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Abstract

One of the primary goals of cosmology is to extract information about fundamental physics

from observations of the universe on large scales. With the advent of increasingly large

cosmological datasets (and correspondingly small statistical uncertainties), future progress

in the field will fundamentally be determined by our ability to account for systematic errors,

understand model predictions, and protect analyses from sources of bias. This thesis presents

three projects in this theme. We first examine the interpretation of large-angle features of

the Cosmic Microwave Background (CMB) which are statistically unlikely in ΛCDM. Par-

ticularly, we study some of these features might be due to the imprint of large scale structure

(LSS) through the integrated Sachs-Wolfe (ISW) effect, testing the reliability of a method for

ISW signal reconstruction based on LSS data. Using simulated ISW and LSS maps, we show

that direction-dependent calibration errors are by far the most limiting survey systematic

and that for current levels of calibration control, reconstructed ISW maps from existing data

are almost entirely noise. Thus, current data cannot be reliably used to separate primordial

and late-time contributions to CMB features. We additionally use ensembles of simulated

CMB maps to perform a comprehensive study of the covariance between eight features as-

sociated with commonly studied large-angle anomalies. The latter part of this thesis shifts

its focus to LSS data, introducing a new method for blinding the Dark Energy Survey’s

(DES) combined analysis of correlations between galaxy positions and weak lensing shear.

This technique, which works by modifying LSS tracers’ two-point correlation functions, will

be used to prevent experimenter bias from influencing DES’ precision measurements of dark

energy. We demonstrate using simulated DES Year 3 data that this method successfully

shifts the analysis pipeline’s output cosmological parameters while preserving the ability to

check for systematic errors. Given this, the technique will be used to blind the DES Year 3

multi-probe cosmology analyses, and as implemented, will be the most sophisticated blinding

strategy for a cosmology analysis to date. Together, these three projects represent varied

ways characterizing and developing tools for ensuring future tests of ΛCDM are both precise

and accurate.

xviii



Chapter 1

Introduction

1.1 Context: Cosmology as a data-driven science

The field of cosmology, broadly, encompasses the effort to use our knowledge of physics to

describe the large-scale properties of the Universe, and in turn to use observations of those

large-scale properties to learn about fundamental physics. Progress in the field has been the

result of a repeated process through which, as the precision of measurements has improved,

they have revealed surprising results which have required new, often exotic components, in

our cosmological model. In turn, at each iteration, theoretical advances have provided the

tools to quantitatively explain — or at least parameterize — the new physics and to guide

the development of more precise observational probes.

This interplay between theory and observation is exemplified in the two developments

which arguably mark the beginning of modern cosmology: the description of gravity in

Einstein’s theory of general relativity (GR), first published in 1915 [13], and Edwin Hubble’s

discovery, published in 1929, that the universe is expanding [14]. In GR, the dynamics of

gravity are governed by Einstein’s equation,

Gµν =
8πG

c4
Tµν . (1.1)

In this equation, c is the speed of light and Gµν is the Einstein tensor. It is constructed out

of second derivatives of the metric gµν , and as such describes the behavior of space-time,

while the stress-energy tensor Tµν describes the mass and energy contents of that space-

time. Edwin Hubble’s discovery was based on his observations of Cepheid variable stars in

other galaxies. By using the Leavitt Law [15] to convert measurements of the star’s period

of variation to its absolute luminosity, Hubble was able to use the comparison of the stars’
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absolute and apparent magnitudes to measure distances d to their host galaxies. He was also

able to draw on previous measurements by Vesto Slipher [16–19] of the galaxies’ velocities

relative to Earth based on of Doppler redshifting their spectra. (See e.g. Refs. [20, 21] for

a historical overview of these measurements.) A galaxy’s velocity determined in this way is

given by v = cz, where z = (λobs − λem)/λem is the fractional shift between the wavelengths

at which light from the galaxy is observed (obs) and emitted (em), for v � c. Hubble

found that there was linear relationship between those distances and recession velocities,

now known as Hubble’s Law,

v = cz = H0d. (1.2)

Hubble’s Law has a natural explanation within GR: space itself is expanding. In the

years since Einstein’s initial publication of Eq. (1.1), Alexander Friedmann [22,23], Georges

Lemâıtre [24, 25], Howard P. Robertson [26–28], and Arthur Geoffrey Walker [29] indepen-

dently derived what is now known as the FLRW metric, a solution to Einstein’s equations

which satisfies the assumptions of homogeneity (spatial uniformity) and isotropy (the lack of

a preferred direction). Given those symmetry requirements (which, to good approximation

are obeyed by the properties of the Universe on scales greater than about 10 Mpc), the

background evolution of the Universe can be described entirely in terms of the dynamics a

time-dependent scale factor a(t). This scale factor relates physical distance d of a galaxy

to its distance r in terms of a set of comoving coordinates via d = a(t)r. Neglecting small

perturbations due to peculiar velocities, r will be constant, so the galaxy’s velocity rela-

tive to us will be v = ȧr, where the overdot represents a time derivative. Given this, it is

straightforward to show that the Hubble constant in Eq. (1.2) can be written as

H0 =
ȧ

a

∣∣∣∣
t0

, (1.3)

where t0 is the present time.

As GR provided a quantitative description for physics behind Hubble’s Law (which will

be described in more detail in Chapter 2), Hubble’s observations paved the way for further

theoretical advances by providing empirical information about what the Universe is actually

like. During the early days of GR, the prevailing wisdom was that Universe should be static

at large scales, so Einstein added a term to his equation to ensure that it would admit static

cosmological solutions to take the form [30]

Gµν + gµνΛ =
8πG

c4
Tµν , (1.4)

2



where the cosmological constant Λ can be associated with a constant energy density ρ =

Λc2/(8πG). If tuned to a specific value, Λ could balance the gravitational effects which would

otherwise cause the Universe to expand or contract, making ȧ = 0. Thus, when Hubble’s

observations revealed something fundamentally new about the Universe — that it was, in

fact, expanding — they showed that this balancing act was unnecessary and that the real

universe was described by a dynamic a(t).

Cosmology has advanced significantly in the near-century since, with data-driven discov-

eries continuing to provide indications of what kind of (sometimes exotic or new) physics

needs to be included in our cosmological model. Two more recent examples relevant to this

thesis include the introduction of inflation and dark energy.

Inflation describes a period of rapid expansion during the Universe’s first fraction of a

second, most simply described in a class of “slow-roll” models. In these models, a scalar

field called the inflaton is able to generate exponential expansion with ln a(t) ∝ t if its

potential energy is greater than its kinetic energy. First postulated to explain the striking

uniformity in temperature of the Cosmic Microwave Background (CMB) radiation, as well

as the Universe’s flat (Euclidean) geometry [31], inflation additionally predicts that quantum

fluctuations in the inflaton will seed small density perturbations which later evolve under

the influence of gravity to generate temperature fluctuations in the CMB and later large

scale structure (LSS) [32]. Thus, the premise of inflation was bolstered when the spectra of

CMB temperature fluctuations were found to be consistent with the predictions of slow-roll

inflation.

Dark energy is the name given to the component of the Universe’s mass-energy budget

that is causing it to expand at an accelerating rate. This acceleration was discovered by two

teams [33,34] in the late 1990’s, when they used observations of distant Type Ia supernovae

to update Hubble’s measurements of the distance-redshift relation. Because the absolute

luminosity of Type Ia supernovae can be calibrated based on their light curves, they served

as “standard candle” distance indicators analogous to Hubble’s Cepheids. The fact that su-

pernovae are much brighter than Cepheids means they are visible at much greater distances,

and so they allowed the teams probe the departures from the linear distance-redshift rela-

tion in Eq. (1.2) caused by time evolution of the expansion rate H(t). These measurements

revealed that Ḣ > 0, which is contrary to what one would expect in a universe containing

only gravitating matter and radiation. This acceleration thus requires new physics, which

could take the form a new contribution to the energy density of the universe, which is what

we refer to when we say dark energy, or perhaps a modification to GR at cosmological scales.

The simplest viable model which can explain the observed expansion history is to reintroduce

3



the same cosmological constant that appears in Eq. (1.4).

1.1.1 ΛCDM as the standard cosmological model

The revelations described above and others, based on information from a variety of observa-

tional probes, including galaxy surveys, measurements of the CMB, and supernova surveys

have led to the development of a standard cosmological model known as ΛCDM. Here we

will use ΛCDM as a shorthand for a paradigm which has three main components:

• It describes the present-day composition of the Universe as roughly 5% baryonic mat-

ter, 25% cold (non-relativistic) dark matter which interacts gravitationally but not

(or at least very weakly) through other forces, and 70% dark energy described by a

cosmological constant. (The name ΛCDM references this composition.)

• It includes general relativity as a theory of gravity.

• It posits that initial random, nearly Gaussian density fluctuations are seeded by a

period of slow-roll inflation.

1.1.2 Precision cosmology: Testing ΛCDM

Though ΛCDM is a powerful tool for modeling the properties of the Universe on large scales,

there remain a number of unanswered questions about its components. These include: What

is the particle identity of dark matter? What is the physics behind inflation? Is dark energy

a cosmological constant, some kind of dynamic field, or a sign that GR needs to be extended?

In order to make progress towards answering these, the cosmology community has invested

in a number of increasingly precise cosmological measurements. The motivation for this is

that by making careful comparisons between observables the predictions of ΛCDM, we can

search for indications as to where the simplest version of our cosmological standard breaks

down down, which could provide clues for how to build a more fundamental description of,

for example, the physics of inflation or dark energy.

Thus far, ΛCDM has stood up to rigorous tests from a wide range of observables. The cur-

rent generation of cosmological experiments include CMB measurements from Planck1 [35],

ACT2 [36–38], and SPT3 [39,40], the JLA4 [41] supernovae survey, the spectroscopic galaxy

1www.esa.int/Our Activities/Space Science/Planck
2act.princeton.edu
3pole.uchicago.edu
4supernovae.in2p3.fr/sdss snls jla/ReadMe.html
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survey BOSS5 [42,43], and photometric weak lensing surveys KiDS6 [44,45] and DES7 [12,46].

These surveys have been able to place constraints with precision on the order of ∼ 1–10%

on the values of cosmological parameters, and have already enabled powerful tests of ΛCDM

through tests of the consistency of different experiments’ constraints. (See e.g. the compar-

ison of Planck and DES results in Ref. [12].) The statistical power of cosmological data will

only improve as the next generation of surveys, such as Simons Observatory8, CMB-S49 [47],

DESI10 [48], LSST11 [49], Euclid12 [50], SKA13 [51], and WFIRST14 [52], come online.

However, as statistical errors on cosmological measurements shrink, systematic errors and

modeling uncertainties will become more significant by comparison. For example, models

of dark energy which introduce modifications to GR will predict changes to the clustering

properties of matter which are most pronounced at small (. 10 Mpc) scales. Detecting these

effects is complicated by the fact that predicting the evolution of density fluctuations which

cannot be modeled as linear perturbations is difficult, even in ΛCDM. Failing to account for

that theoretical uncertainty when checking small-scale LSS clustering information against

model predictions could potentially lead to a false detections of deviation from GR. Thus,

broadly, in order for us to be able to perform meaningful tests of ΛCDM— and therefore,

to probe fundamental physics — at a level commensurate with the growing statistical power

of cosmological experiments, we must carefully assess and account for how analysis choices,

systematics, and modeling errors affect our analyses. Characterizing and mitigating sys-

tematics for cosmological measurements in service of the quest to learn about fundamental

physics is the unifying theme of this thesis.

1.2 Problems addressed in this work

The projects described in this thesis are primarily concerned with the analysis of two ob-

servables: temperature fluctuations of the Cosmic Microwave Background (CMB) and Large

Scale Structure (LSS) mapped using photometric galaxy surveys.

For the most part, observations of the statistical properties of temperature fluctuations

5www.sdss3.org/surveys/boss.php
6kids.strw.leidenuniv.nl/
7www.darkenergysurvey.org
8simonsobservatory.org
9cmb-s4.org

10desi.lbl.gov/
11www.lsst.org
12www.euclid-ec.org
13www.skatelescope.org
14wfirst.gsfc.nasa.gov
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of the CMB have been incredibly consistent with the predictions of ΛCDM, but there are a

handful of features at the largest observable scales which have attracted attention as being

statistically unlikely in that standard model. Some of these so-called large-angle anomalies

could be hinting at new, perhaps isotropy-breaking, physics associated with inflation, but

they could also be the result of systematics assocated with astrophysical foregrounds or data

processing. They could also simply be statistical flukes which have received attention due

to a posteriori choices of how to measure the CMB sky. Disentangling these possible causes

has been a topic of discussion since these large-angle anomalies were first noted in WMAP

data.

One line of inquiry in the study of large-angle CMB anomalies has been associated with

efforts to separate truly primordial contributions to CMB temperature anisotropies from

those imprinted by late-time effects. In particular, the Integrated Sachs-Wolfe (ISW) effect,

a process by which the energy of CMB photons is modulated as they pass through evolving

LSS potential wells, contributes to temperature fluctuations on large angular scales. In

order to investigate whether certain large-angle anomalies — for example, the alignment

between the temperature quadrupole and octopole — can be attributed to the ISW effect,

several groups have used estimators based on LSS data to try to separate late and early

time components of the large-angle CMB anisotropies. If removing ISW signal contributions

from the CMB temperature map reduces the significance of an anomaly, the origin of that

anomalous feature is unlikely to be associated with primordial, inflationary physics. We

ask the question: How reliable is the ISW reconstruction method used to perform that

separation? In Chapter 3 present an investigation into the reliability of the ISW signal

estimator involved. Using simulated CMB and LSS maps, we study how the accuracy of the

reconstructed ISW signal changes as a function of LSS survey properties, and comment on

how our findings should inform discussion of large angle anomalies.

Chapter 4 is also concerned with large-angle CMB anomalies. We present a comprehen-

sive study of the expected independence, in the context of ΛCDM, of a set of commonly

studied large-angle CMB features associated with anomalies. We do so by numerically mea-

suring their covariance from ensembles of simulated maps. By analyzing the structure of

covariances extracted from simulations, we investigate the impact of the data processing

pipelines on the relationship between large-angle anomalies and use a principal component

analysis as an alternate look at the ways in which the real CMB temperature map is un-

usual. By performing detailed examination of the predictions of ΛCDM in the space of these

a posteriori-selected large-angle CMB features, the goal of this project is to to inform future

studies which use large-angle anomalies as motivation for developing inflationary models.
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The rest of the thesis will focus entirely on LSS survey analysis in the context of the

Dark Energy Survey (DES). As the constraining power of LSS surveys, including DES,

has improved, it has become increasingly important to protect against experimenter bias

by blinding their analyses. DES is an ongoing photometric galaxy survey which, when

complete, will analyze galaxy positions and shapes over a region of the sky with an area of

5000 deg2. By performing a combined analysis of several observables — galaxy clustering,

weak lensing, supernovae, and galaxy clusters — DES will be able to place tight constraints

on cosmology, and in particular will be able to perform a powerful test on whether or not

dark energy is well described by a cosmological constant. However, the same fact that drives

DES’s constraining power, that it uses the combined analysis of multiple probes, makes it

difficult to blind the survey’s analysis pipeline in a way that preserves our ability to use

the consistency of different probes as a validation test. As an answer to this challenge, we

have developed a novel scheme for blinding combined-probe cosmological analyses based on

the manipulation of two-point correlation functions for galaxy clustering and shear. This

blinding strategy has already been implemented in the analysis pipeline for the DES Year-3

analysis. In Chapter 5 we will introduce the blinding method, and will present the results

of tests demonstrating its performance.

1.3 Plan of thesis

The plan of this document is as follows. Chapter 2 will be devoted to providing general

background information about the modeling ingredients of ΛCDM and the observables used

to test it. In subsequent chapters we will present the background, methods, and results of

the projects covered in this thesis. Chapter 3 will discuss ISW signal reconstruction. Then,

in Chapter 4 we will present the large-angle anomaly covariance study. Chapter 5 will be

entirely concerned with LSS measurements: it will describe the plan for and validation of the

DES multi-probe blinding strategy. Finally, in Chapter 6 we will conclude, summarizing the

original results presented in this thesis and the prospects for their outlook in future research.
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Chapter 2

Overview of ΛCDM

Our description of the Universe within ΛCDM will rely on two key assumptions: that, to

good approximation, the properties of the Universe are homogenous and isotropic, and that

structures can be well described as perturbations about a uniform background. These prop-

erties of homogeneity (lack of preferred location) and isotropy (lack of preferred direction)

have been found to be consistent with observations on scales & 10Mpc, though they can

and continue to be tested experimentally. Similarly, predictions made using perturbation

theory are in good agreement with observations of structure evolution.

Keeping these properties in mind, we will begin in Section 2.1 by defining some terms

and parameters used to describe the expanding Universe and the matter and energy contain

within it. Then in Section 2.2 we will give an overview of how the “zeroth order” background

dynamics of the Universe’s background expansion history can be modeled using GR. Sec-

tion 2.3 will then focus on the description of perturbations to that background, summarizing

the findings of linear perturbation theory and how that connects to the observables discussed

in subsequent chapters. In Section 2.5 we will summarize by presenting a table of parameter

definitions.

As the discussions in each of the following chapters will be relatively self-contained, the

goal of this overview will not be to give a comprehensive introduction to the physics of

ΛCDM. Rather, our focus will be on defining quantities, summarizing important results

and sketching how they are obtained, in order to build a common vocabulary for the later

chapters. This discussion draws on the information in a number of textbooks (Refs. [53–56]),

as well as sets of lecture notes (Refs. [57–59]).
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2.1 Basic definitions

The expansion of the Universe is described in terms of a scale factor a(t), which by convention

is equal to one at the present time t0. It relates physical distances x (defined so dx = c dt,

where c is the speed of light) to comoving distances r via dx = a(t) dr. As was mentioned in

the description of Hubble’s Law above, cosmological expansion expansion causes light emitted

by distant objects to be redshifted. The redshift is quantified as the fractional difference

between the light’s wavelength when it is emitted, λem, and its observed wavelength λobs:

z ≡ λobs − λem

λem

. (2.1)

The cosmological redshift z can be equivalently interpreted as Doppler reddening due to

the time derivative of the source’s physical distance, or as the photons’ wavelength being

stretched to as space expands. it can be related to the scale factor via a = (1 + z)−1.

The Hubble parameter H(t) ≡ ȧ/a quantifies the logarithmic time derivative of the scale

factor, while the Hubble constant H0 refers to its the present-day value, which has been

measured to be roughly H0 ≈ 70kms−1Mpc−1. Because most cosmological information in

measurements of expansion history and structure growth depend on the time dependence of

H(t) rather than its normalization, it is common to the value of H0 into distance units in

terms of the parameter h = H0/
[
100 kms−1Mpc−1

]
.

Because light travels at a finite velocity, at distances where cosmological redshift is much

larger than Doppler contributions from peculiar velocities,

1. a source’s redshift z,

2. the time te that the observed light was emitted,

3. the scale factor at that time a(te),

4. and the source’s comoving distance r

can all be used interchangeably as a radial distance or time coordinates. They can be related

to one another via

r =

∫ r

0

dr′ =

∫ t0

te

c dt

a(t)
=

∫ z

0

c dz′

H(z′)
. (2.2)

Thus, r = 0, z = 0 and a = 1 correspond to nearby sources and the present time t0, while

large r, large z and small a correspond to distant objects and early times.

The composition of the Universe is described in terms of the densities of different com-

ponents, with ρr, ρc, ρb, ρν representing the density of radiation, cold dark matter, baryons,
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and neutrinos, respectively, and with ρm ≡ ρc+ρb+ρν representing the total matter density.

(These quantities can be converted to energy densities simply by multiply by a factor of c2.)

The pressure associated with each component is defined as p with the same set of subscripts.

The density and pressure associated with dark energy can be defined as ρDE and pDE. We

will use ρ and p with no subscript to refer to the total energy density and pressure.

The various energy densities are commonly written in units of a critical density such that

for mass-energy component X,

ΩX =
ρX
ρcrit

for ρcrit =
3H2

8πG
. (2.3)

The critical density is defined so that in a Universe with flat geometry (which we will assume

throughout this work),

1 = Ω =
∑
X

ΩX . (2.4)

A subscript 0 (as in ρX0 or ΩX0) will be used to denote densities at the present time.

2.2 Expansion history

The background dynamics of the universe are governed by GR, which describes the rela-

tionship between the behavior of spacetime and the matter and energy occupying through

Einstein’s Equation, given above in in Eq. (1.1). Under the assumptions of spatial homo-

geneity and isotropy, the stress energy tensor components take the form

Tµν = ρ uµuν + p(gµν + c−2uµuν) (2.5)

which describes a perfect fluid with energy density ρ, pressure p, and four-velocity uµ. where

uµ is the four-velocity of the fluid. That fluid describes the behavior of the average total

energy density and pressure of all components — the sum of contributions from dark matter,

baryons, etc. The most general metric gµν that obeys homogeneity and isotropy is the FLRW

metric, which, using the convention where the Minkowski metric is ηµν = diag(−1, 1, 1, 1),

has the interval

ds2 = gFLRW
µν dxµdxν = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (2.6)

where r is the comoving dsitance in the radial direction, θ and φ are angular coordinates,

and k a constant describing a uniform curvature. For a flat universe, k = 0 and the FLRW
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metric becomes

gFLRW
µν =


−c2 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

 . (2.7)

For the remainder of this thesis we will assume flat geometry.

Inserting gFLRW
µν and Tµν from Eq. (2.5) into Einstein’s equation (Eq. (1.4)) causes it to

reduce to the two Friedmann equations,(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
(2.8)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (2.9)

As equations of motion for the scale factor a(t) the Friedmann equations relate the expansion

history of the Universe to its mass-energy contents.

We can additionally describe the relationship between the energy density of component

X and the scale factor using the continuity equation,

d ρ

dt
+ 3H

(
ρ+

p

c2

)
= 0. (2.10)

This can can be derived trough manipulation of the Friedmann equations, or through energy

conservation in general relativity by setting the covariant derivative of Tµν equal to zero.

The continuity equation will hold for both the total density of the Universe, as well as for

each individual component in the limit where interactions between radiation, matter, and

dark energy can be neglected.

We can analytically find the relationship between the physical density ρX of mass-

energy component X and the scale factor if we define the equation of state parameter

wX = px/(ρxc
2). Using this definition, we can solve the continuity equation to show

ρX(a) = ρX(1) a−3(1+wX). (2.11)

Because on the large scales matter can be treated as pressureless, wm = 0. We can see that

this gives us the expected relation between matter density and physical volume, ρm ∝ a−3.

(That is to say, the number of particles per comoving volume is conserved.) For radiation

wr = 1
3

gives ρr ∝ a−4. One can show that this is in line predictions based on thermodynamics

for the relationship between volume and the energy density of radiation, and can additionally
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associate it with a time evolution of the radiation’s average blackbody temperature,

T̄ (a) = a−1T̄0. (2.12)

2.2.1 Dark Energy

By examining Eqs. (2.8) and (2.9), one can show that the cosmological constant Λ can be

associated with a density and pressure,

ρΛ ≡ Λ/(8πG) and pΛ ≡ −Λc2/(8πG). (2.13)

From this, we can infer that the fluid description of the cosmological constant as the equation

of state parameter wΛ = −1, and so, by Eq. (2.11), ρΛ is independent of a. Thus, the physical

manifestation of the cosmological constant is a time-independent, spatially-uniform energy

density.

It is common to define the parameter w, without a subscript, to be the dark energy

equation of state,

w ≡ wDE =
pDE

ρDEc2
. (2.14)

By leaving w as a free parameter, we can parameterize the extent to which dark energy

is well described by a cosmological constant by checking whether observational constraints

are consistent with w = −1. This slight generalization of ΛCDM is commonly referred to as

wCDM.

We noted in Chapter 1 that dark energy is the name given to whatever mass-energy

component of the Universe is causing its expansion rate to accelerate, so more generally,

we can use the Friedmann equations to place requirements on w. In a universe where dark

energy dominates (ρ ≈ ρDE), according to Eq. (2.9) the requirement for acceleration ä > 0

becomes

w < −1

3
. (2.15)

2.2.2 Inflation

As was mentioned in Chapter 1, inflation refers to a period of accelerating expansion that

occurred during the Universe’s first fraction of a second. Models of inflation were initially

developed to help solve the horizon problem. Stated roughly, the horizon problem is the

question of why the Universe on large scales is observed to be so uniform, with fluctuations in

CMB temperature smaller than one part in 105, when, given our knowledge of the expansion
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history of the Universe accounted for in the Friedmann equations above, patches of the

CMB farther than about two degrees from one another on the sky have never been in causal

contact.

We can demonstrate why an early period of accelerating expansion can solve the horizon

problem if we examine the expression for the particle horizon rp(t), the greatest comoving

distance a photon could have traveled by time t: [58, 59]

rp =

∫ t

ti=0

c dt′

a′
= c

∫ a(t)

ai

d ln a

aH
. (2.16)

Referring to the first Friedmann equation (Eq. (2.8)), given the mass-energy components of

the Universe that we measure today,

H(a) = H0

√
Ωr0a−4 + Ωm0a−3 + ΩΛ0. (2.17)

Let us examine the behavior of the integrand in Eq. (2.16) at early times. In the limit of

small a, Eq. (2.17) becomes H(a) ≈ H0

√
Ωr0a−4 ∝ a−2. This means that the integrand

(aH)−1 ∝ a, which goes to zero at early times. Because of this, the integral in Eq. (2.16) will

be dominated by late-time contributions, and rp ≈ (aH)−1. (This can be shown explicitly

for a Universe containing a single fluid component whose density evolution is governed by

Eq. (2.11).)

The incredible uniformity of the Universe on large scales could be explained if if all

points we observe have been in causal contact with one another at some point in the past.

This will be the case if we introduce new physics that causes the integral of Eq. (2.16) to

receive large contributions from early times. In other words, if (aH)−1, were large at early

times and shrank, before more familiar physics expansion caused it to grow again according

to Eq. (2.17), the horizon problem will be solved. It can be shown with a few lines of

calculations that requiring a period where d
dt

[(aH)−1] < 0 is equivalent to having a period of

accelerated expansion, with ä > 0.

For a model of inflation to solve the horizon problem it must both predict an early period

of early accelerated expansion, and predict that the period lasts lasts long enough to put the

entire observable Universe in causal contact. Slow-roll inflation is the class of simple models

which achieve this through the dynamics of a scalar inflaton field φ. It can be shown that
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for a scalar with potential V (φ), the field’s energy density and pressure are

ρφc
2 =

1

2~c
φ̇2 + V (φ) (2.18)

pφ =
1

2~c
φ̇2 − V (φ), (2.19)

where ~ is the reduced Planck’s constant and φ is defined to have units of mass. We can

use these expressions to compute the inflaton’s equation of state, and referencing Eq. (2.15),

can show that ä > 0 if
1

~c
φ̇2 < V (φ). (2.20)

Similarly, we can obtain the equation of motion for φ by inserting Eqs. (2.18) and (2.19) into

the Friedmann equations,

0 = φ̈+ 3Hφ̇+ ~c3V ′, (2.21)

where the prime on V indicates a partial derivative with respect to φ. By manipulating

those equations we can show that inflation will occur, and last sufficiently long, if φ̇2 and φ̈

are small relative to other scales in the problem. These requirements can be translated into

conditions on the inflaton potential V (φ) through the slow roll parameters

ε ≡
M2

pl

2

(
V ′

V

)2

and η ≡M2
pl

|V ′′|
V

, (2.22)

where Mpl =
√

~c/(8πG) is the reduced Planck energy. Inflation will occur if ε � 1 and

|η| � 1. Slow roll inflation refers to models satisfying these requirements.

One can additionally show, given an inflationary model, that quantum fluctuation in

the inflaton field during inflation will seed small fluctuations in curvature, which in turn

will seed adiabatic density fluctuations. Adiabatic density fluctuations (with δρr ∝ δρb ∝
δρm) are thus a generic prediction of inflationary models. The form of V (φ) will determine

the statistical properties of those density fluctuations. In the slow roll limit they will be

generically close to Gaussian and will predict a fluctuation power spectrum of a particular

form, which will be defined quantitatively in Eq. (2.29) below.

2.3 Structure growth

A sketch of the history of structure in the Universe proceeds as follows. During inflation,

quantum fluctuations in the inflaton field seeded small fluctuations in density. When density
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perturbations on a given length scale enter the horizon, they begin to evolve under the

influence of gravity. Generally gravity causes structure in dark matter to continually grow —

that is, the spatial distribution of ρc became more clumpy — with its growth rate determined

by the matter density and the Universe’s expansion rate. In the early Universe, baryonic

matter was ionized and coupled to photons, so the gravitational pull into overdense regions

was counteracted by the baryon-photon plasma’s radiation pressure, causing the plasma to

undergo oscillations known as Baryon Acoustic Oscillations (BAO). When the Universe first

cooled enough to allow stable atoms to form, at around 300,000 years, the Universe became

neutral in a process known as recombination. The subsequent decoupling of the photons

and baryons released the radiation that we observe today as the CMB. Density fluctuations

in the primordial baryon-photon fluid were imprinted in the variations of the blackbody

temperature of CMB photons. After recombination, baryons fell into dark matter potential

wells, and as density contrasts continued to grow over time, they eventually formed galaxies

in high density regions. Thus, given a model which describes

1. the initial fluctuation spectrum,

2. expansion history,

3. gravitational effects,

4. and the interactions between radiation, baryons, and dark matter,

we can predict the statistical properties of both CMB temperature fluctuations and late-time

density inhomogeneities.

2.3.1 Power spectra

We generally describe the properties and evolution of structure in our Universe in terms of

two point correlation functions. These correlation functions are the most relevant quantities

for comparing the predications of models to observations because in ΛCDM we expect fluc-

tuations in CMB temperature and matter density (at least at large scales) to be Gaussian or

nearly Gaussian. For a Gaussian field, its two point functions contain all of the information

its statistical properties of the field.

Structure in the map of CMB blackbody temperature T (n̂), where n̂ indicates the direc-

tion on the sky, can be quantified in terms of its angular correlation function

C(θ) = 〈T (n̂1)T (n̂2)〉 where n̂1 · n̂2 = cos θ. (2.23)
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Equivalently, one can decompose the CMB temperature map in spherical harmonics,

T (n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂) (2.24)

and define the angular power spectrum, which for isotropic fluctuations takes the form

〈a`ma∗`′m′〉 = δ``′δmm′C`. (2.25)

The Fourier space power spectrum (C`) is more directly related to the underlying physics

than the real space correlations (C(θ)) because the solutions of the Boltzmann equations

that must be solved to compute it are independent for each multipole. Given this, the power

spectrum C` is most commonly the focus of efforts to compare the observed CMB to the

predictions of ΛCDM or alternative models.

In describing the distribution of matter at late times, we instead use the spectrum P (k, z)

of matter density fluctuations. It is defined in terms of perturbations δ to the average matter

density ρ̄m, referenced by the field

δ(r, t) =
ρm(r, t)− ρ̄m(t)

ρ̄m(t)
. (2.26)

The Fourier transform of the density perturbations is,

δ(k, t) =

∫
d3r

(2π)3/2
δ(r, t) eik·r, (2.27)

and, assuming the statistical properties of δ are homogeneous and isotropic, the matter

power spectrum is defined

〈δ(k, t)δ∗(k′, t)〉 = (2π)3δ(3)(k− k′)P (k, t). (2.28)

Here, δ(3) is the Dirac delta function and k ≡ |k|.
Slow roll inflation predicts an initial power spectrum of the form

P (k) = As

(
k

k∗

)ns
, (2.29)

where the As is the amplitude of fluctuations at pivot scale k∗ and the spectral index

ns = 1 − 6ε + 2η is slightly smaller than 1. (The slow-roll parameters ε and η are defined
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above in Eq. (2.22).) The form of the matter power spectrum will be significantly altered,

particularly on small scales (high k) due to the physics which govern structure growth. Some

of the characteristics of these alterations can be derived analytically, but in general the full

calculation is fairly involved and requires numerically solving coupled Boltzmann equations.

In practice, predictions for C` and P (k, z) for ΛCDM or alternative models can be com-

puted using a Boltzmann code such as CAMB.1 [60, 61].

2.3.2 Linear evolution of LSS

Given the matter power spectrum at some time t, say, obtained using a model of slow

roll inflation and CAMB, we can use linear perturbation theory to describe its evolution

analytically. This works on scales where density fluctuations are small compared to the

average density, or δ � 1. One can combine the Poisson equation, the Euler equation

describing the conservation of momentum for fluids, and the continuity equation for matter

density to obtain the linear growth equation,

δ̈ + 2Hδ̇ − 4πρ̄m(t)δ = 0. (2.30)

With some manipulation, by drawing on our knowledge from Section 2.2 to determine the

time evolution of H, we can show that

δ(t) ∝


ln t when ρr � ρm, ρΛ

a(t) when ρm � ρr, ρΛ

const. when ρΛ � ρm, ρr

. (2.31)

Given this scale-independent behavior on scales where the dynamics of density fluctuations

can be described using linear perturbation theory, it is common to define the linear growth

function D(a) and growth rate f(a) as

D(t) ≡ δ(r, t)

δ(r, t0)
(2.32)

f(t) ≡ d lnD

d ln a
. (2.33)

Solving Eq. (2.30) will determine these functions.

In practice, to compute the power spectrum, we would use CAMB or similar software to

1http://camb.info
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determine the form of P (k, z0) at some redshift z0, then evolve it linearly via

P (k, z) =
D2(z)

D2(z0)
P (k, z0). (2.34)

Here and later when z appears as an argument (as in e.g. P (k, z) or δ(r, z)) it is meant

to indicate that the function is evaluated at the time t(z). Once one moves beyond linear

perturbation theory, the calculations for the evolution of structure becomes significantly more

involved. We can estimate the effect of non-linear growth on P (k, z) using semi-analytic

models which are fit to N-body simulations, or emulation via simulations. A commonly

used example of this is the halofit model described in Ref. [62]. Additional corrections to

the power spectrum due to baryonic physics [63] or modifications to GR [64] may also be

applied using semi-analytic models which have been similarly calibrated on simulations.

In order to determine on which length scales linear perturbation theory is expected to

be accurate, one can refer to the quantity σ2(R), the variance of the mass inside a sphere of

comoving radius R. It can be written in terms of the matter power spectrum via

σ2(R, z) =
1

2π2

∫ ∞
−∞

k2 dk P (k, z)

(
3j1(kR)

kR

)2

(2.35)

where j`(x) is a spherical Bessel function and the quantity inside the large parentheses is the

Fourier-space window function for a spherical top-hat filter. In other words, σ(R) provides

a measure of how clumpy matter in the Universe is on length scale R. If σ(R) � 1, the

density distribution is relatively smooth and linear perturbation theory should do a good

job at describing structure growth. Otherwise, nonlinear corrections may be needed. The

quantity

σ8 ≡ σ
(
R = 8h−1Mpc, z = 0

)
(2.36)

has been measured to be ∼ O(1) and is commonly used as a parameter associated with

amplitude of the density perturbation spectrum, analogous to As (see Eq. (2.29)).

2.4 LSS observables

Calculations within ΛCDM or its extensions produce predictions for P (k, z), the power

spectrum for matter fluctuations. However, when we study LSS observationally, we must

rely on measurements of tracers of the total matter distribution, rather than observing the

total matter distribution, which is dominated by fluctuations in dark matter, directly. The
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LSS tracers that this thesis will focus on are galaxy positions and weak gravitational lensing.

2.4.1 Galaxy clustering

Because galaxies form in regions of high density, they trace the peaks of the total density

distribution. We describe the relationship between the fluctuations in galaxy number density

ρg (with perturbation field δg(r, t) and its Fourier transform δg(k, t) defined in the same way

as for δ) and those in total matter density in terms of a bias b(z, k), defined so

δg(k, z) = b(z, k) δ(k, z). (2.37)

This means that the relationship between the galaxy power spectrum and the matter power

spectrum is

Pg(k, z) = b2(z, k)P (k, z). (2.38)

On linear scales, and for Gaussian random primordial fluctuations, bias is scale independent,

so it can be written solely as a function of z.

When we measure the distribution of galaxies using a LSS survey, it is relatively easy

to determine their position on the sky to high accuracy. Finding the radial component of

their three dimensional positions is more challenging. This can be determined by measuring

a galaxy’s redshift z from its spectrum, and simply taking care to make the corrections

to Pg(k, z) to account for peculiar velocities associated with structure formation. This is

the strategy taken by spectroscopic surveys like BOSS. However, collecting enough photons

to obtain an accurate spectrum for a given galaxy takes a significant amount of time. In

order to be able to quickly survey galaxies over a very large volume, photometric surveys

(like DES) use an alternative strategy to obtain three-dimensional information about galaxy

populations.

In photometric galaxy surveys, galaxies are imaged using a small number of color filters.

Then, an algorithm, based on the analysis of a training set of galaxies for which there are

both spectroscopic and photometric data, is used to estimate the redshift of each galaxy

based on its relative flux in the different filters. When determined using this method, the

redshift of any individual galaxy will be poorly determined, but the distribution along the

line of sight of galaxies in a tomographic redshift bin can be estimated with reasonable

accuracy. Therefore, in order to compare the predictions of ΛCDM to observations, we need

to compute the angular power spectra of projected number density for galaxies in different

tomographic bins.
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If dni/dz is the redshift distribution of the direction-averaged angular density of galaxies

associated with tomographic bin i, normalized so that

1 =

∫
dz

dni

dz
, (2.39)

then the fluctuations in projected number density δin(n̂) can be written (assuming linear

bias) as

δig(n̂) =

∫
dz

dni

dz
b(z) δ(n̂ r(z), z). (2.40)

The angular power for the correlation between δig and δjg — that is, the fluctuations of

projected galaxy number density in redshift bins i and j — using the Limber approximation

(see Section A.4 of Appendix A) by

Cij
gg(`) =

∫
dz

H(z)

c r2(z)
W i
g(z, k)W j

g (z, k)P (k, z)

∣∣∣∣
k=(`+

1
2

)/r(z)

. (2.41)

Here

W i
g(z, k) ≡ dni

dz
bi(z, k) (2.42)

is a weight function which translates between the fluctuation in the density of tracers and the

fluctuations of total matter density. These expressions are derived in Appendix A in both

its exact and Limber approximation forms. In practice, galaxy correlations are typically

measured from data in terms of their real space correlations,

wij(θ) =
∑
`

2`+ 1

4π
P`(cos θ)Cij

g (`), (2.43)

where P`(x) is a Legendre polynomial of order `. The two-point function wij(θ) measures

the excess probability compared to random of finding a pair of galaxies separated by angle

θ.

2.4.2 Weak lensing

Weak gravitational lensing measurements extract information about LSS by measuring the

correlations in galaxy shapes due to the deflection of light from distant galaxies by lensing

due to intervening LSS. As photons from distant galaxies travel through the Universe, their

path will be deflected by the potential fluctuations associated with LSS along the line of

sight. This causes shears, or distortions, to their apparent shapes. Because we do not know
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source galaxies’ intrinsic shapes, we cannot determine the shear of a given galaxy explicitly,

but the fact that source galaxies that are closer together will be sheared by similar lower

redshift structures allows us to use statistical correlations between galaxy shapes in order to

measure the influence of the total projected mass density.

We can quantify the amount of distortion due to gravitational lensing in terms of a lensing

convergence κ(n̂). The convergence is defined in terms of the Laplacian with respect to angle

on the sky of a lensing potential ψ,

κ =
1

2
∇2
θψ, (2.44)

where ψ is defined so that its gradient ∇θψ = θs− θo is a two-dimensional vector describing

the angular deflection between a source’s observed position on the sky θo and its true position

θs. The lensing potential for a source plane at comoving distance rs is [57, 65]

ψ(n̂, rs) =
2

c2

∫ rs

0

dr
rs − r
rsr

Φ(n̂ r, t(r)), (2.45)

where Φ is the gravitational potential, and so the associated convergence [66]

κ(n̂, rs) =
1

c2

∫ rs

0

dr
r (rs − r)

rs
∇2

rΦ(n̂ r, t(r)) (2.46)

=
3H2

0 Ωm0

2c2

∫ rs

0

dr
r (rs − r)

rs

δ(r, t)

a(r)
(2.47)

is proportional to the projected mass density. In the limit where the gravitational lensing

mass is confined to a thin plane at distance rl, the convergence κ is physically defined as a

dimensionless surface mass density, κ = Σ/Σcr, where Σcr = c2(4πG)−1rs/(rl(rs − rl)) is a

critical density characterizing the lens-source system.

Note that above we have used the Poisson equation in comoving coordinates,

∇2Φ(r, t) =
3H2

0 Ωm0

2a(t)
δ(r, t), (2.48)

and to go from Eq. (2.44) to Eq. (2.46), we made the substitution,

∇2
θΦ = r2∇2

r⊥
Φ ≈ r2∇2

rΦ. (2.49)

This substitution appears to neglect the contribution to ∇2
r from the line-of-sight derivatives,

but the line-of-sight integral ensures that this can be done without loss of accuracy: it can
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be shown that the component of the integrand ∝ ∂2Φ/∂r2 integrates to zero.

The effective convergence for a population of sources i (e.g. associated with a specific to-

mographic redshift bin) with normalized redshift distribution dni/dz defined as in Eq. (2.39),

the effective lensing convergence will be

κi(n̂) =
3H2

0 Ωm0

2c2

∫ rh

0

drs
H(zs)

c

dni

dzs

∫ rs

0

dr
r (rs − r)

rs

δ(r, t)

a(r)
(2.50)

=
3H2

0 Ωm0

2c

∫ ∞
0

dzs

∫ ∞
0

dz
r(z) (r(zs)− r(z))

r(zs)

dni

dzs

δ(n̂ r(z), z)

H(z) a(z)
. (2.51)

Having converted this expression to an integral over z allows us, by comparison to Eqs. (2.40)

and (2.42) to define a weight function for shear convergence,

W i
κ(z) =

(
3H2

0 Ωm0

2c

)(
r(z)

a(z)H(z)

)∫ ∞
z

dz′
dni

dz′
r(z′)− r(z)

r(z′)
, (2.52)

such that

κi(n̂) =

∫
dz W i

κ(z) δ(n̂ r(z), z). (2.53)

This can be used to compute the angular power spectrum of correlations, using the Limber

approximation, between the shear convergence of sources in tomographic bins i and j,

Cij
κκ(`) =

∫
dz

H(z)

c r2(z)
W i
κ(z)W i

κ(z)P (k, z)

∣∣∣∣
k=(`+

1
2

)/r(z)

, (2.54)

as well as between the projected galaxy density for bin i and the convergence for bin j,

Cij
gκ(`) =

∫
dz

H(z)

c r2(z)
W i
g(z)W i

κ(z)P (k, z)

∣∣∣∣
k=(`+

1
2

)/r(z)

. (2.55)

The notation used here can be related to that in Ref. [67] simply by converting the z integrals

to comoving distance via dz = H(z)dr/c and relating their weight functions to ours via

qiX(k, r) = W i
X(k, r)H(z)/c.

When studying the effects of lensing for a galaxy survey analysis, rather than measuring

the convergence directly, we estimate the shear distortions to galaxy shapes. Shear is a

two-component quantity γ = (γ1, γ2), defined in terms of derivatives of the lensing potential

22



Figure 2.1: Illustration of shear coordinates. Here the blue ellipses represent a pair of
galaxies separated by angle θ, and γ1 and γ2 are shear coordinates defined γ1 is parallel
to their separation vector. The coordinates γt and and γ× are defined to measure shear
components that are parallel to and perpendicular, respectively, to the line connecting the
two galaxies.

with respect to angular coordinates θ1 and θ2 on the sky as

γ1 =
1

2

(
∂2ψ

∂θ2
1

− ∂2ψ

∂θ2
2

)
, and γ2 =

∂2ψ

∂θ1∂θ1

. (2.56)

Given a catalog of galaxy images, we can estimate the shear two-point functions by averaging

the components of galaxies’ measured ellipticities that are perpendicular or parallel to the

line connecting galaxy pairs on the sky. The relevant shear quantities for these measurements

is therefore the tangential shear γt and the cross shear γ×. If the θ1-θ2 basis is set up so that

the two galaxies in a pair are along the θ1 axis, these components are defined so γt = −γ1 and

γ× = −γ2. This is illustrated in Fig. 2.1. Shear-shear correlation studies most commonly

make use of the two-point functions, [68,69]

ξ± = 〈γtγt〉 ± 〈γ×γ×〉. (2.57)

It can be shown that in the weak lensing regime, where κ� 1 and γ ≡
√
γ2

1 + γ2
2 � 1, shear

correlations can be simply related to convergence power spectra [66]. In the flat-sky ap-

proximation, where sums over spherical harmonics are converted to two-dimensional Fourier

modes, the predicted angular correlations between the shears of galaxies in tomographic bins
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i and j are given by [67]

ξij+(θ) =

∫
d` `

2π
J0(`θ)Cij

κκ(`), (2.58)

ξij−(θ) =

∫
d` `

2π
J4(`θ)Cij

κκ(`), (2.59)

where Jm(x) is a Bessel function of the first kind of order m. Similarly, the cross correlation

between galaxy positions in in bin i and tangential shears of source galaxies in bin j is

γijt (θ) =

∫
d` `

2π
J2(`θ)Cij

gκ(`). (2.60)

It can be shown that, for the precision of current weak lensing surveys, the differences

introduced to these quantities by the flat sky approximations are negligible compared to

statistical uncertainties [65,67].

2.5 Summary

The parameters of the standard cosmological model introduced in this chapter are summa-

rized in Table 2.1.
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Parameter Description

z Redshift
H(t) Hubble rate, d ln a/dt
H0 Hubble parameter, d ln a/dt|t0
h H0/

[
100 km s−1Mpc−1

]
Ωm Total matter density in units of ρcrit

Ωb Baryon density in units of ρcrit

Ωc Cold dark matter density in units of ρcrit

Ων Neutrino density in units of ρcrit

Λ Cosmological constant
ΩDE Dark energy density in units of ρcrit

w Dark energy equation of state, equal to -1 for Λ
ns Spectral index of primordial power spectrum
As Amplitude of primordial power spectrum
σ2

8 Variance of matter density in spheres of radius 8h−1Mpc
wij(θ) Galaxy-galaxy correlation between z-bins i and j

ξij±(θ) Shear-shear angular correlation between z-bins i and j

γijt (θ) Galaxy-shear angular correlation between z-bins i and j

Table 2.1: Cosmological parameters and other quantifies defined in this chapter.
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Chapter 3

ISW signal reconstruction

As cosmic microwave background (CMB) photons travel from the last scattering surface to

our detectors, they can experience a frequency shift beyond that which is guaranteed by the

expansion of the universe. This additional effect is a result of the fact that gravitational

potential fluctuations associated with large-scale structure (LSS) evolve with time when the

Universe is not fully matter dominated. Consequently, the CMB photons are subject to

a direction-dependent temperature modulation which is proportional to twice the rate of

change in the potential integrated along the line of sight. This modulation is known as the

integrated Sachs-Wolfe (ISW) effect [70]. Its magnitude in direction n̂ on the sky was worked

out in the classic Sachs-Wolfe paper [71] to be

∆T

T̄

∣∣∣∣
ISW

(n̂) =
2

c2

∫ t0

t∗

dt
∂Φ(r, t)

∂t
, (3.1)

where t0 is the present time. t? is that of recombination, c is the speed of light, r is the

position in comoving coordinates, and Φ is the gravitational potential.

The ISW effect introduces a weak signal at very large scales (low multipoles) in the

CMB angular power spectrum. It carries important information about dark energy [72, 73],

particularly its clustering properties that are often parametrized by the dark energy speed

of sound. It also potentially offers useful information about the nature of dark energy, as

modified gravity theories have unique ISW signatures [74]. However, the fact that the largest

CMB multipoles are subject to cosmic variance severely limits how much information can

be gleaned from the ISW given the CMB temperature measurements alone.

We are able to observe the ISW effect because the dependence of the ISW signal on

the time derivative of the potential results in a large-angle cross-correlation between LSS

tracers and CMB temperature. This was first pointed out by Crittenden & Turok [75],
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who further suggested cross-correlation between CMB temperature anisotropy (δT/T )ISW(n̂)

and galaxy positions, (δN/N)(n̂′), as a statistic through which to detect the ISW effect.

This cross-correlation signal was detected shortly thereafter [76] and was later confirmed by

many teams who found cumulative evidence of about 4σ using a number of different LSS

tracers [77–91]. Comprehensive surveys of recent results can be found in Refs. [89, 91, 92].

While the detection of the ISW effect itself provides independent evidence for dark energy at

high statistical significance, prospects for using it to constrain the cosmological parameters

are somewhat limited [93].

The ISW map, (δT/T )ISW(n̂), is also of interest in its own right. By assuming a cosmolog-

ical model, one can construct an estimator using theoretical cross-correlations in combination

with LSS data. Because the ISW signal represents a late-universe contribution to the CMB

anisotropy, measuring and subtracting it from observed temperature fluctuations would al-

low us to isolate the (dominant) early-universe contributions to the CMB. If this procedure

could be done reliably, it would have immediate implications for our understanding of the

cosmological model.

For example, the ISW signal has been identified as a potential contributor to large-angle

CMB features which have been reported to be in tension with the predictions of ΛCDM [94].

A reconstructed ISW map would clarify whether some component of the CMB anomalies

(discussed further in Section 3.6) become stronger or weaker when evaluated on the early-

universe-only contribution to the CMB. A few studies [95,96] have already explored this. To

study the impact of ISW contributions on CMB anomalies, Ref. [96] uses WMAP data with

2MASS and NVSS, while Ref. [95] uses 2MASS alone.

The late-time ISW also provides a contaminant to the measurement of primordial non-

Gaussianity from CMB maps. Because both the ISW effect and gravitational lensing trace

LSS, they couple large- and small-scale modes of the CMB, resulting in a nonprimordial con-

tribution to the bispectrum. Recent analyses [97] have corrected for this by including a the-

oretical template for the ISW-lensing bispectrum in analyses of primordial non-Gaussianity.

Reconstructing and subtracting the ISW contribution from the CMB temperature maps

could provide an alternative method for removing ISW-lensing bias when studying primor-

dial non-Gaussianity [98]. More generally, understanding how reliably the ISW map can be

reconstructed from large-scale structure information impacts our understanding of how the

late universe affects our view of the primordial CMB sky.

Before reconstruction can be done reliably, however, we must understand how systematics

associated with the input data impact the ISW estimator’s accuracy. Previous works have

explored this to some extent, looking at how reconstruction quality is affected by the inclusion
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of different input data sets [11, 91, 99], masks [91, 99] and, to a limited degree, the influence

of uncertainties in cosmological and bias models [99]. Additionally, Ref. [100] studied how

systematics like redshift uncertainties and photometric calibration change the signal to noise

of the ISW effect’s detection. That being said, there remain a number of systematics inherent

to galaxy survey data which have not yet been subject to detailed analysis in the context of

ISW map reconstruction. We aim to address this.

In this analysis, we use simulated ISW and LSS maps to identify which survey properties

are important for ISW reconstruction and to quantify their effects on the reconstructed

maps. We begin by studying how survey depth, redshift binning strategy, and the minimum

measured multipole `min influence reconstruction quality in the absence of systematics. Using

these results as a baseline, we then explore two broad classes of systematics: ways one can

mismodel the redshift distribution of LSS sources, and direction-dependent photometric

calibration errors that can result from, for example, contamination by stars. In doing this,

we demonstrate that while the impact of redshift-distribution modeling errors is mostly

negligible, even small levels of photometric calibration errors can have devestating effects on

ISW signal reconstruction accuracy. We also briefly discuss the implications of our results

for analysis of whether the ISW signal contributes to the observed alignments between large-

angle multipoles of the CMB temperature map.

The chapter is organized as follows. In Section 3.1 we discuss our general procedure for the

ISW map reconstruction and assessment of the accuracy in this procedure. In Section 3.2,

we describe the properties of the surveys that we will consider, and draw on the results

to interpret a cross-check, presented in Section 3.3, of the results for ISW reconstruction-

accuracy results in Ref. [11]. Then, in Sections 3.4 and 3.5 we discuss the effect of various

systematic errors on the ISW map reconstruction. We conclude in Section 3.7.

3.1 Methods

We perform a number of studies examining how survey properties and systematics affect the

accuracy of reconstructed ISW maps. These studies all follow this general pipeline:

• Select a fiducial cosmological model and specifications of the LSS survey.

• Compute the “true” angular cross-power CXY
` for ISW and LSS maps, assuming the

fiducial cosmology and survey specifications.

• Use the true CXY
` to generate correlated Gaussian realizations of the true ISW signal

and corresponding LSS maps.
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Figure 3.1: Flowchart of ISW reconstruction pipeline.

• If applicable, postprocess the galaxy maps to model direction-dependent systematic

effects.

• Construct an estimator for the ISW signal using the simulated galaxy maps and a set

of “model” CXY
` which may or may not match those used to generate the simulations.

• Compare the reconstructed ISW signal to the true ISW map and evaluate the accuracy

of the reconstruction.

This section will introduce some of the theoretical tools needed for this analysis.

3.1.1 Theoretical cross-correlations

The angular cross-power between ISW and galaxy maps serves as input for both the simula-

tion and reconstruction processes used in the following sections. Given maps X and Y , the

expression for the angular cross-power between them is

CXY
` =

2

π

∫
dk k2 P (k) IX` (k) IY` (k) (3.2)
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where P (k) is the matter power spectrum at z = 0, and the transfer function IX` (k) is written

IX` (k) ≡
∫ ∞

0

dz D(z)WX(z, k) j`(kr). (3.3)

Here, r ≡ r(z) represents comoving radius; j`(x) is a spherical Bessel function; and D(z),

which is normalized to one at z = 0, describes the linear growth of matter fluctuations.

The function WX(k, z) is tracer-specific window function that encapsulates the relationship

between the tracer X and underlying dark matter fluctuations δ. Note that this expression

looks different from that given in Section 2.4.1 because it is the exact expression for CXY
` ,

while Eq. (2.41) (which will be reiterated below) uses the Limber approximation. Both of

these expressions are derived in Appendix A.

The tracers relevant to our studies are the ISW signal and galaxy number density. The

ISW window function is

W ISW(z, k) = [Θ(zmax − z)]

[
3H2

0 Ωm

c2k2

]
(1− f(z)) , (3.4)

where Θ is the Heaviside step function. In this expression, derived in Section A.5 of Ap-

pendix A, the term in square brackets comes from when the Poisson equation is used to

relate potential fluctuations to dark matter density, Ωm is the matter density in units of the

critical density, and H0 is the present-day Hubble parameter. The appearance of the growth

rate f(z) ≡ d lnD/d ln a comes from the time derivative in Eq. (3.1). To compute the full

ISW contribution, one would integrate to the redshift of recombination, zmax = z?. In this

work, though, we are interested only in the late ISW effect, so we can set zmax = 15 without

a loss in accuracy.

Each survey (and each redshift bin within a given survey) will have its own window

function. For a map of galaxy number density fluctuations, it is the same as the function

Wg(k, z) used in Section 2.4.1,

W gal(z, k) = b(z)
dn

dz
. (3.5)

Reiterating the discussion from Chapter 2, in this expression, b(z) represents linear bias,

which we assume is scale independent. The function dn/dz describes the redshift distribution

of the observed sources, encapsulating information about how their physical density varies

with redshift as well as survey volume and selection effects. It is normalized so it integrates
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to one. Galaxy shot noise is included by adding a contribution to its autopower spectrum,

Cgal−gal
` → Cgal−gal

` + n̄−1 (3.6)

where n̄ is the average number density of sources per steradian. In summary, to simulate a

given galaxy survey, we need b(z), describing how clustered its sources are relative to dark

matter; dn/dz, describing how the observed sources are distributed along the line of sight;

and n̄, the average number density of sources per steradian.

For ` > 20, we use the Limber approximation to compute CXY
` . This dramatically

reduces the computation time and gives results that are accurate to within about 1% [101].

In this approximation, the cross-correlations become

CXY
` =

∫
dz
H(z)D2(z)

c r2(z)

[
P (k)WX(k, z)W Y (k, z)

]
k=k`

, (3.7)

where k` = (`+ 1
2
)/r(z) and H(z) is the Hubble parameter.

We developed an independent code to calculate the cross-power spectra CXY
` and have

extensively tested its accuracy for various survey redshift ranges against the publicly available

CLASS code [102], which is accurate to about 0.1%.

3.1.2 Simulating LSS maps

As we care only about large-angle (` . 100) features, we model the ISW signal and galaxy

number density fluctuations as correlated Gaussian fields. To simulate them, we compute

the relevant angular auto- and cross-power C`’s and then use the synalm function from

Healpy [5] to generate appropriately correlated sets of spherical harmonic coefficients g`m.

These components are defined via the spherical harmonic expansion of the number density

of sources in the ith LSS map, [
δN

N

]i
(n̂) =

∑
`m

gi`m Y`m(n̂). (3.8)

For each study using simulated maps, we generate 10,000 map realizations. We use Healpix

with NSIDE=32 and compute C` up to `max = 95, guided by the relation1 `max = 3(NSIDE)−
1. Unless we state otherwise, our ISW reconstructions include multipole information down

to `min = 2.

1See, for example the Healpix user guide at https://healpix.jpl.nasa.gov/html/facilitiesnode7.htm.
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All of our analyses are for full-sky data and our fiducial cosmological model is ΛCDM,

with parameter values from best-fit Planck 2015,

{Ωch
2,Ωbh

2,Ωνh
2, h, ns} = {0.1188, 0.0223, 0, 0.6774, 0.9667}. (3.9)

3.1.2.1 Fiducial survey

We model our fiducial galaxy survey on what is expected for Euclid [103]. With its large sky

coverage and deep redshift distribution, the Euclid survey has been identified as a promising

tool for ISW detection [100, 104] and it is reasonable to assume that these properties will

also make it a good data set to use for ISW reconstruction. We therefore adopt the redshift

distribution used in Ref. [105],

dn

dz
=

3

2z2
0

z2 exp
[
−(z/z0)−1.5

]
(3.10)

which has a maximum at zpeak ' 1.21z0. We adopt z0 = 0.7 and n̄ = 1 × 109 sources per

steradian. For binning studies (see Section 3.2.2) we assume a photo-z redshift uncertainty

of σ(z) = 0.05(1+z). Our fiducial bias is b(z) = 1. We explicitly state below whenever these

fiducial values are varied for our tests.

3.1.3 ISW estimation

In contrast to ISW detection studies mentioned in the introduction to this chapter, in which

the correlation between observed galaxy and CMB maps is measured as a signal, for ISW

signal reconstruction, we use the theoretical cross correlations for a fiducial cosmological

model in order to estimate the ISW contributions to CMB temperature fluctuations given

observed LSS density fluctuations. We use the optimal estimator derived in Ref. [11] to

reconstruct the ISW signal from LSS maps. Because we are interested in quantifying the

impact of galaxy survey systematics, in this work we focus on the case where only galaxy

maps are used as input. We thus neglect the part of the estimator that includes CMB

temperature information and write

âISW
`m =

n∑
i

Ri
`g
i
`m. (3.11)
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Here â`m is the optimal estimator for the ISW map component, gi`m is the observed spherical

component of LSS tracer i, and n is the number of LSS tracers considered. The operator

Ri
` ≡ −N`[D

−1
` ]ISW−i (3.12)

is the reconstruction filter applied to the ith LSS map. It is constructed from the covariance

matrix D` between ISW and LSS tracers,

D` =


CISW,ISW
` CLSS1,ISW

` · · · CLSSn,ISW
`

CLSS1,ISW
` C

LSS1,LSS1
` · · · C

LSS1,LSSn
`

...
...

. . .
...

CLSSn,ISW
` C

LSS1,LSSn
` · · · C

LSSn,LSSn
`

 . (3.13)

The term N−1
` ≡ (D−1

` )11 estimates the reconstruction variance.

Note that for reconstruction using a single LSS map this reduces to a Wiener filter, a

signal-processing method commonly used to separate signals and noise with known auto-

and cross-correlations:

âISW
`m

single LSS−→ CISW−gal
`

Cgal−gal
`

g`m. (3.14)

In the subsequent discussion, we will refer to the correlations appearing in D` (and thus

the reconstruction filters Ri
`) as Cmodel

` . This is to distinguish them from the correlations

used to generate the simulations, which we will call Ctrue
` . We adopt this convention because

if we were reconstructing the ISW signal based on real data, Ctrue
` would be the correlations

determined by the true underlying physics of the universe, while Cmodel
` would be computed

theoretically based on our best knowledge of cosmological parameters and the properties of

the input LSS tracers.

Setting Cmodel
` = Ctrue

` represents a best-case scenario where we have perfect knowledge

of the physics going into the calculations outlined in Section 3.1.1. Incorrect modeling will

break that equality, causing the estimator in Eq. (3.11) to become suboptimal. Our analysis

of LSS systematics in Sections 3.4 and 3.5 will fundamentally be an examination of how

different manifestations of the of Cmodel
` 6= Ctrue

` mismatch impact reconstruction.

3.1.4 Fitting for effective galaxy bias

Our pipeline actually contains an additional step, which as we will see in later sections, helps

protect against some systematics: before constructing the ISW estimator, we fit the galaxy

maps for a constant bias.
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When performing this procedure, the first step of our reconstruction process is to measure

the galaxy autopower spectrum from the observed galaxy map, C
gal(obs)
` . This will be subject

to cosmic variance scatter about C
gal(true)
` and so will be realization dependent. We then

perform a linear fit for a constant b̄ satisfying

C
gal(obs)
` = b̄2C

gal(model)
` . (3.15)

We then scale the model power spectra:

Cgal
` → b̄2Cgal

` ,

Cgal−ISW
` → b̄ Cgal−ISW

` , (3.16)

C
gali−galj
` → b̄i b̄j C

gali−galj
` .

If there are no systematics affecting our measurements, C
gal(true)
` = C

gal(model)
` , so b̄ will

be close to 1. When a galaxy bias is modeled as a constant, b0, for each galaxy map, this

scaling will exactly correct for any mismatch between the value used in the simulations and

that in the model used to construct the ISW estimator:

b̄ = btrue
0 /bmodel

0 . (3.17)

Outside the case of constant bias, there is not a direct correspondence between b̄ and the

parameters of the bias model. (It corresponds to the ratio between weighted averages of

b(z)true and b(z)model.) However, the procedure for fitting for and scaling by b̄ is well defined

and makes our estimator robust against systematics which shift C`’s by a multiplicative

constant, including mismodeled b(z) and dn/dz. We will demonstrate this in Section 3.4.

3.1.5 Evaluating reconstruction accuracy

We will use two statistics to quantify the accuracy of reconstructed ISW maps. Primarily, we

will use the correlation coefficient between the true ISW signal T ISW(n̂) and the reconstructed

ISW map T rec(n̂). For a given realization we compute this as

ρ =
〈T ISWT rec〉pix

σISWσrec

, (3.18)

where 〈〉pix indicates an average over pixels, and σX is the variance of map X.

We can approximate the theoretical expectation value for ρ using the cross-power between
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maps,

〈ρ〉 =

∑
`i(2`+ 1)Ri

`C
ISW−i
`

〈σrec〉〈σISW〉
, (3.19)

where the indices i and j label LSS maps and

〈σISW〉 =

√∑
`

(2`+ 1)CISW
` (3.20)

〈σrec〉 =

√∑
`ij

(2`+ 1)Ri
`R

j
`C

ij
` (3.21)

are the standard deviations of the temperature maps.In deriving this expression, we assumed

〈σ−1〉 = 〈σ〉−1 and that the various factors in this expression are uncorrelated. We will see

later that this is a reasonably accurate approximation to make, as it gives values which are

in good agreement with simulation results.

One can see by examining Eqs. (3.18) and (3.19) that ρ is sensitive to the reconstruction

of phases but insensitive to changes in the overall amplitude of the reconstructed ISW map.

Because of this, though ρ → 1 is generally indicative of a more accurate reconstruction,

this quantity does not capture all important information about reconstruction quality. We

therefore also consider a complementary statistic which is sensitive to amplitude, defined

s =
〈(T ISW − T rec)2〉1/2pix

σISW

. (3.22)

The quantity s measures how the average size of errors in the reconstructed signal compares

to that of fluctuations in the true ISW map. As with ρ, we can compute its expectation

value,

〈s〉 =

√
〈σrec〉2 + 〈σISW〉2 − 2

∑
`i (2`+ 1)Ri

`C
ISW−i
`

〈σISW〉
. (3.23)

Because the bias-fitting procedure discussed in Section 3.1.4 corrects for amplitude dif-

ferences, for most of the scenarios we study, ρ and s effectively contain the same information.

For this reason, we will primarily use ρ as our quality statistic and will only show results for

s when it contributes new insight.

Throughout this chapter we will use angled brackets to indicate the theoretical expecta-

tion values for these statistics, and an overbar to indicate averages computed from simula-

tions.
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Figure 3.2: Scatter plot comparing the true (simulated) ISW signal, on the horizontal axis,
to the reconstructed ISW signal, on the vertical axis, for a single realization assuming each of
five different depths of the survey. Each data point corresponds to one pixel on an NSIDE=32
map. If there was a perfect reconstruction, all points would fall on the dotted line.

3.2 The effect of survey properties

Before studying the effects of systematics, it is instructive to explore how LSS survey proper-

ties impact ISW signal reconstruction in the ideal, Cmodel
` = Ctrue

` , scenario. This has already

been done to some extent in Refs. [11], [91], and [99].

Our studies in this section will serve two primary purposes. First, they will provide

a straightforward demonstration of our pipeline and the reconstruction quality statistics

introduced in Section 3.1.5. More importantly, they will serve as a baseline for our analysis

of systematics in Sections 3.4 and 3.5: Our goal is not to find optimized survey properties

for ISW signal reconstruction, though our results might serve as a rough guide for doing

so. Rather, we want to study how shifting, for example, survey depth or redshift binning

strategy affects ISW reconstruction in the best-case scenario (no with systematic errors) so

that we can better understand the impact of what happens when those errors are introduced.
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Figure 3.3: Histograms of the correlation between true and reconstructed ISW maps ρ (left
panel), and the typical size of residuals relative to that of the true ISW map fluctuations
s (right panel). These plots show the results of 10,000 simulations for surveys of various
depths, with their dn/dz distributions shown in arbitrary units as an inset in the left plot.
The solid and dashed vertical lines show the theoretical expectation value and measured
average, respectively, for the statistic in question.

3.2.1 Varying survey depth

The first property we examine is survey depth. We model this by changing the value of

z0 in our fiducial dn/dz [Eq. (3.10) ] while holding all other survey properties fixed. We

look at values ∆z = ±0.1 on either side of our fiducial z0 = 0.7, plus a redshift distribution

comparable to DES [106] with z0 = 0.5 and the even-shallower z0 = 0.3.

Figure 3.2 shows a pixel-by-pixel comparison between the reconstructed and true ISW

signal for a single representative realization. We can see that the deeper surveys have data-

points more tightly clustered around the T ISW
rec = T ISW

true diagonal and correspondingly higher

values of ρ.

We find that this pattern holds, if noisily, in the full ensemble of simulated maps. Fig-

ure 3.3 shows histograms of ρ for the same surveys, with their dn/dz distributions shown in

an inset. In it, the sample average ρ̄ of Eq. (3.18) and theoretical expectation value 〈ρ〉 are

plotted as dashed and solid vertical lines, respectively. We find that though 〈ρ〉 tends to be

lower than ρ̄, the difference between them is much smaller than the scatter in the data, and

that the ordering of 〈ρ〉 values for the different surveys is consistent with the results from

simulations. We take this to mean that the more computationally efficient 〈ρ〉 is a slightly

biased but reasonably reliable indicator of the ISW reconstruction quality.

Looking at the data, we also note that the scatter in the individual ρ distributions is
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large compared to the difference between their mean values. This tells us that, while 〈ρ〉 (or

ρ̄) values succeed in predicting how ISW reconstruction quality from different surveys will

compare on average, they are a relatively poor predictor of how surveys will compare for any

individual realization.

For illustrative purposes, in Fig. 3.3, we also show a histogram for the values of statistic

s which, recall, is mainly sensitive to the amplitude accuracy in the map reconstruction –

measured from the same simulations. We see that (as expected) surveys with larger ρ̄ have

smaller s̄ and that the surveys with ρ̄ ∼ 0.9 correspond to s̄ ∼ 0.4. This tells us that even in

the best maps that we study here, errors in the reconstructed ISW temperature are a little

over one-third of the amplitude of true ISW signal fluctuations.

We keep the mean source number density n̄ fixed for this analysis, so that any differences

we observe in reconstruction quality are due only to how the redshift distributions are sam-

pled, not to the fact that a deeper survey will observe a larger number of sources. We argue

that this is well motivated because the only way n̄ enters our calculations is via shot noise,

and we have set it to a large enough value so that its contributions are negligible on large,

ISW-relevant scales.

3.2.2 Redshift binning strategy

Here we study how different strategies for binning galaxy data affect the reconstruction. For

each bin with zi ≤ z < zi+1, we model the redshift distribution by weighting the survey’s

overall distribution dntot/dz with a window function Fi(z) and scale the total number density

accordingly:

dni

dz
=

dntot

dz
Fi(z)∫ ∞

0

dntot

dz
Fi(z) dz

, (3.24)

n̄i = n̄tot ×
[∫ ∞

0

dntot

dz
Fi(z) dz

]
. (3.25)

We can then compute CXY
` using the expressions in Section 3.1.1, treating each redshift bin

as an individual map (X or Y ).

Photometric redshift uncertainties will cause sharp divisions in observed redshift to be

smoothed when translated to spectroscopic redshift. As in Ref. [11] we therefore model the
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Figure 3.4: Un-normalized redshift distributions for the six redshift bins studied, with
photometric-redshift uncertainty σ(z) = 0.05(1 + z). Because these distributions are not
yet normalized (they neglect the denominator of Eq. (3.24)), the area under the curves gives
an idea of the relative number of galaxies in each bin. The dotted line shows the ISW kernel
in arbitrary units.

effect of photometric uncertainties σ(z) via

Fi(z) =
1

2

[
erfc

(
zi − z
σ(z)
√

2

)
− erfc

(
zi+1 − z
σ(z)
√

2

)]
, (3.26)

which effectively acts as a smoothed top-hat window in z. We use the standard form for

photometric-redshift uncertainty

σ(z) = σz0 × (1 + z). (3.27)

For reference, Euclid forecasts consider σz0 = 0.05 a requirement and give σz0 = 0.03 as a

reach goal [103,107].

In order to understand how binning affects ISW reconstruction, we split our fiducial

redshift distribution into the six bins shown in Fig. 3.4 and compute all possible auto- and

cross-correlations between them. We then use the relations from Ref. [108] to compute CXY
`

for cases where two or more adjacent bins are merged.

To check that our understanding of reconstruction statistics holds for surveys with multi-

ple redshift bins, we simulated 10,000 map realizations for three configurations: the one-bin

fiducial case, the six-bin case, and a three-bin case with edges at z ∈ [0, 0.8, 1.6, 3.5]. For

all of these, we used σz0 = 0.05. The results, shown in Fig. 3.5, reveal that though binning

slightly improves the reconstruction quality, it does not dramatically change the shape of
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Figure 3.5: Histogram of ρ values measured from 10,000 map realizations for selected binning
strategies. The inset shows the un-normalized dn/dz distributions for the sets of redshift
bins considered.

the ρ distribution, nor the relationship between 〈ρ〉 and ρ̄.

We see that splitting data into redshift bins improves our ISW reconstruction, if only

slightly: the correlation between the reconstructed and true map shifts by ∆ρ . 0.03. This

change is smaller than the observed scatter in ρ and is comparable to that produced in

the previous section by shifting the survey depth by ∆z = ±0.1 about z0 = 0.7. This

improvement could be due to gains in three-dimensional information, or to the fact that we

are now using multiple LSS maps with uncorrelated noise.

Reassured that 〈ρ〉 is still a reliable statistic, we compute it for all 32 possible combina-

tions of the six bins from Fig. 3.4. The results are shown in Fig. 3.6. In this figure, the bars

labeling the y-axis schematically illustrate the binning configurations, with different colors

corresponding to different numbers of bins. The data points show 〈ρ〉 for various values

of σz0, while the X-shaped points with error bars show the mean and standard deviations

extracted from the histograms in Fig. 3.4.

We note a couple of patterns in the results. First, for a fixed number of bins, the

reconstruction tends to be better if we place finer divisions at high redshift. Also, having a

smaller photometric-redshift uncertainty actually slightly degrades the reconstruction rather

than improving it. This implies that combining maps with redshift distributions which
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overlap more tend to lead to better reconstructions. This could be due a multitracer effect,

in that overlap between bins means that we are sampling the same potential fluctuations

with multiple source populations. However, it is also possible this is due to how our model

of σ(z) affects the shapes of the redshift distributions, which itself only an approximation

for a survey’s true photo-z uncertainties. Given the small size of these effects, one should be

cautious about assigning them much physical significance.

Last, we observe a shift ∆ρ due to changes in binning that is smaller than what is found

in the work by Ref. [11] by about a factor of 3. Because their simulated DES-like survey

is shallower than our fiducial survey and the relationship between ∆ρ and ρ̄ is nonlinear

(e.g., a shift from 0.98 to 0.99 is more significant than one from 0.28 to 0.29), this does not

necessarily mean that our results are incompatible. As a cross-check, we performed additional

simulations similar to those analyzed in Ref. [11]. Our results, discussed in Section 3.3,

support this.

3.2.3 Varying `min of reconstruction

For most of the studies presented in this chapter, we reconstruct and assess the accuracy

of ISW maps using all multipoles with 2 ≤ ` ≤ 95. This range is chosen because ` = 2

is the lowest multipole typically considered for CMB analysis and ` = 95 is the maximum

multipole which corresponds to angular scales larger than the size of individual pixels in

NSIDE=32 Healpix maps. In this section, we study the effect of changing `min.

When we perform ISW map reconstruction, we enforce `-range requirements in three

ways. First, when we construct the ISW estimator shown in Eq. (3.11), we set all Ri
` not

satisfying `min ≤ ` ≤ `max to be zero, so the reconstructed map contains no information from

multipoles outside that range. Second, when analyzing simulations, we remove the same `

values from maps before computing ρ. Likewise, when we analytically compute 〈ρ〉 as shown

in Eq. (3.19), we restrict the sum over multipole to `min ≤ ` ≤ `max. In other words, when

we show ρ`≥`min
, we are showing the result for an ISW map reconstructed for a limited range

of ` values, evaluated by considering only those multipoles.

The results of this analysis are shown in Fig. 3.7. Here we show the correlation coefficient

between true and reconstructed maps ρ[`≥`min] as a function of the minimum multipole used

in the reconstruction. The solid line is the theoretical expectation value, while the data

points with error bars show results from simulations. We find that ρ increases with the

minimum multipole out to `min ∼ 5, after which it begins to very gradually decrease with

`min. Increasing `min also decreases the scatter in ρ measured across realizations.
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Figure 3.7: How filtering out angular scales with ` > `min affects reconstruction of ISW
map. The data points show the mean and standard deviation of ρ, the correlation coefficient
between true and reconstructed ISW maps, observed in 10,000 realizations, while the line
shows the value of 〈ρ〉 computed analytically.

We interpret these trends to be the result of a competition between cosmic variance and

the fact that most ISW information (power and cross-power) is at small multipoles. That

is, removing the lowest few multipoles (out to ` ' 4) from the analysis largely removes noise

due to cosmic variance, while removing further multipoles largely removes ISW information.

This can be seen by noting that the slope of the line Fig. 3.7 becomes negative for `max > 5.

This has implications for efforts to reconstruct ISW maps from data; if we only care about

small-angle features, it can be worth ignoring a few low-` modes in order to get a more

accurate reconstruction. Conversely, if we want to study how the ISW signal contributes to

the CMB quadrupole and octopole, we must recognize that reconstruction quality will be

necessarily less predictable.

Because cosmic variance of the ISW C` has a nontrivial relationship with the value

and scatter of ρ, one cannot make a direct connection between `min and how fsky affects

reconstruction, as is done in the ISW signal-to-noise detection studies (e.g., Ref. [104]). To

understand how sky coverage affects reconstruction, one should perform simulations using

the mask appropriate for a given survey. We refer the reader to Ref. [99] for an analysis of

how ISW signal reconstruction is affected by survey masks.

We also looked at the impact of varying `max but found that the correlation coefficient ρ

is insensitive to it, and therefore do not show it.
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Figure 3.8: How changing n̄ affects reconstruction of the ISW map. The data points show
the mean and standard deviation of ρ, the correlation coefficient between true and recon-
structed ISW maps, observed in 10,000 realizations. The line shows the value of 〈ρ〉 computed
analytically.

3.2.4 Varying n̄

Additionally, we studied how the level of galaxy shot noise affects reconstruction. For this

test, we varied the number density of sources, n̄, for our fiducial survey and introduced it to

both Ctrue
` and Cmodel

` according to Eq. (3.6). Our results are shown in Fig. 3.8.

We find that as long as n̄ & 1 arcmin−2 ≈ 107 sr−1, shot noise will have a negligible

impact on reconstruction. Note that this requirement is easily satisfied by essentially all

photometric surveys (e.g., for DES or Euclid, n ' (10 − 30) arcmin−2). However, the

quality of the reconstruction degrades rapidly for lower values of number density; once

n̄ . 10−3 arcmin−2 ≈ 104 sr−1, the reconstruction contains effectively no information about

the true ISW map. Therefore, ISW reconstruction from spectroscopic galaxy surveys, as

well as galaxy cluster samples, may be subject to degradations due to high shot noise.

3.3 Cross-check with Manzotti and Dodelson (2014)

Here we perform a crosscheck of our reconstruction procedure against Manzotti and Dodel-

son (2014) [11] (MD). In their paper, MD perform simulations for an NVSS-like survey and

a DES-like survey in two- and three-binned configurations. We attempt to simulate ISW

reconstruction for similar surveys.

44



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Redshift z

d
n
/d
z 

(a
rb

. 
u
n
it

s)
NVSS

DES 2 bin

DES 3 bin

0.0 0.2 0.4 0.6 0.8 1.0

ρ=
〈
TtrueTrec

〉
pix/σ

true
T σrec

T

0

200

400

600

800

1000

1200

R
e
a
liz

a
ti

o
n
s

mean from simulation

mean from theory

NVSS: 
〈
ρ
〉
= 0. 577

DES 2 bin: 
〈
ρ
〉
= 0. 841

DES 3 bin: 
〈
ρ
〉
= 0. 882
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with redshift distributions shown in the left panel. Values of ρ̄ from Ref. [11] are shown by
the arrows along the top of the plot. The observed discrepancies are likely due to different
amounts of simulated galaxy shot noise.

For the NVSS-like survey, we use the analytic dn/dz distribution given by MD, integrating

between 0.01 ≤ z ≤ 6 when computing its C`. The redshift distributions used for these

simulations are shown in the left panel of Fig. 3.9. For the DES-like survey, we adjusted

the parameters in our fiducial dn/dz model by eye so that the three-binned case is similar

to that shown in MD’s relevant figure. For the three-binned case, we place bin edges at

z ∈ [0.1, 0.5, 1.0, 1.6]. Because MD do not describe how the two-binned case is divided,

we somewhat arbitrarily place the bin edges at z ∈ [0.1, 0.5, 1.6]. Like MD, we include

multipoles 3 ≤ ` ≤ 80 in our analysis. We leave n̄ at our fiducial value of 109 for all of

these surveys. This value was selected based on an assumption that shot noise contributions

would be negligible, but we note below that this is likely not the case.

The right panel of Fig. 3.9 shows a histogram of the ρ values for 10,000 map realizations

in our study, with the values from MD shown with arrows. We find that our ρ̄ values are

systematically higher than, but not wildly incompatible with those in MD. It is hard to

specifically identify a cause for this without more information, but the discrepancy is most

likely due to differences in the amount of Poisson noise we add to our galaxy maps. We

note, for example, that we can get our 〈ρ〉 for the NVSS-like survey to roughly match the

MD value if we reduce our simulation’s n̄ to ∼ 5× 105. If we set n̄ to the value reported for
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NVSS by MD, n̄ = 5× 104 sr−1 ≈ 16 deg−2, we get a lower value of 〈ρ〉 = 0.22.

The shift between the two- and three-bin DES surveys in our simulations is larger than

the ∆ρ ∼ 0.03 seen in the binning study of Section 3.2.2. This supports our hypothesis that

ρ̄ shifts more easily at lower ρ values. The fact that our observed shift is still only about half

the size of that by MD is probably also due to the fact that we are finding larger ρ̄ values

than they do. In other words, since we measure higher ρ̄ (probably because we include less

shot noise than MD), a comparable degredation in reconstruction quality will produce a

smaller shift in ρ̄

3.4 The effect of mismodeling redshift distributions

Large-scale structure surveys are subject to a variety of systematic errors that limit the extent

to which LSS tracers can be used to probe dark matter, dark energy, and primordial physics.

These systematics can be astrophysical, instrumental, or theoretical in origin. Concretely, in

this work, they include anything that makes Cmodel
` 6= Ctrue

` , which will cause the estimator

given in Eq. (3.11) to become suboptimal — both in the sense that it will no longer be

a maximum-likelihood estimator for the true ISW signal, that the errors may potentially

biasing reconstructed ISW map. Our goal is to study these LSS systematics generally,

without requiring specific information about a LSS survey (e.g., wavelengths at which it

observes the sky). We do this by considering two broad classes of LSS systematics:

1. Mismodeling of the distribution of LSS sources along the line of sight.

2. Direction-dependent calibration errors.

Our studies will give us some insight into which, and how much, systematics need to be

controlled if one wishes to use LSS data to reconstruct a map of the ISW signal. This section

will focus on the first class of systematic, while Section 3.4.3 will focus on the second.

In the context of ISW map reconstruction, it would be reasonable to guess that accurate

knowledge of galaxy redshifts is important for our ability to correctly associate the observed

number density fluctuations on the sky with the three-dimensional gravitational potential

fluctuations which source the ISW signal in a redshift-dependent way. Uncertainties about

redshift distributions are a pervasive class of systematics affecting LSS surveys, which have

already been studied by numerous authors (e.g., Refs. [109, 110]) in the context of cosmo-

logical parameter measurements from photometric surveys. Here we study how redshift

modeling errors affect the ISW reconstruction accuracy.
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Figure 3.10: Impact of mismodeling survey depth on the expected correlation between the
true and reconstructed ISW maps 〈ρ〉 (left panel) and the ratio of the average size of residuals
to that of ISW map features 〈s〉 (right panel). The true value of the parameter z0, which
controls the depth of the survey, is fixed at 0.7, while the values used for reconstruction are
shown on the x-axis. The blue circular points show results from our standard reconstruction
pipeline, while the gray diamond-shaped points (directly behind the blue points in the ρ
plot) show results when we skip the b̄-fitting step. The y-axis is linear within one tick mark
of zero; otherwise, it has logarithmic scaling.

For the purposes of this discussion, we define redshift uncertainties broadly as anything

that makes the galaxy window function (Eq. (3.5)) used in our ISW estimator different

from that which describes the true line-of-sight distribution of objects we observe on the

sky. We study three specific cases of this: the mismodeling of a survey’s median redshift,

redshift-dependent bias, and the fraction of catastrophic photometric-redshift errors. In each

case, we identify a parameter which controls the survey characteristic in question. Then,

choosing a true (simulation) value for that parameter, we perform reconstructions using

several mismodeled values as input to the ISW estimator. This allows us to and look at how

the theoretical expectation values of our quality statistics respond relative the best, correctly

modeled case.

Let us place these shifts in context by referring to previous sections. In an ideal scenario

with no systematic errors, changing the survey depth parameter (see Section 3.2.1) from the

fiducial z0 = 0.7 to 0.6 (0.8) causes 〈ρ〉 to change by -3% (+1.5%) and 〈s〉 by +20% (-10%).

Also, splitting our fiducial survey into 6 redshift bins (in Section 3.2.2) improves 〈ρ〉 by 3%

relative to the one-bin case.

3.4.1 Median redshift

We begin by studying how reconstruction accuracy responds when we construct the ISW

estimator using the wrong median LSS source redshift. Though the parameter z0 in the

dn/dz distribution given in Eq. (3.10) is lower than zmedian, raising or lowering it will have
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Figure 3.11: Impact of mismodeling redshift-dependent bias on the expected correlation
between the true and reconstructed ISW maps 〈ρ〉 (left panel), and the typical size of
residuals relative to that of ISW map features 〈s〉 (right panel). The bias is modeled as
b(z) = 1 + b2(1 + z)2 with the true value fixed at b2 = 0.5 and the values used in the ISW
estimator shown on the x-axis. Both axes have logarithmic scaling except in regions within
one tick mark of zero, where they are linear. The blue circular points show results from our
standard reconstruction pipeline, while the gray diamond-shaped points (directly behind the
blue points in the ρ plot) show results when we skip the b̄-fitting step.

a similar effect as shifting the median of the distribution. We thus use z0 as a proxy for

median redshift. We compute Ctrue
` with z0 fixed at its fiducial value of 0.7, and vary the z0

values used to compute Cmodel
` .

Figure 3.10 shows the fractional change in our reconstruction statistics when the value of

z0 used for reconstruction is shifted from its true value by ±1%, ±10%, ±20%, ±30%, and

±50%. We see that even for large shifts in z0 (with correspondingly dramatic mismatches

between the true and model dn/dz) the fractional change in ρ is less than O(10−3). The

effect on s is also small; for all but the most extreme points, the fractional change in the size

of residuals 〈s〉 is less than 10%.

To understand this lack of sensitivity of z0, it is instructive to note that varying z0 changes

C` by a nearly scale-independent amplitude, as can be seen in the power spectrum visualiza-

tions in Fig. 3.13. As we observed in Section 3.1.5, ρ, the correlation coefficient between true

and reconstructed ISW maps, is insensitive to overall shifts in the map amplitude. The fact

that it does not respond strongly to these changes in z0 is thus not surprising. The statistic

〈s〉, which measures the size of residuals, is sensitive to changes in amplitude, however. The

fact that it also displays small fractional changes illustrates the importance of the bias-fitting

procedure described in Section 3.1.4. Because the effects of mismodeling z0 are degenerate

with shifts in constant bias, fitting for b̄ protects our reconstruction against this kind of

systematic.

For comparison, we compute 〈ρ〉 and 〈s〉 while neglecting the bias-fitting step and show
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the results as gray points in Fig. 3.10. We see no change in the ρ plot (the gray points are

directly behind the blue ones), reflecting the fact that ρ is insensitive to constant multipliers.

In the s plot, we see that the bias-fitting procedure suppresses the size of the reconstruction

errors by about an order of magnitude.

To summarize, we find that the quality of the ISW reconstruction is much less dependent

on our knowledge of the survey’s median redshift than naively expected. The median redshift

mostly changes the normalization of the C`, but so does the galaxy bias (which, recall, is

to a good approximation scale independent at the large scales we are studying). By fitting

for the bias parameter in the angular power spectrum—something that is typically done in

LSS surveys regardless of their application—one effectively also fits for z0. As a result, the

combination of the galaxy bias and survey depth that enters the amplitude of the C` is fit

to the correct value.

3.4.2 Redshift-dependent bias

Here, we study what happens if the redshift dependence of the galaxy bias is modeled

incorrectly. Using the functional forms for the bias of high-redshift tracers given in Ref. [91]

for guidance, we parametrize the redshift dependence of the bias via

b(z) = b0(1 + b2(1 + z)2). (3.28)

For this study, we set b0 = 1 and vary b2, noting that Ref [91] uses b2 ∼ 0.5 for sources in

NVSS and WISE-AGN.

In the expression for C`, b(z) appears inside the same integrand as dn/dz, so changes to

b(z) have an effect similar to altering the LSS source redshift distribution. The results here,

shown in Fig. 3.11, are thus similar to what was seen in the previous section. Increasing

b2 mostly just increases the overall amplitude of the galaxy C`’s, so the reconstruction is

not very sensitive to b2 once we fit for b̄. For example, if the true value of b2 is 0.5 and we

reconstruct the ISW signal assuming no redshift dependence (b2 = 0), the fractional change

in 〈ρ〉 is O(10−4) and the fractional change in 〈s〉 is O(10−2). The reason the b̄-fitting step

has a larger effect here than in the z0 study above is probably because the normalization

requirements of dn/dz somewhat limit the size of C` amplitude shifts, whereas b(z) has no

such normalization scaling.
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Figure 3.12: Impact of mismodeling the fraction x of galaxies subject to catastrophic photo-
z errors on the expected correlation between the true and reconstructed ISW maps 〈ρ〉 (left
panel), and the typical size of residuals relative to that of ISW map features 〈s〉 (right panel).
Both axes have logarithmic scaling except in regions within one tick mark of zero, where they
are linear. The blue and brown circular points show results from our standard reconstruction
pipeline when the true value of x is 0.1 and 0.01 respectively. The gray diamond-shaped
points (directly behind the other points in the ρ plot and the blue points in the s plot) show
results when we skip the barb-fitting step.

3.4.3 Catastrophic photo-z error rate

Galaxies in photometric-redshift surveys are also subject to so-called catastrophic photometric-

redshift errors—cases where the true redshift is misestimated by a significant amount [110,

111]. This is a distinct effect from the photo-z uncertainty modeled in the binning tests

in Section 3.2.2, which causes a redshift bin selected using sharp cuts in photo-z to oc-

cupy a smoothed distribution in the spectroscopic redshift. Rather, for galaxies suffering

catastrophic photo-z errors, the photometric-redshift finding algorithms have failed, and the

spectroscopic redshift corresponding to a given photo-z is effectively randomized. The rea-

sons for this are not fully understood, but, like the conventional photo-z error case, the rate

and outcome of catastrophic errors depend strongly on the number of photometric filters and

their relation to the spectral features that carry principal information about the redshift.

In the absence of detailed, survey-specific information about the photometric pipeline,

we model catastrophic redshift errors by randomly assigning the true redshift of a fraction

x of the galaxies in our sample (e.g., x = 0.01 means that one in a hundred galaxies has

a catastrophic photo-z error). We implement this by modifying the redshift distribution of

each bin i to
dñi

dz
= (1− x)

dni

dz
+ xn̄i [Θ(z − zmin)−Θ(zmax − z)] , (3.29)

where x is the fraction of galaxies suffering catastrophic errors, dni/dz is the redshift distri-

bution of bin i without catastrophic errors, and Θ is the Heaviside step function. The added
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term on the right models the fact that, of the n̄i galaxies assigned to that photometric-

redshift bin, xn̄i of them have spectroscopic redshifts which are randomized across the full

range of the survey. For our analysis, we choose the range of these randomized redshifts to

be z ∈ [zmin, zmax] = [0.01, 2.5]. In practice, we significantly smooth the edges of the step

function to avoid numerical artifacts in our C` calculations.

For this study, we use two different true (simulation) catastrophic photo-z fractions:

x = 0.01 and 0.1; these values roughly bracket the currently achieved levels of catastrophic

outliers in current surveys (e.g., CFHTLens [112]). Figure 3.12 shows the fractional change

in 〈ρ〉 and 〈s〉 when the ISW estimator is constructed assuming various values of x, with

true x = 0.01 and x = 0.1 shown in blue and brown lines, respectively.

Our results show us two things. First, though mismodeling x results in more significant

changes than what was seen for the survey depth and redshift-dependent bias, the shifts are

still relatively small; in the worst-case scenarios, 〈ρ〉 shifts by less than 10% and 〈s〉 shifts by

about 20%. Second, the constant-bias-fitting step of our pipeline does not provide protection

against mismodeled catastrophic photo-z error rates. This is because the dn/dz modification

in Eq. (3.29) alters C` in a scale-dependent way, as can be seen in Fig. 3.13.

To check whether catastrophic photo-z errors are more damaging when LSS data are

binned in redshift, we ran a similar analysis for a case where the fiducial dn/dz was split

into three redshift bins. We observed fractional changes in the quality statistics similar to

those seen for the one-bin case, so we conclude that our results are roughly independent of

the binning strategy.

In summary, we find that properly modeling a survey’s catastrophic photo-z error fraction

is more important for preserving ISW reconstruction quality than either its depth or redshift-

dependent bias but that, overall, reconstruction is relatively robust against these kinds of

errors.

3.4.4 Interpretation: Impact of mismodeling dn/dz on C`

Figure 3.13 shows how galaxy-galaxy and galaxy-ISW power spectra respond to changes in

the parameters discussed in Section 3.4. We study the effect of survey depth by shifting the

parameter z0 in Eq. (3.10), redshift dependence of bias by changing b2 in Eq. (3.28), and the

fraction of galaxies x subject to catastrophic photometric-redshift errors via Eq. (3.29).

We see that changing z0 and b2 shifts C` by a mostly scale-independent factor. As

noted in Section 3.4, this is why systematics related to mismodeling depth and bias redshift

dependence have only a small effect on ISW reconstruction quality. It is also why fitting for
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Figure 3.13: The change in the galaxy angular power spectrum C` ≡ Cgal−gal
` in response

to (left to right) changes in survey depth, characterized via z0 in Eq. (3.10); the redshift
dependence of bias, modeled by varying the b2 parameter in b(z) = 1 + b2(1 + z)2; and the
fraction x of galaxies subject to catastrophic photo-z errors. These plots show the ratio of
galaxy autopower relative to that of a reference survey.

scale-independent bias b̄ via

C
gal(obs)
` = b̄2C

gal(model)
` , (3.30)

as can be seen in Figs. 3.10 and 3.11, provides some protection against these systematics.

In contrast, changing the catastrophic photo-z fraction x by more than about 0.01 signifi-

cantly changes the low-` shape of C`. This explains why mismodeling x has a relatively larger

(though still small) impact on ISW reconstruction quality and why constant bias fitting does

not mitigate this effect as much.

3.5 The effect of photometric calibration errors

Photometric calibration errors are a very general class of systematics that cause the magni-

tude limit of a survey to vary across the sky. This introduces direction-dependent number

density variations which do not correspond to fluctuations in physical matter density, thus

biasing the observed galaxy power spectrum. Examples of photometric calibration errors

include atmospheric blurring, unaccounted-for Galactic dust, and imperfect star-galaxy sep-

aration, among other things. A number of recent LSS observations have found a significant

excess of power at large scales [113–118], suggesting the presence of this kind of error.

We adopt a parametrization of calibration errors from Ref. [119], who presented a sys-

tematic study of the effects of calibration errors and requirements on their control for cos-

mological parameter estimates. See also Refs. [120–122] for other approaches. We model

photometric calibration errors in terms of a calibration error field c(n̂) which modifies the
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observed number density Nobs via

Nobs(n̂) = (1 + c(n̂))N(n̂). (3.31)

This kind of direction-dependent “screen” is straightforward to implement on the level

of maps but complicates the process of computing the theoretical expectation value for our

statistics, 〈ρ〉 and 〈s〉. Because multiplicative effects introduce mixing between spherical

components of the galaxy maps, there is a nontrivial relationship between the power spectra

for the true galaxy distribution, the observed galaxy distribution, and the calibration error

field c(n̂). (See, for example, Refs. [119, 122].) To make calculations tractable, we use the

fact that calibration error effects will be dominated by additive contributions at large angular

scales and estimate [
CXY
`

]obs ≈ CXY
` + CcalXY

` − δ`0cX00c
Y
00

(1 + cX00/
√

4π)(1 + cY00/
√

4π)
. (3.32)

Here, CcalXY
` is the cross-power between calibration error fields affecting maps X and Y .

The cX00 ≡
(
CcalX
`=0

)1/2
terms are their monopoles, which contribute by shifting n̄X . We derive

this expression in Appendix B.

Note that this modification is only applied to Ctrue
` . We wish to study the impact of

calibration errors which not accounted for in our model, so we will always (when analyz-

ing simulations or calculating quality statistic expectation values) compute Cmodel
` without

including calibration error effects.

For this analysis, we adopt a functional form for the calibration error field power spec-

trum,

Ccal
` =

αcal exp [−(`/10)2] if ` ≤ 30

0 otherwise
(3.33)

where αcal is a normalization constant set to fix the variance of c(n̂) to a desired value. The

variance is given by

var [c] ≡ 〈c2(n̂)〉 = (4π)−1
∑
`

(2`+ 1)Ccal
` . (3.34)

The form of Eq. (3.33) is inspired by power spectrum estimates for maps of dust extinc-

tion corrections and magnitude limit variations in existing surveys. (See Figs. 5 and 6 in

Ref. [119])Using this power spectrum, we generate independent Gaussian realizations of c(n̂)

which are then combined with our simulated galaxy maps according to Eq. (3.31). (Though

the phases of the calibration errors due to real dust maps will not be random, simulating
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errors as Gaussian should still give us a reasonably good indication of the impact of cali-

bration errors with a given variance on ISW reconstruction.) These postprocessed maps are

used as input for ISW reconstruction.

3.5.1 Context: Current and future levels of calibration error

To put our results in context, it is useful to identify what values of variance in the calibration

field var[c] are expected from current and future surveys. Here we emphasize that we are

talking about residual calibration errors—that is, calibration errors which are not properly

corrected for and thus can cause biases in cosmological inferences.

Above, we defined these errors in terms of variations in the number of observed galaxies.

To relate this to variations in a survey’s limiting magnitude, we must multiply the magnitude

variations by a factor of ln(10)s(z), where s(z) ≡ d log10N/dm|mlim
is the survey-dependent

faint-end slope of the luminosity function; see Eq. (30) in Ref. [119]. We adopt s(z) ' 0.3

estimated from the simulations of Ref. [123], assuming a median galaxy redshift z ∼ 0.75.

This means that the conversion factor is ln(10)s(z) ∼ 1, and variance in calibration is roughly

equal to that in the limiting magnitude, c(n̂) ≡ (δN/N)(n̂) ' (δm)lim.

With these assumptions, the smallest currently achievable variance of the calibration

error c(n̂) is of order var[c] ∼ 10−3 (e.g., Fig. 14 in Ref. [120]). For example, residual

limiting magnitude variations in the SDSS DR8 survey are at the level of 0.03 mag [124],

again implying that var[c] ' 10−3. Note that, while the impressive SDSS “uber-calibration”

to 1% [125] would imply an order of magnitude smaller variance, this might be difficult to

achieve in practice because there are sources of calibration error that come from the analysis

of the survey and are not addressed in the original survey calibration. We show the current

levels of residual calibration errors value as a blue vertical band in Fig. 3.14, spanning a

range between the optimistic level associated with the SDSS uber calibration to the more

conservative var[c] = 10−3.

In the same figure, we also show the future control of calibration errors required to ensure

that they do not contribute appreciably to cosmological parameter errors—e.g., those in dark

energy and primordial non-Gaussianity. This range, forecasted assuming final DES data and

adopted from Ref. [119], is shown as a green band spanning var[c] ∼ 10−6–10−5. The lower

bound is set by the requirement that the bias to cosmological parameter estimates be smaller

than their projected errors, while 10−5 is chosen as an intermediate value between that and

var[c] = 10−4, which introduces unacceptable levels of bias. (See Fig. 4 of Ref. [119].) These

should be viewed as only rough projections, as the precise requirements depend on the faint-
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end slope s(z) of the source luminosity function, the cosmological parameters in question,

and the shape of the calibration field’s power spectrum Ccal
` .

3.5.2 Results for ISW reconstruction

We find that even small levels of calibration error can have a significant impact on ISW

reconstruction quality — moreso than any of the other systematics studied in this chapter.

Figure 3.14 shows how the correlation between true and reconstructed maps, ρ, and the

reconstructed map residuals, s, respond to different levels of calibration error.

Reconstruction quality starts to degrade when var[c] ∼ 10−6, which roughly corresponds

to the same 0.1% magnitude calibration required to achieve cosmic-variance-limited ISW

detection [100]. At this level, we see ρ begin to move away from its best-case (no calibration

error) value and the s plot shows that residuals are comparable in amplitude to fluctuations

due the true ISW signal.

Once the calibration error power starts to dominate over the galaxy autopower, occurring

around var[c] ∼ 10−4, the reconstruction contains little information about the true ISW

signal. Here, the scatter in ρ overlaps with zero and we see that the reconstructed map

residuals approach a constant value. We present an explanation in Appendix C for why we

expect this to occur.

Comparing these numbers to the shaded bands, we see that, with current levels of cali-

bration error control, we have little hope of accurately reconstructing the ISW signal with

galaxy survey data alone. Encouragingly, though, the levels of control required to obtained

unbiased cosmological parameter estimates from next-generation surveys [119] are precisely

the levels needed for accurate ISW reconstruction.

We note that the additive-error-only theory calculations show good agreement with our

results from simulations, and so can be useful as a computationally efficient indicator of

when calibration errors become important. In light of this, we also computed 〈ρ〉 and 〈s〉
using a power law spectrum, Ccal

` ∝ `−2, in order to check how sensitive our results are to the

shape of the calibration error field’s power spectrum. This more sharply peaked spectrum

caused reconstruction quality to start degrading at a slightly smaller var[c] compared to the

Gaussian model, but otherwise showed similar results. This can likely be explained by the

fact that the power law Ccal
` reaches higher values at low ` for a given field variance, which

means it can start dominating over true galaxy power at those multipoles earlier.
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Figure 3.14: The effect of photometric calibration errors on reconstruction quality. We show
results for the correlation coefficient between true and reconstructed ISW maps (top panel)
and for the typical size of map residuals relative to the variance of the true ISW map (bottom
panel). The lines show the expectation from theory, considering only additive contributions
from calibration errors, while the data points show the mean and standard deviation from
10,000 simulated map realizations. The shaded regions show the current and projected levels
of control over residual calibration errors discussed in Section 3.5.1.
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Figure 3.15: Exploration of whether raising `min can mitigate the impact of photometric
calibration errors on ISW signal reconstruction. The top panel shows the mean and standard
deviation of ρ, the correlation between the true and reconstructed ISW maps, measured from
10,000 simulations. The bottom panel shows the fractional change in ρ relative to the case
with no calibration errors. Points for different values of `min are staggered so that the errors
bars are legible; each cluster of three points shares the same value of var [c].

3.5.2.1 Mitigation by raising `min

Because calibration error fields tend to have the most power on large scales, we looked at

whether raising `min can mitigate their impact. Our results, shown in Fig. 3.15, show that

raising `min from 2 to 3 or 5 causes the error bars denoting the scatter in ρ to cross zero

at a higher value of var[c]. However, this effect is small, and we conclude that raising `min

provides only limited protection against calibration errors.

3.6 Implications for cosmic alignments

Over the past 15 years, as the full-sky CMB maps provided by the WMAP and Planck

experiments became available, increasing evidence has been found for anomalies at large an-

gular scales. In particular, angular correlations at scales above 60 deg on the sky seem to be
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missing, while the quadrupole and octopole moment of the CMB anisotropy are aligned both

mutually and with the geometry and the direction of motion of Solar System. The origin

for the anomalies is not well understood at this time; they could be caused by astrophysical

systematic errors or foregrounds or cosmological causes (e.g. departures from simple infla-

tionary scenarios), or they could be a statistical fluctuation, albeit a very unlikely one. The

anomalies have most recently been reviewed in Ref. [94].

Some authors [95, 96] have commented on the fact that current efforts to “peel off” the

ISW contribution from the CMB maps indicate that the significance of some CMB anomalies

is “significantly reduced” once the ISW contribution is subtracted. If true, this statement

implies that the observed anomalies are either due to features in the ISW map or caused

by an accidental alignment of the early- and late-time CMB anisotropy [126]. In any case,

statements on how the primordial and late CMB combine to produce the anomalies clearly

depend on the fidelity of the reconstructed ISW contribution to the CMB, which is the

subject of our work.

Our goal here is not to carry out a full investigation of the ISW map reconstruction’s

effect on the anomalies’ significance. Instead, we would like to simply build intuition on how

much imperfect reconstruction affects inferences about the anomalies.

To that end, we pose the following question: if we assume for the moment that an

ISW map reconstructed using available LSS data happens to show a significant quadrupole-

octopole alignment, what is the likelihood that the true ISW map is actually aligned? Note

that we in no way imply that the ISW-only alignment scenario is a favored model for the

observed CMB anomalies. We simply want to study how robust certain properties of the ISW

map, particularly the phase structure of the anisotropies in the map, are to the reconstruction

process.

To study the alignments, we adopt the (normalized) angular momentum dispersion max-

imized over directions on the sky, defined as [127,128]

(∆L)2
2+3,true ≡ max

n̂

(∑`
m=−`m

2 |a`m(n̂)|2

`2
∑`

m=−` |a`m(n̂)|2

)
(3.35)

where a`m(n̂) are expansion coefficients of the map in a coordinate system where the z-axis

is in the n̂ direction. Hence, the maximization is performed over all directions n̂; note

that only the numerator of the expression in angular parentheses depends on the direction,

and see Section 5.6 of Ref. [128] for the algorithm to efficiently compute the maximization.

Intuitively, high values of the angular momentum indicate significant planarity of the ` = 2

and ` = 3 modes as well as their mutual alignment.
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Figure 3.16: The relationship between the true (x-axis) and reconstructed (y-axis) angular
momentum dispersion (∆L)2

2+3, defined in the text, for the combined quadrupole and oc-
topole in 10,000 randomly generated ISW maps. Results are shown for two alternate survey
depths: our fiducial LSS survey with z0 = 0.7 (red points) and z0 = 0.3 (black points), which
have correlation coefficients 0.58 and 0.11 respectively. The gray region denotes (∆L)2

2+3 as
high or higher than measured in WMAP and Planck CMB maps, while the diagonal line is
where the true and reconstructed values match. See the text for details.

We set up the following pipeline:

• Start with 10, 000 random realizations of the true ISW map and the corresponding

LSS maps (so that each LSS map contains gravitational potential field that produces

the corresponding ISW map).

• For each true ISW map, measure the angular momentum dispersion (∆L)2
2+3,true defined

in Eq. (3.35).

• Reconstruct each map assuming a fiducial LSS survey and repeat the calculation to

get a set of (∆L)2
2+3,rec.

• Make a scatter plot of (∆L)2
2+3,rec vs (∆L)2

2+3,true, which will show how much and in

which direction reconstruction biases the alignment information.

The results are summarized in Fig. 3.16. There we show how the inferred angular mo-

mentum dispersion of the combined quadrupole and octopole is affected by reconstruction
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for 10,000 randomly generated ISW maps. The x-axis shows the value for the is the true

ISW map, while the y-axis shows values reconstructed from our fiducial LSS survey at two

alternate depths, z0 = 0.7 (red points) and 0.3 (black points). We find that the true and

reconstructed angular momentum dispersions are not very correlated, having a correlation

coefficient of only 0.58 for z0 = 0.7 and 0.11 for z0 = 0.3.

We also denote the value for the angular momentum dispersion of the WMAP/Planck full

map, which includes both primordial and late-time ISW contributions, at (∆L)2
2+3 ' 0.95.

(The precise value varies slightly depending on the map. [94, 128]) Of the z0 = 0.7 (0.3)

reconstructed maps which have (∆L)2
2+3 as high as or higher than the WMAP and Planck

CMB maps (points falling in the shaded gray region), only 7/70 = 10% (1/70 = 2%) have

corresponding true maps which satisfy the same high angular momentum dispersion criterion.

Investigating the implications of the ISW reconstruction on the inferences about the

alignments of primordial-only and ISW-only maps in depth is beyond the scope of this anal-

ysis. Nevertheless, our simple test indicates that at least the quadrupole-octopole alignment

in the ISW-only maps is not very robust under ISW reconstruction using realistic LSS maps,

even without taking into account calibration and other systematic errors. This is because

the filter in Eq. (3.11), which is a maximum likelihood estimator for the ISW signal map

given input LSS maps, has significant variance in its reconstruction of individual modes.

3.7 Conclusion

In this work we use simulated ISW and LSS maps to study the accuracy of ISW signal

reconstructions performed using LSS data as input. In particular, we study how systematics

associated with galaxy surveys affect the ISW map reconstruction. We measure reconstruc-

tion accuracy using two quality statistics: ρ, the correlation coefficient between the true and

reconstructed ISW maps, and s, the rms error in the reconstructed map relative to the rms

of true ISW map features.

In the absence of systematics, we find that increasing survey depth improves these statis-

tics (brings ρ closer to 1 and lowers s), though the shifts in their average values are small

compared to their scatter. Similarly, splitting the survey data into redshift bins leads to

moderate improvement. The reconstruction quality improvement due to increasing survey

depth by ∆z = 0.1 is comparable to that gained by splitting into three redshift bins: both

lead to improvement ∆ρ̄ ∼ 0.02, or ∆ρ̄/ρ̄ ∼ 2%. We also find that reconstruction can be

slightly improved if we are willing to neglect the reconstruction of very low-` multipoles;

increasing our fiducial `min = 2 to 5 results in ∆ρ̄ ∼ 0.01 and a reduction in the scatter of ρ

60



by about a factor of 2. Last, we find that galaxy shot noise has a negligible impact as long

as n̄ & 1 arcmin−2 ≈ 107 sr−1. These results provided a baseline comparison for our studies

of systematics.

The first class of systematics we study are those associated with mismodeling the line-

of-sight distribution of LSS sources. By examining what happens to reconstruction quality

when different galaxy window functions are used for the ISW-estimator input Cmodel
` than

for the simulation-generating Ctrue
` , we find that ISW signal reconstruction is robust against

these kinds of errors. We study the mismodeling of survey depth and redshift-dependent

bias and find that fractional shifts in 〈ρ〉 are less than O(10−4) for all but the most extreme

cases. Inaccurately estimating the fraction of catastrophic photo-z errors results in a larger

shift, which depends on the true fraction, but at worst this degrades 〈ρ〉 by about a percent.

Reconstruction quality is likely to be similarly insensitive to other direction-independent

modeling uncertainties; for example, the choice of cosmological parameter values and maybe

models of modified gravity.

The fact that we fit data for a constant galaxy bias is the key to this robustness. This

is because the modeling errors discussed above change the galaxy spectrum by a mostly

scale-independent amplitude which is degenerate with a shift in constant bias b̄. Thus, the

more a given systematic changes the shape (rather than amplitude) of galaxy C`, the more

of an impact it will have on ISW signal reconstruction.

We find that photometric calibration errors are by far the most important systematic to

control if one wants to construct a map of the ISW signal from LSS data. For the recon-

structed ISW map to contain accurate information about the true ISW signal, calibration-

based variations in number density must be controlled so that the calibration error field c,

defined via Nobs(n̂) = (1 + c(n̂))N(n̂), has a variance less than 10−4. Even at that level,

which is optimistic for current surveys, the reconstruction quality is significantly degraded

compared to the case with no systematics. For the model we studied, in order to keep that

degradation smaller thanO(10%), calibration errors must be controlled so that var[c] . 10−6.

This is a similar level to what is required to avoid biasing cosmological parameter estimates

made with future survey data. Prospects for mitigation of these effects by neglecting low `

multipoles are limited.

Our initial motivation for studying the accuracy of reconstructed ISW signal maps was

to assess whether they can be used to determine whether certain large-angle CMB anomalies

are sourced by features in the ISW signal. Given this, we additionally considered, even in the

case of a good overall signal reconstruction, how well the standard ISW estimator (Eq. (3.11))

is able to reconstruct the ISW contribution to the alignment between the CMB quadrupole
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and octopole. We do this by comparing the level of alignment, parametrized in terms of the

angular momentum dispersion of the ` = 2, 3 modes of true and reconstructed ISW maps.

We find that, even in the absence of systematics, the angular momentum dispersion, and

thus amount of quadrupole-octopole alignment, was only weakly correlated between these

maps. For example, the values of true and reconstructed angular momentum dispersion had

a correlation coefficient of only 0.58 for our fiducial survey. Therefore, precise alignments of

structures in the ISW map cannot reliably be recovered, given the standard signal estimator

with only LSS data as input. This means that comparing the significance of alignments in

the original CMB temperature map to that of a map with the reconstructed ISW signal

subtracted is not a reliable way to determine whether anomalous large angle aligments are

due to features imprinted by the ISW effect.

These results have implications for current and future attempts to reconstruct the ISW

signal. Most significantly, they tell us that understanding the level and properties of residual

calibration errors in LSS maps is vital to assessing the accuracy of reconstructions made using

those maps as input. Given the current levels of calibration error control, at face value our

results would seem to imply that reconstruction using existing data is hopeless. Thus, a

productive avenue for future work would be to modify the ISW reconstruction pipeline to

make it more robust against calibration errors, by including them in the ISW estimator’s

noise modeling or by some other method. Since the presence of uncorrected calibration errors

will cause one to underestimate galaxy-galaxy noise, it would also be worth turning a critical

eye toward how calibration uncertainties affect the evaluation of ISW detections’ signal to

noise.

We note that using multiple cross-correlated LSS data sets—which map the same po-

tential fluctuations but are presumably subject to different systematics—will mitigate the

impact of calibration errors, as will combining LSS maps with CMB temperature and po-

larization data. The results of the binning test in Section 3.2.2 provide provisional evidence

for this, though for that study it is not possible to disentangle the effects of noise mitigation

from those of adding tomographic information. An interesting extension to this work would

thus be to explore in more detail whether and to what extent using multiple LSS maps

protects ISW reconstruction against calibration errors. Studying the combination of multi-

ple surveys introduces a number of new questions: one might study, for example, how the

strength of correlation between galaxy maps influences the improvement in reconstruction

due to their combination, or what happens when calibration errors for multiple maps are

correlated. These questions were explored further in a follow-up study, published as Ref. [9].
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Chapter 4

The covariance of large-angle CMB

anomalies

In this chapter we will examine in more detail the properties of the large-angle CMB anoma-

lies which served as a motivation for the ISW reconstuction study in the previous chapter.

To put this discussion into context, it is important to note that the spectacular maps of the

cosmic microwave background (CMB) anisotropy that have been made over the past few

decades have revolutionized our understanding of the universe, and rejuvenated efforts to

test fundamental processes in the early and late universe. As we described in Chapters 2

and 3, the CMB maps are overall in a very good agreement with the six-parameter spatially

flat ΛCDM model specified by the energy densities of dark matter and baryons, the am-

plitude and spectral index of primordial scalar fluctuations, the reionization optical depth,

and the expansion rate (Hubble constant) [129]. Shortly after the WMAP experiment’s

data were released, however, several surprising coincidences were noticed on large angular

scales. In particular, the WMAP maps of temperature anisotropies exhibit low variance, a

lack of correlation on the largest angular scales, alignment between various low multipole

moments [127], alignment between those low multipole moments and the motion and geom-

etry of the Solar System [130], a hemispherical power asymmetry [131], a preference for odd

parity modes [132], and an unexpectedly large cold spot in the Southern hemisphere [133].

Planck data [134] largely confirmed the presence of these features. For a review of the CMB

anomalies, see [94].

While these large-angle CMB anomalies have remained an active area of study over the

years, it is difficult to draw firm conclusions from the study of features of the CMB at

very large angles, mainly due to the significant cosmic variance at those scales. Moreover,

the a posteriori nature of their observation, as well as the generally good fit of data to
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the standard cosmological model, means that large-angle anomalies do not in themselves

provide compelling evidence for beyond-ΛCDM physics [135]. Rather, in a time where nearly

all cosmological observations have been in remarkable agreement with the predictions of

ΛCDM, the statistically unlikely large-angle features have attracted attention because of the

tantalizing possibility that one or some of them might have cosmological origins [136–139].

If that were the case, due to e.g. an isotropy-breaking mechanism in the early universe, the

feature in question could provide insight into the physics of inflation.

It is important, however, to consider other explanations for anomalous large-scale CMB

features: they could be artifacts of instrumental or astrophysical systematics, or they could

simply be unlikely fluctuations in the standard isotropic model. Much of the study of large-

angle anomalies has thus been focused on disentangling these three logical possibilities:

whether large-angle CMB anomalies are cosmological, or are due to systematic or statistical

flukes. Better understanding of the anomalies in the future will be driven by observations

of new quantities on very large spatial scales, such as CMB polarization [140–144] and

lensing [145], and large-scale structure [146]. Whether or not new insights about the early

universe become readily apparent, studying large-angle anomalies has and will continue to

provide us with an opportunity to build a deeper understanding of our measurements of the

large-angle CMB.

One largely unanswered question is how the observed anomalies are related to one an-

other. If we observe one unlikely feature, does that make us less surprised to find another?

Roughly speaking, (positively) correlated anomalies imply a smaller overall joint significance

than if they are uncorrelated. Full understanding of the anomalies thus enables an accurate

accounting of the likelihood for the joint observation of unexpected features. While such a

knowledge of the joint likelihood would not remove the nature of the a posteriori choice for

the statistics to investigate and observe, it would effectively prevent double-counting (or, if

the anomalies are anti-correlated, under-counting) of the anomaly statistics. Furthermore,

the anomaly covariance enables quantifying of the anomaly ‘atoms’, i.e. a set of mutually

independent features out of which all anomalous observations can be derived [94].

Previous work on the covariance of CMB temperature anisotropy anomalies has mostly

been limited to studying pairs of anomalies. For example in Ref. [147], the authors show

that missing power at large scales quantified by S1/2 and the quadrupole-octopole alignment

are not correlated in ΛCDM (such a conclusion was also reached, albeit for the full-sky-only

analysis, by Ref. [148]). The lack of correlation between hemispherical power asymmetry and

the quadrupole-octopole alignment in ΛCDM are demonstrated in Ref. [149]. In Ref. [150],

the authors indicate a possible connection between the lack of power and the odd-multipole
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preference anomaly. In particular, they claim — based on an analytical argument — that

the odd-multipole preference can be a phenomenological cause of the lack of large-angle

correlation. Additionally, in Ref. [151] the authors find a correlation between the low large-

angle power and the low value of the CMB quadrupole. Ref. [152] explores the relationship

between low power at large angles and the amplitude of the CMB quadrupole and octopole,

while Ref. [153] studies its relationship with the quadrupole and octopole phases. Here we

aim to take a more global view by studying the relationship between all of these features

simultaneously.

In this work, we will use ensembles of simulated CMB temperature maps to empirically

characterize, in the context of ΛCDM, the covariance between a collection of features asso-

ciated with commonly-studied large-angle anomalies. Our analysis proceeds in three general

steps. First, we will measure the quantities associated with those features and confirm that

the comparison between our measurements of the real CMB sky and simulations reproduce

previous findings about the real sky’s anomalousness. Next, we will study the distribution

of the simulation ensembles in the space defined by the “anomaly feature” quantities to find

their covariances. In doing so, we will investigate the impact of foregrounds and survey

properties by comparing the results obtained from simple Gaussian simulations of the CMB

temperature map to the more realistic Planck Full Focal Plane simulations [154]. Finally,

we will use the measured feature covariances perform a principal component analysis in or-

der to further characterize the ways in which large-angle CMB map properties are expected

to vary in ΛCDM, and in which the observed CMB sky is unusual. We emphasize that

the goal of this analysis is to gain a deeper understanding, rather than to do any explicit

model-comparison.

The rest of the paper is organized as follows. In Section 4.1 we introduce our methods in

detail, including the description of maps and masks adopted, of our simulation ensembles and

of our power spectrum measurements. In Section 4.2, we outline the statistical description

of the eight large-scale features that we study in this work while reporting the statistical

significance of the features with respect to our simulation ensembles. The main results of our

work — the measurement of covariances between the anomalies — is presented in Section 4.3,

along with discussion of a PCA analysis. We summarize and conclude in Section 4.4.
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4.1 Methods

We begin by introducing basic terminology and notation that describes CMB anisotropy.

Temperature fluctuations can be expanded in a harmonic series as

T (n̂) =
∑
`

∑̀
m=−`

a`mY`m(n̂), (4.1)

where n̂ is the direction on the sky and the complex coefficients a`m contain all information

about the temperature field. For statistically isotropic fluctuations, the expectation of the

two-point correlation function in a`m drastically simplifies and only depends on `

〈a`ma∗`′m′〉 = δ``′δmm′C`. (4.2)

If the fluctuations are statistically isotropic and Gaussian, the angular power spectrum, C`,

contains all statistical information about the temperature field.

It is useful to additionally define the real-space angular correlation function for CMB

temperature fluctuations as

C(θ) = 〈T (n̂1)T (n̂2)〉 (4.3)

=
1

4π

∑
`

(2`+ 1)C`P`(cos θ) (4.4)

where n̂1 · n̂2 = cos θ and P`(x) is a Legendre polynomial.

4.1.1 Maps and masks

In the course of this analysis we will use several data products from the 2015 data release

provided on the Planck Legacy Archive1. For transparency and reproducibility, when relevant

we identify the names of specific files used in footnotes.

Though the primary product of this project will be a study of the covariance between

anomalies as measured from simulation ensembles, we also use Planck data to quantify

the values of the anomaly statistics described above for the real, observed CMB sky. Our

purpose in doing this will be twofold. First, it will allow us to compare our assessment of

how anomalous features of the observed CMB sky are against the probabilities reported in

the literature. Additionally, employing the same code to measure statistics from the real

1pla.esac.esa.int
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Planck data as from our simulations will allow us to place our real CMB sky for reference in

the multi-dimensional feature space examined in Section 4.2 and 4.3.

For map-based statistics we use the SMICA [155] map2 from the 2015 Planck data re-

lease. Though the Commander map, which separates CMB signal from foreground microwave

emission using a pixel-based parametric method (as opposed to SMICA, which is based

on a linear combination of Planck’s various frequency channels with multipole-dependent

weights), should more properly be used for the analysis of very large scale features, past

studies [134,156,157] have found that the significance of the various anomalies does not de-

pend strongly on which component separation method is used. Therefore, using the SMICA

map should be sufficient for our purposes.

Because we care only about large-angle features, we will work with maps that are at

a resolution of Nside = 64 which are smoothed with a Gaussian beam of 160 arcmin. We

therefore downgrade the resolution of the SMICA CMB temperature map, which is provided

at Nside = 1024, following the prescription described in [156]. We do this by first extracting

its spherical components a`m using the HEALPix3 [5] function map2alm. Then, again using

HEALPix, we get the harmonic space representation of the Gaussian beam b` and pixel window

functions p` corresponding to the full width half maximum (FWHM) and pixel resolution,

respectively, of both the input and output maps. By combining these together, we obtain

the downgraded harmonic coefficients,

aout
`m =

b
(out)
` p

(out)
`

b
(in)
` p

(in)
`

ain
`m. (4.5)

Using the HEALPix function alm2map we then convert back to pixel space to obtain the

downgraded map. We refer to Table 1 in Ref. [156] for the appropriate beam FWHM values:

160 arcmin for Nside = 64, and 10 arcmin for Nside = 1024. (For other parts of this study we

will also use the conversions: 5 arcmin for Nside = 2048 and 640 arcmin for Nside = 16.)

When we use a mask, we adopt the UT78 common mask4, which is identified in Ref. [134]

as the one that should be used for the analysis of Planck temperature maps. UT78 is the

union of the masks for Planck’s four methods for separating CMB signal from foreground

emission (SMICA, NILC, SEVEM, and Commander). This mask is provided as an Nside =

2048 map of zeros and ones, where zeros represent masked pixels and ones signify unmasked

pixels. To downgrade the mask to Nside = 64, we follow the same procedure described in

2COM CMB IQU-smica 1024 R2.02 full.fits
3http://healpix.sourceforge.net
4COM Mask CMB-IQU-common-field-MaskInt 2048 R2.01.fits, field 0.
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Eq. (4.5), then threshold the resulting map so that all pixels with a value ≤ 0.9 are marked

as masked. This reduces the mask from its original fsky = 0.78 to 0.67. (When we use

Nside = 16 maps for one of the anomalies studied below, it reduces further to fsky = 0.58.)

4.1.2 Simulated ensembles

Our primary simulation ensemble will be a set of 100,000 noiseless Gaussian CMB temper-

ature maps generated using the synfast function in healpy. Gaussian temperature map

realizations are drawn using the power spectrum for Planck best-fit theory prediction for the

power spectrum.5. The maps are produced at Nside = 64 with FWHM=160 arcmin Gaussian

smoothing, and with the pixwin argument set to True. These settings were chosen to make

the simulated maps have properties consistent with the downgraded SMICA temperature

maps described above. These straightforward-to-implement simulations, which we refer to

as the “synfast simulations,” will allow us to obtain the statistics of fluctuations associated

with the CMB signal only. They do not, however, include a number of foreground- and

survey-related effects that are present in the Planck SMICA map.

In order to explore whether those effects influence the relationship between anomalies, we

repeat our analysis on the publicly available ensemble of Planck Full Focal Plane (FFP) sim-

ulations [154] which have been processed using the SMICA component separation pipeline.

Specifically, we use the FFP8.1 CMB sky and noise maps, which we add together before

downgrading to Nside = 64. The FFP simulations include the physical effects of astro-

physical foregrounds, gravitational lensing, Doppler modulation, and frequency-dependent

Rayleigh scattering effects. They also model the Planck mission’s scanning strategy, detec-

tor response, beam shape, and data reduction pipeline. Additionally, a small, frequency-

dependent intensity quadrupole has been added to the FFP simulations to account for an

uncorrected residual in the data from the dipole-induced Doppler quadrupole identified in

Ref. [158]. Note that because we use the FFP8.1 rather than FFP8 simulations, we do not

need to rescale the CMB components of the simulations by the factor of 1.0134 that was

applied in Ref. [134].

4.1.3 Power spectrum measurements

There are several methods that one can use to measure the angular power spectrum of a map

of CMB temperature fluctuations. Using different methods generally will cause variations in

5Provided on the Planck Legacy Archive in the file COM PowerSpect CMB-base-plikHM-TT-lowTEB-minimum. . .
. . . -theory R2.02.txt
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Figure 4.1: Comparison of the different angular power spectrum measurements described
in Section 4.1.3 (left) and their corresponding angular correlation functions (right). The
collection of grey lines behind them are from the full sky pseudo-C` measurements of the
first 100 synfast simulations. The black dotted line shows theoretical expectation, and the
gray dotted lines show the 68% confidence level cosmic-variance errors.

the estimate for C`, and thus the choice of how to measure C` can impact anomaly statistics.

Our analysis mainly relies on pseudo-C` estimates for the power spectrum. For full-

sky measurements these will give unbiased estimates of the true power spectrum simply by

averaging the observed spherical harmonics,

Ĉ` =
1

2`+ 1

m=+`∑
m=−`

|a`m|2. (4.6)

If a mask is used to remove contaminated parts of the map, additional care must be taken,

as is described in e.g. Ref. [157]. In practice we measure cut-sky pseudo-C`’s using the

polspice algorithm6 [159], which removes the monopole and dipole of the masked map,

measures the angular correlation function C(θ) of the unmasked part of the sky, and then

integrates to obtain C`,

C` = 2π

∫ 1

−1

C(θ)P`(cos θ) d cos θ. (4.7)

6The polspice software can be found at http://www2.iap.fr/users/hivon/software/PolSpice/. we
run it using the settings subav=YES, subdipole=YES, apodizesigma=NO, and pixelfile=NO.
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In contrast to these cut-sky pseudo-C`’s, which only estimate the statistical properties of

the unmasked parts of the sky, quadratic maximum likelihood (QML) methods can be used

to estimate the statistical properties of the entire sky. It will make the most sense for us to

study the statistical properties of certain large-angle features in terms of the observed SMICA

map’s QML power spectrum. For this, we do not implement our own QML power spectrum

estimator, but instead use the public QML spectrum provided by the Planck team [160]. The

Planck QML power spectrum was obtained using the BolPol software [161] applied to the

Commander component-separated map (and mask) at Nside = 16 for multipoles ` = 2− 29,

and the PliK likelihood applied to measured pseudo-C`’s for ` ≥ 30. The low-` power

spectrum estimation uses the Commander mask, which has fsky = 0.94 and therefore leaves

available much more of the sky available for analysis than the UT78 common mask. The

high-` power spectrum likelihood uses galactic masks, described in Appendix A of Ref. [160],

which leave less available sky than those used with component-separated CMB maps.

To summarize, the three C` measurement strategies we will examine are:

• Full-sky pseudo-C`’s: We computed them using polspice based on a map with

Nside = 64, with the monopole and dipole subtracted.

• UT78 pseudo-C`’s: We computed them using polspice with the same settings as

the full sky case, using the Nside = 64 version of the Planck UT78 common mask.

• Planck public QML C`’s: These estimates are provided for low7 and high8-` on

the Planck Legacy archive.

In Fig. 4.1 we compare the angular power spectra derived from the SMICA CMB temperature

map using these three methods, as well as the corresponding angular correlation functions

derived using Eq. (4.3). We also show theoretical predictions using the Planck best-fit

model, along with the 68% confidence region for cosmic variance. We can see that the full-

sky pseudo-C`’s (green lines) and the Planck public QML C`’s (blue lines) are similar to

one another, while the cut-sky pseudo-C`’s have a larger variance. The cut-sky pseudo-C`’s

higher variance does not have a signficant physical meaning: it is due to the fact that the cut-

sky measurements are based on fewer observed modes and so have higher cosmic variance,

possibly in combination some impact of masking effects on the translation of real-space

measurements to fourier space.

Our Nside = 64 resolution implies that we can study multipoles up to `max = 3Nside −
1 = 191 (though for practical purposes, pixelization effects become apparent for pseudo-C`

7COM PowerSpect CMB-TT-loL-full R2.02.txt
8COM PowerSpect CMB-TT-hiL-full R2.02.txt
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measurements at ` ∼ 150 for full sky measurements and ` ∼ 100 for cut-sky). Since we will

be focusing on scales ` < 100, this choice of Nside is sufficiently high.

4.2 Features Studied

Here we study eight characteristics of the large-angle CMB temperature maps. These fea-

tures, which are summarized in Table 4.1, include some of the most prominently discussed

CMB anomalies. This set of features is not intended to be comprehensive9 Rather, our in-

tention is to focus on a representative sample that will allow us to develop an understanding

of the large-angle CMB’s statistical properties in ΛCDM.

Broadly, we classify features based on whether they depend entirely on information in

the isotropic two-point statistics, or whether they require map or a`m-based information.

We adopt this classification to aid in our interpretation of their covariances: because the

two-point function anomalies are all functions of the same angular power spectrum, their

respective definitions directly imply some a priori expectations for their covariances. The

same is not necessarily true for the isotropy-breaking anomalies due to the stochastic nature

of the a`m upon which these statistics are based.

In this section we introduce the features that we study. For each one, we will define the

quantity that we use to measure it, briefly introduce relevant findings from previous studies,

and discuss how those findings compare to our measurements. We will mainly perform

these comparisons against Ref. [134], the Planck 2015 paper on the isotropy and statistics of

the CMB, which we will henceforth refer to as Planck XVI (I&S). Unless otherwise noted,

their anomaly measurements were done using a QML C` estimator on UT78 cut-sky maps

evaluated at Nside = 64. Their measurements of the real sky were done on the SMICA

temperature map, and they evaluated statistics based on the FFP8 simulations. Note that

because we use a different ensemble of simulations, as well as a different power spectrum

measurement technique, we expect our findings for anomaly statistics to be similar to the

Planck XVI (I&S) results, but not necessarily to exactly match them.

Following Planck XVI (I&S), we will quantify how unusual (or not) the SMICA tempera-

ture map appears compared to simulations using p-value, defined to be equal to the fraction

of simulations in a given ensemble that return more extreme values than the real sky. As

part of each feature description, we will note whether and how measurement choices (be-

9For example, we do not include the statistics from Ref. [162] which quantify alignments between different
combinations of even and odd parity multipoles. We also do not include the “cold spot” [163] which, being
a localized feature at smaller scales, does not naturally belong to the set of large-angle features studied here.
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Depends
on Quantity Description Multipoles Section

2pt S1/2 Amount of angular power at θ > 60◦ 2− 100 4.2.1.1
funcs. C2 Quadrupole amplitude 2 4.2.1.2
only C3 Octopole amplitude 3 4.2.1.3

σ2
16 Variance of δT at Nside = 16 2− 47 4.2.1.4

R27 Ratio of power between even and odd ` 2− 27 4.2.1.5
C(π) Angular correlation at θ = 180◦ 2− 191 4.2.1.6

Phases SQO Quadrupole-octopole alignment 2, 3 4.2.2.1
of a`m ALV Hemispherical power asymmetry 2− 191 4.2.2.2

Table 4.1: Summary of large angle CMB features studied in this work.

tween Planck QML vs. pseudo-C`, cut-sky vs. full-sky) affect those statistics, and will take

care to identify which of those choices are used in our anomaly covariance studies presented

in the next Section (4.3). These single-feature results are summarized in Fig. 4.3, which is

described in more detail in Section 4.2.3.

4.2.1 Features depending on two-point functions only

We first study the six features that are fundamentally a function of the angular clustering

power.

4.2.1.1 S1/2: Large-angle power

First, we measure power in large angular scales of the temperature map using the S1/2

statistic, defined as the integral of the square of the angular correlation function C(θ) over

angles between 60◦ and 180◦ [164]

S1/2 =

∫ 1/2

−1

[C(θ)]2 d(cos θ). (4.8)

It measures the deviation of C(θ) from zero at angles greater than 60◦. The inclusion of this

statistic is motivated by the lack of power at large angular scales θ & 60◦ first observed by

COBE [165], and later confirmed by WMAP [164] and Planck [134, 157]. Though there are

several ways of quantifying this lack of large-angle correlation, we adopt S1/2 because it is

the most commonly used.

In practice, to measure S1/2 for a temperature map, we first measure the angular power
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spectrum and then calculate it in harmonic space via [152]

S1/2 =
1

(4π)2

∑
`,`′

(2`+ 1)(2`′ + 1)C`I`,`′
(

1

2

)
C`′ . (4.9)

Here the matrix I`,`′ is defined as

I`,`′(x) =

∫ x

−1

P`(x
′)P`′(x

′)dx′, (4.10)

but is in practice computed using the recursion relation in Appendix A of Ref. [152]. We

sum over values ` = 2− 100.

When analyzing the SMICA map at Nside = 64 with the UT78 mask Planck XVI (I&S)

reports a low value for S1/2 with a lower tail probability10 of p = 0.4%. That is to say,

they find that only 0.4% of simulations have a lower value of S1/2 than the SMICA map.

Our cut-sky S1/2 measurements give similar probabilities: p = 0.7% for the fiducial synfast

simulations and p = 0.5% for the FFP simulations.11

The lower-tail probability of the observed sky’s S1/2 value depends dramatically on the

method used to measure the angular power spectrum, increasing to 8% for full sky pseudo-

C`’s and to 6% for Planck public QML C`’s (which, recall, effectively reconstruct the full-sky

anisotropy field). This is consistent with results from previous studies [152, 157, 166] which

have shown that the relatively small amount of (non-zero) correlations on the full sky are

dominated by contributions from pixels close to the galactic mask.

4.2.1.2 C2: Quadrupole amplitude

We additionally study C2, the quadrupole of temperature fluctuations, which was first found

to be low in COBE [167] data, and later in WMAP [127, 168] and Planck [160]. Analyses

have shown that the lowness of the quadrupole is not particularly significant [169–171], so its

value or lower-tail probabilities are not generally reported explicitly in the literature. Given

this, we do not directly compare our measurement of C2 to previous results, but do include

it as one of our statistics, in order to study its covariance with the low angular power at

large angles and other features.

10Value from Table 13 of Ref. [134]
11These p-values are weakly sensitive to whether the C`’s are corrected for resolution according to

Eq. (4.11): with that correction, the p-values for S1/2 go down to 0.6% for the synfast simulations and
to 0.4% for the FFP simulations. We opt not to make that correction when computing S1/2 and C(π)
because doing so introduces significant noise contributions at high multipoles and makes the sums involved
overly sensitive to our choice of `max.
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Our one-dimensional study of C2’s statistics reflect the findings in the literature. Our

fiducial choice for the quadrupole is to adopt the Planck QML C2 to represent the observed

value, while for the simulations we calculate the full-sky C`’s and adopt the corresponding

quadrupole. In order to make the simulation measurements more directly comparable to

the QML power spectrum, we apply a correction for the Nside = 64 maps’ beam and pixel

window functions via

C` = (b
(64)
` p

(64)
` )−2Cpolspice

` . (4.11)

Here, b
(64)
` and p

(64)
` are the harmonic components of the beam and pixel window functions

for the Nside = 64 input map.

We find that C2 has a lower-tail probability of 5% using the synfast simulations, and

6% compared to the FFP simulations. Pseudo-C` measurements of the SMICA map give

slightly lower probabilities, with p ∼ 2% for either full- or cut-sky measurements.

4.2.1.3 C3: Octopole amplitude

Though the value of the observed CMB temperature C3 amplitude is not anomalous (e.g.

[171]) — to the contrary, we find the Planck QML C3 to be close to the median the values from

our simulated ensembles — we also include it in our study. We do so because its behavior in

relation to other features has the potential to be interesting. For example, Ref. [153] points

out that contributions from the quadrupole and octopole seem to be canceling the power

from the rest of the sky, and that a measure of large-angle power becomes less anomalous

when their contributions to the correlation function are removed. Additionally, Ref. [152]

finds that relationship between several of the lowest multipoles, certainly more than the

just the quadrupole, is responsible for the low observed S1/2. Given this, we include C3 in

our analysis because the relationship between C3, C2 and S1/2 may reveal some interesting

structure.

We perform our fiducial measurement of C3 in the same way as for C2: we use the Planck

QML C`’s for the observed temperature map, and the beam-and-pixelization-corrected (ac-

cording to Eq. (4.11)) full-sky C` measurements from simulations. Compared to the synfast

and FFP simulations, the p-values for both the QML and full-sky SMICA measurements are

47− 49%, while the cut-sky octopole is lower, with p ∼ 15%.

4.2.1.4 σ2
16: Variance at Nside = 16

We study another indicator of large-angle power via σ2
16, the variance of unmasked pixels

of a low resolution, Nside = 16 temperature map. The variance of CMB temperature maps,
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especially at low spatial resolution, has been observed to be anomalously low in analyses of

both WMAP [172, 173] and Planck [134] data. Planck measured the variance of unmasked

pixel values with various Nside, finding the lowest investigated value, Nside = 16, with a

p-value12 of 0.5%, to give the most anomalously low variance. They found that the variance

tends to become lower as the mask is extended to cover more of the sky, and that the

statistical significance of its lowness persists when different foreground subtraction methods

are applied.

To measure σ2
16 for a given CMB temperature map, we first downgrade the map from

Nside = 64 to Nside = 16. We also downgrade the UT78 mask, but go directly from the

original Nside = 2048 resolution to Nside = 16 in order to make the resulting sky fraction

consistent with that used in the Planck study. We then simply compute the variance of all

unmasked pixels.

Though we measure σ2
16 through a pixel-based method, given an angular power spectrum

C` we can predict its expectation value for full-sky measurements via

〈σ2
16〉(C`) =

1

4π

∑
`

(2`+ 1)C` (b
(16)
` p

(16)
` )2 (4.12)

where b
(16)
` and p

(16)
` are the beam and pixel window functions corresponding to Nside =

16. This expression will allow us to compare our map-based measurements of σ2
16 to the

predictions from the Planck best fit theory C`’s as well as the Planck public QML C`’s.

It is worth noting that our method of measuring σ2
16 is different from that used to quantify

map variance in the WMAP and Planck analyses. Those analyses use an estimator [172] to

isolate the cosmological contribution to the variance of a normalized version of the temper-

ature map, in which each pixel value has been divided by its expected dispersion from both

cosmological temperature fluctuations and noise. Because of this, our reported numbers for

σ2
16 will be much larger than the normalized variances reported in Planck XVI (I&S), but the

statistical distribution of variances should be similar, to the extent that noise contributions

to variance can be approximated as direction-independent.13

For measurements of σ2
16 we would like to exclude pixels that may contain residual fore-

grounds; so we focus on its cut-sky value for both from the SMICA map and simulations.

We find the SMICA σ2
16 to be low compared to simulations, with single-tail probability of

p = 0.8% and 0.5% for the synfast and FFP simulations, respectively. Thus, our cut-sky

12This value is taken from Table 12 of Ref. [134].
13Though in principle the noise dispersion can vary with position on the sky due to beam effects and

weights used to construct component separated maps, those effects are expected to be small [173].
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FFP p-value exactly matches that in Planck XVI (I&S). The σ2
16 expectation value from the

Planck public QML C`’s and our our full-sky pseudo-C` measurements are very similar, with

p = 20% when compared to either simulation ensemble.

4.2.1.5 R27: Parity asymmetry at low `

We use the statistic R27 to quantify large-angle parity asymmetry of the CMB temperature

map. It has been noted that, at low `, the CMB maps have more power in odd multipoles

than even. This was observed in the WMAP 3, 5, and 7 year data [174–176] as well as in

Planck [134]. We quantify this asymmetry using the same estimator as Planck XVI (I&S),

R`max =
D+(`max)

D−(`max)
(4.13)

where

D+,− =
1

`+,−
tot

+,−∑
`=2,`max

`(`+ 1)

2π
C`, (4.14)

where the plus and minus indicate sums over even (parity-symmetric) and odd (parity-

antisymmetric) multipoles, respectively. The R`max statistic is therefore a ratio of the parity-

even over parity-odd multipole band-powers. The factor of `(` + 1)/(2π) is used because

the theoretical prediction for `(` + 1)(2π)−1C` is approximately scale-independent out to

multipoles of ` . 50, and thus predicts R`max ∼ 1 over that range.

Because R`max is directly based on the power spectrum, we will focus on its measure-

ments from the Planck QML power spectrum, and then compare them to full-sky pseudo-C`

measurements in simulations. As in the case of C2 and C3, we correct for the impact of the

simulations’ resolution on the power spectrum using Eq. (4.11).

For our covariance studies, we will focus on the behavior for `max = 27, as that multipole

range gives the most anomalously low value of R`max in the Planck XVI (I&S) analysis14,

with a single-tail probability p = 0.2% for the SMICA map. We find the SMICA map’s R27

to be notably less anomalous: measurements of the Planck QML power spectrum give single

tail probabilities of p = 3% and 2% when compared to the synfast and FFP simulations,

respectively.

Given this p-value discrepancy, we investigated how R`max depends on `max and power

spectrum measurement technique. Results of this investigation, shown in Fig. 4.2, reveal

14Value taken from text associated with Fig. 20 of Ref [134]. Though that text actually reports ` = 28
to give the lowest R`max

p-value, this is due to a typographical error, and we confirmed with that section’s
author that the minimum p-value is actually at ` = 27. [177]
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that the significance of parity asymmetry heavily depends on the choice of mask and power

spectrum measurement method. The differences between our results and those of Planck XVI

(I&S) can therefore be explained by the fact that their R`max measurements are based on

QML C` measurements of the UT78 cut-sky map, which has a smaller sky fraction than the

maps used to produce the Planck public QML power spectrum [177].15 We obtain a p-value

closest to that reported for R27 in Planck XVI (I&S) using full-sky pseudo-C` measurement

of the SMICA map compared to FFP simulations (0.6%). However, in order to be consistent

with our treatment of the other purely power-spectrum based features, we will use the public

Planck QML C`’s compared to full-sky pseudo-C` simulation measurements as our fiducial

choices for measuring R27.

4.2.1.6 C(π): Two-point correlation at θ = 180◦

We next consider the angular correlation function of CMB temperature evaluated at 180◦,

which we will refer to as C(π). We include it in the hope that it will help clarify the

relationship between other features. Our motivation comes from the fact that C(θ), which

is otherwise fairly flat at large angles, drops to negative values at θ ' π. This dip has been

observed in both WMAP and Planck data, and can be seen in the colored curves on the

right-hand side of Fig. 4.1. By its definition we expect the value C(π) to be related to the

missing large-angle correlations statistic S1/2, as well as to the R27 measurement of parity

asymmetry. This can be seen by comparing the definition for R`max in Eqs. 4.13 to

C(π) =
∞∑
`=2

(−1)`
2`+ 1

4π
C`. (4.15)

We will of course investigate these correlations quantitatively further below.

We measure C(π) by using cut-sky pseudo-C` measurements of the SMICA map and

simulations to obtain measured power spectra (as we do for S1/2), transforming to real space

angular correlations via Eq. (4.15). We compute the sum over multipoles ` = 2 − 100.

For the cut-sky measurements, the SMICA map’s C(π) is lower than for the majority of

simulations, but is not particularly anomalous, with p ∼ 11% for both the synfast and FFP

simulation ensembles. The p-value goes down to 5− 6% if we instead compare SMICA map

measurements using the public Planck QML C`’s to the same set of simulation measurements,

and 3−4% for full-sky pseudo-C`’s. As this measure is not commonly studied in the literature,

15We confirmed that we were able to replicate the Planck results when using their UT78 QML C` values,
which are an intermediate data product of their analysis, but restrict this study to only publicly available
data.
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Figure 4.2: Plot of the lower-tail probability p for the parity asymmetry as a function of
the largest multipole `max considered, for various SMICA power spectrum measurement and
simulation ensemble combinations. Solid lines show the probabilities for the SMICA map
assessed relative to the synfast simulations, and dashed lines show them relative to the FFP
simulations. For the QML and full-sky pseudo-C` SMICA measurements, the simulations
are measured using full-sky pseudo-C`’s. For the cut-sky pseudo-C` SMICA measurements,
cut-sky pseudo-C` simulation measurements are used. The vertical line denotes the `max

value at which where Planck XVI (I&S) found the most anomalous parity statistic; see text
for details.
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we do not compare this to any reported values.

4.2.2 Features depending on a`m phases

We also consider two features that depend on the phases of CMB temperature harmonic

coefficients a`m — i.e. which cannot be measured solely from the two-point correlations the

maps. These features are associated with reported anomalies that could indicate a possible

departure from the assumption of statistical isotropy of CMB temperature fluctuations: the

quadrupole-octopole alignment and hemispherical power asymmetry.

4.2.2.1 SQO: Quadrupole-octopole alignment

The CMB temperature’s quadrupole and octopole were first observed to be planar and

aligned in Ref. [127]. There are a number of possible ways to denote the directionality, and

thus alignment, of multipoles. To do so, we will follow the approach presented in Ref. [178]

and make use of Maxwell multipole vectors. Multipole vectors are a representation of a

function on a sphere; while they are at some level equivalent to spherical harmonics in

that role, their relationship to the a`m is highly nonlinear in a way that makes them are

particularly well suited to studying the directionality of patterns on the sky.

For each multipole `, there are ` corresponding multipole vectors v(`,i), where i ∈
{1, 2, . . . , `}. Roughly speaking, the more the power of temperature fluctuations associ-

ated with a given multipole is concentrated in a plane, the more its associated multipole

vectors will be confined to a plane, and the more the oriented-area vectors defined by their

cross products,

w(`,i,j) ≡ ±(v(`,i) × v(`,j)), (4.16)

will line up in a direction normal to that plane. Moreover, planarity (as opposed to simply

orientation along a direction) of the temperature multipole will cause the multipole vectors

v(`,i) and v(`,j) to be at large angles relative to each other, enhancing the magnitude of

w(`,i,j). Thus, we can use the extent to which the object oriented vectors for two multipoles

point in similar directions to measure how much the power from those `-modes are aligned.

The statistic SQO takes advantage of this property to quantify the quadrupole-octopole

alignment. It is the normalized sum of the dot products of the quadrupole oriented-area

vector w(2,1,2) with the three octopole oriented-area vectors w(3,i,j): [128,179]

SQO =
1

3

∑
{i,j}

|w(2,1,2) ·w(3,i,j)| (4.17)
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where {i, j} can be {1, 2}, {2, 3}, or {3, 1}. Given this, larger values of SQO indicate more

alignment and planarity in the ` = 2 and ` = 3 modes of the temperature maps.

Because multipole vectors are defined in terms of a`m, this measurement can only be

done on full-sky maps. To measure SQO for a temperature map, we first use the HEALPix

function map2alm to measure its a`m, and then use the procedure16 described in Appendix

A of Ref. [178] to extract the multipole vectors for ` = 2 − 3. We then combine them via

Eqs. (4.16) and (4.17) to get SQO.

We find that the SQO value measured from the SMICA map is larger than that from most

simulations, with a p-value (here, upper-tail probability) of 0.4% when compared with either

our synfast or FFP simulation ensembles. This is consistent with the results in Ref. [126].

They found the SMICA map from the Planck 2013 data release [180] had a larger SQO, with

a p-value17 of 0.54% compared to an ensemble of 106 simulations analogous to our synfast

simulations, which use constrained realizations to in-paint masked regions. The fact that

our p-value is so similar to theirs indicates that simply measuring SQO on full-sky maps (as

we do) rather than doing in-painting does not significantly affect the large-scale alignment

behavior.

4.2.2.2 ALV: Hemispherical power asymmetry via local-variance dipole

Finally, we include a measure of the level of asymmetry in temperature power between two

hemispheres of the sky. This is studied because one hemisphere of the observed CMB sky

has been noted to have more power than the other [131, 181], which can be modeled by a

dipole modulation of temperature fluctuations at large angular scales [182, 183]. Following

Refs. [184, 185], we quantify hemispherical power asymmetry using a local variance map,

which measures the size of temperature fluctuations within disks of radius θ centered on each

of its pixels. By measuring the dipole of a local-variance map, we can quantify the direction

and magnitude of any hemispherical power asymmetry in a computationally inexpensive

way. Additionally, we can probe the scale dependence of the effect by varying the angular

size θ of the disks used to create the local variance map.

More formally, if n̂i is the location of the ith pixel of the input temperature map T (n̂)

from which the monopole and dipole of unmasked pixels have been removed, we can write

16Calculations were performed using code mpd decomp.py provided at
http://www.phys.cwru.edu/projects/mpvectors/.

17Value from Table 7 of Ref. [126]
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the local-variance map σ2
θ(n̂) as

σ2
θ(n̂) =

1

N [Dθ(n̂)]

∑
i∈Dθ(n̂)

[
T (n̂i)− T̄θ(n̂)

]2
, (4.18)

where Dθ(n̂) is the set of unmasked pixels within angle θ of direction n̂, N [Dθ(n̂)] is the

number of pixels in that set, and T̄θ(n̂) is their average temperature.

In practice, we measure the dipole of a dimensionless, weighted version of the local-

variance map,

σ̃2
θ(n̂) =

w(n̂)

w̄
× σ2

θ(n̂)− µθ(n̂)

µθ(n̂)
. (4.19)

In this expression, w(n̂) is a dimensionless weight map (defined below), w̄ is its average over

unmasked pixels, and µθ(n̂) is the mean computed by averaging the local variance maps of

an ensemble of simulated CMB temperature maps.

We choose the weight function w(n̂) to be

w(n̂) =
1

var[σ2
θ(n̂)]

×

 1

Npix

Npix∑
i=1

var[σ2
θ(n̂i)]

 (4.20)

where we define, if α labels the simulation realization and Nsim is the number of simulations,

var[σ2
θ(n̂)] =

1

Nsim

Nsim∑
α=1

[
σ

2(α)
θ (n̂)− µθ(n̂)

µθ(n̂)

]2

. (4.21)

This inverse variance weighting suppresses the impact of noisy regions of the input temper-

ature map, as long as those noise contributions are modeled in the simulations. In the limit

that noise properties are direction-independent, the weight factor w(n̂)/w̄ will approach 1.

In our work, we measure ALV from the UT78 cut-sky for both the SMICA and simulation

maps. We fix the disk radius to be θ = 8◦, which is the scale previously found to produce the

most anomalous local variance dipole, and compute the local variance maps at a resolution

of Nside = 16. The amplitude of the dipole of a normalized local-variance map, ALV, is then

obtained by using the Healpix function remove dipole. Following Planck XVI (I&S), we

include only disks for which at least 90% of the input pixels are unmasked.

Our measurements return a local-variance dipole amplitude with ALV = 0.22 when σ2
θ(n̂)

is normalized using the synfast simulations, and ALV = 0.21 using the FFP simulations.

These values give an upper tail probability of p = 1% when compared to either set of

simulations. Both of these values are notably larger than the Planck XVI (I&S) findings of
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ALV ∼ 0.044 for the SMICA map, with a p-value of 0.1%.18 In investigating this discrepancy,

we found that the value of ALV is highly sensitive to the resolution of the input temperature

maps, with lower resolution input maps tending to give larger dipole amplitudes. Because we

compute local variances using our fiducial set of Nside = 64 maps, while Planck XVI (I&S)

uses Nside = 2048 input maps, we believe this resolution dependence explains the difference.

We also note that Doppler dipole modulation included in the FFP simulations [186] (but

not the synfast simulations) will generates a small power asymmetry which contributes to

the local-variance power asymmetry. However, that contribution is expected to be negligible

for the scales ` . 191 that we are investigating [187]. The fact that the p-values from

comparisons to the synfast and FFP simulations are nearly identical is in line with that

expectation.

4.2.3 Summary: Individual anomaly measurements

To summarize, we have defined quantities associated with eight properties of the CMB

temperature map which are either found to be statistically unlikely in the observed sky or

which are expected shed shed light on the relationship between statistically unlikely features.

For each feature, we have described our technique for measuring it from real and simulated

CMB maps. By analyzing the resulting data associated with each feature individually, we

have verified (where applicable) that our measurement of the SMICA map’s p-values (single-

tail probabilities) relative to the simulation ensembles are consistent with previous findings.

Fig. 4.3 shows a summary plot of these anomaly statistics measured from our ensem-

bles of 100,000 synfast (left column), and 1,000 FFP (right column) simulations. In each

panel, the grey histogram shows the distribution of simulation measurements, which are

either made based on full-sky maps, or the cut UT78 sky, as indicated by the gray text in

the lower right corner. These data are what will be used in subsequent sections to study

the relationship between features in the context of isotropic ΛCDM. The vertical lines show

feature measurements done using the Planck public QML C`’s (blue), pseudo-C`’s extracted

from the full-sky SMICA map (green), UT78 cut-sky pseudo-C`’s for the SMICA map (or-

ange), and the theoretical expectation based on Planck’s best-fit parameter values (dashed

black). Note that the two statistics that depend on the phases (SQO and ALV) do not have

a corresponding measurement from either the published QML or the best-fit theory C`, as

they can not be related to the angular power spectrum. The QML and theory values for σ2
16

are computed using Eq. (4.12). The p-values for these measurements are shown in the same

18Values taken from Fig. 27 (ALV value) and Table 20 (p-value) of Ref. [134].
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Figure 4.3: Summary plot of one-dimensional probability distributions of features associated
with large-angle CMB anomalies. Grey histograms show results for simulations, measured on
either cut-sky (using the UT78 mask) or full-sky measerements as indictated by grey text in
each panel. Vertical lines are measurements of the real sky, with their single-tail probabilities
in the corresponding color. Arrows by the p-values indicate our fidicual measurement choices.
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color on the right-hand side of each panel, with an arrow indicating which measurement we

this is most relevant for the feature in question. These choices and the findings for each

quantity are discussed in detail above.

To put the p-values in context, the 1, 2, and 3σ error bars for a normal distribution

correspond to single tail probabilities of p = 16%, 2.2% , and 0.014%, respectively. Thus, of

the features we study, the SMICA values for S1/2, C2, σ2
16, SQO, and ALV are 2− 3σ unlikely

compared to our simulations, while R27 and C(π) are between 1 and 2σ, and C3 is not in ten-

sion. For the most part our measured p-values are consistent with previous findings. Where

they are not, we can explain the discrepancies in terms of the power spectrum measurement

technique (for R27) or the initial map resolution (for ALV).

We can also use the results in Fig. 4.3 to make some general observations about the

impact of different measurement choices. Outside of small differences which are within the

reasonable range of sampling error, the one-dimensional p-values comparing measurements of

the real sky measurements relative to synfast simulations are in good agreement with those

comparing the real sky to FFP simulations. We additionally note that in general the Planck

public QML C`’s give results that are very similar to full-sky pseudo-C` measurements. The

fact that the cut-sky pseudo-C` SMICA measurements have comparably lower S1/2, C2, C3,

and σ2
16 are consistent with previous studies which have found that the observed lack of

power in the CMB sky is more severe in regions further from the galactic mask.

4.3 Results: Anomaly covariances

We are now ready to tackle the main goal of this chapter and study the relationships between

the large-angle CMB temperature map properties which have been examined individually

above. The features are: the integrated power of temperature fluctuations at angles θ > 60◦

(S1/2), the quadrupole amplitude (C2), the octopole amplitude (C3), the variance of the tem-

perature map evaluated at resolution Nside = 16 (σ2
16), the parity statistic R with maximum

multipole of ` = 27 (R27), the angular power spectrum at 180◦ (C(π)), the quadrupole-

octopole alignment (SQO), and the amplitude of the hemispherical power asymmetry (ALV).

Using our measurements of these quantities for our synfast and FFP simulations, we will

determine their covariances in order to build an understanding of how they are related under

the assumption of isotropic ΛCDM. We will do so in three stages, first describing the rela-

tionship between pairs of features measured from the synfast simulations, then comparing

the covariance matrices for the synfast and FFP simulations, and finally, further exploring

the covariance structure by performing a principal component analysis.
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Figure 4.4: Relationships between large-angle CMB features (see Table 4.1 descriptions
of these quantities). Gray contours show the 1, 2, and 3σ confidence regions based on
measurements from our ensemble of 100,000 synfast simulations, using the same measurement
choices that produced the gray histograms in Fig. 4.3. The 1D histograms on the diagonal are
the same as in the left column of Fig. 4.3. The marked data points for SMICA measurements
and theoretical expectations are equivalent to the vertical lines in Fig. 4.3. Note that the
statistics based on the phases of the a`m, SQO and ALV, do not have the corresponding
theoretical expectations because they cannot be computed analytically from C`.
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We begin by inspecting how our fiducial set of 100,000 synfast simulations are distributed

in the eight-dimensional space defined by the parameters S1/2, C2, C3, σ2
16, R27, C(π), SQO

and ALV. Fig. 4.4 shows the relationships between pairs of those quantities; the methods we

use to measure them are described in Section 4.2. The diagonal panels display the same one-

dimensional statistics information as the left column of Fig. 4.3, with the gray histograms

showing the distribution from simulations and the vertical lines showing the measurements

of the SMICA map and theoretical expectations based on the Planck’s best-fit cosmological

parameters.

In the off-diagonal panels, the grey contours indicate the 1, 2, and 3σ confidence regions

based on simulation data. The contour locations were determined for each panel as follows.

First, simulation data was used to make a two-dimensional histogram with 50 bins along each

axis. Next, the histogram was smoothed using a Gaussian filter with a width corresponding

to one bin. The smoothed histogram was then thresholded at constant-count (constant-

probability) surfaces so that 68% of the input realizations fall inside the 1σ contours, etc.

The number at the top displays the correlation coefficient R of the two quantities shown

in the panel, computed based on the simulation samples. Measurements of the observed

SMICA map and theory predictions are shown using colored crosses.

Examining Fig. 4.4 we can make a few general observations. First, there are notable

covariances and structure to the relationships between most of the features that depend only

on two-point functions, but not between C2 and C3, nor between the pa`m-phase-dependent

quantities (SQO and ALV) and any of the other quantities. This is expected given the isotropic

ΛCDM model used to generate the simulations. We additionally note that the distribution

of simulation points in this eight-dimensional space is decidedly non-Gaussian; this is due to

the asymmetric limits on the quantities measured, as well as the (in some cases) non-linear

dependence of quantities on C`.

More specifically, the covariances of the two-point-function-based quantities can be un-

derstood by how they depend on the power spectrum components C`. In isotropic ΛCDM,

we expect the power at different multipoles ` to be independent, and correspondingly we see

little covariance between C2 and C3. The positive correlation between σ2
16 and either of these

amplitudes is straightforward, given Eq. (4.12): all else being equal, adding power to low `

is expected to increase the variance at large scales. Similarly, increasing C2 adds to even-`

power and increasing C3 adds to odd-` power, so we expect and see that the correlation of the

parity measure R27 to be positively and negatively correlated with C2 and C3, respectively.

Looking at C(π) allows us to clarify the relationship between the parity properties and

S1/2. We note that, given the parity properties of spherical harmonics and referencing
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Eq. (4.15), the contributions from even-` modes to C(π) will be ∝ (2` + 1)C`, while odd-`

contributions are ∝ −(2`+ 1)C`. Thus C(π) is effectively another way of characterizing the

parity properties of the large-angle CMB. Accordingly we see that C(π) has a strong positive

correlation with R27 and with C2 and a somewhat weaker negative correlation with C3. Since

C(π) is the measurement of the angular correlation at θ = 180◦, small S1/2 values require

that |C(π)| be close to zero. The sharp triangular structure of the contours in the C(π)-S1/2

plane reflect this behavior. (The fact that the triangle is asymmetric about C(π) = 0 can be

understood in terms of the fact that the simulations are based on the ΛCDM Planck best-fit

power spectrum, which has C(π) > 0, because the largest temperature anisotropy probed

is the quadrupole ` = 2 mode which generates a dominant positive term in Eq. (4.15).)

Accordingly, the S1/2-R27 contours show an echo of that triangular structure, such that for a

fixed R27 value, lowering S1/2 will make it more anomalous. This provides an intuitive way

to understand the result derived analytically in Ref. [150].

We note that the panel showing the cross correlation between C2 and logS1/2 is com-

parable to that studied in Ref. [151]. We find a looser relation between the two quantities

than is found in that work. The reason for this difference is that we mix masking choices

for our fiducial synfast map statistics, using full-sky measurements for the C2 and cut-sky

measurements for S1/2. We verify that if we measure both quantities on either full-sky or

cut-sky maps, the shape of our contours closely resemble the distribution in Ref. [151], which

uses UT78 cut-sky measurements of both features.

The results from FFP simulations look visually similar to those in Fig. 4.4. Given this, we

do not show the scatter plot for that ensemble. Instead, below we examine the significance

of the difference between the feature covariances based on the synfast and FFP sets of

simulations.

4.3.1 Covariance structure comparison

Here we measure the covariance between large-angle features measured from our simulated

CMB temperature maps, and will compare the covariances extracted from the synfast and

FFP simulations. By making this comparison, we can gauge whether the survey properties

modeled in the FFP but not in the synfast simulations affect the relationship between the

features studied. This in turn could potentially provide insight into whether those survey

properties influence observed anomalies in the SMICA map (though the fact that no one has

yet found a convincing systematics-based explanation for any of them makes this unlikely).

For a given ensemble of n simulations, we represent each realization as a d-dimensional
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Figure 4.5: Left: The feature covariance matrix Ssyn measured from the synfast simulation
ensemble. Right: The difference ∆S (given in Eq. (4.24)), between the covariances measured

from the FFP and synfast simulations in units of its sampling error σ
(1000)
syn estimated from

sets 1,000 synfast realizations (defined in Eq. (4.25)).
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Figure 4.6: Left: Absolute difference between the covariance matrix measured from 1000
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The right panel of Fig. 4.5 shows the ratio between the two panels of this figure.
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vector x, where d = 8 is the number of large-angle quantities measured (S1/2, C2, C3, etc.).

Before measuring the covariance matrix, we center and normalize the data so the jth vector

component of realization i becomes

x̃
(j)
i = (x

(j)
i − x̄(j))/σ(j), (4.22)

where x̄(j) and σ(j) are the mean and standard deviation of the jth quantity being measured,

respectively. This ensures that the covariance structure is not dominated by the fact the

characteristic size of some of the quantities we study are simply much larger than others (e.g.

σ2
16 compared to ALV). It will also mean that the covariance we measure will be equivalent

to the correlation coefficients appearing in the subplots of Fig. 4.5.

Once the data are preprocessed, we define a d×n-dimensional matrixX = (x1,x2, . . . ,xn),

where each column corresponds to one realization. This allows us to concisely write the mea-

sured d× d-dimensional feature covariance matrix as

S =
1

n

n∑
i=1

x̃i ⊗ x̃i =
1

n
XXT . (4.23)

We show the covariance matrix for our ensemble of 100,000 synfast simulations Ssyn on the

left side of Fig. 4.5.

We would like to study how the covariance matrix derived from the ensemble of 1,000

FFP simulations SFFP differs from from that measured from our 100,000 synfast simulations

Ssyn. To make that comparison meaningful, we must ensure that differences we see are not an

artifact of the smaller number of FFP simulations. On the right side of Fig. 4.5 we therefore

show the relative difference for covariance matrix entries Sij,

(∆S)ij =
[(SFFP)ij − (Ssyn)ij]

[σ
(1000)
syn ]ij

, (4.24)

where the denominator [σ
(1000)
syn ]ij is sampling error for when Sij is measured from a set of

1,000 synfast simulations.

We estimate σ
(1000)
syn based on N = 100 subdivisions of the 100,000 synfast simulations.

This allows us to measure the covariance matrix S
(1000,α)
syn for each subsample α ∈ {1, . . . , N}.

For each entry ij of the matrix, we can then compute the mean over subsamples [S̄
(1000)
syn ]ij,

89



as well as the sample variance,

[σ(1000)
syn ]2ij =

1

N − 1

N∑
α=1

(
[S(1000,α)

syn ]ij − (S̄(1000)
syn )ij

)2
. (4.25)

Thus, assuming the errors on the covariance matrix entries are Gaussian, the values plotted

in the right panel of Fig. 4.5 show the difference between the FFP and synfast covariances

in units of their 1,000-synfast-realization-based standard deviation. Plots of the absolute

difference SFFP − Ssyn and the sampling error σ
(1000)
syn are shown for completeness in Fig. 4.6.

We see that there are several moderately significant differences between the feature co-

variances derived using the FFP and synfast simulations. The most prominent of these are

between the quadrupole-octopole alignment SQO and logS1/2, C2, C3, and σ2
16, with differ-

ences ranging from (2–3.6)σ. There is also a 2.3-σ difference in the S1/2–C2 entry, and several

other less significant differences in the range (1–2)-σ.

Noting that the largest ∆S entries involve the quadrupole, we hypothesized that these

differences might be driven by the kinematic quadrupole, which is partially simulated in the

FFP maps but not in the synfast simulations. To test this idea, we created an alternative

version synfast ensemble where the Doppler quadrupole (DQ) correction aDQ
2m given in Table 3

of Ref. [126] is added to each map19. When we use this synfast+DQ ensemble to reproduce

Fig. 4.5 there no significant changes in the feature covariance matrix or its differences from

the FFP feature covariance. If the SFFP−Ssyn differences were mainly driven by the kinematic

quadrupole present in the FFP maps, we would expect that adding a DQ correction to the

synfast simulations would significantly change the structure of ∆S. Because it does not, we

conclude that modeled foregrounds or survey properties other than the kinematic quadrupole

are likely to be be driving the differences between SFFP and Ssyn.

4.3.2 Principal component analysis

We next use a principal component analysis (PCA) to investigate whether large-angle CMB

anomalies can be reduced to a few fundamental “building blocks” — features, or combina-

tions thereof, which explain the ways that the observed CMB sky is unusual compared to

our ensembles of simulations. This search is motivated by the desire to better understand

the relationships between the features expected in isotropic ΛCDM, with the hope that this

might provide insight into the physical origin of anomalous features in the observed CMB sky.

19This DQ correction is slightly different than that included in the FFP simulations, which model only the
residual frequency-dependent portion of the kinematic quadrupole which is not removed during the Planck
map processing.
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Figure 4.7: Left: Eigenvectors of the anomaly covariance for our fiducial set of 105 synfast
simulations. Each column is one PC; the one with index 1 points in the direction of the data’s
maximum variance. The rows indicate their components in the direction of the initial large-
angle CMB quantities. Right: Fractional residual variance for these PCs and the eigenvalues
associated with each PC as a fraction of the sum of all eigenvalues

Ref. [94] conjectured that there are three such building blocks in the CMB maps observed by

WMAP and Planck: missing large-angle power, alignments between the low multipoles, and

dipolar modulation of the CMB (which is a model roughly equivalent to the hemispherical

asymmetry studied here). We now have an opportunity to quantitatively test this conjecture

by using our measurements of simulation ensembles. By finding the simulation data’s princi-

pal components (PCs) in the eight-dimensional feature space we consider, we can determine

which linear combinations of features explain most of the covariance structure discussed in

Section 4.3.1. It is our hope that studying the position of the SMICA in this PC basis will

allow us to can learn something about the ways in which the observed CMB temperature

map is unusual.

PCA is a dimensionality reduction technique which works by identifying the directions

in a d-dimensional parameter space along which a set of data points have the maximum

variance. The PCs defined sequentially: the first PC corresponds to the direction in which our

simulation realizations have the most variance; the second PC corresponds to the direction

of maximum variance after the components of the data in the direction of PC 1 are projected

out; and so on. In practice, the PCs are obtained by finding the eigenvectors of the data’s
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covariance matrix. Therefore, in our analysis, we determine the eigenvectors of the covariance

matrices S derived above in Eq. (4.23) to get to obtain PCs which are unit-length linear

combinations of the quantities S1/2, C2, C3, σ2
16, R27, C(π), SQO, and ALV. The first principal

component is the eigenvector with the largest eigenvalue, the second PC has the second

largest eigenvalue, and so on.

PCA works as a dimensionality reduction technique because we can capture much of

the information about the input data’s variance by projecting it onto the first d′ ≤ d PC

directions. Heuristically, the fraction of the information that is retained in this projection

is equal to ratio between the sum of the first d′ covariance matrix eigenvalues to the sum

of all d eigenvalues. To quantify the relative importance of the various PCs, we adopt

the complement of this quantity, the fractional residual variance (FRV), the fraction of the

variance that is not captured by the first d′ PCs. It is given by the expression

FRV ≡ 1−
∑d′

i=1 λi∑d
i=1 λi

, (4.26)

where the eigenvalues have been ordered so that λi ≥ λi+1.

Fig 4.7 shows the properties of the PCs derived from our ensemble of 100,000 synfast

simulations. The left panel show PCs (the eigenvectors of Ssyn), with each column corre-

sponding to one PC, and the rows corresponding to their components associated with each

of the original eight quantities. The right panel shows the fractional residual variance as a

function of the number of PCs retained in the analysis as well as the individual contribution

of each PC to its sum.

Looking at the FRV plot, we find that 42% of the simulations’ variance is in the direction

of the first PC, which quantifies the missing large-angle correlations and has comparable

coefficients of the same sign in C2, S1/2, σ2
16 and C(π). Another 20% is the PC 2 direc-

tion, which largely lies in the direction of C3, along with less dominant contributions by

features correlated with the octopole. The next two PCs quantify the sum and difference

of the quadrupole-octopole alignment SQO and the hemispherical asymmetry statistic ALV,

capturing 13% and 12% of the data’s variance, respectively. These first four PCs together

explain about 90% of variation in the space of the (eight) features.

Studying the eigenvectors themselves, we find that interpretation of the first four PCs is

fairly straightforward because they can be associated with input quantities which are largely

independent of one another.

The first PC corresponds to missing large-angle correlations. It is dominated by C2, S1/2,

σ2
16 and C(π) (and, to an extent, R27). These particular features are positively correlated,
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with correlation coefficients R varying between about 0.5 and 0.8 (see Fig. 4.4), so it is

mathematically expected that they would form a principal component whose eigenvector

components have same signs and comparable amplitudes, as we observe in PC 1. One can

intuitively understand the relationship between these features by noting how their quanti-

ties will change if we change the quadrupole amplitude, all else being equal. Raising the

quadrupole will increase large-angle power, and will increase the power observed in even-

parity modes, and so it make sense that S1/2, σ2
16, C(π), and R27 will all increase. Thus,

one interpretation of the first PC is that it picks out direction in our feature space that is

roughly aligned with variations in the quadrupole amplitude.

Next, PC 2 is dominated by the octopole. Given the correlations of C3 and the other

statistics in Fig. 4.4, it is unsurprising that PC 2 receives moderate contributions from S1/2

and σ2
16 with the same sign as C3, and R27 and C(π), with the opposite sign. As with

PC 1, we can also understand this in terms of how how other quantities will respond if we

raise or lower C3 without changing power at other multipoles. More octopole power will

generally add to large-angle power, increasing S1/2 and σ2
16, but specifically through odd

parity contributions, and so it will lower R27 and C(π).

The fact that first and second PCs can be associated with the CMB temperature quadrupole

and octopole amplitudes, respectively, is unsurprising. We know the lowest multipoles dom-

inate the properties of the CMB temperature map at large angles. We also know that C2

and C3 are independent in isotropic ΛCDM, so they correspond to orthogonal directions in

our feature space.

The third and fourth PCs are associated with the a`m-phase dependent quantities, SQO

and ALV. We note that their associated covariance eigenvalues λ3 and λ4 are nearly equal,

so the ordering of PC 3 and PC 4 is somewhat arbitrary. This reflects the fact that the

correlation between SQO and ALV is very small, and means that using PC 3 and PC 4 together

is basically equivalent to just defining two unit vectors in the ALV and SQO directions.

The structure of the fifth through eighth PC resists simple interpretation, as they are

determined by the relationships between the non-independent quantities, after the variation

of the data in the direction of the first four PCS (roughly C2, C3, SQO and ALV) are projected

out. One could infer, for example, that because PC 5 has C2 and C3 components with

different signs, that it might capture some information about jwhether the power from the

quadrupole and octopole cancel one another, but this is far from clear. PCs 6-8 all have

small eigenvalues with λ6 ∼ λ7 ∼ λ8, so their order is somewhat arbitrary and basically just

divide up whatever degrees of freedom are left after the first five PCs are removed.

We also performed a PCA on the FFP simulation data. Fig. 4.8 shows the FFP PC’s,
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Figure 4.8: PCA results for the FFP simulations and comparison to synfast results. Top
left: Eigenvectors of the anomaly covariance for the set of 1000 FFP simulations. These
are the principal components. Top right: Differences between the PC’s obtained using the
FFP simulations and the fiducial Gaussian simulations. Bottom: Absolute and fractional
differences between the Fractional Residual Variance (FRV) when studying the anomaly
covariance obtained from the FFP rather than synfast simulations.

94



the difference between the FFP and synfast PC’s, and the shows the differences between

their FRV functions. Generally, we find that the FFP results are very similar to those for

the synfast simulations. The small differences between them largely reflect their covariance

matrices’ differences discussed in Section 4.3.1, but are otherwise difficult to interpret.

We next calculate the probability of the features projected to the PC basis; this can

inform whether linear combinations of the features that tend to “come together” in simulated

skies are particularly anomalous (or not) when observed on our CMB sky. We proceed as

follows: for each simulation, our measurement of the quantities corresponds to a vector in

our eight-dimensional feature space. By taking the dot product of that vector with each of

the PCs, we find the components of that simulation’s vector in the new PC basis. The grey

histograms in Fig. 4.9 show the resulting distributions of the statistics projected to the PC

basis, as calculated by synfast (left column) and FFP (right column) simulations. The red

vertical lines correspond to the statistics calculated on our CMB sky, again projected to the

PC basis.

Fig. 4.9 shows some instructive trends. Since the first principal component (PC 1) is

a linear combination of the features that encode the missing angular correlations (low C2,

S1/2, σ2
16 and C(π)), it makes sense that its probability is low. However the fact that

this probability is lower than that for any of the individual features (p-value = 0.064%)

further indicates that, given the lowness of one of its constituent statistics (for example,

the quadrupole), the other aforementioned features that make up PC 1 are still lower than

expected in ΛCDM. Next, the probability of PC 2 is not anomalous (p = 47%), which

is unsurprising given that it largely reflects the rather average C3. The PC 3 probability,

however, is surprisingly high (p = 0.032%), which is the smallest p-value among all PCs.

The extremely high value of the statistics projected to PC 3 comes from the fact that this

principal component is largely a sum of SQO and ALV, which are both high on our sky but

uncorrelated (R = 0.015) in ΛCDM. Hence, PC 3 is the sum of two high-valued statistics,

and is itself very high. In contrast, PC 4 is largely a difference between the same two high-

valued statistics (SQO and ALV), and is itself therefore average (p = 39%). Finally, the higher

PCs also do not shed significant further light on the structure of the statistics of the features

we study.

In concluding this section, we note that PCA as a method is only able to capture linear

structures in the data. Because the relationship between many of the quantities we measure

are nonlinear by definition, the PCAs will therefore capture only partial information about

the structure in the simulations’ distribution.
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Figure 4.9: Summary of feature statistics projected into our PCA basis. The row labels
indicate the basis vectors of the PC basis, which are equivalent to the unit-eigenvectors of the
synfast (left) and FFP (right) simulations’ feature covariance matrix. The gray histograms
show the distribution of the components of simulation realizations in the direction of each
PC. The red lines show the same projection of our fiducial SMICA map measurements (using
the measurement methods whose p-values in Fig. 4.3 are denoted by an arrow). The red
numbers in the top right corner of each panel show the percentage of simulations that are
more extreme than the corresponding SMICA measurement.
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4.4 Conclusions

In this chapter we have studied the relationships between a set of large-angle CMB features

expected in the ΛCDM model, with the goal of better understanding the interdependence

of large-angle temperature anomalies observed in WMAP and Planck data. In particular,

we have studied the eight features measured through the quantities defined in Section 4.2:

the integrated power of temperature fluctuations at angles θ > 60◦ (S1/2), the quadrupole

amplitude (C2), the octopole amplitude (C3), the variance of the temperature map evaluated

at resolution Nside = 16 (σ2
16), the parity statistic R with maximum multipole of ` = 27 (R27),

the angular power spectrum at 180◦ (C(π)), the quadrupole-octopole alignment (SQO), and

the amplitude of the hemispherical asymmetry (ALV). The first six of these features depend

on the angular power spectrum and quantify various aspects of angular clustering at large

scales, while the last two depend on phases of the a`m and quantify large-angle alignments

and parity asymmetry observed in CMB maps.

Our analysis was based on on measurements of two ensembles of ΛCDM simulations:

100,000 noiseless Gaussian CMB temperature maps generated using the synfast function

in healpy, and 1000 full focal plane (FFP8.1) simulations provided by the Planck team

that contain astrophysical foregrounds and other physical artifacts expected in the observed

sky. We began by using these ensembles to find the probability of the observed values of

each feature in ΛCDM, which allowed us to study the impact of analysis choices on the

feature statistics and to make sure we could recover results from previous work. We found

generally excellent agreement between the statistics of the features based upon our two sets

of synthetic maps, and summarized the results in Fig. 4.3.

Then, selecting a fiducial set of analysis choices, in Section 4.3 we used those same simu-

lation measurements to fulfill the principal goal of this project by calculating the correlation

between the eight features studied. Fig. 4.4 shows, for the first time, a complete covariance of

features associated with the most commonly discussed large-angle CMB anomalies. Our re-

sults confirm and quantify various aspects of the features that were previously either guessed

or calculated in isolation. For example, the quadrupole C2, the missing large-angle correla-

tions statistic S1/2, and the variance σ2
16 are all positively correlated and largely uncorrelated

to the phase-dependent features. The phase-dependent features — the quadrupole-octopole

alignment SQO and the hemispherical asymmetry statistic ALV — are uncorrelated both each

other and with all other features studied. Less trivially, we find that the covariance between

SQO and several other features, is significantly higher when measured from FFP simulations

than from synfast (though still low compared to the covariances between other features), and
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that introducing a kinetic quadrupole correction to the synfast simulations has little impact

on that difference.

We then diagonalized the measured covariance matrix, obtaining the principal compo-

nents of features’ expected distribution in ΛCDM. This allowed us to quantify whether most

of the information about how the simulations vary in our eight-dimensional feature space is

retained in some smaller number of PCs. We find that 42% of the simulations’ variance is

in the direction of the first PC, which quantifies the missing large-angle correlations and has

comparable coefficients of the same sign in C2, S1/2, σ2
16 and C(π) . Another 20% is the PC

2 direction, which largely lies in the direction of C3, along with less dominant contributions

by features correlated with the octopole. The next two PCs quantify the sum and difference

of the quadrupole-octopole alignment SQO and the hemispherical asymmetry statistic ALV,

capturing 13% and 12% of the data’s variance, respectively. These first four PCs together

explain about 90% of variation in the space of the (eight) features.

It is important to remind ourselves that apart from the few (generally 2− 3σ) anomalies

discussed here and elsewhere, the ΛCDM model describes most of the current cosmologi-

cal observations with immense success. Given the significant cosmic variance inherent in

the largest angular scales of the CMB, as well as the absence of concrete models that are

clearly preferred over the ΛCDM model, we should be wary of putting too much weight

on these anomalies as motivations for new physics. However, given the success of ΛCDM,

any observational clues as to how to build a more fundamental description of the physics

of inflation and dark energy will (initially at least) take the form of small deviations from

the predictions of the model [188]. Given this, we should certainly take a careful look at

reported tensions and anomalies, making sure we understand how assumptions related to

modeling and analysis affect their significance.

It is in this spirit that this work contributes to the discussion of large-angle CMB anoma-

lies: by understanding in detail how observed features are related in ΛCDM, we can better

assess the independent ways in which our observed CMB sky is unusual, and thus whether

they might provide clues about beyond-ΛCDM physics. An interesting potential avenue for

future work is to study how the covariance between the anomalies changes when assuming

underlying models that are extensions of, or alternatives to, ΛCDM.
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Chapter 5

Multi-probe blinding for DES

We now turn our attention from CMB observables to measurements of the late Universe,

focusing in particular on the blind analysis of LSS survey data. The practice of blinding

against human bias in data analysis is standard in many areas of science. The idea is to pre-

vent the scientists from biasing their analysis toward results that are theoretically expected

or, more generally, deemed by them to be likely or correct. In experimental particle physics

strategies for blinding are manyfold and have been honed since their earliest application

decades ago [189]. Blinding strategies in particle physics include hiding the signal region,

offsetting parameters in the analysis by a hidden constant, and adding or removing events

from the analysis (for a review, see Ref. [190]).

Blinding started to be applied to astrophysics and cosmology only relatively recently.

The first application to cosmology was described in Ref. [191], which reports on an analysis

of magnitude-redshift data of type Ia supernovae. In that study, the full analysis was per-

formed with unknown offsets added to the key cosmological parameters, ΩM and ΩΛ, until

unblinding revealed final parameter values. Many type Ia supernova analyses have adopted

some variation of this blinding approach since (e.g. Refs. [41,192–194]). More recently, blind-

ing has been regularly applied to analyses involving strong gravitational lensing [195, 196],

as well as cosmological inferences from weak gravitational lensing observations [197–200].

Our goal here is to develop a blinding technique that can be used for cosmological in-

ferences from the Dark Energy Survey (DES)1 [46]. DES is an ongoing photometric galaxy

survey based at the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observa-

tory in Chile. Designed to obtain precise constraints on cosmological parameters, particularly

those associated with the physics of dark energy, when complete, DES will produce a catalog

of galaxy shapes and locations over 5000 deg2 out to z ∼ 1.3 (roughly 8 billion light years).

1http://www.darkenergysurvey.org
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Cosmology results for the analysis of the first year of DES data were made public in August

of 2017 [12]. This Year 1 (Y1) analysis was based on measurements in the 1350 deg2 square

degree area shown in green in the upper panel of Figure 5.1. In it, cosmological parameters

were constrained through the combined analysis of three two-point functions: the angular

correlation of galaxy positions via w(θ), the angular correlation of weak lensing shears via

ξ±(θ), and the cross correlation between galaxies and shears via γt(θ). Constraint contours

from this so-called 3 × 2pt analysis are shown for the parameter plane where DES has the

most constraining power in the bottom panel of Figure 5.1. In that figure, S8 ≡ σ8

√
Ωm/0.3

is a reparameterization of σ8 chosen to remove degeneracies with Ωm. Though the centers of

the Planck and DES contours are slightly offset, the constraints from the two datasets are

statistically consistent. The fact that early-Universe CMB constraints, extrapolated forward

using ΛCDM to be compared to DES’ late-Universe LSS measurements is a mark of the

success of ΛCDM. This agreement will be further tested in the future.

The next major DES cosmology analysis will be of the survey’s first three years of data,

which, covering the full 5000 deg2 footprint, will have more than three times the area of

the Y1 analysis. Its constraints will therefore have significantly smaller statistical error

contributions. Watching how the consistency of Planck and DES constraints change in the

DES Year 3 (Y3) analysis will be one of the most significant near-future tests of ΛCDM. In

order to take full advantage of the survey’s statistical power, however, we must ensure that

our analysis of DES data is robust against systematic errors, including experimenter bias.

Given the scrutiny that will be applied to how DES Y3 constraints compare to previous

cosmology results (e.g. from Planck), as well as the fact that ΛCDM selects a special value

of w = −1, blinding is particularly important for precision tests of dark energy.

Determining how to blind the DES cosmology analysis is far from trivial, however. Direct

application of techniques from experimental particle physics is not feasible due to numerous

important differences between cosmological observations and particle-physics experiments.

First, most major tests of cosmology do not use statistics in the form of events counts

in a feature space. Second, there is no clear division of the data space into a “signal”

region that can be hidden vs. a “control” region that can be used for all validation tests.

Thirdly, the DES cosmological inferences are now produced by combination of multiple

“probes,” i.e. summary statistics of diverse forms of measurement of different classes of

objects. Much of DES’ constraining power comes from its ability to use the combined

analysis of multiple observable probes to break degeneracies between cosmological nuisance

parameters: for example, analyzing the galaxy-galaxy correlations w(θ) and the galaxy-shear

correlations γt(θ) together breaks the degeneracy between galaxy bias b(z) and σ8 [202]. This
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and Ωm, in comparison to and combined with Planck CMB constraints.
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same fact makes blinding the DES multi-probe analysis challenging because any performing

any simple blinding operation to data associated with one observable will cause the total

multi-probe data vector to become inconsistent with any viable cosmology.

A new approach is therefore necessary for effective blinding of multi-probe inferences. We

describe here an approach based on the manipulation of the entire multi-probe data vector,

which for the DES 3× 2pt analysis will be the collection of two-point functions ξ±(θ), γt(θ),

and w(θ) measured for a variety of redshift and angular bins. In this strategy, a blinding

procedure would be applied to the data vector when it is generated from DES catalogs. That

blinded data vector would then be used in all validation tests or cosmological inferences, and

only when all tests are passed would the analysis pipeline be rerun with an unblinded version

of the data vector.

The outline of the chapter is as follows. First, in Section 5.1 we describe our proposed

blinding methodology and the motivation behind it. Then, to provide context, Section 5.2

will introduce the DES 3 × 2pt analysis pipeline, describing the procedure for computing

model predictions for its data vector. In Section 5.3 we describe the plan for using simulated

data to test the performance of this blinding method for the DES Y3 3× 2pt analysis, and

in Section 5.4 we present the results. We conclude in Sec. 5.5.

5.1 Method

Broadly speaking, the goal of blinding is to change or hide the output of an analysis in

a way that still allows experimenters to effectively perform validation checks on the analysis

pipeline. In this section we will discuss the requirements a blinding scheme must fulfill in

order to be effective, and then, given that context, will introduce our proposed blinding

transformation. Though we are specifically developing and testing the performance of a

blinding scheme for the DES 3 × 2pt analysis, the ideas we present could in principle be

applied to any analysis, so we will frame most of the discussion in terms of a generic data

vector. Specifically, Section 5.1.1 will develop a vocabulary for describing the shifts in param-

eter space needed to overcome experimenter bias, Section 5.1.2 will discuss the interaction

between blinding and pipeline validation tests, Section 5.1.3 will introduce our proposed

blinding transformation, and Section 5.1.4 will define a metric for assessing its performance.
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5.1.1 Prior and prejudice

Let us assume that the experiment produces a vector d of observed quantities, and we wish

to constrain the parameters Θ of a model d̂(Θ) for these data. The parameters can include

astrophysical and instrumental nuisances as well as the cosmological parameters of interest.

There will always be some prior probability, Pri (Θ), that expresses the physical bounds of

our model (e.g. Ωm > 0) and results of trusted previous experimentation. In a Bayesian

view, the purpose of the experiment is to produce a likelihood function L(d|Θ) that is

combined with the prior to produce a posterior measure of belief across the model space,

P (Θ|d) ∝ L(d|Θ) Pri (Θ). One easily-visualized variant of the prior is to have it be uniform

over some model spaceM of Θ and zero elsewhere, i.eM encompasses all parameter vectors

considered feasible.

The experimenters may additionally harbor prejudices about the “correct” values of the

parameters, for instance that they should agree with some theoretical prejudice such as a

flat Universe, or that they should agree with some previous experiment that one is trying to

confirm. We can express these prejudices with another (albeit, harder to quantify) probability

function Pre(Θ). It could for example be a uniform distribution over some regionMPre ⊂M.

Note that in this framing, one must make a decision regarding previous experiments’ results:

either we accept them as true and place them in Pri; or we are using their comparison to

our results as a test of our model, in which case we must be wary of confirmation bias and

should place them in Pre.

The danger of experimenter bias arises when choices about the analysis process are made,

consciously or otherwise, on the basis of whether the experiment’s results conform to the

prejudices, i.e. whether Θ ∈MPre. To confound the experimenter bias, a blinding procedure

will apply a transformation d → d̃ = B(d) to the data before the experimenters perform

analyses. The first critical property of B is therefore that it must destroy the experimenter’s

ability to know whether the data are consistent or inconsistent with their prejudices. For

example, if we take the maximum-posterior parameter values for blinded and unblinded data

Θunbl = argmax
Θ

{P (Θ|d)} (5.1)

Θbl = argmax
Θ

{P (Θ|B(d))} , (5.2)

then there must be a non negligible chance that either

Pre(Θunbl)� Pre(Θbl) or Pre(Θunbl)� Pre(Θbl). (5.3)
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Figure 5.2: Cartoon of model and data spaces that we consider when thinking about how
to blind an analysis. M is the space of all viable model parameter sets Θ, which projects
onto the data vector space DPri ⊂ D, where D is the space of all possible data vectors.
MPre describe the region in parameter space where experiments have some preconceived
expectation for Θ to be, which project onto the DPre of data vectors. An effective blinding
transformation must have the possibility of moving the observed data vector d in or out of
DPre without moving it out of DPri.

A simple graphical illustration is given in Figure 5.2: if we define DPre as the region of data

space D produced by parameter values within the prejudice region MPre, then the blinding

transformation must be able to move data into and out of this region. The experimenters

should believe that this is possible, but not know for certain whether it has happened.

5.1.2 Preserving the ability to check for errors

In addition to obscuring the true parameter output of an analysis, an effective blinding

scheme must still allow experimenters to, before unblinding, examine the data d to uncover

errors in their analysis procedures. A validation test is one whose failure indicates that

data could not have been produced by any allowed parameters Θ ∈ M. For a non-trivial

validation test to exist, there must be some redundancy in the data, namely the region DPri

comprising the image of M under the model mapping must be a proper subset of the full

space of possible data, as is illustrated in Fig. 5.2. The most general possible validation test

is, in fact, to ask whether d ∈ DPri (for the case when Pri(Θ) is uniform over M). More

generically, we can imprecisely state this in terms of a requirement on the posterior,

max
Θ∈M

L(d|Θ) Pri(Θ) ∼
〈

max
Θ∈M

L(d′|Θ) Pri(Θ)

〉
, (5.4)
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where the average on the right is taken over realizations of data d′ drawn from the distribu-

tions predicted by Θ ∈M. In other words, if our model (for both physics and systematics) is

able to accurately describe d, the goodness of fit for the prediction of some set of parameters

should be comparable to that for realizations of simulated data generated using the same

model.

A blinding tranformation B should not alter the conclusions of validation tests. There are

a number of ways of stating this requirement. Generally, B(d) should map the allowed region

DPri onto itself, and likewise for its complement, the disallowed region D̃Pri. Additionally,

the maximum-posterior values from Equations 5.2 should obey

L (dbl|Θbl)

L (dunbl|Θunbl)
≈ 1. (5.5)

A transformation satisfying these requirements will ensure that blinding will not alter ex-

perimenters’ judgement about whether there are flaws in the data.

Sometimes the validation tests are more practically expressed as some projection of the

data onto a “null test” T (d) such that

T (d) = 0 ∀Θ ∈M. (5.6)

Many kinds of validation tests fall into this paradigm. For example, if T projects onto the

B mode (divergence-free) of weak lensing, it should be zero within errors. We can measure

the difference between data vectors split by some property uncorrelated with extragalactic

signals, such as seeing. Another very generic test is to run the parameter inference on

two subsets of the data vector and check that the results are consistent with common Θ.

Allowances must of course be made for the expected noise in the null test output at fixed Θ.

Generally speaking, a useful blinding transformation must yield T (dblind) = 0 within errors

if and only if T (d) = 0 within errors.

When defining validation criteria it is important to carefully specify the range of models

where those criteria are considered viable. For example, suppose we compare the high- and

low-redshift halves of a supernova Hubble diagram. If both halves are fit with a ΛCDM model

and the data truly are from a ΛCDM universe, then analyzing the two halves separately

should produce consistent cosmology results, making this comparison is a useful validation

test. If, however, the universe is not described by ΛCDM, then the high/low z split can

yield inconsistent results in the absence of processing errors. (Similarly, we can note that

the original discovery of dark energy was effectively a demonstration that fitting supernovae
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data with Λ = 0 produced this kind of mismatch.) This example underlines an important

point: defining validation tests requires one to make implicit modeling choices, and defining a

blinding procedure which preserves the result of those tests can only produce shifts in model

space which respects those choices. When constructing an analysis pipeline, it is therefore

important to carefully consider what measurements will be considered signals for testing

ΛCDM and which can be used as checks on the performance of the analysis pipeline. In

other words, defining validation criteria, and a blinding scheme that preserves their results,

requires one to specify the space of models that are considered viable.

With a transformationB in hand that satisfies both Eq. (5.3) and Eq. (5.5), experimenters

can work with dbl until all validation tests are passed, remaining ignorant of the nature of the

transformation. Once the analysis pipeline has been validated, the decision can be made to

unblind by re-running the analysis using the true, unblinded data d for parameter inference.

5.1.3 Proposed data vector transformation

The first choice to make in picking the blinding transformation B is what data will be

transformed. In DES, the data start as pixel values; then are converted to cataloged fluxes,

shapes, etc.; then to summary statistics such at the tomographic weak lensing correlation

functions ξ±(θ), or the counts N(λ, z) of galaxy clusters; and finally to the parameter esti-

mates Θ̂ themselves. The simplest case is simply for B to operate on the Θ̂, as has been

done in previous experiments, such as the DES Year 1 analyses, where an unknown shift

was applied to cosmological parameter values in any human-readable results. The risk of

accidental revelation of the true parameter estimates is high, however, if the blinding code

is mistakenly omitted. The temptation for experimenters to peek at the true results is also

high when the “curtain” is so thin. Furthermore, in this scenario, the blinding is defeated if

anyone plots a theoretical model for the prejudicial model atop the summary statistics.

As a rule of thumb, the earlier in the analysis process the blinding is applied, the stronger

the protection against confirmation bias. This is because blinding data earlier in the pipeline

means it requires more steps to produce unblinded results in a form that an experimenter

could recognize as conforming to their biases or not. Blinding by alteration of the pixel

data is probably impossible, apart from substituting an entire set of simulated data for the

real one. Blinding at the catalog level is possible in some cases, e.g. when only one or two

summary statistics are going to be derived from the catalog. This has already been done

for the DES shear-only analyses for both the Year 1 and Year 3 analyses, by scaling each

galaxy ellipticity by some unknown multiplicative factor. For a multi-probe experiment,
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however, such as DES’ combined probe analysis with hundreds of summary statistics, we

have discovered no catalog transformation that preserve the validity of the data. We therefore

opt to transform the summary statistics.

Our blinding transformation is as follows: let d̂i(Θ) be the theoretically computed (noise-

less) value of element i of the data vector for parameters Θ. We choose a known reference

model Θref and a blind shift ∆Θ in the cosmological parameters to yield

Θshift = Θref + ∆Θ. (5.7)

The blinding operation is a simple modification of each element di of the data vector, which

can either be done additively via

B(di) = di + f
(add)
i , (5.8)

f
(add)
i = d̂i (Θshift)− d̂i (Θref) , (5.9)

or multiplicatively via

B(di) = f
(mult)
i di, (5.10)

f
(mult)
i =

d̂i (Θshift)

d̂i (Θref)
. (5.11)

If the expected noise level on d does not vary much across the parameter shift ∆Θ, then

it is true by construction that the B will map data generated at Θobs into viable data for

Θbl = Θobs + ∆Θ if the truth (Θobs) is sufficiently close to the reference cosmology (Θref).

5.1.4 Considerations for evaluating performance

Showing that these kinds of blinding transformations work for Θobs 6= Θref , and for realistic

noise levels requires validation, however. Even for noiseless data, it need not be true that B

maps data for an arbitrary Θobs ∈ M into viable data for some Θbl. The imperfection in B

can be quantified using Equation 5.5:

∆χ2 ≡ min
Θ∈M

{− logL (B (d) |Θ)} − min
Θ∈M

{− logL (d|Θ)} . (5.12)

If indeed the blinding transformation can have ∆Θ larger than the prejudicial region MPre

which conserving validation results by ∆χ2 . 1, then it satisfies all of our blinding needs.
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We can examine this metric explicitly for the case of a Gaussian likelihood which has

χ2(d,Θ) = − logL(d|Θ) =
1

2

∑
ij

(
di − d̂i(Θ)

)
[Cov−1]ij

(
dj − d̂j(Θ)

)
− logL0, (5.13)

where Cov is the data covariance, which may depend on Θ, L0 ≡
[
(2π)N |Cov|

]−1/2
is the

likelihood’s normalization, and the indices i and j run over all N data vector elements. It will

be convenient for this discussion to decompose the data into signal and noise components,

d = s + n, where the signal s ≡ d̂ (Θobs) and the noise may have some dependence on

model parameters. Inserting these quantities into Eq. (5.12), and assuming that to good

approximation L0 is independent of Θ, we can show that

∆χ2 = ∆χ2
signal + ∆χ2

noise (5.14)

where

∆χ2
signal =

1

2

∑
ij

[
(s′i − d̂i)[Cov−1]ij(s

′
j − d̂j)

∣∣∣
Θbl

− (si − d̂i)[Cov−1]ij(sj − d̂j)
∣∣∣
Θunbl

]
(5.15)

∆χ2
noise =

1

2

∑
ij

[
(n′i[Cov−1]ijn

′
j − ni[Cov−1]ijnj

]
. (5.16)

Here we have defined

B(di) = s′i + n′i (5.17)

such that for additive blinding according to Eq. (5.8),

s′i = si + f
(add)
i and n′i = ni, (5.18)

and for multiplicative blinding according to Eq. (5.10),

s′i = f
(mult)
i si and n′i = f

(mult)
i ni. (5.19)

In the case of noiseless data, we have dj = sj = d̂j(Θobs), and we will have the best

fit parameters Θunbl = Θobs. Given this, we can see that χ2 = 0 when evaluated at the

maximum likelihood parameter values Θunbl. Even in the case of data with noise, where it is

possible that Θunbl 6= Θobs, our expectation value over many realizations is that contributions

to ∆χ2
signal from the unblinded data will be close to zero. Thus, ∆χ2

signal, or equivalently ∆χ2

in the noiseless case, will quantify the size of residuals of the best fit model to the blinded
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signal.

In the presence of noise, we must address a difference in the behavior of additive and

multiplicative blinding. We can see that additive blinding according to Eq. (5.8) will not

affect the noise contribution, so n′i = ni and ∆χ2
noise = 0. In contrast, multiplicative blinding

will scale the noise to ni → f
(mult)
i ni. If we do not otherwise modify the likelihood calculation,

this will degrade the quality of fit to the blinded data.

This motivates us to add an additional step to multiplicative blinding: in addition to

scaling the data vector according to Eq. (5.10), we scale the data covariance via

B(Covij) = f
(mult)
i Covijf

(mult)
j . (5.20)

For covariance entries dominated by noise such that Covij ≈ 〈ninj〉, this scaling will capture

the effect of blinding and ensure that ∆χ2
noise ≈ 0. If there are significant signal contributions

to Covij, the interpretation of this scaling is less clear and its correction for blinding’s impact

on the noise contributions will be more imperfect.

The advancing precision in cosmological experiments works in favor of both the additive

and multiplicative blinding schemes. The values of ∆Θ necessary to confound confirmation

bias, as well as the span Θobs −Θref of the viable model space, will shrink linearly with the

typical parameter uncertainty σΘ in our experiments. Additionally, as the statistical power

of surveys increase, the noise contributions n will become less significant.

To summarize, the blinding procedure is:

1. Choose a reference cosmology (and nuisance parameters) Θref in the middle of the

range of models considered feasible truths.

2. Select a (blind) shift ∆Θ from a distribution broader than the preconceptions causing

the confirmation bias. For example if there is a theoretical prejudice for w = −1, then

∆w should be capable of shifts 4–5× the experiment’s uncertainty in w.

3. For each summary statistic di being used for cosmological inference, calculate the

blinding factor fi from either Eq. (5.9) or Eq. (5.11).

4. Hide the real data di and give experimenters the blinded values (either di + f
(add)
i or

f
(mult)
i di) with which to conduct all validation tests. If performing multiplicative blind-

ing, also scale the covariance matrix provided to experimenters according to Eq. (5.20).

5. After passing validation tests, unblind by using the original data d for a final inference

of Θ.

109



0

1

2

3

4

5

6

7

8

N
or

m
al

iz
ed

co
un

ts

Lenses
redMaGiC

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Redshift

0

1

2

3

4

5

N
or

m
al

iz
ed

co
un

ts

Sources
METACALIBRATION

IM3SHAPE

Figure 5.3: Plot from Ref. [12] of the redshift distributions for lens and source galaxies in
the DES Y1 3 × 2pt analysis. The vertical colored bands show the nominal redshift range
of each bin, while the lines show the estimated redshift distribution. The black lines show
the unbinned total distribution. We adopt these same dn/dz functions for our Y3 blinding
tests.

5.2 The DES 3× 2pt analysis

Using the discussion above as a guide, we will test this blinding strategy explicitly for

simulated DES Y3 3 × 2pt data in Section 5.4. As background for those tests, this section

will give an overview of the pieces of DES analysis relevant to simulating 3×2pt data vectors

and performing parameter estimation. As the analysis choices for Y3 are not yet fixed, we

will approximate the Y3 data vector and covariance by using the same analysis choices and

survey as the ongoing Y1 analysis, but with the sky coverage increased from 1350 deg2 to

the full 5000 deg2.

The 3×2pt data vector is based on observations of two populations of galaxies. Positions

are measured for a set of so-called lens galaxies which have been selected to have small

photo-z errors and which have been carefully checked for residual systematics. In the Y1

analysis, this population consisted of 650,000 bright red sequence galaxies which are selected

as part of the redMaGiC catalog [203]. Their redshift distribution is shown in the upper

panel of Fig. 5.3. Cosmic shears are measured from a larger population of source galaxies.

For the Y1 analysis the source galaxies included 26 million objects selected from the Y1
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Gold catalog [201] and their shapes are measured using one of two algorithms known as

Metacalibration and Im3shape [204]. The lens galaxies are divided into five redshift bins,

and source galaxies are divided into four redshift bins. Their dn/dz distributions are shown

in in the bottom panel of Fig. 5.3.

The full 3× 2pt data vector consists of three types of two-point functions measured from

the lens and source catalogs. The galaxy-galaxy correlations are measured as autocorrelations

within each lens bin, producing a set of functions wi(θ) for i = 1–5. Shear-shear correlations

are measured for all auto and cross correlations of the source bins, producing functions

ξij+(θ) and ξij−(θ) for i = 1–4 and 1 ≤ j ≤ i. (Since these are correlations between the

same tracer, ξij± = ξji± , we require j ≤ i to avoid including redundant information.) The

galaxy-shear cross correlations are measured between all combinations of the five lens bins

and four source bins, producing γijt (θ) for i = 1–5 and j = 1–4. (Note that these are cross

correlations between different tracers, so γijt 6= γjit .) All of these two-point functions are

measured for twenty logarithmically spaced angular bins between 2.5 and 250 arcmin. We

adopt the same angular bins, and also use the same scale cuts as the DES Y1 analysis [67]

in order to remove scales which are impacted by modeling uncertainties associated with

nonlinear physics. These scale cuts can be seen as vertical gray bands in Figs. 5.6 and 5.7.

The resulting data vector used for parameter estimation has 457 data points.

The DES 3 × 2pt likelihood is modeled as a multivariate Gaussian. Its covariance has

significant off-diagonal contributions, since the same source and lens populations are used to

calculate multiple two-point function data vector entries. Computing the 3× 2pt covariance

is a rather involved process, and so we do not compute it ourselves for this analysis. Instead,

we adapt the covariance matrix that was previously analytically computed for the Y1 anal-

ysis using Cosmolike [205] via the method described in Ref. [67]. To approximate the Y3

covariance, we simply scale the Y1 covariance by a factor of 0.27 = 1350/5000 to account for

Y3’s increased survey area. This survey-area scaling correctly modifies the Gaussian parts

of the covariance, but it does not properly scale the non-Gaussian contributions [206]. Thus,

this is only a rough approximation for the Y3 covariance. It should be sufficient for our

purposes, however. Though in principle the 3×2pt covariance depends on the model param-

eters, it has been shown [207] that the covariance’s cosmology dependence can be neglected

without significantly affecting parameter constraints. Because of this, in the DES Y1 3×2pt

analysis and in this work, we treat the data covariance matrix as constant (modulo any

scaling that is applied as part of the blinding process) and do not vary it when performing

parameter searches.

In addition to cosmological parameters, the model required to make predictions for the 3×
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2pt data vector includes a set of nuisance parameters used to account for various systematic

uncertainties. Again, we adopt the same parameter choices as the DES Y1 3×2pt analysis, as

it is described in Ref. [67]. We use a constant galaxy bias bi for each lens redshift bin, where

i = 1–5 labels the bin. Additionally, in order to model the effect of uncertainties in photo-z

estimation, a parameter ∆zi is introduced for all five lens bins and all four source bins, which

produces an redshift offset for their dn/dz distributions. Another set of nuisance parameters

quantify shear calibrations, defined so the measured shear for a galaxy is γmeas = (1+m)γtrue.

Following the Y1 analysis, we assign one shear calibration nuisance parameter per source

galaxy bin, which modify the two-point functions via

ξij±(θ)→ (1 +mi)(1 +mj)ξ
ij
±(θ), and γijt (θ)→ (1 +mj)γ

ij
t (θ). (5.21)

The last set of nuisance parameters we include are AIA, αIA, and z
(IA)
0 , which are input for

a model of how intrinsic (as opposed to lensing-induced) alignments between galaxies affect

their observed two-point functions. They modify the shear convergence weight function

(Eq. (2.52)) according to a linear alignment model via

W i
κ(z)→ W i

κ(z)−
[
AIA

(
1 + z

1 + z0

)αIA C1ρm0

D(z)

]
dni

dz
, (5.22)

where C1 = 0.0134/ρcrit is a normalization constant calibrated based on previous observa-

tions [208].

The fiducial values for all of these nuisance parameters, as well as cosmological param-

eters, are shown in Table 5.2. In the fiducial DES Y1 3 × 2pt analysis, the number of

neutrinos N massive ν and N massless ν (chosen to sum to the standard model effective number

of neutrinos Neff), the optical depth of the CMB τ , and z
(IA)
0 were fixed, while the rest of the

parameters shown in the table were varied. Thus, the Y1 3× 2pt parameter estimation was

done for a total of 26 free parameters. The Y1 parameter estimation used Gaussian priors

on the various photo-z shifts ∆zi and shear calibrations mi, and flat priors on the rest of the

parameters.

For our validation studies, we will use a slightly modified version of the DES Y1 analysis

pipeline, run using software CosmoSIS2 [7], in order to compute model predictions for the

3 × 2pt data vector. (The modules, or calculation steps, which comprise that pipeline are

enumerated below in Section 5.2.1.) In order to simulate more realistic data, we generate a

noise realization with its entries drawn from the multivariate Gaussian distribution defined

2bitbucket.org/joezuntz/cosmosis/wiki/Home
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Parameter Fid. value Prior range Varied during
blinded

parameters

{
σ8 0.837 [0.1, 0.9] shift, obs, fit
w -1.0 [-2.0, -0.0] shift, obs., fit

Ωm 0.295 [0.1, 2.0] obs., fit
h 0.6882 [0.2,1.0] obs., fit

lens
galaxy bias

{ b1 1.45 [0.8, 2.5] obs., fit
b2 1.55 [0.8, 2.5] obs., fit
b3 1.65 [0.8, 2.5] obs., fit
b4 1.8 [0.8, 2.5] obs., fit
b5 2.0 [0.8, 2.5] obs., fit
Ωb 0.0468 - -
ns 0.9676 - -

Ωνh
2 6.166× 10−4 - -

N massive ν 3 - -
N massless ν 0.046 - -

τ 0.08 - -shear
calibrations { m1,m2,m3,m4 0.012 - -

intrinsic aligment
model

{ AIA 0.0 - -
αIA 0.0 - -

z
(IA)
0 0.62 - -

photo-z bias for
source galaxies

{ ∆zsource
1 -0.002 - -

∆zsource
2 -0.015 - -

∆zsource
3 0.007 - -

∆zsource
4 0.018 - -

photo-z bias
for lens galaxies

{ ∆zlens
1 0.002 - -

∆zlens
2 0.001 - -

∆zlens
3 0.003 - -

∆zlens
4 0.0 - -

∆zlens
5 0.0 - -

Table 5.1: Fiducial parameter values, their prior ranges if they are varied in this work, and a
note on when they are varied for our blinding study (which will be described in Section 5.3).
In the last column, “shift” means we vary ∆Θ in that direction when creating blinding
factors, “obs.” means we vary the parameter when we draw Θobs for “true” cosmologies, and
“fit” means we vary that parameter when performing parameter estimation fits. If no range
is given for a parameter, it is held fixed. All fiducial values and priors for varied parameters
are chosen to match the settings for the DES Y1 3× 2pt analysis.
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by the data covariance matrix, and add that to the model data vector. The dotted and solid

black lines in Figs. 5.6 and 5.7 show an example of one such simulated data vector.

5.2.1 DES 3× 2pt CosmoSIS pipeine

The software CosmoSIS provides a modular framework for cosmological parameter estima-

tion. Calculations within it are built around the idea of a pipeline, the set of all calculations

needed to go from a set of model parameters Θ to a prediction for the two-point function

data vector d̂, and if desired, an evaluation of the likelihood function for a measured real-

ization of the data d. If simply run once, the pipeline can be used simply to compute d̂, but

CosmoSIS’s main functionality is to run the pipeline many times through a sampler, some

algorithm which performs parameter estimation by computing the posterior at many points

in parameter space.

The calculations that make up a CosmoSIS pipeline are divided into discrete steps, where

each is performed by a separate software module. We will compute the data vectors using the

nearly same settings as in Refs. [12, 67]. Here we present a brief description of the modules

we use to compute the 3× 2pt data vector:

1. consistency – Checks that input cosmological parameters are consistently defined,

and that enough parameters are defined to perform calculations.

2. camb: Runs CAMB [60,61] to compute linear matter power spectrum P (k, z) for a grid

of redshifts.

3. sigma8 rescale: Scales amplitude of P (k, z) to be consistent with input σ8 value.

The inclusion of this module is the only way in which our pipeline differs from the Y1

3× 2pt analysis, which samples over As rather than σ8.

4. halofit: Use halofit [62] to correct P (k, z) for the effects of nonlinear structure growth.

5. growth: Computes the linear growth function D(z) and growth rate f(z) for a grid of

z values.

6. extrapolate: Extrapolates P (k, z) linearly in log-space up to a specified kmax to allow

integration bounds to be extended.

7. fits nz: Reads in dn/dz distributions for all redshift bins from a specified data file.

8. lens photoz bias: Uses the nuisance parameters ∆zi to shift the redshift bins i for

lens galaxy populations to model the effects of photo-z redshift estimation errors.
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9. source photoz bias: The same as above, but for the source galaxy bins.

10. unbiased galaxies: Creates arrays for the galaxy power spectrum by copying the

matter power spectrum.

11. bias neutrinos: Computes a small, scale dependent correction to galaxy bias due to

the effect of massive neutrinos.

12. multiply pk: Incorporates the neutrino bias corrections into the galaxy power spec-

trum.

13. IA: Uses a linear alignment model to creates arrays for the effective power spectrum

corrections that will be used to compute the modifications to Cκκ(`) and Cgκ(`) due

to intrinsic alignments.

14. ia z field: Scale the intrinsic alignment power spectrum contributions according to

a power law in (1 + z) with slope αIA.

15. pk to cl:Projects three dimensional power spectrum P (k, z) to various angular power

spectra Cxx(`) using the Limber approximation.

16. bin bias: Applies a constant bias bi for i =1–5 for each of the lens galaxy bins.

17. add intrinsic: Adds corrections from intrinsic alignments to Cκκ(`) and Cgκ(`).

18. shear m bias: Models shear measurement bias using the shear calibration nuisance

parameters mi for i = 1–4 for each of the source redshift bins.

19. 2pt gal: Computes w(θ) from Cgg(`) using the function tpstat via hankel: from the

nicaea software3 [209].

20. 2pt gal shear: Computes γt(θ) from Cgκ(`).

21. 2pt shear: Computes ξ± from Cκκ(`).

22. 2pt like: Given computed theory data vector, use measured data vector, the data

covariance, and priors to evaluate the posterior. (This is only done if the pipeline is

being used for parameter estimation.)

This pipeline takes approximately 30 seconds to run. The computing time is dominated

by the call to CAMB.

3www.cosmostat.org/software/nicaea
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Figure 5.4: Probability distribution for χ2 values expected for realizations of our data vector,
which have 448 degrees of freedom (457 data points − 9 varied parameters). The vertical
black line and shaded regions show the mean, and 1, 2, and 3σ regions for the χ2 distribution,
computed for the limit where the χ2 distribution with many degrees of freedom k � 1,
approaches a Gaussian with mean µ = k and a variance σ2 = 2k.

5.3 Validation of two-point function blinding for DES:

Methods

Our primary goal here is to determine whether we trust this method, for some choice of

settings, enough to use it to blind the data vectors for the DES Y3 3× 2pt analysis. We will

use ∆χ2 as the main indicator of that. One of the key validation tests for the 3×2pt pipeline

will be to check the value of χ2 before unblinding. Given the probability distribution of χ2

values expected for the experiment — roughly, the number of data points minus the number

of free parameters (ignoring the effect of priors on the nuisance parameters) — we can assess

the probability p to exceed the measured χ2 value, assuming our model accurately accounts

for the physics and systematics of our experiment. If p is larger than some predetermined

threshold, say 0.01, the pipeline passes the validation test. If not, more testing of the internal

consistency of the data and analysis will be required before unblinding. Thus, our metric

for assessing the performance of our blinding method will the size of the shifts in p that it

generates.

Fig. 5.4 shows the probability distribution for χ2 values expected for the studies presented

in this thesis: we have 457 data vector entries and fit with 9 varied parameters, so there
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are 457− 9 = 448 degrees of freedom. Since a χ2 distribution with k degrees of freedom for

k � 1 can be approximated as a Gaussian with mean µ = k and variance σ2 = 2k, we can

easily compute that we expect our χ2 distribution to be centered on χ2 = 448 and to have a

standard deviation of σ = 30. Thus, we will use the question of whether two-point function

blinding, for some choice of settings, can sure shifts in χ2 that are smaller than 1σ, so with

∆χ2 < 30.

In order to test this, we generate an ensemble of 100 simulated DES-Y3 like data vectors

and blind them according to the method presented in Section 5.1.3. By performing parameter

estimation on the simulated data vectors, we can examine the relationship between the best

fit parameters to the blinded data Θbl; the best fit parameter for the original, unblinded data

Θunbl; the shift ∆Θ used to generate the blinding factors; the distance in parameter space

between the true parameters Θobs used to generate the observed data; and the goodness-of-fit

metric ∆χ2 given in Eq. (5.12).

In doing these tests, we will compare the performance of additive and multiplicative

blinding, and will do so for both noiseless data and for the case where a noise realization

has been added to the simulated data vector. This section will describe the tools and

considerations used to perform these studies, and then Section 5.4 will present the results.

5.3.1 Cosmology selection

Let us recall from Section 5.1.3 that our blinding procedure works by modifying the data

vector d using a blinding factor f which is built out of the theoretical predictions for the

data vector d̂(Θ) evaluated at a reference set of parameters Θref and a shifted set Θshift =

Θref + ∆Θ. For additive blinding the blinding factor consists of the difference f (add) =

d̂(Θshift)− d̂(Θref), while for multiplicative blinding it is the ratio f (mult) = d̂(Θshift)/d̂(Θref).

If we would like test the effect of this transformation for simulated data, for each realization

there are three sets of cosmological parameters we must select. We need to choose a set of

parameters, which we will call Θobs, which are used to generate the simulated, “observed”

unblinded data. We additionally need to select a reference cosmology Θref , and by selecting

the blinding shift ∆Θ, the shifted parameter set Θshift.

We would like to study the performance of our two-point function blinding method for a

variety of choices for the shift ∆Θ, as well as for a range of offsets between the Θref and the

“true” cosmologies. Given this, our approach will be to fix Θref at fiducial parameter values,

and to draw Θshift and Θobs for each realization from distributions in parameter space.

We will focus on blinding the two cosmological parameters which are most at risk for
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experimenters bias: the amplitude of matter clustering σ8, which will be checked against

Planck constraints, and the dark energy equation of state parameter w, which has the special

value of w = −1 in ΛCDM. Therefore, the shift ∆Θ will be zero for all parameters other

than σ8 and w. We will refer to this set of two parameters as the blinded parameters.

For Θobs, and for our parameter estimation fits, we will limit the parameters that vary to

σ8, w, Ωm, h, and the five galaxy bias parameters bi for i = 1–5. This choice is motivated by

both by the fact that we will be trying to find the best fit for a large number of simulated

data vectors, and must reduce the dimensionality of our parameter space in order to make

fits computationally feasible with the Maxlike sampler. (We will perform 600 parameter fits

in total: for each of the 100 realizations, we have both noisy and noiseless versions of data

vectors, and for each simulated data vector we will have an unblinded, additively blinded,

and multiplicatively blinded version.)

The probability distributions used to select Θshift and Θobs are defined in terms of the

expected constraining power of the DES Y3 analysis, which we characterize through a Fisher

analysis. Using the CosmoSIS Fisher4 sampler, we compute the Fisher information matrix

with entries

Fij =
∑
ab

∂da
∂Θi

[Cov−1]ab
∂db

∂Θj

, (5.23)

where the data vector and covariance for the Y3 3 × 2pt analysis are computed according

to the description in Section 5.2. The inverse of the Fisher matrix F−1 ≡ CΘ is a Gaussian

approximation of the parameter covariance matrix. When we compute the Fisher matrix for

Y3, we vary σ8, w, Ωm, h, b1, b2, b3, b4, and b5 and fix all other parameters. This choice to fix

so many parameters means this procedure will somewhat underestimate the Y3 statistical

errors.

We draw realizations of Θobs from a multivariate distribution in parameter space, centered

on Θref and with the Fisher covariance CΘ. This distribution is truncated by the prior range:

if any draw returns Θobs outside the prior ranges used in the Y1 3× 2pt analysis, we discard

that parameter set and draw another. The fiducial parameter values and their priors are

shown in Table 5.2.

We also select Θshift from a truncated multivariate Gaussian distribution centered on

Θref . For the distribution’s covariance, we multiply the Fisher covariance by a scaling factor

α > 1 to get C ′Θ = αCΘ, and then generate shifts using just the rows and columns of

C ′Θ corresponding to our blinded parameters, σ8 and w. This effectively marginalizes over

all other parameters. We truncate the Θshift distribution according to a more conservative

4bitbucket.org/joezuntz/cosmosis/wiki/samplers/fisher
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prior region than Θobs, chosen to try and ensure that the blinded best fit parameters Θbl will

remain inside the priors region for our parameter estimation searches. We choose the bounds

for allowed Θshift somewhat arbitrarily to require that w ∈ [−1.5, 0.5] and σ8 ∈ [0.714, 0.954]

(this is the fiducial σ8± three times the estimated Y3 marginalized error).

In order to allow the blinding procedure to produce shifts in parameter space that are

large compared to expected constraints, we select α by requiring that Θref will be ≥ Nσ

away from Θshift, as defined by the Gaussian distribution with covariance CΘ, about half of

the time. Constant χ2 = χ2
0 contours for a Gaussian distribution with covariance C ′Θ will be

equivalent to χ2 = αχ2
0 contours for a distribution with covariance CΘ. Thus, using the χ2

probability distribution for two free parameters (w and σ8), we set

α =
χ2

2[4σ]

χ2
2[50%]

=
19.33

1.39
= 13.91. (5.24)

Here we use the notation χ2
2[4σ] to represent the value for which, for two-degrees of freedom

corresponding to a two-dimensional parameter plane, the χ2 probability to exceed is equiv-

alent to that of a point 4σ away from the mean of a Gaussian distribution. Similarly, we

define χ2
2[50%] to be the χ2 value which for two free parameters has the probability to exceed

of 0.5. This covariance scaling is equivalent to scaling the axes of confidence ellipses by a

factor of
√
α = 3.72. This scaling combined with the truncation described above produces

what is effectively a flat distribution within Θshift’s allowed range in the w − σ8 plane.

For each of 100 realizations, we draw parameter sets Θobs and Θshift according to these

probability distributions. The resulting distribution of points in parameter space is shown

for a selection of the varied parameters in Fig. 5.5. In that Figure, dashed green lines show

the location of Θref , red points show the location of our Θshift draws, and blue points show

the Θobs draws. The gray ellipses show the 1σ marginalized Y3 3×2pt constraints according

to our Fisher analysis, and the dotted gray lines show the bounds used to truncate our Θshift

distribution.

5.3.2 Data vector generation

For each realization, we use the pipeline described in Section 5.2 to compute data vector

predictions d̂(Θobs), d̂(Θref), and d̂(Θshift). We combine d̂(Θref) and d̂(Θshift) to get blinding

factors f (add) and f (mult) according to Eqs. (5.9) and (5.11). To generate a noisy “observed”

data vector d, we use the Y3 3× 2pt data covariance to generate a realization of Gaussian

noise and add it to d̂(Θobs). The prediction d̂(Θobs) becomes the noiseless “observed” data
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vector.

As an example, we show data vectors for our first simulated realization in Figs. 5.6 and 5.7.

In those plots, the dotted black lines show d̂(Θobs), and the solid black lines show the noisy

data vector d. The blinded versions of the noisy data vector are shown with colored lines,

with solid green showing the result of additive blinding and dashed blue showing the result

of multiplicative blinding. The blinding shift ∆Θ used in this realization is δσ8 = +0.074

and δw = +0.43. Figs. 5.8 and 5.9 show the difference between the blinded and unblinded

data vectors in order to more clearly display the effects of blinding factors in more detail.

For additive blinding, the difference will exactly be the blinding factor f (add). We can see

that multiplicative blinding results in similar changes to the data vector, except for where

the data vector is close to zero.

5.3.3 Parameter estimation with the Maxlike sampler

We would like to perform parameter estimation on our simulated data vectors in order to

assess the χ2 goodness of fit at the location in parameter space with the maximum posterior.

Because we care only about the maximum likelihood point (with flat priors, this is equivalent

to the maximum posterior point) and not about obtaining accurate constraint contours, and

because we need to be able to perform this search for a large number (600) of data vectors, we

will use a numerical optimization routine, rather than a Markov chain Monte Carlo (MCMC)

or similar chain-based method. Specifically, we use CosmoSIS’ MaxLike sampler5, which is a

wrapper for the scipy.optimize.minimize function6. This sampler uses the Nelder-Mead

Simplex algorithm [210] to find the point in parameter space which maximizes the likelihood.

The parameter bounds that we use for this search are listed in Table 5.2.

We should treat the outputs of the Maxlike sampler with caution, as it is known to fail in

high-dimensional spaces, and to be sensitive to the starting point chosen to begin its search

in parameter space. This issue is the main reason why we perform fits in a 9-dimensional

subset of the full 26-dimensional DES parameter space. We will try to help the sampler by

using the fact that we know the “true” or expected parameter values to provide the sampler

with good guesses as the starting points for our searches. When fitting unblinded data, we

start the sampler at Θobs, the parameter set used to generate the data vector. When fitting

data which has been blinded using the parameter shift ∆Θ = Θshift − Θref , we start the

sampler at Θobs + ∆Θ. Using these settings, a typical run of the Maxlike sampler on noisy

data takes about half an hour on a single core.

5bitbucket.org/joezuntz/cosmosis/wiki/samplers/maxlike
6docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.optimize.minimize.html
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Figure 5.6: Example of effect of blinding on a subset of the simulated DES 3 × 2pt data
vector for realization 1, which had a blinding shift of δσ8 = +0.074 and δw = +0.43. The
rest of the data vector is shown in Fig. 5.7. This plot shows the impact of additive (green)
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Figure 5.9: Differences between the blinded and unblinded data vector components shown
in Fig. 5.7, for realization 1 which had a blinding shift of δσ8 = +0.074 and δw = +0.43.
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5.3.4 Parameter estimation with the Multinest sampler

Though it is not feasible to do for all 600 data vector fits, for a few selected realizations we will

also perform parameter estimation using the Multinest sampler7 [211–213]. Multinest is an

MCMC-like nested sampling routine which uses a set of “live points” that step strategically

through parameter space to produce a chain of posterior evaluations. That chain can be used

to estimate the shape of constant-posterior surfaces and evaluate Bayesian evidences. Its

accuracy can be specified by two input parameters: the tolerance on the computed Bayesian

evidence, which is used as a stopping criterion for the chain, and the efficiency, the ratio

between the number of points accepted and used for posterior estimation to those sampled.

We use the Multinest implementation in CosmoSIS8, which is the primary sampler used to

obtain parameter constraints for the DES Y1 cosmology analyses.

Since we are mainly concerned with finding χ2 at the maximum likelihood set of param-

eters, we run Multinest with low-resolution settings, using 250 live points, an efficiency of

0.8, and a tolerance of 0.1. These settings mean that chains will end after about 140,000

posterior evaluations, the mean and parameter covariances from these runs will be accurate

to a few percent [214], and constraint contours plotted based on the chains will have rough

edges. These runs, using the same varied parameters and priors as our Maxlike runs take

about five hours when run in parallel on 144 cores.

5.4 Validatation of two-point function blinding for DES:

Results

Our discussion of the results for blinding scheme tests will have three parts. First, in Sec-

tion 5.4.1 we will examine the distribution of χ2 and ∆χ2 values for the ensemble of fits we

have done using the Maxlike sampler. The rest of the studies will be in service of developing

a deeper understanding of those distributions. In Section 5.4.2 we will study how ∆χ2 de-

pends on the shift ∆Θ used to generate blinding factors, and in Section 5.4.3 we will study

how ∆Θ correlates with the resulting shifts in best fit parameters. Finally, in Section 5.4.4

we will compare the Maxlike parameter estimation results to those from Multinest for a few

selected realizations in order to assess whether some high ∆χ2 values may be due to the

failure of the Maxlike sampler.

7ccpforge.cse.rl.ac.uk/gf/project/multinest/
8bitbucket.org/joezuntz/cosmosis/wiki/samplers/multinest
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5.4.1 Distribution of χ2 for fits

The upper panel of Fig. 5.10 shows histograms of the χ2 values measured from our ensemble

of 100 noisy unblinded data vectors as a black histogram. Behind it, the χ2 histograms from

fits to the blinded version of those data vectors, with the additive blinding case shown in

green and multiplicative blinding (which as a fiducial choice include the covariance scaling

of Eq. (5.20)) shown in blue. The lower panel shows histograms in corresponding colors for

∆χ2 measured for each realizations.

The χ2 results look initially promising. The additive and multiplicative blinding his-

tograms are fairly similar to that for unblinded data, if perhaps slightly more skewed towards

high χ2 values. The additive and multiplicative blinding histograms are also fairly similar to

one another, though we do note that one realization has an anomalously high χ2 value for the

multiplicative fit. Studying the histograms in bottom panel of Fig. 5.10, we can compare the

∆χ2 distributions to our desired cap of ∆χ2 = 30, which identifies shifts of 1σ in the χ2 prob-

ability distribution for our data vector and is marked with a gray dashed line. We find that

neither additive nor multiplicative blinding quite satisfies the requirement that ∆χ2 < 30

for all realizations. However, the vast majority of realizations (99 for additive blinding, and

95 for multiplicative blinding) do satisfy that requirement. All additive blinding realizations

represent χ2 shifts of less than 2σ (∆χ2 < 60), as do all but two multiplicative blinding

realizations.

Fig. 5.11 shows the same information for noiseless data vectors. Recall from our discussion

in Section 5.1.4 that the ∆χ2 for noiseless data quantifies the residuals between the best fit

model and the signal part of the blinded data vector. It is therefore these ∆χ2 distributions

for noiseless data that quantify how well two-point function which are scaled according to

our blinding method mimic valid data vectors within our cosmological mode. Again here

we see that most but not all realizations have ∆χ2 < 30: now 98 out of 100 realizations for

additive blinding and 95 realizations for multiplicative blinding. We note that in general

the ∆χ2 histograms for additive blinding and the fiducial multiplicative blinding procedure

look similar to the case with noisy data vectors. Because there is no noise to be scaled, for

these fits the multiplicative blinding returns fairly similar results whether or not the data

covariance is scaled, but with less severe outliers.

We note that the fact that the black histogram includes non-zero values is a reminder that

we cannot entirely trust the results from the Maxlike sampler, since the noiseless unblinded

data vectors with no noise exactly match theory predictions and so should all have χ2 = 0.

However, distributions of χ2 obtained with Maxlike can still be informative even if the

sampler is failing to find the true maximum likelihood (minimum χ2) point in parameter
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Figure 5.10: Upper panel: Histograms of χ2 values obtained from Maxlike fits to simulated
noisy data vectors. The black histogram shows the distribution for the unblinded data,
while the blue and green histograms are for additive and multiplicative blinding, respectively.
Lower panel: histogram of ∆χ2 values, using the same colors as the upper panel. The vertical
dashed gray line at ∆χ2 = 30 marks the change that will move the realization by 1σ in the
probability distribution for χ2 expected for the 3× 2pt data vector.
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Figure 5.11: Upper panel: Histograms of χ2 values obtained from Maxlike fits to simulated
noisy data vectors. The black histogram shows the distribution for the unblinded data,
while the blue and green histograms are for additive and multiplicative blinding, respectively.
Lower panel: histogram of ∆χ2 values, using the same colors as the upper panel. The vertical
dashed gray line at ∆χ2 = 30 marks the change that will move the realization by 1σ in the
probability distribution for χ2 expected for the 3× 2pt data vector. The wide axis range is
chosen to show the outlier for multiplicative blinding at ∆χ2 = 369. Fig. 5.12 reproduces
this information with a decreased axis range.
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Figure 5.12: Same data as the bottom panel of Fig. 5.11, but not displaying the high ∆χ2

outlier for multaplicative blinding, in order to show more detail along the horizontal axis.

space, since χ2 can only ever be over-estimated relative to that of the global best-fit point.

Fig. 5.11 shows version of the same noiseless-data ∆χ2 histogram for additive blinding

alone, allowing us to reduce the range of the horizontal axis to examine its distribution in

more detail. We see that there are only two realizations with ∆χ2 > 30, one only slightly

above 30 and the other at about ∆χ2 ≈ 60. The rest of the realizations have ∆χ2 . 15.

This is promising: if the couple of realizations with high ∆χ2 can be explained, it appears

additive blinding results in data vectors that look to good approximation like a valid data

vector for some point in wCDM parameter space.

To begin investigating what is driving the observed high ∆χ2 values, in Table 5.2 we note

the realization numbers for each type of fit (with noise or noiseless, additive blinding or mul-

tiplicative blinding) which have ∆χ2 > 30. We see the same realization numbers appearing

for several data vector types. For example, the same four realizations have the highest ∆χ2

values for multiplicative blinding, with or without noise. Additionally, realization 54 has

the highest ∆χ2 for both noise-added and noiseless additive blinding, as well as the third

highest ∆χ2 for both multiplicative blinding cases. We also note that the actual ∆χ2 value

for a given realization and blinding method is not significantly affected by whether or not

noise is included in the simulation.
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Data vector type # above Realization numbers with ∆χ2 > 30 [∆χ2 ]

Noise
add bl. 1 54 [55.3]
mult bl. 5 69 [374.0], 19 [60.7], 54 [46.5], 80 [44.2], 13 [32.6]

No Noise
add bl. 2 54 [59.3], 77 [34.8]
mult bl. 5 69 [368.5], 19 [63.8], 54 [42.9], 80 [41.7], 77 [34.3]

Table 5.2: List of realizations which exceed ∆χ2 > 30 for each set of Maxlike fits to blinded
data. The actual ∆χ2 values for each realization is shown in square brackets.

5.4.2 Relationship between ∆χ2 and ∆Θ

The goal of these validation tests is to ascertain whether it will be appropriate to apply this

blinding technique to the real DES Y3 data vector. There will be only one realization of

the true data vector, and ideally we would only apply one blinding factor to it (to avoid

stochastically sampling the allowed distribution of blinding shifts). If blinding causes the

χ2 of a fit to the real data to become large, it will impact the results of systematics tests

of the analysis pipeline. This means that it is not sufficient to simply note that most of

the simulated realizations we study in the blinding validation tests presented here have ∆χ2

smaller than our threshold of 30. We also need to understand what is driving the high ∆χ2

values of the outliers in our set of 100 simulated realizations, so that we can prevent the real

data from experiencing a large blinding-induced χ2 shift. Thus, this and the two following

subsections will work towards understand what drives the high ∆χ2 values for fits to certain

realizations.

Here we test the hypothesis that these poor fits might be coming from certain input

blinding parameter shifts ∆Θ. We do so in Fig. 5.13 by plotting ∆χ2 against the input

shifts in ∆σ8 and ∆w. In those plots, we use green points to denote additive blinding and

blue points to represent multiplicative blinding.For reference, we mark ∆χ2 = 30 with a

horizontal dashed gray line.

Studying Fig. 5.13, we see that there is no coherent pattern for how ∆χ2 relates to

blinding parameter shifts. Though we note that there seem to be more high values at large

blinding shifts in w (in either direction), this is not consistently the case: there are some

∆χ2 > 30 for smaller ∆w, and there are also plenty of realizations with high ∆w which have

small ∆χ2. We also checked, but do not show here, similar plots of ∆χ2 vs. Θobs + ∆Θ,

positing that high ∆χ2 values may be associated with certain combinations of the draw for

Θobs and for Θshift. Again, no identifiable pattern emerged. Therefore, the the high ∆χ2

values of the outlier points seen in the histograms of Section 5.4.1 are not caused (solely, at

least) by blinding shifts to or from certain parts of parameter space.
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Figure 5.13: Scatter plots of ∆χ2 versus the parameter shifts ∆Θ used to produce blinding
factors. The top row shows results for noisy data, while the bottom row shows the noiseless
case.
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5.4.3 Relationship between input and output parameter shifts

Next we look at how the shift in best-fit parameters due to blinding is related to the parameter

shifts used to produce the blinding factors, as well as to the ∆χ2 value of each realization.

Fig. 5.14 shows this relationship through a series of scatter plots which have Θbl − Θunbl

on their vertical axes and the blinding shifts ∆Θ along the horizontal axes. In showing

parameters that have been fit, we show the best-fit shifts for the two parameters we are

trying to blind, w and σ8, as well as Ωm in order to examine how unblinded parameters

are affected by the blinding procedure. In the plots, the colors of the points indicate their

∆χ2 values and the gray numbers show the correlation coefficient between the two quantities

shown in each subplot. Since the resulting scatter looks similar for noisy and noiseless data,

we show results for the noiseless case only. These plots allow us to draw two main conclusions.

First, we note that the input blinding parameter shift is a good predictor of the resulting

output shift in best fit parameters. We see that, as expected, the resulting shift in the

best fit value for w and σ8 is highly correlated with the shifts used to produce blinding

factors. The w shifts have a correlation coefficient of R = 0.97 for additive blinding and 0.96

for multiplicative blinding. The σ8 shifts have correlation coefficients of 0.98 for additive

blinding and 0.97 for multiplicative blinding. Thus, the correlations are higher for additive

blinding, but only slightly. There is not significant correlation between blinding shifts and

the best fit values for other parameters. This is a desired outcome, as it indicates that a

blinding transformation with parameter shift ∆Θ corresponds reasonably well to how the

data vector changes if the true cosmological parameters used are shifted by the same vector

in parameter space.

We present these correlation results with a note of caution, however. Recall that we used

Θobs + ∆Θ as our starting guess for the Maxlike sampler. It is possible that if the Maxlike

sampler is failing for some fits, that choice could bias the correlations in w and σ8 in Fig. 5.14

to be closer to R = 1 than is actually the case.

The second main result is that here is no obvious pattern for where the high ∆χ2 values

occur in these two-dimensional projections of our parameter space, other than the tendency

noted in the previous section for high χ2 be at high |∆w|. We observe similar correlations,

and a similar lack of pattern for the location of high ∆χ2 values when we study plots of Θbl

versus Θobs + ∆Θ (which are not shown).
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Figure 5.14: Relationships between shift in best fit cosmological parameters due to additive
(left plot) and multiplicative (right plot) blinding for noiseless data and the parameter shifts
used to generate blinding factors. The colors shows the shift in χ2 between blinded and
unblinded data, with the high and low-ends of the color scale truncated to make the plots
easier to read. Solid gray lines show where ∆Θout = ∆Θ, and the grey numbers show the
correlation coefficients R for the data points in each subplot.

Rlzn. param. set w σ8 Ωm h b1 b2 b3 b4 b5

Θref -1.00 0.834 0.295 0.688 1.45 1.55 1.65 1.80 2.00

1
Θobs -1.34 0.857 0.267 0.766 1.44 1.66 1.76 1.95 2.20
∆Θ +0.43 +0.074

Θobs + ∆Θ -0.911 0.931

54
Θobs -0.99 0.912 0.263 0.519 1.24 1.41 1.50 1.63 1.74
∆Θ +0.49 -0.009

Θobs + ∆Θ -0.49 0.903

69
Θobs -1.09 0.832 0.295 0.362 1.51 1.56 1.68 1.80 2.06
∆Θ -0.36 +0.033

Θobs + ∆Θ -1.44 0.865

Table 5.3: Cosmological parameters used to generate data vectors and blinding factors or
selected realizations. Recall that Θobs is the set of “true” cosmological parameters used
to produce the unblinded data vector, and ∆Θ is the parameter shift associated with the
blinding transformation. Roughly speaking, we expect the best-fit parameters for unblinded
data to be Θunbl ≈ Θobs and for blinded data to be Θbl ≈ Θobs + ∆Θ.

134



5.4.4 Multinest results for selected realizations

Now that we have verified that there is no causal relation between which realizations have

high ∆χ2 and where their parameter sets Θobs or Θshift occur in parameter space, we now

explore the possibility that high ∆χ2 values may be due to failures of our maximum likelihood

finder, the Maxlike sampler. If this is the case, it means that the ∆χ2 of the observed outliers

may be over-estimated, and therefore that the the performance of our blinding method is

actually better than indicated by the histograms in Section 5.4.1.

We will test the performance of the Maxlike sampler by using the Multinest sampler to

perform more robust (and more computationally expensive) fits to data vectors for a few

selected realizations. Specifically, we will run Multinest on the six relevant data vectors (noisy

and noiseless, for unblinded, additively blinded, and multiplicatively blinded) for realizations

1, 54, and 69. We select realizations 54 and 69 because they have the highest ∆χ2 values

for additive and multiplicative blinding, respectively, as we previously noted in Table 5.2.

Realization 1 is included as a “control” comparison, as an example of a parameter draw

which results in small ∆χ2. (Its associated data vectors and blinding factors are visualized

in Figs. 5.6, 5.7, 5.8, and 5.9.) For reference, we show the input cosmological parameter

associated with these three realizations in Table 5.3.

In Table 5.4 we collect information that will allow us to compare χ2 information for these

three realizations. For all of the data vectors fit with Multinest, we show the measured χ2

value for the unblinded, additively blinded, and multiplicatively blinded data vectors, as well

as the ∆χ2 values where relevant, comparing the values obtained from Maxlike and Multinest.

As would be expected for a more robust sampler, the χ2 values returned by Multinest are

nearly always always lower than those from Maxlike. Similarly, using Multinest instead

of Maxlike causes nearly all of the ∆χ2 values to decrease, sometimes fairly dramatically.

Based on these results, it is reasonable to assume that most, if not all of our realizations

with ∆χ2 > 30 are suffering from failures of the Maxlike sampler.

This means that if we were able to locate the true maximum posterior point for all real-

izations, the results for the histograms we showed in Section 5.4.1 would improve. Notably,

when we use Multinest on realization 54, which had the highest Maxlike ∆χ2 value for ad-

ditive blinding, its ∆χ2 drops to below our threshold of 30 for both noisy and noiseless data

vectors, and for both additive and multiplicative blinding. This suggests that all additively

blinded data vectors are likely below that threshold. For the multiplicatively blinded data

vectors, this is not necessarily the case. Note that the multiplicatively blinded data vector

for realization 69 was the data vector that with Maxlike returned the anomalously high value

of ∆χ2 = 368, which appears as an outlier in Figs. 5.10 and 5.11. With Multinest that value
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unblinded add. bl. mult. bl.
Rlzn. Sampler χ2 χ2 ∆χ2 χ2 ∆χ2

Noise

1
maxlike 455.5 452.6 -2.8 451.5 -3.9

multinest 453.4 450.9 -2.5 451.9 -1.5

54
maxlike 487.6 542.9 55.3 534.1 46.5

multinest 479.7 499.5 19.7 504.2 24.4

69
maxlike 518.2 541.1 23.0 892.2 374.0

multinest 517.8 527.0 9.3 608.3 90.5

No Noise

1
maxlike 1.7 5.1 3.4 2.1 0.4

multinest 1.3 1.9 0.6 1.9 0.5

54
maxlike 4.3 63.6 59.3 47.2 42.9

multinest 1.5 11.8 10.3 26.3 24.8

69
maxlike 0.8 10.9 10.1 369.3 368.5

multinest 0.82 9.0 8.1 80.9 80.0

Table 5.4: Comparison between Maxlike and Multinest fits showing χ2 for simulated data
vector realizations with the worst ∆χ2 for additive blinding. The differences in the ∆χ2 are
relative to the unblinded fit in the same row.

lowers significantly, but remains high at ∆χ2 = 80. We will see below that Multinest’s con-

straint contours for this data vector are hitting the prior bounds for w, something about the

application of this particular multiplicative blinding shift too this particular data vectors is

causing problems. Given this, we conclude that for the DES Y3 analysis, additive blinding is

less likely to cause a spurious large χ2 value, and is therefore a better choice for application

of our blinding technique to real data.

Having run Multinest on these data vectors affords us with the possibility of seeing

how blinding affects the constraint contours for a given data vector. Fig. 5.15 shows these

constraints in a subset of our parameter space. The red contours show constraints for

the noiseless, unblinded data vector, and the dashed black lines show the location of the

parameters Θobs used to generate it. The green and blue contours show constraints after

that noiseless data vector has been blinded additively and multiplicatively, respectively.

Referencing the input parameter shifts listed in Table 5.3, we see that the contours are

centered at slightly lower σ8 and higher w compared to what we would expect if Θbl =

Θobs + ∆Θ (which would give w = −0.91 and σ8 = 0.931). When we extract the maximum

posterior points from the Multinest chains, we get w = −0.70 and σ8 = 0.899 for the

additively blinded data vector and w = −0.78 and σ8 = 0.926 for the multiplicatively blinded

data vector. This is consistent with the fact that the correlations we observed in Fig. 5.14

have some scatter. These offsets are not a problem for the blinding methods, since we do
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not care what output cosmology the blinded data vector is centered at (as long as it is not

too close to the prior boundaries), just that it looks like it could be a valid data realization

for some set of parameters. In Appendix D we show similar contours for realizations 54 and

69, as well as plots of their data vectors.

5.5 Conclusions

In this chapter we have introduced and tested a new method for blinding a DES multi-probe

cosmology analysis. Our method works by modifying the two-point correlation functions

which make up the DES data vector used for parameter estimation. We began by discussing

blinding in a general way, noting that it must fulfill two main requirements in order to be

effective. First, blinding must destroy the experimenters’ ability to know whether or not

the output of their analysis is consistent with their expectations. Second, blinding must

preserve the experimenters’ ability to perform validation checks on their analysis pipeline.

We quantify a general assessment of how well this second requirement is fulfilled using the

statistic ∆χ2, the difference between the χ2 of the blinded data evaluated at its best-fit point

in parameter space and that of the unblinded data at its best-fit point. We then describe the

specifics of our proposed blinding scheme, where theoretical predictions for the data vector

evaluated at two sets of parameters Θref and Θshift = Θref + ∆Θ are used to modify the

observed data. For additive blinding, we compute a blinding factor by taking the difference

between the shifted and reference cosmology predictions, and add that to the observed data

vector. For multiplicative blinding, we multiply each data vector entry by the ratio between

the shifted and reference cosmology predictions, and additionally scale the data covariance

to account for how this multiplication scales noise contributions. After introducing the DES

3×2pt data vector, which consists of galaxy-galaxy, shear-shear, and galaxy-shear two-point

correlation functions for a number of redshift and angular bins, we use simulated data vectors

to test performance of both additive and multiplicative blinding on the DES 3×2pt analysis

pipeline.

We generate noiseless and noise-added versions of an ensemble of 100 simulated 3× 2pt

data vectors, and used the Maxlike sampler to find the best fit parameter values for each

of them. By doing the same for additively and multiplicatively blinded version of those

data vectors, we were able to assess the distribution of ∆χ2 values. We found that the

vast majority of realizations had ∆χ2 < 30, the threshold marking the shift in χ2 that will

produce a 1σ equivalent change in probability in the χ2-distribution expected for the DES

data vector. We performed additional tests to explore whether the couple of realizations
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Figure 5.15: Parameter constraints for realization 1. Dashed black lines show the cosmology
at which the unblinded data was simulated. The blinding factors used shifts ∆σ8 = 0.074
and ∆w = +0.43.
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with ∆χ2 > 30 could be explained by where either their blinding shift ∆Θ or true cosmology

Θobs is in parameter space, and found no clear relation. Follow-up tests for a few selected

realizations using a more robust but more computationally expensive parameter estimation

method suggests that most of the high χ2 values we observe are the result of our maximum

likelihood finder failing to find the true best-fit point in parameter space. Based on these

tests, we are reasonably confident that all additive blinding realizations actually have ∆χ2 <

30. We additionally confirm that our blinding method can effectively shift the constraint

contours by significant distances in parameter space, enough to blind the DES comparison to

Planck, or the measurements of the dark energy equation of state parameter w’s comparison

to the ΛCDM value of -1.

Based on the tests described in this chapter, additive blinding of σ8 and w using this two-

point-function-based method was deemed reliable enough to be used in the DES Y3 3× 2pt

analysis. It is currently implemented as part of the data vector measurement pipeline,

and has already been applied to preliminary measurements of a small subset of the Y3

shear measurements. This means that the data in the files of two-point function summary

information which are input for Y3 parameter estimation will have been blinded in this way.

Even as this blinding method is being implemented in the DES Y3 3×2pt analysis, there

is a need for further study. In future tests, we will perform further checks on the specific

version of this method that is implemented in the DES pipeline, specifically checking on

whether our fiducial choices for nuisance parameters can affect its performance. In all of the

tests presented above, the non-varied nuisance parameters are equal for both the “observed”

data and for blinding factor generation. When this procedure is applied to real data, there

is no guarantee that this will be the case, so it will be important to understand whether

mismatches in systematics-related parameters affect the performance of the blinding method.

Testing the performance of this method on other kinds of summary statistics will also

be a subject of future investigation. One of the benefits of how our method is implemented

is that its blinding factors are entirely determined by the reference cosmology Θref and the

shift ∆Θ. Beyond that, it simply makes use of existing analysis infrastructure: if you are

able to predict a data vector given a model (which you need to be able to do to perform

parameter estimation), you can generate a blinding factor that should produce a shift in

best fit parameters ∼ Θ. That is why the method is able to blind the different components

of the 3 × 2pt analysis in a consistent way and why, in principle it can be extended to the

combined analysis of other probes. Particularly salient probes within other DES analyses

are the so-called 5×2pt data vector, which adds CMB lensing information to the 3 × 2pt

probes, and galaxy cluster mass functions.
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The work presented in this chapter thus represents the development and initial validation

of a robust and flexible multi-probe blinding technique which will serve as an important

tool for combined analyses within DES and beyond. As cosmology as a field leverages

the combined analysis of increasingly large datasets to tighten constraints on cosmological

parameters, the need for blinding to protect against experimenter bias will only become more

critical. Thus, the blinding strategy developed here has the potential to make significant

contributions to future precision tests of ΛCDM.
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Chapter 6

Closing remarks

Because ΛCDM as our standard cosmological model has proved to be in precise agreement

with the vast majority of observations to date, even small or moderate tensions with its

predictions naturally attract attention. Given this, for any observed anomalies we must

make sure we understand our tools for assessing the potential sources of tension, as well as

any uncertainties in our model predictions for associated observables. Additionally, when

preparing for future analyses, we must take care to protect results from all sources of bias

which could cause us to either make spurious detections or miss subtle hints of new physics.

It is in this spirit that this dissertation presents three projects which contribute to the effort

to characterize uncertainties and mitigate biases in precision tests of ΛCDM.

Chapter 3 assessed the accuracy with which we can use large scale structure survey infor-

mation to disentangle late- and early-time contributions to CMB temperature anisotropies

by reconstructing a map of the integrated Sachs-Wolfe signal. As this separation would al-

low us to distinguish which properties of the large-angle CMB are truly primordial, it could

therefore inform the discussion of whether certain large-angle CMB anomalies are clues about

the physics of inflation. Unfortunately, or analysis of simulated maps, modeling a survey

with properties similar to the near-future Euclid experiment, showed that the accuracy of

the reconstructed integrated Sachs-Wolfe signal is severely limited by our ability to sepa-

rate physical density fluctuations of galaxy density on large scales from calibration errors.

Our results suggest that for current levels of calibration control, reconstructed integrated

Sachs-Wolfe maps are mostly noise, and so they can provide little or no information about

whether specific large-angle CMB features are sourced by the integrated Sachs-Wolfe signal.

Promisingly, we note that the level of calibration needed for future surveys like WFIRST to

perform unbiased measurements of dark energy properties, will also allow for accurate inte-

grated Sachs-Wolfe signal reconstruction. Thus, improving the separation of primordial and
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late-universe contributions to CMB temperature anisotropies provides additional motivation

for improving the calibration of future large scale structure surveys.

Chapter 4 delved further into the discussion of large-angle CMB temperature anomalies.

Using measurements of a large number of Gaussian simulations, in the context of ΛCDM,

we studied the covariance between eight large-angle features which are associated with com-

monly studied anomalies. By comparing measurements from our fiducial simulation ensemble

to those based on the Planck Full Focal Plane simulations, we found that the relationship

between the quadrupole-octopole alignment and other, power-spectrum based, quantities is

significantly affected by the astrophysical or survey systematics that are modeled in the Full

Focal Plane simulations. Additionally, we used a principal component analysis to determine

the directions in our space of measured features which maximize the variance of simulated

ΛCDM maps. Projecting the real CMB sky in this new principal-component basis allowed

us to confirm previous suggestions that the cumulative effect of the lack of large-angle CMB

power is more anomalous than any one of the individual quantities used to measure it.

Though the results of this analysis are fairly unsurprising, its big-picture approach serves

to tie together a number of previous results, and by doing so will provide context for future

studies of large angle anomalies — for example, using large-angle measurements of CMB

polarization.

Finally, in Chapter 5 we turn our focus to the analysis of galaxy survey data, specifically

in the context of DES. The increasing size of large scale structure surveys has improved their

ability to place precise constraints on the parameters describing dark energy. Much of their

constraining power comes from our ability to simultaneously analyze multiple observable

probes, which provide complementary information and therefore break degeneracies between

cosmological parameters and nuisance parameters associated with systematic uncertainties.

As with any precision experiment, it is important to ensure that the results of the DES 3×2pt

combined analysis of galaxy clustering and weak lensing are not subject to confirmation bias.

Motivated by this, we introduced a new technique for consistently and flexibly blinding data

from multiple observable probes, and assessed its performance for simulated DES Year 3

data. A version of this technique is currently being used for the DES Year 3 analysis, and

it will likely be used in other future DES multi-probe tests of ΛCDM. Because DES will

serve as a test-bed for the developing analysis techniques for next-generation surveys like

LSST and Euclid, in addition to placing interesting cosmological constraints in its own right,

this blinding strategy has the potential to serve as a useful tool for many future precision

measurements of dark energy.

The aim of all these analyses has been to ensure that analysis pipelines we use to assess the
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agreement of ΛCDM with observations of the Universe on large scales are robust, so that the

accuracy of the insights they provide about fundamental physics is commensurate with their

statistical precision. By the standard of the revolutionary discoveries that took place during

the last decades of the twentieth century, which helped enshrine ΛCDM as our standard

cosmological model, the recent advances in cosmology have been relatively incremental.

Continued progress will depend on our ability to subject ΛCDM to unprecedentedly rigorous

tests, and to do this we must take full advantage of the projected increase in the constraining

power of near future and next generation cosmological experiments. These tests have the

potential to provide new insights into the physics of inflation, distinguish between dynamic

dark energy and a cosmological constant, test whether general relativity accurately describes

gravity on all scales, and probe the physical properties of dark matter. Thus, in coming

decades, it will be exciting to see what careful and deliberate analysis of new cosmological

data can reveal about the Universe.
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Appendix A

Derivation of LSS C`’s

Here demonstrate a derivation of the relationship between the three-dimensional matter

power spectrum P (k, z) and the angular power spectra for LSS tracers, such as the projected

galaxy density fluctuations.

A.1 Projected density

Let ρX(n̂, z) be the comoving volume density of the density of some population X of tracers.

(Note that this same derivation will hold for computing the power spectrum of mass density.)

Defining ρ̄(z) be the average comoving volume density at the time associated with redshift

z, we write the density fluctuations δ as

δ(r, z) =
ρ(r, z)

ρ̄(z)
− 1, (A.1)

where r is a position in comoving coordinates, and the z arguments indicates the function

should be evaluated at time t(z), such that∫ t0

t

c dt′

a(t′)
=

∫ z

0

c dz′

H(z)
. (A.2)

Next, let n(n̂) be the projected density of tracers in direction n̂ on the sky, and let n̄ be

the average number density per steradian. Fluctuations in projected density are then

δn(n̂) =
n(n̂)

n̄
− 1. (A.3)

We would like to write δn(n̂) in terms of δ(r, z). For conciseness, from here forward we will
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write the arguments of three-dimensional functions so that, for example

δ(n̂, z) ≡ δ(n̂ r(z), z) = δ(r, z). (A.4)

We can begin by relating n(n̂) to ρ(n̂, z) via

n(n̂) =

∫
dz

c r2
A(z)

H(z)
ρ(n̂, z) =

∫
dz

cr2(z)

H(z)
ρ̄(z) (1 + δ(n̂, z)) . (A.5)

Here rA(z) is the comoving angular diameter distance, which in a flat Universe is equal to

the comoving radial coordinate r(z). The term c r2/H appears in order to convert the units

of the volume element: a factor of c/H comes from the change of the radial integral from

dr to dz, and a factor of r2 is associated with the conversion from tracers per comoving

area to tracers per steradian. From here forward we will suppress the integral bounds for

conciseness.

We relate n̄ to n(n̂) by averaging over all directions on the sky. This gives,

n̄ =
1

4π

∫
dΩn̂ n(n̂) =

1

4π

∫
dz

cr2(z)

H(z)

1

4π

∫
dΩ ρ(n̂, z) ≡

∫
dz

dn̄

dz
(A.6)

In the last part of this expression we have defined the quantity dn̄/dz to be the direction-

averaged projected number of tracers in a redshift shell [z, z+ dz]. We can relate this to the

average volume density ρ̄, by writing down expressions for the total number of tracers in the

shell:

4π
dn̄

dz
dz = 4π ρ̄(z)

cr2

H
dz ⇒ dn̄

dz
= ρ̄(z)

cr2

H
. (A.7)

Revisiting our expression for δn(n̂), we can now write,

δn(n̂) =
n(n̂)− n̄

n̄
(A.8)

=

[∫
dz

cr2(z)

H(z)
ρ̄(z)

]−1 ∫
dz

cr2(z)

H(z)
ρ̄(z) δ(n̂, z) (A.9)

=

[∫
dz

dn̄

dz

]−1 ∫
dz

dn̄

dz
δ(n̂, z). (A.10)

To make the notation more concise, we represent normalized version of the redshift distri-

bution dn/dz via

dn

dz
≡ dn̄

dz

[∫
dz

dn̄

dz

]−1

. (A.11)
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The expression for fluctuations in projected density then becomes

δn(n̂) =

∫
dz

dn

dz
δ(n̂, z). (A.12)

A.2 Conversion to Fourier space

Now we will convert to Fourier space space. Because we are interested in the power spectrum

of distributions projected onto the sky, we will work in spherical coordinates. We define gX`m
to be the spherical components of the map δnX(n̂), where X labels the map, so

δnX(n̂) =
∑
`m

gX`m Y`m(n̂), (A.13)

for spherical harmonic functions Y`m.

In spherical coordinates, the Fourier transform of the density perturbations δX((x), t)

can be rewritten using a Fourier Bessel decomposition,

δX(r, t) =

∫
d3k

(2π)3
δX(k, t)e−ik·r =

√
2

π

∑
lm

∫
k dk δX`m(k, t) jl(kr)Y`m(n̂). (A.14)

where jl(x) is a Spherical Bessel function.

Referencing Eq. (A.12), we can then relate the functions δX`m(k) to the projected Fourier

components gX`m via

gX`m =

√
2

π

∫
dz

dn

dz

∫
k dk j`(kr) δ

X
`m(k, t(z)). (A.15)

Additionally, we can use the Rayleigh expansion,

e−ik·r = e−i(kr)k̂·n̂ = 4π
∑
`m

(−i)`jl(kr)Y ∗`m(k̂)Y`m(n̂), (A.16)

to show (after a few lines of calculation) that

δX`m(k, t) =

√
π

2

(−i)`
2π2

k

∫
dΩk̂ δ

X(k, t)Y ∗`m(k̂). (A.17)
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Putting Eqs. (A.15) and (A.17) together, we can write

gX`m =
(−i)`
2π2

∫
dz

∫
k2 dk j` (kr(z))

∫
dΩk̂ Y

∗
`m(k̂)

dn

dz
δX(k, t(z)). (A.18)

A.3 Angular cross correlations

We are now ready to compute the angular power spectra. Assuming isotropy, the angular

power of correlations between maps X and Y is given via

CXY
` δ`′`δm′m =

〈[
gX`′m′

]∗
gY`m
〉
. (A.19)

Thus, to get an expression for CXY
` we can use Eq. (A.18) to write an expression for〈[

gX`′m′
]∗
gY`m
〉
. This expression will be messy and will involve six integrals (over the z,

k, and k̂ variables associated with each of the two maps X and Y ):

〈[
gX`′m′

]∗
gY`m
〉

=
1

4π4

∫
dz

∫
dz′
∫
k2j` (kr(z)) dk

∫
(k′)2j` (k′r(z′)) dk′ (A.20)

×
∫
dΩk̂

∫
dΩk̂′ Y`m(k̂)Y ∗`m(k̂′)

dnx

dz

dnY

dz′
〈[
δX(k, t(z))

]∗
δY (k′, t(z′))

〉
(A.21)

We can simplify this expression if we can assume that the density fluctuations of tracer

X can be related to the underlying matter fluctuations δ via some function, where we use z

as a time coordinate:

δX(k, z) = B(k, z) δ(k, z). (A.22)

For a galaxy population, this function B(k, z) will simply be the galaxy bias, which takes

the form b(z) on linear scales. We will leave the expression in this general form however, as

this same formalism can be used to compute the power spectrum for other tracers, such as

the ISW signal. Additionally, assuming we are working in the regime where linear growth

holds, per Eq. (2.32) we can write the density fluctuation at redshift at time t in terms of

its form at the present time t0 as

δ(k, t) = D(t) δ(k, t0). (A.23)
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Thus, we can see the expectation value in Eq. (A.20) becomes

〈[
δX(k, t(z))

]∗
δY (k′, t(z′))

〉
= D(z)D(z′)B(k, z)B(k′, z′) 〈[δ(k, t0)]∗ δ(k′, t0)〉 (A.24)

= (2π)3δ(3)(k− k′)D(z)D(z′)BX(k, z)BY (k′, z′)P (k, t0),

(A.25)

where we have inserted the matter power spectrum defined in Eq. (2.28).

Inserting Eq. (A.25) into Eq. (A.20), and using the facts that∫
d3k =

∫
k2dk

∫
dΩk̂, and (A.26)∫

dΩk̂|Y`m(k̂)|2 = 1, (A.27)

we can derive

CXY
` =

2

π

∫
dz

∫
dz′
∫
k2dkj` (kr(z)) j` (kr(z′)) (A.28)

× dnX

dz

dnY

dz′
D(z)D(z′)BX(k, z)BY (k, z′)P (k, z = 0). (A.29)

To get this in the form in which it appears in Chapter 1, we define the window function of

tracer X to be

WX(k, z) ≡ dnX

dz
B(k, z), (A.30)

and additionally define an associated transfer function

IX` (k) ≡
∫
dzD(z)WX(k, z)j`(kr(z)). (A.31)

Inserting these functions, we obtain

CXY
` =

2

π

∫
dk k2IX` (k) IY` (k)P (k, 0). (A.32)

A.4 The Limber approximation

For high `, we can compute CXY
` with reasonable accuracy using the Limber approximation,

which uses the relation [65,101,215]

j`(x) ≈
√

π

2(2`+ 1)

[
δ(1)(`+ 1

2
− x)

]
, (A.33)
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where δ(1) is the one-dimensional Dirac delta function. This gives the angular cross power

between bins X and Y as

CXY
` =

∫
dz

H(z)

cr2(z)
WX(k, z)W Y (k, z)P (k, z)

∣∣∣∣
k=(`+

1
2

)/r(z)

. (A.34)

The factor of H/c comes from the factor of |∂r/∂z|−1 that appears when one integrates

the delta funtion approximation for j`(kr(z
′)) over z′. Because the Limber approximation

involves fewer integrals, it is much faster computationally than Eq. (A.32). It has an accuracy

of about 1% for ` & 20, depending on the details of the redshift bin width and mean z [101].

Within the Limber approximation, one can include any nonlinear corrections to clustering

simply by substituting the nonlinear power spectrum PNL(k, z), for example one obtained

using halofit [?,62] for the linear P (k, z) in Eq. (A.34). How to include nonlinear effects is

less straightforward for the exact expression for CXY
` in Eq. (A.32), but one could approach

it by promoting the linear growth factor D(z) to become a scale dependent transfer function

DNL(k, z) which models the effects of nonlinear growth.

A.5 Window function for the ISW signal

Though the ISW is not a projected density, the angular correlation for its signal can be

written in the same form as the C`’s described here. We just need to do some additional

work to find its window function, W ISW(k, z).

As was noted in Chapter 3, the temperature perturbations associated with the ISW signal

can be related to the integral along the line of sight of the time derivative of the gravitational

potential Φ(r, t). Letting t∗ be the time of last scattering, when CMB photons were released,

their temperature modulation due to the ISW effect will be

∆T

T̄

∣∣∣∣
ISW

(n̂) =
2

c2

∫ t0

t∗

dt
∂Φ(r, t)

∂t
. (A.35)

We will begin by using the Poisson equation in comoving coordinates,

∇2Φ(r, t) =
3

2

H2
0 Ωm0

a
δ(r, t), (A.36)

to relate the potential to density fluctuations. Writing Φ(r, t) in terms of its Fourier trans-

form,

Φ(r, t) =

∫
d3kΦ̃(k, t)e−ik·r, (A.37)
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and inserting that expression into Eq. (A.36), we can show that

−k2Φ̃(k, t) =
3

2

H2
0 Ωm0

a
δ(k, t). (A.38)

Plugging this into the expression for the ISW signal given in Eq. (A.35), using the linear

growth relation δ(k, t) = D(t)δ(k, t0) and noting that

∂

∂t

(
D(t)

a

)
= ȧ

∂

∂a

(
D(a)

a

)
= H(f − 1)

(
D(a)

a

)
, (A.39)

we obtain the relation

∆T

T̄

∣∣∣∣
ISW

(n̂) = −3H2
0 Ωm0

c2

∫ t0

t∗

dt

∫
d3k

(2π)3
e−ik·r

δ(k, t)H(f − 1)

a
. (A.40)

We would like to make this expression look like Eq. (A.18). We will do so by converting

the integral to be over redshift (dt = −adz/H), reversing the integration bounds, and using

the Rayleigh expansion to turn the Fourier exponent into a Bessel function and spherical

harmonics. Defining aISW
`m to the spherical components of the ISW signal, we obtain

a`m =
(−i)`
2π2

∫ z∗

0

dz

∫
k2dkj`(kr(z))

∫
dΩk̂Y

∗
`m(k̂)

[
3H2

0 Ωm0(1− f(z))

c2k2
δ(k, z)

]
. (A.41)

Comparing this to Eq. (A.18), we see we can define the kernel for the ISW signal in terms

of an effective density distribution

dnISW

dz
δISW(k, z) = Θ(z∗ − z)

[
3H2

0 Ωm0(1− f(z))

c2k2

]
δ(k, z), (A.42)

where Θ(x) is the Heaviside step function.

Thus, we see that the window function for the ISW signal is

W ISW(k, z) = Θ(z∗ − z)
3H2

0 Ωm0(1− f(z))

c2k2
(A.43)
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Appendix B

Calibration error formalism

In Section 3.5 we study the impact of photometric calibration errors on ISW signal recon-

struction. We model them using a direction-dependent calibration error field c(n̂) via

Nobs(n̂) = (1 + c(n̂))N(n̂), (B.1)

where n̂ is the direction on the sky, Nobs is the observed number of galaxies, and N is the

true number of galaxies. Here, we present the calculations necessary to describe how this

modifies the galaxy C` and which we used above to predict how calibration errors will impact

our reconstructions quality statistics. Our notation follows that by Ref. [119].

We will define fluctuations in the true and observed number density as δ and δobs, re-

spectively, and write them in terms of spherical components,

δ(n̂) =
N(n̂)

n̄
− 1 ≡

∑
`m

g`mY`m(n̂) (B.2)

δobs(n̂) =
Nobs(n̂)

n̄obs
− 1 ≡

∑
`m

t`mY`m. (B.3)

Additionally, we will define a parameter ε to relate the true and observed average number

densities,

n̄obs = n̄(1 + ε), (B.4)

and use c`m to denote the spherical components of the calibration error field c(n̂). Each

galaxy map can have its own calibration error field, and so we will use superscripts (e.g.,

gi`m, ci`m, and ti`m) to denote components associated with LSS map i.

Our goal is to find a relation between the observed galaxy power T ij` , the true power Cij
` ,

and the properties of the calibration error field Ccal,ij
` . To do this, we start by relating the
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spherical components of the fields. We note that observed number density fluctuations are

δobs(n̂) =
δ + c+ δc− ε

(1 + ε)
, (B.5)

where we suppress the n̂ arguments to simplify notation. After some algebra, we can write

ti`m =(1 + εi)−1
[
−
√

4πδ`0ε
i + gi`m + ci`m (B.6)

+
∑

`1`2m1m2

ci`2m2
gi`1m1

R``1`2
mm1m2

]
. (B.7)

In this expression, δ`0 is a Kronecker delta, and the multiplicative term

R``1`2
mm1m2

≡
∫

dΩY ∗`m(n̂)Y`2m2(n̂)Y`1m1(n̂) (B.8)

is related to Wigner-3j symbols.

We define the cross-power between two observed maps via

T ij` ≡
∑
m

〈ti`mtj∗`m〉
2`+ 1

(B.9)

and that of the calibration error fields as

Ccal,ij
` ≡

∑
m

ci`mc
j∗
`m

2`+ 1
. (B.10)

Note that these definitions do not preclude the possibility that the c`m could introduce

correlations between different (`,m) modes. The fact that we only show correlations between

modes with matching ` and m reflects the (potentially biased) measurement that would be

made even if one assumes that they do not.

The expression for T ij` in terms of g`m, c`m is fairly involved, though it can be simplified

to some extent using Wigner-3j symbol identities. For the purposes of this study, we ap-

proximate it by only including additive components—that is, neglecting all terms containing

R``1`2
mm1m2

. Doing this, and using the fact that

〈εi〉 =
ci00√
4π

=

√
Ccal,i
`=0

4π
, (B.11)
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we write

T ij` =
Cgij
` + Ccij

` − δ`0ci00c
j
00

(1 + ci00/
√

4π)(1 + cj00/
√

4π)
. (B.12)

This is the expression given in Eq. (3.32) and is what is used to compute expectations values

of ISW reconstruction quality statistics in Section 3.5.
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Appendix C

Large-noise limit of ISW

reconstruction s statistic

In Section 3.5.2, and particularly in Fig. 3.14, we saw that as the amplitude of calibration

error fluctuations gets large the ratio between the rms of reconstructed map residuals and

the rms of the true ISW map, s, approaches a constant value. Here we outline why this

occurs.

Recall from Eq. (3.23) that our theoretical estimator 〈s〉 is written

〈s〉 =

√
〈σrec〉2 + 〈σISW〉2 − 2

∑
`i (2`+ 1)Ri

`C̃
ISW−i
`

〈σISW〉
, (C.1)

where

〈σISW〉 =

√∑
`

(2`+ 1) C̃ISW
` , and (C.2)

〈σrec〉 =

√∑
`ij

(2`+ 1)Ri
`R

j
`C̃

ij
` .

In the case with a single LSS map, which we focus on here for simplicity, the reconstruction

filter is

Ri
` =

Cgal−ISW
`

Cgal
`

. (C.3)

For clarity, and in contrast with the notation in the main text, here we use tildes (as in C̃`)

to denote the Ctrue
` which are associated with observed or simulated maps. The C` with no

tilde will be the Cmodel
` used to construct the ISW estimator.
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Let us examine how the various terms scale as we increase the amplitude of calibration

errors. As the level of calibration errors—or any form of noise—gets large,

C̃gal
`

large A−→ Cnoise
` ∝ A (C.4)

where Cnoise
` is the noise power spectrum and A is a measure of its amplitude. The observed

ISW power C̃ISW
` and ISW-galaxy cross-power C̃gal−ISW

` will not depend on A.

For the calibration error studies in Section 3.5, we focused on the case of residual calibra-

tion errors, which are not accounted for in the ISW estimator. In this scenario, any excess

in observed power will be interpreted as a bias and fit for via

b̄2Cgal
` = C̃gal

` , (C.5)

according to the procedure described in Section 3.1.4. Because Cgal
` is independent of A, the

resulting best fit value will be b̄fit ∝
√
A. The model C`(b̄

fit) scales accordingly,

Cgal
` (b̄fit) ∝ A, (C.6)

Cgal−ISW
` (b̄fit) ∝

√
A, (C.7)

R` ∝
1√
A
. (C.8)

Examining the terms in Eq. (C.1), we see that 〈σrec〉 and 〈σISW〉 will approach constants

as A grows, while the cross-term will go to zero like A−1/2. Thus, in the case of unmodeled

noise contributions to the galaxy maps, in the limit of large noise,

〈s〉 large A−→
√
〈σrec〉2 + 〈σISW〉2
〈σISW〉

. (C.9)

This is a constant greater than 1, in agreement with our results in the right panel of Fig. 3.14.

In contrast, if the C` used in the ISW estimator correctly model the level of galaxy

noise—as occurs in the shot noise tests in Section 3.2.4—the best fit bias parameter b̄fit will

remain close to 1. In that case, the fact that noise is properly accounted for means that

Cgal
` = C̃gal

ell ∝ A (C.10)

while all other C` and C̃` are independent of A. In this case, as the noise power dominates
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over that of galaxies, the estimator operator goes to zero according to

R` ∝
1

A
. (C.11)

This means that for large levels of properly modeled noise, the reconstructed map ampli-

tude goes to zero. This causes 〈σrec〉 and the cross-term in 〈s〉 to go to zero and so the

reconstruction residuals are just a measure of the true ISW map:

〈s〉 large A−→
√
〈σISW〉2
〈σISW〉

= 1. (C.12)
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Appendix D

Additional plots for blinding tests

Here we present additional plots associated with the Multinest tests discussed in Section 5.4.4.

Figs. D.1 and D.2 show the parameter estimation contours produced form running Multinest

on noiseless data vectors for realization 54 and 69, respectively. Studying them, we note first

that, even for the unblinded data for both of these realizations, the parameter constraints

are biased with respect to the nominal “true” value of b1. Because the b1 marginalized con-

straints for all realizations plotted (these two and realization 1 shown in Chapter 5 seems to

be centered on its fiducial value, this may be a sign of a bug in the data vector generation

code: it is possible that b1 is not actually being varied. Even if that is the case, however, it

will not affect our ∆χ2 considerations.

In contrast to the results for realization 1 (shown in Fig. 5.15), the contours for addi-

tive and multiplicative blinding are significantly offset from one another for realization 54,

particularly in the w and b1 directions. The additive blinding case for realization 69 also

shows reasonable looking contours, though they are also not centered on the region we expect

based on the input cosmology Θobs and shift ∆Θ. The fit to the multiplicatively blinded data

vector for realization 69 is clearly failing: the constraint contours are hitting the lower prior

bounds for w. This suggests that some characteristic of these data vectors makes fitting

them difficult, though it is unclear what that is.

To gain insight into properties of these “badly behaved” realizations, we additionally plot

the data vectors for realization 54 in Figs. D.3 and D.4, and for realization 69 in Figs. D.5

and D.6. On these plots, we show the predictions for the best fit model Θbl (found using

Maxlike and blinded noisy data) with dotted lines. We also display the Maxlike ∆χ2 values

in gray text on the ξ±(θ) plots. The fact that the Maxlike fits are failing can be most

obviously seen when looking at the galaxy-galaxy correlations w(θ).
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Unblinded [Rlzn. 54, noiseless]
Add. bl. [Rlzn. 54, noiseless]
Mult. bl. [Rlzn. 54, noiseless]
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Figure D.1: Parameter constraints for realization 54. Dashed black lines show the cosmology
at which the unblinded data was simulated. The blinding factors used shifts ∆σ8 = −0.009
and ∆w = +0.49. The dashed line for b1 cannot be seen because it is at b1 = 1.24, signifi-
cantly below where the countour is.
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Unblinded [Rlzn. 69, noiseless]
Add. bl. [Rlzn. 69, noiseless]
Mult. bl. [Rlzn. 69, noiseless]
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Figure D.2: Parameter constraints for realization 54. Dashed black lines show the cosmology
at which the unblinded data was simulated. The blinding factors used shifts ∆σ8 = +0.033
and ∆w = −0.36. The sampler is clearly failing for the multiplicatively blinded data vector.
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Figure D.3: Plot of ξ±(θ) for realization 54. The dotted and solid black lines show the
noiseless and noisy unblinded data, respectively. The solid green line shows the additively
blinded noisy data vector, and the solid blue line shows the same for multiplicative blinding.
The dotted green and blue lines shows the model prediction computed at the Maxlike best fit
parameters for their corresponding blinded data vector. Vertical gray bands show scale cuts,
and the shaded region around the unblinded data shows the DES Y3 expected statistical
errors. Each subplot shows the cross correlations between a different pair of redshift bins
labeled by numbers in white boxes. The bin label numbers go up in order of increasing
redshift.
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Figure D.4: Plot of w(θ) and γt(θ) for realization 54, using the same conventions as Fig. 5.6.
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Figure D.5: Plot of ξ±(θ) for realization 69, using the same conventions as Fig. 5.6.
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Figure D.6: Plot of w(θ) and γt(θ) for realization 69, using the same conventions as Fig. 5.6.
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