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ABSTRACT

This thesis is devoted to the non-asymptotic random matrix theory and measure

concentration phenomenon. We focus on using concentration inequalities together

with other probabilistic and geometric methods to study singular values distributions

of several types of random matrices.

In Chapter II, we apply concentration inequalities to a convex geometry problem,

namely upper bound for the Dvoretzky dimension in Milman-Schechtman theorem.

Our approach combines properties of random projections and geometric observation.

In Chapter III, we study the non-asymptotic distributions of all singular values

for i.i.d. sub-gaussian matrices. We prove a non-asymptotic upper bound for all

singular values of i.i.d. sub-gaussian matrices under some weak condition. It is the

first tight non-asymptotic upper bound for all singular values other than Gaussian

matrices. The upper bound provides a two-side bound together with known lower

bound.

In Chapter IV, we study the smallest singular values distributions of symmetric

sparse matrices. We show that an n-dimensional sparse symmetric random matrix

A is invertible with high probability under some condition on its sparsity level.

vii



CHAPTER I

Introduction

1.1 Measure concentration in probability theory

Concentration of measure (e.g. about a mean) is a general principle that is applied

in measure theory, functional analysis, probability, combinatorics other. The idea

was put forward in the early seventies by V. Milman in the asymptotic theory of

Banach spaces. It was further developed in the works of V. Milman and M. Gromov,

B. Maurey, G. Pisier, G. Schechtman, M. Talagrand, M. Ledoux, and others. For an

overview of the history and some standard results, see [31].

Measure concentration usually occurs in high dimensional measure space geomet-

rically, or applies to a large number of random variables when there is sufficient

independence among them. In the probabilistic setting, measure concentration prin-

ciple states that that a good (e.g. Lipschitz) function f : X → R defined on a large

probability space X almost always takes values very close to the average value of

f on X. To see what ”close to” or ”concentrated” means, let’s consider following

example.

Let X1, X2, · · · , Xn be independent symmetric Bernoulli random variables, and

a = (a1, · · · , an) ∈ Rn. Then, for any t ≥ 0, by Hoeffding’s inequality, we have

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2‖a‖2
2

)
.

1
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Results of this kind are known as concentration inequalities.

Choosing a = ( 1
n
, · · · , 1

n
), we have the average value of n independent Bernoulli

random variables are within a magnitude of t with probability greater than 1 −

2 exp(−nt2/2). It’s worth noticing that comparing to asymptotic results such as law

of large numbers, the concentration inequalities tells us more about the distribution

when the number of variables is a fixed large number. On the other side, it is

a common phenomenon that the dimension, or number of random variables, also

appears in the probability bounds in the concentration inequalities. Thus, in many

cases, the concentration inequalities may give us better bounds as dimension getting

higher, which turns out to be crucial.

In Chapter II, we will discuss several more concentration inequalities and their

applications. But in the rest of the thesis, we will mainly be interested in the role

of concentration inequalities in non-asymptotic random matrix theory and others.

Limited by space, we won’t discuss much further about general measure concentration

phenomenon. For more concentration inequalities and their applications, one may

look at [31, 53, 74]

1.2 Non-asymptotic theory of random matrices

1.2.1 Non-asymptotic vs. Asymptotic

Random matrix theory studies properties of N × n matrices A chosen from some

probability distribution on the set of all matrices. Since the beginning of the area,

the classical random matrix theory has been mostly focused on asymptotic spectral

properties of random matrices as their dimensions tend to infinity. Among them,

there is the foundational Wigner semicircle law for the empirical measures of eigen-

values of random symmetric matrices [77, 41, 78], Marchenko-Pastur law, which is the

limit of empirical measures of sample covariance matrices (or limit of singular value
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distributions) [69, 75, 5], Circular law, which is the limit of empirical measures of

i.i.d. matrices [4, 18, 19, 62, 64], and TracyWidom distribution describing the limit of

the extreme singular values of a sequence of random matrices [7, 8, 26, 27, 56, 38, 9],

etc. For an introduction of classical problems and results of random matrix theory

and its fascinating connections, see [14, 3, 11, 33, 66, 13, 23].

These limiting distributions are of paramount importance. The asymptotic regime

that the dimensions tend to infinity is well suited for many different purposes, for ex-

ample in physics when random matrices serve as finite-dimensional models of infinite-

dimensional operators. However, for many problems in numerical analysis, convex

geometry, statistics, theoretical computer science, data science, knowing the limit

behavior is of little help. In those cases one needs information about behavior of

characteristics for large fixed dimension instead. And this lead to our interest in

non-asymptotic random matrix theory.

One reason we are interested in characteristics of random matrices for a fixed finite

dimension comes from classical asymptotic random matrix theory. One example

of those is the Stieltjes transform of measures which plays an important role in

deriving limit laws. To derive the convergence of Stieltjes transforms, one often

need to provide bounds on the smallest singular value of a random matrix of a fixed

dimension which holds with high probability [64, 62].

In other mathematical areas, one sometimes needs to understand what happens

for a fixed dimension rather than the limit. For instance, in numerical analysis,

we we have a system with a small random perturbation, stability of the system of

linear equations Ax = b under the perturbation depends on the condition number

of the random matrix A. In this case one needs to understand the spectrum of

random matrices in finite large dimensions rather than in limit. There are many
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such examples in geometric functional analysis as well, for example, constructing a

random section of an high dimensional convex body by taking the kernel or the range

of a certain random matrix where one needs some probability guarantee with a fixed

large dimension.

In many other areas outside mathematics such as statistics and theoretical com-

puter science, the limiting regime may not be very useful, for example, constructing

an embedding of a high dimensional subspace into another one by taking the range

of some tall random matrix [49], constructing a random matrix as linear transform

to reduce the dimension of a point sets while preserve distances [53], estimating er-

ror bounds of sample covariance matrices [72], constructing matrices with restricted

isometry properties [49] and etc. In such applications, the dimension of the large

space remains fixed, and one seeks explicit estimates of probabilities in terms of the

dimension. It’s worth mentioning that, non-asymptotic random matrices theory also

play an important role in theoretical machine learning and data science which are

rapidly growing sub-fields of statistics and computer science [74].

The difference between non-asymptotic results and asymptotic results in random

matrix theory is similar to our earlier comparison between law of large numbers and

Hoeffding’s inequality. We now wrap up our discussion between asymptotic results

and non-asymptotic ones by giving an explicit example.

Consider an N × n random matrix with i.i.d. Gaussian entries. Then in the

asymptotic regime, the Bai-Yins law [3] states that as the dimensions N ≥ n increase

to infinity while the aspect ratio n/N converges to a constant in [0, 1] is fixed, we

have

smin(A) =
√
N −

√
n+ o(

√
n), smax(A) =

√
N +

√
n+ o(

√
n) almost surely.

However, Bai-Yins law won’t directly tell us anything if our matrix A has a fixed large
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dimension. As we pointed out earlier, we want to find non-asymptotic versions of Bai-

Yins law. In the Gaussian matrix case, an exact non-asymptotic result is known as

following: Let A be an N ×n matrix whose entries are independent standard normal

random variables. Then for every t ≥ 0, with probability at least 1− 2 exp(t2/2) one

has

√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t.

Comparing with Bai-Yins law, the non-asymptotic results provide us concentration

inequalities with probability bound rather than a limit behavior. It’s common that

the magnitude of deviation also play a role in the probability bounds and this give

us the freedom to balance between how tight the inequalities are and how strong the

probability guarantee is. Choosing t in the order of
√
n, we also have

√
N − C

√
n ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n

with probability at least 1 − exp(−cn). Although the non-asymptotic inequalities

maybe not as precise as the asymptotic limiting distributions, the probability is

usually overwhelmingly large which is essential in many applications.

1.2.2 A short overview: extreme singular values and others

Singular values and eigenvalues are both important characteristics of random ma-

trices and their magnitude agrees on symmetric matrices. Non-asymptotic random

matrix theory studies spectral properties of random matrices, that is to provides

probabilistic bounds for singular values, eigenvalues, etc., for random matrices of a

large fixed size. In the non-asymptotic viewpoint, study of singular values are more

motivated due to geometric problems in high dimensional Euclidean spaces. Here

we give a short overview of non-asymptotic singular values distributions study, but

due to our motivation, we only focus on the extreme singular values of real matrices
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with sufficient independent entries. Many of following results could be generalized

to more general setting.

Recall that for an N×n real matrix A with N ≥ n. The singular values sk(A) of A,

where k = 1, 2, · · · , n, are the eigenvalues of
√
ATA arranged in non-increasing order.

Among all the singulars, the two extreme ones are of the most importance. When

we view matrix A as a linear operator Rn → RN , we may want control its behavior

by finding or giving useful upper and lower bounds on A. Such bounds are provided

by the smallest and largest singular values of A denoted as smin(A) and smax(A).

The extreme singular values are also referred as the operator norms of the linear

operators A and A−1 between Euclidean spaces, that is to say smin(A) = 1/‖A−1‖

and smax(A) = ‖A‖.

Due to the geometric interpretation, understanding the behavior of extreme sin-

gular values of random matrices are important in many applications. For instance, in

computer science and numerical linear algebra, the condition number smax(A)/smin(A)

is widely used to measure stability or efficiency of algorithms as the example we give

in early section. In geometric functional analysis, probabilistic construction of lin-

ear operators using random matrices often depend on good bounds on the norms of

these operators and their inverses [53]. In statistics, applications of extreme singular

values can be found from the analysis of sample covariance matrices ATA [72].

It is widely believed that phenomena typically observed in classical random matrix

theory are universal, that is independent of the particular distribution of the entries of

random matrices [64]. For instance, the Circular law not only hold for i.i.d. Gaussian

matrices, but also for general i.i.d. matrices with mean zero variance 1 entries [62,

64]. This principle is also adapted in the study of non-asymptotic random matrix

theory, that is to find non-asymptotic characteristics of special random matrices (e.g.
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Gaussian matrix or Bernoulli matrix), then prove the same properties for general

matrices.

It is worth mentioning that many non-asymptotic results are known under a some-

what stronger sub-gaussian moment assumption on the entries of A, which requires

their distribution to decay as fast as the normal random variable:

Definition 1.2.1. (sub-gaussian random variables). A random variable X is sub-

gaussian if there exists K > 0 called the sub-gaussian moment of X such that

P (|X| > t) ≤ 2 exp(−t2/K2) for t > 0.

The are several equivalent characteritics of sub-gaussian variables

Lemma 1.2.2. (Equivalence of sub-gaussian properties [72]). Let X be a random

variable. Then the following properties are equivalent with parameters Ki > 0 differ-

ing from each other by at most an absolute constant factor.

1. Tails: P (|X| > t) ≤ exp(1− t2/K2
1) for all t ≥ 0;

2. Moments: (E|X|p)1/p ≤ K2
√
p for all p ≥ 1;

3. Super-exponential moment: E exp(X2/K2
3) ≤ e.

Moreover, if EX = 0 then properties 1-3 are also equivalent to the following one:

4. Moment generating function: E exp(tX) ≤ exp(t2K2
4) for all t ∈ R.

Many classical random variables are actually sub-gaussian, such as Gaussian ran-

dom variables, Bernoulli random variables, Bounded random variables, etc..

As we mentioned, the concentration inequalities are powerful tools in studying

high-dimensional probability. One advantage of sub-gaussian random variables is

that many useful concentration inequalities are proved for sub-gaussian random vari-

ables. For example, the Hoeffding’s inequality we discussed can be generalized to

sub-gaussian random variables.
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Theorem 1.2.3. (Hoeffding’s inequality) Let X1, · · · , Xn be independent centered

sub-gaussian random variables. Then for any a1, · · · , an ∈ R and a = (a1, · · · , an)

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c t2

2‖a‖2
2

)
.

We will introduce more concentration inequalities for sub-guassian random vari-

ables in Chapter III, further more properties of sub-guassian random variables can

be found in [74, 72].

Based on the sub-gaussian properties one can prove the following non-asymptotic

version of Bai-Yin’s law for largest singular value on sub-gaussian matrices [49]:

Theorem 1.2.4. (Largest singular value of subgaussian matrices). Let A be an

N×n random matrix whose entries are independent mean zero sub-gaussian random

variables whose sub-gaussian moments are bounded by 1. Then

P
(
smax(A) > C(

√
N +

√
n+ t)

)
≤ 2e−ct

2

.

for t ≥ 0. Here C, c are absolute constants.

The proof uses a simple net argument which will be discussed in Chapter III and

IV.

By integration, one can easily deduce from above the correct expectation bound

Esmax(A) ≤ C(
√
N +
√
n). This bound later was proved to hold under much weaker

moment assumptions by R. Latala [30]:

Theorem 1.2.5. (Largest singular value: fourth moment, non-i.i.d. entries). Let A

be a random matrix whose entries aij are independent mean zero random variables

with finite fourth moment. Then

Esmax(A) ≤ C

[
max
i

(
∑
j

Ea2
ij)

1/2 + max
j

(
∑
j

Ea2
ij)

1/2 + (
∑
i,j

Ea4
ij)

1/4

]
.
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If the variance and the fourth moments of the entries are uniformly bounded, then

result of Latala result yields smax(A) = O(
√
N +

√
n) which is not optimal but still

satisfactory for many applications.

If the matrix is i.i.d. Gaussian matrix, we have the following much sharper result

due to Gordon [15, 16, 17]:

Theorem 1.2.6. (Exteme singular values of Gaussian matrices). Let A be an N ×n

matrix whose entries are independent standard normal random variables. Then

√
N −

√
n ≤ Esmin(A) ≤ Esmax(A) ≤

√
N +

√
n.

This above theorem is a consequence of some sharp comparison inequalities for

Gaussian processes due to Slepian and Gordon [15, 16, 17]. Using measure concen-

tration techniques, one can deduce from above results large deviation inequalities for

the extreme singular values. More precise probability bound for i.i.d. sub-gaussian

matrices can be found in [38]. Further results of largest singular value on non-i.i.d.

Gaussian matrices proved by A. Bandeira and R. van Handel can be found in [1, 21].

So far, we mainly focused on the ”soft edge” - the largest singular value distri-

bution, and smallest singular value for tall matrices (that is N/n > 1 + c). When

N and n are close, the smallest singular value, the ”hard edge” of the spectrum is

generally more difficult to analysis by classical methods of random matrix theory.

This difficulty is especially significant for square matrices, N = n or almost square

matrices, N−n� n. For instance, our earlier bound of the type smin(A) ∼
√
N−
√
n

all becomes useless for square matrices.

Another reason that the smallest singular problem is important is that it tells

whether a random matrix is invertible or not. One well studied important example

is provided by n×n random Bernoulli matrices A, with independent ±1 entries. Even
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in this problem, estimating the probability that A is invertible is a quite nontrivial

problem. Komlos showed that A is invertible asymptotically almost surely, that is

P(smin(A) = 0) tends to 0 as n → ∞ [28, 29]. The bound on P(smin(A) = 0) was

later improved in the works of Kahn, Komlos, Szemeredi, Tao, Vu, Bourgain and

Wood [25, 60, 61, 24].

However, previous progress is only concerned with whether the smin(A) is zero or

not for a very specific matrix. Nothing was said about the quantitative invertibil-

ity problem which is more about size of smin(A). The history of the quantitative

invertibility problem goes back to von Neumann when he discovered that the accu-

racy of the matrix algorithms and their running time could depend on the condition

number σ(A) = smax(A)/smin(A). Based on heuristic and experimental evidence,

von Neumann and Goldstine conjectured that with high probability smin(a) ∼ n−1/2

and smax(a) ∼ n1/2 [49]. The upper bound on largest singular value was established

earlier but the lower bound of smallest singular value remained open for decades.

Progress has been made by Smale, Edelman and Szarek in the Gaussian matrices

case [55, 12, 58]. However, their approaches do not work for matrices other than

Gaussian as they depend on explicit formula for the joint density of the singular

values.

The first polynomial bound of quantitative invertibility was obtained in [36] by M.

Rudelson, where it was proved that the smallest singular value of a square i.i.d. sub-

gaussian matrix is bounded below by n−3/2 with high probability. Later an almost

sharp bound was proved by M. Rudelson and R. Vershynin in [47] up to a constant

factor for general random matrices.

Theorem 1.2.7. (Smallest singular value of square random matrices). Let A be

an n × n random matrix whose entries are independent and identically distributed
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sub-gaussian random variables with zero mean and unit variance. Then

P
(
smin(A) ≤ εn−1/2

)
≤ Cε+ cn, ε ≥ 0

where C > 0, c ∈ (0, 1) depend only on the sub-gaussian moment of the entries.

It is worth noticing that this theorem is both qualitative and quantitative in

terms of the invertibility problem. Picking ε = 0, this theorem implies A is invert-

ible with probability at least 1−cn which generalizes the result of Kahn, Komlos, and

Szemeredi from Bernoulli to all sub-gaussian matrices. On the other hand, quan-

titatively, it states that smin(A) ≥ n1/2 with high probability for general random

matrices. Together with a corresponding non-asymptotic upper bound was later

achieved in [46], we have smin(A) ∼ n1/2 as in von Neumann-Goldstines conjecture.

Weaker form of both upper and lower bounds are also proved to hold with high

probability under the weaker fourth moment assumption [47, 46].

The theory and result was later extended to rectangular random matrices of ar-

bitrary dimensions in [48].

Theorem 1.2.8. (Smallest singular value of rectangular random matrices). Let G

be an N × n random matrix, N ≥ n, whose elements are independent copies of a

centered sub-gaussian random variable with unit variance. Then for every ε > 0, we

have

P
(
sn(G) ≤ ε

(√
N −

√
n− 1

))
≤ (Cε)N−n+1 + e−C

′N

where C,C ′ > 0 depend (polynomially) only on the sub-gaussian moment K.

Note that above theorem bridges all quantitative bounds of smallest singular

values together. For tall matrices, it agrees with the known bounds smin(A) ∼
√
N −

√
n. For square matrices,

√
N −

√
n− 1 ∼ n−1/2. Finally, for matrices which

are close to square, it gives the new optimal estimate smin(A) ≥ c(
√
N −

√
n).
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Theorem 1.2.7 and Theorem 1.2.8 comes as a consequence of an essentially sharp

estimate in the Littlewood-Offord problem: for i.i.d. random variables Xk and real

numbers ak, determine the probability p that the
∑

k akXk lies near some number

v [47, 48]. To solve the Littlewood-Offord problem, M. Rudelson and R. Vershynin

developed theory used the quantitative arithmetic structure of the vector (a1, · · · , an)

to estimate the small ball probability. We will further discuss Littlewood-Offord

problem, small ball probability estimate and arithmetic structure in next section

and Chapter IV. One can find discussion and recent development of these topics in

[47, 67, 49, 73, 45]. The theory developed in Theorem 1.2.7 and Theorem 1.2.8 turns

out to be universal and motivated further research in the area.

Effort was made following the invertibility problem progress. Tao and Vu also

proved a version of universality for smallest singular values [68] using a different

approach. Revisiting of the Littlewood-Offord problem motivated by quantitative

invertibility problem are done in [67, 63, 65] by Tao and Vu, [47, 48] by Rudelson and

Vershynin, [39] by Friedland and Sodin, etc.. For symmetric matrices, quantitative

version of invertibility problem was proved by Vershynin in [73]. For heavy-tailed

matrices, the invertibility problem was visited by E. Rebrova and K. Tikhomirov

[43]. For discrete matrices, the invertibility problem was discussed by Tao and Vu in

[67]. In sparse matrices case, the first quantitative version of invertibility problem

was proved by A. Basak and M. Rudelson in [6].

Above overview is made to give some necessary background for our work but it is

by no means a complete survey of the area of non-asymptotic random matrix theory.

Here, we completely omit several important directions. For example, work on random

matrices with deterministic shift (see [62]), work on understanding gaps between

eigenvalues or singular values (see [20]), work on understanding singular values close
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to extrem ones (see [68]), work on random matrices with less independence or more

structure (see [72, 42, 71]), and etc..

1.3 Outline, Motivation and Notations

Now let us give an outline of the thesis and motivation of our work. Notations of

the thesis will be explained at the end of this section.

In Chapter II, we apply concentration inequalities to study upper bound for

the Dvoretzky dimension in Milman-Schechtman theorem. Informally, Milman-

Schechtman theorem states that let K be a symmetric convex body in Rn, define

k(K) to be the largest dimension k such that

νn,k
(
F ∈ Gn,k : ∀x ∈ Sn−1 ∩ F , ‖x‖K ∼ constant

)
>

1

2
.

Then k(K) ∼ n/b2 where b is the minimum width of the convex body and νn,k

is the Haar measure on the Grassmannian manifold. Here k(K) ∼ n/b2 includes

both upper and lower bound. The lower bound is guaranteed by Milman-Dvoretzky

theorem but the proof of upper bound given by Milman and Schechtman would fail

for a class of convex bodies. We give a proof for the upper bound in Chapter II

for all symmetric convex bodies. Our proof is probabilistic and constructive based

on properties of random matrices although the problem itself is geometric. This

is a common phenomenon in geometric functional analysis and other areas where

concentration inequalities and non-asymptotic random matrix theory are applicable.

It also tells the importance of geometric interpretation for non-asymptotic random

matrices theory together with other results we will discuss in Chapters III and IV.

Chapter II is based on joint work with H. Huang.

In Chapters III, we move on to study the non-asymptotic distributions of sin-

gular values for i.i.d. sub-gaussian matrices. Our work is motivated by two facts.
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One fact is that very few about optimal upper bound on all singular values are

known other than Gaussian matrices. Prior to our result, the only progress in this

direction was made by Szarek [59] who established an optimal upper bound for

the Gaussian matrix. Szarek proved that for a standard Gaussian i.i.d. matrix G,

Cl√
n
≤ sn+1−l(G) ≤ Cl√

n
with probability at least 1 − exp(−Cl2). This result sug-

gests that lth smallest singular value of an i.i.d. sub-gaussian matrix is concentrated

around l√
n
. On the other hand, the distributions of intermediate singular values are

found applicable in eigenvector delocalization problems [50].

Our main theorem in Chapter III rougly states that: for an n × n random sub-

gaussian matrix A that satisfies some weak assumption. For all l between 1 and

n,

P
(
sn+1−l(A) ≤ C1

tl√
n

)
≥ 1− exp(−C2tl).

Together with a known lower bound we show that sn+1−l(A) ∼ l√
n

for all rectangular

i.i.d. sub-gaussian matrices with high probability.

Note that the weak assumption which we will characterize in Chapter III depends

on the following definition of Levy’s concentration function.

Definition 1.3.1. Let Z be a random vector that takes values in Cn. The concen-

tration function of Z is defined as

L(Z, t) = sup
u∈Cn

P{‖Z − u‖2 ≤ t}, t ≥ 0.

The Levy’s concentration function is very useful in characterizing small ball proba-

bility. Many classical concentration inequalities, for exmaple the Hoeffding’s inequal-

ity are devoted to characterize the large deviations. These large deviation inequalities

tell us probability that a random sum
∑
aiXi (or in general a random variable given

by f(X1, · · · , Xn)) far away from its expectation is small. On ther other hand, the
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small ball probability which estimate P(‖f(X1, · · ·Xn)−u‖2 ≤ t)-the probability that

the random vector f(X1, · · ·Xn) enters a small ball in the space, also has significant

important in many applications. Our proof in Chapter III uses several recently devel-

oped concentration inequalities and small ball probability estimates, which includes

the lower bound Theorem 1.2.8.

In Chapter IV, we study the quantitative smallest singular values distributions

of symmetric sparse matrices. We prove a quantitative version of invertibility for

sparse symmetric matrices that are not close to the critical sparsity level. This work

is motivated by a recent progress of A. Basak and M. Rudelson [6].

Our proof adapts the framework developed in [47] for invertibility problems. In

[47], Rudelson and Vershynin addressed that the quantitative invertibilty problem

for random matrices can be divided into two parts: lower bound of ‖Ax‖2 over

vectors x that are very close to sparse and lower bound of ‖Ax‖2 over vectors x

which coordinates are well-spread. These two different classes of vectors needed to

be handled with different approaches. The vectors which are close to sparse are

called compressible vectors, the vectors which coordinates are well-spread are named

as incompressible vectors. The compressible vectors are usually easier to deal for

non-sparse matrices. One contribution of [6] is a combinatorial approach to address

the sparsity in estimating the norm of Ax for a sparse matrix A and sparse vector x.

The combinatorial lemma is generalizable in symmetric matrices case which makes

it possible to prove quantitative invertibility for symmetric sparse matrix together

with a decoupling method in [73].

On the other hand, the infimum of ‖Ax‖2 over incompressible vectors is more

technical. A core component of the method in [47] is based on estimating the small

ball probability of a weighted sum of independent variables which is the famous
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Littlewood-Offord problem. The Littlewood-Offord problem asks to estimate the

small ball probability

pε(a) = sup
v∈R

P(|〈a,X〉 − v| ≤ ε)

where X is a random vector with i.i.d. entries and a is arbitrary real coefficient

vector [40]. In [47], Rudelson and Vershynin proposed a new and essentially sharp

estimate in the Littlewood-Offord problem based on a quantitative characterization

of arithmetic structure of vector a.

To see why the structure of a matters, assume X is an i.i.d. random vector with

symmetric ±1 entries. Then for a = (1/
√

2, 1/
√

2, 0, · · · , 0), we have P(|〈a,X〉−v| =

0) = 1/2. This singular behavior is due to the fact that a is sparse. If we choose vector

a to be far away from sparse ones, that is to say an incompressible vector, then the

small ball probability estimate can be significantly improved. For instance, choose

a = (1/
√
n, · · · , 1/

√
n). Then one can compute that P (|〈a,X〉 − v| = 0) ∼ 1/

√
n

[44].

The additive structure of a vector a = (a1, · · · , an) of real numbers can be de-

scribed in terms of the shortest arithmetic progression into which it embeds [47].

This length is expressed as the least common denominator of a, defined as follows:

lcd(a) := inf {θ > 0 : θa ∈ Zn − {0}}

However, this may not work in general if no such θ exists in above definition. Instead,

we define for L ≥ 1, the least common denominator (LCD) [47, 73, 50] of x ∈ Sn−1

as

DL(x) = inf

{
θ > 0 : dist(θx,Zn) < L

√
log+(θ/L)

}
.

The Littlewood-Offord problem and the application of least common denominator

in proving the invertibility over incompressible vectors will be detailed discussed in
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Chapter IV.

Finally, we wrap up our introduction by giving some notations and basic defini-

tions.

Through out the thesis, ‖ · ‖p denote the lp norm of a vector and Bn
p stands for

the unit ball of this norm. We use Sn−1 for the unit Euclidean sphere. If S is a

finite set, then |S| denotes the cardinality of S. The canonical basis of Rn is denoted

e1, · · · , en. We use dist(·, ·) to denote the Euclidean distance between points, vectors

or subspaces.

Given a symmetric convex body K in Rn, we have a corresponding norm ‖x‖K =

inf{r > 0 , x ∈ rK}. Let νn denote the normalized Haar measure on the Euclidean

sphere, Sn−1, and νn,k denote the normalized Haar measure on the Grassmannian

manifold Grn,k. Let M = M(K) :=
∫
Sn−1 ‖x‖Kdνn and b = b(K) := sup{‖x‖K , x ∈

Sn−1} be the mean and the maximum of the norm over the unit sphere.

The norm of an operator or a matrix will be denoted by ‖ · ‖. Let N ≥ n and let

A be an N × n matrix. The Hilbert-Schmidt (Frobenius) norm of a matrix which is

the l2 norm of the matrix when view as a N × n vector, will be denoted by ‖ · ‖HS

(or ‖ · ‖F). The singular values of A are the eigenvalues of (A∗A)1/2 arranged in the

decreasing order: s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). So equivalently, smin(A) = sn(A) and

smax(A) = s1(A). And condition number of the matrix A is (A) = smax(A)/smin(A).

By EX , PX we denote the conditional expectation and probability with respect

to a random variable X, conditioned on all other variables. By EX(·|E), PX(·|E) we

denote the conditional expectation and probability with respect to the event E.

Let E be a subspace of Rn. The unit sphere on E is denoted as SE. The orthogonal

projection onto a subspace E of Rn is denoted PE. The matrix A as a linear map

restricted on E is denoted as A|E.
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Let (T, d) be a metric space and K ⊂ T . A set N ⊂ T is called an ε-net for K

if for any x ∈ K, there exists y ∈ N such that d(x, y) < ε. We will also use the

following volumetric estimate many times throughout the thesis: For any ε < 1 there

exists an ε-net N ⊂ Sn−1 such that |N | ≤ (3/ε)n.

As our problem settings are different in different chapters, further notations will

be introduced at the beginning of each chapter.



CHAPTER II

Upper bound for the Dvoretzky dimension in
Milman-Schechtman theorem

For a symmetric convex body K ⊂ Rn, the Dvoretzky dimension k(K) is the

largest dimension for which a random central section of K is almost spherical. A

Dvoretzky-type theorem proved by V. D. Milman in 1971 provides a lower bound for

k(K) in terms of the average M(K) and the maximum b(K) of the norm generated by

K over the Euclidean unit sphere. Later, V. D. Milman and G. Schechtman obtained

a matching upper bound for k(K) in the case when M(K)
b(K)

> c( log(n)
n

)
1
2 . In this chapter,

we will give an elementary proof of the upper bound in Milman-Schechtman theorem

which does not require any restriction on M(K) and b(K). This chapter is based on

a joint work with H. Huang, see [22].

Outline of the chapter.

• In Section 2.1, we first review Milman-Dvoretzky theorem and Milman-Schechtman

theorem. Following that, we present our new upper bound theorem and discuss

the improvement.

• In Section 2.2, we introduce the concentration inequality on sphere and prove

our upper bound using a construction based on random projection.

• In Section 2.3, we discuss several characteristics of our new result.

19
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2.1 Upper bound in Milman-Schechtman Theorem

In 1971, V. D. Milman proved the following Dvoretzky-type theorem [34]:

Theorem 2.1.1. Let K be a symmetric convex body in Rn. Assume that ‖x‖K ≤ b|x|

for all x ∈ Rn. For any ε ∈ (0, 1), there is k ≥ Cε(M/b)2n such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > 1− exp(−c̃k)

where c̃ > 0 is a universal constant, Cε > 0 is a constant only depending on ε.

The quantity Cε was of the order ε2 log−1(1
ε
) in the original proof of V. D. Milman.

It was improved to the order of ε2 by Y. Gordon [16] and later, with a simpler

argument, by G. Schechtman [54].

In 1997, V. D. Milman and G. Schechtman [35] found that the bound on k appear-

ing in Theorem 2.1.1 is essentially optimal. More precisely, they proved the following

theorem.

Theorem 2.1.2. (Milman-Schechtman, see e.g., section 5.3 in [53]). Let K be a

symmetric convex body in Rn. For ε ∈ (0, 1), define k(K) to be the largest dimension

k such that

νn,k
(
{F ∈ Gn,k : ∀x ∈ Sn−1 ∩ F , (1− ε)M < ‖x‖K < (1 + ε)M}

)
> pn,k =

n

n+ k
.

Then,

C̃εn(M/b)2 ≥ k(K) ≥ C̄εn(M/b)2

when M
b
> c( log(n)

n
)
1
2 for some universal constant c, where ‖ · ‖F denotes the norm

corresponding to the convex body K∩F in F , and C̃ε, C̄ε > 0 are constants depending

only on ε.
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The two-sided inequality in Milman-Schechtman Theorem shows a general phe-

nomenon in geometric functional analysis. Recall 1/b is the inradius of of the convex

body and M(K) is the mean width of the polar body. Milman Schechtman theorem

connects these geometric parameters of a convex body to the Dvoretzky dimension,

which is a probabilistic quantity. The fact that there is a tight connection is very

rare and is remarkable. It was therefore important to show that this connection does

not require any assumptions on the body.

Because, the Dvoretzky-Milman theorem cannot guarantee the lower bound with

small M
b

for pn,k = n
n+k

, the original proof required an assumption that M
b
> c( log(n)

n
)
1
2

for some c. In [53, p. 197], S. Artstein-Avidan, A. A. Giannopoulos, and V. D. Mil-

man addressed it as an open question whether one can prove the same result when

pn,k is a constant, such as 1
2
. When pn,k = 1

2
, the lower estimate on k(K) is a direct

result of Dvoretzky-Milman theorem [34], but the upper bound was unknown. In

this chapter, we are going to give upper bound estimate with pn,k = 1
2
, our main

result is the following theorem:

Theorem 2.1.3. Let K be a symmetric convex body in Rn. Fix a constant ε ∈ (0, 1),

let k(K) be the largest dimension such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > 1

2
.

Then,

Cn(M/b)2 ≥ k(X) ≥ C̄εn(M/b)2

where C > 0 is a universal constant and C̄ε > 0 is a constant depending only on ε.

In the next section, we will provide a proof of theorem 2.1.3 with no restriction

on M
b

. In fact, from the proof, one can see that 1
2

can be replaced by any c ∈ (0, 1)

or 1− exp(−c̃k), which is the probability appearing in Milman-Dvoretzky theorem.
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2.2 Proof of theorem 2.1.3

Let Pk be the orthogonal projection from Sn−1 to some fixed k-dimensional sub-

space. The upper estimate is related to the distribution of ‖Pk(x)‖2, where x is

uniformly distributed on Sn−1 .

Recall the concentration inequality for Lipschitz functions on the sphere (see, e.g.,

[70]):

Theorem 2.2.1 (Measure Concentration on Sn−1). Let f : Sn−1 → R be a Lipschitz

continuous function with Lipschitz constant b. Then, for every t > 0,

νn({x ∈ Sn−1 : |f(x)− E(f)| ≥ bt}) ≤ 4 exp(−c0t
2n)

where c0 > 0 is a universal constant.

Theorem 2.2.1 implies the following elementary lemma.

Lemma 2.2.2. Fix any c1 > 0, let Pk be an orthogonal projection from Rn to some

subspace Rk. If t > c1√
n

and νn({x ∈ Sn−1 : ‖Pk(x)‖2 < t}) > 1
2
, then k < c2t

2n,

where c2 > 0 is a constant depending only on c1.

Proof. ‖Pk(x)‖2 is a 1-Lipschitz function on Sn−1 with E‖Pk(x)‖2 about
√

k
n
. If we

want the measure of {x : ‖Pk(x)‖2 < t} to be greater than 1/2, then measure con-

centration will force E|Pk| to be bounded by the size of t, which means k < c2t
2n

for some universal constant c2. Since t2n > c2
1, we may and shall assume k is greater

than some absolute constant in our proof, then adjust c2.

To make it precise, we will first give a lower bound on E‖Pk(x)‖2. By Theorem
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2.2.1,

νn
(
|‖Pk(x)‖2 − E‖Pk(x)‖2|2 > t

)
≤ 4 exp(−c0tn).

Thus,

E‖Pk(x)‖2
2 − (E‖Pk(x)‖2)2 = E (‖Pk(x)‖2 − E‖Pk(x)‖2)2

<

∫ ∞
0

νn
(
|‖Pk(x)‖2 − E‖Pk(x)‖2|2 > t

)
dt

≤
∫ ∞

0

4 exp(−c0tn)dt =
4

c0n
.

With E‖Pk(x)‖2
2 = E

∑k
i=1 |xi|2 = k

n
, we get E(‖Pk(x)‖2) >

√
k
n
− 4

c0n
. If we

assume that k > 24
c0

, then we have

E(‖Pk(x)‖2) >

√
1

2

k

n
.

Assuming k > 8t2n, we have

E(‖Pk(x)‖2)− t >
√

1

2

k

n
− t ≥ 1

2

√
1

2

k

n
> 0.

Applying Theorem 2.2.1 again, we obtain

νn(‖Pk(x)‖2 < t) < νn (|‖Pk(x)‖2 − E‖Pk(x)‖2| > E(‖Pk(x)‖2)− t)

≤ 4 exp(−c0(E(‖Pk(x)‖2)− t)2n)

≤ 4 exp(−c0(
1

2

√
1

2

k

n
)2n) ≤ 4 exp(−c0

8
k) ≤ 4 exp(−3) <

1

2
,

which proves our result by contradiction.

Theorem 2.2.3. Let K be a symmetric convex body with inradius 1
b
. For ε ∈ (0, 1),

let k be the largest integer such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > 1

2
.

Then k < Cn(M
b

)2 where C is an absolute constant.
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Proof. We may assume ‖e1‖K = b, then K ⊂ S = {x ∈ Rn : |x1| < 1
b
}, thus

‖x‖K ≥ ‖x‖S = b|〈x, e1〉|. This implies

(2.1)

{V ∈ Gn,k : ∀x ∈ V ∩ Sn−1 , (1− ε)M < ‖x‖K < (1 + ε)M}

⊂ {V ∈ Gn,k : ∀x ∈ V ∩ Sn−1 , ‖x‖S < (1 + ε)M}

= {V ∈ Gn,k : supx∈V ∩Sn−1〈x, e1〉 < (1 + ε)M
b
}

= {V ∈ Gn,k : ‖PV (e1)‖2 < (1 + ε)M
b
}

where PV is the orthogonal projection from Rn to V . If V is uniformly distributed

on Gn,k and x is uniformly distributed on Sn−1, then ‖PV0(x)‖2 and ‖PV (e1)‖2 are

equi-distributed for any fixed k-dimensional subspace V0. Therefore,

νn,k({V ∈ Gn,k : ‖PV (e1)‖2 < (1+ε)
M

b
}) = νn({x ∈ Sn−1 : ‖PV0(x)‖2 < (1+ε)

M

b
}).

As shown in the Remark 5.2.2(iii) of [53, p. 164], the ratio M
b

has a lower bound

c′√
n
. Setting c1 = c′ and t = (1 + ε)M

b
, it is easy to see that if

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > 1

2
,

then k ≤ c1(1 + ε)2
(
M
b

)2
n < Cn(M

b
)2 by Lemma 2.2.2 and (2.1).

Now we can prove theorem 2.1.3 as a corollary of Theorem 2.2.3 and Theorem

2.1.1:

Proof of theorem 2.1.3. Theorem 2.1.1 shows that if Cε(M/b)2n > log(2)
c̃

, then there

is k ≥ Cε(M/b)2n such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖F < (1 + ε)M} > 1− exp(−c̃k) >
1

2
.

Otherwise, (M/b)2n < log(2)
c̃Cε

. Therefore, k(K) ≥ min{ c̃Cε
log(2)

, Cε}(M/b)2n. Combining

it with Theorem 2.2.3, we get
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C(
M

b
)2n ≥ k(K) ≥ min{ c̃Cε

log(2)
, Cε}(M/b)2n.

2.3 Discussion

First, it is worth noticing that the number 1
2

plays no special role in our proof

of Theorem 2.1.3. Thus, if we define the Dvoretzky dimension to be the largest

dimension such that

νn,k{F ∈ Gn,k : (1− ε)M < ‖ · ‖K∩F < (1 + ε)M} > c

for some c ∈ (0, 1), then exactly the same proof will work. We will still have k(K) ∼

(M
b

)2n. Similarly, if we fix ε and replace 1
2

by 1− exp(−c̃k), then the lower bound of

k(K) is the one from Theorem 2.1.1. For k greater than some absolute constant, we

have 1 − exp(−c̃k) > 1
2
. Thus, the upper bound is still of order

(
M
b

)2
n. Therefore,

we can replace 1
2

by 1− exp(−c̃k) in theorem 2.1.2. With this probability choice, it

also shows Theorem 2.1.1 provides an optimal k depending on M, b.

Secondly, usually we are only interested in ε ∈ (0, 1). In the lower bound, C̄ε =

oε(1). It is a natural question to ask if we could improve the upper bound from a

universal constant C to oε(1). Unfortunately, it is not possible due to the following

observation. Let K = conv(Bn
2 , Re1)◦. By passing from the intersection on K to the

projection of K◦, one can show that k(K) does not exceed the maximum dimension

k such that νn(‖Pk(Rx)‖2 < 1 + ε) > 1
2
. Choosing R =

√
n
l
, we get n(M

b
)2 ∼ l and

k(X) ∼ l by Theorem 2.2.1 and a similar argument to that of Lemma 2.2.2. This

example shows that no matter what M
b

is, one can not improve the upper bound in

theorem 2.1.2 from an absolute constant C to oε(1).
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Finally, we want to address that the proof we presented uses random projections

but we have freedom to use other random matrices. For example, we can prove the

same result suing by i.i.d. Gaussian matrices.



CHAPTER III

Upper bound for intermediate singular values of random
matrices

In this chapter, we prove that an n× n sub-gaussian matrix A with independent

centered sub-gaussian entries satisfies

sn+1−l(A) ≤ C1t
l√
n

with probability at least 1 − exp(−C2tl) under some weak condition. This yields

sn+1−l(A) ∼ cl√
n

in combination with a known lower bound. These results can be

generalized to the rectangular matrix case. This chapter is based on one of my phd

research publications, see [76] .

Outline of the chapter.

• In Section 3.1, we give a short review of results related to upper bound of

singular values of random i.i.d. sub-gaussian matrices. Then we present our

main theorem following necessary definitions and assumptions.

• In Section 3.2, we present some preliminary results needed in the proof of The-

orem 3.1.6 which include definition of biorthogonal system, some concentration

inequalities and small ball probability estimates.

• In Section 3.3, we provide proof of our main Theorem. The proof is both

probabilistic and geometric which will be divided in three steps. Intuition and

27
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outline of the proof will be explained at the beginning of Section 3.3.

• Finally, we prove Theorems 3.1.10 and 3.1.11 In Section 3.4 which generalize

our results to rectangular case.

3.1 Introduction

The non-asymptotic singular value distribution of random i.i.d. sub-gaussian

matrix is an important and interesting subfield in random matrix theory. The first

result in this direction was obtained in [36], where it was proved that the smallest

singular value of a square i.i.d. sub-gaussian matrix is bounded below by n−3/2

with high probability. This result was later extended and improved in a number of

papers, including [67, 68, 47, 6, 43]. The above mentioned results pertain to square

matrices. A probabilistic lower bound for the smallest singular value of a rectangular

matrix was obtained by M. Rudelson and R. Vershynin [48]. They proved that an

n× (n− l) matrix has smallest singular value lower bounded by εl√
n

with probability

at least 1− (Cε)l−exp(−Cn). Using this result, one can show that for a square i.i.d.

sub-gaussian matrix A, sn+1−l(A) > c l√
n

with high probability where 1 ≤ l ≤ n.

However, the optimal upper bound of the singular values for general sub-gaussian

matrices is unknown. Prior to our result, the only progress in this direction was made

by Szarek [59] who established an optimal upper bound for the Gaussian matrix.

Szarek proved that for a standard Gaussian i.i.d. matrix G, Cl√
n
≤ sn+1−l(G) ≤ Cl√

n

with probability at least 1−exp(−Cl2). This result suggests that lth smallest singular

value of an i.i.d. sub-gaussian matrix is concentrated around l√
n
.

Although the optimal upper bound is not proved for general matrices, some results

can be deduced. T. Tao and V. Vu have established the universal behavior of small

singular values in [68] (see Theorem 6.2 [68]). Combined with Szarek’s Theorem 1.3
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in [59], their approach allows us to deduce some non-asymptotic bounds for random

i.i.d. square matrix under a moment condition. However, their bound only works

for l ≤ nc where c is a small constant. Tao and Vu’s approach [68] is based on the

Berry-Esseen Theorem for the frames and does not allow one to obtain exponential

bounds for the probability as we do in our Theorem 3.1.6. Also, C. Cacciapuoti,

A. Maltsev, B. Schlein estimated the rate of convergence of the empirical measure

of singular values to the limit distribution near the hard edge (see [10] Theorem 3).

Theorem 3 in [10] can be used to derive an upper bound of the form clC√
n

[10]. Better

understood is the upper bound for the smallest singular value. M. Rudelson and R.

Vershynin were the first to prove the smallest singular value of the i.i.d. sub-gaussian

matrix is also bounded from above by c√
n

with high probability (see [46]). A different

proof with an exponential tail probability can be found in a very recent paper by H.

Nguyen and V. Vu [37].

In this chapter, we prove the upper bound on the singular values under two

assumptions: that the entries of the matrix are non-degenerate; and that they have a

fast tail decay. The first assumption is quantified in terms of the Levy concentration

function and the second is quantified in terms of the ψθ-norm. Next we provide

definitions.

Definition 3.1.1. Let Z be a random vector that takes values in Cn. The concen-

tration function of Z is defined as

L(Z, t) = sup
u∈Cn

P{‖Z − u‖2 ≤ t}, t ≥ 0.

Definition 3.1.2. Let θ > 0. Let Z be a random variable on a probability space

(Ω,A,P). Then the ψθ-norm of Z is defined as

‖Z‖ψθ := inf

{
λ > 0 : E exp

(
|Z|
λ

)θ
≤ 2

}
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If ‖X‖ψθ <∞, then X is called a ψθ random variable. This condition is satisfied

for broad classes of random variables. In particular, a bounded random variable is

ψθ for any θ > 0, a normal random variable is ψ2, and a Poisson variable is ψ1.

In this chapter, we prove that for all l, sn+1−l(A) ≥ Ctl√
n

with an exponentially

small probability, where A is a random matrix under the following assumption:

Assumption 3.1.3. Let p > 0. Let A be an n × m random matrix with i.i.d.

entries that have mean 0, variance 1 and ψ2-norm K. Assume also that there exists

0 < s ≤ s0(p,K) such that

L(Ai,j, s) ≤ ps.

Here, s0(p,K) is a given function depending only on p and K.

A concrete value of s0(p,K) can be detemined by tracing the proof of Theorem

3.1.6.

Remark 3.1.4. The condition on the Levy concentration function is automatically

satisfied if the density of the entries is bounded by p. However, our result holds in

a much more general setting because we require this condition to hold only for one

fixed s and not for all s > 0. This assumption can be viewed as a discrete analog of

the bounded density condition.

Remark 3.1.5. The analysis of the proof for Theorem 3.1.6 shows that it is enough

to take s0(p,K) = c(K) min{p−1, 1}, where c(K) is a small constant that depends

only on K.

We prove the following main theorem for a random matrix A satisfying Assump-

tion 3.1.3:

Theorem 3.1.6. (Upper bound for singular values of an i.i.d. sub-gaussian square

matrix) Let A be an n× n random matrix that satisfies Assumption 3.1.3 with some
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s0(p,K) that depends only on p,K. Then there exist constants C1, C2 > 0 such that

for all t > 1, for all l between 1 and n,

P
(
sn+1−l(A) ≤ C1

tl√
n

)
≥ 1− exp(−C2tl)

where C1, C2 are constants that depend only on K, p.

Remark 3.1.7. In [37], Nguyen and Vu obtained a sharp bound for the smallest sin-

gular value of i.i.d. sub-gaussian matrices with exponential tail probability. Theorem

3.1.6 recovers the result obtained by Nguyen and Vu under Assumption 3.1.3 and

generalizes that result to all l.

Remark 3.1.8. Unlike the probability bound deduced from [68], our probability tail

bound is exponential type. Szarek’s probability estimate [59] suggests that the opti-

mal probability bound for P
(
sn+1−l(A) ≤ cl√

n

)
is 1− exp(−Cl2).

Remark 3.1.9. Possible applications of Theorem 3.1.6 include eigenvector l∞ delocal-

ization of random matrices [50]. For that, one has to consider A− zI instead of the

matrix A. Further effort would be needed to generalize our result to the case with a

shift.

Also, Theorem 3.1.6 can be extended to rectangular matrices easily (see Section

4). And more precisely, we have the following corollary:

Corollary 3.1.10. (Upper bound for singular values of an i.i.d. sub-gaussian matrix)

Let A be an n × (n − k) random matrix that satisfies Assumption 3.1.3 with some

s0(p,K) that depends only on p,K. Then there exist constants C1, C2 > 0 such that

for all t > 1 and l between 1 and n,

P
(
sn+1−l(A) ≤ C1

tl√
n

)
≥ 1− exp(−C2tl)

where C1, C2 are constants that depend only on K, p.
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A direct application of Theorem 3.1.6 and Theorem 3.2.6 leads us to a general-

ization of Theorem 1.3 in [59].

Corollary 3.1.11. (Non-asymptotic singular values distribution of i.i.d. sub-gaussian

square matrix) Let A be an n×n random matrix that satisfies Assumption 3.1.3 with

some s0(p,K) that depends only on p,K. Then there exist 0 < C1 < C2 and C3 > 0,

such that for all l between 1 and n,

P
(
C1l√
n
≤ sn+1−l(A) ≤ C2l√

n

)
≥ 1− exp(−C3l)

where Cis are constants that depend only on K, p.

A similar proof can lead to an analog in the rectangular case:

Corollary 3.1.12. (Non-asymptotic distribution of singular values in the i.i.d. sub-

gaussian rectangular matrix) Let A be an n × (n − k) random matrix that satisfies

Assumption 3.1.3 with some s0(p,K) that depends only on p,K. Then there exist

0 < C1 < C2 and C3 > 0, such that for all l between k and n,

P
(
C1l√
n
≤ sn+1−l(A) ≤ C2l√

n

)
≥ 1− exp(−C3l)

where Cis are constants that depend only on K, p.

3.2 Notation and Preliminaries

Throughout this chapter, c denotes absolute constants, C denotes constants that

may depend only on the parameters K, p. Note that these constants may vary from

line to line. Sn−1 denotes the n dimensional sphere, i.e., the sphere in Rn which

itself is an (n − 1)-dimensional manifold. SE denotes the sphere of a subspace E,

i.e., SE = Sn−1 ∩ E.

For a n × n random matrix A, as in Theorem 3.1.6, we denote by Al the n × l

matrices of the first l columns of A. An−l denotes the n× (n− l) matrix of the last
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n− l columns of A. Without loss of generality, we can assume A is a.s. invertible. If

not we prove the theorem for A+ εG, where G is an independent Gaussian matrix.

Then the result holds for A up to an abssolute constant by sending ε to zero. Xk

will denote the kth column of matrix A, and we use the following notations

• Hl :=span(Xj)j>l.

• Hl,k :=span(Xj)j>l,j 6=k.

• Pl, Pl,k are the orthogonal projections onto Hl, Hl,k, respectively.

• P⊥l , P⊥l,k are the orthogonal projections onto H⊥l , H
⊥
l,k, respectively.

• X∗k := (A−1)∗ek, i.e., the k-th column of (A−1)∗.

• Y ∗k := PlX
∗
k , k = l + 1, l + 2, · · · , n.

3.2.1 Biorthogonal system

Consider vectors (vk)
n
k=1 and (v∗k)

n
k=1 that belong to an n−dimensional Hilbert

space H. Recall that the system (vk, v
∗
k)
n
k=1 is called a biorthogonal system in H if

〈vj, v∗k〉 = δj,k for all j, k = 1, 2, · · · , n. The system is called complete if span(vk) = H.

The following theorem summarizes some elementary known properties of biorthogo-

nal systems.

Theorem 3.2.1. 1. Let D be an n× n invertible matrix with columns vk = Dek,

k = 1, 2, · · · , n. Define v∗k = (D−1)∗ek. Then (vk, v
∗
k)
n
k=1 is a complete biorthog-

onal system in Rn.

2. Let (vk)
n
k=1 be a linearly independent system in an n−dimensional Hilbert space

H. Then there exist unique vectors (v∗k)
n
k=1 such that (vk, v

∗
k)
n
k=1 is a biorthogo-

nal system in H. This system is complete.
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3. Let (vk, v
∗
k)
n
k=1 be a complete biorthogonal system in a Hilbert space H. Then

‖v∗k‖2 = 1/dist(vk, span(vj)j 6=k) for k = 1, 2, · · · , n.

Proof. (1) follows directly from

〈vj, v∗k〉 = 〈Dej, (D−1)∗ek〉 = 〈D−1Dej, ek〉 = 〈ej, ek〉 = δj,k.

To prove (2), we use the fact that any basis on a finite dimensional vector space has

a unique dual basis. Since H is Hilbert space, the dual basis also belongs to H which

forms a biorthogonal system together with the original basis. The completeness

follows from the dimension argument.

Since (vi, v
∗
i )
n
i=1 is a complete biorthogonal system on the Hilbert space H, for any

k = 1, 2, · · · , n, we have v∗k ⊥ span{vi : i 6= k} and {vi : i = 1, · · · , n, i 6= k} ∪ {v∗k}

form a basis on H. Thus we have the decomposition

vk =
∑
i 6=k

aivi + dist(vk, span(vj)j 6=k)
v∗k
‖v∗k‖2

.

Take inner product with v∗k at both sides and we have

1 = dist(vk, span(vj)j 6=k)‖v∗k‖2,

which proves (3).

The next Lemma tells us the relation between Y ∗k and X∗k for k ≥ l + 1.

Lemma 3.2.2. (Xk, Y
∗
k )nk=l+1 is a complete biorthogonal system in Hl.

Proof. By definition, for all k ≥ l + 1

Y ∗k −X∗k ∈ ker(Pl) = H⊥l = span(X∗j )j≤l.
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So we have, for all k ≥ l + 1

Y ∗k = X∗k +
l∑

j=1

akjX
∗
j , for some ajk ∈ R, j = 1, 2, · · · , l.

By the orthogonality, we have for all k, i ≥ l + 1

〈Y ∗k , Xi〉 = 〈X∗k , Xi〉+
l∑

j=1

akj〈X∗j , Xi〉 = 〈X∗k , Xi〉 = δk,i.

Thus the biorthogonality is proved. The competeness follows since dim(Hl) = n −

l.

In view of the uniqueness of Part 2 of Theorem 3.2.1, Lemma 3.2.2 has the fol-

lowing crucial consequence.

Corollary 3.2.3. The system of vectors (Y ∗k )nk=l+1 is uniquely determined by the

system (Xk)
n
k=l+1. In particular, the random vector system (Y ∗k )nk=l+1 is independent

with random vector system (Xk)
l
k=1.

3.2.2 Concentration thereoms

The major tools of our proof come from measure concentration theory. Here we

list the concentration theorems that will be used in the proof.

The first theorem is a concentration property of sub-gaussian random vectors.

Theorem 3.2.4. Let D be a fixed m × n matrix. Consider a random vector Z

with independent entries that have mean 0, variance greater than 1, and uniformly

bounded by K in ψ2 norm. Then, for any t ≥ 0, we have

P(|‖DZ‖2 −M | > t) ≤ 2 exp

(
− ct2

‖D‖2

)
where M = (E‖DZ‖2

2)1/2 which satisfies ‖D‖HS ≤ M ≤ K‖D‖HS, and c = c(K) is

polynomial in K.
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This result can be deduced from the Hanson-Wright inequality. A modern proof

of the Hanson-Wright inequality and a deduction of the above Theorem 3.2.4 are

discussed in [51].

Sub-gaussian concentration paired with a standard covering argument yields the

following result on norms of random matrices, see [51].

Theorem 3.2.5. (Products of random and deterministic matrices). Let D be a fixed

m×N matrix, and let G be an N × k random matrix with independent entries that

satisfy EGij = 0,EG2
ij ≥ 1 and ‖Gij‖ψ2 ≤ K. Then for any s, t ≥ 1 we have

P{‖DG‖ > C(s‖D‖HS + t
√
k‖D‖)} ≤ 2 exp(−s2r − t2k)

Here r = ‖D‖2
HS/‖D‖2

2 is the stable rank of D, and C = C(K) is a polynomial in K.

The following result gives the lower bound on the smallest singular value of a

rectangular i.i.d. sub-gaussian matrix. This will be used in our proof of Theorem

3.1.6; it can also yield the lower bound in Theorem 3.1.11 directly. The proof and

extensions of the theorem are discussed in [36, 47, 48, 49].

Theorem 3.2.6. Let G be an N × n random matrix, N ≥ n, whose elements are

independent copies of a centered sub-gaussian random variable with unit variance.

Then for every ε > 0, we have

P
(
sn(G) ≤ ε

(√
N −

√
n− 1

))
≤ (Cε)N−n+1 + e−C

′N

where C,C ′ > 0 depend (polynomially) only on the sub-gaussian moment K.

As one step towards the above least singular value bound, the following distance

to a random subspace theorem was proved by M. Rudelson and R. Vershynin [48]:

Theorem 3.2.7. (Distance to a random subspace). Let Z be a vector in RN whose

coordinates are independent and identically distributed centered sub-gaussian random
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variables with unit variance. Let H be a random subspace in RN spanned by N −m

vectors, 0 < m < c̃N , whose coordinates are independent and identically distributed

centered sub-gaussian random variables with unit variance, independent of Z. Then,

for every v ∈ RN and every ε > 0, we have

P(dist(Z,H + v) < ε
√
m) ≤ (Cε)m + e−cN ,

where C, c, c̃ depend only on the sub-gaussian moments.

M. Rudelson and R. Vershynin have recently proved the following results for small

ball probability of a linear image of high dimensional distributions [52] (see also [32]).

Theorem 3.2.8. (Concentration function of projections.) Consider a random vector

Z = (Z1, · · · , Zn) where Zi are real-valued independent random variables. Let t, p ≥ 0

be such that

L(Zi, t) ≤ p for all i = 1, · · · , n

Let P be an orthogonal projection in Rn onto a d-dimensional subspace. Then

L(PZ, t
√
d) ≤ (cp)d.

where c is an absolute constant.

In the same paper, Rudelson and Vershynin generalized Theorem 3.2.8 to general

matrices:

Theorem 3.2.9. (Concentration functions of anisotropic distributions.) Consider a

random vector Z where Zi are real-valued independent random variables. Let t, p ≥ 0

be such that

L(Zi, t) ≤ p for all i = 1, · · · , n

Let D be an m× n matrix and ε ∈ (0, 1). Then

L(DZ, t‖D‖HS) ≤ (cεp)
(1−ε)r(D)
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where r(D) = ‖D‖2
HS/‖D‖2

2 and cε depend only on ε.

As a special case of Theorem 3.2.8, the following corollary usefully controls the

concentration function of sums:

Theorem 3.2.10. (Concentration function of sums.) Consider a random vector

Z = (Z1, · · · , Zn) where Zi are real-valued independent random variables. Let t, p ≥ 0

be such that

L(Zi, t) ≤ p for all i = 1, · · · , n

Let a1, · · · , an be real numbers with
∑n

j=1 a
2
j = 1. Then

L

(
n∑
i=1

aiZi, t

)
≤ cp.

where c is an absolute constant.

3.3 Proof of Theorem 3.1.6

Before proving the theorem, let us explain our strategy. We prove a lower bound

for sl(A
−1), rather than proving an upper bound for sn+1−l(A). To do this, we show

that there exists an l dimensional subspace, such that the smallest singular value of

the operator restricted on this subspace is bounded from below. Our target subspace

will be H⊥l .

The proof uses a net argument for a specially constructed net. In Step 1, we

obtain a small ball probability estimate for a random vector. A generic vector in H⊥l

can be represented as A−1P⊥l Aly for some y ∈ Rl. We will show that
‖A−1P⊥l Aly‖2
‖P⊥l Aly‖2

is

bounded from below by C
√
n

l
for any y ∈ Sl−1. In steps 2 and 3, we provide a union

bound argument.

There are three essential features of our proof. First, as H⊥l is a random subspace,

we cannot consider a net on SH⊥l directly. So, we consider a net Nε on Sl−1 instead,
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which will induce a net on H⊥l . Second, to complete the argument we need to

show the union bound probability of the form |Nε| exp(−Cl) is small, where C is a

small constant. Since |Nε| ∼
(

3
ε

)l
, this bound in general can be large. To control

the probability, we work not on y ∈ Sl−1 but on y ∈ Sl
′−1, l′ = bκlc for some

κ ∈ (0, 1) instead. With this dimension reduction argument, we end up proving that

sl′(A
−1) ≥ C

√
n

l
, and then we rephrase it. Third, representing a vector from H⊥l as

A−1P⊥l Aly is advantageous because

‖A−1P⊥l Aly‖2
2 = ‖BAly‖2

2 + 1

where B is a random matrix that is independent of Al. This allows us to analyze

the property of B first and then apply tools like Theorem 3.2.9 and Theorem 3.2.5.

Note that this construction was generalized from the one dimensional case presented

by M. Rudelson and R. Vershynin [46].

In the proof, we will use the well-known estimate that there exists an ε-net on

Sl−1 with cardinality less than
(

3
ε

)l
, see, e.g., Lemma 4.3 in [44].

Proof of Theorem 3.1.6. To prove Theorem 3.1.6, we only need to prove the following

claim:

Claim. There exist C1 and C2 that only depend on K, p such that for every l

between 1 and n,

P
(
sn+1−l(A) ≥ C1

l√
n

)
≤ exp(−C2l).

To start, we derive Theorem 3.1.6 from the claim. Let t ≥ 1, and let k be any integer

between 1 and n. Set l = btkc and assume for a moment that l < n. Then

(3.1)
P
(
sn+1−k(A) ≥ C1

2tk√
n

)
≤ P

(
sn+1−k(A) ≥ C1l√

n

)
≤ exp(−C2l) ≤ exp

(
−C2tk

2

)
.
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In the case l ≥ n, the sub-gaussian tail estimate for the norm of a random matrix

(one may also consider this as a special case of Theorem 3.2.5) yields

(3.2)
P
(
sn+1−k(A) ≥ C3

2tk√
n

)
≤ P

(
s1(A) ≥ C3

2tk√
n

)
≤ exp

(
−C C2

3 t
2k2

n

)
≤ exp (−C4tk) ,

and therefore for all k between 1 and n,

P
(
sn+1−k(A) ≥ C5

tk√
n

)
≤ exp(−C6tk)

with constants C5, C6 depending on p,K only. So Theorem 3.1.6 is implied by the

claim.

Now, we prove the above claim.

Proof of the claim. In the proof of the claim, we first assume l ≤ c̃n
2

, where c̃ is the

same as the c̃ which appeared in Theorem 3.2.7. If l > Cn, then the required bound

follows from the estimate for s1(A). This is a standard estimate of the operator

norm that can be found in many places, for example, in Theorem 2.4 of [48]. Let

α > 1, δ, κ < 1, β < α−1 < 1 be parameters to be chosen later. Also, assume that

(3.3) L(Ai,j, β) ≤ pβ

i.e. Assumption 3.1.3 is true with s = s0(p,K) = β.

Step 1. Concentration for a random vector. Consider y ∈ Sl−1, define

(3.4) U(y) := X(y)− PlX(y) := Aly − PlAly.

then X(y) := Aly is still a mean 0, variance 1 sub-gaussian random vector. According

to the Hoeffding inequality, the sub-gaussian moment of entries of X(y) is bounded

above by CK (see Theorem 3.3 in [44]). Without ambiguity, we use the notation

U,X instead of U(y), X(y).
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In step 1, we show with high probability that

‖U‖2 .
√
l, ‖A−1U‖2 &

√
n√
l
.

First, we give an upper bound for ‖P⊥l Al‖. This leads to an uniform upper bound

of ‖U(y)‖2 for all y ∈ Sl−1.

Step 1.1. Concentration of ‖P⊥l Al‖.

First, notice that I − Pl = P⊥l , which is an orthogonal projection onto H⊥l , so it

does not depend on Al only on An−l. Thus, P⊥l can be treated as a fixed matrix. We

apply Theorem 3.2.5 with B = P⊥l and G = Al, then we have

P(‖P⊥l Al‖ > α
√
l) ≤ 2 exp(−Cα2l).

In particular, for a single vector we have

P(‖U‖2 > α
√
l) = P(‖P⊥l Aly‖2 > α

√
l) ≤ 2 exp(−Cα2l).

Step 1.2. Concentration of ‖A−1U‖2.

Now consider

A−1U = A−1Aly − A−1PlAly = y − A−1PlAly.

Notice that A−1PlAly is supported in span {el+1, · · · , en} because PlAly ∈ Hl. So
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we have

(3.5)

‖A−1U‖2
2 = ‖y‖2

2 + ‖A−1PlAly‖2
2 > ‖A−1PlAly‖2

2

=
n∑
k=1

〈A−1PlAly, ek〉2 =
n∑
k=1

〈PlX, (A−1)T ek〉2

=
n∑
k=1

〈PlX,X∗k〉2 =
n∑

k=l+1

〈PlX,X∗k〉2

=
n∑

k=l+1

〈X,PlX∗k〉2 =
n∑

k=l+1

〈X, Y ∗k 〉2

where in the third line we used the fact that (Xk, X
∗
k)nk=1 forms a complete biorthog-

onal system on Rn from Lemma 3.2.1. Thus, X∗k ⊥ Hl, k ≤ l.

Using the above property, let B be the (n−l)×n matrix whose rows are (Y ∗k )T , k =

l + 1, l + 2, · · · , n. Then we have

‖A−1U‖2
2 ≥

n∑
k=l+1

〈X, Y ∗k 〉2 = ‖BX‖2
2.

Our goal is to get a small ball probability estimate of ‖BX‖. As B is independent of

X, we would like to apply Theorem 3.2.9. Thus, we first need an estimate for ‖B‖

and ‖B‖HS.

Step 1.2.1. Lower bound of ‖B‖HS.

According to Theorems 3.2.3, 3.2.2 and 3.2.1, we have

‖B‖2
HS =

n∑
k=l+1

‖Y ∗k ‖2
2 =

n∑
k=l+1

dist(Xk, Hl,k)
−2 =

n∑
k=l+1

‖P⊥l,kXk‖−2
2 .
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Denote Vj = dist2(Xj, Hl,j). Then

(3.6)

P

(
‖B‖HS < α−1

√
n− l
l

)
= P

( 1

n− l

n∑
j=l+1

V −1
j

)−1

> α2l


≤ P

(
1

n− l

n∑
j=l+1

Vj > α2l

)

= P

(
1

n− l

n∑
j=l+1

(Vj − 4(l + 1))) > α2l − 4(l + 1)

)

≤ P

(
1

n− l

n∑
j=l+1

(Vj − 4(l + 1)))+ >
α2

2
l

)
.

where the first inequality follows from the inequality between harmonic mean and

arithmetic mean and the second inequality is trivial if we provide α2 > 10. Consider

(3.7)
P ((Vj − 4(l + 1)))+ > 4t) ≤ P

(√
Vj >

√
l + 1 +

√
t
)

= P
(
‖P⊥l,jXj‖2 −

√
l + 1 >

√
t
)

Then applying Theorem 3.2.4 with A = P⊥l,k we have M =
√
l + 1. Thus (Vj − 4(l +

1)))+ is a sub-exponential random variable with ‖(Vj − 4(l + 1)))+‖ψ1 ≤ C. By the

triangle inequality, ∥∥∥∥∥ 1

n− l

n∑
j=l+1

(Vj − 4(l + 1)))+

∥∥∥∥∥
ψ1

≤ C.

Recalling that l ≤ n
2
, we have

P
(
‖B‖HS < α−1

√
n

l

)
≤ exp(−Cα2l).

Step 1.2.2. Upper bound of ‖B‖.
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First, we have

(3.8)

‖B‖2 = sup
x∈Sn−1\{0}

‖Bx‖2
2 = sup

x∈Rn\{0}

‖Bx‖2
2

‖x‖2
2

= sup
‖Bx‖2=1

1

‖x‖2
2

= sup
x∈Rn\{0}∑n

k=l+1〈x,Y ∗k 〉
2=1

1

‖x‖2
2

= sup
x∈Hl\{0}∑n

k=l+1〈x,Y ∗k 〉
2=1

1

‖x‖2
2

where the last equality can be justified by considering the decomposition x = x′ +

x′′, x′ ∈ Hl, x
′′ ∈ H⊥l with ‖Bx‖2 = 1. Since Bx′, Bx have the same L2 norm

and x′ has a smaller L2 norm, the supremum must be achieved on Hl. Consider

x = An−lz, z ∈ Sn−l−1, then

〈x, Y ∗k 〉2 = 〈An−lz, PlX∗k〉2 = 〈PlAn−lz,X∗k〉2 =

〈
n∑

k=l+1

zkXk, X
∗
k

〉2

= z2
k.

Thus, we have

‖B‖2 = sup
z∈Sn−l−1

1

‖An−lz‖2
2

= sn+1−l(An−l)
−2.

By Theorem 3.2.6, we have

P
(
‖B‖ > α

√
n

l

)
= P

(
sn+1−l(An−l) < α−1 l√

n

)
≤ (Cα−1)l + exp(−Cn).

Step 1.2.3. Concentration of ‖BX‖.

By Lemma 3.2.3, B is independent to X. So we may condition on B such that

‖B‖HS > α−1
√

n
l

and ‖B‖ < α
√
n
l

. By equation (3.3) and Theorem 3.2.10,

(3.9) L(Xi, β) ≤ cpβ, for all i ∈ [n].

So, we may apply Theorem 3.2.9 with ε = 1
2

and have

(3.10)
P
(
‖BX‖2 ≤ βα−1

√
n

l

)
≤ P (‖BX‖2 ≤ β‖B‖HS)

≤ (Cβ)cr(B) ≤ (Cβ)
l

2α4 .
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Conclusion of step 1. Consider the events,

(3.11)
E1 :=

{
A : ‖P⊥l Al‖ > α

√
l
}

E2 :=
{
A : ‖B‖HS < α−1

√
n
l
, or ‖B‖ > α

√
n
l

}
.

We have shown

(3.12)
P(E1) ≤ 2 exp(−Cα2l)

P(E2) ≤ exp(−Cα2l) + (Cα−1)l + exp(−Cn)

By conditioning on Ec2 for all yi ∈ Sl−1 and a vector U defined in (3.4), we have

P
(
‖A−1U‖2 < βα−1

√
n

l

∣∣∣∣Ec2) < (Cβ)
l

2α4 .

Step 2: Preparation for the union bound argument.

Now let E1(or in fact Rl′) be an l′ := bκlc dimensional coordinate subspace that

is spanned by e1, · · · , el′ . We consider an ε−net Nε on Sl
′−1(i.e. SE1), then |Nε| ≤

(3ε−1)l
′
. And for all yi ∈ Nε, define

Ui = U(yi) := X(yi)− PlX(yi) := Alyi − PlAlyi.

Step 2.1. (Al − PlAl)Nε is a net on some ellipsoid.

Let

E2 := (Al − PlAl)Rl′ , S2 := (Al − PlAl)Sl
′−1.

By step 1.1, with probability 1− exp(−Cα2l), ‖P⊥l Al‖ ≤ α
√
l, i.e., S2 ⊂ α

√
lBl′

2 .

Also, consider any cap on S2 of radius δ. Then if P⊥l AlNε is not a δ
√
l-net on

S2, there exists some δ
√
l cap that does not intersect P⊥l AlNε. This means that the
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pre-image of the cap does not intersect Nε. However, if ‖P⊥l Al‖ ≤ α
√
l, then the

pre-image contains a cap of radius at least δ
α

. Thus, for ε = δ
α

, with probability

1− exp(−Cα2l), P⊥l AlNε is a δ
√
l-net on S2 ⊂ α

√
lBE2

2 . We denote this δ
√
l-net by

Nδ := P⊥l AlNε

Step 2.2. Reduction of our objective.

Now, we want to show that for some small choice of κ, ‖A−1U‖2 &
√

n
l
, for all

U ∈ S2 with high probability. If we can prove this, then together with step 2.1., we

have sl′(A
−1) &

√
n
l

with high probability.

On the event that P⊥l AlNε forms a δ
√
l net on S2, we have for all U ∈ S2, there

exists some Ui ∈ Nδ such that ‖U − Ui‖2 ≤ δ
√
l, and

‖A−1U‖2 ≥ ‖A−1Ui‖2 − ‖A−1(Ui − U)‖2.

For the first term, since we have

|Nδ| = |Nε| ≤ (3ε−1)l
′
=

(
3α

δ

)l′
we obtain ‖A−1Ui‖2 &

√
n
l
, for all Ui with high probability by choosing κ small.

To bound ‖A−1(Ui−U)‖2 from above for ‖Ui−U‖2 .
√
l, we only have to prove

∥∥A−1|E2

∥∥ .

√
n

l

with high probability.

Step 2.3. Upper bound for ‖A−1|E2‖.

Notice that

∥∥A−1|E2

∥∥ ≤ ∥∥A−1P⊥l Al′
∥∥ · ∥∥∥(P⊥l Al′)

−1 : E2 → Rl′
∥∥∥ =

∥∥A−1P⊥l Al′
∥∥

smin(P⊥l Al′)
.

We only need to prove for κ small enough:
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1. smin(P⊥l Al′) &
√
l with high probability.

2.
∥∥A−1P⊥l Al′

∥∥ .
√

n
l

with high probability.

Step 2.3.1. Lower bound of smin(P⊥l Al′).

First, by Theorem 3.2.5,

P
(
‖P⊥l Al′‖ ≥ α

√
l
)
≤ 2 exp(−Cα2l).

Next, consider a 1
2α2 -net N on Sl

′−1, then |N | ≤ (6α2)l
′
. And for all yi ∈ N , consider

Al′yi as a random vector. We use an elementary inequality L(Z,mt) ≤ mL(Z, t)

which holds for any m ∈ N. Consider β < α−1, then by equation (3.3) and Theorem

3.2.10,

(3.13) L((Al′yi)j, α
−1) ≤ cpβ

⌊
α−1

β
+ 1

⌋
≤ 2cpα−1, for all j ∈ [n].

P⊥l is decided by An−l, which is independent with Al′yi. So we may consider P⊥l

as a fixed matrix and apply Theorem 3.2.8 to obtain

P
(
‖P⊥l Al′yi‖2 ≤ α−1

√
l
)
≤ (Cα−1)l.

Let y ∈ Sl′−1 and choose yi ∈ N with ‖y − y′‖2 <
1

2α2 . Conditioning on A such that

‖P⊥l Al′‖ ≤ α
√
l, then we have

(3.14)
‖P⊥l Al′y‖2 ≥ ‖P⊥l Al′yi‖2 − ‖P⊥l Al′‖‖y − yi‖2

≥ α−1
√
l − 1

2α2α
√
l = 1

2α

√
l

with probability 1− (Cα−1)l.

Thus, with a standard union bound argument, we have

P
(
smin

(
P⊥l Al′

)
≥ 1

2α

√
l

)
≥ 1− 2 exp(−Cα2l)−

(
6α2
)l′

(Cα−1)l.
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Step 2.3.2. Upper bound of
∥∥A−1P⊥l Al′

∥∥.
Recall for y ∈ Sl′−1

‖A−1P⊥l Al′y‖2
2 = ‖y‖2

2 + ‖A−1PlAly‖2
2 = 1 + ‖BAl′y‖2

2

where

‖B‖2
HS =

n∑
k=l+1

dist(Xk, Hl,k)
−2.

Thus, we only need to show ‖BAl′‖ .
√

n
l
. We will prove this using Theorem 3.2.5.

To apply Theorem 3.2.5, we employ an argument that is presented in [45, Section

5.4.1. and Section 13.2.]. This argument provides an upper estimate of ‖B‖HS.

Recall that the weak Lp norm of a random variable Z is defined as

‖Z‖p,∞ = sup
t>0

t · (P {|Z| > t})1/p .

Although it is not a norm, it is equivalent to a norm if p > 1. In particular, the weak

triangle inequality holds: ∥∥∥∥∥∑
i

Zi

∥∥∥∥∥
p,∞

≤ C(p)
∑
i

‖Zi‖p,∞

where C(p) is bounded above by an absolute constant for p ≥ 2, see [57], Theorem

3.21.

Now by Theorem 3.2.7, for any t > 0,

P
{

dist(Xk, Hl,k) ≤ t
√
l
}
≤ (Ct)l + exp(−Cn).

Define

Wk := min
(

dist(Xk, Hl,k)
−2, (t0

√
l)−2

)
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where t0 = C0l
n

and C0 is a small constant depending only on K. Then we have

(3.15)

‖Wk‖l/2,∞ = supt>0 t · (P {Wk > t})2/l

= supt>0 t
−2l−1 ·

(
P
{
W
− 1

2
k < t

√
l
})2/l

= supt>t0 t
−2l−1 ·

(
P
{

dist(Xk, Hl,k) < t
√
l
})2/l

≤ C
l

+ 1
t20l

exp
(
−C n

l

)
≤ C

l
+ 1

l

(
n2

C2
0 l

2 exp
(
−C n

l

))
≤ C

l
.

this implies ∥∥∥∥∥
n∑

k=l+1

Wk

∥∥∥∥∥
l/2,∞

≤ C(n− l)
l

≤ Cn

l
.

Thus, we have

P

{
n∑

k=l+1

Wk > t2
n

l

}
≤ (Ct−1)l.

On the other hand,

(3.16)

P (there exists k, Wk 6= dist(Xk, Hl,k)
−2)

≤
n∑

k=l+1

P
{

dist(Xk, Hl,k) ≤ t0
√
l
}

≤ (n− l)
((

CC0l
n

)l
+ exp(−Cn)

)
≤ exp(−Cl).

So we have

(3.17)

P
{
‖B‖HS > t

√
n

l

}
≤ P

{
n∑

k=l+1

Wk > t2
n

l

}
+ P

(
there exists k, Wk 6= dist(Xk, Hl,k)

−2
)

≤ (Ct−1)l + exp(−Cl).

Now, denote

E ′2 := E2 ∪
{
A : ‖B‖HS > α

√
n

l

}
.
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Applying Theorem 3.2.5 with D = B,G = Al′ , Cs = 1
2
α,Ct = 1

2
α
√

l
l′
, we have for α

large enough,

(3.18)

P
{
‖BAl′‖ > α2

√
n

l

∣∣∣∣(E ′2)c
}

≤ P

{
‖BAl′‖ >

1

2
α‖B‖HS +

(
1

2
α

√
l

l′

)
√
l′‖B‖

∣∣∣∣(E ′2)c

}
≤ 2 exp (−Cα2l (α−4 + 1)) ≤ 2 exp (−Cα2l) .

So we have

P
(
‖A−1P⊥l Al′‖ ≥ α2

√
n

l

∣∣∣∣(E ′2)c
)
≤ 2 exp

(
−Cα2l

)
.

Conclusion of Step 2.

Denote

(3.19)
E3 :=

{
A : ‖A−1|E2‖ ≥ 2α3

√
n
l

}
∪ E1 ∪ E ′2,

E4 :=

{
A : there exists yi ∈ Nε such that ‖A−1U(yi)‖2 ≤ βα−1

√
n

l

}
.

Then we have

P (E3) ≤
(
6α2
)l′

(Cα−1)l + 4 exp(−Cα2l) + exp(−Cl) + P (E ′2) + P (E1) .

Since |Nε| ≤
(
α
√
l

δ

)l′−1

as we discussed in step 2.1,

P (E4 | Ec2) ≤

(
3α
√
l

δ

)l′

(Cβ)
l

2α4

Step 3. The union bound argument.

Denote

(3.20)
E :=

{
A : there exists y ∈ Sl′−1, such that ‖A−1U(y)‖2 ≤ β

2α

√
n
l
,

or ‖U(y)‖2 ≥ α
√
l

}
.
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Choose δ such that 2α4δ = β
2
. Let y ∈ Sl′−1 and choose yi ∈ Nε with ‖y − y′‖2 < δ.

If A /∈ E3 ∪ E4, then ‖U(y)‖ ≤ α
√
l and

(3.21)

‖A−1U(y)‖2 ≥ ‖A−1U(y)‖2 − ‖A−1(U(yi)− U(y))‖2

≥ βα−1
√

n
l
− 2α3

√
n
l
· δ

≥ β
2α

√
n
l
.

Thus, we have E ⊂ E3 ∪ E4. On the other hand,

(3.22)
A ∈ Ec ⇒ sl′(A

−1) ≥ β
2α2

√
n
l
⇒ sn+1−l′(A) ≤ 2β

α2
l√
n

⇒ sn+1−l′(A) ≤ 4β
κα2

l′√
n
, for all l′ < κc̃n

2
.

The c̃
2

in l′ < c̃κn
2

comes from the requirement that l ≤ c̃n
2

.

Now let β = exp(−α5), then δ = 1
4
α−4 exp(−α5). Choose α to be a big enough

constant, then

(3.23)

P (E)

≤ P (E3) + P (E4)

≤
(

3α
δ

)l′
(Cβ)

l
2α4 + 7 exp(−Cα2l) + 2(Cα−1)l + exp(−Cl) + exp(−Cn)

+ (6α2)
l′

(Cα−1)l

≤
(
(12α5 exp(α5))

κ
C exp(−1

2
α)
)l

+ (Cα2κ−1)
l
+ 9(Cα−1)l + exp(−Cl).

Replace l′, l by l, κ−1l, then for a sufficiently small κ depending on α, and l < κc̃n
2

,

we have

(3.24)

P
(
sn+1−l(A) ≥ 4β

κα2
l√
n

)
≤

(
exp(−1

4
α)
)κ−1l

+
(
Cα−

1
2

)κ−1l

+ 9(Cα−1)κ
−1l + exp(−Cl)

≤ (Cα−
1
2 )κ

−1l + exp(−Cl).

Choosing a sufficiently large α, we show that there exist C1, C2, C3 depending only

on K, p, such that

P
(
sn+1−l(A) ≥ C1

l√
n

)
≤ exp(−C2l)
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for all l ≤ C3n. For l > C3n, the above bound follows from the estimate for s1(A).

So we have for all 1 ≤ l ≤ n,

P
(
sn+1−l(A) ≥ C1

l√
n

)
≤ exp(−C2l).

Remark 3.3.1. As the proof demonstrates, Assumption 3.1.3 is satisfied with s = β

which only depends on p and K.

Remark 3.3.2. The only place we used the non-degeneracy condition is in the ap-

plication of 3.2.9. We expect that the same result holds without the concentration

function condition. To remove that condition, the application of Theorem 3.2.9

on BX must be replaced by showing matrix B does not have a good arithmetic

structure with high probability (for arithmetic structure of random matrices and its

application, see [36, 44, 47, 49, 45] ).

3.4 Deduction of Corollary 3.1.10 and 3.1.11

Both Theorem 3.1.10 and 3.1.11 are direct corollaries of Theorem 3.1.6.

Proof of Theorem 3.1.10. Construct an n×n random matrix J such that its first n−k

columns are matrix A and the rest are i.i.d. entries with the same distribution as

Ai,j. Then, by Theorem 3.1.6, for all t > 0 and k between l and n, sn+1−l(J) ≤ C1tl√
n

,

with probability 1 − exp(−C2tl), where C1, C2 are constants that depend only on

K, p. This implies, with the same probability, there exists an l-dimensional subspace

E such that ‖Jy‖2 ≤ C1tl√
n

for all y ∈ SE.

Let F := span {e1, · · · , en−k}, then ‖Jy‖2 ≤ C1tl√
n

, for all y ∈ SE∩F with probability

1− exp(−C2tl). This implies

PJ
{
sn+1−l(A) ≥ C1tl√

n

}
≤ exp(−C2tl)
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Then we only need to notice that the above event is independent of the last k rows

of J ; thus the probability is also with respect to A.

To prove Theorem 3.1.11, in addition to applying Theorem 3.1.6, we only need

Theorem 3.2.6 to give a lower bound.

Proof of Theorem 3.1.11. For the lower bound, denote J as the matrix of the first

n− l rows of A. Then we have by Theorem 3.2.6

(3.25)

P
{
sn+1−l(A) < C1l√

n

}
≤ P

{
sn+1−l(J) < C1l√

n

}
≤ (CC1)l + exp(−Cn) ≤ 1

2
exp(−1

2
C3l) + exp(−Cn)

≤ 1
2

exp(−C3l)

with some small constant C3. The upper bound follows directly with a large t in

Theorem 3.1.6.

Note that Theorem 3.1.11 is a generalization of Theorem 1.3 in [59]. Theorem

3.1.12 can be proved in the same way as Theorem 3.1.11.



CHAPTER IV

Investigate invertibility of sparse symmetric matrix

In this chapter, we investigate the invertibility of sparse symmetric matrices.

We will show that an n × n sparse symmetric random matrix A with Aij = δijξij

is invertible with high probability. Here, δijs, i ≥ j are i.i.d. Bernoulli random

variables with P (δij = 1) = p ≥ n−c, ξij, i ≥ j are i.i.d. random variables with mean

0, variance 1 and finite fourth moment M4, and c is constant depending on M4. More

precisely,

smin(A) > ε

√
p

n
.

with high probability.

Outline of the chapter.

• In Section 4.1, we introduce setup of the problem and present our main results.

• In Section 4.2, we recall the necessary concepts and some technical lemmas. We

also recall the method of separating compressible and incompressible vectors

(see [47]) in Section 4.2.

• In Section 4.3, we bound ‖Ax‖2 over compressible vectors. The method we used

to bound the infimum over compressible vectors for sparse matrix is invented in

Section 3 in [6].

• In Section 4.4, 4.5 and 4.6 we bound ‖Ax‖2 over incompressible vectors. In Sec

54
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4.4 we recall the definition of LCD and regularized LCD and reduce the infimum

to a distance problem which can be written as a quadratic form, see [73]. In

Section 4.5, we prove the structure theorem for large LCD vectors which is an

analog of Theorem 7.1 in [36]. In Section 4.6, we estimate the distance problem

using the decoupling technique in [36].

• In Section 4.7, we combine the estimate for compressible and incompressible

part to prove our main theorem.

• In Section 4.8, we prove an upper bound of the spectral norm for sparse sym-

metric sub-gaussian matrix which is an analog of Theorem 1.7 in [6].

4.1 Introduction

The quantitative smallest singular value distribution of random matrix is an im-

portant and interesting topic in non-asymptotic random matrix theory, and as we

discussed, it was intensively studied in the past decade [36, 67, 68, 47, 6, 43, 48, 73].

However, very few are know about sparse matrices until very recently, Basak and

Rudelson proved that for a non-Hermitian i.i.d. sparse matrix [6],

(4.1)
P
{
smin(A) ≥ Cε exp

(
−c log(1/pn)

log(npn)

)√
pn
n

⋂
‖A‖ ≤ C

√
pn

}
≤ ε+ exp(−cnpn)

where P(aij 6= 0) = pn. One may notice that for pn ≥ n−c, where 0 < c < 1, the

above result of Basak and Rudelson implies an upper bound on condition number.

That is to say

σ(An) :=
smax(A)

smin(A)
≤ n

with high probability. This generalized the optimal upper bound on condition num-

ber for non-sparse random matrices. So it is a nature question to ask, whether
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one can use the similar technique to develop the invertibility for sparse symmetric

matrices.

This work is motivated by the above result of non-Hermitian sparse matrices of

A. Basak and M. Rudelson and the paper of R. Vershynin for non-sparse symmetric

matrices, see [73]. Without special notice, we always assume the following for our

random matrix An:

Assumption 4.1.1. An = {ai,j}ni,j=1 is an n×n symmetric random matrix with i.i.d

entries on the upper triangular part, and ai,j = ξijδij. Here δijs are i.i.d. Bernoulli

random variables with P(δij = 1) = pn. ξijs are i.i.d. random variables with mean

zero, variance 1 and fourth moment bounded by M4
4 .

Remark 4.1.2. The dependence of cp on M4 is tracked in the the proof.

Remark 4.1.3. Through out the chapter, we are going to call pn the sparsity level of

A.

Remark 4.1.4. For the ease of writing, hereafter, we will often drop the sub-script

in An, pn, write A, p instead. But please have it in mind that the sparsity level will

depend on n.

Our proof will also use an upper bound for operator norm. For convenience,

throughout the proof, we denote Eop as the event that ‖A‖ ≤ Cop
√
pn.

Our main theorem is the following:

Theorem 4.1.5. (Smallest singular value for sparse symmetric matrices.) For A

satisfies Assumption 4.1.1 and p ≥ n−cp, where cp is a constant depending only on

M4, Cop, one has

P
(
sn(A) ≤ ε

√
p

n
∩ Eop

)
≤ C4.1.5ε

1/9 + e−n
c4.1.5 .

Here C4.1.5, c4.1.5 > 0 depend only on M4 and Cop.
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Remark 4.1.6. Theorem 4.1.5 can be also generalized to the case A is replaced by

A+D where D is a diagonal matrix and ‖D‖ = O(
√
pn). For simplicity, we do not

include the proof in this chapter, see [6] for more details.

Recall that for a random variable Z on a probability space (Ω,A,P). The sub-

gaussin norm or ψ2-norm of Z is defined as

‖Z‖ψ2 := inf

{
λ > 0 : E exp

(
|Z|
λ

)2

≤ 2

}
.

A random variable is called sub-gaussian if it has finite sub-gaussian norm. For

properties of sub-gaussian random variables, see [44]. For sparse symmetric matrix

with ξijs are sub-gaussian, we have the following result about spectral norm.

Theorem 4.1.7. There exists C ′4.1.7 ≥ 1 such that the following holds. Let n ∈

N and p ∈ (0, 1] be such that p ≥ C ′4.1.7
logn
n

. Let An be a random matrix as in

Assumption 4.1.1. Moreover, we require ξij to be sub-gaussian random variables in

the assumption. Then there exist positive constants C4.1.7, c4.1.7 depending on the

sub-gaussian norm of ξij, such that

P (‖An‖ ≥ C4.1.7
√
npn) ≤ exp(−c4.1.7np) .

Theorem 4.1.5 and 4.1.7 together give us the following result:

Corollary 4.1.8. (Smallest singular value for sparse symmetric sub-gaussian ma-

trices.) For A as in Theorem 4.1.5 and moreover ξijs are sub-gaussian random

variables, one has

P
(
sn(A) ≤ ε

√
p

n

)
≤ C4.1.8ε

1/9 + e−n
c4.1.8 + exp(−c′4.1.8np).

Here C4.1.8, c4.1.8, c
′
4.1.8 > 0 depend only on the sub-gaussian norm.

Remark 4.1.9. For sparse sub-gaussian matrix, above theorems directly yield a bound

on the condition number that n & σ(A) := smax(A)
smin(A)

with high probability.
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4.2 Notations and Preliminaries

We first explain our notations in this chapter. Through out the chapter c, C, c0, c1,

c′, · · · denote absolute constants or constants that are going to be used only locally.

These constants are different in proofs of different lemmas or theorems. Constants

with double indices, triple indices or letter indices are global constants. These con-

stants are uniform through out the chapter and we will keep track of these constants

through out the chapter, for example c4.1, c
′
4.3.2, cp.

First, recall that

smin(An) = inf
x∈Sn−1

‖Anx‖ .

Thus, to prove Theorem 4.1.5, we need to find a lower bound on the infimum. For

dense matrices, this can be done via decomposing the unit sphere into compressible

and incompressible vectors, and obtaining necessary bound on the infimum on both

of these parts, see [47, 48]. To carry out the argument for sparse matrices, Basak and

Rudelson introduced another class of vectors which they called dominated vectors,

see [6].

Below, we state necessary concepts, starting with the definition of compressible

and incompressible vectors, see [47].

Definition 4.2.1. Fix m < n. The set of m−sparse vectors is given by

Sparse(m) := {x ∈ Rn||supp(x)| ≤ m}

where |S| denotes the cardinality of a set S. Furthermore, for any δ > 0, the vectors

which are δ-close tom-sparse vectors in Euclidean norm, are called (m, δ)−compressible

vectors. The set of all such vectors, will be denoted by Comp(m, δ). Thus

Comp(m, δ) :=
{
x ∈ Sn−1|∃y ∈ Sparse(m) such that ‖x− y‖2 ≤ δ

}
.
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The vectors in Sn−1 which are not compressible, are defined to be incompressible,

and the set of all incompressible vectors is denoted as Incomp(m, δ).

The dominated vectors are also close to sparse vectors, but in a different sense,

see [6].

Definition 4.2.2. For any x ∈ Sn−1, let πx : [n] → [n] be a permutation which

arranges the absolute values of the coordinates of x in non-increasing order. For

1 ≤ m ≤ m′ ≤ n, denote by x[m:m′] ∈ Rn the vector with coordinates

x[m:m′](j) = x(j)1[m:m′](πx(j)).

In other words, we include in x[m:m′] the coordinates of x which take places from m

to m′ in the non-increasing rearrangement. For α < 1 and m ≤ n define the set of

vectors with dominated tail as follows:

Dom(m,α) :=
{
x ∈ Sn−1|

∥∥x[m+1:n]

∥∥
2
≤ α
√
m‖x[m+1:n]‖∞

}
.

One may notice that for m−sparse vectors x[m+1:n] = 0, thus we have Sparse(m)∩

Sn−1 ⊂ Dom(m,α).

Theorem 4.1.5 will be proved by first bounding the infimum over compressible

and dominated vectors, and then the same for the incompressible vectors. As in [6],

the first step is to control the infimum for sparse vectors. To this end, we need some

estimates on the small ball probability. For the estimates, recall the definition of

Levy concentration function.

Definition 4.2.3. Let Z be random variable in Rn. For every ε > 0, the Levy’s

concentration function of Z is defined as

L(Z, ε) := sup
u∈Rn

P (‖Z − u‖2 ≤ ε) ,

where ‖ · ‖2 denotes the Euclidean norm.
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The following Paley-Zygmund inequality is useful on estimating Levy’s concern-

tration function:

Lemma 4.2.4. If ξ is a random variable with finite variance and 0 ≤ θ ≤ 1, then

P(ξ > θEξ) ≥ (Eξ − θEξ)2

Eξ2
.

Remark 4.2.5. We note that there exist δ0, ε
′
0 ∈ (0, 1), such that for any ε <

ε′0,L(ξδ, ε) ≤ 1 − δ0p, where ξ is a random variable with unit variance and finite

fourth moment, and δ is a Ber(p) random variable, independent of each other (for

more details see [[73], Lemma 3.3]).

For application of Levy’s concerntration function, the following tensorization

lemma can be very useful to transfer bounds for the Levy concentration function

from random variables to random vectors.

Lemma 4.2.6. (Tensorization, Lemma 3.4 in [73]). Let X = (X1, · · · , Xn) be a

random vector in Rn with independent coordinates Xk.

1. Suppose there exists numbers ε0 ≥ 0 and L ≥ 0 such that

L(Xk, ε0) ≤ Lε for all ε ≥ ε0 and all k.

Then

L(X, ε
√
n) ≤ (CLε)n for all ε ≥ ε0,

where C is an absolute constant .

2. Suppose there exists number ε > 0 and q ∈ (0, 1) such that

L(Xk, ε) ≤ q and all k.

There exists numbers ε1 = ε1(ε, q) > 0 and q1 = q1(ε, q) ∈ (0, 1) such that

L(X, ε1

√
n) ≤ qn1 .
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Remark 4.2.7. A useful equivalent form of Lemma 4.2.6 (part 1) is the following.

Suppose there exist numbers a, b ≥ 0 such that

L(Xk, ε) ≤ aε+ b for all ε ≥ 0 and all k.

Then

L(X, ε
√
n) ≤ (C(aε+ b))n for all ε ≥ 0,

Where C is an absolute constant

4.3 Invertibility over compressible vectors

The main theorem in this section is the following:

Theorem 4.3.1. Consider A satisfies 4.1.1 and p ≥ (1/4)n−1/3, then there exist

c4.3.1, c′4.3.1, c′′4.3.1, c′′′4.3.1, C4.3.1 > 0 depending only on Cop,M4, such that for any

p−1 ≤M ≤ c′′′4.3.1n, we have for any u ∈ Rn

(4.2)
P
(
∃x ∈ Dom(M,C−1

4.3.1) ∪ Comp(M, c′4.3.1)

‖Ax− u‖2 ≤ c′′4.3.1
√
np and ‖A‖ ≤ Cop

√
pn

)
≤ exp(−c4.3.1pn).

Remark 4.3.2. Although for the purpose our our proof we do not need to bound the

dominated vectors close to moderately sparse, we still work on it due to it’s own

interest for future work.

Remark 4.3.3. Theorem 4.3.1 can be extended to the sparsity level of n−1+c for

arbitrary c following our framework. The reason we can’t not reach n−1+c in Theorem

4.1.5 is due to incompressible part.

A direct proof following the paper of Vershynin [73] won’t work due to the sparsity

phenomenon found in the sparse paper of Basak and Rudelson, see [6]. So we need

to adapt the technique for sparse matrix and deal with the symmetricity at the same
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time. The proof splits into two steps as in [6]. First, we consider vectors which

are close to (1/8p)-sparse. The small ball probability estimate is not strong enough

for such vectors. This forces us to use the method designed for sparse matrices in

[6]. We prove Lemma 4.3.4 which a generalized version of Lemma 3.2 in [6] for

symmetric matrix. Lemma 4.3.4 allows us to control ‖Ax‖2 for very sparse vectors

without cancellation and ε-net argument. For more intuition of the technique for

vectors close to very sparse, see Section 3.1 in [6]. Later, one needs to improve

these estimates for vectors which are close to M -sparse. For such moderately sparse

vectors, a better control of the Levy concentration function is available. After we

obtain such estimates for sparse vectors, we extend them to compressible vectors

using the standard ε-net and the union bound argument.

4.3.1 Vectors close to very sparse

Now we state a combinatorial lemma similar to Lemma 3.2 in [6] but designed

for symmetric matrices. The proof is a variant of Lemma 3.2 in [6] to deal with the

symetricity.

Lemma 4.3.4. Consider An be an n × n random matrix with aij = δijξij for i ≤ j

and aji = ±aij for i > j. Here δij are i.i.d. Bernoulli random variables with

P(δij = 1) = p, where p ≥ C log n/n. And ξij are independent mean zero random

variables with min{P(ξi,j ≥ c1),P(ξi,j ≤ −c1)} ≥ c0. For κ ∈ N, s ∈ {−1, 1}κ and

for J, J ′ ⊂ [n], let AJ,J ′,sc denote the event that satisfies the following conditions:

(i) There are at least cκpn rows of the matrix have non-zero entry in the columns

corresponding to J , and all zero entries in the columns corresponding to J ′.

(ii) Denote IJ,J
′

be the indices of those cκpn rows. Then IJ,J
′ ∩ (J ∪ J ′) = ∅.

(iii) Suppose i ∈ IJ,J ′ and ji ∈ J is the non-zero entry as in (i), then |aiji | ≥ c1
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and sign(aiji) = sji.

Denote

m = m(κ) := κ
√
pn ∧ 1

8p
.

Then, there exist absolute constants 0 < c4.3.4, c
′
4.3.4 <∞ depending only on c0, c1,

such that

P

 ⋂
κ≤(8p

√
pn)−1∨1

⋂
s∈{−1,1}κ

⋂
J∈([n]

κ )

⋂
J ′∈([n]

m),J∩J ′=∅

AJ,J
′,s

c′4.3.4

 ≥ 1− exp(−c4.3.4pn).

Proof. The proof is done by bounding the complement event. It is similar to Lemma

3.2 in [6] but we need to take care of the sign and symmetricity.

Without loss of generality, we assume c1 = 1 and only need to consider s =

(1, · · · , 1). For different choice of signs, the argument is identical. Fix κ ≤ (8p
√
pn)−1∨

1 and J ∈
(

[n]
κ

)
, J ′ ∈

(
[n]
m

)
. Let

(4.3)
I1(J, J ′) :=

{
i ∈ [n]\(J ∪ J ′) : aiji ≥ 1 for some ji ∈ J,

and aiji = 0 for all j ∈ J\ji
}
.

Similarly, we define

I0(J, J ′) := {i ∈ [n]\(J ∪ J ′) : aij = 0 for all j ∈ J ′} .

Here we require (I1 ∪ I0) ∩ (J ∪ J ′) = ∅ so that we can get rid of symmetricity and

achieve independence. On the other hand, since m,κ � n, this won’t harm our

probability bound.

To prove our desired result, we need to show the cardinality of I1(J, J ′) is at least

cκpn with high probability for some constant c firstly. Then we can apply Chernoff’s

inequality to prove that |I ′(J, J ′) ∩ I0(J, J ′)| is large with high probability. Finally,

we take union bound over all different choices of J, J ′, s.
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We start with obtaining a lower bound on P(i ∈ I1(J, J ′)) for every i ∈ [n]. By

our assumption on aij, we have for any i 6∈ J ∪ J ′,

P(i ∈ I1(J, J ′)) ≥ c0|J |p(1− p)|J |−1 ≥ c0κp(1− κp) ≥
c0κp

2
.

Therefore, by Chernoff’s inequality and the fact that κ,m� n, we have

P(|I1(J, J ′)| ≤ c0κpn

4
) ≤ exp(−c1pn).

Next, we fix a set J ′ ∈
(

[n]
m

)
, for any i ∈ [n]\(J ∪ J ′), we have that

P(i ∈ I0(J, J ′)) = (1− p)|J ′| ≥ 1− p|J ′| = 1− pm ≥ 3

4
.

Thus, for any given I ⊂ [n], the random variable I\I0(J, J ′) can be represented as

the sum of independent Bernoulli variables taking value 1 with probability less than

pm. Also, note that

E|I\I0(J, J ′)| ≤ pm|I| ≤ |I|
4

by the assumption on κ and m. Now, use Chernoff’s inequality again, we have

P
(
|I\I0(J, J ′)| ≥ |I|

2

)
≤ exp

(
−|I|

16
log

(
1

4pm

))
.

So for any I ⊂ [n] such that |I| ≥ c0κnp
4

, we can deduce that for any J ∈
(

[n]
κ

)
,

(4.4)

P
(
∃J ′ ∈

(
[n]

m

)
such that |I0(J, J ′) ∩ I| ≤ c0κpn

8

)
≤

∑
J ′∈([n]

m)

P(|I\I0(J, J ′)| ≥ 1

2
|I|)

≤
(
n

m

)
exp

(
−|I|

16
log

(
1

4pm

))
≤ exp(−κpnU),

where

U :=
c0

64
log

(
1

4pm

)
− m

κpn
log
(en
m

)
.
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Here we have U ≥ c0
100

(lower bound of U is a direct computation which was done in

proof of Lemma 3.2 in [6] so we omit details here). Now for any J ∈
(

[n]
κ

)
, define

(4.5)
pJ := P

(
J ′ ∈

(
[n]
m

)
such that J ′ ∩ J = ∅,

|I ′(J, J ′) ∩ I0(J, J ′)| < c0κpn
8

)
.

As J, J ′ are disjoint, we have independence between random subsets I1(J, J ′) and

I0(J, J ′). Thus

(4.6)

pJ ≤
∑

I⊂[n], |I|≤ c0
4
κpn

P(I1(J, J ′) = I)

+
∑

I⊂[n], |I|> c0
4
κpn

P(I1(J, J ′) = I)P
(
∃J ′ ∈

(
[n]

m

)
such that |I0(J, J ′) ∩ I| ≤ c0

8
κpn

)
≤ exp(−c1κpn) + exp(−c2κpn) ≤ exp(−c3κpn).

To finish the proof, we only need to take union bound over all different choices of

J , s and κ. Set c′4.3.4 = c0/8. We have

P

 ⋃
s∈{−1,1}κ

⋃
J∈([n]

κ )

⋃
J ′∈([n]

m),J∩J ′=∅

(
AJ,J

′,s
c′4.3.4

)c ≤ 2κ
(
n

κ

)
exp(−c3κpn).

Notice that the probability bound exp(−c3κpn) dominate 2κ
(
n
κ

)
for C large enough

in p ≥ C logn
n

, we have the above probability is bound by exp(−c3κpn/2). Finally

take another union bound over κ with finish our proof.

Notice that to apply Lemma 4.3.4, we need a two side tail probability estimate

of a random variable with mean zero, variance 1 and bounded fourth moment. The

following lemma although simple may have its own interest in some applications.

Lemma 4.3.5. Let ξ be a random variable with mean zero, unit variance, and finite

fourth moment M4
4 . Then there exist constant c4.3.5, c

′
4.3.5 > 0 depending only on M4
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such that,

min(P(ξ ≤ −c4.3.5),P(ξ ≥ c4.3.5)) ≥ c′4.3.5.

Proof. This lemma is a two-sided version of lemma 3.2 in [48]. We derive a lower

bound for second moment of positive and negative part separately and then use

Paley-Zymmund inequality.

Let ξ+(t) = 1t>0(t)ξ(t), ξ−(t) = 1t<0(t)ξ(t) be the positive and negative part of

ξ. Suppose E(ξ+)2 = a. Then by Cauchy-Schwartz inequality, we have Eξ+ ≤ a1/2.

By Eξ = 0 and Eξ2 = 1, we have

E|ξ−| = Eξ+ ≤ a1/2,E(ξ−)2 = 1− a.

Apply Hölder’s inequality and E|ξ|4 = M4
4 , we have

1− a = E(ξ−)2 = E|ξ−|2/3|ξ−|4/3 ≤ (E|ξ−|)2/3(E|ξ−|4)1/3 ≤ a1/3M
4/3
4 .

Thus a is lower bounded by some constants c depending only on M4. Apply Paley-

Zygmund inequality we have

P
(
ξ+ ≥

√
c

2

)
= P

(
|ξ+|2 ≥ c

2

)
≥ (E|ξ+|2 − c/2)2

M4
4

≥ c2

4M4
4

.

The Lemma is proved by repeating the same argument for positive part.

We now use the above Lemma 4.3.4 to establish a uniform small ball probability

bound for the set of dominated vectors. Without loss of generality, we many assume

that 1/(8p) > 1. For p ≥ 1/8, we only need to apply result on dense matrix (see

[73]) to prove our main theorem.

Lemma 4.3.6. Consider A satisfies 4.1.1 and p ≥ (1/4)n−1/3. For any u ∈ Rn,
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there exist c4.3.6, c
′
4.3.6, c

′′
4.3.6 depending only on Cop,M4, such that

(4.7)

P
(
∃x ∈ Dom((8p)−1, c′4.3.6) such that

‖Ax− u‖2 ≤ c′′4.3.6
√
np and ‖A‖ ≤ Cop

√
pn
)

≤ exp(−c4.3.6pn).

Proof of Lemma 4.3.6. Our proof is similar to Lemma 3.3 in [6]. The major differ-

ence is how to deal with the symmetricity. We start with proving the result for

Sparse((8p)−1) vectors of unit length. Then we can prove that these estimates can

be easily extended to the dominated vectors. The proof strategy for sparse vectors

may depends on p (see Lemma 3.3 in [6]), but for our purpose, we only need to prove

it for p ≥ (1/4)n−1/3.

Since p ≥ (1/4)n−1/3, we apply the combinatorial Lemma 4.3.4 with κ = 1 and

m = 1
8p

. Assuming that the event described in this lemma occurs, we split the vector

into blocks with disjoint support. One of these blocks has a large l2−norm. By

Lemma 4.3.4, a large number of rows of the matrix has only one non-zero entry in the

columns corresponding to the support of this block. This will be sufficient for us to

conclude that ‖Ax−u‖2 is bounded from below for x ∈ Sparse((8p)−1). Note that to

get the small ball probability estimate, we also need min(P(ξ ≤ −c),P(ξ ≥ c)) ≥ c′.

This is guaranteed by Lemma 4.3.5.

With out loss of generality, we only need to work on sign(u) = {−1}ni=1. For gen-

eral cases, we only need to work on A′ = −diag(sign(u))A and u′ = −diag(sign(u))u

where A′ still satisfies condition of Lemma 4.3.4. For k ∈ [n], set Jk = {k} and

J ′l = supp(x)\Jk. Let A be the event that for each k ∈ [n], v ∈ {−1, 1} there exists

a set Ik ⊂ [n] of rows such that |Ik| = c4.3.4′pn, and for any i ∈ Ik, aikv ≥ c4.3.5 and

aij = 0 for j ∈ supp(x)\k, and supp(x) is non-intersect with Ik. The definition of

the sets Ik immediately implies that Ik ∩ Ik′ = ∅ for k 6= k′ ∈ supp(x). By Lemma
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4.3.4 and Lemma 4.3.5, P(A) ≥ 1 − exp(−c4.3.4pn) where c4.3.4 depend only on M4.

This shows that condition on this large probability event A, we have

‖Ax− u‖2
2 ≥ ‖Ax‖

2
2 ≥

∑
k∈supp(x)

∑
i∈Ik

|(Ax)i|2 ≥
∑

k∈supp(x)

c′4.3.4pnc
2
4.3.5|x(k)|2.

Thus ‖Ax− u‖2 ≥ c1
√
pn where c1 depend only on cop,M4. So we get the result

proved for sparse vectors. This estimate can be automatically extended to the set

Dom ((8p)−1, c′4.3.6), provided that the constant c′4.3.6 is small enough. Indeed, assume

that

(4.8) ‖Ax− u‖2 <
c1
2

√
pn

for some x ∈ Dom ((8p)−1, c′4.3.6). Setm = (8p)−1, it is easy to notice that ‖x[m+1:n]‖∞ ≤

m−1/2. Hence,

‖x[m+1:n]‖2 ≤ c′4.3.6
√
m‖x[m+1:n]‖∞ ≤ c′4.3.6,

and therefore

(4.9)
‖Ax[1:m]‖2 ≤ ‖Ax‖2 + ‖A‖‖x[m+1:n]‖2

≤ 1

2

√
c1pn+ Cop

√
pnc′4.3.6 ≤

3

4

√
c1pn

provide c′4.3.6 small enough. Furthermore,

(4.10)

∣∣∣ ∥∥A(x[1:m]/‖x[1:m]‖2)
∥∥

2
− ‖Ax[1:m]‖

∣∣∣ ≤ Cop
∣∣1− ‖x[1:m]‖2

∣∣
≤ 1

4

√
c1pn.

Since x[1:m]/‖x[1:m]‖2 ∈ Sparse((8p)−1)∩Sn−1, combining the above steps we note

equality (4.8) holds only in Ac. Therefore, we proved the lemma with c4.3.6 = c4.3.4

and c′′4.3.6 = c1.

Similar to dominated vectors, we can extend the result of Lemma 4.3.6 to com-

pressible vectors. This step is simply an approximation. Recall that Sparse((8p)−1)∩

Sn−1 ⊂ Dom((8p)−1, c) for any c.
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Lemma 4.3.7. Consider A satisfies 4.1.1 and p ≥ (1/4)n−1/3. For any u ∈ Rn,

there exist c4.3.7, c
′
4.3.7, c

′′
4.3.7 depending only on Cop,M4, such that

(4.11)

P
(
∃x ∈ Comp((8p)−1, c′4.3.7) such that

‖Ax− u‖2 ≤ c′′4.3.7
√
np and ‖A‖ ≤ Cop

√
pn
)

≤ exp(−c4.3.7pn).

Proof. We first denote following set

(4.12)
Ω :=

{
∀x ∈ Sparse(1/(8p)) ∩ Sn−1, ‖Ax− u‖2 ≥ c4.3.6

√
pn

and ‖A‖ ≤ Cop
√
pn
}
.

Then on Ω, for any x̄ ∈ Comp((8p)−1, c′4.3.7), we can find x ∈ Sparse(1/(8p)) such

that

‖Ax/‖x‖2 − u‖2 ≥ c4.3.6
√
pn and ‖x− x̄‖2 ≤ c′4.3.7.

This also implies |1− ‖x‖2| ≤ c′4.3.7. Therefore

(4.13)
‖Ax̄− u‖2 ≥ ‖Ax/‖x‖2 − u‖2 − ‖A‖

∥∥∥∥x− x

‖x‖2

∥∥∥∥− ‖A‖‖x− x̄‖2

≥ c′′4.3.7
√
pn

by choosing c′4.3.7 small enough. Since by Lemma 4.3.6, P(Ω) ≥ 1 − exp(−c4.3.6pn),

the result follows.

4.3.2 Vectors very close to moderately sparse

Lemma 4.3.6 provided uniform lower bound on ‖Ax‖ for vectors which are close

to very sparse vectors. To prove Theorem 4.3.1, we need to uplift these estimates for

vectors which are less sparse (see Section 3.2 in [6]). These vectors are well spread

ones which allows us to obtain a strong small ball probability estimate so that we can

use the standard net argument. The argument is a modification of proof of Lemma

3.8 in [6].

As a direct application of Corollary 3.7 in [6], we have the following corollary.
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Corollary 4.3.8. Let An be an n ×m matrix with i.i.d. entries of the form aij =

ξijδij, where ξij, δij are the same as in Assumption 4.1.1. Then for any α > 1,

there exist β, γ > 0, depending on α and the fourth moment of ξij, such that for any

x ∈ Rm, satisfying ‖x‖∞/‖x‖2 ≤ α
√
p, we have

L (Anx, β
√
pn‖x‖2 ≤ exp(−γn)) .

Applying these results on Levy concentration we now prove uniform lower bound

on ‖Ax‖2 for vectors in Dom(M, c). Note that proof of following lemma is a direct

modification of first part of Lemma 3.8 in [6]. The only variation is we need to

restrict on a block of A to get the small ball probability estimate.

Lemma 4.3.9. Consider A satisfies 4.1.1 and p ≥ (1/4)n−1/3. For any u ∈ Rn and

p−1 ≤M ≤ c′′′4.3.9n, there exist c4.3.9, c
′
4.3.9, c

′′
4.3.9 depending only on Cop,M4 such that,

for any u ∈ Rn,

(4.14)

P
(
∃x ∈ Dom (M, c′4.3.9) such that

‖Ax− u‖2 ≤ c′′4.3.9
√
np and ‖A‖ ≤ Cop

√
pn
)

≤ exp(−c4.3.9pn).

Proof. For convenience, denote m = (8p)−1, so we have m < M/2. Due to Lemma

4.3.6 and 4.3.7, it is enough to obtain a uniform lower bound for all vectors from the

set

W := Dom (M, c′4.3.9) \
(
Comp((8p)−1, c′4.3.7) ∪Dom((8p)−1, c′4.3.6)

)
.

We start with a set with only M -sparse vectors

V := Sparse(M)\
(
Comp((8p)−1, c′4.3.7) ∪Dom((8p)−1, c′4.3.6)

)
.

Since p ≥ (1/4)n−1/3, the proof is based on the straightforward ε-net argument as

in Lemma 3.8 in [6]. Since for any x ∈ V, x /∈ (Comp((8p)−1, c′4.3.7) ∪Dom((8p)−1, c′4.3.6)),
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we have that

‖x[m+1:M ]‖∞
‖x[m+1:M ]‖2

≤ (c′4.3.6)−1
√

8p.

Now for this given x, define Ax to be the sub-matrix restricted on the columns

corresponding to supp(x) and rows corresponding to [n]\supp(x). Then Ax is an

(n −M) ×M submatrix with i.i.d. entries. By Corollary 4.3.8 and properties of

Levy’s concentration function, we have

(4.15)

L
(
Ax, c1

√
pn‖xm+1:M‖2

)
≤ L

(
Axx, c1

√
pn‖xm+1:M‖2

)
≤ exp(−c2n)

where c1, c2 depending only on Cop,M4.

Now, we will use this estimate of the Levy concentration function to control

the infimum over V . Since V ⊂ Sparse(M), note that the set V is contained in

Sn−1 intersected with the union of coordinate subspaces of dimension M . Thus, for

ε < c′4.3.7c
′
4.3.9, there exists an ε− net N ⊂ V of cardinality less than(

n

M

)(
3

ε

)M
≤ exp

(
c′′′4.3.9n log

(
3e

c′′′4.3.9ε

))
.

We used the assumption M ≤ c′′′4.3.9n in above estimate. Moreover, we can choose the

constant c′′′4.3.9 sufficiently small (depending on ε) so that |N | ≤ exp(c2n/2). Using

the union bound argument, we have

P
(
∃x ∈ N , u ∈ Rn|‖Ax− u‖2 ≤ c1

√
pn‖x[m+1:M ]‖2

)
≤ exp(−c2n/2).

Now we can approximate any point of W by a point of N . Assume that for any

x ∈ N ,

‖Ax− u‖2 ≥ c1
√
pn‖x[m+1:M ]‖2.
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Let x′ ∈ W , then we can find x ∈ N such that

‖x′[1:M ]/‖x′[1:M ]‖2 − x‖2 ≤ ε.

Now, we show that x and x′ are close. Since m ≤M/2 and all coordinates of x′[M+1:n]

have smaller absolute value than those of x′[1:M ], we have

√
M‖X ′[M+1:n]‖∞ ≤

√
2‖x′[m+1:M ]‖2.

Now recall that x′ ∈ Dom(M, c′4.3.9), so we have

‖x′[M+1:n]‖2 ≤ c′4.3.9
√
M‖x′[M+1:n]‖∞ ≤

√
2c′4.3.9‖x′[m+1:M ]‖2.

Now, we can use the fact that ‖x′[1:M ]/‖x′[1:M ]‖2 − x‖2 ≤ ε together with triangle

inequality. Therefore, we have

‖x′[m+1:M ]‖2 ≤ ‖x′[1:M ]‖2(‖x[m+1:M ]‖2 + ε) ≤ ‖x[m+1:M ]‖2 + ε.

Now, for any x ∈ N , x /∈ Comp(m, c′4.3.7), ‖x[m+1:M ]‖2 ≥ c′4.3.7 ≥ ε. Applying

previous two inequalities, we also have

(4.16)
‖x′[M+1:n]‖2 ≤

√
2c′4.3.9‖x′[m+1:M ]‖2

≤ 2c′4.3.9(‖x[m+1:M ]‖2 + ε) ≤ 4c′4.3.9‖x[m+1:M ]‖2

and

(4.17)

‖x− x′‖2 ≤
∥∥∥x− x′[1:M ]/‖x′[1:M ]‖2

∥∥∥
2

+
∣∣∣1− ‖x′[1:M ]‖2

∣∣∣+ ‖x′[M+1:n]‖2

≤ ε+ 2‖x′[M+1:n]‖2 ≤ ε+ 8c′4.3.9‖x[m+1:M ]‖2

≤ 9c′4.3.9‖x[m+1:M ]‖2.

Finally, by choosing c′4.3.9 sufficiently small, by the triangle inequality,

(4.18)
‖Ax′ − u‖2 ≥ ‖Ax− u‖ − ‖A‖‖x− x′‖2

≥ (c1 − 9c′4.3.9Cop)
√
pn‖x[m+1:M ]‖2 ≥ c′′4.3.9

√
pn.
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Now, we can conclude Theorem 4.3.1.

Proof. Theorem 4.3.1 follow directly from a similar argument of Lemma 4.3.7.

Now, by Theorem 4.3.1, we have following small probability estimate similar to

Proposition 4.2 in [73].

Theorem 4.3.10. (Small ball probability for compressible vectors). Consider A

satisfies 4.1.1 and p ≥ (1/4)n−1/3. For every u ∈ Rn, one has

P

(
inf

x
‖x‖2

∈Comp(csn,cd)
‖Ax− u‖2/‖x‖2 ≤ c′4.3.10

√
pn ∧ Eop

)
≤ 2 exp(−c4.3.10pn)

where cs, cd, c4.3.10, c
′
4.3.10 depending only on M4, Cop.

Proof. Let E be the event in the left hand side whose probability need to be estimated.

We start with some fixed small positive numbers of cs, cd and c′4.3.10 which specific

choice will be decided later. Conditioning on E , we have that there exist vectors

u0 := u/‖x‖2 ∈ span(u) and x0 := x/‖x‖2 ∈ Comp(csn, cd) such that

‖Ax0 − u0‖2 ≤ c′4.3.10

√
pn.

By definition of event Eop, we have

‖u0‖2 ≤ ‖Ax0‖+ c′4.3.10

√
pn ≤ Cop

√
pn+ c′4.3.10

√
pn ≤ 2Cop

√
pn

Therefore

u0 ∈ span(u) ∩ 2Cop
√
pnBn

2 =: E

Let M be a (c1
√
pn)-net of the interval E such that

|M| ≤
2Cop
√
pn

c1
√
pn

=
2Cop
c1
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and choose v0 ∈ |M| such that ‖v0 − u0‖2 ≤ c1
√
pn. Then

‖Ax0 − v0‖2 ≤ c′4.3.10

√
pn+ c1

√
pn.

Now we may choose c′4.3.10, c1 ∈ (0, 1) such that c′4.3.10 + c1 ≤ c′′4.3.1. So the event E

implies the existence of vector x ∈ Comp(csn, cd), v0 ∈ M such that ‖Ax0 − v0‖2 ≤

c′′4.3.1
√
pn. Taking the union bound over M, we have

P(E) ≤ |M| max
v0∈M

P {∃x ∈ Comp(csn, cd) such that ‖Ax− v0‖2 ≤ c′′4.3.1
√
np} .

Now we may apply Theorem 4.3.1 together with the net cardinalities estimates and

we get

P(E) ≤ 2Cop
c1

exp(−c4.3.10np).

Use the condition on p then we are done. The cs, cd in this theorem can be chosen

as c′4.3.1 and c′′′4.3.1 in Theorem 4.3.1.

Remark 4.3.11. Note that the constants cs, cd can be chosen depending only on

Cop,M4. These to constants are fixed in the later part of the proof. An immediate

consequence of Theorem 4.3.10 is

(4.19)
P
{

inf
x∈Comp(csn,cd)

‖Ax‖2 ≤ ε

√
p

n
∧ Eop

}
≤ 2 exp(−c4.3.10pn)

4.4 Invertibility over incompressible vectors

Our goal in the following sections is to show, with high probability

min
x∈Incomp(csn,cd)

‖Ax‖2 &

√
p

n
.
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4.4.1 Incompressible vectors are spread

Note that in Theorem 4.3.10 and from now on, we will adapt the methodology of

Vershynin in [73] in order to decouple the symmetric matrix. Although some proofs

are very similar to those in [73], we still need to went through several proofs in much

detail under our setting. This need to be done to ensure the methodology works

as well in sparsity setting. And what is more important is to catch the affect of

sparsity especially how it affect the probability bounds. For convenience of reader

and to show the connection in methodology, we will try to use similar notation and

structure as proofs in [73].

First, we want to note that although the incompressible vectors have many non-

negligible coordinate but they have different advantage. Incompressible vectors x

have many coordinates that are well spread, that is to say a set of coordinates of size

of order n whose magnitudes are all of the order n−1/2. More precisely, we have the

following lemma, see Lemma 3.4 in [47]:

Lemma 4.4.1. (Incompressible vectors are spread). For every x ∈ Incomp(c0n, c1),

one has

(4.20)
c1√
2n
≤ |xk| ≤

1
√
c0n

for at least 1
2
c0c

2
1n coordinates xk of x.

We fix some constant coo such that as in [47]

1

4
csc

2
d ≤ coo ≤

1

4
.

Here note that the value of coo depend only on cs and cd, which depend only on the

parameters Cop and M4. We may assign a subset called spread(x) ⊂ [n] for every
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vector x ∈ Incomp(csn, cd) such that

|spread(x)| = dcoone

and the property in Lemma 4.4.1 hold for any k ∈ spread(x). The point here is that

not all of the coordinates xk satisfying Lemma 4.4.1 will be good, the set spread(x)

will allow us to only focus on the good coordinates. At this point, we may consider

an arbitrary valid assignment of spread(x) to x, the particular choice will be decide

later in the proof.

4.4.2 Distance problem via small ball probabilities for quadratic forms

To derive incompressible part of the invertibility problem, we need the following

Lemma, see Lemma 2.4 in [6].

Lemma 4.4.2. (Invertibility via distance). For j ∈ [n], let Aj denote the j−th

column of An, and let Hj be the subspace of Rn spanned by Ai, i ∈ [n]\j. Then for

any ε, ρ > 0, and M < n, we have

P
(

inf
x∈Incomp(M,ρ)

‖Ax‖2 ≤ ε

√
p

n

)
≤ 1

M

n∑
j=1

P (dist(Aj, Hj) ≤
√
pε)

So we may reduces the invertibility problem to the distance problem, namely an

upper bound on the probability

P (dist(A1, H1) ≤ c1
√
pε)

where A1 is the first column of A and H1 is the span of the other column. (By a

permutation of the indices in [n], the same bound would hold for all dist(Ak, Hk) as

required in Lemma 4.4.2).

But we have a symmetric matrix, to do the decoupling we need tools to eval-

uate the distance problem. To this end, the following proposition in [73] reduces



77

the distance problem to the small ball probability for quadratic forms of random

variables:

Proposition 4.4.3. (Distance problems via quadratic forms). Let A = (aij) be an

arbitrary n× n matrix. Let A1 denote the first column of A and H1 denote the span

of the other columns. Furthermore, let B denote the (n − 1) × (n − 1) minor of A

obtained by removing the first row and the first column from A, and let X ∈ Rn−1

denote the first column of A with the first entry removed. Then

dist(A1, H1) =
|〈B−1X,X〉 − a11|√

1 + ‖B−1X‖2
2

.

Remark 4.4.4. We may apply Proposition 4.4.3 to the n×n random matrix A which

we studied. Consider a1,1 as an arbitrary fixed number and bound our probability

uniformly for all a1,1, the problem reduces to estimating the small ball probability for

the quadratic form 〈B−1X,X〉. The random matrix B has the same structure as A

except for the dimension is n−1. Thus it will be convenient to develop the theory in

dimension n for the quadratic forms 〈A−1X,X〉, where X is an independent random

vector (see Remark 5.2 in [73]).

4.4.3 Small ball probabilities for quadratic forms via additive structure

It is a popular and powerful to estimate small ball probabilities using the additive

structure of vectors. For completion of our argument, let us first review the the

Littlewood-Offord theory and its extension to quadratic forms by decoupling, see

[73].

Linear Littlewood-Offord theory concerns the small ball probabilities for the sums

of the form S =
∑
xkξk where ξk are identically distributed independent random

variables, and x = (x1, · · · , xn) ∈ Sn−1 is a given coefficient vector. The additive

structure of x ∈ Rn is characterized by the least common denominator (LCD) of x.
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If the coordinates xk = pk/qk are rational numbers, one can measure the additive

structure in x using the least denominator D(x) of these ratios, which is the common

multiple of the integers qk. In the other words, D(x) is the smallest number θ > 0 such

that θx ∈ Zn. An extension of this concept for general vectors with real coefficients

was developed in [47, 48, 73] which give us following definition of LCD.

Definition 4.4.5. (Least Common Denominator). Let L ≥ 1. We defined the least

common denominator (LCD) of x ∈ Sn−1 as

DL(x) = inf

{
θ > 0 : dist(θx,Zn) < L

√
log+(θ/L)

}
.

Remark 4.4.6. If the vector x is considered in RI for some subset I ⊂ [n], then in

this definition we replace Zn by ZI .

It can be easily seen that we always have DL(x) > L. We may also notice that

the parameter L is up to our choice. Recall by Remark 4.2.5 that there exists

δ0, ε
′
0 ∈ (0, 1), such that for any ε < ε′0, L(ξijδij, ε) ≤ 1 − δ0p. Due to the sparsity,

we will often use the parametrization L = (δp)−1/2 in our proofs (also see Section 4

of [6]).

Remark 4.4.7. We may refer DL(x) as D(x) for convenience.

Another useful bound is the following, see Lemma 6.2 in [73].

Lemma 4.4.8. For every x ∈ Sn−1 and every L ≥ 1, one has

DL(x) ≥ 1

‖x‖∞

Now we can try to express the small ball probabilities of sums L(S, ε) in terms of

DL(x). This was done in the following theorem, see Theorem 6.3 in [73].

Theorem 4.4.9. (Small ball probabilities via LCD). Let ξ1, · · · , ξn be indepen-

dent and identically distributed random variables. Assume that there exist numbers
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ε0, p0,M1 > 0 such that L(ξk, ε0) ≤ 1 − p0 and E|ξk| ≤ M1 for all k. Then there

exists C6,3 which depends only on ε0, p0 and M1, and such that the following holds.

Let x ∈ Sn−1 and consider the sum S =
∑n

k=1 xkξk. Then for every L ≥ p
−1/2
0 and

ε ≥ 0 one has

L(S, ε) ≤ C4.4.9L

(
ε+

1

DL(x)

)
for some constant C4.4.9 depending only on second and fourth moments of ξ.

Applying the above theorem to the sparse vector, one may get following theorem

for sparse vector, see Proposition 4.2 in [6].

Theorem 4.4.10. (Small ball probabilities via LCD). Let S ∈ Rn be a random

vector with i.i.d. coordinates of the form Sj = δjξj, where P(δj = 1) = p, and

ξjs are random variables with unit variance, and finite fourth moment, which are

independent of δj. Then for any v ∈ Sn−1, L = (δp)−1/2 and δ < δ0

L
( n∑
j=1

Sjvj,
√
pε
)
≤ C4.4.10

(
ε+

1
√
pDL(v)

)
for some constant C4.4.10, δ0 depending only on fourth moments of ξj.

4.4.4 Regularized LCD

As we discussed, the distance problem reduces to a quadratic Littlewood-Offord

problem. Similar to [73], we want to the use the same technique to reduce the

quadratic problem to a linear one by decoupling and conditioning arguments. This

process requires a more robust version of the concept of the LCD, which R. Vershynin

developed in [73].

Definition 4.4.11. (Regularized LCD). Let λ ∈ (0, coo) and L ≥ 1. We define the

regularized LCD of a vector x ∈ Incomp(csn, cd) as

D̂L(x, λ) = max {DL(xI/‖xI‖2) : I ⊂ spread(x), |I| = λn} .
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Denote by I(x) the maximizing set I in this definition

Remark 4.4.12. Since the sets I in this definition are subsets of spread(x), inequality

are subsets of spread(x), inequalities (4.20) imply that

c
√
λ ≤ ‖xI‖2 ≤ C

√
λ

where c = cd/
√

2 and C = 1/
√
cs.

We also have the following estimate for regularized LCD, see Lemma 6.8 in [73].

Lemma 4.4.13. For every x ∈ Incomp(csn, cd) and every λ ∈ (0, coo) and L ≥ 1,

one has

D̂L(x, λ) ≥ c4.4.13

√
λn

where c4.4.13 depends only on cs and cd.

We now state a version of Theorem 4.4.9 for regularized LCD, see Proposition 6.9

in [73].

Theorem 4.4.14. (Small ball probabilities via regularized LCD). Let ξ1, · · · , ξn be

independent and identically distributed random variables. Assume that there exist

numbers ε0, p0,M1 > 0 such that L(ξk, ε0) ≤ 1− p0 and E|ξk| ≤ M1 for all k. Then

there exists C4.4.14 which depends only on ε0, p0 and M1, and such that the following

holds.

Consider a vector x ∈ Incomp(csn, cd) and a subset J ⊆ [n] such that J ⊇ I(x).

Consider also SJ =
∑

k∈J xkξk. Then for every λ ∈ (0, coo) and L ≥ p
−1/2
0 and ε ≥ 0,

one has

L(SJ , ε) ≤ C4.4.14L

(
ε√
λ

+
1

D̂L(x, λ)

)
.

Similarly, we can rewrite it for sparse random sums.
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Theorem 4.4.15. Let S ∈ Rn be a random vector with i.i.d. coordinates of the

form Sj = δjξj, where P(δj = 1) = p, and ξjs are random variables with unit

variance, and finite fourth moment, which are independent of δj. Consider a vector

x ∈ Incomp(csn, cd) and a subset J ⊆ [n] such that J ⊇ I(x). Then for every

λ ∈ (0, coo), v ∈ Sn−1, L = (δp)−1/2 and δ < δ0

L
( n∑
j=1

Sjvj,
√
pε
)
≤ C4.4.15

(
ε√
λ

+
1

√
pD̂L(x, λ)

)

for some constant C4.4.15, δ0 depending only on fourth moments of ξj.

By Theorem 4.2.6, one has the following proposition as a corollary, see Proposition

6.11 in [73]:

Proposition 4.4.16. (Small ball probabilities for Ax via regularized LCD.) Let A

be a random symmetric matrix with mean zero variance one and fourth moment M4
4

i.i.d. entries above diagonal. Let x ∈ Incomp(csn, cd) and λ ∈ (0, coo). Then for

every L ≥ L0 and ε ≥ 0, one has

L(Ax, ε
√
n) ≤

[
C4.4.16Lε√

λ
+

C4.4.16L

D̂L(x, λ)

]n−λn
.

Here C4.4.16 and L0 depend only on the parameters M4.

It can be easily derived as a corollary that for A is a sparse matrix, we have the

following result:

Proposition 4.4.17. (Small ball probabilities for Ax via regularized LCD where

A is sparse.) Let A be a random matrix satisfies Assumption 4.1.1. Let x ∈

Incomp(csn, cd) and λ ∈ (0, coo). Then one has for L = (δp)−1/2 and δ < δ0

L(Ax, ε
√
pn) ≤

[
C4.4.17ε√

λ
+

C4.4.17
√
pD̂L(x, λ)

]n−λn
.

Here C4.4.16, δ0 depends only on the parameters M4.
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4.5 Estimating additive structure

To estimate the small ball probability for quadratic form 〈A−1X,X〉, we will first

need to estimate the additive structure in the random vector A−1X. In this section,

we will show that the regularized LCD of A−1X is large for every fixed X which is

an analog of Theorem 7.1 in [73] for sparse matrices.

Theorem 4.5.1. (Structure theorem for sparse matrix.) Let A be a random matrix

which satisfies Assumption 4.1.1 and p ≥ n−cp. Let u ∈ Rn be an arbitrary fixed

vector, and consider x0 := A−1u/‖A−1u‖2. Let nc4.5.1n/6p−1/2 ≥ L = (pδ)−1/2 ≥

(pδ0)−1/2, p ≥ n−cp and n−c4.5.1 ≤ λ ≤ c4.5.1/4. Consider the event

E =
{
x0 ∈ Incomp(csn, cd) and D̂L(x0, λ) ≥ L−2nc4.5.1/λ

}
Then

P(Ec ∩ Eop) ≤ 2e−c
′
4.5.1pn.

Here cp, c4.5.1, c
′
4.5.1, δ0 > 0 depend only on the parameters Cop and M4.

Remark 4.5.2. Theorem 4.5.1 is the step that p ≥ n−cp is needed. To improve

Theorem 4.1.5, one just need to improve Theorem 4.5.1 to work for a greater range

of p.

We shall first prove the easier part that x0 ∈ Incomp(csn, cd) w.h.p.. The more

difficult part of the theorem is the estimate on the LCD.

Lemma 4.5.3. (A−1u is incompressible.) In the setting of Theorem 4.5.1, consider

the event

E1 = {x0 ∈ Incomp(csn, cd)}

Then

P(Ec1 ∩ Eop) ≤ 2 exp(−c4.5.3pn)
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Here c4.5.3 depends only on the parameters Cop and M4.

Proof. Denote x = A−1u, then Ax = u. Hence

Ec1 ⊆
{
∃x ∈ Rn :

x

‖x‖2

∈ Comp(csn, cd) ∧ Ax = u

}
By Proposition 4.3.10, P(Ec1 ∩ Eop) ≤ 2 exp(−c4.3.10np) .

Following the strategy in [73], to get the structure theorem, we also need a special

entropy estimate. This is done in Proposition 7.4 of [73]. To state the result, we

need the following definition first.

Definition 4.5.4. (Sublevel sets of LCD). Let us fix λ ∈ (0, coo). For every value

D ≥ 1, we define the set

SD =
{
x ∈ Incomp(csn, cd) : D̂L(x, λ) ≤ D

}
Then recall following covering Lemma, see Proposition 7.4 in [73].

Lemma 4.5.5. (Covering sublevelsets of regularized LCD). Let λ ∈ (C4.5.5/n, coo)

and L ≥ 1. For every D ≥ 1, the sublevel set SD has a β−net N such that

β =
L
√

logD√
λD

, |N | ≤
[
C4.5.5D

(λn)c4.5.5

]n
D1/λ

where C4.5.5, c4.5.5 depend only on cs, cd. More precisely, c4.5.5 = coo/4.

Remark 4.5.6. The dominating term in the net size is the term (λn)c. However,

once we adapt this cardinality estimate in the sparse case, the (λn)−cn term need to

dominate pn, this end up with a limitation of the sparsity level p in our proof.

In Proposition 4.3.10, we estimated the small ball probabilities for the random

vector Ax for a fixed vector x. Now we combine it with Lemma 4.5.5 to obtain a

bound that is uniform over all x with small regularized LCD.



84

Lemma 4.5.7. (Small ball probabilities on a sublevel set of LCD.) There exist

δ0, c4.5.7, c4.5.7, cp depend only on Cop and M4, and such that the following hold. Let

nc4.5.7n/6p−1/2 ≥ L = (pδ)−1/2 ≥ (pδ0)−1/2, n−c4.5.7 ≤ λ ≤ c4.5.7/4, p ≥ n−cp and

1 ≤ D ≤ (L)−2nc4.5.7/λ. Then

P
{
∃x ∈ SD : ‖Ax− u‖2 ≤ Copβ

√
pn ∧ Eop

}
≤ n−c

′
4.5.7n

where

β =
L
√

log(2D)√
λD

.

Proof. In this proof, the sparsity would play an important role. Unlike the non-sparse

case in proof of Lemma 7.9 in [73]. This proof would only work when p is relatively

large. And this is the reason we have to force some assumption for our main theorem

of the paper.

We start with estimating the probability for SD/SD/2 instead of SD. Proposition

4.4.17 implies that for every s ∈ SD\SD/2,

P {‖Ax− u‖2 ≤ ε
√
pn} ≤

[
C4.4.17ε√

λ
+
C4.4.17√
pD

]n−λn
, ε ≥ 0.

Now we apply this for ε = 2Copβ. Since ε√
λ

dominates 1√
pD

, we have

P {‖Ax− u‖2 ≤ 2Copβ
√
pn} ≤

[
CL
√

log(2D)

λD

]n−λn
=: p0

where C depend only on M4, Cop. Now, choose a β− net N of SD\SD/2 according

to Lemma 4.5.5. We have

(4.21)

P {∃x ∈ N : ‖Ax− u‖2 ≤ Copβ
√
n} ≤ |N |p0

≤
[
C4.5.5D

(λn)c4.5.5

]n
D1/λ

[
CL
√

log(2D)

λD

]n−λn
=: p1.
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To estimate p1, notice that n is sufficiently large, n−c ≤ λ ≤ c4.5.7/4 and 1 ≤ D ≤

L−2nc/λ. By choosing c small enough, we have

(4.22)

p1 ≤ CnDλn+1/λ(λn)−c4.5.5nLnλ−n(
√

log(2D))n

≤ Cnn2cn+1/λ2n−c4.5.5n/2Lnλ−n(c log n/λ)n

≤ n−c4.5.5n/3Ln.

Choosing the constant cp sufficient small and we obtain

p1 ≤ n−c
′n

where c′ depend only on M4, Cop. Assume event Eop hold and there exists x ∈

SD\SD/2 such that ‖Ax − u‖2 ≤ Copβ
√
n. Then there exists x0 ∈ N such that

‖x− x0‖2 ≤ β. Therefore

(4.23)
‖Ax0 − u‖2 ≤ ‖Ax− u‖2 + ‖A(x− x0)‖2 ≤ ‖Ax− u‖2 + ‖A‖‖x− x0‖2

≤ 2Copβ
√
pn.

The probability of the later event is bounded by p1 ≤ n−c
′n. So we have

P
{
∃x ∈ SD\SD/2 : ‖Ax− u‖2 ≤ Copβ

√
pn ∧ Eop

}
≤ n−c

′n.

To remove SD/2 in this bound, we divide it into level sets. Since β decreases in D,

the previous result can be applied for D/2 instead of D if D ≥ 2. Therefore

P
{
∃x ∈ SD/2\SD/4 : ‖Ax− u‖2 ≤ Copβ

√
pn ∧ Eop

}
≤ n−c

′n.

We can continue defining such sets for SD/4\SD/8 and so on. On the other hand,

S =
⋃k0
k=0(S2−kD), where k0 is the largest integer such that 2−k0D ≥ c4.4.13

√
λn. By

Proposition 4.4.13, SD0 is empty set if D0 < c4.4.13

√
λn. Since c4.4.13

√
λn ≥ 1, we

have k0 ≤ log2(D). Therefore

P {∃x ∈ SD : ‖Ax− u‖2 ≤ Kβ
√
pn ∧ Eop} ≤ log2(D)n−c

′n ≤ nc
′′n
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if the constant c′′ is chosen appropriately small.

Proof of Theorem 4.5.1. This is a direct analog of proof of Theorem 7.1 in [73]. We

now fix constants δ0, c4.5.7, c4.5.7, cp in Lemma 4.5.7. Define

E0 =
{
D̂L(x0, λ) > L−2nc4.5.7/λ =: D0 or D̂L(x0, λ) is undefined

}
and

E1 = {x0 ∈ Incomp(csn, cd)} .

Note D̂L(x0, λ) is defined if E1 holds. Thus we may rewrite E as

E = E1 ∩ E0.

Then

Ec = Ec1 ∪ (E1 ∩ Ec) = Ec1 ∪ (E1 ∩ Ec0).

So the probability we want to estimate can be rephrased as

Ec ∩ EK ⊆ (Ec1 ∩ EK) ∪ (E1 ∩ Ec0 ∩ EK).

Thus

P(Ec ∩ EK) ≤ P(Ec1 ∩ EK) + P(E1 ∩ Ec0 ∩ EK).

By Lemma 4.5.3, the first term can be bounded to be:

P(Ec1 ∩ EK) ≤ 2 exp(−c4.5.3pn).

To estimate the second term P(E1 ∩ Ec0 ∩ EK), consider

E1 ∩ Ec0 ∩ EK =
{
x0 := A−1u/‖A−1‖2 ∈ SD0 ∧ EK

}
.

Define u0 := Ax0 = u/‖A−1u‖2 and EK implies

‖u0‖2 = ‖Ax0‖2 ≤ ‖A‖ ≤ Cop
√
pn.
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Thus, u0 belongs to a one-dimensional interval. More precisely,

u0 ∈ span(u) ∩ Cop
√
pnBn

2 =: E.

So

E1 ∩ Ec0 ∩ EK ⊆ {∃x0 ∈ SD0 ,∃u0 ∈ E : Ax0 = u0 ∧ Eop} .

Now, choose

β0 =
L
√

log(2D0)

D0

.

Let M be some fixed (Copβ0
√
pn)−net of the interval E with cardinality

|M| ≤
Cop
√
pn

Copβ0
√
pn

=
1

β0

≤ D0.

Therefore for u0 ∈ E we there exists v0 ∈M such that ‖u0 − v0‖2 ≤ Copβ0
√
pn. We

also have ‖Ax0 − v0‖2 ≤ Copβ
√
np since Ax0 = u0. Therefore

E1 ∩ Ec0 ∩ EK ⊆ {∃x0 ∈ SD0 ,∃v0 ∈M : ‖Ax0 − v0‖2 ≤ Copβ0
√
pn ∧ Eop} .

Finally, applying Lemma 4.5.7 and a union bound argument for all v0 ∈M,

P(E1 ∩ Ec0 ∩ Eop) ≤ |M|n−c
′
4.5.7n ≤ D0n

−c′4.5.7n ≤ n−c
′
4.5.7n/2

where D0 ≤ nc/λ, and since we can assume that constant c4.5.7 > 0 sufficient small.

Our proof is complete.

4.6 Small ball probability for quadratic forms

Now, we use the machinery developed in [73] to estimate small ball probabilities.

Recall that by Proposition 4.4.3, the distance problem reduces to estimating Levy

concentration function for the self-normalized quadratic forms:

(4.24) L

{
|〈A−1X,X〉|√
1 + ‖A−1X‖2

2

, ε
√
p

}
.
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The goal of this section is to prove the following estimate, for the non-sparse

version, see Theorem 8.1 in [73].

Theorem 4.6.1. (Small ball probabilities for quadratic forms.) Let A be an n × n

random matrix satisfies Assumption 4.1.1 and p ≥ n−cp. Let X be a random vector

in Rn whose entries are identically distributed, and satisfy the same assumption as

those of A. There exist constants cp, C4.6.1, c4.6.1, c
′
4.6.1 depend only on the parameters

Cop and M4, and such that the following holds. For every ε ≥ 0 and u ∈ R, one has

P

{
|〈A−1X,X〉 − u|√

1 + ‖A−1X‖2
2

≤ ε
√
p ∧ Eop

}
≤ C4.6.1ε

1/9 + 2 exp(−nc4.6.1) + exp(−c′4.6.1pn).

To prove Theorem 4.6.1, we will first decouple the enumerator 〈A−1X,X〉 from

the denominator
√

1 + ‖A−1X‖2
2 by showing that ‖A−1X‖2 ∼ ‖A−1‖HS with high

probability. Then we adapt argument from [73] to decouple 〈A−1X,X〉. Finally,

by condition on X we obtain a linear form, and we can estimate its small ball

probabilities using the Littlewood-Offord theory.

The following result is an analog of Proposition 8.2 in [73], it compares the size

of the denominator
√

1 + ‖A−1X‖2
2 to ‖A−1‖HS.

Proposition 4.6.2. (Size of A−1X) Let A be an n × n random matrix satisfies

Assumption 4.1.1. Let X be a random vector in Rn whose entries are identically

distributed, and satisfy the same assumption as those of A. There exist constants

c4.6.2, C4.6.2, c
′
4.6.2 > 0 that depend only on the parameter Cop and M4 from the as-

sumption, and such that the following holds. Let n−c4.6.2 ≤ λ ≤ c4.6.2. The random

matrix A has the following property with probability at least 1 − exp(−c4.6.2np). If

Cop holds, then for every ε > 0, one has:

(i) with probability of at least 1− exp(−c′4.6.2pn) in X, we have
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‖A−1X‖2 ≥ C−1
4.6.2;

(ii) with probability at least 1− ε in X, we have

‖A−1X‖2 ≤
√
pε−1/2‖A−1‖HS;

(iii) with probability at least 1− C4.6.2ε/
√
λ− nc′4.6.2/λ in X, we have

‖A−1X‖2 ≥
√
pε‖A−1‖HS.

And the same result of (iii) still hold if we replace X by an i.i.d. random vector with

L(Xi, ε0) ≤ 1− c0p. In this case C4.6.2, c
′
4.6.2 would also depend on p0, ε0.

The proof of this result uses the following elementary lemma, see Lemma 8.3 in

[73].

Lemma 4.6.3. (Sums of dependent random variables.) Let Z1, · · · , Zn be arbitrary

non-negative random variables (not necessarily independent), and p1, · · · , pn be non-

negative numbers such that
n∑
k=1

pk = 1.

Then for every ε ∈ R one has

P

{
n∑
k=1

pkZk ≤ ε

}
< 2

n∑
k=1

pkP {Zk ≤ 2ε} .

Proof of Proposition 4.6.2. Denote e1, · · · , en the canonical basis of Rn, and

xk :=
A−1ek
‖A−1ek‖2

, k = 1, · · · , n.

Now, apply Structure Theorem 4.5.1 together with a union bound over k =

1, · · · , n. More specifically, choose L = L0 = (δ0p)
−1/2 (the choice of δ0 see remark

4.2.5). The random matrix with probability at least 1−n2e−c
′
4.5.1pn ≥ 1−2e−c

′
4.5.1pn/2

has following property: if Eop holds then

xk ∈ Incomp(csn, cd), D̂L(xk, λ) ≥ L−2nc4.5.1/λ, k = 1, 2, · · · , n.
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From now on, let us fix a realization of A satisfies above property. Without loss of

generality, we may also assume that Eop holds.

(i) First, we have

‖X‖2 ≤ ‖A‖‖A−1X‖2.

By the definition of event Eop, we have ‖A‖ ≤ Cop
√
pn. Moreover, Chernoff’s inqual-

ity together with the Tensorization Lemma 4.2.6 implies that the random vector X

satisfies ‖X‖2 ≥ c
√
pn with probability at least 1− exp(−cpn). Here c is a constant

only depending on M4. Then we have ‖A−1X‖2 ≥ c
Cop

with the same probability. So

we proved (i).

(ii) Using the fact that A is symmetric, we have

‖A−1X‖2
2 =

n∑
k=1

〈A−1X, ek〉2 =
n∑
k=1

〈A−1ek, X〉2 =
n∑
k=1

‖A−1ek‖2
2〈xk, X〉2.

Recall that we also have Xi = δiξi, where δis are Bernoulli with parameter p and ξis

are random variables with mean 0 variance 1. Therefore,

EX〈xk, X〉2 = EX
n∑
i=1

x2
k,iX

2
i = p

So,

EX‖A−1X‖2
2 =

n∑
k=1

p‖A−1ek‖2
2 = p‖A−1‖2

HS.

Part (ii) follows directly from an application of Markov’s inequality.

(iii) Now, we fix k ≤ n. Then 〈xk, X〉 is a sum of independent random variables:∑n
i=1 xk,iXi. We can estimate this sum using Proposition 4.4.15 combined with the

estimated on the regularized LCD of xk. Therefore

(4.25) L
(
〈xk, X〉,

√
2pε
)
≤ C4.4.10

(
ε√
λ

+ p−1/2L2n−c4.5.1/λ
)
.
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Now, together with estimates for all k using (4.25), Lemma 4.6.3 with pk = ‖A−1ek‖2
2/‖a−1‖2

HS

and that
∑
pk = 1. We have

(4.26)

PX
{
‖A−1X‖2 ≤ ε

√
p‖A−1‖HS

}
= P

{
n∑
k=1

pk〈xk, X〉2 ≤ pε2

}
≤ 2

n∑
k=1

pkP
{
〈xk, X〉2 ≤ 2pε2

}
≤ 2C

(
ε√
λ

+ p−3/2n−c4.5.1/λ
)

We complete the proof using the range of λ and p. To prove the same result hold

for X replaced by an i.i.d. random vector with L(Xi, ε0) ≤ 1− c0p. We only need to

notice that to derive (4.25) from Theorem 4.4.14, above condition is sufficient.

Decoupling the quadratic form is based on the following Lemma, see Lemma 8.4

in [73].

Lemma 4.6.4. (Decoupling quadratic forms). Let G be an arbitrary symmetric n×n

matrix, and let X be a random vector in Rn with independent coordinates. Let X ′

denote an independent copy of X. Consider a subset J ⊂ [n]. Then for every ε ≥ 0,

one has

(4.27)
L(〈GX,X〉, ε)2 = sup

u∈R
P {|〈GX,X〉 − u| ≤ ε}2

≤ PX,X′ {|〈G(PJc(X −X ′)), PJX〉 − v| ≤ ε}

where v is some random variable whose value is determined by the J c × J c minor of

G and the random vectors PJcX,PJcX
′.

Now, we are ready to prove Theorem 4.6.1. The argument is based on the de-

coupling lemma and Littlewood-Offord theory which stated earlier. The proof is a

modification of Section 8.3 in [73]. Although the proof structure is the same as in

[73], we still need to go into details to catch the effect of sparsity.
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Step 1: Constructing a random subset J and assignment spread(x). We

start by decomposing [n] into two random sets J and J c. To this end, we consider

independent 0, 1−-valued random variables γ1, · · · , γn. with Eγi = coo/2. We also

define

J := {i ∈ [n] : γi = 0}

Then E|J c| = coon/2. By a in large deviation inequality ([2] Theorem A.1.4), the

inequality

(4.28) |J c| ≤ coon

holds with high probability:

P {(4.28) holds} ≥ 1− 2 exp(−c′oopn)

where c′oo = c2
oo/2.

Fix a realization of J that satisfies (4.28). By Lemma 4.4.1, at least 2coon coor-

dinates of a vector x ∈ Incomp(csn, cd) satisfy the regularity condition. So for each

vector x ∈ Incomp(csn, cd) we can assign a subset

spread(x) ⊆ J, |spread(x)| = dcoone

so that the regularity condition holds for all k ∈spread(x). If there is more than one

way to assign spread(x) to x, we only need to choose one fixed way. This results in

an assignment that depends only on the choice of the random set J . We will use this

specific assignment J in applications of Definition 4.4.11 for regularized LCD.

Step 2. Estimating the denominator
√

1 + ‖A−1‖2
2 and LCD of the

inverse. By Lemma 4.6.2, we may replace the denominator
√

1 + ‖A−1X‖2
2 by

‖A−1‖HS in (4.24). Let ε0 ∈ (0, 1) and let X ′ denote an independent copy of the
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random vector X. Then we consider following event which is determined by the

random matrix A, random vectors X,X ′ and the random set J :

(4.29)
√
ε0p−1

√
1 + ‖A−1X‖2

2 ≤ ‖A−1‖HS ≤
1

ε0
√
p
‖A−1(PJc(X −X ′))‖2

Denote Y := PJc(X −X ′), then we have Yis are i.i.d. random variables and

L(Yi, c0) ≤ L(PJcX, c0) ≤ 1− c1p.

where c0, c1 depends only on M4, Cop. Here we simply used the fact that PJcX is a

sparse random variable with sparsity level coop/2 and Remark 4.2.5. So we can apply

Proposition 4.6.2 with A−1X and A−1Y . We have

PA,X,X′,J{(4.29) and holds ∧ Ecop} ≥ 1− C4.6.2ε0√
λ
− n−c′4.6.2/λ − 2e−c

′
4.6.2pn.

where c′4.6.2, C4.6.2 depend only on Cop and M4.

Denote the random vector

x0 :=
A−1(PJc(X −X ′))
‖A−1(PJc(X −X ′))‖2

and condition on an arbitrary realization of random vectors X,X ′ and on realization

of J which satisfies (4.28). Fix a value of parameter λ that satisfying n−c4.5.1 ≤ λ ≤

c4.5.1
4

as needed in Theorem 4.5.1. Then consider the event

(4.30) x0 ∈ Incomp(csn, cd) and D̂L0(x0, λ) ≥ δ0pn
c4.5.1/λ

which depends on the random matrix A. By Theorem 4.5.1, we have

PA
{

(4.30) holds ∨ Ecop|X,X ′, Jsatisfies (4.28)
}
≥ 1− 2e−c

′
4.5.1pn.

Therefore

(4.31)

PA,X,X′,J
{

(4.28, 4.29, 4.30) hold ∨ Ecop
}

≥ 1− 2e−c
′
oon − C4.6.2ε0√

λ
− n−c′4.6.2/λ − 2e−c

′
4.6.2pn − 2e−c

′
4.5.1pn

=: 1− p0
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Thus there exists a realization of J that satisfies (4.28) and

PA,X,X′{(4.29, 4.30) hold ∨ Ecop} ≥ 1− p0.

Now, fix such a realization of J in the rest of the proof. Applying Fubini’s theorem

and we have A has the following property with probability at least 1−√p0:

PX,X′{(4.29, 4.30) hold ∨ Ecop|A} ≥ 1−√p0

Since event Ecop depends on A only, the random matrix A has the following property

with probability at least 1−√p0. Either Ecop holds, or:

(4.32) Eop holds and PX,X′{(4.29), (4.30) hold|A} ≥ 1−√p0

Step 3: Decoupling. Recall the event we want to estimate probability is

E :=

{
|〈A−1X,X〉 − u|√

1 + ‖A−1X‖2
2

≤ ε
√
p

}
.

So we only need to estimate

PA,X(E ∩ Eop) ≤ PA,X{E ∧ (4.32) holds}+ PA,X{Eop ∧ (4.32) fails}

The second term is bounded by
√
p0. Therefore,

PA,X(E ∩ Eop) ≤ sup
A satisfies (4.32)

PX(E|A) +
√
p0

Moreover, using property (4.32) in a larger probability space, we have

PA,X(E ∩ Eop) ≤ sup
A satisfies (4.32)

PX,X′{E ∧ (4.32) holds|A}+ 2
√
p0

Now, we fix a realization of a random matrix A satisfying (4.32). We only need to

bound the probability

p1 := PX,X′{E ∧ (4.29) holds}
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By definition of E and property (4.29),

p1 ≤ PX,X′
{
|〈A−1X,X〉 − u| ≤ pε

√
ε0

‖A−1‖HS

}
Now we may apply decoupling Lemma 4.6.4, and therefore

p2
1 ≤ PX,X′{E0}

where

E0 =

{
|〈A−1(PJc(X −X ′)), PJX〉 − v| ≤

εp
√
ε0

‖A−1‖HS

}
.

Here v is a number that depends on A−1, PJcX,PJcX
′ only. Use property (4.32) and

we have

p2
1 ≤ PX,X′{E0} ≤ PX,X′ {E0 ∧ (4.29, 4.30) hold}+

√
p0

Now, we may divide both sides in the inequality defining the event E0 by ‖A−1(PJc(X−

X ′))‖2. By definition of x0 and (4.29) and we get

(4.33) p2
1 ≤ Px,X′

{
|〈x0, PJX〉 − w| ≤

√
pε
−3/2
0 ε ∧ (4.30) holds

}
+
√
p0

where w = w(A−1, PJcX,PJcX
′) is a number.

Step 4: The small ball probabilities of a linear form. Finally, the random

vector x0 depends only on PJc(X −X ′), which is independent of the random vector

PJX. So we may fix an arbitrary realization of the random vectors PJcX and PJcX
′,

this will fix vector x0 and number w in (4.33). By (4.30) we have

p2
1 ≤ sup

x0 satisfies (4.30), w∈R
PPJX

{
|〈x0, PJX〉 − w| ≤

√
pε
−3/2
0 ε

}
+
√
p0

So from now on, let us fix a vector x0 ∈ Sn−1 such that (4.30) holds and a number

w ∈ R. This reduce the problem to estimating the small ball probability for the

weighted sum of independent random variables

〈x0, PJX〉 =
∑
k∈J

x0,kXk.
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We now apply Proposition 4.4.15, noticing that we have J ⊇ spread(x0) ⊇ I(x) as

needed in the theorem. Therefore

PPJX
{
|〈x0, PJX〉 − w| ≤

√
pε
−3/2
0 ε

}
≤ C4.4.15ε

−3/2
0 ε√
λ

+
C4.4.15

√
pD̂L0(x0, λ)

.

Using property (4.30) to bound the regularized LCD, we have

p2
1 ≤

C4.4.15ε
−3/2
0 ε√
λ

+ C4.4.15δ
−1
0 p−3/2n−c4.5.1/λ +

√
p0.

Now we set ε0 = ε1/2/λ1/8 and estimate PA,X(E ∩ Eop) as

(4.34)

PA,X(E ∩ Eop) ≤ p1 + 2
√
p0

≤

(
C4.4.15ε

−3/2
0 ε√
λ

)1/2

+
(
C4.4.15δ

−1
0 p−3/2n−c4.5.1/λ

)1/2

+3

(
2e−c

′
oon +

C4.6.2ε0√
λ

+ n−c
′
4.6.2/λ + 2e−c

′
4.6.2pn + 2e−c

′
4.5.1pn

)1/4

≤ C

(
e−cpn + n−c/λ +

ε
1/4
0

λ1/8
+
ε
−3/4
0 ε1/2

λ1/4

)1/2

≤ n−c
′/λ + C ′

ε1/8

λ5/32
+ e−c

′pn

Optimizing above probability using n−c4.5.1 ≤ λ ≤ c4.5.1
4

(see page 49 and Fact 8.6 in

[73]), we have

PA,X(E ∩ Eop) ≤ C ′′ε1/9 + exp(−nc′′) + exp(−c′np)

where c′, c′′, C ′′ depend only on M4, Cop.

4.7 Proof of Theorem 4.1.5

Now we can combine the incompressible and compressible part to prove Theorem

4.1.5.
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Proof of Theorem 4.1.5. We consider

(4.35)

P
{

min
x∈Sn−1

‖Ax‖2 ≤ ε

√
p

n
∧ Eop

}
≤ P

{
inf

x∈Comp(csn,cd)
‖Ax‖2 ≤ ε

√
p

n
∧ Eop

}
+P
{

inf
x∈Incomp(csn,cd)

‖Ax‖2 ≤ ε

√
p

n
∧ Eop

}
The first term is bounded by 2 exp(−c4.3.10pn) as in (4.19). The probability for the

incompressible vectors is estimated via distances in Lemma 4.4.2. Finally, we only

need to apply Theorem 4.6.1 and Proposition 4.4.3, and notice that e−n
c4.6.1 dominate

the term e−cpn for p ≥ n−cp .

4.8 Estimate of the Spectral Norm

In this section, we prove Theorem 4.1.7, that is to say when ξij is sub-gaussian,

‖A‖ ≤ C
√
np w.h.p.. The proof use the same moment technique and structure as

the proof of Theorem 1.7 in [6].

Proof of Theorem 4.1.7. First, let’s consider ξ′ij, i, j ∈ [n] to be independent copies

of ξij, i, j ∈ [n] and ηij := ξij − ξ′ij. Let A′n and Bn be the matrices with entries

a′ij = δijξ
′
ij and bij = δijηij . Denote Eξ as the expectation with respect to ξ,

conditioned on δ := (δij)i,j∈[n]. Consider q ≥ 1 to be an even integer. By Jensen’s

inequality, as operator norm is convex function of matrix entries, we have

Eξ‖An‖q = Eξ‖An − Eξ′A′n‖q ≤ Eη‖Bn‖q.

Then, let gij, i, j ∈ [n] be independent N(0, 1) random variables. Clearly, ξij − ξ′ij

is a sub-gaussian random variable, by moment condition of sub-gaussian random

variable there exists a constant C1, depending on the sub-guassian norm of ξij, such

that E|ηij|q ≤ E|C1gij|q for all q ≥ 1. Let Wn be the n × n random matrix with
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entries wij = δijgij. Since

Eη‖Bn‖q ≤ EηTr
(
(BnB

∗
n)q/2

)
where right hand side is a polynomial of the even moments of ηij with non-negative

coefficients, we have

EηTr
(
(BnB

∗
n)q/2

)
≤ Cq

1nEg‖Wn‖q.

Above inequality uses the elementary identity that Tr
(
(WnW

∗
n)q/2

)
=
∑n

j=1 λ
q/2
j (WnW

∗
n).

Here eigenvalues λj(WnW
∗
n) satisfy |λj(WnW

∗
n)| ≤ ‖Wn‖2 for all j.

Now we are ready to estimate E‖W‖2. Here we need to apply the following result

due to Bandeira and van Handel [1].

Lemma 4.8.1. Let X be the n × n symmetric matrix with Xij = gijbij, where

{gij : i ≥ j} are i.i.d.∼ N(0, 1) and {bij : i ≥ j} are given scalars. Let

σ := max
i

√∑
j

b2
ij, σ∗ := max

ij
|bij|

Then

E‖X‖ ≤ (1 + ε)

{
2σ +

6√
log(1 + ε)

σ∗
√

log n

}
for any ε ∈ (0, 1/2).

Let Ω be the event for all i ∈ [n],
∑n

j=1 δij ≤ C̄pn, for some C̄ ≥ 2. Since

p ≥ C0
logn
n

, applying Chernoff’s inequality and union bound argument, we can choose

the C0 large enough, such that P(Ωc) ≤ e−cpn for some c > 0. And c depends only on

C0. Now, we can use the above Lemma 4.8.1 and assume that δ ∈ Ω. Conditionally

on δ, we have

E (‖Wn‖|δ) ≤
√
C̄pn+ C∗

√
log n ≤

√
C ′pn.

Here C∗ is some absolute constnat, and C ′ = 2(C∗)2C̄. Conditioning on δ, ‖Wn‖

can be viewed as a
√

2-Lipschitz function on Rn(n+1)/2 with the standard Gaussian
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measure. Applying standard Gaussian concentration inequality [31], we have

P (‖Wn‖ ≥ E[‖Wn‖|δ] + t) ≤ C̃ exp(−c′t2)

for some absolute constants C̃, c′ > 0, and any t > 0. Therefore,

(4.36)
Eg‖Wn‖q ≤ (C ′pn)q/2 +

∫ ∞
√
C′pn

qsq−1P [‖Wn‖ ≥ s|δ]] ds

≤ (C ′pn)q/2 + (C ′′q)q/2,

for some absolute constant C ′′. Now choose q = pn. This inequality in combination

with previous inequalities yields

Eξ‖An‖pn ≤ n(C2pn)pn/2 ≤ (C2
2pn)pn/2.

where C2 is a positive constant depending on C0 and the sub-gaussian norm of

ξij. Here we used the condition p ≥ C0
logn
n

to absorb the factor n. Finally, choosing

Cop > C2
2 , we have for any δ ∈ Ω, there exists a small positive constant cop, depending

on Cop, such that

P (‖An‖ ≥ Cop
√
pn|δ) ≤ exp(−coppn)

by applying Markov inequality. Now picking cop small enough, we have

P (‖An‖ ≥ Cop
√
pn) ≤ max

δ∈Ω
P (‖An‖ ≥ Cop

√
pn|δ) + P(Ωc) ≤ exp(−coppn).
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