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Abstract

We consider the two-dimensional water wave equation which is a model of ocean waves.
The water wave equation is a free boundary problem for the Euler equation, where we
assume that the fluid is inviscid, incompressible and irrotational and the air density is
zero. In the case of zero surface tension, we show that the singular solutions constructed
recently by Wu are rigid. In the case of non-zero surface tension, we construct an energy
functional and prove an a priori estimate without assuming the Taylor sign condition.
This energy reduces to the energy obtained by Kinsey and Wu in the zero surface tension
case for angled crest water waves. We show that in an appropriate regime, the zero
surface tension limit of our solutions is the one for the gravity water wave equation

which includes waves with angled crests.
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CHAPTER 1

Introduction

1.1 The Problem

Figure 1.1: Manhattan  beach ~wave ©FEino Mustonen
(https://en.wikipedia.org/wiki/File:Manhattan_beach_wave.JPG)
CCBY-SA 3.0

The motion of water waves in the ocean has been an eternal source of joy, wonder and a test bed
of scientific activity. We have all seen fascinating phenomenon such as ripples in water, traveling
waves, splashing, droplet formation, vortices etc. In the picture above we see another interesting
phenomenon which is the formation of a wave with a sharp crest. A very natural question is to
understand these kinds of waves in a scientific manner. There are many approaches to this problem
such as by doing actual physical experiments, doing numerical simulations of these waves etc. We
will take a mathematical approach to this problem and use rigorous mathematics in our analysis.

We will need a mathematical model of the fluid to analyze these waves. We assume a continu-
ous model of the fluid (as compared to a model which takes into account the molecular nature of

the fluid). To make the model mathematically tractable we will make rather severe assumptions



(which may or may not be reasonable to understand the phenomenon in question). Some of the

assumptions we make are:
1. The fluid is incompressible
2. The fluid has constant density 1
3. The temperature is a constant and doesn’t play a role in the dynamics
4. There is no wind. We assume that air has a constant density of 0
5. There is no bottom, i.e. it is infinitely deep and infinitely wide
6. The fluid is irrotational, i.e. there are no vortices
7. There is no viscosity, i.e. no internal friction

8. We ignore the rotation of the earth and assume that gravity is a constant pointing in the

downward direction

We assume that the fluid region at time ¢ is 2(t) C R? (where d = 2, 3) and that the fluid and air
is separated by an interface (). The physically relevant dimension is d = 3, however if the wave
has a symmetry in a one direction (such as the one in the picture earlier), then we can reduce the
dimension by one and assume that d = 2. In this case the boundary >(¢) being a one dimensional
curve. Then by using Newton’s laws we can derive the Euler equation which governs the motion

of the fluid.
vi + (v.V)v=—-i—-VP on §(t)

(1.1)
divv=0, culv=0 on (¢)
Along with the boundary conditions
P =—00,0 on X(t)
(1,v) is tangent to the free surface (¢, 3(t)) (1.2)

v —0,vy — 0 as |(z,y)| = o0

Here v is the velocity vector, P is the pressure, # = angle the interface makes with the x — axts,
0s = arc length derivative, 0 = coefficient of surface tension > 0. We also make the assumption
that the interface tends to flat at infinity and that the velocity and acceleration of the fluid vanishes
at infinity.



Note that the variables here are the shape of the fluid region (2 and the fluid velocity v. The

pressure can be recovered from the velocity by solving the following elliptic equation
AP = —|Vv|* onQ(t) and P = —00,#  onX(t)

This equation is obtained by taking divergence in the Euler equation. Also observe that as the
fluid is incompressible and irrotational, hence the fluid velocity is harmonic in €2 and hence is
determined by its boundary values (assuming appropriate decay at infinity).

A typical wave with angled crest has the following shape

Pwater = 1

Z(a,t)

Figure 1.2: An angled crested wave

When the surface tension is non-zero, intuitively we would not expect sharp angles and hence
typical waves will look like smoothened out versions of the above wave. If € is a small parameter

which captures how much the wave was smoothed, a typical wave will look like the following

Pair =

Pwater = 1
Z(a,t)

Figure 1.3: An approximate angled crested wave

In the last two decades, there has been a lot of work on the Cauchy problem for water waves.
The local well-posedness of the water wave equation for smooth enough initial data is by now well
established (see the next section for the literature). Recently, building upon the work of Kinsey
and Wu [KW 14], Wu [Wul5] proved the existence of solutions in the zero surface tension case, for
initial interfaces with angled crests. In Wu [Wul8], the uniqueness of these solutions was shown.

In this thesis we explore two natural questions regarding such waves. The first question we
address is how the singularities of the solution Z(«, t) (constructed in Wu [Wul5]) evolve in time,
i.e. does the angle of the crest change? what is the acceleration at the tip? does the particle at the

tip stay at the tip? We prove that the singularities are “rigid”, in the sense as given by the statement



of Main result 1 in §1.3. The other question we address is how these singular solutions can be

approximated by solutions with non-zero surface tension. This is explained in Main result 2 in
§1.3.

1.2 Previous Research

The study of special solutions of water waves has a long history and we will only concentrate
on the literature regarding angled crests. Interestingly one of the earliest works on water waves
was by Stokes [Sto80] who constructed traveling wave solutions with sharp crests of angle 120°.
This work was very influentual however the work was not mathematically rigorous. After nearly
a century Amick, Fraenkel, and Toland [AFT82] proved the existence of Stokes wave of greatest
height which have a sharp crest of 120°. Recently Wu [Wul2] proved the existence of self-similar
solutions which have sharp crests of angle < 90°.

The earliest results on local well-posedness for the Cauchy problem are for small data in 2D
and were obtained by Nalimov [Nal74], Yoshihara [ Yos82, Yos83] and Craig [Cra85]. In the case
of zero surface tension, Wu [Wu97, Wu99] obtained the proof of well-posedness for arbitrary data
in Sobolev spaces. Later this result was extended to the case of bottom with finite depth, non-zero
vorticity and in lowering the Sobolev regularity in [CLOO, Lin05, Lan05, ZZ08, ABZ14a, HIT16,
ABZ14b, dP16].

In the case of non-zero surface tension, the local well-posedness of the equation in Sobolev
spaces was established by Beyer and Gunther in [BG98]. See also the works in [Igu01, Amb03,
Sch05, CS07, ABZ11, Ngul7]. The zero surface tension limit of the water wave equations in
Sobolev spaces was proved by Ambrose and Masmoudi [AMO05, AM09]. See also the works in
[OT02, SZ08, MZ09].

An important quantity related to the well-posedness of the problem in the zero surface tension

case is the Taylor sign condition. This says that there should exist a constant ¢ > 0 such that

OP
_— >
o >c>0 onX(t)

In [Wu97] Wu proved that this condition is satisfied for the infinite bottom case if the interface
is C1 for a > 0. This was later shown to be true for flat bottoms and with perturbations to flat
bottom by Lannes [[Lan05] and was reproved again in [HIT16]. In all other results mentioned above
for zero surface tension or for zero surface tension limit, the initial data is chosen in such a way
that this condition is satisfied. In the zero surface tension case, for non C'® curves this condition is
only satisfied in a weak sense with —g—f > 0 [Wu97, KW14]. This makes the quasilinear equation

degenerate and hence standard energy estimates in Sobolev spaces do not work. Kinsey and Wu



[KW14] used a weighted Sobolev energy with the weight depending nonlinearly on the interface
to deal with this case and proved a priori estimates for interfaces which can have angled crests.
Wu [Wul5] obtained existence of solutions for the Cauchy problem that allows for such waves.

Recently Wu [Wul8] proved the uniqueness of these solutions.

1.3 Results and outline of the Dissertation

In this thesis we will work with the model described earlier in the case of zero surface tension and
positive surface tension. We now describe the results briefly.

We first work on the zero surface tension case. As mentioned earlier, Kinsey and Wu [KW 14]
(Theorem 2.4.1) proved a priori estimates for the water wave equation for the Cauchy problem.
The fascinating aspect of this result was that the energy not only allows the initial interface to be
smooth, but it also allows angled crests of angles v7m with 0 < v < % Building upon this work,
Wu [Wul5] (Theorem 2.5.1) proved the existence of singular solutions.

In Chapter 2, we first lower the regularity of the energy in Kinsey Wu [KW 14] by half spacial
derivate in Theorem 2.4.2. We then consider the solutions constructed by Wu [Wul5] with initial
data as interfaces with angled crests. The main result of this chapter is that the singularities of
these solutions are “rigid”, in the sense as given by Main result 1 below. This result in proved in
Lemma 2.5.2, Theorem 2.5.3 and Corollary 2.5.4. In §2.6 we prove that the energy also allows

cusps (which can be thought of as corresponding to v = 0).

cusp

0<vi,v2<1/2

Z(a,t)

Pwater = 1

Figure 1.4: A wave with angled crests and cusps

Main Result 1 (Rigidity of Singularities): In its time of existence, the solutions of Wu from

Theorem 2.5.1 satisfy
* Interface with angled crests remain angled crested
* Particles at the tip stay at the tip

* Acceleration at the tip = —1



* Angles do not change nor tilt

In Chapter 3 we focus on the question of whether these singular solutions in [Wul5] can be
approximated by solutions with surface tension. We show that a natural extension of the work
of Kinsey and Wu [KW 14] to the case of non-zero surface tension does not allow interfaces with
sharp crests. Hence in this case, we do not take the initial data as interfaces with angled crests,
but a smoothened out version. We first parametrize the singular interface by the boundary value
of a Riemann map Z from the lower half plane. To smoothen out the interface, we convolve with
the Poisson kernel Z¢ = Z % P. where ¢ > 0 is the smoothing parameter. We also smoothen
out the boundary values of the velocity Z; = Z; * F.. Now with this smooth initial data, we
solve the water wave equation with surface tension parameter ¢ and we denote these solutions as
(Z<°,Z;?). Hence we have two parameters ¢, > 0 with both of them going to zero and we
want to say that these solutions should converge to the singular solution (Z, Z;). We prove the

following.

Figure 1.5: Waves with and without surface tension

Main result 2 (existence and convergence) We have

e Let0<e<1and 31/2 < 1, then there exists 7" > 0 independent of ¢, o so that the solutions
€
(Z%7, Z;7) existin [0, T
o

* If in addition €, 0 — 0 with 3
€3/2

— 0, then (27, Z;°) — (Z, Z;) in [0, T'] in an appropriate

norm.

In all previous local existence results for non-zero surface tension, the time of existence 7' < ||| ;01
where & is the curvature. Note that ||x|| . — oo as € — 0 and hence the time of existence of the
solutions (Z7, Z;?) goes to zero by previous existence results. Our result says that as long there
is a balance between surface tension and smoothness o < € , the solutions exist on a uniform time

interval and in fact approximate the zero surface tension solution.



This result, which is proved in Proposition 3.4.9, is a consequence of our main results in Chap-
ter 3. In Theorem 3.4.1 we prove the main apriori estimate which extends the apriori estimate
of Kinsey-Wu [KW14] to the case of non-zero surface tension. The uniform existence result in
the first part of the above result is a consequence of this theorem. The main convergence result
is Theorem 3.4.8 which says that solutions with surface tension approximate the zero surface ten-
sion solutions as ¢ — 0. The convergence result in the second part of the above result is a direct
consequence of this theorem.

Chapter 4 is devoted to the proof of Theorem 3.4.1 and Chapter 5 to the proof of Theorem 3.4.8.
Finally the appendix contains some of the most commonly used identities and estimates used
throughout the thesis.



CHAPTER 2
Gravity Water Waves

In this chapter we will prove the a-priori estimate for angled crested water waves first proved in
[KW14] and prove the rigidity of singularities of the singular solutions constructed in [Wul5].
The a-priori estimate is proved here primarily because it is a good warm up to our main result on
surface tension in Chapter 3. We also reduce the regularity of the energy by half spacial weighted
derivative and simplify the proof. We will not take the shortest route to prove the a-priori estimate
as we will try to use arguments which generalize to the case of surface tension.

In §2.1 we establish the notation and prove some basic formulae. In §2.2 we derive the quasi-
linear equation from which we obtain our energy. In §2.3 we give a heuristic explanation of the
energy estimate and explain where the angle less than 90° restriction comes from. It is also ex-
plained why the energy we have is quite natural. In §2.4 we state and prove the energy estimate
Theorem 2.4.2 for the case of zero surface tension. The energy for this result is lower order as
compared to the one in [KW14]. In §2.5 we state and prove our main result Theorem 2.5.3 on the
rigidity of the singular solutions constructed in [Wul5]. Finally in §2.6 we show that the energy

from [KW 14] allows angled crests and cusps.

2.1 Notation and Preliminaries

We will try to be as consistent as possible with the notation used in [KW 14]. Most of this section

is essentially taken directly from [KW 14] except for some new definitions. The Fourier transform

£ 1 i
F6) = 7= [ e pa)do

In particular 517 (&) = —ig f (€). We use this definition for the Fourier transform as we will be
concerned with holomorphic functions on the lower half plane instead of the upper half plane. We

is defined as

will denote by D(R) the space of smooth functions with compact support in R and D’'(R) will be

the space of distributions. S(R) will denote the Schwartz space of rapidly decreasing functions



and S’(R) is the space of tempered distributions. A Fourier multiplier with symbol a(¢) is the
operator T, defined formally by the relation 7/}3 = a(€)f(€). The operators |9,|° for s € R are
defined as the Fourier multipliers with symbol |¢|*. Note that the 1D Laplacian A = 92 is a Fourier
multiplier with symbol —||* and hence —A = |d,/|>. The Sobolev spaces H*(R) for s > 0 is the
e =11+ [¢ hoj
the space of functions modulo constants with || f[| .1 = [[|£][2 f(£)]], < oc.

)% f||, < cc. The homogenous Sobolev space H 2(R) is

space of functions with | f|

Let the interface 3(t) : z = z(a, t) € C be given by a Lagrangian parametrization « satisfying
zo(a,t) # 0 for all @« € R. Hence z(a,t) = v(z(a,t),t) is the velocity of the fluid on the

interface and z(«,t) = (v¢ + (v.V)v)(z(«, t),t) is the acceleration. Hence the Euler equation

becomes
oP
zu(o,t) +i=—n o (z(a,t))
where
n= zi"| — 7" = unit outward normal vector
ZO(
Define | 8P
)= ——— ,t) eR
af0,1) =~ (=l 1)
So we get
2z + 1 =10z,
Therefore Zz; —1 = —iaz, 2.1)

Let ®(.,t) : Q(t) — P- be a Riemann map satisfying lim,_,., ®.(z,¢) = 1 and define
h(a,t) = @(2(a, t),t) (2.2)
hence h : R — R is a homeomorphism. Let h~!(c/, t) be its inverse i.e.
h(h™ (o, t),t) = o

Note that for each fixed time ¢, a Riemann map ®(-,¢) : (¢f) — P- with the condition
lim, ., ®.(z,t) = 1 is not determined uniquely. We have one degree of freedom namely that of
translation. To fix this, we impose the condition that h;(c, ) — 0 as |a| — oo for all ¢ > 0. With
this, the only freedom left is that of the choice of translation of the Riemann map at ¢ = 0, which

does not play any role in the analysis. From now on, we will fix our Lagrangian parametrization at



= 0 by imposing
h(a,0) =a foralla € R

Hence the Lagrangian parametrization is the same as conformal parametrization at ¢ = 0.

From now on compositions of functions will always be in the spatial variables. We write
f=f(t),9=9g(.t), fog(-t) = f(g(-,t),t). Define the operator U, as givenby U, f = fog
and when we say “precompose f with ¢”, we mean f o g. Observe that UsU, = Uyys. Let
[A, B] := AB — BA be the commutator of the operators A and B. If A is an operator and f is a
function, then (A+ f) will represent the addition of the operators A and the multiplication operator

Ty where T¢(g) = fg. For functions f, g, h we define the function

£ g: hl(of) = i/(f(o/) - f(ﬁ’)) (g(o/) - g(ﬁ’)>h(5,) 45

T o — ﬂ/ o — B/

Define the variables

Z(t)=zoh N, t)  Za(d t)=0nZ(d,t) Hence (h—a) oh™t =7,
Zi(t) =z o h N, t)  Zpw(d t) = 0w Zi(d,t) Hence (Z—Q) oh™ =7
Ztt(a/7 t) = Zt © hil(a/, t) Ztt’a/(a/7 t) = 3O/Ztt(0/, t) Hence (Z—t) ©) h 1 Ztt o

>

(67

Note thatas Z(o/,t) = z(h™}(/, t),t) we see that 8, Z # Z,. Similarly 0,Z; # Z;. The substitute

for the time derivative is the material derivative. Define the operators

D, = material derivative = 0, + b0,/ where b = h; o h™!
1 — 1 1
Do/ — 80/ Da/ — _—aa/ Da’ == —80/
Z,o/ Z,a’ | | |Z,o/|

H = Hilbert transform = Fourier multiplier with symbol sgn (&)

1 1
H ! = —D.V. / d /
fla) = —pv /a’—ﬁ/f(ﬁ) &
I+H
Py = Holomorphic projection = +T
. . . I-H
P4 = Antiholomorphic projection = —

|0a| = V—A = Fourier multiplier with symbol || = iHO0,,

|0,|*/* = Fourier multiplier with symbol |¢|"/2

Now we have D,Z = Z; and D;Z; = Zy and more generally D;(f(-,t) o h™') = (0, f(-,t)) o h™!

10



or equivalently 0;(F(-,t) o h) = (D;F(-,t)) o h. This means that D, = U, '0,Uj, i.e. D; is the
material derivative in Riemmanian coordinates. In this work, the material derivative D, is more
heavily used as compared to the time derivative 0;.

The Hilbert transform defined above satisfies the following property (see [Tit86])

Lemma 2.1.1. Let 1 < p < oo and let F(z) be a holomorphic function in the lower half plane
with F'(z) — 0 as z — oc. Then the following are equivalent

1. sup||F(- +1iy)l|, < o0
y<0

2. F(z) has a boundary value f, non-tangentially almost everywhere with f € LP and H(f) =

3

In particular this says if ¥ decays appropriately at infinity, then its boundary value Z, will

satisfy HZ, = Z,. We now define a few more variables

A= (ahy)oh™!
A P
Ay = A Z Hence —|Z,ol/‘ = _gﬁ oh™!
g=0oh™!
. 7
w=e¥=_2
’Z,a”

With this notation, by precomposing (2.1) with A~! we get the fundamental equation

= A
Ztt — Z = —Z‘Z’Ol/

(2.3)

Let us now derive the formulae for A; and b.

2.1.1 Formula for A,

Let F' = Vv and hence F is holomorphic in () and z; = F(z(«a,t),t). Hence

Zy = Fy(z(a,t),t) + Fo(z(a,t), t)z(a, t) Zia = F.(z(a,t),t)zo(a, t)

— Zta
Hence Zz; =F,0oz+4 21—
(6%

11



— Z o .
Precomposing with 2~! we obtain Z;; = F, 0o Z + Z, Zt . Now Multiply by Z ./ and use (2.3)

!
fyes

to get
Ay =iZ g Fy0Z + 7o +iZiZs o (2.4)

Note that the only non-holomorphic quantity in the above formula is 1.7, Z t.or- Hence apply (I—H)
and use the fact that H(Z ,, — 1) = Z ,» — 1 and H1 = 0 to obtain

I-MA, =1+i[Z,H|Z;
Now take the real part to obtain the formula
Al =1- Im[Zt,H]Zua/ (25)

Note that the Taylor sign condition can be written as

8Poh_1 _

- >0 26
h Za] > 26

This formula was first derived by Wu [Wu97] to prove the strong Taylor sign condition for C'*
interfaces with o« > 0 and was crucially used in Kinsey-Wu [KW 14] to prove a-priori estimates for

angled crest interfaces.

2.1.2 Formula for b

Recall that h(a,t) = ®(z(, t),t) and so by taking derivatives we get
hi =®,0z+4 (P, 02)z he = (P, 02)z,
ha
Hence h; = P02+ —2
2o

Z
Precomposing with h~! we obtain  h,oh™' = &, 0 Z + Z—t Apply (I — H) and take real part,

to get

b = Re(I — H) (ZZt ) 2.7)

12



By taking a derivative and rearranging we obtain the relation

|
bo = (8,0 Z)os + Do Zy + Z4 (aa, ~ ) (2.8)

/
e’

This formula was first derived by Wu [Wu97] to prove the local well-posedness result in 2D.

2.2 The Quasilinear Equation

In [KW14] a quasilinear equation is derived for the variable Z,. We instead derive a quasilinear

equation for the variable 0,

. We do this as it is easier to reduce the regularity of the energy by

Oél

using the quasilinear equation’for this variable. This also foreshadows the quasilinear equation for
the variable © in Chapter 3 which is critical to prove the energy estimate in the non-zero surface

tension case. Let us first derive some simple but useful formulae:

a) We have
Z o 1 w

w 1
Oy —— = wao/ (—) = (0p—— + w‘Da,’w
|Z,a’| Z,a’ ’Z,a’| ‘Z,o/‘

1
Observe that 0, ﬁ is real valued and w| D,/ |@ is purely imaginary. From this we obtain the

relations
Z o 1 1 Z o 1
Re( i 80/—) = Opwo— Im(iﬁa/—> = (W] Dy |w) 2.9)
’Z,o/l Z,a’ |Z,a’| |Z,a’| Z,a’
o 0 Ztay Ztoz. .
b) As ﬁ = ¢", we get that ¢ = Im(log z,). Hence 0,0 = In— = —Im—. Precomposing
Za Za Za
with h ™! we get
D,g = —Im(Dy Z,) (2.10)

¢) We now record some frequently used commutator identities. They are easily seen by differen-

tiating

[8a/, Dt] = ba/aa/ HDa/’, Dt] = Re(Da/Zt)]Da/| = Re(l_)a/Z)|Da/\
[Do/aDt] = (Da’Zt)Da’ [Do/aDt] = (Do/Zt)Do/

13



Using the commutator relation [0,/, D;] = b, 0 We obtain the following formulae

Di|Z o] = Dy %0t = | Z |{Re(D o Z;) — bur} (2.11)
1 ~1 1 =
Dy 7. " Z(Da/Zt —by) = Z{(ba, — Dy Zy — DuZy) + Do Z1 } (2.12)

We will now derive the quasilinear equation. Define
Jo = Di(bo — Doy Zy — Doy Z;) (2.13)
Observe that .J; is real valued. Apply D; to the above formula for DtZL, to get

1 1 _
D} —— = ——{(boer = D) + Jo + D: Do 7, }

Now from (2.3) we see that

Define

——— 0 Ay (2.14)

Hence we see that

Ay 1 1
D? 4+ O = J,
( CTZaT )Z 7Tt )

Now we apply 0, and commute. First using [0y, D] = by O We see that

1 1 1
=0y, D¢|D D0y, D
Z,a’ [804 3 t] tZ7a/ + t[aa ) t] Z’a/

1 1
bo (80,/Dt Z,a’) + D, (ba/&l/ Z,a’)

1 1 1
/ /D _— D ) — D / /
ba (aa tZ’a/ + taa Z,a’) + tba (aa Z,a’)

[aa’thQ}

14



Hence we get our main quasilinear equation as

A 1
(.Dt2 + Z?aa/> (()a/Z = DO/J[) + R() (215)

/|
| 7a

where

1 1 1
= (aa, Z,a/) Vot Qo) Do = b (a“’ Dig T D0 Z,a/)

1 , 1 1
o2z ) (el ) (007 ) 210

, 1 1
—1 <W8QIA1> (8a/ Z)

2.3 Heuristics

We now give a brief heuristic explanation into the nature of the results. One of the main results in
this chapter is Theorem 2.4.2 which is an apriori estimate for the energy F/(t). This energy allows
smooth enough interfaces and interfaces with angled crests as initial data. This energy is lower
order as compared to the energy of Kinsey-Wu [KW 14] by half spacial derivative.

Local well-posedness results in water waves are generally proved in the following way:

1. Reduce equation to the boundary

\®]

. Choose appropriate variables, coordinate system and derive a quasilinear equation/system

3. Take derivatives and write down the energy F ()

4. Prove apriori estimate of the form %ﬁt) < P(E(t)) where P is a polynomial with non-

negative coefficients
5. Local existence using an approximation argument

A typical result using the above approach says that if the initial data satisfies £/(0) < oo, then
there exists a unique solution to the water wave equation for a time 7" = T'(E(0)) > 0 depending
only on E£(0) and we have sup,co 1) E(t) < co. Typically this energy E(t) is equivalent to the
Sobolev norm of the initial data. One way of proving local existence for rough initial data would
be to lower the regularity of this Sobolev space. For gravity water waves, this was done in the
work of [ABZ14b] where the Sobolev norm of the initial data corresponds to an interface being

O where a > %. Note that this does not allow interface with angled crests.

15



In Kinsey and Wu [KW14] and also in this chapter, the energy F(¢) is not equivalent to the
standard Sobolev norm of the initial data. Instead the energy is equivalent to a weighted Sobolev
norm with the weight depending nonlinearly on the interface. More precisely the weight can be
thought of as the coefficient of the Taylor sign condition w ~ —38—1;. In conformal coordinates,
this weight w ~ 1 when the interface is C** for a > 0 but behaves like w(a) ~ |a|' ™" near an
angled crest of angle v7. Hence the energy F(t) in Theorem 2.4.2 behaves like the Sobolev norm
for smooth enough interfaces and behaves completely different for interfaces with angled crests.
The energy used in [KW 14] and in Theorem 2.4.2 allows interfaces with angled crests with angles
v for 0 < v < 3 and smooth enough interfaces which are C** where o > 3.

The main goal here is to find an energy F(t) which allows angled crests interfaces and then
be able to prove an apriori estimate for this energy. To do this, we need to choose appropriate
variables, coordinate systems and derive quasilinear equations from which we can construct the
energy. It should be noted that there is no universal choice of variables or universal quasilinear
equation from which we can start our analysis. We choose our variables and then derive quasilinear
equations in such a way which helps us to suit our purposes. In [KW14] a quasilinear equation in
the variable Z, was derived and then the energy was constructed from this quasilinear equation.
In this chapter we instead derived a quasilinear equation in the variable 80/%/. This is done to
reduce the regularity of the energy as compared to the energy in [KW 14]. N

Observe that if we let f = 80/7, then we have H(f) = f and hence by using the relation
iHO, = |Ou|, the quasilinear equatiéc;l (2.15) can be written as

A 1
(th + ZZ—12|aa/|> f = —2ZA1 <|Da/‘m) f + other l.o.t (217)

| ]

To obtain the energy, multiply the equation by D, f and integrate to get the energy

VAL, 1 2
‘Z,Oz" O/Z,a’

1
o

2
Zo |4

1
H3

2
Oy =— H are
Z s

The other two terms in the energy E/(¢) in Theorem 2.4.2 namely H A ta ||; and ‘
added as lower order terms and they are compatible with the energy above.

Let us now do a heuristic L? based energy estimate to understand the nature of the equation.
If the interface is C'1® then we have 0 < ¢; < |Z_1a,| < ¢9 < oo and hence for smooth enough
interfaces the main operator in (2.17) behaves like 83 + |0 | for which standard energy estimates
in Sobolev spaces work. As we are interested in interfaces with angled crests, let us assume that

the interface has an angle of v7 at o’ = 0. Hence around o/ = 0 we have, Z(a/) ~ (/)" and

16



hence |Z—1|(o/ ) ~ |o/['™". We can also approximate A; ~ 1 and so the equation behaves like

(0F + 1[0 ) = |o/|7*f + other Lot (2.18)

Note that the operator is no longer strictly hyperbolic but is only weakly hyperbolic. If we multiply
by O, f and integrate, then we obtain control of 9;f € L? and |/ |1_” feH 2. For simplicity also
assume that f € L? which is compatible with 9,f € L2 To close the energy estimate, we need
to control the Z? norm of the right hand side. Hence to control the first term |a|172” f e L? we
would need |/ |1_2V € L. and hence we obtain the restriction v < % This is the fundamental
reason of the restrictions on the angles in [KW14]. Note that this restriction does not depend on
the choice of f, but is purely a consequence of the structure of the quasilinear equation (2.18) and
attempting to prove an L? based energy estimate.

Let us now understand the energy £ defined right after Theorem 2.4.2 which is equivalent to
the energy /. We now make an argument showing that the energy we have obtained here is very

natural and not an artificial construct. Observe that the quasilinear equation is of the form

Ay 1
D? ) ———— | —— H =l.o.t
{ f“|z,a/|<|z,af|a“) }f ¢

) . = 2 .
We show in the energy estimate that 1 < A; < 1+ HZ tal ||y and hence we can consider 4; ~ 1

Also in the special case of zero velocity Z; = 0, we actually have A;(a/) = 1 for all ¢/ € R.

I+H
ﬁ@a/. Recall that the operator Py = +

property that for any smooth real valued function f : R — R vanishing at infinity, Py (f) : R — C

and has the

Hence the main operators are D; and

is the boundary value of a holomorphic function in the lower half plane vanishing at infinity with
Re{Pu(f)} = f/2.

A very natural restriction is to have 6 € L>. The spaces L> and H 2 have the same scaling in
dimension one and hence heuristically we will switch between the two. The energy £ is obtained
by applying the above operators to the relation § € L> (or equivalently g = 6 o h™! € L),
with suitable replacements of L> with F/2. We have the formula Dyg = —Im(D, Z,) from (2.10)

and hence heuristically we can replace D, Z, with D,Py(g). The energy £ has the heuristic

representation
1
1 |00 — L P (9) € H?
« Z’a/ ) ‘Z’a,‘Q « H g
1 1 1 1
2) || =—0w—=— ~ | ——=0. |P € H?
) Z7a/ Z’a/ H% ( ’Z7a/ ’2 > H(g) 2

17



N

3) Hzt,a’

1 : 1
9 ™ Dt (Wﬁa/> PH(Q) € Hz

/
SO

1

4’) Z2a/ aO/Zt,o/

1

1 ’ 1

~ Dt <Waa/) ]P)H(g) € H>
2 /

,Q

To understand how the energy looks like in the arc length coordinate system, we first define
oP

Con

where we again write the material derivate as D;, a corresponds to the weight

. Now in arc length coordinate system the main operators are then D, and ad;

v=0

and O is the
|Z,a’|

arc length derivative which corresponds to the operator ﬁ@a/. We let P;,,; denote the linear
operator defined by the property that for any smooth real valued function f : ¥ — R vanishing
at infinity, P (f) : ¥ — C is the boundary value of a holomorphic function on 2 vanishing at
infinity with Re{P;(f)} = f/2. We can do the same kind of heuristic representation as done

above. Here we would have

]_ 1 -1
1) ||Oy ~ (Q@S)EPhol<9) € H?
Z@/ 9
2) (| — (00, Prot(6) € F3
Z,a’ o ZVO/ H% Uls hol

3) | Zear||, ~ De(ad.) "2 Pra(0) € H=

1 _ .
4) || 3O Zoar ~ Dy(ad,)? Py (0) € H?

o )

Note that this is a very natural approach to construct the energy and it has the advantage that the
energy automatically allows angled crests interfaces. This approach can be extended to the case of

non-zero surface tension and this is exactly what we do in Chapter 3.

2.4 Apriori estimate

We first state the apriori estimate of [KW14]. The result there was proved in the periodic setting

but the same proof works for the real line case also and we state the result for the real line case.

Define the energy
1 )P 1 )P S TN - 2 s o 2
¢(t) = O + (|0w=—@)|| + ||P2m— @) +[|Zea @), + || D2 Z:@)]|;
Zva/ o0 Zva/ 2 Z»O‘/ 2
1 2
+ D2,7,(t)
HZ,a' i

18



Theorem 2.4.1 (KW 14)). Let T' > 0 and let (Z, Z;) be a smooth solution' to the gravity water
wave equation in the time interval [0,T"] with &(t) < oo for all t € [0,1"]. Then there exists
T =T(€(0)) > 0and C = C(€(0)) > 0 depending only on €(0)?%, such that

sup  €E(t) < C(€(0)) < o0

(0,min{T,T"}]
We do not prove the theorem as stated above but prove a similar version. Let us now state the
apriori estimate we prove here. Define the energy

2 2

1
- HDt(a%)

Theorem 2.4.2. Let T > 0 and let (7, Z;) be a smooth solution® to the gravity water wave equation
in the time interval [0,T) with E(t) < oo forallt € [0,T). Then there exists a polynomial P with

O

_ 2 A 1
i o

Z o

2
5 T

1
Z o

o1
H?2

universal non-negative coefficients such that for all t € [0,T) we have

dE(t)
= P(E(t))

We can also write the energy in a different way so that all the terms are holomorphic as is

written for the energy €. Define

2 1a 1 Ak
Hze ezl el

1
Z o

)

1
z2,

,Q

2
aoe’Zt,o/
2

£ =0y

2

Proposition 2.4.3. There exists universal polynomials Py, P, with non-negative coefficients so that

for smooth solutions to the water wave equation we have

Observe that the energy £ is of lower regularity as compared to the energy € by half weighted
spacial derivative. If the interface doesn’t has any singularities i.e. |Z /| € L*™ and ﬁ e L™,

then the energy is equivalent to the Sobolev norm. We have

Proposition 2.4.4. There exists universal polynomials Py, P, with non-negative coefficients so that

"It is enough to assume that the solution satisfies (Z o — 1, Z;) € C([0,T], H*(R) x H*t=(R)) for s > 6
T(e) is decreasing with respect to e and C/(e) is increasing with respect to e
31t is enough to assume that the solution satisfies (Z o — 1, Z;) € C([0,T], H*(R) x H*tz(R)) for s > 6
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for smooth solutions to the water wave equation we have

HZ,O/ L + HaO/Z’O/HH% <P (5 + HZ,O/”OO) and
_ 1
i PQ(”Zw! e P Hz— )

The rest of the section is devoted to the proof of these statements. The approach of the proof is
the same as that of [KW 14].

2.4.1 Quantities controlled by the energy

In this section we control all the important terms controlled by the energy £. We will frequently
use the estimates proved in the appendix to control the terms. In particular Proposition A.0.6,
Proposition A.0.7, Corollary A.0.8 and Proposition A.0.9 are very frequently used.

The energy F is lower order as compared to the energy in Kinsey-Wu [KW 14] by half weighted
spacial derivative. In particular we do not have control of D, Z,; € L which was heavily
used in Kinsey-Wu [KW14] but we only have D, Z; € H3 (which implies that Do/ 7, €
BMO but not in L*°). Because of this, the energy estimate becomes a little more subtle and
we need to prove stronger control of existing terms. For e.g. in [KW14] it is shown that the
terms Ay, Do Zy, boy, IZ,a ; —L 0y A; € L™ and we show that in fact Ay, Do Z,, ba, 7 | —1 _0,A; €

L>® N Hz. Most of the terms controlled here in I 2 are new. Also as we do not have control of

Dy Zy € L™ some of the proofs have to be changed, for e.g. the proof of
different from [KW14].

In this section whenever we write f € L?, what we mean is that there exists a universal
polynomial P with nonnegative coefficients such that || f||, < P(E). Similar definitions for f &
o1
Hzor f € L*. Wedefine the norm || f[| .1 = [[fll.o /]l ;3 We also define two new spaces
C and W:

1. Ifw € L™ and | D|w € L?, then we say w € W. Define
[wlly = llwllee + [l Par|wlly

2. If f € H? and f|Z,| € L?, then we say f € C. Define

1
"2l

1flle = 1713 + (1 ; )Hf!Za I,

20



We also define the norm || f ||,y = || fll,» + || fllc- The reason* for the introduction of these
spaces is that we will frequently have situations where f € H %, w € L and we want fw € H 3.
We will also have situations where f € Hz, g|Z | € L? and we want fg|Z | € L2. Clearly these
are not true in general but in special cases this can be proved and the following lemma addresses

this issue for a majority of the situations we encounter.

Lemma 2.4.5. The following properties hold for the spaces VV and C

1. Ifwi,wy € W, then wywy € W. Moreover ||[wyws ||y, < ||wi ]y |lwsly,
2. If f € Cand w € W, then fw € C. Moreover ||fw|. S || fllcllwlly

3. If f,g €C, then fg|Z | € L2. Moreover || fg|Z I, S Ifllclglle

1
In the lemma and in the definitions of C and WV, the function ﬁ is used as a weight but there

is nothing special about this function. We can define similar spaces and prove the lemma for any

weight. The only property used of the weight is that < 00. See Proposition A.0.11

1
Opt ——
|Z7 / 2
in the appendix for more details and for the proof of the lemma. In our case we are able to use

1
o —| Z. ‘ is controlled by the energy E,. We will now start controlling the
o | 112

the weight as

| Z,a’ |
terms:

1) A €L*nNH:
Proof: Recall that A; = 1 — Im[Z;, H] Zt,a/ and hence
A1l < T+ 120 H Z1ar | S 1+ 1 Z00]l3

by Corollary A.0.8. Similarly by Proposition A.0.7 and Sobolev embedding we have

1Ay < 10012120 ) Zowr |, S 100012 2| pasol| Zoarllo S N1 Z0r 3

1
2) Oy Z € L? Oy % ’ELQ |Dy/|w € L? and hence w € W

4Actually these spaces are not really necessary to prove the apriori estimate in the zero surface tension case but
become critical in the non-zero surface case and we heavily need control of the terms in F 2 which is the main use of
these spaces. For e.g. we do not really need to prove D, Z; € Hz to prove the apriori estimate in the zero surface
tension case. However we will need this in the proof of the apriori estimate in the non-zero surface tension case.
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3)

Proof: Observe that 0,

€ L?asitis part of the energy E, (. Recall from (2.9) that

/
1o’

A 1 1 Z o 1
Re(iaa/_> — aa/— Im( a a _) = Z<w‘Da/|w)
‘Z,o/‘ Z,a’ |Z,a’| ’Za ’

1
Hence 0, and |D,/|w are in L?. Also as ||w||, = 1 and |Dy|w € L? we get that

1Z.ar]

1
w € W. Now that we have shown that 0,/ | 7] € L?, we can use Lemma 2.4.5 from now on.

DyZ, € L™

Proof: This is a long proof as it is essentially a cyclic argument. We will assume that

| Do Zy|| . < oo and show that we have || Do Zy||>. < C(E) + C(E)|| Do Z4]|., and hence by
2 2

using the inequality ab < % + 5 on the second term we obtain a bound || Dy Z;|| , < C(E).
Step 1: We see that
Zy 1
20 ’PA(Z ) = ([~ H)(DuZ2) + (1 - ) ( Zir

/
Ne’

1
= 2D 7, — (1+H) (Do Z) + (1 — H) <Zt8a/ - )

1
= 2D0/Zt + |:Z, H:| Zt,o/ + [Zt7 H]aa/ Z’a,

Hence

a7 ). S 10l

n
o Z’a/ 2

Step 2: Recall from (2.8) that b,y = (P, 0 Z) + Do Zy + Zt< »

we get
Zyo
by = Re{(]I—H)(Zt ) + [Z, H

1

1
). Applying Re(I — H)

/
Yo%

2.}

Hence ||bo/||Loo N HZW’{ 2

1
Ot ——
Z

+ 1 Dar Zi|l o
2
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Step 3: Observe that as (b, — Do — l_)a/Z) is real valued we have

|D |( r—= Do — Da’Zt) = RC{ZL(]I - H)aa’(ba’ — Da’ — Da’Zt)}

= Re{w(]l — H)Dal(ba/ — Dal — l_?a/Z)}
1 - —
- Re{w |:Z ,H} aa/(ba/ - Da/ - Da/Zt)}

From (2.8) we have by = (P 0 Z)o + Do Zy + Z4 (&y

). Hence we get

!
QO

(I = H)Dy (byy — Doy Zy — Doy Zy)

o 1 Z, 1
— (I—M)! -DyDyZ, + (Do Z <a_>
( ){ v (D Z) {2 Zo) " Zuy Za, }

:(H—H){—Dalﬁa/2t+(Da/Zt)<8a/%>} { ( a/), }a

,Q

Now observe that as Dy Dy Z; = Do(w?Dy Z,) we have

(I-H)DyDoZ; = (I — H){2w(Dyw)Do Z; } + (I — H){w’D?2 Z; }

2
= (I — H){2w(Dow) Do Z;} + {;—H} O Do Zs

!
Yo%

Hence as ||| Dy |w||y S ’

Oy Z— H we have the estimate

/Dot (b = Doy Zy — Do Z3) |,

1
s]aafz {HD . /PA( .+
< ) — /
S [low g [0l + o 12

Step 4: Recall from (2.12) that DtZL, = Zl ~(boar — Do Zy) and hence

1 = = — = 1
aa/DtZ— — Da/(ba/ — DO/Zt — DO/Zt) + DO/DO/Zt + (ba/ - Da/Zt)(? I

/
e’

Now using [0, D;] = by, we see that

1 — = — = 1
Dtaa/Z— — Da/(ba/ - DO/Zt - Doc’Zt) + DO/DO/Zt + _Doc’Zt (30/ Z )

,Q

/
Yo%
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4)

5)

Hence we see that

||Da/Da/ZtH2 S HDa/(ba/ — Da/Zt - Da/Zt)H2 + ‘ aa/Z_ HDO‘/ZtHoo _|_ HDta@élZ
a g o g
1 12, = 1 1
J%zwﬂﬁwﬁﬁ%z;N%“®ﬂP%7;2

Step 5: Observe that /(Do Z;)? = 2(Z; ) (D2 Z;) and hence as D,/ Z; decays at infinity

we have by integrating

Do Zillz < | Zt

2HD0/EO/ZtH2

1
Z o

<

3

D

2. _
1Zeally + 1 Zre
2

1 Lz
veg el [pag | 17

2 2

. €
Hence using ab < % + = for € small on the second term we see that
€

1Dz 5 |

Do

2

112, 5
Z o172

2 1 —
o+ || 12

proving the estimate

D?Z,e I |Dy|’Z, € L?, D% Z, € L*

Proof: As D, Z; € L™ by the proof above we already know that D, D, Z, € L? and hence
D?,Z, € L*. Now

Di/zt = Ea/ (W|Da/|2t) = (Ea’w)’Da’|Zt +w2|Da’|QZt

Now observe that |Dy/|w € L? and |D./|Z; € L™ and hence the first term is in L?. Hence we

have | D, |QZ + € L*. A similar argument works for the rest.

l_)a/Z < WﬂC, |Da’|2t ew ﬂC,Da/Z ewnc

Proof: We will first prove D Z; € WNC . Observe that D Z; € L=, |Dy|DyZ, € L? and
hence we have D Z; € W. Now as D Z; is holomorphic i.e. HD,, Z, = Do/ Z, we see that
0u/| Doy Zy = i0r Do Z,. Hence we have

1D Zi|s = / (Do 2) (10| D Z,) do = i / (Zow) (Do Do Z,) do
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6)

7

8)

Hence || Do Zi| 13 S \/HZM, L2 ||Dor|Der Zy | - Also as (Do Z4)|Zor| = WZyor € LA,
we have D Z, € C. Now as |Dy/|Z, = (D Z,)w we obtain

H’Da’|ZtHWmc S HDa'ZtHWmCHwHW

The rest are proved similarly.

A
aarPA (Z’;) c L™

Proof: This was already proved when we proved that D Z; € L* and we have the estimate

bo € LN H2 and H(by) € LN H?

Zy
Z o

1
%7,
Z,O/ 2

8D/]P)A< >Hoo 5 ”DO/ZtHoo + HZt,o/|

2 ‘

1
Proof: Recall from (2.8) that b = (40 Z) o + Doy Zy + Z4 <8a/ 7 ) Applying (I — H) we

!
o4

get

w-sp = 0w (Z2) ¢ (o)

1 1
P R (O

1
Ot ——

Hence ||(I —H)by || 7 H

|Z0a

1 < 1
LenH2 ™~ 2 L*NH?2

+ ([ Do Z4|
2

As b, is real valued, this implies b, € L N 2 and H(by) € L>® N H3

|Do|bor € L? and hence by € W
Proof: In the proof of D, Z; € L> we proved the estimate

1
Z o

[1Det|(ber = DarZ = D Z0)|, S |00

1 Dar Zitl o
2

1
Ot ——
Z

/
e’

2 _
el +|

As |Dy|Dy Z; € L* we see that |Dy|by € L2
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9)

10)

1 1
Dy|A; € L? and hence A VA — —
|Do/|Ay € L and hence A; € W, 1€W,A1€W,\/A_1€W
Proof: Observe that |D,/|A; = Re{ Zw (I— H)@alAl}

ettt - B0, - el ] )

!
Ne%

Recall from (2.4) that A} = iZ Fy 0 Z + Z o +iZ; Z; .. Hence

(I —H)Do Ay = i(l — H) (Do Zt) Zyor) + i(1 — H) (ZZ—t@afZ,af>

Z _
H| 0 Zy oo
Z?a/ ) 7 } t7

pr Z(H - H)((Da/Zt)Zt7a/) —'— Z |:]P)A(
Hence we have

[ Do Arlly S (11— H) Dar Ay] [

Al aa/m( Sz e
Now as A; € L* and |Dy|A; € L? we have that A; € W. Similarly using the fact that
1
A > 1, il t that AEW EW ew
1 > 1, we easily get that \/ A, 8 \/A_
Da €C|D| €C,|Du|—— €0 ——duwec
- a,w
Z o Z o \Za \ | Z |
VA 1
Proof: As % 1|8 € H2 and as A 100 7— € L? as Ay € L™, by the definition of C
VA
we see that Z 1| 6 C. Hence we have
1 1
L e
H e 1 o

and we also have

S
=)

!

1
Z oo

1
S e
a lle
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Similarly D, € C. Now observe from (2.9)
- 1 1 - 1 w
Re( Dy— | = |Dy|—— Im(Dy— | =i| —=0yw
( Z,o/) | |‘Z7a/‘ ( Zya/) (’Z,a”2 )
Hence | D, ||Z y € C and \Z 2 ———0yw € C. Now again using w € ¥V and Lemma 2.4.5 we

1
easily obtain Z—Eaa/w eC

!
%

1 . 1
11) ——=0uA; € LN 2 and hence Fﬁa//ll eC

/| |Z o]
| 7a 70{

1 22
Proof: Observe that Wﬁa/fh = Re{ |wa | (I — H)| Dy \Al} and hence we first show that
e - ;
Z |(]I —H)|Dy|A; € L NC. Now
o2 1 w?
I—H)|Dy|A1 =1 —H)| =041 | — | =, H||Duy|A
7= WD = 1= (e ) = | o] D

Recall from (2.4) that Ay = iZ o Fy 0 Z + Z o +iZ;Z; . Hence

(I- )(ZQ Dot A ) :i(]I—]HI){<?;‘ )Zm } +i(]I—H){Zt<|Z,%|28a/ZW/>}

Zta 1 ~
:Z|:Z H:| Zta +Z[Zt,H] (|Z’T|28a/Zt7al)

/
Yo%

Hence we have

w? = Zt o
——— (I — H)| Dy | Ay S| Zte ‘80/ H —— 0w Z
Z.] e Az, T zap :
1
O 1| ||| Dar|A
||| N1Dwrl Al

2
|Z,o/| 1
w € W and Lemma 2.4.5, we can conclude that —|280/A1 e L*NC.

/

and as |D,/|A; € L?, we have (I — H)|Dy|A; € L N C. Now using the fact that

e’

1 1 1
12) —3(92/141 € L?, |Dy| (—zﬁau‘h) € L? and hence —— 0w AL €W
Z i | Z o]

/
|Z o |2
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w3w®

1 1
Proof: Observe that |D,| (—aa,Al) = Re{ (I — H)Oy <—6a/A1>} and
|Z,a/‘2 ’Z@t” ‘Z /‘2

e’

hence it is enough to show that

|
|;’ n (I — H)w (Waa,fh) € L% Now

a’ 411
1 w? 1
— (- H){ Dy [ —— 0,4, ) b — | 2 H|o, [ ——8,A
{0 (o)} - [ e (7 o)
1 _ _ 1
= (]I — H) {Da’ (z@a’A1> — 2W(Da/w) (maa/Al) }
o ¥ ()
Y H|o, [ ——a.A
[|Z,af| 1zl
Recall from (2.4) that A, = iZ yFy0 Z + Z o +iZ;Z; .. Hence
a- o (o)}
. Zta
:Z(H—H) D Z2 Zta +Zt 22 a Zta
. Zta
IZ(H—H) 3 Z2 (D Zt)+2(D Zt) ZQ 8 Zta
A 1 _
+i [IPA (Z;)H} O (2_2,8“’2'““’)

Hence we have

1 Zy
Dor| [ —— 0. A 0w Zsor|| (1DwrZ O P H )
o | 5] (0ot ez,
Zy o 1
O ——|| | D2 O || || =30+ A4
o e (LA L | e
Now the other term is easily controlled
9 1 1
——= 0, A1 S |0 28a/A + || Dot || =50 A1
|Z,o/| 2 |Zva’| 2 ,a'| Z,a | 2

As —| ‘20.1/141 € L™ and | D,/ (Waa/Al> € L* we get that WGQ,AI cW.

/ /
e f1e’
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13) DA, € LN H>2
Proof: Recall that A; = 1 — Im[Z;, H]Z, .. This implies

DtAl = _Im{[ZttaH]Zt,a’ + [ZtaH]Ztt,a’ - [b, Zt7 Zt,a/]}
N Zew |1 Z it ||, + Bl oo]| Zeor |1

LeenHE ~

Hence ||D;A||

14) DyZy € C, |Dy|Zy € C, Dy Zy € C and DDy Z, € C. In particular Zm/ € L? and
DiZ o € L?

Proof: From (2.3) we see that

Ztt - /L - —7/—
Z o

and hence we have

1

HDa’ZttHc 5 ||w”12/v Z_o/

1
——— 0 Ay
A

>

+ ||A1||WHDQ/

c

/
|2 0

c

Similarly we can prove |Dy/|Z;, € C and D Z,, € C. Now see that
DDy Zy = —(Dar Z)* + Doy Zy
Hence we have
1DtDor Zille S [ Dar Zillyyl| Doe Ztlle + |1 Dar Zit |

As Dy Zy € C we see that Zy o € L2 Now D7y o0 = —bor Zy o0 + Zis.or and as by € L™
we that D; Z, v € L2,
15) Jo = Dy(bos — DorZy — Do Z;) € L N H? and hence D;by € H2, 0y Dyb € H?

1
Proof: Recall from (2.8) that by = (®, 0 Z)o + Do Zs + Zs (aa/Z—) Hence

_ 1
ba’ - Da’Zt - Da’Zt = ((bt o Z)oc’ + Zt<aa’Z_

/
Yo%

) —D.Z,
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Observe that (by — Do Z; — Do Z,) is real valued and hence by applying Re(I — H) we get

_ 1 1 7.
b — Doy Zy — Do Zy = Re{[Zt,]HI] (aa,Z—> . {Z_ H} Zm,}

Applying D, we obtain

Dt<ba’ — Da’Zt - Ea’Zt)

1
= Re{ [Zttu H] <8a/ A

/
e’

Hence

1
O Dy——

HDt(bo/ — Dy 2y — Ea’zt)HLwnH% S Hztt,a’ Zaorlly

2

1 _
Oz, + 17

1
Oy ——

+ ||b0/||ooHZtvO/ 7,

2

‘ 2

As D;D 7, € Cand D,D, Z, € C, we get that Db, € H3. Now as Ot Dib = (bor)? + Dy
we get 0Dy < 103 el + 11 D1l

16) Qo €W
Proof: Recall from (2.14) that

QO = (bo/ - Da’Zt>2 - (Da’Zt>2 Y
Hence we see that

1Qolly < (lbarllyy + 1 Dar Zillyy)* +

w

17) Ry € L?
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Proof: Recall from (2.16) that

1 1 1
o= (007 ) U+ Q)+ Do b (aa'Dt 7+ Dy )

1 1
-7 ) =2 (101 ) (02
1
— O A1 | | Ot 5—

<|Zo¢| )( Z@’)

Hence by writing D;by = Jo + Dy Dy Zy + DD, 7, we see that

1Roll,
1 1
< o || @l + 1010 + 150 @ull + Il (oD + D00
,Of/ 2 7Oél 2
1 _
+ 1l aafZ—H +(ID:Du 2l + | DD Z ) |
/ o/ C
1D = L ouar| (o
1 |Za | Z7a |Z o 1 N o’ Z@, ,
2 1 2
18) (I —H)D} (dw— | €L

Proof: For a function f satisfying P4 f = 0 we have

= [b,H]0w Dyf + Dy[b, H]0w f
= 2[b, H|0w Dyf + (Db, H|0u f — [b, b; O ]

Hence we have

o

1
S Mool 3 || D1 —

2

1
+ ||8a’Dtb||H% 8QIZ

1
+ 1bar 12 || Ot =—
[[bo | 7.

NEID)

A 1 9
19) (H — H){Zmaa/ <3alz) } €L

2 2
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Proof: Observe that

A 1 .
(]I - H){zﬁ@a/ <8O/Z—a/) } =1

Hence we have
Aq 1
I-—H){i——=0y | Oy —=——
| ){ Zu P ( Z)}

(=

Proof: As J is real valued, we see that

Ay 1
M wmlo, (0, —
|Z,a’|2 ] ( Z7a/)

2
1

——— 0, A4 7=

Ou
|Zorl’

; ||A1||WH|D |

)

|Z o 2

20) | Do |Jo € L2

Doy = Re{ Z“ (I - H)@a,JO}
=Re{w(l —H)D, Jo} — Re{w {ZL’ H] 3,1/J0}

e’

From equation (2.15) we have

Ay 1
D2 ) ———— (o% o = — Da’

Applying (I — H) to the above equation we obtain the estimate

A 1
I-H)i— o, (0, —
| ){ﬁz,wf ( Z)}

10/l

+
2

1
+ || Roll, + aa'z .

1
D24l % |92 (05 )

/
o4

2

2.4.2 Closing the energy

We are now ready to close the energy £. To simplify the calculations we will use the following
notation: If a(t), b(t) are functions of time we write a ~ b if there exists a universal non-negative
polynomial P with |a(t) — b(t)| < P(E(t)). Observe that ~ is an equivalence relation. With this

notation proving Theorem 2.4.2 is equivalent to showing dB (t ~ 0.
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Lemma 2.4.6. Let T > O and let f,g : R x [0,T) — C be C" functions decaying sufficiently fast
at infinity. Then we have

d
1. — gda':/Dtgdo/+/ba/gdo/ and hence

dt
d 2 !
2 / P da
d

2 |5 [(oul)s el - 2Re{ JACEnLY, da'}

Proof. The first identity follows directly from the fact that D; = 0; + b0,,. Now

SUFILNDef s+ el I £115

< (Iwrlloe + [EDar )N,

d F ;5 r /
& [touinsao =ref [ouions ao'}

—ore{ [(ounDis ae'y - e [ (10171 00,5) e

Hence we need to control the second term. Let f*, f% " b, : P_ — C be the harmonic extension
of f, fu, b, by respectively to the lower half plane and let us denote the Lebesgue measure on P_
by dp. Observe that [0./|f = 7i- V f* where 71 is the outward pointing unit normal. Hence by using
the divergence theorem we have

e [ (1011)(b0 1) dod = 2Re | V- (970 £L) do

:2Re/ (V- wu) £, du+2Re/ (V" V" du
P P

—2Re/ (th-Vbh)fg,du—/ |th}2bﬁ,du
P_

where in the last step we used the fact that b is real valued. Hence we have

2Re [ (0,17) 00, o

2
SIV gy [ 195
S (8o lloo + IEDar )13

O]

This lemma helps us move the time derivative inside the integral as a material derivative. We

will now control the time derivative of the energy.

We will now close the energy. The first two terms are controlled by directly taking the time

derivative and the last two terms are controlled by using the quasilinear equation (2.15). Using
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Lemma 2.4.6 we see that

d = _
%‘ /||2Htht’a' 2§P<E)
and similarly
d 1| 1| 1 1
o, —| < , S— —|| || DOy —|| < P(E
dt Do Z o 2~”ba oo | Oe Z o f‘a‘“ Zoll, 0 Zrlly™ (Eo)

Now we control the last two terms of E. Observe that the terms are of the form

2
D1 + [V

-1
H?2

1
Where [ = 8a/Z— and note that Py f = f. We will simplify the time derivative of each of the

terms individually before combining them.

1) As b, € L* we have from Lemma 2.4.6
d 2 I 2 r /
pr |D:f|”do’ = 2Re [ (D;f)(D:f)do

2) By using Lemma 2.4.6 we have

d (VAL
E/"aa" <|Z,af|f)

2
Zal) o
do/zZRe/{@ < D f)ddo
0\ Z17 ) 1P\ 7]
Observe that

\V A —) { DtAl } \V4 Al — \/ Al —
Di| —— = —+ ba/ — Re Da/Z + D
t(|z,a,|f 24, (DeZ2) 720+ 17 P

1
We note that for f = 0, we have —— / € C. Hence

Zad " 2]
th‘h }vz‘h
—Re Da/Z
H{ 24, (D) 1 Z,a| " |1
1
S \\/Al\\ {10t 5|+ Wl + 1901}
H’Z,a” c w A W " ¢
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Hence we have

VAT VA \/A_ .
b (5 a2 [0 (5 ) i
‘ Z0] 1z 1z ) oD
We simplify further using |0,/| = iHO,, and Hf = f
il il
IZaI |1 Z o]
Lz () + = (”A1> Al
= H |, f)+H O [+ ——=0uaf
{lZ,a’| |Z,a’| |Z7a’| |Z,oz’| |Z,o/|2
e Ol R B () LR (e e
— i | Y2 mle, () 4w 4 A Do f
[|Z,a/| 7] Z.7 (1Pl
Ay A
—i|—— H |0 f +1 Ou f
|Z,o/|2 |,o/|2
Hence we have the estimate
[ea(izs) -
|ZOé| ’Za’ |Za|
< (1Dl 0 )
( He |Z,af|2 a|
A s s L,
|Zoz | ,a’| ,a | Lo E

As D, f € L? this shows that

d % \/Al 2
ﬁ/"a“‘ <|Z,af|f)

3) Combining the terms we obtain

d
a{Hthlli + ‘

da/ ~ 9Re / (¢|ZA—128W f> (D f) dot

’
o]

2
A _
z2Re/ fo+i—128a/f (Dyf) da’
ar | Z o
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1
For f = 8a/Z— we obtain from (2.15)

!
o4

Ay 1
D? +i——0y |0y — = Do Jy+ R
< t +1 ’Z7a/’2 ) Z,a/ 0 + 0

We have already shown that D, Jy € L? and R, € L? and hence the integral is controlled. This
completes the proof of Theorem 2.4.2

2.4.3 Equivalence of the energy and relation to Sobolev norm

Proof of Proposition 2.4.3. From the energy estimate we already have £ < P,(F) and hence we
only need to show E < P;(£). We will now say that f € L? if there exists a polynomial P such
that || f||, < P(€) in analogy to the notation in §2.4. Similar notation for the other spaces defined

there. We now control terms

1. From following the proof in §2.4.1 we have A; € L™, Oy —— € L? andw € W.

o
Ot

2. We now show that D, Z, € L>. Observe that
= \2 = 2 = = 1 = = 1 =
80/(Do/Zt) - 2(Zt,o/)(Da'Zt) — 2<Zt,a’) aa'Z_ Da’Zt + Q(Zt,a’) Z_Qaa’Zt,o/
Hence we have

1 —
9 Z_Qlao/ Zt,o/

Ne

[P Zl2, < 2| Zee]

1 _
g 12

2
Now using the inequality ab < g + # on the first term, we obtain D Z, € L.

3. Following the apriori estimate we now have |D./|A; € L? and hence /A; € W and we also
have D D, Z, € L?. Hence we have

S|Vt | 2o

Iz

VAL 1
g €
Zal™

Ll o
H?2 C

and hence ——
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4. Now following the proof of D, Z; € L in the apriori estimate we see that D,/ (b, —
Dy 7, — Dy Z,) € L?. We also see that

1 - - _ 1
Dtﬁa/ Z — DO/ (ba/ — Da’Zt - Da’Zt) + DO/Da’Zt + _Da’Zt (ao/Z—)
Hence we have
1
D0y
H ' Z,oc’ 2
— = — = 1
S|P (bar = Do Z — D Zy) € L?||, + || Do D Z4 |, + ||Da/Zt||oo‘ Ot —
o 2

This completes the proof

Proof of Proposition 2.4.4. We prove each part separately:

1. Assume that £ + || Z ||, < co. Itis easy to see that Z; ,» € H'. Observe that

1
H|Da"Z,a’H2 S ||Z,a’||oo‘ aa,Z
a llg
Hence Z ,» € VW. Hence we see that
1 1 1
a fp— < Z / _a U
Zarllgt ™ 12 HWHZ@’ " Zalle
Now we see that
5.7 —Z281 <Z2a1 VA Ou Z 31
102l 3 = |Zatir || SN2l O]+ WZehluZerl ]|

2. Now assume that Z, o € H' 0yZ o € Hz and € L>°. We easily see that 7, €

/
Yo%

1 — 1
L2, Z—28Q/Zt7a/ € L? and (%/Z € L. We see that
o | <] ozl s+ ] w2 oz
a/Z,a/ H% ~ Z7a/ o o & of H% Z,a/ . a/Zﬂ/ , o’ &.al |9
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and from this we obtain

1 2

Z o

)

1
Z o

)

1
Z o

)

Oy ——
Z ot " 7

)

o o

|2z

iy

-1
H?2

o0

o1
H?2 2

2.5 Main result on rigidity of singularities

We do not prove the existence of singular solutions but use the result of Wu namely Theorem 3.4 of
[Wul5]. We will use the same notation used there and we now recall the notation and the existence

result proved there. We will first describe the notion of generalized solution introduced in [Wul5].
Generalized Solution:

Now let 2/ = 2’ + i3/ where 2/, y’ € R. Let (Z, Z;) be a solution of (2.3) and let ¥, F' be

holomorphic functions on P_ continuous on P_ such that
Z(d/ 1) =U(d,t) Zd,t) = F(d,t)

Hence ¥ and F' are the shape of the domain and conjugate of the velocity in Riemann mapping

coordinates respectively. We also need the pressure and so define 8 : P_ — R such that
AB = —2|F.,]> onP_ andB =0 ondP_
If these quantities satisfy the Euler equation in Riemann mapping coordinates, namely
U, F,— U F, + FFy — iV, = —(0y —i0,)B on P_

then the triple (W, F',B) is said to be generalized solution to the gravity water wave equation. The
main reason for the introduction of such a definition of the solution is that it allows self-intersecting
solutions. This is because if ¥ : P_ — C is one-one, then it is invertible and gives rise to a physical
solution and we can obtain a solution to the Euler equation (1.1). If not then, it still makes sense
to talk about this solution in a mathematical sense but it loses its physical meaning. Note that the
quasilinear equation is solved in Riemann mapping coordinates and hence mathematically we are
solving for the variables (W, F,B) and the issue of the invertibility of W is a separate one which

has nothing to do with proving energy estimates or proving existence in terms of the variables
(U, F,*B).

Existence of Singular solutions
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We now describe the existence result of Wu namely Theorem 3.4 in [Wul5] which proves the

existence of singular solutions to the water wave equation. Define the energy

2 2

1 1
&1(t) = sup T (t) + sup &Z/(\Ij )(t)
y'<Of| * 2 Lo(R,da’)  ¥'<0 z L2(R,dz)
1 1 1 2 )
+ sup||=—~0. (_az’(_)> t + sup|| F./(t "
oup g0 (g0 (7)) 0 SRl
1 1 ? 1 1 ?
+ sup||=——0. (—Fz/)(t) + sup —8z/(—FZ/)(t)
y <ol W W L2(Ryda’)  Y'<O v L A% (R da’)

Observe that if the interface is smooth enough then this energy is equal to the energy

2 2

. 1 1 2 2 1 — 2 2 = 2
e =70 +|ozs0] + [Prgs] + 1zl + D2z,
PR
——p2.Z,t
HZ,a' 0 s

where all these quantities are defined on the boundary >(¢). In [KW 14] the apriori energy estimate
is proved for the energy €(¢) for smooth enough interfaces. The reason for the introduction of the
energy & is that this equivalence between € and & is not at all clear for singular domains.

The initial data (U, F),8) is chosen so that ¥(-,0), F'(-,0) : P_ — C are holomorphic with the
range of ¥ namely 2(0) = W(P_) is a domain with the boundary 0€2(0) being a Jordan curve and
lim,_, W, = 1 (i.e. the interface tends to flat at infinity). B(-,0) : P_ — R is chosen so that it

is the unique solution to
AB = —2|F.,|° onP._ andB =0 ondP-

Also assume that

1
U, (2 + iy, 0)

< 00
L2(R,dz’)

co = sup|| F(z" + iy, 0) || L2 gpry + SUP
y'<0 y’'<0

For such initial data Wu proved the following existence result.

Theorem 2.5.1 ([Wul5]). Let the initial data (V, F',8)(0) be as described above with £1(0) < cc.
Then there exists a time Ty, > 0 depending only on & (0) such that on [0,Ty) the initial value
problem of the gravity water wave equation (2.3) has a generalized solution (V, F',B)(t) with the

following properties:

1. V(- t) is holomorphic on P_ for each fixed t € |0, Ty], ¥ and are continuous on P_ x

1
v,
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[0, Ty] and V is continuous differentiable on P_ x [0, Tp).

2. F(-,t) is holomorphic on P_ for each fixed t € [0,Ty), F is continuous on P_ x [0, Tp] and
F is continuous differentiable on P_ x [0, Tp]

3. B is continuous on P_ x [0, Ty] and B is continuous differentiable with respect to the spacial
variables on P_ x [0, Tp|

4. Forallt € [0, Ty] we have &, (t) < oo and

1
U, (2" + iy, t)

< 0
L2(R,dz’)

sup|| (2" + iy, t)HLQ(R,dx’) +sup
y'<0 y'<0

The generalized solution gives rise to a solution (v, P) = (F o U= B8 o U1) of the water wave
equation (1.1) so long as X.(t) = {Z = W(d/,t) |/ € R} is a Jordan curve. Moreover if the initial
interface is chort-arc with chord-arc constant 0, then there exists T; > 0 depending only on £,(0)

such that the interface remains chord-arc on the time interval [O, min{To, T% }]

This result is proved by first mollifying the initial data, proving that the equation has a solution
to the mollified initial data in the time interval [0, 7y] where Tj is independent of the mollification
parameter e and then letting ¢ — 0. This existence in the time interval [0, 7] to the smooth initial
data uses the apriori estimate [KW14]. As we will need some elements of the proof we describe
some of the notation and facts proved in the proof of this result.

Let the initial data be (¥, F,*8)(0) and let 0 < € < 1. Define

Za!,0) = ¥(a — €,0), Zi(d,0) = F(a' —¢€i,0), h%a,0)=a
F(7,0) = F(z —€,0), Wz, 0)=T(z —¢€,0)

Similarly define b° = h$ o (h€)~!. Then as part of the existence result of the smooth solution
(Z¢, Z%)(t) in [0, Tp] it is shown that there exists a constant C' = C'(&;(0)) such that for all ¢ €
[0,7p) and forall 0 < e < 1

€

0l

€

Zta
t
2o+

1 €
Wﬁa/ Zt,a’ (t) S C

L2(R,da’)

Hb;/<t>noo+\

o0

Note that these terms are controlled as part of the energy estimate as was shown in §2.4. Using

these it can be easily seen that there exists constants 0 < ¢;, ca < oo depending only on & (0) such
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that for all (o, t) € R x [0,Tp] and for all 0 < € < 1 we have

cp < |h(a,t)] < e
and c1]2 [ (e, 0) < |25 |(a, 1) < calz;|(@, 0)

and |z, |(a, 1) < ca|25|(a, 0)

If U C R” then we will use the notation f,, = f on U to mean uniform convergence on compact
subsets of U. As part of the proof of Theorem 2.5.1 it is shown that there exists a function A :
R x [0, Tp] — R so that h(+,t) : R — R is a homeomorphism and

h=h and (h)'=h""! on R x [0, Tp)

as € = ¢; — 0. In the proof of Theorem 2.5.1 a subsequence is taken ¢; — 0 and for convenience it
is replaced by e. In the proof of our result Theorem 2.5.3 we will also use this notation and we will
freely take a subsubsequence of the subsequence used in [Wul5] as it does not affect the result. As
part of the proof it is also shown that there exists functions u,w,q : R x [0, Ty] — C continuous
and bounded on R x [0, Ty] such that

2° =z, —z=>u, 2 =>w, Z; = q on R x [0, Tp)

€
ZOL

as € = ¢; — 0. This gives us

7= Z, =uoh™', Zf=woh', Zj,=qoh™! on R x [0, Tp]

z<,

,Q

and we have Z(a/,t) = W¥(a/,t) for o/ € R (Recall that ¥ : P_ x [0,Ty] — C) and also
that z(«, t) = Z(h(a,t),t). Hence z(«,t) is the Lagrangian parametrization of the interface and

Z (!, t) is the parametrization in Riemann mapping coordinates. Now observe that
t2
Havts) = o) = [ silas)ds
t1
So by passing to the limit ¢ — 0, we obtain
to
z(ayty) — z(a, ty) = / w(a, s)ds
t1

As z is the position, hence w is indeed the velocity of the particles on the interface. In the same

way ¢ is the acceleration of the particles on the interface in Lagrangian coordinates.
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Main result:

In all that follows let T, > 0 and let (F, ¥, ) be a generalized solution of the water wave

equation on the time interval [0, 7] given by Theorem 2.5.1. Define:

1
Singular set = S(t) = {o/ € R‘ (a/,0,t) = O}

Z/

Non-Singular set = N.S(t) = R\S(¢)

1

5 is continuous on P_ x [0,Ty]. We will also identify

S(t) and NS(t) as subsets of P_ so that it is meaningful to talk of sets such as P_\S(t). An

important observation is that S(¢) is a set of measure zero. This is because it is the boundary value

1
\

z

Note that the definition makes sense as

of a bounded holomorphic function and hence by the uniqueness theorem of F. and M. Riesz
(see Theorem 17.13 in [Rud87]) its zero set on the boundary is of measure zero. Hence given any
a € S(t), there always exists a sequence o, € NS(t) such that v, — «. We have a description of

dynamics of this set
Lemma 2.5.2. S(t) = {h(a,t) e R|a € S(0)} and NS(t) = {h(a,t) e R|av € NS(0)}

This lemma says that the singularities propagate via the Lagrangian flow i.e. particles at sin-
gularities stay at the singularities. In particular the singularities are preserved in the sense that the
interface doesn’t smooth out or any new singularities form during the time in which &;(t) < oc.
This important fact is a simple consequence of the nature of the energy £ . We are now ready to

state our main result.
Theorem 2.5.3. Let (F,V, 3) be a solution as given by Theorem 2.5.1 and let « € S(0). Then
1. The acceleration at the singularities q(a,t) = —i for all t € [0, Ty]

2. Let v, € NS(0) be any sequence such that o, — o Then

Z o
W(h(am t)v t))
Z’a/

_(O‘n’ O)

2.0

—1 asn— o

Corollary 2.5.4. Let (F, ¥, 5) be a solution as given by Theorem 2.5.1 and assume that the there
exists N > 1 isolated singularities of initial interface at locations o, € S(0) for 1 < n < N in
conformal coordinates. Also assume that there exists unit vectors 3,, v, € S such that

. Zo/ . Zo/ .

lim ——(a,0) =0, and lim ——(a,0) =7, forl<i<N

a—ran |Z,oc’| a—vait |Z,oc’|
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Then for all t € [0,Ty] there are N isolated singularities of the interface at locations h(a,,t) €

S(t) in conformal coordinates. We also have

Z Z o
lim —*(h(a,t),t) =B, and lim —"—(h(a,t),t) =7, forl<i<N

a—ran |Z,a’| a—ait |Z,oc’|

The proof is immediate from the theorem above. Hence these results in essence say that an
initial interface with angled crests stays angled crested, the particle at the tip stays at the tip, the
angle doesn’t change, the angle doesn’t tilt and the acceleration at the tip is the one due to gravity.
In particular we can now say that the singularity is rigid. This also gives a complete description of

the dynamics near the singularities as long as the energy & (¢) remains finite.

2.5.1 Proof

The proof of the propagation of singularities and the fact that the acceleration at the singularities is
the one due to gravity, follows easily from the nature of the energy. The proof of the constancy of
the angle and that it doesn’t tilt is a little more involved. To prove this, one important observation
is the fact that if £, (¢) < oo, then the gradient of the velocity extends continuously to the boundary
and that it vanishes at the singularities. This is proved in Proposition 2.5.8. The other important
fact is that we can describe the dynamics of the angle at the non-singular points on the boundary
in terms of the gradient of the velocity by a simple formula. This is proved in Proposition 2.5.9.

The theorem follows easily by combining these two facts.

Proof of Lemma 2.5.2. We know that

Now observe that

he he [ he z¢
O =) = Zof Jta _ Tt
t(z&) za<hz zz>

he he t he €
Z—a(a,t) = Z—j(a,O) exp{/ (htea — Z;—f) (a, s) ds} (2.19)
0

€
« « « «

Hence we have

Hence there exists ¢, co > 0 depending only on &;(0) and 7T} such that

€

h¢ h
< —(a, O)‘ forall « € R, t € [0, Ty
Za

C1 p
«

<a,0>' <

h€
%00 <a

Q
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Therefore letting ¢ — 0 we obtain
crlu(e, 0)] < Ju(a, t)| < colu(a, 0)] foralla € R, t € [0, Tp)

Now by using the relation

1
(o/,0,t) = (wo h™H)(/, 1)
v,
and the fact that h(a, 0) = « for all & € R, the lemma is proved. O

Lemma 2.5.5. Let g : R — C be a continuous function and let C' > 0 be a given constant. Let
A C R be a set of full measure let f : A — C be such that

|f(x) = f(y)| < Clg(x) —g(y)|  forallz,yec A

Then there exists a unique continuous function f : R — C such that f|s = f

Proof. Clearly the constant C' can be absorbed into the function g and so without loss of generality
we assume C' = 1. As A is a set of full measure, A is dense in R. Fix € R and choose a sequence

(x,) with x,, € A and x,, — z. Now

[f(@n) = f(@m)] < [g(zn) — g(am)|

and hence { f(x,)} is a Cauchy sequence. Define f(z) = lim,,_,o f(z,).
We casily see that f is well defined. If (2,) is another sequence with 2/, € A and 2/, — z, then

|f (zn) = f(a)] < lg(en) —g(a3)| =0 asn — oo

From this we also see that f] 4= fand

1f(2) — F(y)| < |g(z) — g(y)] forall z,y € R

Hence f is a continuous function and f is unique, as a continuous function is determined by its

values on a dense set. ]

Lemma 2.5.6. Let U C R be an open set and let f,, : U x [0,T] — C be a sequence of smooth
functions. Let 1 < p < oo and suppose that for every closed interval I C U there exists C; > 0
depending only on the interval I, such that

sup| fu (Ol oo 1y + 8PN Oz fra ()| 1oy + SUPNOe S (D) | oo 1y < Cr
0,71 0,71 0,71
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Then there exists a continuous and bounded function f : U x [0, T] — C and a subsequence { In; }
such that f,,, — f uniformly on compact subsets of U x [0, T].

Proof. This is an easy consequence of Arzela-Ascoli theorem and is very similar to Lemma 5.1 in
Wu [Wul5]. O

The following lemma is a more general version of the statement that the energy does not allows

angled crests of angles greater than 90°.

Lemma 2.5.7. Let o/ € S(t). Then for all 6 > 0 we have
o' +8
/ 0. (s,9/, t)ds - 00 as y —0
a’'—§

Proof. We suppress the time dependence ¢ and assume without loss of generality o/ = 0 that is
0 € S(t). We have fory’ <0

/

1 1 * 1
gz @) = 3z (0.y) +/ X (\11_2> (s,9') ds
2! 2! 0 2!

1 !
az’ (\I/_Q,) (57 Yy )

0,9)+ C|2'| forallz’ e R,y <0

Using the fact that the energy £ < oo we see that C' = sup
y'<0

< 0oQ.
Loo(R,ds)

Hence we have

1 ;o 1
T, <
oY) S g p

From this we see that for 3/ < 0

1 1)
1
U, % (s,y') ds 2/ ds
/_5| e.v) -5 —‘\1,:42 (0,9) + Cls|

As \111, is continuous on P_ and by assumption \I,%/(O, 0) = 0, we have that %(O,y’) — 0 as

z

y' — 0 proving the lemma. -
Proposition 2.5.8. For any fixed t, 0 < t < Ty the functions (g—F.)(-,-,t) and (g=F.) (-, -, 1)

extend continuously to P_ with (\I%FZ/) (o/,0,t) = (\I%FZ/) (/,0,t) =0 forall &/ € S(t)

Proof. We will suppress the dependence on ¢ and first prove the result for \I%FZ/.

1
_Fz’ (ZL’/, y,)

Zl

Step 1: Observe that sup < C(&). Hence by Fatou’s theorem there

y’'<0

Lo (R,da’)
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exists f € L>(R) and a set A C R of full measure such that for y’ < 0 we have

1
v,

Fz’('7y/) = f * Ky/

1
T Fu(d,y) — f(¢/) asy —0 foralla' € A

Z/

and

Also as sup||F.(z',y") ||ig(]R 427y < 00 and Fs is holomorphic, there exists g; € L?(R) such that
y'<0 ’

F.(,y)—g inL?> asy —0

Similarly there exists g, € L? such that

1 1
T 0y (\:[I_Z/FZ/) (,y') = g2 in L* asy —0

Hence we see that

1 1 .
\szlE@I(KFZI)‘(-,?J’)%!nggz\ inL' asy —0

z

Define the function h : R — R
) = [ lanllel(s) ds
0

Clearly h is a continuous function on R. Now observe that for 3/ < 0 we have

1F2( " 1F2( ’)<2/a2|F|18 1F
\IJZ/ 2! g,y \IJZ/ 2! a1,y = o 2! \I’z/ z! \IJZ/ z!

Now letting ' — 0 we have

(s,9y')ds

| /2 (c2) — f*(an)| < 2[h(a2) — h(aq)|  forall ay,as € A

Hence by Lemma 2.5.5 there exists f : R — C a continuous function such that fo|4 = f2. Also
observe that

1 ’ 1 ° 1 1
| (\I{Z, Fz/) (062, y/) - <\I/Z/ Fz/> (Oé1,y/) \II_Z/aZ/ (\I[_Z,FZ/>

Hence via the same argument there exists f3 : R — C a continuous function such that f3|4 = f3.

<cE) [ 17| (s,/) ds

1
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Step 2: Define the function f: R—C

Fla') = (f3/f2)(a’) if fa(a') # 0

0 otherwise

We claim that fiS a continuous function on R and f| a=f.

First note that both f3; and f> are continuous. Fix o/ € R and observe that if fy(a’) # 0,
then fvis continuous at o’. Hence we need to prove the continuity of fat o' where fy(a/) = 0.
Define the function f,,s : R — R by fus = m . Observe that f,, is a continuous function
on R and that |f3](a’) = f3, (a/) forall o/ € A. As A is a set of full measure and both | f3| and

_ 3

/3., are continuous functions, we have |f3](a’) = f3, (/) for all @’ € R. Hence we now see that
|f(o/ )| < fas(e) for all @' € R and this inequality is enough to prove continuity of fatall o
where f>(a’) = 0. Hence f is continuous on R.

Recall that fo|4 = f2and fo|4 = f3. If o € Aand f(o/) # 0, then f(o) = (f3/f2) () =

f(z). If o/ € Aand f(o/) = 0, then we see that fo(’) = 0 and hence f(a’) = 0. Hence f|4 = f.

Step 3: As ﬂ A = f and A is a set of full measure we now have

1 -
7 F.(y)=f*xK, forally <0

As f is bounded, we see that fis a continuous and bounded function, and hence \I%Fzz extends
continuously to P_. Now let o/ € S(t) be a singular point. We proceed via contradiction and

assume that \I%,FZ/ (o/,0) = ¢ # 0. Hence there exists ¢y, ¢, > 0 so that

(5,9) < g <oo forallse (o¢/ —§,a'+d)and —§ <y <0

1
O<Cl§’\11 F,

Z,

Observe that for ¢y < 0 we have

1
(o) = Ua(a o) (\y Fuld, y’>)

and hence we obtain

|F(s,y")] > a1|W.(s,y')| foralls e (o —d,a'+d)and — 6 <y <0
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By integrating we get

a'+4 o' +6
/ |Fo(s,y)[* ds > cf/ W (s,y)|*ds forall —6 <y <0
ao’'=§ o’ -8

Letting y' — 0 and using Lemma 2.5.7 we see that

o' +8
lim |F.(s,y)|? ds = oo

y'—0 o —§

which contradicts the finiteness of the energy, sup|| For (2", ') || 2 (g gy < €1 < 00
y'<0 ’
We have proven the result for \I%FZ/ and we now need to prove the result for \1% F,. We
observe that U,/ extends continuously to P_\S(t) and hence the functions F, and q%Fz’ extend

z
1 1 1 .
\I,—Z/FZ, \IJ—Z,FZ/ on P_ and as \I,—Z/FZ, extends continuously to

P_ and vanishes on S(t), this forces ¢—F to extend continuously to P_ and g—F..(a/,0) =0
for all o/ € S(t).

continuously to P_\S(t). As

]

Proposition 2.5.9. Define the function f : R x [0,Ty] — Cas f(o/,t) = g=F.(/,0,t) where

z

the definition makes sense by Proposition 2.5.8. Then

Z o
|2 o]

(h(a7 t)v t) =

7 | (@,0) eXp{ilm (/Ot f(h(a,s),s) ds)} forall a € NS(0)

Proof. We will do this in steps.

Step 1: From (2.19) we see that

e h '(h
Z—e(a,t) = Z—E(oz,O) eXp{/0 (h% - ZLG) (a, 8) ds}

and hence by inverting and by using (Z—‘*) = Z¢, o h® we get

t Zﬁ ,
Zfa/(hg(a’t),t) - Z:EOC/(OZ,O) eXp{/ (Zt;a — b;/> (]’LE((I?S),S) ds}
0 Re'd

from this we easily obtain

Z5 . z, A [ i,
7 ’(h (a,t),t) = 7 ’(a,O) exp4 iIm / <ZE )(h (e, 8),$)ds foralla € R
/ / 0 /

& &
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‘We now need to take the limit ¢ — 0. Recall that

1 —
g, o P_ x [0, To] and = h onR x [0, T}

Hence for all t € [0, 7] and a € NS(0) we have

ZEO/ ZO/
’ (hﬁ(a,t),t)—>|Z’—|(h(a,t),t) ase — 0

Z5 o . ., .
As for all (o/,t) € R x [0, Tp] we have | z=>(c/, t)‘ < C(&1(0)), by dominated convergence it is

enough to show that for all ¢ € [0,75] and all « € N.S(0) we have

Zf o
o (h(ant), 1) = f(h(ant) 1) ase—0

e’

Step 2: We first show that there exists a continuous function g : N.S(0) x [0, 75] — C such that
Zto =g on NS(0)x[0,To]

a) First observe that by the definition of S(t), the function W ,/(-,¢) extends continuously to
P_\S(t). Hence for any closed interval I C N S(0) we have

sup ||z (a, 0)[| ooy < Cr
0<e<1

Now from the existence result Theorem 2.5.1 we see that

sup |2y, (a, )] < |25 (@, 0)|C(€:1(0))
[0,T0]

Combining these estimates with the observation 0 < ¢; < |hS (1) < ¢ < oo for all ¢ € [0, Tp] we

have

b) Observe that
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As {(h—“> ia&l (fj—j)} o(h)™l = (ZE 7o 20 Zf o and as 0 < ¢ < |Rg (1) < ca < 0o we have

|G (i)

As |25 (a, t)| < |25(, 0)|C(&1(0)) for all 0 < ¢t < Tj, we have for all closed intervals [ C N.S(0)

€
aa toc>
Gel.
NEANE NN AYEN
he he  \ he, )\ hg,

< C(&(0)) forall0 <t <Ty

L*(R)

sup
[OvTO]

c) We have

Now observe that

Hence we have

sup Zttea (o, t) < C
0,701 P& Lo (1)
which implies that
Zia
sup |0 |~ ) (@, t) <Oy
[0,T0] hé, Loo(1)

Hence by using Lemma 2.5.6 we can conclude the existence of such a function g.

Step 3: We now relate the function g to /' and complete the proof. We have already shown
in Proposition 2.5.8 that \I%Fz/ extends continuously to P_. As W, extends continuously to
P_\S(t), we have that F, extends continuously to P_\S(t) and so does F... Hence it makes
sense to write the equality (\I%FZ/) (o/,0,t) = <\I%(o/, 0, t))Fzz(o/, 0,t) for all o/ € NS(t),
where each function on the boﬁzndary is defined by itszcontinuous extension. Now from step 2, we

have by changing coordinates

Zsow = goh™ ontheopenset {(z,t) € R x [0,Ty] |z € NS(t)}
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Fix ¢t € [0,Tp] and let a, an € R be such that [y, ap] € NS(t). Then
Zt€<0527t) - Zte(alat) = / Zf,o/(‘gat) ds

a1

Letting ¢ — 0 and using the definition of /' we have

a2

F<a2,o,t)—F(a2,o,t):/ (g0 h~")(s.1) ds

aq

which implies that F',(a/,0,t) = (g o h™')(/,t) for all o/ € NS(t). Hence using the definitions

of f and u we see that
fa,t)=(uoh H(goh™)(/,t) foralla’ € NS(t)
We know that

=uoh™' onR x [0, Ty

Z,
Hence we have for all ¢ € [0, Ty

?}: (h¥(a,t),t) = (uo h 1) (go h ') (h(a,t),t) = f(h(a,t),t) foralla € NS(0)

which proves the proposition. [

Proof of Theorem 2.5.3. As «,, € NS(0), using Proposition 2.5.9 we see that

é’a/ (h(om, 1), 1) = é“’ (Qtn, 0) exp{ilm(/ﬁt F(h(an, s), ) ds) }

?a/ |
Now from Proposition 2.5.8 we know that f(«/, ) is continuous in ¢/, and hence by dominated

convergence theorem we have

1‘ 77 (h(en 1), 1) {I (/tf(h( ):5)d )}
im —— = expy iIm & 8),8) 48
n—00 é:—zl‘(a"’o) 0

But by Proposition 2.5.8 we know that f(h(a,s),s) = 0 for all s € [0,7y] as a € S(0). This

51



proves the first part of the result. For the second part observe that

. hs,
2y +1i=1(Afo h)z—?

(e}

Hence we have

|25, +i|(a,t) < foralla e R,0 <t < T

¢
261 (e )

where C' = C(&,(t)). Now as ¢;]z5|(a, 0) < |25 |(a, t) < 928 | (v, 0) we obtain

C
€ N t < -
it e = )

1
(cr,0) = 0, and hence ———— — 0 as ¢ — 0. Hence we have

Now if S(0), th
ow if & € S(0), then 7. (@)

Q(aa t) = —1

2.6 Examples: Angled crests and cusps

Note that if we assume that the interface and velocity is smooth near infinity and decays rapidly at

infinity then to use Theorem 2.5.1 we only need to show the initial energy &;(0) < oo as

1
U, (2 + iy, 0)

co = sup||F (2" + iy, 0)||L2(R,dx') + sup

y'<0 y'<0

L2(R,dz")

automatically satisfies ¢y < oo from &;(0) < oo and the fact that initial data decays at infinity.

Also we see that it is easy to construct F' such that

sup|| F(z" + iyl7O)HH2(R,dx’) <00
y'<0

< Q.
Lo (R,da’ )

which automatically controls all terms of £; containing F' if we have sup
y'<0

1
7, V)

Hence we will now construct domains such that

< 0
Lo (R,da’ )

1
1. sup T ’(t)

y’'<0
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1
2. sup 8Z/( )(t) < oo and
y'<0 W L2(R,dx’)
1 1 1
3. sup||=—20. (—@1 (—)) t < 0
y'<0 N % v () L2(R,dx’)

1. Smooth domains

Observe that is boundary is of class C1® with 0 < « < 1 then there exists constants 0 <
1,02 < oo such that ¢; < |Z|(e/,0) < ¢o. Hence if Z, — 1 € H? then we easily see that

£1(0) < oo. Hence if the domain is smooth then the theorem Theorem 2.5.1 applies.
2. Angled crests

A regular smooth curve in the plane is a smooth mapping v : I — C such that v/(¢) # 0 for all
t € I where [ is an interval. Consider a domain €2 with 0 € 0 such that the boundary of {2 at 0
consists of two regular smooth arcs such that the opening angle of €2 at 0 is v i.e. there is a corner

at 0 € 0. Assume that 0 < v < 2. Then we have a local description of ¥ near z = 0.

Theorem 2.6.1 ([Wig65]). Let Q a domain as described above with 0 € 0S). Let V : P_ — Q) be
a Riemann map with W(0) = 0 and let s > 0 be an integer. Then there exists an ¢ = €(s) > 0 and
continuous functions ¢, : P_ N B(0, €) with ¢,(0) # 0 such that

OV (2) = 2"*p,(2) forall z€ P_NB(0,¢)\ {0}

Hence we now consider an interface with N > 1 angled crests with angles v;m where 0 <
v < % Near an angled crest, if we change coordinates so that it is at the origin, then by the above

lemma we see that ¥,/ (z) ~ 2”~! near 0. Hence we see that near z = 0 we have

1
g, B~

1
2. O ( \D) () ~2V €L},

1.

e Ly,

1 1 1 1-3v 2
3. \IJ_Z/aZ/ (\D—Z/@z/ (\I/_Z/>) (Z) ~ Z S Lloc

Hence the energy & (0) < oo and hence angles v with 0 < v <  are allowed.

3. Cusps

A regular analytic curve in the plane is an analytic mapping - : I — C such that v/(¢) # 0 for
all ¢ € I where [ is an interval. Consider a domain ) with 0 € 02 such that the boundary of € at

0 consists of two regular analytic arcs such that the opening angle of {2 at 0 vanishes i.e. there is
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acusp at 0 € 0f2. By an analytic change of coordinates near 0 we can assume that the boundary
of (2 near 0 consists of two arcs one of which is the positive real axis. Assume that there exists an
R > 0 such that

QNB(0,R)={2zcC||z| <R,0<arg(z) <0(z])}

where 6(t) is a real power series that converges on (—2R, 2R) and is positive on (0, R). Then we

have the following description of the Riemann mapping near 0.

Theorem 2.6.2 ([KL16]). Let Q a domain as described above with 0 € 0. Let 0(t) = 3> | a;t!
be the power series of 0(t) around 0 with a; # 0. Let V : P_ — () be a Riemann map with
W(0) = 0. Then for s > 1 there exists ¢ = €(s) > 0 and continuous functions ¢, : P_ 1 B(0,¢)
with ¢5(0) # 0 such that

Z*S

PO gy

¢s(z) forall z€ P_nNB(0,¢)\ {0}

Hence we now consider an interface an analytic cusp as described above. Using the result

above we see that near z = 0 we have

1

1.
0,

(2) ~ zlog(2)* € Lf,

2. 0, (\Ijl )(Z) ~log(z)* € L},

1 1 1 A
3. \I/_Z/az/ (II]—Z/E)Z/ (\I/_Z,>) (Z) ~ ZlOg(Z) S Lloc

Hence the energy & (0) < oo and hence cusps are allowed. It is interesting to note that Theo-

rem 2.5.3 and Corollary 2.5.4 applies to cusps as well.
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CHAPTER 3
Gravity Capillary Water Waves

This chapter is dedicated to establishing the groundwork of our main results on surface tension. In
§3.1 we establish the notation and prove some basic formulae including the formula for the Taylor
sign condition. In §3.2 we derive the quasilinear equations from which we obtain our energy F,,.
In §3.3 we give a heuristic explanation of the energy estimate for the energy F, and explain why
we do not allow singular interfaces as initial data for o > 0. It is also explained why the energy we
have is quite natural and how it can be seen coming from the structure of the quasilinear equation.
We also explain the novelties and the main difficulties in proving the energy estimate.

In §3.4 we state our main results. The first main result is Theorem 3.4.1 which is an apriori
estimate for the case of non-zero surface tension. This result extends the result of [KW 14] to the
case of positive surface tension. The second main result is the convergence result Theorem 3.4.8
which says that solutions with surface tension approximate the zero surface tension solutions as
o — 0. Using both of these main results, we give an example Proposition 3.4.9 which demonstrates

the effectiveness of these results. Finally we §3.5 we give an outline for the rest of the thesis.

3.1 Notation and Preliminaries

We will use all the notation used in Chapter 2 and add a few more definitions due to surface
tension. As the equation changes due to surface tension we repeat the argument of the derivation
of the Euler equation on the boundary.

Let the interface X(¢) : z = z(a, t) € C be given by a Lagrangian parametrization « satisfying
zo(a,t) # 0 for all @ € R. Hence z(a,t) = v(z(a,t),t) is the velocity of the fluid on the
interface and zy(a,t) = (v + (v.V)v)(z(a, t),t) is the acceleration. As 2 (a,t) = @) and

EN
1

B |(9a is the arc length derivative in Lagrangian coordinates, the pressure can be rewritten as

1z
P(z(a,t),t) = wzaaw(a,t)
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Note that %%é—‘:‘ is purely imaginary. Hence the Euler equation becomes

oP 0P
zi(a,t) + 1= —ﬁ%(z(a,t)) —t 5 (z(a,t))
where
; Za i0 .
t= m = ¢~ = unit tangent vector
N . Ra . 0 .
n= z—| = 7€" = unit outward normal vector
Za
Define L op
) = ——— ,t)) €R
afet) =~ G (20 )
Hence we get
= iaz, — 20 0,(P(2(a ), 1))
Zi + 1 =102 — ———0u(P(2(a, t),
|2al [24]
_ ) . o1 1 Za
Therefore Zz,; —¢ = —iaZ, — 10—0,—0, (3.1

| o
2o Za %l

As in the case with zero surface tension, let ®(.,¢) : Q(¢t) — P_ be a Riemann map satisfying
lim, ., ®.(z,t) = 1 and define

h(a,t) = ®(z(a,t),t) (3.2)
hence i : R — R is a homeomorphism. Let h~1(a/, t) be its inverse i.e.
h(h~t(d/,t),t) = o

As was done in Chapter 2, from now on, we will fix our Lagrangian parametrization at ¢ = 0 by

imposing
h(a,0) =a foralla € R

Hence the Lagrangian parametrization is the same as conformal parametrization at ¢ = 0. We
define Z, Z;, Zy; and the operators Dy, D, |D/| etc. as in Chapter 2. We now define some new

variables

A= (ahy)oh™!
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Ay oP

7 h*l
Z | on °

A, = .,4]Z7a/|2 Hence

Al =1- Im[Zt,H]Zta/

Zo  Zuw
g=0oh™! Hence 2 =¢Yand |Dylg = (0,0)oh™ ' = —iDy
‘Z,o/‘ |Z,a”
Z o
O = (I+H)|Dy|g = —i(I+H)Dy |27 |
‘ Z o .
w=-e"Y | Z7 | Hence |D.|w = iwRe®

Observe that Re® = x o h™! where « is the curvature. Note the definition of A; is consistent
with the definition in Chapter 2 as we had proved that A; = 1 — Im[Z;, H]Z, s in (2.5). With this
notation, by precomposing (3.1) with A~! we get

- A, Z o

Zy—i= —zi - iaDa/Da/m (3.3)
Let us now derive the formulae of A; ,. The formula for b and b, is the same as in (2.7) and (2.8)

and surface tension does not affect the formula.

3.1.1 Formula for A, ,

Let /' = v and hence F is holomorphic in () and z; = F'(z(a,t),t). Hence

Zu = Fi(z(o, 1), t) + F.(2(a,t),t) 2 (o, t) Zta = FL(2(a,t),t)z4(a, t)

— Ztoz
Hence Ztt — FtOZ+Zt—
Za

_ Lo .
Precomposing with ~~! we obtain Z,, = F, 0 Z + Z, Zt . Now Multiply by Z , and use (3.3)

!
Yo%

to get
_ Z o
ALJ = Z'ZQIF% A + Z@/ + iZtZt7a/ - Uaa/Da/‘Z—‘

Apply (I — H) and use the fact that H(Z ,, — 1) = Z, — 1 and H1 = 0 to obtain

Zja/
|Z,a’ |

(I—H)A, =1+i[Z,H] Z; 0 — 0(I — H)O Do
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Now take the real part

— ZC!,
Al,a =1- Im[Zt, H]Zt,o/ —+ O'aa/HDa/ |Z’ |
Hence
Za’ . .
Ao = A1+ 00,HD, ’Z’ | and in particular Ay ,| _ = A, (3.4)
Using this relation above we get another formula for A
. = Z o
Al = ZZ@/Ft o/ + Z’O/ + ZZtZt@/ - O'aa/ (]I + H)Dalm (35)

Note that the only non-holomorphic quantity in the above formula is 7,7 t.o’- Also note that as
Ay = 1 —1Im[Z;, H]Z, . by the calculation in [KW 14, Wu16] we have that A; > 1. From (3.4)
the Taylor sign condition term can be written as

—8€Oh71: Al,o‘ _ 1
an ‘Z,a/‘ ’Zﬂ/’

(A1 + 0|0u|(k 0 h7Y) (3.6)

_ . Zo . ) .
where Kk o h™! = —zDa/Z=—"' is the curvature in conformal coordinates. Hence we see that for

ol

large values of o, the Taylor sign condition may fail. For o = 0, this formula was first derived by
Wu [Wu97] to prove the Taylor sign condition for C1 interfaces with o > 0 and was crucially
used in Kinsey-Wu [KW 14] to prove apriori estimates for angled crest interfaces. We will also use

this formula in an essential way.

3.1.2 Fundamental Equation

Substituting the formula for A, , in equation (3.3), we get

= Ay Z o Lo
Ztt —1=—1 - Z'UDQ/HDO/+ - iUDa/Da/ :
2o ’Z,a’l ‘Z,o/|
Now combine the second and third term and use © = —i(I + H) Da/é—“/| to get the fundamental
equation “
= A
Zu—i=—i L 4+ 6D, 0O (3.7)
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Note that as A; does not depend on o, the effect of surface tension is that it adds a holomorphic

quantity to the conjugate of the acceleration. We also see that

Ay oP
i S, I
|Z’a/| on ° o=0 0

and hence it represents the Taylor sign condition in the absence of surface tension. As the equation
is written in terms of A; and not A, ,, our energy £, will always be positive irrespective of the

value of surface tension.

3.2 The Quasilinear Equations

We will now use the fundamental equation (3.7) as the starting point to derive our quasilinear
equations. Our main equation is for the variable D, Z; which is obtained by applying the operators
D, D to the equation (3.7). We also obtain equations for Z;, Z; ., and © which should be thought

of lower order and auxiliary equations. Let us first derive some simple but useful formulas:

a) Observe that for any complex valued function f, H(Ref) = iIm(Hf) and H(iIm f) = Re(Hf).
Hence we get the following useful identities

(I+ H)(Ref) = f — iIm(I — H) f (3.8)
(I+ H)({Imf) = f — Re(I — H)f (3.9)

b) As we will frequently work with the operator | D, \3 we record some commonly used expan-

sions

Do |*f = (a L)ypa/|f+ —— P f

a/|Za,| |Zo/|2 o
|Do/|3f: 82 |Da”f+ aoz’L 2|D ’f+3 ! a2f
|Za| a|Zo<| | Z o] “NZwl IZ(XI2 ¢
— 0 f
\Za|3 “
(3.10)

. 1 1 3 1 1
Do |>f = 0o ——5 0w | —50uf ——<3a'—>—9§/f
Zol?  \|Zu]? 2\ N2l )| 2w

1
—2( B D, D,
( !Za!)’ = <|Za| aIZaI>’ &
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We will now derive formulas for ©, D,0 and D?©. All three of them are derived similarly.

3.2.1 Formula for ©

Z o 1
We know that Re© = (| Z | ) Applying (I 4+ H) to this formula and using the

identities (3.8) and (3.9) we get

Z o 1 Z o 1
2 P —— — iRe(I — H) (ﬁaa,z_) (3.12)

O =1
|Z,a’| Z,a’ |Z,a’|

AS Oy —— 18 holomorphlc this implies that the second term in the above formula is lower order.

Hence @ K ’Z O and therefore © and 0, have the same regularity.

a |

3.2.2 Formula for D;©

Apply |D,/| on the formula for D,g in (2.10) to obtain
Dt|Da/|g = —Im(|Da/|Da/Z,§) — RC(Ea/Zt)|Da/|g

As |[Dy|g = Re®, hence Re(Dy Z;)|Dorlg = Re{(DwZ;)Re©} = Im{i(Do Z;)ReO}. Also
observe that D;|D,/|g = Re(D;©). Hence we have

Re(Dy©) = —Im{(|Do/| + iRe©)Dy Z; } (3.13)
Now apply (I 4+ H) on both sides and use the identities (3.8) and (3.9) to get

D© = i(|Dy| + iRe©®) Doy Z; — iRe(l — H){(|Do| + iRe©) Dy Z4 } + iIm(I — H) DO
(3.14)

Note that D, Z, and © are holomorphic and as will be shown in the energy estimate, this causes
the second and third term in the above formula to be of lower order. Hence D,© ~ i(|Dy/| +
iRe®)Dy Z,.

3.2.3 Formula for D?©
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Apply D, on the formula for Re(D,0) in (3.13) to obtain

Re(D?O)
= —Im{D;(|Do| + iRe®)Dy Z, }
= —Im{(|Dw| + iRe©)D; Do Z;} + Im{Re(Do Z;)|Dor| Doy Z; — iRe(DyO) Doy Z }

Now apply (I + H) on both sides and use the identities (3.8) and (3.9) to get

D}O =i(|Dy| + iRe®) Dy Do Z; — iRe(I — H){(|Do| + iRe®) Dy Doy Z, } G.15)
+ilm(I — H)D?O + (1 + H)Im{Re(DoZ,)|Dor| Do Z, — iRe(DO) Do Z,}

Again in this formula only the first term is the main term and all other terms are lower order. Hence
th(_) ~ Z(|D0/| =+ iRe@)DtDa/Zt.

3.2.4 Equation for Z,

Apply D, to the fundamental equation (3.7)

= DA A
Zttt = —1 Zia/l — ZT; <Z,0/Dt

1
7 o

> — O'(Da/Zt)Da/@ + O'Da/Dt@

1
Now use the formula for DtZ— from (2.12) and D;© from (3.14) to obtain

,Q

Ly = —1

— — A — —
(DeAs + A(bor — Do Z, Do Z1)) = i " Do Zs — 0(Dor Z;) Doy ©

/ /
Yo%

+ iUDa/(‘Dall + iRC@)Ea/Zt — iUDa/RC(]I — H){(’Da/| + iRe@)Ea/Zt}
+io Do Im(I — H)D,©

Let us define the real valued variable J; as

Jl = DtAl + Al (ba/ — Da’Zt — Ea/Zt) + aﬁa/Re(H — H){(|Da/‘ + iRe@)Ea/Zt}

(3.16)
- O'aarlm(]l - H)Dt@
Using this we get
o .Al ~ 7 . . - & . Jl
Ly + zZ—Da/Zt — 0Dy (|Dy| +iReO)D Zy = —0(Dyoy Z) Doy © — i (3.17)
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We modify this equation slightly to get an equation appropriate for the computation of the lower

order term in the energy. Rewrite the above equation as
)Zm + = 7. |Der| Zt o }

A~
Z’;/ al B /I:O-Dal{ (
J

—0(Der Z) Doy© — aDa/{(Re@)l_?a/Z} —i Zl

!
Nye%

Multiply by Z ./ and rearrange to get

_ S — 1
ZtttZ,a’ + Z'AlDa/Zt — ana/ <Z

!
iyes

|Da’|Zt,a’>
(3.18)
= io@a/{ (lD | = )Zta } - O'(Da/Zt)aa/@ - a@a/{(ReG))l_)a/Z} - ZJl

This equation gives rise to the energy £, ; in the energy estimate.

3.2.5 Equation for D, Z,

Apply D, to the equation (3.17) and use commutator identities to get

Ay - _
D D /Zt—FZ‘Z ‘ 6 D Zt—ZOD /D, (\Da/|+z‘Re@)Da/Zt

/
e’

_ o _ _ _ /A
= _(DO/Zt>DO/Ztt — 2(DO/Zt)(DtDa’Zt) — ZDO/ (Z ! )(DO/ZL‘)

!
,

_ — 1 1
— 0D {(DyZ)DyyOY — i D,y J— ——=0uJ

Observe that — (D Z;) Do (Zt + zZA—1/> = —0(DyZ;) Do DyO. Hence we get

A — — —
— 0w DwZ; — 10D Dy (| Dot | + 1ReO) Do Z,

| a’|

DB 7, + i
= —Q(Ea/2t>(DtD Zt) —QO'RC(D Zt) /D @ (Da’Da/Zt)Da’@

— 1
— | Dy Ji — (9 1
( Z) |Za| '
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_ Z o
DDy — — aa<| ||D \)

1 Z )
L (500 22 ) 1Dl 41D = (1] = ReO) D

Z,Oél Zya,

Hence Do Dy (|Dy| + iReO)

(|Dos| — iReO)| Do |(| Do | + iReO)

(|IDor| — iReO)(|Dur| 4 iReO)| Dy | + (| Dor| — iReO)(iRe(| Do |O))

(|IDw|” + iRe(|Dur|©) + (Re©)?)| Doy | + iRe(| Do [°©) + iRe(|De |©)| Doy |
+ (Re®)Re(| D |O)

= | Do |’ + (2iRe(| Do|©) + (Re©)?)| Do | + iRe(|Du|*©) + (ReO)Re(| Do |O)

Therefore Do Dy (|Dos| + iRe®) ~ | Dy|*. Hence we get the main equation for D Z,

A . 3\ s = . 1 1
D? +i———0y —i0|Dy|’ | DaZy = Ry — Z(D >J1 Our 1 (3.19)
( |Z,o” Za Nz
where

R :—2(D Zt)(DtD Zt>—20'Re(D Zt)D D @—O'( /D Zt) O/@
+i0(2iRe(|Dw|©) + (Re©)?)|Do| Do Z; — oRe(| Do |*©) Do Z, (3.20)
+ iU(RG@)(Re(‘Da/ |@))l_)a/Z

and J; was defined in (3.16). This equation gives rise to the energy I, 4 in the energy estimate.

3.2.6 Equation for Z; .,

Multiply the equation for D, Z, in (3.19) by Z .« to get the equation

A _
(th + iﬁ@a/ — iU|Da/|3> Zt,a’

_ 1 _
= Ry Z o — i(@a/Z—) Jy = iDorJy — Z o

(3.21)
Al 1
D} +i———0y —i0| Do’ = | Ztor
T | Do |? 7 t

/
‘ e ,CM

This equation gives rise to the energy I, - in the energy estimate. This equation will also be

useful to get estimates for the term D, .J;.
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3.2.7 Equation for ©

Apply D, to the fundamental equation (3.7) and use Dy Do = (|Dy/| — iRe©)| Dy | to get

_ _ _ (A
D,DyZ; +iD,y (Z !

e

) — o(|Du| — iRO)| D] = — (Do Z,)”

!

Now applying the operator i(| D,/| + iRe®) we obtain

. , = = = (4 , , :

l(‘Da’l + zRe@)DtDa/Zt — |Da/‘Da/ Z_ — ZO’(‘Da/’ + ZRG@)(‘Da/’ — ZR@@)‘Da/lg

A Y o d DY 7 Al

— —2i(DuZ,) (|Dor| D Z1) + (Re©)3 (Do Z1)” + i Dy o
Observe that

(|Da/| + ZRC@)(|DO/| — ZRC@>|DQ/|@ = |Da’|3@ — iRC(|Da/|@)|Da/|@ + (Re@)2|Da/|®
Hence we get

- _ (A
i(|Do| + iRe®)Dy Do Zy — | Doy| D (Z—l) — io| Dy [0

— _2i(DuZ))(|Du|DuZ)) + (Re@){ (Do Z)* +iD. ( A ) ; ia(Re@)\Da/\G}

+ 0R6<|Da/‘®)|Da/‘®

Now recall from (3.12) that © = 2' Zat 8 —iRe(I — H) (|§_(X/|8QIZL/)' Therefore

Ay A Z o 1 1
—|Dy/| Dy = —|D, Oy Oy A
b (7% ) =~ ‘{|Z,a/|(\z,a/\ Z,a/)ﬂz,a,y? }

Ay Ay (Za/ 1 )
——0s0 — ——0yRe(l - H)( ——0u——
’Za’ ’ a’ ( ) |Z7C¥" Z,O/

Z o 1 1
D, 2 O — | Dy || ——=08, A
(’ ‘|Zar>(|z,a/| Z) | ‘(|Z,a/|2 )
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Hence we have

— A
i(|Das| + iRe©)Dy Do Zy + iﬁ@a/@ —io|Dy|*©

,Q

— 9i(DuZ,)(IDu|DuZ:) + (Re@){ (D Z)) +iDu ( - ) ; z‘a(Re@)|Da/\6}

!
Yo%

A, Z. 1 1
+ oRe(|Dy|©)|Dy|© + | | Dy — Oy + | Dy || ——=0,A
(puteDale + (10174 ) (525007 ) +] |(,Z@,,2 )

Ay Z o 1
A g Re(l— ) <+aa,—)
|2 Zaw| " Z

‘ 7a

Recall from (3.15) that

D}© = i(|Dy| + iRe®)D, D Z; — iRe(l — H){(|Do| + iRe®) D, D Z, }
+ ZIm(]I — H)D?@ + (]I + H)Im{Re(Da/Zt)‘Da/ ’Ea/zt — iRe(Dt@)Ea/Zt}
Hence replacing the term i(|D,/| + iRe®)D, D, Z, in the equation with D?© we get our main

equation as

A
<D,52 + iZ—128a/ — iU|Da/|3> O = R2 + ZJQ (322)

’
|Z o

where

Ry = —2i(DuZ)) (1Dw|DuZ:) + (m@){(ﬁa,z)? D, (;_1> n z’a(Re@)lDa/|@}

,Q

!
e} | a!

A Z o 1 1

+ (]I + H)Im{Re(Dath)|Dar|Ea/Zt - iRe(Dt@)l_)ath}

A ( Z o 1 )
+ ———0,sRe(l — H) [ 20—
\Z o] ( ) Z | " Z
(3.23)
J» = Im(I — H)(D;©) — Re(I — H){(|Dw| + iRe©®)D, D Z, } (3.24)

Note that the variable J, is real valued. This equation gives rise to the energy £, 3 in the energy

estimate.
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3.3 Heuristics

Similar to the heuristic explanation in §2.3 we now give a brief heuristic explanation into the nature
of our results. One of our main results is Theorem 3.4.1 which is an apriori estimate for the energy
E,,. This result extends the apriori estimate of Kinsey-Wu [KW 14] to include the effect of surface
tension o > 0. For the sake of convenience we will repeat a few of the arguments mentioned in
§2.3.

Local well-posedness results in water waves are generally proved in the following way:
1. Reduce equation to the boundary
2. Choose appropriate variables, coordinate system and derive a quasilinear equation/system

3. Take derivatives and write down the energy F ()

4. Prove apriori estimate of the form %ﬁt) < P(E(t)) where P is a polynomial with non-

negative coefficients
5. Local existence using an approximation argument

A typical result using the above approach says that if the initial data satisfies £(0) < oo, then
there exists a unique solution to the water wave equation for a time 7" = T'(F(0)) > 0 depending
only on £(0) and we have sup,¢jo 1) £(t) < oo. Typically this energy F(t) is equivalent to the
Sobolev norm of the initial data. One way of proving local existence for rough initial data would
be to lower the regularity of this Sobolev space. For gravity water waves, this was done in the
work of [ABZ14b] where the Sobolev norm of the initial data corresponds to an interface being
C1* where o > %. Note that this does not allow interface with angled crests.

In Kinsey and Wu [KW 4], the energy E/(t) is not equivalent to the standard Sobolev norm
of the initial data. Instead the energy is equivalent to a weighted Sobolev norm with the weight
depending nonlinearly on the interface. More precisely the weight can be thought of as the coef-
ficient of the Taylor sign condition w ~ —g—g. This weight w ~ 1 when the interface is C1 for

a > 0 but behaves like w(a) ~ o'~

near for an interface with an angled crest of angle 7. Hence
the energy E/(t) in Theorem 2.4.2 behaves like the Sobolev norm for smooth enough interfaces and
behaves completely different for interfaces with angled crests. The energy used in [KW 14] and in
Theorem 2.4.2 allows interfaces with angled crests with angles vm for 0 < v < % and smooth
enough interfaces which are C** where o > %

In the case of non-zero surface tension, observe that the fundamental equation from (3.7) is

A

Ztt—i:—i +O-DO/®

!
yes
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Multiply the above equation by é—“" and take real parts to get

Re( 2ol (Zy — z)) = o|Du|’g
‘Z ,o/‘

Observe that | D/ |°g = (920) o h~" and hence we have the estimate ||0920||_ < || Zu]| . + 1. This
estimate holds for all smooth enough solutions.

If we assume that the above computation makes sense even for non-smooth solutions, then this
argument shows that the acceleration has to be infinite for non-smooth solutions when o > 0. This
is in stark contrast to the case of 0 = 0, where the acceleration remains finite even for angled
crested interfaces, as was shown in [KW14]. Hence for the case of ¢ > 0, we will not allow the
initial data to have any singularities, as we work in the regime of finite acceleration. However we
will allow the L°° norm of the curvature of the initial data to be very large.

The main goal here is to find an energy E,(t) which allows angled crested interfaces for o = 0
and which allows large curvature for o > 0, and then prove an apriori estimate for this energy.
To do this, we need to choose appropriate variables, coordinate systems and derive quasilinear
equations from which we can construct the energy. It should be noted that there is no universal
choice of variables or universal quasilinear equation from which we can start our analysis. We
choose our variables and then derive quasilinear equations in such a way which helps us to suit our
purposes.

There are multiple issues involved in finding such an energy and then proving the energy esti-
mate. We will mostly concentrate on the structural issues which were involved in finding such an
energy and only briefly go over the analytical difficulties in proving the energy estimate. The key

ideas and difficulties in proving Theorem 3.4.1 are as follows:

1) Structure of the quasilinear equations and the Taylor sign condition:

In §3.2 we derive quasilinear equations in conformal coordinates of the form

D2+z’i La H—io| —o 3]HI f=lot (3.25)
"N Zal \Za] Z ] T '

where H = Hilbert transform  iH0, = |0y

D; = material derivative » = arc length derivative on the interface

1
— 9,
|Z,a’|

Here f = ZiZ o1, Zt.or, Do Z; or © and the right hand side consists of lower order terms. Note

that all there variables are either holomorphic or almost holomorphic i.e. Hf = f. Hence by
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2)

using the relation i{HO0,, = |J,/| we see that the quasilinear equation looks like

A 1 1 2
D +( > Oy ( (90/) Ou| pf =lot
{t Erlrmld o R N

For the operator to be hyperbolic, we need the coefficient | ZA1 | > 0. Observe that we have
does not depend on o. Hence the operator is hyperbolic for all values of ¢ > 0. This is in stark

and also

contrast to previous results on zero surface tension limit. In previous works, the structure of the
quasilinear equation had the coefficient as —V P - i which is the coefficient in the Taylor sign
condtion instead of VP - n],—¢. Recall from (3.6) that

Al o

oP A,
“on O Tz |Za|(A1+J|a (e i)

)

where Kk o h™' = —iD,, ’ ‘ is the curvature in conformal coordinates. Hence we see that for
large values of o, the Tayloar sign condition may fail i.e. —V P - 1 may become negative. In all
previous works on zero surface tension, there was a restriction that o needs to be small so that
the restriction —V P-n > 0 is satisfied. By following this approach we have managed to remove
this restriction. The better structure of this quasilinear equation also helps us significantly in

understanding the behavior of singular solutions.

The energy estimate:

We will now explain the construction of the energy, the choice of variables and do a heuristic

energy estimate to understand the difficulties. Note that the quasilinear equation is of the form

A 1 1 2
_l)2 — | —— 0| — o’ o/ _l 1
{ () 2o () '} ’

If we multiply by D, f then by integrating we get the energy

9 2

1
o2
——50u f

ID:f1I5 + 5
|Z,a’|2

1
H|Z,a/|f

-1
H?2

This is done for f = Z,a/ and f = O to obtain the energies E, > and £, 3 respectively. If we
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instead we multiply the equation by |0,/ | D, f and integrate we get the energy

2 2

+
2

1
2 Dulf
|Z,o/|§

1D,

VA
bt H Z o) !

2

This is done for f = Z; v Z o and f = D,/ Z, to obtain the energies E, ; and E, 4 respectively.
The energy E,( is a collection of lower order terms which are needed to close the energy

estimate. We will explain its importance in the next item.

Let us now do a heuristic energy estimate. If the interface is C* then we have 0 < ¢; <

ZL < ¢y < oo and hence for smooth enough interfaces the main operator in (3.25) behaves

2.0
like 92 + |d/| + |u|* for which standard energy estimates in Sobolev spaces work. If the
interface has an angled crest of angle vm at « = 0, then Z(«) ~ o” and hence ﬁ ~ la™"

near « = ( and hence the quasilinear equation near o« = 0 behaves like

2-2u 3-3v| 4 13
{0 + 1al"10al + olal”™"|0al"} f
= o' f +olal* |0 f + olal 7|0 f + ola| ™ f + other Lo.t

We have included a few simplified versions of the lower order terms to demonstrate the issues
in proving an energy estimate. We obtain our energies by multiplying the above equation with
either 0, f or |0,|0;f and then integrating. If we multiply the equation by 0, f and integrate,
we obtain control of 8,f € L2, |a|'™"f € Hz and o2 ]a!g_%”|8a\f € H=. For simplicity also
assume that f € L? which is compatible with 9, f € L% To close the energy estimate, we need
to control the L? norm of the right hand side. Hence to control the first term |o|' "> f € L? , we
obtain the restriction v < % which is one of the main reasons of the restrictions on the angles
in Kinsey and Wu [KW14]. Note that we cannot control the term o|a|* %|0,>f € L? as we
only have control of 3/2 derivatives on f from the energy. For smooth enough interfaces, it
was observed by Ambrose-Masmoudi [AMO5] that by carefully choosing f (by using variables
derived from 6), this term does not appear in the quasilinear equation and we follow the same
approach. We do not use the modified tangential velocity as in [AMO05] and instead use the more
natural material derivative D; along with the variable 6 to obtain our highest order quasilinear

equation.

Assuming we can manage to remove this term, we still need to control 0|a|1_3"|8a| felrL?
and o|o|™f € L2 As we only have f € L2, there is no way we can control the term
a\ar?’” f € L? and this is the reason why we do not allow angled crest data if ¢ > 0. Hence
if we work with the smooth interface Z¢ = Z % P, where P. is the Poisson kernel, then this

has the effect of changing |«| — |—ie + a| near & = 0. Hence to close the energy estimate,
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we obtain the restriction oe~3” < 1. For the interface Z¢, the curvature x ~ ¢ “ and hence
this can be written as ox? < 1. A similar argument for o|a|'~*|0,|f € L? also yields the
same restriction. Note that these restrictions do not depend on the choice of f, but is purely a
consequence of the structure of the quasilinear equation and attempting to prove an L? based

energy estimate.

A key difficulty in implementing this heuristic energy estimate is to find a suitable f and obtain
a corresponding quasilinear equation for this variable. As it so happens, for most choices of
variables that we choose for which we can obtain a quasilinear equation, the structure of the
quasilinear equation will still be the same as one given by (3.25). Hence we now focus just on
the choice of the variable f and hope that we can derive a quasilinear equation for this variable.

We need the following properties for f

(a) f needs to have appropriate weights so that the energy allows angled crests solutions when
oc=10

2—3v

(b) The quasilinear equation for f should not have terms like o'|a|* *"|0,|* f in the errors, to

be able to close the energy estimate.

For o = 0, the second restriction does not show up and this was seen in the work of Kinsey-Wu

[KW14] where the weighted derivative Z%aa/ was used to obtain higher order energies. If

@

we work in the smooth case, then we don’t need to worry about the first restriction and this was
seen in the work of Ambrose-Masmoudi [AMO5] where the arc length derivative ﬁ@a/ was
used to obtain the higher order energies. However we are working in the regime where both of
the restrictions apply and these are rather severe restrictions on f. A simple computation shows
that in particular if f has such properties, then no weighted derivate of the form wd,, f will also

satisfy the same properties and hence obtaining higher order energies is non obvious.

Fortunately instead of working with spacial derivatives, if we work with the material derivative
Dy, then both of the difficulties are resolved i.e. if f satisfies a quasilinear equation satisfying
both the restrictions then the variable D, f will also satisfy both the restrictions. This is the
fundamental reason why we use the material derivate quite heavily in this work. The highest
order energy in E, namely E, 4 corresponds to an f = D, Z; which is related to the material
derivative of the angle by the relation Im(D/Z;) = —(9,0) o h~L. This variable D, Z, also has
the useful property that it is almost holomorphic i.e. H(Dn/Z;) ~ D Z,, which is quite useful

to prove the energy estimate. The energy E, 4 is the most important part of the energy £,,.

The energy E, 3 corresponding to the variable © should be thought of as a complimentary

energy to I/, 4. For o = 0 the energies E, 3 and E, 4 are equivalent, whereas for o > 0 the
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3)

4)

energy E, 4 is higher order as compared to £, 3. The energies F,; and E, 2 can be thought of
as lower order energies as compared to £, 4.
Lower order terms:

We now explain the introduction of the energy £, . Note that

2
+

o0

2

+
2

“_%32 1
1 O/Z ,
|Z,a’|2 o

1 1 1 1
2|7 |20y —
0- | b | j

O
Z o

1 1
o4 Z o F0

6
EO',O = ‘

Z o

/
e I

2 2

The last two terms can actually be obtained from the quasilinear equation for the variable f =
Py (g) and the by multiplying the equation by |0,/ |Py(g) and integrating. The reason we do
not do this is that is simply more convenient to just add these terms directly. The introduction
of the first two terms is more complicated. As it turns out, we can replace the first two terms

. 3 . .
with the term ||0%Z7a/ ., and we would be still be able to close the energy estimate. One way

to think about this term is as by the following argument: It is very tempting to think that the

quasilinear equation is of the form

3
1 1 3 1
D? +iA | ——0, |H—i(03|Z ., — Oy |HYf=Llot
t 1(%42 ) (412,01 (w ) ;

,Q

We can then think of #&1/ as the main weighted derivative (as was done in Kinsey-Wu

/
’,[X|

[KW14]) and assume 0%|Z,a/| € L. Indeed adding the term HO'%Z’O/

considerably simplifies the proof of the apriori estimate Theorem 3.4.1 and the proof of the

., In the energy E,

convergence result Theorem 5.0.1. However this has the drawback of yielding a worse result in

terms of the scaling, as instead of the restriction — < 1 in Proposition 3.4.9, we would need the
€2
.. .. o o o . .
more restrictive condition of — < 1. The restriction — < 1 is more natural as this corresponds
€ €2

3 ~ 0e73 < 1 which we saw in the heuristic energy estimate. Our

to letting v 1 % in ok
energy F, has no lower order terms with respect to the scaling which keeps gravity constant
(See Theorem 3.4.1). These are the main reasons for the introduction of the first two terms in

. . 3
E,  instead of the simpler ||0'%Z7a/ o

Analytical difficulties:

In addition to the structural difficulties due to surface tension explained above, we also face
numerous analytical difficulties. Even in the special case of o = 0, the energy E,|,— is lower
order as compared to the energy in Kinsey-Wu [KW14] by half weighted spacial derivative

and we crucially do not have D, Zu € L. This makes our estimates, even in the case of
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o = 0, much more subtle. In addition we now have a lot of nonlinear terms due to surface
tension which we need to control. To overcome these issues, we define weighted function
spaces adapted to our problem and prove estimates for these spaces (see Lemma 2.4.5). We
use these function spaces along with estimates from harmonic analysis to control the nonlinear

terms.

Let us now explain the energy &, heuristically (£, and &, are equivalent) defined in §3.4 and

show that it is a natural energy. Observe that the quasilinear equation is of the form

A 1 1 s
DP+i— | —0, |H—ic| —0, | H =l.ot
{ (e B o) }f ’

) ) = 2 .
We show in the energy estimate that 1 < A; < 1+ HZ tat ||y and hence we can consider A; ~ 1

Also in the special case of zero velocity Z; = 0, we actually have A;(c/) = 1 for all ¢/ € R.
o3 I+H
— ——0,. Recall that the operator Py = ———
Z o Z | P " 2
and has the property that for any smooth real valued function f : R — R vanishing at infinity,

Hence the main operators are D, 0, and

Py (f) : R — C is the boundary value of a holomorphic function in the lower half plane vanishing
at infinity with Re{Py(f)} = f/2.

A very natural restriction is to have § € L>. The spaces L> and H? have the same scaling in
dimension one and hence heuristically we will switch between the two. The energy &, is obtained
by applying the above operators to the relation # € L (or equivalently g = 6 o b= € L*°), with
suitable replacements of L°° with Hz. The energy & = &,1 + &2 and using this &, has the

heuristic representation

1
1 1 : 1
D (|Ow—=—TI| ~|——=0x IP’H(g) € H2
Z o ||y QZME >
1 1 1 1
2) || =—0y—— ~ | ——=0y |P c H>
) Z7a/ Z’a/ H% (’Z7a/ ’2 > H(g) 2

1 2
1 1 1 o3 1
3) O'E‘Z,O/Paa/ ~ | —— 0y IP’H(g) € H2
P ‘Z,o/‘

NI

_ 3
) L1 1 o3 ’
4) O'§|Z7O/|§8a/ ~ | ——=0y —— Oy IP’H(g) e L™
Z oo |Zwﬁ | Z o]

0% 1
5) Tag,z—
Z,20/ ,Oc/ 2

[N

1
o3 S 1
() o <
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6) ot e, 1 L 9 (o o, | B (9) € H?
—3 Yo & ~ o T~ Yo H\g S 2
73, ||y \1Za) \1Za]

_1 3
o 1 1 > o3 -1
8) || =—03 —1| ~|—=0u —— Oy | P Hz
) Z7a/ « Z7O/ ) (|Z7a/ |2 > (|Z7a/‘ ) H(g) E 2

1 3
1 3 .1
o -2 L] (Laa,) Pylg) € I

We have the formula D;g = —Im(D,/ Z;) from (2.10) and hence heuristically we can replace

D Z, with D,P(g). Hence &, 2 has the heuristic representation

_1
_ 1 2 .
1) HZtval 9 ™ Dt (ﬂ&a/> PH(Q) € H>
1. - 1 : 1
i B R NPV R

N

1

-1 1 3

o2 — 1 o3 1

3) —lﬁa/Z,a/ ~ Di| ——0u ——Oy PH(Q)EH5
s t<|z,a/|2 ) (|Zva/| )

AN

ot S
4) || =02 Zyo|| ~Dy| ——08u | Pulg) € H?

Z2, 9 |1 Z o]

To understand how the energy looks like in the arc length coordinate system, we first define
oP
a=— BE . Now in arc length coordinate system the main operators are then D;, ad, and
n o=0,v=0

o3 0s where we again write the material derivate as [;, a corresponds to the weight and 0, is

|Z ,o/|
the arc length derivative which corresponds to the operator ﬁ@a/. We let P),,; denote the linear
operator defined by the property that for any smooth real valued function f : > — R vanishing
at infinity, P (f) : ¥ — C is the boundary value of a holomorphic function on 2 vanishing at
infinity with Re{P;(f)} = f/2. We can do the same kind of heuristic representation as done
above. Here we would have

1
O
A

~ (Q&S)%Phol<9) c H%
2

1)

/
,
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~ (a0,)Ppo(0) € H=

o1
H32

1 1 1
§|Z |20

1 1
2) || —0w—=—
) ‘ ‘ Z7al Zia/

~ (030,)7Phot(0) € H?
2

3)

!

e’

and so on. This is exactly analogous to the heuristic representation we say for the energy & for the

gravity water waves.

3.4 Main results

‘We now describe our results. Define

2 6 2 1
Epp = a%|z,a,|éaa,zl/ + aé|Z7a/|580/% + aa,% + Z‘”éag,%
' loo o j ’0‘2 2 | Z o] o
Es1 = H(Z&t—i)Z,a/ 2% +H\/A—12t,a’ z—i- ’ZO—Zléaa/Zt’a/
_ 2 1 “ ?
Bua = |02+ VA 4T 0uZ|
,2 2 ]1 o it
Bua =001 + |V 4 Togoee|
; H2 o Hj .
Fos = | DDwZi + |VAIDuA Do Z| + |Z‘” 70|00\ D2,
! 2

EO' = EU,O + Ea,l + EU,2 + EU,B + EO',4

Observe that the variables used above are all very natural. Z; and Z;; are the velocity and
acceleration on the boundary respectively, © is twice the holomorphic projection of the curvature
and D, Z, is related to the material derivative of the angle by the relation Im(l_?a/Z t) = —(0,0) o
h~" from (2.10). The weight ﬁ is related to the Taylor sign condition from (3.6).

The energies E,; for 1 < ¢ < 4 are obtained from the quasilinear equations derived in §3.2
whereas the energy FE ( is added as a lower order term. For o = 0, the energies F, 3 and E, 4 are

equivalent, but for o > 0 the energy L, 4 is higher order than E,, 3. We now state our main result.

Theorem 3.4.1. Let T > 0 and let (Z, Z;) be a smooth solution ' to the capillary gravity water

wave equation with surface tension o > 0 in the time interval [0,T) with E,(t) < oo for all

"It is enough to assume that the solution satisfies (Z o — 1, Z;) € C([0,T], H*T2 (R) x H*(R)) for s > 10
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t € [0, T). Then there exists a polynomial P with universal non-negative coefficients such that for

allt € [0,T) we have
dE,(t)

dt

Remark 3.4.2. We mention a minor technical point in the statement of the theorem. The energy £, o

< P(Es(t))

contains a term which is the L> norm of a function and hence may not in general be differentiable

in time even for smooth solutions. Hence for this term we replace the time derivative by the upper
IS (E48) oo =1/ ()l o

Dini derivative lim sup,_, 5+ B

Properties:

1. Energy is positve for all o : For any smooth data decaying sufficiently at infinity, the energy
is positive and finite for all o > 0. In particular the energy is positive even if the Taylor sign
condition fails which may happen for large values of o as may be observed from the formula
of A;,. This is in contrast to the work in [AMO5], where the authors assume o small to

obtain a positive energy.

2. Energy estimate is completely independent of o: In the above theorem the polynomial P has

universal coefficients and hence is independent of o

3. Energy allows angled crest solutions for c = 0: If we put 0 = 0 in the energy F,, then it
allows solutions with angled crest with angle less than 90°. These are exactly the solutions
allowed by the energy obtained by Kinsey and Wu in [KW 14] and our energy is equivalent
to theirs. (More precisely the above energy for 0 = 0 is lower order as compared to the

energy in [KW14] by half spacial derivative)

4. Energy does not allow angled crest solution for ¢ > 0: In the proof of this theorem we
show the estimate H(‘)S@HOO <o 3P (E,) and hence for o > 0 the curvature is finite, which
automatically excludes angled crest solutions. Note however that for small values of o, the
energy allows data with quite large curvature of the order of 073, (See Proposition 3.4.9
where for any given € > 0 arbitrarily small, we construct examples where £, = O(1) and

the curvature of the initial data grows like o3 as o — 0)

5. Scaling: Let Zy(c,t) = A"'Z(Ao/,VAt) and Zy, = A\"2Z,(Ao/,V/At). Then as can be
seen directly from the equation, (Z,, Z;,) is a solution to the water wave equation with the
same gravity —k but surface tension cA~2. The energy E, has the following property: If
(E, ) represents the energy corresponding to the data (7, Z;,), then we have (E, )\ < E,
for A < 1and (E,), > E, for A > 1. This says that there are no lower order terms in the

energy with respect to this scaling.
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We now give a more convenient expression for the energy and its relation to the Sobolev norm
of the data. Define

6 2
1 ’ 1 1 ? 1 1L 1
80— = aa/— + —aa/— —|— GZ a _|_ 522/80/
,1 ‘ Z,o/ 9 HZ@/ Z,o/ H% o Z’a, o e Z’a/
2 )
1 2 2 ' )
o2 (2
+ 82/ + 82/ + ||O'aa/@||2 1+ 83/_
Zi Z70/ 9 fo/ a H% H2 Z,a’ @ Za’ 9
2
2
I (AR
22,7 Zrl|
H?2
1 2 1 2 1 2
2 — o2 o2 _
2 + 22 aa/Zt,o/ _|’ l 8 Zt a + _§a(2)5’Zt,O/
o 2 Z 2 Z 2
EZT = Cg,1 + élxg

Proposition 3.4.3. There exists universal polynomials Py, P, with non-negative coefficients so that

for smooth solutions to the water wave equation with surface tension o > 0 we have
Ecr S Pl(gg) and gcr S PQ(EO—)

For 0 = 0, this energy is the same as the energy £ from §2.4 and hence we can see that the
energy allows angled crest interfaces as shown in §2.6. For ¢ > 0, in contrast we see that most of
the terms with surface tension in &, ; do not allow angled crest interfaces. Indeed one can directly
see that the natural extension of the energy of Kinsey-Wu [KW 14] does not allow any singularities
in the interface. Observe that in Kinsey-Wu [KW 14], the quantity Z tta € L? and 0, ( > € L2
Hence if we assume these when o > 0, then by the equation (3.7) we see that 00, D, @ e L2
Hence |D,/|© € L5, and as Re© = r o h™!, we see that Ok € L2

at least C%! which rules out any type of singularity.

Hence the interface has to be

loc loc*

In fact when o > 0, the condition £, < oo forces the interface to be C*“ for 0 < a < 1
which follows from the proposition below. However even though the interface is quite smooth, we
still do not have a good bound on the curvature and in fact the curvature can be very large (See
Proposition 3.4.9 to see that the curvature can be of order a_%). The following simple proposition

says that if we ignore the weights in &,, then we immediately obtain the Sobolev norm.

Proposition 3.4.4. There exists universal polynomials Py, P, with non-negative coefficients so that
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for smooth solutions to the water wave equation with surface tension o > 0 we have

”£Zt¢ﬂ

1
o+ 002l < P (8 2l 7 ) and

—i—a)

Remark 3.4.5. If £, < oo and o > 0, then we in facthave Z ,» € L but the norm || Z /|| depends

¢, < &(HZQI 0w Bl s+ H

Z o

on o3 and the rate at which Z o — las|a/| = co. We show in the proof of Theorem 3.4.1 that
Haészoo < C(&,) and hence the curvature x € L. Therefore by the Kellogg-Warschawski
theorem (see chapter 3 of [Pom92]), the derivative of the Riemann mapping extends continuously
to the boundary and hence Z, € L{.. As Z,» — 1 when |o/| — oo, we have that Z ,, € L.

loc*
We can now use local well-posedness results in Sobolev spaces along with the above apriori
estimate Theorem 3.4.1 to obtain an existence result in terms of the energy £,. We use the existence
result of Alazard-Burqg-Zuily [ABZ11] to obtain the following

Corollary 3.4.6. Let o > 0 and assume the initial data (Z, Z;)|—o satisfies the following condi-

tions
1. The interface Z is a graph and Im(Z) € L*, Z . — 1 € [*, Z, € L?
2. &(0) < o0

Then there exists a T > 0 depending only on E,(0) such that the initial value problem to the

equation (3.7) has a unique solution (Z, Z;) in the time interval |0, T'] satisfying sup &,(t) < occ.
te[0,7)

Remark 3.4.7. In the above statement, the restrictions of Z being a graph and Im(Z) € L? come

from the existence result [ABZ11]. We will remove these restrictions in an upcoming article.

The novelty of the above result is that the time of existence depends only on &,(0). The
usefulness of the energy &, comes from the fact that there are interfaces (such as smooth interfaces
close to being angled crest) for which the C** norm (for any a > 0) of the interface of the initial
data is very large but £, remains bounded. This translates into a longer time of existence if we use

the energy &, instead of the Sobolev norm. See Proposition 3.4.9 below for an explicit example.

Result on Convergence:

We now explain our results about convergence. Let A be a solution to the water wave equation
with surface tension o and B a solution to the water wave equation with no surface tension. Hence

we want to show that

A—-B a oc—0
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in an appropriate sense. We will denote by f, the function f for solution A and f; for solution
B. For e.g. (Zm/)a and (Z +.o)» denotes the spacial derivative of the velocity for the respective

solutions. Note that with this notation equation (3.7) becomes

_ A B A
(Z)og —i=—1 L)+ 0(Dyw®©), whereas (Zy)y—1=—1 !
Zo/ a Z’a/ A

)

We also have the operators

1 1
(|Da’|)a = 0O (|Do/|)b =0 et
|Z7o/|a |Z,o/|b
Now let h,, hy, be the change of coordinate diffeomorphisms as defined in (2.2) for the solutions
A and B and let the material derivatives by given by (D;), = U, '9,Uy, and (Dy), = U, ' 8,U,.

We define
h=hyoh' and U=U;="U; Uy,

While taking the difference of the two solutions, we want to subtract in Lagrangian coordinates
and then bring it to the Riemmanian coordinate system of A. The reason we want to subtract in the
Lagrangian coordinate system is that, in our proof of the energy estimate we mainly used the mate-
rial derivative, and in Lagrangian coordinate system the material derivative for both the solutions is
given by the same operator 0;. The operator U first takes a function in the Riemmanian coordinate
system of B to the Lagrangian coordinate system and then to the Riemmanian coordinate system
of A.
We define A(f) = f, — U(f,). Fore.g.

AZu) = Zrde= 0 Mz ==i{ (55) ~0(F%) }+ o0,

where we have written U (f)p instead of U (f») for easier readability. To state our convergence
result, we first need to define a few more norms. We define the higher order energy for zero surface

tension solutions as

2 2 2

1 2

Z o

1
z2,

e

aa/ ; + aa/ Zt,a’

+ || Zsor

_|_

1 _
Z_3,aa’ Zt,o/

1, 1
Enigh = ‘ z@wz 3

2

o1
2 2 H?2

This energy &yigp, is equivalent to the energy in Kinsey-Wu [KW14] where an apriori estimate

which is not present

for the energy is proved (The energy in Kinsey-Wu also has the term ‘

1
Z,o/
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2
in &pigr). Note that this energy is half weighted spacial derivative i.e. (ﬁ@a) higher order

than the energy &,|,—o. We reprove this energy estimate in §5.1 as we need additional control
of terms from the energy which is not proved as part of the proof in [KW14]. We also define an

auxiliary energy

) 1 2 1 1 2 1 1 2
1 = g2 o2
= 2 3
(go,au:v)b = 0?2 Zé/ 804’ + 1 ao/ + 5 aa’
5 ZO/ b Z§ ZO/ Z§ ZO/
’ 00 o ’ 112 o ’ pl2
1 2 1 2 1 2
o2 — o2 — o2 —
2 2
+ 1 aa’Zt,oz’ + 5 ag/Zt,o/ + 7 a@’Zt,a’
2 2 2 L1
Z p'2 2 p'2 Z o H2

Note carefully that the index here is B which is the zero surface tension solution. Hence this
term couples the zero surface tension solution B with the coefficient of surface tension o from
the capillary gravity water wave solution A. This energy is needed as part of the energy for the
difference due to technical reasons which will be explained in §5.2. Define the difference of the

solutions by taking the difference in the terms of the energy &, and adding (&, 4uz )s

1\ 1 1
g A ) — A e I —
8A71 H <aa Z,o/) 2 " H <Z,o/ o Z,a’)
1 2
1 1
,ZQI o ——
(02 7a8 Z,a’>a

.
+(00u0), 1%y + H( a/agza,)

NEV

EA - (ga,au:B)b + gA,l + gA,Q

2

1+
H2

( O-% 62 : )
1 Yo
Z§ / Z’O/ a

2 ‘

o 1
03—
Z?/ (0% Za/>

o? ot
(2o | | ()
Zi/ a fo’ a

We now state our main result on convergence. We will state the theorem here only for the

2 2 2

Ens = ||A(Zua) | +

2

2 2

special case of the two solutions having the same initial data and a more general result is stated
in Chapter 5. The existence part of this result follows from earlier results. For 0 = 0, one can
use the existence result Theorem 3.4 of Wu [Wul5], where it is shown that for data in the class
Enignh(0) < o0, the solution exists in a time interval [0, 7] with 7" depending only on &4, (0) and
satisfies sup 7 Enign(t) < oo. For ¢ > 0 we can use Corollary 3.4.6 for an existence result in

terms of &£,. The main result is the estimate for the difference of the solutions.
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Theorem 3.4.8. Fix 0y > 0 and let (Z°,77) and (Z, Z;) be solutions to the equation (3.7) with
the same smooth initial data (Z°, Z])|i—o = (Z, Zt)|t=o for 0 < o < 0g and o = 0 respectively.

Assume that there is a constant M > 0 such that

(ghigh>(0)7 (gao)(o) < M

Then there exists a time T > 0 depending only on M, such that the solutions (Z°,Z7) and (Z, Z)
exist in the time interval [0,T] and as 0 — 0, we have (Z°,7Z7) — (Z,Z;) in [0,T] in the sense
that sup,co ) Ea(Z7, Z)(t) < eCONTE\ (77 72)(0) < 0 — 0, where En(Z7, Z) is the energy Ea
with Z° being the solution A and Z being the solution B.

This result should be contrasted with the result of Ambrose-Masmoudi [AMO05] where the
convergence is proved in Sobolev spaces. The importance of the above result is the fact that the

constant C'( M) appearing in the estimate for Ea

sup Ea(Z°7,2)(t) < eCMTeN (27, Z)(0)

t€[0,T]
depends only on M which in turn depends only on the energy &y, and &, of the initial data. If
the initial interface is close to being angled crest, then &g, and &, remain bounded (&, remains
finite provided the surface tension is small enough depending on how close it is an angled crest
interface) where as the C'* norm (for any 0 < a < 1) of the interface Z blows up as the interface
gets closer to being angled crested. Hence this result allows us to control the difference of the
solutions independent of how close the initial interface is to an angled crest interface. It is also
worthwhile to note that in the proof we show that the angle of the interface 7 — 6 in L™ as
o — 0. Hence the approximation between the solutions with surface tension and zero surface
tension is quite strong.

We now give an example which demonstrates the usefulness of the above results. First observe

that ¥, # 0 for z € P_ as ¥ is a Riemann map. Let ' : P_ — () be the holomorphic function
vanishing at infinity with boundary value Z, i.e. F = ¥ o U and hence F is the conjugate of the

velocity in Riemann mapping coordinates. Let z = = + 4y and define the quantity

1 1 1 1 1
M = sup||V20, (—) + sup||0. (—) + sup||—20. (—>
y<0 \Ijz L%(R,d:v) y<0 \Ijz L2(R,dx) y<0 qu \Ijz L (R,dx)
1 1 1 1 1 1

+ sup|| =—0? (—) + sup|| = 02 (—) + sup|| == 0? <—)

y<o || V. B L'(Rdz) ¥<0 \Ijg v, L2(Rdz)  ¥<0 ‘Iji’ . LY(R,dx)
+ sup|| o+ SUPl| P 725

y<0 z || Loo(R,dx) y<0

80



By an analogous argument as was done in §2.6, M < oo allows interfaces with angled crests of

angles v with 0 < v < % and also allows cusps. We can now state the example.

> Z(o, t)
T Z9%(ant)

Figure 3.1: A wave with angled crest and a smooth solution close to it

Proposition 3.4.9. Consider an initial data (Z, Z;)|,—o with Z being a graph of a function, de-
caying rapidly at infinity and satisfying M < oo. Let (Z, Z;) be the solution of equation (3.7) for
o = 0 with initial data (Z, Z;)|i=0 as obtained in [Wul5]. For 0 < € < 1 and o0 > 0 denote
by (Z%°,7Z,°) the solution to the equation (3.7) with value of surface tension o and with initial
data (Z%, 2, )|t=0 = (Z * P., Zy * P.)|,—0 where P, is the Poisson kernel. For c = 0 we denote
(Z9°,Z;7) by (Z¢, Z;). These solutions satisfy the following properties:

o
1) If — < 1, then there exists a time T' > 0 independent of € and o such that the solutions

€2
(Z9°, Z;7) exist in the time interval |0, T'.

2) In addition if we let % — 0, then the solutions (Z°°,7Z;°) — (Z¢,Zf) in the sense that
€2
sup Ea(Z97,Z)(t) < C’(]W)i3 — 0 where C'(M) is a constant which depends only on the
t€[0,T €2

initial data (Z, Z;)|,—o and is independent of o and .

If the interface has only one angled crest of angle v with 0 < v < %, then the curvature 050 of
the interface Z<° att = (O behaves as 0s0 ~ ¢ as ¢ — 0, and hence if 0 = 6%, then 0,60 ~ o %,

Hence as v 1 % the rate of growth of the curvature of Z° tends to o5 aso — 0.

Remark 3.4.10. In previous results on zero surface tension limit for large data, even if o is very
small, the time of existence 7 < ||#||'. Hence as the interface Z< with a single angled crest of
angle v has curvature || k|| ~ € ", this yields " < €/ — 0 as e — 0. The above example says
that these solutions in fact exist on a much larger time interval and that the time of existence is
at least O(1) even as ¢ — 0, provided there is a balance between surface tension and smoothness
o~ er

Remark 3.4.11. In the recent paper [Wul8], it is proved that (Z¢, Z;) — (Z, Z;) as € — 0 in the
sense that sup,e(o 7 F(Z¢, Z)(t) — 0 where F(Z¢, Z) is a positive functional which compares the
solutions (Z¢, Zf) and (Z, Z;) and it also shown that the solution (Z, Z;) constructed in [Wul5]
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is unique. Combining this with our result above we have that as €,0 — 0 and % — 0, we have
€2
(Z%°,Z;°) — (Z, Z;) in the sense that sup EA(Z97, Z°)(t) + sup F(Z°,Z)(t) — 0
t€[0,7) t€[0,7)
Remark 3.4.12. As mentioned earlier, the restriction of Z being a graph comes solely from the

existence result [ABZ11] and can be removed.

The above proposition is direct consequence of Theorem 3.4.8. To use the theorem, we just
show that if o/e2 < 1 then Enign(Z)(0),E,(Z°)(0) < C(M) where C(M) is a constant which
depends only on the initial data (Z, Z;)|,—o. We also prove Ea(Z¢, Z5°)(0) < C(M)o/e? from
which the result follows. To see the scaling o/ e%, observe that one of the terms in &, is 00,0 €
H3. As©° = O % P. we have

1700 ©°| 1©1l

Dl Q

< C(M)

1 <
H2 ~

(@)
Dl Q

€

where we have used the fact that for an angled crest wave with angle < 90°, we have © € L?. We
show that this kind of estimate occurs for every term in £, and Ea, and hence the result follows.

The scaling is inherent from the main operators in the quasilinear equation. Observe that

_3 3
1 > o3 3
——— 0y —— 0y | ~ 003
(iz,af ) (!Zw! ) o

which naturally gives us the factor o/ €3,

3.5 OQutline of the Proof

There are two main theorems, one on existence and one on convergence. The proof of Theo-
rem 3.4.1 is proved in Chapter 4 where we also prove the equivalence of the energy E, and £, and
its relation to the Sobolev norm and we also prove the existence result. The proof strategy is the
same as we did for the zero surface tension case namely by first obtaining quasilinear equations,
controlling the quantities controlled by the energy and then closing the energy.

The convergence result is proved in Chapter 5. We first prove the apriori estimate for the energy
Ehign- After this we prove the estimate for the energy &, 4., Which was part of the energy £a. After
this we prove the main result Theorem 3.4.8. We actually prove a more general result which can
handle initial data with different interfaces and Theorem 3.4.8 is a special case of this result. We

then proceed to give the proof of the example stated earlier.
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CHAPTER 4

The Energy &,

In this chapter we will first prove Theorem 3.4.1. We first control the terms from £, in §4.1 and
then close the energy estimate in §4.2 completing the proof. We then prove Proposition 3.4.3 in

§4.3 and prove Proposition 3.4.4 in §4.4. Finally we prove Corollary 3.4.6 in §4.5.

4.1 Quantities controlled by F,

Now we come to main part of the section. Here we control all the important terms controlled
by the energy E,. We will frequently use the estimates proved in the appendix to control the terms.
In particular Proposition A.0.6, Proposition A.0.7, Corollary A.0.8 and Proposition A.0.9 are very
frequently used.

In this section whenever we write f € L what we mean is that there exists a universal
polynomial P with nonnegative coefficients such that || f||, < P(E,). Similar definitions for
f € H2or f € L™. We define the norm I gt = Iflle + 11l ;3 The spaces C and W
are as defined in §2.4.1 and we will very frequently use Lemma 2.4.5. In this section we will
sometimes use the function Z,la/?. This is defined as

ZMP = e3l8Za)  where log(Z.q) — Oas || = 0o

e’

Note that there is no ambiguity in the definition of log(Z ,/) as it is continuous and we have fixed
its value at infinity.

For 0 = 0 the energy F, is lower order as compared to the energy in Kinsey-Wu [KW 14] by
half weighted spacial derivative and is equivalent to the energy £ defined in §2.4. A few of the
terms for ¢ = 0 have to be proved differently as compared to §2.4.1 due to the differing forms of

the energy. Of course estimates for terms involving surface tension are all new.
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1)

2)

3)

4)

Zio € L*,|Dy|Du Z; € L?

Proof: This is true as A; > 1 and as £, ; and E, 4 are part of the energy

A € L®NH?

Proof: The proof is the same as in §2.4.1

1
ao/_ L2; ao/
Z,a’ © |Z7oz’|

Proof: The proof is the same as in §2.4.1

DyZ, € L™, |Dy|Z, € L®, Dy Z, € L™

€ L?|Dy|w € L* and hence w € W

Proof: We only need to prove that D,/ Z, € L™ and the rest follows. Observe that

02 (D Z1)" = 2(Zs o) (DD Z1)

As D, Z, decays at infinity, by integrating we get

(DarZe)*|| o S [ | Zewr|
I .

DoDuZ|do’ < || Zow|

pall1Dar D Z2|

Hence HDQ/ZHOO < \/Hzt,a’

L2||’Da/|5a/ZtHL2

D} Z,e L |Dy|’Z, € L*, D% Z, € L*

Proof: We already know that | D[ D Z; € L? and hence D? Z, € L% Now
l_)i,Z = Da/ (w|Da/]Zt) = (Da/w)’Da/|Z,§ + w2|Da/]22t

Now observe that | D|w € L? and |D,/|Z; € L™ and hence the first term is in L. Hence we

have |Do/|°Z; € L. A similar argument works for the rest.

l_)a/Z ewne, |DO/|Z,5 ew ﬁC,Da/Z ewnc

Proof: The proof is the same as in §2.4.1

VA
8a/IP’A (Z’;) € L™

Proof: The proof is the same as in §2.4.1
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8)

9)

10)

11)

Dy|Ay € L? and hence Ay € W, /Ay € W, — €W, ew
|Dor| Ay and hence A, A \/A_

Proof: The proof is the same as in §2.4.1 and the only change is that instead of the using the

formula from 2.4)ie. Ay =iZ FioZ + Zy + z'ZtZt,a/, we use the formula from (3.5)
_ Z o
whichis Ay = iZyFi0Z + Z o + 12210 — 00y (1 + H)D, —— which does not affect

|Z o
the estimate as the only difference is the addition of a holomorphlc quantity which vanishes

under the application (I — H).

Oecl®’,DOecl?

Proof: Recall from (3.12) that

Z 1 Z o 1
0 =i 9, — —iRe(I - H) (iaa,—)
‘Zoz ‘ ‘Z,a" Z,a’

. We have

1
As the Hilbert transform is bounded on L? we easily see that ||O]|, < ’ 80/2—
o 112

D;© € L? as it part of the energy E, 3

©
—€cC
|Z,a’|
JA .
Proof: We know from E,, 3 that |Z—1|@ € H2. Now as VA0, S HAlHéOH@H2 we now
VA o H 1
have © € C. Hence we get N
|Z,o/‘ ‘Z,o/‘ c ‘Z,o/‘ Al W
1

1
C,|Dy|5— €C, |Dy|m—
2ot <G| ‘Z,a’ <G| ||Z,oc’|

Proof: Observe that

D

1
- C, Fao/w & C

’
|2 o]

S Z o 1 1 Z 1
=i—"_0, R I-H) =2*0,—
’Z,o/’ Z’Z,a”2 Z, - e{‘Za ‘( )(’Z,a” Z,o/)}

_ 1 1 Z .o 1 1 1
=iDy— +iRed | — H|( 229, — |\ —iRe! | = H|( 0,
D+ vl [ (75007 ) - ed [ 77 (002

1
Hence HDQI—
Z,Oc’ H?2

2 1
which implies that D, € C. As

2 o

1
Dy ——
Z

Lt
H?2

- HIZ,afl
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1
€ C and |DO/|Z

/
1o’

w € W, by Lemma 2.4.5 we get D, € C. Observe that

,Q

— 1 1 - 1 w
Re( Dy— | = |Dy|—— Im(Dy— | =i| —=0yw
( Z,a,) | |\Z@/\ ( Z,a,) (; Z o )

Hence | D, ||Z y € C and \Z ———0yw € C. Now again using w € ¥V and Lemma 2.4.5 we

!
o4

1
easily obtain —— 0w € C
A

,Q

1
12) ——=0, AleLooﬂHz and hence ——0d,A; € C

’ Nod ’ | al |
Proof: The proof is the same as in §2.4.1 and the only change is that instead of the using the
formula from (2.4) i.e. Ay = iZyF,0Z + Z o +iZ;Z; o, we use the formula from (3.5)

_ Z o
whichis A) = iZyFioZ + Z o + 12210 — 00y(1+ H)D, |Z y which does not affect
the estimate as the only difference is the addition of a holomorphic quantity which vanishes

under the application (I — H).

1
13) > A1 € L, |Dy|| ———50n A1 | € L? and hence —— 0 A; € W
Zol’

Ial

!Z 1Zal %
Proof: The proof is the same as in §2.4.1 and the only change is that instead of the using the
formula from 2.4)ie. Ay =iZ FioZ + Zy + iZtZt,a/, we use the formula from (3.5)

_ Z o
whichis Ay = iZyFi0Z + Z o + 1221 o — 00x (1 + H)D, —— which does not affect

|2 |
the estimate as the only difference is the addition of a holomorphlc quantity which vanishes

under the application (I — H) .

14) by € L® N H? and H(by) € L® N H?

Proof: The proof is the same as in §2.4.1

15) | Do |bo € L? and hence b,y € W

Proof: The proof is the same as in §2.4.1
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16)

17)

18)

19)

1
aO/Dt‘Z

e’

1
e L2, Dtﬁa/Z— e L?

/ /
SO

1 1
Proof: Recall from (2.12) that D, 7 7

(boy — Do Zy) and hence

1 1
O Dy = (aa,—) (ba — Das Z4) + Dorbor — D2, Z;

Z o Lo
Hence
0D |. S [|w o (1wl + 1D Zil) + 1Dl + [ D2,
Z,o/ 2 Z’a/ 2
Similarly we have
1 1 1

Doy —I| < ‘80/D _— by ‘aa,

H ! Lol ™ tZ,af 2 F 1barllos Z o N2
Ztt,a’ € L?
Proof: From E,, we have D, Z; v € L*. Hence || Zyo ||, S ||DeZter ||, + b lloo]| Ztar ]

Dalztt S C, |Do¢’|Ztt S C, DtDo/Zt € C and Dt|Do/|Zt eC

Proof: From £, 4 we have that DD, Z, € H?3. Observe that

DtEa’Zt =Dy Zy — (Do/Zt)2

andas D Z, € CNW, by using Lemma 2.4.5 we get that (D Z,)? € C. Hence D Z,, € Hs.
As Zyo € L? we get that D Z;; € C. By again using the equation above, we get that
DDy Z; € C. By usingo € W, Do Zy; € C in Lemma 2.4.5, we obtain |D,/|Z,; € C. Now
observe that

Dy|Dy|Zy = |Do|Zyy — Re(Do Z4)| Do | Z,

As Dy Z, € C we get that Re(Dy Z,) € C. Also as |Dy|Z, € W, using Lemma 2.4.5 we
obtain Re(Dy Z;)|Do|Z, € C. Hence Dy|Dy|Z, € C.

DA, € L® N H?

Proof: The proof is the same as in §2.4.1
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20)

21)

22)

23)

24)

Dy(bor — Do Z, — Do Z,) € L*° N H? and hence Dyby € H? 0 Db € H?

Proof: The proof is the same as in §2.4.1

N|=

1
3 Z [0 —— € L, 03| 2|} € L®, — " 9yw e L™, 03|Z|?Re® € L
Zya |Za| |Z(x’|2

1
Proof: o2 |Z o %80/ 7 € L™ as it part of the energy E, . Now recall from (2.9) that

/
1o’

Z o 1 1 Z o 1
Re i&y—) = O Im( 2O —) = (W] Dy |w)
(\Z,a/| Za |Z o] |2 ]
1 1
Hence we easily obtain o |Z |2 6 7 € L™ and U—Qlﬁa/w € L. Now from (2.9) we
. Zul?

have Re©® = —i D, w and this implies that o2 |Z7a/|%Re@ € L™

o=

Lo .
06| Z |20 —— € L2, 08| Z |2 O e 12 -2 dywe L2
7 o |1Z o] |7 |2

1
Proof: 06|Z /|2

as it part of the energy F, . Again using (2.9) we can control

the other terms.

080/@ € H%

Proof: We first note that (Z;, — i)Z € H 2 as it part of the energy £,;. But from the

fundamental equation (3.7) we get
(Ztt — Z)Z ;= —ZAl + 0'8 6
We have already proven that A, € H > and hence 00,0 € H>

U%ao/@ €L?
Proof: As© € L? 60,0 € H? wehave © € L2, a|§|%(:) € L?. Hence we simply interpolate

between them

#1181l = [1(lel*181)* (8%, < [ (el #181) ||, 181* | < llolel*Bl13 113
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(M)

1 2 1 g 2
€ L*, 030, €L’ ——0%w € L* 030y|Do|w € L?
Zy L0 € B g e € L o O Dl

Proof: Recall the formula of ©

25) 0302,

7 1 7o 1
0= '+a8a/— —iRe(l — H o Opy ——
N2z~ Rel )(|Z,a/| Z)

by differentiating we get

2 2 Z o 1 .2 w 1/2 1
0'380/® = 20'380/ (|Z’—a/|aa/Z) — ZO'3R6{80/ [ 1/IZ,H (Z,o/ aalz
Hence
Z o 1 1
030 [ 22— 5“0—%3&,@“ +lota, 2| |lot 220,
|Z,Oc’| Z,O/ 9 2 Zloé/l2 ~ fres Z7O/ 2
From this and (2.9) we get
1 Z o 1 > L1
o3, S o3 0w [ 2200 — || + [~ 0w|| ||0F] 20|00
Z,o/ 9 ’Zﬂ/’ Z,o/ 9 |Z7a, 3 00 ’ Z,a’ 9
2 ]_ 2 Z ! ].
0302 ——| < |[030y (ﬁaa,_)
|Z,oc’| 2 |Z7a” Zyc/ 2
2 1
o3 2 Z 1 g2 1 1 1
—Pwl| < 030, +a8a/ + Oy 06|Z |20,
o o o 2 o’
|7 5 | o (e 2| H|Z,a,|l v

2
o3

|2 o]

. .2
and we easily obtain 030, |Dy|w € L? from 0%w € L* and we have

1
e
|Z,a’|5

1 1 1
6|l /020, ——
7 ]

[rtocioute], < iz e
2 ’

2 00 2

26) 050 € LN H>
Proof: As © € L?, 0%00/6 € L?> wehave © € L 0§|§ |@ € L?. Hence we simply interpolate

between them

lobiel2181ll, = (e 1elB)* (8n2 ], S I Hieen LIBIE], < ot ieBll; 8l
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1 . .
Hence 030 € H2. Now as © decays at infinity we have

o0l =|joie?||, <o /yaa«@?)! do’ 5 [|©|1,]l0% 0.0

1 1
27) 030,y Z—eLc’omH 030,y 7z |eL°°mH2 asyDayweLo"mH2

Proof: This is proved by exactly the same argument used above to show oi0 € L°NH:

28) 00y DywO € L?, 0|Dy|0y© € L?, 00| Dy |© € L?

Proof: Taking a derivative in the fundamental equation (3.7) we get

Ztt,o/ = _iDa’Al

/
Yo%

Hence 000 DarOlly S || Zit,or

o T Do Aslly + ([ A

a/

. From this we get that
2

1 1 2 ’
10| Dar|00Olly S [|00u Dar O, + Hai*aa/Z—MHmHU38a/@H2. We can prove 00,/|Dy/|© €

L? similarly.

1
ag; e, 7 &,
’Za’ |Za| ‘ZOé|

Proof: We ﬁrst observe that

o Z o 1 o
82/ 2 aa/ - = 83/
H |Z,a’| “ (|Z70/| Z,o/) Z,o/ “ Z,Oc

29) cL?

3 2
50w € L

|
+ HO‘3|DO/|M||OOHO'§a§/Z

’
|2 o

2

o3

|Z o]

—— 02w

2 e )

2

Hence the difference between them is controlled. This implies that we replace them with each

other whenever we want. Now

Z 1 Z 1
0 =i 9y— — iRe(l — H) <+“aa,_)
‘Zoz ‘ ‘Z,a/‘ !
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by differentiating we get

Z ’ 1 g Z ’ 1
20 = 83( 2O )—i—zRe{{ }82,(+&0 —)}
|Z | |Za| |Za| |Z,o/| |Za|
ag Z / 1
—iRe(I - H a2, (Laa,_> }
( >ﬁ2@| 21" 7.0

Z ! 1 g 1
lace (I — H 2 220, ith (I — H){ =02, —
Now we can replace ( ){’Za yé?a (’Z@/’@a Z,a’)} with ( ){Z a, 7 } and

/
,a’ e

.. o .
rewrite it as {Z , H} o3, . Hence we have the estimate

o AN
Z o 1
Iz ( 7)
|Zo/ |Zo/| Za’ 2
02,60 50, |rioz—— S2—
sl 71 Aovg Aol + I g
+ H 0%w Jéﬁa/ ! + HaB\Da \wH H 50 2 L
|Z o] @ Z o oo Z
o o
Hence 02, . By using (2.9) we get that 02, € L? and similarly we
’Z,a”a Z ’Z,a’| |Z,a’|
also have 7 |82,Da/w € L*. From this we see that
H 7 H 02 Doy +H " | [0t =
IZ,a/|2 |Z o] | Z | 2 7 o lloo
1
ol ot |
oDl oo o |,
o3 1 ot 1 o3 o3
30) ~0% — ¢ L2, € L?, ——0%w e L* and —0y0 € L?
2120 S R S 12,002
Proof: — ——— 0% —— € L? as it part of the energy E, . Now as
7] Zw
Z o 1 1 Z o 1
Re<i8a1—> = 80/— Im(iﬁa/—) = i(@‘DOAW)
|Z,o/| Z,a’ |Z,a’| ’Z,a” Z,o/
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We have the estimates

a% 1 a% 1 a% 1
1 ac%’ 5 1 82’ + aa’w ’ 80/
Zal2 2|, T 12wl T e |, (|20 Zatlly
3 3 1 3 1
o o o
02w < 05—+ = Ot W ‘80/
|Z,a’|5 2 ’Z,a’P Lo 2 ’Z,a’P Zorll2
Now recall the formula for ©
Z 1 Z 1
O=i—20,— —iRe(I—H 20,y ——
a7, ~ Rl >(|Z,af| Z)
Hence we have
o3
—0,0
|Z,0c’|E 2
o2 1 o3 1 1
< 2/— + 8 o) 0'2 Z 8 a ) —
~ ’Z70/’% @ Zo/ ) < |Z,Oc’|% @ | Ot| |Za| @ Z,ou 9
1
1 1 1 o2 1 1
31) 02|Z |20w eEW, o> |Za| O EW, ——0yw €W, 02|Z|2Re© € W
Z,a |Z.a| |Z 0|2

e’

Proof: We will only show that o2 |Zya/|%8a/

€ WV and the rest are proved similarly. As

/
Yo%

1 1 1 1
o%|Z7a/\§8a/Z— € L we only need to show | D, | (aé\Z,a/\éc‘?&/ ) € L?. Now
1
1 1 1 o2 1 1 1
|Da/|(02|Z7a/‘26a/—) < H 02— 07| Z o2 2 O ‘ ‘ Ot ——
H Zar )l \Z}a/\% Z o 2 |Z.o| Zat |l
%
32) —— 0.0 € LN Jig
1Z 02
¢ o6
Proof: As -0, 0 decays at infinity, we use Proposition A.0.10 with w = - to get
|Z 002 |Z.o|?
O'% 2 2 2 1 2
|-~ 06| Sletoe]fooniDaiel, + [of0,6]] ot .0
|Z |2 LoonH 3 |Za |
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5 5 5
5 1 . 5 1 . 5
33) — 9% —— € LN H?, — 37, ceL*nH: -7 _Pwe l®nH:
Z |2 " L Zw|? L] |Z o2
ot
Proof: This is proved by exactly the same argument used above to show —— 0,0 € LN
Z o :
- |Z.ar]
o3
34) —— 0,0 €C
1Z 0]
Proof: It was proved earlier that o ——— 0,0 € L?. Also o —— 0,0 € H2 asit part of the
1Z 0|2 1Z 0]
energy F, 3
o2 1 o3 1 o2
35) -02,— €C, - 02, €C,——=PweC
Zal? "2 Zalt TRl 20
o2 1 o2 1 o3
Proof: As 0% — ¢ P, -0, € L), ——=0%w € L* we only have to

Zalt " Lo Zol? " |2 20|
prove the Hz estimates. Now observe that

H o3 81(2@181 1 >_ wos 92, 1
|Z,O/|% |Z,a/| Z7a/ |Z7a/|% « Z’a/

1

g2

1Z o]

—Oprw

‘ ‘|Da|_

a/

C

Hence the difference between them is controlled. This implies that we replace them with each

other whenever we want. Now

Z 1 Z 1
O =i 0,— — iRe(l — H) <+“aa,_)
|Za | |Z,a’| Z,a’

by differentiating we get
2 2 Zo 1 > Zo 1
7" e =i 380,( Y D )—I—iRe 7 H aa,(’—aa,—)
| Z o ‘2 |Z |2 | Zw| ™ Zw |Z |2 Z| ™ Z

o3 7o 1
— iRe(I — HI) aa,( D )
{’Za/’g |Z»0/| Z7a/
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w2 oo 1
3 Yol
7a/

1 .
Ou )} with (H—H){|Z’a/|2

}

1
1 Z o
Now we can replace (I — H) o = O
|2 o]
|Z 0|2
wo? 1
and rewrite it as -, 1|92 7 Hence we have the estimate
| Z o |? o
1
3 7 o 1 1 1
e ol et
Zol? NZol ™ Za ) gt T 2,02 ih | Z |2 2901
1
0-5821 80/
]Z@/]% 2 2901P
Note that we can easily show 02092, ;€ L% 0%82, “ - € L? by using Leibniz rule and
’Z,Q’P ’Z,a’P
. T O'% Za/ 1 9
controlling each individual term. Hence =0y — Oy e, 3 5@ eC.
Zol? N2l ™ 2 rz ,, Z
1
2 1
As w € W by using Lemma 2.4.5 we get o’ -02, —— 5 € C. Now using (2.9) we easily get
Z o o
. 1 r 1 o]
- 02, € C, ——0xDyw € C. Hence
|Z,O/|§ ‘Z,a’| |Z,Oc’|2
o3 o3 o3
| 5| guDun] ol + 10l o
H|Z,a,|3 |Z 0|2 Zarllell|Zal2 ™ llw
2 _PeccC
|Z,a’|

36) 0Dy DO €C,0D?0 € C,0|Dy|"0 €C

Proof: Applying the derivative D, to the fundamental equation (3.7) we get

DurZuy = —i2h Do Dot Ay + 0 Doy Dyr©
ol = —tA Uy Z,o/ |Z7a/’ /411 O o U

1
+ || ——=0+A
||W H|Z’a,|2 1 c

Hence we get

oD Da®e % Dl + | Do

Now as w € W, by Lemma 2.4.5 we get 0 D-,0 € C. Now we see that
1 1
) 0,0 282 )
28 ) 2

D, D,O = Z |20y
o o (w| o 70
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Hence we have

|Z2pene

By a similar argument we get o|Do/|*0 € C

[l
w

S HO’Da/Da/@HC + ‘
C

1 1 1
§Zo/§80/
|12l

!
Yo%

3
|Z .|

o 1 o 1 1 o
37) 93 ecC, 02, €C, a0’ ecC, Bwecd
Zal* " B N ZalP N2 afl Zal 7 Zal
Proof: As LG?’,L c L? 93 er?, 7 Puwel®we only need to show
Zor| ¥ Z Z o | o |Za | Zaol "

the F1 7 estimates. Now observe that

1

Z o 1 1 2 1 1 1
H 82 ( : 60/ ) - wagag’ < H 7 (9 W 0'5’270/’280/
Zal? Nl " 2 ) N ZP " Zerlle T Z 0B c a llw
o2 1
8 W H i/
Hyzayz Zol? " Lol

Hence the difference between them is controlled. This implies that we replace them with each

other whenever we want. Now

Z o 1 Zo . 1
O =i 9y— — iRe(l — H) (Laa,—>
12 Za| ™ Za

by differentiating we get
Z o 1 o Z o 1
——0%0 = 02, ( 2O ) +iRel | ——, H|d?, (iaa,_)
yzaﬁ‘* |Zaf‘*|zwy A | Z | NN Zuw| " Z o
Z o 1
—iRe(I - H o O ——
( ){|Za‘2 a<‘Za| }

Z o 1 wo 1
Now we can replace (I — H 0%, ( 2O ) with (I — H){ ———03, —
place | ){ Zarl* N\ 2| ™ Za =i [Zal ™ Z o
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and rewrite it as wal 03— Z . Hence we have the estimate
Z o 1
(7
|Za | |Zo/| Z,a’ H%
1 7 1 1
H 20|+ |l00? Sy +oa?, -2 aa,_
|ZOLI H% |ZO/ ,O/| Z,O/ 2 |ZOL/ Z,O/ 2
1
2 1
H éai,w g%|Z,a,|%aa,Z + HLlaa,w’ H ol 5 2’2
| Z .| ¢ o llw | Z ]2 | Z ]2 o lle
Note that we can easily show 007, s € L% 003, 5 € L? by using Leibniz rule and
70/| | ,o/|
Z o 1
controlling each individual term. Hence 02 < 2O ) €C,——02,— €C.
IZ,al |Z | ™" Z |Za,|2 Za,
As @ € W by using Lemma 2.4.5 we get Z. ‘282 7 € C. Now using (2.9) we easily get
3 1 g 3
Qﬁa €C, ——=0,Dyw € C. Hence
|Za” |Za | |Z,a’|
[ |momas] gt + | gt |2 o
o 1% w W 024 o/ w
|Z,o¢/|3 |Za| C W |Z7o/|g C 7a/ W W
2 1 3
g g
02 Ogw w
H\Z,a,\i’ “Z 1Z |2 W“ I
1
1 1 1 1 o2 1
00} —— HO’ O |Za| Ou ‘ H -02,
|Z o Zo? N Zal e Z ol llwll|Z )2 12l e
1P 1 1
02|Za| 8 Ou
|Za| |Z,a’| |Z,a’| I
%
38) Z0 T OwZiw € L2, 02| Zo|?0|Dw|Z; € L* and 02| Z |20 Doy Zy € L2
Z o 2
%
Proof: We have 0w Zs. o0 € L? as it part of the energy E, 5. Now observe that
|Z,oz’|E
o3
1 1 —
05|Zva/|§6a/|Da/|Zt S O'2|Za| 8 H t,al + 8 Zta
| 2 | 2l |

2
We prove o2 |Z,a/|%6a/l_?o/zt € L? similarly.
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to\»—A
D=
l\‘:\b—l

39) 027, € L2~ _02DuZ, € I~
’ZaP ) |Za”2 ) | ,oz’|2
a2 2 02 P2 7 2
way Z ’1 | Dy | Zta/ € L?, 70Dy Zy € L
12

2
/
1 Zwl

[NIES

Proof: Note that

12,02
1
H 502Dy 7, <H o |Dor| D Zs|| + || 02| Zr|2 Ou
|ZC%|2 ’ZQP 2
Similarly we see that
o o2 o3 1
H 27| < H D7, +‘ oL
| Z o |? 1 Z ]2 2 | Z |2 Zat ll2
1 1 1 1 _
027 |2 00 —= Ou Z 1ot
| ,oz| Z,a’ . |Z,a/|2 o “ta
We also have
1
Do Zyor|| < |[02]Z 00|70 ‘ H 500 Lo +H
H|ZO/|é 2 ‘Za' |Za| 2
o3
The estimate for —0nD?,7Z, € L* is shown in a similar way.
|Za’|2
1 1 1
g2 g2 o2

40) aa/Zta/ (= Wﬂc

8a/|Da/|Zt eWwWne,
’ZQP 2

|20 ]2

|Z o

I 80/DO/Z eWwnce
’Z,a’P

N

Proof: Note that
‘ Z ! ‘ 2

97

o1
| 2

~Ow Zyso0 € L* as it part of the energy E, 1 and

Zil.

H|Da |D Zt

———0uy|Dy|DyZ, € L? and in the same

~O0u|Dar| Do Zy € L* as it part of the energy E, 4. Now we have

I,

1D1Ze]

M\»—‘

e%

’Za’lz

a Zt,a’

2

— 9wDyZ;, € WnNC and also

5 Zta/GHZ



1
o2

as it part of the energy E, 2. Hence —— 0, Z to € C. Now observe that
Z?
1
g2
Z,a/| 5
1
9 1 1 =
< a Zt,o/ + ’Za’ 8 an/Zt,a’
|Za/|2 2 |Za | |Z,a’| 9
o3 1
Now as | B 0w Z 1 o decays at infinity, we use Proposition A.0.10 with w = ’ 7] to get
Z o 2 o
1 2 1 1
o2 — o2 o2
gaoz’Zt,o/ < a Zta |Da’|< 8 Zta)
‘Z,o/|2 |Z01‘2 2 | a|2 2
%
Hence we have proved that | B ——0, 7 o € WNC. Now we see that
Za/ 2
1
g2
O Doy 7,
|Z,a |2 wnc
1
< o2

80/2“1 ||W||W+ H|Da’|Zt

wnc

e

~

1 1 1
oAuliug |

ik
|2

l\:)\»—‘

1
02

We prove — 0| Dw|Z, € WNC,
2

0w Do Z, € W N C similarly.

,af | o |2
1 1 1
5 g OF g OF 2
41) aZmleL ——— 0| Da |Zt€L ——0wDuwZ, € L
| Z o] wl? Z o
o2 1
Proof: We interpolate between ———0,, Zt o € L% and 7 ’280/2,57&/ €L’ We simply de-
Z ’
|Z .| . ol
1 1 3 3
g6 — g2 — — . .
compose 700 Ly ar| = 700 Zio| |——50u 21| and use Holder inequality
E | Z o |? | Z o
to obtain
& 3 o 3
o — o — =
3 ao/ Zt,a’ 5 1 804’ Zt,o/ an/Zt,o/
|Z o0 |2 ,  N1Zw? 12| )
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We also see that

1
o6

1
o6

1 1 1 —
8 ’Da|Zt § 8 Zta O'6|Z’a’|28a’Z—H H'Dal|ZtHOO
| 7OCI| 2 7Oél 2 | 7a/’ 2
o6
We prove 8a/Da/Zt eL? similarly.
Z.o]?
%
42) % ’a Zyor € L2, 030, |Do|Zy € L%, 0500 D Zy € L2
Proof: We observe that
1 2 1 1
g3 g2 g6
8 Zta ~ 8 Zta a Ztoz
|1Z.o] |Z. |2 N 1Z]? )
Similarly we have
Hasa \Du| Z, <Hazyzay Our| Dov| Z, H 70 0| Dur|Z,
Z, 2
We prove aéaa/l_)a/ Z, € L? in the same way as above.
43) o5 W
|Z,a"2
Proof: We use Proposition A.0.10 with w = o - to get
‘Z,a/‘g
_ 2 5
1 Ztoc’ 1 —
i SN Zva ||, ||o? 0ar| Dar| Zy +Hzm 06| Z 01|20y
\Z |2 IZa\

We also have

Do <gé Zm,l)
|Z,o/|E

1 Zy
44) 060yPa| —= | € L™

/
Ne%

1
R
Zaol?

1 1 1 =
6 2 -
il aa'|Z,a/|H2lllDa'|ZtHoo

2
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Proof: We see that

1 Zy 1 Zt o 1 1
20604 (ZTf) = o6 (I—H) (Zl(f) + o5 (I — H) <Ztaa,_Zla//2>
1
’Z1/2

Zy o + 052, H] (aa )

A Zi o 1 1
050, P4 i gt 2t gé|zva,|éaa,z 1 Z1.o |l
Zo )l ]ZQP o Il2
1
45) % |8 Zta/eL"omHz
Proof: We first observe that
o3 1 o2 3
aa’ ao/Zta ao/ a Zta’ +H 582/2150/
|Z |2 2 Zarl oMl Z 0] 2 o Zuo|? 2
o6
We now use Proposition A.0.10 with w = - to get
|Z,o/|5
2
H aa’Zta’
|Za| LN
1 % 1 2 1 2
< H o Zow| o0 (-2 0070 +H T o Zut|| o120
|Z |2 2 Z |7 > |zw)? 2 [Zal

46) 03 9iby € L2
1
Proof: Recall from (2.8) that b,y = (®; 0 Z)o + Do Z; + Z <6’arz—>. Applying (I — H)d,

we get

(I — H)Ouby = (I — H)(du Dor Zy) + (I — H){Zt,a,aa, Zl } + (I — H) {Ztag/zi}
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Now we see that

1 Zt 1/2 1 2 Zt 1/2 1
Z,0% = Z /0w —— 0w | Z.[ 0w
taoc Z,o/ 2 ( “ 0 Z,o/ * Zl/za o 0 Z,a’

Zy 1/2 1
P(?) on( 2P0

Now as b, is real valued, by taking real part of (I — H)0,b,, we obtain the estimate

hence

2
= H){Ztag,zi} = %[Zt,H] (Z,L/?é‘a/ Zl ) +

/ /
& e

Haéﬁafba/ 2
Zio Z, 1 1

Sj ||U%aa/Da’ZtH2+ U% d 1 + O'éao/IEDA % Uélz,a/‘;ao/_
|Z,a'|§ . Z7(34 o Z,a’ 2
1 2

1 Zeell,

1 1
06|Z7a/|26a/Z

o=

47y — 2% _9by € L2
’Zp/ ’ 2

Proof: This is obtained by interpolating between 03 9,by € L and | Dy |bor € L*. We have

2

. lao/bo/ 5 Hd%aa/bo/
2

2

I Darlbar

2

N

48) 7= Dby € L™
’Z,a’ ’ 2

Proof: In the proof of b, € L we showed that

1 1
ool (o )

/
Yy
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[NIE

g

Now taking the derivative ——0,,» we obtain
|Z,o/|E
o3
ao/baz’
|Z,o|?
1 1 1 1
=Re{ | O H| Zyr + {—H} Ot | — Zyt
|Z,o/|§ Zﬂ/ Z,oz’ ’Z@/P
31 2 > 1
- 7 s s Lol Lla Dy Zy + 7 Loy H (((90/ )
’Z,a’P 2 |Z,a"§ ’ ,a’P Z o
o2 1 o2 1
+ [Zt,H]ﬁa/ 80/ + 1 ,Zt, a
’Z,a”% Z o | Z |2 Z7a,
Hence we have the estimate
Llao/bo/
|Z,o/‘2 )
1 _ a% 1 _
’Za’ 8 H Zt,o/ + —82/— Zt,a’
‘Z ‘ 2“ 2 |Z,a’|% Z,a’ 2H 2
1 1 O'%
+Haa’ 18 Ztoz + 180/Da’Zt
Zo |y |Z,cx E ) ‘Z’a,|5 .
o3 2 2 o3 2 o3 2
49)’ ’8b eL’ ’8\Dayb eLand’ yaD,b r€L
Za 2 Z,a’ 04 2

1
Proof: We will first show that (I — H) { %82, ba/} € L?. We recall the formula of b, from
ZE

Sl
(2.8) as by = (By 0 Z) o + Do Zy + 7 (aa/ ~ ) Hence

(1— H){“—j@iba,}
Z§
o3 1 o3 5 1
- (]I - H) 3 8 D Zt —ﬁﬁa/Zt,a/ (% + 2(D Zt) 3 (90/—
7 72, 2 AT

!
I &

Zt O'% 3 1
oonl(E) e
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Now

Zi\ o2 5 1 1 1 o ., 1
(]I - H){ (Zp[,) Zl//2 aa/ Z7Oé, } — _E[Zty H]{ (80/ ZVO/) (Zl/2 aa/ Z7a/

Hence we have

2
2 1 1 1
5 z 3 62’Da’Zt + —an/Zt,a’ 0-% |Z,oc’|2ao/ 7
’Z@/ ’ 2 9 | ,a’| 9 o 0o
o3 1 Z 1
o e d R XA o] }
| Z o2 Z o ) Zo ||y
Now lets come back to prove ’ 2’ 0%by € L*. We see that
Za/ 2
ot ot
——— 0% by = Red —— (1 —H)I2 by
|Z,a’ | 2 Zz/
Hence it is enough to show that U; (I — H)9% by € L. Now we have
Z2,
L (= M) by = — | 2 H| 02y + (]I—]HI){ "§ 9%,b }
Z % Z % Z %
From this we finally have the estimate
o2 o3 1 1 1 1 1
82 b S Hba’Hoo —82’_ + 0§|Z,a’|§ao/_ Our ——
H 17, 2 E e Zollooll = Bl

_|_

1
(I - H) { "—Bag,ba,}
z2,
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We also see that

1 1
1 ) 1 1
L1aa’|Do/|ba’ SJ 0'§|Z,0/|%80‘/— ’ |||Da’|ba’H2 + L:sag/ba’
|Z 0|2 , 1Z o] |2 ,
o2
The other term ———0, Do/bo € L? is obtained similarly.
|Z,o/|E
50) — 0y A; € L
’Z,a’P
Proof: We know that A; = 1 — Im[Z;, H]Z, ., and hence
o3
—— 0w Ay
’Z,a’P
= _Im{ 7 lao/ZtaH Zt,o/ + [ZtaH]ao/( 7 1Zt,o/> - o 1 aZt;Zt,a’ }
’Z,a’|2 ’Z,a’l2 ‘Z,a"Q
Hence we have
o3 o3
1 1 = 2 2 — —_
s % ot zlbo ‘H 1Zea |+ -2 00 Zuwe| | Zow,
|Z,o/|2 00 00 | ,a" 2
o2
51) 0% A € L?
|Z,o/|§
1 13
o2 9 g2W?2 2 ..
Proof: Observe that 0 A = Re{ = (I — ]H[)aa,Al} and hence it is enough to
|Z,a’|§ (Z7a,)§
o3
show that 2 (I —H)0% A, € L. Now
o 2
ol ol ol
- H—Hag,A:H—H{ - ag,A}— - H|0%A
E70 A (W il Bl [P 1
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_ 7 o
Recall from (3.5) that Ay = iZ Fio Z + Z o + 121 Z1 o — 00w (1 + H) Dy |Z7 |

(]I—H){(Z )%a Al} :z'(]I—H){(Zi)g{(é Zta)(z,a,>+2(Zt,a,)(aa,2t,a,)}}

1

+z’[Zt,]HI]{( 7o, Zm}

2
70/)

. Hence

With

1

o2 —
Z, H 027 a,}
7B g7

O'% — 3 1 O'% _
- (g = e () e |

Hence we have

o2 1 , 1 1
82 Ay 92, + 02| Z o204y ‘(?O/— A
Hyzayz {H\ZQ\Q Z oy % Zallooll  Zallo 1l
1 B 1 ot
+||Ztoc’|| Laoz’Zto/ + aoc’ 8 Zta
b 2 § b
|Z,O/|2 00 |Za|2 2

52) (I-H)D?O € L, (I -H)D?Z, o € L, (1 - H)D?Do Z, € H?

Proof: For a function f satisfying P4 f = 0 we have

(I—-H)D]f = [Dy, H| Dy f + D[ Dy, H]
= [b7 H]aa’th + Dt[bv H]aa’f
= 2[b, H|Oo D¢.f + [Dib, H]Our f — [, b; Oy f]

Hence we have

1T~ E)DEO|, S l1barll ;3 1 DiBlz + |00 Dbl 3 1Ol + [l 1O,

1@ =B D Ze ||, S M1owrl 3 |1 D2 Zoar |, + 10 Dbl | Zrar |, + 1o 12 ]| Zer [
@ = E)D? Do Z,| 3, S 100l 3 | DD Ze)| 13 + 1000 Dbl 3| De Ze| 1
- lbor 15| Dec Zi 14
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53) o(I — H)|Dw|*0 € L% 6(1 — H)|Do|*Zy.o € L2, 0(1 — H)| Do |* Do Z, € H?

Proof: We use (3.10) for a function f satisfying P4 f = 0 to get

2
o= 8| = ot =) (1708 ) 1Dl + (i ) 10}

1 1
+ 0|00 —73, 82f—i—a (93f
‘Z,a’| ] | ,a’|
Hence we have
||o (I —H)
1 — o2 1 o2
~ 0'82/ Zt,o/ + H 82/ a Ztoc
|Z7a/|3 H%H H2 ’Z7a/’% |Z7a/‘ |Za |2 c
1P 1 _
0'2’Za| 8 8a/Zt,a/
‘ZOé| ’Z,a”2 2
and
H0<H—H>|Dafl3@HQ
1 1
1 2 1 3
o0, o]l + H 72 7 9O
|Za’ Jo |Za |2 |ZCY’| |Z7O/|5 c
S W s 7 500
“ |Za| |Za| |Za’ |Z7ar|% e
and similarly
HO‘(H—H)|DQI|3DQIZ7§HH%
1 — o'% 1 o'% _
< |led?, Do Zy|| .1 + H 0%, Ow Doy Z,
Z.7 H%H 123 ZoE X Zalllel iz .
1 o3
O'2|Za/| 8 H 8a/Da/Zt
|Zoz| |Za| |Za| |Zoé’2 w
o 1 s 1
54) Dt’ Z7a Zto/ ecC, Dt’ Zﬂ Zto/ eC
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1

1 |= _
Proof: We will only show {Df, Z—} Zio € Cand {th, Z—} Z1 o € C is proved similarly.

/
e , O

1 - - - =
== {(be = DorZ; — Doy Zy) + Doy Z, } and hence

1 7= _ 1 _ 1
{D?, 7} Lol = Zt,oc’DtQZ_ + Q(DtZt,a’)DtZ

/
& JIe

!

— 1 N R
= Zt,a/Dt{f{wa/ ~ DwZy— Do Zy) + Dafzt}}

+2(DorZy — bor Doy Zy) (boy — Doy Zy)
= (DyZ)(boy — D Z)* + (Dy Z1) Di(boy — Doy Z — Do Zy)
=+ (Da/Zt)DtEa/Zt + 2<Da’2tt — ba’Da’Zt)<ba’ — Da/Zt)

Now we have the estimates

|1Z.0/|(Dar Z1) Dy(bor — Doy Zy — Dt Z4) ||, < o — Do Zy — D Z)H
|(DwZ)Di(bur = DorZi = DarZ0) 11 HDa/ZtIIH%HDt bt = Dori = Dus )|
+[|Dw Z4]| || D1fbor = D Zi = DeoZ0) 14

This implies that (D Z,)Dy(byy — DovZy — Do Z;) € C. Hence we have

H {DE, }Zm S|N|Da Zi|| ber = Dar Zill3y + ||(Dar Z2) De(bor — Do Zy — Do Z4)|,
+ (”Do/ZttHc + Hba’HWHDa/Zt”C)(Hba’HW + HDa’ZtHyv)
+ HDa’Zt“WHDtDa’Zt”c
Ay 1 | = Ay 1 |=
55 Ou s Zio €0C, aa,_ Zia €C
"z 7 | SO T |
Proof: Observe that |1 ‘Z’;Eaa,, ZL Zior = iA1(|Da/|Z)|Da/|% and so
A 1 | = _ 1
H Z|Z,;,|Qa“"z ;| Zee C’S HAIHWH’D“'|ZtHWH’Da'|ZHc

The other term is proved similarly.
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1 |= -1 1
—] Zyo € H2, (I— ){wway ' 1Zta/ € H2 and we also have

!
Yo%

56) (I —H) {z’a\Da/\?’,

,Oé

1 1
|Z7a/’|:iU|Da/| :|Zta’ S L2 |Za||:ZU‘D | ,Z

,a

:|Zto/ E L2

,CM

1 7=
i —] 7, € C and the third

/
Yo’

Proof: We will only show that the first term (I — H) {io|Da/|

1

term |Z /| [z’a!Da/\?’, 7o
7a/

} Z; o € L? and the other terms are proved similarly. Note that we

1 _
—} Z o € C which was proved for other

are not making the stronger claim that {wma, 1
af

commutators above. This is not true and the use of (I — H) in the H > estimate is essential.
We have

1
|:ZO"Da i ]Zm/ —ZJ(\D

,Oé

_ 1 _
)Z —I—3i0(’Da/’2Z—>‘Da/‘Zt,a’

!
%

—|—3ZU(|D )’Da‘ Zta

We control each term seperately:

(a) We use the expansion in (3.10) to get

1 _
D P—— 7,
1 1 1 \? 1\ =
=0 o |Da| >Zta +U( a’—> (lDa’|_>Zt,a’
(|Z7a’| |Z,a’|)( a |Za| Z,a’

1 , _ _
o Z e % 3 Z o
+3a(a |Z’a,|)(‘za,|28az ) . —l—a(|Za|38aZ ) .

Hence we have the estimate

(o)

C
H A 042, H'D' ozt |
|ZQ|2 ’Za’ Z, « Zole « |Zoz’
a% 1 _
9%, — Z o 20, 93, — D |Z
+’ ’Za/’% e Zya/ 0—2| | ’Za’ H’Za ’2 a Z }H| ‘ tHW
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(b) We observe that

(©

1 _ 1 1
D ? D\ Zy o = Oy —— || D,, 92, Do\ Zs o
UQ |Zw)| Z a{( |Zw0| Iz |Zaf }| Zow

Hence we have the estimate

1

H (\Day )]Da\Zta o3 Z [} — H]Da\ 7 s O0uZi
70‘ C |Z |Z w
H “igag, ! P
‘Z,a’P ]ZQP w

We observe that

1 2= 1 1 2
Dy|l— ||Dy " Zioy = D — Do\ Z4 o 7 o
UO ’Z,a’>| | b 0<| |Z,a’){<a |Za|>| | " |Z,a| a t }

The first term is easily controlled

1 1 _
Dy Ou Do\ Zyi o
o(10e1z; ) (o) 1212
1

c
1 1

s|ipai | Jozation SRR ¥

< e |Za | | Z o |2 w
1

Hence we are only left with a(]Da | — > Z |28a /7.0 We see that

o3
0|2 o] (!Da | ) — P T || S |[0F1Z ]P0 H 02 7y o
|Z | 2 Z \Z |7 >

1
This conclude the proof of |Z /| {ia|Da, |3, 7=

/
Yo%

} Zt,a’ € L2. To finish the H? estimate

. 1 —_ w — . .
we rewrite the term ———092,Z, o as Z—28§,Zt7a/ and commute one derivative outside
!

/
& ’ , o

to obtain

(I - ){ (|Da| )|Za|2a§ ZW}:—2<H—H){a(aa,z%)zyz°:’ De ZW}

w —
—_8(1 ,H 80/ _80/2 ol
vol g e (o)

e’
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‘We can bound each of the terms

1\° w =
g 804’_ —gaa’Zt,oc’

Zva |Z,a’| c
1 1 1 o'%
02|Z o |? Oy H 00 Ziar|| ||l
‘ o le Z ‘Za/|2 w ¢
and also
w 1 1 —
= Ow—H| 0w | = 0uZt.o
U{Z,a' Z,a’ } (ZZQ " ) o2
1 1 1 1 1 2
Out Zs o 02w 0300 =1 + ||| Dar|wlly]|02|Z a0 ]? Ot ——
HZQ { 2 Z’a/ 00 ? Zva/ 00
— 1
et Dl oioh 7|+ ooz | toh g
o 1
+ ||[=—02,
‘ Z7a/ Z7al 2}
57) Ry eC
Proof: We recall from (3.20) the formula of R;

Rl = _2(Ea’2t)(DtDo/Zt) - 20'RC(D Zt) /Da/@ - O'(DO/D Zt)Da/@
+i0(2iRe(| Dy |©) + (Re®)?) | Doy | Do Z; — oRe (| Do |°©) Do Z
+i0(Re©)(Re(| Dy |©)) Do Zy

All the terms are easily controlled
IRl
_ _ _ o3
S\ Do Zi||\ | PDeDor Zi ||, + |1 Dav Zillyy |0 Dor D O], + H—lDa,Zt H 50,0
|Z,oz’|2 |Zoz|2 ¢
o3 © ot
1 1 —  —
+ H—gaa,@ +H aﬂZ@/PRe@H H 9D Z,
|Z,o/|§ |Z,Oé'| C w |Z,oc’|§ w

1

g2

C ‘Z}a/

Dol 152l + [ ol

‘;ao/w HW

@] ||[Dar Z:
w
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58) Jy € L® N H>
Proof: We recall from (3.16) the formula for J;

Ji=D,A + Ay (ba/ — Dy 7 — l_)a/Z) + a@a/Re(]I — H){(|Da/’ + iRe@)l_)a/Z}
— 689, Im(I — H)D;0

We have already shown that D;A; € L™ N H? and we have

|A1(bar = DarZs = Dar Z4) || iyt WAL iyt 10 = Dar Ze = D Z4|

+ |41l o ||bor = Do Ze = D Z4|, .1

Let us now control the other terms.

(a) Observe that

Uaa/(H—H){|Da/|Da/Zt} :O'aa/(]l ){(|D |

1 _
:|Zt0¢ + O'|:—_,H:| (90/21/70,/
Lo 4

/

_a[w \_

704

Hence we have
|00a (I = H){|Du| Do Zy } ||

_ 1
< el {7722 Y7o

2 1
0302 =

1
L>*NH2

1
o3 8 U%aa/_—

!

\Za\
1
|Z.ar]

& oo

+ 08

}

/
o 112

(b) We note that iRe® = D w and hence we have

a@a/(]l — H){(ZRC@)Ea/Zt} = a@a/ (]I - H){(Da/w)Da/Z}

1 _
= O'ao/ [W(‘%/w, H Zt,oc’

/

e’
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From this we obtain

|00 (I — H){(iRe®) Do Z, } ||

< H%aﬁ;w
|Z,a’| 2

2 . 1
02|Za| O

.1
L>°NH?2

2

+ +08

%|Da,|wH
o0

1
_ w a —
70/’ « “ |Z,o/| 00 |Za|

2
1|2 _
|||Daf|w||2}

12l
(c) We see that as P4© = 0 we have

O'(?w(]l - H) @ = O'a [Dt, }@ = a@a/[b, H]@a/@
Hence we have

lo0e (T—E)DO|, .4 < |07 0ubar||,[|030.0),

59) |Dy|Ji € L? and hence J;, € W

Proof: As J; is real valued we have

1
Do |Jy = Re{Zi(JI - H)aa,Jl} - Re{w(]l —H)DoJi — w {Z ,H} aa/Jl}

/ /
& e

We recall the equation of Z; . from (3.21)

<D2—H]ZA P — 10| Dy| >Z,a1

= : 1 . = Ay . 3 1 |5
:RZO/—’L 8a/ J—ZDO/J—ZQ/ D2—|—z—8a/—wDa/ , = Za/
Zor=i{uz =D = Zo | Z.p " T
By applying (I — H) to the above equation we get
(I = H) Dav Ju [
_ 1 _ _
S|@-H)D;Z o, |A1”°"Hﬂa°"zt’“' + [|o(I — H)| Do [’ Zt o
o 2
2 . Al . 3 1 —
+ 1 Ba]Zarllly + | O [Nl + || 2| | DF + i 500 —i0| D", =— | Z1a
70/ 2 |Z7Oél| Z,a/ 2
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Hence we easily have

1

1 Del ]l < 1T = ) Do 2]l + \ O | 1171

/
s& 2

60) R, € L?

Proof: We recall from (3.23) the formula for R»

Ry = —2i(Do Zy) (|Dor|Dar Z1) + (Re@){(D Zt ) +io(Re®)|D, |@}

“De(,
+0Re(|Da/|®)|Da/|®+(|D ||Za|)(|Za| )+|D |< la A)
Zy}

+ (I+ H)Im{Re(Dy Z;)|Dor|Do Z; — iRe(Dy©) D,

Z o 1
+-—éLgayRe@——ED<—4——&M———)

| ,a’| |Z,0/|

Most of the terms are easily controlled and we have

A Z o 1
HR2 — ﬁ@a/Re(H — H) (|Z’—|8a/—)

2

_ _ —  — .9 1

S HDathlloo(H!Da'IDathHg + ||Dt@||2> +Ol,]| Do Ze| ) —‘gaafAl
&) 1 &) 3 ) 1

¥ Dol HA1HOO+H 7 50 Hmz,a,ﬁRe@H
|Z,a’| C Z,a’ c |Z,o/| |Za|§ c 0o

1 %a@2+'1aA O H|D| ||A||

T 2Ya’411 o 1

Zo? e 1Zwl ol Za Za o 2
1

+ || =50« A1
|Z,a’| w

We now control the last term. We have

Ay Z o 1 A Z o 1
——0yRe(l —H)| ——0,—=—— | =Re(I — H Oy — Oy
e )(|Z,af| Z) ol >{|z,a,|2 (|Z,af| Z>}

Ay (Za/ 1 )
—Re{ | ——5,H| 0y | 20—
{ 1 Z | ] 1 Z | " Z o }
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The first term can be written as

Ay Z o 1 Ay 1 Ajw 5 1
(]I—H){ 8 ( Oy )}: ——— Opw, H| Oy + JH| 05
|Z,a | |Z0¢ | | ,a’|2 2o |Z,o/|2 2o
Hence we have
Al Za/ 1
A5 Re(l - H) (’—aa/—>
H Z | Zal ™ Z o ),
1 1 1
< |0y A —8a/w + || ——=0,A w
<] {0 1HWH, 30| sz Tl

1Ptz | it}

61) J, € L?

Proof: Let us recall the equation of © from (3.22)
2 . Al . 3 .
Dt +Zﬂaa/ —’LO'|DO/| @:R2+ZJ2

Observe that J, is real valued. Hence by applying Im(I — H) to the above equation we get

)H@Hz

K ||A1||WH|D |

||J2|l2 || ]I_ D2@H2 <H| a’ 1

+ [Jo (1= H)| Do [*0|, + HRsz

|2 o]

1 35 -1 1
62) o|—— H||Dy[*Z, o € H?, 0| —
o | ipad 2 e o

/
g /

H] D> Zy 00 € H2

e’

1 = 1
Proof: We will only prove o {Z—, H} | Dy \3Z t.or € H?2 and the other one is proved exactly

!
e
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in the same way. We first observe that

o 1 = o 1 _ _
82/ e Da/ Z o' = aoz’ 60/_— Doc’ Z o + w Da’ 2Z al}
(1007 ) = o] (20 ) DV + 01Dl 2,

Zvo/ 704, re’

1 = 1 1 —
= 0(8a/_—>w‘Da/’2Zt7a/ + 0( 82,_—) |Do/|Zt,a’
Z Z

o Z,O/ ,Q

+ O'(Do/w)‘Da/ ’221570/ + O'|Dal ‘3Zt,a’

Hence

g

i

1 _ _
92, <Z—ypa,|zt,a,) — 0D’ Zy o

Z ,
1 3 3
1 o o _
5 0-%|Z,a’|28a’ — H—lf)a/w H I |Da’|2Zt,a’
Z,a’ ) ‘Z,O/‘E e ‘Z,O/P 2
1 3
2 o _
+ 0302 = ——— 0y 2
o Z7a, , |Z7a, |2 o Ltal

Now we have

1 = 1 = o 1 _
o7 B0t e = 7 {0 2 = 708 (01 )}

1 1 1 _
— H|—(Py + P | =—|Du|Z 10
*“{zw’]z@<H*A)a(zd' |t,)

We can control each of the terms

(a) The first term is easily controlled

1 > o 1 A
|2 8{o1per 2 = 700 (7 10012 )}

0%

H?

1 o 1 _ _
< |0 PN\ =|Du|Zios | — 0|Dur|* Zs o
N‘ Z o || Zo Q(Z,a’| | t, ) a| "2, )
(b) We have
1 1 (1 - 1 , 1 _
U[Z,a,’H} Z,Q,PHaa’(Zw"'wt’“') —7|z " 8Q’PH<ZQ,|D‘”'|Z““’)
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and hence we obtain

1 1 1 _
o {— H} Py 02 (Z—|Da/ \ZW>

Z,a Z’a/ H%
1 - 1 1 1 2 1
< ||——=0uwZi o 03, — 30, 502,
~ Hl 7O/|2 ¢ he Q{HZ#)/ “ Zvo‘/ 2 + ? ¢ o [ee) ’ “ Zvo‘, 2
(c) We see that
20

1 —
——P402, (Z—|Da, | Zm,)

7.
L H|2 (2 Dw|Ziw ) + o1 = )| Do [PZ
= —0 | = o o ag — o o
Z7a/7 o Z,o/ ts 2
o 1 = =
+ 0= B{ -0 (o 1Dul i) = 01D i

Hence we have

1 1 1 _
U[_7H} IPAail (Z_|Da/|Zt’al>

Z,O( Zva, e H%
1 1 3
Doy 362, O T T—H)|Do|*Z, .
~ Z7o/ 2 { 7 Z7Oé’ 2 |Z7o¢/|2 " o) " HO-( )l | " 2
+‘062<1|D 7z ) o|Du'Z
Z,a/ o Z,a/ « t,a a t,a ,

63) (1—H)D?DyZ, € H?
Proof: We have already shown that (I — H)D?D. Z, € H 2. Hence

(]I - H){D?Do/zt}

1] 1 _ 1 _
- H){ {Df, Z—] ZW} + {Z— H] D} Zi + (A~ H)D} Z,w

Let us recall the equation of Z t.o from (3.21)

A _
D? +i—"=0y — 10| Do |* | Zp o
|Z,a’|
A _
D? 4+ i— 8y —i0| Do’ = | Zi.or
Z o] Z o

| 7a

— . 1
= R1Z7a/ - Z<a°"Z

S

)J1 — Dy Jy — Z o

!
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From this we obtain

1 = 1 _
H |:Z ’]H[‘| DtZZt,a/ 1 5 U|:Z_7H:| ‘Da”3zt7a/ )
)o/ H7 7a/ H?
1 1
aa/ R ZO/ aa/ J Da/ J
o | {izatte+ o | 1+ WDl
1 A 1]
R R L
Z,a’ 2 ’Z7a/’ Z7a, 9
il n0n | }
Heol||7~ 2Y %t
|Z,cv’|2 2

1 _ .
We can similarly prove that {Z , H} D}Z,. € H 2. Using this we have

1 _
HT(H— H) D} Z o

o2

1 7= 1 _
[Df, —} Ziar|| + H [Z— H] D?Z; o
C Ne%

<
~ Z7a/

- B DD.Z
H?2

_ 1 _
As (I-H)D?Z, , € L?, this implies that Z—(]I —~H)D?Z, . € C. Now as w € W, by using

,Q

1 —
Lemma 2.4.5 we get that > (I-H)D;Z; . € C. Now

/
e’

(I-H){DiDuwZ;}

I |5 1 = 1 _
— (I[—]H[){ [DE,Z—] Zm/} + [_ ,H] DiZio +—=—0—-H)D}Z; o

N
Q\

Hence we obtain
|(@— H)Dfl_)a/ZtHH%

1 _
||t 7z )2

1 _
[ e
C Z o

1 _
—— (I -H)D}Z,;

iy
1

H?2

H2

64) o(l — H)|Dy|*DoZ, € H2
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Proof: We have already shown that o(I — H)|Do |°Dy Z, € H 2. Hence

o
A

S

(I —H)|Do|*Z .o

/ -1
e H?2

o1
H?2

1 } o
ag —,H |Da/| th/ —I—
{Z,a’ i3

+ HO’(I[ — H)|Do/|3Do/ZtHH%

1 _
U(]I - H){ |:|Doc'|37 7 /:| Zt,a’}

As o(I — H)|Duw|*Z,.ow € L this implies that Z"

(I —H)|Dy|*Zy 0 € C. Now as w € W,

Oél

by using Lemma 2.4.5 we get that ZG (I — H)|Dy|*Z; o € C. Hence

/
Yo%

HO‘(H — H)|Da’|35a’ZtHH%
O'(]I — H){ |:|Do/|3) ZL:| Zt,a’}

,Q

S

H2

o —
+ H > (I —H)| Do | Z o

!
o4

a2

1 -1 1
65) ——0.J1 € H? and hence ——0dJ; € C
|Z,a’| |Z,a’|

Proof: Let us recall the equation of D, Z, from (3.19)

A B — 1
<D§ + iz—llzaa, — w|Da,|3> DyZ,= Ry — i(Da/

/
’ e

We see that

A o= o [2iwA _iw?A _
i 0w Do Zy = | 0w | Das Zy + =200 Dos Z
’Z,a’l |Z,a’| Z

/
|2 |

1
Now observe that Faa/ Jj is real valued. Hence by applying Im(I — H) to the equation of

!
e’
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~

— 1 - — — —
S HDQIZHCHLHW +||(L=H)D; Do Zy| ;13 + ||o(T = H)[Dav|* Do Z4 | 3

1

N ——
|Z,a’ |

s ||Dzz||2(uA1nm\

A Dol + |||Da/|A1||2)
2

+ || Dot Z ||l 1A 1y Oww|| + [|R1lle

c

|Z,Oc’|2

4.2 Closing the energy estimate for £,

We are now ready to close the energy E,. To simplify the calculations we will use the following
notation: If a(t), b(t) are functions of time we write a ~ b if there exists a universal non-negative
polynomial P with |a(t) — b(t)| < P(E,(t)). Observe that ~ is an equivalence relation. With this

notation proving Theorem 3.4.1 is equivalent to showing %t(t) ~ 0.

4.2.1 Controlling £,

Recall that

2
—+

o0

6

+
2

2 1
o2 1

1 2 L
‘Z,a"% " Z’O‘/

1 1 1
2 ZO/ 580/ aa/—
o2l 00,

EU,O =
Z o

1 1 1
6|2 |20y —
0412 O

/
ye%

!
e 2

2

We control the terms individually

1) As mentioned in Remark 3.4.2 we will substitute the time derivative with the upper Dini deriva-
tive for the L™ term. Define f(a/,t) = (a%\Z,a/\%aa/ 1 )(a’, t). Hence we have

Z’a/
ot 2 _ - DIP ¢ _ t
lim sup 1fCot+9)llse = G D)1 (1) limsup 1F Gt 48l = I1FC D)o
s—0t S s—0t S
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1 1 1
Ule’a/Paa,Z_a/

term. As 0,(f(-,t) o h) = (D¢ f(-,t)) o h we use Proposition A.0.13 to get

Now as ’ (t) is part of the energy we only need to concentrate on the second

1FC 4 8o = G Do

lim sup
s—0t S
_ meup U 2D+ 9l = 1 0 D)D)
s—0t S

<P D)l

Recall from (2.11) that D;|Z o/| = | Z o|(Re(Dos Z) — by ) and hence we have

1 1 1 1 1 1 1
1) £; ! 2 / —_— Ie 1) /2: - / 2: ! 2 I - / 2: / 2 I
t<| ,Q | aoc Z ) 2( C( « t) boc ) (l ,Q | aa Z ) ba | ,Q | aa Z

/ ! !
e & &

1
+ ’Z@/’?aa/DtZ

!
e’

1 1
Now as D, 7 = Z(ba/ — D, Z;) we obtain

1 1 1 1 1
Dt(yzﬂ,paa,f) = §(Re(pa,zt) — by — 2Da/Zt) (!Z,a/128a17>

+ |Z,oz’|%Do/(bo¢’ - Da’Zt)
Hence

1 1 1
2| Z 200 —
07| O

/
o4

1 1
D (oHzwlion )| S APzl + 10l

/
Yo%

1 1
+ H 7 18a’ba’ + H 7 18a’Da’Zt
|Z,O/|§ o0 |Z,o¢’|§ 00
S P(E;)

2) By using the calculation above we first obtain

1 1 1 1
Dt(aéwa/ﬁaaf ) < (1DuZolo + w1 2o 0w =
7 Z,a’ 2 7 Z70/ 2
o6 o6
+H—10a,ba, +H 0D 7,
|Z,o/|§ 2 |Z,oc’|E 2
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Hence by using Lemma 2.4.6 we get

dll 1 1 1 °
_ 6 Za, 580/_
gt |71 2 POl
i1 |° o1 P i1
S barlloo |08 1Z e 20w ——|| + |81 Zr 20— || || D2 ( 08| Z 00|20 ——
> 7 Z’a/ 2 7 Zva/ 2 7 Z7O‘, 2
S P(E,)
3) By using Lemma 2.4.6 we obtain
d 1 17 1 1
— O —=—|| < ||bo Oo —— O —|| [|DiO0yw—=—1| < P(E,
o, = etow |+ o] | Pt < P
4) We first note that
DO — = Dosbs — D27 O —— ) Do 2
tUa’ Z@/ - o' Yo' ol “t (o Z,a/ ol Lt
From this we see that
o3 1 o3 1 o3
Dt( 007 ) S (IPelloe + 1P Zill o) || 1007~ + 700 Do Doy
AE AP E P | Z | 2
o3 1 o3
+ —16a’Di/Zt + ao/ 1ao/Doc’Zt
|Z |2 ) Zaor||s ik ,
Hence by using Lemma 2.4.6 we get
L 2
dil oz _, 1
N 1Y%
dt | Z ]2 Lot
1 2 1 1
2 1 2 1 2 1
< | T8 i Dt( iy )
al? | |Z |2 oy 1Z.o]? AP

4.2.2 Controlling £, ;
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Recall that

1 2
o2

1 6o/ Zt,oc’

— 2
Ea,l = ||(Ztt - i)Z,a’ + 1
2 ’Z,a’P

2 f—
Voo + H \V; AIZt,o/

We will first simplify the time derivative of each of the individual terms before combining them.

1) As by, Hb, € L°°, by using Lemma 2.4.6 we get

d 1, = 2 _ _
%/‘\aa,]z{(ztt—z‘)z,a,} do/%ZRe/{|8a/|((Ztt—i—z’)Z’a/)}Dt((Zﬁ—z’)Za/)do/

Now

Dt((Ztt — i)Z,a’) = ZtttZ,o/ + (Do Z; — ba’)(ztt — )2 o
= ZtttZ,a’ + (DO/Zt — ba/)(—iAl + O—aa/@)

and we observe that

|(DarZe = bar) (=i + 00u0) |13 S (1DwrZall it + 10 ern )AL

2)HU§8Q/@H2

-1
LeenH?2

+ Ha%ﬁa/ba/

I

+ ([|o* 0 Do Z
Hence we have

d Lo _ .
E/“@a/]?{(Ztt —Z>Z’a/} dOé/ =~ 2Re/(Ztttz’afﬂaa/’((Ztt+Z)Z7a/)d0/

2) As by, Ay, DiA; € L and Z,; ., € L? we get

d —
% Al‘Zt,a’

2do/ = /(bo/Al + DtA1)|Zt,O/|2 do’ + 2R6/A12t,a/(_ba’zt,a/ + Zygor) do

~ ZRC/Alzt@/Ztt’a/ do/

Now we have

1 _ — — 1
Zitor = O (Z (Zu + i)Z,a'> = Do ((Zu+1)Z o) + (ao/ =

(Ztt + 7:)270/

N

a/

)
Do ((Zu + ) Z.00) + (aa/ E )(m1 +50,0)

!

Q

N

122



and we see that

H (aa,zi) (i 1 00,8)| < 0w

/
e 2

1 1 2
Al + aaz—H lo*0.61,

S ‘

2

Hence

d
dt

Now as Oy = O (I+H —H) = |0y | + (I+H)Dy and (Zy; +14)Z o = i A1 + 00, O we obtain

dOé ~ 2RC/A12t’a/Ea/((Ztt + i)Z’a/) dO{,

A Zy o

w|((Zi +10)Z o) + (I + H)0. Ay

a/

N
Q\
NI

Do/ ((Ztt + Z')Z’a/) -

We see that

2

H[ ]aa,Al + (I +H)Dy Ay

H - (H + H) aa/Al

[ Allog + [| Do Aul,
2

<

~

/
e’

Hence we finally have

a4 / A|Zyor[Fdol = 2Re / (141D Z0)10u | ((Zs + ) Z o) d

3) By Lemma 2.4.6 we get

2
1 1 1
— dCKIQQO'Re/ 18 Zta Dt 3 Zta d
|Z.ar] |Z.ar] 12,02

Using Dy|Z /| = |Z o/ |[{Re(Dy Z) — by } and [0, Di] = by O We obtain

1 Lo 3
UéDt( a Zta> = <__b 2 (D Zt)) < z laa’ZLoc’)
|Z |2 |Z .2

d

.
T !

1
o2 g2
o 2 o 2
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D=

As by, Re(Dy Zy), U—l&l/ba/ € L* and Z; ,» € L* we have

|Z,Oc’|2
2 1 _ 1
dOé/ =~ 20Re/<ﬁ8a/Zt,a/> <ﬁ8a/Ztt,a/> dOé,
Z |2 Z 2

d 1 _
-
dt | Z o |2

\Z,a/P |Z |2 Z o
O'% 1 — o'% 1 _
— 102 — | (Zy+ ) Z o0 + 2 70w = |0u{(Zu+1)Z o}
’Z7a/|2 o |Z,a’|2 o
%
+ 0—1 — 30/{(275,5 + Z)Z Ot’}
|Z,a"§Z,a/

3 1 _
2 R — ) (Zu+)Z
|Z,a’|2 Z,a’

2
o2 1 ot 1
2 2
< 02 =| 14l + 0=\ llo20x0l,
| ,|2 Z,o/ /| Z,a’
2 Q S
and also
0% 1
—(’3/_—)8 /{(Ztt‘i‘/l)z /}
1Ya « o
H(lZ@/‘Q Z,a’ 9
1 1 1 g
S o2 |Z o ]? 0w H (\Da/yAl +H—8§/@ >
Z,a/ o H H2 |Z,O/| 2
Hence
d 1 ’
J— —lﬁalzta/ dO/
dt e ’
1 1 ) - ,
~ 20Re On/ Lt Taa/{(ztt+l)zu’} do
‘Z,a"g ‘Z,a’PZ,a’
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Now using 9y = 0| + (I + H)0u and (Zy; +i)Z o = iA; + 00O we obtain

1

1 .
o2 = 102
MT@i/{(Zﬁ‘i‘Z)Z@/} Wa \(9 |{ Ztt+Z Z }
io2
NE (\TZ (I + H)02 A,

By commuting the Hilbert transform outside we obtain the estimate

l
(]I+]I-]I)8 Ay
|Z,o|? >
O'% 1 1 o'% 9
5 HAlHoo a + aa’— ‘Za‘ a + —3a,A1
|Z .| |Za| Zal |l 1Zalll) " |[|Z)? )
Hence

/‘ O Zhw
e

4) Now by combining all the three terms we obtain

1 — _
do/ ~ 2Re/{—ia@ar (Z_lDa/’Zt’a/) }|8a/|((Ztt + i)Z@f)do/

d

— - — 1 _ _
%Ecr,l ~ 2Re/{ZtttZ,a’ + Z'14ll)cz’Zt - ana/ (Z_lDa'|Zt,a’) }|8a”<(Ztt + Z.>Z,C¥’)dO/

Recall from (3.18) that
= e 1 =
Ziwd oo + 1A\ Dy Zy — 100y (Z_|Da’|Zt,o/>

1 \= - —
= ana/{ (’Da/’Z—) Zt,a’} — U(Da/Zt)aa/@ — a@a/{(Re@)Da/Zt} — iJl

Hence it is sufficient to show that each of the terms on the right hand side is in Hz. We have
already shown that J; € H 2. We also have

|o(Dar Z:)0w O 0500 Do Zi |, || 05 008 ||, + || Do Ze|| |00 O3

ar Sl

o0 {ReOIDLZ Y| 3 S 00D Zil o 0.0, + | D Zl 00,
1 1 o3 - _
+ H0-2|Z’O‘/|2Re@||W‘ m@a/Dalzt
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Now observe that

1 \5 1 1 \5 1 _
’i(faa/{ (’Da/|_—) Zt,a’} =10 (80/—) (aa/_—) Zt,a’ + 0 (80/_—) ‘Da"Zt,o/
Z,o/ |Z,0/ | Z,a’ Z,o/

1 _
+ io (aﬁ,z—) D Z;

!
Yo%

We have the estimates

1 1 _
Oy —— Ot =— | Ztow
“( |Z,a1|>( z) b

-1
H?2

1 1 1 1 1 1 _
S 02|Z,a’|280/m 02|Z,a’|28’2 H|D0/|Zt||c
70/ W e’ W
and
1 1 g%
— 1 1 —
Z7a/ 3 oy |Z7O/|2 C
1
i . 2,9 1 o6
To control the last term we can use Proposition A.0.11 with f = 030, =, w = T
e /
’ |Z,o¢ |2
1 —
h=—2"+Z, .. Hence
200
2 1 A
o 80/_— |Da’|Zt
Z o i
: 1 G 1
o o8 = 2 1 =
< 02— Zoer| || o3| S owlDalZ,
’Za’lz Za’ H% |Z,a’ 2 Z,o/ 9 2
1 o6
2 1 —
-+ O'gai/_— 0'7’2’0/’280/ 1Zt,a’
7a, 2 ’Z7al ’ 2 |Z7a/ | 5 o
This completes the proof of _tEa,l(t) < P(E,(t))

4.2.3 Controlling £, > and L 3
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Recall that both E, » and E|, 3 are of the form

1 2
o2

3
|Z?

f 2
_+_
‘Z,o/| '8

E,; = |Dof2 + H\/Al O f

-

o2

Where f = Z; . fori = 2 and f = O fori = 3. Also note that Py f = f for these choices of f.

We will simplify the time derivative of each of the terms individually before combining them.

1) As b, € L* we have from Lemma 2.4.6
d 2 / 2 r /
% |th‘ do’ =~ 2Re (Dt f) (th) do
2) By using Lemma 2.4.6 we have

d (VA
E/"a“/‘ <|Z,af f)

Observe that

Dt(\/A_lf) = {DtAl + by _Re(Da’Zt)} \/A_1];+ \/A_Ith

2
do ~ 2Re/{\8a/]<%f)}D,(é?f)do/

|Z,a’| 24, ‘Z,a’| ‘Z,o/‘
We note that for f = Z; , or f = © we have 7] € C. Hence
DAy VA -
b —Re(DyZy) | ——
| (2 oo -retwuz )37
<[ VAL {mama| |+ 1ot + 10020}
~Zal e 44 Yl Avllyy o T

Hence we have

d (VA
il \'M (mf)

2do/ R 2Re/{ \/A_1|aa,|(\/A_1f> }(th) do/

|2 ] |Z o]
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We simplify further using |0,/| = iHO,, and Hf = f

Lol (V)

|Z o] |Z o]

- [ () o () + e

zi[lﬁ,ﬂ]aa,(‘gf)ﬂﬂ{%('z%ﬁ >f+A1(!D ||Za|>f}
-1 ;—;FH (9a/f+z'|Zi4—:/|28a/f

Hence we have the estimate

iz (7).
20" N1Zal?) " 2.7

f
< (11Dl ) i) H'D |
( 2 ‘Zoz‘ a’ W ‘Zoz| ,a” C
1
ol 7530w A1 B
,o/‘ L>*NH?2
As D, f € L? this shows that
VA A _
‘|a |2 <|Z |f) do/ ~2Re/( ﬁaa/f>(th)do/

3) By Lemma 2.4.6 we have

d f 1 > 1
—/\aa,p 0wt | da %20Re/ ol —a.f) Lo O f
dt |Z0c’ 2 |Z,oc’|§ |Z,a’|2

‘We note that

1 1 - 11 3 1
O'§Dt —38a/f =02 (—ba/ — —RC(Da/Zt)) —
|Z,Oc’|5 2 2 |Z,a’|

ol
>
|
N——
+
w\»—a
QJ
S
—
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70 f €Cfor f = Zio or f = O we obtain
1 1 _
(—ba/ — §R6(Da/Zt)) 3 0a/f
2 2 |Z,a’|
d 1 1 , 1 .
o— |00 |2 =0 [ || do/ = —20Re | Oy O || — 0w f D, fda
dt |Zo/|2 |Zoc|2 |Zoz|2
Now we see that

1 1 1
080/{ ]é)a/| ( &,/f) } = ana/ — 3> H] aa/ < 3 aa/f)
|Za |2 |Za |2 |Z,0/|2 |Z70/|2
+i0H8a/{ ! 3aa’< ! 3aa’f>}
|Z,o/|2 |Z7oz’|2

1
g2
——5 0w f

2

2 |

S (10arllyy + 1 Dar Zilly)
f2

v

| a! | C
Hence

2

We have the estimate

O'ao/ [%, H] 3a/ (%&wf)
|Z,o/|2 |Z,o/|2

1

2

o2 1 1
500 f -0, |Za| 2 O ‘80/—
1Z ] { |Z.0]? IZa| 1Z] | Z ol 1l
By using the expansion in (3.11) for f = Z; ,» we get

_ 1 1

UlDa’PZt,a’ — o@a/{ gﬁa/ ( 8 Zta ) }
|Z,o/|2 |Za |2 2
1 1 ot 1| 1 —
S o |Z,a/|58a/ 82 Zta UQ‘ZQ‘ 8 280/Zt’a/
|Z’a/| |Za |2 9 |Za| |Z,a/‘ 9
ob 1 o2 =
+ =02, 0 Zy
Zol? NZal||,|] 1202 _
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Similarly using the expansion in (3.11) for f = © we obtain

1 1
0|Da/|3@—080/{ 38a/< 3(9@/@)}
‘Z,o/‘z ‘Z,a"z

2

ok
| Dol 20| +|lo2|Zu|? O ‘ H|D /| O ©
H \Za| |za|2 . |Za| Zallle||za® ).
1 1 1
| a3 7 9.0
Zo? "2l 1222

Using these we now have

Ui/w L oy
dt | Z |2

But we have already shown that (I — H)|D,/|>f € L? forboth f = Z, . and f = ©. Hence we

finally have
d 1 1 2
— O |? O
adt/‘| | (\ZQ,S f)

4) Combining all three terms we obtain
Ay _
Em-%QRe/<D f—|—2|Z P 500 f — ia|Da,|3f> (D.f)do!

2
do’ ~ —9Re / (ioH|Dor[*f) Dy de

da/ ~ 2Re/(—i0|Da/|3f)thdo/

4
dt

For f = Zm/ we obtain from (3.21)

A _
(DtQ + iﬁ@a/ — i0|Da/|3> Zt,a’

— 1 = A 1
- RlZ@/ - i(aa/Z—> Jl - iDaljl - Z,O/

D? 4+i——0y —i0| Dy,

Zta
‘Z,o/‘ Z,a’

We have already shown that Ry € C, J; € W, Oy € L? and the last term in L2. Now for

f = © we have from (3.22)

/
Yo%

A
(D? + iﬁaa/ — iU|Dal|3> O = RQ + ZJQ

e’
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In this case too we have shown that Ry, J, € L?. Hence this shows that

< P(E,(t)) fori =23

4.2.4 Controlling E, 4

Recall that

2

NG

7 9y|Dw|DuZ,

1
2
|2,

. 2
Eypo=||DiDuZi|s + H\/A_1|Da/|Da,ZtH2 +

2

As before we first simplify the terms individually before combining them.

1) By Lemma 2.4.6 and the fact that |0,/| = iHO, we have

d 1 _
s / low[* (D.D. Z.)

2 P
do/ ~ 2Re / (D?D oy Z,)|0ur |(Dy Do Zy) de
~ 2Re / (HD?D o Z){—i0u (D Do Z;) } de

But we have shown that (I — H)D2D,.Z, € Hz. Hence we have

d 1 — _
dt / 0[* (DD Z0)

2 —  —
do ~ 9Re / (D2D Z){—i0w (DD Z,)} do’

2) By Lemma 2.4.6 and as b, € L* we have

d S — DA —
E/AlllDaleathfda’%/( A 1>A1\|Daf\Dath\2da’

1

+ 2Re/A1 (‘Da/u_)a/zt)Dt(’Da/‘Da/Zt) dOé/

DAy

As P € L°°, the first term is controlled. We now see that
1

D|Dor| Doy Zy = —Re(Dw Z,)| Do | Do Zs + | Doy | Dy Doy Z
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Now as Re(D,Z;) € L*™ we obtain

d S — A —
%/A1‘|Da"Da’Zt‘2dOél%2Re/<iZ—128a’Da’Zt>{_iaa’(DtDa’Zt)}da/

’
|2 o]

3) By Lemma 2.4.6 and as b,, € L*™ we have

2

d 1 - _
0—/‘—180/’D0/|Dalzt dO/
dt | Z o2

1 — = 1
%QURC/{—laa’lDa”Da/Zt}Dt{
|Z 0] Z

& s

’l 80/ ‘Da/ ’Da/Zt} dOé/

We see that

1
U;Dt{—18a”Do/|Do/Zt}
|Z,o/|2

3 by 3 3
- (——Re(Da/Zt)——) — 2 9u|Du|DarZy p — Re| ———80 D Z, | (| Dov| Do Z2)
2 2 ‘Z,oz 2 |Z,cv’|5

[N

i ’U—’l@allDw DD 7,
2

As Do Z;, by € L™, the first term is controlled in L?. The second term is also in L? as we have
1
2

|U—’18a/Da/Zt € L™ and | Dy |Dw Z; € L. Hence we have
Z |

2

O'i / ;18@/|Da/|l_)a/2t
dt | Z o |2

d(l// ~ 2Re/(_w|Da,|31_)a/Zt){—i@a/(DtDa/Zt)} dQ{,

4) Combining the three terms we get

d — = A — = —
E o4 = 2Re/(Dt2Da/Zt+iﬁaa/Da/Zt—ia|Da/|3Da/Zt){—i@a/(DtDa/Zt)}da’

From equation (3.19) we see that

A . s\ = = .(— 1 > o1
D?+i——0y —io|Dy|’ | Dy Z; = Ry —i| Doyy— | Jy — i——=0uJ
( t 7 |2 | ’ ) t 1 Z,o/ 1 |Z |2 1

’ ’
| 7a 7a

1 )
But we have already shown that R, —Qﬁa/ J € H 2 and the second term is controlled in

/
1o’
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H: by the estimate

Hence we have

GEeat) S P(ED)

This concludes the proof of Theorem 3.4.1

4.3 Equivalence of £, and &,

Proof of Proposition 3.4.3. Let us first prove that £, < P»(E,). Note that in §4.1 we have
1
2 1
pretty much controlled all the terms in &£,. The terms which are not controlled 32 8(1,2— and
72, " L

Za 03, —— Z can be easily controlled in H?2 as we have that w € W and we have already shown

1
that 82 €C,——02,— €C.
|Z,o/| Z ’Za ’2 Z

Let us now show that £, < P;(&,). We will now say that f € L? if there exists a polynomial
P such that || f||, < P(&,) in analogy to the notation in §4.1. Similar notation for the other spaces

defined there. We now control the terms.
1. First observe that E,  is already controlled by &,.

2. As we have Zm, € L2, wesee that A; € L°NH3. As 00,0 € H? we have that (Zt—i)Z@/ €

H: by using equation (3.7). Hence we see that £, ; is controlled.

3. We now show that D, Z, € L*°. Observe that
_ _ — —_ 1 — = 1
8a/(Da/Zt)2 - 2(Zt,a’)(Dz/Zt) = 2<Zt,a’) (8QIZ—>DO/Zt + 2<Zt,a’) <22 8 Zta )
Hence we have

_ _ 1 —
I1DwZ|E, <2200 | 70w e

1 _
g 10,

2

Now using the inequality ab < ‘;—Z + % on the first term, we obtain D Z; € L.
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4. Following the apriori estimate for , we now have the terms |Do/|Dy Z, € L?, O € L?

wEW, D/ZtEWﬂC a/PA<ZZt

|1Z o0

) € LY AL EW, phpdud e WNC O € 12,

1
in §4.1 we see that | D, \— eC

Cl{

,Q

!

D,© € L? by formula (3.14). By using the proof of D,

€ C. Hence we have A@EC Also A

d —— . Y7 t.o € C is easily shown.
|Z,a’| |Za| |Zoz|

c W, 650,60 ¢ L2,

1 1 1
5. Again by following the proof of E, we see that 02|Z /|20y 7

!
,

21
€ L>*® N H2 etc. Hence we now

o 1
93,
‘Z,a" “Z

1 .
0302, € L?etc. and 050 € L™ N Hz, 030,

«
,Oé

! /

e

% |8§ 0 € L?, 00 Dy© € L? by following the proof of

In particular we now have D, Z tol € L? by using equation (3.7).

have

in §4.1.

w\»—t
l\.’)\»—‘

6. By following the proof of ——— 02, Zt o € L?in §4.1 we obtain

rZ,afiz |Za/\2

Ou|Det| D Zy €

wh—t

L?. We use Proposition A.0.10 with f = ’ | —— 0, Zt o and w = |Z |
Za/ ’a/

to similarly obtain

N|=

g

’Za”

——0uZ .o € C. Hence E, 5 is controlled.

l\:)\»—‘

7. By following the proof of o — 0% Z € Cin §4.1 we see that —— 00O € C. Hence we
‘Z,a ‘ ‘Z,o/‘z
see that £, 5 is controlled.

8. Asw € W we have

8 —— € C. Hence by following the proof of 8 el

!
a| aOé | a| aOé

in §4.1 we obtain % ’ 82 © €C,0D,D,0O € C etc. Hence by using equation (3.7) we now

have D, Z,, € C and hence D;D. 7, € C. Hence E, 4 is controlled and this finishes the proof
of Proposition 3.4.3

4.4 Relation with Sobolev norm

Proof of Proposition 3.4.4. We prove each part seperately:
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1. Let o > 0 and assume that &, + || Z /|| < co. Hence we have that Z; ,» € L* and we have

1
IIZa 12 and  [|[[Da|Zall; S 1200l oo |00

2

1
o2 —
2
5 80/ Zt7a/
2

/

108 Zeerll, S —
g2 2

e’

Hence Z’a, € H? and as Z o € L we obtain Z ,, € V. From this we see that

1
02—
«a Z7o/

_33

1
< |z .2
NO_H 70¢||W Z2 OtZ

ol
H?2 C

1
Hence O, —— € H*". As Z ., € L™, we clearly have 0,7, € L? as. Now for s > 1 we see

/
Yo%

that

S S 1
o tosly = |l (2t )

< |||aaffz,a/u2||z,a/||oo\ 5

2

1
a/Za/

)

2
+Zwlls

S
) —
- Za/

)

00 2

Using this for s = 1,2, 2.5 sequentially we obtain 0,/ Z ,» € H*®.

< 00. We first observe that

1
Z o

)

H2 + Hao/Z,a’HHz5 + ‘

o0

!

1 1 1
&, 1s easily controlled and that O'%fo,ao/ 7 € L? o2 Z;,aa/ 7 € L. Now we have

and hence for s > 1 we have

|aa’|s<Z2 a Z )

1
Z o

,Q

2

1
Haa’Z,a’Hg

< H_

~ Zval [e.e]

1
D
7

2

/
iyes

1
” |ao‘/|saoc’_

/
e’

2

1
ao/Zo/
ozl o+ |5

2

2
H ‘8a’|saa’Z,a’H2
o

€ H?®. Hence we easily see that

Using this for s = 1,2,2.5 sequentially we obtain 0,

!
e’
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1
2 1 1
a—j@ifz— € L? and Ziail 7 € L?. We also have the estimates
Z’z/ o ol o
1 1 1 1 1|
_ao/ 5 H ao/ a + 80/ >
Zar Lol gt Zollooll — Zor |l i1 Zor |l
1 2 =
o2 1 IEE 1 e 1 1
0%, So? 02— +o2 O ——|| |02 —
Z% Z Hl Z7a/ s Z@/ H% Z@/ 0o Z7a/ 9 Z7a/ 9
o 3
and similarly
AP I g P ol | ow—]| [0t
72, Z N % Z y N Za N Z ) Z

We are only left with 00,,©. We first observe that as Z ,» = ef 119 we have
80/2@/ = Z,O/@a/(f + ig) and Oz,Z,a/ = Z7a/{8a/(f + ig)}2 + Z,O/@z,(f + ig)

and hence we have

Z o

1
aa,m L2NLo = 1009l r2nre S HZ Oo”aa’Z,Oé’HLQOLOO
and also
82, 70/ - ao/<eig@a’g>
ez 7= =1 \\2

1 2
S 10w gl 10argllo, + HZ—H 102 Z e, + HZ— 100 Z o | |0 Z,a

From this we see that

1
aa,< a—>
H' iz

Hence 00,0 € H 3 by using the formula (3.12).

1
Z o

/

82 ,Q’

82
“1Zalll,

aZ o

1

H?2

2 2
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4.5 Existence

Proof of Corollary 3.4.6. We fix ¢ > 0 and let £,(0) < oo. Now by Remark 3.4.5 we see that
Z o € L. Hence by Proposition 3.4.4, we see that 0,2 ., € H 25 and Z,a/ € H? which shows
that the interface is C*“ for any 0 < o < 1. Hence we can change the coordinate system to the
Eulerian coordinate system and we have that (1, v)|;.—g € H>%"5(R) x H*™(R) for 0 < s < 3
where 7 is the height of the interface and v is the velocity on the boundary. Now by using the
existence result of Alazard-Burg-Zuily [ABZ11] we now know that there is a unique solution in a
time period [0, 7"] where 7" depends on the norm ||7|| 5.5« + ||V|| 2+ of the initial data which in
turn depends on norm ||(Z — &', Z;)|i=o|| 4.5 ys- Now we wish to use Theorem 3.4.1 but as the
solution is not smooth, we cannot directly use it.

This is easily remedied by mollifying the data by the Poisson kernel, (Z¢, Z;)|;—o = (Z
P.,Z; x P.)|4—o and then solving the water wave equation with surface tension o > 0 with the
initial data (Z¢, Zf)|;—o in the same way as above. Now we can apply Theorem 3.4.1 on these
solutions (Z¢, Zf) as they are smooth, and hence these solutions exist in a time interval [0, 7]
where 7" depends only on &,(Z¢, Z5)(0) < &,(Z, Z;)(0) due to the holomorphicity of the terms
in £&,. Now letting ¢ — 0, we obtain a solution to the water wave equation with initial data
(Z, Z;)|s=o in the time interval [0, T] with 0, Z . € H*® and Z, ,» € H?, and by uniqueness the
time of existence of the solution is maz{T,T"}.

O]
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CHAPTER 5
Convergence

In this chapter we prove Theorem 3.4.8. Note that this theorem was stated for the initial data of the
two solutions being the same. We will prove a more general result here which can handle different
initial data. Let us now state the result precisely.

First recall the higher order energy for the zero surface tension solutions

2 2 2

2

1
= 82
Lo 9

1 _
o, 0T,
7z, % Z il ZRaat

,Q

1 —
Z_Qlaa’ Zt,a’

e’

Shigh = ‘
H2

2

We define an auxiliary energy for the zero surface tension solutions needed in the statement of the

convergence result. Let A > 0 be any real number then we define

2| ab 2 olad 1 || Al ?
_ [\ 3 2 0
Ek,aum— H)‘2|Z,a’| 80/_/ + 1/2a Zta + Wao/z ‘ 1/2a D Zt
@ Hloo o 2 af 2 ! 2
AS ’ JA [ b ?
+ || Di| S50 D220 ||| + (S T | 250w DarZ
Za’ 2 ’Z’a/’ Z,a’ H%

We recall the notation used for convergence. Let A be a solution to the water wave equation
with surface tension ¢ and B a solution to the water wave equation with no surface tension. We
will denote by f, the function f for solution A and f, for solution B. For e.g. (Zm/)a and
(Zt.a)p denotes the spacial derivative of the velocity for the respective solutions. Note that with

this notation equation (3.7) becomes

_ A A
(Zy)a—i=—i| =) +0(Du®)s whereas (Zy)p—i=—i| —
Zot ) a Zat )y
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We also have the operators

1 1
(|1Da)a = 50« (|Du|)p = 50~ etc.
|Z,a’|a |Z,a’|b

Now let h,, hy be the change of coordinate diffeomorphisms as defined in (2.2) for the solutions
A and B and let the material derivatives by given by (D;), = U, '0,Up, and (D,), = U, o 10,Up, -
We define

h=hyohy' and U="U; =U; Uy,

While taking the difference of the two solutions, we want to subtract in Lagrangian coordinates
and then bring it to the Riemmanian coordinate system of A. The reason we want to subtract in the
Lagrangian coordinate system is that, in our proof of the energy estimate we mainly used the mate-
rial derivative, and in Lagrangian coordinate system the material derivative for both the solutions is
given by the same operator d;. The operator U first takes a function in the Riemmanian coordinate
system of B to the Lagrangian coordinate system and then to the Riemmanian coordinate system
of A.

We define A(f) = f, — U(f). Fore.g.

AZpo) = Zia)a—UZoa)y  A(Zy) = —2'{ ( ;; ) - z7<%)b} +0(Dy®),

We are now ready to define the energy for the difference of the solutions. Define

1\ | 1\ |I° 3 1\ I
1 1 1 1 g2
Eng = 2| Z |2 00— 6|2 0|20y 92,
o= |(izator )|+ (zmtong) |+ (s
’ alloco ’ all2 | a| all2
) L\ ’
1A+ | (05 )|+ = 1w+ 10l = )
1 2
‘Za‘ U( ) -1
izt () -1
2 o3 2
EA,1:| ( ) o —+H aA(Zt,a’> + ( la Zta>
2 |Z0‘/|2 all2

1
o2 —
+ gaoz’Zt,o/
H% ‘Z’a/‘Q a

i 2
(L&ﬂ%)
|Z7a/ | a

_ A _
b0 |8

_|_

-1
H?2

Baa= Ao+ | (25) @

Njw

139



Esi = |ADDwZ) 4 + || (VADal Darl, A (D 2|

2

En = (Esuz)o + Eno+ Ear+ Ens+ Ens+ Eng

Note that here (E, 4u.)5 is the energy E) 4., for solution B with the value A = 0. Hence
(Eyquz)» couples the zero surface tension solution B with the value of surface tension o of the
solution A. This term is added due to technical reasons and is explained in more detail in §5.2.
The other terms in the energy come from taking a difference in the energy F,. We now state our

result about convergence.

Theorem 5.0.1. Consider two smooth solutions (Z, Z;).(t), (Z, Z;)(t) in [0,T] to the equation
(3.7) with surface tension o and with surface tension o = 0 respectively. Assume that there exists
an M > 0 such that

1

sup (Engt). s (€0, 12,0 (77 )| 0 [z 0020 @ <
t€[0,T7] t€[0,T) |Z |b ,a’|a 00
Then there exists a constant C'(M) depending only on M so that

d

EEA( ) < C(M)EA(t) forallt €[0,T)
In the above theorem, the restriction

280 )| 0| T0za)| o<
Nzl ) N 2w, A N

forces the initial interfaces of the two solutions to be close to each other. The theorem simplifies
considerably if we work with the same initial data for the two solutions A and B which was how
Theorem 3.4.8 was stated. For ¢ = 0, one can use the existence result Theorem 3.4 of Wu [Wul5],
where it is shown that for data in the class &;,(0) < oo, the solution exists in a time interval
[0, T with T' depending only on &y, (0) and satisfies supyg 7y Enign(t) < co. For o > 0 we can
use Corollary 3.4.6 for an existence result in terms of &£,. Also see that the energy Ea controls
|A(w)]|,, and hence this says that 6, — ¢, € L> and the difference goes to zero as A — B as
stated in §3.4.

The rest of this chapter is devoted to the proof of Theorem 5.0.1 and also the proof of the
example stated in Proposition 3.4.9. We will first prove the apriori estimate for &g, in §5.1. We
then use this estimate and prove an apriori estimate for £} 4., in terms of &g, in §5.2. We then

prove Theorem 5.0.1 in §5.3. Finally we prove the example for convergence Proposition 3.4.9 in
§5.4.
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5.1 Higher order energy &,

We will now prove the higher order energy estimate for o = 0. Note that we already have an energy
estimate for o = 0 by simply taking the special case of o = 0 in the energy £, in Theorem 3.4.1.

This higher order energy is equivalent to the energy used in Kinsey-Wu [KW14] (more precisely

1
Z,a’ 0o

we do not have the term H in the energy). The higher order energy corresponds to the

energy from the equation for D2, 7. We will control a lot of quantities which are not controlled in

[KW14] such as \Da/]ﬁ ewne, ﬁ@a/w ewne, ﬁ&a/ﬁalz € C etc. The control

of all these terms are needed in §5.2 which in turn is used to prove Theorem 5.0.1.

5.1.1 Equation for D?,7,

Plugging in ¢ = 0 in the equation for Z, from (3.17) we obtain

A = -
D24 i—0, | Z, = —i
( AT ) "7

/|
ye%

1

— _ A
with J; = DAy + Ay (by — Do Zy — Do Zy) and Zy — i = —z’Z Applying D?, to the above

!
Yo%

equation we obtain

A = ‘ J1
D} +i———0y | D2 Z; = —iD2% [ —
< t + 1 Z /’2 > o t 1 a Z7a/ +

’ 7a

A _
D? +¢Z—18 D%\ Z,

>

/
’ &

Let us try to simplify the terms above
a) Recall that [D./, D;] = (D Z;) Dy and [0y, Dy] = bor O

b) We see that

2

A
DtQ + iZ—laa’, Da’] = Dy[Dy, Doy| + Dy, Doy | Dy + [(Zi + i) Do, D]

/
|2 o]

= {_2(Da/Ztt> + Q(Da/Zt)z}Da/ _— 2<Do/Zt>DO/Dt
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¢) We have the relation

A,
D2+zZ 500, Doy | Dy

’
| Zol’

= {—2(Dw Zy) + 2(Dar Z;)*} D2, — 2(Doy Zy) Doy Dy D o
= {=2(DoZy) + 2(Des Z4)* } D2 — 2(D ey Zt) Doy {—(Dor Z4) Do + D Dy}
= 2(Do Zt) (D2 Zy) Doy + {—2(Do Zyt) + 4(Do Z;)* } D2 — 2(Dos Zy) D2, Dy

d) We similarly have

A
Dy | D? +i———508u, Dy
2o

/
| e

={-2(D2 Zy) + A(Dw Z:)(D% Z4) } Do + {—2(Dow Zy) + 2(Dor Z;)? } D2,
—2(D?,Z,)Dy D; — 2(Dy Z;) D2, D,

e) Hence we have

A
D? +i——=0,, D%
|Z,o/|
9 Ay
D —|—ZZ 8a,D Da’+Da

/
Zol’

Aq
D2—|—zZ 500/, Dg ]

‘ ,o/‘
— {—Z(Di,Ztt) + 6(Da,zt)(D§,Zt)}Da, + {—4(Da/Ztt) + 6(Da/Zt)2}D§,
—2(D?,2,)Dy D, — 4(D Z,) D?, D,

f) We see that

) J1 . w? 1
_iD?, — _iD, o, Dy—
iDZ (Z,a/> 1 {|Z7a/|28 J1+J1< Zﬂ/)}

1 1
= —i0°| Dy || ——=0uJ1 | — 2i@(Dy@) | ——= 0 J
| ’ |Z’a/ |2 1 ( ) |Z,a’ |2 1

. 1 , 1
— (Do Jy) (Da, Z,a/) —iJy (Di, Z,a/)

142



Combining the above identities we get the equation for D?, Z,

!
‘ sQ

A _ 1
(DtQ + 7;—1280/) Di/Zt = —iw3’Da/| <—26a/J1> + Rs 5.1
Z,o| |1Z,o]
where
Ry = {—2(D2 Zy) + 6(Duo Z,) (D2 Z) Y (Do Zy) + { —4(Dor Zyt) + 6(Dor Z;)* } (D2, Z4)

_ — 1
— D% Z) (Do Zy) — 4D Z) (D2 Zyy) — 2i(D o) <—|Qaa,Jl> 52)

| )a
1 1
— (D Jh) (Da,2—> —iJy (Dg,Z—)

5.1.2 Statement of the energy estimate for ;)

We will now write down the energy and prove the energy estimate. We define the higher order

energy for zero surface tension solutions as

_ VA _
Ehigh:Ea|g0+/{DtDi,Zt’2da’+/'|aa,|§<|Z 1|D§,Zt)

2

do/

Theorem 5.1.1. Let T' > 0 and let (Z, Z;) be a smooth solution to the gravity water wave equation
with zero surface tension in the time interval [0,T) with Epqg,(t) < oo for allt € [0,T). Then
there exists a polynomial P with universal non-negative coefficients such that for all t € [0,T) we

have
dEhigh(t)

o =r (Enign(t))

5.1.3 Quantities controlled by the energy F,;

In this section whenever we write f € L what we mean is that there exists a universal
polynomial P with nonnegative coefficients such that || ||, < P(E};g,). Similar definitions for
feH 2, feL> fecCorf e W where the definitions for the spaces C and W are as in

§4.1. Note that Ej,,, controls the energy E,|,—o and hence we already have control of a lot of
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quantities as proved in §4.1. We will freely use the quantities controlled by E,|,—o to prove the

above theorem. In particular we will also be making use of Lemma 2.4.5. Let us now establish the

quantities controlled by E},;,, which are not controlled by E,|,—o.

1)

2)

3)

D.D2,Z, € L?, D% Z Dy|*Z, € L* and D2, Zy, € L2, |Do|Dy Doy Zy € L?

Proof: We see that DD Z, = [Dy,D%]Z, + D% Zy
= Doy {—(DaZt)Doy Z1} — (D Z4) D2 Zy + D2 Zy
—(D%Z)DyZy — 2(Doy Z) D2, Z + D2, Z

Now D;D?,Z; € L? as it part of the energy and hence we have

|2 Zul, < |DDLZ, + |02 2] | DuZ| + D22 D

I,
Now we observe that

D2 Zy = Do (@|Do| Z1s) = &(|Dev |[©)| Dev| Z st + 2| Do |* Z1s
Hence we have

_ _ 1
WDl Zuly 5 10 Zull + | 00

1D 1Z |
c

The terms D?, Dy|D;Dy Z, € L* are proven similarly.

Do/|Ztt e WnC and l_)a/Zt ewnc

Proof: We already know that D, Z;; € C and D?,Z;; € L. Hence using f = D, Z; and

w = ZL, in Proposition A.0.10 we obtain

Do Zat||2. S || Zoto

QHDi’ZﬁH2

We also have ||| Dor| Zutll e S @1l Dar Zit |l yye @nd Do Zy € W N C is shown similarly.

1
D E L™, |D. € L and —— 0w € L™
| | 7 | | ‘Z@ | |Z 2

/|
1o’
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1
we have

/

Proof: We observe that as Z,; — i = —i 7
,Q

= Y .
|Da’|Ztt == _ZZ—Faa/Al - 1A1|Da/|

/
|2

Z o

As A; > 1 we have
+ [|1Da| Z .,

1
< l—— A
[e%s) ~ H |Z,o/|2 '

o

Z o

o0

1
Hence | D,/ | ~ € L. Now recall from (2.9) that

- 1 1 — 1 w
Re Da/— = Da/ — Im Da/— =1 —(9a/w
< Z,a,) [De| | Z o] ( Z,a,) (| Z o )

1 1
Hence we easily see that |Da/|m € L™ and Wﬁa/w e L”

1
€L’ |38§’,w € L*. We also

1 1 1

4y | Da,|2Z c L2 Dg,Z € L? and similarly |Da/|2| 7o 7
1 1 1

have —|282/Z— c L2, —2@0/@ elL?

/
| & &

/
Yo%

— A
Proof: As 7, — 1 = —iZ—l we have

!
,Q

|Dor|*Z s
w 1
= |Dy|| —1——=0,y A1 — 1A1| Dy
Dl (=i s = 4D 5 )
_ 1 . _ 1 _ 1
:—ZW|DO/‘ Wﬁa//h —z(\Da/]w) 2—‘28&/141 —Z(|Da/|A1) |DO/|Z )
| 1 |
_ZAllDa’ QZ

As A; > 1 we see that
1

2 1 25 1
H'D/ | S WDl Zul,+ |1l (3004t ) | + 1D llsf| ——50u s
o |2 ’Z,a” 2 ’ 7C¥" o8
1D A | 1 Dol
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5)

Now we see that

1 1 1
= 0(|Dy |@)| D | =— + @*| Do |*—
> G(1Dar[@)| Do | — + &) 7

/ /
e e

[0

1
D2,Z = Dy (wyD :

Hence we have

1

1
D?, p—

S 1Daw]l

ez

! !
iye%

2 ,a

2

Now using the formula (2.9) we have

— 1 1 — 1 w
Re Da/— = Da/ — Im Da/— =1 —80/0)
( Z,o/) | |‘Z,O/‘ ( Z7a/) (|Z7a”2 )

Hence we have

1 1
Rt N (LN X
o | |2 af ,o/ 2
1 9 - 1
L 02|| S 1Dwllly|[ 1Dl |+ 1P| + 1D
|Z,a’| 2 ZO/ 00 o |2 ,a’| 00
 [12at ]| Mkl
The estimate |28§ Z € L? is shown similarly. Now recall the formula of © from (3.12)
Z o 1 Z o 1
O =i—"0, — iRe(T — H) <i8a/—>
|Za | |Z70/| Z,oz’
We have
1 Z o 1 1 1 1 1
8a/ < 8a/ —8aw 8a/— 82
|Z,a’|2 (|Zvo‘/| Z@) 2 |Zya’|2 0o Za |Za |2 Za! 2
and hence we obtain
1 1 1 Z o 1
e, gl el [t ()
Zo|” " | Z o] Zolly |12 Zal ™ Zar ) ||,
1 1 1
’Da/|—€WﬂC, |Da/’ e WnNC and 8/w€WﬂC
Z,a’ |Z7a | |Z7O/’
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6)

7)

Proof: The inclusion in C is known as it is part of energy estimate for £, for ¢ = 0. Now we

have already shown all the quantities in L*° and using the above estimates like | D, |2 € L?

/
e’

we are done.

Dby € L™, 0y Db € L™

Proof: We already know that E,|,—¢ controls D;(by — Doy Z; — Doy Z;) € L>®. Now
DDy 7y = —(Da'Zt)2 + Do Zyy

and hence as D Z; € L*°, D7y € L* we have D, D, 7, € L*°. Hence we have D,b, €
L>. We now have 9,y D;b = b2, + Db, and as b,y € L™ we see that ,» D;b € oo.

1 = 1 = 1 —
|Z |D2 Zt S C |Z |28a/Da/Zt € C, Waa/Zt,a/ c C and Waa/Da/Zt S C and

similarly D?D, Z, € C
VA

/
|2 ]

Proof: From the energy we know that D*Z, e H 2. Hence as VAID2 Z, € L? we see

VA
|Z,a’|

that D?,Z; € C. Hence we see that

1

D% Z S
t 711

e I
7 Za

c w

1 _
As w € YV we see that Faa,pa, Z; € C. Now we have

!
O

2

1 1 — w _
—— D27, = Doy——||Dor|Zi + ——50u Z1 o
LT ( Z7a,>| | t+|Z i

|Za| o

E

a D Zt (|Doc|— >|D |Zt+ |Zw |3aa’Zt,oz’

Hence we have

Ou Zt o ——D?,7,

o |

a”Zt

ot 111y, [

< II@lhy

HlZo/ C

Now we see that

1
|Z e’
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which implies

1 - —
Waa’Da’Zt

1
ik

H|DO/|Z7§HW+||U}HW aa’Zt,a’

< ||Dwl=
CNH “ Z,o/ C | Kt

c

Now we recall the equation for D,/ Z, for o = 0 from (3.19) and (3.20)

A _ o ~ 1 1
(Df + i—1’28a/> DuZy = —2(DyZ)(D;Doy Z;) — z’(Da/Z—) Jy — iyZ—Qanl

’ 7a
Hence we have

- = 1 - = - = - = - 1
ID2DuZi) $ | —tr0uDaZi| +1DuZily | DD Zi+ D] 1
|Z7a/| Z,a’ I

c
1

——— 0y J
Za 2"

+

C

8) (I-H)D!D2Z, € L*

Proof: For a function f satisfying P4 f = 0 we have

= [0, H]0w Dif + Db, H|Oy f
= 2[[), H]aa/th + [Dtb, H]&a/f — [b, b; &yf]

AsP,D? Z, = 0 we obtain

€= B)D2D2Z,], Wl | DDEZl, + 100 Dl 3 | D2 2l + i | D2 Z

| B

|Z ,a’|
Proof: We see that

9) (I—H) (iﬁza&@gz) cL?

/

A _ A _
(I — H) (iﬁ@a/Di,2t> —i —1|2H] OwD?Z,

|2
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and hence we have

1
|Z,a’|

(T — H) (i%aa'])g/zt>

’
|2 ]

= 1
LI e

meWﬂ

J

2

10) R3 € L?

Proof: We recall from (5.2) the formula of R3

Ry = {—=2(D2% Zy) + 6(Da Z) (D% Z) (Dot Zy) + { —4(Dar Zuy) + 6(Dov Z4)* } (D2 Zy)

_ _ 1
— D% Z) (Do Zy) — 4D Z) (D2 Zyy) — 2i5(D o) <—aa,J1>

|Z,al?
1 1
— (D 1) (DQ,Z—> —iJy <D§,Z—)

Hence we easily have the estimate

|Bsll,
S {ID2Zull, + 10w Zul | D2 2, | D Zil|, + {1 Do Zitl + 1 Do Zel | D2 Ze
_ _ 1
NP 0w Zal 1D 22 Zuly + VD@ |
ﬂmJnDi—+wn%hL |
a’J1]|9 aZ’O/OO 1llco O[Z7a’2

/

1 1
11) |Dy/| <Waa,J1> € L? and hence W&m c L™

& &
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Proof: As J; is real valued we have

Du (,Z—W)

~ Re(I - H){ |ZL|80’ <|Z’i/|QaQ,J1> }

_ Re{ (e (Ww) [ 2 o (Ww)}
‘*Re{wﬁﬂ‘ﬁm{|§i4&“<u£n2&“”>}}

Now applying (I — H) on the equation for D2, Z, from (5.1) we obtain

1
(]I — H){wﬂDa" (W@aljl> }

S| @=M)D{DL Ze||, + || Rs
2

A _
+ ||(1 — ) <z’—128a/D§,Zt)
|Z o] 9
Hence we have
Dol Lo, <{’a | \‘H} S
o' — oUa/J1 ~ (e =m— o |W T olUa'd1
Z ol 2 Zall, )1z
L 1
+ [[(I = H){ &°| Do || =501
|Z,a’| 9
1
Now we just use Proposition A.0.10 with the functions f = Waa,Jl and w = m and
1 “ "
we easily get that ﬂﬁa/ Jp € L™
5.1.4 Closing the energy estimate for £,
We now complete the proof of Theorem 5.1.1. Recall that
_ VA o\
Ehlgh == EO'|O':0 + /{DtDi/Zt‘z da, + /' |aa/‘% <ﬁDi/Zt) dO/
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Analogous to what we did in the energy estimate of E,, we simplify the calculations by the use of
the following notation: If a(t), b(¢) are functions of time we write a = b if there exists a universal
non-negative polynomial P with |a(t) — b(t)| < P(Epign(t)). Observe that ~ is an equivalence
relation. With this notation, proving Theorem 5.1.1 is equivalent to showing dE*”—gh() ~ 0.

Now we know from Theorem 3.4.1 that

dE, (t)
dt

< P(Es(t))

and hence this is true for o = 0 with the same polynomial . Hence we have

W < P((Bylye0)(t)) < P(Enign(t))

Hence we only need to control the time derivative of Ej;,, — Ey|,—o. Hence

dEnign(t) _ d / 2512 5 / (VAL
—T D.,D*, 7 |2 | —5— D, 7
dt di |DeDGZ: [ dol + [ |0 \Z | '

2
do/}

The right hand side is the time derivative of

it s flat (i72)]

where f = D?,7Z, and we have Py f = f. We have already computed the time derivative of such

d /

functionals in the §4.2.3. Hence using that computation we get

dEhigh(t) —~ 2 Ay /
—~2Re/<D f+z‘Z 7 504 f)( of) da

dt N

As D;D? 7, € L? we only need to show that the other term in in 2. Now the equation for D2, Z,

from (5.1) implies

Ay 1
(DQ—H‘Z : 00 )D2 Z, = —iw3|Da,|<Waa/J1> + Rs

1
As we have shown | D,/| |Z—28a/ Ji1 | € L? and R5 € L? we have shown that this term is in L?
and the proof of Theorem 5. 1’.1 is complete.
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5.1.5 Equivalence of £};,, and &g,

We now give a simpler description of the energy £},;4,. Define

2 2

+ | Ze
2

9 2

—+
2

1

1
Z o

72,

1
z,

Ne%

aoa’ ; + 80/ Zt,o/ 804’ Zt,o/

+
2

1, 1
i | 7% T

-1
H?2
Proposition 5.1.2. There exists universal polynomials Py, P, with non-negative coefficients so that

for smooth solutions to the water wave equation with no surface tension we have
Erigh < Pi(Enign)  and Epigh < Pa(Ehign)

Proof. Let Ey;q, < 00. We have already pretty much controlled all the terms of &;45,. The term

1 — )
which is not controlled is Z_?’aal Z o Which can be easily controlled in / 3 as we have thatw € W

1 —
and we have already shown that ———= 0 Z; o € C.

!
Yo%

1
Now we assume that &;4, < 00. We use Proposition A.0.10 with f = D and w = 7
to obtain ’ ’
112
o
Zva/ LOOQH%
1 1 1 1|
S NOw—=—1| |0 | = 0w —— Ou
~ Zo ||y (ZZ, Za/>‘ + Z oy
I Yo% I 2 El
17 1 1 1 1 1 *
5 ao/_ Da’ ao/ 83/ + ’ aa’
Z,a’ 2 Z,a’ LoomH% Z,a’ 9 Z,2o/ Z,a’ 9 Z,a’ 9

e LN H%. Hence

Now use the inequality ab < ;—i + % on the first term to obtain D,

!
Yo%

by Proposition 3.4.3 we know that F, |, is controlled. Hence we only need to show D;D?,7Z; €

VA 1 a%i
| Z o] Z o> Z o

o _tt € . Following the proof o o _tt € , we see that ,_tt € an ¢ ,_t €
Do’ Zy € L2. Following the proof of |Dy/[*Zy, € L? hat D, Z,, € L? and D,D?,Z
L2,

Now as w € W and

L? and D2Z, € Hz. Now following the proof of in §5.1.3 we see that

1 _ 1 _
Z—Saa/Zt,a/ € C, we see that Fﬁa/Zm/ € C. Hence following the

!
o3

1 — _
proof of ———=0Z; o € C, we see that Di,Zt € C. Now as v/ A; € W, we easily obtain

/|
| 7o¢’| | e
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VA,

Z ’Di,Z € C and hence E},,, is controlled. O

5.2 Auxiliary energy &),

In this section we again consider a solution to the water wave equation with zero surface tension
and show that the energy F) .., defined at the start of §5, is controlled as long as &g, is finite.
This energy depends on the chosen constant A > 0. When we put A\ = o, we will denote this
energy by Iy 4., and this energy will be used in the next section where we prove the estimate for
convergence. The reason for the necessity of this energy is as follows:

Suppose (Z, Z;), is a solution to the water wave equation with zero surface tension and we
have another solution (Z, Z;),, is a solution to the water wave equation with surface tension o. The
subscript denotes which solution we are talking about. Then while proving the estimate for the
difference of the solutions in the proof of Theorem 5.0.1, we will need to control terms which
essentially looks like (see §5.3.2)

1 1
2Re / 0D\ Do Zit | | =8| Dt D Z1 | e’
|Z,o/|§ a |Z,o/|§

b

Now ( 92 Ou|Do|DoZ; | € L? as it will follow directly from the energy (The energy E,

202 b
controls terms like this). Note however that the energy £, does not give us control of anything

1
higher order than this. Hence we will therefore need to control ”2‘1 Ou|Dor|Dor Zyy | € L?
, 2

from a different source. These types of terms are controlled by E 4,5

a

1

A2 _
5.2.1 Equation for %(‘%Diz "

/
,

Let us recall the equation of D?,7Z; from (5.1)

/
| FIe &

A . 1
D} +i———0y | D% Z; = —iw’| Doy || ——50ui | + R
( + Z |2 ) t | | |Z ,|2 1 3

with R as given in (5.2) along with the identities J; = DyA; + Ay (by — Doy Z; — Doy Z,) and
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1
Ly —1= —iZ—l. Applying %&w to the above equation we obtain

/
Yo%

/
,OL

A, A2 A2 1
2 2
(D +ZIZ 05 ) 7D o= 21/28 D |<|Z /!2(%“]1) o

’a 7a

where

A %
2 . 1 2
+ ‘Dt +Z|Z7a,‘2aa/, 1(1//280/ Da/Zt
Let us try to simplify the terms above
1 —1
a) Dt@ = ?fx/?DtZ’a/ 2Z71a//2 (D Zt b )
L 1, ap /1 1 1
0 O i = gl Qg = (2 7 )Zw
Bt s % b DuwZi\ A2
c) T/gao/ Dy 1/2 [Oars D] + WaDt Dor = (7+ 5 )Fao/

!
e’

d) A —— 0w D2]
Z

/

Zl/2aa 7Dt] Dt

,Q

2 1/2

!
Yo%

_ Db, DDwZ (bw | DuZ\*| A2 | (be | DuZ Az
)2 2 2 2 Z2 2 7

2 A
C) )\12280/,i ! 2(30/]
Za/r ‘Z,a"
i iA (= 1 A3
{2ZA1 (’D ‘|Za |> + |Za/‘28a/A1 - 7 <Da/ Z7a/) }—Zl/lzaa/

Combining the above formulae we have

A Az _ Az 1
(Df + Z|Z 1/|28a/> Zl/zaa/Dﬁ/Zt = —zw?’F@a/]DCA (Waau]l) + Ry
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Dby DDy Z by DuZ\?| A\ A2
Ry=—{ 22 4 —t L + i OwD%Z, + =0, Ry
2 2 9 9 7/

YDt 1 by  DuZ x
- 3Z(JJ2 <F8a/w> |Da’| (Waa/L) - (7 + Tt) 21/28 DtD Zt

and Rj is as defined in (5.2).

5.2.2 Statement of the energy estimate for L) ,,,

The energy E) 4., defined at the start of §5 depends on the chosen constant A > 0. Recall that
it is given by

9 2 2 N 2

1 1 1 A2 Az A2
EA,auac: )‘2|Z,a’|28a’ + 1/28 Zta + 1/2a + T/28 D Zt
Zaa/ / 704/ Z/
e 2 o 2 & 2
2 2
Mo VAL A
()] (2 Zt) |
70/ 704 H?

Theorem 5.2.1. Let T' > 0 and let (Z, Z;) be a smooth solution to the gravity water wave equation
with zero surface tension in the time interval [0,T) with Epign(t), Ex aus(t) < 00 forallt € [0,T).
Then there exists a polynomial P with universal non-negative coefficients such that for allt € [0,T)

we have

dE)\,aum (t)
dt

Remark 5.2.2. As in the case of energy I, the energy £ 4., contains a term which is the L°° norm

< P(Enign(t)) Ex quz ()

of a function and hence we replace the time derivative of this term by the upper Dini derivative.

5.2.3 Quantities controlled by the energy L) .,
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In this section whenever we write f € L3., what we mean is that there exists a universal poly-
nomial P with nonnegative coefficients such that || f||, < (E) quz)*P(Enign). Similar definitions
1
for f € H}, and f € LS. We define the spaces Cyo and VW)« as follows

1. Ifw € L and | Dy |w € L3, then we say f € Wia. Define

[wllwye = lwlhy = llwlle + [I[Darfwll
1
2. If f € Hi, and f|Z | € L., then we say f € Cya. Define

Il = W7l = 115+ (14 o

1
ol LU

Analogous to Lemma 2.4.5 we have the following lemma

Lemma 5.2.3. Let oy, ay, a3 > 0 with oy + g = as. Then the following properties hold for the
spaces Wya and Cya

1. Ifwy € Whea, wy € Whas, then wiwy € Whas. Moreover we have the estimate ||wlwg||ww3 <
lwillyy, o, w2y,

2. If f € Cyer and w € Weo, then fw € Cyes. Moreover || fwllc .. < || flle,o, @l

3. If f € Coor, g € Cooa, then [9|Z o] € Liu,. Moreover | fg|Zarllly S [1f e, I9lc...

When we write f € L? we mean f € L2, with a = 0. Similar notation for %, L>,C and W.
This notation is now consistent with the notation used in §5.1.3. Let us now control the important

terms controlled by the energy F 4.

1 o0 )\ [eo]
1) A Zo|20u 7o € Lo DYLN Zl/QeLfandTGMweLﬁ

,Ol

o0

1 1 .
Proof: From the energy we already know that Az | Z o] 2 O - € L. Hence we easily have

1 1
A20,y —7 € Lf Recall from (2.9) that

/
e’

Z o 1 1 Z o 1
Re = 80/—) = 80/— Im( 2 60/—) = i(w|Da/|w)
<|Z,o/| 2o |Z,a’| ’Z,a” 2o

1

1 1 A
Hence we obtain \? | Z o] 2 8a/m € L"\%\ and ﬁ&uw € LT/OX
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2)

3)

1

Aro, 1 , Az 1 Az
r0y—— € Ly, 0%, € L\f and —— 03w € L\f and hence we have
Zal? " B Zal? " 12l Z]?
1 A2
that/\|Za|0—€Wf,)\|Za|8 7z |€Wfand’ TO0pw € W /5
Proof: z ’2 82 Z / €L’ /x as it is part of the energy. Recall from (2.9) that
Z o 1 1 Z o 1
Re< - 8a/—> = 0w Im(iaa/—) = (0| Dy |w)
|Z,a’| Z,a’ |Z,a’| |Z,a’| Z,a’
Hence taking derivatives we obtain
A2 1 A2 1 A2
~02, S || ——F0xw ’ O -2,
Zwl? N2, 1202 Zatlo |1 Zl®
A2 A2 1 1
e 5| ) { o]+ Mol f | S
| Z |2 ) | Z |2 . Z.ot g Z o )
We also see that
1 1 1 1 1 Az
Dl (M 120y ) | 5|20 \a ]2 e
H Z,O/ 2 |Za| Z,O/ 2 |Za|2 Z 9
The rest are proven similarly.
A ———0uD?7Z, € L* A ———0uD% 7, € L? X 027 € L?~ and similarly we
t NN 1 t VAo B t,af VA
Zaf? Zl? ZalB "
L DT e 1, N e A ’
have E o/Do/Zt € L\f Dy Zy € L\f and —% o/|Do/|Do/Zt € Lﬁ
|Z,o/‘ ‘ ,a/‘ ’Z,a’
Proof: We already have | | 0w D% 7, € I* /x as it is part of the energy. We now have
Za/ 2
A2 Az
| Z o |2 Lot Z | Z ’2
and hence
Az - o1 - Az -
| 2| B2 DuZi| < ‘ A%|Z,a/|26a/Z—H [1Dar| Des Zu[, — 0 D27,
Z 12 9 ,a/ 00 7a/ 9
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Now we have

Az Az, 1
8 Da/Zt 16a ’Da |Zt+2 )\2|ZO/| 8a/ 8a/Zm/
|Z0l|2 |Z,a| Z |Z°‘|
A2
+ 3 82/275 o’
Zoz’|Z,oz’|5
From this we obtain
Az _
5 ai/Zt7a/
|Z,a’|2 2
)\l — 1 1 1 _
< |2 o2 L ipwizi| + ‘ MIZo O T
ik Z 00 Z o' loo|| 12 | )
1
702 Doy 2y
|Z,o/|2 2
1
Hence we have Z /|2 0% 7o € Lf&. By taking conjugation and retracing the steps back-
1 )\; o
wards we easily obtain the other estimates =04 D Z, € Lfﬂ, —238§,Da/2t € Lf&
‘Za |2 ‘Z,a"g
A2 )
amd| |(‘9|D NDoZy € L.
A2 A2 Az
4) | | 8 Zt o € WfﬂCf, | | 80/DQIZ € Wﬁﬂc\f, ﬁaa/Da,Zt < Wﬁﬂc\&

Z o 3 Z o 3 Mk

1

and similarly 70u|Dor|Zy € W 5 N C 5

Z /|2

e’

Proof: We first see that

@g( A aa/Zta/>
1Z 02

7t
70/

1
|Z o]

1
|Z,o/|2

_|_

aa’ Zt,o/

A3 Z |2 O

.

2 2 2
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1

A _
Now using Proposition A.0.10 with f = —238a/Zt7a/ and w =

we see that

‘Z,a/‘§ |Z7Oé'|

Az _ Az Az
éaa/Zt,a’ < a Zta ao/( éa Zta

|Z,a’|2 LoomHQ |ZOt|2 2 |Z,a’|2 2

Az 1P

a Zta aoz’
4 ”2 2 [Z.al

1

As|Z . |f € Lfﬁ and w’ € L? we have p 80/2,570, € W5 NC, /. Now we have

’Z,a’P
Az - o1 _ Az
laa/Do/Zt = /\2|Z7a/|26a/ |Da/|Zt+—8 Ztoc
|1 Z | Lot Z o Zw|?
Hence
A2 — 1 1 1 —
0D 7, S |V 1Zal20w || 1wl Zilyee
|22 W sNC x5 W
B A2 _
+ ||w||W ;ao/Zt,a’
o W 50C /5
1 AL
The estimates 7O Doy Z; € W 5 N C /3, ﬁﬁa/|Da/|Zt € W, 5 N C, s are proven
‘ZyO/P Z,o/ 2
similarly.
>\l
5) O A1 €W 5
Z
ot oh
Proof: The proofs for . —0xA; € L™ and Z ——— 0% Ay € L? are exactly the same as for
|Z7a, 2 Za, 2
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the energy I, in §4.1. Hence we have the estimates

A2 1 _ A2 _
_218Q/A1 5‘/\;|Z’“’|éﬁa’Z—H ——— 00 Zior || || 21,
|7 |2 N ol oo |Z.o|? ,
A 24 < i o2l 1z on =2 Jlow=—| Ly
’Z70[/|5 “ 2N ‘ZQ‘Q aZ ’ Z70/ 0o Z,o/ 2 o0
\3 _ 1 \3 _
+ ||Zt7o/ ||2{ ‘—380/215,0/ + 8o/ —laa’Zt,a’ }
o |2 oo o 2| | Z o] 2
From this we get
A2 1 A2 A2
‘D ‘ —8Q/A1 N Oy 0 A1 + 3(92/141
ZC!/’§ |Z,0/| 2 |ZO/|E |Za’|2
5 2 5 o0 ) 2
A2 A2 1 A2
6 ~03,A, € L? 92, d,A; | € L%~ and hence ~0%L A €W 5N
T TSGR PTG (\Z,af ) A Zaf T
Cox

Az .
—03,A, } € L%ﬁx For the water wave equation with
Z2,

Net

Proof: We will first show that (I — H) {
no surface tension we have from (3.5) that Ay = iZ F, o Z + Z o + iZtZtva/. Hence

:z’(]I—H){(ZZt >; o, ta}
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Now we see that

Z

w-nf(2)

e’

Az .
_5821213’0/} —
Z2,

hence we have the estimate

\2
(]I—]HI){ fag,Al}
Z2,
fres 2
AT, o - - DA
S - 582’Zt0/ |||Doc’|ZtH + —Qaa’Ztoa’ —23804’2150/
2 ’ > Z o ’ Z |2 ’
|Z .o 2 |Za 2 |Z.a 2
A2, o 1 Z
+ 583/215,0/ {HZt,a’HQ ao/_ + aa’PA<_t)H }
o 2 2 Z o 2 Z7O‘/ 00
. o o, 1 )
Now lets come back to proving the main estimate o Ow A1 | € L7 5. Now as
|Za/|g (6% |Z7a/|2 \/X
A; is real valued we see that
AL 1 1_1 1
— 0w Ay | = MRed (1 — H)O2 | —— 0w Ay
| Z |2 |Z o] Mk |Z o

161



i 1
Hence it is enough to show that ~ (I —H)0% | ———0. A1 | € L?~. We have
Zl? 17,0’ 7

ptin 1
WZ (I —H)O? | ——50u A
3 « 2
|Z,o/|2 | 70/|

)\l—Z 1 /\;_z 1
2 H|0% | — 50w Ay | + ([ H){ R, 0o Ay
Z? Za 728, \1Za|

1
22 M| 82 (W&,//h)

2\2002 1 \? X202 [ 1 1
+(]I—]HI){ “(aa, >aa/A1+ ‘”(| 02 )aa/Al

’
Zot| N2 o]

Hence we have the estimate

A2 1
’ §a§, ——— 0, Ay
|Z,o/|2 |Z70/|

2

A2 1 1 A2
- 0wy + || =) 202 A,
|Z7a/|§ |Z7o¢/ |Z,o¢/| o) ZZ, 9
1 A2 A2
+ —2@0/141 gai/w + —18a’w |||Da’|w||2
|Z,o/| o ’Z}a/|§ 9 ’Z7a1|§ .
1 1 1 1 1
T [xtzalton \ (MDwmm +‘@w ) 0wy
Z || oo 2 Z o o) ||| 2| N

1
+ || —=——=0% A,

|Z7a/ |3 o

)
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From this we easily have the estimate

AL
A,
|Z o |2 2
1 1 Az 1
< 8 Al H/\ |Za| 6 ’ o —— || + 82
|Za| { |Za| ‘Z,a’| 2 ‘ZQ‘Q |Za|
1 Az 1
‘A|Za|8 ‘ Lol + || -2 e O Ay
‘Za‘ ’Za’ 9 |Z,a‘2 |Za| 2
and similarly
% 1 1 2
80/( 82A> H)\ |Za] On 7 ’ 382,/11 + —183,141
|Z |2 , Z oo || 12,00 . Zw? ,
1
Hence now using Proposition A.0.10 with f = Z ~02, Ay and w = 7] we obtain
ZO&’ 2 7a/
A ’
: 5 82/141
|Z,O/| LoonE S
2
A2 A2 % 1
< 02 A ||0w | ——0% Ay + 02, A1 |00 —=—
| Z |2 ) |Z o |2 ) | Z o2 , \Z |l
)\1
7 ——10ubo € L
12,02
o3
Proof: The proof of this estimate the same as the proof of Z ——O0ubo € L™ for the energy
Z o 2
FE_ in §4.1. Hence we have the estimate
Az 1 s A3 1=
—— N A2 Z |20 | 20—\ | Ztar
|Z’o[/|E |Z | 0/ 2 |Z,a’|§ Z7CY' 9 ' 2
1 DI A2
+ Haa’ —18a’Zt,a’ + —18a’Da’Zt
Zor ||y | Z |2 ) | Z |2 .
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1

: , A 2
OnyDyby € L oy and hence we also

A2 %
8) ———50%by € L?s, ———0u|Dy|be € L* o, ——
’Za ’2 L v ’Z,a’P A ,a’|
A2
have ——0,by € W\f
|Z ]2
;

+02/by € L? for the energy

Proof: The proof of this estimate is the same as the proof of Z
Z o 2

FE, in §4.1. Hence we have the estimate

A2 Az 1 U |
(I - H){ 202 by 5 02D Z|| + || ——50w Ziw|| | A2 Z 0|2 O
Zz |Za,|2 . ’ 7all ) o
Az Zy
02—\ {NDwZi| ., + aa,IPA< )H
12,002 Z { Zar /s
1
On——
)
and using this we have
Az Az ) | 1
8 by S Hba/”oo 02 + H)\2|Z7a/’20a/ ‘&w
" |2 2 ‘ 1 Z Zva/ [e'e) Z,Oé/ 2
A2
(I— H){—38§,ba/}
Z% 9
The estimates for the other terms are also shown similarly
9) X O Z. L?
tta € Ly
1Z 02
Proof: We know that 7, — i = —z'Z—l. Hence we have
AT o AT, Lo 1
1aa’Ztt,a’ 5 ;aa’Al + H|DO/|A1 9 )‘2|Z,cx’|2aa’
|Z,Oé,|2 2 ol 2 o loo
A2 1
+||A1||oo lag/
Z,a"Q Z’a/ 2
10) \ ~02,7 e L* A ———0yD2,Zy € L? \ ———0yD? 7y € L? and similarly we
tt,a! ok T tt V% tt ¥y lmiiarly w
|Za’|2 |Zo/| |Zoz’|2
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1 1

A2
2 2
|Z |2 3a/DtD Zt €L o maa’|Da’|DtDa’Zt S L\f)\

also have

1

1/2
!

Proof: From the energy we have D, ( OwD2,7 t) € Lfﬂ. Hence we have

1

Az
12,0

1

A2
1/2

a/

~0uD:D?, 7,

2

{bar |l + |1 Dar Ze|| o } + || D
2

——0uD? 7,

~

\3 ) =
(Znna)

DD? 7, = —2(Do Z;)D2,Zy — (Do Z) D2 Zy + D2, Z

2

Using the commutator [D,, D;| = (D Z;) Do we see that

Hence we have

1

A3 _
: laa/Di/Ztt
|Z,o/|2 2
Az Az _
S 10w DaZy| + T (1022 ]|, + | D% Z.],)
’ZaP 00 ’Z,a’P oo
- Az Az Az -
+H|Da/|Zt||oo{ -0 D2 Z4|| + 00 D2 2, }+ ———0uD,D% Z,
a’Q 2 |Za’2 2 | Z .| 2
Now we have the identity
D*Z, = | Dy L Zipor + oo = —0uZ
ol “itt — (e % Z@/ tt,a’ Z’a/ tt,a’
Hence we have
A2 1 A2 1
8 Ztta < |HD0¢ ‘ZttH {H)\ |Z ‘@O/Z— 83 Z }
|Za" 2 76“ ') NBID) |Za’|2 9
A2 |Z | O ! SO0 Zu|| + : ————0.D%7
o Z |Za/‘ fo% tt ) a|2 tt ,
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AL
We can prove Z i | T Oy Di, Ly € Lfﬁ\ similarly. Now observe that

|Do/|DyDor Zy = | Doy | (Do Zyy — (Dor Z4)?) = wDZ2 Zyy — 2(| Dot | Z4) D2 24

Hence we have

1

A2
ﬁaa’|Da’|DtDa’Zt
Zol?
7a 2
\3 \3
5 ’Z ’l 80/(,;) HDEM'ZttHQ + Waa/Di/Ztt
/12 /2
e (o) s 2
Az Az
+ —18a’|Da’|Zt HDg/ZtH2+ |||Da’|Zt||oo —180/Dc2>/Zt
o ? oo 1Z,o|? 2
A3 _ \3 _ \3 _
11) ’Z ’% &tht,ax € Wﬁ N Cf, Wao/DtZt,a/ S Wﬁ N Cf, —%8Q/Da/Ztt € Wﬁ N
b A% b b
C\/X and ﬂ@a/Da/Ztt € W\/X N C\/X
Az _ 1
Proof: Let f = —23804/Ztt,a/ and w = . Then we see that i € Lfﬁ\. Now we have
|Z,a’|§ |Z7Oél| w
Az Az, 1 Az
‘ 0 ( : aZ) S| g0 | + |1l |0
‘Z,a/‘Q 2 |Z,o/|2 2 SRIES ’Z,a’P 2
Asw' € L?, using Proposition A.0.10 we obtain
A3 _ \3 _ \3 _
3 aO/Ztt,o/ ,S 1 ao/ Ztt,a’ aoz’ < 5 ao/ Ztt,a’
|Z,a’|2 LoonE S |Z,oz’|2 2 |Z,oz’|2 2
AT 1|
+ Wao/ztt,a’ aa'm
/2 ,Oé, 2
7a 2
AT =
Hence we have ﬁ@a/ Zitor € W 5 NC 5. Now
Az _ Az _ A3 _
Waa’DtZt,a’ - - |Z |§ aa’(bo/Zt,a’) + Waa’ztt,o/
! 2 Oél 2 7a/ 2
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From this we obtain

A2
aa’DtZt of
, 2
|Z’a | W\/Xr\lc\/x
1 1
<[22 > 2 >
S LR N XA L A
| 70¢l| W\FA | 7O‘,| W\/XHC\/X
1
+ ||b0!'HW gaa’Zt,a’
’al W\/Xﬂc\/i
We also have
A3 _ s L _ As _
laa’Do/Ztt 5 )\Q‘Z, |2 |HDO‘/|Z“HWHC+ —gao/Ztt,a’
|Z,a”2 0o Wy ’ ,a”2 0o
)\1
We prove ——— 0 Do Zy € Ly similarly.
|Z,o0]?
12) \ 03— L S A ! eL? —A; BwelL?
o 5 a/CL)
2 2 S g 5 2 € P .
Proof: We know that Z,, — i = —i—— and as A; > 1 we have
\: o3 b
5 Ya!
|Z,oz’|§ Z’a/
1 . 1 1 A3 1
< 8§,A N2 |Z |20y — —— 0, A —82,—
~ |Z7a/|3 1 , | 7CY| «@ Z,a/ |Z7a,|2 « 1 N |Z’a/|% Zva/ )
A2 _ A2
5 az/Ztt + 182"’41
’Z,a’P 2 ‘ ,a"z 2
Recall from (2.9) that
Z 1 1 Z o 1
Re<i8a1—> 6 Im(i&l/—) = Z(@‘Da/|W)
|Z,o/| Z,a’ |Za | ’Z,a” Z,a/
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Hence by taking derivatives we obtain

Az 1 A2 1 1 A2 1
5 2 020|| [[|1Dw|—| + | ——0uw -
|Zoc|2 |Za| |Zo¢|2 9 Zvo‘, |Z,Oé’| |Z,o/|§ Z,oz’ 9
Az
+ |08 —
|Z? Z 2
and similarly
Az Az 1 1 A2 1
|| S || hw Dal ||+ |t O
% ‘2 2 | Z ]2 2 o |2 ] ’Z,a’P P
1
Az 33,L
1 Zw? Lo 2
A2 A% 1 2
13) 702 —— €W 5NC 5, EW. ;NC5and ——=0%w €W sNC
Zo? 77 WA 21T S AN A e
Proof: We first note that
1 1
5., Az A e L <|lip. Az, 1 A2 9, 1
(e % Z ~ @ |Z /| o , 5 Y« Z ,
|Zoz|2 2 “ |ZOc|2 Z o 2 |Z,o|? o
A1
Now taking f = ——02, — and w = in Proposition A.0.10 we obtain
|Z o Z o |Z .o
1 2 1 1
)‘_2333,% < A2 183/% O, (/\_2532,%)
|1 Z ]2 | Lozt | Z |2 Ay | Z .| AP
A2 1| 17
A ——|| |0
|Z o ]2 2o ) 1Za| |l
A2 2
As -0%,—— € L~ this shows that 702, —— € W5 NC,5 We can prove the
|7, o |2 Z / 2N |Za |2 Z VA VA

other estimates similarly by taking derivatives in

Z,o/
‘Z,a’ |

o

1
8%) =0

Z o

1
Lo g— ) = i@|Dy
7 Z) (@ Do)

1 I
) — m
|Z,a’|
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[

1 1

A _
14) 1/28 D%Zy € Cyyy ——=03DuZy € Cyy, 3 Zio € C 5 and similarly
|Za/’ |Za| |Z
X@DZGC X 0| Dur| Do 2, € C
o Lt s 3 U/ o ol Lt
7w ’2 VA 2o 3 VA

A2 /A,

7172

Yo%

Proof: We first see that

2V, DQZteL

A2 /A,

1

A2
as Ay € L™ and 1/28 D ZteLfasr[

a/

dw D2 Z, € C /5. From this we obtain

is part of the energy. Hence P
Az - AzV/A, 1
— S 0uDLZY| S || 0w DA Z, H
\Z 27, Z |2, VALl
, ,Q Cﬁ C

1

As w? € W we see that

|Z 0]
% 1
(D) S el piization | | Lsounaz,
|Zoz|2 Cox o Wox | ,a’| c
\3 _
+ lwlhy|| =50 D2 Z,
sl 2
pres C\/X
Now observe that
Az A3 1\~ 1
02 Do Zy = _Qsaa,{(aa,_) Zt,a,ju_aa,zt’a,}
| Z o |2 | Z .| Lo Z ot
Hence we have
AT, -
: 782’21570/
‘Z,O/|2 Cyx
1
1 1 _
S ||w||wH)‘2|Z,oz’|28a’Z Z —— 0w Zi|| + Wyl =502 D Z,
706 | a | I ,Oc’| Cﬁ
- Az, AE
+ ||w||w|||Doé/|ZtHW —— 05— Z + |wllyy ||| Do 500 21 o
Za| c < lw |Z7a,|2 c
VA v
1 )\%
Now the estimates | g =02, Dy 7, € C/x ———50x|Do| Do Zy € C, /5 are proven similarly.
Z o 2 o2

——0, D ZtEC\f Now we have

169



1

A2
15 ——9,0 € L?
1202 v

Proof: Using formula (3.8) we see that

Az Az Az
—180/6 = (]I + H)Re —160/6 + ZIm(]I — H) —18(1’@
’Z,a’P ‘Z,a’P |Z,o/|5
Now using the formula (2.9) we see that
Az Az
Req —— 040 p = —i—— 0w/ (Dyw)
’Zo/l§

Hence we have

1

A2 T | AT,
Red ——0v0 ¢ | S |NHZalP0uo—|| NDalwl, + || 02
|Z7a, | 2 5 2 oo o | 2 )
We also have
A2 A2
(I -—H)S ——0,0 p = - H|0.,0
|Z,o/|5 |Z,o/|5
and hence we have
A3 1
(I-H)§ 000 ¢|| <N |Zarl?00—— ] 16,
|Z7a”§ 9 7 |Z,O/| 00

A2 A2
16) —gaa/@ S C\/j Taa/@ S C\/X
’Z@/’Q 72

/
Yo%

Proof: Using formula (3.8) we see that

Az Az , Az
—2 9,0 = (I+HRe{ 0,0 b +ilm(I — H){ ———0,0
’Z,a’P ‘Z,o/P ‘Z,o/‘g
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Using the formula (2.9) we see that

/\l )\l
Re —Zsaa/@ = —i—238a/(Da/u))
’Z,a’P ‘Z,Q’P

Hence we have

RC{)\—ZSaO/@}
‘Z,a"Q

Coun
PN | 1 A3
5‘A5|Z,a,|%aa,z— 0|+ (@l || O
@ bz |12l c s Cux
Now observe that
(I - H) PPN SIS I L owe
Zo|? Zal™ | 212
Hence we have
Az 1 A3
(H—H) —§8a/@ 5 (|||DQI|W||2+‘8O/Z— ) —lﬁa/@
|Z o2 Zalllo/ || Z oz,

Cux

1

AL

Hence —238a/@ € C 5. Now as W2 € W we obtain the other estimate easily by multiply-
|Z af | 2

ing.

Az )
17) ’ ’1 80/Dt@ G L\/X
Z o2

Proof: Using formula (3.8) we see that

Az A2 A2
—— 0w D©® = (I + H)Rex —— 0o DO 3 + iIm(I — H) =0 D;©
’Z,a’P |Z7a/|§ |Z,oz’|E

We control the term individually.
(a) Using the formula (3.13) we see that
A2 A2 - _
Re -0 DO p = — -OpIm{|Do/|Do Zy + i(Re©) Dy Z4 }
|Z,oc’|§ |Z,o/|5
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Hence we have

A3 \3 Az _
Red ——0.,D,0 3|l < 70w |Dor| Do Z4|| + 00| || DarZe|
|Z,o/ | 2 2 | af | : 2 o 2
\3 _
+ H@HQ lao/Do/Zt
(b) We note that

Az A3 \iw3
(I - H) _9wD,0 % = _H|0.,D,0 —wi | Y H|0.D,0

|Z,o/ 2 |Z,oc’|E |Z,oc’|E

1

and as TQ/ZGQIG) is holomorphic we have

/
o4

A3
(I— H){ﬁaa/z)t@}

!
,Q

by DuZ,\ A\ Az
:(]I—H){(7+ 5 )Waa,@}ﬂb,ﬂ]aa,{ﬁaa,@}

/ /
FIe2 FIe2

From this we obtain

- H){ A laa/Dtca}
|Z,o/|2

2
1

A2
S bt llog + 1P Zill o) || 77590 ©
o 2
1 A2
i ‘mz,a,yzaa,— a1l
’Z@l/’ 00 |Z,O/|§ 2

x
18)’ 2’3aa,Dt@ecﬁ
Zolt
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Proof: Note that we only need to prove the H? estimate. Using formula (3.8) we see that

1 1

yZAZ]S 0w D:© = (I + H)Re{]ZA—QFaa/Dt@} + iIm(T — H){ A2 3 aa,DtG)}

We control the term individually.

(a) Using the formula (3.13) we see that

A2 A3 _ _
Re{ | |3 aa/Dt@} = — | |3 doIm{|Do|Doy Zy 4 i(Re©) Dy Z, }
Z |2 Z o2

Hence we have

Az
Re 3 8a/Dt@
’Z,a’li

Cux
A2 _ A2 _
S | = —50wDwDuZi|  +||——0w0| |DuZil,,
| ,CY’ 2 C\/X ‘Z’a"2 C\/X
S} \3 _
|Z,Oé/| W Z’a/|% Cﬁ
(b) We note that
A3
(I- H){ , gaa,Dt@}
1 Az W Az
- H 9y D,0 — wi 2 (1 H) 9. D,0
Zorl 1 Z )2 |Z .o |Z 0|
As we have
{ 1 ,H} )\%lﬁa/DtG) < || O L Aélﬁa/Dt@
‘Z,o/| |Z7a/|§ ih |Z,o/| 2 |Z7a/|§ 5

We only need to show the second term is in H 2. Now as w2 € W, itis enough to show

o Az Az )
that Z (I —H) ﬁﬁa/Dt@ € C 5. As ﬁaa/Dt@ € Lﬁ we only need to
o Za/ 2 Z}a/ 2
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show the H z estimate. Now

o3 Az
I—H 00 DO
71" >{|Z,a|2 t }
N LI 0w DO + (I — H) Xa /D,©
Zarl" | 1202 z2,

1

A2
Now as ——0,/0 is holomorphic we have
Z

(1— H){A—jaa,z)t@}

. 3DuZ,\ A2 3
= (]I — H) (—bi + 3Da t) )\3 8 Oy + [b, IHI]@O/ )\3 8 He)
2 2 ZE Zﬁ/

o A3
—(H—H){ |18Q/Dt®}

|Z,o/ 2 H%
1 Az
S 9 || + [[Darlwlly ¢ || ——1 0 DO
[ Zal [l 1 Z ]2 2
A2 Az
+ (b by + 1Dar Zell ) || = 0O + l[barl 3 || =50 ©
70/ Cﬁ f)/ H%

1

Az
19) ——0yRs € L?
1Z 0] 7
Proof: Recall from (5.2) the formula of R3
= {-2(D% Zy) + 6(Do Z,) (D% Z)) } (Do Z3) + { —4(Dar Zyy) + 6(Duw Z)* } (D2 Zy)

_ _ 1
- 2<D§’Zt>(Do/Ztt) - 4(D0/Zt)(Di/Ztt) - ZZE(DO/E) <ﬂaa/g]1>

1 1
—i(DorJ1) <DQ,Z—> —iJy <D§,Z—>
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) 1 Az Az 1 Az 1
A= H)\2|Za’|28a’ + - T O/ : 183/ - 582’
Zallo |[1Zal? N 2wl "2, 1Zwl? " Ze
Az AT o AT, =
+ - 3ao<’Zta’ + - ao/Ztt,o/ + - ailzt,o/
|Z,a’ 2 00 |Z,o/ 2 0o |Z,oc’|2 2
Az
+ 56(23/Ztt0/
|Z,a’ 2 2
and
1 1 _
B=1+ ||0. + 11D |wlly + ||| D | 5— + 28 + | Zeor]],
Z,O/ 9 ,0/ |Za| o )
| Zi|| , + 1P| Zu|, + || o200 Zrar|| + 1]l
1Z a! )
1 _ 1 1
+ Qaa’Ztt,a + —an/t]l a” <—260/J1>
‘Z,o/‘ 9 | ,a” 0o ’Z,o/’ 9
Now by expanding and taking derivatives we have the following estimate
A2
—— 0 R3|| S AB*
|Z,0é’|2 2
20) Ry € L2
Proof: Recall from (5.4) the formula of R,
| Dibw  DiDuZi (ba  DuZ\?| A2 A2
R4——{ 5 + 5 — 74‘7 21/28 D Zt—l—Zl/,Q@ Rg
1 ) A (= 1 2
— R 2iA [ | Dy O A1 — — | Doy — Ow D2,
{ Z 1(' 'lZ,afl) 7 ( %)}zlf
A2 1 b DuyZ,\ A3 _
.9 e’ o' “t
— 3w (ZI/IQ ) |Da | (m@au]1> - (7 + 9 ) Zl/IQa Dt Zt

,Q
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Hence we have the estimate

[ Rall

1

A2

S 1Dl + 1 DD Zill o + + | Dar Zill )*

(IIbarll o —— 0w D2 Z,

I

aa’Al
IZa ?
)\1
2w
’Z,a’P

04 2

1

A2
|Z

1
; ||A1||OOH|D¢|

/
e’

1

A2
|Z,a’|5
1

+

1 aOz.’-l:i3

2
/
fye%

.

1
+ {“Al”ooH'Da"m
Az

’ 2

2

-0 D2,

+
2

2, |

[%S) o

A2 _
———0,D,D2,Z,

2
!
%

+ {llberlloo + 1D Zel

2

1

1/2

a/

21) (I— )02(A Ow D? Zt> € L?

Proof: For a function f satisfying P4 f = 0 we have

(I —H) Dz f

= [Dy, H|D, f + Dy[Dy, H] f
= [bv H]aoc’th + Dt[b’ H]aa’f

= 2[0, H|00 Dy f + [D¢b, H]Oo f — [b, b; O f]

w\»—A

1/2

’

~|

As Py < Ow D2, Z) = 0 we obtain

b

1

1/28 D2 Z,

I— H)D2(

) 2
( 1/28/D3’Z>

)\

S ool + 100 Dbl 3 || S5

2

2

+ ||ba/|| 8 D2,

2

)} 1
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2804/(21&/28 D Zt

|Z,0/|

22) (H—H){z’

Dol —
(4

1 aa/Di/Zt

aoc’(]1>




Proof: We see that

2
Az _ 1
< |2 5027, H—a A+ A H'D | ]
o { |Z o . 12 o]
23) i Oor| D | L oun | er?
Zal? |Za| VA

Proof: As J; is real valued we see that

: b
| A 1 9| Da \(ﬁ@adl) :Re{AZwT;uaaf(I[—]H[)\Da/](ﬁ@a/L)}
Zo/ 2 o , ’

et o

and we see that

pVInE 1 PVInE 1

—— Oy (I —H)|Dy|| ——=0uJ1 | = — JH | O | Dy 500 J

Zla//2 ( )| ’<|Z,a’|2 1) [Zl/,2 ] | |<|Z /| 1)
+ (- Al

A2
Now recall the of equation of =y ——=0, D ,Z, from (5.3)
Z

,a

A, A2 _ A2 1
D; +i OwD% 7, = —itt* =0y | Do || ——50uJ1 | + R
( t |Za | ) 71/2 t Z1/2 ’ | |Z’a/|2 1 4
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2
1

A2
N |
oo |Z7oz’|§

Applying (I — H) to the above equation we obtain the estimate
+ [ Ball,

1
| x e rDa|<—|Zl| aa,h)
Za 2 o
1
|Da’| <—an/n]1>
oo} |Z’a/| 2

1 1 1
SJ{ )\§|Z,o/|§aa/Z
1—m)di—2 g X O D?,
+ ( — ) Z|Z7a,|2 o Zla/2 o

)\ 1
5.2.4 Closing the energy estimate for L) ,,,

+
2

(H - H>Dt2<Zl/28a/D2 Zt)

,Oé

2

We now complete the proof of Theorem 5.2.1. Recall that

2 1 2 1 2 1 2
1 )\ )\2 1 )\
E)\aua: = ‘ >\%|Zoz’|§8o/ +‘ 8 Zta + —621_ +‘ 8 D Zt
; ) Za/ 1/2 1/2 « ZO/ 1/2
) o0 Z,CM 2 Z7al ) 2 Z7a/ 2
2 L 2
Az 9 VA [ N2 Y =
P (Ma o Zt) ’ {W(Z—/”Z 1
e 2 ’ 70/ H?

Analogous to what we did in the energy estimate of E,, we simplify the calculations by the use
of the following notation: If a(t),b(t) are functions of time we write a ~ b if there exists a
universal non-negative polynomial P with |a(t) — b(t)| < P(Ehpign(t))Exaus(t). Observe that ~
is an equivalence relation. With this notation, proving Theorem 5.2.1 is equivalent to showing

dE%;”(t) ~ 0. We control the first four directly and for the last two terms we use the equation

(5.3).
2
proceeds exactly the same as that of

1
1. Controlling the time derivative of || A2 |Z o 20, 7

!
e’

1|
controlling o2 | Z o2 O which we did in proving the estimate for £,. Using that
computation we obtain T
1 1 1
o (M 1Zatbow )| 5 D0+ Tl W12t 0 5
A Az
NE Y U
|Z7a”§ o0 |Z,a’|§ oo
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and we have the estimate

1 2
' ‘ |20, Zla/ (
lim sup -
s—0t S

1 1 1 1

< M1zl 0w ||| P (A2 00

Z o lleo

S P(Enigh(t)) Ex aua (1)

K

20, 1
Z

Lo

2. We first observe that

Az b DwZi\ A2 . - Az _ _
D, (Waa’zt,a’> = —< 5 + T> Waa’zt,a’ + Waa’(_ba’zt,a’ + Ztt,a’)

/ ! !
FIe2 & &

Hence

1

Az A2 _
o st )| 5 Gl s 10200 007
Z o ) Mk )
Az AF
+ 8 b —laa’Ztt,a’
‘Za,| [o'e) |Z,CM/|2 2
Now by using Lemma 2.4.6 we obtain
dt/‘ 1/26 Ztoc dO/
2 L )
Az = A2 2 _
S ||ba’”ooH—18a/Zt,a’ + a Zta -D ( 1/28 Zt7a/>
/|2 Z ,|2 7 ,
1Z > I 2 a 2

< P(ghigh)E)\,au:L’

3. We observe that
Az, 1
b <Zl/28a Z.a )
bo  DuZy\ A2, 1 )z 1
= — (7 ‘I— 2 ) Zl/2 aa/ Z7Oé, + 21/2 8a/ Dt@alz

by DwZ\ Ai ., 1 A 1
__(7+ 2 )Zl/?a“ Z o +Zl/,28a'<D b = Derl - (aa'Z_>Da'Zt>

/
Nej%
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Hence we have

Az, 1 A2 1 A2
D % S ool o + 1D Zel | = 02— 0w D% Z,
2V Z Z|? " L 17,0
2 af 2 o 2
1 b Az
+Haa’_ g 1aa’Da’Zt + 1a 'Dearbos
Za |4 | Z o2 . |Z |2 )
Now by using Lemma 2.4.6 we obtain
/
dt/’ 1/2 da
A% T [t R A,
< b ||| —— 02— —— 0% — Dt< — 02 )
~ 00 1Y« , 1 o , /2« ,
Zo|? Zo 2 |Z o Lo 2 Z o Za 2
P(ghigh)E)\,aum
4. Using Lemma 2.4.6 we see that
d [| A2 >
%/'21/28 D27, da
“ 1 2 1 1
Az 9
S ball || —F0w D Ze|| + ~Ow D2, Dy 1/20 D2,
Zo|? ) | Z o \2 ) Z )

S P(£high>E)\,aux

5. The quantity left to control is the time derivative of

fivara= flact (iZ50)]

d /

where f = P /28 'D?,Z, and we have Py f = f. We have already computed the time

derivative of such functionals in the §4.2.3. Hence using that computation we have
dE)\ aux (t) /
———~ =~ 2Re Dif +i—s 50 !
o I Z’a 20uf | (Def)do

As D, ( ] /26 D2, 7 t) € Lfa we only need to show that the other term in in Lfﬂ. Now the
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equation for 2 77 GQ/DQ Z, from (5.3) implies

A Az - Az 1
2 . 1 2 _ =5,
(Dt + ZlZ ‘28(1/) Zl/zaa/Da/Zt = —Ww Zl/28 |Da |< 7 8 J1> + R4

/ |Z ]
,Q o o ,Q

Az 1 2 2
As we have shown ,|% Ouw | D | (maa,J1> € L\[\ and R; € Lﬁ we have shown

that this term is in L%ﬁ and the proof of Theorem 5.2.1 is complete.

5.2.5 Equivalence of £, ,,,, and &)

We now give a simpler description of the energy F) ... Define

2 1 1
1 1 Az 1 A2 1
Enaue = ' NZZ2, 00 ~ || L2 7o —, 7
R (P 2o g
2 L L 2
\Z A3 AT o
+ Taa’ Zt,o/ + 5 83/21‘,,0/ + _Zag/Zt,a’
Z2, . 1122, . 1122, b

Proposition 5.2.4. There exists universal polynomials Py, P, with non-negative coefficients so that

for smooth solutions to the water wave equation with no surface tension we have
E)\,a,uw S Pl (ghigh)gk,au:v and g>\ aur S P2 (ghzgh)E)\ aur

Proof. Let E) 4., < oo. We have already pretty much controlled all the terms of &) ,,, and the

1

057, o € 2. This term can be easily controlled by using the fact

only term not controlled is ——
ZE
Oé

1

) =
zaa/Zto/ E C\/X.

|Z o[
Now assume that &) 4, < 00. We see that the first three terms of EA auz are controlled.
1

that w € W and

A2
Now following the proof of 32 Zior € Lf in §5.2.3, we see that 21/28 D% 7, € Lff

|1 Z o p
Ab A A
1/28 D ZteLf Hence we now have ———0y Do ZteLO} 78 /Dy ZtGLO\}
o |Z,a’|2 |Za’|
2 1 A2
Now following the proof of - ~02, —— € L? 5> We obtain that 027y € L*~. Now we
Zalt " L Z | ”
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1
2

1

9 = . A2 _
9% Zu € L’ /; and obtain D, (Z—aa/Di,Zt> € L.

follow the proof of 172

5
2 /

!

e e’

1
We now use w € W to see that : 0% 70 €C /- Hence again by following the proof of
|Z,oz’|§
T, o NZW DY _
|Z:/| 7 82, Ziao € C 5 we see that m (ZT://Q@O/ Di, Z t) € C,/x and therefore the proposition is

proved. 0

5.3 Apriori estimate for Fa

As mentioned in §3.4, let A be a solution to the water wave equation with surface tension ¢ and
B a solution to the water wave equation with no surface tension and denote by f, the function f
for solution A and f;, for solution B. Recall that the material derivatives are by given by (D,), =
U,;latUha, (Dy)y = Uh_blﬁtth and we have h = hy o h;! and U = Ui = Uh_athb. Define the

operators
L)
(D)) = o [ 2@ a3

v 1 1 ’ ’
L e TP

Recall from §3.4 that A(f) = f, — U(f,). For convenience we will often write it as A(f) =
fo—U (f)». We also define the following notation

R B O R oA Y O A oA YR
i tidetili= g | ( hla’) —h(5) > ( hla’) —h(5) )85 hma

The following two lemmas are proved by a straightforward calculation.
Lemma 5.3.1. Let U s H, H be defined as above. Then
1. (Dy),U = U(D,)y

2. Oyl = hylUdy OyU * =~
ha/ o h_l

3. HU = UH
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4. Ulf,H]owg = [(Uf), H|ow(Ug)
5. Ulfr, fo; 0 fs) = (U 1), (U f2); 0 (U f3)];

Lemma 5.3.2. Let A be defined as above. Then

n—2

LA(ffa fa) =Y {TFe - U} ASis){ (fisz)a - (fa)a}

2. Alf,H|Owg = [Af, H|Ow (ga) + [T ()5, H — H] 0 (9a) + U{[fo, H)Ow (U (Ag)) }

3. A[flan;aa’fS] = [Afl, (f?)a;ao/(f?:)a] + W(fl)b,AfQ;aa/(f?))a}
+ [T(£1)0: U (fo)y; Oar (Af3)]
+ {[fj(fl)baﬁ(fz)maa'ﬁ(f?))b} - [ﬁ(fl)lnﬁ(fz)bsaa/ﬁ(f:%)b]ﬁ}

The following lemma gives us control of some basic quantities required for the proof of Theo-
rem 5.0.1.

Lemma 5.3.3. Assume the hypothesis of Theorem 5.0.1. Then we have the following
1

L ||| o (2), (t) < C(M) forall t € [0,T)

LOO

Oé/

h(c/,t) — h(B,t)
‘ o — B/

: Hfij2 < C(M)| £l and HﬁfHH% < C(M)|| Il ;3 These estimates are also true for the op-

erator U~V instead of U. Hence we have |[H(f)||, < C(M)||f]l,, IR 3 < CDNSI s
and [|[H(f)|l, < C(M)[|f]l,

0/—6/
= — C(M I o "and T
, ‘h(o/,t) R < C(M) forall o/ # ' andt € [0,T)

N

w

4. Wl ) ), ﬁl () < C(M) forall t € 0,T)
o 11 H2
~ 1 1 ~
5. H‘Z’a/‘aU(m> (t), HWU“Z’Q/DI) (t) < C(M)forallt € [O,T)
Pres b [e'e) o3 a

o0

6. ||(IDar|)aher|l,(t) < C(M) forall t € [0,T)

o120 (1) }

te0,7T)

& Humwn{ﬁﬁuzﬂwn}

N

' (t) < C(M) forall

o

Proof. We will prove each of the estimates individually.
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1. We know that h,(a’,0) = hy(/,0) = o at time ¢t = 0. Now observe that

h/tOé . h/ta 1 . h/ta 1
Uh (ha> —b and@tha— (h—a)ha and@th—a——(h—a)h—a
and as ||(ba)s|| ., is controlled by Ej;g, and ||(ba)a||, is controlled by E,, we see that h, and
i remain bounded by C' (M) for both solutions A and B. Now

ot = (o) (1) - (3) ) R

~ ~ 1
Hence as h, = 1 attime ¢ = 0, we see that ||| (t) < C(M). Similarly for <

«

/

1

(t) < C(M) and the fact that / is a
oo

2. This is an easy consequence of ||fq||, o (t),

/

o
homeomorphism.

3. We see that

o= (e — [, 2
1515 = [l ac = [ T ds <cani;

Similarly we have that
/ h Y |2
”UfHHz :_//lf 0‘(; )2(5 )l do’ df’
f(2) — f)I
27?//( h=(x
|

> L = dx dy
))?) (har 0 h=) (@) (hor 0 h=1)(y)
SC(M>27T//f ()]

) —

) —

((x), ) dx dy
< cOn|fIP,,

fy

hl

|f(=) = f)I
o — ()2

In the same way we can prove the estimates for U~ instead of U.
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4. Using Lemma 2.4.6 we see that

IIha Ny S COD) el
S OO hal,
S CM)[harllfyy + herll ;3
S C(M)

M)(|[Far 5 + 1)
Now as ||ﬁa/||H% (0) = 0, we obtain that H%O‘,“H%

5. We observe that

(Dt)a{ |Z ol U ( |Zla/|>b}
1 R

(t) < C(M

+ [l 3 1(D2)ahic ]
+ ||ho/||H%||ha’(U(b

o/)b - (ba’)a>||H%

Mhatllo + [1Parll 1)

) fort € [0,7).

{|Za] U<|Za,|) } e{ (D Z)a = U(DarZ2)y = (bar)a + T (b )y |

Hence we have that

/1
|Z,af|aU(—)
|Z,o/| b

6. We first observe that

(t) < C(M

). The other estimate is proven similarly.

(D1)al Dor|yhior = —Re(Dar Z1)a| Dt | yhiar + [ Dec |, (Dt) ol
= —Re(Dav Z)a| Dl oo + 1Detl {Frar (T (b)) = (b}
= _Re(Da’Zt)a|Do/|aﬁa’ + (|Da’|aﬁa’)(ﬁ(ba’)b - (ba’)a)

- (~ 1 ~ -
T B (17012000 ) T 1Dl — (1Dal)s

Hence using Lemma 2.4.6 we have

d ~
‘\Da/|aha <M

il

H|D /| T

<O(M {H|Da/| ooy

As |D, |a7za/ = 0 at time ¢ = 0, we are done
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7. Observe that

~ 1
Dor)al | Zor|,U
{2l P (177) |
~ 1 1 ~ 1 =~ ~ 1
= Z7a/ aU - 80/—) —i—ho/( U Z7a/ )U(@a/—)}
{’ | Qzﬂﬁl}{ ( Za1), T e\ V(2 Za),

(|Da1|)a{|Z,a'|a(7<|Zl/|)b}

Hence we see that

(t) < C(M) forall t € [0,7).

2

5.3.1 Quantities controlled by F/a

In this section whenever we write f € L3 ., what we mean is that there exists a constant C'(M)
depending only on M such that || f||, < C(M)(Ea)®. Similar definitions for f € Lia, f € H%a
and f € L%.. When we write f € L? we mean f € L%. with o = 0. Similar notation for
H %, L, C and W. This notation is now consistent with the notation used in §4.1 and §5.1.3. It is
important to note that if f € L? and f € L., then we have f € L3, forall 0 < § < . We say
that a ~pz bif a —b € LA.. It should be noted that ~ L%a is an equivalence relation. Similar
definitions for ~1  ,~rx, and~ 1 .

We define the spaces Ca« and WZ& as follows

1. If w € L% and | Dy|,w € L., then we say f € Waa. Define

[wllyye = [l + [1Darlgw0ll

1
2. If f € H}. and f|Z |, € LA« then we say f € Caa. Define

1
nm%fwmﬁ+<HWG%@gl

Similar to ~ 1%, We also define the relations =y, and ~¢,.. Now analogous to Lemma 2.4.5 we

NA1Zetl,
2

have the following lemma

Lemma 5.34. Let a1, ay, a3 > 0 with oy + g = a3. Then the following properties hold for the
spaces YWaao and Caa
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1. If wi € Whaa, wy € Whaas, then wiws € Waes. Moreover we have ||u11w2||WAa3 <

[wrllyy oy w2l
2. If f € Caor and w € Wheo, then fw € Caes. Moreover ||fw||cAa3 < HfHCAa1 ||wHWAu2
3. If f € Cama, g € Caco, then fg|Z o1 € Liay. Moreover || fg|Zallly S 1 fllcyu, 190lcya,

In this section, we will need to commute weights and derivatives with the operators U , A quite

frequently and hence the following lemma will be very frequently used.
Lemma 5.3.5. Let f, g be smooth functions and let o € R. Then
1. If guU(Bu f), € L? then

(@) gu0uU(f)y € L
(b) 9aU (Bt )b 212, gala U(f)s
(c) 9aAOuf) 212 _ gaBr A(f)

These estimates are also true if we replace (L?, L?/Z) with (L, LT/OZ)’ (L*NHz, L?/OZQH?/K)’
W, W ) or (C,C /x).

2. If goU(f)y € L2 then
(a) (g|Z,a’|a)a(7<|Za’|iaf) € L?
(b) 9U (N =12 _ (91 Z.0|")al (120" f),
(c) gaA(f) NL2 (g’Za’l ) (lZ,a"_af>

These estimates are also true if we replace (L?, L%ﬁ) with (L>°, L ) W, W z)or (C,C /x).

3. If g.U(f)y € L2 then

(a) (gw*)al(w™f), € L
(b) 9aU (o =12, (gw®)al (@),
(©) 9uMF) 1 (9%) M)
These estimates are also true if we replace (L?, L2 ) with (L%, L%5), (W, W, z) or (C,C /x).

Proof. We prove each of the statements individually.
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1. We first observe that the energy F/a controls (}i —1) € LO\"F N H =~ MW,z Now notice that
gaaa/ﬁ(f)b = ha'ga (8 ' f)y As h € L™ we see that ¢,0, U(f)b € L?. Now we have

90U () = 9aU(0ur )y = (R — 1)9aU (Dur f),

and hence [|u0 U (£)o = 9aU(@ar il < llhar = 1l 90 (Dar )y l; < C(M)(En)z. The
other estimates are shown similarly using the fact that i € L N Hz N W and (ha/ —-1) €
Lyx NVH O W k.

1
. The energy Ea controls Aw € Lf/oz and A (aa/Z—a/) € Lf/g. Hence by using (2.9) we see

that A < A"

1 2
|Za |> € L\ﬁ and A(|Dy|w) € L

1
Nowas|Za|U(‘Z ‘) 1 € Lyx, weuse [z% — 1| < C(a)|z — 1| max(z*, 1) for z > 0,

a € R to see that (‘Z,o/|aU(

) ) —1 € L35 In particular we have lN](|Z7a/|)l7 —

1
|Z,a’| b |Z,o/|a

1e L\F Now we have

12 {12:15 (7) |
el (i) Ho (i), o 20en) o (o))

/1 ~/ 1 “
Hence we see that |Zva/|aU<—|Z |) —1 € W,z or more generally (|Z,a’|aU(|Z |) ) -
'/ a1/
1 € W, x. Now coming back we see that

~ Cu ~ 1 *
(01Zer")aT (12,0 f)b=(|z,a/|av( )) 0T (s
‘Z,a" b

~ /1 _
Now as ]Z@/]aU( ) € L™, we see that (9| Z.o/|*)aU (|Za/| “ f), € L. Now

|Z,a’| b

01200002t 0), = 000 = { (12015 (15 ) ) =1 }ad O

Hence we have H(g\Z}a/\a)a[AJ/(|Z7a/]_af)b — gafj(f)bH < C(M)(Ea)z. The other estimates
2

~ 1 -~ 1 «
are proven similarly using |Z:a"aU(|Z |> c L NW and { (‘Z’a/‘“U<|Z |> ) — 1} c
' /p o | Jy
Ja N Wyx-
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3. This is proved exactly the same as above. Here we use the estimate A(w) € L7+ and |w| = 1
to see that w,U(w™), — 1 € L2 or more generally wel(w™), — 1€ L.

Now we observe that
Dl (waT (7))

= (e (177 2 - <Jziuﬁ“zﬁ*”>ﬁ(ﬁgﬂaywl}

From this we see that w,U (w™), — 1 € W, /z or more generally woU(w™ ), —1 € W, /x. Now

using

(gwa)aﬁ(w_af)b —9.U(f)o = gaU(f)b{wé“ﬁ(w‘a)b - 1}
We easily reach the desired conclusion.

]

We now state some important estimates which we will use in this section to prove convergence.

See the appendix for the proof.

Lemma 5.3.6. Let H be the Hilbert transform and let H, H be defined as in the start of this
section and let f, f1, fa, f3,9 € S(R). Let M be defined as in Lemma 5.3.3 and we will suppress
the dependence of M i.e. we write a < b instead of a < C(M)b. With this notation we have the

following estimates
LA = 1) Flly S o = Ll £1
2. | = 1) fllyy S Mo = UGlIF1 3
31, = Hglly S e = Ul lglly
4 H = Hglly S [ = Ll 9l
5.1 H = 10w (9)lly S llhar = ol Lo llglls
6. I[f, H = H)0w (9) 15 < e = 1|1 11519l
7. H = Howr(9)ls S e = Ul £ 913
8 U H = H)dor ()15 S W = Ul {113 0l + 1179115}

9. |0l i, [fos B = H)ur fislly S e = Ll F1 Il 111 f311
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10. ||[f,H—ﬁ]g||mm S e = 11 711 llg1l

LI H = HOwr (9) ]y S Mo = Lol F 193
12. U, foi fa) = U Fos Folill et S Moo = ULl 1 550 15l
13. [, fos O f3) = (1, Fo O Sl s S e = Lo I A 3l sl

~ 1
We note that we have already shown that (hy —1) € Wz N H \Z/Z and for any o € R we have

~ 1 @ ~
{|Z’a,|aU(|Z /|>} —IEW\/Zandwg‘U(w*a)b—leVV\/Z.
70{ b

Let us now control the main terms controlled by Ea. The proof of these estimates follows

exactly analogous to the proof of terms in £, and by using Lemma 5.3.2, 5.3.5 and 5.3.6. As the
proofs are just simple modifications of the proofs in §4.1 we will just control a few terms and show
how it is done and the rest are proved analogously. A few terms require a bit more work and we

give more details for those terms.

L A(Zyw) € L5, 0w A(Zy) € L2 /5 and [ Do |,A(Dow Zy) € L2, A(| Do | D Z1) € L2«
Proof: As (A;), > 1, we see that Ex controls A(Z; ) € L?/ and [Do|, A(DyZ,) € L

We obtain the other two estimates by using Lemma 5.3.5.

1
2. A(Ay) € L N2

Proof: Recall that A; = 1 — Im[Z;, H] Z,a/ and hence

A(Ay)
= —Im{A[ZtaH]ao/Zt}
_ _Im{[AZt, H]ao/(zt)a + [ﬁ(Zt)ba H — ﬁ} 8a/(Z)a + [7{[<Zt>b7H]aa/ (ﬁfl(AZt»}}

1 < O(M)(EA)%

L*NH?2

Hence ||A(A;)||

1 1
3. A(&alz> € L%/Z’ A(@a/m) € L2 A(|Dy|w) € L\f and hence A(w) € W x

/

1
Proof: Observe that A (8a, 7

et

7 o 1 1 7 o 1
RC(+O[8@/—) = Oy Im(ﬁaa/—) = i(w|Da/|w)
’Z,a’| Z,a/ |Z,o/| ‘Z,a/‘ Z,a’

) € L%/E as it is part of the energy Ea . Recall from (2.9) that
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. N 1
Using A(w) € L% 7]

Lemma 5.3.5 we obtain |D,/| A(w) € L?/Z and hence using A(w) € L% from Epxp we
obtain A(w) € W .

we obtain A(&a/ ) € L5 and A(|Dy|w) € L? 5. Now using

4. A(DwZy) € L%, A(|Duwr|Z1) € L5 and A(Do Z,) € L2

Proof: First observe that | Z /| A(Du Z) Fre, AwZ; ) € L%/Z' Hence we have
O (A (Do Z1))? = 2{|Z | ,A(Dor Z1) } | Do | ,A(Do Z1) € Ly

Hence A(DZ,) € L% /& The other ones are obtained easily by using Aw) € L‘:/OZ

5. A(D%Z) € L2 /5 A(|Du’Z,) € L5 A(D%Zy) € L5
Proof: We already know that A(|Dy/|Dy Z;) € L2 and hence A(D?,Z,) € Lfﬁ Now

D27, = Do (| Dor|Z2) = (Du)| Dus| Z, + w*| D ' Z,

Applying A to the above equation we easily get A(\DQ/IQZ) € L%/Z' The estimate for
A(D2Z,) € L%/Z is proven similarly.

6. A(l_)a/Zt) € W\/Z N C\/Z7 A(’Da/|2t) € W\/E N C\/Z7 A(DQ/Z) S W\/Z N C\/Z
Proof: AsA(Dy Z,) € L%~ and |Dor| ,A(Dw Zy) € L
1 Z |, A(Dw Zy) € Lf/z and using Proposition A.0.10 with f = A(DyZ;) and w =

we see that A(D o Z;) € W /x. Now
1

|Z o

a
we see that

— — 1 —
||A(DO‘/Zt)HiI% S H’Z,Q’LIA(DO/Zt) 9 80/ (WA(DO/Zt))
pres a 2
1 2
+||Zar| ,A(Dor Zy) IZal

From this we obtain A(DyZ;) € Wz NC/x. As@w € W, using Lemma 5.3.5 we see that
A(|Dw|Z:) € W5 NC /5. The other one is proven similarly.

Z, N
7. A{aa/PA(Z@,)} S L\/Z
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Proof: We have shown the formula

Zy

zaa/]pA( ~ L

1
> = 2D0/Zt =+ {ZaH} Zt,a’ + [ZtaH]ao/Z_

!
e

!
e’

Now applying A to the formula above, the estimate follows easily.

1
8. A(|Duy|Ar) € L\F and hence A(A;) € W x, A(\/ A1) € W\/Z,A(—) € Wz and also

A
A( ! ) ew
VA va
Proof: Following the proof of |D./|A; € L? in §4.1 and using Lemma 5.3.2, 5.3.5 and 5.3.6,

we can easily show that A(|D,/|A4;) € L ~ and this shows that A(4;) € W, z. Now this

implies that U(Ay),—1¢€ W, /5. The 1nequahty |z* — 1| < C(a)|x — 1] max(z*, 1) for

b
(Al)a

x > 0, @ € R implies that we have < U (A1)b) — 1 € W, /x. Choosing suitable values

b
(Al)a

of o imply all the other estimates.

9. A(©) € L x and A(D©) € L?

Proof: The proof of A(©) € L2 follows the same was as it was shown in §4.1 and A(D,0) €
L? 5 asit part of E.

1 S
10. ———A(0) € C /&, ( > eC
Za. S@ eCm A7) €Cva

Aa L1
Proof: The energy /A controls (A1) A(O) € H\Q/Z and hence by using

ew
Z o], va

1
(Al)a

1
we have WA<®) € C,/x The other one is obtained by using Lemma 5.3.5.

From now on we will just state the estimates for which the proof follows exactly as in §4.1 and
can be easily obtained by using Lemma 5.3.2, 5.3.5 and 5.3.6 as shown in the above examples.

For estimates which do not follow this pattern we give more details.

1 1
11. A(DQ/Z—) € Cf,A<|Da/|Z—) €Cyz, A (|Da/||Z |) € C /x and similarly we have

1
A o W Gc\ﬁ
(!Za!

192



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

1 1
A Oy A1 | € LN H2 and hence A| ——0,A4, | € C
(’Za’ ) VA VA (’Z,a”2 1) VA

A %A | e L?
(|Za|3a ) °

A(by )GLfﬂH\}andA( (bar)) € L%

1 1
DylAl ——=0,A, ) € L) cand A| —— 0,4, | e W
| (|Z,a/|2 ) V& <|Z 2 ) va

/
,Q

2
mef

A(|Dy|by) € L?/Z and hence A(by) € W5
1 2 1 2
A ao/DtZal G L\/E’ A Dtaa/Za/ E L\/Z
A(Zyo) € Lf/g
A(l_)a/Zt) S C\f, A(|DO/|Z7§,§) S C\f, A(Dtl_?a/Z) S C\/Z and A(Dt|Da/|Zt) S C\/K
A(DiAy) € Lz N H\QF
A(Dy(by — Do Zy— Do Zy)) € Lo’fﬂH\QF and hence A(Dba) € H2 g, A0 Dib) € H2 ¢

Now we start controlling terms with surface tension. Note that these estimates are only for
the solution A and hence the estimates have already been shown in §4.1. For most of the

estimates we will have that the power of ¢ will be the same as that of the power of A. For

1 1
e.g. we have (06|Z,O/|28a/

1 .
) € LQA% and both ¢ and A are raised to the same power
7a/

1/6. However the estimates derived from 00,0, 00, DO and o D? 0 will not follow this
pattern. For e.g. we have (a%@) € LZO% and not (0%@) € L°°1 The reason is that Ex controls

A((Zt — i)Z@/) S H\E/Z not Hg and hence we have (00,/0) € H2 . Similarly for 00, D, ©
and 0 D?,0.

. L1 1 o2
37 |20 L% (02207 0w =, | -2 9, L% and
(412 z) < s (2.1 |Za|> < s <|za,|z “’) € Lizan

(ﬁ\z,a/\%Re@)a € L%
1 1 s
1 g6
(T%|Z 120y €L21, |Za| 8 €L21, —18a/w €L21
7 Zya’ a AS ‘Z,o/‘ a As |Za/|5 At
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23. (00a0), € H2

.1 s
Proof: Note carefully that we claim the estimate (00, ©), € H>. and not (00,0), € H}.

VA
From the fundamental equation (3.7) we have

A((Ztt — i)Z’a/) = —ZA(Al) + (a@a/@)a

and we know that FA controls A((Zt - z’)Z’a/) € H?

JA As A(Al) €

L1

: )
H A We obtain the
above estimate.

24. (O'%aa/@> e L? 1
a A3

1 1 o5
25. 0%82, el?,, 0382 € L2 Iy 02w | € L, and similarly we have
o As “N1Zal), |Za | As

(0%8a/|Do/|w> cL?,
o A3

Proof: Note carefully that we have LZ% and not LZ% in the above estimate. First see that

1 1 1
<a2|Z’a/|é(‘3a/ 7

/
Ne%

) € L? as (E,),(t) < C(M) and (E,), controls it. But we have already

1

1 1 1
shown above that (aé\Z,a/\éﬁa/z—a/) € L\ﬁ Hence we have (”;’Zﬂ"éa“’z_w) € Lis

1
|Z .|
all 0 < 8 < 1/2. Due to this argument, the proof of the above estimates follow in the same way

forall 0 < 8 < 1/2. In a similar way we can show that (02 | Z o | O —— ) € LzM etc. for

as is shown in §4.1.

1
26. (030), € L=, NH?,
@ AB AB

N

1 1 s 1 . 1 .1
27. (030, cL® NH?,, (030, e L® NH?,, <0§|Da/\w> e L% N
Za ), AB AB ]Za] A% AB a A

1
7a A6

28. (00w Du®), € L2 /5, (0|Do|00©), € L? /5, (00w |Dur|O), € L2

29. 03, —— >EL2 ( o2, )eL2 | T w | er?
<|Zcu| o | Zar| | Z e A\ Zal .7

1 1 X
R 2 02 g 1 2 02 0 2
30. <|Z | aa Z > E L\/Z’ <|Za,|%aa/ |Z’a,|> E L\/Z, <|Za,|gaa/w> e L\/Z and alSO

——— 0, @) eLf/Z

a

w\»—‘

IZa|2
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1 1 1

31. (03]Z.|70.
<U2| ’ Z,a’
(a%|z,a,|%Re@) €W,

o8
32. i
|Z,o/|§

1
8a/@> eL>; NH?,
AT2 ATZ

5
o6 1 L1
33. 05— | € L™®; NH?,
|ZOé |§ Zaa/ A12 Aﬁ
) a
5
o6 .1
82,w € L™ H?
Z A et

a

1
o2
34.
Z o]

8 @) EC\/Z

1 o
), @ (sHzotiong; ) ”V’sz

N|=

T &y&)) € W\/Z and

/
e

ol

L5 N H 5 and similarly
12 AT12

1
o2

€ C rx,
l Vﬁ(wwi

1
35, [ 292 —
<|2a|2 2o

36. (O’DO/DO/@)Q € Cf, (O’Diz@)a € Cf, (U|Da/|2@)a € C\/Z’ (

1 o3 9
|Za/|> € C\ﬁ, (ﬂ&a/w> c C\/Z

g
W@é@) S C\/Z

1

37. 93,
(IZOA2 Y Z

o

EC\/Z

a

3 8§/w)

%
38(
||

LY
o3 o3
39. P Ziw | €L | —
QZJ? )a A\ 202
1
and also i - |Dar| Zio | €L
|Zyoél|2 a

o 1 -
) € C/x <|Z,a/|282/ |Z,o/|> € C/z» (J@im> € Cz and similarly

e Zm> € L’ <U%|Z7a/|%(9a/|Da/|Zt> € L’ and (a%|zva,|%aa,f>a,z>a €

2 N 2 2
aa’DO/Zt> E L\/Z’ 6 L\/Z

o3
’Za’P

2
e L

0| Do | Do Zt>

a

0w D%, Z,

a

IZocl2
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3 1
4‘0. <|ZU 3 00/215,0/) c W\/Z N C\/>’ <_| Za —|l aa/ ’Da/’2t> € W\/Z N C\/Z and Slmllarly we
e (!Zm 18"“'5“’2) €Wy Nl <ﬁ8a/Da/Z) EWysNCya
/|2 .y 5 )

1 . )
4‘1. g6 3aa/2to/ c Lzl, g6 laa"Da”Zt c L2l, Llaa,l_)a,zt c LQl
|Zo¢/|§ ’ A6 |ZO/|§ A6 |Za/|§ N

a

42.

43.

1 Zy -

45.
46. (O-%aoz’ba’)a c L2 1

47.

48.

N

2 O-% 2 g 9
= L\/K’ <ﬂ8ﬂ/|Da’|ba/> € L\/Z and <‘Z ‘;8041Da/bo¢/> € L\/Z

a

50.

51.

(
(
. ( o b
(
[
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52. A(I-H)D;O) € L2/5, A(I-H)D; Z1or) € L2 5, A((I = H) D} Do Z,) € ng

Proof: The proofs of the first two estimates follow in the same way as in §4.1. However
— 1

the proof of A((]I — H)DfDa/Zt) € H\Z/Z requires more work. We use the identity from

Proposition A.0.2 for the holomorphic function D, Z,
(I—-H)D?Dy Z,
Z, — 7, Z _
p(Z) o p(£) £z

o (oY) oo

o1 {[zt, 120, H 0

1\ . =
Z ) D“’Zt}
1 1 ) -

T’H O Z—QZt,o/ + [Zu, H|D,, Z,

,Q

2

Now we apply A to the above equation and handle each term individually. It is easy to see that

o a{pa( £ ) o000} e

(b) A[]P’A( ) ( ) O De Zt] € H2,
(© A([ ]Zta) S NHE

&) A([Z,H]D2 Z,) eLmefF

() A<Zt, )eLmezf

() A(DwZ,) € L% meF

(2) Ou (Zt, Zi, H Zla/> €Ly

(h) (9/A< )eLQf

(i) A([Zw,H|D. Z,) € H
Hence we have the required estimate.

53. (o(I-H)|Dw[’0), € L5, (01— H)|Do’Z1v), € L5, (6(1—H)|Dur|’DuZ:), €
s
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1 | = 1 7=
54. A{ |:Dt27 Z:| Zt,o/} S C\ﬁ, A{ |:D752, Z‘| Zt,a/} € C\/E
55. A{ i A !

Zt,o/} S C\/», A{ 7 Ou
1 _ L1 L1
56. {(H—H) [ia|Da/]3,7]Zt’a,} € Hig, {(]1 H) {w[D P ]ZM/} € H and we

Ay 1 .
|Z,o/|2 7270/
alsohave{|Za\[za]D |, Q}Zm} EL2 {|Za|{w|D /| ,ZQ]ZM} EL%/Z

ao/v
A /|2 Z,o/

| 7a

th/ } < C\/Z

57. A(Ry) € Cx

58. A(J1) € L3N H2
59. A(|Dw| 1) € L\ﬁ and hence A(J;) € W x
60. A(R) € L2

61. A(Jy) € L2

1 = .1 1 _ L1
62. <U{ZQ,,H1 |Da/‘3Zt’a/)a € H\Q/Z, (a [Z /,H} |Da/‘3Zt,a/) € H\Q/Z

63. A{(I-H)D!D,Z,} € H?

E -

64. (o(I—H)|Dw|’Du Zy), € H?

1
65. ( ) € H2 and henceA(Z—Faauh) €C/x

!
’ &

5.3.2 Closing the energy estimate for /a

Analogous to the energy estimate of £, we simplify the calculations by the use of the follow-
ing notation: If a(t),b(t) are functions of time we write a & b if there exists a constant C'(M)
depending only on M (where M was defined in Theorem 5.0.1) with |a(t) — b(t)| < C(M)Ea(t).
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Observe that ~ is an equivalence relation. With this notation, proving Theorem 5.0.1 is equivalent

to showing dEst(t) ~ 0. Note that we have already shown in that

d
%E)\,aux S P(‘cf‘high)E)\,aua:

Hence by plugging in A = ¢ and noting that (Epgp)p is controlled by C'(A/) we have

d

E(Eo,aux)b < P((ghigh)b)(EUvauz% < C(M)EA

Now we control the other components of Fa.

Controlling Ex
We recall that

6

+
2

(S

2
g o> L
|Z,O/|% " Z’a, a

2

2 1 1 1
6 ZO/ 580/_
oo_'_"(UGl 7 ‘ Z:a’)a

2 ~ ~ 2
[ = 1 es + 1Pl = 1)
2

1 1 1
N ()

2 1
1AW + A (0w )

~ 1
+ |Z,a/|aU<—> -1
H ’Z,a”b

2

2

[e. 9]

The time derivatives of the first three quantities follow the same way as was done in controlling

the time derivative of £, y. Now we control the other quantities

1. We observe that
(Dt>aA(W) = A(Dﬂd) = —A(Im(5a12t>) = —Im(A(Da/Zt)) € L(\)/OZ
Hence by Proposition A.0.13 we have

%HA(W)HC%O S [Aw][(Dr)aA W)l < C(M)Ea

2. By using Lemma 2.4.6 we obtain

d 1 1
It , < , ) —
dtHA(aa Z) < (b >a||OOHA(aa Z)

< C(M)Ea

2

2 1
T HW%)

1
<Dt)aﬁ(aa'z)

2 2 2
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3. By the calculation of Lemma 5.3.3 we have
(Dt)ahar = har(U (bar)o = (bar)a) = ~harA(ber)

As A(bor) € L35 N H2 we have that (D;),ha € L3N H2 . Hence by Proposition A.0.13

and Lemma 2.4.6 we have

d .~
=1t < CODJ 1]

- 1HL°°ﬁH§

[|(D)aha

L®NH?2

< C(M)Ea

-1
L*nH?2
4. By the calculation of Lemma 5.3.3 we have

(Do)al Dal yhar = —Re(Dar Zt)a| Dev | gt + (| Devr| o ) (U (b ) — (b))

~ (~ 1 ~ -
" ha/{ha/ (mUuz,a/m) T (Dbl — <|Daf|ba,>a}

~ ~ 1 ~
Now as |Da’| ]’La/ - Lf/—, ha/—l S LOOA, Z—O/lU(‘Z’O/D —1e L\/f andA(|Da/|ba/) € L%/Z

we see that (D,),|Dy|, ho € L\ﬁ Hence by Lemma 2.4.6

d ~
—|Dos| (Ao — 1
Z|1Darly (e = 1)

< COD| 1Dy = D) [P0l Dl

< C(M)Ex

5. By the calculation of Lemma 5.3.3 we have

i)

{IZa | U(|Zla |) }Re{(Da/Zt)a — U(Dar Z4)y — (bar)a + (7(ba/)b}

1 oo
Now as A(Dy Z;) € L% and A(by) € L%+ we see that (Dt)a{|Za | U(lza ‘) } € L%
Hence by Proposition A.0.13 we have

UERE R UGB | IN U En)

SC( )EA

Controlling Ex ;
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Recall that

2

b+ | (VADeAZw)|,

2

EA,I — ||A{(Ztt - ’L.)ZVQ/}

_|_

1
( 7 180/215,0/)
‘Z,o/‘Q a

We will first simplify the time derivative of each of the individual terms before combining them.

2

1. By using Lemma 2.4.6 we get

2

do/

d L

% /‘ ‘aa/|2A{(Ztt — Z)Z7a/}

~ 2Re/{|8a/]A((Ztt +0)Z o) (D)o A((Zt — ) Z o) do!
Now (Dy)oA((Zyy — i) Z or) = A(Dy(Zy — i) Z o) and we have

Dt((ztt — i)Z,a’) = ZtttZ,o/ + (Do Zy — ba’)(ztt — )2 o
= ZtttZ,o/ + (DO/Zt — ba/)(—iAl + Uaa/@)

Now applying A above and working as in the proof of £, ; we obtain

d 1 = )
% /‘ |8al|2A{(Ztt - Z)Zp/}

2 — —
do/ =~ 2Re/{|8a/|A((Ztt + i)Z,a’) }A(ZtttZ@/)da/

2. We see that

4
dt

- / (b As + DiAY | AZor)

< C(M)Ex

(A1)a| A(Z )| de

2 dOé/ + 2Re /(Al)aA(Zt,a’)A(_ba’Zt,a’ + Ztt,o/) dOd/
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3. By following the proof of time derivative of F, ; we have

d 1 -\
0— / —180/2,5 o dO/

dt e ’
1 = _
~ e | {—waa, <Z—|Da/|zt7a/)} O (Zn + ) Z.00) d
1 = _
= 2Re /{ —ana/ (Z_|Da’ ‘Zt,o/) } ’aoz’ ‘A((Ztt + Z.)Z,O/)d

. a, b a/

1 _ _
#2Re [{<io0 (51Dl Zuar ) b 10010 (2 + )Zo0)

We now show that the second term is controlled. Observe that ((Ztt —i—z)Z )o = i(A1), and that
-0t O [U (Ar )y, € L5

2
/
g

O Z o ) e L? A Hence we only need to show that

7! 00U (A }

<|Za E
%ﬁmm+m{
|Z7a/|a

Now
1
z

o3 o
%w|wm%_4
|Z,a’|a | af |2

The first term is easily shown to be in L?

and hence we have the estimate

1

T _92,0(Ar),s

3

|Z o2
M)|||Der| e

2

+CM@H< 2@%%)
0 ’Z,a’P bll2

(ng)a,Al)
|Z,o/|2 b

<C
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1
o 2

Now <|Z | Oy A ) € L\ﬁ and (Wéﬁ A1> € L\F as they are part of (Ey 4uz)b-
o b al b

Hence we have shown

d 1 .-\
il / 0w Zy | | do
dt |Z 2|2 ’
: 1 >
~ 2Re/{—m@a/(_ |Da’|Zt,a’>
Z o

a

K\J\)—'

}|8¢|A((Ztt + 7:)27a/)d0/

4. Now combining the terms we have

d _ ) 1 _
%EA 1~ QRC/{A(ZtttZ,a/) — 100y (ZIDaf!Zt,a/)

a

}yaa/m((ztt + z‘)Za/)do/
Recall from (3.18) that

_ - — 1 _
ZtttZ,a' + iAlDa/Zt — ia@a/ (Z_|Da,‘Zt’a/>

1 \= —
= io@a/{ (’Da/| Z )Zt,o/} - O'(Da/Zt>aa/@ - aﬁa/{(Re@)Da/Zt} - ZJl

Now we just apply A to the above equation and control the quantities. We see that A(J;) €

g Vi A(A\ Dy Zy) € LN H\QF and the other terms with o are controlled as in the proof of

E, 1. Hence

_ 1
A(ZtttZ,a’) — 100w (Z_

/
e

|D0¢’|Zt,o/) 6 HF/Z

a

d
and hence we have shown that EEAJ < C(M)EA.

Controlling £s > and E 3
Note that both Ea 2 and Es 3 are of the form

2

+
1
H2

Baa= 1Al + | (773) a0

()
’Z,o/’

Where f = Z; , fori = 2 and f = © for i = 3. Also note that Py f = f for these choices of f.
We will simplify the time derivative of each of the terms individually before combining them.

-1
H?2
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1. From Lemma 2.4.6 we have
d _
a/|A(th)|2do/ ~ 2Re/(A(Dt2f))A(th) do/

2. By following the proof of time derivative of £, 5, F, 3 we have

i [l { (22 2o}l

e [{ (7)1 ((Z,0) 20 jaconn e
Now we see that

(a2 )20) o (2,02 () 20)

do/

Now using Lemma 5.3.5 we have

. Al . Al
H{<| al)aa A(”} LWH{A(!ZMG f>}
Ay Ay
s ! {lzaf\ . f} {!Z,al * f}

A
Now as {ﬁ@a/ f } € L? we can replace H in the second term with 7. Hence we have
7al b

() () ) oo )

We can simplify the above term by using Hf = f. We see that

. Ay
ZH<|Z’ |2 af)

Ay

. 1
|Z,a’|2’ Qaa/f

’
|2 ]

H 8a/f+z'
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Now apply A to the above equation. We can easily control the first term and hence we have

() o (o) 20) =z A(Jzﬁ . f)

Finally using this we obtain

Cl 1 \V Al
— ao/ 2 A
i [|o (i) 2]
3. By using the argument in controlling £, 2, I/, 3 we have
d 1 1
— O |2 Oy
dtg/‘| | (\ZQ/ 2 f)
1 N,
~ —20Re [ O 3 T 3 ——5 0w f (th)a da
!Z o2 1Z.o|? .
1 _
~ —20Re/3a/{ ’a ‘ ( 3 80/f> } A(th) dOz/
|Za ’2 |Zo/ | 2 a
— 20Re / o ol — .| YT do
|Z |Z,O¢/|§ a
We now show that the second term is controlled by using (E; 4. ). We see that
1 r7 R /
— 20Re 8 — 3 \8 | —ﬁ(?a/f U(th)b do
‘Zoz ‘2 |Z,oz’|2 a
1 ~ _
e () (L o)
2 Z w2

1
o2

|Z,o/|

2
do/ =~ QRC/A <Z|Zj4—1|280/f> A(th) do/

!
&

2

do/

1
02

|Za”2

Now we know that < =04 DtZt o ) € Cx as they are

b

|Z |380/(7(Dt2t70/)b € C\/Z and

=0q Dt@> € C/x and (
b

both controlled by (Ej qu.)s- Hence we also have that
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1 -
——5 0, U(D©), € C sz by using Lemma 5.3.5. Therefore we now have

’Z,a”g
d 1 1
e [l (za, 38“)
_20—Re/(9 { |8 |< 1 8a:f>}A(th)do/
|ZOC |2 |Z /|2 a

e’

2

do/

Now using the proof in £, 2, F, 3 we obtain

1
0'80/ |8 | 0, /f N2 i0|Da/|3f
{Wz (rzarz i g
So we finally have

RIEIE

4. Now combining all three terms we have

2

2/(ia|Da/|3f)aA(th) do/

KINISE / {A(fo) A (%M) - z'o—<|Daf|3f>a}A<th> do!

For f = Zm/ we obtain from (3.21)

A _
(DtQ + iﬁ@a/ — iU|Da/|3> Zt,o/

— 1 = A 1
- RlZ,a/ - i(aalz—) Jl - ?:Da/Jl - Z,o/

D? +i—1 0y —ioc|Dy|?, =—
Pt | |Z

!

Zt,o/

/
|2 a

. . . . . . 2
Hence applying A on both sides, we easily see that the terms on the right hand side are in L A"

Similarly for f = © we have from (3.22)
2 Ay , 3 .
D —|—Z|Z | a/—ZO"Da/| O =Ry +iJs

In this case also we apply A on both sides and see that the terms on the right are controlled.
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Hence we have shown that for 2 = 2, 3 we have

Lp, < C(M)Ex

dt = —
Controlling £ 4
Recall that
1 2
g2 — —
Esi = |ADDwZ) 4 + [ (VADalDarlAD Z2) 2+ <| |laa/yDa/|Da/Zt>
/12 1
fLed allH?2

We again simply the terms individually before combining them

1. By Lemma 2.4.6 we have

d 1 = =
i [l a oD 2)

2 —  —
da’ =~ 2Re / A(D2D oy Z)|0ur | A(Dy Doy Z) de

Now as A((I — H)D?D Z,) € H?/Z we see that

A(D?D Z,) R A(HD?D, Zt)%,

!’ H(DfDa’Zt>a - Hfj(DtQEa’Zt)b
VA \f

But we know that (D?D, Zt)b € M3 as it is controlled by (Ehrign)s- Hence we now have
(H — H)U(D?Dy Z,), € H\QF From this we get

Now we use the fact that |0,/| = iHJ, to obtain

d 1 - =
a / 10228 (DiDw )

2 J
do! =~ 2Re/A(DEDO/Zt){_iaoz’A(DtDo/Zt)}dOé/

2. By following the proof of control of £, 4 we see that

4
dt

~ 2Re / (@'(’ZAl )a A(Da/Zt)>{—z'aa/A(DtDa/Zt)}do/

a’l

A1)o|| Dot |, A (Do Z)) " de!
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/

1 _
Now we know that (]Z—28a/ Da/Zt> € C as it is controlled by (Ey;z1 ). Hence as (A4;), €
b

,Q

A _
W, we have (|—1|28a/Da/ Zt) € C. Hence we see that
o b

From this we get

d

7 [ (Av)a]|Der|,A(Der Z1) da’ N2Re/A<i—12

/|
| 7a

aa15a12t> {—i@a/A(DtDa/Zt)} dO/

3. By following the proof of control of £, 4 we see that

/’( +0s| Do | Do Zt)
1 — = 1
~ 20Re —18a/|Da/‘Da/Zt —lﬁa/]Da/|DtDa/Zt
|Z a2 o UZo|?

!
sQ a

1 - = 1
~ 20Re / ——0w|Dw|DwZy $ { —— 0| Dur|, A(Dy Do Z;)
|Zaotl|5 a |Z7a,|3

1 - —
+20Re/ 18a’|Da’|Da’Zt
2.0

& a

2

do/

1 ~
l(90/|DO/\GU(DtDO/Zt)b
|Z,a’|3

We now show that the second term is controlled. We first observe that

m\»—-

—— 0| Do | ,U(Dy Dot Z1),

|Za/|2
o3 Doy
[ 1 i 3
:\z,a,\§U<—l> |Da,|a<Z (|Za,|)>U< 0w DD zt>
Z.o|? ), | Z o, |7 |2 \

D=

T o
|Za | (lZ |) <|Z—1

2
/|
g

8a/(7(|Da/|DtDa/Zt)b>

1
o2

M\H

Now we know that ( 0y DD, Zt>

28 /|Dor| Dy Dy, Zt> € L2/x as
b

GL\Fand<
b

3
|1Z.?

|2 ]
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they are controlled by (E, 4uz)s- We also know that ho W, Z—(N] (|Z&])s € W and hence

/|
A g

the above terms are controlled. Hence we have

/]( 0.\ [Da )
/{‘Z

~ 2Re /{_iU|Da’|35a’2t}a{_iaa’A(DtDa’Zt)} da/

2

da/

1
‘10 /Do | Dy Zt}{|Z |18a,]Da,|aA(DtDa,Zt)}

4. Combining the three terms we obtain

d - = A —
EEAAL 2Re /{—iaa/A(DtDa/Zt)} {A(DfDa/Zt) + A<Z ! 9) /Da/Zt>

— iU(|Da/ \3Da/7t)a} dOé/
From equation (3.19) we see that

A ) 3\ = = ) 1 1
Dt2 +1———=0y — ZO"Dall D,Z,=R; — Z(D )Jl 1
( |Z,a’|2 % ‘Za‘

Now we apply A to the above equation and see that the terms on the right hand side terms are

controlled in H 2 Hence we have

Ve

d
LB, <
dt 1 CM)Es

This concludes the proof of Theorem 5.0.1.

5.3.3 Equivalence of £'A and Ex

We now give a simpler description of the energy Ea. Define

2

B 2 ~ 1
Ex0 = 1A + [frar = 1[5t + 1Dl (e = 1) + H’Zva”aU(\z ] ) !
;O | p
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2

2
1 1
Al —0y
2+H <Z,a’ Z,a’)

2 1
. ‘(“—fag,i)
Z§/ Z’O/ a

2
1 1
o2 — o2 —
1 804’Zt,o/ 5 83/2,57&/
2 2
Z,o/ a Za’ a

where (Egyam)b is the energy &) 4., defined in §5.2.5 with A = o for the zero surface tension

1
SA,l = HA(@O/ Z’a,)
1 1 1
272, ——
(0 20 Z,a’)a

oo L
+[[(08.0), | +H( %) 2

2
1 _
NEV

gA = (ga,auaz)b + gA,O + gA,l + gA,Q

+

2

Ear = [2(Z0w);

\2

+
2

+

2

solution B. Hence this term couples the zero surface tension solution B with the coefficient of
surface tension o from the capillary gravity water wave solution A. Note that if the two solutions
have the same initial data, then € ((0) = 0 and hence we obtain the representation of the energy
as stated in §3.4.

Proposition 5.3.7. There exists universal polynomials Py, P, with non-negative coefficients so that

for smooth solutions to the water wave equation with no surface tension we have
Exn < Pi(Enigh)én  and Ex < Po(Epign) Ea

Proof. We will continue to use the same notation as in §5.3.1 except for a few minor modifications.
In the definitions, instead of using the energy Ea we will use the energy 4. So now whenever
we write f € LA., what we mean is that there exists a constant C'(M) dependlng only on M
such that || f||, < C(M)(Ea)®. Similar modifications for f € Lpa, f € Hga and f € L3

The definitions of the spaces Ca« and WWa« remain the same except for the fact that we have now
changed the underlying definition of the spaces LA, H? 1a and LX.. Similarly the definitions of

RI2 0 L s P L0 zHQ , Awaa and /¢, remain the same except the changes to the underlying
spaces. Observe that there is no change to Lemma 5.3.4.
We now make the important observation that Lemma 5.3.5 still remains true with the new

definitons. This is because in the proof of Lemma 5.3.5, the only properties of /A used were the

~ 1
control of (hy — 1) € LO\OF N H ~ N Wz, Aw € L°° A(@ Zo/) € L\F and the term

1
\Z | U ( Z |) 1e L &~ All of the these quantities are also controlled by £x and hence the

lemma still holds
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Now we already know that (E; 4uz)s < Pi(Enigh)(Esaux)s by Proposition 5.2.4. Also Ex o is
clearly controlled by £4. Hence we only need to show that Ea ; for 1 <+ < 4 is controlled by Ea

which we now prove.

1. Controlling Ex ;: From Ex» we have A(Z; ) € Lfﬁ Hence we have (v/A1),A(Z; ) €
L? . Hence now via §5.3.1 we have A(A4;) € L

E fﬂHQ

N/ Now we know from (3.7) that
(Zyy — 1) Z o» = —iA; + 00, and hence

A{(Ztt — i>Z7a/} = —ZA(Al) + (a@a/@)a

.1
we see that A{ Ztt Z,a/} € H* . From £5 we also clearly see that

As (00,0), € I

\/Z

<| T O Zy o ) € L\F and hence EA ; is controlled.
Z o 2 u

2. Controlling Ea 2: We prove this step by step.

1
(a) As Ea controls A<0 7

,Q

L2 A(|Dy|w) € L ~ and A(w) € W /3.

1
) € L2, from §5.3.1 we easily obtain A(&a/m) S

(b) As & controls A (Z—z('?a/ Z t,a/) S Lff, by using Lemma 5.3.5 repeatedly we also have
1 b

(Z.a)3

a

8a/A(Zt7a/) € Lf/Z' Hence we see that

1
—|—2A(Zta/) 80/A( )
(Z7al>l1
From this we obtain
1 2 1
| 5| A 18w
|2 @] =y a@a]
_ 1 _
+ |A(Z1 o) NNV
H 2 (Z,a’)Q )
Now using the inequality ab < - + © that ——A(Z,0) € L% N
ow using the inequality a — + —, we see that ——— o ow
8 iy b = 5m T aoe (Zo)a 08 VA"
by using Lemma 5.3.5 and the fact that A(w) € L we see that A(DyZ,) € LY
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A(|Do|Z:) € Lyx and A(Dw Zy) € L3

A(D2Z) :A{(aa/%)Da/Z}—kA(ZQ Do Zm>

Hence we h_ave A(D% Z;) € L. Similarly we can also show A(|DOL/|2%) S
and A(Di,Zt)_ E_Lf/g. Now using Lemma 5.3.5 we see that A(|Da,|D_a/Z_t) S
and [Dy|,A(DoZ,;) € L?/5. This in particular implies (v'A1)o|Dor|, A(Dua Zy) € L? 5

which is part of Fa 4.

(c) Observe that

(d) Following the proof in §5.3.1 we see that A(Dy Z;) € W zNCx, A(|Dor|Z1) € W zN
A(Zt,o/) S

C/xand A(Dy Z,) € W xNC /x. Hence using Lemma 5.3.5 we have 7

‘ ,o/‘a
VA —
! ) A(Z) € C/x and hence we have

Cya- As (VA1), € W we now obtain <m

controlled the second term of Ex 5.
(e) Following the proof in §5.3.1 we see that A(|Do/| A1) € L? &
W\/Z and A(\/Al) € W\/Z

(f) From §5.3.1 we see that A(by) € L5 N H\QF, A(|Da |bar) € L2/ and A(by) € Wz

and hence we have A(A;) €

(g2) As (00409), € H?/Z

.1
(630), € L>*, NH?,
A6 A6

and ©, € L?, by interpolation we see that (aéaar@)a € LzA ) and

2 1 1
(h) From §5.3.1 we see that (0382, ) € LQA%, ( 302, ) € LZA% and sim-

! ‘Za’|

2
ilarly i@%w) € LQA%, <0§8a/|Da/|w) € LZ%. In the same way we have

1 .1 1 .1
(aéaa, ) e L™ N7, <a§a —) € L®, N [?, and also (a%|Da,|w) €
A AB AT AB a

o
705, AS |Z70/| a
.1
LOO% ﬂHzl
6

(i) Following the proof in §4.1 we see that (

2
(O'aa/Da/@)a € L\/Z

(j) We now recall from (3.7)

| Z(;/ | 83@) cL? /& and from this we easily get

= A
Ztt —1= —’lZ—l + O'Da/@

fye’
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Taking derivatives on both sides and applying A we get

1
Z_> — iA(Dar Ay) + (0000 Dor©),

e’

A(Ztt,o/) - —ZA (Alaa/

Hence we see that A(Zy ) € L?/Z'

obtain A(th t.or) Which is the first term of Ea ».

1

As DtZt,a/ = —bafZ,a/ and A(b,) € Lf/OZ we

(k) By exactly following the proof of =02 Z; o € L* in §4.1, we can easily prove that

1Z |2
2 1
< 7 Ou|Dor|Dor Zs | € L%/Z' Now we use can Proposition A.0.10 with w = 7]
Za 2 o g
S ) |
and [ = Z ——— 0, Zm> and we obtain ( i =0 Zta> € Hf/g. Hence Ea 5 is
, 2 a 2 .

controlled.
3. Controlling Ea 2: We prove this step by step.

(a) By (3.12) we see that A(©) € L?

A Similarly from (3.14) we obtain A(D;0) € L?
1

A"
1

) € Cx, using Lemma 5.3.5 we see that A(Z_)axz—) €

1
C,x- Now following the proof of ?aa,Al € C in §4.1, we can easily show that

| o]
1
A(ﬂ@a1A1> € C\/Z

Ne

!

(b) As we have A(D

,Q

(c) Following the proof of D,

!

€ C in §4.1, we see that A(

‘Z,a"
VAL
A(©) € C /x and <|Z 1|> A(©) € Cx.

) € C/x. Hence by

,

Lemma 5.3.5 we see that

’
|1Z.al,

1 1
1 1 1
(d) As 0,2 02— € C x> by using Lemma 5.3.5 we see that o 02— | €
Z2 Zo/ |Z |2 : Za’

1
o2

-0, —— € C in §4.1, we easily obtain

C,x- Now by following the proof of Z. ‘ < Z

l\:)\»—‘

( 7000 | € C, /x. Hence Ep 3 is controlled.
|Z o] .

4. Controlling Ea 4: Observe that we have already controlled the second term. Now by following
1 1

the proof of

=027 o € L?in §4.1, we see that ( | Da Zt> € Lf/g and so

|Zo/|2

/
Nej%
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o
zZ2,

1 o
—— ¢ Cand
2ot |Z o]

e’

the third term is controlled. Now by following the proof of 02, 02,0 ¢

C in §4.1, we see that (aDa/DQIG)a € C x. Hence by appl’ying D, in the formula (3.7) we
obtain

_ _ 1 1 _
A(DwZy) = —iA (AlDa,Z—> —iA <WA1> + (6DwDWO),

Hence A(Da/ Z w) €C A& Which shows that Fa 4 is controlled, completing the proof.

5.4 Example

In this section we prove Proposition 3.4.9. We will first need a few basic facts about Riemann

1
———— be the Poisson kernel. The following property
e + x?

is easily proved using basic properties of convolution.

mapping and convolution. Let P.(z) =

Lemma 5.4.1. If f € LY(R), then for s > 0 an integer we have
13 8) % P, S Ifllye 70 fori<g<p<oo
Similarly for s € R, s > 0 we have
100a ) % Poll, S 1Al 3) for1<q<p<os
Here the constants in the inequality depend only on the values of s, p and q.

g . . . .
Let us define 7 = 77 Now to prove that the time of existence of (2%, Z;"?) is uniform, we
€

use Theorem 3.4.8 and hence we only need to show that if 7 < 1, then
Enigh(2°7)(0), £,(2°7)(0) < C(M)
Similarly to prove the convergence statement, we only need to show that
EAZY7,Z9(0) < C(M)T

We now prove both of these statements. To simplify the proof we will suppress the dependence

of M in the inequalities i.e. when we write ¢ < b, we mean that there exists a constant C'(M)
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depending only on M such that a < C'(M)b. As we only need to prove the estimates for t = 0,
we will suppress the time dependence of the solutions e.g. we will write (Z x P., Z;, * P,)|—o by

(Z, Zy). for simplicity. We show uniform time of existence and convergence separately.

Part 1: We easily see that &, < 1 for the initial data of (297, Z;7) as all the quantities in &gy,
are boundary values of holomorphic functions and &g, for the initial data of (Z, Z;) is bounded

by M. We now control the terms in &,.

1. Observe that (Z, Z;). = (Z, Z;)e * P._ for 0 < € < € and hence by Lemma 5.4.1
1 1
W20, —
1 L 1
Hence letting ¢ — 0, we obtain (06 Zfa,ﬁaf 7 >

2. Following the same argument as above, we use sup

y<0
1 1 1
2 22 /60/ —
(O’ Ko’ Z7O/ ) .

[un

(e =€)

(e—¢€)7t <sup
L3 (R,dz)

4 y<0

< M and also

1 1
‘I’Zaz@—)

4
L3 (R,d)

< 73

~J
[e.e]

Lemma 5.4.1 to obtain

1 1
3. We use sup||0, (—> < M and Lemma 5.4.1 to get (Jé(?a/ ) < 73. This
y<0 v, L2(R,dz) Zar )l
1
also implies that <0§aa/ —| 7 ‘) < 73
1 , 1 3
4. We use sup||0, | — < M and Lemma 5.4.1 to get asaa < 7.
y<0 v, L2(R,dz) Z o 2
1 .,/ 1 1, 1
5. Weuse sup||—0; | — < M and Lemma 5.4.1 to get |00, o ST
y<0 \I[Z \Ijz L1(R,dz) Z,oe’ Z,oc’ ello
Hence we have
o 1 1 1 2 1
o < |00 0% 30y —— 307 —— <
H(Z Za/)e QN ’ ( o Z ) 2+H(0-3 Zya/)g OOH(O-S “ Zzo‘/ € QNT

We similarly show that

1
z:, 2 )],

<7 and
2
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6. We observe that

l 2
1
2

ell2

Hence we also have

<7
2

00y 92, )
<|Za| ‘

1
< (o,
<[ (e-22),

2

;1 1 1 1 1 1 1 1 1
O'EZQ,(?O/— = 0'522,(9a/— + ’Da/’ 0522,80/— < 72
“ Z:a’ ellw “ Zva' elloo “ Z»a/ ell2 ~
. 1
7. Observe that ||O]|, < ( > . Hence by using sup||0. (—) < M and
y<0 \Ijz L2(R,dz)
Lemma 5.4.1 to get || (00, ©), H ST
8. We observe that
2 i 1 1 1 1
g2 1
0%, Z2,0y 02— N
||< : aZ ) -l (Z “Za > {U “ <22 aZ’“/>} ~
o ellH?2 o ell2 af ell2

< M and Lemma 5.4.1 to get
L2(R,dz)

9. We use sup
y<0

o L
\1/282(%

From this we also obtain

Ug 1
93—
||<Z2, ¢ Z7al>

10. We now as usual use sup
y<0

1 1 2, 1
* H(Z@Q'Z)EHMH(“aa'z,w)e

2 1, 1
7o (Z_az_)

2

2 2

<7

< M and Lemma 5.4.1 to obtain the estimate
L2(R,dz)

1 ,(1
@@@)
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< 7. From this we also obtain
-1

1 1
O'aa/ (Z_i,ﬁilz>
’ ellH2

o 1
—

1 1 1 1 3 1
(i), loma) | J(eat)
Z’a, Z70¢’ . H% Z,O/ W Zf)[/ Z,O/ e
ST
1
11. We see that as ¢ < 1 we have 0% = Tici < 72. Hence using sup||— < M and
y<0 qu L (R,dz)

Supy<0”FZHH2-5(R,dx) S M we obtain

1
o2 —
‘ ‘ ( : aa/ Zt’al>
2
Z2, )

1
v,

2

(O Zowr)ell, S 72

2 o0

< M and sup, || Fx[| yo.s g 4y < M to obtain
Lo (R da)

12. We again use sup
y<0

5
2

1
(Z,o/)s

1
<ot

102 Zoo)e]|, S 72

(e e}

This completes the proof of uniform time of existence in Proposition 3.4.9. We now prove the

convergence aspect of the proposition.

Part 2: We now show that as 7 — 0, the solutions (77, Z;7) — (Z¢, Zf). As mentioned before
we only need to show that E (27, Z¢)(0) < C'(M)7. Recall that Eo = (Eyauz)e + Earn + Enp

where (&, quz)e 18 given by
2 1 2 1
1 1 1 1
(gg7aum>€ N H <O-éZ72a/8a/_> + ‘ ( O-j ai/ > + <$8§, >
Zva/ elloo Z’Qal Z’a/ ell2 Zi/ Z’a, ell2
1

1 2 1 2
o2 — o2 — o2 —
Tﬁa/ Zt,a’ —éﬁi/ Zt,a’ + —1(92, Zt,a’
Z,i’ € Z% ell2 Z,i/ €

Now in part 1 above we showed that £, < 1 and all the terms with o are bounded by 7. Hence

~J

Ear + Enz S 7. We now only have to control (&, 44z ). Observe that only two terms of (&, 4y )e

+
2

+
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have been controlled which we now control.

1
93
()

< M and Lemma 5.4.1 to get
LY(R,dz)

1
3
g 80/ ( Z3 8a Z >
From this we also obtain

1 1 o 1
<\ =——0,— Y
(Zrz) | =) LG e),

2
Now we have

1. We use sup
y<0

2

2

1 1
U@a/<Z? (92 Z. )

2 3
(“’Z"’" a‘”'(\zaﬁ% ))
4

and from this we see that

%
%az

2. We easily see that

2

1 1
i asaa/_)
H( ‘Z,a" ell oo

2

l

_0§ aSIL
|Z,0/|2 ¢ Z’a, €

2

<rT

~Y

<7

~

2

(gwﬂ,paa,(‘z ol ))

2

1 1
92—
( |Z7al ’2 ¢ Z,O/ ) €

2

1
(Z,o/)e

(02 Zta) [,

1oz,

This finishes the proof of Ex(Z7,Z¢)(0) < C(M)7 and hence we have proved the conver-

gence result.

To see the rate of growth of curvature, observe that curvature of the interface in Riemannian
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coordinates = (0,0) o h™* =

= 7] Ow g Where Z ,» = e/ Hence the curvature of the interface
7al

1
Z° is given by W(’“)a/ (ge). Now if the interface Z has an angled crest at o' = 0, then we
see that O,/ (ge)(0)7 ~ ¢! as g has a jump for ¢ = 0. But we know from Theorem 2.6.1 that

(Z.ar)e(0) ~ €“~1. Hence € is a lower bound on the curvature. To see that the upper bound is

the same, we observe from formula (2.9) that

80/ (gs) S

(|Z,0/’)6

Hence we have that the curvature of Z¢ ~ ¢7%.

219



APPENDIX A

Here we will prove all the identities and commutator estimates used in closing the energy. We will
state most of the statements only for functions in the Schwartz class and it can be extended to more
general functions by an approximation argument. Let us first recall some of the notation used. Let
Dy = 0, + bd,s where b is as defined in (2.7) and recall that [f, g; h] is defined as

i) = o [ (=D (B 2B )

We also have the operators

) W) = (@)
1/ 1 1 / /
(Hf)(w)ZEpv-/E( AL

and the notation

. 1 fi(d) = fi(B) \ [ fale') = fa(B') ENTLVT
Lf1, fo: 0w f3]5 = m/( ) — h(3) > ( ) i) >35 f3(8")dB

Proposition A.0.1. Let f, g, h € S(R). Then we have the following identities

1. h8 [f H] o' = [ha f H] a'g + [f7 H]aa’(haa’g) - [hvf; 8(1’9]
2. Di[f,H|0uwg = [Dif, H]O0g + [f, H]Ou (Drg) — [b, f; O]

Proof. The second identity is a direct consequence of the first. Now we see that

h(a) e [f, H]Oa

(m / e O 9(B') dﬁ’)
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(5 [ 5

/ / 1 f(O/) — f(ﬂl> / , / /
Fowa()a ) - o [ L =L n 10,909 a8

(@) — ( fle) = f(B) .
‘7/( o )( =)ol ds
— % h( )f (Oéo/ g,(ﬁ )f (B )8,3 g(ﬁl) dﬁ/ + % / M%g,,(ﬁ)%/(h(ﬁ’)ﬁg/g(ﬁ’)) dﬁl
1 [ () B\ (£l =SB,
Cm ( o — )( o — 3 )aﬂg(ﬁ)dﬁ

We now observe that the quantity above is exactly the same as the right hand side of the above

proposition. Hence the proposition is proved. [

The following identities say that the material derivative of a holomorphic function remain es-

sentially holomorphic.
Proposition A.0.2. Let f € S(R) with P4 f = 0. Then we have the following identities
1. I-H)D,f = (I —-H)(Z; Dy f)

2. I-H)D2f

—2|ru( 7)o - [ea(2) a7 )0
i(n ]HI){ < [%H] Zm,) [Zt,H]Da,f} - i(n - ]HI){ ([Zt,H]aa/%Yf}

1

1 /
+5 [[Zt, 20 ) 0ur 77—, H] D (Z) 4 [Zu, H| Do f

Proof. See [Wul5] Appendix B and section 4 for the proof of the above identities. [

Proposition A.0.3. Ler H € C'(R), A; € C'(R) fori =1,---mand F € C*(R). Define

CoH A ) — o / F(H(m) - H(y)) I (Ade) — A

r—y (. —y)m+!
_ H(x) ~ H(p)\ T2, (A () — A ()
Calt A, 1)) = pos. [ 1 (FELZ) BELE S8 ) 4

then there exists constants cy, ¢z, 3, ¢4 depending only on F and | H'|| _ so that
L |CL(H, A, Py < el Al - TAR N A1l
2. |Cu(H, A, f)lly < call ATl 1A o - - TAG o1 f 1l

3. Co(H, A, f)lly < esl| Al - - [ Ao 1 £l
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4. (|Co(H, A, Plly < call Al ANl - - ANl a1l

Proof. The first estimate is a theorem by Coifman, McIntosh and Meyer [CMMS82]. See also
chapter 9 of [MC97]. Estimate 2 is a consequence of the Tb theorem and a proof can be found
in [Wu09]. The third and fourth estimates can be obtained from the first two by integration by
parts. [

Corollary A.0.4. Let H € C'(R), A; € CY(R) fori = 1,---m and let § > 0 be such that

forall x # vy

< ‘H@i:mw' <!

Y

Let 0 < k < m + 1 and define

T(A, f)(z) = pv. / - _1‘;’)%5;4]% (_x

then we have the estimates

j‘i(y” f()dy

— H(y))

LAT(A; Hlly < CUH oo D[ Ao - ATl Fl
2. 7CA, Ny < CUH os DAL N AR oo - - 14T oo 11l

Proof. If k = 0, then the result follows directly from Proposition A.0.3. If £ > 1, we choose a
smooth function F* with compact support such that F'(z) = 0if |z| < S or || > 2 and F(z) = 27"
ifd <lz| < %. The result now follows from Proposition A.0.3. O

Proposition A.0.5. Let T': D(R) — D'(R) be a linear operator with kernel K (x,y) such that on
the open set {(x,y) : * # y} C R x R, K(x,y) is a function satisfying

C
]K(a:,y)] < and |VxK(37>y)‘ < ° ’2

|z —y| lz—y

where Cy is a constant. If T' is continuous on L*(R) with ||T'|| ;2_, ;2 < Co and if T(1) = 0, then T
is bounded on H* for 0 < s < 1 with ||T|

i S Co

Proof. This proposition is a direct consequence of the result of Lemarie [Lem85] where only weak
boundedness of 7" on L? (in the sense of David and Journe) is assumed. As boundedness on L?
implies weak boundedness, the proposition follows. See also chapter 10 of [MC97] for another

proof of the result of Lemarie. [

Proposition A.0.6. Let f € S(R). Then we have

L[ flloe S 111

e f s> %andfors = % we have ||f||BMo S ||f||H%
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S A
fle') = £(8) ,
Sup| = — 11l
A = o [ ' 48 do!

S
L2(R2,do’ dB’)

by

Proof. 1) is the standard Sobolev embedding and 2) is a consequence of Hardy’s inequality.
3) We see that

fle) = f(B)

1
- /Of(5+s(a—ﬂ))ds

< M(f')(a)

sup

= sup
B’ B’

where M is the uncentered Hardy Littlewood maximal operator. As the maximal operator is
bounded on L2, the estimate follows.
4) Observe that as |0,/| = iH0,, and H(1) = 0 we have

112y =1 [ seo( [ L0 a5 ) ao
-1 ( / 1) 1) 1) a
//‘ F) dﬁd + = //f (8 dpB do’

Now we switch o’ and 3’ in the second term and hence we get

S = )= ][5
L (/%_—mzdﬂ')da’

dﬁd’

The identity now follows.
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5) We see that

D <M) _ f<o/> —f8) )

(a/_B/) 5/) ’—ﬁ/
/f’ﬁ’+sa—6))—f’(5’)d8
)
1 1( 3 1( QR
:/ s[f(ﬁ—i_s?l_f(ﬁ)]ds using o’ = 3 +1
0

Hence we have

b (557

f'(6" + sl) = f'(B)

d
sl iy

L2(R2,dB’ dl)

1
s/
L2(R2,do’ dp’) 0
1
S [ Iy ds
0

SN s

Proposition A.0.7. Let f, g, h € S(R) and s,a € R. Then we have the following estimates
L 0w " (f )y S M0 fllallglle + I f MO *gll,  for s >0
2. 101, FN10ul ), S 10l Fl ol fors,a >0
3. (10w L B0}, S (10 [ gllmsso for's 2 0and a0

4 |[£,10212]9lly S 1012 £l a9l

Proof. These estimates are all variants of the Kato Ponce commutator estimate and are proved
using the paraproduct decomposition. See [KP88] for the first estimate, [HIT16] for the second
and third and [Li16] for the last one. L]

Corollary A.0.8. Let f,g,h € S(R) and m,n € Z. Then we have the following estimates

LAfgll s S WAy gl + 1 sollgll 8

2. 1 fgll gy SN allglls + (1o llgll s
- n (m+n+1)
3 0mf HOmgl iy S [0 fll lglly  form,n >0
4. ozl f Homgll, S 105 Fllllgll,  form.n >0
5. |0 Ll SN0 Fllllgll.e  form > 0andn > 1

224



Proof. The first, fourth and fifth estimate follow easily. For 2) observe that
1 1 1
0w [2(f9) = [|0w|?, flg + flOw|?g
and hence

1£9ll3 S M0l Fllnollglls + 1l llall s S 1F allglly + 11 gl

3) The H 2 estimate follows from the previous proposition and hence we only need to show the L>°

estimate. We note that
onr. 50y - 0 | Ma@gw') i
=0 // f((Q=s)p + sa')0pg(0') ds df’

= (—U”/O s"(1—s)" (/ FOEEO((L = )8 + sa)g(B) dﬁ’) ds

The estimate follows by using Cauchy Schwartz. [

Proposition A.0.9. Let f, g, h € S(R) . Then we have the following estimates

L|[[f Hglly < 17111191l

2. ILf5 g3 Mllly S WM NN R
3 0w f: lg, H]JAN, S L WM 117
4 Mg o S 17 ool o 171l

5 Mg 1y S T g ol Al g

6. Mfg: s S LISl

Proof. 1) We see that

Hf,H]g!S/‘f(/_ 19091 19(8 (/\

The estimate now follows from Hardy’s inequality.

1

2 2
|g(ﬁ’)! dﬂ’) gl
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2) We see that

s f|H9=
< Hflb(/‘

The estimate now follows from Hardy’s inequality.

,) g(a,)_g(ﬂl) / /
\ =5 (8] ds

(8 ’)|2d5’>

3) We see that

O [ g, H]| 2

= Ow (flg, H]h — [g, H] fh)

_ Ly [ L) —gB)(fe) - f(F), h(F)
VT @ Oé _ﬁ/

_ 1 [gle) = g(B) f&) — [(B), fa) = F8),

B m/ of — 3 o — G h(B") df" + g'(c ( / a_ﬁ, (B)dﬁ)
+ f'(e )<;/%h(ﬁ’)dﬁ’)

The estimate now follows by previous estimates.

4) This is a special case of Proposition A.0.3

5) We observe that the operator 7" defined by the action i +— [f, g; /] is bounded on L2, Also
we clearly see that 7'(1) = 0. It is also easy to see that the kernel of this operator is a Calderon
Zygmund kernel and hence satisfies the conditions for Proposition A.0.5. Hence the operator 7" is
bounded on Hz.

6) The L estimate is obtained easily by an application of Cauchy Schwartz and Hardy’s inequal-

ity. Now we use || f[| .1 < H fe _éfﬁ) L2 B ) and see that
[/, g: () = [f, g5 (B") _ i/ h(s) [f(o/) —f(s)  J(B) - f(S)} 9(@) —g(s)
o — ' o — [ o —s b —s o —s
L[ h(s) [g(a)—g(s) g(6') —g(s)] f(8) — f(s)
+%/a’—ﬁ’{ o —s B —s } B —s ds

Now we use the following notation to simplify the calculation

Flap) = 1010 (“C)L — g B ind Ga,b) = 22 =90 (“C)L — )
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Hence we have

1f, 9 h](o/) — [f, 9; h)(B)
5/

/5/—3 o, s)G(d,s)ds + — /5’—3 G, s)ds

+ % Off(j)SF(ﬁ’, )G B)ds — — | = (_ _F(8.5)G(85)ds
= —H(F(«,)G(,-)h(-))(8) + F(/, BH(G (o, -)h())(B)
+ G (o, BH(F (B, -)h(-)) (') = H(F(B,)G(B',-)h(-))(a')

and we see that

IR (0!, )G, YD) (B o any S |[IF (s )G BB o
S 1P | I G B g

S [ Y

L2(R,da)

L2(R,da)

The other terms are handled similarly. [

Proposition A.0.10. Let f € S(R) and let w be a smooth non-zero weight with w, — € L>*(R)
and w' € L*(R). Then

LI S E N,

2 M1 it S NSl + (|23

Proof. 1) We see that
o) =2( £ ) wr)

Now we integrate and use Cauchy Schwartz to get the estimate.

2) The L*° estimate is obtained from the first estimate by observing that

\ummw\ £l + '

s |

Now use the inequality ab < g + # on the last term to obtain the estimate. For the estimate,
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using |0,/ | = iHO, we see that

I % | [ (L) wrtryao

Now as wH f" = [w, H] f" + H(w ") we have

(wf)/H2

2. < i / / < || / i
1y % | £ bt + w5 | 2] wotasi+ | ).

. . . a2 b2
Hence using the inequality ab < S + %, we see that

w'ly

2 2 2
A o ] /134 1712 % 2] newryte + \

O

Proposition A.0.11. Ler f,g € S(R) and let w,h € L*(R) be smooth functions with w being
real valued. Also assume that w', h' € L*(R). Then

L[fwhll gy S Nfwll gy [1Plle + LA Cwh) lly + 1Al

2. lfgwlly S 11wl g llglly + llgwll 3 115 + 171 gllo 1wl
Proof. 1) We see that

10ur | (froh) = (|02, B + 1| O |2 (f0) = [0 |2, hao] f + B[O |, ] f + O] (f0)

The estimate now follows from the estimate [|[||2, 171, < 19w 29l asoll £l < l9'l1,]1 £,
2) We observe that

fow = Py f)(Pug)w + (Puf)(Pag)w + (Paf)(Pug)w + (Paf)(Pag)w
= (Puf)(Pag)w + (Puf)(Pag)w + (Paf)(Pug)w + (Paf)(Pug)w

We will control only the first term and the other terms are controlled similarly. Now see that

|@un®agie|, = 1@ @agwl,

Hence we have

2Py f)(Pag)w = (I — H){(Py f)(Pag)w} + (I +H){(Py f)(Pag)w}
= [WPag, H|Py f — [wPp f, H]PAg
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Now observe that as w is real valued we have

wag, P flly S NwPaglllpy Pl < (1w Bgly + gl ) 11

S lw'llgllglall £l + llwgll 5 171

Similarly we have

[wPr f, BIPAGl, S P13 IPaglly S (11w, By + 0 f Ly ) ol
S 1 Il Flalgly + leofll 3 llglls
]

Proposition A.0.12. Let H be the Hilbert transform and let H, H be defined as in §5 and let
Iy f1, f2, f3,9 € S(R). Let M be defined as in Lemma 5.3.3 and we will suppress the dependence
of M i.e. we write a < binstead of a < C(M)b. With this notation we have the following estimates

L= H)flly S e = LN

2. | = 1) fllyy S Mo = UlF 13

3|, = Hglly S har = UM ol

411 = Hglly S o = Ll £1 3 91l
5.1 = H)0w (9)ly S Nhar = ol LNl

6. I[f, H = H)0w (9) 15 S lher = 1|1 11519l

7.0 H = Hoar (95 S e = Ul £ 12913

8 (1[f,H = Hwr(9)lly S o = 1l {113 gl + 19}

9. 1Our 1, [f2r B = H)Juw fislly < W = ol 2l IA51L

10. (£, H = Hlgl, oy S Whar = Tl 91l

111 H = H]0w 9|y S e = Ul gl

12 (|Ufr. fos S3) = Lo Foi Folil] et S Mo = Ll ool S5 Fll
13 |[[f1, fo: 0 fo] = (1. fos O Pl 3 S I = Lol o 31 L sl
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Proof. To simplify the calculations we define

@) — I S 1)

F(a,b) = —a—b Fh( ,b) Z(&) _%gb

sy — 90 =90 iy  90) st

e e N

= e = S
-0 -b) (i) —a)— (b(E) D)

H(a,b) = " Hi(a,b) T

‘We have the identities

F(d,s)— F(f,s) _ F(,p")—F(F,s)

Oé,—ﬂl Oé/—S
Hy(o',5) = H(B'5) _ 1 N T Y RACORACH
o« = F _%m@—M@{H(’B)]ﬂw’)( “-F )}

1. We see that

v 1 1_h5(6) ' ! Y] T
-y =L 4’ = H((1 ~ o
A = [ 2@ a8 = F(O T

Hence as H is bounded on L2 we have ||(H — H) f|l, < [har — 1]l |If]l,- Now we have

1 1 B 1 / ’_ i Hh<0/7/3,) / /
(5 - 7). = Zﬁ/(w_@ ﬁmq_m@Jf“”w‘ww/ e p@)ap

Now using corollary (A.0.4) we see that ||(H — ?—[)f||2 < ||n - 1| Il fl5- Hence the required

estimate follows.

2. Observe that (H — #)(1) = 0 and that the kernel of this operator is

1 ha (B
K(o/,ﬁ') = = B (ﬁ~)
o' =f" h(a) —h()
Hence this kernel satisfies
har — 1 [her — 1
K(or.g)] < Ve =l VoK' ) § ———32
| ( /8)|N |a/_6/| | ( B>|N |Oé/—5,|2

and by the first estimate we also have boundedness on L2 with operator norm < |[ha — 1 |-
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Hence by Proposition A.0.5 we have the boundedness on H:.

. Note that

SH-FHlg= - / F(o!, 8)Hu(a', 8)g(8) df

s
and hence by Cauchy Schwartz we have
- - 1 3
1.8~ gl % W = Lol f1F0 ) Plo] ')

The estimate now follows from Hardy’s inequality.

. We see that
1.8~ gl % W = ol ([ 17050 a5 )

We now obtain the estimate easily as / |F(o, 8 d do’ < Hin{%

. We observe

(£ E = Foule) = 5 [ (@) H )90 (5) 45

_i Hh(alaﬁl) (B / ’ i F(O/aﬁl) N/ ’ / /
= 5 [ T s+ o [ R (e a3
1 [ R@ERES)

| e S e e

The estimate now follows from corollory (A.0.4).

. This also follows from the computation above and corollory (A.0.4).

. We see that
. 1
(£ E = Fule) = 5 [ (@) H 3)gp(5) 45
= = [0 (F (! 8) il B)) (e ~ 9(8) 48
()~ 1(8)

Now as F(d/, ) = , if the derivative falls on f then we can use estimate 4)

0/—6’
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above. All other terms are bounded pointwise by

nhwuu/V@*‘

Now use Cauchy Schwartz and Hardy’s inequality.

g9(e’) —g(8")
’r_ 5/

g’

8. We see that

[, H — H]0wr(9)

= — [ B, 8) i 8)9(8) 4B

— o [@F BN $)9(3) a5~ o [{On . 50 (3)g(5) A5
-5 [(REEE O (o - 0m o) a8

Now we use g F'(o/, /') = %—;ﬁ/(ﬁ’) and the fact that their L?(R x R, do’ d/3’) is bounded

by [|f'[l ;3. to obtain the required estimate.

9. We have

[fl, fo, = H)| O f
:—5’ /fl ( /75/)Hh(a/75/)f35/(6/)dﬂl

:ﬁm(m/fx ol mgmmwﬂ
+ 85 (- [ R )l ) o) a5
+— [ B 90l )0 = (0w B!, ) — Filel, )} fua(9) 05

Each of the terms are now easily controlled by previous estimates.

10. Note that

MH—MW?;/ﬂdﬂmm%w@%

(x
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Hence the L*° estimate follows immediately. We now show the H: estimate. We see that

(If, H — Hg)(@) — (If.H — H]9)(8)

o — ,8/
L[ R ) s) P s)
B i7r/ of = f 9(s)d
F(o/,f) [ Huld,s)

(0 o —s i o — s F(B',5)g(s)ds
H@.8) [ FEs)
i / ) )"
_ l h(o/) — h(ﬁl) F(ﬁ/, S) s
”( o = p >/%(o/) () P sle)d

We can control each of the terms. The first term is controlled as

HF(a’,ﬂ’) Hy(o,5)

v o —s 9ls) ds

L2(RxR,da’ dB’)

/Hhozs
s)ds

S Mhar = Ul 1 M2l

(e,

”Loo da’)

L2(da) || 2 (ap)
For the second term we have

1 [ Hp(d,s)
o —s

F(5',5)g(s) ds

L2(RxR,do/ dB')
H

Al S) by g)g(s) ds
a — S

L?(da) L2(dB)

S e = Ul |[IE ')l

S Mhar = Ul 1Ml Mgl

L2(dp’)
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Similarly the third term is controlled as

HH(o/,ﬁ’) / F(8',s)
, = — (s)ds
h(

g
T o) — h(B) L2(RxR,do’ dB’)
- F(3', )
< ’— =N TN
< Nher — 1)1, /h(o/) - h<8)g(s) ds

12denl 12 ag)

S W = Ul IF (3 )2

S Mhar = Ul 1Ml gl

L2(dp’)

and the last term is controlled similarly to the second term. Hence we have the required estimate.

11. We see that the operator T : g — [f,H — H]0.(g) is bounded on L* and that 7'(1) = 0.
It 1s also easy to see that its kernel satisfies the conditions of Proposition A.0.5 and hence the

estimate follows.
12. This is proved in exactly the same was as we proved estimate 10.

13. We again see that the operator 7" : f3 — [f1, fa; O f3] — [f1, f2; Our f3]7 is bounded on L? and
that 7'(1) = 0. Its kernel also satisfies the conditions of Proposition A.0.5 and hence we have

the estimate.

]

Proposition A.0.13. Ler f,0,f,0}f € C(R x [0,T)) N L>®(R x [0,T)) then forany t € [0,T) we

have

G+ 8)lloe = IFC D

S

= <0uf (50l

lim sup
s—0t

Proof. Fix s > 0 satisfying t + s € [0,7) and for every ¢ > 0 we find a. € R such that
1f(,t+ 9o < |fl(ac,t + s) + €. Observe that | f|(ae, t) < ||f(-,t)||,, and hence we have

1FCt+ )l = I D)l < | fI(ac t 4 5) = [ fl(ac, t) + €
< |flact+s) = flae,t)| +€
< sup |0 f(d t+u)|s+e

S
u€(0,s)

Now let ¢ — 0 to get

-,t—i—S 0o '7t 0
1£( Mo = I1£C 1)) < sup |0 f (-t 4 )|,
S u€(0,s)
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As 97 f € L=(R x [0,T)), we take the limit as s — 0 to finish the proof.

235



[ABZ11]

[ABZ14a]

[ABZ14b]

[AFTS2]

[AMOS5]

[AMO9]

[Amb03]

[BGI98]

[CLOO0]

[CMMS2]

[Cra85]

[CSO7]

BIBLIOGRAPHY

T. Alazard, N. Burq, and C. Zuily, On the water-wave equations with surface tension,
Duke Math. J. 158 (2011), no. 3, 413-499. MR 2805065 4, 77, 82, 137

, On the Cauchy problem for gravity water waves, Invent. Math. 198 (2014),
no. 1, 71-163. MR 3260858 4

, Strichartz estimates and the cauchy problem for the gravity water waves equa-
tions, Preprint (2014), arXiv:1404.4276. 4, 15, 66

C. J. Amick, L. E. Fraenkel, and J. F. Toland, On the Stokes conjecture for the wave of
extreme form, Acta Math. 148 (1982), 193-214. MR 666110 4

David M. Ambrose and Nader Masmoudi, The zero surface tension limit of two-
dimensional water waves, Comm. Pure Appl. Math. 58 (2005), no. 10, 1287-1315.
MR 2162781 4, 69, 70, 75, 80

, The zero surface tension limit of three-dimensional water waves, Indiana
Univ. Math. J. 58 (2009), no. 2, 479-521. MR 2514378 4

David M. Ambrose, Well-posedness of vortex sheets with surface tension, SIAM J.
Math. Anal. 35 (2003), no. 1, 211-244. MR 2001473 4

Klaus Beyer and Matthias Giinther, On the Cauchy problem for a capillary drop. 1.
Irrotational motion, Math. Methods Appl. Sci. 21 (1998), no. 12, 1149-1183. MR
1637554 4

Demetrios Christodoulou and Hans Lindblad, On the motion of the free surface of a
liquid, Comm. Pure Appl. Math. 53 (2000), no. 12, 1536-1602. MR 1780703 4

R. R. Coifman, A. Mclntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur
borné sur L? pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2,
361-387. MR 672839 222

Walter Craig, An existence theory for water waves and the Boussinesq and Korteweg-de
Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787-1003.
MR 795808 4

Daniel Coutand and Steve Shkoller, Well-posedness of the free-surface incompressible
Euler equations with or without surface tension, J. Amer. Math. Soc. 20 (2007), no. 3,
829-930. MR 2291920 4

236



[dP16]

[HIT16]

[Igu01]

[KL16]

[KP88]

[KW14]

[Lan05]

[Lem85]

[Lil6]

[Lin05]

[MC97]

[MZ09]

[Nal74]

[Ngul7]

Thibault de Poyferré, A priori estimates for water waves with emerging bottom,
Preprint (2016), arXiv:1612.04103. 4

John K. Hunter, Mihaela Ifrim, and Daniel Tataru, Two dimensional water waves
in holomorphic coordinates, Comm. Math. Phys. 346 (2016), no. 2, 483-552. MR
3535894 4, 224

Tatsuo Iguchi, Well-posedness of the initial value problem for capillary-gravity waves,
Funkcial. Ekvac. 44 (2001), no. 2, 219-241. MR 1865389 4

T. Kaiser and S. Lehner, Asymptotic behaviour of the riemann mapping function at
analytic cusps, Preprint (2016), arXiv:1603.02875, to appear at Annales Academiae
Scientiarum Fennicae Mathematica. 54

Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes
equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. MR 951744 224

Rafe Kinsey and Sijue Wu, Apriori estimates for two-dimensional water waves with
angled crests, Preprint (2014), arXiv1406:7573. 3,4,5,6,7, 8, 12, 13, 15, 16, 17, 18,
19, 20, 39, 40, 55, 58, 66, 67, 69, 70, 71, 75, 76, 78,79, 83, 141

David Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18
(2005), no. 3, 605-654. MR 2138139 4

Pierre Gilles Lemarié, Continuité sur les espaces de Besov des opérateurs définis par
des intégrales singulieres, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 175-187.
MR 812324 222

Dong Li, On kato-ponce and fractional leibniz, Preprint (2016), arXiv:1609.01780.
224

Hans Lindblad, Well-posedness for the motion of an incompressible liquid with free
surface boundary, Ann. of Math. (2) 162 (2005), no. 1, 109-194. MR 2178961 4

Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathe-
matics, vol. 48, Cambridge University Press, Cambridge, 1997, Calder6n-Zygmund
and multilinear operators, Translated from the 1990 and 1991 French originals by
David Salinger. MR 1456993 222

Mei Ming and Zhifei Zhang, Well-posedness of the water-wave problem with surface
tension, J. Math. Pures Appl. (9) 92 (2009), no. 5, 429-455. MR 2558419 4

V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splosn. Sredy (1974), no. Vyp.
18 Dinamika Zidkost. so Svobod. Granicami, 104-210, 254. MR 0609882 4

Huy Quang Nguyen, A sharp Cauchy theory for the 2D gravity-capillary waves, Ann.
Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no. 7, 1793-1836. MR 3724757 4

237



[OTO02]

[Pom92]

[Rud87]

[SchO5]

[Sto80]

[SZ08]

[Tit86]

[Wig65]

[Wu97]

[Wu99]

[Wu09]

[Wul2]

[Wul5]

[Wul6]

[Wul8]

Masao Ogawa and Atusi Tani, Free boundary problem for an incompressible ideal fluid
with surface tension, Math. Models Methods Appl. Sci. 12 (2002), no. 12, 1725-1740.
MR 1946720 4

Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299,
Springer-Verlag, Berlin, 1992. MR 1217706 77

Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New
York, 1987. MR 924157 42

Ben Schweizer, On the three-dimensional Euler equations with a free boundary subject
to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 6, 753—
781. MR 2172858 4

G.G. Stokes, Considerations relative to the greatest height of oscillatory waves which
can be propagated without change of form, Mathematical and physical papers 1 (1880),
225-228. 4

Jalal Shatah and Chongchun Zeng, Geometry and a priori estimates for free boundary
problems of the Euler equation, Comm. Pure Appl. Math. 61 (2008), no. 5, 698-744.
MR 2388661 4

E. C. Titchmarsh, Introduction to the theory of Fourier integrals, third ed., Chelsea
Publishing Co., New York, 1986. MR 942661 11

Neil M. Wigley, Development of the mapping function at a corner, Pacific J. Math. 15
(1965), 1435-1461. MR 0186806 53

Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D,
Invent. Math. 130 (1997), no. 1, 39-72. MR 1471885 4, 12, 13, 58

, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J.

Amer. Math. Soc. 12 (1999), no. 2, 445-495. MR 1641609 4

, Almost global wellposedness of the 2-D full water wave problem, Invent.
Math. 177 (2009), no. 1, 45-135. MR 2507638 222

Sijue Wu, On a class of self-similar 2d surface water waves, Preprint (2012),
arXiv:1206.2208. 4

Sijue Wu, A blowup criteria and the existence of 2d gravity water waves with angled
crests, Preprint (2015), arXiv:1502.05342. 3, 5, 6, 8, 38, 39, 41, 45, 79, 81, 140, 221

, Wellposedness and singularities of the water wave equations, Lectures on the
theory of water waves, London Math. Soc. Lecture Note Ser., vol. 426, Cambridge
Univ. Press, Cambridge, 2016, pp. 171-202. MR 3409894 58

, Wellposedness of the 2d full water wave equation in a regime that allows for
non-cl interfaces, Preprint (2018), arXiv:1803.08560. 3, 5, 81

238



[Yos82]

[Yos83]

[Z2Z08]

Hideaki Yosihara, Gravity waves on the free surface of an incompressible perfect fluid
of finite depth, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49-96. MR 660822 4

, Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto
Univ. 23 (1983), no. 4, 649—694. MR 728155 4

Ping Zhang and Zhifei Zhang, On the free boundary problem of three-dimensional
incompressible Euler equations, Comm. Pure Appl. Math. 61 (2008), no. 7, 877-940.
MR 2410409 4

239



	Acknowledgments
	Table of Contents
	List of Figures
	Abstract
	Introduction
	The Problem
	Previous Research
	Results and outline of the Dissertation

	Gravity Water Waves
	Notation and Preliminaries
	The Quasilinear Equation
	Heuristics
	Apriori estimate
	Main result on rigidity of singularities
	Examples: Angled crests and cusps

	Gravity Capillary Water Waves
	Notation and Preliminaries
	The Quasilinear Equations
	Heuristics
	Main results
	Outline of the Proof

	The Energy Ecalsigma
	Quantities controlled by Esigma
	Closing the energy estimate for Esigma
	Equivalence of Esigma and Ecalsigma
	Relation with Sobolev norm
	Existence

	Convergence
	Higher order energy Ecalhigh 
	Auxiliary energy Ecallambaux
	Apriori estimate for EDelta 
	Example

	Appendix
	
	Bibliography

