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Abstract

We study invariants of singularities that have arisen in connection with the K-stability of

Fano varieties. The first invariant we consider is Li’s normalized volume function on the

space of valuations over a klt singularitiy. Proving a conjecture of Li, we show that there

always exists a valuation over a klt singularity with smallest normalized volume. Next, we

present joint work with Mattias Jonsson on the log canonical and stability thresholds of a

line bundle. The latter notion generalizes an invariant recently introduced by Fujita and

Odaka, and can be used to characterize when a Fano variety is K-semistable or uniformly

K-stable. We express the two thresholds as infima of certain functionals on the space of

valuations and systematically study these invariants.
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Chapter 1

Introduction

1.1 Background

1.1.1 Kähler-Einstein Geometry

A fundamental problem in complex geometry is to find canonical metrics on (complex)

projective varieties. The search for canonical metrics has lead to the study of Kähler-

Einstein metrics, which are Kähler metrics whose Ricci curvarture is a constant multiple

of the Kähler class. On smooth projective varieties with trivial or ample canonical bundle,

such Kähler-Einstein metrics always exist by the work of Yau and Aubin [Yau78, Aub78].

The case of Fano varieties (i.e. smooth projective varieties with anti-ample canonical

bundle) is more subtle, since not all Fano varieties have Kähler-Einstein metrics. For

example, P2 and P2 blown up at a point are both Fano varieties, but only the first has a

Kähler-Einstein metric.

Yau conjectured that the existence of a Kähler-Einstien metric on a Fano variety is

related to some algebraically defined “stability” condition. By the recent work of Chen-

Donaldson-Sun and Tian, we now know that a Fano variety has a Kähler-Einstein metric

if and only if it is K-polystable [CDS15, Tia15]. However, the condition for a variety to

be K-(poly)stable is difficult to verify.

It has long been understood that singularities from the Minimal Model Program play an

important role in understanding the condition for a Fano variety to be K-stable. This dates

back to Tian’s α-invariant [Tia87], which Demailly interpreted as measuring singularities of

pluri-anti-canonical divisors [CS08]. More recently, Odaka related the notion of K-stability

to discrepancies, a measure of singularities used in the Minimal Model Program [Oda13].
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1.1.2 Singularities of the MMP

A goal of birational geometry is to classify all varieties up to birational equivalence. The

Minimal Model Program (MMP) approaches this goal by attaching to each birational

equivalence class, a “simplest” variety. While one might be primarily interested in smooth

projective varieties, in the MMP it is important to consider varieties with mild singularities.

One such class of mild singularities are Kawamata log terminal (klt) singularities.

Examples of klt singularities include du Val singularities and normal Q-Gorenstein toric

singularities. An important example for our purposes stems from Fano varieties. If V is a

Fano variety, then the cone over V with polarization −KV is a klt singularity.

Related to the previous definition is the log canonical threshold. Given an effective

Cartier divisor D on a klt variety X, the log canonical threshold of D, denoted lct(X;D),

measures the singularities of D. In the simplest case when X = Cn and D = {f = 0},
where f ∈ C[x1, . . . , xn], we have

lct(X;D) = sup

{
c

∣∣∣∣ 1

|f |2c
is locally integrable at every point P ∈ Cn

}
.

A smaller log canonical threshold means D has worse singularities.

The previous definitions may be interpreted in terms of valuations. Let π : Y → X

be a proper birational morphism of normal varieties and E a prime divisor on Y (called

a prime divisor over X). Associated to E is a valuation ordE : K(X)× → Z that sends

a rational function on X to its order of vanishing along E. We call ordE a divisorial

valuation.

To a valuation ordE, as above, we associate a couple of invariants. The center of ordE

is the generic point of π(E). The log discrepancy of ordE is given by

AX(ordE) = 1 + the coefficient of E in KY/X ,

where KY/X is the relative canonical divisor of π. In the case when X and Y are smooth,

KY/X is effective and locally cut out by the determinant of the Jacobian matrix of π.

We can now define our terms. A variety X is klt if it is normal, Q-Gorenstein, and

AX(ordE) > 0 for all prime divisors E over X. If X is a klt variety and D an effective

Cartier divisor, then

lct(X;D) = inf
E

AX(ordE)

ordE(D)
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where the infimum runs through all prime divisors E over X. Using a similar formula, we

can also define the log canonical threshold of a nonzero ideal a ⊂ OX on a klt variety X.

Recent work has shown relations between the log canonical threshold, valuations, and

non-archimedean geometry [BFJ08, JM12, BdFFU15]. Given a variety X, we write ValX

for the set of real-valued valuations v : K(X)× → R with center on X. Recall that v

has center ξ ∈ X if v is ≥ 0 on OX,ξ and > 0 on the maximal ideal of OX,ξ. While

log canonical thresholds are usually defined using only divisorial valuations, the larger

valuation space provides a richer environment for studying singularities.

1.2 Main Results

This dissertation concerns the following invariants of singularities that have arisen in

connection with Kähler-Einstein geometry.

• Normalized volume of a valuation: Li introduced the normalized volume function on

the space of valuations over a klt singularity and proposed the problem of studying

its minimizer [Li15a]. The minimizer is related to a conjecture of Donaldson and Sun

concerning singularities appearing on Gromov-Hausdorff limits of Kähler-Einstein

Fano varieties [DS17].

• The α- and δ-invariants. These two invariants measure the singularities of linear

systems. The α-invariant dates back to the work of Tian [Tia87] and has received

considerable attention. The δ-invariant was recently introduced by Fujita and Odaka

in [FO16] and was designed to detect the K-(semi)stability of Fano varieties.

Remark 1.2.1. Our main results are stated for klt pairs, a generalization of klt varieties.

A klt pair (X,B) is composed of a normal variety X and an effective Q-divisor B on X

such that KX +B is Q-Cartier. (See Section 2.2.7 for the complete definition.) If X is a

klt variety, then (X, 0) is a klt pair. The definitions of the log canonical threshold and log

discrepancy can be extended to this setting.

1.2.1 Normalized volume of a valuation

Fix a klt pair (X,B) and x ∈ X a closed point. We write ValX,x for the set of real

valuations on X with center equal to x. In [Li15a], Li introduced the normalized volume

function

v̂ol : ValX,x −→ R>0 ∪ {+∞},

3



which sends a valuation v to its normalized volume, denoted v̂ol(v). To define the normalized

volume, we recall the following. Given a valuation v ∈ ValX,x, we have valuation ideals

am(v)x = {f ∈ OX,x | v(f) ≥ m} ⊆ OX,x

for all positive integers m. The volume of v is given by

vol(v) = lim sup
m→∞

`(OX,x/am(v)x)

mn/n!
,

where n is the dimension of X. The normalized volume of v is

v̂ol(v) = AX,B(v)n vol(v),

where AX,B(v) is the log discrepancy of v. Since (X,B) is klt, AX,B > 0 on ValX,x, and,

thus, v̂ol > 0 as well.

The K-semistablity of a Fano variety can be phrased in terms of the minimizer of v̂ol. Let

V be a smooth Fano variety. Consider the cone C(V,−KV ) := Spec(⊕m≥0H
0(V,−mKV ))

and write p ∈ C(V,−KV ) for the cone point. The blowup of C(V,−KV ) at p has a unique

exceptional divisor, which we denote by Ṽ and gives a valuation ordṼ ∈ ValC,p.

Theorem 1.2.2 ([Li15b] [LiLiu16] [LiX16]). Let V be a smooth Fano variety. The follow-

ing are equivalent:

(i) The Fano variety V is K-semistable.

(ii) The function v̂ol : ValC,p → R ∪ {+∞} is minimized at ordṼ .

Thus, if V is K-semistable, there exists a valuation centered at p ∈ C(V,−KV ) that

minimizes the normalized volume function. Li conjectured the following statement.

Conjecture 1.2.3 ([Li15a]). If (X,B) is a klt pair and x ∈ X a closed point, then there

exists a valuation v∗ ∈ ValX,x that minimizes v̂ol : ValX,x → R ∪ {+∞}. Furthermore,

such a minimizer v∗ is unique (up to scaling) and quasimonomial.

The above statement is a major component of the Stable Degeneration Conjecture

described in [LiX17]. The conjecture further states that the minimizer of the normalized

volume function should gives a unique degeneration to K-semistable Fano cone singularity.
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Conjecture 1.2.3 holds when X is a smooth variety and B = 0 . As observed in [Li15a],

if x is a smooth point, then v̂ol is minimized at ordx, the valuation that sends a function

f ∈ OX,x to the maximum m such that f ∈ mm
x . Thus,

nn = v̂ol(ordx) ≤ v̂ol(v)

for all v ∈ ValX,x. The above observation relies on the following result of de Fernex-Ein-

Mustaţă.

Theorem 1.2.4 ([dFEM04]). Let X be smooth variety of dimension n and x ∈ X a closed

point. If a is an mx-primary ideal, then

nn = lct(X;mx)
n e(mx) ≤ lct(X; a)n e(a),

where lct(X; a) and e(a) denote the log canonical threshold and Hilbert-Samuel multiplicity

of a.

Our main result on the normalized volume function is the following statement.

Theorem A. Let (X,B) be a klt pair and x ∈ X a closed point. There exists a valuation

v∗ ∈ ValX,x that minimizes v̂ol : ValX,x → R ∪ {+∞}.

In order to prove the above theorem, we first take a sequence of valuations (vi)i∈N such

that limi→∞ v̂ol(vi) = infv∈ValX,x v̂ol(v). Ideally, we would would like to find a valuation

v∗ that is a limit point of the sequence (vi)i∈N and then argue that v∗ is a minimizer

of v̂ol. To proceed with such an argument, one would need to prove a conjecture of Li

stating that v̂ol is lower semicontinuous on ValX,x. Recall that v̂ol(v) := AX,B(v)n vol(v).

While v 7→ AX,B(v) is lower semicontinuous, v 7→ vol(v) fails to be lower semicontinuous

in general. To avoid this complication, we shift our focus.

Instead of studying valuations v ∈ ValX,x, we may consider ideals a ⊆ OX that

are mx-primary. For an mx-primary ideal, the normalized multiplicity of a is given by

lct(X,B; a)n e(a), as in Theorem 1.2.4.

We can also define a similar invariant for graded sequences of mx-primary ideals. Recall

that a graded sequence of ideals on X is a sequence of ideals a• = (am)m∈Z>0 such that

ap · aq ⊆ ap+q for all p, q. The following statement relates the infimum of the normalized

volume function to these invariants.
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Proposition 1.2.5 ([Liu16]). If (X,B) is a klt pair and x ∈ X a closed point, then

inf
v∈ValX,x

v̂ol(v) = inf
a• mx-primary

lct(X,B; a•)
n e(a•) = inf

amx-primary
lct(X,B; a)n e(a). (1.1)

While our goal is to find v∗ ∈ ValX,x that achieves the first infimum of (1.1), we will

instead find a graded sequence of mx-primary ideals ã• that achieves the second infimum

of the above equation. To this end, we use techniques from [dFM09, Kol08, dFEM10,

dFEM11] on generic limits to construct a graded sequence of ideals ã• that can be thought

of as a “limit point” of (a•(vi))i∈N. After having constructed such a graded sequence ã•,

we can use [JM12, Theorem A] to find a valuation v∗ that computes the log canonical

threshold ã•. This valuation will be the minimizer of the normalized volume function.

In proving Theorem A, we use some additional tools. Specifically, properness estimates

from [Li15a] play an important role in the proof. In addition, we use ideas from [ELS03]

to prove the following result concerning the volume of a valuation.

Theorem B. Let (X,B) be a klt pair of dimension n and x ∈ X a closed point. For

ε > 0 and constants B, s ∈ N∗, there exists N = N(ε, B, s) such that the following holds:

If v ∈ ValX,x satisfies AX,B(v) ≤ B and v(mx) ≥ 1
s
, then

vol(v) ≤ e(am(v))

mn
< vol(v) + ε

for all m ≥ N .

6



1.2.2 Thresholds, Valuations, and K-stability

The results in this section are from [BlJ17] and are joint with Mattias Jonsson. The author

thanks him for allowing the joint work to be reproduced in this setting.

Let (X,B) be a klt pair and L a big line bundle on X. We consider two natural

“thresholds” of L, both involving the asymptotics of the singularities of the linear system

|mL| as m→∞.

The first measures the worst singularities appearing in the linear systems. For m ≥ 1,

define αm(L) = inf{m · lct(X,B;D) | D ∈ |mL|}. The log canonical threshold of L is

α(L) = inf
m≥1

αm(L).

This is an algebraic version of the α-invariant defined analytically by Tian [Tia97] when

X is Fano and L = −KX .

The second invariant measures the “average” singularities and was introduced by

Fujita and Odaka in the Fano case, where it is relevant for K-stability, see [FO16, PW16].

Following [FO16] we say that an effective Q-divisor D ∼Q L on X is of m-basis type,

where m ≥ 1, if there exists a basis s1, . . . , sNm of H0(X,mL) such that

D =
{s1 = 0}+ {s2 = 0}+ · · ·+ {sNm = 0}

mNm

,

where Nm = h0(X,mL). Define

δm(L) = inf{lct(D) | D ∼Q L of m-basis type}.

We prove the following result.

Theorem C. For any big line bundle L, the limit δ(L) = limm→∞ δm(L) exists, and

α(L) ≤ δ(L) ≤ (n+ 1)α(L).

Further, the numbers α(L) and δ(L) are strictly positive and only depend on the numerical

equivalence class of L. When L is ample, the stronger inequality δ(L) ≥ n+1
n
α(L) holds.

We call δ(L) the (adjoint) stability threshold1 of L. It can also be defined for Q-line

bundles L by δ(L) := rδ(rL) for any r ≥ 1 such that rL is a line bundle; see Remark 5.3.5.

1The idea of the stability threshold δ(L), with a slightly different definition, was suggested to the
second author of [BlJ17] by R. Berman.
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The following result, which verifies Conjecture 0.4 and strengthens Theorem 0.3

of [FO16], relates the stability threshold to the K-stability of a log Fano pair.

Theorem D. Let (X,B) be a log Fano pair.

(i) (X,B) is K-semistable if and only if δ(−(KX +B)) ≥ 1;

(ii) (X,B) is uniformly K-stable if and only if δ(−(KX +B)) > 1.

The notion of uniform K-stability was introduced in [BHJ15, Der16]. As a special

case of the Yau-Tian-Donaldson conjecture, it was proved in [BBJ15] that a smooth

Fano manifold X without nontrivial vector fields is uniformly K-stable iff X admits a

Kähler-Einstein metric.

Our approach to the two thresholds α(L) and δ(L) is through valuations. To any

v ∈ ValX we associate several invariants. First is the log discrepancy, denoted AX,B(v).

Next, we have invariants that depend on a big line bundle L. These are the maximal and

average order of vanishing of L along v, and are denoted by T (v) and S(v), respectively.

For a divisorial valuation ordE, as above, T (ordE) can be viewed as a pseudoeffective

threshold:

T (ordE) = sup{t > 0 | π∗L− tE is pseudoeffective}

whereas S(ordE) is an “integrated volume”.

S(ordE) = vol(L)−1

∫ ∞
0

vol(π∗L− tE) dt.

The invariants S(ordE) and T (ordE) play an important role in the work of K. Fu-

jita [Fuj16b], C. Li [Li15b], and Y. Liu [Liu16], see Remark 5.2.10.

The next result shows that log canonical and stability thresholds can be computed

using the above invariants of valuations :

Theorem E. For any big line bundle L on X, we have

α(L) = inf
v

AX,B(v)

T (v)
= inf

E

AX,B(ordE)

T (ordE)
and δ(L) = inf

v

AX,B(v)

S(v)
= inf

E

AX,B(ordE)

S(ordE)
,

where v ranges over nontrivial valuations with AX,B(v) <∞, and E over prime divisors

over X.

8



While the formulas for α(L) follow quite easily from the definitions (see also [Amb16,

§3.2]), the ones for δ(L) (as well as the fact that the limit δ(L) = limm δm(L) exists) are

more subtle and use the concavity of the function on the Okounkov body of L defined

by the filtration associated to the valuation v as in [BC11, BKMS16]. Theorem D follows

from the second formula for δ(L) above and results in [Fuj16b] and [Li15b].

Next we investigate whether the infima in Theorem E are attained. We say that a

valuation v ∈ ValX computes the log canonical threshold if
AX,B(v)

T (v)
= α(L). Similarly, v

computes the stability threshold if
AX,B(v)

S(v)
= δ(L).

Theorem F. If L is ample, then there exist valuations with finite log discrepancy computing

the log-canonical threshold and the stability threshold, respectively.

This theorem can be viewed as a global analogue of Theorem A. The result is also

related in spirit to recent results by Birkar [Bir16] on the existence of Q-divisors achieving

the infimum in the definition of lct(L) in the Q-Fano case, and to the existence of optimal

destabilizing test configurations [Don02, Szé08, Oda15, DS16].

Finally we treat the case when X is a toric variety, associated to a complete fan ∆, and

B is a torus invariant Q-divisor on X. The primitive lattice points of the 1-dimensional

cones of ∆ then correspond to torus invariant prime divisors Di, for 1 ≤ i ≤ d. Let

L = OX(D), where D =
∑
ciDi is an ample divisor on X. Associated to D is a polytope

P ⊂MR. To each u ∈ P ∩MQ, there is an associated effective torus invariant Q-divisor

Du ∼Q L on X.

Theorem G. The log-canonical and stability thresholds of L are given by

α(L) = min
u∈Vert(P )

lct(Du) and δ(L) = lct(Dū),

where ū ∈ MQ denotes the barycenter of P , and Vert(P ) ⊂ MQ the set of vertices of P .

Furthermore, α(L) (resp. δ(L)) is computed by one of the valuations ordD1 , . . . , ordDd.

For α(L), the above statement is well known; see [CS08, Del15, Amb16]. For the case

of δ(L), our proof uses global analogs of methods utilized in [Mus02, Blu16b].

When X is a toric Q-Fano variety and L = −KX , Theorem G implies that X is

K-semistable iff the barycenter of P is the origin. For X smooth, this result was proven

by analytic methods in [BB13, Berm16]. In general, it follows from [LiX16, Theorem 1.4],

which was proven algebraically.

9



Chapter 2

Preliminaries

2.1 Conventions

Throughout, we work over an algebraically closed, uncountable, characteristic zero

field k. By a variety, we will mean an integral, separated scheme of finite type over k.

An ideal on a variety X is a coherent ideal sheaf a ⊂ OX . If X is a variety and Z ⊂ X

a subscheme, we write IZ ⊂ OX for the corresponding ideal. Similarly, if x ∈ X is a closed

point, we write mx ⊂ OX for the ideal of functions vanishing at x.

We use the convention N = {0, 1, 2, . . . }, N∗ = N\{0}, R+ = [0,+∞), R∗+ = R+\{0}.
In an inclusion A ⊂ B between sets, the case of equality is allowed.

2.2 Background material

2.2.1 Valuations

Let X be a variety. A valuation on X will mean a valuation v : K(X)× → R that is

trivial on k and has center on X. Recall, v has center on X if there exists a point ξ ∈ X
such that v ≥ 0 on OX,ξ and v > 0 on the maximal ideal of OX,ξ. Since X is assumed to

be separated, such a point ξ is unique, and we say v has center cX(v) = ξ. We use the

convention that v(0) = +∞.

Following [JM12, BdFFU15] we define ValX as the set of valuations on X and equip

it with the topology of pointwise convergence. We define a partial ordering on ValX by

v ≤ w if and only if cX(w) ∈ cX(v) and v(f) ≤ w(g) for f, g ∈ OX,cX(w). The unique

minimal element is the trivial valuation on X. We write Val∗X for the set of nontrivial

valuations on X.

10



To any valuation v ∈ ValX and λ ∈ R there is an associated valuation ideal defined

locally by aλ(v) defined as follows. For an affine open subset U ⊂ X, aλ(v)(U) = {f ∈
OX(U) | v(f) ≥ λ} if cX(v) ∈ U and aλ(v)(U) = OX(U) otherwise. Note that aλ(v) = OX
for λ ≤ 0. If v is divisorial, then Izumi’s inequality (see [HS01]) shows that there exists

ε > 0 such that aλ(v) ⊂ m
dελe
ξ for any λ ∈ R+, where ξ = cX(v).

For an ideal a ⊂ OX and v ∈ ValX , we set

v(a) := min{v(f) | f ∈ a · OX,cX(v)} ∈ [0,+∞].

The function ValX 3 v 7→ v(a) is continuous on ValX [JM12, Lemma 4.1].

We can also make sense of v(s) when L is a line bundle and s ∈ H0(X,L). After

trivializing L at cX(v), we write v(s) for the value of the local function corresponding to s

under this trivialization; this is independent of the choice of trivialization.

Similarly, we can define v(D) when D is an effective Q-Cartier divisor on X. Pick

m ≥ 1 such that mD is Cartier and set v(D) = m−1v(f), where f is a local equation of

mD at the center of v on X. Note that v(D) = m−1v(OX(−mD)).

2.2.2 Divisorial valuations

If Y → X is a proper birational morphism, with Y normal, and E ⊂ Y is a prime divisor

(called a prime divisor over X), then E defines a valuation ordE : K(X)× → Z in ValX

given by the order of vanishing at the generic point of E. Any valuation of the form

v = c · ordE with c ∈ R>0 will be called divisorial. We write DivValX ⊂ ValX for the set

of divisorial valuations.

2.2.3 Quasimonomial valuations

A valuation in ValX is quasimonomial if it becomes monomial on some proper birational

model over X. Specifically, let f : Y → X be a proper birational morphism with Y

smooth, and fix a point η ∈ Y . Given a regular system of parameters y1, . . . , yr ∈ OY,η
and α = (α1, . . . , αr) ∈ Rr

+ \ {0}, we define a valuation vα as follows. For f ∈ OY,η we

can write f in ÔY,η as f =
∑

β∈Nr cβy
β, with cβ ∈ ÔY,η either zero or unit. We set

vα(f) = min{〈α, β〉 | cβ 6= 0}.

A quasimonomial valuation is a valuation that can be written in the above form. Note

that a valuation vα, as above, is divisorial if there exists λ ∈ R∗+ such that λ ·α ∈ Nr. See
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[JM12, Section 3.1] for further details.

2.2.4 Canonical divisors

Let X be a normal variety and Xsing denote its singular locus. Hence, U = X \ Xsing

is open in X and codim(X,Xsing) ≥ 2. A canonical divisor of X is a divisor KX on X

such that OU(KX |U) = ωU . Note that KX is uniquely defined up to linear equivalence. If

π : Y → X is a proper birational morphism of normal varieties, then it is straightforward

to show that if KY is a canonical divisor on Y , then π∗KY is a canonical divisor on X.

2.2.5 Pairs and triples

A triple (X,B, ac) is made up of a normal variety X, a Q-divisor B on X such that

KX +B is Q-Cartier, a nonzero ideal a ⊂ OX , and c ∈ Q>0. When c = 1, we simply write

(X,B, a).

A triple of the form (X,B,OX) is called a pair and is often written as (X,B). A pair

(X,B) is effective if B is effective.

2.2.6 Log resolutions

A log resolution of a triple (X,B, ac) is a projective birational morphism π : Y → X

satisfying the following conditions:

• Y is smooth and Exc(π) has pure codimension one;

• a · OY = OY (−F ), where F is a Cartier divisor on Y ;

• Exc(π) + B̃ + F is a simple normal crossing divisor.

As a consequence of [Hir64], if (X,B, a) is a triple, then there exists a log resolution

π : Y → X of (X,B, ac). Furthermore, if ρ : Z → X is an additional proper birational

morphism, we may choose π so that it factors through ρ.

2.2.7 Singularities of the MMP

Let (X,B) be a pair. Given a proper birational morphism π : Y → X of normal varieties,

fix a canonical divisor KY on Y and set KX = π∗KY . We define a Q-divisor BY on Y by

requiring

KY +BY = π∗(KX +B).

12



It is straightforward to show that BY is independent of the choice of a canonical divisor

on Y . When B = 0, we write KY/X for −BY , since it equals KY − π∗KX . The divisor

KY/X is called the relative canonical divisor of π. Note that Supp(KY/X) ⊂ Exc(π).

Let π : Y → X and ρ : Z → Y be proper birational morphisms of normal varieties.

If (X,B) is a pair, then (Y,BY ) and (Z,BZ) are pairs. Furthermore, BZ = (BY )Z and

ρ∗BZ = BY . In the case when KY is Q-Cartier, BZ = ρ∗(BY )−KZ/Y .

Let Y → X be a log resolution of a pair (X,B). We say (X,B) is klt (resp., log

canonical) if the coefficients of −BY are strictly > −1 (resp., ≥ −1). The above definition

is independent of the choice of a log resolution. See [KM98, Section 2.3] for further details.

The previous definitions make sense for triples. Let (X,B, ac) be an effective triple

with log resolution Y → X. We say (X,B, ac) is klt (resp., log canonical) if for all log

resolutions of the triple π : Y → X, with a · OY = OY (−F ), the coefficients of −BY − cF
are strictly > −1. (resp., ≥ −1). As before, the definition is independent of the choice of

a log resolution.

2.2.8 Graded sequences of ideals

A graded sequence of ideals is a sequence a• = (am)m∈N∗ of ideals on X satisfying

ap · aq ⊂ ap+q for all p, q ∈ N∗. We will always assume am 6= (0) for some m ∈ N∗. We

write M(a•) := {m ∈ N∗ | am 6= (0)}. By convention, a0 := OX .

Given a valuation v ∈ ValX , it follows from Fekete’s Lemma that the limit

v(a•) := lim
M(a•)3m→∞

v(am)

m

exists, and equals infm v(am)/m; see [JM12]. Note that if v is a non-trivial valuation, then

a•(v) is a graded sequence of ideals.

A graded sequence a• of ideals will be called nontrivial if there exists a divisorial

valuation v such that v(a•) > 0. By Izumi’s inequality, this is equivalent to the existence

of a point ξ ∈ X and δ > 0 such that am ⊂ m
dδme
ξ for all m ∈ N.

Lemma 2.2.1. Let v ∈ ValX and a• a graded sequence of ideals on X. If v(a•) ≥ 1, then

am ⊂ am(v) for all m ∈ N.

Proof. Since 1 ≤ v(a•) = infm v(am)/m, we see that m ≤ v(am). Therefore, am ⊂
am(v).
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2.2.9 Volume and multiplicities

Let X be a variety and x ∈ X a closed point. An ideal a ⊂ OX is mx-primary if

Supp(OX/a) = {x}. Equivalently, md
x ⊂ a ⊂ mx for some d ∈ N∗. If a is mx-primary, then

the multiplicity of a is

e(a) = lim
m→∞

`(OX/am)

mn/n!
,

where `(OX/am) denotes the length of OX/am as a OX-module and n is the dimension of

X.

If a• is a graded sequence of mx-primary ideals, then the multiplicity and volume of a•,

as defined in [ELS03], are given by

e(a•) = lim
m→∞

e(am)

mn
and vol(a•) = lim sup

m→∞

`(OX/am)

mn/n!
.

It follows from Teissier’s Minkowski inequality that e(a•) = infm∈M(a•) and the limit in

the definition of e(a•) exists [Mus02, Corollary 1.5]. As a result of [ELS03, Mus02, LM09,

Cut13], e(a•) = vol(a•) and limm→∞
`(OX,x/am)

mn/n!
exists.

Let v be a valuation centered at a closed point x ∈ X. The volume of v, as defined in

[ELS03], is given by

vol(v) := vol(a•(v)) = e(a•(v)).

The volume function is homogeneous of order −n, i.e. vol(c · v) = c−n vol(v) for c > 0.

2.2.10 Integral closure

Let X be a normal variety and a ⊂ OX a nonzero ideal. Write ν : X+ → X for the

normalized blowup up X along a and a · OX+ = OX+(−F ), where F is a Cartier divisor

on X+. The ideal a := ν∗(OX+(−F )) is called the integral closure of a. Note that a ⊂ a.

If a is mx-primary for some closed point x ∈ X, then e(a) = e(a).

The integral closure may also be expressed using valuations [Laz04, Example 9.6.8].

Indeed, if U ⊂ X is an open affine set, then

a(U) = {f ∈ OX(U) | v(f) ≥ v(a) for all v ∈ DivValU}.
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Chapter 3

Valuation space and singularities

In this section, we work in the setting of log pairs and collect results on log discrepancies,

multiplier ideals, and log canonical thresholds. While this material is known to experts,

much of these results are not written for log pairs. The results for smooth varieties and

normal varieties can be found in [JM12, BdFFU15].

3.1 Structure of the valuation space

We (roughly) follow [BdFFU15, Section 2] in recalling information from [JM12] on the

structure of the valuation space.

Definition 3.1.1. A normalizing subscheme of a variety X is a non-trivial closed sub-

scheme N ⊂ X that contains Xsing. We write

ValNX = {v ∈ ValX | v(IN) = 1},

for the normalized valuation space of X defined by N .

Note that

R∗+ · ValNX = {v ∈ ValX | v(IN) > 0}

and

Val∗X =
⋃
N⊂X

R∗+ · ValNX

where the union runs through all normalizing subschemes of X.

Definition 3.1.2. Let N be a normalizing subscheme of a variety X. We say π : Y → X

is a good resolution of X if π is a proper birational morphism satisfying
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• π is an isomorphism over X \N ,

• Y is smooth,

• Exc(π) and π−1(N) are both pure codimension 1 in Y , and

• the divisor
∑

i∈I Ei given by π−1(N)red has simple normal crossing and the intersec-

tion EJ := ∩j∈JEJ is irreducible (or empty) for each subset J ⊂ I.

Let N be a normalizing subscheme of X and π : Y → X a good resolution. To the

simple normal crossing divisor
∑

i∈I Ei = π−1(N)red, we associate a set of quasimonomial

valuations. Fix J ⊂ I such that EJ is nonempty and write ηJ for its generic point in Y .

Next, choose local coordinates {yj | j ∈ J} for OY,ηJ such that yj locally defines Ej for

each j ∈ J . To each vector (αi | i ∈ I) ∈ RI
+ with αi = 0 for each i ∈ I \ J , we associate

the quasimonomial valuation vα, as in Section 2.2.3, satisfying v(yj) = αj for each j ∈ J .

Note that

vα(IN) =
∑
j∈J

αj ordEj(IN).

We write ∆N
π ⊂ ValNX for the set of quasimonomial valuations vα, as above, satisfying

vα(IN) = 1.

Viewing ∆N
π as a subset of RI

+ gives a geometric realization of the dual complex of∑
i∈I Ei. Recall that the dual complex of

∑
i∈I Ei is the simplicial complex whose vertices

are in bijection with elements of I and m-simplices are in bijections with subsets J ⊂ I of

cardinality m such that EJ 6= ∅.
Given v ∈ ValNX , we write rNπ (v) for the valuation in ∆N

π that takes value v(Ei) on Ei.

See [JM12, Section 4.3] for further details. This gives a continuous retraction map

rNπ : ValNX → ∆N
π .

If π and π′ are good resolutions of N , we write π ≤ π′ when π′ factors through π. In this

case rNπ ◦ rNπ′ = rNπ [JM12, Lemma 4.6].

Theorem 3.1.3. [JM12] If N is a normalizing subscheme of X, then

ValNX =
⋃
π

∆N
π ,

where the union runs through all good resolutions of N . Furthermore, if v ∈ ValNX , then

v = sup
π
rNπ (v).

16



Definition 3.1.4. We call σ a face of ValNX if there exists a good resolution π such that

σ is a face of ∆N
π . We say that a function ValNX → R ∪ {+∞} is affine (resp., convex) on

σ if it is affine (resp., convex) on the previously described embedding of σ into RI .

Remark 3.1.5. If π : Y → X is a good resolution of N and D is a Q-divisor supported

on π−1(N)red, then v 7→ v(D) is affine on ∆N
π . Indeed, if D =

∑
i∈I ciEi and vα ∈ ∆N

π ,

then

vα(D) =
∑
i∈I

αi ordEi(D) =
∑
i∈I

(αi · ci) .

Furthermore, it follows from the definition of rNπ that v(D) = rNπ (D) for all v ∈ ValNX .

Proposition 3.1.6. Let N be a normalizing subscheme of X and a ⊂ OX an ideal. If

π is a good resolution of N , then rNπ (v)(a) ≤ v(a) for all v ∈ ValNX . Furthermore, if N

contains the zero locus of a and π dominates the blowup of a, then v is affine on the faces

of ∆N
π and rNπ (v)(a) = v(a).

Proof. See [BdFFU15, Proposition 2.4] for a proof of the statement.

Proposition 3.1.7. Let N be a normalizing subscheme of X and a• a graded sequence of

ideals on X.

(i) The function v 7→ v(a•) is upper semicontinuous on ValX .

(ii) If π is a good resolution of N and v ∈ ValNX , then rNπ (v)(a•) ≤ v(a•).

(iii) If N contains the zero locus of am′ for some m′ ∈M(a•), then v 7→ v(a•) is bounded

on ValNX .

Proof. The statements follow from the previous proposition and the equation v(a•) =

infm
v(am)
m

.

Definition 3.1.8. In further sections, we will work in the settings of pairs. If (X,B) is

a pair, we say N is a normalizing subscheme of (X,B) if N is a normalizing subscheme

of X and N contains Supp(B). Note that if N is normalizing subscheme of (X,B) and

π : Y → X is a good resolution of N , then π is also a log resolution of the triple (X,B, IN )

and BY is supported on π−1(N)red.
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3.2 Log discrepancies

In this section we define the log discrepancy function associated to a pair (X,B). Note

that such a function was constructed for smooth varieties in [JM12] and normal varieties

in [BdFFU15].

In order to define the log discrepancy function on the space of valuations, we first

define the function for divisorial valuations. Let (X,B) be a log pair, and consider a

valuation v = c · ordE ∈ ValX , where Y → X is a proper birational morphism with Y

normal, E ⊂ Y a prime divisor, and c ∈ Q∗+. We set

AX,B(v) = c (1 + the coefficient of E in −BY ) .

It is straightforward to check that AX,B(v) is independent of the morphism Y → X.

Therefore, this gives a function

AX,B : DivValX → R .

Theorem 3.2.1. There is a unique extension of AX,B to a homogeneous lower semicon-

tinuous function AX,B : ValX → R ∪ {+∞} such that for each normalizing subscheme N

of (X,B) the following hold:

(i) The function AX,B is affine on the faces of ValNX .

(ii) If v ∈ ValNX , then AX,B(v) = sup
π
AX,B(rNπ (v)), where the supremum runs through all

good resolutions of N .

Following the argument in [BdFFU15], we prove the existence of such a function by

reducing to the smooth case. The following result was proved in [JM12].

Proposition 3.2.2. If X is smooth and B = 0, then Theorem 3.2.1 holds. Additionally,

if π : Y → X is a proper birational morphism of smooth varieties, then AX,0(v) =

AY,0(v) + v(KY/X) for all v ∈ ValX .

Proof. See [JM12, Proposition 5.1].

Proposition 3.2.3. Let (X,B) be a log pair and π : Y → X be a log resolution of (X,B).

The function ValX → R ∪ {+∞} defined by v 7→ AY,0(v) − v(BY ) is independent of the

choice of log resolution π : Y → X. Furthermore, the function is homogeneous, lower

semicontinuous, and agrees with AX,B : DivValX → R on DivValX .

18



Proof. We first prove that the function is independent of the choice of π. Since any two

log resolutions of (X,B) may be dominated by a third log resolution, it is sufficient to

consider the case when there are morphisms Z
ρ→ Y

π→ X such that π and ρ ◦ π are both

log resolutions of (X,B) and then show

AY,0(v)− v(BY ) = AZ,0(v)− v(BZ) (3.1)

for all v ∈ ValX . Applying the previous theorem gives AY,0(v) = AZ,0(v) + v(KZ/Y ). Since

BZ = ρ∗BY − KZ/Y , we have v(BZ) = v(BY ) − v(KZ/Y ) for all v ∈ ValX . Thus, (3.1)

holds.

Next, we show the second statement. It is clear that the function is homogeneous and

lower semicontinuous, since both v 7→ AY,0(v) and v 7→ −v(BY ) satisfy these properties.

To show the function agrees with AX,B on DivValX , fix v ∈ DivValX . We may find a log

resolution W → X of (X,B) and a prime divisor E on W such that v = c · ordE for some

c ∈ Q∗+. Now,

AX,B(c · ordE) = c(1− ordE(BW )) = AW,0(v)− v(BW ).

By the previous paragraph, AW,0(v)−v(BW ) = AY,0(v)−v(BY ), and the proof is complete.

Proof of Theorem 3.2.1. The uniqueness of such a function is clear. Indeed, property (i)

combined with the definition of AX,B on DivValX uniquely characterizes AX,B on the

faces of ValNX . After AX,B is determined on the faces of ValNX , property (ii) determines the

function on the remaining valuations in ValNX .

To prove the existence of AX,B, we look at the function considered in Proposition 3.2.3.

Write Ã : ValX → R∪ {+∞} for this function. In light of Proposition 3.2.3, we are left to

show Ã satisfies properties (i) and (ii).

Fix a normalizing subscheme N of (X,B) and π : Y → X, a good resolution of N .

By Proposition 3.2.2, v 7→ AY,0(v) is affine on ∆N
π . Since BY is supported on π−1(N)red,

v 7→ v(BY ) is affine on ValNX . Hence, Ã satisfies (i). For (ii), we note that Proposition

3.2.2 implies AY,0(v) = supπ′≥π AY,0(rNπ (v)), where the supremum runs through all good

resolutions π′ of N that factor through π. Since v(BY ) = rNπ′(v)(BY ) for such π′, we

conclude Ã(v) = supπ′≥π AY,0(v).

In the following propositions we describe various properties of the log discrepancy

function.
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Proposition 3.2.4. Let (X,B) be a pair.

(i) If π : Y → X is a proper birational morphism with Y normal, then AX,B(v) =

AY,BY (v) for all v ∈ ValX .

(ii) If B′ is a Q-Cartier divisor, then AX,B+B′(v) = AX,B(v)− v(B′) = for all v ∈ ValX .

Proof. It is straightforward to show that the above formulas hold for all v ∈ DivValX .

Applying Theorem 3.2.1 gives that the formulas hold for all v ∈ ValX .

Proposition 3.2.5. Let (X,B) be a pair, N a normalizing subscheme of (X,B), and

π : Y → X a good resolution of N . For any v ∈ ValNX , we have AX,B(rNπ (v)) ≤ AX,B(v)

and equality holds if and only if v ∈ ∆N
π .

Proof. The statement reduces to a result in [JM12]. Indeed, combining Proposition 3.2.4

with the equality v(BY ) = rNπ (v)(BY ) yields

AX,B(v)− AX,B(rNπ (v)) = AY,0(v)− AY,0(rNπ (v)).

Since Y is smooth, we may apply [JM12, Corollary 5.4] to see AY,0(v) ≥ AY,0(rNπ (v)) and

equality holds if and only if v ∈ ∆N
π . Hence, the result follows.

Proposition 3.2.6. Let (X,B) be a pair and N a normalizing subscheme of (X,B).

(ii) If (X,B) is klt (resp., log canonical), then AX,B(v) > 0 (resp., ≥ 0) for all v ∈ ValNX .

(iii) For each a ∈ R, the set ValNX ∩{AX,B ≤ a} is compact.

Proof. For (i), assume (X,B) is klt (resp., log canonical). Thus, AX,B > 0 (resp., ≥ 0)

on DivValX . Now, let π be a good resolution of N . Since AX,B(v) ≥ AX,B(rNπ (v)) for all

v ∈ ValNX , in order to show AX,B > 0 (resp., ≥ 0) on ValNX , it is sufficient to show the

inequality on ∆N
π . We know that inequality holds on the vertices of ∆N

π (the vertices

correspond to divisorial valuations). Since AX,B is affine on ∆N
π , the inequality holds on

∆N
π and (i) is complete.

For (ii), fix a good resolution π : Y → X of N . By [BdFFU15, Lemma 3.4], the set

{AY,0 ≤ a′} ∩ ValNX is compact for each a′ ∈ R. Note that AX,B(v) = AY,0(v) + v(BY )

and v(BY ) is bounded on ValNX . Therefore, given a ∈ R, we may find a′ so that {AX,B ≤
a} ∩ ValNX is contained in {AY,0 ≤ a′} ∩ ValNX . Since AX,B is lower semicontinuous,

{AX,B ≤ a} ∩ ValNX is closed in {AY,0 ≤ a′} ∩ ValNX , and, hence, compact.
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3.3 Multiplier ideals

In this section, we recall basic properties of multiplier ideals. See [Laz04] for further details

and applications.

Definition 3.3.1. Let (X,B) be an effective pair and a ⊂ OX a nonzero ideal. Fix a log

resolution π : Y → X of the triple (X,B, a) with a · OY = OY (−F ). For c ∈ Q∗+, the

multiplier ideal J ((X,B), ac) is defined as

J ((X,B), ac) := π∗OY (d−BY − cF e) .

It is a basic fact that J ((X,B), ac) ⊂ OX and is an ideal. Furthermore, the ideal is

independent of the choice of π.

We use the convention that if a = (0) is the zero ideal, then J ((X,B), ac) = (0).

When c = 1, we simply write J ((X,B), a) for J ((X,B), ac). Note that if m ∈ N∗, then

J ((X,B), am) = J ((X,B), b), where b is the standard m-th power of a.

If a1, . . . , ar ⊂ OX are nonzero ideals and c1, . . . , cr ∈ Q∗+, we may define the mixed

multiplier ideal J ((X,B), ac11 · · · · · acrr ) in a similar manner. Fix a morphism π : Y → X

that is a resolution of the triple (X,B, a1 · · · · · ar) with ai · OY = OY (−Fi). We set

J ((X,B), a1
c1 · · · · · acrr ) := π∗OY (d−BY − c1F1 − · · · − crFre) .

Note that if we choose b, a1, . . . , ar ∈ Q∗+ such that ci = ai/b, then the above mixed

multiplier ideal is equal to the usual multiplier ideal

J
(
(X,B), (aa11 · · · · · aarr )1/b

)
.

Proposition 3.3.2. An effective triple (X,B, ac) is klt if and only if J ((X,B), ac) = OX .

Proof. Let π : Y → X be a log resolution of (X,B, ac) with a · OY = OY (−F ). Now,

J ((X,B), ac) = OX if and only if d−BY − cF e is effective. The latter is equivalent to

−BY − cF having coefficients > −1, which is precisely the condition for (X,B, ac) to be

klt.

Multiplier ideals satisfy the following containment relations. See [Laz04, Proposition

9.2.32] for variants of these statements in the case when X is smooth and B = 0.

Lemma 3.3.3. Let (X,B) be an effective pair, a1, a2 ⊂ OX nonzero ideals, and c1, c2 ∈
Q∗+.
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(i) If ai ⊂ bi , then

J ((X,B), ac11 · ac22 ) ⊂ J ((X,B), bc11 · bc22 ).

(ii) If ci > di > 0 are rational numbers, then

J ((X,B), ac11 · ac22 ) ⊂ J ((X,B), ad11 · ad22 ).

(iii) If (X,B) is klt, then

a1 ⊂ J ((X,B), a1).

(iv) We have

a1 · J ((X,B), ac22 ) ⊂ J ((X,B), a1 · ac22 ).

An essential property of multiplier ideals is the following subadditivity property. The

version we state appears in [Tak13] and generalizes [DEL00, Tak06, Eis11].

Theorem 3.3.4. Let (X,B) be an effective pair and r ∈ N∗ such that r(KX + B) is

Cartier. If a, b ⊂ OX are nonzero ideals and c, d ∈ Q∗+, then

JacX ·J ((X,B), ac · bd · OX(−rB)1/r) ⊂ J ((X,B), ac) · J ((X,B), bd),

where JacX denotes the Jacobian ideal of X.

The previous result implies the following statement, which will be more useful for our

purposes.

Corollary 3.3.5. Let (X,B) be an effective pair and r ∈ N∗ such that r(KX + B) is

Cartier. If a, b ⊂ OX are nonzero ideals and c, d ∈ Q∗+, then

JacX ·OX(−rB) · J ((X,B), ac · bd) ⊂ J ((X,B), ac) · J ((X,B), bd),

where JacX denotes the Jacobian ideal of X.

Proof. Lemma 3.3.3 implies

OX(−rB) · J ((X,B), ac · bd) ⊂ J ((X,B), ac · bd · OX(−rB))

⊂ J ((X,B), ac · bd · OX(−rB)1/r).

Applying the previous theorem yields the desired formula.
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3.3.1 Asymptotic multiplier ideals

Definition 3.3.6. Let (X,B) be an effective pair, a• a graded sequence of ideals on X,

and c ∈ Q∗+. By Lemma 3.3.3, we have

J
(
(X,B), ac/pp

)
⊂ J

(
(X,B), ac/(pq)pq

)
for all positive integers p, q. This, together with the Noetherianity of X, implies{

J
(
(X,B), ac/pp

)}
p∈N

has a unique maximal element, which we call the c-th asymptotic multiplier ideal and

denote by J ((X,B), ac•). Note that J ((X,B), ac•) = J
(

(X,B), a
c/p
p

)
for all p divisible

enough.

Corollary 3.3.7. Let (X,B) be a klt pair, and fix r ∈ N∗ such that r(KX +B) is Cartier.

If a• is a graded sequence of ideals on X, then

(JacX ·OX(−rB))m−1 · J ((X,B), amc• ) ⊂ J ((X,B), ac•)
m.

for all m, ` ∈ N∗.

Proof. The theorem can be deduced from Corollary 3.3.5 and the definition of the asymp-

totic multiplier ideal. See [Laz04, Theorem 11.2.3] for a similar argument in the case when

X is smooth and B = 0.

3.3.2 Multiplier ideals and valuations

Following [BdFFU15], we explain that (asymptotic) multiplier ideals may be defined

valuatively.

Proposition 3.3.8. Let (X,B) be an effective pair, a ⊂ OX a nonzero ideal, and c ∈ Q∗+.

Fix an open affine subset U ⊂ X and f ∈ OX(U). The following conditions are equivalent:

(i) f ∈ J ((X,B), ac)(U).

(ii) v(f) > cv(a)− AX,B(v) for all v ∈ DivValU .

(iii) v(f) > cv(a)− AX,B(v) for all v ∈ ValU
∗.
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Proof. It is sufficient to consider the case when X is affine and U = X. Assume this is

the case, and choose a log resolution of π : Y → X of (X,B, a) with a · OY = OY (−F ).

By the definition of the multiplier ideal, f ∈ J ((X,B), ac)(X) if and only if

ordE(f) + dordE(−BY − cF )e ≥ 0

for all prime divisors E on Y . Since

ordE(−BY − cF ) = AX,B(ordE)− 1− c · ordE(a)

and ordE(f) ∈ Z, we see f ∈ J ((X,B), c · a)(X) if and only if

ordE(f) > c · ordE(a)− AX,B(ordE)

for all such E. Since any divisorial valuation may be realized as coming from a log

resolution of (X,B, a), we conclude (i) and (ii) are equivalent.

Since the implication (iii) =⇒ (ii) is trivial, we are left to show (ii) =⇒ (iii). Assume

(ii) holds and fix a normalizing subscheme N of (X,B) that contains the zero loci of both

a and (f). We will show that the function φ : ValNX → R ∪ {+∞} defined by

φ(v) = v(f)− c · v(a) + AX,B(v)

is > 0.

To show the previous inequality, first choose a good resolution π : Y → X of N that

factors through the blowup of a. By our assumption that (ii) holds, we see φ > 0 on the

vertices of ∆N
π . Since φ is affine on the faces of ∆N

π (see Proposition 3.1.6 and Theorem

3.2.1), we see φ > 0 on ∆N
π . Since φ ≥ φ ◦ rNπ (see Proposition 3.1.6 and Theorem 3.2.1),

we conclude that φ > 0 on ValNX .

Proposition 3.3.9. Let (X,B) be an effective pair, a• a graded sequence of ideals on X,

and c ∈ Q∗+ Fix an affine open subset U ⊂ X and f ∈ OX(U). The following conditions

are equivalent:

(i) f ∈ J ((X,B), ac•)(U).

(ii) v(f) > cv(a•)− AX,B(v) for all v ∈ DivValU .

(iii) v(f) > cv(a•)− AX,B(v) for all v ∈ ValU
∗.
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Proof. Since J ((X,B), ac•) = J ((X,B), a
c/m
m ) for all m divisible enough, we apply the

previous theorem to see i) is equivalent to the following two statements:

(ii’) If m ∈ N∗ is divisible enough, then v(f) > (c/m)v(am)−AX,B(v) for all v ∈ DivValU

(iii’) If m ∈ N∗ is divisible enough, then v(f) > (c/m)v(am)− AX,B(v) for all v ∈ ValU

Since v(a•) = infm v(am)/m = limm v(am)/m, we see (ii) ⇐⇒ (ii’) and (iii) ⇐⇒ (iii’)

hold.

3.3.3 Approximation of valuation ideals

In this section, we consider the following generalization of [ELS03, Theorem A] regarding

the asymptotic behavior of valuation ideals.

Proposition 3.3.10. Let (X,B) be a klt pair and r a positive integer so that r(KX +B)

is Cartier. If v ∈ Val∗X satisfies AX,B(v) < +∞, then

(JacX ·OX(−rB))`−1am(v)` ⊆ (JacX ·OX(−rB))`−1am·`(v) ⊆ (am−AX,B(v)(v))`

for all m, ` ∈ N∗.

The proposition is a consequence of properties of asymptotic multiplier ideals. Before

beginning the proof, we prove the following statements.

Lemma 3.3.11. If X is variety and v ∈ Val∗X , then v(a•(v)) = 1.

Proof. By the definition of am(v), we have v(am(v)) ≥ m. Next, set α := v(a1(v)). We

have a1(v)dm/αe ⊆ am(v), since v(a1(v)dm/αe) = αdm/αe ≥ m. Thus,

v(am(v)) ≤ v(a1(v)dm/αe) = αdm/αe.

The previous two bounds combine to show

1 ≤ v(am(v))

m
≤ α · dm/αe

m
,

and the result follows.

Proposition 3.3.12. Let (X,B) be an effective pair. If v ∈ Val∗X satisfies AX,B(v) < +∞
and c ∈ Q∗+, then

J ((X,B), a•(v)c) ⊂ ac−AX,B(v)(v).
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Proof. By Proposition 3.3.9, we see

J ((X,B), a•(v)c) ⊂ am(v),

where m = c · v(a•(v))− AX,B(v). Applying the previous lemma completes the proof.

Proof of Proposition 3.3.10. Since a•(v) is a graded sequence of ideals, (am(v))` ⊂ am·`(v).

This proves the first inclusion.

To prove the second inclusion, we observe

(JacX ·OX(−rB))`−1am·`(v) ⊂ (JacX ·OX(−rB))`−1J ((X,B), am·`)

⊂ (JacX ·OX(−rB))`−1J ((X,B), am·`• )

⊂ J ((X,B), am• )`,

where the first inclusion follows from Lemma 3.3.3, the second from the definition of the

asymptotic multiplier ideal, and the third from Corollary 3.3.7. Applying Proposition

3.3.12 completes the proof.

3.4 Log canonical thresholds

Definition 3.4.1. Let (X,B) be a klt pair. For a nonzero ideal a ⊂ OX , the log canonical

threshold of a with respect to (X,B) is given by

lct(X,B; a) = sup{c ∈ Q∗+ | J ((X,B), ac) = OX}.

This invariant measures the singularities of the subscheme cut out by a. Note that

lct(X,B;OX) = +∞. By convention, we set lct(X,B; a) = 0, when a is the zero ideal.

Similarly, if a• is a graded sequence of ideals on X, then log canonical threshold of a•

is given by

lct(X,B; a•) := sup{c ∈ Q∗+ | J ((X,B), ac•) = OX}.

When the choice of the pair (X,B) is clear, we will often simply write lct(a) and lct(a•).

Proposition 3.4.2. If (X,B) is a klt pair and a ⊂ OX is a nonzero ideal, then

lct(X,B; a) = inf
v∈DivValX

AX,B(v)

v(a)
= inf

v∈Val∗X

AX,B(v)

v(a)
.1

1We use the convention that if either AX,B(v) = +∞ or v(a) = 0, then AX,B(v)/v(a) = +∞. Similarly,
if a• is graded sequence of ideals, we set AX,B(v)/v(a•) = +∞ if either AX,B(v) = +∞ or v(a•) = 0.
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Furthermore, if π : Y → X is a log resolution of (X,B, a) and a · OY = OY (−F ), then

the above infimum is achieved by a valuation of the form ordE where E is a prime divisor

in the support of F .

Proof. By Proposition 3.3.12, J ((X,B), ac) = OX if and only if v(1) > cv(a)− AX,B(v)

for all v ∈ DivValX (resp., v ∈ Val∗X). Noting that v(1) = 0 for all v ∈ ValX yields the

desired formulas. Using a similar argument and the definition of J ((X,B), ac) in terms of

a log resolution implies the last statement of the proposition.

Proposition 3.4.3. If (X,B) is a klt pair and a• a graded sequence of ideals on X, then

lct(X,B; a•) = inf
v∈DivValX

AX(v)

v(a•)
= inf

v∈Val∗X

AX,B(v)

v(a•)
.

Proof. The proof is the same as the proof for the similar statement in Proposition 3.4.2,

but uses Proposition 3.3.9 rather than 3.3.8.

Proposition 3.4.4. If a• is a graded sequence of ideals on X, then

lct(X,B; a•) = lim
M(a•)3m→∞

m · lct(X,B; am) = sup
m∈M(a•)

m · lct(X,B; am).

Proof. Following the argument in [Mus02], we begin by showing limM(a•)3m→∞m·lct(X,B; am)

exists and equals supm∈M(a•) m · lct(am). Since am · ap ⊂ am+p, we see

v(am+p)

AX,B(v)
≤ v(am)

AX,B(v)
+

v(ap)

AX,B(v)
.

for all v ∈ DivValX . By Proposition 3.4.3, it follows that

1

lct(am+p)
≤ 1

lct(am)
+

1

lct(ap)
.

for all m, p ∈M(a•). Applying [JM12, Lemma 2.3] yields the desired statement.

We now move on to show lct(X,B; a•) = limM(a•)3m→∞m · lct(X,B; am). Fix c ∈ Q∗+,

and note that c < lct(a•) if and only if J ((X,B), ac•) = OX . Since J ((X,B), ac•) =

J ((X,B), a
c/m
m ) for all m-divisible enough, the latter condition is equivalent to c <

m · lct(X,B; am) for all m divisible enough. Thus, lct(a•) = limM(a•)3m→∞m · lct(X,B; am)

and the proof is complete.

Proposition 3.4.5. Let (X,B) be a klt pair and a• a graded sequence of ideals. The

graded sequence a• is nontrivial if and only if lct(X,B; a•) < +∞.
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Proof. Recall that a• is nontrivial if and only if there exists a divisorial valuation v on X

such that v(a•) > 0. Therefore, the statement is an immediate consequence of Proposition

3.4.3.

Definition 3.4.6. If (X,B) is klt pair and D a Q-Cartier Q-divisor on X, we can also make

sense of log canonical threshold of D. Pick m ≥ 1 so that mD is a Cartier divisor, and set

lct(X,B;D) = m · lct(X,B;OX(−mD)). It is straightforward to check that this definition

is independent of the choice of m and lct(X,B;D) = sup{λ ∈ Q∗+ | (X,B + cD) is klt}.

The following statement follows immediately from the above definition and Proposition

3.4.2.

Proposition 3.4.7. If (X,B) is a klt pair and D is a Q-Cartier divisor on X, then

lct(X,B; a) = inf
v∈DivValX

AX,B(v)

v(D)
= inf

v∈Val∗X

AX,B(v)

v(D)
.

Furthermore, if π : Y → X is a log resolution of (X,B +D), then the above infimum is

achieved by a valuation of the form ordE where E is a prime divisor in the support of π∗D.

3.4.1 Valuations computing the log canonical threshold

Definition 3.4.8. Let (X,B) be a klt pair and a• a graded sequence of ideals on X. In

light of Proposition 3.4.3, we say that a valuation v∗ ∈ Val∗X computes lct(X,B; a•) if

lct(a•) = AX,B(v∗)/v∗(a•).

Lemma 3.4.9. If (X,B) is a klt pair and v ∈ Val∗X , then lct(X,B; a•(v)) ≤ AX,B(v) and

equality holds if and only if v computes lct(X,B; a•(v)).

Proof. The statement is an immediate consequence of Proposition 3.4.3 and the fact that

v(a•(v)) = 1 (Lemma 3.3.11).

The following theorem generalizes [JM12, Theorem A] to klt pairs. Our proof is similar

in technique to the proof in [JM12].

Theorem 3.4.10. If (X,B) is a klt pair and a• a graded sequence of ideals on X, then

there exists a valuation v∗ ∈ Val∗X computing lct(X,B; a•).

Proof. If lct(X,B; a•) = +∞, then any valuation v ∈ Val∗X computes lct(X,B; a•). Thus,

we may assume lct(X,B; a•) < +∞ and set c := lct(X,B; a•).
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Fix a normalizing subscheme N of (X,B) such that N contains the zero locus of am′

for some m′ ∈M(a•). We claim

lct(X,B; a•) = inf
v∈ValNX

AX,B(v)

v(a•)
.

Indeed, since v 7→ AX,B(v)

v(a•)
is invariant under scaling, it is sufficient to show that if v(a•) > 0,

then v ∈ R∗+ · ValNX . Now, if v(a•) > 0, then v(am′) > 0. Since N was chosen to contain

the zero locus of am′ , v(am′) > 0 implies v(IN) > 0. This completes the claim.

Next, by Proposition 3.1.7, we may choose B ∈ R+ so that v(a•) ≤ B for all v ∈ ValNX .

Fix ε > 0, and note that if AX,B(v)/v(a•) < c+ ε, then AX,B(v) ≤ (c+ ε)B. Therefore,

lct(X,B; a•) = inf
v∈W

AX,B(v)

v(a•)
, (3.2)

where W = ValNX ∩{AX,B ≤ (c+ ε)B}.
Let φ : ValNX → R ∪ {+∞} be the function defined by

φ(v) = AX,B(v)− c · v(a•).

By (3.2), infv∈W φ(v) = 0. Since W is compact (Proposition 3.2.6) and φ is lower

semicontinous (Proposition 3.1.7 and Theorem 3.2.1), there exists v∗ ∈ W such that

φ(v∗) = AX,B(v∗)− c · v∗(a•) = 0. The latter implies v∗ computes lct(X,B; a•).

3.4.2 Log canonical thresholds in families

In this section we prove well known results on the behavior of the log canonical threshold

along a family of ideals. See [Kol96] and [Amb16] for related statements.

We consider the following setup. Let (X,B) be a klt pair and T a variety. Write

p : X × T → T for the second projection map. Set Xt := p−1(t) and Bt = B × {t}. If a is

an ideal on OX×T , we write at := a · OX×{t} for each t ∈ T .

Proposition 3.4.11. If a ⊂ OX×T is a nonzero ideal, then there exists a nonempty open

set U ⊂ T such that U is smooth and

lct(X × U,B × U ; a|X×U) = lct(Xt, Bt; at)

for all closed points t ∈ U .
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Proof. Since we may shrink T , we may assume T is smooth. Hence, (X × T,B × T ) is a

pair. Let π : Y → X × T be a log resolution of (X × T,B × T, a). For t ∈ T , we set Yt

equal to the fiber of Y → X × T → T . Write

KY − µ∗(KX×T +B × T ) =
r∑
i=1

aiEi and a · OY = OY

(
−

r∑
i=1

biEi

)
,

where each Ei is a distinct prime divisor on Y . Shrinking T further, we may also assume

each Ei dominates T .

By generic smoothness, there exists a nonempty open set U ⊂ T such that Y → T is

smooth over U and Exc(π) + B̃ × T +
∑
Ei has relative simple normal crossing over U .

Now, for each t ∈ U , Yt is a log resolution of (Xt, Bt, at) and

KYt − π∗(KXt +Bt) =
r∑
i=1

aiE|t and at · OYt = OY

(
−

r∑
i=1

biEi|t

)
.

Thus, lct(Xt, Bt; at) = mini=1,...,r
ai+1
bi

for all t ∈ U . Since the latter minimum is precisely

lct(X × U,B × U ; a|X×U), the proof is complete.

Proposition 3.4.12. Assume T is a smooth curve and 0 ∈ T is a closed point. If

a ⊂ OX×T is a nonzero ideal such that V (a) is proper over T , then there exists an open

set 0 ∈ U ⊂ T such that

lct(X0, B0; a0) ≤ lct(Xt, Bt; at)

for all closed points t ∈ U .

Proof. If a0 is the zero ideal, then lct((X0, B0), a0) = +∞ and the statement holds with

U = X. Thus, we may assume a0 is nonzero and set c = lct(X0, B0; a0). Since (X0, B0, a
c
0)

is log canonical, [KM98, Theorem 5.50] implies there exists an open set W ⊂ X such that

X0 ⊂ W and the restriction of (X,B+X0, a
c
0) to W is log canonical. Therefore, (X,B, ac0)

restricted to W is log canonical as well.

Now, set

V := {t ∈ T |V (a) ∩Xt ⊂ W}.

The set V is nonempty and open in T . Indeed, V contains 0. Additionally, V is the

complement of π(V (a) \W ) and V (a) is proper over T .
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Next, note that (X × V,B × V, a|cX×V ) is log canonical. By Proposition 3.4.11, we may

find a nonempty open set V ′ ⊂ V such that

lct(X × V ′, B × V ′; a|X×V ′) = lct(Xt, Bt : at)

for all t ∈ V ′. Therefore, lct(Xt, Bt; at) ≥ c for all t ∈ V ′. Setting U := V ′ ∪{0} completes

the proof.

3.5 The toric case

In this section, we will describe log discrepancies and log canonical thresholds in the toric

setting. Throughout, we will freely use notation and results found in [Ful93].

Let N ' Zn be a lattice and M = Hom(N,Z) the corresponding dual lattice. We

consider a pair (X,B), where X = X(∆) is given by a rational fan ∆ ⊂ NR := N ⊗Z R

and B is a torus invariant Q-divisor on X.

The open torus of X is denoted by T ⊂ X. Let v1, . . . , vd denote the primitive

generators of the one-dimensional cones in ∆ and D1, . . . , Dd be the corresponding torus

invariant divisors on X. Hence, there exist integers bi ∈ Q+ so that B =
∑d

i=1 biDi. Since

KX = −
∑d

i=1Di, the condition that KX + B is Q-Cartier translates to the following

statement: for each cone σ ∈ ∆, there exists b(σ) ∈MQ such that 〈b(σ), vi〉 = bi − 1 for

all vi ∈ σ.

3.5.1 Toric valuations

Given v ∈ |∆| (where |∆| denotes the support of ∆), let σ be the unique cone in ∆

containing v in its interior. The map

k[σ∨ ∩M ] =
⊕

u∈σ∨∩M

k · χu → R+

defined by ∑
u∈σ∨∩M

αuχ
u 7→ min{〈u, v〉 |αu 6= 0} (3.3)

gives rise to a valuation on X that we slightly abusively also denote by v. Its center on X

is the generic point of V (σ).

This induces in embedding |∆| ↪→ ValX , and we shall simply view |∆| as a subset of

ValX . These are called toric valuations, and we will sometimes refer to this set as ValTX .
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The valuation associated to the point vi ∈ NR is ordDi for 1 ≤ i ≤ d, and the valuation

associated to 0 ∈ NR is the trivial valuation on X.

Proposition 3.5.1. The restriction of the log discrepancy function AX,B to |∆| ⊂ ValX

is the unique function that is linear on the cones in ∆ and satisfies A(vi) = 1 − bi for

1 ≤ i ≤ d.

Proof. We first consider the case when X is a smooth and B = 0. In this case, the effective

divisor −KY = D1 + · · · + Dr is Cartier, and we write N ⊂ X for the corresponding

subscheme. Note that N is a normalizing subscheme of (X, 0) and id : X → X is a good

resolution of N . Furthermore, ∆N
id = {v ∈ ∆ | v(−KY ) = 1}. Since AX,0 is affine on ∆N

id

and takes value 1 on the vertices, we conclude AX,0(v) = v(−KY ) for all v ∈ |∆|.
We move on to the general case. Consider any cone σ ∈ ∆. Let vi ∈ N , 1 ≤ i ≤ r,

be the generators of the 1-dimensional cones contained in σ. Since KX +B is Q-Cartier,

there exists b(σ) ∈MQ such that 〈b(σ), vi〉 = −1 + bi for 1 ≤ i ≤ r. To complete the proof,

we will show that AX,B(v) = −〈b(σ), v〉 for all v ∈ σ.

Pick a refinement ∆′ of ∆ so that X ′ := X(∆′) is smooth. Hence, π : X ′ → X is a

proper birational morphism and |∆′| = |∆|. Proposition 3.2.4 implies

AX,B(v) = AX′,0(v)− v(BX′) = AX′,0(v) + v(KX′)− v(π∗(KX +B))

for all v ∈ ValX . From the smooth case, we know AX′,0(v) = −v(KX′). Since v(π∗(KX +

B)) = 〈b(σ), v〉 for all v ∈ σ, the desired statement follows.

3.5.2 Log canonical thresholds

The next proposition follows from the proof of [JM12, Proposition 8.1]. We say that

an ideal a on X is T -invariant if it is invariant with respect to the torus action on X.

Equivalently, for each σ ∈ ∆, the ideal a(Uσ) ⊂ k[σ∨ ∩M ] is generated by monomials.

Proposition 3.5.2. If a• is a nontrivial graded sequence of T -invariant ideals on X, then

there exists a toric valuation computing lct(X,B; a•). Further, any valuation that computes

lct(X,B; a•) is toric.

Proof. Pick a refinement ∆′ of ∆ such that X ′ := X(∆′) is smooth. This induces a proper

birational morphism X ′ → X. Let D′ be the sum of the torus invariant divisors on X ′.

By Theorem 3.4.10, there exists a valuation w ∈ ValX computing lct(X,B; a•). Since

ValX′ = ValX , we may also view w as a valuation on X ′. We now follow [JM12, §8].
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Let rX′,D′ : ValX′ → QM(X ′, D′) = |∆| denote the retraction map defined in loc. cit,

and set v := rX′,D′(w) ∈ NR. Then v(a•) = w(a•) > 0. Further, AX′,0(v) ≤ AX′,0(w),

with equality if and only if w = v. Note that AX,B(v) = AX′(v)− v(BX′). Additionally,

v(BX′) = w(BX′), since Supp(BX′) ⊂ Supp(D′).

This impliesAX,B(v) ≤ AX,B(w), with equality if and only if w = v. Thus, lct(X,B; a•) ≤
AX(v)/v(a•) ≤ AX(w)/w(a•) = lct(X,B; a•). Hence, w = v and the proof is complete.

Proposition 3.5.3. If (X,B) is a klt pair and D = c1D1 + · · · cdDd is an effective

Q-Cartier divisor on X, then

lct(X,B;D) = inf
v∈NR\{0}

AX,B(v)

v(D)
= min

i=1,...,d

1− bi
ci

.

Proof. Pick a refinement ∆′ of ∆ such that X ′ := X(∆′) is smooth. This induces a log

resolution π : X ′ → X of (X,B +D). Hence, there exists a prime divisor in the support

of π∗D that computes lct(X,B;D). Since such a valuation is toric, the first inequality

follows. (Alternatively, it is straightforward to deduce this equality from the previous

proposition.)

Next, the functions v → AX,B(v) and v → v(D) on NR are both linear on the cones of

∆, so the function v → AX,B(v)/v(D) on |∆| attains its infimum at some vi, 1 ≤ i ≤ d.

Since AX,B(vi) = 1− bi and vi(D) = ci we are done.
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Chapter 4

Minimizing the normalized volume function

4.1 Normalized volume of a valuation

Fix a klt pair (X,B) of dimension n and x ∈ X a closed point. Throughout this chapter

we will use our abbreviated notation for log discrepancies and log canonical thresholds.

Specifically, we write A(−) and lct(−) for AX,B(−) and lct(X,B;−).

As introduced in [Li15a], the normalized volume of a valuation v ∈ ValX,x is defined as

v̂ol(v) := A(v)n vol(v).

In the case when A(v) = +∞, we set v̂ol(v) := +∞. The word normalized refers to the

property that v̂ol(c · v) = v̂ol(v) for c ∈ R∗+.

Given a graded sequence a• of mx-primary ideals on X, we consider a related invariant.

We call

lct(a•)
n e(a•)

the normalized multiplicity of a•. Similar to the normalized volume, when lct(a•) = +∞,

we set lct(a•)
n e(a•) := +∞. The above invariant was previously studied in [dFEM04] and

[Mus02].

The following lemma provides elementary information on the normalized multiplicity.

The proof is left to the reader.

Lemma 4.1.1. Let a be an mx-primary ideal and a• a graded sequence of mx-primary

ideals on X.

1. If lct(a•)
n e(a•) < +∞, then

lct(a•)
n e(a•) = lim

m→∞
lct(am)n e(am).
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2. If b• is the graded sequence of ideals given by bm := am, then

lct(a)n e(a) = lct(b•)
n e(b•).

3. If aN• is the graded sequence whose m-th term is aN ·m, then

lct(a•)
n e(a•) = lct(aN•)

n e(aN•).

Lemma 4.1.2. Let a• be a graded sequence of mx primary ideals on X. If lct(a•) < +∞,

then lct(a•)
n e(a•) is finite and nonzero.

Proof. Assume lct(a•) < +∞. By Proposition 3.4.5, a• is nontrivial (as defined in Section

2.2.8). This means there exists δ > 0 such that am ⊂ m
dmδe
x for all m ∈ N. Therefore,

e(a•) ≥ δ e(mx) > 0.

We are left to show e(a•) < +∞ and lct(a•) > 0. Pick m′ with am′ not equal to the

zero ideal. Since

e(a•) ≤
e(am′)

m′n
< +∞ and lct(a•) ≥ m′ lct(am′) > 0,

the proof is complete.

The following proposition of Liu relates the normalized volume, an invariant of valua-

tions, to the normalized multiplicity, an invariant of graded sequences of ideals.

Proposition 4.1.3. [Liu16, Theorem 27] The following equality holds:

inf
v∈ValX,x

v̂ol(v) = inf
a• mx-primary

lct(a•)
n e(a•) = inf

amx-primary
lct(a)n e(a).

The previous statement first appeared in [Liu16]. In the case when x ∈ X is a smooth

point, one inequlity was given in [Li15a, Example 3.7]. We provide Liu’s proof, since the

argument will be useful to us. The proposition is a consequence of the following lemma.

Lemma 4.1.4. [Liu16] The following statements hold.

1. If a• is a graded sequence of mx-primary ideals and v ∈ ValX,x computes lct(a•),

then v̂ol(v) ≤ lct(a•)
n e(a•).

2. If v ∈ ValX,x, then lct(a•(v))n e(a•(v)) ≤ v̂ol(v).
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Proof. To prove (1), we first rescale v so that v(a•) = 1. Thus, A(v) = A(v)/v(a•) = lct(a•).

By Lemma 3.3.11, we have am ⊆ am(v) for all m ∈ N. Therefore e(a•(v)) ≤ e(a•), and

the desired inequality follows.

For (2), we apply Lemma 3.4.9 to see lct(a•) ≤ A(v). Thus,

lct(a•(v))n e(a•(v)) ≤ A(v)n e(a•(v)) = v̂ol(v).

Proof of Proposition 4.1.3. The first equality follows immediately from the previous propo-

sition and the fact that given a graded sequence a• of mx-primary ideals, there exists

a valuation v∗ ∈ ValX,x that computes lct(a•). The last equality follows from Lemma

4.1.1.

Remark 4.1.5. Above, we provided a dictionary between the normalized volume of a

valuation and the normalized multiplicity of a graded sequence of ideals. The normalized

multiplicity also extends to a functional on the set of (formal) plurisubharmonic functions

in the sense of [BFJ08]. In a slightly different setting, similar functionals, arising from

non-Archimedean analogues of functionals in Kähler geometry, were explored in [BHJ15].

4.1.1 Normalized volume minimizers

Proposition 4.1.6. If there exists a graded sequence of mx-primary ideals ã• such that

lct(ã•)
n e(ã•) = inf

v∈ValX,x
v̂ol(v),

then there exists v∗ ∈ ValX,x that is a minimizer of v̂ol : ValX,x → R∪{+∞}. Furthermore,

if there exists an mx-primary ideal ã such that

lct(ã)n e(ã) = inf
v∈ValX,x

v̂ol(v), ,

then we may choose v∗ to be divisorial.

Proof. Assume there exists such a graded sequence ã•. By Theorem 3.4.10, there exists

a valuation v∗ that computes lct(ã•). Since v̂ol(v∗) ≤ lct(ã•)
n e(ã•) (Lemma 4.1.4), v∗

minimizes v̂ol.

For the second statement, apply Proposition 3.4.2 to find a divisorial valuation v∗ that

computes lct(a). By the above argument, we see v∗ minimizes v̂ol.
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Proposition 4.1.7. If v∗ minimizes v̂ol : ValX,x → R ∪ {+∞}, then v∗ computes

lct(a•(v∗)).

Proof. Note that

lct(a•(v∗))
n e(a•(v)) ≤ A(v∗)

n e(a•(v∗)) = v̂ol(v∗),

where the inequality follows from Lemma 3.4.9. Since v∗ minimizes v̂ol, we see that

lct(a•(v∗)) = A(v∗). Now, Lemma 3.4.9 implies v∗ computes lct(a•(v∗)).

Remark 4.1.8. A conjecture of Jonsson and Mustaţă states that valuations computing

log canonical thresholds of graded sequences on smooth varieties are always quasimonomial

[JM12, Conjecture B]. Their conjecture in the klt case implies [Li15a, Conjecture 6.1.3],

which says that normalized volume minimizers are quasimonomial.

4.1.2 Uniform approximation of volume

Given a valuation v ∈ ValX centered at a closed point on a n-dimensional variety X, we

have

vol(v) = lim
m→∞

e(am(v))

mn
.

The following theorem provides a uniform rate of convergence for the terms in the above

limit.

Theorem 4.1.9. Let (X,B) be a n-dimensional klt pair and x ∈ X a closed point. For

ε > 0 and constants B, s ∈ N∗, there exists N = N(ε, B, s) such that the following holds:

If v ∈ ValX,x satisfies A(v) ≤ B and v(mx) ≥ 1
s
, then

vol(v) ≤ e(am(v))

mn
< vol(v) + ε

for all m ≥ N .

Remark 4.1.10. In an early version of [Blu16b], the previous theorem was proved with

the additional assumption that x ∈ X is an isolated singularity. We are grateful to Mircea

Mustaţă for noticing that a clever modification of the original proof results in the more

general statement.
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Proof. For any valuation v ∈ ValX,x, the first inequality is well known. Indeed, the

inclusion am(v)p ⊂ amp(v) implies

e(amp(v))

(mp)n
≤ e(am(v))

(m)n
.

Fixing m and sending p→∞ gives vol(v) ≤ e(am(v))/mn.

To prove the second inequality it is sufficient to show that for each ε > 0, there exists

N so that the following holds: if v ∈ ValX,x satisfies A(v) ≤ B and v(mx) ≥ 1/s, then

e(am(v))1/n

m
< vol(v)1/n + ε (4.1)

for all m ≥ N . Indeed, if v(mx) ≥ 1
s
, then

mms
x ⊆ am(v) (4.2)

for all m ∈ N∗. Thus,

vol(a•(v)) ≤ lim
m→∞

e(mms
x )

mn
= sn · e(mx).

We proceed to show there exists an N so that (4.1) holds.

Fix ε > 0 and choose r ∈ N∗ such that r(KX +B) is Cartier. Now, consider v ∈ ValX,x

satisfying A(v) ≤ E and v(mx) ≥ 1
s
. By Proposition 3.3.10 and the inequality A(v) ≤ E,

we have

(JacX ·OX(−rB))` am·`(v) ⊂ (am−A(v)(v))` ⊂ (am−E(v))`

for all m ≥ E and ` ∈ N∗. After replacing m by m+ E, we see

(JacX OX(−rB))` · a(m+E)`(v) ⊆ am(v)`. (4.3)

for all m, ` ∈ N∗. If x /∈ Xsing∪Supp(B), then JacX OX(−rB) is trivial in a neighborhood

of x. Therefore, (4.3) implies

` · e(am(v))1/n = e(am(v)`)1/n ≤ e(a(m+E)`(v))1/n

for all m, ` ∈ N∗. Dividing by m · ` gives

e(am(v))1/n

m
≤ m+ E

m
·

e
(
a(m+E)`(v)

)1/n

(m+ E)`
.
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After letting `→∞, we see

e(am(v))1/n

m
≤ vol(v)1/n +

E · vol(v)1/n

m
.

Since vol(v) ≤ sn e(mx), we conlude that (4.1) holds when N is chosen so that E · s ·
e(mx)

1/n/N < ε.

We move onto the case when x ∈ Xsing ∪ Supp(B). It follows from (4.3) and (4.2) and

the valuative criterion for integral closure (see Section 2.2.10) that

(JacX ·OX(−rB) + mms
x )`a(m+E)`(v) ⊆ am(v)`. (4.4)

Indeed, let w be a discrete valuation of the function field of X and f and g be local

sections of (JacX ·OX(−rB))i and mmsj
x , respectively, with i+ j = `. We have ` · w(f) +

i · w(a(m+E)`(v)) ≥ i · w(am(v)`) and w(g) ≥ j · w(am(v)) by the two inclusions. Thus,

w(fg) = w(f) + w(g) ≥ i

`

(
w(am(v)`)− w(a(m+E)`(v))

)
+
j

`
w(am(v)`)

= w(am(v)`)− w(a(m+E)`(v)).

From (4.4) and Teissier’s Minkowski Inequality [Laz04, Example 1.6.9], we see

` · e (am(v))1/n ≤ ` · e (JacX ·OX(−rB) + mms
x )1/n + e

(
a(m+E)`(v)

)1/n
.

Dividing by m · ` gives

e (am(v))1/n

m
≤ e (JacX ·OX(−rB) + mms

x )1/n

m
+
m+ E

m
·

e
(
a(m+E)`(v)

)1/n

(m+ E)`
.

After sending `→∞, we obtain

e (am(v))1/n

m
≤ e (JacX ·OX(−rB) + mms

x )1/n

m
+
m+ E

m
vol(v)1/n.

We will be able to find N := N(B, s, ε) so that (4.1) holds, if we show that

lim
m→∞

e (JacX ·OX(−rB) + mms
x )1/n

m
= 0. (4.5)

Choose a nonzero element h ∈ JacX ·OX(−rB) · OX,x, and set R := OX,x/(h) and

m̃x := mx ·R. Now, Lech’s inequality [Lec60, Theorem 3] implies

e(JacX ·OX(−rB) + mms
x ) ≤ n! · e(mx)`(OX/ JacX ·OX(−rB) + mms

x ).
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By our choice of h, the latter term is less than

n! · e(mx)`(OX,x/h+ mms
x ) = n! · e(mx)`(R/m̃

ms
x ).

Since R has dimension n− 1, limm→∞
`(R/m̃msx )

mn
= 0. Therefore, (4.5) holds.

4.1.3 Multiplicity in families

We proceed to prove a result on the behavior of the Hilbert-Samuel multiplicity in a family

of ideals. The result is well known to commutative algebraists.

First, we recall an interpretation of the Hilber-Samuel multiplicity in terms of in-

tersection numbers [Ram73]. Let X be a projective variety of dimension n, x ∈ X a

closed point, and a ⊂ OX a mx-primary ideal. If Y → X is a proper birational morphism

such that Y nonsingular and a · OY = OY (−F ), where F is a Cartier divisor on Y , then

e(a) = (−1)n−1F n.

Proposition 4.1.11. Let X,T be varieties, x ∈ X a closed point, and a ⊂ OX×T an ideal.

If at := a · OX×{t} is mx×t-primary for each t ∈ T , then there exists a nonempty open set

U ⊂ T such that the function U 3 t 7→ e(at) is constant.

Proof. It is sufficient to consider the case when X is projective. Indeed, replace X with a

projective compactification of an open affine neighborhood of x.

Fix a projective birational morphism Y → X×T such that Y is smooth and a ·OY (−F )

where F is a Cartier divisor on Y . We may find a nonempty open set U ⊂ T such that

Y → T is flat over U and Yt → Xt is a resolution of singularities for all t ∈ U .

Now, we have that at · OYt = OYt(−Ft) for each t ∈ U . Since Y → T is flat over U ,

[Kol96, Proposition IV.2.9] implies U 3 t 7→ (−1)n−1F n
t is constant.

4.2 Limit points of collections of graded sequences

of ideals

In this section we construct a space that parameterizes graded sequences of ideals on a

fixed variety X. We use this parameter space to find “limit points” of a collection of

graded sequences of ideals on X. The ideas behind this construction arise from the work

of de Fernex-Mustaţă [dFM09], Kollár [Kol08], and de Fernex-Ein-Mustaţă [dFEM10]

[dFEM11].
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4.2.1 Parameterizing graded sequences of ideals

Fix an affine variety X = Spec(R) and a closed point x ∈ X with corresponding maximal

ideal m ⊂ R. We seek to parameterize graded sequence of ideals a• on R satisfying

(†) mm ⊆ am ⊆ m for all m ∈ N.

Note that there is a correspondence between ideals a ⊂ R such that mm ⊂ a and ideals

of R/mm. For each m > 0, let Hilb(R/mm) denote the Hilbert scheme parameterizing

non-unit ideals of R/mm. Since dimk R/m
m <∞, Hilb(R/mm) is a finite type k-scheme.

Set

Jm = Hilb(R/m1)red × Hilb(R/m2)red × · · · × Hilb(R/mm)red.

Note that the irreducible components of Jm are varieties.

For each p ≥ m, let πp,m : Jp → Jm denote the natural projection map. Our desired

set is the projective limit

J = lim←− Jm(k),

where Jm(k) denotes the k-valued points of Jm. For each m > 0, let πm : J → Jm denote

the natural projection map.

By construction, there is a surjective map

J −→ {sequence of ideals b• of R satisfying (†)}.

Note that the sequences of ideals on the right hand side are not necessarily graded.

Given a sequence of ideals b•, we can construct a graded sequence a• inductively by

setting a1 := b1 and

am := bm +
∑

p+q=m
p,q>0

ap · aq.

It is clear that if b• satisfies (†) then so does a•. Furthermore, if b• was graded to begin

with, then a• = b•. Thus, we have a map

J −→ {graded sequences of ideals a• of R satisfying (†)} .

For each m > 0, we have universal ideals (Ai,m)mi=1 on X×Jm such that for each z ∈ J ,

the ideals (ai,z)
m
i=1 correspond to the restriction of the ideals (Ai,m)mi=1 to X ×{zm}, where

zm = πm(z). We will simply write Am for the ideal Am,m on X × Jm.
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The following technical lemma will be used in the following section. The proof of

the lemma relies on the fact that every descending sequence of non-empty constructible

subsets of a variety over an uncountable field has nonempty intersection.

Lemma 4.2.1. For each m ∈ N∗, let Wm ⊂ Jm be a nonempty constructible subset. If

Wm+1 ⊂ π−1
m+1,m(Wm) for all m ∈ N∗, then there exists z̃ ∈ J such that πm(z̃) ∈ Wm for

each m ∈ N∗.

Proof. Note that a point z̃ as above is equivalent to a sequence of closed points (zm ∈
Wm)m∈N∗ such that πm+1,m(zm+1) = zm. We proceed to construct such a sequence.

We first look to find a candidate for z1. We observe that

W1 ⊇ π2,1(W2) ⊇ π3,1(W3) ⊇ · · ·

is a descending sequence of nonempty sets. Note that W1 is constructible by assumption

and so are πd,1(Wd) for all d by Chevalley’s Theorem [Har77, Exercise II.3.9]. Therefore,

W1 ∩ π2,1(W2) ∩ π3,1(W3) ∩ · · ·

is non-empty and we may choose a point z1 lying in the set.

Next, we look at

W2 ∩ π−1
2,1(z1) ⊇ π3,2(W3) ∩ π−1

2,1(z1) ⊇ π4,2(W4) ∩ π−1
2,1(z1),

and note that for m ≥ 2 each πm,2(Wm) ∩ π−1
2,1(z1) is nonempty by our choice of z1. By

the same argument as before, we see

π−1
2,1(z1) ∩W2 ∩ π3,2(W3) ∩ π4,2(W4) ∩ · · ·

is non-empty and contains a closed point z2. Continuing in this manner, we construct a

desired sequence.

4.2.2 Finding Limit Points

The proof of the following proposition relies on the parameterization of graded sequences of

ideals described in the previous section. Our proof is inspired by arguments in [dFEM04,

Kol08, dFEM10, dFEM11].
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Proposition 4.2.2. Let (X,B) be a klt pair and x ∈ X a closed point. Assume there

exists a sequence of graded sequences of mx-primary ideals (a
(i)
• )i∈N such that mm

x ⊂ a
(i)
m

for all m, i ∈ N. If

(i) L := lim sup
i→∞

lct(a
(i)
• ) and

(ii) E := lim sup
m→∞

(
lim sup
i→∞

e(a
(i)
m )/mn

)
.

are both finite, then there exists a graded sequence of mx-primary ideals ã• on X such that

mm
x ⊂ ãm for all m ∈ N, lct(ã•) ≤ L, and vol(ã•) ≤ E.

Proof. It is sufficient to consider the case when X is affine. We recall that Section

4.2.1 constructs a set J parameterizing graded sequences of ideals on X satisfying (†).
Additionally, for each m ∈ N∗, the variety Jm parameterize the first m elements of such a

sequence.

Since each graded sequence a
(i)
• satisfies (†), we may choose a point zi ∈ J corresponding

to a
(i)
• . Note that πm(zi) ∈ Jm corresponds to the first m-terms of a

(i)
• .

Claim 1: We may choose infinite subsets N ⊃ I1 ⊃ I2 ⊃ · · · and set

Zm := {πm(zi)|i ∈ Im}

such that (∗∗) holds.

(∗∗) If Y ( Zm is a closed set, there are only finitely many i ∈ Im such that πm(zi) ∈ Y .

To prove Claim 1, we construct such a sequence inductively. First, we set I1 = N.

Since J1 is a point, (∗∗) is trivially satisfied for m = 1. After having chosen Im, choose

Im+1 ⊂ Im so that (∗∗) is satisfied for Zm+1. By the Noetherianity of Jm, such a choice is

possible.

Claim 2: For each m ∈ N, there exists a nonempty open set Um ⊂ Zm and constants λm

and µm such that if z ∈ Um, then

(i) m · lct(Am|z) = λm and

(ii) e(Am|z)
mn

= µm.
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Furthermore, supm λm ≤ L and lim sup
m→∞

µm ≤ E.

By Propositions 3.4.11 and 4.1.11, for each m ∈ N∗ we may find a nonempty open set

Um ⊂ Zm and constants λm and µm such that

λm = m · lct(Am|z) and µm = e(Am|z)/mn

for all z ∈ Um. Now, we let

I◦m = {i ∈ Im | πm(zi) ∈ Um} ⊆ Im.

By (∗∗), the set Im \ I◦m is finite; hence, I◦m is infinite. Since λm = m · lct(a
(i)
m ) and

µm = e(a
(i)
m )

mn
for all i ∈ I◦m, we see

λm ≤ lim sup
i→∞

m · lct(a(i)
m ) and µm ≤ lim sup

i→∞

e(a
(i)
m )

mn

for each m ∈ N∗. From the definition of L and the inequality lct(a
(i)
m ) ≤ lct(a

(i)
• ) (see

Proposition 3.4.4), we see λm ≤ L. Similarly, the definition of E implies lim sup
m→∞

µm ≤ E.

Claim 3: There exists a point z̃ ∈ J such that πm(z̃) ∈ Um for all m ∈ N∗.

Granted this claim, the graded sequence of ideals associated to z̃ ∈ J satisfies the

conclusion of our proposition. Indeed, this follows from Claim 2 and the fact that for a

graded sequence of mx-primary ideals a•, we have

lct(a•) = sup
m
m · lct(am) and vol(a•) = lim

m→∞

e(am)

mn
.

We are let to prove Claim 3. To this end, we seek to apply Lemma 4.2.1. For each

m ∈ N∗, set

Wm := Um ∩ π−1
m,m−1(Um−1) ∩ π−1

m,m−2(Um−2) ∩ · · · ∩ π−1
m,0(U0).

Clearly, Wm ⊂ Jm is constructible and Wm+1 ⊂ π−1
m+1,m(Wm). We are left to show Wm is

nonempty. Note that

πm(zi) ∈ Wm for all i ∈ I◦m ∩ I◦m−1 ∩ · · · ∩ Im0 ,

and the latter index set is nonempty, since it can be written as Im \ ∪mj=0(Ij \ I◦j ), where

Im is infinite and each Ij \ I◦j is finite. Applying Lemma 4.2.1 yields a point z̃ ∈ J such
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that πm(z̃) ∈ Wm ⊂ Um. This completes the proof of Claim 3, and the proof the of the

proposition.

4.3 Existence of minimizers

In this section we prove Theorem A. The proof relies on the results in 4.2 and also uses

estimates from [Li15a].

Proposition 4.3.1. Let (X,B) be a klt pair and x ∈ X a closed point. Assume (vi)i∈N

is a sequence of valuations such that vi(mx) = 1 for each i ∈ N and the limits

A := lim
i→∞

A(vi) and V := lim
i→∞

vol(vi)

both exist and take values in R+. Then, there exists v∗ ∈ ValX,x such that

A(v∗) ≤ A and vol(v∗) ≤ V.

This will follow from Proposition 4.2.2 and the following lemma.

Lemma 4.3.2. Keep the notation and hypotheses of Proposition 4.3.1. The following

hold:

(i) A ≥ lim sup
i→∞

lct(a•(vi));

(ii) V ≥ lim sup
m→∞

(
lim sup
i→∞

e(am(vi))/m
n

)
.

Proof. Since A(vi) ≥ lct(a•(vi)), we see

A = lim
i→∞

A(vi) ≥ lim sup
i→∞

lct(a(i)
• ).

The second inequality is more subtle. Fix ε > 0. Since (A(vi))i∈N is bounded from above,

we may apply Proposition 4.1.9 to find N so that

e(am(vi))

mn
< vol(vi) + ε.

for all m ≥ N and i ∈ N. Therefore,

lim sup
i→∞

e(am(vi))

mn
≤ V + ε

45



for all m ≥ N . Thus,

lim sup
m→∞

(
lim sup
i→∞

e(am(vi)

mn

)
≤ V + ε,

and the proof is complete.

Proof of Proposition 4.3.1. We consider the sequence (a•(vi))i∈N. Combining the previous

lemma and Proposition 4.2.2, we see that there exists a graded sequence of ideals ã• such

that mm
x ⊂ ãm, lct(ã•) ≤ A, and vol(ã•) ≤ V . By Theorem 3.4.10, there exists v∗ ∈ ValX,x

computing lct(ã•). After rescaling, we may assume v∗(ã•) = 1. Therefore,

A(v∗) =
A(v∗)

v∗(ã•)
= lct(ã•) ≤ A.

By Lemma 2.2.1, ãm ⊂ am(v∗) for each m ∈ N. Thus, vol(v∗) ≤ vol(ã•) ≤ V , and the

proof is complete.

Proof of Theorem A. We fix a klt pair (X,B) and a closed point x ∈ X. Next, choose a

sequence of valuations (vi)i∈N in ValX,x such that

lim
i

v̂ol(vi) = inf
v∈ValX,x

v̂ol(v).

The latter infimum is > 0 by [Li15a, Theorem 1.2].

After scaling our valuations, we may assume that vi(mx) = 1 for all i ∈ N. Since

mm
x ⊂ am(vi) for all m, i ∈ N, 0 ≤ vol(vi) ≤ e(mx) for all i ∈ N. Therefore, the sequence

(vol(vi))i∈N is bounded from above. After passing to a subsequence, we may assume

V := limi→∞ vol(vi) exists, and is finite. Thus, the limit A := limi→∞A(vi) exists, but

may take the value +∞. By [Li15a, Theorem 4.3], there exists a constant c0 so that

v̂ol(vi) ≥ c0 · A(vi)

for all i. Hence, A must be finite. Now, it follows that A, V ∈ R+ and An · V =

infv∈ValX,x v̂ol(v).

By Proposition 4.3.1, there exists v∗ ∈ ValX,x with A(v∗) ≤ A and vol(v∗) ≤ V .

Therefore, v̂ol(v∗) ≤ infv v̂ol(v) and, hence, minimizes v̂ol : ValX,x → R ∪ {+∞}.

4.4 Toric case

Let N ' Zn be a lattice and M = Hom(N,Z) the corresponding dual lattice. We consider

an affine toric klt pair (X,B) where X = X(σ) is given by a maximal dimension, strongly
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convex, rational, polyhedral cone σ ⊂ NR and B is a torus invariant Q-divisor on X. Let

x ∈ X denote the unique torus invariant closed point.

As in Section 3.5, let v1, . . . , vd denote the primitive generators of the one-dimensional

face of σ and D1, . . . , Dd the corresponding torus invariant valuations. Hence, we may

choose coefficients bi so that B = b1D1 + · · · + bdDd. A vector v ∈ σ gives rise to a

valuation on X that we slightly abusively also denote by v (see Section 3.5.1). Recall that

a valuation v ∈ σ ⊂ ValX has center x if and only if the vector v lies in Int(σ).

We proceed to describe the normalized volume function of a toric valuation on X with

center x. Since KX +B is klt, there exists a ∈MQ such that 〈a, vi〉 = 1− bi for 1 ≤ i ≤ d.

By Proposition 3.5.1,

AX,B(v) = 〈a, v〉

for all v ∈ σ ⊂ ValX . For v ∈ σ and m ∈ N, we set Hv(m) = {u ∈ MR | 〈u, v〉 ≥ m}.
Note that

am(v) = (χu |u ∈ Hv(m) ∩ σ∨ ∩M) .

In the case when u ∈ Int(σ),

vol(v) = n! · vol(σ∨ \Hv(1)),

where the latter vol denotes the Euclidean volume.

4.4.1 Deformation to the Initial Ideal

As explained in [Eis95], when Xσ ' An and I ⊂ Rσ, there exists a deformation of I to a

monomial ideal. A similar argument works in our setting.

Following the approach of [KK12, Section 6], we put a Zn
≥0 order on the monomials of

Rσ. Fix y1, . . . , yn ∈ N ∩ σ that are linearly independent in MR. This gives an injective

map ρ : M → Zn defined by

u 7−→ (〈y1, u〉, . . . , 〈yn, u〉) .

Since each yi ∈ σ, we have ρ(M ∩ σ∨) ⊆ Zn
≥0. After endowing Zn

≥0 with the lexicographic

order, we get an order > on the monomials of Rσ.

An element f ∈ Rσ may be written as a sum of scalar multiples of distinct monomials.

The initial term of f , denoted in> f , is the greatest term of f with respect to the order >.
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For an ideal I ⊂ Rσ, the initial ideal of I is

in> I = (in> f | f ∈ I).

Note that if I is m-primary, then so is in> I. Also, if (Im)m∈N is a graded sequence of

ideals of Rσ, then so is {in> Im}m∈N. This follows from the fact that in> f · in> g = in> fg.

Lemma 4.4.1. If I ⊂ Rσ is an m-primary ideal, then

`(Rσ/I) = `(Rσ/ in> I).

Proof. The proof is similar to the proof of [Eis95, Theorem 15.3].

As in [Eis95], we construct a deformation of I to in> I. Since Rσ is Noetherian, we

may choose elements g1, . . . , gs ∈ I such that

I = (g1, . . . , gs) and in> I = (in> g1, . . . , in> gs).

Fix an integral weight λ : M ∩ σ∨ → Z≥0 such that

in>λ(gi) = in>(gi)

for all i. Note that >λ denotes the order on the monomials induced by the weight function

λ.

Let Rσ[t] denote the polynomial ring in one variable over Rσ. For g =
∑
αmχ

m, we

write b := max{λ(m) |αm 6= 0} and set

g̃ := tb
∑

αmt
−λ(m)χm.

Next, let

Ĩ = (g̃1 . . . g̃s) ⊂ Rσ[t].

For c ∈ k, we write Ic for the image of Ĩ under the map Rσ[t]→ Rσ defined by t 7→ c.

It is clear that I1 = I and I0 = in> I.

Proposition 4.4.2. If I ⊂ Rσ is an mx primary ideal, then lct(in<(I)) ≤ lct(I).

Proof. We consider the automorphism of ϕ : Rσ[t, t−1] → Rσ[t, t−1] that sends χm to

tλ(m)χm. Note that ϕ sends ĨRσ[t, t−1] to IRσ[t, t−1]. Therefore, for each c ∈ k∗, we get

an automorphism ϕc : Rσ → Rσ such that ϕc(Ic) = I. Thus, lct(Ic) = lct(I) for all c ∈ k∗.
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Since Ic is mx-primary for all c ∈ k, we may apply Proposition 3.4.12 to see lct(I0) ≤ lct(I).

Since in>(I) = I0, we are done.

The following proposition and theorem generalize arguments of [Mus02] to the singular

toric case.

Proposition 4.4.3. Let a• be a graded sequence of mx-primary ideals on Xσ. We have

that

lct(in>(a•))
n e(in(a•)) ≤ lct(a•)

n e(a•).

Proof. Note that

e(in>(a•)) := lim sup
m→∞

`(OXσ ,x/ in>(am))

mn/n!
= lim sup

m→∞

`(OXσ ,x/am)

mn/n!
=: e(a•),

where the second equality follows from Proposition 4.4.1. By Proposition 4.4.2,

lct(in>(a•)) ≤ lct(a•).

The result follows.

Theorem 4.4.4. We have the following equality

inf
v∈ValX,x

v̂ol(v) = inf
v∈Int(σ)⊂ValX,x

v̂ol(v).

Furthermore, there exists v ∈ Int(σ) ⊂ ValX,x computing the infimum.

Proof. To prove the theorem, it is suffices to show the second statement. By Theorem A,

we may find w ∈ ValX,x minimizing v̂ol : ValX,x → R ∪ {+∞}. Now,

lct(in>(a•(w)))n e(in>(a•(w))) ≤ lct(a•(w))n e(a•(w)) ≤ AX(w)n vol(w),

where the first inequality follows from Proposition 4.4.3 and the second from the inequality

lct(a•(w)) ≤ A(w) (see Lemma 3.4.9). Since in>(a•(w)) is a graded sequence of T -invariant

ideals, we may apply Proposition 3.5.2 to find a toric valuation v ∈ Int(σ) ⊂ ValX,x that

computes lct(in>(a•(w)). Now, Lemma 4.1.4 implies v̂ol(v) ≤ lct(in>(a•(w)))n e(in(a•(w))).

Thus, v̂ol(v) = v̂ol(w), and we conclude v is a normalized volume minimizer.
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Chapter 5

Thresholds, valuations, and K-stability

This exposition and results in this section are the result of joint work with Mattias Jonsson.

We thank him for allowing these results to be reproduced in this thesis.

5.1 Linear series, filtrations, and Okounkov bodies

In this section we recall facts about linear series, filtrations, and Okounkov bodies, follow-

ing [LM09, KK12, BC11, Bou14]. The new results are Lemma 5.1.2 and Corollary 5.1.10.

Let X be a normal projective variety of dimension n and L a big line bundle on X. Set

Rm := H0(X,mL) and Nm := dimk Rm

for m ∈ N, and write M(L) ⊂ N for the semigroup of m ∈ N for which Nm > 0. Since L

is big, we have m ∈M(L) for m� 1. Write

R = R(X,L) =
⊕
m

Rm =
⊕
m

H0(X,mL)

for the section ring of L.

5.1.1 Graded linear series

A graded linear series of L is a graded k-subalgebra

V• =
⊕
m

Vm ⊂
⊕
m

Rm = R.

We say V• contains an ample series if Vm 6= 0 for m� 0, and there exists a decom-

position L = A + E with A an ample Q-line bundle and E an effective Q-divisor such

that

H0(X,mA) ⊂ Vm ⊂ H0(X,mL) = Rm
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for all sufficiently divisible m.

5.1.2 Okounkov bodies

Fix a system z = (z1, . . . , zn) of parameters centered at a regular closed point ξ of X. This

defines a real rank-n valuation

ordz : OX,ξ \ {0} → Nn,

where Nn is equipped with the lexicographic ordering. As in §2.2.1 we also define ordz(s)

for any nonzero section s ∈ Rm.

Now consider a nonzero graded linear series V• ⊂ R(X,L). For m ∈ N, the subset

Γm := Γm(V•) := ordz(Vm \ {0}) ⊂ Nn

has cardinality dimk Vm, since ordz has transcendence degree 0. Hence

Γ := Γ(V•) := {(m,α) ∈ Nn+1 | α ∈ Γm}

is a subsemigroup of Nn+1. Let Σ = Σ(V•) ⊂ Rn+1 be the closed convex cone generated

by Γ. The Okounkov body of V• with respect to z is given by

∆ = ∆z(V•) = {α ∈ Rn | (1, α) ∈ Σ}.

This is a compact convex subset of Rn. For m ≥ 1, let ρm be the atomic positive measure

on ∆ given by

ρm = m−n
∑
α∈Γm

δm−1α.

The following result is a special case of [Bou14, Théorème 1.12].

Theorem 5.1.1. If V• contains an ample series, then its Okounkov body ∆ ⊂ Rn has

nonempty interior, and we have limm→∞ ρm = ρ in the weak topology of measures, where

ρ denotes Lebesgue measure on ∆ ⊂ Rn. In particular, the limit

vol(V•) = lim
m→∞

n!

mn
dimk Vm ∈ (0, vol(L)] (5.1)

exists, and equals n! vol(∆).

In fact, the limit in (5.1) always exists, but may be zero in general; see [Bou14,

Théorème 3.7] for a much more precise result due to Kaveh and Khovanskii [KK12].

For the proof of Theorem A we will need the following estimate.
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Lemma 5.1.2. For every ε > 0 there exists m0 = m0(ε) > 0 such that∫
∆

g dρm ≤
∫

∆

g dρ+ ε

for every m ≥ m0 and every concave function g : ∆→ R satisfying 0 ≤ g ≤ 1.

The main point here is the uniformity in g.

Proof. We essentially follow the proof of [Bou14, Théorème 1.12]. The sets

∆γ := {α ∈ Rn | α + [−γ, γ]n ⊂ ∆},

for γ > 0, form a decreasing family of relatively compact subsets of ∆ whose union equals

the interior of ∆. Since ∂∆ has zero Lebesgue measure, we can pick γ > 0 such that

ρ(∆\∆2γ) ≤ ε/2. Since limm ρm = ρ weakly on ∆, we get lim ρm(∆\∆γ) ≤ ρ(∆\∆2γ), so

we can pick m1 large enough so that ρm(∆\∆γ) ≤ ε for m ≥ m1. By [Bou14, Lemme 1.13]

there exists m2 such that

m−1Γm ∩∆γ = m−1Zn ∩∆γ (5.2)

for m ≥ m2. Now set m0 = max{m1,m2, γ
−1}. For m ≥ m0 we set

A′m = {α ∈ 1
m

Zn | α + [0, 1
m

]n ⊂ ∆}

and

Am = {α ∈ 1
m

Zn | α + [− 1
m
, 1
m

]n ⊂ ∆}.

If λ denotes Lebesgue measure on the unit cube [0, 1]n ⊂ Rn, we see that∫
∆

g dρ ≥
∑
α∈A′m

∫
α+[0,

1
m

]n
g dρ = m−n

∑
α∈A′m

∫
[0,1]n

g(α +m−1w)dλ(w)

≥ m−n
∑
α∈A′m

2−n
∑

w∈{0,1}n
g(α +m−1w) ≥ m−n

∑
α∈Am

g(α)

≥
∫

∆γ

g dρm ≥
∫

∆

g dρm − ρm(∆ \∆γ) ≥
∫

∆

g dρm − ε.

Here the second inequality follows from the concavity of g, the fourth inequality from (5.2)

together with Am ⊂ ∆γ , and the fifth inequality from γ ≤ 1. This completes the proof.
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5.1.3 Filtrations

By a filtration F on R(X,L) =
⊕

mRm we mean the data of a family

FλRm ⊂ Rm

of k-vector subspaces of Rm for m ∈ N and λ ∈ R+, satisfying

(F1) FλRm ⊂ Fλ
′
Rm when λ ≥ λ′;

(F2) FλRm =
⋂
λ′<λFλ

′
Rm for λ > 0;

(F3) F0Rm = Rm and FλRm = 0 for λ� 0;

(F4) FλRm · Fλ
′
Rm′ ⊂ Fλ+λ′Rm+m′ .

The main example for us will be filtrations defined by valuations, see §5.2.1.

5.1.4 Induced graded linear series

Any filtration F on R(X,L) defines a family

V t
• = V F ,t• =

⊕
m

V t
m

of graded linear series of L, indexed by t ∈ R+, and defined by

V t
m := FmtRm

for m ∈ N. Set

Tm := Tm(F) := sup{t ≥ 0 | V t
m 6= 0},

with the convention Tm = 0 if Rm = 0. By (F4) above, Tm+m′ ≥ m
m+m′

Tm + m′

m+m′
Tm′ , so

Fekete’s Lemma implies that the limit

T (F) := lim
m→∞

Tm(F) ∈ [0,+∞]

exists, and equals supm Tm(F). By [BC11, Lemma 1.6], V t
• contains an ample linear series

for any t < T (F). It follows that

T (F) = sup{t ≥ 0 | vol(V t
• ) > 0}. (5.3)

We say that the filtration F is linearly bounded if T (F) <∞.

53



5.1.5 Concave transform and limit measure

Let ∆ = ∆(L) ⊂ Rn be the Okounkov body of R(X,L). The filtration F of R(X,L)

induces a concave transform

G = GF : ∆→ R+

defined as follows. For t ≥ 0, consider the graded linear series V t
• ⊂ R(X,L) and the

associated Okounkov body ∆t = ∆(V t
• ) ⊂ Rn. We have ∆t ⊃ ∆t′ for t < t′, ∆0 = ∆ and

∆t = ∅ for t > T (F). The function G is now defined on ∆ by

G(α) = sup{t ∈ R+ | α ∈ ∆t}. (5.4)

In other words, {G ≥ t} = ∆t for 0 ≤ t ≤ T (F). Thus G is a concave, upper semicontinu-

ous function on ∆ with values in [0, T (F)].

As noted in the proof of [BKMS16, Lemma 2.22], the Brunn-Minkowski inequality

implies

Proposition 5.1.3. The function t → vol(V t
• )

1/n is non-increasing and concave on

[0, T (F)). As a consequence, it is continuous on R+, except possibly at t = T (F).

We define the limit measure µ = µF of the filtration F as the pushforward

µ = G∗ρ.

Thus µ is a positive measure on R+ of mass vol(∆) = 1
n!

vol(L), with support in [0, T (F)].

Corollary 5.1.4. The limit measure µ satisfies

µ = − 1

n!

d

dt
vol(V t

• ) = − d

dt
vol(∆t)

and is absolutely continuous with respect to Lebesgue measure, except possibly at t = T (F),

where µ{T (F)} = limt→T (F)− vol(V t
• ).

As a companion to T (F) we now define another invariant of F :

S(F) :=
1

vol(L)

∫ ∞
0

vol(V t
• ) dt =

n!

vol(L)

∫ ∞
0

t dµ(t) =
1

vol(∆)

∫
∆

Gdρ.

Note that µF , S(F), and T (F) do not depend on the choice of the auxiliary valuation z.

Remark 5.1.5. The invariant S(F) can also be interpreted as the (suitably normalized)

volume of the filtered Okounkov body associated to F , see [BC11, Corollary 1.13].
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Lemma 5.1.6. We have 1
n+1

T (F) ≤ S(F) ≤ T (F).

Proof. The second inequality is clear since vol(V t
• ) ≤ vol(L) and vol(V t

• ) = 0 for t > T (F).

The first follows from the concavity of t 7→ vol(V t
• )

1/n, which yields vol(V t
• ) ≥ vol(L)(1−

t
T (F)

)n.

Remark 5.1.7. At least when L is ample, a filtration on R(X,L) induces a metric on

the Berkovich analytification of L with respect to the trivial absolute value on k. It is

shown in [BoJ18] that S and T extend as “energy-like” functionals on the space of such

metrics. As a special case of that analysis, it is shown that S(F) ≤ n
n+1

T (F). The case

when the filtration is associated to a test configuration is treated in [BHJ15].

5.1.6 Jumping numbers

Given a filtration F as above, consider the jumping numbers

0 ≤ am,1 ≤ · · · ≤ am,Nm = mTm(F),

defined for m ∈M(L) by

am,j = am,j(F) = inf{λ ∈ R+ | codimFλRm ≥ j}

for 1 ≤ j ≤ Nm. Define a positive measure µm = µFm on R+ by

µm =
1

mn

∑
j

δm−1am,j = − 1

mn

d

dt
dimFmtRm.

The following result is [BC11, Theorem 1.11].

Theorem 5.1.8. If F is linearly bounded, i.e. T (F) < +∞, then we have

lim
m→∞

µm = µ

in the weak sense of measures on R+.

For m ∈M(L), consider the rescaled sum of the jumping numbers:

Sm(F) =
1

mNm

∑
j

am,j =
mn

Nm

∫ ∞
0

t dµm(t).

Clearly 0 ≤ Sm(F) ≤ Tm(F).
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Lemma 5.1.9. For any linearly bounded filtration F on R(X,L) we have

Sm(F) ≤ mn

Nm

∫
∆

Gdρm, (5.5)

for any m ∈M(L). Further, we have limm→∞ Sm(F) = S(F).

Proof. The equality limm Sm(F) = S(F) follows from Theorem 5.1.8. For the inequality,

pick a basis s1, s2, . . . , sNm of Rm such that sup{λ |sj ∈ FλRm} = am,j, 1 ≤ j ≤ Nm. Set

αj := ordz(sj). Since ordz has transcendence degree 0, we have Γm = {α1, . . . , αm}. Thus

the right hand side of (5.5) equals 1
Nm

∑Nm
j=1G(m−1αj) whereas the left-hand side is equal

to 1
Nm

∑Nm
j=1 m

−1am,j , so it suffices to prove G(m−1αj) ≥ m−1am,j for 1 ≤ j ≤ Nm. But this

is clear from (5.4), since αj = ordz(sj) and sj ∈ Fam,jRm imply m−1αj ∈ ∆m−1am,j .

Corollary 5.1.10. For every ε > 0 there exists m0 = m0(ε) > 0 such that

Sm(F) ≤ (1 + ε)S(F)

for any m ≥ m0 and any linearly bounded filtration F on R(X,L).

Proof. Set V := vol(∆). Pick ε′ > 0 with (V −1 + ε′)(V + (n+ 1)ε′) ≤ (1 + ε). Note that

0 ≤ G ≤ T (F). Applying Lemma 5.1.2 to g = G/T (F) we pick m0 ∈M(L) such that∫
∆

Gdρm ≤
∫

∆

Gdρ+ ε′T (F) = V S(F) + ε′T (F) ≤ (V + (n+ 1)ε′)S(F)

for M(L) 3 m ≥ m0, where we have used Lemma 5.1.6 in the last inequality. By

Theorem 5.1.1 we may also assume mn

Nm
≤ V −1 + ε′ for M(L) 3 m ≥ m0. Lemma 5.1.9

now yields

Sm(F) ≤ mn

Nm

∫
∆

Gdρm ≤ (V −1 + ε′)(V + (n+ 1)ε′)S(F) ≤ (1 + ε)S(F),

for M(L) 3 m ≥ m0, which completes the proof.

5.1.7 N-filtrations.

A filtration F of R(X,L) is an N-filtration if all its jumping numbers are integers, that is,

FλRm = F dλeRm

for all λ ∈ R+ and m ∈M(L). Any filtration F induces an N-filtration FN by setting

FλNRm := F dλeRm.
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Note that FN is a filtration of R(X,L). Indeed, conditions (F1)–(F4) in §5.1.3 are trivially

satisfied and (F4) follows from dλe+ dλ′e ≥ dλ+ λ′e.
The jumping numbers of FN and F are related by am,j(FN) = bam,j(F)c. This implies

the following statement.

Proposition 5.1.11. If F is a filtration of R(X,L), then

Tm(FN) = bm · Tm(F)b/m and Sm(F)−m−1 ≤ Sm(FN) ≤ Sm(F)

for m ∈M(L). As a consequence, T (FN) = T (F), S(FN) = S(F), and µFN = µF .

As a consequence, we obtain the following formula for S(F), similar to [FO16,

Lemma 2.2].

Corollary 5.1.12. If F is a filtration of R(X,L), then

S(F) = S(FN) = lim
m→∞

1

mNm

∑
j≥1

dimF jRm.

Proof. Since the jumping numbers of FN are integers, we have

Sm(FN) =
1

mNm

∑
j≥0

j
(
dimF jNRm − dimF j+1

N Rm

)
=

1

mNm

∑
j≥1

dimF jNRm

for any m ∈M(L). Letting m→∞ and using Proposition 5.1.11 completes the proof.

5.2 Global invariants of valuations

As before, X is a normal projective variety of dimension n over k.

Let L be a big line bundle on X. Following [BKMS16] we study invariants of valuations

on X defined using the section ring of L. The new results here are Corollary 5.2.6 and the

results in §5.2.5.

5.2.1 Induced filtrations

Any valuation v ∈ ValX induces a filtration Fv on R(X,L) via

F tvRm := {s ∈ Rm | v(s) ≥ t}

for m ∈ N and t ∈ R+, where we recall that Rm = H0(X,mL).
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We say that v has linear growth if Fv is linearly bounded. By Lemma 2.8 in [BKMS16]

this notion depends only on v as a valuation, and not on the pair (X,L). Theorem 2.16

in loc. cit. states that if v is centered at a closed point on X, then v has linear growth iff

vol(v) > 0.

Lemma 5.2.1. Any divisorial valuation has linear growth. If (X,B) is a klt pair, then

any v ∈ ValX satisfying AX,B(v) <∞ has linear growth.

Proof. We may assume X is smooth and B = 0. By [BKMS16, Proposition 2.12], every

divisorial valuation has linear growth. For the second assertion, if A(v) < ∞, Izumi’s

inequality (see [JM12, Proposition 5.10]) implies v ≤ A(v) ordξ, where ξ = cX(v). Since

ordξ is divisorial, it has linear growth; hence so does v.

5.2.2 Global invariants

Consider a valuation v of linear growth. We define invariants of v as the corresponding

invariants of the induced filtration Fv, namely:

(i) the limit measure of v is µv := µFv ;

(ii) the expected vanishing order of v is S(v) := S(Fv) =
∫∞

0
t dµv(t);

(iii) the maximal vanishing order or pseudo-effective threshold of v is T (v) := T (Fv).

Note that T (v) is denoted by amax(‖L‖, v) in [BKMS16]. It follows from Lemma (5.1.6)

(see also Remark 5.1.7) that

1

n+ 1
T (v) ≤ S(v) ≤ T (v). (5.6)

The invariants S and T are homogeneous of order 1: S(tv) = tS(v) and T (tv) = tT (v)

for t > 0. Similarly, µtv = t∗µv, where t : R+ → R+ denotes multiplication by t. In

particular, if v is the trivial valuation on X, then S(v) = T (v) = 0 and µv = δ0.

Remark 5.2.2. If we think of v as an order of vanishing, then the limit measure µv

describes the asymptotic distribution of the (normalized) orders of vanishing of v on

R(X,L). This explains the chosen name of S(v) and the first name of T (v).

For an alternative description of S(v) and T (v), define, for t ≥ 0,

vol(L; v ≥ t) := vol(V t
• ) = lim

m→∞

n!

mn
dimF tmv H0(X,mL).
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Theorem 5.2.3. Let L be a big line bundle and v ∈ Val∗X a valuation of linear growth.

Then the limit defining vol(L; v ≥ t) exists for every t ≥ 0. Further:

(i) T (v) = sup{t ≥ 0 | vol(L; v ≥ t) > 0};

(ii) the function t 7→ vol(L; v ≥ t)1/n is decreasing and concave on [0, T (v));

(iii) µv = − d
dt

vol(L; v ≥ t); further, suppµv = [0, T (v)], and µ is absolutely continuous

with respect to Lebesgue measure, except for a possible point mass at T (v);

(iv) S(v) = V −1
∫ T (v)

0
vol(L; v ≥ t) dt;

(v) if L is nef, then the function t 7→ vol(L; v ≥ t) is strictly decreasing on [0, T (v)] and

suppµv = [0, T (v)].

Proof. The assertions (i)–(iv) are special cases of the properties of linearly bounded

filtrations in §5.1. If L is nef, the discussion after Remark 2.7 in [BKMS16] shows that

t 7→ vol(L; v ≥ t) is strictly decreasing on [0, T (v)). This implies suppµ = [0, T (v)], so

that (v) holds.

Remark 5.2.4. In fact, the measure µv likely has no point mass at T (v). This is true

when v is divisorial, or simply quasimonomial, see [BKMS16, Proposition 2.25].

We also define Sm(v) := Sm(Fv) and Tm(v) := Tm(Fv) for m ∈M(L). These invariants

can be concretely described as follows. First,

Tm(v) = max{m−1v(s) | s ∈ H0(X,mL)}. (5.7)

A similar description is true for Sm.

Lemma 5.2.5. For any m ∈M(L) and any v ∈ ValX we have

Sm(v) = max
sj

1

mNm

Nm∑
j=1

v(sj), (5.8)

where the maximum is over all bases s1, . . . , sNm of H0(X,mL).

Proof. First consider any basis s1, . . . , sNm of H0(X,mL). We may assume v(s1) ≤ v(s2) ≤
· · · ≤ v(sNm). Then v(sj) ≤ am,j, for all j, where am,j is the jth jumping number of

FvH0(X,mL). Thus (mNm)−1
∑

j v(sj) ≤ (mNm)−1
∑

j am,j = Sm(v). On the other hand,

we can pick the basis such that v(sj) = am,j, and then (mNm)−1
∑

j v(sj) = Sm(v).
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Corollary 5.1.10 immediately implies

Corollary 5.2.6. For any v ∈ ValX of linear growth, we have limm→∞ Sm(v) = S(v).

Further, given ε > 0 there exists m0 = m0(ε) > 0 such that if m ≥ m0, then

Sm(v) ≤ S(v)(1 + ε)

for all v ∈ ValX of linear growth.

5.2.3 Behavior of invariants

The invariants S(v), T (v) and µv depend on L (and X). If we need to emphasize this

dependence, we write S(v;L), T (v;L) and µv;L.

Lemma 5.2.7. Let v be a valuation of linear growth.

(i) If r ∈ N∗, then S(v; rL) = rS(v;L), T (v; rL) = rT (v;L) and µv;rL = r∗µv;L.

(ii) If ρ : X ′ → X is a projective birational morphism, with X ′ normal, and L′ = ρ∗L,

then S(v;L′) = S(v;L), T (v;L′) = T (v;L), and µv;L′ = µv;L;

(iii) the invariants S(v;L), T (v;L) and µv;L only depend on the numerical class of L.

Proof. Properties (i)–(ii) are clear from the definitions. As for (ii), [BKMS16, Proposi-

tion 3.1] asserts that the measure µv;L only depends on the numerical class of L; hence

the same true for S(v;L) and T (v;L).

Remark 5.2.8. In view of (i) and (iii) we can define S(v;L) for a big class L ∈ NS(X)Q

by S(v;L) := r−1S(v; rL) for r sufficiently divisible. The same holds for T (v;L) and µv;L.

5.2.4 The case of divisorial valuations

We now interpret the invariants S(v) and T (v) in the case when v is a divisorial valuation.

By homogeneity in v and by Lemma 5.2.7 (ii) it suffices to consider the case when v = ordE

for a prime divisor E on X. In this case, vol(L; v ≥ t) = vol(L− tE), so Theorem 5.2.3

implies

Corollary 5.2.9. Let E ⊂ X be a prime divisor. Then we have:

(i) T (ordE) = sup{t > 0 | L− tE is pseudoeffective};
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(ii) S(ordE) = vol(L)−1
∫∞

0
vol(L− tE) dt.

Statement (i) explains the name pseudoeffective threshold for T (v).

Remark 5.2.10. The invariants S(v) and T (v) for v divisorial have been explored by

K. Fujita [Fuj16b], C. Li [Li15b], and Y. Liu [Liu16]. In the notation of [Fuj16b],

T (ordE) = τ(E) and S(ordE) = τ(E)− vol(L)−1j(E).

The invariant S(ordξ), for ξ ∈ X a regular closed point, also plays an important role

in [MR15] and was used in unpublished work of P. Salberger from 2006.

Proposition 5.2.11. If L is ample and v ∈ ValX is divisorial, then 1
n+1
≤ S(v)

T (v)
≤ n

n+1
.

Proof. The first inequality follows from the concavity of t → vol(L; v ≥ t)1/n and is a

special case of Lemma 5.1.6. The second inequality is treated in [Fuj17, Proposition 2.1].

(In loc. cit. we have L = −KX , but this assumption is not used in the proof.)

Remark 5.2.12. When L is ample, Proposition 5.2.11 in fact holds for any v ∈ ValX of

linear growth; see Remark 5.1.7.

5.2.5 Invariants as functions on valuation space

Proposition 5.2.13. The invariants S and T define lower semicontinuous functions on

ValX . For any m ∈M(L), the functions Sm and Tm are also lower semicontinuous.

Proof. First consider m ∈M(L). For any nonzero s ∈ H0(X,mL), the function v 7→ v(s)

is continuous. It therefore follows from (5.7) and (5.8) that Sm and Tm are lower semi-

continuous. Hence T = supm Tm is also lower semicontinuous. The lower semiconti-

nuity of S is slightly more subtle. Pick any t ∈ R+. We must show that the set

W := {v ∈ ValX | S(v) > t} is open in ValX . Pick any v ∈ w and pick ε > 0 such that

S(v) > (1 + ε)t. By Corollary 5.2.6, there exists m � 0 such that Sm(v) > (1 + ε)t

and Sm ≤ (1 + ε)S on ValX . Since Sm is lower semicontinuous, there exists an open

neighborhood U of v in ValX such that Sm > (1+ε)t on U . Then U ⊂ W , which completes

the proof.

Remark 5.2.14. The functions S and T are not continuous in general. Consider the case

X = P1, L = OX(1). If (ξj)
∞
j=1 is a sequence of distinct closed points, then vj = ordξj ,

j ≥ 1 defines a sequence in ValX converging to the trivial valuation v on X. Then

S(vj) = 1/2 and T (vj) = 1 for all j, whereas S(v) = T (v) = 0.
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The next result is a global version of [LiX16, Proposition 2.3].

Proposition 5.2.15. Let v, w ∈ ValX be valuations of linear growth, such that v ≤ w.

(i) We have S(v) ≤ S(w) and T (v) ≤ T (w).

(ii) If L is ample and S(v) = S(w), then v = w.

Remark 5.2.16. The assertion in (ii) is false for T in general. Indeed, let X = P2

and L = OX(1). Consider an affine toric chart A2 ⊂ P2 with affine coordinates (z1, z2).

Let v and w be monomial valuations in these coordinates with v(z1) = w(z1) = 1 and

0 < w(z2) < w(z1) ≤ 1. Then w ≤ v and T (v) = T (w) = 1, but w 6= v.

Proof of Proposition 5.2.15. The assertion in (i) is trivial. To establish (ii) we follow the

proof of [LiX16, Proposition 2.3]. Note that by Lemma 5.2.7 we may replace L by a

positive multiple.

Suppose v ≤ w but v 6= w. We must prove S(v) < S(w). We may assume there exists

s ∈ H0(X,L) with v(s) < w(s). Indeed, there exists λ ∈ R∗+ such that aλ(v) ( aλ(w).

Replacing L by a multiple, we may assume L⊗ aλ(w) is globally generated, and then

FλvH0(X,L) = H0(X,L⊗ aλ(v)) ( H0(X,L⊗ aλ(w)) = FλwH0(X,L),

so that there exists s ∈ H0(X,L) with v(s) < w(s) = λ. After rescaling v and w, we may

assume w(s) = p ∈ N∗ and v(s) ≤ p− 1.

We claim that for m, j ∈ N, we have

dim(F jwRm/F jvRm) ≥
∑

1≤i≤min{j/p,m}

dim
(
F j−ipv Rm−i/F j−ip+1

v Rm−i
)
. (5.9)

To prove the claim, pick, for any i with 1 ≤ i ≤ min{j/p,m}, elements

si,1, . . . , si,bi ∈ F j−ipv Rm−i

whose images form a basis for F j−ipv Rm−i/F j−ip+1
v Rm−i. As in [LiX16, Proposition 2.3],

the elements

{sisi,l | 1 ≤ i ≤ min{j/p,m}, 1 ≤ l ≤ bi}

are then linearly independent in FkvRm/FkwRm. This completes the proof of the claim.
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By Corollary 5.1.12 we have

S(v)− S(w) = lim
m→∞

1

mNm

∑
j≥1

(
dimF jwRm − dimF jvRm

)
Now (5.9) gives∑
j≥1

(
dimF jwRm − dimF jvRm

)
≥
∑
j≥1

∑
1≤i≤min{ j

p
,m}

(
dimF j−ipv Rm−i − dimF j−ip+1

v Rm−i
)

=
∑

1≤i≤m

∑
j≥pi

(
dimF j−ipv Rm−i − dimF j−ip+1

v Rm−i
)

=
∑

1≤i≤m

dimRm−i

We conclude that

S(v)− S(w) ≥ lim sup
m→∞

1

mNm

∑
1≤i≤m

dim(Rm−i) > 0,

since dimRm = Nm ∼ mn(Ln) as m→∞. This completes the proof.

5.2.6 Base ideals of filtrations

In this section we assume L is ample. To an arbitrary filtration F of R(X,L) we associate

base ideals as follows. For λ ∈ R+ and m ∈M(L), set

bλ,m(F) := b
(
|FλH0(X,mL)|

)
.

Lemma 5.2.17. For λ ∈ R+ the sequence (bλ,m(F))m is stationary, with limit
∑

m∈M(L) bλ,m.

Proof. It follows from (F4) that if m1,m2 ∈M(L) and λ1, λ2 ∈ R+, then

bλ1,m1(F) · bλ2,m2(F) ⊂ bλ1+λ2,m1+m2(F) (5.10)

Since L is ample, there exists m0 ∈ N∗ such that mL is globally generated for m ≥ m0.

In particular, b0,m = OX for m ≥ m0. As a consequence of (5.10), if m ∈ M(L) and

m′ ≥ m0, then bλ,m+m′(F) ⊃ bλ,m(F) · b0,m′(F) = bλ,m(F). The lemma follows.

Using the lemma, set bλ(F) := bλ,m(F) for m � 0. Thus bλ,m(F) ⊂ bλ(F) for

m ∈M(L).

Corollary 5.2.18. We have b0(F) = OX and bλ(F) · bλ′(F) ⊂ bλ+λ′(F) for λ, λ′ ∈ R+.
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Lemma 5.2.19. If v is a valuation on X, then bλ(Fv) = aλ(v) for all λ ∈ R+.

Proof. Given λ, mL⊗ aλ(v) is globally generated for m� 0; hence bλ,m(Fv) = aλ(v).

Using base ideals, we can relate the invariants of a filtration to those of a valuation.

Lemma 5.2.20. If v(b•(F)) ≥ 1, then FpRm ⊂ FpvRm for all m ∈M(L) and p ∈ N∗.

Proof. By Lemma 2.2.1, we have bp(F) ⊂ ap(v). Since we also have bλ,m(F) ⊂ bλ(F) for

all m ∈M(L), this implies

FpRm ⊂ H0(X,mL⊗ bp,m(F)) ⊂ H0(X,mL⊗ ap(v)) = FpvRm.

which completes the proof.

Corollary 5.2.21. Let F be a linearly bounded filtration of R(X,L). Then

S(v) ≥ v(b•(F))S(F) and T (v) ≥ v(b•(F))T (F),

for any valuation v ∈ ValX .

Proof. The assertions are trivial when v(b•(F)) = 0, so we may assume v(b•(F)) = 1

after scaling v. In this case, Lemma 5.2.20 shows that FpRm ⊂ FpvRm for p ∈ N∗ and

m ∈M(L). Using Proposition 5.1.11 and Corollary 5.1.12, this implies

S(F) = S(FN) ≤ S(Fv,N) = S(Fv) = S(v),

and similarly T (F) ≤ T (v). The proof is complete.

5.3 Thresholds

Let (X,B) be a klt pair, and L a big line bundle on X. In this section we study the log

canonical threshold of L, and introduce a new related invariant, the stability threshold

of L. Both are defined in terms of the asymptotic behavior of the singularities of the

members of the linear system |mL| as m→∞.

Throughout this chapter we will use our abbreviated notation for log discrepancies

and log canonical thresholds. Specifically, we write A(−) and lct(−) for AX,B(−) and

lct(X,B;−).
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5.3.1 The log canonical threshold

Following [CS08] the log canonical threshold α(L) of L is the infimum of lct(D) with D

an effective Q-divisor Q-linearly equivalent to L. As explained by Demailly (see [CS08,

Theorem A.3]), this can be interpreted analytically as a generalization of the α-invariant

introduced by Tian [Tia97].

For m ∈M(L), we also set

αm(L) := inf{m lct(D) | D ∈ |mL|}.

It is then clear that α(L) = infm∈M(L) αm(L). The invariants αm and α can be computed

using invariants of valuations, as follows:

Proposition 5.3.1. For m ∈M(L), we have

αm(L) = inf
v

A(v)

Tm(v)
= inf

E

A(ordE)

Tm(ordE)
, (5.11)

where v runs through nontrivial valuations on X with A(v) <∞, and E through prime

divisors over X.

Proof. Writing out the definition of lct(D), we see that

αm(L) = m · inf
D∈|mL|

(
inf
v

A(v)

v(D)

)
,

where the second infimum may be taken over nontrivial valuations with finite log dis-

crepancy, or only divisorial valuations. Switching the order of the two infima and noting

supD∈|mL| v(D) = m · Tm(v) yields (5.11).

Corollary 5.3.2. We have

α(L) = inf
v

A(v)

T (v)
= inf

E

A(ordE)

T (ordE)
, (5.12)

where v runs through valuations on X with A(v) <∞ and E over prime divisors over X.

Proof. Since T (v) = supm∈M(L) Tm(v), (5.12) follows from (5.11).

65



5.3.2 The stability threshold

Given m ∈ M(L), we say, following [FO16], that an effective Q-divisor D ∼Q L is of

m-basis type if there exists a basis s1, . . . , sNm of H0(X,mL) with

D =
1

mNm

Nm∑
j=1

{sj = 0}. (5.13)

Set

δm(L) := inf{lct(D) | D of m-basis type}, (5.14)

and define the stability threshold of L as

δ(L) := lim sup
m→∞

δm(L).

We shall see shortly that this limsup is in fact a limit.

Proposition 5.3.3. For m ∈M(L), we have

δm(L) = inf
v

A(v)

Sm(v)
= inf

E

A(ordE)

Sm(ordE)
,

where v runs through nontrivial valuations on X with A(v) < ∞ and E through prime

divisors over X.

Proof. Note that

δm(L) = inf
D of m-basis type

(
inf
v

A(v)

v(D)

)
,

where the second infimum runs through all valuations with A(v) <∞ or only divisorial

valuations of the form v = ordE. Switching the order of the two infima and applying

Lemma 5.2.5 yields the desired equality.

Theorem 5.3.4. We have δ(L) = limm→∞ δm(L). Further,

δ(L) = inf
v

A(v)

S(v)
= inf

E

A(ordE)

S(ordE)
,

where v runs through nontrivial valuations on X with A(v) < ∞ and E through prime

divisors over X.

Proof. We will only prove the first equality; the proof of the second being essentially

identical. Let us use Proposition 5.3.3 and Corollary 5.2.6. The fact that limm→∞ Sm = S
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pointwise on ValX directly shows that

δ(L) = lim sup
m

δm(L) ≤ inf
v

A(v)

S(v)
. (5.15)

On the other hand, given ε > 0 there exists m0 = m0(ε) such that Sm(v) ≤ (1 + ε)S(v)

for all v ∈ ValX and m ≥ m0. Thus

δ(L) = lim sup
m

δm(L) = lim sup
m

inf
v

A(v)

Sm(v)
≥ (1 + ε)−1 inf

v

A(v)

S(v)
.

Letting ε > 0 and combining this inequality with (5.15) completes the proof.

Remark 5.3.5. It is clear that α(rL) = r−1α(L) and δ(rL) = r−1δ(L) for any r ∈ N∗.

This allows us to define α(L) and δ(L) for any big Q-line bundle L, by setting α(L) :=

r−1α(rL) and δ(L) := r−1δ(rL) for r sufficiently divisible.

5.3.3 Proof of Theorems C, D and E

We are now ready to prove Theorems C, D, and E from the introduction.

We start with Theorems C and E. Theorem E follows from Corollary 5.3.2 and

Theorem 5.3.4. In addition, the latter statement implies the limit δ(L) = limm δm(L)

exists. Let us prove the remaining assertions in Theorem C.

The estimate α(L) ≤ δ(L) ≤ (n+ 1)α(L) follows from the corresponding inequalities

in (5.6) between T (v) and S(v) together with Theorem C. When L is ample, we obtain

the stronger inequality δ(L) ≥ n+1
n
α(L) using Proposition 5.2.11. The fact that α(L) and

δ(L) only depend on the numerical equivalence class of L follows from the corresponding

properties of the invariants S(v) and T (v), see Lemma 5.2.7 (iii). Finally we prove that

α(L) and δ(L) are strictly positive. It suffices to consider α(L). The case when L is ample

is handled in [BHJ15, Theorem 9.14] using Seshadri constants, and the general case follows

from Lemma 5.3.6 below by choosing D effective such that L+D is ample.

Lemma 5.3.6. If L is a big line bundle and D is an effective divisor, then α(L+D) ≤ α(L).

Proof. Given m ∈ M(L), the assignment F 7→ F + mD defines an injective map from

|mL| to |m(L + D)|. Since lct(F + mD) ≤ lct(F ) for all F ∈ |mL|, it follows that

αm(L+D) ≤ αm(L). Letting m→∞ completes the proof.
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Finally we prove Theorem D. The argument relies heavily on the work by K. Fujita and

C. Li, who exploited ideas from the Minimal Model Program, as adapted to K-stability

questions by C. Li and C. Xu [LiX14].

For simplicity, assume KX + B is Cartier. By either [Li15b, Theorem 3.7] or [Fuj17,

Theorem 1.4.1], (X,B) is K-semistable iff β(E) ≥ 0 for all prime divisors E over X. In

our notation, this reads A(ordE) ≥ S(ordE) for all E, see [Fuj16b, Definition 1.3 (4)] and

Remark 5.2.10, and is hence equivalent to δ(−(KX +B)) ≥ 1 in view of Theorem 5.3.4.

Similarly, (X,B) is uniformly K-stable iff there exists ε > 0 such that β(E) ≥ εj(E)

for all divisors E over X [Fuj17, Theorem 1.4.2]. This reads A(ordE) − S(ordE) ≥
ε(T (ordE) − S(ordE)) for all E. Since −KX − B is ample, Proposition 5.2.11 implies

n−1S(ordE) ≤ T (ordE)− S(ordE) ≤ nS(ordE), so X is uniformly K-stable iff there exists

ε′ > 0 such that A(ordE) − S(ordE) ≥ ε′S(ordE) for all E. But this is equivalent to

δ(−(KX +B)) > 1 by Theorem 5.3.4.

When KX +B is merely Q-Cartier, a similar argument works using Lemma 5.2.7; see

Remark 5.3.5.

5.3.4 Volume estimates

The following theorem gives an upper bound on the volume of L in terms of the δ(L).

When X is a Q-Fano variety and L = −KX , the theorem generalizes the volume bounds

found in [Fuj15] and [Liu16], in which X is assumed K-semistable, so that δ(L) ≥ 1.

These volume bounds were explored in [SS17] and [LiuX17].

Theorem 5.3.7. Let L be a big line bundle. Then we have

vol(L) ≤
(
n+ 1

n

)n
δ(L)−nv̂ol(v).

for any valuation v on X centered at a closed point.

This theorem is a consequence of the following proposition, first observed by Liu, and

embedded in the proof of [Liu16, Theorem 21].

Proposition 5.3.8. If v ∈ Val∗X has linear growth and is centered at a closed point, then

S(v) ≥ n

n+ 1
n
√

vol(L)/ vol(v).

Proof. We follow Liu’s argument. By the exact sequence

0→ H0(X,mL⊗ amt(v))→ H0(X,mL)→ H0(X,mL⊗ (OX/amt(v)),
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we see that

dimFmtv H0(X,mL) ≥ dimH0(X,mL)− `(OX,ξ/amt(v)),

where ξ ∈ X is the center of v. Diving by mn/n! and taking the limit as m→∞ gives

vol(L; v ≥ t) ≥ vol(L)− tn vol(v),

which implies the lower bound for T (v). Further, integrating with respect to t shows that

S(v) =
1

vol(L)

∫ T (v)

0

vol(L; v ≥ t) dt

≥ 1

vol(L)

∫ n
√
Ln/ vol(v)

0

(vol(L)− tn vol(v)) dt

=
n

n+ 1
n
√

vol(L)/ vol(v),

which completes the proof.

Proof of Theorem D. If A(v) = ∞, then v̂ol(v) = ∞ and the inequality is trivial. If

A(v) <∞, then v has linear growth and the previous proposition gives

vol(L) ≤
(
n+ 1

n

)n
S(v)n vol(v) =

(
n+ 1

n

)n(
S(v)

A(v)

)n
v̂ol(v).

Since δ(L) ≤ A(v)/S(v) by Theorem 5.3.4, the proof is complete.

5.3.5 Valuations computing the thresholds

We say that a valuation v ∈ Val∗X with A(v) <∞ computes the log-canonical threshold

(resp. the stability threshold) of L if α(L) = A(v)/T (v) (resp. δ(L) = A(v)/S(v)). In §5.5

we will prove that such valuations always exist when L is ample. Here we will describe

some general properties of valuations computing one of the two thresholds.

We start by the following general result.

Proposition 5.3.9. Let v be a nontrivial valuation on X with A(v) <∞.

(i) if v computes α(L) or δ(L), then v computes lct(a•(v));

(ii) if L is ample and v computes δ(L), then v is the unique valuation, up to scaling,

that computes lct(a•(v)).
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Proof. First suppose v ∈ ValX computes α(L). Recall that lct(a•(v)) = infw
A(w)

w(a•(v))
, where

it suffices to consider the infimum over w ∈ Val∗X normalized by w(a•(v)) = 1. The latter

condition implies w(ap(v)) ≥ p for all p, so that w ≥ v. By Proposition 5.2.15 (i), this

yields T (w) ≥ T (v). Since v computes α(L), we have A(w)/T (w) ≥ A(v)/T (v). Thus

A(v)/v(a•(v)) = A(v) ≤ A(w) = A(w)/w(a•(v)),

so taking the infimum over w shows that v computes lct(a•(v)). The case when v computes

δ(L) is handled in the same way, and the uniqueness statement in (ii) follows from

Proposition 5.2.15 (ii).

Conjecture 5.3.10. Any valuation computing α(L) or δ(L) must be quasimonomial.

Note that Conjecture B in [JM12] implies Conjecture 5.3.10 in view of Proposition 5.3.9.

While Conjecture 5.3.10 seems difficult in general, it is trivially true in dimension one

(since all valuations are then quasimonomial). We also have the following result.

Proposition 5.3.11. If X is a projective surface with at worst canonical singularities

and B = 0, then:

(i) any valuation computing α(L) or δ(L) must be quasimonomial;

(ii) if X is smooth, then any valuation computing α(L) or δ(L) must be monomial in

suitable local coordinates at its center.

We expect that the statement in (i) holds for klt surfaces as well.

Proof. Suppose v ∈ Val∗X computes α(L) or δ(L). By Proposition 5.3.9, v computes

lctX,0(a•(v)). Let Y → X be a resolution of singularities of X. Since X has canonical

singularities, the relative canonical divisor KY/X is effective, and v also computes the

jumping number lct
KY/X
Y (a•(v)). By [JM12, §9], v is quasimonomial, proving (i). The

statement in (ii) follows from [FJ05, Lemma 2.11 (i)].

Finally we consider the case of divisorial valuations computing one of the two thresholds.

In [Blu16a], the author studied properties of divisorial valuations that compute log

canonical thresholds of graded sequences of ideals. The following proposition follows from

Proposition 5.3.9 and results in [Blu16a].

Proposition 5.3.12. Let X be a variety with at worst klt singularities and B = 0.
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(i) If a divisorial valuation v computes α(L) or δ(L), then there exists a prime divisor

E over X of log canonical type such that v = c ordE for some c ∈ R+.

(ii) If a divisorial valuation v computes δ(L) and L is ample, then there exists a prime

divisor E over X of plt type such that v = c ordE for some c ∈ R+.

We explain some of the above terminology. Let E be a divisor over X such that there

exists a projective birational morphism π : Y → X such that E is a prime divisor on Y

and −E is Q-Cartier and π-ample. We say that E is of plt (resp., log canonical) type if

the pair (Y,E) is plt (resp., log canonical) [Fuj17, Definition 1.1]. K. Fujita considered plt

type divisors in [Fuj17]. Note that Proposition 5.3.12 (ii) is similar to results in [Fuj17].

Proof. We may assume v = ordF for a divisor F over X. If v computes α(L) or δ(L), then

we may apply Proposition 5.3.9 (i) to see A(v) = lct(a•(v)). Furthermore, if v computes

δ(L) and L is ample, Proposition 5.3.9 (ii) implies A(v) < A(w)/w(a•(v)) as long as w

is not a scalar multiple of v. The statement now follows from Propositions 1.5 and 4.4

of [Blu16a].

5.4 Uniform Fujita approximation

In this section we prove Fujita approximation type statements for filtrations arising from

valuations.1 These results play a crucial role in the proof of Theorem F.

Related statements have appeared in the literature. See [LM09, Theorem D] for the

case of graded linear series and [BC11, Theorem 1.14] for the case of filtrations. Here

we specialize to filtrations defined by valuations, and the main point is to have uniform

estimates in terms of the log discrepancy of the valuation. To this end we use multiplier

ideals.

Throughout this section, (X,B) is a projective klt pair.

5.4.1 Approximation results

Given a valuation v on X and a line bundle L on X, we seek to understand how well S(v)

and T (v) can be approximated by studying the filtration Fv restricted to H0(X,mL) for

m large but fixed.

Recall that the pseudoeffective threshold of v is defined by T (v) := limm→∞ Tm(v).

1The term Fujita approximation refers to the work of T. Fujita [Fuj94].
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Theorem 5.4.1. Let L be an ample line bundle on X. Then there exists a constant

C = C(X,L) > 0 such that

0 ≤ T (v)− Tm(v) ≤ C · A(v)

m

for all m ∈M(L) and all v ∈ Val∗X with A(v) <∞.

Corollary 5.4.2. We have 0 ≤ α(L)−1 − αm(L)−1 ≤ C
m

for all m ∈M(L).

We also have a version of Theorem 5.4.1 for the expected order of vanishing S(v), but

this is in terms of a modification S̃m(v) of the invariant Sm(v), which we first need to

introduce.

Let V• be a graded linear series of a line bundle L on X. For m ∈ N∗, we write Vm,•

for the graded linear series of mL defined by

Vm,` := H0(X,m`L⊗ a`) ⊂ H0(X,m`L),

where a denotes the base ideal b
(
|Vm|

)
and a` the integral closure of the ideal a`.

If Vm = 0, then it is clear that Vm,` = 0 for all ` ∈ N∗ and vol(Vm,•) = 0. When Vm 6= 0,

we use the geometric characterization of the integral closure as in [Laz04, Remark 9.6.4]

to express Vm,` as follows. Let µ : Ym → X be a proper birational morphism such that Ym

is normal and b
(
|Vm|

)
· OY = OY (−Fm) for some effective Cartier divisor Fm. Then

Vm,` ' H0(Ym, `(mµ
∗(L)− Fm))

for all ` ≥ 1. Since mµ∗(L)− Fm is base point free and therefore nef,

vol(Vm,•) = ((mµ∗(L)− Fm)n)

by [Laz04, Corollary 1.4.41].

In the case when V• contains an ample series, we have

vol(V•) = lim
m→∞

vol(Vm,•)

mn
;

see [His13, Proposition 17] and also [Szé15, Appendix].

Now consider a filtration F of R(X,L). As in §5.1.4, this gives rise to a family

V t
m = V F ,tm of graded linear series of mL, indexed by t ∈ R+, and defined by

V t
m := FmtRm.
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Using the previously defined notion, we get an additional family of graded linear series

V t
m,• for each m ∈ N∗. Specifically,

V t
m,` := H0(X,m`L⊗ b

(
|V t
m|
)`

).

Clearly vol(V t
m,•) is a decreasing function of t that vanishes for t > T (F). When F is

linearly bounded, we write

S̃m(F) :=
1

mn vol(L)

∫ T (F)

0

vol
(
V t
m,•
)
dt.

Note that by the dominated convergence theorem,

S(F) = lim
m→∞

S̃m(F).

When v is a valuation on X with linear growth, we set S̃m(v) := S̃m(Fv).

Theorem 5.4.3. Let L be an ample line bundle on X. Then there exists a constant

C = C((X,B), L) such that

0 ≤ S(v)− S̃m(v) ≤ C · A(v)

m

for all m ∈ N∗ and all v ∈ ValX with A(v) <∞.

Theorems 5.4.1 and 5.4.3 may be viewed as global analogues of Proposition 4.1.9. Their

proofs, which appear at the end of this section, use multiplier ideals and take inspiration

from [DEL00] and [ELS03].

5.4.2 Multiplier ideals associated to linear series

Given a linear series V of L, we set

J ((X,B), c · |V |) := J (X, c · b(|V |)),

where b(|V |) is the base ideal of V . Similarly, if V• is a graded linear series of L, we set

J (X, c · ‖V•‖) := J (X, c · b•)

where b• is the graded sequence of ideals defined by bm := b(|Vm|).
The following lemma follows from basic properties of multiplier ideals listed in Section

3.3.
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Lemma 5.4.4. Let L be a line bundle on X.

(i) If V is a linear series of L, then b(|V |) ⊂ J ((X,B), |V |).

(ii) If V• is a graded linear series of L and m ∈ N∗, then b
(
|Vm|

)
⊂ J ((X,B),m · ‖V•‖).

(iii) Fix r ∈ N∗ such that r(KX +B) is Cartier. If V• is a graded linear series of L and

m ∈ N∗, c ∈ Q∗+, then

(JacX ·OX(−rB)m−1J ((X,B), cm · ‖V•‖) ⊂ J ((X,B), c · ‖V•‖)m

The following result is a consequence of Nadel Vanishing.

Theorem 5.4.5. Let L be a big line bundle on X, and V• a graded linear series of L.

(i) Let M be a line bundle on X and m ∈ N∗. If M −KX − B −mL is big and nef,

then

H i(X,M ⊗ J ((X,B),m · ‖V•‖)) = 0

for all i ≥ 1.

(ii) Let M and H be line bundles on X and m ∈ N∗. If H is ample and globally

generated, and M −KX −B −mL is big and nef, then

(M + jH)⊗ J ((X,B),m · ‖V•‖)

is globally generated for every j ≥ n = dim(X).

Proof. Statement (i) is [Laz04, Theorem 11.2.12 (iii)] in the case when X is and B = 0

smooth. In the more general case, the statement is a consequence of [Laz04, Theorem

9.4.17 (ii)].

Statement (ii) is a well known consequence of (i) and Castelnuovo–Mumford regularity.

For a similar argument, see [Laz04, Proposition 9.4.26].

Corollary 5.4.6. Let L be an ample line bundle on X. There exists a positive integer

a = a((X,B), L) such that if V• is a graded linear series of L, then

(a+m)L⊗ J ((X,B),m · ‖V•‖)

is globally generated for all m ∈ N∗. (Note that a does not depend on m or V•.)

Furthermore, fix r ∈ N∗ such that r(KX + B) is Cartier. We may choose a so that

H0(X, aL⊗ JacX ·OX(−rB)) is nonzero.
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Proof. Pick b, c ∈ N∗ such that bL is globally generated and cL−KX −B is big and nef.

We apply Theorem 5.4.5 (ii) with M = (c+m)L and H = bL. Thus

(c+m+ jb)L⊗ J (X,m · ‖V•‖)

is globally generated for all m ∈ N∗ and j ≥ dim(X). Thus, we can set a := c+ dim(X)b.

By increasing c further, we may assure H0(X, (c+ dim(X)b)L⊗JacX ·OX(−rB)) 6= 0.

5.4.3 Applications to filtrations defined by valuations

Now let L be an ample line bundle on X and fix r ∈ N∗ such that r(KX +B) is Cartier.

Now, we fix a value a := c+ dim(X)b, where c, b ∈ N∗ satisfy the following conditions:

(i) bL is globally generated,

(ii) cL−KX −B is big and nef, and

(iv) H0(X, (c+ dim(X)b)L⊗ JacX ·OX(−rB)) 6= 0.

Our choice of a satisfies the conclusion of Corollary 5.4.6. For the remainder of this section,

a will always refer to this constant.

Consider a valuation v ∈ Val∗X with A(v) <∞. We proceed to study the graded linear

series V t
• = V Fv ,t• of L for t ∈ R+.

Proposition 5.4.7. If m ∈ N∗ and t ∈ Q∗+ satisfies mt ≥ A(v), then

J ((X,B),m · ‖V t
• ‖) ⊂ amt−A(v)(v).

Proof. Pick p ∈ N∗ such that pt ∈ N∗ and J (X,m · ‖V t
• ‖) = J (X, m

p
· b
(
|V t
p |
)
). Then

J (X, m
p
· b
(
|V t
p |
)
) ⊂ J (X, m

p
· apt(v)) ⊂ J (X,mt · a•(v)) ⊂ amt−A(v)(v),

where the first inclusion follows from the inclusion b
(
|V t
p |
)
⊂ apt(v), the second from the

definition of the asymptotic multiplier ideal, and the third from Proposition 3.3.12.

Proposition 5.4.8. If m ∈ N∗ and t ∈ Q∗+ satisfies mt ≥ A(v), then

J ((X,B),m · ‖V t
• ‖) ⊂ b

(
|V t′

m+a|
)

where t′ = (mt− A(v))/(m+ a).
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Proof. By Proposition 5.4.7, we have

H0(X, (m+ a)L⊗ J ((X,B),m · ‖V t
• ‖)) ⊂ H0(X, (m+ a)L⊗ amt−A(v)(v)) = V t′

m+a.

Since (m + a)L ⊗ J ((X,B), ‖V t
• ‖) is globally generated by Corollary 5.4.6, the desired

inclusion follows by taking base ideals.

Using the previous proposition, we can now bound vol(V t
m,•) from below.

Proposition 5.4.9. If m ∈ N∗ and t ∈ Q∗+ satisfies mt ≥ A(v), then

vol(V t
• ) ≤ m−n vol(V t′

m+a,•),

where t′ = (mt− A(v))/(a+m).

Proof. It suffices to show that dimV t
m` ≤ dimV t′

m+a,` for all positive integers `. Indeed,

diving both sides by (m`)n/n! and letting `→∞ then gives the desired inequality.

We now prove dimV t
m` ≤ dimV t′

m+a,`. First, by our assumption on a, we may choose a

nonzero section s ∈ H0(X, aL⊗ JacX ·OX(−rB)). Multiplication by s` gives an injective

map

V t
`m −→ H0(X, (a+m)`L⊗ (JacX ·OX(−rB))`−1 ⊗ b

(
|V t
m`|
)
).

Now, we have

H0(X, (a+m)`L⊗ (JacX ·OX(−rB))`−1 ⊗ b
(
|V t
m`|
)
)

⊂ H0(X, (a+m)`L⊗ (JacX ·OX(−rB))`−1 ⊗ J ((X,B),m` · ‖V t
• ‖))

⊂ H0(X, (a+m)`L⊗ J ((X,B),m · ‖V t
• ‖)`)

⊂ H0(X, (a+m)`L⊗ (b(|V t′

m+a|)`) ⊂ V t′

m+a,`,

where the first inclusion follows from Lemma 5.4.4, the second from Corollary 3.3.7 (iii),

the third from Proposition 5.4.8, and the last one from the definition of V t′
m+a,•.

As an application of the previous proposition, we give bounds on Tm(v) and S̃m(v).

Proposition 5.4.10. If m ∈ N∗, then

T (v)− aT (v) + A(v)

m
≤ Tm(v) ≤ T (v).
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Proof. The second inequality is trivial, since T (v) = supTm(v). To prove the first inequality,

we may assume m > a+ A(v)
T (v)

. Pick t ∈ Q∗+ with t < T (v) and m > a+ A(v)
t

. Since V t
• is

nontrivial (in fact, it contains an ample series), J ((X,B), (m− a)‖V t
• ‖) is nontrivial as

well. Apply Proposition 5.4.8, with m replaced by m− a, so that t′ = t−m−1(at + A).

We get

b(|V t′

m |) ⊃ J ((X,B), (m− a)‖V t
• ‖) 6= 0.

In particular, V t′
m 6= ∅, which implies t′ ≤ Tm(v). Letting t′ → T (v) completes the

proof.

Proposition 5.4.11. If m ∈ N∗ and m > a, then(
m− a
m

)n+1(
S(v)− A(v)

m− a

)
≤ S̃m(v). (5.16)

Proof. To prove the inequality, we use Proposition 5.4.9 with m replaced by m− a to see

that (
m− a
m

)n
vol(V t

• ) ≤
1

mn
vol(V t′

m,•) (5.17)

for all t ∈ Q∗+ with (m − a)t ≥ A(v), where t′ = t − m−1(at + A(v)). By the

continuity statement in Proposition 5.1.3, the inequality in (5.17) must hold for all

t ∈ [A(v)/(m− a), T (v)], with at most two exceptions. We can therefore integrate with

respect to t from t = A(v)/(m− a) to t = (mT (v) + A(v))/(m− a), i.e. from t′ = 0 to

t′ = T (v). This yields

S̃m(v) =

∫ T (v)

0

vol(V t′
m,•)

mn vol(V )
dt′ ≥

(
m− a
m

)n+1 ∫ (mT (v)+A(v))/(m−a)

A(v)/(m−a)

vol(V t
• )

vol(L)
dt

=

(
m− a
m

)n+1 ∫ T (v)

A(v)/(m−a)

vol(V t
• )

vol(L)
dt

=

(
m− a
m

)n+1
(
S(v)−

∫ A(v)/(m−a)

0

vol(V t
• )

vol(L)
dt

)

≥
(
m− a
m

)n+1(
S(v)− A(v)

m− a

)
,

where the second equality follows from a simple substitution and the last inequality follows

since vol(V t
• ) ≤ vol(L) for all t. This completes the proof.
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Proof of Theorem 5.4.1. Consider any v ∈ Val∗X with A(v) <∞. By Corollary 5.3.2, we

have T (v) ≤ A(v)/α(L). Proposition 5.4.10 now yields

T (v)− Tm(v) ≤
(

a

α(L)
+ 1

)
A(v)

m

for any m ∈ N∗, so the theorem holds with C = 1 + a/α(L).

Proof of Theorem 5.4.3. Consider any v ∈ Val∗X with A(v) <∞. We claim

0 ≤ S(v)− S̃m(v) ≤ a

m
S(v) +

A(v)

m
(5.18)

for all m ∈ N∗. To prove the first inequality of (5.18), note that for t ∈ R+ and l ∈ N∗

we have

V t
m,` = H0(X,m`L⊗ b

(
|Fmtv H0(X,mL)|

)`
) ⊂ Fm`tv H0(X,m`L) = V t

m`.

Thus vol(V t
m,•) ≤ mn vol(V t

• ) for t ∈ R+, and integration yields S̃m(v) ≤ S(v). We move

on to the second inequality of (5.18). Note that the statement holds trivially for m ≤ a.

Next Proposition 5.4.11 gives

0 ≤ S(v)− S̃m(v) ≤ S(v)−
(
m− a
m

)n+1(
S(v)− A(v)

m− a

)
=

(
1−

(
m− a
m

)n+1
)
S(v) +

(
m− a
m

)n
A(v)

m
≤ a

m
S(v) +

A(v)

m

for m > a, where the last inequality uses that tn+1 ≤ t for t ∈ [0, 1].

Finally, note that S(v) ≤ T (v) ≤ A(v)/α(L) by (5.6) and Corollary 5.3.2. Therefore,

(5.18) implies

0 ≤ S(v)− S̃m(v) ≤ CA(v)

m
,

where C = 1 + a/α(L).

5.5 Existence of valuations computing the

thresholds

In this section we prove Theorem F, on the existence of valuations computing the log

canonical and stability thresholds. We assume that (X,B) is a projective klt pair and L

is an ample line bundle on X.
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5.5.1 Linear series in families

We consider the following setup, which will arise in §5.5.3. Fix m ∈ N∗ and a family of

subspaces of H0(X,mL) parameterized by a variety Z. Said family is given by a submodule

W ⊂ V := H0(X,mL)⊗k OZ .

For z ∈ Z closed, we write Wz for the linear series of mL defined by

Wz := Im
(
W|k(z) → V|k(z) ' H0(X,mL)

)
.

Note that W gives rise to an ideal B ⊂ OX×Z such that

B · OX×{z} = b
(
|Wz|

)
.

Indeed, B is the image of the map

p∗2W ⊗ p∗1(−mL)→ OX×Z ,

where p1 and p2 denote the projection maps associated to X × Z.

We need a few results on the behavior of invariants of linear series in families.

Proposition 5.5.1. There exists a nonempty open set U ⊂ Z such that lct(b
(
|Wz|

)
) is

constant for all closed points z ∈ U .

Proof. Since lct(b
(
|Wz|

)
) = lct(B · OX×{z}), the proposition follows from Proposition

3.4.11.

Proposition 5.5.2. If Z is a smooth curve and z0 ∈ Z a closed point, then there exists

an open neighborhood U of z0 in Z such that lct(b
(
|Wz0 |

)
) ≤ lct(b

(
|Wz|

)
) for all z ∈ U .

Proof. As in the proof of the previous proposition, we note that lct(b
(
|Wz|

)
) = lct(B ·

OX×{z}) for z ∈ Z closed. Thus, the proposition is a consequence of Proposition 3.4.12.

Proposition 5.5.3. There exists a nonempty open set U ⊂ Z such that vol(Wz,•) is

constant for all closed points z ∈ U .

Proof. The idea is to express vol(Wz,•) as an intersection number. Fix a proper birational

morphism π : Y → X ×Z such that Y is smooth and B ·OY = OY (−F ) for some effective

Cartier divisor on Y . For each z ∈ Z, we restrict π to get a map πz : Yz → X × {z} ' X.
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We may find a nonempty open set U ⊂ Z such that Yz → X × {z} is proper birational

and Yz is smooth for all z ∈ U . We then have

vol(Wz,•) = ((p∗1mL− F )|nYz).

After shrinking U , we may assume p∗1mL− F is flat over U . Then ((p∗1mL− F )|Yz)n) is

constant on U , which concludes the proof.

Proposition 5.5.4. Let W and G be two submodules of V and for z ∈ Z, let Wz and Gz

denote the corresponding subspaces of V . If the function z 7→ dimWz is locally constant

on Z, then the set {z ∈ Z |Gz ⊂ Wz} is closed.

Proof. We may assume Z is affine and dim(Wz) =: r is constant on Z. Choose a basis

for the free O(Z)-module V(Z) as well as generators for W(Z) and G(Z). Consider the

matrix with entries in O(Z), whose rows are given by the generators of W(Z), followed

by the generators of G(Z), all expressed in the chosen basis of O(Z). By our assumption

on W, the rank of this matrix is at least r for all z ∈ Z. Further, since Gz ⊂ Wz if and

only if dim(Gz +Wz) = dim(Wz), the set {z ∈ Z |Gz ⊂ Wz} is precisely the locus where

this matrix has rank equal to r, and is hence closed.

5.5.2 Parameterizing filtrations

We now construct a space that parameterizes filtrations of R(X,L). To have a manageable

parameter space, we restrict ourselves to N-filtrations F of R satisfying T (F) ≤ 1. Such

a filtration F is given by the choice of a flag

FmRm ⊂ Fm−1Rm ⊂ · · · ⊂ F1Rm ⊂ F0Rm = Rm (5.19)

for each m ∈ N∗ such that

Fp1Rm1 · Fp2Rm2 ⊂ Fp1+p2Rm1+m2 (5.20)

for all integers 0 ≤ p1 ≤ m1 and 0 ≤ p2 ≤ m2.

Let Flm denote the flag variety parameterizing flags of Rm of the form (5.19). In

general, Flm may have several connected components. On each component, the signature

of the flag (that is, the sequence of dimensions of the elements of the flag) is constant.

For each natural number d, we set

Hd := Fl0 × Fl1 × · · · × Fld
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and, for c ≥ d, let πc,d : Hc → Hd denote the natural projection map. Note that a closed

point z ∈ Hd gives a collection of subspaces(
Fmz Rm ⊂ Fm−1

z Rm ⊂ · · · ⊂ F1
zRm ⊂ F0

zRm = Rm

)
0≤m≤d .

Furthermore, this correspondence is given by a universal flag on Hd. This means that for

each m ≤ d on Hd there is a flag

FmRm ⊂ Fm−1Rm ⊂ · · · ⊂ F1Rm ⊂ F0Rm = Rm,

where Rm := H0(X,mL)⊗k OHd . For z ∈ Hd, we have

FpzRm := Im
(
FpRm|k(z) −→ Rm|k(z) ' Rm

)
for 0 ≤ p ≤ m, where k(z) denotes the residue field at z.

Since we are interested in filtrations of R(X,L), consider the subset

Jd := {z ∈ Hd | Fz satisfies (5.20) for all 0 ≤ pi ≤ mi ≤ d}.

Lemma 5.5.5. The subset Jd ⊂ Hd is closed.

Proof. We consider Fp1z Rm1 · Fp2z Rm2 , where z ∈ Hd, m1 +m2 ≤ d, and 0 ≤ pi ≤ mi for

i = 1, 2. We will realize this subspace as coming from a submodule of Rm1+m2 . Note that

the natural map

H0(X,m1L)⊗k H0(X,m2L) −→ H0(X, (m1 +m2)L)

induces a map Rm1 ⊗Rm2 → Rm1+m2 . We define

Fp1Rm1 · Fp2Rm2 := Im (Fp1Rm1 ⊗Fp2Rm2 → Rm1+m2) .

Since

Fp1z Rm1 · Fp2z Rm2 = Im
(
(Fp1Rm1 ⊗Fp2Rm2)|k(z) −→ Rm1+m2|k(z) ' Rm1+m2

)
,

the desired statement is a consequence of Proposition 5.5.4.

Let Jd(k) denote the set of closed points of Jd, and set J := lim←− Jd(k), with respect to

the inverse system induced by the maps πc,d. Write πd for the natural map J → Jd(k). By

the previous discussion, there is a bijection between the elements of J and N-filtrations F
of R(X,L) satisfying T (F) ≤ 1.
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The following technical lemma will be useful for us in the next section. Its proof relies

on the fact that every descending sequence of nonempty constructible subsets of a variety

over an uncountable field has nonempty intersection.

Lemma 5.5.6. For each d ∈ N, let Wd ⊂ Jd be a nonempty constructible subset, and

assume Wd+1 ⊂ π−1
d+1,d(Wd) for all d. Then there exists z ∈ J such that πd(z) ∈ Wd(k) for

all d.

Proof. Finding such a point z is equivalent to finding a point zd ∈ Wd(k) for each d, such

that πd+1,d(zd+1) = zd for all d. We proceed to construct such a sequence (zd)d inductively.

We first look to find a good candidate for z1. By assumption,

W1 ⊃ π2,1(W2) ⊃ π3,1(W3) ⊃ · · ·

is a descending sequence of nonempty sets. Note that W1 is constructible, and so are

πd,1(Wd) for all d by Chevalley’s Theorem. Thus,

W1 ∩ π2,1(W2) ∩ π3,1(W3) ∩ · · ·

is nonempty, and we may choose a closed point z1 in this set.

Next, we look at

W2 ∩ π−1
2,1(z1) ⊃ π3,2(W3) ∩ π−1

2,1(z1) ⊃ π4,2(W4) ∩ π−1
2,1(z1) ⊃ · · ·

and note that for d ≥ 2 the set πd,2(Wd) ∩ π−1
2,1(z1) is nonempty by our choice of z1. Thus

π−1
2,1(z1) ∩W2 ∩ π3,2(W3) ∩ π4,2(W4) ∩ · · ·

is nonempty, and we may choose a closed point z2 lying in the set. Continuing in this

manner, we construct a desired sequence.

5.5.3 Finding limit filtrations

The following proposition, crucial to Theorem F, is a global analogue of Proposition 4.2.2.

The proofs of both results use extensions of the “generic limit” construction developed

in [Kol08, dFM09, dFEM10, dFEM11].

Proposition 5.5.7. Let (Fi)i∈N be a sequence of N-filtrations of R(X,L) with T (Fi) ≤ 1

for all i. Furthermore, fix A, S, T ∈ R+ such that
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1. A ≥ lim sup
i→∞

lct (b•(Fi)),

2. S ≤ lim inf
m→∞

lim inf
i→∞

S̃m(Fi), and

3. T ≤ lim inf
m→∞

lim inf
i→∞

Tm(Fi).

Then there exists a filtration F of R(X,L) such that

lct (b•(F)) ≤ A, S ≤ S(F), and T ≤ T (F) ≤ 1.

Proof. We use the parameter space J from §5.5.2, parametrizing N-filtrations of R(X,L)

with T ≤ 1. Each filtration Fi corresponds to an element zi ∈ J , and πm(zi) correspond

to the filtration Fi restricted to ⊕md=0Rd.

Claim 1: We may choose infinite subsets

N ⊃ I0 ⊃ I2 ⊃ I3 ⊃ · · ·

such that for each m, the closed set

Zm := {πm(zi) | i ∈ Im} ⊂ Jm

satisfies the property

(†) If Y ( Zm is a closed set, there are only finitely many i ∈ Im such that πm(zi) ∈ Y .

Note that, in particular, each Zm is irreducible.

Indeed, we can construct the sequence (Im)∞0 inductively. Set I0 = N. Since J0 =

Fl0 ' Spec(k), (†) is trivially satisfied for m = 0. Having chosen Im, pick Im+1 ⊂ Im such

that (†) is satisfied for Zm+1; this is possible since Jm is Noetherian.

Claim 2: For each m ∈ N, there exist a nonempty open set Um ⊂ Zm and constants ap,m,

1 ≤ p ≤ m, sm, and tm such that if z ∈ Um, the filtration Fz satisfies

(1) p · lct (bp,m(Fz)) = ap,m for 1 ≤ p ≤ m;

(2) S̃m(Fz) = sm;

(3) Tm(Fz) = tm.
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Furthermore, ap,m ≤ A for all 1 ≤ p ≤ m, lim inf
m→∞

sm ≥ S, and lim inf
m→∞

tm ≥ T .

To see this, note that there is a nonempty open set Um ⊂ Zm on which the left-hand

sides of (1)–(3) are constant. For (1) and (2), this is a consequence of Propositions 5.5.1

and 5.5.3. For (3), it follows from dimFpzRm being constant on the connected components

of Jm.

Now, we let

I◦m := {i ∈ Im |πm(zi) ∈ Um}.

By (†), the set Im \ I◦m is finite; hence, I◦m is infinite. Since

ap,m = p · lct(bp,m(Fi)), sm = S̃m(Fi), and tm = Tm(Fi)

for all i ∈ I◦m and 1 ≤ p ≤ m, we see that

1. ap,m ≤ lim sup
i→∞

p · lct(bp,m(Fi)) ≤ lim sup
i→∞

p · lct(bp(Fi)),

2. sm ≥ lim inf
i→∞

S̃m(Fi), and

3. tm ≥ lim inf
i→∞

Tm(Fi).

The remainder of Claim 2 follows from these three inequalities.

Claim 3: There exists a point z ∈ J such that πm(z) ∈ Um for all m ∈ N.

Granted this claim, the filtration F = Fz associated to z ∈ J satisfies the conclusion

of our proposition. Indeed, this is a consequence of Claim 2 and the fact that for any

linearly bounded filtration F , we have

1. lct(b•(F)) = limp→∞ supm≥p p · lct(bp,m(F));

2. S(F) = limm→∞ S̃m(F);

3. T (F) = limm→∞ Tm(F).

We are left to prove Claim 3. To this end we apply Lemma 5.5.6. For d ∈ N, set

Wd := Ud ∩ π−1
d,d−1Ud−1 ∩ π−1

d,d−2(Ud−2) ∩ · · · ∩ π−1
d,0(U0).

Clearly Wd ⊂ Jd is constructible and Wd+1 ⊂ π−1
d+1,d(Wd). We are left to check that each

Wd is nonempty. But

πd(zi) ∈ Wd for all i ∈ I◦d ∩ I◦d−1 · · · ∩ I◦0 ,
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and the latter index set is nonempty, since it can be written as Id \
⋃d
j=0(Ij \ I◦j ), where Id

is infinite and each Ij \ I◦j is finite.

Applying Lemma 5.5.6 to the Wd yields a point z ∈ J such that πd(z) ∈ Wd ⊂ Ud for all

d ∈ N. This completes the proof of the claim, as well as the proof of the proposition.

5.5.4 Proof of Theorem F

We begin by proving the following proposition.

Proposition 5.5.8. Let (vi)i∈N be a sequence of valuations in Val∗X such that T (vi) = 1

and the limits A := limi→∞A(vi) and S := limi→∞ S(vi) both exist and are finite. Then

there exists a valuation v∗ on X such that

A(v∗) ≤ A, S(v∗) ≥ S and T (v∗) ≥ 1.

This will follow from Proposition 5.5.7 and the following lemma.

Lemma 5.5.9. Keeping the notation and hypotheses of Proposition 5.5.8, let Fi := Fvi,N
denote the N-filtration induced by Fvi as in §5.1.7. Then we have

1. lim sup
i→∞

lct (b•(Fi)) ≤ A,

2. lim
m→∞

lim inf
i→∞

S̃m(Fi) = lim
m→∞

lim sup
i→∞

S̃m(Fi) = S, and

3. lim
m→∞

lim inf
i→∞

Tm(Fi) = lim
m→∞

lim sup
i→∞

Tm(Fi) = 1.

Proof. We first show that (1) holds. Note that bp(Fi) = bp(Fvi) for all p ∈ N. Indeed,

this follows from the fact that Fpi Rm = FpviRm for all m, p ∈ N. Thus,

lct(b•(Fi)) = lct(b•(Fvi)) = lct(a•(vi)) ≤ A(vi),

where the second equality follows from Lemma 5.2.19 and the last inequality is Lemma 3.4.9.

We now show (2) and (3) hold. To this end, we first claim that

0 ≤ Tm(vi)− Tm(Fi) ≤
1

m
and 0 ≤ S̃m(vi)− S̃m(Fi) ≤

1

m
. (5.21)

Indeed, the estimates for Tm follow from Proposition 5.1.11. As for the estimates for

S̃m, note that S̃m(vi) =
∫ 1

0
fi,m(t) dt, where fi,m(t) = vol(V

Fvi ,t
m,• ), whereas S̃m(Fi) is a

right Riemann sum approximation of this integral, obtained by subdividing [0, 1] into m
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subintervals of equal length. Thus the estimate for S̃m in (5.21) follows, since the functions

fi,m(t) are decreasing, with fi,m(0) = 1 and fi,m(1) ≥ 0.

By the uniform Fujita approximation results in Theorems 5.4.1 and 5.4.3, we have

lim
m→∞

sup
i
|Tm(vi)− T (vi)| = lim

m→∞
sup
i
|S̃m(vi)− S̃(vi)| = 0.

Together with (5.21), this yields (2) and (3), and hence completes the proof.

Proof of Proposition 5.5.8. For i ≥ 1, consider the N-filtrations Fi := Fvi,N associated to

vi. By Lemma 5.5.9, the assumptions of Proposition 5.5.7 are satisfied with T = 1. Hence

we may find a filtration F such that

lct(b•(F)) ≤ A, S(F) ≥ S and T (F) = 1.

Using Theorem 3.4.10, we may choose a valuation v∗ ∈ Val∗X computing lct(b•(F)). After

rescaling, we may assume v∗(b•(F)) = 1. Therefore,

A(v∗) =
A(v∗)

v∗(b•(F))
= lct(b•(F) ≤ A.

By Corollary 5.2.21, S(v∗) ≥ S(F) ≥ S and T (v∗) ≥ T (F) = 1. This completes the

proof.

Proof of Theorem F. We first find a valuation computing α(L). Choose a sequence (vi)i

in Val∗X such that

lim
i→∞

A(vi)

T (vi)
= inf

v

A(v)

T (v)
= α(L).

After rescaling, we may assume T (vi) = 1 for all i. Hence, the limit A := limi→∞A(vi)

exists and equals α(L). Further, by (5.6), the sequence (S(vi))i is bounded from above

and below away from zero, so after passing to a subsequence we may assume the limit

S := limi→∞ S(vi) exists, and is finite and positive.

By Proposition 5.5.8, there exists v∗ ∈ Val∗X with A(v∗) ≤ A and T (v∗) ≥ 1. Therefore,

A(v∗)

T (v∗)
≤ A = α(L).

Since α(L) = infv A(v)/T (v), v∗ computes α(L).

The argument for δ(L) is almost identical. Pick a sequence (vi)i in Val∗X such that

lim
i→∞

A(vi)

S(vi)
= inf

v

A(v)

S(v)
= δ(L).
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Again, we rescale our valuations so that T (vi) = 1 for all i ∈ N. As above, we may

assume that the limit S := limi→∞ S(vi) exists, and is finite and positive. Therefore,

A := limi→∞A(vi) also exists and A/S = δ(L).

We apply Proposition 5.5.8 to find a valuation v∗ such that A(v∗) ≤ A and S(v∗) ≤ S.

As argued for α(L), we see that v∗ computes δ(L).

5.6 Toric case

Let N ' Zn be a lattice and M = Hom(N,Z) the corresponding dual lattice. We consider

a projective klt pair (X,B), where X = X(∆) is given by a rational fan ∆ ⊂ NR := N⊗ZR

and B is a torus invariant Q-divisor on X. Since X is proper, |∆| = NR.

As in Section 3.5, let v1, . . . , vd denote the primitive generators of the one-dimensional

cones in ∆ and D1, . . . , Dd be the corresponding torus invariant divisors on X. Hence,

there exist bi ∈ Q+ so that B =
∑d

i=1 biDi. A vector v ∈ σ gives rise to a valuation on X

that we slightly abusively also denote by v (see Section 3.5.1). The valuation associated

to the point vi ∈ NR is ordDi for 1 ≤ i ≤ d

We fix an ample line bundle of the form L = OX(D), where D = c1D1 + · · ·+ cdDd is

a Cartier divisor on X. Associated to D is the convex polytope

P = PD = {u ∈MR | 〈u, vi〉 ≥ −ci for all 1 ≤ i ≤ d}.

We write VertP for the set of vertices in P .

Recall that there is a correspondence between points in P ∩MQ and effective torus

invariant Q-divisors Q-linearly equivalent to D, under which u ∈ P ∩MQ corresponds to

Du := D +
d∑
i=1

〈u, vi〉Di :=
d∑
i=1

(〈u, vi〉+ ci)Di.

Note that if m ∈ N∗ is chosen so that mu ∈ N , then Du = D +m−1div(χmu).

Let ψ = ψD : NR → R be the concave function that is linear on the cones of ∆ and

satisfies ψ(vi) = −ci for 1 ≤ i ≤ d. On a given cone σ ∈ ∆, the linear function is given by

ψ(v) = −〈c(σ), v〉, where c(σ) ∈M is such that χc(σ) is a local equation for D on Uσ ⊂ X.

We have ψ(v) = minu∈P 〈u, v〉 = minu∈VertP 〈u, v〉 for all v ∈ NR.

Lemma 5.6.1. If u ∈ P ∩MQ and v ∈ NR, then v(Du) = 〈u, v〉 − ψ(v).
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Proof. Pick m ∈ N∗ such that mu ∈M . Since Du = D +m−1div(χmu), we have

v(Du) = v(D) +m−1v(χmu) = v(D) + 〈u, v〉,

and we are left to show v(D) = −ψ(v). Let σ ∈ ∆ be the unique cone containing v in its

interior. Since χc(σ) is a local equation for D on Uσ, we see

v(D) = v(χc(σ)) = 〈c(σ), v〉 = −ψ(v),

which completes the proof.

5.6.1 Filtrations by toric valuations

Given v ∈ NR, we will describe the filtration Fv of R(X,L) and compute both S(v) and

T (v). Recall that for each m ∈ N∗,

H0(X,mL) =
⊕

u∈mP∩M

k · χu,

where the rational function χu is viewed as a section of OX(mD).

Proposition 5.6.2. For λ ∈ R+ and m ∈ N∗ we have

FλvH0(X,mL) =
⊕

u∈mP∩M
〈u,v〉−m·ψ(v)≥λ

k · χu.

As a consequence, the set of jumping numbers of Fv along H0(X,mL) is equal to the set

{〈u, v〉 −m · ψ(v) | u ∈ mP ∩M}.

Proof. It suffices to prove that s =
∑

u∈mP∩M αuχ
u ∈ H0(X,mL), then

v(s) = min{〈u, v〉 −m · ψ(v) | αu 6= 0}.

To this end, pick σ ∈ ∆ such that v ∈ Int(σ). Note that χ−mc(σ) is a local generator for

OX(mD) on Uσ. By the definition of v(s), and by (3.3), we therefore have

v(s) = v(
∑

αuχ
u+mc(σ)) = min{〈u, v〉+m〈c(σ), v〉 | αu 6= 0},

which completes the proof, since ψ(v) = −〈c(σ), v〉.

Proposition 5.6.3. For m ∈ N∗, we have

Sm(v) = 〈um, v〉 − ψ(v) and Tm(v) = max
u∈P∩m−1M

〈u, v〉 − ψ(v),
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where um := (
∑

u∈P∩m−1M u)/#(P ∩m−1M) is the barycenter of the set P ∩m−1M .

Proof. From the description of the jumping numbers of Fvu in Proposition 5.6.2, we see

Sm(v) =

∑
u∈mP∩M〈u, v〉 −m · ψ(v)

m#(mP ∩M)
=

〈 ∑
u∈mP∩M u

m#(mP ∩M)
, v

〉
− ψ(v),

and

Tm(v) =
maxu∈mP∩M〈u, v〉

m
− ψ(v).

Now, multiplication by m−1 gives an isomorphism mP ∩M → P ∩m−1M . Applying said

isomorphism yields the desired equalities.

Corollary 5.6.4. We have

S(v) = 〈u, v〉 − ψ(v) and T (v) = max
u∈P
〈u, v〉 − ψ(v) = max

u∈Vert(P )
〈u, v〉 − ψ(v),

where u denotes the barycenter of P and Vert(P ) denotes the set of vertices of P .

Remark 5.6.5. One can thus think of T (v) = maxu∈P 〈u, v〉 −minu∈P 〈u, v〉 as the width

of P in the direction v, see also [Amb16, §3.2].

Proof of Corollary 5.6.4. The formula for S(v) is immediate from Proposition 5.6.3 since

S(v) = limm→∞ Sm(v) and u = limm→∞ um. Similarly, T (v) = limm→∞ Tm(v), and

lim
m→∞

max
u∈P∩m−1M

〈u, v〉 = max
u∈P
〈u, v〉 = max

u∈VertP
〈u, v〉,

where the last equality holds by linearity of u 7→ 〈u, v〉. This completes the proof.

Remark 5.6.6. The proof shows that Tm(v) = T (v) for m sufficiently divisible.

5.6.2 Deformation to the initial filtration

Given a filtration F of R(X,L), we will construct a degeneration of F to a filtration whose

base ideals are T -invariant. We will use this construction to show α(L) and δ(L) may be

computed using only toric valuations. Our argument is a global analogue of [Blu16b, §7],

which in turns draws on [Mus02].

First write R(X,L) as the coordinate ring of an affine toric variety. Set M ′ := M × Z,

N ′ := Hom(M ′,Z), M ′
R := M ⊗Z R, and N ′R := N ⊗Z R. Let σ0 denote the cone over

P × {1} ⊂MR ×R. Then there is a canonical isomorphism k[σ0 ∩M ′] ' R(X,L).
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We put a Zn+1
+ order on the monomials of k[σ0 ∩M ′] using an argument in [KK14, §7].

Choose y1, . . . , yn+1 ∈ σ∨0 ∩ N ′ that are linearly independent in N ′R. Let ρ : M ′ → Zn+1

denote the map defined by

ρ(u) = (〈u, y1〉, . . . , 〈u, yn+1〉) .

Then ρ is injective and has image contained in Zn+1
+ .

Endowing Zn+1
+ with the lexicographic order gives an order > on the monomials in

k[σ0 ∩M ′]. Given an element s ∈ k[σ0 ∩M ′] the initial term of s, written in>(s), is the

greatest monomial in s with respect to the order >. Given a subspace W of H0(X,mL),

we set

in>(W ) = span{in>(s) | s ∈ W},

where W is viewed as a vector subspace of k[σ0 ∩M ′]. Clearly, in>(W ) is generated by

monomials in k[σ0 ∩M ′]. Therefore, b
(
| in>(W )|

)
is a T -invariant ideal on X.

Proposition 5.6.7. If W is a subspace of H0(X,mL), then dimW = dim in>(W ).

Proof. By construction, there exists a basis of in>(W ) consisting of monomials χu1 , . . . , χur ,

where ui ∈ σ0 ∩M ′, and we may assume χu1 > · · · > χur . For each 1 ≤ i ≤ r, fix si ∈ W
such that in>(si) = χui . We claim that s1, . . . , sr forms a basis for W .

To show that s1, . . . , sr are linearly independent, we argue by contradiction, so suppose

0 =
∑r

i=1 cisi, with c ∈ kr\{0}, and pick i0 minimal with ci0 6= 0. Then 0 = in>0(
∑
cisi) =

ci0χ
ui0 , a contradiction.

Similarly, if s1, . . . , sr did not span W , then there would exist an element s ∈ W \
span{s1, . . . , sr} with minimal initial term. Note that in>(s) = cχui for some c ∈ k∗

and i ∈ {1, . . . , r}. Now, s − csi ∈ W \ span{s1, . . . , sr}, but has initial term strictly

smaller than in(s). This contradicts the minimality assumption on in>(s), and the proof

is complete.

To understand lct(b
(
| in>W |

)
), we construct a 1-parameter degeneration of W to

in>(W ) essentially following [Eis95, §15.8]. Choose elements s1, . . . , sr ∈ W such that

W = span{s1, . . . , sr} and in>(W ) = span{in>(s1), . . . , in>(sr)}.

Next, we may fix an integral weight µ : σ0 ∩M → Z+ such that in>µ(si) = in>(si) for

1 ≤ i ≤ r [Eis95, Exercise 15.12]. Here >µ denotes the weight order on Zn+1 induced by µ.
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We write k[σ0 ∩M ′][t] for the polynomial ring in one variable over k[σ0 ∩M ′]. For

s =
∑
βuχ

u ∈ k[σ0 ∩M ′], we write d = max{µ(u) | βm 6= 0} and set

s̃ := td
∑

βut
−µ(u)χu.

Next, let W̃ ⊂ k[σ0∩M ′][t] denote the k[t]-submodule of k[σ0∩M ′][t] generated by s̃1, . . . , s̃r.

Then W̃ gives a family of subspaces of H0(X,mL) over A1. For c ∈ A1(k), write Wc for

the corresponding subspace of H0(X,mL). Clearly W1 = W and W0 = in>(W ).

Lemma 5.6.8. For c ∈ k∗, lct(b
(
|Wc|

)
) = lct(b

(
|W |

)
).

Proof. Consider the automorphism of R(X,L)[t±1] defined by χu 7→ tµ(u)χu and t 7→ t.

Since X ' Proj(R(X,L)), this automorphism of R(X,L)[t±1] gives an automorphism

X × (A1 \ {0}) over A1 \ {0}. For c ∈ k∗, we write φc for the corresponding automorphism

of X. Since φ∗c sends Wc to W , we see lct(b
(
|Wc|

)
) = lct(b

(
|W |

)
).

Proposition 5.6.9. If W is a subspace of H0(X,mL), then lct(b
(
| in>(W )|

)
) ≤ lct(b

(
|W |

)
).

Proof. Combining Proposition 5.5.2 with Lemma 5.6.8, we see lct(b
(
|W0|

)
) ≤ lct(b

(
|W |

)
).

Since in>(W ) = W0, the proof is complete.

Let F be a filtration of R(X,L). We write Fin for the filtration defined by

FλinH0(X,mL) := in>
(
FλH0(X,mL)

)
for all λ ∈ R+ and m ∈ N. To see that Fin is indeed a filtration, first note that

conditions (F1)–(F3) of §5.1.3 are trivially satisfied. Condition (F4) follows from the

equality in>(s1s2) = in>(s1) in>(s2) for s1, s2 ∈ R(X,L).

Proposition 5.6.10. With the above setup, we have

S(Fin) = S(F), T (Fin) = T (F), and lct(b•(Fin)) ≤ lct(b•(F)).

Proof. By Proposition 5.6.7, F and Fin have identical jumping numbers. Thus, S(F) =

S(Fin) and T (F) = T (Fin). By Proposition 5.6.9, lct(bp,m(Fin)) ≤ lct(bp,m)(F) for

m, p ∈ N. Letting m → ∞, we get lct(bp(Fin)) ≤ lctp(b•(F)) for all p ∈ N, and hence

lct(b•(Fin)) ≤ lct(b•(F)).
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Proposition 5.6.11. If w is a nontrivial valuation on X with A(w) < ∞, then there

exists v ∈ NR \ {0} such that

A(v) ≤ A(w), T (v) ≥ T (w), and S(v) ≥ S(w).

Proof. Let Fw,in denote the initial filtration of Fw. Then b•(Fw,in) is a graded sequence of

T -invariant ideals on X. Further, Proposition 5.6.10 shows that

lct(b•(Fw,in)) ≤ lct(b•(Fw)) = lct(a•(w)) ≤ A(w) <∞,

where the first equality Lemma 5.2.19, and the second inequality is Lemma 3.4.9.

Therefore, b•(Fw,in) is a nontrivial graded sequence. Proposition 3.5.2 yields a nontrivial

toric valuation v ∈ NR that computes lct(b•(Fw,in)). After rescaling v, we may assume

v(b•(Fw,in)) = 1, and, thus, A(v) = lct(b•(Fw,in)). We then have

A(v) = lct(b•(Fw,in)) ≤ lct(b•(Fw)) = lct(a•(w)) ≤ A(w),

Next,

S(v) ≥ S(Fw,in) = S(Fw) = S(w),

where the inequality is Corollary 5.2.21 and the following equality is Proposition 5.6.10. A

similar argument gives T (v) ≥ T (w) and completes the proof.

Corollary 5.6.12. We have the following equalities

α(L) = inf
v∈NR\{0}

A(v)

T (v)
and δ(L) = inf

v∈NR\{0}

A(v)

S(v)

Proof. This is clear from Theorem C and Proposition 5.6.11.

5.6.3 Proof of Theorem G

We now consider the log canonical and stability thresholds of L. The following result is

slightly more precise than Theorem G in the introduction.

Corollary 5.6.13. We have

α(L) = min
u∈Vert(P )

lct(Du) = min
u∈Vert(P )

min
i=1,...,d

1− bi
〈u, vi〉+ ci

(5.22)

and

δ(L) = lct(Du) = min
i=1,...,d

1− bi
〈u, vi〉+ ci

, (5.23)
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where u denotes the barycenter of P and Vert(P ) the set of vertices of P . Furthermore,

α(L) (resp. δ(L)) is computed by one of the valuations v1, . . . , vd.

Proof. Again, we will only prove the half of the corollary that concerns α(L). First, we

combine Lemma 5.6.1, Corollary 5.6.4 and Corollary 5.6.12 to see

α(L) = inf
v∈NR\{0}

min
u∈Vert(P )

A(v)

v(Du)
= min

u∈Vert(P )
inf

v∈NR\{0}

A(v)

v(Du)
.

Applying Proposition 3.5.3 to the previous expression yields (5.22).

Next, pick u ∈ Vert(P ) and i ∈ {1, . . . , d} such that α(L) = (1 − bi)/(〈u, vi〉 + ci).

Then we have A(vi)/T (vi) = 1/(〈u, vi〉+ ci), so vi computes α(L).

5.6.4 The Fano case

Finally we consider the case when X is a toric Q-Fano variety, that is, −KX is an ample

Q-Cartier divisor.

Corollary 5.6.14. A toric Q-Fano variety is K-semistable iff the barycenter of the polytope

associated to −KX is equal to the origin.

For smooth X, this result was proved by analytic methods in [BB13, Berm16], even

with K-semistable replaced by K-polystable. In the general case, it can be deduced

from [LiX16, Theorem 1.4].

Proof. We apply (5.23) with bi = 0 and ci = 1 for all i. If u = 0, then δ(−KX) = 1, which

by Theorem D implies that X is K-semistable. Now suppose u 6= 0. Then 〈u, vi〉 < 0 for

some i, or else all the vi would lie in a half-space, which is impossible since |∆| = NR. It

then follows from (5.23) that δ(−KX) < 1, so by Theorem D, X is not K-semistable.

Remark 5.6.15. The proof shows that if X is K-semistable, any toric valuation computes

δ(−KX) = 1.

We now give a simple formula for δ(−KX) in the Q-Fano case. When X is smooth,

the formula for agrees with the formula in [Li11] for R(X), the greatest lower bound on

the Ricci curvature of X, as defined and studied in [Tia92, Szé11].

Corollary 5.6.16. Let X be a toric Q-Fano variety and u denote the barycenter of the

polytope P−KX := {u ∈MR | 〈u, vi〉 ≥ −1 for all 1 ≤ i ≤ d}.
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(i) If X is K-semistable, then δ(−KX) = 1.

(ii) If X is not K-semistable, then

δ(−KX) =
c

1 + c

where c > 0 is the greatest real number such that −cu lies in P−KX .

Proof. Statement (i) follows from (5.23) and Corollary 5.6.14. For (ii), we claim that

0 < 〈u, vi〉+ 1 ≤ 1/c+ 1

for all i = 1, . . . , d and equality holds in the last inequality for some i. Statement (ii)

follows from the claim and (5.23).

We now prove the claim. Since u lies in PKX , 〈u, vi〉 ≥ −1 for all i. Since −cu lies on

the boundary of PKX ,

c〈u, vi〉 = 〈−cu, vi〉 ≥ −1

for all i and equality holds in the last inequality for some i. This completes the proof.
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1–41.

[BC11] S. Boucksom and H. Chen. Okounkov bodies of filtered linear series. Compos.

Math. 147 (2011), 1205–1229.

[BdFFU15] S. Boucksom, T. de Fernex, C. Favre and S. Urbinati. Valuation spaces

and multiplier ideals on singular varieties. Recent Advances in Algebraic

Geometry. Volume in honor of Rob Lazarsfeld’s 60th birthday, 29–51. London

Math. Soc. Lecture Note Series, 2015.

[BFJ08] S. Boucksom, C. Favre and M. Jonsson. Valuations and plurisubharmonic

singularities. Publ. Res. Inst. Math. Sci. 44 (2008), 449–494.

[BHJ15] S. Boucksom, T. Hisamoto and M. Jonsson. Uniform K-stability, Duistermaat-

Heckman measures and singularities of pairs. arXiv:1504.06568. To appear

in Ann. Inst. Fourier.

[BlJ17] H. Blum and M. Jonsson. Valuations, Thresholds, and K-stability.

arXiv:1706.04548.

[BoJ18] S. Boucksom and M. Jonsson. Singular semipositive metrics on line bundles

on varieties over trivially valued fields. In preparation.
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