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PREFACE

“But the computers have bad features. The main one is that students get so fascinated with them, so

immersed with what they can do, that they never get away from the computer far enough to think

about what they are doing. This in a way is probably what has kept the chemists from thinking

beyond the LCAO method. Ever since they started with computers, they have been using this

method, enlarging it more and more, using bigger and bigger computers, without stopping to ask

whether there might not be some quite different approach to the problem.”

-John C. Slater, 1975

“A thesis is not completed, but merely abandoned.”

-Unknown
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ABSTRACT

Description of electron correlation is crucial to chemical accuracy in quantum chemical

calculations. However, the interaction of electrons in a system is an insoluble many-body

problem. Constructing approximations to describe electron correlation is a challenging

task, but there has been success in the quantum chemistry community using wavefunc-

tion methods and density functional theory. However, there are still challenges to be

overcome in areas such as theoretical solid state chemistry, which requires description of

large systems and the use of finite temperature. Large system sizes and finite tempera-

ture can be difficult to treat solely with the currently available methods. Therefore, a new

class of methods, based on the temperature-dependent Green’s function, is implemented

and explored.

This thesis is toward investigating the use of temperature-dependent Green’s func-

tions for ab-initio quantum chemistry. That is, we are treating a quantum chemical

Hamiltonian with realistic electron interactions. While this formalism has been applied

to model systems in the condensed matter community, its has been used much less by

the quantum chemistry community. Therefore, the numerical behavior and accuracy of

Green’s function methods for quantum chemical calculations is relatively unknown.

This work investigates the ability of the temperature-dependent Green’s function,

which is an ensemble formalism, to give access to temperature dependent thermody-

namic quantities such as free energy and entropy when calculated in a second-order and

perturbative manner (GF2). We find that this method is able to give good accuracy for

lower temperatures and excellent accuracy for higher temperatures for a molecular case

xi



and is able to qualitatively describe a simple model of a solid. The results of this work

are presented in chapter 3.

Although Green’s functions have a clear connection with spectra at zero temperature,

it is not straight forward to obtain spectra from the finite temperature Green’s function,

which is calculated on the imaginary frequency axis. Therefore, we must investigate

methods to obtain spectral quantities in a consistent and reliable manner from the imag-

inary axis. Chapter 4 investigates several methods to do so and we compare our results

with experimental and highly accurate benchmark data. We find that it is possible to

obtain spectral quantities that can differ by several electron volts, even if the same level

of theory is used to obtain the Green’s function. This reiterates that finding a spectrum

from the imaginary axis is nontrivial and that one must exercise caution when comparing

spectral quantities that were calculated using different techniques, even if they are treated

with the same theoretical accuracy.

Accessing larger systems with the Green’s function requires the use of quantum em-

bedding. Quantum embedding describes nontrivial electron interaction between a highly

accurate “active space” or “impurity” and a larger, lower level “environment”. It is chal-

lenging to construct an impurity solver that is reliable at low temperatures. In chapter 5

of this work, we implement and test a temperature dependent configuration interaction

impurity solver for quantum embedding. This solver can be used in quantum embed-

ding schemes such as dynamical mean field theory and self-energy embedding theory for

larger systems.

Overall, this thesis has made progress toward using Green’s functions for ab-initio

quantum chemistry at finite temperature. Groundwork has been laid for using this for-

malism to calculate thermodynamics and spectra using a Green’s function with realistic

electron interactions and to explore quantum embedding using an impurity solver at low

temperatures.
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CHAPTER 1

Introduction

Theoretical chemistry can provide insights to experiments where details at the atomistic level can

not be resolved; In particular, one wishes to describe the complex motion of the electrons in a

system, i.e., the electron correlation. This electron correlation is responsible for much of the in-

teresting chemistry of atoms, molecules, and materials, but is not always straightforward to study

through experiment alone. Unfortunately, it is not possible to calculate electron correlation for re-

alistic systems exactly from an analytic theory, requiring approximations to be made. For decades,

approximations have been introduced into electronic structure theories that have been translated

into computational methods. These methods have provided invaluable insight into many chem-

ical phenomena, and great efforts have been given in the last decades to expanding their use in

chemistry.

As quantum chemistry methods were initially developed, computing power required that the

first systems calculated were quite small. The first quantitative calculations for many-electron sys-

tems were carried out by Hartree and Hartree in 1928 on atomic systems. Eventually, as computing

power increased, the number of electrons that could be treated grew, leading to the study of many

atoms and molecules of chemical interest. The limitations of computing power and the focus of

chemists on molecular systems led to many quantum chemical methods being developed primarily

with applications to molecular systems as the ultimate goal. Wavefunction methods such as cou-

pled cluster (CC) and configuration interaction (CI) are used to obtain high accuracy for relatively

small numbers of electrons. Using conventional implementations, CC and CI are not capable of
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computing more than tens of atoms. Density functional theory (DFT) is a workhorse of electronic

structure, and is able to treat relatively large systems by minimizing energy with respect to the

ground state electron density. DFT is able to treat hundreds of atoms with a moderate basis. Many

of these methods appear in popular software packages and are used routinely by experimental and

theoretical chemists.

Simultaneously with the development of quantum chemical methods, solid state theories were

explored, which described electronic band structure in solids. Often, electrons were described as

independent from each other in a uniform background of positive charges, and this was capable of

qualitatively describing many solid state systems. However, this picture begins to break down when

electron interactions become non-negligable. For example, NiO is predicted to be a conductor by

band theory, because it has a partially filled 3d shell. However, due to the correlation between the

d electrons, NiO is actually an insulator. Mean field theories and independent electron models are

inadequate to describe systems with localized electrons, and more sophisticated descriptions of the

correlation effects must be included.

The field of solid state chemistry is growing, but existing quantum chemical methods are lim-

ited in their ability to be applied to solids. Additionally, many solid state theories are only suitable

for model systems and are not capable of being applied generally to chemical problems. A new ap-

proach to address the specific challenges of modeling solids from a quantum chemical perspective

must be developed and investigated.

There are several challenges that need to be overcome in order to do so. The most salient issues

that require attention in this area are how to overcome the limitations of the system size that needs

to be considered, as well as the inclusion of many excited states, further enlarging the size of the

problem. While a molecule can be comprised of several to a few hundred atoms, solids contain of

the order of thousands atoms! Consequently, treatment of a solid with a high level quantum chem-

istry method is well beyond the computational ability of any modern computer, requiring a new set

of tools that treat the system efficiently with the available computing resources. In addition to the

enormous system size, modeling some solids realistically requires the inclusion of temperature,
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increasing the computational cost even further. Most theoretical methods for molecules carry out

the calculation at zero temperature, which is a valid description because of the large gap between

electronic states. However, solids with small or no gap between electronic states, such as semicon-

ductors and metals, have states occupied above the Fermi level, even at ambient temperatures. It

is non-trivial to extend already existing electronic structure methods to include the effects of tem-

perature, and doing so may increase the cost of the parent method further, making the cost truly

prohibitive.

As of now, DFT is the method of choice to model materials, because the low computational cost

(O(N3), where N is the number of orbitals) allows for calculations of large systems. While DFT

has proven successful in a number of applications [1], it has known theoretical issues [2] and can

give qualitatively wrong descriptions for some systems [3]. In addition, the exchange-correlation

functional is in general unknown and must be approximated in order to carry out realistic calcula-

tions. These functionals contain empirical parameters, and there is no universal functional that can

be applied to all chemical systems. Wavefunction methods, while highly accurate, are too expen-

sive to apply in the case of realistic solids, and there seems to be no straightforward way to reduce

the unfavorable scaling with system size. While there are still unsolved problems in both of these

important areas of quantum chemistry, they each have well studied theoretical limitations, making

them inapplicable for certain classes of systems. For example, it is known that methods that rely

on mean fields or averages, such as Hartree-Fock, will not be able to describe materials with local-

ized electrons and have complex interactions with neighboring electrons. More details about these

important methods will be given in later chapters as they will serve as important starting points

and benchmarks; However, it is clear that a new class of methods that can treat reasonable system

sizes in a theoretically systematic way is needed for solids.

The goal of this thesis is to address these challenges by developing temperature-dependent

Greens function based methods for quantum chemistry. Temperature-dependent Green’s function

methods have favorable properties that have the potential to be able to address some of these issues.

One great advantage is the fact that temperature is built in to the theory and does not introduce an

3



additional cost. Furthermore, they are convenient to use in a formalism called quantum mechani-

cal/quantum mechanical (QM/QM) embedding that allows for treatment of a small portion of the

system with a highly accurate method while the remainder of a system can be treated with a lower

level, cheaper method. This is a potential route to address the issue of prohibitive computational

cost for solids while including the relevant effects of temperature.

While Green’s function methods have been used in chemistry in the past, they are much less

developed than wavefunction methods and DFT. Typically in chemistry, Green’s function methods

do not include temperature effects. While temperature-dependent Green’s functions and embed-

ding techniques have been used extensively for model systems in physics, they remain relatively

unexplored when applied to quantum chemical systems, leaving room for study in this area.

While the ultimate goal is to apply these Green’s function methods to solids, they are also appli-

cable to molecules, which will be used as benchmarks in all of the studies in this thesis. To develop

new methods in a systematic and reliable manner, one must consider practical as well as theoret-

ical issues. For example, it is necessary to investigate numerical instabilities and convergence of

calculated quantities in reference to methods and systems with well-understood behavior. In this

work, I will investigate the ability of temperature-dependent Green’s function methods to yield

accurate chemical quantities such as spectra and thermodynamics. While both of these quantities

are accessible from Green’s function theory, I will investigate the ability of numerical implemen-

tation to yield reliable results. My investigations will be done in comparison with already existing

and well understood electronic structure methods such as CC and CI, which will be explained in

detail when necessary. In addition, in order to investigate the ability to calculate larger systems

with the Green’s function, I implement a temperature dependent impurity solver for use in quan-

tum embedding. Embedding allows a high level description of part of the system, while treating

the rest of the system with a low level description. Importantly, in quantum embedding, electron

interactions between the high and low level can be described in a non-trivial manner. While there

are temperature dependent embedding schemes and solvers, it is challenging to use many of these

solvers at low temperature.
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The rest of the dissertation is as follows. In chapter 2, I highlight important background in-

formation regarding quantum chemical calculations that is crucial to understanding the context

and details of the remaining chapters. In chapter 3 I investigate the ability of the temperature-

dependent Green’s function to calculate electronic thermodynamics. Chapter 4 studies the ability

of the temperature dependent Green’s function to produce accurate spectra. Chapter 5 describes

the temperature dependent impurity solver, and in chapter 6 I summarize my findings and form

conclusions.
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CHAPTER 2

Background

2.1 Overview of Quantum Chemistry

2.1.1 Correlation Energy

One of the simplest and most well-known schemes to describe electrons in an atom or molecule

is known as the Hartree-Fock (HF) approximation. In this approximation, one considers each

electron moving in an average field of the other electrons. This leads to non-linear equations

for the electrons that can be solved in an iterative fashion. Although the Hartree-Fock method

was known since the 1930s, it was laborious to apply to even a simple system until the 1950s,

when modern computers made this feasible. Once computing power allowed application to larger

and larger systems, it became clear that the HF approximation does not adequately describe the

electronic motion for even simple chemical applications, which require very accurate description

of the electronic interactions to give an accuracy of 1 kcal/mol.

The deficiency of the HF approximation can be described in terms of the correlation energy,1

[4, 5] which is defined as

Ecorr = Eexact − EHF (2.1)

This quantity describes the difference between the exact electronic energy and the HF energy.

1Feynman also called it “stupidity energy”.
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Where this mean field description fails is well understood. Because electron interactions are not

treated explicitly, but rather in an average way, there is an inadequate description of the electron

repulsion. As a result, electrons are allowed to occupy orbitals in unfavorable configurations that

are too close, resulting in a higher energy than actual. Because more unfavorable configurations are

included in the wavefunction, we know that the energy we get from Hartree-Fock is variational, or

higher than the true energy, in all cases. In order to lower this energy and hopefully obtain higher

accuracy, it is crucial to include at least a portion of this correlation energy.

While correlation energy makes up a small percentage of the total energy, it is naive to exclude

this contribution; When considering energy differences between electronic states, the difference in

correlation energy can contribute significantly to the difference in total energy, making up as much

as half of the difference. Some chemistry is attributed solely to correlation energy. For example,

NiO is predicted to be a metal by conventional band theory. However, electron correlation effects,

which are not accounted for in an accurate enough way in band theory, make NiO an insulator.

This trend is seen in other transition metal oxides as well. In many cases, including an adequate

description of the correlation is crucial not just for quantitative, but also qualitative accuracy.

It is now one of the grand challenges in theoretical chemistry to develop accurate, cheap meth-

ods to describe the correlation energy of various types of systems including atoms, molecules,

and solids. Consequently, much work in this field over the past several decades has been toward

developing new theories, new approximations, and new implementations to describe the complex

many-body interactions that take place within chemical systems.

There have been decades of research trying to develop theories and methods to calculate corre-

lation energy, in 3 main branches, which I will describe below. Starting from Hartree-Fock, many

“post Hartree-Fock” methods have been developed and implemented to calculate the missing cor-

relation energy. Post Hartree-Fock methods are quite popular within electronic structure are also

known as wavefunction based methods. Examples of such methods include Møller-Plesset per-

turbation theories (e.g., MP2), coupled-cluster (CC) methods, and configuration interaction (CI)

methods. These approximations go beyond the single Slater determinant wavefunction description,
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but at a steep computational cost. For example, coupled-cluster singles doubles (CCSD) scales as

O(N6), where N is the number of orbitals. While these methods are often computationally ex-

pensive and only applicable to small systems, they are often highly accurate and are excellent to

use as benchmark calculations. While the chemical accuracy of Hartree-Fock is inadequate, it is

useful from a theory standpoint. Thus, the HF approximation has now become a starting point

for many modern wavefunction based quantum chemistry methods and is used as an important

reference point to validate new methods against. These wavefunction methods can be systemati-

cally improved by adding more and more terms to the wavefunction, leading to a more accurate

description.

Alternatively, other very popular electronic structure methods fall under the umbrella of density

functional theory (DFT), which takes advantage of the fact that the exact ground state energy of

a system is a functional of the electronic density. In practice, the many-body problem is mapped

to an auxiliary one particle problem, making it easier to solve. Although this mapping is exact,

it is still not possible to find the exact ground state energy or ground state density. The main

approximation employed for this method is that of the exchange-correlation functional, which must

be parametrized in order to carry out realistic calculations. There are a number of these functionals

used in practice, requiring the user to have experience and intuition when choosing a functional

to treat a particular chemical system. Aside from practical considerations, DFT is known to have

theoretical limitations, namely, that it is only applicable to the ground state and cannot recover

the band gap. In spite of these issues, DFT has had wide success in both chemistry and materials

science for its range of applicability and relatively cheap computational cost.

A final method that is well-known but less used in electronic structure is the Green’s function

(sometimes called the electron propagator), which will be the primary method discussed in this

work.While the theory of Green’s functions in quantum chemistry and condensed matter is well-

known and was developed in the 1960’s, method development has lagged behind wavefunction and

DFT methods. For molecules at zero-temperature, a Green’s function calculation can be cumber-

some in comparison to wavefunction or DFT methods, as it requires the storage of large matrices

8



on energy grids to obtain the ground state energy. This is in contrast to wavefunction and DFT

methods, which only require the storage of the wavefunction and density, respectively. However,

with advances in computing power, the storage requirement is not an enormous barrier. While

evaluating the ground state energy may be more cumbersome than other methods, there are many

advantages to using these methods and this is a fruitful area of electronic structure still left to be

explored.

One benefit of using Green’s functions is that they provide a natural language for quantum

embedding. This allows one to partition systems and treat the partitions at different levels of

theory when required. Quantum embedding using the Green’s function will be covered in more

detail in chapter 5.

Another attractive feature of Green’s functions is the straight-forward temperature dependence

of the formalism. Green’s function methods are computed on energy grids, which can be made

temperature-dependent, without increasing the computational cost compared to the zero-temperature

method. Details of the temperature dependent Green’s function will be given in Sec. 2.2.1. Includ-

ing electronic temperature in a calculation is advantageous for many reasons and will be discussed

in the next section.

2.1.2 Temperature in electronic structure

Most well-developed methods are done at zero-temperature, which is perfectly valid for ground

state properties of materials that have a large fundamental gap or for calculating energy differences.

However, to simulate materials with small or no band gap, such as metals and semiconductors, it

is crucial to include the effects of electronic temperature. This is because metals and semiconduc-

tors can have occupied excited states, even at ambient temperatures. Including such an effect for

realistic materials is crucial, but often times the system size and the number of orbitals required to

give an accurate description makes such a calculation unfeasible.

It is non-trivial to describe electronic interaction at finite temperatures, because correlation

effects are present not only in the ground state, but in the closely lying excited states as well. Al-
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though electronic structure methods that include the effects of temperature have been implemented

and used for various purposes, they are far less developed than zero-temperature methods. I will

highlight a few temperature-dependent methods below.

Finite-temperature implementations of various wavefunction methods have been developed, in-

cluding finite-temperature Hartree-Fock, finite-temperature coupled cluster, and finite-temperature

configuration interaction. These methods are often extensions of the corresponding zero-temperature

methods, making them even more expensive. This limits their use to very small system sizes and

are thus not capable of simulating realistic materials. However, they are useful for creating highly

accurate benchmarks to compare with for the purpose of method development.

The finite-temperature formalism for DFT was developed by Mermin [6] in the same year as

the ground state Kohn-Sham formalism in 1965. Although the theory has been worked out for

decades, there has been much less development for finite-temperature DFT compared with the

ground state formalism. In particular, the number of finite temperature functionals is much less

than that of zero-temperature DFT functionals. Parametrizing such functionals is challenging due

to the lack of reliable benchmarks to compare with. As a result, finite-temperature DFT has not

been applied widely, although such studies exist in areas such as warm dense matter.[7]

Aside from the issue of lack of benchmarks (i.e., lack of reliability of accuracy), the cost of

this method can still be prohibitive due to the size of the system under investigation. This is

because the inclusion of temperature requires a description that includes more virtual orbitals than

would be required of a ground state calculation, as the higher orbitals can become occupied as

the temperature increases. However, because this is such a new area, it is still unclear how many

additional orbitals must be included to account for temperature effects. Methods to combat this,

such as orbital free DFT [8] are being developed to reduce this cost, but this area requires further

exploration.

To address the challenges in this area, it would be helpful to have ab-initio temperature depen-

dent methods for realistic systems to serve as benchmarks.
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2.2 Green’s Function from Perturbation Theory

Here, I will highlight parts of the Green’s function formalism that are relevant to this work. There

are many excellent textbooks that outline this formalism in detail such as [9, 10, 11, 12, 13].

The Green’s function is more general than the wavefunction because it has information about

the history of the particle. Actually, one-particle Green’s functions are a type of propagator. The

name propagator is derived from the fact that we are propagating a particle from an intial position

x0 and time t0 to a later position x and time t. While the Green’s function also has information

about the many-body interactions, it is just as challenging to calculate the Green’s function as it

is to calculate the wavefunction, requiring approximations in the practical calculation of Green’s

functions. A common approach is to begin from a non-interacting Green’s function G0 and use

perturbation theory to calculate the full Green’s function G. The following arguments are general,

but will be applied to the case of interacting fermions in this work.

The Green’s function for an interacting system can be described by a Hamiltonian partitioned

into a solvable part and a perturbative part. A convenient choice is to take the solvable part to be a

free propagator and the perturbation as a scattering event. The Hamiltonian can be partitioned as

H = H0 + V (2.2)

where H0 is the Hamiltonian of the free particle, and V is an interaction (scattering event). Thus we

can construct the full propagator G as a sum of the non-interacting propagator G0, the propagator

with one scattering event, the propagator with two scattering events, etc.

G = G0 + G0VG0 + G0VG0VG0 + · · ·

= G0(1 + VG0 + VG0VG0 + · · · )
(2.3)

This expression is just a geometric series, and can be written as a sum as
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G =
G0

1 − VG0

=
1

G−1
0 − V

(2.4)

This is known as the Dyson equation. To use perturbation theory to describe an interacting

system, we treat the interacting Green’s function as though it has had a series of encounters with

an interaction which we call the self-energy Σ. What this means physically is that the particle

interacts with other particles in the system and creates a cloud, and this cloud in turn interacts with

the particle, as if the particle is interacting with itself. The self-energy describes all of the many-

body interactions of the system and is related to the Green’s function through the Dyson equation

(Eqn. 2.4), given as

Σ = G−1
0 −G−1 (2.5)

This description of the Green’s function is general and can be implemented in many for-

malisms, including temperature-dependent and temperature-independent. In addition, the Green’s

function can be described in terms of position and time, as well as momentum and time or posi-

tion and energy. In the context of perturbation theory, the momentum and energy domain is often

convenient.

2.2.1 Temperature-Dependent Matsubara Green’s Function

The temperature-dependent Green’s function formalism was introduced by Matsubara in 1955,

and is sometimes called the Matsubara formalism. [14] This formalism includes temperature in

the Green’s function, and also turns out to be mathematically tractable and just as convenient to

work with as the zero-temperature Green’s function.

Green’s function theory is a statistical theory which gives access to ensemble quantities. Sta-

tistical ensemble quantities rely on Boltzmann factors e−βH to compute partition functions and
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physical quantites derived from them. The Matsubara Green’s function for an electron can be

expressed as

G =
Tr[e−βHCpσ(t0)C†pσ(t)]

Tr(e−βH)
(2.6)

where the creation and annihilation C(†)
pσ in momentum p and spin σ are in the Heisenberg

picture, with time dependence on the operators as

Cpσ(t) = eitHCpσe−itH (2.7)

In this expression for G, the Hamiltonian appears in both exponential factors, and it would

be quite cumbersome to carry out two different perturbation expansions. The Green’s function

relies on Boltzmann factors, which are very similar in structure to the time evolution operator e−itH

because both of them have exponential form. These similarities can be taken advantage of by

treating time as a complex temperature. That is, we replace it with β = 1
kbT . The convenience lies

in the ability to treat ensemble Green’s functions using time-dependent techniques while obtaining

statistical ensemble quantities.

To obtain G in terms of the energy or frequency parameter iω, we take have the Fourier trans-

form to obtain

G =
1

iω − H
(2.8)

In practice, one must compute frequency sums over unperturbed Green’s functions to evaluate

G. For the Matsubara Green’s function for electrons (fermions), this is done using the so called

Matsubara frequencies given as

iω =
(2n + 1)iπ

β
, n = 0, 1, 2, ... (2.9)

What quantities can we obtain from this temperature-dependent Matsubara Green’s function?

In theory, since the it is possible to get the partition function (Z) from the Green’s function, one is
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able to obtain any quantity that is available from Z, including thermodynamic quantities such as

entropy and Helmholtz energy. This will allow us to compare stabilities between different phases.

The partition function is expressed as Z = e−βΩ, where Ω is the grand potential. The grand potential

can be evaluated from the Green’s function as

Ω =
1
β
{Φ − Tr[ΣG + ln(Σ −G−1

0 )]} (2.10)

The Luttinger-Ward functional Φ is evaluated as

Φ =

∞∑
m=1

=
1

2m
Tr

[
Σ(m)G

]
(2.11)

where m is an integer referring to the level of truncatation of the self-energy to order m. The

Green’s function has a clear connection with spectra when evaluated on the real frequency axis,

where the poles correspond to electron removal and addition energies. The spectra can be evaluated

as

A(ω) =
−1
π

Tr[Im G(ω)] (2.12)

Details regarding practical calculations of thermodynamics and spectra from the Matsubara Green’s

function will be explored in chapters 3 and 4, respectively.

The Matsubara Green’s function is well-known in physics and has been applied to model sys-

tems, such as the Hubbard model, in the past. [15, 16, 17] However, much less work has been done

in the area of applying this Matsubara formalism to a realistic quantum chemical Hamiltonians

containing two-electron interactions. Such studies exist, but were limited to a few small atoms and

molecules with simple bases. [18, 19, 20] Thus, while it is in theory possible to obtain quantities

such as spectra and thermodynamics from the Matsubara Green’s function, this has never been

rigourously investigated for realistic chemical systems.

14



CHAPTER 3

Electronic Thermodynamics

3.1 Temperature-Dependent Thermodynamics from the Mat-

subara Green’s function

3.1.1 Introduction

In molecular quantum-chemical calculations of thermodymanic properties such as Gibbs energy

[21, 22], the temperature dependent component is usually dominated by vibrational contributions.

This is due to the large gaps between electronic states, which ensure that the excited state popula-

tions will be negligible. Consequently, common molecular calculations do not explicitly include

temperature effects on the electronic structure.

However, for materials such as doped semiconductors [23] the magnitude of the electronic

band gap can be relatively small, or for metals nonexistent altogether, allowing electronic states

other than the ground state to be accessible at low temperatures. Thus, it is necessary to include

temperature effects into the electronic description. Even though for most materials the vibrational

contribution to the specific heat is much larger than the electronic one, there are cases when the

incorporation of the electronic contribution is necessary. The electronic contribution to specific

heat is important for (i) heavy fermion materials at low temperatures [24], (ii) materials that do

not undergo a structural transition that changes the vibrational contribution, causing the stability of

phases to primarily depend on the relative electronic contribution to Gibbs energy, (iii) materials
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with a structural transition where the difference between vibrational contributions of the phases

is of the same order as the difference between electronic contributions [25, 26]. Thus, modern

materials calculations can benefit from computational tools that provide access to the temperature

dependent electronic contribution to the specific heat, Gibbs energy, entropy, or electronic part of

the partition function.

While in traditional quantum chemical calculations evaluating the electronic contribution to

temperature dependent quantities is certainly not wide spread, a number of such methods exist,

most notably, the finite temperature Hartree-Fock (HF) [27], density functional theory (DFT) [6, 7,

28, 29], Møller-Plesset second order perturbation theory (MP2) [30], coupled-cluster (CC) [31, 32,

33], and Lanczos method [34, 35] for finite temperature configuration interaction (CI) calculations.

However, these methods are usually quite difficult to implement and costly to use since they rely

on the modification of the parent zero-temperature method to the finite temperature formalism by

adapting it to work in the canonical or grand canonical ensemble. For example, to carry out such

calculations in the CI formalism, one must obtain the excited states and corresponding Boltzmann

factors in order to evaluate the partition function and thermodynamic averages, making application

of finite temperature variants of these methods quite cumbersome.

Conversely, for the Green’s function formalism the connection to thermodynamics arises in a

straightforward manner and was derived in numerous books in the past [9, 10, 11, 36]. While this

theoretical connection is well understood, the actual numerical calculations of the thermodynamic

quantities still remain quite challenging since a fully self-consistent imaginary axis (Matsubara)

Green’s function calculation is desired. A non-self-consistent Green’s function can result in non-

unique thermodynamic quantities.

The fully self-consistent Green’s function calculations are challenging for multiple reasons,

such as large imaginary time and frequency grids required for convergence or multiple solutions

that can be present due to the non-linear nature of the equations. It is for reasons such as these that

in recent years calculations that capitalized on Green’s function language and yield thermodynamic

quantities where mostly done for model systems [37, 38, 39, 40, 41].
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Here, we would like to stress that while multiple large scale real axis Green’s function calcula-

tions are performed at present for the single shot G0W0, GW0, or semi-self consistent GW for large

realistic systems [42, 43, 44, 45, 46, 47, 48], currently, only a few research groups have managed

to rigorously generalize the self-consistent finite temperature (imaginary axis) Green’s function

formalism to deal with a general Hamiltonian containing all the realistic interactions [49, 19, 50,

51, 52, 53]. Thus, any insight gained from studying even simple periodic systems and analyzing

the possible self-consistent solutions of the Matsubara formalism remains valuable.

To the best of our knowledge, here, we present the first application of the fully self-consistent

finite temperature Green’s function formalism to evaluate thermodynamic quantities and phase sta-

bility for a periodic system described by a full quantum chemical Hamiltonian. We demonstrate

that Green’s function formalism leads to a simple calculation of the electronic contribution to the

Helmholtz or Gibbs energy, entropy, grand potential, and partition function without explicitly per-

forming any excited state calculations. The presented formalism is exact at the infinite temperature

limit since the perturbative Green’s function formulation is a perturbation that contains the inverse

temperature as small parameter.

This chapter is organized as follows. In Sec. 3.1.2, we introduce the imaginary Green’s func-

tion formalism and its connection to thermodynamics. In Sec. 3.2 and 3.2.1, we list properties of

the Luttinger-Ward functional which is our main computational object and we explain its evalu-

ation within a self-consistent Green’s function second-order (GF2) periodic implementation. In

Sec. 3.2.2, we present numerical results first for a benchmark molecular problem and then for two

1D systems: periodic hydrogen as well as boron nitride. Finally, we form conclusions in Sec. 3.2.3.

3.1.2 Connection with thermodynamics

One of the first descriptions of the connection between the Green’s function formalism and ther-

modynamics was presented in the book by Abrikosov, Gorkov, and Dzyaloshinski [36]. Since

then multiple texts have appeared that discuss this connection [9, 11, 54]. For an excellent, de-

tailed derivation, we encourage the reader to follow Ref. [9]; here, we will only mention few basic
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Green’s function equations for the sake of completeness.

The one-body Green’s function is defined as

G ji(z1, z2) ≡ Tr[e−βĤM
Ĝ ji(z1,z2)]

Tr[e−βĤM ]
(3.1)

= 1
i

Tr[τ{e−i
∫
γ dz̄Ĥ(z̄)d̂ j,H(z1)d̂†i,H(z2)}]

Tr[τ{e−i
∫
γ dz̄Ĥ(z̄)

}]
,

where d̂ j,H(z1) and d̂†i,H(z2) are the second-quantized annihilation and creation operators in the

Heisenberg representations and β = 1/(kBT ) is the inverse temperature while T is the actual tem-

perature and kB is the Boltzmann constant. This Green’s function, depending on how the contour

γ in the complex plane is closed, can be used to describe system’s time evolution (when z1 and

z2 are set to the real-time variables), zero temperature phenomena, or equilibrium phenomena at

finite temperature.

Here, we are interested in a formalism used to calculate the initial ensemble average that is

applied to systems in thermodynamic equilibrium at finite temperature. This approach is called

Matsubara formalism or the “finite-temperature formalism”. For this reason, in the Green’s func-

tion from Eq. 3.1 we set z1 = t0 − iτ1 and z2 = t0 − iτ2. Consequently, the Green’s function

GM
ji (τ1, τ2 ) = 1

i

{
θ(τ1 − τ2)Tr[e(τ1−τ2−β)ĤM

d̂ je(τ2−τ1)ĤM
d̂†i ]

Tr[e−βĤM ]

±θ(τ2 − τ1)Tr[e(τ2−τ1−β)ĤM
d̂†i e(τ1−τ2)ĤM

d̂ j]

Tr[e−βĤM ]

}
(3.2)

does not describe any time evolution of the system under study. Instead, in this Green’s function

the initial state of the system can be the thermodynamic state corresponding to a Hamiltonian,

ĤM = Ĥ(t0) − µN̂, where N̂ is the particle number operator. Thus, from this Matsubara Green’s

function, the initial ensemble average of any one-body operator Ô =
∑

i j Oi jd̂
†

i d̂ j, can be evaluated

simply as

O =
Tr[e−βĤM

Ô]
Tr[e−βĤM ]

= ±i
∑

i j

Oi jGM
ji (τ), (3.3)
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where τ = τ1 − τ2 since the one-body Green’s function matrix elements depend only on the differ-

ence of the imaginary time variables. Furthermore, the imaginary time Green’s function G(τ) can

be Fourier transformed to the imaginary frequency Green’s function G(iωn) where for fermions the

frequency grid is given by ωn =
(2n+1)π

β
with n defined here as a positive integer. For simplicity, in

the remainder of this paper, we will drop subscript M denoting Matsubara Green’s functions since

from now on we will only discuss this finite temperature formalism.

The discussion above shows that at finite temperature one can get grand canonical ensemble av-

erages of one-body operators using the Matsubara formalism. However, let us ask one more ques-

tion: Can we get a system’s static thermodynamic variables such as electronic Gibbs or Helmholtz

energy, internal energy, and electronic entropy from dynamic (frequency dependent) variables such

as Green’s function and self-energy?

The thermodynamics of a system can be described by a thermodynamical potential, such as the

grand potential Ω [9]

Ω =
1
β
{Φ − Tr[ΣG + ln(Σ −G−1

0 )]}, (3.4)

where the self-energy Σ = Σ(iωn) describes all the frequency dependent correlational effects

present in the system and G0 = G0(iωn) is the reference (usually non-interacting) system’s Green’s

function and G = G(iωn) is the interacting Green’s function. The interacting and non-interacting

Green’s functions are connected through the Dyson equation, Σ = G−1
0 − G−1. The Φ functional

from Eq. 3.4 is called the Luttinger-Ward functional[55] [56] and is defined as

Φ =

∞∑
m=1

1
2m

Tr[
∑

n

Σ(m)(iωn)G(iωn)], (3.5)

where Σ(m)(iωn) is a self-energy containing all irreducible and topologically inequivalent diagrams

of order m. The detailed derivation of Eq. 3.4 is presented in Ref. vanleeuwentext.

Thus, the computational object that provides a connection between the static and dynamic

quantities is the Luttinger-Ward functional. This scalar functional Φ = Φ̂[G] depends on the

Green’s function and has multiple important properties for Green’s function theory.
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3.2 Properties of the Luttinger-Ward Functional

The formal properties of Luttinger-Ward functional have been discussed extensively before. The

functional has previously been applied to calculate energies for atoms and molecules [49, 19], the

electron gas [57], as well as for the Hubbard lattice [39, 58, 59, 38]. In the following section, we

will only outline some of the most salient properties of the Luttinger-Ward functional to benefit the

reader.

3.2.0.1 Self-energy as a functional derivative

The self-energy Σ = Σ(iωn) can be obtained as a functional derivative of the Luttinger-Ward func-

tional

β
δΦ̂[G]
δG

= Σ̂[G]. (3.6)

Here, the self-energy is defined as a functional of Green’s function that is evaluated independent

of the Dyson equation. Consequently, in the non-interacting limit, where Σ = 0, it follows that the

Luttinger-Ward functional is zero itself, Φ̂[G] = 0.

3.2.0.2 Connection with the grand potential Ω

The grand potential is a number but the mathematical object defined in Eq. 3.4 can be viewed more

generally as a functional of Green’s functions Ω[G]. When a Green’s function is a self-consistent

solution of the Dyson equation then the functional derivative δΩ[G]
δG = 0 since δΦ = Tr[ΣδG] and

δΩ[G] = 1
β
{δΦ − Tr[δΣG + ΣδG −GδΣ]}. Consequently, we can conclude that the functional Ω[G]

at the stationary point is equal to the grand potential. Having grand potential one gains access to

the partition function (Z) since

Ω = −
1
β

lnZ. (3.7)

The Helmholtz energy, A = E − TS , where E is the internal energy and S is the entropy of a

system at a given temperature T , is connected to the grand potential as A = Ω + µN, where N is
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the number of electrons in the system. Thus, knowing the grand potential, we can easily calculate

the electronic entropy as

S =
E −Ω − µN

T
(3.8)

as long as we have access to the internal energy of a system. The internal energy at a given

temperature T can be evaluated using the Galitskii-Migdal formula

E =
1
2

Tr
[
(h + F) γ

]
+

2
β

Nω∑
n

Re
(
Tr[G(iωn)Σ(iωn)]

)
, (3.9)

where γ is the one-body density matrix, h is the one-body Hamiltonian, F is the Fock matrix of

a system, and Nω is the size of the imaginary grid. Consequently, having access to the Luttinger-

Ward functional of a system yields multiple electronic thermodynamic quantities.

3.2.0.3 Universality

Given two systems A and B at the same physical temperature T and the same chemical poten-

tial µ described by two Hamiltonians ĤA =
∑

i j tA
i ja
†

i a j +
∑

i jkl vi jkla
†

i a†jalak and ĤB =
∑

i j tB
i ja
†

i a j +∑
i jkl vi jkla

†

i a†jalak such that they have the same two-body integrals vi jkl but different one-body inte-

grals tA , tb the Luttinger-Ward functional is same (universal) for both of them. Since Φ̂A = Φ̂B,

then it must also hold that Σ̂A(G) = Σ̂B(G). In other words, two systems described by different G0

but having the same two-body interactions are described by the same Luttinger-Ward functional.

3.2.1 Evaluation of Luttinger-Ward Functional Within GF2

3.2.1.1 Description of the GF2 algorithm

The self-energy, which we evaluate self-consistently in this work, is computed perturbatively at the

second-order (GF2) level. GF2 is advantageous for many reasons, namely, among others it behaves

qualitatively correct for moderately strongly correlated systems [50], unlike methods such as MP2

or CCSD which tend to diverge in these cases. GF2 has small fractional charge and fractional
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spin errors [60]. GF2 is carried out self-consistently on imaginary time τ and imaginary frequency

iωn axes with a computational scaling of O(nτN5) for molecular cases, where nτ is a prefactor

that depends on the size of the imaginary time grid and N is the number of orbitals present in the

problem. We build the Green’s function using the following expression

G(iωn) = [(iωn + µ)S − F − Σ(iωn)]−1 (3.10)

where F and S are the Fock and overlap matrices in the atomic orbital (AO) basis, respectively,

and µ is the chemical potential, which guarantees a correct particle number. To obtain Σ(iωn), we

solve the Dyson equation given as

Σ(iωn) = G0(iωn)−1 −G(iωn)−1 (3.11)

where G0(iωn) = [(iωn + µ)S − F]−1 is the non-interacting Green’s function while G(iωn) is the

interacting Green’s function since it contains the self-energy. To reduce the number of necessary

grid points, we employ a spline interpolation method to evaluate the Green’s function [52] and

Legendre orthogonal polynomials to expand the Σ(τ) matrix [61]. As pointed out previously, this

self-consistent evaluation guarantees that both the Galitskii-Migdal and Luttinger-Ward energies

are stationary with respect to the Green’s function. For a full discussion of the algorithm and im-

plementation details of GF2, we refer the reader to Refs. GF2,fractional. The main computational

object in our evaluation is the self-energy in the AO basis, which can be expressed as

Σi j(τ) = −
∑

klmnpq

Gkl(τ)Gmn(τ)Gpq(τ)×

×vikmq(2vl jpn − vp jln).

(3.12)

where vi jkl are the two-electron integrals in the AO basis in the chemist’s notation. Eq. 3.12 is

evaluated in a Legendre polynomial basis [61] to accelerate the calculation.

The details of a periodic GF2 implementation have been reported in Ref. [51]. The basic
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differences from the molecular version include solving the Dyson equation in k-space via

Gk(iωn) =
[
(iωn + µ)S k − Fk − Σk(iωn)

]−1
(3.13)

and complicating the real-space self-energy, Σ0g(τ), evaluation by additional cell index summa-

tions:

Σ
0g
i j (τ) = −

∑
g1,...,g6

∑
klmnpq

Gg3g6
k l (τ)Gg1g4

m n (τ)Gg5g2
p q (−τ)×

×v0g1g2g3
i m q k (2vgg4g5g6

j n p l − vgg6g5g4
j l p n ).

(3.14)

Σk(iωn) in Eq. 3.13 and Σ0g(τ) in Eq. 3.14 are interconvertible via corresponding Fourier transforms

from the k- to real-space and between the imaginary time and imaginary frequency domains also

via Fourier transform. The self-energy calculation according to Eq. 3.14 results in O(N5N4
cellnτ)

formal scaling of the computation cost with N the number of orbitals in the unit cell and Ncell the

number of real space cells. This is typically a computational bottleneck of the GF2 self-consistency

procedure.

The level of self-consistency at which the correlated Green’s function equation should be iter-

ated can depend on particular phases present in the phase diagram, such as Mott (see Ref. [62]).

In particular, the non-interacting Green’s function G0(iωn) build using updated Fock matrix or the

correlated Green’s function G(iωn) can re-enter the evaluation of the self-energy. We observe that

the use of G0(iωn) with the updated Fock matrix in the self-consistent evaluation of the self-energy

is a well-behaved procedure when the strong correlations and the Mott phases emerge. The full

self-consistent cycle, with G(iωn) re-entering the evaluation of the self-energy becomes ill behaved

for these cases and we experienced difficulty converging it. We therefore use the former “partial”

self-consistency (G0(iωn) with the updated Fock matrix in the self-consistent evaluation of the

self-energy) for the Mott regime. Such scheme is not uncommon in DMFT type calculations [62].

The expression for the total energy likewise acquires a cell summation according to Eqs. 13
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and 14 in Ref. [51]:

Etot = E1b + E2b (3.15)

= 1
2

∑
g,i, j γ

0g
i j (2h0g

i j + [Σ∞]0g
i j ) +

+ 2
β

∑
g,i, j Re

[∑
n G0g

i j (iωn)Σ0g
i j (iωn)

]
.

3.2.1.2 Evaluation of the grand potential in the k-space

The evaluation of the Luttinger-Ward functional in conserving approximations [63] such as the

self-consistent second-order Green’s function (GF2)[50, 60, 61] is quite straightforward and was

originally derived by Luttinger and Ward [55] as

Φ(2) =
1
4

Tr[
∑

n

Σ(2)(iωn)G(iωn)], (3.16)

where Σ(2)(iωn) is the frequency dependent part of the second-order self-energy. Since both G(iωn)

and Σ(2)(iωn) are readily available from a GF2 calculation, we are able to easily evaluate all terms

of the functional.

The expression for grand potential from Eq. 3.4 can be conveniently reformulated as

ΩLW =
1
2

Tr[γΣ∞] + Tr[GΣ]

+Tr[ln{1 −GΣ}] + Tr[ln{G−1
0 }].

(3.17)

An excellent derivation of the above equation is given in Ref. [19] for molecular systems. How-

ever, as we mentioned before, for molecular systems the changes due to the electronic contributions

of the Gibbs or Helmholtz energy are negligible due to the size of the gap.

Here, we list detailed steps that need to be executed when dealing with crystalline systems

where the electronic effects influencing Helmholtz energy can be significant. In the periodic im-

plementation, we evaluate the grand potential per unit cell, Ω00. The overall expression is given as
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a sum of all the components

Ω00 = Ω00
Tr[GΣ] + Ω00

Tr[ln{1−GΣ}]

+Ω00
Tr[ln{G−1

0 }]
+ Ω00

1
2 Tr[γΣ∞]

(3.18)

where we sum the contribution per unit cell for each term present in Eq. 3.17. Due to the crystalline

symmetry, it is often more convenient to calculate these quantities in k-space and transform the

resulting quantity to the real space rather than using an explicit real space representation of all the

quantities involved. All terms in Eq. 3.18 containing the Green’s function G, or self-energy Σ were

computed in k-space and then Fourier transformed to real space. For example, to calculate the

Ω00
Tr[GΣ] contribution, we can first evaluate the k-dependent quantity

Ωk
Tr[GΣ] =

2
β

Nω∑
i, j,n

Gk(iωn)i jΣ
k(iωn) ji (3.19)

where the indices i and j run over all atomic orbitals in a given k−block. Subsequently, we perform

Fourier transform of Ωk
Tr[GΣ] to yield the real space Ω00

Tr[GΣ] contribution.

The most cumbersome evaluation is of the term Ω00
Tr[ln{1−GΣ}], which requires diagonalization

of the matrix GkΣk + (GkΣk)† − GkΣk(GkΣk)†, where the matrices Gk and Σk are understood to be

dependent on iωn. Once the eigenvalues of this matrix, εk
i , have been computed for each imaginary

frequency point, iωn, we have

Ωk
Tr[ln{1−GΣ}] =

2
β

Nω∑
n,i

ln{1 − εk
i }, (3.20)

which can be Fourier transformed to the real space.

To include the contribution from the Fock matrix, Ω00
Tr[ln{G−1

0 }]
, we calculate

Ωk
Tr[ln{G−1

0 }]
=


1
β

∑
i ln(1 + eβ(εk

i −µ)) + εk
i , if εk

i − µ < 0

1
β

∑
i ln(1 + e−β(εk

i −µ)), otherwise.
(3.21)
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where by analyzing if the term εk
i −µ is smaller or greater than zero we account for the cases where

the absolute value of the Fock matrix eigenvalue can be large leading to numerical problems if

only one branch of the above expression is used. This term accounts for occupation changes with

temperature. For high β values (low values of the actual temperature T ), the expression reduces to

Ωk
Tr[ln{G−1

0 }]
=

∑
Nocc

εk
i , (3.22)

which allows electrons to occupy only the lowest available state, as is expected at a very low

temperature.

We calculate the term Ω00
1
2 Tr[γΣ∞]

directly in the real space as 1
2Tr[γΣ∞], since in the AO basis,

the decay of both γ which is the density matrix and Σ∞ which is the frequency independent part of

the self-energy is rapid enough for a relatively few number of cells to assure a converged value of

Ω00
1
2 Tr[γΣ∞]

.

3.2.2 Results

3.2.2.1 HF molecule

In this subsection, for a simple molecular example, a hydrogen fluoride molecule, we provide a

calibration of the thermodynamic quantities such as internal energy E, Helmholtz energy A, and

entropy S , which are evaluated at the GF2 level and compared to the full configuration interaction

(FCI) calculation. The evaluation of the thermodynamic quantities at the FCI level can be done

only for very small molecular examples, such as HF, since such a system has only 10 electrons

and 6 basis functions in the STO-3G basis, resulting in a small number of possible configurations

necessary to evaluate the FCI grand potential. Note that to describe a true physical system at very

high temperature we would require a very large basis set. Here, we use HF as a model molecular

system that is calculated in a minimal basis set solely to enable comparison of GF2 with FCI.

The full configuration interaction (FCI) quantities for HF molecule were calculated previously by

Kou and Hirata [64]. In addition, we show the same system calculated with finite-temperature at
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the Hartree-Fock level. We would like to emphasize that we provide this molecular example as a

benchmark only, in order to compare our method with highly accurate FCI quantum chemical data.

Typically electronic contributions to thermodynamics are not considered for molecular systems.

Let us first note that in order to calculate the FCI partition function and subsequently grand

potential in the grand canonical ensemble, we need to evaluate

ZGC =

2n∑
N=0

∑
S z

∑
i

〈Φ
(N,S z)
i |exp{−β(Ĥ − µN̂)}|Φ(N,S z)

i 〉, (3.23)

where the Φ
(N,S z)
i is the FCI wave function with N electrons and S z quantum number and the number

of possible occupation runs from 0 to 2n, where n is the number of orbitals. Consequently, we need

to explicitly obtain the information about every possible excited state present in the system with

different number of electrons. Such a task quickly becomes impossible for any larger systems.

In contrast, in Green’s function methods, we never need to explicitly evaluate any information

concerning specific excited states. It is sufficient to evaluate Eq. 3.17 and then Eq. 3.7 to obtain

the grand canonical partition function. Thus, even for relatively large systems such calculations

remain feasible.

Results from our calibration are shown in Fig. 3.1. The numerical values used in the plots

are tabularized in the Supplemental Information. The detailed description of the grids on which

we evaluate Σ(τ) and G(iωn) can be found in Ref. [65]. For the hydrogen fluoride molecule the

temperature range is huge due to the size of the Hartree-Fock HOMO-LUMO gap in this system,

which is around 1.0 a.u. corresponding to a temperature of around 3.0 × 105 K. Conseqhuently, to

make every state accessible to the electrons in this system, we require extremely high temperatures,

as indicated by our results.

In the very high temperature limit, both finite temperature Hartee-Fock and GF2 yield the in-

ternal energy (E), Helmholtz energy (A), and entropy (S) in excellent agreement with FCI results.

This is of course expected since at very high temperatures the electronic behavior is well described

by mean field theories. For the intermediate temperatures, GF2 thermodynamic quantities (E, S,
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Figure 3.1: The differences between GF2, finite temperature Hartree-Fock and FCI for the hydro-
gen fluoride molecule at various temperatures.

and A) are closer to FCI than thermodynamic quantities obtained in finite temperature Hartee-

Fock. For this system at intermediate temperatures, the GF2 thermodynamic quantities are always

overestimated while the finite temperature Hartree-Fock always underestimate them in comparison

to FCI. The GF2 and Hartree-Fock entropies for low temperatures are well recovered and compara-

ble. As expected, the low temperature GF2 internal energy is closer to FCI than the one evaluated

using finite temperature Hartree-Fock. For our very lowest temperature (103 K), we recover a small

negative entropy. This is a numerical artifact brought about from the level of convergence of the

internal energies (1.0×10−5 a.u.) and the expression for entropy which requires multiplication by

β, S = β(E − Ω − µN). Thus, the smallest error ≈ 10−5 in the energy will result in ≈ 10−3 error in

the entropy due to multiplication by β = 100.

3.2.2.2 Periodic calculation of 1D hydrogen

In our previous work, GF2 was implemented for periodic systems and applied to a 1D hydrogen

solid [51] in the mini-Huzinaga [66] basis set. We consider the same system in this work, where we

have used 5,000 Matsubara frequencies to discretize the Green’s function in the frequency domain,

353 imaginary-time points, and 27 Legendre polynomials. We have found this grid size is sufficient

to evaluate energy differences between the systems at various temperatures. Up to 73 real space

unit cells appear in the self-energy evaluation (Eq. 3.14).

This system is simple enough to be a test bed for self-consistent Green’s function theory; how-

ever, it displays a phase diagram that is characteristic of realistic solids. At different internuclear
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separations, corresponding to different pressures, we were able to recover multiple solutions. Al-

though yielding different electronic energies and different spectra, these solutions can be math-

ematical artifacts of the nonlinear self-consistency procedure present in GF2; however, they can

also have physical meaning corresponding to different solid phases.

To decide which phase is more stable at a given temperature, it is necessary to consider the

Helmholtz energies that we are able to obtain from the Luttinger-Ward functional for every solu-

tion. Previously, for the inverse temperature of β = 100, at most of the geometry points, we have

identified two possible phases with different internal energies, E, that were obtained starting the

iterative GF2 procedure either from an insulating or metallic solution. The results of our investi-

gation can be found in Fig. 4 of Ref. [51]. Currently, to analyze the stability of the solutions, for

a range of inverse temperatures β = 25, 75, 100, we discuss internal energy E, Helmholtz energy

A, and the entropic contribution TS to the Helmholtz energy. We also improved our convergence

criteria not only converging the internal energy E = E1b + E2b (as we have done in the previous

work) but also converging both the E1b, E2b, and the Helmholtz energy separately. This much more

stringent procedure to analyze convergence of GF2 leads us to slightly revised solutions for the 1D

hydrogen solid which we discuss in the subsequent sections.

The spectra are produced from analytical continuation of the imaginary axis Green’s function

G(k, iωn) to the real axis G(k, ωn) [67]. The spectral weight is proportional to ImG(k, ωn). A 2D

color projection of the spectral function on the (k, ωn) plane can be viewed as a “correlated band

structure” analogous to the conventional band structure within effective one-electron models such

as Hartree–Fock and DFT. As in one-electron models, zero spectral weight at the Fermi energy ωF

is indicative of a gapped system. The peaks emerging immediately below and above ωF for a given

k correspond to the energies of the highest occupied (HOCO) and lowest unoccupied (LUCO)

crystalline orbitals, respectively. We should stress, however, that since G(k, ωn) is a many-body

correlated Green’s function, such correspondence is not rigorous and merely serves as a convenient

analogy.
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Figure 3.2: Spectral functions and projections at different inverse temperatures for the metallic
solution of 1D periodic hydrogen solid at R=0.75 Å.

3.2.2.3 Short bond length/high pressure

At the interatomic separation of 0.75 Å, we recovered only one gapless, metallic solution for all

the values of inverse temperature (β = 25, 75, 100). We established that starting from two different

initial guesses leads in both cases to two final solutions that were different in internal energy and

Helmoltz energy by less than 10−4 a.u. Consequently, we deemed that we obtained the same

metallic solution in both cases. The spectral functions and spectral projections for this metallic

solution at different values of inverse temperature are shown in Fig. 3.2. For all the temperatures

examined in this short bond length regime, the self-energy displays a Fermi liquid character.

In our previous work [51], we observed a small internal energy difference between the solutions

obtained using different starting point at β = 100. We currently observe that this difference can

be eliminated if we assure that the convergence criteria are not only fulfilled for the total energy

Etot = E1b + E2b but also both the E1b and E2b components separately.
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β ∆ E -T ∆ S ∆ A

100 -0.00370 0.10854 0.10484

75 -0.00528 0.09971 0.09443

25 1.36×10−8 -2.94×10−6 -2.93×10−6

Table 3.1: Thermodynamic data for a 1D periodic hydrogen solid with separation R=1.75 Å. The
units for β are 1/a.u. The units for all other quantities are a.u. All values are obtained by subtracting
“solution 1” from “solution 2”. ∆ E =Esol2-Esol1, ∆ A =Asol2-Asol1, ∆ S =Ssol2-Ssol1. Note that the
quantities at β=25 are below the precision of convergence (1 ×10−5).

3.2.2.4 Intermediate bond length/intermediate pressure

Spectral functions and projections for the 1D hydrogen solid with an interatomic separation of

1.75 Å are presented in Fig. 3.3. We have displayed differences in internal energy (E), entropy

(written as -T∆S), and Helmholtz energy (A) in Table 3.1. For this system at the inverse temper-

atures of β = 100 and 75 we obtained two solutions from two different initial guesses. We are

able to characterize the first solution (“solution 1”) as a band insulator since the spectral function

shows a gap and the self-energy displays a Fermi liquid profile. The second solution (“solution 2”)

is gapless and therefore a metal. At an inverse temperature of β = 25, both “solution 1” and “solu-

tion 2” obtained from two different starting guesses have the same spectra and identical Helmholtz

energy, indicating that there is only one stable solution — a single phase. Note that in Fig. 3.3 for

β = 25 both the spectral functions for “solution 1” and “solution 2” seem to have different heights;

however, it is an illusion since both spectral functions are plotted with a different z-axis range. We

deem that the Helmholtz energy is identical for both these solutions at β = 25 since the obtained

differences are below our convergence threshold which is 1 × 10−5 a.u.

For two lower temperatures (β = 100 and 75) by comparing thermodynamic quantities, we are

able to determine which phase, “solution 1” or “solution 2”, is the most thermodynamically stable.

From the data in Table 3.1, we are able to determine that “solution 1” is the most stable phase from

the positive value of ∆A at both β=100 and β=75. It is also interesting to note, that this solution is

stable due to the entropic factor not due to the difference in the internal energy.
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sln2-1.75

Figure 3.3: Spectral functions and projections at different inverse temperatures for the band insula-
tor (“solution 1”) and the metallic solution (“solution 2”) of 1D periodic hydrogen solid at R=1.75
Å. Note the difference in scale between “solution 1” and “solution 2”.
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β ∆ E -T ∆ S ∆ A

100 0.08489 0.16257 0.24746

75 0.07103 0.16155 0.23259

25 6.09×10−8 2.96×10−5 2.97 ×10−5

Table 3.2: Thermodynamic data for a 1D periodic hydrogen solid with separation R=2.5 Å. The
units for β are 1/a.u. The units for all other quantities are a.u. All values are obtained by subtracting
“solution 1” from “solution 2”. ∆ E =Esol2-Esol1, ∆ A =Asol2-Asol1, ∆ S =Ssol2-Ssol1. Note that the
quantities at β=25 are below or comparable with the precision of convergence (1 ×10−5).

3.2.2.5 Long bond length/low pressure

Similar to the R=1.75 Å regime, for an interatomic separation of 2.5 Å at inverse temperatures

β = 100 and 75, we recover two solutions from the two different initial guesses, see Fig. 3.4. At

a high temperature β=25 we observe only one solution independent of the initial guess, and thus

only a single phase is present. From the positive value of ∆A we are able to see that “solution

1” is the most stable phase at β=75 and β=100 (Table 3.2). This solution is a band insulator

since it has a Fermi liquid self-energy profile at these temperatures. The other solution, denoted as

“solution 2” at low temperature is metallic and changes into a Mott insulator at high temperatures.

The internuclear distance of R=2.5 Å is close to the region where the phase transition occurs, thus

results obtained from GF2 which is a low order perturbation expansion may not be reliable. The

low level perturbation theories such as GF2 are known to be more accurate deep within a phase

and can experience problems near the phase transition point.

Finally, at an interatomic separation of R=4.0 Å, for all the temperatures, both initial guesses

yield the same converged GF2 result - a single phase. The spectra as a function of inverse temper-

ature can be seen in Fig. 3.5. This single solution is a Mott insulator as confirmed by the divergent

imaginary part of the self-energy.

33



sln 1 - 2.5

� = 100 � = 75 � = 25

sln2 - 2.5-
correct

� = 100 � = 75 � = 25

Figure 3.4: Spectral functions and projections at different inverse temperatures for the band insula-
tor (“solution 1”) and the metallic solution (“solution 2”) of 1D periodic hydrogen solid at R=2.5
Å.
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Figure 3.5: Spectral functions and projections at different inverse temperatures for the Mott insu-
lator present in 1D periodic hydrogen solid at R=4.0 Å.

3.2.2.6 GF2 phase diagram for 1D hydrogen solid

It is instructive now to collect all the data and construct a simple phase diagram for the 1D hydrogen

solid as a function of inverse temperature β and intermolecular distance R. We have plotted the

phase diagram in Fig. 3.6. On this diagram, for these regions where two phases coexist, we denoted

the most stable phase according to the Helmholtz energy A by framing its symbol using a black

line.

For the shortest bond length (R=0.75 Å), the 1D hydrogen solid remains metallic at all tem-

peratures considered and only one phase is present. At intermediate bond lengths (R=1.75, 2.0

Å), multiple phases coexist. At lower temperatures, we recover both a metal and band insulator as

possible solutions, with the band insulator being the most stable phase according to the Helmholtz

energies. This is in line with physical intuition that we should recover an insulator rather than a

metal at low temperature. For R=1.75 Å, at temperatures higher than β = 50, we recover only the

metallic phase.
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For R=2.0 Å at high temperature (β = 25), we see both a metal and a Mott insulator coexisting,

with the Mott insulator being the most stable phase. At lower temperatures, we see the coexistance

of a metallic and band insulator solution. The Helmholtz energy indicates that band insulator is the

most stable phase.

At a longer bond length of (R=2.5 Å), multiple phases are still present. As in the cases of

intermediate bond length, we recover both a band insulator and a metal solution, with Helmholtz

energy favoring the band solution. We would like to reiterate that a phase transition occurs some-

where in this intermediate region, and it is likely that the results of a second-order perturbation

theory may not be accurate enough. At higher temperatures, we recover a Mott insulator as the

only phase present.

For the largest separation (R=4.0 Å), the system remains a Mott insulator at all studied tem-

peratures.

3.2.2.7 Periodic calculation of 1D boron nitride

In this section we present a periodic calculation of 1D boron nitride (BN) at inverse temperatures

β =70, 75, and 100. The B–N distance is set to 1.445 Å, the bond length in the corresponding

2D system [68]. For these calculations we used a modification of the ANO-pVDZ Gaussian ba-

sis set [69] from which, in order to avoid linear dependencies, we removed the diffuse (below

0.1) exponents and polarization functions. Larger grids of 30000 Matsubara frequencies and 100

Legendre polynomials were found necessary for an adequate discretization for the self-energy and

Green’s function. The self-energy is evaluated encompassing 39 cells — as many as needed for a

converged Hartree–Fock exchange.

Shown in Fig. 3.7 is the spectral projection of the real-frequency correlated Green’s function

at β=100. Using the analogy previously discussed at the end of Section V. B, we plot the “highest

occupied” and “lowest unoccupied correlated bands” of 1D BN separated by a sizable gap of

approximately 3.5 eV at k=-π. This magnitude of the band gap is expected based on the properties

of its 2D counterpart [68].
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Figure 3.6: A phase diagram containing all distances and temperatures calculated for a 1D hydro-
gen solid. Where multiple phases exist, the most stable phase is outlined in black. β is inverse
temperature in units 1/a.u. and R is the separation between hydrogens in Å.
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� = 100

Figure 3.7: Spectral projection in the vicinity of the Fermi energy at β=100 of periodic 1D boron
nitride solid. Only the “correlated bands” corresponding to the conventional HOCO’s and LUCO’s
(see Sec. V. B) are displayed. Note that the energy scale is in eV.
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Figure 3.8: Periodic 1D boron nitride solid spectrum for the “correlated HOCO and LUCO” (see
Sec. V. B) for several temperatures at k=−π. The chemical potential was adjusted for ω = 0 to fall
in the middle of the band gap.
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Once again, we treat such a simple system as a benchmark example and we are interested in

the evolution of the 1D BN band gap as the temperature changes and influences electronic degrees

of freedom. Let us stress that while an evolution of the spectrum as a function of temperature is

expected, in order to reproduce it reliably, the computational procedure must be very robust. We

not only must be able to iteratively converge Green’s function and self-energy yielding different

Green’s functions at different temperatures, we also must continue the results obtained on the

imaginary axis to the real axis risking that the continuation will obscure the spectral features and

the gap temperature dependence will no longer be visible.

In Fig. 3.8 we plot the spectrum at k=-π for β=100, 75, and 70. As expected, with the increase

of temperature (decrease of β) the spectral peaks corresponding to the bands broaden and the band

gap reduces. Note that both Fig. 3.7 and 3.8 use eV as energy units for clarity.

3.2.3 Conclusion

While the theory describing the connection between the Matsubara Green’s function formalism and

thermodynamics has been known since the 1960s, few computational methods are currently capa-

ble of employing the Matsubara formalism for realistic systems. This is due to its computationally

demanding nature that requires complicated time and frequency grids as well as the iterative na-

ture of the equations. Moreover, little is know about obtaining different solutions corresponding to

different phases or non-physical solutions that can appear as the result of the non-linear procedure

used when Green’s functions are constructed iteratively on the imaginary axis.

In our last work [51], we have demonstrated one of the first applications of the fully self-

consistent Matsubara Green’s function formalism to a benchmark periodic problem with realistic

interactions, that is, a 1D hydrogen solid. In the current work, we have shown that it is possible

to evaluate temperature dependent thermodynamic quantities using a self-consistent second-order

Green’s function method. Using the self-consistent Green’s function and self-energy, we were able

to evaluate the Luttinger-Ward functional at various temperatures and obtain static thermodynamic

quantities such as Helmholtz energy, internal energy, and entropy. Evaluation of these quantities
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gives us access to the partition function and any thermodynamic quantity that can be derived from

it. Unlike the FCI case, in GF2 we do not need to explicitly calculate excited state energies or

Boltzmann factors, making calculation of thermodynamic quantities for larger systems feasible.

To calibrate the thermodynamic data obtained from GF2 against FCI, we have illustrated that

for a hydrogen fluoride molecule at high temperature, we are able to obtain energies in excellent

agreement with finite temperature FCI. In the lower temperature regime, we observed, as expected,

some deviation from the FCI answer but the overall quality of the results still remained high.

Finally, since the thermodynamic data can be used to construct phase diagrams, we used a

simple 1D hydrogen solid to investigate possible phases at different temperatures and interatomic

distances. We obtained different phases such as a band insulator, Mott insulator, or metal, and

we were able to distinguish which phase is more stable at various temperatures. Determining the

stability is possible due to our ability to calculate not only the internal energy but also the entropic

contribution at each temperature. Consequently, based on the difference of the Helmholtz energy,

we are able to determine the most stable phase for each of the temperature points.

Additionally, we have performed a calculation of 1D periodic BN solid demonstrating that GF2

can reproduce the gap deviation as a function of temperature. Thus, for higher temperatures, we

have observed the narrowing of the electronic bandgap.

While we acknowledge that GF2 is a low order perturbative method and as such can deliver

results that are inaccurate, we believe that for most weakly and moderately correlated systems

such as semiconductors with small band gaps, it can be used in the future to provide accurate

thermodynamic data and phase diagrams. For systems where the correlations are strong, GF2 can

be combined with methods such as self-energy embedding theory (SEET) [53, 70, 71] to provide

accurate answers concerning thermodynamics.
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3.2.4 Appendix: High-frequency expansion of the Green’s function for eval-

uating the Luttinger-Ward functional

Here, we consider the contribution to the Luttinger-Ward functional in the high frequency limit.

In the Matsubara formalism for large frequencies, the Green’s function and self-energy can be

expressed as a series

G(iωn) =
G1

iωn
+

G2

(iωn)2 + O(
1

(iωn)3 ), (3.24)

Σ(iωn) =
Σ1

iωn
+

Σ2

(iωn)2 + O(
1

(iωn)3 ). (3.25)

The coefficients for the Green’s function expansion for non-orthogonal orbitals with a quantum

chemistry Hamiltonian [72] are given as

G1 = S −1,

G2 = S −1(F − µS )S −1.

(3.26)

The Σ1 and Σ2 coefficient of the self-energy has a complicated explicit form as demonstrated in

Ref. rusakov2014local and is evaluated numerically as

Σ1 = Re (Σ(iωmax) × iωmax)

Σ2 =

(
Σ(iωmax) −

Σ1

iωmax

)
× (iωmax)2.

(3.27)

For the molecular example used in this work, the high frequency contribution to Tr[GΣ] was

evaluated in the same manner as previously discussed in Ref. GF2,spline. At the very high tem-

peratures considered for molecular examples, the high frequency contribution becomes negligible.

However, it is necessary to include at the lower temperatures considered. The high-frequency con-

tribution to the Ωk
Tr[GΣ] term of Eq. 3.19 can be evaluated in a way analogous to the molecular
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Internal Energy (a.u.) Grand Potential (a.u.) Entropy (kB)

T (K) Hartree-Fock GF2 FCI Hartree-Fock GF2 FCI Hartree-Fock GF2 FCI

103 -98.571 -98.588 -98.597 -98.571 -98.585 -99.845 0.0 -0.003 0.0

104 -98.571 -98.588 -98.597 -98.571 -98.621 -99.944 0.0 0.0 0.0

105 -97.944 -98.135 -98.049 -101.021 -103.067 -102.107 3.175 3.566 3.475

106 -96.794 -96.988 -96.945 -150.563 -151.410 -151.244 4.979 4.949 4.958

107 -92.028 -92.057 -92.056 -729.937 -730.100 -730.095 5.348 5.348 5.348

108 -88.483 -88.487 -88.487 -6846.975 -6847.001 -6847.003 5.406 5.406 5.406

Table 3.3: FCI, GF2, and finite temperature Hartree-Fock results for the hydrogen fluoride
molecule in STO-3G basis. A higher value of temperature corresponds to a smaller value of
β = 1/kBT . Note that the grand potential depends on chemical potential Ω = E − TS − µN that for
gaped system is not uniquely defined. The difference in the FCI, finite temperature Hartree-Fock,
and GF2 for the 104 − 104 K temperatures are the result of this non-uniqueness of the chemical
potential. The Helmholtz energy A = Ω + µN = E − TS , which is the sum of the grand potential
and µN term does not suffer from this non-uniqueness.

case.

To evaluate the high frequency contribution to the logarithm term Tr[ln{1 − GΣ}] in Eq. 3.17,

we expanded the logarithm as a Taylor series ln(1 − x) = x − x2

2 + . . . to yield

ln
(
1 −

G1Σ1

(iωn)2

)
=

G1Σ1

(iωn)2 + O
( 1
(iωn)3

)
. (3.28)

We exclude in this expansion all terms that are equal or smaller in magnitude than O
(

1
(iωn)3

)
. Thus,

it is only necessary practically to evaluate the first term in the expansion to capture the important

contribution from the high frequency limit. We would like to emphasize that although we do not

present results including the high frequency contribution to the logarithm term Tr[ln{1 − GΣ}] in

Eq. 3.17 for the periodic hydrogen solid, this term was evaluated and was found to be minuscule

compared to the magnitude of the other energies. However, we would like stress that it is possible

that this contribution may be substantial for other systems.
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CHAPTER 4

Spectra

4.1 Introduction

A crucial aim of electronic structure has been to provide theoretical insight to experiments through

calculation of ionization potentials (IP) and electron affinities (EA). While ab-initio methods con-

tain information related to these spectroscopic quantities, they are not always able to produce

reliable chemical accuracy for the system under investigation. Additionally, even if an electronic

structure method is known to be accurate or reliable, the IPs and EAs are not always straightfor-

ward to obtain. Computational cost produces an additional barrier, making some methods only

applicable to small systems with modest basis sets.

Beginning from Koopmans’ theorem [73], several schemes have been invented and used to

extract IPs and EAs from wavefunction electronic structure methods. There are several excellent

studies detailing the use and limitations of these methods, and it is clear that such schemes have

provided invaluable insight that has advanced both experimental and theoretical physical chemistry.

Similar formulations have employed the use of density functional theory (DFT) and there are a

number of studies outlining the theoretical and practical aspects of such an approach. A recent

series of papers conducts a systematic study of many of these methods for a set of small organic

molecules. [74, 75, 76, 77] While both of these methods are viable and used in the quantum

chemistry community, there is no standout method for obtaining these quantities for systems of

appreciable size.
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Calculating accurate ground state properties of molecules has historically been a huge aim

of electronic structure calculations for chemists. Therefore, it is acceptable that wavefunction

and DFT methods carry out calculations at zero-temperature. However, to make reliable physi-

cal comparisons with experiments, which are carried out at non-zero temperature, it is necessary

to incorporate temperature into the calculation of spectral quantities. While wavefunction and

DFT methods have finite-temperature extensions of the zero-temperature formalism, they are not

used frequently in the evaluation of spectra. Furthermore, these implementations are usually more

costly than the parent zero-temperature methods. For these reasons, we seek an electronic structure

method to calculate spectra that incorporates temperature and can be applied to realistic chemical

systems.

In addition to wavefunction and DFT methods, quantum chemists have employed the zero-

temperature Green’s function to study electronic structure and produce spectroscopic quantities.[78]

Although the poles of the zero-temperature Green’s function are the IPs and EAs of the system,

giving this method a clear connection with spectroscopy, computational limitations have made its

use less attractive than wavefunction or DFT methods. Storage requirements and mathematical

considerations make can make this method more cumbersome to employ to obtain ground state

energies than other well established black-box electronic structure methods.

The finite-temperature (Matsubara) Green’s function method is not an extension of a zero-

temperature method, but is developed under a separate formalism, capable of producing different

quantities. The mathematical structure of the Green’s function differs from that at zero-temperature

in that it no longer has poles corresponding to IPs and EAs. In losing this information, we gain the

advantage of the Green’s function now being a smooth function that can be evaluated iteratively

in a self-consistent manner. This allows us to evaluate the finite-temperature Green’s function at

a reasonable computational cost using a second-order approximation to the self-energy (GF2) that

can be employed in a black-box manner [50]. While the Green’s function contains information

about the spectra, the finite-temperature method no longer provide such straightforward access to

the IPs and EAs as the zero-temperature method. It is challenging to analytically continue the
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imaginary Green’s function to the real axis to resolve the details of the spectrum. Therefore, when

investigating methods to obtain IPs and EAs from the imaginary frequency axis, it is crucial to

evaluate the robustness of such procedures.

In this work, we describe procedures to extract IP/EA from a finite-temperature Green’s func-

tion, and demonstrate how reliably one is able to produce such quantities. We calculate systems

with known IPs/EAs from experiment and for which highly accurate calculated values are avail-

able. Further, we apply these methods to larger systems (DNA/RNA bases) to illustrate the ap-

plicability of these methods to chemically interesting species. We calculate singlet-triplet gaps of

several molecules using GF2, to illustrate that this method can give reasonable values for these

quantities as well. The purpose of this study is to systematically test the behavior of various ways

to obtain the IPs and EAs from an imaginary Green’s function and is not meant to compete in

chemical accuracy with high level theories. Instead, we aim to understand how reliably one may

obtain IPs and EAs from the temperature-dependent Green’s function, which was only carried out

for a few atoms and small molecules in the past[18, 19, 20].

We begin by investigating a method to obtain IPs and EAs directly from the imaginary axis,

known as the Extended Koopmans’ Theorem (EKT). This is a simple eigenvalue procedure that

is an extension of Koopmans’ Theorem from Hartree-Fock. We then investigate methods that are

carried out partially on the imaginary axis, beginning from the density matrix of a converged GF2

calculation. From this converged density matrix, we are able to construct a Green’s function in real

frequency, giving direct access to the spectra.

We show that different procedures of evaluation of spectral quantities, even at the same level

of theory, can yield values for IPs and EAs which can vary by several electron volts. We conclude

that one must exercise caution when choosing a procedure to evaluate IP and EA, even for the same

system at the same level of theory, in order to make reliable comparisons.We show that quantities

obtained directly from the imaginary axis are unreliable in general, while the quantities obtained

partially on the real axis are more consistent, reiterating that it is nontrivial to obtain real axis

information from an imaginary axis Green’s function.
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This chapter is organized as follows. In Section 4.2 we describe the details of our perturba-

tive second-order Green’s function method, GF2, which is calculated on the imaginary axis. We

follow in Section 4.3 with descriptions of the various procedures used to obtain the IPs, EAs, and

fundamental gaps using our GF2 implementation.

4.2 GF2: An imaginary axis formulation

In any correlated system described using Green’s function language, the self-energy, Σ(iωn), ac-

counts for many-body correlation static and dynamic effects and it can be evaluated using the

Dyson equation

Σ(iωn) = G0(iωn)−1 −G(iω)−1. (4.1)

The non-interacting Green’s function, G0(iωn), is expressed as

G0 = [(iωn + µ)S − F]−1, (4.2)

where iωn =
(2n+1)iπ

β
are imaginary (Matsubara) frequencies forming a grid for the Green’s function

evaluation. The inverse temperature is denoted as β, the chemical potential is µ, the overlap and

Fock matrices are denoted as S and F, respectively.

In the self-consistent Green’s function, the self-energy is evaluated self-consistently and ap-

proximated at the second order as

Σ
(2)
i j (τ) = −

∑
klmnpq

Gkl(τ)Gmn(τ)Gpq(−τ)×

×vikmq(2vl jpn − vp jln)

(4.3)

where vi jkl are the two-electron integrals in the atomic orbital (AO) basis in the chemist’s notation,

and τ is an imaginary time.

Since the GF2 Green’s function and self-energy are evaluated on the imaginary axis they are
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smooth antiperiodic functions. This is advantageous since it allows us to iterate the GF2 self-

consistent equations until the convergence is reached, where the self-energy, Σ[G], and Fock matrix

F[G] are both functionals of Green’s function. The iterations are much more difficult to execute

when the Green’s function and self-energy is evaluated on the real axis since then Green’s function

contains multiple peaks corresponding to IPs and EAs of the system. Consequently, in order

to solve the equations iteratively one would need to use an adaptive grid and shift the Green’s

function poles during iterations [79]. The ease of iterating is one of the reasons why imaginary

axis formulation of Green’s function methods is advantageous. Since the calculation can be started

from the HF or DFT Fock matrix, the“memory” of the starting point can be removed during the

iterations, making the whole calculation reference independent. This is in contrast to partially

self-consistent methods such as G0W0, which show a clear dependence on the starting value [80].

During the GF2 calculation, the Fock matrix and the self-energy are updated iteratively. The

Fock matrix F[P] is updated throught the density matrix P updates evaluated from Green’s function

as P = −2G(τ = β). Consequently, since the Fock matrix depends on the density matrix that is a

static, frequency independent quantity, we expect that the final converged Fock matrix should be

independent if the iterative procedure is being carried out on the real or imaginary axis. This would

suggest that perhaps instead of very difficult iterating Green’s function equations on the real axis

until self-consistency, one could first do the “easy iterations” on the imaginary axis to obtain F[P]

and then perform a couple of iterations to evaluate Σ[G] while keeping the Fock matrix fixed.

In the next section, we will consider several schemes that will allow us to evaluate spectral

quantities while fully or partially using the information that is evaluated on the imaginary axis,

avoiding very difficult real axis iterations.

4.3 Fundamental Gap Evaluation for GF2

In this section, we will discuss various methods that we used to obtain IP and EA. These can be

used to obtain the fundamental gap. The first method, the Extended Koopmans’ Theorem (EKT)
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involves obtaining the IP and EA directly from the imaginary axis formalism. The other methods,

which we call, (F(GF2)+Σ(2), HF+ Σ
(2)
ii , and HF + iter Σ

(2)
ii ) require a “single iteration” of Green’s

function theory on the real axis, and therefore necessitate one to build the self-energy on the real

frequency axis. In all cases, we begin from the converged density matrix and Fock matrix obtained

from GF2 calculations on the imaginary axis.

4.3.1 Extended Koopmans’ Theorem

The extended Koopmans’ theorem (EKT) provides a straightforward way to calculate IPs and EAs

directly from the imaginary axis Green’s function.

A system of interest is described by Hamiltonian Ĥ and its wave function is an N electron state

|N〉. The energy of this systems is given by Ĥ|N〉 = E|N〉. The (N −1) and (N + 1) wave function can

be obtained by acting on the N-electron state with the second-quantized operators, â|N〉 = |N−1〉,

â†|N〉 = |N+1〉. Consequently, the energies of the anion, neutral, and cation states can be expressed

as

EN+1 = 〈N|â Ĥ â†|N〉 ,

EN = 〈N|Ĥ|N〉 ,

EN−1 = 〈N|â† Ĥ â|N〉 ,

(4.4)

respectively. Given Eq. 4.4, IP and EA can be defined as

IP = EN−1 − EN = −〈N|â†[â, Ĥ]|N〉 ,

EA = EN − EN+1 = 〈N|â[â†, Ĥ]|N〉 .
(4.5)

It should be understood these operators are expanded in a basis, â =
∑

i ciφ̂i, with the expansion

coefficients ci chosen so that the anion (cation) state remains normalized [81].
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For practical calculations we want to connect Eq. 4.5 to the quantities such as G(τ) that can

be evaluated in Green’s function many-body theory [11]. This connection can be realized in the

following way

lim
τ→0

∂G(τ)
∂τ

=

{
〈N |â[â†, Ĥ]|N〉 , τ > 0

〈N |â†[â, Ĥ]|N〉 , τ < 0.
(4.6)

The above equation implies that to evaluate the IP and EA, we must solve the following equations

HIc = εPc (4.7)

HAc = εPvc, (4.8)

where HI and HA refer to matrices that we will call generalized Fock matrices that are defined as

[HI]i j ≡ 〈N|φ̂
†

i [φ̂ j, Ĥ]|N〉 and [HA]i j ≡ −〈N|φ̂i[φ̂
†

j , Ĥ]|N〉. The “particle” and “hole” density matrices

are denoted as P and Pv.

In wave function methods, the evaluation of the HI and HA matrices is a major task, however,

in the many-body Green’s function methods they can be evaluated simply as time-derivatives of the

Green’s function on the imaginary-domain in the AO basis, as shown in Eq. 4.6. For compactness,

we simply denote these two possibilities as ∂τG(τ)|0+ and ∂τG(τ)|0− .

Due to the discontinuity of the Green’s function at τ = 0, Eq. 4.6 has its two branch form. Further-

more since G(τ) = −G(τ + β), the partial derivatives can be expressed as ∂τG(τ)|0− = −∂τG(τ)|β.

The Eqs. 4.7-4.8 can be written in an eigenvalue form by introducing c′ = P1/2c and c′ = P1/2
v c

while multiplying on the left by P−1/2 and P−1/2
v , respectively. Consequently, we will obtain

∆− = 2P−1/2∂τG(τ)|0−P−1/2, (4.9)

∆+ = −2P−1/2
v ∂τG(τ)|0+P−1/2

v , (4.10)
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where the eigenequations yielding IP and EA are

∆−c′ = εIc′ , εI = IP + µ (4.11)

∆+c′ = εAc′ , εA = EA + µ. (4.12)

The factors of two in Eqs. 4.9-4.10 account for double occupation in our spin-restricted formal-

ism. Note that if we were to substitute G(τ) with the Hartree-Fock Green’s function GHF(τ), the

eigenvalues of Eq. 4.12 are the Koopmans’ theorem eigenvalues.

One subtlety is that diagonalizing ∆± will of course yield as many eigenvalues as there are AO

basis functions, Nb, yet only some of these eigenvalues will be physically meaningful as IPs or EAs.

The simplest way to identify the correct eigenvalues is by the analyzing the Dyson occupations

which are the diagonal elements of D and Dv matrices defined as

C†−P C− = D,

C†+PvC+ = Dv,

(4.13)

where C± are the matrices of eigenvectors, C = {c′1, c
′

2, . . .}, obtained from diagonalizing ∆±. Note

that the diagonal elements of D correspond to the Dyson orbital occupations in the electron removal

process while the diagonal elements of Dv are the Dyson orbital occupations in electron attachment

process.

We would like to mention that the use of the extended Koopmans’ theorem is not limited to

GF2 or even Green’s function methods. In the past it has been applied to a variety of cases at

different levels of theory [82, 83, 84, 85, 86, 87, 88, 89, 90, 91].

The results from applying EKT to the GF2 Green’s function will be listed in Sec. 4.4.
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4.3.2 HF+Σ
(2)
ii and HF+iter Σ

(2)
ii

Here, we describe the procedure to evaluate the second-order self-energy on the real axis, starting

with the converged Fock matrix F obtained from our GF2 procedure iterated on the imaginary axis.

The real axis self-energy is expressed as

Σ
(2)
i j (ωn) =

1
2

∑
ars

vrsiav jars

ωn + εa − εr − εs
+

+
1
2

∑
abr

vabirv jrab

ωn + εr − εa − εb
,

(4.14)

where vi jkl are the antisymmetrized two-body integrals in the molecular orbital (MO) basis in the

chemist’s notation. The occupied orbitals are labeled a, b and unoccupied orbitals are labeled r, s;

the i and j labels can refer to any orbital. The frequencies (ωn = ω
′

n + iη) are constructed as a real

axis ω
′

n grid with a small imaginary broadening term iη = 0.001i. The self-energy is computed in

the MO basis on the real axis, in contrast to the imaginary axis, where it was computed in the AO

basis. We would like to emphasize that we do not obtain the self-energy on the real axis through

an iterative GF2 procedure, instead we perform a “single shot” self-energy evaluation which is

constructed using the Fock matrix that was obtained in the self-consistent GF2 procedure.

Once the real axis second-order self-energy is evaluated, we are able to find the roots of Dyson’s

equation, where we ignore the off-diagonal elements of Σ(2)(ωn) and solve only

∏
i

(ωn − εi − Σ
(2)
ii (ωn)) = 0. (4.15)

This expression gives the lowest-order correction to the Koopmans’ theorem IP. Then the corrected

IPs are expressed as

ε′i = εi + Σii(εi) (4.16)

where ε′i is the corrected IP. We refer to the IP/EA obtained in this manner as HF+Σ
(2)
ii . We can
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evaluate Eq. 4.16 iteratively by reevaluating the self-energy at the new value ε′i until convergence

is reached. Due to the iterative nature it is not always easy or even possible to converge Eq 4.16.

To help with convergence, we introduce a simple damping scheme

Σ
(2)′′
ii = αΣ

(2)
ii + (1 − α)Σ(2)′

ii (4.17)

where α is a damping parameter between 0.0 and 1.0, Σ
(2)
ii is the self-energy from the previous

iteration, and Σ
(2)′
ii is the updated self-energy. We refer to the IP/EA obtained in this manner as

HF+iter Σ
(2)
ii .

4.3.3 F(GF2)+Σ(2)

In the F(GF2)+Σ(2) approach the the self-energy is built on the real axis according to the Eq. ??,

however, here the eigenvalues of the Fock matrix present in the denominators are obtained from

the diagonalization of the Fock matrix that comes from the fully converged GF2 procedure on the

imaginary axis. Such a Fock matrix depends on the correlated one-body density matrix through

the correlated Green’s function, as described in Sec. 4.2. For low temperatures, for predominantly

single reference cases, the occupied orbitals still have occupancies arround 2, while the unoccupied

orbitals have occupancies near 0. Using such a full self-energy matrix on the real axis, the Green’s

function is built according to the Dyson equation

G(ωn) = [(ωn + µ)1 − ε − Σ(2)(ωn)]−1 (4.18)

where ε is the matrix of eigenvalues coming from the diagonalization of the converged Fock matrix

from GF2, µ is the chemical potential, and the ωn grid is the same as described in the previous

section. We would like to emphasize once again that we do not iterate G(ωn) on the real axis. Note

that in contrast to the HF+Σ
(2)
ii and HF+iter Σ

(2)
ii the F(GF2)+Σ(2) approach includes all off-diagonal

elements of Σ(2).
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Using the real axis Green’s function, we evaluate the spectral function as

A(ωn) =
−1
π

Tr[ImG(ωn)] (4.19)

with peaks corresponding to the IPs/EAs. We have chosen to call this method of spectra evalua-

tion as F(GF2)+Σ(2), referring to the fact that the Fock matrix F comes from the converged GF2

calculation on the imaginary axis.

4.4 Results

We have benchmarked these methods for closed shell atoms using Dunning’s augmented correla-

tion consistent basis sets (aug-cc-pVXZ, X=D,T,Q). We compare against UCCSD(T) energy dif-

ferences and experimental values when available. Additionally, we have computed the ionization

potentials of several molecules in the basis aug-cc-pVDZ and for DNA bases (adenine, thymine,

cytosine) and the RNA base uracil in Dunning’s cc-pVDZ basis.

4.4.1 Ionization Potentials

The results for atoms can be found in Fig. 4.1. For these cases, UCCSD(T) energy differences

reproduce the experimental IPs very accurately. As expected, the Koopman’s theorem IPs from

Hartree-Fock overestimate the experimental IPs. All of the Green’s function methods tend to

underestimate the IPs for these systems. The Extended Koopmans’ theorem IPs underestimate the

most, sometimes giving worse or similar agreement to Koopmans’ theorem. For these systems

the method that most closely recovers the IPs is HF+Σ
(2)
ii , but this is most likely fortuitous. While

both iterated methods have lowered IPs in comparison with non-iterated ones, they are in principle

independent of the reference.

The results for molecules are given in Table 4.1. It is clear from these results that the HF + Σ
(2)
ii

method behaves erratically, sometimes giving a good result and sometimes giving a result which

differs by several electron volts in comparison with the experimental value. This indicates that
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F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T) GW[92] Expt

Be2 6.51 6.21 6.62 6.99 6.55 7.42
BH3 12.93 12.82 13.52 13.04 12.87 13.17 12.79- 13.28 12.03

C2H2 (acetylene) 10.79 10.24 11.19 11.13 10.68 11.36 10.93-11.35 11.49
C2H4 (ethylene) 9.85 9.54 10.21 10.1 9.75 10.55 10.17-10.68 10.51

CO 13.22 12.2 15.09 13.8 12.87 13.8 13.37-14.33 14.01
CO2 12.56 11.71 14.82 12.48 - 13.61 13.04-13.81 13.78

H2CO (formaldehyde) 9.62 9.12 12.02 9.54 9.01 10.74 10.32-11.02 10.88
H2O 11.48 11.31 13.86 10.91 10.57 12.54 11.92-12.75 12.65
H2O2 10.18 9.51 13.31 9.53 - 11.46 10.92-11.58 11.70
HCN 13.13 12.26 13.5 13.43 - 13.62 13.13-13.87 13.61
HF 14.86 14.68 17.68 13.91 13.71 16.02 15.26-16.24 16.12
Li2 4.98 4.69 4.95 5.17 5.01 5.23 4.99-5.43 4.73
LiF 10.3 9.89 12.91 8.85 8.36 11.37 9.95-11.84 11.30
LiH 7.82 7.77 8.2 7.89 7.77 7.94 6.54-7.85 7.90

MgH2 9.70 9.80 10.09 9.81 9.67 9.76
N2 14.29 13.53 17.26 14.52 13.71 15.36 14.72-15.43 15.58
Na2 4.61 4.67 4.51 4.77 4.64 4.85 4.83-5.03 4.89
NaF 8.51 8.38 11.59 4.97 6.36 9.98
NaH 6.83 6.82 7.43 6.84 6.83 7.04
NaLi 4.77 4.69 4.71 4.95 4.8 5.01

NaOH 6.82 6.42 9.11 5.59 - 7.86
NH3 9.94 9.86 11.67 9.79 9.46 10.76 10.27-10.93 10.82

Table 4.1: Ionization potentials in eV for closed shell molecules calculated with aug-cc-pVDZ.

as the system size becomes larger this method may not be reliable, and also hints that the results

obtained for the atoms are a result of a fortunate cancellation of error, and not due to the accuracy

of the method.

There is no method for IP presented here that is able to consistently give an IP that is close to

experiment aside from UCCSD(T), which is a very expensive method in comparison with the other

methods. Due to the scaling, it would be challenging to use this method for very large systems.

We can see from the Green’s function methods that even at the same level of theory (second-order

in this case) the approximation chosen to evaluate the IP can have a drastic effect on the value

obtained. Therefore, one must exercise caution when choosing a method of evaluation and trying

to make meaningful comparisons between IPs obtained using different methods.
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4.4.2 Electron Affinities

Electron affinities for some atoms can be found in Fig. 4.2. We compare our results with EAs

calculated from energy differences between UCCSD(T) neutral and charged species due to lack of

available experimental data for this property. The HF and EKT values are quite similar and are

in general quite far from the UCCSD(T) reference. The F(GF2) + Σ(2) method gives consistent

and accurate EAs in comparison with UCCSD(T). Similar to the IPs, the EAs with the HF+Σ
(2)
ii

method give good results for atoms, but this is once again most likely fortuitous. Iteration using

the HF+iter Σ
(2)
ii method can sometimes improve the accuracy, but this is unpredictable. We would

like to emphasize that this iteration is only for the diagonal elements of the self-energy, and since

we are only updating the self-energy, this method is still dependent on the HF reference.

Electron affinities for the molecules can be found in Table 4.2. It is clear that HF and EKT

give results that underestimate UCCSD(T) values in general. When the UCCSD(T) EA is positive,

both of these methods often fail qualitatively and give a negative EA. The HF + Σ
(2)
ii method is

typically a good correction to HF, but this is highly dependent on the fact that HF gives a good

value. Iteration in the HF + iterΣ(2)
ii method does not necessarily bring the EA into better agreement

with UCCSD(T). F(GF2) + Σ(2) consistently gives EAs that agree well with UCCSD(T) across all

systems.

Comparing the smaller molecules to larger ones indicates that HF and EKT are less accurate

as the system size grows. Therefore, methods that depend on the starting reference may tend to

become less accurate as the system size increases. For this reason, fully iterated methods are

advantageous.

4.4.3 Fundamental Gap

For all atoms and molecules, the accuracy of the fundamental gap (gap = IP-EA) is heavily depen-

dent on the accuracy of the EA, as all methods gave relatively similar results for the IP, but can

give drastically different values for EA. F(GF2) + Σ(2) performs very well for this reason, both in
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F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T)

Be2 0.44 -0.30 -0.21 0.39 0.52 0.34

BH3 -0.15 -0.92 -0.88 -0.35 -0.31 -0.15

C2H2 (acetylene) -0.97 -1.09 -1.08 -0.97 -0.97 -0.99

C2H4 (ethylene) -1.20 -1.37 -1.37 -1.22 -1.20 -1.22

CO -1.75 -2.34 -2.15 -1.83 -1.78 -1.81

CO2 -2.22 -2.38 -2.34 -2.21 - -2.23

H2CO (formaldehyde) -0.92 -1.42 -1.38 -0.74 -1.33 -1.19

H2O -0.74 -0.93 -0.96 -0.79 -0.74 -0.75

H2O2 -1.04 -1.37 -1.38 -1.18 - -1.16

HCN -0.67 -0.83 -0.79 -0.64 - -0.69

HF -0.80 -0.95 -0.97 -0.83 -0.80 -0.80

Li2 0.23 -0.10 -0.08 0.16 0.17 0.32

LiF 0.32 0.27 0.29 0.33 0.32 0.34

LiH 0.27 0.20 0.21 0.27 0.27 0.30

MgH2 -0.56 -0.65 -0.65 -0.57 -0.35 -0.50

N2 -2.61 -2.81 -3.39 -3.18 -2.60 -2.60

Na2 0.32 -0.05 -0.01 0.28 0.29 0.36

NaF 0.40 0.43 0.44 0.27 0.47 0.48

NaH 0.29 0.22 0.24 0.30 0.30 0.32

NaLi 0.30 -0.07 -0.04 0.25 0.25 0.35

NaOH 0.38 0.32 0.31 0.36 - 0.39

NH3 -0.74 -0.94 -0.98 -0.79 -0.75 -0.75

Table 4.2: Electron affinities in eV for closed shell molecules calculated with aug-cc-pVDZ.
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consistency across different systems and in overall accuracy. The fundamental gaps for atoms can

be found in Fig. 4.3.

The fundamental gaps for molecules can be found in Table When HF + Σ
(2)
ii gives a reasonable

EA, the value for fundamental gap is often good as well. For many systems EKT is able to give

agreement comparable to other Green’s function methods, but this is due to some fortunate error

cancellation between IP and EA. This was not the case for the DNA bases, which were much larger.

4.4.4 DNA and RNA nucleobases

In this section, we apply our GF2 method to DNA bases adenine, thymine, and cytosine and the

RNA base uracil. Due to their obvious biological importance, there is a wealth of experimental

and theoretical data regarding their electronic properties. As these bases exist in several tautomeric

forms that are close in energy, it is often necessary to use a combination of experiment and accurate

theories to resolve their spectra[93]. We present the IPs and EAs of these molecules using GF2

and our various procedures to extract these quantities.

We have computed IPs for these nucleobases, and these results can be found in Fig. 4.4. In

general, no method is able to recover the IP with great accuracy, but these data allow us to un-

derstand some trends regarding how the methods behave. As expected, HF tends to overestimate

in comparison with experiment, and using the diagonal approximation HF + Σ
(2)
ii lowers the value

of IP, but does not always give a more accurate answer, especially if the HF IP is already quite

close to the experimental IP. EKT underestimates IP for these systems, as does F(GF2) + Σ
(2)
ii , but

these two methods are reference independent, whereas HF + Σ
(2)
ii relies on the HF value giving a

reasonable guess for the IP.

Also shown in Fig. 4.4 are the EAs. HF underestimates the EA by several electron volts in all

cases. Including the diagonal correction through the HF + Σ
(2)
ii vastly improves the agreement with

experiment for all of these systems. The inclusion of correlation through EKT gives worse agree-

ment than HF, lowering the EA by over 1 eV in all cases. The F(GF2) + Σ(2) method consistently

gives good agreement in comparison with the other methods presented here.
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F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T)

Be2 6.07 6.51 6.83 6.60 6.03 7.09

BH3 13.08 13.75 14.41 13.39 13.18 13.32

C2H2 (acetylene) 11.75 11.33 12.27 12.10 11.65 12.34

C2H4 (ethylene) 11.06 10.90 11.58 11.32 10.95 11.77

CO 14.97 14.55 17.24 15.63 14.64 15.61

CO2 14.78 14.08 17.16 14.69 - 15.84

H2CO (formaldehyde) 10.54 10.54 13.40 10.28 10.34 11.93

H2O 12.23 12.24 14.83 11.70 11.31 13.29

H2O2 11.22 10.88 14.68 10.71 - 12.63

HCN 13.80 13.09 14.28 14.07 - 14.31

HF 15.66 15.62 18.64 14.75 14.51 16.82

Li2 4.75 4.80 5.03 5.00 4.84 4.91

LiF 9.99 9.62 12.62 8.52 8.03 11.03

LiH 7.54 7.56 7.99 7.62 7.49 7.64

MgH2 10.26 10.45 10.73 10.38 10.02 10.26

N2 16.91 16.33 20.65 17.69 16.31 17.96

Na2 4.29 4.73 4.52 4.48 4.34 4.49

NaF 8.10 7.95 11.15 4.70 5.90 9.50

NaH 6.54 6.60 7.19 6.54 6.53 6.72

NaLi 4.48 4.77 4.74 4.70 4.55 4.65

NaOH 6.44 6.10 8.80 5.24 - 7.47

NH3 10.68 10.80 12.65 10.58 10.20 11.51

Table 4.3: Fundamental gaps in eV for closed shell molecules calculated with aug-cc-pVDZ.
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Figure 4.4: Ionization potentials, electron affinities, and fundamental gap for DNA/RNA bases
(A=Adenine, T=Thymine, C=Cytosine, U=Uracil). Basis cc-pVDZ. Geometries taken from
Ref. [94].

As with the atoms and small molecules in the earlier section, the agreement of the fundamental

gap with experiment is almost entirely dependent upon the agreement of the EA with experiment.

The DNA/RNA bases illustrate this point clearly. In all cases, GF2 gives the closest gap to experi-

ment, due largely to the acceptable accuracy of the IP and the comparitively good accuracy of the

EA. Because EKT drastically underestimates the EA, the gaps from EKT for these systems are sev-

eral electron volts higher than the experimental gaps, and more closely resemble the Hartree-Fock

gaps. The method HF + Σ
(2)
ii also gives good agreement with the gap for these systems.

4.5 Singlet-Triplet Gap Evaluation

We investigated the ability of our GF2 method to approximate singlet-triplet gaps. We do so by

evaluating the energy difference between the singlet and triplet state, which requires an unrestricted

formalism. We highlight the differences between the restricted and unrestricted GF2 algorithms

here. The geometries were obtained from Ref. [94].

To accommodate unpaired electrons, we require two density matrices, Pα and Pβ, for alpha spin

and beta spin, as well as their respective Fock matrices, Fα and Fβ. Using these quantities, we can

build the Green’s functions iteratively using Eqns. 4.1 - 4.3 given in Sec. 4.2. We now require two

bisections to find the chemical potentials µα and µβ.

We have calculated singlet-triplet gaps for some molecular systems. These data can be found
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GF2 MP2 UCCSD UCCSD(T) Expt

ethene 4.63 4.58 4.41 4.53 4.36-4.6

benzene 4.77 5.81 5.42 5.40 3.66

butadiene 3.47 3.53 3.38 3.41 3.22

naphthalene 2.02 3.90 3.28 3.26 2.64

cyclopentadiene 3.44 3.50 3.27 3.32 4.7

Table 4.4: Singlet Triplet Gaps in eV. Basis cc-pVDZ. Experimental gaps from Ref. [95].
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Figure 4.5: Singlet-triplet gaps aug-cc-pVDZ evaluated with unrestricted GF2.

in Table 4.4. We have compared our results with MP2, CCSD, and CCSD(T) results. We are able

to obtain reasonable agreement with experimental gaps for these systems. For smaller systems,

GF2 shows more agreement with MP2, while for larger systems the GF2 result can differ by over

1 eV. It is worth noting that these systems are calculated in the cc-pVDZ basis, which is a rather

modest basis.
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4.6 Conclusions

The goal of this work was to investigate the ability of a temperature-dependent Green’s function

method to obtain IPs and EAs for nontrivial chemical systems. To this end, we calculated several

atoms, small molecules, and slightly larger molecules, and explored a variety of ways to extract real

axis data from the imaginary axis Green’s function. The simplest way we attempted to carry this

out was using EKT to obtain IPs and EAs directly from the imaginary axis. We found in general

that this was an unreliable approach and can give IPs and especially EAs that are very far from

experimental values or UCCSD(T) values, which are thought to be highly accurate. To explore

another route, we relied on the fact that the converged density matrix is the same on both the real

and imaginary axis. From this density, we are able to construct a new Fock matrix, and then build a

Green’s function on the real frequency axis. There are different approximations to employ in order

to evaluate the self-energy, including a diagonal approximation (HF+Σ
(2)
i i), an interated diagonal

approximation (HF+iter Sigma(2)
i i, and a full construction of the self-energy (F+Σ

(2)
ii ).

In this work we have investigated the ability of GF2 to calculate IPs, EAs, fundamental gaps,

and singlet-triplet gaps for a range of atomic and molecular systems. In general, it was very difficult

to obtain EAs in good agreement with UCCSD(T) using any method. There was no method that

emerged as the superior method, and results could vary based on the type of system. The most

consistent method was building the full self-energy on the real axis, including all of the diagonal

elements. This method (F+Σ
(2)
ii ) was able to give the results similar in accuracy across a range of

systems. Although all quantities computed with the Green’s function in this work were done with

a second-order evaluation of the self-energy, different evaluation methods can give values for these

quantities that differ by several electron volts from each other.

For smaller systems such as atoms or molecules, there is some indication that a method gives

good agreement with experiment due to error cancellation rather than due to accuracy of the

method. Fully self-consistent Green’s function methods give consistent results across all systems

considered in this work, while methods such as EKT can benefit from error cancellations or can
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fail drastically. For the DNA bases we found that the IPs were recovered reasonably by all of the

methods considered, while EAs for these systems showed great deviations between the methods.

Overall, it is unclear whether including more correlation leads to more reliable accuracy for these

methods, and further study would be needed to uncover the reasons for the numerical or physical

reasons for the deviations of each method. In general, we have demonstrated that it is non-trivial to

obtain spectra from the imaginary axis, and that severe caution is needed when evaluating spectra

from different methods and approximations.

4.6.1 Supplemental Information
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aug-cc-pVDZ

F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T) Expt

He 24.32 24.26 24.96 24.34 24.28 24.36 24.578

Be 8.59 8.38 8.42 8.86 8.62 9.29 9.32

Ne 20.41 20.32 23.21 19.49 19.52 21.42 21.565

Mg 7.09 6.96 6.89 7.29 7.12 7.53 7.65

aug-cc-pVTZ

F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T) Expt

He 24.45 24.42 24.98 24.52 24.42 24.54 24.578

Be 8.64 8.44 8.42 8.93 8.66 9.28 9.32

Ne 20.41 20.23 23.16 19.72 19.62 21.47 21.565

Mg 7.16 7.02 6.89 7.37 7.18 7.56 7.65

aug-cc-pVQZ

F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T) Expt

He 24.49 24.47 24.98 24.57 24.46 24.56 24.578

Be 8.66 8.46 8.42 8.97 8.69 9.30 9.32

Ne 20.46 20.24 23.15 19.87 - 21.55 21.565

Mg 7.19 7.08 6.89 7.42 7.21 7.58 7.65

Table 4.5: Ionization potentials in eV for atoms calculated in aug-cc-pVXZ (X=D,Z,Q) using
different methods. A dash indicates no convergence.
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aug-cc-pVDZ

F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T)

He -4.68 -4.75 -4.74 -4.68 -4.68 -4.67

Be -0.33 -0.47 -0.45 -0.36 -0.36 -0.39

Ne -7.32 -7.65 -7.82 -7.47 -7.29 -7.32

Mg -0.30 -0.48 -0.45 -0.32 -0.32 -0.26

aug-cc-pVTZ

F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T)

He -2.96 -3.01 -3.01 -2.96 -2.96 -2.95

Be -0.28 -0.41 -0.40 -0.32 -0.32 -0.37

Ne -6.11 -6.55 -6.55 -6.17 -6.08 -6.10

Mg -0.25 -0.40 -0.38 -0.28 -0.28 -0.25

aug-cc-pVQZ

F(GF2) + Σ(2) EKT HF HF+Σ
(2)
ii HF + iter Σ

(2)
ii UCCSD(T)

He -2.63 -2.69 -2.69 -2.64 -2.64 -2.63

Be -0.26 -0.38 -0.37 -0.30 -0.31 -0.34

Ne -5.49 -5.62 -5.62 -5.52 - -5.29

Mg -0.23 -0.38 -0.36 -0.27 -0.27 -0.22

Table 4.6: Electron affinities in eV for atoms caclulated in aug-cc-pVXZ (X=D,Z,Q) using different
methods. A dash indicates no convergence.

67



CHAPTER 5

Temperature-Dependent Configuration Interaction

Impurity Solver for Quantum Embedding

Recently, in the quantum chemistry community, more attention has been given to quantum embed-

ding methods. In particular, rigorous quantum embedding theories that have non-trivial electron

exchange between the impurity and the environment have seen much development in recent years.

Such methods include density matrix embedding theory (DMET), Green’s function embedding,

and density functional (DFT) embedding. An excellent review, discussing the relationship of these

techniques, is given in [96].

In previous work, a zero-temperature RASCI solver was shown to give good agreement with

exact diagonalization results, but was able to treat much larger active spaces than methods such as

exact diagonalization (ED). [97] However, to the best of our knowledge, no such RASCI solver

exists that includes the effects of temperature. Including temperature dependence in an impurity

with realistic interactions is nontrivial. In this work, we aim to include the effects of temperature by

building an ensemble Green’s function, including all of the appreciably occupied low lying excited

states in the Green’s function. This will allow calculation of larger systems than the ones accessible

by ED and additionally will not suffer from the sign problem that plagues CTQMC methods at low

temperatures. Additionally, the solver is able to treat general interactions at polynomial cost and

will be useful in embedding schemes such as dynamical mean field theory (DMFT) and self-energy

embedding theory (SEET).
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5.1 Restricted Configuration Interaction (RASCI) Method

The configuration interaction (CI) method is a post Hartree-Fock wavefunction method that is

widely known in the quantum chemistry community. In theory, this method can provide the exact

energies of the ground state as well as the excited states of a system. This is achieved by diago-

nalizing the N-electron Hamiltonian in the basis of N-electron Slater determinants, or representing

the wavefunction as a linear combination of these Slater determinants and minimizing the energy.

The CI wavefunction has the form

|Φ0〉 = c0 |Ψ0〉 +
∑

ar

cr
a |Ψ

r
a〉 +

( 1
2!

)2 ∑
abrs

crs
ab |Ψ

rs
ab〉 +

( 1
3!

)2 ∑
abcrst

crst
abc |Ψ

rst
abc〉 + · · · (5.1)

where a,b,c... refer to occupied orbitals and r,s,t... refer to virtual orbitals. While this method is

simple in principle, it is computationally very demanding and can only be carried out for small

systems (about 12 basis functions).

The number of possible Slater determinants is given as
(

2k
N

)
for 2k spin orbitals and N electrons.

This number grows prohibitively large for even small systems. In practice, the wavefunction is

often truncated to only include excitations up to a certain extent, such as configuration interaction

singles doubles (CISD), singles doubles triples (CISDT), etc. A pedagogical introduction to the CI

method can be found in Ref. [98].

5.2 Impurity Models

Quantum embedding can be generally understood as the partitioning of a larger system into regions

- an active region or “impurity” and an environment region or “bath” - to reduce the computational

cost of studying electron correlations. The impurity region is treated with a higher-level, more

accurate calculation, while the environment is treated non-trivially with a more affordable calcula-

tion. Such embedding schemes have been used in condensed matter[99], quantum chemistry[100],

and materials science [101].
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The impurity problem maps correlated electron problems, which are challenging or sometimes

prohibitively expensive to solve, to auxiliary models that include few explicit interactions coupled

to a bath of electrons. This description can significantly reduce the calculation cost and make

solving the problem numerically tractable.

In its general form, a quantum impurity model is defined by the Hamiltonian

H = Hloc + Hbath + Hhyb, (5.2)

Hloc =
∑

pq tpqd†pdq +
∑

pqrs Ipqrsd
†
pd†qdrds, (5.3)

Hbath =
∑

k εkc
†

kck, (5.4)

Hhyb =
∑

kp Vkpc†kdp + h.c., (5.5)

where Hloc contains the parent impurity orbitals. In most of the embedding theories designed to

treat realistic systems, both the one- and two-body integrals, here tpq and Ipqrs, respectively, are

completely general and no simplifying structure of either tpq or Ipqrs can be assumed. The bath

Hamiltonian can always be expressed in a diagonal form, as presented in Eq. 5.4. The bath and

impurity interaction is described by Hhyb and the interactions are described by coupling terms Vkp

from Eq. 5.5.

5.3 Finite temperature Lanczos

5.3.1 Matsubara Green’s Function from Lanczos procedure

The finite temperature Green’s function can be expressed as

Gpq(iω) =
1
Z

∑
m

e−βE(N)
m G(m)

pq (iω) (5.6)
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where Z =
∑

n e−βE(N)
n is the partition function and G(m)

pq is given as

G(m)
pq (iω) = 〈Ψm|c†p

1
iω + (H − Em)

cq|Ψm〉+

〈Ψm|cp
1

iω − (H − Em)
c†q|Ψm〉

(5.7)

where Em and Ψm are the energy and wavefunction of state m, cp/q and c†p/q are the annihilation and

creation operators for p and q spins. The frequencies iω are the imaginary Matsubara frequencies

given as iω =
(2n+1)iπ

β
for n = 0, 1, 2..., and β = 1

kT is the inverse temperature.

For low temperatures, only a few of the lowest states will have an appreciably large Boltzmann

factor. These few lowest states can be used as an approximation to the exact Green’s function. In

order to avoid an expensive diagonalization of the Hamiltonian, a Lanczos procedure can be used

to find the few lowest eigenvalues. The procedure begin with a Davidson algorithm to diagonalize

the CI Hamiltonian and obtain the energies Em and the vectors |Ψm〉. The energies below a cutoff

energy Ecutoff and their corresponding vectors are chosen and acted on with the operators cp/q and

c†p/q. These vectors cp/q |Ψm〉 and c†p/q |Ψm〉 are the starting vectors of the Lanczos procedure, which

are normalized and from here denoted as |φ0〉. A sequence of mutually orthogonal vectors is created

from the recursion relation

|φn+1〉 = H |φ0〉 − an |φn〉 − b2
n |φn−1〉 (5.8)

where

an =
〈φn|H |φn〉

〈φ0|φ0〉

b2
n =

〈φn|φn〉

〈φn−1|φn−1〉

b0 = 0

(5.9)

The Lanczos procedure returns a tridiagonal matrix TN
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TN =



a0 b1 0

b1
. . .

. . .

. . .
. . . bN

0 bN aN


(5.10)

in the projected Krylov subspace K = span {|φ0〉 ,H |φ0〉 ,H2 |φ0〉 , · · · ,HM |φ0〉}.

The Green’s function can then be constructed as

Gpp(iω) =
np

iω − Em + a0 −
b2

1
iω−Em+a1−...

+

1 − np

iω + Em + a0 −
b2

1
iω+Em+a1−...

(5.11)

where np = 〈Ψm| c
†
pcp |Ψm〉. The off-diagonal elements can be constructed using the following set

of relationships

G+
pq(iω) = 〈Ψm| (cp + cq)

1
ω − H + Em

(cp + cq)† |Ψm〉 (5.12)

Gpq(iω) = Gqp(iω) (5.13)

Gpq(iω) =
1
2

(G+
pq(iω) −Gpp(iω) −Gqq(iω)) (5.14)

The quantity G+
pq from Eq. 5.12 can be calculated using the continued fraction expression in

Eq. 5.11. This procedure is a memory efficient way to obtain the lowest eigenvalues of the matrix,

without resorting to expensive exact diagonalization procedures.

This procedure is carried out for each Em and Ψm included below the Ecutoff. The final ensem-

ble Green’s function is constructed using Eq. 5.6. In general, one can consider this procedure a

mapping of a CI wavefunction to a temperature dependent Green’s function.
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5.4 Results

5.4.1 Hubbard Impurity Models

The Hubbard model is a simple model of interacting particles on a lattice with on-site interac-

tions. This model is capable of describing the transition between conductors and insulators. The

Hamiltonian for the Hubbard impurity model, including the impurity orbitals and the bath is given

as

H = U
(
n↑n↓ −

n↑ + n↓
2

)
+

∑
iσ

c†iσciσ

+
∑

iσ

Vic
†

iσdσ + h.c.
(5.15)

where U describes the potential energy of the onsite electrons, and the annihilation and creation

operators d(†) and c(†), destroy and create electrons in the impurity and bath, respectively. In the

next two sections, I present the results of the study of the 1D and 2D Hubbard impurity with the

RASCI solver, including temperature effects. All calculations were carried out in the natural orbital

basis.

5.4.2 Results for 1D Hubbard Impurity Model

The RAS-CI solver was used to calculate a one-dimensional Hubbard impurity model. The model

has one orbital in the impurity and 11 orbitals in the bath, for a total of 12 sites. This model is

possible to calculate with ED, which is plotted for comparison. In Fig. 5.1, we plot the imaginary

part of the self-energy for the impurity at various interaction (U) strengths at half-filling and β=400.

It is clear that the RASCI solver is capable of producing excellent quantitative agreement with

the ED results for this model at low temperature. This is expected behavior, as RAS-CI has been

shown to describe the ground state well, and various truncations of the Hamiltonian are able to
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β U = 2 U = 4 U = 6 U = 8 U = 18
400 4 4 4 4 7
200 14 14 14 14 15

Table 5.1: Number of states m included in the Green’s function for 1D Hubbard impurity model,
with a cutoff for the Boltzmann factor e−β(Em−E0) of 10−8. E0 is the ground state energy.

method number of determinants
CAS(2,2)CISD 6,044

CISDT 18,819
CISDTQ 98,694

ED 853,776

Table 5.2: Number of determinants required for the 1D Hubbard impurity model.

achieve similar accuracy, but require much fewer determinants than ED. A table displaying this

trend for this case is given in Table 5.2. There are only a few excited states that are appreciably

occupied and that contribute to the Green’s function at this low temperature, as shown in Table 5.1.

Similar to the β=400 case, we obtain excellent quantitative agreement for the imaginary self-

energy for the case of β=200, as shown in Fig. 5.2. At β=200, there are more significantly more

occupied excited states, as shown in Table 5.1. The RASCI method is capable of describing many

low lying excited states for systems at low temperature for this case. These results are obtained

with the much cheaper RASCI method, which has polynomial cost, compared with ED, which

scales exponentially.

5.4.3 Results for 2D Hubbard Impurity Model

A two dimensional Hubbard model was calculated with the RASCI solver for various interaction

strengths and compared with ED results for the imaginary part of the self-energy. Results are

plotted in Fig. 5.3. The occupation numbers of these examples show doubly occupied and singly

occupied orbitals, requiring the use of a small active space to get a multireference description of the

wavefunction. For this reason, we make use of the RAS(2,2)CI method, with the (2,2) indicating

that there are two electrons in two orbitals. Unlike the 1D case, we do not see the same level of
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Figure 5.1: 1D Hubbard 12 site impurity with 11 bath orbitals U=2, U=4, U=6, U=8, β=400
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Figure 5.2: 1D Hubbard 12 site impurity with 11 bath orbitals U=2, U=4, U=6, U=8, β=200
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Figure 5.3: 2D Hubbard 4 site impurity with 8 bath orbitals U=2, U=4, U=6, U=8, β=25

quantitative agreement for all levels of CI considered. The results are systematically approaching

the ED result as more levels of excitation are included in the CI wavefunction, making the best

quantitative agreement with ED from the RAS(2,2)CISDTQ wavefunction.

While this type of RASCI solver has been shown to be capable of producing accurate results

for the ground state in the past, we have shown here that we are able to obtain good quantitative

agreement when excited states are appreciably occupied. To the best of our knowledge, this is the

first temperature dependent RASCI solver to be investigated for low temperatures.
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CHAPTER 6

Conclusions

This work has made progress toward understanding the challenges associated with applying finite-

temperature Green’s functions to study realistic quantum chemical Hamiltonians. The reliability

and technical challenges associated with evaluating quantities to directly compare with experiment,

including spectra and thermodynamics, were investigated. Additionally, an impurity model in the

low temperature regime was implemented for temperature dependent quantum embedding.

In Chapter 3, we have shown that it is possible to evaluate temperature dependent thermo-

dynamic quantities using a self-consistent second-order Green’s function method. Using the self-

consistent Green’s function and self-energy, we were able to evaluate the Luttinger-Ward functional

at various temperatures and obtain static thermodynamic quantities such as Helmholtz energy, in-

ternal energy, and entropy. Evaluation of these quantities gives us access to the partition function

and any thermodynamic quantity that can be derived from it. Unlike the FCI case, in GF2 we do

not need to explicitly calculate excited state energies or Boltzmann factors, making calculation of

thermodynamic quantities for larger systems feasible.

In Chapter 4, we have investigated the ability of GF2 to calculate IPs, EAs, fundamental gaps,

and singlet-triplet gaps for a range of atomic and molecular systems. In general, it was very difficult

to obtain EAs in good agreement with UCCSD(T) using any method. There was no method that

emerged as the superior method, and results could vary based on the type of system. The most

consistent method was building the full self-energy on the real axis, including all of the diagonal

elements. This method (F+Σ
(2)
ii ) was able to give the results similar in accuracy across a range of

78



systems. Although all quantities computed with the Green’s function in this work were done with

a second-order evaluation of the self-energy, different evaluation methods can give values for these

quantities that differ by several electron volts from each other. This work has reiterated that it is

non-trivial to get real axis data from the imaginary axis, and that rigorous investigation of such

schemes must be carried out when doing so.

In Chapter 5, we tested a method to construct a temperature-dependent Green’s function based

on a RASCI formalism. An impurity solver based on restricted active space configuration inter-

action in a finite-temperature ensemble formalism was implemented and applied to the Hubbard

model containing the realistic interactions. Specifically, the solver was benchmarked against ED

data for a 1D and 2D Hubbard impurity model. This solver can be used in temperature-dependent

embedding schemes such as SEET for systems that are challenging to treat using current solvers.

This work can be applied to embedding procedures such as DMFT and SEET for molecules and

solid state problems that require the inclusion of temperature-effects. This type of embedding treat-

ment is advantageous for treating larger systems, and additionally for treating systems that contain

both strongly and weakly correlated orbitals.

There is still much to be explored in the area of Green’s function methods for ab-initio quantum

chemistry.
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