106 63 90 1
FPU 3 1.49 25.5 121 66 90 122 78 76 3
FPU 5 0.31 1.5 148 112 62 151 102 75 8
FPU 10 0.34 2.5 162 150 10 159 124 22 20
FPU 15 0.48 3.9 165 159 2 161 154 2 32
FPU 20 0.56 3.5 163 153 5 161 144 10 40
FPU 25 0.67 6.4 166 153 2 164 152 2 86
FPU 30 0.68 4.8 165 160 2 163 144 3 81
FPU 35 0.63 4.4 160 151 1 146 113 24 56

FPU-PG (S∗ = 1.06) 5 0.62 5.3 163 145 8 153 98 81 44
FPU-PG 10 0.57 8.2 161 152 7 158 116 57 40
FPU-PG 15 0.75 4.7 162 148 7 161 113 90 27
FPU-PG 20 0.74 5.6 164 151 3 159 123 40 26

PMMA (S∗ = 1.17) 0 1.06 5.1 155 0 90 - - - -
PMMA 2 0.76 5.5 160 83 14 135 0 90 109
PMMA 5 0.43 4.0 160 143 11 149 123 35 99
PMMA 10 0.58 3.4 163 153 7 159 128 24 104
PMMA 35 0.90 5.9 166 156 2 162 127 26 129
PMMA 50 0.86 4.2 164 156 0 127 84 63 100

SF-100 (S∗ = 0.74) 0 1.99 2.9 93 37 64 - - - -
SF-100 5 1.38 3 129 41 90 - - - -
SF-100 10 1.75 2.9 140 72 83 - - - -
SF-100 15 1.27 4.5 158 123 13 167 113 37 22
SF-100 20 1.01 3.8 163 157 1 165 164 1 55
SF-100 25 0.92 3.5 169 163 0 166 164 1 55
SF-100 35 0.60 7.0 167 159 2 145 107 34 38
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PDMS (S∗ = 0.32) 0 1.88 3.8 123 45 90 - - - -
PDMS 15 0.73 5.4 154 119 47 158 137 10 20
PDMS 30 0.55 5.4 160 153 4 157 0 66 46

PFPE (S∗ = 0.46) 0 1.88 18.6 113 78 53 - - - -
PFPE 5 2.12 0.5 127 66 66 - - - -
PFPE 15 1.08 7.0 155 72 47 163 20 90 45
PFPE 25 0.55 3.7 156 147 7 163 142 8 33
PFPE 35 0.58 4.1 165 153 2 164 0 90 100

Vytaflex (S∗ = 1.60) 0 2.00 1.0 74 4 90 - - - -
Vytaflex 1 1.52 9.6 149 0 90 - - - -
Vytaflex 5 1.08 4.5 150 0 90 - - - -
Vytaflex 10 1.15 3.1 135 29 90 - - - -
Vytaflex 15 0.65 4.5 158 134 11 159 55 39 28
Vytaflex 35 0.55 5.2 160 150 2 161 130 17 -

PS 45 (S∗ = 48) 0 1.15 29.6 157 123 14 - - - -
PS 45 15 0.60 1.9 157 131 14 156 114 37 26
PS 45 25 0.58 1.4 155 142 15 152 111 38 14

PS 1.2 (S∗ = 0.48) 15 0.94 8.5 159 153 0 - - - -

PIB (S∗0.19) 0 1.27 19.3 118 61 90 - - - -
PIB 15 1.18 10.4 164 143 14 161 118 90 48

Araldite (S∗ = 0.23) 0 1.95 2.9 101 17 90 - - - -
Araldite 5 1.94 12.5 128 43 90 127 62 87 -
Araldite 15 1.39 1.0 137 43 90 132 69 90 3
Araldite 25 0.89 9.0 158 130 14 158 16 90 25

Desmophen (S∗ = 0.91) 0 1.43 41.9 85 49 90 - - - -
Desmophen 2.5 0.52 8.9 161 141 8 148 94 74 17
Desmophen 5 0.36 7.8 166 157 5 159 125 23 20
Desmophen 10 0.38 8.4 166 160 4 162 129 16 24
Desmophen 15 0.17 2.3 165 156 9 164 162 2 27

FO-POSS Initial Initial Initial 100 cycle 100 cycle 100 cycle 100 cycle
Base (%) P∗ D∗stat θ

∗
a (◦) θ∗r (◦) θroll-off (◦) θ∗a (◦) θ∗r (◦) θroll-off (◦) mass loss (%)

FPU (S∗ = 0.44) 15 0.81 8.9 141 66 90 137 68 90 4
FPU 25 0.53 7.2 163 149 9 161 124 30 12
FPU 35 0.48 7.0 162 153 4 162 146 14 15

IB-POSS Initial Initial Initial 100 cycle 100 cycle 100 cycle 100 cycle
Base (%) P∗ D∗stat θ

∗
a (◦) θ∗r (◦) θroll-off (◦) θ∗a (◦) θ∗r (◦) θroll-off (◦) mass loss (%)

FPU (S∗ = 0.31) 25 0.41 5.1 165 130 15 140 75 90 9
FPU 30 0.31 4.9 164 144 5 165 132 15 17

Desmophen (S∗ = 0.37) 2.5 0.52 5.7 139 57 90 129 46 90 5
Desmophen 5 0.36 8.6 158 96 81 137 46 90 8
Desmophen 10 0.35 6.6 164 142 13 160 66 90 20
Desmophen 15 0.38 7.8 163 139 14 150 91 61 16
Desmophen 25 0.28 5.8 165 148 8 165 136 15 21
Desmophen 30 0.27 5.8 166 151 10 165 155 6 24

Eicosane Initial Initial Initial 100 cycle 100 cycle 100 cycle 100 cycle
Base (%) P∗ D∗stat θ

∗
a (◦) θ∗r (◦) θroll-off (◦) θ∗a (◦) θ∗r (◦) θroll-off (◦) mass loss (%)

CNR (S∗ = 0.29) 0 2.00 18.3 93 78 90 - - - -
CNR 25 1.45 11.3 157 82 84 - - - -
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CNR 30 1.00 3.5 162 87 71 - - - -
CNR 35 0.74 4.3 153 161 14 162 92 33 2
CNR 40 0.80 3.4 148 137 15 163 113 38 3
CNR 50 0.94 6.5 160 146 11 164 77 90 11

As further proof that partial miscibility is required for mechanically durable SHSs, we chain-
extended the FPU by incorporating propylene glycol into the cross-linked network (Section 3.2).
The chain-extended FPU exhibited a three-fold increase in elastic modulus. A smooth film of
chain-extended FPU exhibited a 12% reduction in mass loss during abrasion as compared to
unmodified smooth FPU. However, the increased number of urethane linkages altered the Hansen
sphere for the cross-linked network, changing the miscibility with F-POSS from S∗ ≈ 0.6 to S∗ ≈ 1.1.
As such, whereas a sprayed blend of FPU + 15 wt% F-POSS (P∗ = 0.48) remained superhydrophobic
after 800 abrasion cycles, a sprayed blend of the chain-extended FPU + 15 wt% F-POSS (P∗ = 0.56)
was no longer superhydrophobic after only 100 abrasion cycles (Figure 3.9b). This counterintuitive
result emphasizes the fact that the binder with the correct miscibility 0 ≤ S∗ ≤ 1.0, even if not
necessarily the most mechanically durable binder, is more likely to yield a mechanically durable
SHSs. Moreover, the blend of FPU/F-POSS also withstood a host of other potentially damaging
exposures. After ultrasonication, a fluoro-solvent rinse, acid and base immersion, knife scratching,
accelerated weathering, ultraviolet exposure, and heating at 350 ◦C for 3 days, the coating always
maintained θroll-off < 15◦.
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Figure 3.9: (a) The roll-off angles for three commercially available SHSs and eight of the SHSs fabricated in
this work (S∗ < 1.0), initially and after 100 abrasion cycles. C: chlorinated rubber, F: FPU, D: Desmophen
670BA, S: SF-100, P: PFPE. (b) The droplet roll-off angles for four representative durable SHSs fabricated
in this work. The data for the propylene glycol chain-extended FPU/F-POSS and the self-healed FPU/F-POSS
are also shown.

3.5.5 Abrasion Does Not Induce Superhydrophobicity
As Taber abrasion was employed to remove surface features, we wished to verify that the abrasion
process was not itself inducing roughness and aiding the retention of superhydrophobicity. To do
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Figure 3.10: (a) Heightmaps of a smooth FPU + 15 wt% F-POSS film spin-cast in Vertrel XF, versus the
number of Taber abrasion cycles. (b) Root-mean-squared height of smooth FPU + 15 wt% F-POSS, spin-cast
from either Asahiklin-225 (AK) or Vertrel XF (XF). Smooth FPU without F-POSS, sprayed from CHCl3, is
shown for comparison, along with the CS-10 wheel. (c) The receding contact angle of the FPU + 15 wt%
F-POSS in XF coating, either smooth or rough, as a function of abrasion. (a-c) support that the abrasion
process did not induce superhydrophobicity.

so, we spin-cast relatively smooth films of FPU + 15% F-POSS using two solvents. Due to solvent
evaporation effects, the surfaces retained some texture (Figure 3.10a,b). For another comparison,
we sprayed a smooth film of pure FPU.

We measured the roughness of the abrasive CS-10 wheel. If the abrasion process were imprinting
the texture of the wheel into the coating, the roughness of the coating would eventually reach
the roughness of the wheel. We tracked the roughness (Figure 3.10b) of the smooth FPU and
FPU + 15% F-POSS films over 5,000 abrasion cycles. Contact angles were also measured for the
FPU + 15% F-POSS film spin-cast in XF (Figure 3.10c). The spin-cast FPU + 15% F-POSS films
became smoother than the wheel with increasing abrasion and the receding contact angle did not
significantly increase. Moreover, the pure FPU, which initially displayed Sq = 155 ± 70 nm, only
increased to Sq = 650± 100 nm after 1,000 abrasion cycles. These results confirm that the abrasion
process does not induce texture necessary for superhydrophobicity.
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3.6 Other Durability Characterizations and Self-Healing
3.6.1 Overview
The low surface energy of fillers such as F-POSS causes them to migrate to the solid/air interface,4

imparting some of the binder/filler blends with a robust, self-healing nature, enabling survival of
extended abrasion testing. The details of these tests are described in the following sections. We
focused on one of the most durable coatings, the FPU binder blended with 15 wt% F-POSS and
subjected it to a broad range of damaging exposures. In most cases, there was only negligible
increase in θroll-off observed (Figure 3.11). In cases where damage was observed, the fabricated
coating can both chemically and physically self-heal, due to the surface migration of F-POSS upon
heating, and the elastomeric nature of the FPU (Tg � room temperature).
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µ

Figure 3.11: Additional durability characterizations that the FPU + 15 wt% F-POSS coating could withstand
without self-healing.

3.6.2 Extended Abrasion with Healing
The FPU + 15 wt% F-POSS coating maintained θroll-off < 15◦ up to about 800 abrasion cycles
(Figure 3.9). Beyond this, θroll-off increased with the number of abrasion cycles. But if the coating
was placed on a 100 ◦C hotplate for a few minutes, the water repellency was easily restored
(θroll-off < 5◦, Figure 3.12). With self-healing, the FPU/F-POSS coating maintained θroll-off < 15◦

even after 4,000 abrasion cycles. This was expected after measuring the statistical properties of the
surface after self-healing, which always yielded P∗ < 1.0 (Figure 3.13). Other blends created using
different elastomers, such as SF-100/F-POSS, FPU/FO-POSS, or Desmophen 670BA/IB-POSS,
also exhibited a self-healing nature. The self-healing and superhydrophobic nature of Desmophen
670BA/IB-POSS system is notable because neither of the components contains any fluorinated
species.
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Figure 3.13: The four statistical parameters characterizing the FPU + 15 wt% F-POSS spray-coated blend, as
a function of the number of Taber abrasion cycles.
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Figure 3.14: Texture recovery. (a) The self-healing properties of the FPU/F-POSS coating as a function
of time and temperature, after 1,000 Taber abrasion cycles. Sq increased from 2.6 µm to 3.3 µm during
self-healing. (b) The contact angle hysteresis for the FPU/F-POSS coating before and after thermal recovery
from compression, as a function of the compressive load. Note that the coating ∆θ decreased with an increase
in applied load because the surface became smoother after compression. All compressed surfaces were fully
wetted.

3.6.3 Physical Self-Healing after Abrasion or Compression
The thermal recovery of low surface energy due to F-POSS migration will only result in a SHS if the
texture is also maintained. Although abrasion damages the texture of the FPU/F-POSS coating, we
found that the abraded texture was still sufficient for superhydrophobicity (Figure 3.12). Further, we
also observed that the texture could be partially restored during the thermal treatment. For example,
after 1,000 abrasion cycles, the FPU/F-POSS coating exhibited Sq = 2.6 µm. Thermal recovery
at 100 ◦C for 120 seconds increased this value to Sq = 3.3 µm (measured at identical locations)
(Figure 3.14a). Thus, abrasion also slightly compressed the coating.

To further explore this, we subjected the coating to compressive stresses up to 350 MPa using
a Carver 4350 compression molder with a 30 ton capacity. Samples of known dimensions were
placed between aluminum plates and a variable pressure up to 350 MPa was applied and held
for 60 seconds. The contact angles were then measured immediately following compression.
Following compression, the sample was heated on a 100 ◦C hotplate for 5 minutes, and contact
angles were recorded again. Although flattening the texture elements significantly reduced the
texture of the coating and eliminated its superhydrophobicity (P∗ ≈ 2.0, Figure 3.14b), such damage
was reversible, and upon heating, the coating quickly recovered its original porous texture (P∗ ≈ 0.6,
Figure 3.14b, 3.15). Environmental scanning electron microscopy (ESEM) allowed us to observe
this self-healing in situ (Figure 3.15b). As the compression set (percentage of permanent strain after
compression) of elastomers is typically non-zero, the use of elastomeric materials in the fabrication
of SHSs may be advantageous in terms of their ability to recover from compressive stresses that
remove their porous texture.
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Figure 3.15: (a) Height maps of the FPU/F-POSS coating after 150 MPa compression, as a function of
recovery time at 100 ◦C. (b) The recovery of the texture was also imaged in situ using environmental scanning
electron microscopy.

3.6.4 Thermal Degradation Analysis
A sample of FPU + 15 wt% F-POSS was placed on a hot plate at temperatures from 150–425 ◦C,
increasing by 25 ◦C for every hour of the test. After each annealing step, the dynamic contact
angles were measured (Figure 3.16a). To correlate the onset of degradation of the Cassie-Baxter
state with chemical degradation of the sample, thermogravimetric analysis was performed with a
TA Instruments Discovery Series TGA using ∼6 mg samples scraped from the same spray-coated
surface. These samples were either held at a fixed temperature of 150 ◦C – 450 ◦C for 1 h (inset,
Figure 3.16a), or heated from 25–600 ◦C at 10 ◦C/min in a 10 mL/min N2 gas purge flow while
continually monitoring its mass. The coating maintained low θroll-off when held at temperatures up
to about 350 ◦C, the point at which the FPU+F-POSS material begins to degrade (Figure 3.16b).
However, even at temperatures where > 75% of the mass would degrade, the coating maintained
θroll-off < 15◦. (Figure 3.16b).

3.6.5 UV and Oxygen Plasma Exposure
To demonstrate resistance to irradiation damage, a sample of FPU + 15 wt% F-POSS was placed
under 254 nm UVC at a distance of 5 cm. The contact angles were measured after five hours
of continuous exposure, showing minimal change (Figure 3.11). A more aggressive test utilized
oxygen plasma, which hydrolyzes F-POSS,.143 A sample of FPU + 15 wt% F-POSS was exposed
to O2 plasma (Harrick Plasma PDC-001) using an RF source power of 30 Watts and a pressure of
∼ 200 mTorr for 20 min. This rendered the FPU/F-POSS coating completely hydrophilic (θ∗ = 0◦),
although P∗ remained unchanged as the low power plasma did not affect the coating texture. To
recover the water repellency, the coated surface was heated on an 80 ◦C hotplate, and the θroll-off
periodically measured. Upon heating, the low surface energy and superhydrophobicity was fully
restored (Figure 3.17a). The time required for full superhydrophobic recovery decreased with
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Figure 3.16: (a) The roll-off angle of a sample of the FPU + 15 wt% F-POSS coating versus cumulative
1 h annealing steps. The inset shows isothermal TGA of the same coating, at different temperature points,
showing severe mass loss only occuring above 250 ◦C. (b) TGA (10 ◦C/min) ramp for pure F-POSS, pure
FPU and the blend of FPU + 15 wt% F-POSS.

Figure 3.17: (a) The roll-off angle of the FPU + 15 wt% F-POSS coating after O2 plasma treatment, as
a function of recovery time at 80 ◦C. As the fully fluorinated chains bloomed to the surface, the surface
energy decreased, and water was more easily repelled. The insets show water droplets (dyed blue) after O2
plasma treatment, and after thermal recovery. (b) Successive O2 plasma/recovery cycles, highlighting that the
self-healing nature of the FPU/F-POSS coating was quite robust.

increasing temperature, consistent with a diffusion-controlled process. When the temperature was
increased to 150 ◦C, complete recovery was observed within 20 min. Alternating treatments of the
coating with O2 plasma and 150 ◦C heat cycling showed that the superhydrophobicity could be
repeatedly fully recovered (Figure 3.17b).

3.6.6 Corrosion Testing
Corrosion testing was done in accordance to the ASTM B117 standard.144 Briefly, 25 mm × 75 mm
mild steel substrates were spray-coated with the FPU + 15 wt% F-POSS coating. A 25 mm scratch
was made along the length of the coating in the center of the sample so that the steel underneath was
exposed. The coated pieces were hung in a salt-spray fog chamber (Bemco) held at 35 ◦C for 200
hours. After the accelerated corrosion, the contact angles were measured and found to have been
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Figure 3.18: Capillary resistance. (a) The P∗ parameter as a function of the number of abrasion cycles
for the FPU/F-POSS coating after self-healing. The inset shows water droplets (dyed blue) displaying high
contact angle even after 5,000 abrasion cycles. (b) The breakthrough pressure of the FPU/F-POSS coating as
a function of abrasion, after self-healing.

negligibly impacted, and the coating prevented corrosion from spreading from the initial scratch
(Figure 3.11)

3.6.7 Retention of Pressure Resistance
Even after mechanical wear, a robust SHS should also exhibit a large capillary resistance or
breakthrough pressure, Pb, defined as the pressure required to force a transition from the Cassie-
Baxter to the Wenzel state.5,6,133,136,145,146 The FPU/F-POSS coating maintained P∗ < 1.0 over
5,000 abrasion cycles (Figure 3.18a), indicating an energetically favorable Cassie-Baxter state,
however, excessive applied pressures can still force an irreversible transition to the wetted Wenzel
state.5

To evaluate the breakthrough pressure, we completely submerged our self-healed FPU/F-POSS
coating in a water tank, applied pressure by injecting compressed air, and observed whether the
sample was wetted after retrieving it from the tank. The breakthrough pressure of this coating was
initially Pb = 100 ± 20 kPa, and never decreased below Pb = 50 kPa, even after 5,000 abrasion
cycles (Figure 3.18b). Remarkably, the pressure resistance increased to a maximum of Pb = 310 kPa
after 4,000 abrasion cycles, due to the decrease in Sq with increasing abrasion. As such, even water
droplets impinging the abraded surface at an impact velocity of 5.7 m/s completely rebounded,
leaving the surface dry (Figure 3.19). In fact, the measured breakthrough pressure of 310 kPa
corresponds to a droplet impact velocity of V ≈ 25 m/s (PBernoulli = ρV2/2, where ρ is the fluid
density), which is higher than the terminal velocity of a millimetric water droplet in air. Whereas
SHSs often only maintain high water contact angles after mechanical damage, the surfaces reported
here preserved all their advantageous water-repellent properties (high θ∗, θroll-off < 15◦, high Pb),
even after harsh mechanical abrasion.
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Figure 3.19: A water droplet, dropped from a height of 1.7 m, impacted the abraded region (4,000 abrasion
cycles) of the FPU/F-POSS coating at a velocity of 5.7 m/s. After breaking up, the satellite droplet bounced
at least four times after impacting the surface. The surface was tilted 1.5◦.

3.7 Drag Reduction in Turbulent Flow
This section briefly describes a collaboration with Prof. Steven L. Ceccio, Prof. Marc Perlin,

and James W. Gose in the Department of Naval and Marine Engineering, as part of a wider Office
of Naval Research Multi-University Research Initiative. This work is published in the Journal of
Fluid Mechanics.147 Kevin Golovin and James Gose performed the majority of the skin-friction
experiments, and extension to tow-tank testing is being undertaken with James Gose and Brian
Tobelmann.

3.7.1 Introduction
One use of durable, scalable SHSs is drag reduction in turbulent flows relevant to marine
applications.148 Fuel consumption by ships is predicted to double between 2010 and 2030.149

Nearly 60% of this fuel will be expended to overcome frictional skin drag on the wetted surface
of vessels.150 Hence, methods that can effectively reduce the frictional drag on marine vessels
could have enormous global economic and environmental impact. Technologies including riblet,
polymer, or air-layer drag reduction have all been considered for hydrodynamic drag reduction.151,152

Active methods such as air or polymer injection require significant mass and energy input.153–155

Therefore, passive methods to significantly reduce skin-friction drag in hydrodynamic flows at
high Reynolds numbers are highly desirable. Researchers have consistently shown that SHSs can
effectively lower frictional drag in laminar flow by allowing a non-zero slip velocity at the wall,
due to the incorporated air fraction1,156–167 However, the extension of frictional drag reduction to
wall-bounded turbulent flows has not been straightforward.153,156–158,168–172 The mechanism of these
potentially drag-reducing surfaces has been previously debated and a very wide range of measured
drag has been reported.148,157,170,173,174

3.7.2 Surfaces
In this work, we examined the physical properties that enable a superhydrophobic surface to reduce
drag in turbulent flow. We then designed, fabricated, and several scalable surfaces, including the
coating based on FPU/F-POSS discussed throughout the rest of this chapter (Figure 3.20, Table 3.5).
These four surfaces were fabricated on stainless steel or polycarbonate substrates which were
1.20 m × 0.10 m, an order of magnitude larger than most other SHSs previously tested in turbulent
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Table 3.5: Summary of the SHSs fabricated for this work, with their apparent contact angles, θ∗, and their
root-mean-squared roughnesses, k.

Type Description θ∗ k

1 Sprayed FPU + F-POSS 163 ± 2◦ 18 ± 1.0 µm
2 Sprayed SF100 + F-POSS 161 ± 5◦ 6.4 ± 0.8 µm
2 (more rough) Sprayed SF100 + F-POSS 161 ± 3◦ 8.5 ± 0.4 µm
2 (less rough) Sprayed SF100 + F-POSS 167 ± 2◦ 2.7 ± 0.3 µm
3 Sprayed FPU + fluoro-silica 172 ± 2◦ 1.2 ± 0.2 µm
4 Etched, boiled, fluoro-silanized aluminum 170 ± 2◦ 4.7 ± 0.7 µm

flows.153,156,168,171,172 These were tested for their capability to reduce drag in a fully-developed
turbulent flow facility. While quite not as mechanically robust as surface #1, the other surfaces were
largely resistant to damage caused by fast-flowing water in these experiments and retained their
superhydrophobicity after testing.

Figure 3.20: SEM micrographs of the four SHSs produced in this work. Scale bars are 20 µm.

3.7.3 Results
While all of these surfaces resisted complete wetting under the elevated shear flows during testing,
the net effect on the drag compared to a hydraulically smooth surface varied from 90% reduction to
90% increase. The two key elements for superhydrophobic drag reduction identified during this work
are: low contact angle hysteresis under elevated pressures and roughness below the viscous length
scale of the turbulent flow. Surfaces with smaller texture features which maintained low wetted
area even under elevated pressure were more likely to yield drag reduction (#2 (less rough), and the
primarily nanotextured coatings #3 and #4) (Figure 3.21). However, surfaces like #1 and #2, with
texture features up to 200 µm across, tended to increase drag even when they remained non-wetted.
If the coating roughness elements are large compared to the purely viscous layer near the channel
wall, turbulent eddies and vortices may be generated around the features protruding into the flow,
causing drag increase. The viscous length scale is defined as δν ≡ ν/uτ,175 where ν is the kinematic
viscosity of the fluid and uτ is the velocity at the wall. A non-dimensional surface roughness relative
to this viscous length scale may then be formulated as k+ = k/δν. Conventionally, a surface is
considered hydraulically rough once k+ > 5,175 but we observed drag increase well below this
threshold, and drag reduction only on some of the surfaces with roughness well below the viscous
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length scale (k+ < 1). Combining k+ with measurements of contact angle hysteresis at elevated
pressures, ∆θHP yielded a better predictive model for superhydrophobic surfaces that reduce drag.

Figure 3.21: The effect of surface roughness on drag. (a) The net drag reduction (negative means increased
drag) caused by all the surfaces as a function of their non-dimensional roughness, k+. (b) The drag reduction
data collapsed onto a single curve when plotted versus the product of the non-dimensional roughness and the
higher-pressure contact angle hysteresis (370 Pa for a 250 nL droplet)

These experiments were performed in shallow enclosed channels, but it is necessary to test
these coatings in the open-boundary conditions found on real vessels, which were believed to have
larger viscous length scales and should tolerate higher coating roughness. Ongoing work is focused
on testing these coatings on a DARPA Suboff submersible model in the Marine Hydrodynamics
Laboratory tow tank. The findings in the skin-friction flow facility suggested that the optimal
coating would be primarily nanotextured and relatively smooth. However, it proved to be relatively
challenging to produce such coatings in a scalable manner on the Suboff while achieving damage
and pressure resistance comparable to that of surface #1. Longevity under high shear flow was
eventually achieved with a variant of surface #1 which was subsequently coated with surface #3 to
fabricate a hierarchically textured coating, yielding a final k ≈ 30 ± 4 µm (Figure 3.22). These were
successfully applied to the mid-body of the Suboff, which is a cylindrical aluminum section that is
1.5 m long and 0.3 m across (surface area ∼12× that of the previous samples). The nanoscale texture
of the coating remained non-wetted after testing up to velocities of 4 m/s at 1.5 m immersion depth
over several hours, however the initially highly reflective and smooth entrapped air layer did conform
to the microscale geometry soon after immersion at testing depth. This initial test on the relatively
rough coating showed no significant effect on drag, suggesting that the viscous length scale of the
Suboff geometry is far lower than initially thought, and the form drag increase counteracted any
reduction in frictional drag. Subsequent experiments will focus on coatings with reduced microscale
roughness to yield net drag reduction.
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Figure 3.22: (a) The coated Suboff mid-body section. (b) SEM of the micro- and nano-structured hierarchical
spray-coating composed of FPU+F-POSS overcoated with FPU+fluorosilica. (c) Assembly of the Suboff. (d)
Tow-tank testing.

3.8 Conclusions
In summary, we have explored how miscibility between hydrophobic fillers and polymeric

binders allows one to control the formation of surface texture during spray coating, in order to
fabricate superhydrophobic surfaces. The S∗ parameter quantifies the miscibility between the two
sprayable components, and the P∗ parameter characterizes the stability of the non-wetted state.
Superhydrophobic surfaces should be designed such that S∗ < 1.0, to afford mechanical durability,
and P∗ < 1.0, to provide a robust non-wetting state. Utilizing these two design criteria, we have
fabricated superhydrophobic surfaces with unprecedented mechanical durability. Some of these
surfaces also exhibited a self-healing nature, both chemically and physically, and were able to fully
recover their superhydrophobicity after a wide variety of extreme chemical and physical exposures.
These surfaces, and the design parameters used to develop them, may find immediate usage in a
wide range of academic and industrial sectors across the globe. Since preliminary testing suggests
that these solely microtextured surfaces may not be ideal for marine drag reduction applications,
combining them with hierarchical nanotexture is the focus of ongoing work to fabricate coatings
which may yield significant drag reduction under high-velocity turbulent flows.
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