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Workflow for polyhedra folding study. Starting with a target 3D polytope (top,
and moving clockwise), a graph representation is used to enumerate different per-
mutations of edge cuttings. The vertices (edges) in the so-called cutting tree graph
correspond to the vertices (edges) of the polyhedron. Red edges in the cutting
tree mark those being cut. From the cutting tree, a planar, hinged connection of
non-overlapping faces (a net) results. Each face of the net is then modeled as a
union of spheres rigidly held together, tethered along hinges via harmonic springs.
In the MD model shown, gray spheres interact via a Lennard-Jones potential. Blue
spheres interact with each other and with gray spheres via a purely repulsive WCA
potential. The simulations are initialized at high temperature and brought to low
temperature either following a fast quench or a slow annealing protocol. Once the
final temperature is reached the final configuration is compared to the target shape.
The folding yield is then calculated as the probability of achieving the desired 3D
shape via the particular cooling protocol. . . . . . . . .. .. ... ... ...

Octahedron net misfolds. (a) Examples of trapped states that can be achieved by
octahedron nets. The boat conformation occurs more often. (b) Probabilities of
the octahedron nets folding into the boat conformation for fast (2.5x10757/¢) and
slow (2.5x1078T/t) cooling rates. . . . . . . .. .

Effect of net topology on the folding probability for the simplest Platonic solids.
Folding yield, defined by the fraction of simulations that reached the folded state,
was calculated for two cooling rates. Nets for each polyhedron are ordered from
highest to lowest yield at low cooling rate. a) For the two tetrahedron nets (tri-
angular, top, and linear, bottom), noticeable difference in folding success rate is
visible for rapid cooling rates, but similar folding propensity is found for slower
cooling rates. b) For the cube nets 8/11 nets fold poorly (below 50%) even for slow
folding reactions while for the octahedron (c), most nets are unable to fold into the
original shape. Generally the more compact nets fold better: nets that have a high
number of leaves on their cutting tree and a smaller diameter usually fold best.
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ABSTRACT

Inverse Materials Design Employing Self-Folding and Extended Ensembles The de-
velopment of new technology is made possible by the discovery of novel materials.
However, this discovery process is often tedious and largely consists of trial and error.
In this thesis, I present methods to aid in the design of two distinct model systems.
In the first case study, I model the 43,380 nets belonging to the five platonic solids to
elucidate a universal folding mechanism. I then correlate geometric and topological
features of the nets with folding propensity for simple shapes (i.e., tetrahedron, cube,
and octahedron), in order to predict the folding propensity of nets belonging to more
complex shapes (i.e., dodecahedron and icosahedron). In the second case study, I de-
velop Monte Carlo techniques to sample the alchemical ensemble of hard polyhedra.
In general, the anisotropy dimensions (e.g, faceting, branching, patchiness, etc.) of
material building blocks are fixed attributes in experimental systems. In the alchem-
ical ensemble, anisotropy dimensions are treated as thermodynamic variables and
the free energy of the system in this ensemble is minimized to find the equilibrium
particle shape for a given colloidal crystal at a given packing fraction. The method
can sample millions of unique shapes within a single simulation, allowing for efficient
particle design for crystal structures. Finally, I employ the method to explore how
glasses formed from hard polyhedra, which are geometrically frustrated systems, can

utilize extra dimensions to escape the glassy state in the extended ensemble.
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CHAPTER I

Introduction

At the root of most technological advancements is the discovery of new materials.
New materials enable society to achieve the most complex tasks more efficiently.
However, the discovery of novel materials is a slow and tedious process that has
been driven by trial and error for over two millennia. In 1833, Faraday discovered
the property of certain materials to be semiconductors, but it took over 100 years
to take this discovery and turn it into the first silicon-based computer. The field of
materials design strives to achieve two goals: (1) to discover new materials at a rapid

rate, and (2) to quickly implement new technologies based on these discoveries.

In recent years, there has been a hard push to develop dynamic and adaptive
materials[1], including molecular machines, DNA robots[2], and colloidal robots][3].
Such systems offer abundant information encoding through chemical bonds, com-
plementarity, and external fields. In this work, we explore how information can be
stored in geometric arrangements of (1) rigid bodies that are connected via a hinge,

and (2) hard convex polyhedra.



1.1 Self-Folding Nets

The primary systems that we study are the nets of the Platonic solids. A net is
defined as the resulting two-dimensional sheet obtained by cutting along the edges
of a polyhedron in such a way that the faces can lay in the plane. There are two
ways to unfold a tetrahedron, 11 ways to unfold a cube or octahedron, and 43,380
ways to unfold an icosahedron or dodecahedron. The main questions addressed in
this work are: Out of all of the nets for a given shape, which one will fold best? Do
all of the nets for a given shape fold using the same set of pathways? How does a

net’s geometry and topology affect the folding process?

By answering these questions, we gained valuable insights into the fundamental
physics underpinning stochastic folding, and were then able to distill this knowledge
into a set of basic design rules that accurately predict which nets of the dodecahedron

will successfully fold. These findings were published in reference [4].

1.2 Extended Ensembles

In statistical mechanics, there exist numerous thermodynamic ensembles. These en-
sembles define which variables in the system are allowed to vary, and which ones
must be held fixed. Extended ensemble methods can treat parameters of the system
that are conventionally (or experimentally) constant as thermodynamic variables. In
our case, we treat the shape of the hard particles that we study as thermodynamic
variables. This treatment led us to develop a Monte Carlo method for the success-
ful design of particles that assemble into target crystal structures. This work was
developed in reference [5], and subsequently used in references [6] and [7]. Beyond

materials design, we used this method to study glassy systems of hard polyhedra.



Critically, we found that the glass transition can be avoided in this ensemble through

the reduction of faceting of shapes. This final study by P. Dodd and S. Glotzer will

be published following the completion of this dissertation[8].
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CHAPTER II

Universal Folding Pathways of Polyhedron Nets

In the 16th century, the Dutch artist Albrecht Diirer investigated which two-dimensional
(2D) cuts of non-overlapping, edge-joined polygons could be folded into Platonic and
Archimedean polyhedra. Diirer cuts were later called “nets” but, for a long time,
the interest around them was mostly restricted to the field of mathematics [1, 2, 3].
A newer concept, self-folding origami adds a modern twist to the ancient art of pa-
per folding. By providing a mechanism to achieve complex three-dimensional (3D)
geometries from low-dimensional objects — without the need for manipulation of
the constituent parts — self-folding brings the concepts pioneered by Diirer to the

forefront of many research fields, from medicine [4] to robotics [5],

Several recent works have leveraged physical forces to achieve controllable folding
of 3D objects including light [6], pH [7], capillary forces [8], cellular traction [9] or
thermal expansion [10]. Other works have investigated the relationship between geo-
metric attributes of the object being folded and its propensity for successful folding.
In the macroscopic folding of kirigami sheets — origami-like structures containing
cuts and creases — the effect of different cut patterns on the material’s stress-strain
behavior has been elucidated [11, 12, 13] and the “inverse design problem” of finding

cuts leading to the folding of a particular target structure has been solved [14]. For



sub-millimeter-sized capsules, formed via non-stochastic folding of nets into polyhe-
dra, it has been suggested that nets fold with higher yield when they are compact
[15, 8, 16|, but the reason for this correlation remains unclear. In natural systems,
the canonical example of self-folding occurs for proteins, where a string of amino
acids navigate, thermodynamically, from a denatured (unfolded) state to a natured
(folded) one. Even after many decades of study, however, a universal relationship
between molecular sequence and folded state — which could provide crucial insight

into the causes and potential treatments of many diseases — remains out of reach

11, 12, 13].

In this work, we study the thermodynamic foldability of 2D nets for all five Platonic
solids. Despite being the simplest and most symmetric 3D polytopes, the family of
Platonic shapes suffices to demonstrate the rapid increase in design space as shapes
become more complex: a tetrahedron has two possible net representations, cubes and
octahedra each have 11 nets, dodecahedra and icosahedra have, each, 43,380 distinct
net unfoldings. Here we are interested in the thermodynamic self-folding of these
nets. Our goal is to understand how topology affects yield in the stochastic folding
of 3D objects. The advantage is three-fold. First, by using a collection of sheets
folding into the same target shape, we isolate the geometric attributes responsible for
high-yield folding. Second, the model allows exhaustive computation of the pathways
followed by the nets during folding, elucidating how some nets achieve high-yield.
Third, by studying increasingly more complex objects — from tetrahedra to icosahedra
— we can use the folding mechanisms quantified in the simplest objects to predict,

and potentially validate, their occurrence in the more complex shapes.



Figure 2.1: Workflow for polyhedra folding study. Starting with a target 3D polytope (top, and
moving clockwise), a graph representation is used to enumerate different permutations
of edge cuttings. The vertices (edges) in the so-called cutting tree graph correspond to
the vertices (edges) of the polyhedron. Red edges in the cutting tree mark those being
cut. From the cutting tree, a planar, hinged connection of non-overlapping faces (a net)
results. Each face of the net is then modeled as a union of spheres rigidly held together,
tethered along hinges via harmonic springs. In the MD model shown, gray spheres
interact via a Lennard-Jones potential. Blue spheres interact with each other and with
gray spheres via a purely repulsive WCA potential. The simulations are initialized at
high temperature and brought to low temperature either following a fast quench or a
slow annealing protocol. Once the final temperature is reached the final configuration
is compared to the target shape. The folding yield is then calculated as the probability
of achieving the desired 3D shape via the particular cooling protocol.

Beginning with a target Platonic shape (Fig. 2.1), we construct a graph whose vertices
and edges correspond to those in the polyhedron. This mapping of the shape to a
graph facilitates the exhaustive search of all distinct nets by allowing spanning tree
enumeration [3]. A set of pre-chosen edges (the cutting tree) are then cut, in a
process called edge unfolding, to create a single, contiguous and flat 2D sheet of non-
overlapping faces: a net. For the Platonic shapes, whose nets are enumerated[17],
this can be repeated exhaustively until all distinct nets are discovered (see Section 2.5

for more details). We note that for other shapes, while the process of computing all



nets might become computationally prohibitive, it has been recently demonstrated
that a subset of interest for these nets can be computed algorithmically [18]. We list

all 86,784 nets for the Platonic solids in a database [19].

Each net is modeled as a sheet of rigid polygons connected to adjacent polygons via
harmonic springs. The polygons are composed of rigidly connected spheres and the
influence of thermal fluctuations on a single net, suspended in implicit solvent, is
modeled via Langevin molecular dynamics (more details in Section 2.5). We assign
non-specific, short-ranged attractive (sticky) interactions between all edges not joined
by springs of a net so that the polyhedron formed from folding is also the ground state
configuration. This does not guarantee, however, the uniqueness of the ground state
and, as we will see, other 3D foldings can arise. Unless explicitly noted otherwise,

by “folded state” we refer to the original polyhedron.

As in proteins and other biomolecules, the non-specificity of the interactions between
edges of the nets allows for both native and non-native contacts. As a consequence,
when the system temperature is rapidly decreased (quenched), kinetic traps are pos-
sible and net misfolds are observed. This possibility for kinetic traps raises the
question: among all nets generated by unfolding a polyhedron, which of them show

the highest propensity to re-fold into the original polyhedron?

2.1 More Compact, “Leafy” Nets Fold More Reliably.

To identify the nets able to fold reliably into their polyhedron of origin we performed
hundreds of cooling simulations for each net using both a fast and slow cooling pro-
tocol (see Section 2.5 for more details). The two distinct nets for the tetrahedron,

hereafter referred to as the triangular net and the linear net (Fig. 2.3a), showed



remarkably different folding propensities for the fast cooling protocol: out of 126
simulations, all triangular nets folded into the target tetrahedron while only 54% of
the linear nets succeeded — the other 46% experiments resulted in misfolded con-
figurations. In general the slower cooling rate simulations yielded a higher folding
probability for each net. This is expected as the net has more time to find the global
minimum. Similar simulations for each of the 11 nets of both the cube and octahe-
dron revealed even larger differences: for the cube nets (Fig. 2.3b), only three of the
nets showed greater than 50% success in folding, and only at slow cooling rates; for
the octahedron (Fig. 2.3c), none of the nets achieve higher than 50% success rate for

either cooling rates.

The misfolded configurations for the tetrahedron and cube nets were incomplete
three-dimensional geometries (showing, for instance, faces collapsed on top of each
other or bonds incompatible with the formation of the respective target shape).
In contrast, octahedron nets often folded into another three-dimensional shape: a
concave, boat-like conformation with the same number of edge-edge contacts as the
octahedron: in other words, a degenerate ground-state. This competing structure,
which is less symmetric than the octahedron, has higher rotational entropy resulting
in a lower free energy than the octahedron(see Fig. 2.2a for folding probabilities for
the boat conformation). A competition between similar degenerate structures was
reported for finite clusters of six attractive spherical colloids [20], where symmetry

breaking leads to the formation of the same boat-like conformation.
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Figure 2.2: Octahedron net misfolds. (a) Examples of trapped states that can be achieved by
octahedron nets. The boat conformation occurs more often. (b) Probabilities of the
octahedron nets folding into the boat conformation for fast (2.5x1077/t) and slow
(2.5x10~%T'/t) cooling rates.

Figure 2.3 shows that, despite having the same ground-state energy, not all nets of
a polyhedron are equivalent. In general, we observe that the nets that fold most
reliably are the most compact and have the highest number of leaves on its cutting
graph (green dots in nets in Fig. 2.3). A net is said to be more compact if it has
a large number of leaves, the one degree vertices on the cutting tree, and a small
diameter, the longest shortest path between any two faces on the face graph. Exact
values for the leaves and diameter are shown in Table 2.1. Most strikingly, even nets
differing only by the location of a single face can have folding probabilities reduced
from 99% to 17%. What causes one shape to fold nearly perfectly every time while a
slightly different one fails to do so almost as frequently? And why do net ‘leafiness’

and ‘compactness’ correlate with folding yield?
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Image | DatabaseId | 7,, | Diameter | Leaves | Paths
5 0 2.50 3 2 2
ﬁ 1 2.50 2 3 3
EEEB 0 4.10 4 3 9
E{j}j 1 3.57 4 4 12
E&B 2 3.10 4 3 6
Iﬁj 3 4.04 4 3 12
o 4 4.16 5 2 6
EEEJ 5 3.35 3 4 16
&[B 6 4.15 5 2 2
&[D 7 3.95 4 2 6
EEﬁj 8 3.99 5 4 8
E&B 9 3.98 5 3 5
Etgj 10 3.74 3 4 18
@ 0 2.44 6 2 5
# 1 249 6 3 7
B 2 I 4 12
SRR 3 2.56 7 3 6
B 4 248 | 6 3
ﬁ 5 249 7 2 6
=g 6 2.50 5 4 14
<§3> 7 2.45 5 3 12
% 8 247 7 2 2
& 9 2.50 5 3 12
% 10 2.44 5 2 8

Table 2.1: Relevant data for the tetrahedron, cube, and octahedron nets. For each net, a database
ID, melting temperature T,,,, diameter, number of leaves, and number of paths connecting
unfolded and folded states is shown.
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Figure 2.3: Effect of net topology on the folding probability for the simplest Platonic solids. Folding
yield, defined by the fraction of simulations that reached the folded state, was calculated
for two cooling rates. Nets for each polyhedron are ordered from highest to lowest
yield at low cooling rate. a) For the two tetrahedron nets (triangular, top, and linear,
bottom), noticeable difference in folding success rate is visible for rapid cooling rates,
but similar folding propensity is found for slower cooling rates. b) For the cube nets 8/11
nets fold poorly (below 50%) even for slow folding reactions while for the octahedron
(c), most nets are unable to fold into the original shape. Generally the more compact
nets fold better: nets that have a high number of leaves on their cutting tree and a
smaller diameter usually fold best.
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2.2 High Temperature Folding Happens via Native Contacts.

To answer why small differences in net topology can have a large impact on the net’s
folding propensity, we used Markov state models (MSM) [21, 22, 23] to compute
the pathways through which nets fold into their folded state. Since quench rate was
observed to affect the folding propensity of the nets, we run constant temperature
simulations of each net while computing the rate of transitions between two states
(flux). A representative folding network created is shown in Fig. 2.4a (see Fig. 2.5 for
other example networks). Arrows represent observed transitions between different
states and each arrow has a thickness proportional to the probability flux of the
transition being observed (see Section 2.5 for more details). To simplify, we show
only the most visited pathways (i.e. those whose combined flux account for at least
50% of the total reactive flux between unfolded and folded states). Intermediate
configurations can achieve the folded state via the formation of native (green) or
non-native (red) contacts. If a pathway includes native contacts only, every newly
formed bond is compatible with the final polyhedron and error correction is not
needed. When the folded state is achieved via incompatible bonds, we observe that
these non-native contacts can sometimes have an “active” role by bringing otherwise
far-away native contacts closer together, facilitating folding. In other cases the non-
active contacts contribute only passively and folding occurs sequentially after the
misfold occurs until it reaches a point where the non-native contact must break for
folding to continue. In either case, non-native contacts must eventually break before

a folded configuration can be achieved.
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Figure 2.4: Folding pathways for a representative cubic net. a) Intermediate folding states (nets,
in the diagram), arise when new bonds between edges are formed. States are connected
with an arrow when a pathway from one state to another is observed in the simulation.
The thickness of such a connection is proportional to the measured probability of this
transition being observed. For better visualization, only the most visited states are
shown. Red (green) faces correspond to a state where a non-native (native) contact
is formed. The pathways containing only native contacts follow a “sequential” folding
process, where one face folds at a time. Non-native pathways can lead to the native
folded shape via one of two mechanisms: i) either the misfold helps bring otherwise
far away faces together, or ii) the folding proceeds sequentially after the misfold occurs
until it reaches a point where the non-native contact must break for folding to continue.
In both cases, if the correct polyhedron is achieved in the end, the non-native contact
is corrected along the pathway. The network represents 55% of the folding flux at
T = 3kT. b) The total probability flux, defined as the sum of the fluxes along all
pathways, for the representative net in a) as a function of temperature. The peak
around temperature T = 3k7T shows that there is a temperature at which there is a
maximum number of expected transitions from the unfolded to folded state per unit
time. (c) The relative amount of flux going through pathways that use the native
(green curve) and non-native (red curve) pathways. The folding occurs mostly via
native contacts when the system is kept at higher temperatures.
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Figure 2.5: Folding networks for representative cube and octahedron nets that have two (a,d),
three (b,e), and four leaves (c,f). Networks were calculated at the melting temperature
reported in Table 2.1.

The total flux connecting unfolded and folded states (Fig. 2.4b) first increases with
temperature and then decreases to zero at high temperature. At low T the folding
flux is low because the states are mostly trapped into a few configurations, i.e. the
slow kinetics inhibits bond breaking. As the temperature increases, bonds can now

break and the folding/unfolding process occurs at a higher rate. At intermediate
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T, a maximum in reactive flux is observed, meaning that there is a temperature at
which there is a maximum number of expected transitions from unfolded to folded
state per unit time 7. The representative network shown in Fig. 2.4a was calculated
at that peak temperature. Finally, at high 7" the unfolded state is preferred and
again the flux vanishes. These trends are also true for the other nets studied see
Fig. 2.6. If we separate the flux into those following native and non-native contacts,
we see (Fig. 2.4c¢) that the folding pathways at high temperature mostly follow the
formation of native contacts while the behavior inverts for low temperatures, and
mostly non-native contacts are observed. There were only two nets that a crossover
temperature was not observed. The triangular tetrahedral net does not exhibit a
crossover temperature since it has no traps. The best folding cubic net also does
not have a cross over temperature in the range of temperature we study, while traps
exist, the fraction of native contacts decreases and the temperature decreases but
never falls below 50% (see Fig. 2.6). This T" dependency is also observed in colloids,
where the assembly of an icosahedron is monomeric at high temperatures, but, at low
temperature, particles first aggregate into large clusters (not necessarily compatible
with icosahedral symmetry) and those later rearrange into the ground state structure

[24].
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Figure 2.6: Temperature dependence of reactive and relative fluxes for the tetrahedron, cube, and
octahedron nets. The net corresponding to each plot is given as an inset. For each plot
the blue curve represents the total reactive flux while the red and green curves represent
the fraction of the flux corresponding to non-native and native contacts, respectively.
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Figure 2.7: Projected pathways computed from the MSM of all of the nets onto two order parame-
ters: native contacts and number of internal degrees of freedom. We find that each net
will reduce their degrees of freedom in approximately the same way. The data points
are weighted averages of the number of degrees of freedom over all pathways for each
given value of Q/Q foigeq- The lines are drawn to guide the eye. The upper right corner
of the plot is a geometrically forbidden region arising from the fact that the net can not
gain a bond without losing at least one degree of freedom. The temperature plotted for
each net is given by T,,, + 0.5, T, is reported for each net in Table 2.1.

To gain an understanding of the mechanisms underlying the observation that native
contacts are favored at high temperatures during folding, we calculated the number

of degrees of freedom associated with each intermediate.

2.3 Nets Follow a Universal Balance Between Entropy and Enthalpy.

The fact that more compact nets and those with many leaves generally fold with
higher yield suggests that nets might fold locally, in a manner that reduces the
fewest degrees of freedom, thereby maximizing the conformational entropy along
the folding pathways. To test whether this trade-off between maximizing degrees of

freedom and forming native contacts occurs at high 7', we calculate the number N



19

of internal degrees of freedom and the number () of native contacts as a net folds.
We do so for all 24 nets of the tetrahedron, cube, and octahedron nets. Fig. 2.7
shows that, remarkably, all nets follow a folding pathway that achieves a narrow
balance between reduction of degrees of freedom and gain of potential energy. In
practical terms, high temperature folding happens locally such that, at each step
of the process, the system strives to maximize its conformational entropy. From
this observation, we hypothesize the following mechanism for the folding of general
nets at high temperature. Folding should primarily happen: i) via nearby (local)
connections — favoring compact nets with many leaves; ii) along one of the optimal
trade-off paths — favoring nets with high degeneracy in the number of such optimal

paths.



Figure 2.8: Combined dominant pathways for the 11 nets of the cube (a) and the 11 nets of the
octahedron (b) calculated at high temperature. In both cases the dominant pathways
are sequential (one face folding at a time) and include only native contacts. As in
Fig. 2.4, arrows indicate transitions between two states, the arrow thickness being
proportional to the probability of observing such a transition.

Using this hypothesis we devised an algorithm to generate high-temperature path-
ways for the 86,760 nets of the dodecahedron and icosahedron, without the need for
a full MSM calculation. We do so by first enumerating candidate bonds that can be

made if they are next to each other on the net or in the intermediate and then by
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Figure 2.9: Correlation between different geometric and topological quantities calculated for the net
and the folding propensity, defined as the average fraction of native contacts formed
across all 125 quenching simulations. Each row corresponds to the cube (red), octa-
hedron (green), dodecahedron (orange), and icosahedron (purple) respectively; data
for the tetrahedron was omitted because there are only two nets. Pearson coefficients
and p-values are reported in the panels for the cube and octahedron, as these data are
used to predict the ‘good’ and ‘bad’ nets of the dodecahedron and icosahedron. We
found that the number of leaves provide the strongest linear correlation for both the
cube and octahedron (Pearson coefficients are 0.81 and 0.86, respectively) and so the
number of leaves was used to try and predict the nets that would fold with both high
and low propensity. In the bottom two rows (dodecahedron and icosahedron), the nets
predicted to fold well are plotted with a solid circular marker and the nets predicted
to fold poorly are plotted with a solid ‘x’. We find that while the number of leaves is
a good predictor for the dodecahedron, the icosahedron still folds with relatively low
propensity. In fact, none of the icosahedron nets folded into the target structure.

selecting ones that have the largest number of degrees of freedom (see Section 2.5 for
more details). Fig. 2.8 shows the combined example pathways followed by all 11 nets
for the cube (Fig. 2.8a) and for the octahedron (Fig. 2.8b), illustrating the pathways

that maximize degrees of freedom and using only local, native contacts to fold. We
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then used these principles to find, among the 86,760 nets those with high and low
folding yields (see Fig. 2.10 and 2.11 for specific nets). The corresponding folding
propensities are plotted in Fig. 2.9. As expected, polyhedra with many leaves and
small diameter show higher propensity for correct folding and those nets also have
many high T pathways to the ground state. The correlation between the folding
propensity and the leaves may have analogues in other systems as well. The number
of leaves is a measure of the amount of local connections that are required to fold
from the unfolded state. In the protein folding literature the contact order is a mea-
sure of how far away specific native contacts are on the amino acid sequence and it

has been shown that low contact order inversely correlates to folding rate[25].

Overall, our observations suggest that folding propensity of a net decreases as the
number of faces increase. For instance, while the four-sided tetrahedron folds nearly
perfectly, the twenty-sided icosohedron is unable to successfully fold. One exception
to this trend is the dodecahedron, which folds with higher probability than the
octahedron. While the reason for this exception remains elusive, there are two factors
that may play a role. The first factor is the number of degrees of freedom retained
by the faces sharing a leaf vertex when the leaf edges form a bond. For instance,
octahedron nets can make a bond about the leaf vertex, but due to the unique
symmetry the loop, retains one degree of freedom (i.e., the resulting intermediate is
not rigid), so the intermediate may still enter a trapped state. In the case of the
icosahedron, after folding about leaf vertices, the loop retains two degrees of freedom.
In the case of the other three shapes (i.e., tetrahedron, cube, dodecahedron), folding
about leaf vertices render the loop rigid. This implies that further constraining
the net by increasing the rigidity throughout the folding process is important to

sufficiently funnel the net’s energy landscape, and may boost the folding probability



23

2) B, S8R o FE
S50 o B gage B

575 g Nl Vg, g

o F™ g SR8
g
0) o BRWE B

g 7 e g

R T

5P T B s
el

Figure 2.10: Dodecahedron nets used in this study. Dodecahedron nets predicted to be (a) “good”
folders and (b) “bad” folders.

for many nets. The second factor is the complexity that arises in trapped states.
There are “tetrahedral motifs” on many octahedral nets, and these motifs can fold
into full or partial tetrahedra, as seen in the boat conformation mentioned above
(see Fig. 2.2a for more examples). For icosahedral nets, there are both tetrahedral

and octahedral motifs, and the diversity of the trapped states is further increased
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Figure 2.11: Icosahedron nets used in this study. Icosahedron nets predicted to be (a) “good”
folders and (b) “bad” folders.

for these nets. This is in sharp contrast to the nets of the other three shapes, for
which trapped states typically occur when one face folds on to another face. The
contribution of both of these factors to folding should be investigated further in

future studies.

2.4 Discussion and Conclusion

The observed preference for native contact pathways at high temperature is not
unique to polyhedron nets. Several small proteins have been observed in simulation
to fold via native-only contacts when close to their melting temperature[26]. At low
T (or high hydrophobicity) the pathways shift to a hydrophobic collapse, in which
non-native contacts form followed by further rearrangements leading to the native

state [27]. Similarly, colloids assemble via monomeric pathways at high temperature,
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forming bonds that are compatible with the overall structure in a equivalent process
to native-contact formation[24]. Finally, systems of colloidal sticky spheres prefer to
form the same concave, boat-like conformation that we observe for octahedron nets

120].

Our simple model therefore draws connections between the macroscopic irreversible
folding of polyhedra [8], assembly of patchy [24] and colloidal particles [20], and
the folding of amino acids[28, 26, 27]. The identified trade-off between entropy and
enthalpy that dictates high temperature folding provides guiding principles for the
assembly of 3-D complex geometries from potentially simpler-to-fabricate 2-D nets.
We demonstrated the judicious pathway engineering via the selection of nets with
certain characteristics. We found that nets at high temperature fold through path-
ways that maximize the internal degrees of freedom, regardless of their propensity
to fold, and the more compact nets fold with higher propensity. The compactness
measures correlated with the number of pathways connecting the unfolded and folded
states offering some understanding on why these measures work well. In addition to
giving insights into the thermodynamics of folding in naturally occurring systems,
our results could also provide a route for the fabrication of anisotropic Brownian
shells, paving the way for the self-assembly of complex crystals from nano and col-
loidal shells [29, 30, 31, 32] capable of encapsulating cargo. We expect these results to
impact future experiments on folding of graphene sheets [13], graphene oxide layers

[12], or DNA-origami polyhedral nets [33].
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2.5 Methods

Enumeration of Polyhedral Nets

We create nets from polyhedra via a process known as edge-unfolding. In edge-
unfolding, one cuts along a set of pre-chosen edges, called the cutting tree, of a
polyhedron (e.g. a cube) to create a single, contiguous flat 2D sheet of connected
(square) faces: a net. We enumerate all of the nets of each polyhedron by generating
random weights for the edges of the skeleton-1 graph of the polyhedron on the interval
[0,1]. The minimal spanning tree was found using Kruskal’s algorithm [34]. We then
converted the spanning tree to a net and added it to the database[19] if it did not
already exist. We ran this loop for many iterations until we found all the nets for

each shape.

Langevin Dynamics and Molecular Dynamics Simulation

Langevin dynamics are employed to model the folding dynamics for each net using
HOOMD-Blue (35, 36, 37, 38]. Each face of the net is approximated by a union of
spheres acting as a rigid body, with an edge length of 10 spheres. The spheres are
arranged in a hexagonal lattice for triangular faces, square lattice for square faces,
and a hexagonal approximate for the pentagonal faces. For each simulation the drag
coefficient, v, was set to the inverse of the number of spheres used to create a facet.
The spheres in the center of the face interact via a WCA potential shown in blue in
Fig. 2.1, while the spheres on the free edges of the net interact via a Lennard-Jones
potential; both potentials used € and o values of 1.0. The rigid facets are tethered
together using harmonic springs along the edges using a spring constant of 800 and

and equilibrium distance of 1.0.
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Quantifying Yield

To quantify the folding yield we ran 125 simulations starting from a high temperature
and quenched the temperature to near zero (7' = 0.1). We then defined the yield
as the fraction of simulations that completely folded into the target polyhedron.
To distinguish between nets that had very low probability, we defined the folding
propensity as the average fraction of native contacts averaged over all of the quench-
ing simulations we ran. If all nets folded perfectly in all runs the folding propensity
is one. We linearly quenched 125 systems from 0.1 < T < T,, + 2.5, where T,, is the
folding temperature defined as the maximum melting temperature (temperature at
which the net is unfolded 50% of the time) among all nets for a given target shape.
We used two different cooling rates to investigate their influence in the folding yield:

2.5x107%T'/t and 2.5x1078T'/t. The T,, for each shape is listed in Table 2.1.

Markov State Models and Folding Pathway Calculations

Markov State Models (MSM) [21] have been used to study protein folding [22, 23]
and virus capsid assembly [39] and can provide a detailed view into the dynamics
and thermodynamics of the folding landscape. Each simulation snapshot is classified
as a discrete state, and the number of transitions between each state is recorded
in a matrix. The dihedral angles completely specify the configuration of a net and
are therefore a good set of collective variables. We break the ‘up’ / ‘down’ folding
degeneracy by keeping track of the dihedral angle on the interval [0,27]. As the
simulation is running we also compute the energy between each pair of free edges
(edges not part of a hinge) on the net. If the potential energy between two edges is less
than Ejyynq = —5e, then the edges are considered to be bonded, and a list of bonded

edges is recorded along with the the list of dihedral angles. All intermediates are then
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clustered using DBSCAN [40] with a variation of the Manhattan metric, d(i,j) =
aeArtlllti(Ié " max |Ga ()t —a;k|, which is a way to compare the dihedral angles of different
states taking into account the symmetry of the net. Using the bonding information,
we turn the MD model into a graph, G;,;. By looking at the graph automorphisms

we can determine if the symmetry could lead to a relabeling of the vertices of the

net. If so, clusters returned by the DBSCAN algorithm were merged.

To build the MSM we ran 125 independent NVT simulations for 12.5 x 10° steps and
then branched the trajectories using new random seeds. This process was repeated
until we obtained a total of 1875 (14 x 125) trajectories (or, equivalently, 2.3 x
10'° time steps) for each net and each temperature. Bonded edges and dihedral
angles for each hinge were computed every 10 time steps and combined to define
a state in the MSM described above. The lag time, 7, was found by the standard
protocol of identifying the time at which the eigenvalues of the transition probability
matrix become constant (Fig. 2.12). We used Transition Path Theory [23, 41, 42]
to determine the reactive flux, f;;, of all intermediates. The reactive flux is defined
as fij = ¢fmiPy;q; , where ¢ is the forward committor probability (the probability
that the net will fold from state j), m; is the probability of being in state i, Pj;
is the probability of transitioning to state j given the system is in state i, g; is
the backwards committor probability (the probability that the net is folding, as
opposed to unfolding). Finally, the net flux is defined as ;J“ = max{f;; — fj;,0}.
The dominant paths were computed via the “bottle neck” algorithm using the net
fluxes [41, 23]. The total reactive flux is defined as the sum of the reactive flux out

of the unfolded state, F' =), fui, where u is the unfolded state. The folding rate is

then kjyq = F/7m,, where , is the probability that the pathway is moving forward.
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Figure 2.12: Choice of lag time for MSM studies. For each tetrahedron, cube, and octahedron net
(shown in the inset), the implied time scales are shown. Each curve shows the first
non-trivial eigenvalue, A, of the transition probability matrix as a function of the lag
time, 7 for a given temperature. All of the eigenvalues flatten out by 7 = 1000 time
steps. We therefore choose this value as the lag time for each MSM study.

Folding Parameters

The number of native contacts, (), were calculated by counting the number of edges
that were bonded to the correct corresponding edge according to the criteria de-
scribed above. The non-native contacts were calculated similarly. The diameter is
the graph diameter of the face graph of the net. In general the number of degrees
of freedom can be difficult to calculate because it can be difficult to deduce which

constraints are redundant in the net. In general one can use the pebble game [43],
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however if the linkage is not generic or has point group symmetries the pebble game
can underestimate the number of degrees of freedom [44, 45]. First we applied the
pebble game to each intermediate, then for closed loop motifs we applied a closed
loop formula to determine the number of degrees of freedom [46], finally intermedi-
ates with high degrees of symmetry were checked by hand, since the pebble game is

known to underestimate these cases [44, 45].

Enumerating High Temperature Pathways

An exhaustive search was performed to enumerate high T" pathways. Two principles
were assumed to be important for the folding pathways at high temperature: local
bonds and maximizing number of degrees of freedom. We initialize the algorithm by
adding the unfolded state to the queue and creating an empty graph that will contain
the pathway information. For each intermediate in the queue, a set of candidate
bonds was calculated by finding edges on the intermediate that still needed to be
bonded and had a topological distance of one (local). This intermediate was then
added to the queue for further processing, and a link between the current state and
candidate state is made in the graph. Finally the pathways are taken from the
graph and sorted lexicographically by the sequence of degrees of freedom of each
intermediate along the pathway. The pathways that have the largest number of

degrees of freedom are then returned.
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CHAPTER III

Monte Carlo Sampling Methods for Extended Ensembles

This chapter is a compilation of collaborative works[1, 2, 3]. One of my main roles
in each collaboration that I was a part of was to develop new methods, and to help
shape the fundamental questions that each study was asking. After developing the
Monte Carlo method presented in Section 3.2 and Section 3.3, there was a surge of
new problems that my colleagues and I were eager to solve. The first part of this
chapter presents a review of these findings, while the second part includes the details
of the theory behind the method (Section 3.2), notes on detailed balance for various

systems(Section 3.2), and implementation and code design(Section 3.4).

3.1 Background, Motivation and Review

As computers become more powerful and information becomes more freely available,
scientists have leveraged new computational tools to design novel materials. The
bulk of the effort thus far has been to design new metal alloys that will conform
to desired crystal structures, mechanical properties, and optical properties. These
results are then cataloged into large databases that can be mined for future studies
and applications[4, 5]. The ultimate purpose of these databases is to become gi-

ant lookup tables, where the inverse design problem is reduced to a query into the
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database. However, this sort of approach is not possible if the desired material is
not already catalogued in the database. Furthermore, the challenge for soft matter
materials is much more difficult, and exhaustive databases may be impossible to
build. When it comes to colloids, polymers, and nanoparticles, the design space is
much larger and more complex compared to that of other materials. In addition
to the chemical composition of the constituents, one must consider particle shape.
Such parameters are said to be dimensions of anisotropy[6]. These dimensions can be
hard to quantify, and cannot be exhaustively computed. In addition to the inherent
high dimensionality of the design space, many phase diagrams have large regions
in the parameter space that are uninteresting (i.e., phases that are undesired), and
comparatively few small regions that are interesting. This class of problem requires

a much more efficient method to find a solution.

3.2 Digital Alchemy Method !

The dimensions of anisotropy, such as shape, surface coverage, and patchiness, are
a general constant in most experimental systems. In the digital alchemy model, the
anisotropy dimensions are treated as thermodynamic variables and the free energy
of the system in this ensemble is minimized to find the equilibrium particle shape for
a given colloidal crystal at a given packing fraction. To derive the model, we start
with the general Hamiltonian of the system,

2

ool
(3.1) H({ai}) = o T §LTI{O}Z.}L + Utai} (0, Q)

The anisotropy dimensions are denoted by «;, p is the linear momentum, m is the

mass of the particles, L is the rotational momentum, Iy, is the moment of inertia

1This work was done in collaboration with Greg van Anders, Daphne Klotsa, Andrew Karas, and Sharon Glotzer
and is published in reference [1]
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tensor, Uyq,) is the potential energy, and ¢ and () are the positions and orientations
of the particles, respectively. The anisotropy dimensions affect the system through
both the moment of inertia tensor and the potential energy. We also assume that
the anisotropy dimensions are independent of the position and orientation of the

particles. The entropy of the system can then be written as

(3.2) S=—kp» m,logm,,

where 7, is the probability that the system is in microstate . The equilibrium
distribution over the phase space can be found by maximizing the entropy with
respect to the distribution. If the anisotropy parameters fluctuate about some mean
quantity, (o), the entropy can be maximized by

(3.3) S=—kp)» |m,logm, — B(x,H — (E) - ZuzN(%%’ — (@) |

[

where 8 and p; are Lagrangian multipliers. Thermodynamically, 5 = 1/kgT, and p;
is the conjugate variable to the anisotropy dimension «;. The equilibrium distribution

is then derived as

(3.4) 1 = L BH-%, piNa)

Z Y

where Z is the partition function (i.e., normalization constant),
(3.5) 7 = Z o BUH-Y; uiNai)

The complexity of the system prohibits us from solving this problem analytically,
and so the sums must be evaluated numerically. These problems are well-suited to

be solved using Monte Carlo techniques.
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3.3 Detailed Balance for Various Hard Particle Systems

When employing digital alchemy for inverse materials design, one must choose how
to encode the target structure to bias the sampling towards shapes that will stabilize
the given structure. In this work, we are primarily interested in identifying particles
that will assemble into desired crystal structures (e.g., fcc, bee, diamond, and so
on). In general, an effective strategy to accomplish this assembly is to tether each
particle in the simulation to a lattice site via a harmonic spring. The Hamiltonian

for a system of N identical particles with this constraint becomes

(3.6) Hifa) = 2 4 Lprpo

2m 2 {Clti}L + U{az‘}(Q7 Q) + Ex(q),

where F, represents an external field that holds each particle to a respective lattice
site, and is independent of the shape of the particles. Hard particles are modeled by

the following pairwise potential,

oo particle ¢ overlaps with particle
(3.7) Utay (6, Qir 45, Q;) =
0  otherwise

Substituting Eq. 3.6 and Eq. 3.7 into Eq. 3.5, we obtain (now using continuous

coordinates),

(38) Z= / dov dp dIL dg dQe PGt EE Tl 14U 0@+ B =X wNa)
and performing the quadratic integrals over p and L we can simplify,

(3.9) Z x / dovdet(Irpy)V/? dg dQ e #WVien(@Q+Eelg)uNa),

The proportionality symbol is used as irrelevant multiplicative constants are dropped

from the equation. If we implement moves in shape space that hold the center of
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mass and orientation of each particle constant, we can further simplify to
(3.10) Z /da det(I,)N'? dg dQe PWVa(a.Q)=nNa),

If we want to guarantee that the Monte Carlo integration converges to the equilibrium
distribution described by Eq. 3.10, the system must satisfy detailed balance. Detailed
balance states that the probability flux into a given state must be equal to the

probability flux out of the state for each neighboring state. Mathematically,
(311) P(],Z)FJ = P(Z,j)ﬂ'l,

where p(i, j) is the transition probability from state i to state j, and 7 is the sta-

tionary distribution of the equilibrium distribution. Equivalently,

P(]? 7’) T
P(%]) 7T]'
det(1,,)N/2e=FUa;(a.Q)—nNei)
(3.13) _ 1

det(I,,)N/2e~PWa;(2.Q)=1Nay)

J

In this work, we always perform simulations with g = 0. The Metropolis criterion [7]

then becomes

det(L)zi)N/z efB(UaifU&j )}
det (1, )2 '

J

(3.14) P.ec(4,7) = max{1,

Shape Families

Sampling shape parameters from shape families is a relatively trivial task. Given any
shape family, the truncation parameters can be mapped to a set of parameters on the
interval o € [0, 1] to a subset of all convex polyhedra C. Formally, we state that the
shape family F': [0,1] x ... x [0,1] — C. If the move is limited to a maximum size,
then we have a1 = ay + da where |da| < d. To ensure detailed balance is satisfied,

we must have p(da) = p(—da). If da € [—d,d] x ... x [—d, d], where each dimension
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is generated independently, then given d < a and d < 1 — «, the symmetry criterion

is easily met, even though we generated the move on a cubic trial space.

Convex Shapes with Vertex Translations

Changing shape via different shape families is a suitable strategy to explore shape
space in a very constrained way. However, there are times when one wants to break
the shackles constraining these families and explore shape space with a relatively free-
form move. In a move like this, the vertices of the shapes are selected at random,
translated in a randomly selected direction by a randomly selected distance. Finally,
the convex hull of the resulting shape is computed. Then the shape is rescaled to
preserve volume, and translated to hold the center of mass fixed. Detailed balance
for this move is more difficult, and more information must be tracked to ensure an
accurate result. Every time we rescale the volume of the particle we must keep track
of these scale factors and rescale the step size of the move. In most cases, step sizes
of around 0.005 for unit volume shapes will provide a good acceptance ratios. A

2-dimensional example of how this move works is illustrated in Fig. 3.1.

Elastic Shape Deformations 2

In all of the cases that I have described so far, the shape deformations have been
performed at no energy cost. In some experimental systems, this may not be the case.
For example, droplets have a deformable shape, but the energy required to make a
change to that shape is proportional to the surface tension. One could model a folded
protein as a shape that undergoes minor fluctuations about its native state, micelles
can undergo mass transfer to change their shape, and of course cells can controllably

change their shape for a wide range of reasons. We began attacking this problem

2This work was done in collaboration with Luis Y. Rivera-Rivera and Sharon C. Glotzer.
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Figure 3.1: a) An example move from a regular pentagon to an irregular pentagon. In each move,
a subset of the vertices are chosen (highlighted in red), and that vertex is translated
(arrow). We hold the system at constant density by rescaling all vertices such that the
volume of the particle remains unchanged. We also translate the particle to keep the
center of mass at the origin of the shape. Finally, the volume scaling factors must be
tracked so that detailed balance can be satisfied, see (b). b) The reverse of the move
shown in (a). The move size must be scaled by the volume factor. The gray circle shows
the original search radius, and the red circle shows the valid search radius. In this case,
the search radius must be increased such that the original shape is in the trial set of all
possible moves.

using the model system of hard polyhedra by asking a particular question. That is,
what happens if the shape deformation about an equilibrium shape has some energy
cost? Let &, be the initial shape. The shape can undergo a deformation described

by a second rank deformation tensor F;. The deformed shape &; is then,

(315) 51 == Flgo
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Thus, a sequence of moves in this space can be described by a product of deformation

tensors,
(3.16) & = F,F,_1...Fi&,
(3.17) € = <ﬁFk>T§O
(3.15) 6 — Ae

We denote the k—th deformation by F}, and the total deformation from the equilib-
rium shape after k deformations by Fj,. In general, the deformation tensor represents
a linear mapping from one shape to another, and need not preserve volume®. The
volume of the deformed shape is related to the reference shape by the relationship
Vi = det F1V,. In our system, we wanted to keep the density constant, so that
volume-preserving moves could be generated by ensuring a unit determinant. Fi-
nally, the strain energy for the shape deformation is given by

(3.19) W) = % / S Eav,

where S = ATr(E)I + 2uE is the strain tensor, and F = (FTF — 1)/2 is the finite
strain tensor. Eq. 3.19 can be simplified by the assumptions that, (1) the particles

are incompressible, and (2) the material is uniform; then
1
(3.20) W) = (§ATr(E)2 +uE : E)W

However, we note that the volume change (V,/V)? ~ 1+ 2Tr(E) + O(E?), thus if the
volume is preserved we assume that Tr(E) is negligible. Finally, the strain energy

for these moves can be calculated by

(3.21) W(&) =uk : E.

3While there is nothing technically wrong with moves that do not preserve volume, when volume changes it can
result in some interesting behavior. In fact, in simulations that we ran that included volume change, the particles
typically deformed to smaller volume particles due to the increased entropy that the system gains from the increase
in free volume.
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When generating the moves (deformation tensors F}), we must take special care to
make the moves symmetrically (i.e., p(F}.) = p(F; ')). As we learned from the vertex
move, some care must be taken when keeping volume constant, and we also want
to avoid rescaling whenever possible. Since the deformations are volume-preserving
(det(F})) = 1), the set of all possible { F},} forms a group. Another restriction that we
wanted to put on the deformation tensor was that it must be irrotational, since we
wanted to make sure the shape moves would only change the shape, and not the ori-
entation of the particles. Also, we did not want to observe artificially higher energies
that were due to rotations rather than actual shape deformations. These constraints
require the deformation tensor to be symmetric. Therefore, F}, is a symmetric matrix,
and by the fundamental theorem of linear algebra can be decomposed as F, = UAU?.
The matrix U is an orthogonal rotation matrix, and A = diag(A1, A2, A3) is a diagonal
scaling matrix. Thus, p(Fy) = p(U, A) if we generate the rotation independently from
the scaling matrix, p(Fy) = p(U)p(A). There are well-known algorithms to generate
uniformly random rotations, so we only need to generate the matrix A. In the next
section, I derive in a general way how to uniformly simulate A. If we restrict each
Ai € [, ] for some s > 1, the inverse move A~! will exist in the trial set, and since

the probability density is uniform, detailed balance is guaranteed.

Simulating random numbers on 2-dimensional surfaces in 3 dimensions:
Let fs be a probability density function defined on the surface S that is given by the

equation h(z,y, z) = k, where k is a constant. Formally fs: S — R and the integral
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taken over the surface must be equal to one,

(3.22) 1 = // Fs(x,y, 2) do dy dz
S

(3.23) = // fs(z,y,2)de dy dz
(z,y,m):
h(z,y,z)=k
We see that this is really a surface integral . Let us define R as the shadow region of
the surface projected onto the xy-plane. Though this is not always the method we

will use for integration, the method outlined here can be easily transferred to other

planes. Eq. 3.23 becomes,

(324) 1 = / fS(:Cay7Z)d0-

_ |V |
(3.25) = //fsx Y,z |Vh |dA

where 7 is the unit normal to the region R. The term V]

_is a measure of how
|[Vh-n|

stretched the surface is above some point in R. We must require that |Vh-n| # 0, or
that the surface normal is never perpendicular to the plane of integration. Eq. 3.25
tells us how to shift the domain from the surface S to the region R. Defining

fr: R — R, we have

fS(mayaz(xay))\lvvh}.ﬂ” (.Z',y) €ER
(3.26) fr(z,y) =

0 otherwise
where we use the constraint h(x,y,z) = k to solve for z as a function of z and y.
This means that if we can sample R according to fg, then this will produce the
distribution fg on S. Here we assume that we have a way to generate X,Y from a
density function g(x,y), and we can use that as a basis to simulate X, Y with density

f(z,y). Let ¢ be a constant such that
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Each iteration will be accepted with probability 1/¢, so there will be ¢ itera-

Algorithm 1 Accept-Reject Method

procedure SIMULATE(g(z,y), f(x,y), c)> Simulate random variables X, Y with density f(z,y)

1:
2 do

3 Simulate X,Y ~ g(z,y) and U ~ uniform(0, 1)
4 while U > L&)
5
6:

cg(X,Y)
return X, Y
end procedure

tions on average before the procedure accepts a pair (X,Y). In this case g(z,y)

can be a uniform distribution on R, therefore g(x,y) = m. Also, f(x,y) =

fs(z,y, z(x,y)) ||vvh}.l71~b|' For simplicity we define o and o* as

o(z,y) i
’ V-
o* = maxo(z,y)
Then the constant c is given by
(3.27) ¢ > Area(R) max fs(z,y, z(x,y))o(z,y).

As an example, let us assume fs(x,y, ) is a uniform distribution. Then, fs =

Eq. 3.27 becomes,

(3.28) c = max%ailga(x,y)
(3.29) = AAE%&E};;U*

This means that line 4 in algorithm 1 will become

(3.30) g Area(Rjo(X.Y) _ o(z,y)

Area(R) _, *
Area(S) Area((sia o

1
Area(S) "

We see that the efficiency of the algorithm depends on the most stretched part of

the surface.
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3.4 Implementation and Code Design

Here I briefly discuss the code design, and some of the finer points of code imple-
mentation that may prove useful to those interested in modifying the code in the
future. This code was implemented as a feature in HOOMD-Blue as part of the
Hard Particle Monte Carlo (HPMC) package. Every class in HOOMD belongs to
one of three base classes: analyzer, updater, and compute. The analyzers are classes
that can operate on the particle data without changing any of it (e.g., writing the
particle positions to a file). Updaters are classes that operate on the particle data,
and are also allowed to change that data (e.g., translating and rotating particles).
Computes are classes that calculate forces or energy for the system. In this case,
the alchemical moves change the system, and are therefore classified as updaters.
HOOMD’s basic design is to make different features modular. This has several ad-
vantages when creating software to serve a general purpose. One advantage is that
different code paths are independent, and can therefore be tested independently.
This feature makes the code much easier to maintain. This modularity also allows
the HOOMD infrastructure to be very flexible. Users can easily choose the features
they need for a simulation, and it should be guaranteed that each part will work
correctly. As HOOMD was originally designed to be a Molecular Dynamics code,
it is important to think about these fundamental assumptions and how they can

change for Monte Carlo simulations.

In Fig. 3.2a, the main simulation loop is illustrated. On each time step, the analyzer
classes run first, and then the updater classes run, and then a special updater called
the integrator runs to advance the system one step forward. In Fig. 3.2b, the steps

for the alchemical Monte Carlo method are shown. Since the analyzers are purely
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run all
analyzers

Figure 3.2: The main simulation loop of HOOMD-Blue. a) On each timestep, HOOMD-Blue exe-
cutes all analyzers, updaters, and computes before integrating the system. Understand-
ing the implementation details is fundamental to understanding the detailed balance
for the system as a whole. b) In the specific case of running HPMC with shape moves,
those shape moves are always executed before translations and rotations. This breaks
strict detailed balance, but for carefully designed moves we can still satisfy the bal-
ance condition. Therefore, the long time behavior of the chain will converge to the
Boltzmann distribution.

observers of the system, they cannot affect the system. It is important to consider
how the shape updater and integrator interact. Since this is always done sequentially
and in a fixed order, if we change the shape and then translate and rotate the
particles, we must consider whether this can break the detailed balance described
above. When considering detailed balance here, we can no longer think about the
local move, but rather we must think about the state of the system at each time

step. Here is a simple thought experiment that proves that this algorithm breaks
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strict detailed balance.

Let the state of the system (e.g., shape of the particles, and their positions and
orientations) be defined as X. First we make a shape update (that is accepted),
and then we make a set of translations and orientations (some of which are ac-
cepted), which leaves the system in a new state X. Now detailed balance is satisfied
if P(X|X)P(X) = P(X|X)P(X). The transition probability can be decomposed
into two parts P(X|X) = ¢(X|X)Pae(X|X), where ¢ is the probability that X is
attempted given the current state X. P,.. is the acceptance probability given by
Eq. 3.14. The shape updater will propose a move and accept it independently from
translations and rotations g(X|X) = ga(X'|X)gnpme(X|X’), where g, is the shape
move probability and gppm. is the translation and rotation probability. We see that
if we want to make the reverse move (X — X)), we must first make the reverse
shape move. However, the expression ¢(X|X) = ga(X"”|X)gnpme(X|X"), supposes
that X” (an original shape with new positions and orientations) now introduces some
overlaps, and this probability would then be 0. Therefore we have found a pair of
states such that ¢(X|X) # g(X|X) = 0. While this strict form of detailed balance
is clearly not satisfied in this implementation, all is not lost. In 1999 Deem et al.
[8] showed that this strict detailed balance is not required for the Markov chain to
converge to the Boltzmann distribution, so long as the system satisfies the following

six properties:
1. xpy1 = Az,
2. Aj; > 0V, 5

3.5, Ay =1

4. [A7}] > O0Vi, j and some fixed m
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Figure 3.3: A flow diagram of the shape move algorithm. Each move must perform three operations:
prepare, construct, and retreat.

5 A=(1—-7A+~[,0<y<1

6. Az* = z*

Properties 1-3 follow directly from the definition of a Markov chain, and are trivial to
show. Property 4 states that the chain is ergodic. Property 5 states that null moves
are possible and will not affect the chain. Property 6 states that the equilibrium
distribution must exist. Some typical cases where Property 6 does not hold are in

cyclic chains, where certain states are only accessible on even or odd jumps.

Now that we have discussed the relationship between the alchemical updates and the
core HOOMD infrastructure, we can now discuss a few more implementation details
that may be interesting to those that are modifying the code or developing similar

algorithms. As with most programming challenges, to write sufficiently general code
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one needs to abstract the common aspects of the problems into general operations.
Fig. 3.3 shows the flow diagram for the shape move algorithm. Specifically, there are
three common operations that each move must implement with some guarantee of

the internal state: prepare, construct, and retreat.

prepare: should always copy anything that is specific to the move (e.g., shape parameters,

step sizes, deformation tensors).
construct: should always leave the internal state of the system as if the move is accepted.

retreat: should always perfectly restore the state of the move as if the last move never

happened.

Different Boltzmann factors can be used depending on the ensemble of interest. In
this way, we can have many different shape moves and acceptance criteria (Boltzmann

factors), all using a single code path.
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CHAPTER IV

Avoiding the Glass Transition using the Alchemical
Ensemble

Geometric frustration can present itself in many forms: incommensurate length scales
or bond angles, stoichiometric ratios, or lattice geometry. In an age where designer
particles, patchy particles, and anisotropic colloids are becoming experimentally fea-
sible to produce, it is necessary to gain a deeper understanding between the con-
straints that can be experimentally tuned and the resulting bulk assembly behavior.
Due to experimental advances, it is no longer necessary to treat certain attributes of
a system as constants, which opens new questions about the ways in which dynamic

building blocks assemble.

In recent theoretical work, van Anders et al. [1] treated these attributes as variables
that fluctuate. The same approach was used to design the first hard particle that
assembles into a distorted hep crystal structure [2]. Beyond materials design, the
alchemical ensemble can help to illuminate physical properties and phenomena in

the corresponding non-alchemical space [3, 4].

In this work, we use the alchemical ensemble to address the following question: How
do shape fluctuations of hard, convex polyhedra affect phase behavior for shapes that

would not otherwise assemble into ordered structures? Here we limit the scope to
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Figure 4.1: a) The 44 shapes that we study in this work. These shapes were previously shown to
exhibit glassy behavior [5]. b) The mean squared displacement versus time plotted for
each shape shown in (a) near 0.6 packing fraction. Each curve exhibits a plateau at
intermediate times, suggesting that the dynamics slow down as the system approaches
the glass transition. ¢) In this work, we first simulate each shape to generate a random
glassy state. We then treat the shape as a thermodynamic variable, in which the
vertices can move. At the end of this process, we observe that the systems assemble
into a variety of structures.

44 hard particles that have been previously shown to form glasses[5]. We show via
Monte Carlo simulations in the alchemical ensemble that the geometric frustration of
a system is disrupted by shape fluctuations, which then allows the system to assemble

into an ordered structure, thereby avoiding the glass transition.

4.1 Results

The shapes studied are shown in Fig. 4.1a. Alch-MC simulations, at a volume fraction
of 0.6, produce dense fluids that exhibit a plateau in the mean squared displacement
(Fig. 4.1b). This signifies that (1) caging is occurring, and (2) the dynamics slow

down near the glass transition [6]. First, we simulate each of the shapes to build a
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random glassy state. Next, shapes were allowed to change in a relatively unrestricted
way. We performed shape updates where the vertices of the shapes were translated,
the convex hull was computed, and the shapes were rescaled to maintain a fixed
volume (Fig. 4.1c). The shape deformations do not have energy, aside from the
rotational momentum contribution to the partition function. Both initial and final

steps were run for 160 million MC sweeps.

In the alchemical ensemble, we observed that the systems underwent a disordered
to ordered transition during the majority of trials for each shape. Fig. 4.2a sum-
marizes the frequency of each type of crystal structure that we observe. Somewhat
unsurprisingly, we find that fcc/hep are the crystal structures that predominantly
assemble. What is more surprising is that some complex structures, including alb
and u77, assemble for a subset of shapes. We find that independent trials that start
from the same initial shape sometimes assembled into distinct crystal structures.
For example, independent trials starting from initial shape J38 resulted in fcc, hep,
v—brass, and u77 crystals(Fig. 4.2b). We found that of the 44 shapes that we stud-
ied at 0.6 packing fraction, 41 have at least one (of five) replicates that assemble
into a crystal structure. For the three remaining shapes that did not assemble, we
performed simulations at slightly lower packing fractions (i.e., 0.59 and 0.58). These
shapes were able to assemble into a crystal structure at these lower densities. An
example of each of the observed crystal structures is shown in Fig. 4.2c-h. Moreover,
we observed that some systems can undergo more than one phase transition over
the course of the simulation. In the case of JO7 at a packing fraction of 0.58, the
system initially forms a bce crystal structure, and then proceeds to crystalize into
an hep/fee crystal. The fact that the same shape evolves in slightly different ways,

which ultimately results in the assembly of completely disparate crystal structures
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a) fcc Ybrass hc A15 bcc dis

Figure 4.2: a) A percentage breakdown of all of the structures observed to assemble in this study.
The majority of the trials assemble into fcc/hcp, however we also observe ~y-brass,
bee, and A15/Unknown77. A small fraction of simulations were unable to assemble.
There were only three shapes (J01, J64, JO7) that did not exhibit any ordering at a
packing fraction of 0.6, though these shapes were able to assemble at lower densities.
b) A structural breakdown of each of the 44 shapes. Of the shapes that assembled, all
shapes (with the exception of J36 and J85) assembled into fcc on one or more trials. c-h)
Example systems for each of the crystal structures that we observe. A final snapshot
of the system is shown, along with the corresponding bond order diagram, final shape,
and initial shape.

leads to several open questions. Which features of a shape lead the system to as-
semble into one structure over another? Which structure is most stable? Are there

multiple ground states in shape space?
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Figure 4.3: a) the initial and final particles for an Alch-MC simulation of a single particle. b) The
isoperimetric quotient as a function of the logarithm of the determinant of the moment
of inertia tensor. More spherical shapes tend to have a smaller moment of inertia.

Gaining a better understanding of the time evolution of shapes over the course of
simulations may shed light on the ways in which systems assemble, and the reasons
for structural diversity across trials of the same shape. In Fig. 4.4a, we plot the
time evolution of several shape descriptors for J38, one of the shapes that showed
the most structural diversity. The calculated shape descriptors include the area-
weighted cosine of dihedral angles (cos @) for large facets, the trace of the moment
of inertia tensor (Trl), and the isoperimetric quotient (IQ). These parameters have
been shown to be useful in predicting the crystal structures in previous studies [7, 5].
Details of their calculation can be found in Section 4.3. At the beginning of each
simulation, we observe a sharp dip and then a rise in cos . This can be interpreted as
either an increase or decrease in the dihedral angles (this parameter has a minimum
at 90°). We also observe a significant amount of noise in this parameter, such that it

was necessary to plot the moving average with a window size of 50 frames in order
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Figure 4.4: a) The time evolution of several shape descriptors are plotted for J38, which is one of
the shapes that demonstrated the most structural diversity. (top) The area-weighted
cosine of dihedral angles for large facets. This parameter dips sharply at the beginning
of each simulation, and then increases. In general, the parameter is fairly noisy over the
course of the simulation. (middle) The trace of the moment of inertia tensor. We find
that this descriptor decreases throughout the simulation. (bottom) The isoperimetric
quotient (IQ) increases throughout the simulation. Together, these data illustrate the
widening of the dihedral angles as the shapes become more spherical and less faceted.
b) The final shapes for each trial.

to visualize the data. We find that Trl descriptor decreases over the course of the
simulation, while the IQ increases. We also find that the simulations that assemble
into fcc and hep exhibit a kink in these parameters at approximate times of 300,
400, and 600. The reason for these kinks remains elusive, but it is possible that they
could signify that the shape “fell” into a fcc/hep basin. We also find that shapes that
formed the ~-brass and A15 exhibit increased faceting (lower 1Q). Fig. 4.4b shows

the final shape obtained from each simulation.

We then related the shape descriptors and the assembled crystal structures for all of

the studied shapes to observe any general trends (Fig. 4.5). We did not identify any
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Figure 4.5: (top) The area-weighted cosine of dihedral angles. (middle) The trace of the moment of
inertia tensor. (bottom) The isoperimetric quotient aggregated by the crystal structure
that we observe. We applied a slight jitter to the x-axis, so that all of the data points
can be visualized. We observe that of each of these crystal structures and their shape
parameters are nearly identical.

single parameter that could predict the assembled crystal structure. We did observe,
however, that the data for y-brass and A15 seemed to exhibit less noise than the

data for the fcc/hep systems.

Next, we aimed to describe the evolution from the initial shape to its final shape.

To accomplish this, we compared the ratio /Q;/IQ);, the volume of the symmet-
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Figure 4.6: A comparison of the initial and final shapes for (a) the I1Q, (b) the volume of the
symmetric difference, and (c) the determinant of the moment of inertia tensors. These
data illustrate that the shapes become more spherical in each trial, and that the shapes
that have moved further in shape space are doing so to become more spherical.

ric difference d(a;, ay), the ratio of determinant of the moment of inertia tensors
det I/ det I; for initial and final forms in Fig. 4.6. These data illustrate the trend
for the shapes to become more spherical for each independent trial, and the shapes
tend to become more spherical as they transverse a greater distance in shape space.
Importantly the tendency towards increasing sphericity is not inherent in the Alch-
MC algorithm. Alch-MC simulations of a single particle in a box tend towards more

faceted particles as shown in Fig. 4.3.

Finally, in Fig. 4.7, we find a robust correlation between the coordination number
in the ordered state and the coordination number in the glassy state. However, for
particles in the glassy state with a low coordination number, we observe that this
correlation breaks down. These particles are initially the least spherical. As they

become increasingly more spherical, more particles are required to pack efficiently
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Figure 4.7: The coordination number in the ordered state is strongly positively correlated with the
coordination number in the glassy state.

around a given central particle.

4.2 Discussion and Conclusions

In this work, we performed alchemical Monte Carlo simulations of hard particles that
do not assemble into any known crystal structures. We found that by allowing the
particle’s shape to fluctuate during the simulation, the system was able to escape
the kinetically-trapped, glassy states and crystallize into ordered structures. We find
that fcc/hep crystal structures are predominantly formed, and the particles become
more spherical to minimize free energy. Though some outstanding questions remain,
based on this work we can draw several general conclusions, and make some general

predictions.
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To gain an understanding of the complex underlying energy landscape, the reduction
in faceting that the particle undergoes during the simulations is significant. Since
these are hard particle systems, the only real driving force in the system is entropy
S =S, + 5,4+ 5. Contributions to entropy of the system are translational (S;),
rotational (.S,), and shape-related (S;). The system will tend toward order if at all
possible, in an effort to maximize the translational entropy of each particle. Natu-
rally, rotator crystals have a high rotational entropy, thus it is unsurprising that all
of the crystals that assemble here are rotator crystals. Finally, the system tends to
form structures that also allow for a wide distribution of shapes that are commen-
surate with a given particular crystal structure. It seems very plausible, therefore,
that highly spherical particles represent the optimal set of shapes that allow for the
system to maximize each of these contributions. One interpretation of these results
as a whole is that faceting can be viewed as a constraint on the system, therefore
this constraint must be removed in order to maximize entropy. Those systems that
need faceting to assemble (e.g. diamond, simple cubic, quasicrystals) will likely be

unstable in this ensemble.

Since all of the systems described here explore the same shape space, any shape could
theoretically transform into another belonging to the set. The fact that we observed
structural diversity begs the question of whether there exists a single global minimum
in this space, or whether the more complex crystal structures are metastable to

fee/hep.
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4.3 Model and Methods

Monte Carlo Simulations

Hard Particle Monte Carlo simulations were employed to model the assembly of each
shape that we studied using HOOMD-Blue [8, 9, 10]. Each simulation of 512 particles
was broken into three distinct parts. First, each shape was initialized on a cubic
lattice, thermalized, and then rapidly compressed to the target packing fraction.
After the compression step, we ran each system for 40 million time steps (160 million
MC sweeps). During this step, the aspect ratio and shear of the box was allowed to
fluctuate, while holding the volume of the box constant. Finally, we ran an additional
40 million time steps where the shapes were allowed to fluctuate according to the
move presented in Chapter III. All step sizes (i.e., translation, rotation, shape, and

box) were tuned to give an acceptance ratio of 20%.

Shape Descriptors

We calculated five shape descriptors and metrics to quantify different aspects of
each shape. Both Tr(/) and det([) are straightforward to calculate from the inertia
tensor. The isoperimetric quotient (IQ) is a measure of how spherical a shape is, and
is calculated by IQ = 367v?/s®, where v is the volume of the particle, and s is the
surface area. The Q) ratio of a sphere is unity. The cosine of the dihedral angles was
calculated by first clustering the normal vectors of the facets. Each cluster was then
represented by the average normal vector, which was calculated by the area-weighted
average normal vector, n;. Finally, the dihedral angles of these averaged vectors was

computed, and their weighted average was calculated by the following formula,

> (80 + 55)|(ni - ny)|
2iglsits)

(4.1) cosf =
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where the sums are computed over all adjacent faces. We defined the distance met-
ric d(A, B) as the volume of the symmetric difference, where A and B are convex
polyhedra. From set theory, it follows that d(A, B) = V4 + Vg — 2V,p, where Vy
and Vg are the volumes of A and B respectively, and Vg is the volume of the
intersection. Intersection polyhedra can be calculated by first identifying a point
inside of the intersection. In our case, this was always taken to be the origin as
the shapes were translated, so that the centers of mass always rested on the origin.
Next, the dual of A and B were computed with respect to the origin and a unit
sphere, denoted A* and B*. Finally, the intersection was computed by finding the
dual of the convex hull of the union of A* and B*, AB = conv(A*|J B*)*. Since, all
of our studied shapes have fixed unit volume, the distance metric can be simplified

to d(A, B) = 2(1 — Vap).
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CHAPTER V

Conclusions and Outlook

In this thesis, we have studied two model systems (i.e., nets and hard polyhedra)
for inverse materials design, and we have developed novel methods to solve inverse

materials design problems.

Self-folding polyhedra offer an intriguing system to study folding on the micro and
nanoscales. Throughout this work, these nets are studied using molecular dynamics
and Markov state models. By studying the simplest platonic solids (i.e., tetrahedron,
cube, and octahedron), we were able to define a set of design rules that could be used
to successfully predict the best and worst nets of the dodecahedron and icosahedron,
in terms of folding propensity. In general, the set of pathways that each net traverses
to reach the folded state is dependent on temperature. At high temperatures the net
uses pathways that have only native contacts, while pathways that have non-native
contacts are predominantly used at low temperatures. Regardless of the the folding
propensity, at high temperatures all of the nets fold along pathways that greedily
attempt to maximize the conformational entropy at each step. This model of self-
folding is powerful because of its simplicity. The computed pathways are generally
very intuitive, making this system a good testbed for emerging folding theories. A

primary strength of this work is the level of detail with which we can describe these
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folding pathways.

Next, we developed new methods with which to sample extended ensembles using
Monte Carlo simulations. Needless to say, shape and geometry are very complex
variables in hard particle simulations. We have developed three distinct ways of
sampling shape space using shape families, vertex translations, and elastic deforma-
tions. For each of these three methods, we were able to prove the detailed balance
conditions for the algorithm. We also examined the detailed balance of the entire
system, in the context of the HOOMD simulation framework. As new code will al-
ways be needed to solve new problems, we outlined the considerations that we used
to develop the simulation code in the most general way possible. These new methods
make for a novel tool that researchers can utilize to answer questions that would have
been impossible to answer previously. By considering shape to be a variable in the
simulation, we were able to design a particle for a crystal structure, for which no
known particle could assemble previously. Beyond materials design, this method has

provided a way to characterize packing in hard particle systems.

Finally, we used the methods developed in Chapter III to study how shapes that
do not assemble change to minimize the free energy of the system and avoid the
glass transition. We found that these shapes reduce their faceting, which drives a
disordered to ordered transition. We found that fcc/hcp was the most common crys-
tal structure that formed from these systems, and that many independent replicates
would assemble into several different crystal structures. Understanding the stability
of the different crystal structures will help us to comprehend the underlying en-
ergy landscape, and can provide some insight into why this rich structural diversity

exists.
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Outlook

Interaction design for polyhedral nets: In nature proteins can have highly
specific interactions that drive the folding process. Understanding how these specific
interactions are used to achieve the maximum yield or folding rate could be vital in
understanding more complex systems. Using polyhedral nets, one could determine
the fewest number of specific interactions the system needs to reliably assemble into
a target structure by systematically assigning a specific interaction to each pair of
edges. Many open questions remain. How does the number of required interactions
scale with the complexity of the nets? How does the number of interactions relate
to the folding rate and folding yield? For multi-ground state systems, can these

interactions be used to design pathways between ground states?

Molecular/Colloidal Machines: Molecular and colloidal machines offer a promis-
ing way to build pluripotent materials. One exciting extension of this work would
be to design colloidal machines that can move through self-folding actuations and
assemble into multiple ground states. One could design a system to have a pro-
grammed response to light, temperature, or electric or magnetic fields to drive the
folding process. A two-dimensional example that we modeled was a hinged dissec-
tion. When a magnetic field was applied, the linkage folded into a square. When
the direction of the field was reversed, the square transformed into a triangle. While
this example is very simple, it demonstrates proof of concept. There are still many
open questions. How many states can be successfully programmed to assemble into

a single system? Are there analogous three-dimensional systems?
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To future graduate students:

To close out this thesis (and my journey as a graduate student), I would like to
share a favorite story of mine about research. It was told to me by Ron Larson
during his Fluid Mechanics course in my first year of graduate school, and has stuck
with me ever since. Here I retell the story as it was told to me, to the best of my

1Memory.

In the 1820’s, the English botanist Robert Brown was trying answer the question:
what is the essence of life? His chosen model system was pollen suspended in a water.
Brown observed that the pollen moved with irregular motion when he observed it
under a microscope. He hypothesized that this motion was the “essence” that he
was searching for, and to test this theory he irradiated the pollen. When he looked
under the microscope again, he found that the pollen still moved in the same way.
Being a good scientist, Brown wrote his paper describing his methods, results, and
conclusions, even though his experiment largely failed. Approximately 80 years later,
Einstein wrote a paper mathematically describing this phenomena. However, we still
call this random motion “Brownian”. This is because Brown did what we all strive
to do: science, in its purest form — observing the natural world and describing it to

the best of our ability.



