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ABSTRACT 

The purpose of this dissertation is to explore how children attribute minds to social robots 

and the impacts that these attributions have on children’s interactions with robots, specifically 

their feelings toward and willingness to trust them. These are important areas of study as robots 

become increasingly present in children’s lives.  

The research was designed to address a variety of questions regarding children’s 

willingness to attribute mental abilities to robots: (1) To what extent do children perceive that 

social robots share similarities with people and to what extent do they believe they have human-

like minds? (2) Do attributions of human-like qualities to robots affect children’s ability to 

understand and interact with them? (3) Does this understanding influence children’s willingness 

to accept information from robots? And, of crucial importance, (4) how do answers to these 

questions vary with age?

Across a series of five studies, I investigated children’s beliefs about the minds of robots, 

and for comparison adults’ beliefs, using survey methods and video stimuli. Children watched 

videos of real-life robots and in response to targeted questions reported on their beliefs about the 

minds of those robots, their feelings about those robots, and their willingness to trust information 

received from those robots. Using a variety of statistical methods (e.g., factor analysis, regression 

modeling, clustering methods, and linear mixed-effects modeling), I uncovered how attributions 

of a human-like mind impact feelings toward robots, and trust in information received from 



 

 xii 

robots. Furthermore, I explored how the design of the robot and features of the child relate to 

attributions of mind to robots. 

First and foremost, I found that children are willing to attribute human-like mental 

abilities to robots, but these attributions decline with age. Moreover, attributions of mind are 

linked to feelings toward robots: Young children prefer robots that appear to have human-like 

minds, but this reverses with age because older children and adults do not (Chapter II). Young 

children are also willing to trust a previously accurate robot informant and mistrust a previously 

inaccurate one, much like they would with accurate and inaccurate human informants, when they 

believe that the robot has mental abilities related to psychological agency (Chapter III). Finally, 

while qualities of the robot, like behavior and appearance, are linked to attributions of mind to 

the robot, individual differences across children and adults are likely the primary mechanisms 

that explain how and when children and adults attribute mental abilities to robots (Chapter IV). 

That is, individuals are likely to attribute similar mental abilities to a wide variety of robots that 

have differing appearances and engage in a variety of different actions.  

These studies provide a variety of heretofore unknown findings linking the 

developmental attributions of minds to robots with judgments of robots’ actions, feelings about 

robots, and learning from robots. It remains to be seen, however, the exact nature of the 

mechanisms and the child-specific features that increase children’s willingness to attribute 

mental abilities to robots.
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Chapter I 

 

We live in a world increasingly filled with smart technology—laptops, tablets, smart 

phones, autonomous cars, and now robots. And, every day, these devices are behaving more and 

more like people, as if they have minds of their own. They can carry on conversations, answer 

questions, make jokes, and even make plans for how to get to the grocery store. New, socially 

interactive devices are emerging daily that push the boundaries of our understanding of what 

makes us human and what makes these devices machines.  

The changing roles of technology pose a variety of intriguing questions concerning how 

our understanding of a human-like mind impacts our interactions with these devices: (1) To what 

extent do we perceive that these devices share similarities with people and to what extent do we 

believe they have human-like minds? (2) Do attributions of human-like qualities to these devices 

affect our ability to understand and interact with them? (3) Does this understanding influence our 

willingness to accept information from these devices? And, of crucial importance, (4) how do 

answers to these questions vary with age? Not only are these devices increasingly present in the 

lives of adults, but they are already interacting with children in their homes, schools, and 

hospitals—children are playing with and learning from these devices all over the world. 

In this dissertation, I investigated these varieties of understanding and their impact on 

children’s interactions with these devices, with a focus on children’s feelings toward and trust in 
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social robots. Social robots are a special, and specially revealing, form of smart technology for 

both practical and substantive reasons.  

Substantively, social robots provide a unique perspective with which to investigate 

children’s conceptual development, specifically their developing concept of minds. Social robots 

are among a set of emerging socially interactive devices (e.g., computers, smart phones, 

autonomous cars) that appear to have minds of their own. They can simultaneously share 

characteristics with humans, like goal-directed behavior or a human-like appearance, while also 

sharing features with inanimate objects, like being built by humans and operating on electricity. 

Therefore, we can manipulate robots, as human-made machines, to dissect the mechanisms that 

allow children to attribute minds to these devices. By investigating children’s understanding of 

the minds of robots, we can explore the nature of children’s beliefs about the mind, the capacity 

to which children believe technology can have human-like minds, and the qualities that 

encourage children to attribute minds to technology.  

Further, and of practical importance, children’s understanding of robots is worthy of 

investigation because robots are becoming increasingly present in the lives of children. Robots 

are now being designed to befriend, teach, and care for our children. Dozens of robots have been 

released over the past few years equipped specifically to interact and play directly with children. 

iPal, Jibo, and Zenbo (see Figure I.1), all Pixar-like robots, are designed to play games, answer 

questions, read stories, and even watch children unsupervised (Glaser, 2016; Low, 2016; Wong, 

2016). Moreover, several robots have been working with children in classrooms, daycares, 

clinics, and hospitals for years. Across the globe, robots are teaching children language skills 

(Movellan, Eckhardt, Virnes, & Rodriguez, 2009), physical exercises (Mejías et al., 2013), and 

social skills (Ricks & Colton, 2010). Investigations into children’s understanding of robots 
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becomes more important as children are increasingly expected to interact directly with these 

devices. And of particular focus in this dissertation, I explore how perceptions of mind impact 

children’s feelings toward and willingness to trust robots. 

Children’s feelings toward robots. One important outcome of perceiving a human-like 

mind in a technological device is its impact on comfort with that device. For adults, the 

perception of a human-like mind in a robot has been linked to feelings of discomfort with that 

robot (K. Gray & Wegner, 2012). This has been found for adults but not yet for children. By 

investigating how children’s attributions of a human-like mind impact their feelings toward 

robots, we can more fully understand the importance of a human-like mind for child-robot 

interactions; for example, we can more fully understand the origins of discomfort with human-

like technologies. As robots become increasingly present in the lives of children, it is crucial that 

we understand the factors that increase or decrease children’s comfort with these devices. 

Engineers and designers hope that children will play and learn from robots. If a child finds a 

robot unsettling, this will likely hinder any intended positive outcomes from interactions with 

that robot.  

Children’s willingness to trust robots. Moreover, in their roles as educational devices, 

social robots provide a unique means with which to investigate how a human-like mind may 

impact children’s learning more generally. Until recently, children have efficiently and 

effectively learned about their world through knowledge passed on by other people (e.g., parents, 

teachers, peers). This phenomenon, recently studied mostly under the headings of “trust in 

testimony” or “natural pedagogy,” shows how children are adapted to learn general knowledge 

from human communication (Csibra & Gergely, 2009). As robots become increasingly human-

like, they may be able to take advantage of this form of social learning to effectively transmit 
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information to children. More and more, we are asking children to accept these technologies and 

embrace the information that they receive from them. And yet, there has been limited focus on 

how and whether children will accept and learn from these devices and the sorts of features that 

can enhance or detract from such interactions. 

 

Figure I.1. An Array of Robots Designed Specifically to Interact with Children. An array of 

robots designed specifically to interact with children: iPal (left panel), Jibo (center panel), Zenbo 

(right panel). 

 

The importance of child-focused research. Lastly, until recently, most research on the 

effectiveness of robotic social companions has focused primarily on features of the robot. I 

argue, however, that research is badly needed to assess how children’s cognitive abilities, their 

developmental trajectories, and the design of the robot work together to impact children’s 

learning and feelings towards robots. Thus, I propose possible answers as to how and why these 

child factors—cognitive abilities that themselves change with age—interact with the overt 

features of social robots to affect the quality of social robots and children’s trust of and learning 

from them. Specifically, I demonstrate how children’s understanding of the mental abilities of 

robots directly impacts their relationships with them.  

Children’s Developing Understanding of Robots 
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It is relatively easy to imagine ways that children’s own understanding of robots could 

impact their feelings about them and relatedly their willingness to trust and learn from them. 

Children may recognize that there are similarities between robots and other familiar categories 

(i.e., people, animals, or artifacts) and feel comfortable with them. Contrastingly, children may 

perceive robots as altogether unfamiliar and unique categories that either require further 

exploration or elicit distrust.  

Furthermore, these expectations about robots could, in turn, affect children’s willingness 

to learn from and trust robots. If children perceive robots as similar to infallible tools, like 

calculators or dictionaries, they may indiscriminately accept information from all robots. Or if 

children perceive robots, especially humanoid robots, as similar to people with thoughts, 

emotions, and sometimes flawed beliefs about the world, they may differentially accept 

information from only trustworthy ones. Alternatively, if a child perceives robots as entirely 

different from humans and other common sources of information, they may ultimately consider 

robots to be suspect and never trust information from them. To embrace and learn from robots, 

children likely must first determine what they believe about the minds of robots: are they 

infallible tools, intelligent beings, or something else entirely? 

The nature of robots, however, is not easy to define. Robots are unique devices that can 

simultaneously share similarities with artifacts, animals, and even humans. They, like other 

artifacts, are designed and built by humans. They do not live, grow, breathe, or (as adults 

typically believe) experience feelings (K. Gray & Wegner, 2012). Therefore, children may 

perceive robots as artifacts or infallible tools similar to textbooks or other educational devices. 

Yet, unlike more common artifacts such as books, bikes, beds, and balls, social robots are not 

only human-built but human-like to varying degrees. They can look, behave, and at times even 
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“think” like humans or animals. Hence, children may alternatively see them as intelligent beings 

that can think and reason. As such, robots, like humans, might be fallible and should be 

considered carefully before trusting them. Indeed, research on children’s developing 

understanding of robots reflects children’s attempts to rationally and emotionally embrace/resist 

these competing identities of robots.  

Research on early childhood understanding of robots suggests that children initially 

attribute a myriad of human-like mental abilities to robots. For instance, they expect robots to 

have emotional, social, as well as perceptual abilities. Young children report that robots have 

perceptual abilities, like sight and touch: 3-year-olds claimed that a robot dog could see and be 

tickled (Jipson & Gelman, 2007). Nine- and 12-year-olds similarly reported that a 3-foot tall 

interactive robot, Robovie, could be intelligent, have interests, and experience emotions (Kahn et 

al., 2012). These children also believed that Robovie could be their friend and could comfort 

them if they were sad. Whereas young children appear to treat and think about robots like people 

or animals, they, however, do not equate robots with them. Children recognize that a robot dog is 

not identical to a real dog as demonstrated by their claims that robot dogs do not have biological 

qualities (Melson, Kahn, Beck, & Friedman, 2009): young children report that robotic dogs 

cannot grow or eat like real dogs for example (Jipson & Gelman, 2007).  

As children age, however, their beliefs about robots change—expectations that robots 

have emotional, social, and perceptual capacities decrease. Older children are less likely to report 

that a robot has emotions, desires, or is capable of autonomous action (Mikropoulos, Misailidi, & 

Bonoti, 2003). Five-year-olds were less likely to claim that a robot dog could think or feel happy 

compared to 3-year-olds (Jipson & Gelman, 2007). Children older than 7 spoke differently about 

robots, more often using language specific to man-made machines, compared to children 
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younger than 7 (Okita, Ng-Thow-Hing, & Sarvadevabhatla, 2011). Fifteen-year-olds were also 

less likely to believe that Robovie could have interests, experience emotions, or be a friend 

compared to 9- and 12-year-olds (Kahn et al., 2012). We similarly show this relation in our own 

research (described in this dissertation): children’s reports of robots’ perceptual abilities and 

psychological abilities decline across 3 to 18 years of age. With age, children begin to dissociate 

psychological, emotional, social, and perceptual abilities from robots and recognize that robots 

are more similar to artifacts.  

Finally, by adulthood, beliefs about the capacities of robots have decreased to a 

substantially reduced set of expectations. Adults essentially expect that robots are only capable 

of some forms of thinking and decision-making, and they deny robots the ability to feel pain or 

fear (K. Gray & Wegner, 2012).  

Given this sort of evidence, I argue that there is a transition between how children and 

adults think about robots. Young children attribute more social, psychological, and perceptual 

abilities to robots. Yet, with age and experience, children gradually adjust their beliefs about 

robots so that, by adulthood, robots possess only limited psychological agency, the ability to 

think and make decisions. I argue that this change in understanding about the minds of robots 

impacts children’s interactions with and feelings toward robots. My research, described next, 

speaks to this transition and its impact on children’s feelings toward robots.  

This focus on social robots allows me to carefully and precisely address the questions 

presented above: (1) To what extent do children perceive that social robots share similarities with 

people and to what extent do they believe that they have human-like minds? (2) Does an 

understanding that robots can and do have human-like minds affect children’s feelings toward 

Research Questions 
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these robots? (3) Does this understanding also influence children’s willingness to accept 

information from robots? And, finally, (4) how do answers to these questions vary with age? 

The studies I present here are a concerted effort to address these questions, specifically 

exploring how children’s attributions of mind to social robots impact their affinities for robots 

and their willingness to learn from them. 

The first study (Chapter II) investigates the extent to which children perceive that robots 

have human-like minds and how those perceptions impact their feelings toward robots. I also 

investigate how these attributions and their relation to feelings toward robots changes with age. 

This research was published in Child Development (Brink, Gray, & Wellman, 2017).  

The second set of studies (Chapter III) encompasses two studies that investigate the 

extent to which young children accept information from robots. Moreover, it examines how 

children’s attributions of mind to robots influence their willingness to trust robots (Brink & 

Wellman, submitted). These studies have been submitted for publication at Child Development. 

The third set of studies (Chapter IV) more broadly explores how adults and children 

attribute a human-like mind to a vast array of robot features. The first of two studies here is 

complete with data collected from over 400 adult participants. The second study is still in 

progress, I provide a preliminary report for it based on data from over 100 child participants. 

Outline of Research  
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Chapter II 

Creepiness Creeps In: Uncanny Valley Feelings Are Acquired in Childhood 

 

Abstract 

The Uncanny Valley posits that very human-like robots are unsettling, a phenomenon amply 

demonstrated in adults but unexplored in children. 240 3- to 18-year-olds viewed one of two 

robots (machine-like or very human-like) and rated their feelings toward (e.g., “Does the robot 

make you feel weird or happy?”) and perceptions of the robot’s capacities (e.g., “Does the robot 

think for itself?”). Like adults, children older than 9 judged the human-like robot as creepier than 

the machine-like robot—but younger children did not. Children’s perceptions of robots’ mental 

capacities predicted uncanny feelings: children judge robots to be creepy depending on whether 

they have human-like minds. The uncanny valley is therefore acquired over development and 

relates to changing conceptions about robot minds. 

Keywords: uncanny valley, theory of mind, social cognition 
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Creepiness Creeps In: Uncanny Valley Feelings Are Acquired in Childhood 

All day, every day, both children and adults try to get inside the minds of others, 

wondering about their thoughts, feelings, and intentions. Until the past few decades, these minds 

have been those of flesh and blood—humans and animals—but now we are faced with minds 

made of metal and silicon, including smart phones and cloud computing. How do we learn to 

make sense of these artificial minds?   

Nowhere is this question more pressing than with robots, who have self-directed 

mechanical minds dwelling inside human-like bodies. The National Robotics Initiative foresees a 

future in which “robots are as commonplace as today's automobiles, computers, and cell phones. 

Robots will be found in homes, offices, hospitals, factories, farms, and mines; and in the air, on 

land, under water, and in space (National Robotics Initiative 2.0, 2017). In fact, robots are 

already entering homes, not only to help adults with household chores, but also to play with and 

teach children. Moreover, several robots have been working with children in classrooms, 

daycares, clinics, and hospitals for years. Robots are teaching children language skills (Movellan 

et al., 2009), mathematics (Wei, Hung, Lee, & Chen, 2011), science (Hashimoto, Kobayashi, 

Polishuk, & Verner, 2013), physical exercises (Mejías et al., 2013), and even social skills (Ricks 

& Colton, 2010). Dozens of robots have been released in the past year alone designed 

specifically to interact with children. As robots become increasingly present in our lives and the 

lives of our children, it becomes more and more important to explore how we reason about the 

minds of these devices and how this reasoning impacts our interactions and feelings toward 

them.  

Work with adults has identified one phenomenon, in particular, that could shed light on 

this topic. Specifically, decades of research reveal that while adults prefer robots that are 
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somewhat human-like, they find very human-like robots unnerving—the “uncanny valley” 

phenomenon (MacDorman, Green, Ho, & Koch, 2009; Mori, MacDorman, & Kageki, 2012). 

According to theories of the uncanny valley, machines become increasingly attractive as they 

become more human-like until they reach a threshold at which they become too human-like and 

are considered uncanny and creepy (see Figure II.1). This dip in affinity for very human-like 

robots is the uncanny valley. Closely human-like robots are distinctly creepier than other robots 

and, in particular, creepier than the more unsettling of machine-like robots. Support for the 

uncanny valley comes from many studies in which adults report feeling greater unease when 

presented with extremely human-like robots compared to others (K. Gray & Wegner, 2012; 

MacDorman, 2006). 

 

Figure II.1. A Schematic Depiction of the Theoretical Uncanny Valley. A schematic depiction 

of the theoretical Uncanny Valley (figure closely derived from Figure 2 in Mori et al., 2012). 

The uncanny valley is defined as the precipitous dip in affinity for closely human-like robots. 
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Two theories have been proposed to explain the uncanny valley’s origins. One references 

innate evolutionary concerns (Steckenfinger & Ghazanfar, 2009) including the innate drive to 

avoid illness. Human-like robots may display “visual defects” that are interpreted as signs of a 

“communicable disease” thus producing a creepy response. Alternatively, innate face processing 

mechanisms may recognize visual defects in very human-like faces compared to real human 

faces and thus process those faces as unattractive and creepy. Various facial processing 

mechanisms and standards are in fact apparent even in infants (see Langlois, Roggman, & 

Rieser-Danner, 1990, for evidence that infants prefer attractive faces). This evolutionary account 

receives further support from research demonstrating that even monkeys experience an uncanny 

valley when viewing computer simulated images of monkey faces (Steckenfinger & Ghazanfar, 

2009).  

An alternative theory proposes that for humans the uncanny valley is not simply a by-

product of evolutionary perceptual responses but instead depends on an acquired everyday 

understanding of what makes humans distinct from machines (MacDorman & Ishiguro, 2006). 

Feelings of uncanniness may instead emerge when a human-like machine violates our learned 

expectations of how a machine should look or behave. In the case of robots, for example, when a 

machine closely resembles a thinking and feeling human being, this would violate our 

expectations that machines should be inanimate and hence incapable of thought and experience. 

Specifically, a very human-like appearance in a machine can prompt attributions of a human-like 

mind (Epley, Waytz, & Cacioppo, 2007), and as human-like minds are seldom ascribed to robots 

(H. M. Gray, Gray, & Wegner, 2007), this mismatch causes feelings of uncanniness (K. Gray & 

Wegner, 2012). Indeed, research with adults reveals that the more robots are seen to have human 

feelings, the more unnerving they seem (K. Gray & Wegner, 2012). Violations of expectations 
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about the behavior and appearance of machines and humans thus link to the uncanny valley 

phenomenon in adults.  

While the uncanny valley has been studied in adults, its origins have never been studied 

in children. If evolutionary in nature, the uncanny valley should be evident in even the youngest 

children. However, if it is related to developing expectations about humans and machines, then it 

should emerge throughout childhood—perhaps in tandem with exclusive attributions of human-

like minds to humans. As the origins and mechanisms of the uncanny valley have yet to be tested 

in children, we examine them here. 

We offer a detailed look at the uncanny valley across development by measuring uncanny 

responses to videos of robots in children from ages 3 to 18. We used stimuli previously validated 

with adults (K. Gray & Wegner, 2012): videos of the same robot that revealed either its machine-

like or human-like nature (see Figure II.2). We showed these videos to children and then 

assessed their feelings of creepiness and also their attributions of mind—thinking (agency) and 

feeling (experience)—toward the robots. By assessing feelings of unease and mind attribution 

across a large age range, we could detect whether (and when) the uncanny valley develops and 

its potential link to children’s understandings of robot minds. 

 

Figure II.2. Still Frames from the Videos of Each Robot. Still frames from the videos of each 

robot: Kaspar from the back (left panel), Kaspar from the front (center panel) and Nao (right 

panel). 
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We expected one of three possible patterns would likely appear: (1) the uncanny valley 

would be present at even the youngest ages, offering support for the evolutionary perspective. (2) 

The uncanny valley would emerge in early childhood in tandem with general perceptions of 

mind—offering support for the developmental perspective. (3) The uncanny valley would 

emerge in later childhood, when children develop more sophisticated—and specific—

understandings of the different kinds of minds possessed by machines, also supporting a 

developmental perspective.  

The evolutionary perspective suggests that even the youngest children should find 

human-like robots more unnerving than machine-like robots, irrespective of attributions of mind. 

On the other hand, the developmental perspective suggests that the uncanny valley will emerge 

in childhood, perhaps even early childhood, when children have begun distinguishing humans 

(and human minds) from other categories. Theory-of-mind research shows that 3- to 5-year-olds 

become quickly adept at attributing mental states such as beliefs and desires to humans (see 

meta-analyses by Milligan, Astington, & Dack, 2007; Wellman, Cross, & Watson, 2001). This 

too might predict that the uncanny valley would be evident in our youngest age group. However, 

this possibility could, nonetheless, be distinguished from the evolutionary one if the presence of 

uncanny valley responses in early childhood is related to children’s attributions of mind. 

Alternatively, the uncanny valley could instead arise around middle childhood—when 

children develop richer understandings of folk biology and folk psychology, and begin to 

separate the concepts of minds, brains, bodies and machines (Wellman, 2014). For example, it is 

only at about 9-12 years that children truly understand differences between the mind (as more 

“mental”) and the brain (as more part of the biological body; C. N. Johnson & Wellman, 1982; 

Richert & Harris, 2006). This understanding that the mind stems from the biological brain (i.e., a 
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neuro-physiological “machine”) could support the development of the uncanny valley: the 

uncanny valley may result from the mismatch of perceiving a human mind as stemming from a 

machine brain. Indeed, post-preschool children, as they age, expect machines to have fewer 

mental abilities (Kahn et al., 2012 which examined children age 9 to 15). It may not be until this 

later age that children develop an understanding that robots, as machines, should not have minds 

as humans do, making them uncanny when they seem like they do.  

Method 

Participants. 240 children (117 females), 3 to 18 years old, were recruited from a local 

natural history museum (218 children) or from a participant database (12). Children were 

questioned in a semi-isolated, quiet space within the museum or (for 12) in an on-campus 

laboratory space. One child was excluded due to incorrect parental report of their birthdate. Our 

sample was twice the number of participants (N = 120) used in a similar previous task (K. Gray 

& Wegner, 2012; Study 1). Power analyses indicate that N = 240 exceeds .80 statistical power 

(Cohen, 1988).  

Because data were collected in a public space, we did not collect information regarding 

children’s race, ethnicity, or socioeconomic status. Written parental consent and verbal child 

assent were obtained first; children received a small toy for participating. 

Videos. Children were randomly assigned to watch short videos of either a closely 

human-like robot or a more machine-like robot (Figure II.2), the two used in K. Gray & Wegner 

(2012). For the human-like robot, 119 children watched 16s of Kaspar moving its head, filmed 

from the front with its human-like face clearly visible. In the machine-like robot condition, 120 

children watched 16s of the robot Kaspar moving its head while filmed from behind, where only 

its wiring and electrical components could be seen, no human-like features were visible. 
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Respondents could not infer that these views were of the same robot because (paralleling K. 

Gray & Wegner, 2012) these videos were presented between-subjects. This focal comparison 

controls for many irrelevant differences between the human-like and machine-like robots 

because the videos contain the same robot making the same movement but from different views 

(front vs. back).  

Whereas our focal contrast compares the human-like and machine-like versions of 

Kaspar, we also included a video of Nao—a commercially available abstractly humanoid 

robot—as a baseline condition (See Figure II.2). We filmed Nao to mimic the human-like 

robot—only head, face and torso visible, moving its head from side to side, with no changes in 

expression. After viewing either the machine-like robot or human-like robot, 234 children 

watched the 16s video of Nao. We implemented this baseline condition using Nao as one 

indicator that children used our rating scale and terms appropriately (see below).  

Nao has been used in previous studies with children (4 to 9 years) to effectively comfort 

them during stressful events (e.g., receiving a vaccination; Beran, Ramirez-Serrano, Vanderkooi, 

& Kuhn, 2013) and so is presumably not creepy or uncanny. Nao is also unlikely to be 

considered creepy because it resembles the friendly, animated robot protagonists portrayed in 

children’s films like WALL·E (Stanton, 2008) and Baymax in Big Hero 6 (Hall & Williams, 

2014). Thus, if children appropriately use our scale, they should provide low ratings of 

uncanniness for Nao. Whereas we expect that Nao should be rated low on feelings of 

uncanniness, we did not use Nao as an indicator of the presence or absence of the uncanny 

valley. First, Nao has never been empirically placed on the hypothesized Uncanny Valley 

gradient. Moreover, a contrast between Nao and the very human-like robot would be insufficient 

evidence to prove the existence of the uncanny valley. The uncanny valley is more specifically 
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defined as the dip in affinity when very human-like robots are perceived as creepier than even 

somewhat creepy machine-like robots. Finding that a very human-like robot (Kaspar from the 

front) is creepier than a not very creepy, and even comforting, humanoid robot (Nao) would not 

sufficiently demonstrate the presence or absence of the uncanny valley.  

Task and design. After viewing each robot (machine- or very human-like, then Nao) 

children answered multiple questions presented in a two-part format. In the first part, children 

chose one of two options. For example, when asked “Does the robot think for itself?”, children 

answered either yes or no verbally or by pointing to a “thumbs up” (yes) or a “thumbs down” 

(no) card (see Figure II.3). If children answered yes, they then answered a second Likert-type 

scale question. For example, “How much does the robot think for itself?”: “a little bit,” “a 

medium amount,” or “a lot.” Children could answer verbally or by indicating on a scale with 

increasingly tall bars (see Figure II.3). 

 

Figure II.3. Images to Assist Children in Answering Likert-Scale Type Questions.  Images 

that were shown to children to aid them in answering the two-part survey questions: thumbs-up 

(yes), thumbs-down (no), and a scale with bars increasing in height (“a little bit,” “a medium 

amount,” or “a lot”). These exact depictions were taken from (Severson & Lemm, 2016). 
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Robot Beliefs Interview. Children were assessed on their feelings of uncanniness via two 

questions gauging the extent to which children felt the robot was creepy or unsettling: (1) “Do 

you feel the robot is nice or creepy?” If children reported the robot was creepy, we asked, “How 

creepy do you feel it is?” (2) “Does the robot make you feel weird or happy?” and, “How weird 

does it make you feel?” This question format resulted in a 4-point scale for each question coded 

as Nice/Happy (0), Creepy/Weird-a little bit (1), Creepy/Weird-a medium amount (2), and 

Creepy/Weird-a lot (3). 

Then children answered eleven additional questions, ten of them addressing the robots’ 

mental capacities (adapted from H. M. Gray et al., 2007; Severson & Lemm, 2016)(see 

Appendix II.A for complete interview). Previous interviews with adults have identified 

components of mental capacity labeled “agency” and “experience.” Questions were designed to 

encompass similar factors in our sample: psychological agency (does the robot “do things on 

purpose?”, “choose to move?”, “think for itself?”, “know the difference between good and 

bad?”) and perceptual experience (would the robot “feel pain?”, “feel scared?”, “feel hungry?”). 

The same two-part question format resulted in a 4-point scale for each of these “mind” questions 

coded as No (0), Yes-a little bit (1), Yes-a medium amount (2), and Yes-a lot (3).  

Procedure. Children were instructed that they would view videos of robots and answer 

questions about them. Children then answered three warm-up questions and were randomly 

assigned to watch a video of either the closely human-like or machine-like robot on an iPad. 

After watching the video, children completed the Robot Beliefs Interview. The video was paused 

so that a still frame of the robot was visible during the interview. Upon completion of the 

interview, children watched a video of Nao and performed the Robot Beliefs Interview once more 

for Nao while a still frame of Nao remained visible on the iPad. 
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Data analysis. Exploratory factor analysis. It was unclear whether children’s 

perceptions and feelings toward robots would reveal the same factor structure as past work with 

adults, so we performed an exploratory factor analysis (EFA) separately for each of the two 

conditions (very Human-like and Machine-like). Using an oblique rotation, Kaiser’s criterion 

(eigenvalues ≥ 1), a scree plot, and model fit indices (Preacher & MacCallum, 2003), three 

factors were identified: Uncanniness (machine-like: α = .62, human-like: α = .75), Agency (α = 

.72, .64), and Experience (α = .73, .85). Five additional items were pruned (see Appendix II.A) 

that had low factor loadings, cross-loaded on to multiple factors, or were not easily interpretable; 

these items were not included in the final factor analysis.  

As shown in Table 2.1, the three factors (covering 8 items)—Uncanniness, Agency, and 

Experience—had identical factor structures across the two conditions (very human-like and 

machine-like) and provided high overall fit. Table 2.1 reveals that all items had a loading of at 

least .40 on their respective factors. Model fit indices also support the three-factor solution 

within each condition. For the machine-like condition, chi-square goodness of fit, χ2(7) = 3.64, p 

= .82, RMSEA = .00, 90% CI = [.00, .07], and TLI = 1.07, were all within their established 

cutoff ranges (Hu & Bentler, 1999). For the human-like condition, model fit indices 

approximated or were within established cutoff ranges: chi-square goodness of fit, χ2(7) = 10.53, 

p = .16, RMSEA = .07, 90% CI = [.00, .14], and TLI = .953. Cronbach’s α ranged from .62 to 

.85 across all three factors and both conditions.  
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Note: Using an oblique rotation, Kaiser’s criterion (eigenvalues ≥ 1), a scree plot, and model fit 

indices, three factors were identified. The first nine rows represent the factor loadings for each 

item and, in the bottom row, the α values for each factor. Bolded numbers identify the items that 

were used to calculate the aggregates for their respective factors. The first number in each cell 

represents values for the machine-like robot and the second for the human-like robot respectively 

(as indicated by the two numbers in each column). 

 

Attributions of Mind score. Agency was measured by averaging the items “does the robot 

choose to move?”, “think for itself?”, “know the difference between good and bad?” Thought, 

decision making and morality have been linked to psychological agency for adults (H. M. Gray 

et al., 2007). Experience was measured by averaging the items: “would the robot feel pain?”, 

“feel scared?”, “feel hungry?” These items also resembled those for perceptual experience in 

adult research (H. M. Gray et al., 2007). The aggregates for Agency and Experience were highly 

correlated, r(236) = .49. Thus, for conceptual reasons and to avoid issues of multicollinearity, 

Agency and Experience were averaged to create a composite measure of Attributions of Mind. 

This approach has also been used in the adult literature (see e.g., K. Gray, Knickman, & Wegner, 

2011). 

Table II.1 

Exploratory Factor Analysis of Interview Items  

 Factors 

Items Uncanniness Agency Experience 

Do you feel the robot is creepy? .81, .99 -.05, .02 .01, -.07 

Does the robot make you feel weird? .57, .55 .13, -.18 -.01, .12 

When the robot moves, does it choose to 

move? 

.08, .10 .59, .69 .06, .07 

Does the robot think for itself? .01, -.04 .77, .53 -.04, .34 

Does the robot know the difference 

between good and bad? 

-.14, -.10 .66, .47 .02, -.08 

Would the robot feel pain? -.03, .02 -.02, -.04 .93, .86 

Would the robot feel scared? .01, 03 .27, .03 .40, .82 

Would the robot feel hungry? .03, -.09 .27, .06 .51, .76 

α .62, .75 .72, .64 .73, .85 
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Uncanniness difference scores. To account for individual differences in children’s use of 

the scale, the dependent variable of Uncanniness was converted to a difference score. This 

difference score was calculated by subtracting the uncanniness score for the baseline condition, 

Nao, from the uncanniness score for the focal robot that a child viewed. For example, for 

children that viewed the human-like robot, their uncanniness score for Nao was subtracted from 

their uncanniness score for the human-like robot. This difference score allows the comparison 

between our focal two robots to be individualized to the extent that we use Nao as a baseline, 

anchoring the score of the focal robots on an empirically verified comforting robot, Nao (Beran 

et al., 2013). This score thus also provides a control for children’s unfamiliarity with robots in 

general which can vary from child to child and age to age. (See, Dalecki & Willits, 1991, for an 

explanation and justification of the statistical advantages of such comparisons.) We did not use 

Nao as a regressor in our subsequent regression analyses because preliminary analyses showed 

that feelings of uncanniness for Nao did not significantly predict feelings of uncanniness for the 

focal robots. Uncanniness difference scores will be referred to as Uncanniness scores. 

Results 

Attributions of Mind, Robot Type (very human-like vs. machine-like), and Age as well as 

interactions between Mind and Age, and Robot and Age were entered into a regression analysis 

predicting Uncanniness scores. As shown in Table 2.2, there were significant associations 

between Uncanniness scores and attributions of Mind and Robot Type, qualified by the 

interaction between attributions of Mind and Age and the interaction between Robot Type and 

Age. There was no main effect of Age. 

  

The Development of the Uncanny Valley 
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Note: Robot type, attributions of Mind, the child’s age, and two interaction terms were entered 

into a regression analysis to predict Uncanniness difference scores. Attributions of Mind and age 

were centered. Robot type, attributions of Mind, the interaction between robot type and age, and 

the interaction between attributions of Mind and age all predicted reports of uncanniness, R2 = 

.12. *p < .05. ****p < .0001.  

 

The interaction between Robot Type and Age indicates that the uncanny valley develops. 

The positive interaction indicates that as children age, the human-like robot is perceived as 

increasingly creepier than the machine-like robot. A plot of the interaction can be seen in Figure 

II.4. Tests of simple slopes indicated that the human-like robot does not become creepier than the 

machine-like robot until approximately 9 years of age. Before 9 years of age, Robot Type did not 

predict feelings of uncanniness (i.e., both the human-like and machine-like robot were equally 

creepy): at age 4, β = -.08, p = .57 and at age 8, β = .13, p = .11. At 9 years, however, the 

uncanny valley effect emerges with Robot Type significantly predicting uncanniness, β = .18, p 

= .02, where the human-like robot is significantly more uncanny than the machine-like robot. 

The uncanniness of human-like robots relative to machine-like robots continues to increase up to 

16 years, β = .55, p = .002.  

Table II.2 

Regression Analyses Predicting Uncanniness Difference Scores 

 Estimate Std. Error β t p 

Human-Like Robot .32 .15 .14 2.10 .037* 

Mind -.25 .11 -.21 -2.31 .022* 
Age -.23 .14 -.20 -1.68 .094 
Human-Like Robot x Age .32  .15 .13 2.08 .039* 
Mind x Age .20 .10 .17 2.04 .043* 
Intercept .89 .12  7.41 <.0001*** 
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Figure II.4. The Interaction Between Robot Type and Age. The interaction between Robot 

Type and Age, β = .14, t(223) = 2.08, p = .04, shows that the uncanny valley develops. The 

positive interaction indicates that as children get older the human-like robot becomes 

increasingly creepier than the machine-like robot as shown here. The development of the 

uncanny valley effect is demonstrated by the increasing distance between the two lines 

(machine-like vs. human-like) with age. 

 

The development of the uncanny valley is also linked to attributions of Mind, shown by 

the significant interaction between attributions of Mind and Age on Uncanniness scores (as 

shown in Table 2.2. This interaction indicates that, as children get older, the association between 

attributions of mind and feelings of uncanniness changes. Specifically, tests of simple slopes 

show that, in young children, increased attributions of mind tend to predict decreased feelings of 

uncanniness in young children: for children ages 4 to 9 attributions of mind negatively correlated 

Uncanniness and Mind 
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with the uncanny response—at 4 years, β = -.55, p < .001, and at 9 years, β = -.23, p =.04. For 

older children, ages 10 to 18, this negative correlation started to disappear and began to trend 

positive, although not significantly so—at 10 years, β = -.16, p = .21, and at 16 years, β = .23, p 

=.42. The upper age limit of our sample however had fewer participants and therefore less power 

to test for a statistically positive association. This descriptively positive trend at the oldest range 

of our child sample fits qualitatively with findings in the adult literature in which feelings of 

uncanniness become positively associated with attributions of mind (K. Gray & Wegner, 2012). 

In total, this significant interaction suggests that the emergence of the uncanny valley is 

associated with children’s perceptions of mind, particularly for younger children. 

Figure II.5 shows the raw scores for feelings of uncanniness for all three robots. 

Inspection of this figure shows that Nao was consistently rated low on uncanniness across all 

ages in our sample. A regression analysis predicting raw uncanniness scores while controlling for 

age and comparing Nao with the least creepy of the two focal robots, the machine-like robot, 

showed that Nao is less creepy than the machine-like robot, β = -.82, t(110) = -9.34, p < .0001. 

Nao is also less creepy than the closely human-like robot, β = -1.05, t(111) = -11.58, p < .0001. 

Statistically, appropriate baseline conditions should have low, stable scores on the variable of 

interest, thus dispelling the possibility of a yes bias. Our expectation for Nao to be minimally 

uncanny (as explained above) was thus confirmed empirically, a result that supports its use as a 

baseline condition for creating Uncanniness difference scores. Further, raw uncanniness scores 

for Nao did not differ between children who first saw the human-like (M = 1.31, SD = .67) or 

first saw the machine-like robot (M = 1.36, SD = .69), t(224.25) = -.53, p = .59, 95% CI = [-.23, 

Uncanniness Responses for Nao 
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.13]. Because the robot that children saw first did not impact their responses to Nao, this 

provides additional empirical justification for its use as a baseline condition. 

 

Figure II.5. Measure of Uncanniness. Measure of uncanniness, the aggregate of the two 

questions that measured whether children perceived the robot to be creepy or weird, for each of 

the three robots: the machine-like robot (Kaspar from the back), the human-like robot (Kaspar 

from the front), and Nao. Error bars represent standard errors. 

 

Methodologically, the comparison between Nao and the other robots shows that even the 

youngest children respond to our uncanny valley questions and test format with varied answers 

across the conditions, indicating that they offered meaningfully differential responses; children 

did not merely demonstrate a yes bias to our scale. Although their uncanny ratings, based on use 

of the terms “creepy” and “weird,” do not distinguish the machine-like and the human-like robot, 

they do distinguish between Nao and these two.  

Appropriate Understanding of “Creepy” and “Weird” 
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For further confirmation of their understanding of these two key terms, we tested a 

separate sample of 20 young children on their understanding of the terms “weird” and “creepy” 

via a brief interview. These children came from the same local population as those in our main 

study and were equivalent in age to children at the lower end of the age range in our sample (M = 

3.40 years, SD = .34, range = [3.01, 3.99]). These children were presented with two paired 

images of a typical toy (i.e., a stuffed giraffe or tricycle) and a clearly strange toy (toys modeled 

after the creepy/weird toys in Toy Story; Lasseter, 1995) shown in Figure II.6. For one pair, 

children were asked to select which toy was creepy and, for the other pair, which toy made them 

feel weird (see questions in Figure II.6). On these tasks, 95% of these young children 

appropriately chose the strange toy as creepy and 85% chose the other strange toy as making 

them feel weird. Overall children were 90% correct on these items that used terms and phrasing 

closely similar to those in the two items that constituted our uncanny index. Thus, even children 

at our youngest age are capable of appropriately using the two words necessary for meaningfully 

employing our uncanny rating scale.  
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Figure II.6. Creepy-Weird Stimuli Used in Follow-Up Interview. Stimuli used for follow-up 

interview to address whether children appropriately understood the words “creepy” and “weird.” 

 

Discussion 

We provide three novel findings. First, the uncanny valley develops: younger children 

found the closely human-like and machine-like robot equally not very creepy, whereas older 

children found the closely human-like robot much creepier than the machine-like robot—similar 

to adults. Second, we identified the approximate age at which the uncanny valley emerges. 

Differences in feelings about the two focal robots emerged progressively over age, but it was not 

until middle childhood that children had a greater uncanny response to a closely human-like 

robot than a contrasting machine-like robot. Third, children’s perceptions of mind were 

correlated with this change in uncanny responses. For younger children, increasing perceptions 

of mind predicted decreased uncanniness. For older children, this association trended in the 

reverse direction, though not significantly so. Thus, from younger children to older children, the 
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correlation between mind and feelings of uncanniness increases from negative to trending 

positive, and the broader literature indicates that this correlation continues to increase and 

becomes positive for adults (K. Gray & Wegner, 2012). Of course, caution is needed in such 

cross-study child-adult comparisons (even though our videos for the Kaspars are exactly those 

used by K. Gray & Wegner, 2012). Regardless, we clearly demonstrate that feelings of 

uncanniness emerge and change over childhood and are associated with differing perceptions of 

robots’ minds. 

This research addresses important questions in psychology and robotics by providing 

initial evidence on the origins of the uncanny valley. One theory suggests that the uncanny valley 

is grounded in an innate mechanism (Steckenfinger & Ghazanfar, 2009), which means it should 

be present at an early age. Indeed, a priori, it is easy to imagine that young children could have 

responded to human-like robots as adults do—perceiving them as creepy. However, our results 

suggest that the uncanny valley emerges through development, and tracks changing 

understandings of mind. Our results clearly show that only children 9 years and older—those 

who have clear expectations about human and robot minds—feel unease towards very human-

like robots, consistent with the second hypothesis outlined in the introduction that a robot is 

considered creepy when it violates our learned expectations of how a machine should look or 

behave.  

The absence of the uncanny valley in younger children may reflect that they expect robots 

to have a myriad of mental abilities. In fact, other research on children’s understanding of robots 

supports this speculation. Young children report that robots have perceptual abilities, like sight 

and touch: 3-year-olds claimed that a robot dog could see and be tickled (Jipson & Gelman, 

2007). In conversations with parents, 3- to 5-year-olds also attributed biological, psychological, 
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and sensory abilities, in addition to features of artifacts, to a robot dog (Jipson, Gülgöz, & 

Gelman, 2016). As young children seemingly expect some robots to have mental abilities, the 

perception of a human-like mind may be a welcome familiarity for them. Indeed, our results are 

consistent with this explanation: young children found robots to be more pleasing (less uncanny) 

when they perceived the robots to have more mental abilities.  

Older children, on the other hand, seemingly have different expectations about robot 

minds and expect robots to have reduced mental capacities. Five-year-olds are less likely to 

claim that a robot dog could think or feel happy compared to 3-year-olds (Jipson & Gelman, 

2007) and are less likely to report that a robot has emotions, desires, or is capable of autonomous 

action (Mikropoulos et al., 2003). Fifteen-year-olds were also less likely to believe that the robot 

Robovie could have interests, experience emotions, or be a friend compared to 9- and 12-year-

olds (Kahn et al., 2012). These changes in expectations with age have been linked to children’s 

increasing experiences with and growing knowledge of technological devices (Bernstein & 

Crowley, 2008). Although the ages and robots varied across these studies, the general trend is 

clear: with age, children begin to deny psychological, emotional, social, and perceptual abilities 

to robots. For our older children, judgments of mind were no longer negatively associated with 

their ratings of uncanniness: attributions of mind stopped predicting a decrease in feelings of 

uncanniness. By hypothesis, older children in our sample may have evidenced an uncanny 

response to the human-like robot due to emerging changes in their expectations about the mental 

abilities of robots. 

Our research was exploratory in the sense that, in advance of collecting the needed, 

relevant data, we had no firm prediction for which of various developmental patterns might 
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emerge. Although exploratory, our results clearly demonstrate that the uncanny valley effect 

develops with age, and that it occurs in tandem with judgments of mind.  

Questions about the uncanny valley and children will become only more important over 

time as more robots are being made to interact and play with children. iPal, Jibo, and Zenbo, 

three Pixar-like robots, are designed to play games, answer questions, read stories, and watch 

children unsupervised (Glaser, 2016; Low, 2016; Wong, 2016). Nao, Ursus (a robotic bear), and 

Kaspar are all robots used to teach typically developing children, and those with motor disorders 

and autism spectrum disorders, a variety of skills including language (Movellan et al., 2009), 

physical exercises (Mejías et al., 2013), and social skills (Ricks & Colton, 2010). We should 

likely ensure that children, both typically developing and those with special needs, actually like 

these robots before extensively using them as companions or teachers. 

While our research speaks to important avenues for future research, there are noteworthy 

potential limitations to our study. First, we acknowledge that our data are only correlational—

unlike some work with adults (K. Gray & Wegner, 2012), there is no causal evidence for the link 

between understandings of mind and the uncanny valley in childhood. Future studies should 

therefore more explicitly test developments in thinking about minds (and machines) more 

generally with the development of the uncanny valley. This could involve both experiments and 

longitudinal studies that track children’s developing concepts of minds and machines (Gelman, 

2003).  

Second, for older children, judgments of uncanniness became dissociated with 

attributions of mind; for them, that link was no longer statistically significant. Although at first 

glance this result may seem problematic, a clear developmental picture emerges when these 

childhood data are coupled with data from adults in prior studies: the correlation between mind 
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and uncanniness increases over age from young (negative, i.e., increasing attributions of mind 

predict decreased feelings of uncanniness) to middle (zero) to older (trend positive) children and 

to adults (positive). On the other hand, it is also still possible that significant positive links 

between uncanniness and mind (increasing attributions of mind predict increased feelings of 

uncanniness) appear in middle to late childhood, in advance of adulthood. In order to be child-

friendly, our scale for uncanniness had a restricted range (e.g., allowing three degrees of 

creepiness and feeling weird) in comparison with scales for adults, and it may be that a more 

nuanced scale would reveal similar effects to those with adults. A direction for future research 

would be to look further at participants aged 10 to adulthood but with a revised rating scale to 

assess the development of a positive association between mind and uncanniness in later 

childhood.  

Third, our results do not speak to degrees of the uncanny valley, as we used a binary 

comparison for machine-like and very human-like robots (consistent with K. Gray & Wegner, 

2012). The classic uncanny valley proposal is that liking of robots follows a non-linear curve 

(Mori et al., 2012) as in Figure II.1, and future research with children should explore the full 

range of its trajectory. Still, our study provides three initial data-points on this trajectory: a 

machine-like robot, an anthropomorphized robot, and a human-like robot. Although our study 

design (being a mix of within- and between-subjects) complicates the analysis of these three 

robot types somewhat, we can descriptively say that the anthropomorphic robot (Nao) was the 

least uncanny, followed by the machine-like robot, and finally the human-like robot as most 

uncanny.  

It is moreover extremely likely that “humanness” is more than just a single dimension, 

thus plausibly robots could be human-like in several different multi-dimensional ways. Robots 
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could be closely human-like in face, limbs, behavior, language, and more. Future research should 

investigate which of these features of human-likeness is considered creepy and at what ages. And 

given our data, an important question would be which features are tied to mind? Future research 

examining a larger variety of robots across childhood is clearly needed.  

 Fourth, one might argue that our results do not speak to children’s changing perceptions 

of robots but instead their developing understanding of words such as “weird,” “feel,” or “think.” 

Our results with Nao, however, coupled with our additional data on young children’s appropriate 

understanding of “weird” and “creepy” speak against this. Ample research also demonstrates that 

even preschoolers have appropriate understanding of the terms used in our questions eliciting 

children’s attributions of mind, such as “think”, “know”, “feel” and “on purpose” (e.g., Bartsch 

& Wellman, 1995). Such findings make it difficult to argue that children have only shifted their 

understanding of the key words—creepy, weird, think, etc.—and are much more consistent with 

children appropriately using these terms to convey their developing conceptions of robots and 

robotic uncanniness and mind.  

Understanding the development of the uncanny valley as an outgrowth of children’s basic 

assumptions about robots coupled with increasing insights into minds provides a new perspective 

on this important phenomenon—it also suggests that one day the uncanny valley may disappear. 

As human-like robots become more commonplace and expand their abilities, children may come 

to expect that robots, although machines, can look surprisingly human, and do have minds, 

encompassing at least some human-like experiences. At which point, even highly human-like 

robots may be comfortingly familiar to children—even as they continue to unnerve today’s 

adults.  
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Appendix II.A 

Robot Beliefs Interview 

Warm-up questions: 

1. Do you like candy? 

1.1. “Do you like candy?” 

1.2. How much do you like candy? A little bit, a medium amount, or a lot?” or “How much 

do you not like candy? A little bit, a medium amount, or a lot?” 

2. Do you like broccoli? 

2.1. “Do you like broccoli?” 

2.2. “How much do you like broccoli? A little bit, a medium amount, or a lot?” or “How 

much do you not like broccoli? A little bit, a medium amount, or a lot?” 

3. Do you like carrots? 

3.1. “Do you like carrots?” 

3.2. “How much do you like carrots? A little bit, a medium amount, or a lot?” or “How much 

do you not like carrots? A little bit, a medium amount, or a lot?” 

Interview questions: 

4. Do you feel the robot is nice or creepy? + 

4.1. “Do you feel the robot is nice (thumbs up) or creepy (thumbs down)?” 

4.2. “How creepy do you feel it is? A little bit, a medium amount, or a lot
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5. Does the robot make you feel weird or happy? + 

5.1. “Does the robot make you feel weird (thumbs down) or happy (thumbs up)?” 

5.2. “How weird does it make you feel? A little bit, a medium amount, or a lot?” 

6. Would you want to play with the robot? 

6.1. “Would you want to play with the robot?” 

6.2. “How much would you want to play with it? A little bit, a medium amount, or a lot?” 

7. Can the robot do things on purpose? * ++ 

7.1. “Can the robot do things on purpose?” 

7.2. “How much can the robot act on purpose? A little bit, a medium amount, or a lot?” 

8. When the robot moves, does it choose to move? + 

8.1. “When the robot moves, does it choose to move?” 

8.2. “How many things can the robot choose to do? A few things, a medium amount of 

things, or a lot of things?” 

9. Does the robot think for itself? ++ 

9.1. “Does the robot think for itself?” 

9.2. “How much does it think for itself? A little bit, a medium amount, or a lot?” 

10. Some actions are bad, like hitting. And some actions are good, like helping. Does this robot 

know the difference between good and bad? + 

10.1. “Does this robot know the difference between good and bad?” 

10.2. “How much does it know the difference between good and bad? A little bit, a medium 

amount, or a lot?” 

11. If I pinched the robot, would it feel pain? + 

11.1. “If I pinched the robot, would it feel pain?” 
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11.2. “How much can this robot feel pain? A little bit, a medium amount, or a lot?” 

12. Does the robot have feelings, like happy and sad? * ++ 

12.1. “Does the robot have feelings, like happy and sad?” 

12.2. “How much does the robot have feelings? A little bit, a medium amount, or a lot?” 

13. If the robot saw a snake, would it feel scared? + 

13.1. “If the robot saw a snake, would it feel scared?” 

13.2. “How much can the robot feel scared? A little bit, a medium amount, or a lot?” 

14. If the robot did not eat breakfast, would it feel hungry? + 

14.1. “If the robot did not eat breakfast, would it feel hungry?” 

14.2. “How much can the robot feel hungry? A little bit, a medium amount, or a lot?” 

15. Is this robot like a human? * 

15.1. “Is this robot like a human?” 

15.2. “How much is the robot like a human? A little bit, a medium amount, or a lot?” 

16. Does the robot know it’s a robot? * ++  

16.1. “Does the robot know it’s a robot?” 

16.2. “How much does it know it’s a robot? A little bit, a medium amount, or a lot?”  

* item not included in final factor analysis due to cross loading or low factor loadings 

+ item derived from Gray & Wegner, 2012 and/or H.M. Gray et al., 2007 

++ item derived from Severson & Lemm, 2016  
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Chapter III 

Robot Teachers for Children? Young Children Trust Robots Depending on their Perceived 

Accuracy and Agency 

 

Abstract 

Children acquire extensive knowledge from others. Today children receive information from not 

only people but also technological devices, and specifically social robots. Two studies assessed 

whether children appropriately trust and learn from technological informants. One-hundred-four 

3-year-olds learned the names of novel objects from either a pair of social robots or inanimate 

machines where one robot or machine was previously shown to be accurate and the other 

inaccurate. Children trusted information from an accurate social robot over an inaccurate one and 

even more so when they perceived the robots as having psychological agency. Children did not 

learn from an inanimate, but accurate, machine however. Children can learn from technological 

devices (e.g., social robots) but trust their information more when the device appears to have 

mindful agency. 

Keywords: trust in testimony, human-robot interaction, natural pedagogy, robots 
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Robot Teachers for Children? Young Children Trust Robots Depending on their Perceived 

Accuracy and Agency 

Our world is increasingly filled with smart technological devices which inundate us and 

our children with information. We can uncover when dinosaurs went extinct, how far it is from 

the Earth to the Moon, and what the weather is like at the North Pole all from our laptops, 

phones, and now even from robots.  

Robots are increasingly permeating our lives (National Robotics Initiative 2.0, 2017) and 

many are being designed to interact with, inform, and instruct children. Indeed, classrooms are 

increasingly implementing educational robots to teach children languages (Movellan et al., 

2009), mathematics (Wei et al., 2011), science (Hashimoto et al., 2013), and, in some cases, even 

substitute for teachers (Han, 2010). This rapid expansion of robot “instructors” makes it 

increasingly important to investigate whether and when robots effectively transmit information 

to children.  

Until recently, children’s knowledge exclusively came directly or indirectly from other 

humans. Children are adapted to learn about their world from the testimony of their parents, 

siblings, teachers, and peers (e.g., Csibra & Gergely, 2009). Children’s trust in testimony has 

classically been studied with an experimental paradigm where children learn the identities of 

novel objects from a pair of informants (Koenig, Clément, & Harris, 2004). From these studies, 

we know that children are capable of appropriately trusting a human informant, even at young 

ages. For example, children as young as 3 appropriately accept information from a consistently 

correct informant over a consistently incorrect one (Pasquini, Corriveau, Koenig, & Harris, 2007, 

p. 1216).  
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When children learn from other people, they monitor cues of psychological competency, 

like accuracy, but also who has access to the right kind of information (e.g., did she see the thing 

she is telling me about?); who is qualified (e.g., is she a knowledgeable adult or a naive child?); 

and who is confident (or uncertain) in their answers (e.g., did she say she knows it’s an X or 

thinks it’s an X?) (Koenig & Harris, 2007). Children similarly utilize social signals, like direct 

eye contact and contingent interactions, when determining whether they should accept 

information from informants (Csibra & Gergely, 2011). Arguably, children trust teachers that 

demonstrate psychological agency: the ability to think, make decisions, possess knowledge, and 

respond interactively (H. M. Gray et al., 2007).  

Whereas children have relied on the testimony of humans to learn about their world for 

millennia, will they rely on the testimony of robots? Examining children’s learning from the 

testimony of educational robots provides a unique means for investigating the scope of children’s 

learning from smart technology and children’s social learning more broadly. Specifically, social 

robots provide the opportunity to directly investigate social factors, like psychological agency, 

that impact children’s trust in testimony. Unlike other forms of technology which have no 

agency or human instructors who have complete agency, the psychological agency of robots can 

be manipulated to assess its impact on social learning. 

Indeed in a few tantalizing studies, when robots, like human instructors, demonstrate 

behaviors consistent with psychological agency, young children seem more willing to accept 

information from them. When learning about novel animals from two furry stuffed-animal-like 

robots, 3- to 5-year-olds were more likely to ask for information and agree with a robot that 

behaved contingently, turning to look at the child whenever he or she spoke, compared to one 

that did not (Breazeal et al., 2016). In another study, 4- to 6-year-olds were reported to be more 



 

 39 

accurate when a robot used an interactive and contingent teaching style that required the children 

to perform tasks as a team with the robot (Okita, Ng-Thow-Hing, & Sarvadevabhatla, 2009). 

While intriguing, these prior studies have limitations (e.g., the furry robots were admittedly toy-

like, rather than robotic) and have not directly tested the impact of psychological agency on 

children’s trust in testimony.  

In two studies, we address two key neglected questions in developmental science: (1) Do 

children appropriately trust (and mistrust) information from robots in the ways that they trust 

human informants? And (2) how does psychological agency impact young children’s willingness 

to trust informants? Study 1 investigates whether young children appropriately trust social 

robots—socially-interactive robots with an abstractly human-like form. Study 2 provides 

contrasting baseline evidence that children will not simply trust or learn from just any inanimate 

technological object, specifically not two amorphous machines with no signs of psychological 

agency. 

Study 1 

Our paradigm was directly modeled on the classic one launched (first used by Koenig et 

al., 2004). Young children were taught the names of novel objects by two humanoid robots: one 

previously always accurate and the other always inaccurate. We focused on two possible 

outcomes: (1) children treat robots similarly to human instructors and appropriately trust only the 

accurate robot, or (2) children treat robots as distinct from human informants and 

indiscriminately trust either (or neither) robot.  

To directly assess perceptions of psychological agency, children reported on their beliefs 

concerning the robots’ mental abilities, including psychological agency, in a Robot Beliefs 

Interview.  
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Participants. Fifty-nine 3-year-olds participated (M = 3.6 years; range = 3.0 to 4.0 years, 

33 girls). Prior “trust in testimony” research clearly shows that 3-year-olds discriminate 

appropriately between accurate and inaccurate human informants (e.g., Pasquini et al., 2007). 

Power analyses indicate that N = 33 is sufficient to detect a moderate effect with .80 statistical 

power (Cohen, 1988). A moderate effect size was hypothesized because this effect size was 

observed in a comparable prior study (Pasquini et al., 2007). Eight other children were excluded 

for terminating participation (N = 6), being non-native English speakers (1), or parental 

interference (1). Children were primarily Caucasian (50) or bi-racial (8) by parent report.  

Design. Children saw two robots (see Figure III.1) give contrasting testimony on the 

names of familiar and unfamiliar objects, judged which robot’s testimony they trusted, and then 

rated their perceptions of the robots’ capacities (e.g., “Can the robots think for themselves?”). 

The testimony procedure showed one robot correctly label a familiar object and a second robot 

incorrectly label it for four different familiar objects across four trials (the Accuracy trials). 

Following this came Test trials, where both the children and robots were presented with a novel, 

unfamiliar object and children were asked which robot they would ask for the object’s name (Ask 

Question). Then each robot gave a different name for the object and the child chose which name 

he or she thought was the actual name for the object (Endorsement Question). Children were also 

asked to judge which robot was not very good at naming the objects (Accuracy Check Question). 

A final additional set of questions measured children’s perceptions of the robots’ capacities—the 

Robot Beliefs Interview.  

Method 
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Figure III.1. Still Frame from Study 1. Still frame from Study 1 before the familiar or 

unfamiliar object is placed on the table. 

 

The original task (Koenig et al., 2004) also used videoed informants. The robots we used, 

presented via video, and the questions in the Robot Beliefs Interview were validated for use with 

young children in a prior study (Brink et al., 2017). 

Selective trust task. For each of four accuracy and four test trials, children watched a 

video of two Nao robots as in Figure III.1. The Nao robot is designed for use with children and 

has been used in prior research with children (Beran et al., 2013). Each trial began with a woman 

(see Figure III.1) placing an object between the two robots and asking each robot, “Can you tell 

me what this is called?” Each robot would then turn to look at the object, point at it, and name 

the object (e.g., “That’s a brush.”). (See Table III.1 for all robot responses across accuracy and 

test trials.)   
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Table III.1 

Social Robot Responses for Each Trial  

 Accurate Robot Inaccurate Robot 

Accuracy Trial 1 “That’s a brush.” “That’s a plate.” 

Accuracy Trial 2 “That’s a doll.” “That’s a tree.” 

Accuracy Trial 3 “That’s a ball.” “That’s a cookie.” 

Accuracy Trial 4 “That’s a bear.” “That’s a towel.” 

 Left Robot Right Robot 

Test Trial 1 “That’s a modi.” “That’s a toma.” 

Test Trial 2 “That’s a gobi.” “That’s a danu.” 

Test Trial 3 “That’s a mogo.” “That’s a nevi.” 

Test Trial 4 “That’s a blicket.” “That’s a terval.” 

   

Note: All robot responses to the question, “Can you tell me what this is called?” For half of the 

children, the accurate robot was on the left.  

 

The two robots differed only in their accent colors, purple versus orange. The left-right 

position of each robot on the table was counterbalanced across participants. The order in which 

the robots were asked for the name of the object alternated across trials. 

On Accuracy trials, children watched videos in which the same two robots named 

familiar objects. At the end of each trial, children answered a name-check question: e.g., “The 

orange robot said it’s a doll and the purple robot said it’s a tree. What do you think it’s called?” 

For the accuracy trials, the four objects were familiar (a hair brush, doll, ball, and teddy bear) 

and during test trials the objects were novel (see Figure III.2). 
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Figure III.2. Familiar and Novel Objects Shown in Both Study 1 and Study 2. Unfamiliar 

objects were taken from the Novel Object, Unusual Name (NOUN) Database (Horst & Hout, 

2014).  

 

Following the accuracy trials, for test trials, children watched videos in which the same 

two robots named novel objects. Prior to the first test trial, children were shown a still frame of 

the video and asked an Accuracy Check Question: “One of these robots was not very good at 

answering these questions. Which robot was not very good at answering these questions?” (The 

trust in testimony literature often call this Explicit Judgment.) 

At the start of each test trial, children reported which robot they would ask for the name 

of the novel object, the Ask Question: “I bet one of these robots can help us find out what it is 

called. Which robot do you want to ask, the orange robot or the purple robot?”  

To end each test trial, each robot was asked for the name of the novel object and each 

responded with a different novel name (e.g., “That’s a gobi.” vs. “That’s a danu.”). At this point, 

children answered an Endorsement Question: e.g., “The orange robot said it’s a gobi and the 

purple robot said it’s a danu. What do you think it’s called? A gobi or a danu?” 
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 In total, during the test trials, children were asked a series of nine focal questions: one 

Accuracy Check question, four Ask questions, and four Endorsement questions.  

Robot Beliefs Interview (RBI). After the selective trust task, children were asked about 

their beliefs concerning the mental abilities of the robots and, specifically, whether they believed 

the robots had abilities related to psychological agency and perceptual experience. For 

Psychological Agency, children were asked whether the robots could think and make decisions: 

e.g., “When the robots move, do they choose to move?” and “Do the robots think for 

themselves?” For Perceptual Experience, they were asked if the robots could experience 

feelings: e.g., “If the robots saw a snake, would they feel scared?” The questions were formatted 

so as to result in a 4-point scale for each question coded as 0 (no), 1 (yes—a little bit), 2 (yes—a 

medium amount), and 3 (yes—a lot). We included perceptions of agency due to its apparent role 

in prior trust in testimony tasks with human instructors. Attributions of psychological agency 

have also been demonstrated to predict increased judgments of robot’s non-creepiness in children 

younger than 9 (Brink et al., 2017). We included perceptions of experience because they have 

been previously demonstrated to predict decreased affinity for robots in adults (K. Gray & 

Wegner, 2012) and provide additional information about robot’s minds beyond judgments of 

psychological agency alone (Brink et al., 2017). (For the complete interview, see Appendix 

III.A.) 

Scoring the data. Six children were excluded from analysis because they failed to 

accurately answer the four name-check questions during the accuracy trials (1 failed 2, 5 failed 

1) where they were asked to name the four familiar objects. For the remaining 53 children’s 

responses, the Accuracy Check question was scored correct when children identified the 

inaccurate robot as “not very good at answering these questions.” Ask questions were correct 
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when children reported that they would ask the accurate robot for the name of the novel object. 

Endorsement questions were correct when children selected the same novel word that the 

accurate robot reported for the novel object.  

An aggregate for the robot’s perceived psychological agency was calculated by averaging 

children’s answers to three questions that assessed whether children believed the robots could 

think and make decisions: do the robots (1) “choose to move?”, (2) “think for themselves?”, (3) 

“know the difference between good and bad?” An aggregate for the robot’s perceived perceptual 

experience was calculated by averaging children’s responses to three questions that assessed 

whether children believe robots could feel: would the robots (1) “feel pain?”, (2) “feel scared?”, 

(3) “feel hungry?” The use of these six questions and their aggregation in this fashion was 

validated by Exploratory Factor Analysis of responses for a larger set of items from 239 children 

aged 3 to 18 years (Brink et al., 2017). 

Performance on test trials. As shown in the left-hand panel of Figure III.3, children 

performed above chance for all three test question types: (1) for the Accuracy Check question, M 

= .96, t(52) = 17.49, p < .001, 95% CI [.91, 1.02]; (2) for Ask (proportion correct for which robot 

would they ask for the name of the novel object), M = .63, t(52) = 3.44, p = .001, 95% CI [.55, 

.70]); and (3) for Endorsement (proportion correct for what they thought the novel object was 

named), M = .68, t(51) = 4.11, p < .001, 95% CI [.59, .77]. Children’s appropriate discrimination 

of information from accurate and inaccurate robots is highly similar to comparable performance 

for 3-year-olds with human informants. In Pasquini et al. (2007), children appropriately asked 

and endorsed the accurate human informant in 70% and 67% of the trials respectively. 

Results 
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Figure III.3. Proportion of Correct Responses to Accuracy, Ask, and Endorse Questions. 

The left panel shows the proportion of correct responses to Explicit Judgment, Ask, and Endorse 

questions for Study 1 (social robots). The dashed line represents performance at chance. Children 

were above chance for all question types in Study 1. The right panel shows responses for Study 2 

(inanimate machines). Children were above chance for only the Accuracy Check question in 

Study 2. The error bars represent 95% confidence intervals. 

 

Beliefs about robots as predictors of performance. Answers to the three Agency 

questions (e.g., “When the robot moves, does it choose to move?”) were calculated as the 

average score of all three questions. Similarly, answers to the three Experience questions (e.g., 

“If the robot saw a snake, would it feel scared?”) were calculated as the average score of all three 

questions. Children’s scores for psychological Agency ranged from 0 to 3 (M = 1.82, SD = .91) 

and were significantly different from 0, t(47) = 13.82, p < .001. Children’s scores for Experience 

ranged from 0 to 3 (M = 1.99, SD = 1.02), and were significantly different from 0, t(47) = 13.52, 

p = < .001. 

 We used these and other factors to predict children’s performance on the selective trust 

task as measured by their Total Correct performance—the proportion of children’s correct 
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responses to all eight Ask and Endorsement questions. Thus, children could have scores ranging 

from 0 (responded incorrectly to all questions they answered) to 1.0 (responded correctly for all 

answered test questions). Children’s scores ranged from 0 to 1 (M = 0.65, SD = 0.25). We then 

assessed whether children’s answers on the Robot Beliefs Interview predicted total composite 

scores. 

In a regression analysis with Agency, Experience, Age, Sex, and Order (4 orders 

combining robot left-right placement and which robot was accurate) as predictors of Total 

Correct performance, Agency significantly predicted performance, 𝛽 = .29, t(46) = 2.08, p = 

.044, R2 = .425. As attributions of the robots’ psychological agency increased, appropriate 

performance on the selective trust task increased. Age also predicted performance on the task, 𝛽 

= .30, t(46) = 2.37, p = .023. Older children were better at asking and agreeing with the accurate 

robot. One variation of the presentation order—children performed better when the purple robot 

was accurate and standing on the left side of the table—also predicted better performance on the 

task, 𝛽 = 1.12, t(46) = 3.43, p = .001. We do not discuss this last result further; it is likely a 

spurious result as there is no substantive reason why children should perform better depending 

on the particular side that the robot is standing and on and for only the purple robot.  

Children trusted the accurate robot over the inaccurate robot: They were more likely to 

ask for and agree with information provided by the accurate robot. Thus, children as young as 3 

are willing and able to appropriately trust accurate robots and mistrust inaccurate robots. They 

also learn from the accurate robot in the minimal sense of repeating the object name provided by 

the accurate robot when asked what they think a novel object is called.  

Discussion 



 

 48 

Further, as children’s perceptions of psychological agency for the two robots increased, 

they were more likely to appropriately trust the accurate robot. Generally, these young children 

attributed agency and experience to these robots, but there was also variation in how strongly 

they did so. Children who more strongly attributed the ability to think and make decisions to the 

robots were more likely to ask for and endorse information from the accurate robot. This finding 

supports the hypothesis that children are increasingly likely to treat social robots similarly to 

human teachers when those robots engender perceptions of agency.  

Study 2 

Study 2 experimentally probed the impact of psychological agency on children’s trust and 

learning from machine informants. In Study 2, the social robots were replaced with simple 

inanimate machines, one purple and one orange. Compared to the social robots, the machines 

provided no obvious cues of psychological agency: they were amorphous blob shapes without 

faces or limbs and did not respond contingently to the woman presenting the familiar objects. 

Instead, the woman signaled a person off-camera whose hand reached on-screen to pull a string 

that activated an audio recording naming the objects. If children only monitor the accuracy of 

entities that demonstrate psychological agency, they should be less likely to monitor the accuracy 

of these two machines and neither selectively ask nor endorse either one. 

This design also addressed an alternative low-level interpretation of our results from 

Study 1. The accuracy trials may have set up a simple positive bias for one robot over the other, 

such that children simply asked for and endorsed information based on that bias rather than an 

explicit recognition of accuracy. This is a non-trivial hypothesis worth addressing because at one 

level our “informants” in Study 1 are simply devices whose different colors might act at the level 

of stimulus cues (possibly resulting in cued discrimination conditioning). If children were merely 
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associating the color cues for each robot in Study 1 with correct and incorrect naming, then they 

could be expected to perform similarly in Study 2, appropriately asking for and endorsing 

information from the accurate machine. 

Participants. Forty-five 3-year-old children identical in age (M = 3.5 years; range = 3.0 

to 4.0 years, 21 girls) and background to those in Study 1 participated. Five additional children 

were excluded for terminating participation (N = 2), being non-native English speakers (1), or 

parental interference (2). Children were primarily Caucasian (33) or bi-racial (9) by parent 

report. Power analyses indicate that N = 33 is sufficient to detect a moderate effect size with .80 

statistical power (Cohen, 1988) just as in Study 1. 

Design. The design was identical to that of Study 1, except the robots were replaced with 

two blob-like “machines” (depicted in Figure III.4). Children saw the two machines provide 

contrasting testimony, judged which machines’ testimony to trust, and then rated their 

perceptions of the machines’ capacities (e.g., “Can the machines think for themselves?”).  

Method 
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Figure III.4. Still Frame from Study 2. Still frame from Study 2 investigating whether children 

appropriately trust (and mistrust) two inanimate machines with minimal signs of psychological 

agency. 

 

Selective trust task. The procedure was identical to that of Study 1 with some minor 

changes: (1) informants were referred to as “machines” rather than “robots” and (2) the woman 

addressed someone offstage rather than the machines themselves, after which a hand came in to 

pull a string activating each machine’s “voice.” The machines spoke with the exact same robotic 

voice as in Study 1. (For all machine responses across accuracy and test trials see Table 3.2.)   
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Table III.2 

Inanimate Machine Responses for Each Trial  

 Accurate Machine Inaccurate Machine 

Accuracy Trial 1 “A brush.” “A plate.” 

Accuracy Trial 2 “A doll.” “A tree.” 

Accuracy Trial 3 “A ball.” “A cookie.” 

Accuracy Trial 4 “A bear.” “A towel.” 

 Left Machine Right Machine 

Test Trial 1 “A modi.” “A toma.” 

Test Trial 2 “A gobi.” “A danu.” 

Test Trial 3 “A mogo.” “A nevi.” 

Test Trial 4 “A blicket.” “A terval.” 

   

Note: All machine responses. For half of the children, the accurate machine was on the left.  

 

Machine beliefs interview. After the selective trust task, children were asked about their 

beliefs concerning the mental abilities of the two machines using an interview nearly identical to 

the interview in Study 1 except that references to “robots” were replaced with references to 

“machines.” 

Scoring the data. Twelve children were excluded from analysis because they failed to 

accurately answer all 4 name-check questions (2 failed 3, 6 failed 2, 4 failed 1). For the 

remaining 33 (17 girls) children’s responses, proportion of correct responses for Accuracy 

Check, Ask, and Endorsement questions were calculated. Aggregates for children’s judgments 

and answers were formed just as in Study 1. 

Performance on test trials. As shown in the right-hand panel of Figure III.3, children 

were above chance for only Accuracy Check questions, M = .73, t(32) = 2.89, p = .007, 95% CI 

[.57, .89]. However, children performed at chance for Ask, M = .49, t(32) = -.11, p = .916, 95% 

CI [.40, .59]); and for Endorsement questions, M = .53, t(32) = .59, p = .557, 95% CI [.43, .62].  

Results 
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In a follow-up analysis, we examined Ask and Endorse responses for only those children 

who correctly identified the accurate versus inaccurate machine on their Accuracy Check 

question. This more closely parallels the analyses in Study 1, where children answered that 

question with 96% accuracy. These 24 children were still at chance for Ask, M = .48, t(23) = -.29, 

p = .773, 95% CI [.36, .61]; and Endorsement questions, M = .54, t(23) = -.75, p = 0.461, 95% CI 

[.43, .64]. 

In Study 1, children’s strength of ascribing various “mind” properties, and specifically 

psychological agency, predicted their willingness to trust and learn from the robots. In Study 2, 

although there was sufficient variance, with some children attributing more and some less 

psychological agency to the machines (M = 1.69, SD = .96), children’s strength of ascribing 

psychological agency failed to predict their willingness to trust and learn from the machines, 

r(28) = .211, p = .3. This is likely because, in Study 2, on average children chose randomly 

between the two machines regarding who they should Ask or Endorse. Thus, even when they 

knew which machine had been accurate, they trusted neither one’s answers regarding object 

names. 

Study 2, in comparison with Study 1, investigated whether perceived psychological 

agency causes children to appropriately trust accurate machine-like informants. When cues of 

agency for the two machines were minimized, children did not utilize the accuracy of these 

inanimate machines to decide which to trust. Children’s responses thus support the hypothesis 

that children especially value informants with psychological agency. Arguably, for children, it is 

important that an informant not only be accurate but demonstrate the ability to think and make 

decisions.  

Discussion  
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These results also make unlikely that low-level associations alone account for children’s 

performance in Study 1. Children recognized which machine was “not very good at saying toy 

names,” demonstrating sufficient attention to and interest in the crucial distinction between the 

devices. However, children were at chance when “trusting” either machine.  

General Discussion 

We found that: (1) Young children appropriately learn from and trust (and mistrust) 

information from robots similarly to the way they trust humans. For social robots, as for human 

informants, trust is granted and withheld based on informant accuracy. (2) Psychological agency 

impacts young children’s willingness to trust informants. Children appropriately trusted the 

accurate robot to the extent that they attributed more psychological agency to the robots (Study 

1). Further, when agency cues were reduced, children were indifferent to information from either 

an accurate or inaccurate machine (Study 2).  

Our findings extend the broader literature on children’s trust in testimony by further 

highlighting the importance of an informant’s mental capacities when determining whether they 

can be trusted. Children sought out and agreed with information from an informant perceived to 

think and make decisions. Previous research demonstrates that children attend to signals about 

their human instructors’ mental abilities—accuracy, confidence, expertise, and access to 

information—which can also be considered a by-product of the foundational ability to think and 

make decisions. It may be that only when informants have psychological agency in these ways, 

that young children begin to assess additional factors: is my informant accurate, confident, 

knowledgeable? At the least, psychological agency seems to be a critical factor in determining 

whether children trust the testimony of social robots and may well be important more generally. 
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Relatedly, our findings have implications for the use of educational robots. Robots have 

been working in classrooms, daycares, clinics, and hospitals where they are increasingly 

expected to convey and pass on knowledge to children, including language skills (Movellan et 

al., 2009), mathematics (Wei et al., 2011), and science (Hashimoto et al., 2013). As we 

demonstrate, the agent-like qualities of robots have the potential to impact the quality of 

children’s learning experiences with these devices. By implication, designers should consider the 

impact of agent-like cues (e.g., contingent behaviors or abstractly human-like features) when 

building educational robots. 

Educational devices are not limited to the agentic robots or purely inanimate devices we 

utilized. Educational tools can range in agent-like cues from disembodied intelligent assistants, 

like Apple’s Siri, to physical humanoid robots like Nao. Likewise, they can vary in the quality of 

their contingent responses, social interactions, and abstractly human-like appearances. We 

examined only one device with numerous agent-like cues (i.e., contingent responses, referential 

speech, and abstractly human-like features) versus one with no such cues whatsoever. In future 

research, it will be useful to examine the effectiveness of devices which vary in the quantity and 

quality of features that encourage attributions of agency. 

Robots are being used not only with typically-developing children, but in educational 

endeavors for children with special needs. Several robots are helping children with ASD engage 

in social interaction through imitation games, turn-taking, and conversation (Ricks & Colton, 

2010). Within this literature, the impact of agency on the effectiveness of robot instructors for 

ASD children is debated. Although more attractive to children with ASD (Robins, Dautenhahn, 

& Dubowski, 2006), non-human-like robot instructors are hypothesized to prevent children with 

ASD from transferring their learned social skills to real people (Ricks & Colton, 2010). 
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Additional research is needed to ascertain the importance of attributions of agency for special 

populations. 

Future research could also delve deeper into learning. As one example, do young children 

evidence word learning from a robot after a delay? This too, clearly, has educational 

implications. 

In advance of such research, we demonstrate that young children learned from and 

appropriately trusted (and mistrusted) information from a humanoid technological device and 

that an important factor in this trust was the extent to which they perceived the device to be able 

to think and make decisions. These findings set the stage for numerous intriguing and important 

future studies.  
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Appendix III.A 

Reduced Robot Beliefs Interview 

1. Do you like candy? (Warm-Up Question) 

1.1. “Do you like candy?” 

1.2. “How much do you like candy? A little bit, a medium amount, or a lot?” or “How much 

do you not like candy? A little bit, a medium amount, or a lot?”   

2. When these robots move, do they choose to move? 

2.1. “When these robots move, do they choose to move?” 

2.2. “How many things can the robots choose to do? A few things, a medium amount of 

things, or a lot of things?” 

3. Do the robots think for themselves? 

3.1. “Do the robots think for themselves?” 

3.2. “How much do they think for themselves? A little bit, a medium amount, or a lot?” 

4. Do these robots know the difference between good and bad? 

4.1. “Some actions are bad, like hitting. And some actions are good, like helping. Do these 

robots know the difference between good and bad?” 

4.2. “How much do they know the difference between good and bad? A little bit, a medium 

amount, or a lot?” 

5. If I pinched the robots, would they feel pain? 

5.1. “If I pinched the robots, would they feel pain?” 

5.2. “How much can these robots feel pain? A little bit, a medium amount, or a lot?”
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6. If the robots saw a snake, would they feel scared? 

6.1. “If the robots saw a snake, would they feel scared?” 

6.2. “How much can the robots feel scared? A little bit, a medium amount, or a lot?” 

7. If the robots did not eat breakfast, would they feel hungry? 

7.1. “If the robots did not eat breakfast, would they feel hungry?” 

7.2. “How much can the robots feel hungry? A little bit, a medium amount, or a lot?” 
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Chapter IV 

A Theory of the Robot Mind: Developing Beliefs about the Minds of Social Robots  

 

Abstract 

This chapter investigates two research questions more broadly: (1) which features of robots 

encourage attributions of mind? And (2) and how do these features encourage feelings of 

uncanniness? Utilizing the Robot Beliefs Interview, 473 adults and 120 children (3- to 18-years-

old) rated their feelings toward and beliefs about ten distinct robots. These ten robots varied on 

several dimensions theoretically linked to attributions of mind and uncanniness: purpose, 

attractiveness, and resemblance to humans, animals, or fictional characters. By investigating 

adults’ and children’s responses to a wider variety of robots, this study informs an understanding 

of the uncanny valley, the attribution of mind to machines, and the factors that produce these 

outcomes. 

Keywords: uncanny valley, theory of mind, social cognition
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A Theory of the Robot Mind: Developing Beliefs about the Minds of Social Robots 

We live in a world increasingly filled with smart technology—laptops, tablets, smart 

phones, autonomous cars, and now robots. And, every day, these devices are behaving more and 

more like people, as if they have minds of their own. Robots are special and unique devices that 

can simultaneously share similarities with artifacts, animals, and even humans. They, like other 

artifacts, are designed and built by humans. Yet, unlike more common artifacts like books, bikes, 

beds, and balls, social robots can look, behave, and at times even “think” like humans or animals. 

Indeed, adults and children often get the impression, after watching or interacting with robots, 

that they do in fact think like we do. 

Utilizing survey methods, several prior studies show that adults and children alike will 

attribute mind to robots to varying degrees (Brink et al., 2017; H. M. Gray et al., 2007; Kahn et 

al., 2012; Weisman, Dweck, & Markman, 2017). Moreover, attributions of a human-like mind to 

social robots are an important factor in determining feelings toward robots (Brink et al., 2017; K. 

Gray & Wegner, 2012) and willingness to accept information from them (Brink & Wellman, 

submitted). Attributions of mind to robots occur across ages and impact our interactions with 

robots, but what factors cause us to attribute minds to robots?  

One possibility is that a robot’s appearance and design affect our willingness to attribute 

a mind to it. To create precise experimental contrasts, previous research has focused on 

children’s and adults’ responses to a limited set of robots that represent only a small number of 

the broad range of existing robots. Robots, however, are not limited to simply human-like, 

machine-like, or humanoid robots. Instead, robots can vary substantially in their appearances and 

designs, resembling any of a number of living creatures or appearing as entirely new and unique 

entities. Due to the existence of drastically different types of robots, it is important to explore 
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how children and adults react to the appearance and behaviors of a broad number of robots. What 

physical and behavioral features of robots contribute to attributions of mind? And, in turn, how 

do they impact uncanniness? The studies presented here more carefully explore the specific 

features of a broad range of robots and how those features may group together, encourage 

attributions of mind, and influence feelings of uncanniness (primarily throughout adulthood but 

also in childhood).  

One theory proposes that human-likeness leads to attributions of mind and in turn 

uncanniness responses to robots. The uncanny valley (see Chapter II) has historically been 

argued to result from levels of human-likeness in the robot itself. Human-likeness, however, has 

not been consistently defined across studies. Often, a robot’s human-likeness is defined a priori 

by an experimenter (e.g., K. Gray & Wegner, 2012; Mori et al., 2012) or by asking adult 

participants to directly rate human-likeness (MacDorman, 2006). These ratings of human-

likeness have not consistently predicted uncanniness across studies: whereas some “human-like” 

robots have been empirically confirmed to be creepier than machine-like robots, not all “human-

like” robots produce the same uncanny responses (Hanson, 2006; MacDorman, 2006). Thus, the 

use of these ratings of human-likeness have yet to fully capture the non-linear shape of the 

uncanny valley originally proposed by Mori (see Mori et al., 2012). Either these ratings have 

only captured a segment of the shape of the uncanny valley, or, worse yet, they contradict the 

theoretical shape entirely (Hanson, 2006; Hanson et al., 2005; MacDorman, 2006).  

One useful perspective that may explain these failures to empirically validate the full 

non-linear shape of the uncanny valley is that human-likeness, though historically treated as 

unidimensional across these studies, is in fact multidimensional. Plausibly, robots could be 

human-like in several different multi-dimensional ways. Kaspar (Chapter 1) is increasingly 
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human-like in mimicking human facial features. But Nao (Chapters 1 and 2) is human-like in a 

much less realistic, anthropomorphized way—e.g., it has two arms and two legs (not four legs), 

hand- and foot-like extremities (not claws or wings), and a human head-like shape perched 

vertically on its body (not a forward thrusting head like a dog). Robots could be closely human-

like in limbs, face, behavior, language, and more. Figure IV.1 shows one sample of various 

robots that vary on some of these categories of features. These static depictions alone show that, 

while human-likeness has often been treated as a unidimensional measure, there is ample reason 

to believe that human-likeness, instead, consists of multiple components. Potentially, because 

human-likeness, as of yet, has not been clearly operationalized, the full non-linear shape of the 

uncanny valley itself has never been empirically verified.  
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Figure IV.1. Still Images of 10 Robots Presented in Study 1. Still images of 10 robots 

presented in Study 1 of Chapter 4. Reading left to right and down the images the robots are: 

Atlas, Actroid, Spot, Sofia, Festo, Kaspar front, Tapia, Nao, Kaspar back, and Pepper. As in 

Study 1 of Brink et al. (2017) participants only ever saw Kaspar front or Kaspar back (no 

individual participant ever saw both). That way, participants could never deduce these were 

alternative views of the same robot. The video clip for each robot can be found in the online 

supplemental materials. (Note: These videos will be available for viewing at the oral defense). 

 

Alternatively, attributions of mind to a robot and feelings of uncanniness may not be 

related to the human-likeness of that robot at all. Indeed, a variety of visual features have been 

linked to attributions of agency. Simple static perceptual features, like eyes, can inspire 

attributions of agency: e.g., infants attribute moral agency to the actions of objects with googly 

eyes but not to identical objects without them (Hamlin, Wynn, & Bloom, 2010). Dynamic 

features can also encourage attributions of psychological agency. For instance, adults and even 
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infants attribute intentions to the movements of blocks, triangles, and blobs (Heider & Simmel, 

1944; Luo & Baillargeon, 2005; Shimizu & Johnson, 2004). Some such features can best be 

conveyed in the interactions of objects, in which objects give the impression that they are 

chasing or avoiding one another (see research with adults by Michotte (1963/2017) and Scholl & 

Tremoulet (2000); and with infants by Schlottman, Ray & Surian (2012)). Behaviorally, infants 

also react differently to objects that interact contingently with the infant (S. C. Johnson, 2000). In 

the set of studies featured in this chapter, I present dynamic but not interactive features. 

Further, attributions of mind and uncanniness responses may also or alternatively be the 

result of factors unique to the individual viewing the robot and not the robots themselves. Epley 

and colleagues (2007) argue that dispositional (e.g., an individual’s need for cognition), 

situational (e.g., perceived similarity to the nonhuman agent), cultural (e.g., experience, norms, 

and ideologies), and developmental (e.g., acquisition of alternate theories) factors impact 

whether we attribute mental abilities to nonhuman agents. The appearance of the robot may be 

less important than, or work in conjunction with, a person’s unique experiences and background 

to impact their attributions of mind and uncanniness responses to robots. 

Across two studies, I explore whether combinations of attributes within a robot or 

whether the individuals themselves are the deciding factor on whether we attribute minds to 

robots and experience feelings of uncanniness. These studies address four focal research 

questions: (1) Mental attributions to robots: How do adults and children attribute mental 

abilities to real-world robots across a much wider, varied sample of robots (compared to previous 

studies)? (2) Characteristics of robots: Do the characteristics of robots, like appearance and 

behavior, predict the types of mental attributions that adults make and the strength of those 

mental attributions? And if so, how? (3) Individual differences and consistencies: Do adults and 
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children change how they attribute mental attributes to robots depending on the type of robot, or 

do individuals consistently apply the same mental attributions to robots regardless of robot? (4) 

Robot uncanniness: How do mental attributions impact adults’ and children’s uncanniness 

responses to a wide variety of real-world robots?  

In the initial study, I explore these questions in adults to first define the general pattern of 

behavior. And, in a second study, I begin to explore the answers to these questions in children. 

Initial incomplete data from over 100 children (Study 2) will be described and compared to the 

adult data (Study 1). Do children show the same pattern as adults? If not, at what stage do they? 

Study 1: Adults 

Method 

Participants. 473 (190 women, 3 another gender identity, 5 refused to answer) adult 

participants, mean age 36.4 (20, 75), were recruited using Amazon’s MTurk. All participants: (1) 

had an approval rating greater than or equal to 95 (out of 100), (2) had completed at least 50 

approved tasks, (3) were located in the United States, and (4) were over 18 years old. 

Participants were compensated $0.50 for completing the survey. Eleven were excluded for 

failing to report a birth year, 36 participants were excluded for completing the survey in less than 

2 minutes or taking more than 15 minutes.  

 Task and design overview. Participants rated five videos of real-life robots—randomly 

selected from a set of 10 videos of real-life robots—and one video of a person. For each robot, 

participants answered 10 questions concerning their feelings about the robot and their beliefs 

about the mental abilities of that robot. With five videos of robots and one video of a person 

lasting 8 secs each and approximately 50 questions, the duration of the study averaged 4 minutes 

and 46 seconds.  
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Videos. Each video presented a robot or person for approximately 8 seconds (range 7-9 

seconds). Within each video, the robot or a person was shown either talking to someone off 

camera or locomoting around a room. All videos were presented without sound. Still images of 

each robot can be seen in Figure IV.1. The 10 robots sampled for this study were chosen because 

(1) they have video clips available online, (2) many are commercially available, and (3) they 

intuitively range over a variety of distinct features that plausibly impact attributions of mind and 

feelings of uncanniness (e.g., presence or absence of human-like features—eyes, mouth, speech, 

skin-like covering, intentional action—to varying degrees). 

Adult Robot Beliefs Interview (RBI). A subset of eight interview questions were taken 

from Brink et al.’s (2017) Robot Beliefs Interview (RBI; originally designed for children) 

relevant to the variables of interest: feelings of Uncanniness and attributions of Psychological 

Agency and Perceptual Experience. Questions were modified for adults and to fit an online 

survey format.  

Uncanniness. For each robot video, adults were assessed on their uncanny response via 

two questions gauging the extent to which they felt the robot was creepy or unsettling: (1) “Do 

you feel the robot is creepy?” and (2) “Does the robot make you feel weird?” Paralleling the 

methods established in Brink et al. (2017) the response format resulted in a 4-point scale for each 

question coded as 0 (No), 1 (Yes-a little bit), 2 (Yes-a medium amount), and 3 (Yes-a lot).  

Mental attributions. Adults also answered seven questions assessing the robots’ mental 

capacities for Psychological Agency and Perceptual Experience. Agency was captured with three 

items: “does the robot” (1) “purposefully choose to move?”, (2) “think for itself?”, and (3) 

“know the difference between right and wrong?” Experience was captured by three items: 

“would the robot” (1) “feel pain?”, (2) “feel scared?”, (3) “feel hungry?” (See Appendix IV.A for 
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complete adult interview.). An additional exploratory question asked, “Does this robot have 

feelings, like happy and sad?” Each question resulted in a 4-point scale coded as 0 (No), 1 (Yes-a 

little bit), 2 (Yes-a medium amount), and 3 (Yes-a lot). 

Robot validity check. We included one additional item to check whether participants 

were properly aware that the stimuli were either a human or robot. Immediately after watching 

each video, adults were asked to report whether they believed the agent in the video was a robot 

or a person. After responding, adults were given the correct identification of the agent in the 

video.  

Results 

Research questions. Analyses addressed our four focal research questions: (1) Mental 

attributions to robots: How do adults attribute mental abilities to real-world robots across a 

much wider, varied sample of robots (compared to previous studies)? (2) Characteristics of 

robots: Do the characteristics of robots, like appearance and behavior, predict the types of mental 

attributions that adults make and the strength of those mental attributions? And if so, how? (3) 

Individual differences and consistencies: Do adults change how they attribute mental attributes 

to robots depending on the type of robot, or do individuals consistently apply the same mental 

attributions to robots regardless of robot? (4) Robot uncanniness: How do mental attributions 

impact adults’ uncanniness responses to a wide variety of real-world robots?  

Data analysis plan. Mental attributions to robots. Using both Confirmatory Factor 

Analysis (CFA) and Principal Component Analysis (PCA), we identified the types of mental 

attributes that adults applied to our large sample of robots and compared these mental 

attributions to those identified in previous studies with far fewer robots (Brink et al., 2017; H. M. 
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Gray et al., 2007). We then measured and examined the strength of these mental attributions 

across robots and participants.  

Characteristics of robots. Using clustering techniques, we determined whether types and 

strengths of mental attributions typically co-occurred with specific robot appearances or 

behaviors.  

Individual differences and consistencies. Using the same clustering techniques, we also 

investigated whether participants were consistent in their mental attributions to robots. We 

assessed whether adults uniformly applied the same types and strengths of mental attributions to 

all robots or whether participants applied varied mental attributions across robots. 

Robot uncanniness. We used regression modeling to investigate whether types and 

strengths of mental attributions predicted uncanniness to determine the factors that best account 

for raters’ feelings about the attractiveness or uncanniness of robotic agents. 

Imputation. We applied missing value imputation to the data set to increase statistical 

power. Because we randomly assigned adults to view five of 10 videos, we concluded that the 

missing data for each participant for the five remaining videos was missing completely at 

random. We utilized nonparametric missing value imputation using Random Forest (Stekhoven, 

2013). This method is appropriate for mixed-type datasets with many variables that encompass 

both continuous and categorical data including complex interactions and nonlinear relations. Its 

out-of-bag (OOB) imputation error estimate for our data was 12.95%.  

 All analyses were performed both with a fully imputed data set and the original data set. 

However, only the results from the original data set are described here. We describe only the 

original data set because those data adhere most closely to participants’ actual per robot ratings, 

although this, of course, results in fewer total data points for subsequent analyses. Moreover, this 
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analysis method provides a better comparison to the data from children (see Study 2 below). The 

original (non-imputed) dataset alone is large, it provides 2079 separate sets of ratings on the 10 

robots (with each robot rated on 10 different perceptions).  

Robot validity check. Seven of the 10 robots were identified as robots by 100% of the 

participants. All 10 robots were identified as robots by at least 95% of participants. Less than 2% 

of participants identified the video of the person as a robot. The high accuracy of our participants 

indicates both that the robots were easily identifiable as robots and that participants were focused 

on the task. 

Mental attributions to robots. Confirmatory Factor Analysis (CFA). We performed a 

CFA to determine whether adults attribute mental abilities to a broader range of robots similarly 

to adults in previous studies (Brink et al., 2017; H. M. Gray et al., 2007). A diagram of the CFA 

model can be seen in Figure IV.2.  
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Figure IV.2. A Diagram of the CFA Model for Studies 1 and 2. The moral item was not a 

good fit of the data for Study 1, but moral did fit with think and choose in Study 2 with children; 

this is represented by the dashed line. 

 

An initial CFA model, that included all items from the RBI, was not a good fit of the 

data. When the moral survey item was excluded from the analyses, however, the fit indices 

supported the modified CFA model. Four commonly used model fit indices were all within their 

respective cutoff ranges (RMSEA = .046 < 0.05; CFI = 0.994 > 0.95; TLI = 0.989 >0 .95; SRMR 

= .021 < .08) (Hu & Bentler, 1999). Nearly all factor loadings met or approached the threshold 

for good indicators of .7 (Kline, 2011). For Agency, its two indicators had factor loadings of 

0.561 (choose) and 1.076 (think). The three indicators for Experience were within 0.851-0.911. 

For Uncanniness, the two indicators were 0.789 (creepy) and 1.088 (weird). 

From the CFA analysis, we created three aggregates: two types of mental attribution 

aggregates—Psychological Agency and Perceptual Experience—and an Uncanniness aggregate. 
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Each aggregate was calculated by averaging participants’ responses for each aggregate’s 

respective items (as shown in Figure IV.2).  

Principal Component Analysis (PCA). To increase power for subsequent analyses, we 

utilized a second data reduction method, PCA, which retains all interview items. PCA calculates 

its comparable components by including and weighting every survey item. CFA, on the other 

hand, calculates its factors with weights of either 0 or 1, effectively excluding those items with 

weight 0 and thus utilizing a reduced set of the original data. Whereas principal components are 

less easily interpretable than factors, they retain more information about participants’ responses 

for predictive analyses. Our PCA included information from two additional items that were not 

included in the CFA: feel and moral items. Because we ultimately wanted to predict uncanniness, 

all uncanniness items were excluded from the PCA analysis.  

The two components extracted from the PCA explained 78.8% of the variance in our 

data. The first principal component (PC1) weighted most heavily the items feel, scared, hungry, 

pain, and moral. This first principal component explained 60.7% of the variance. The second 

principal component (PC2) placed more weight on think and choose and explained 18.2% of the 

variance. In these ways the PCA ultimately produced substantively similar, but quantitatively 

distinct types of mental attributions compared to the CFA: PCA of participants’ ratings similarly 

divided the survey items into Agency (PC2) and Experience (PC1) compared to CFA but 

calculated them with different item weights and took into account ratings of feel and moral. 

The principal components calculated by the PCA were utilized in subsequent analyses 

and also compared to the results for the CFA. 

Clustering. The two aggregates, factors (from CFA) and principal components (from 

PCA), of the types of mental attributions—Agency and Experience—were analyzed using 
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unsupervised statistical learning methods (i.e., K-means clustering, hierarchical clustering). 

These techniques can empirically identify distinct categories of responses as defined by the 

unique combinations of the strength and types of mental attributions. For example, clustering 

analyses may cluster responses into categories like “high agency, high experience (HAHE)”; 

“high agency, low experience (HALE)”; “low agency, high agency (LAHE)”, or “high agency, 

low experience (HALE).”  

For our 426 participants, we obtained 2079 sets of ratings across 10 robots. K-means 

clustering found three categories that substantively described the data (see Figure IV.3). We 

found three of the four clusters described previously: LALE, HALE, and HAHE. Increasing the 

number of clusters did not result in more meaningful clusters but resulted only in additional 

dissections of Agency into three categories or more. 1316 (63.3%) ratings fell into the LALE 

category, 659 ratings (31.7%) fell into the HALE category, and 104 ratings (5%) fell into the 

HAHE category. Clustering on the principal components found highly similar results: 1307 

(62.9%) ratings fell into the LALE category, 658 ratings (31.6%) fell into the HALE category, 

and 114 ratings (5.5%) fell into the LAHE category. No adult thought any robot was LAHE; if 

robots had high experience they necessarily also had high agency. All subsequent analyses will 

be based on the CFA clusters for brevity because analysis of the PCA clusters produced nearly 

identical results. 
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Figure IV.3. A Visualization of K-Means Clustering for Adult Responses. A visualization of 

how k-means clustering divided participants responses into three categories: high agency, high 

experience (HAHE); high agency, low experience (HALE); and low agency, high agency 

(LAHE). The left panel shows clustering performed on ratings of factors. The right panel shows 

clustering performed on principal components. Responses were jittered for visibility. 

 

Characteristics of robots. We used the three identified categories of mental attributions 

to determine how robot characteristics impacted attributions of mental abilities to robots. We 

inspected whether specific robots uniformly fell into only one category of mental attributions or 

multiple. We found that responses for each robot did not fall uniformly nor exclusively into 

individual clusters. Each robot had responses that fell into each of the three clusters. In other 

words, the same robot was not viewed similarly by all participants: Different participants 

attributed different levels of mental abilities to the same robot. 

To clarify and complement these robot ratings and groupings, we then examined the 

distribution of responses for each robot across the three types of mental attributions (see Table 1 

and refer to Figure IV.1 for identifying pictures of each robot). Here we measured the proportion 

of responses that fell into each category for each robot. We then performed K-means clustering 

on the resulting distribution of proportions to see if we could uncover groups of robots that 

shared similar distributions of ratings. Three categories of robots were extracted. Sofia and 
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Actroid shared similar distributions of responses across the three types of mental attributions. 

Atlas and Spot were also clustered together. The remaining six robots were grouped together. 

Table IV.1 

Proportion of Responses in Each Type of Mental Attribution 

Robot HAHE HALE LALE Cluster 

Festo .0174 .300 .683 

Mechanical 

Kaspar Back .0342 .205 .761 

Kaspar Front .0714 .223 .705 

Nao .0351 .268 .697 

Pepper .0388 .284 .677 

Tapia .0606 .212 .727 

Actroid .0783 .326 .596 
Human-Like 

Sofia .0733 .332 .595 

Atlas .0556 .470 .474 Situationally-

Aware Spot .0386 .442 .519 

     

Note: Distribution of responses for each robot into the three categories of mental attributions and 

their clusters (identified by K-means clustering). 

 

Based on a qualitative viewing of the robots in each category, we labeled each cluster to 

more clearly describe and differentiate cluster membership. The Mechanical cluster contains 

robots with clearly visible mechanical components: wires, silicon or plastic exteriors, or non-

human shapes. The Human-Like cluster contains the most closely human-like robots of the 

sample. Finally, the Situationally-Aware cluster contains the only two robots that performed 

behaviors consistent with being aware of objects in their environment: Atlas pursued a moving 

box and Spot avoided an obstacle by ducking under a table.  

Individual differences and consistencies. We also determined whether the responses of 

a specific participant were consistent across different robots (i.e., their responses fell exclusively 

into only one category of mental attributions regardless of robot, e.g. LALE) or whether they 

varied across robots (i.e., their responses fell into different categories according to robot).  
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Ultimately, we found that participant responses were more likely to fall into a single 

category. For 254 participants (59.6%), all of their responses fell into only a single category. Of 

these participants whose responses fell into a single category, 185 participants’ responses were 

LALE, 58 participants were HALE, and 11 responses were HAHE. For 158 participants (37.1%), 

their responses fell into 2 clusters. When participants’ responses fell into two categories, 147 

participants’ (93.0%) responses were all HALE or LALE, 6 participants were LALE or HAHE, 5 

participants were HALE or HAHE. Only 9 participants’ responses (2.1%) fell into all 3 

categories. 

Predicting mental attributions. Participant and Robot Cluster were explored for their 

impact on attributions of mental abilities to robots. We used the lme4 package in R (Bates, 

Maechler, Bolker, & Walker, 2015) to perform a linear mixed effects analysis of the relationship. 

As fixed effects, we entered Robot Cluster, Age and Gender (without interaction terms) into the 

model. As random effects, we had intercepts for participant and robot.  

When predicting Experience, subject-to-subject variability had the greatest contribution 

among the random effects. The estimated variance (SD = .336, 95% CI [.313, .362]) for subject-

to-subject variability was nearly twice as much as the within-subject variability (SD = .178, 95% 

CI [.172, .185]). In other words, participants’ responses were more consistent across robots than 

they were between participants. Moreover, robot-to-robot variability had the smallest 

contribution to Experience (SD = .000, CI 95% [.000, .017]). According to likelihood-ratio tests 

(LRT), Robot Cluster significantly predicted Experience: The Human-Like cluster had 

significantly higher ratings of Experience compared to the Situationally-Aware cluster, β = .038, 

CI 95% [.012, .064], and the Mechanical cluster, β =.044, CI 95 % [.022, .066], ∆χ2(2) = 25.9, p 

< .001. There was no difference in Experience between the Situationally-Aware and Mechanical 
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cluster, β = -.005, CI 95% [-.028, .016]. Fixed effects explained 3.3% of the variance, marginal 

R2 = .033, compared to 78.7% explained by both fixed and random effects, conditional R2 = .787 

(Bartoń, 2018; Nakagawa & Schielzeth, 2013). Therefore, there are unmeasured variables related 

to participant that are likely better predictors of Experience than the fixed effects measures 

included in our model.  

When predicting Agency, subject-to-subject variability had the greatest contribution (SD 

= .613, CI 95 % [.569, .661]). The within-subject variability (SD = .441, CI 95% [.427, .457] and 

robot-to-robot variability (SD = .029, CI 95% [.000, 067]) contributed less. Just as with 

Experience, there was more variability between participants ratings of Agency than there were 

between robots. An LRT indicated that Robot Cluster significantly predicted Agency: The 

Situationally-Aware cluster was rated as having more Agency than both the Human-Like cluster, 

β = .188, CI 95% [.095, .281]. and the Mechanical cluster, β = .391, CI 95% [.315, .469], ∆χ2(2) 

= 25.9, p < .001. The Human-Like cluster had significantly higher ratings of Agency than the 

Mechanical cluster, β = .202, CI 95% [.127, .280], ∆χ2(2) = 25.9, p < .001. The variance 

explained by random effects was substantially larger than that measured by fixed effects, 

marginal R2 = .051, conditional R2 = .676 (Bartoń, 2018; Nakagawa & Schielzeth, 2013). 

Robot uncanniness. We performed a linear mixed effects analysis to assess the impact of 

mental attributions, Participant and Robot Cluster on ratings of Uncanniness. As fixed effects, 

we entered Agency, Experience, Robot Cluster, Age, and Gender (without interaction terms) into 

the model. As random effects, we had intercepts for participant and robot.  

When predicting Uncanniness, both subject-to-subject variability (SD = .542, CI 95% 

[.496, .592] and between-robot variability (SD = .349, CI 95% [.234, .588]) contributed less than 

within-subject variability [SD = .654, 95% CI [.633, 677]). There was more variation within 
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participants’ Uncanniness responses than between participants or robots. LRTs indicated that 

increases in Experience, β = .066, CI 95% [.016, .115], ∆χ2(1) = 6.69, p = .009, and Agency, β = 

.105, CI 95% [.059, .151], ∆χ2(1) = 20.2, p < .001, predicted increases in Uncanniness. Also, the 

Human-Like cluster was considered more uncanny than the Situationally-Aware, β = .766, CI 

95% [.003, 1.529], and Mechanical cluster, β = .855, CI 95% [.231, 1.477], ∆χ2(2) = 6.41, p = 

.041. Nevertheless, caution is warranted when interpreting these fixed effects. When the sample 

size is large (N = 2079), the likelihood of finding a statistically significant difference increases 

although there may not be a practically significant difference. The estimates and confidence 

intervals for the coefficients for Agency and Experience were very close to 0. They, therefore, 

may not be strong predictors of Uncanniness regardless of statistical significance. Fixed effects 

explained 17% of the variance, marginal R2 = .170. Fixed effects and random effects combined 

explained 57.9% of the variance, conditional R2 = .579 (Bartoń, 2018; Nakagawa & Schielzeth, 

2013). 

Discussion 

 Mental attributions to robots. Adults model the minds of robots into two components 

of mental abilities: psychological agency and perceptual experience, as demonstrated by both a 

CFA and PCA. Moreover, adults attribute these abilities in distinctive ways. More often than not 

robots were considered to have low agency and low experience (63.3% of ratings fell in this 

category). When adults claimed that a robot had high agency, that robot could also either have 

high experience (5%) or low experience (31.7%). No adult thought any robot had low agency 

and high experience, if robots had high experience they necessarily also had high agency 

Characteristics of robots. Specific robots do not fall into single categories of mental 

attributions. In fact, it appears that features of the robots are not substantially important for 
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determining the attributed mental abilities of the robot. Robots that were shown to be 

situationally aware were rated as having more agency than mechanical and human-like robots. 

Therefore, behavior may be an important factor in determining agency. Sensibly, human-like 

robots (that looked very closely human) were also rated with most capacity for experience, more 

than the situationally aware and more mechanical robots. But, to reiterate, these effects may not 

be practically significant (effects were close to zero).  

 Individual differences and consistencies. Even though, as just discussed, characteristics 

of the robots did matter, stable differences in individual participants’ ratings of robots surfaced 

as the most important factor for determining how a robot’s mental abilities were rated. Most 

adults’ responses typically fell into a single category. If an adult reported that one robot had low 

agency and low experience (LALE), he or she was highly likely to report that the other robots in 

our sample of robots did as well. Moreover, our linear mixed effects model found that as-yet-

unmeasured variables related to the participant were more likely to explain participants’ mental 

attributions to robots than the robots themselves. 

 Robot uncanniness. In this sample, mental abilities did help account for a statistically 

significant portion of the variance in uncanniness, as it has in prior research contrasting two or 

three robots at a time. Moreover, the human-like robots were considered the most uncanny 

compared to the mechanical and situationally aware robots, consistent with past findings. In our 

study, however, caution must be taken when interpreting these effects. Although the effects were 

statistically significant, the effects of mental attributions may not strongly explain ratings of 

uncanniness (their estimates of coefficients were small and approaching zero). Further, including 

participants’ stable tendencies to regard the robots as generally similar (e.g. all as LALE) greatly 

increased the total variance accounted for in participants’ Uncanny judgments. In essence, 
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participants who saw the robots as LALE also rated them as less uncanny than participants who 

saw them as HAHE. Still, unmeasured variables related to the participant are likely also 

important for predicting uncanniness. Future studies should include more robots, as we have 

done, but also include ratings of additional factors, including factors that characterize the 

participants themselves, that may better explain variations in uncanniness. We speculate on some 

potentially informative additional factors in the General Discussion that could be included in 

future research, including testing a wider age span of participants. 

Study 2: Children 

Children are more likely to attribute mental abilities to robots (Brink et al., 2017; Kahn et 

al., 2012) than adults. Moreover, previous research suggests that children attribute uncanniness 

differently to robots than do adults (e.g., Brink et al., 2017). Utilizing the same design as in 

Study 1, we investigated whether robot appearance or individual differences was more important 

for mental attributions and uncanniness for children, and we explored if and how those 

attributions changed with age.  

This project (Study 2) is still currently in progress as we are still collecting child data. 

Nevertheless, we have collected data from over 100 children. 

Method 

Participants. 120 children (54 females), 3.41 to 17.46 years old, were recruited from a 

local natural history museum between February 2017 and May 2018. Children were questioned 

in a semi-isolated, quiet space within the museum. Seven children were excluded due to low 

concentration on the task. Because data were collected in a public space, we did not collect 

information regarding children’s race, ethnicity, or socioeconomic status. Written parental 

consent and verbal child assent were obtained first. Children received a small toy for 
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participating. 

 Task and design overview. Children rated three videos of real-life robots—randomly 

selected from a set of 11 (see Figure IV.1 and Figure IV.4) videos of real-life robots—as well as 

the same video of a person used in Study 1. For each robot, children answered 10 questions 

concerning their feelings about the robot and their beliefs about the mental abilities of that robot. 

The study typically lasted less than 15 minutes.  

Videos. Children viewed the same 10 robots that adults viewed in Study 1 plus one 

additional robot (see Figure IV.1 for the first 10 robots; see Figure IV.4 for the additional robot). 

The additional commercially available robot was a robot specially designed for interactions with 

humans.  

 

Figure IV.4. The Additional Robot ASIMO, Included in Study 2.  

 

Robot Beliefs Interview (RBI). The same nine interview questions used in Study 1 

(taken from Brink et al., 2017, Robot Beliefs Interview) were used as in Study 1, but presented in 

a face-to-face interview format rather than online. These questions were validated for use with 

children in Brink et al. (2017) and again include items relevant to the aggregate of feelings of 

Uncanniness and attributions of Psychological Agency and Perceptual Experience. 
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Uncanniness. For each robot video, children were assessed on their uncanny response via 

two questions gauging the extent to which they felt the robot was creepy or unsettling: (1) “Do 

you feel the robot is nice or creepy?” and (2) “Does the robot make you feel weird or happy?” 

Utilizing the methods established in Brink et al. (2017) the response format resulted in a 4-point 

scale for each question coded as 0 (Nice/Happy), 1 (Creepy/Weird-a little bit), 2 (Creepy/Weird-

a medium amount), and 3 (Creepy/Weird-a lot).  

Mental attributions. Children also answered seven questions assessing the robots’ mental 

capacities for Psychological Agency and Perceptual Experience. Agency was captured with three 

items: “does the robot” (1) “choose to move?”, (2) “think for itself?”, and (3) “know the 

difference between good and bad?” Experience was captured by three items: “would the robot” 

(1) “feel pain?”, (2) “feel scared?”, (3) “feel hungry?” An additional exploratory question asked, 

“Does this robot have feelings, like happy and sad?” Each question resulted in a 4-point scale 

coded as 0 (No), 1 (Yes-a little bit), 2 (Yes-a medium amount), and 3 (Yes-a lot). (See Appendix 

IV.B for complete child interview.) 

Robot validity check. We again included an additional item with the RBI to check 

whether children were properly aware of the nature of the stimuli as either a human or robot. 

Immediately after watching each video, children were asked to report whether they believed the 

agent in the video was a robot or not. After responding, the experimenter told the child the actual 

identity of the agent in the video, e.g., “You’re right. That is a robot” or “Actually, that’s a 

robot.” 

Results 

Research questions. Analyses mirrored those of Study 1 addressing: (1) Mental 

attributions to robots: Do children attribute mental abilities to real-world robots similarly to the 
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way that adults do? (2) Characteristics of robots: Do the characteristics of robots, like 

appearance and behavior, predict the types of mental attributions that children make and the 

strength of those mental attributions? And if so, how? (3) Individual differences and 

consistencies: Do children change how they attribute mental attributes to robots depending on 

the type of robot, or do individuals consistently apply the same mental attributions to robots 

regardless of robot? (4) Robot uncanniness: How do mental attributions impact children’s 

uncanniness responses to a wide variety of real-world robots?  

Data analysis plan. The data analysis plan was identical to that of Study 1. To begin we 

analyzed all child data together. Given the range of children’s ages from 3 ½ to 17 ½ years, we 

later conducted several analyses separating younger and older children.  

Imputation. We applied missing value imputation to the data set to attempt to increase 

statistical power. We utilized nonparametric missing value imputation using Random Forest 

(Stekhoven, 2013). The out-of-bag (OOB) imputation error estimate for our data was 32.61%.  

 All analyses were performed both with a fully imputed data set and the original data set. 

However, only the results from the original data set are described here. We describe only the 

original data set, because as the OOB error estimate shows, there was not sufficient data to 

improve the accuracy of the data by imputation methods. 

Robot validity check. Six robots were identified as robots by more than 97% of the 

participants. Eight of 10 robots were identified by robots by more than 85% of participants. 

Actroid and Sofia were identified as robots by only 67.5% and 63.6% of participants 

respectively. The still images in Figure IV.1 (of Study 1) show that Actroid and Sofia are highly 

human-like in outer appearance. At same time, however, more than 94% of participants 
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identified the video of the person as a person. With this measure then, all 10 robots were highly 

robot-like to children. 

Mental attributions to robots. Confirmatory Factor Analysis. We performed a CFA to 

determine whether children attribute mental abilities to a broad range of robots similarly to the 

way they have done in previous studies (Brink et al., 2017). A diagram of the CFA model can be 

seen in Figure IV.2.  

This initial CFA model provided the same factor structure identified using EFA by Brink 

and colleagues (2017) with ratings of only three robots. The current model approached a good fit 

of the data. The four commonly used model fit indices were within or approaching their 

respective cutoff ranges (RMSEA = .08 < 0.05; CFI = 0.945 > 0.95; TLI = 0.910 >0 .95; SRMR 

= .052 < .08) (Hu & Bentler, 1999). All factor loadings met or were near the threshold for good 

indicators, .7 (Kline, 2011). For Agency, its three indicators had factor loadings between .564 

and .735. The three indicators for Experience were within .592 and .828. For Uncanniness, the 

two indicators had loadings of .770 (creepy) and .711 (weird). More data should be collected (as 

is being done) to support that this model is a good fit of the data, confirming Brink et al. 2017.  

From the CFA analysis, and paralleling the analyses of adult data (in Study 1), we created 

three aggregates: two types of mental attribution aggregates—Psychological Agency and 

Perceptual Experience—and an Uncanniness aggregate. Each aggregate was calculated by 

averaging participants’ responses for each aggregate’s respective items (as shown in Figure 

IV.2).  

Principal Component Analysis. The PCA included information from one additional item 

that was not included in the CFA (so that the CFA could confirm Brink et al., 2017): feel. Again, 
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because we wanted to later predict uncanniness feelings, all uncanniness items were excluded 

from the PCA analysis.  

The two components extracted from the PCA explained 65.3% of the variance in our 

data. The first principal component (PC1) equally weighted all seven items: choose to move, 

think, feel, scared, hungry, pain, and moral. This first principal component explained 49.2% of 

the variance. The second principal component (PC2) placed more weight on the subset pain, 

scared, moral, choose to move and explained 16.1% of the variance. Thus, the PCA ultimately 

produced substantively and quantitatively distinct types of mental attributions compared to the 

CFA. The first component encompassed all interview items and thus may represent general 

mental ability as children judge it for robots. The second component might be interpreted as 

moral agency and moral concern. 

The principal components calculated by the PCA were utilized in subsequent analyses but 

also compared to the results for the CFA. 

Clustering. The two groups of aggregates, the factors and principal components resulting 

from the CFA and PCA, were analyzed using unsupervised statistical learning methods (i.e., K-

means clustering and hierarchical clustering) just as done with the adult data in Study 1.  

For our 113 participants, we obtained 288 ratings across 12 robots. K-means clustering 

found that four categories substantively described the data (see Figure IV.5): LALE (i.e. 

LoAgency-LoExperience), HALE, HAHE, and LAHE (the LoAgency-HiExperience cluster 

never utilized by adults). Matching the pattern found with adults, 161 ratings (55.9%) fell into 

the LALE category, 67 ratings (23.3%) fell into the HALE category, 33 ratings (11.5%) fell into 

the HAHE category. Additionally, 27 ratings (9.4%) fell into the LAHE category. Whereas all 
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adults thought that if a robot had high experience it necessarily also had high agency, this was 

not true for some children.  

 

Figure IV.5. A Visualization of K-Means Clustering for Child Responses. A visualization of 

k-means clustering for child responses into four categories: low agency, low experience (LALE); 

high agency, low experience (HALE); high agency, high experience (HAHE); and low agency, 

high experience (LAHE).  

 

Characteristics of Robots. We then used these categories of mental attributions to 

determine how robot characteristics impacted attributions of mental abilities to robots. Thus, we 

inspected whether specific robots typically fell into only one category of mental attributions or 

multiple. Just as for adults, we found that responses for each robot did not fall uniformly and 

exclusively into a single category. Altogether participants attributed different mental abilities to 

the same robot. 

We then examined the distribution of responses for each robot across the four types of 

mental attributions. We measured the proportion of responses that fell into each category for 

each robot. We then performed K-means clustering and hierarchical clustering, attempting to 
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define 2 to 5 clusters, on the resulting distribution of proportions. Unfortunately, the robots did 

not divide into substantively informative clusters. Hopefully, with more data, clear categories of 

robots will appear. 

Individual differences and consistencies. We also determined whether the responses of 

a specific participant were consistent across different robots or whether they varied across robots. 

Children’s responses were most likely to fall into a single cluster. For 64 participants (59.3%), all 

of their responses fell into only a single cluster. For 41 participants (38.0%), their responses fell 

into 2 clusters. Only 3 participants’ responses (2.8%) fell into all 3 categories and no 

participants’ responses fell into all 4 categories. In these ways, children’s responses closely fit 

the exact same patterns as adults. 

Of the participants whose responses fell into only a single category, 45 of children’s 

responses were LALE, 12 were HALE, 5 responses were HAHE, and 2 were LAHE. Similarly, 

for adults, recall that for participants whose responses fell into a single category, the top two 

frequencies were clearly LALE followed by HALE.  

Predicting mental attributions. Participant and Robot were explored for its impact on 

attributions of mental abilities to robots. We used the lme4 package in R (Bates et al., 2015) to 

perform a linear mixed effects analysis of the relationship. As fixed effects, we entered Age and 

Gender (without interaction terms) into the model. As random effects, we had intercepts for 

participant and robot.  

When predicting Experience, subject-to-subject variability had the greatest contribution 

among the random effects. The estimated variance (SD = .604, 95% CI [.508, .717]) for subject-

to-subject variability was greater than the within-subject variability (SD = .485, 95% CI [.434, 

.545]). and robot-to-robot variability (SD = .059, CI 95% [.000, .200]). So, as for adults, child 
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participants’ responses were more consistent across robots than they were between participants. 

According to LRTs, increases in Age significantly predicted decreases in ratings of Experience, 

β = -128, CI 95% [-.173, -.083], ∆χ2(1) = 27.8, p < .001. This is consistent with the findings from 

Brink et al. 2017 (see Chapter II) for child rating of three robots. Gender did not significantly 

predict Experience. ∆χ2(1) = .3, p = .58. Fixed effects explained 19.3% of the variance, marginal 

R2 = .193, compared to 68.6% explained by both fixed and random effects, conditional R2 = .686 

(Bartoń, 2018; Nakagawa & Schielzeth, 2013). Age is, therefore, an important factor in 

predicting ratings of Experience. Furthermore, there are other, as-yet-unmeasured variables 

related to participant that could improve prediction of ratings of Experience.  

When predicting Agency, subject-to-subject variability had the greatest contribution (SD 

= .684, CI 95 % [.569, .817]). The within-subject variability (SD = .575, CI 95% [.514, .649] and 

robot-to-robot variability (SD = .164, CI 95% [.000, 356]) contributed less. As for Experience 

and as for adults in Study 1, there was more variability between participants’ ratings of agency 

than there were between robots. According to LRTs, increases in Age significantly predicted 

decreases in ratings of Agency, β = -136, CI 95% [-.188, -.085], ∆χ2(1) = 24.4, p < .001. This too 

is consistent with the findings from Brink et al. 2017 (see Chapter II) for child ratings of three 

robots. Gender did not significantly predict Agency, ∆χ2(1) = .27, p = .61. Fixed effects 

explained 16.6% of the variance, marginal R2 = .166, compared to 66.6% explained by both fixed 

and random effects, conditional R2 = .666 (Bartoń, 2018; Nakagawa & Schielzeth, 2013). Age is, 

therefore, an important factor in predicting ratings of Agency. There are likely additional 

unmeasured variables related to participant that could improve prediction of ratings of Agency.  

Robot uncanniness. We performed a linear mixed effects analysis to assess the impact of 

mental attributions, Participant and Robot Cluster on ratings of Uncanniness. As fixed effects, 
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we entered Agency, Experience, Robot Cluster, Age, and Gender (without interaction terms) into 

the model. As random effects, we had intercepts for participant and robot.  

When predicting Uncanniness, both subject-to-subject variability (SD = .340, CI 95% 

[.000, .512] and robot-to-robot variability (SD = .448, CI 95% [.274, .789]) contributed less than 

within-subject variability [SD = .796, 95% CI [.711, .900]). LRTs did not find a significant 

relation between Experience or Agency and Uncanniness. Agency’s impact on Uncanniness, 

however, was approaching significance, β = -.123, CI 95% [-.257, .008], ∆χ2(1) = 3.4, p = .065. 

Fixed effects explained 1.5 % of the variance, marginal R2 = .015. Fixed effects and random 

effects combined explained 34.3% of the variance, conditional R2 = .343 (Bartoń, 2018; 

Nakagawa & Schielzeth, 2013). More data should be collected (as is being done) to strengthen 

this analysis. 

Comparing younger and older children. In this sample, there were 77 children under 

the age of 9 and 44 children that were 9 and older, 9 years being the age where uncanniness 

feelings significantly shifted in Brink et al. (2017; see Chapter II). Children younger than 9 

reported that robots with more mind were less creepy, whereas children older than 9 and adults 

reported that robots with more mind were more creepy. The data for younger children strongly 

resembles the data presented here in Study 2. The data for older children, however, began to 

approximate the adult data from Study 1. For example, the CFA model for older children 

appeared to be a stronger fit when the moral item was removed. There are not, as yet, sufficient 

data, however, to support this claim statistically. The PCA also began to resemble that of adults. 

The first component more heavily weighted feel, hungry, pain, and scared, whereas the second 

component more heavily weighted items linked think and choose. Moreover, older children’s 
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responses appeared to fit three categories of mind—LALE, HALE, and HAHE—rather than 

four.  

With fewer participants (n=44, 9 years and older) and each child rating only three robots, 

these findings are necessarily preliminary. More data are clearly needed (and still being 

collected) to confirm the differences and similarities between younger children, older children, 

and adults.  

Discussion 

Mental attributions to robots. In general, children model the minds of robots into two 

components of mental abilities: psychological agency and perceptual experience, as 

demonstrated by CFA. More often than not children considered robots to have low agency and 

low experience (63.3% of ratings fell in this category). When adults claimed that a robot had 

high agency, that robot could also either have high experience (5%) or low experience (31.7%). 

Some children, unlike adults, however, also reported that robots could fall into low agency and 

high experience. No adult thought any robot had low agency and high experience. 

Characteristics of robots. Like for adults, specific robots did not fall into single 

categories. The features of robots were not the most important criteria for determining how to 

attribute mental abilities to robots. Instead, child differences were more critical for determining 

whether a robot has mental abilities. 

 Individual differences and consistencies. Most children’s responses fell uniformly and 

consistently into a single category: If a child reported that one robot had low agency and low 

experience, they typically reported that other robots regardless of appearance also had low 

agency and low experience. We also found that one child-related measure in our data predicted 
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ratings of agency and experience: the age of the child. As age increased, ratings of agency and 

experience for robots decreased.  

 Robot uncanniness. In this sample, mental abilities did not explain most of the variance 

in uncanniness. Increases in agency were trending toward predicting decreases in uncanniness, 

similar to previous findings by Brink and colleagues (2017). Regardless, when children are given 

a larger range of robots to consider, something more complicated is going on than human-

likeness or mental attributions than discussed in previous literature on robot uncanniness (K. 

Gray & Wegner, 2012).  

 Changes according to age. Preliminary data suggest that children’s responses to these 

robots do in fact differ according to age. Younger children (younger than the age of 9) follow the 

pattern outlined above while older children (9 and older) begin to more closely resemble adults. 

However, more data are still needed to confirm these differences. 

General Discussion 

Across the two studies, we found that adults and children attribute mind to robots but in 

slightly different ways. Moreover, characteristics unique to the child or adult are important for 

how they attribute minds to robots. For adults, whereas there is some evidence that the behavior 

and appearance of the robot contribute to mental attributions, those do not predict mental 

attributions as well as the person themselves. This is true for not only mental attributions but also 

feelings of uncanniness. Due to limited data on children’s responses, however, it is difficult to 

characterize the relations between child-specific variables, mental attributions, and feelings of 

uncanniness currently. Nonetheless, these findings, especially those for adults for now, have 

important implications for research on anthropomorphism, human-robot interaction, and robot 

design. 
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Adults divide mental abilities into two broad categories: Psychological Agency and 

Perceptual Experience. Robot behaviors, like goal-directed actions or situational awareness, can 

contribute to perceptions of psychological agency in a robot. Human-likeness in a robot may also 

contribute to attributions of perceptual experience. These characteristics of a robot, however, do 

not appear to have as strong an impact on mental attributions as do characteristics unique to the 

person viewing the robot. Those person-specific characteristics are as of yet unidentified. Future 

research should take more stock of individual difference measures in order to identify the 

mechanisms the produce mental attributions in nonhuman agents.  

Children also divide the mind into Psychological Agency and Perceptual Experience. 

Children’s versions of these constructs, however, may vary slightly from the adult versions. 

Children seemingly place value in moral agency and concern when characterizing agency. At the 

same time, like with adults, child-specific variables are likely the more important factors 

determining mental attributions and feelings of uncanniness toward robots. Mostly clearly, for 

now, children’s age was predictive of mental attributions to robots: as age increased, children’s 

attributions of agency and experience to robots decreased. More data need to be collected, 

however, to view more fine-detailed age differences and relations between robot characteristics, 

individual differences, mental attributions and feelings of uncanniness. 

These results have important implications for understanding the mechanisms that impact 

anthropomorphism. Epley and colleagues (2007) theorized that person-specific characteristics 

are important in determining whether a person will attribute human-like qualities to a nonhuman 

agent. Our study supports this assertion. Individual differences in adults and children explained a 

substantial portion of variance in mental attributions to robots. Our research, however, did not 

explore the person-specific variables that contribute to these differences. Future studies should 
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more clearly investigate what the person brings to human-robot interactions. Clearly, the 

willingness of an adult or child to attribute mental states to a robotic agent is influenced by their 

own individual experiences.  

Unfortunately, due to the anonymous nature of our surveys with adults, very few 

participant-specific variables were collected. Therefore, we were unable to explore the individual 

difference factors that lead to differences in attributions of mental abilities to robots. We found 

evidence of age-related differences in children but not the mechanism by which age predicts 

differences in uncanniness and mental attributions for robots. Important differences to consider 

may include the child’s cohort, their experience with technology, cultural opinions, and 

expectations about technology and social behaviors. Future studies should explore these 

characteristics and how they impact mental attributions and uncanniness for robots. 

Such research will be crucial for designers and roboticists focused on human-robot 

interaction. Due to the importance of person-specific variables in mental attributions and feelings 

of uncanniness for robots, designers and engineers should be very clear on the population for 

whom they are designing robots. Not only is the design of the robot, its behaviors and 

appearance, important, but also the person viewing the robot.  

Given the current findings, clearly individual differences are particularly important in 

determining reactions to distinct robots and should be explored more in the future. We need more 

focus on individual characteristics of the child and adult interacting with the devices. What are 

the person-specific characteristics that impact mental attributions to and feeling about robots? 

What are the person-specific mechanisms that shape those attributions and feelings?  

As one example, assume that child and adult experience with technology, or even 

specifically with robots, proves to be a key factor influencing their attributions to and feelings 



 

 92 

about robots (which a priori seems likely). The current data suggest that these kinds of 

participant-specific factors are powerful enough that robots should come with pre-packaged 

experiential exercises to help their users approach the robots as the designers hope they will. The 

designer’s own intuitions about what a robot evokes may very well be a poor source of 

information on this score, considering that robot designers by training have many, many hours of 

accumulated experiences and hopes about the robot they create. Empirical evidence would be a 

better and important source of information in this regard, especially for children.  
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Appendix IV.A 

Robot Beliefs Interview - Adults 

1. Is this a robot or a person?  

 

Possible Responses to the following questions: “No,” “Yes – A little bit,” “Yes – A medium 

amount,” “Yes – a lot”) 

2. Do you feel this robot is creepy?  

3. Does this robot make you feel weird?  

4. Does this robot purposefully choose to move? 

5. Does this robot think for itself? 

6. Does this robot know the difference between right and wrong? 

7. If someone pinched the robot, would it feel pain?  

8. If the robot saw a snake, would it feel scared?  

9. If the robot did not eat breakfast, would it feel hungry?  

10. Does the robot have feelings, like happy and sad?  



 

 94 

Appendix IV.B 

Robot Beliefs Interview - Children 

1. Is this a robot or a person? 

2. Do you feel the robot is nice or creepy? 

2.1. “Do you feel the robot is nice (thumbs up) or creepy (thumbs down)?” 

2.2. “How creepy do you feel it is? A little bit, a medium amount, or a lot?” 

3. Does the robot make you feel weird or happy? 

3.1. “Does the robot make you feel weird (thumbs down) or happy (thumbs up)?” 

3.2. “How weird does it make you feel? A little bit, a medium amount, or a lot?” 

4. When the robot moves, does it choose to move? 

4.1. “When the robot moves, does it choose to move?” 

4.2. “How many things can the robot choose to do? A few things, a medium amount of 

things, or a lot of things?” 

5. Does the robot think for itself? 

5.1. “Does the robot think for itself?” 

5.2. “How much does it think for itself? A little bit, a medium amount, or a lot?” 

6. Some actions are bad, like hitting. And some actions are good, like helping. Does this robot 

know the difference between good and bad? 

6.1. “Does this robot know the difference between good and bad?” 

6.2. “How much does it know the difference between good and bad? A little bit, a medium 

amount, or a lot?” 
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7. If I pinched the robot, would it feel pain? 

7.1. “If I pinched the robot, would it feel pain?” 

7.2. “How much can this robot feel pain? A little bit, a medium amount, or a lot?” 

8. Does the robot have feelings, like happy and sad? 

8.1. “Does the robot have feelings, like happy and sad?” 

8.2. “How much does the robot have feelings? A little bit, a medium amount, or a lot?” 

9. If the robot saw a snake, would it feel scared? 

9.1. “If the robot saw a snake, would it feel scared?” 

9.2. “How much can the robot feel scared? A little bit, a medium amount, or a lot?” 

10. If the robot did not eat breakfast, would it feel hungry? 

10.1. “If the robot did not eat breakfast, would it feel hungry?” 

10.2. “How much can the robot feel hungry? A little bit, a medium amount, or a lot?” 
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Chapter V 

As robots and technological devices increasingly appear to have human-like minds, it 

presents the opportunity to address several intriguing questions: (1) To what extent do we 

perceive that these devices share similarities with people and to what extent do we believe they 

have human-like minds? (2) Does an understanding of human-like qualities in a device affect our 

ability to understand and interact with it? (3) Does this understanding influence our willingness 

to accept information from these devices? And, of crucial importance, (4) how do answers to 

these questions vary with age?  

In Chapter II, I reported research where children viewed two distinct robots, one very 

human-like and one machine-like, and reported on their feelings for these robots and their beliefs 

about the human-like minds of these devices. We found that as younger children attributed more 

mind to these robots, they experienced fewer feelings of uncanniness toward those robots. 

However, for older children, their feelings and beliefs about robots differed and their perceptions 

of the mental capacities of robots differentially impacted their feelings toward them—older 

children did not prefer robots that appeared to have mental abilities, similarly to adults who find 

machines with closely human-like minds to be unsettling.

In Chapter III, I presented research where 3-year-old children learned the names of novel 

objects from either a pair of social robots or a pair of inanimate machines. One informant in each 

pair was previously shown to be accurate and the other inaccurate. In these studies, children 

trusted information from an accurate social robot over an inaccurate one and even more so when 

they perceived the robots as having psychological agency. Children did not trust information 
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from the inanimate, but accurate, machine however. Children can learn from technological 

devices, e.g., social robots, but trust more when those devices appear to them to have mindful 

agency. 

In Chapter 4, I described research where adults and children reported on their feelings for 

robots that differed on a wide variety of features. We found that on top of the previously 

identified variables important in predicting ratings of uncanniness—robot type, experience and 

agency—person-specific variables are likely also critical factors. For example, in our child study, 

age was an important factor in predicting mental attributions to robots. More research is needed 

to identify how individual differences explain both feelings of uncanniness and also mental 

attributions to robots.  

Altogether, these results indicate that adults and children alike attribute qualities of a 

human-like mind to these devices. However, children and adults attribute mind to different 

extents and, when they do, it leads to different reactions to robots. Young children are more 

likely to attribute more human-like abilities to robots, including a larger range of robots (Chapter 

4) and when they do, they like these devices more and trust them more easily. The willingness to 

attribute a human-like mind to a robot decreases, however, with age. Older children and adults 

are less likely to attribute human-like abilities, like perceptual experience, to robots. Moreover, 

adults and older children lose their affinity for these devices when attributions of mind increase 

(the opposite of young children’s reactions). Finally, these changes may be more closely linked 

to characteristics of the child or adult, themselves, than the actual features of the robot. More 

research is needed to determine the exact individual characteristics of the person viewing the 

robot that impact beliefs and feelings about robots. 
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At the same time, child age seems clearly important. Although it is unclear what sorts of 

experiences and developments age is serving as a proxy for in robot research, our research 

nonetheless demonstrates that not only do children’s beliefs about technology change with age 

but also that these differences in understanding directly impact children’s interactions with this 

technology. For young children, when they perceived robots to have psychological agency, they 

used the robots’ accuracy to determine which robot to trust for new information about novel 

objects. Young children expect and even prefer robot instructors that appear to have minds of 

their own, whereas older children do not expect robots to have minds and, I hypothesize on the 

basis of unsystematic research from others, are more indifferent to interactive and agent-like 

robot instructors.  

Related Research on Robot Instructors 

The set of child studies in this dissertation demonstrates the importance of psychological 

agency in determining whether young children trust social robots. However, this research as well 

as the broader literature demonstrate that older children think and feel differently about the 

psychological agency of robots. Whereas younger children in our studies were more likely to 

prefer and learn from robots with psychological agency, older children did not prefer these 

robots. Therefore, it is reasonable to expect that older children learn differently from 

instructional robots with agency compared to younger children. Indeed, existing research on the 

effectiveness of robot teachers for older children suggests that robots with more signals of 

agency, although effective educators for young children, show little or no improvements in 

learning for older children. 

Several studies demonstrate that signs of agency in robots are less effective for 

encouraging learning in older age groups compared to younger age groups. In a table-setting 
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task, younger children learned better from a robot with a more socially interactive and 

communicative style of teaching than older children (Okita et al., 2009). Children 4- to 6-years-

old improved so dramatically when taught by a robot with an interactive teaching style that they 

performed on par with 7- to 10-year-olds. There was no improvement in learning, however, for 

interactive teaching styles for the 7- to 10-year-olds compared to other less agent-like teaching 

styles. Further, while a human-like voice was better for accuracy in general, the effect was more 

pronounced for younger children. Older children did not show as much improvement as younger 

children when learning from a robot with a human voice compared to a monotone voice. In 

another study, the robot Robovie travelled around a Japanese school to speak English with 1st 

graders (6- to 7-year-olds) and 6th graders (11- to 12-year-olds) (Kanda, Hirano, Eaton, & 

Ishiguro, 2004). This robot performed interactive behaviors like hugging, shaking hands, playing 

rock-paper-scissors, singing, briefly conversing, and pointing at nearby objects. First graders 

spent significantly more time interacting with the robot than sixth graders did. Features of 

agency appear to be a more important factor for younger children when learning from robots. 

These studies with older children, while informative, have not directly measured the 

impact of attributions of agency on their learning. More research is needed to evaluate how 

robots’ features and children’s developing cognitive abilities interact to produce improved 

learning in children from robots. We have begun to conduct such research. Some of that research 

evaluates the relationship between certain features of robots, and children’s perceived overall 

sense of the robot as well as their sense of the agency of the robot. Ultimately, beyond these 

initial studies, future studies should investigate how children’s understanding of robots impacts 

their perceptions of agency, the “worthiness” of robots as sources of information, and 
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consequently the quality of children’s interactions with and learning from robots as children 

grow older. 

Future Directions 

In total, our research as well as others’ has only just begun to demonstrate how children’s 

beliefs and expectations about robots, their developmental trajectory with respect to this 

understanding, and the robot’s design together impact how children will feel toward and learn 

from robots. Future research should continue to explore each of these components of child-robot 

interactions with more precision and within different contexts. 

For instance, research should more fully identify the fine-grained developmental changes 

that occur in children’s conceptual understanding of, and interactions with, robots. The research 

thus far, our own and that of others, only captures the emergence of these developmental changes 

on a very crude timeline, before and after approximately 9-12 years of age. One thing needed is 

more extended data (as in our Uncanny study) of a range of ages that help us and the field to 

move beyond the description of “younger” and “older” age groups to a more fine-grained set of 

developmental findings and hypotheses. 

In line with this more comprehensive approach for exploring developmental changes in 

children’s interactions with robots, future research should also investigate and clearly define the 

mechanisms that produce the child-adult differences that we identify here. The child-adult 

differences we have uncovered may very well be the result of developments in basic aspects of 

cognition as we have discussed above. Or they could result from younger children’s increased 

interactions with more sophisticated and social technology on a regular basis compared to older 

children and adults (Bernstein & Crowley, 2008). That is, today’s young children may grow up 

to look quite different from current adults because of different experiences with increasingly 



 

 101 

different technological devices, including robots themselves, from adults and older children. It 

remains unclear how children’s cognitive development in addition to their experiences with 

robots and smart technologies may interact to influence their interactions with these devices. It 

would be well worth following children (for example those in our sample) longitudinally to 

examine such intriguing possibilities. 

As we continue to more precisely explore children’s developmental trajectories and the 

mechanisms that determine how children will interact with technology, we can and should also 

consider child-robot interactions in special populations. Not only are typically developing 

children encountering new and different technology daily, but so too are children with special 

needs. Children in these populations bring their own set of unique experiences and cognitive 

abilities to their interactions with robots that may produce different outcomes from typically 

developing children. Indeed, research with children with ASD shows that they prefer robots that 

are the least human-like (Robins et al., 2006) unlike the children in our research who preferred 

the humanoid Nao robot over the mostly machine-like robot shown in Figure II.2. Given that 

robots are participating in educational endeavors with children with special needs, future studies 

should investigate the impact of child-specific abilities and experiences on child-robot 

interactions in these special populations. 

The importance of child-specific features in child-robot interactions also highlights the 

informative potential of collaborative investigations between social scientists, engineers, and 

designers. Robot design currently, even those designed for use with children, has primarily been 

in the hands of engineers and corporate design teams. These designs are inspired, and limited, by 

the intuitions of these individuals and what they assume would be child-friendly and effective for 

children. This is similarly true for those robots increasingly found in movies for children. These 
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groups have their own marketing and research teams and as a result there is currently little 

collaboration between developmental researchers, engineers, designers, and movie animators. 

Collaboration would allow for developers and animators to share audience reaction information 

and product development testing which have been used to shape and develop their ideas and 

designs. Additionally, researchers could aid designers by sharing work on the interactions 

between children’s developmental trajectories and robot design that would impact children’s 

social and educational outcomes. For example, from our research we would likely conclude that 

designers should consider the effect of utilizing a variety of agent-like cues (e.g., contingent 

behaviors or abstractly human-like features) when designing educational robots. A collaboration 

among these groups could drastically expand our understanding of children’s conceptual and 

cognitive development and simultaneously improve robot design for children by implementing 

more evidence-based decisions.  

The rising number of robots interacting with children also has important implications for 

a variety of other developmental outcomes that I have not yet addressed across these research 

studies. Thus far, I have focused primarily on a small set of outcomes—how children feel toward 

robots and how children learn from robots—but social robots also have the potential to impact 

both children’s social and moral development. 

There is growing concern in the field that increased interactions with smart technologies, 

including social robots, might adversely impact children’s social and moral development. Smart 

technology and social robots are frequently blamed for decreasing in-person social interactions, 

preventing children from learning how to effectively interact with others, and thus hindering 

children’s social development (Turkle, 2011). Researchers, parents, and teachers are particularly 

concerned that interactions with robots will promote the development of antisocial behaviors. In 
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fact, there is some evidence for this. A hitchhiking robot that had successfully traveled around 

Germany, Canada and the Netherlands taking pictures and carrying on conversations with other 

travelers was eventually vandalized and destroyed a few weeks into its U.S. journey (Victor, 

2015). A mall security robot designed to share information with customers routinely faced abuse 

from unsupervised children as they would often kick and push the robot (Brscić, Kidokoro, 

Suehiro, & Kanda, 2015; Nomura, Kanda, Kidokoro, Suehiro, & Yamada, 2017). 

Nevertheless, empirical research suggests that these antisocial behaviors toward robots 

can be reduced and, moreover, that social robots can even be used to promote positive social 

development for certain populations. Researchers have found that, while abusive behavior 

toward robots does occur, a few behavioral modifications to robots can reduce this behavior. 

Preschool children in a classroom comforted a robot with a hug and protected it from other 

aggressive children when it started to cry after being damaged or played with too roughly (Carey 

& Markoff, 2010). Other studies show that children claim that a robot deserves to be treated 

fairly and not psychologically harmed after conversing and playing with the robot for 15 minutes 

(Kahn et al., 2012). Social robots have also been used to aid children with ASD in social 

development by practicing social behaviors like conversation with them and demonstrating 

common social cues and behaviors (Ricks & Colton, 2010). Future studies should continue to 

investigate the complex relationship between children’s perceptions of robots, how they treat 

them, and ultimately how these interactions impact children’s later social and moral development 

and their interactions with others.  

Children increasingly encounter robots designed to comfort, teach, and play with them. It 

is therefore imperative to learn which robot features and child-robot interactions impact these 

interactions and outcomes. And, importantly, it is imperative to identify how and when these 
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interactions and outcomes change throughout childhood. Clearly, children’s understanding of the 

mental capacities of robots appears as an important factor in their feelings toward and 

willingness to learn from robots. For these and many other reasons, more developmental research 

is badly needed to assess how children’s cognitive abilities, their developmental trajectories, and 

the design of robots all work together to impact children’s learning and feelings towards robots. 

Social robots are only one form of interactional, educational smart technology that may (or may 

not) promote these desired outcomes, but their special features and their increasing presence in 

children’s lives make them worthy of study in their own right. Moreover, they allow for larger 

lessons on children’s increasingly voluminous interactions with smart technological devices 

more generally.  

Every year robots increasingly become a part of our lives and the lives of children. 

Investigations into children’s understanding of and interactions with these devices is therefore 

only becoming more important. The future of research into child-robot interactions should 

continue to fully explore what children think and feel about robots, how they interact with them 

in a variety of contexts, and also expand those investigations to explore a wider variety of 

developmental outcomes for children, including educational, social, and moral outcomes. 
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