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ABSTRACT

This thesis presents a search for new resonances decaying to pairs of jets

in 37 fb�1 of proton-proton collision data produced by the Large Hadron

Collider at a center-of-mass energy of 13 TeV. The data was collected in

2015 and 2016 by the ATLAS detector. A new resonance search algorithm

- SWiFt - was used to reduce the uncertainty in the data-driven estimate

of the unknown backgrounds. SWiFt was utilized in a model-independent

search, and also to perform model-dependent searches for excited quarks (q⇤)

and heavy gauge bosons (W 0). No evidence for new phenomena was observed,

so 95% confidence-level upper limits were calculated on the production rates

of q⇤ and W

0. Upper limits were also calculated for Gaussian models which

represent first-order approximations for many theoretical models that predict

new particles decaying to two jets.
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CHAPTER 1

Introduction

A global e↵ort of tens of thousands of scientists over the many past decades has made

tremendous progress in understanding the subatomic particle world. The knowledge

gained is synthesized into the Standard Model of particle physics which took its current

form in late 1900s. Since then, the Standard Model (SM) and its predictions have

been verified with great precision by a countless number of experiments. Despite

the success of the theory, there are many reasons to believe that it is not complete,

these include its inability to explain gravity (as a quantum-field theory), dark matter

and dark energy1. Hence, new physics (in the form of new particles or interactions)

must exist, though where and how it will appear is currently unknown. One of the

best places to search for it is at the world’s most powerful particle collider, the Large

Hadron Collider (LHC).

The LHC is a proton-proton collider with a center-of-mass energy
p
s = 13 TeV.

From each of its collisions, thousands of particles are created, most of which are pro-

duced from known SM processes and some of which might emerge from new physical

interactions. This thesis will present a search for new physics from collision events

that produce two jets - highly collimated sprays of particles. These are known as dijet

events and are a powerful tool to search for new physics. The search is performed by

looking for a localized excess above the smooth dijet invariant mass distribution pre-

1Dark matter and dark energy constitute approximately 95% of the total mass�energy content
of the universe!
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dicted by the SM (the background). The invariant mass provides a Lorentz-invariant

measure of the energy of the two-jet system, and an excess in its distribution would

signify the existence of a new particle with a definite invariant mass. The search is

performed in a way that is sensitive to any new particle decaying to two jets, however,

two specific new physics models are also evaluated: excited quarks (q⇤) and heavy

vector gauge bosons (W 0).

The data used in the search was collected using the ATLAS detector in the years

2015 and 2016 and amounts to a total integrated luminosity of 37 fb�1. The most

energetic dijet event recorded during this time period is shown in Figure 1.1 where

the two back-to-back jets are clearly visible.

Figure 1.1: A visualization of the highest-mass dijet event, (Event 4144227629, Run
305777). This event has an invariant mass of 8.12 TeV. The green lines represent
the tracks of the many particles emerging from the collision. The green and yellow
towers represent the energy of the two jets and the tracks of the particles that create
these energy sprays are also visible.

Traditionally, the background in dijet analyses has been modeled using a single

parametric fit to the entire distribution. However, with increasing data this approach
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becomes di�cult, and a new method for modeling the background or conducting the

search is required. This thesis presents a solution to this problem, the Sliding Window

Fits (SWiFt) method. SWiFt conducts a resonance search in many small, over-

lapping and automatically sized windows - subranges of the full mass distribution. It

also provides a background estimate over the full mass range by combining background

estimates from all the windows. This allows the use of traditional bump-hunting tools

that need a background model over the full data distribution.

This thesis is laid out in the following manner. Our current theoretical under-

standing of particle physics is outlined in Chapter 2. This provides a flavor of where

particle physics stands today and why there is a need to look for new physical phe-

nomena. Then, Chapter 3 discusses the experimental apparatus - the LHC and the

ATLAS detector - used for the search. As the search is conducted in collisions that

result in two jets, Chapter 4 details the general production, reconstruction and cali-

bration of jets. Chapter 5 motivates the search for new physics in the dijet invariant

mass distribution. It describes the SM dijet background and the new physics theories

utilized in this thesis. Finally, past dijet analyses results are discussed. This chapter

also introduces the traditional bump-hunting method used by ATLAS since 2010 and

outlines the challenges with this approach. To address these challenges, Chapter 6

presents a new resonance search tool - SWiFt. The analysis selection and data qual-

ity are presented in Chapter 7 and the search results using SWiFt are shown in

Chapter 8.
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CHAPTER 2

The Standard Model of Particle Physics

As per our current understanding, there are four fundamental forces in nature. As

shown in Table 2.1, these are the strong, electromagnetic, weak and gravitational

forces. To each force is associated a particle that carries or transmits it. The strong

force is carried by the gluons, the electromagnetic force is transmitted by the photons

and the weak force is represented by the three massive vector bosons. Gravity is

thought to be represented by the massless graviton, however, experimental evidence

for such a particle is yet to be found.

Table 2.1: The four fundamental forces of nature with their relative strengths (for
two protons in a nucleus) and ranges. The particles that carry these forces are also
shown. With the exception of the hypothetical graviton, all the other carriers are
well-measured and understood.

Forces Strength Range Carriers
Strong 1 10�15 Gluons g

Electromagnetic 10�2 1 Photons �
Weak 10�6 10�18 Heavy gauge bosons W±

, Z

Gravitational 10�38 1 Gravitons G

Using these forces and their interactions with matter, all the visible interactions

of the Universe can be described. A simple yet crucial example is the atom. An

atom consists of a tiny nucleus, containing positively charged protons and electrically

neutral neutrons. Surrounding the nucleus is a cloud of negatively charged electrons.

The strong force is responsible for keeping the nucleus intact. It stabilizes the protons
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and neutrons, keeping them bound to each other. The electromagnetic force binds

the electron cloud to the nucleus, and the residual electromagnetic force then binds

together atoms to create molecules. From molecules, via the interaction of chemistry

comes all of biology and you, me and everything else exists! The weak force is

responsible for radioactive decays and plays an important role in nuclear fission.

Lastly, the gravitational force is responsible for aggregating atoms into large celestial

bodies.

This chapter will open with a discussion of the theory of the Standard Model of

particle physics. In the discussion, extra emphasis will be laid on the strong force as

it leads to the production of jets, the subject of this thesis. Motivation for searching

for new physics beyond the SM will also be provided.

2.1 The Standard Model of Particle Physics

The SM of particle physics is a mathematical theory that describes the interaction of

three of the known fundamental forces (not the gravitational force) with the known

fundamental matter particles, i.e. the fermions. These interactions occur via the

exchange of force-carrying particles known as gauge bosons.

Fermions are spin-1/2 elementary particles that exist in three generations (as

shown in Figure 2.1). They are divided into two groups: quarks and leptons. Each

quark and lepton can exist in six flavors, each of which di↵ers by mass and charges.

The six flavors of quarks are called up (u), charm (c), top (t), down (d), strange (s)

and bottom (b). The six lepton flavors are electron (e), muon (µ) and tau (⌧), electron

neutrino (⌫
e

), muon neutrino (⌫
µ

) and tau neutrino (⌫
⌧

). For each of the fermions1,

there exists a corresponding anti-fermion with the same mass but reversed charges.

There are four spin-1 gauge bosons responsible for carrying the three forces: the

massless photon (�) gives rise to the electromagnetic force, the massless gluons (g)

1Except possibly the neutrinos.
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Figure 2.1: The fundamental particles in the Standard Model of particle physics [1].
The quarks and leptons are the matter particles and the gauge bosons are the carriers
of the fundamental forces. The transparent green, grey and red boxes show the
interactions of the weak, electromagnetic and strong forces, respectively. The last
piece of the Standard Model to be found, the Higgs boson, is shown in the upper
right corner.

create the strong force and the massive Z and W bosons carry the weak force. The

last piece of the Standard Model is the spin-0 Higgs boson that was predicted to

exist in the 1960s [42] [43] [44]. It is a quantum excitation of a fundamental spin-0

field, known as the Higgs field, that permeates the Universe. Due to the di�culty

in producing and detecting the Higgs boson, its discovery by CERN in 2012 [45] [46]

was a major experimental accomplishment.

Mathematically, the Standard Model is a relativistic quantum field theory that

can be written as a product of the following symmetry groups

SU(3)
C

⇥ SU(2)
L

⇥ U(1)
Y

. (2.1)

Each group, also known as a gauge group, represents a set of transformations, which

when applied to a physical system leaves it unchanged. U(1) represents the group
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of phase rotations on a single complex variable. SU(2) and SU(3) represent the

groups of rotations on two and three complex variables, respectively. All experiments

are consistent with the notion that these three internal symmetries are su�cient to

explain the fundamental particles and their interactions. However, as to why nature

obeys these symmetries and not any others is unknown. It is also remarkable to

note that invariance under these abstract mathematical rotations leads to a complete

description of the physical forces, particles and their interactions which can actually be

measured in a laboratory. It is amazing that simple mathematical concepts underlie

the complex world that we observe.

These transformations are local, i.e. they are space-time dependent transforma-

tions. The requirement of local gauge invariance requires the presence of vector fields

that are associated with spin-1 vector bosons. These are the gauge bosons. Each

symmetry group is also associated with a quantum number or charge; these charges

are fundamental properties of the fermions. The non-Abelian analog of U(1)
Y

group’s

charge is called weak hypercharge, denoted by Y , and it has one gauge boson called B

µ

(µ indexes the three space and one time dimension). The charge of the SU(2)
L

group

is called weak isospin, denoted by T , and it has three gauge bosons called W

a=1,2,3
µ

.

The subscript L stands for left as this symmetry is obeyed by left-handed fermions

only. Finally, the SU(3)
C

group’s charge is called color charge and it comes in three

values: red, green and blue2. There are eight gauge bosons for this group called gluons

and they are represented by G

a=1,2...,8
µ

.

The interaction of the gauge bosons with fermions, while conserving each symme-

try group’s charge, is what leads to the strong and electroweak forces (the latter is a

combination of the electromagnetic and the weak force). It is once again remarkable

to note that physical particles can be represented by pure mathematical constructs

2These names have nothing to do with the red, blue and green colors perceived by your eyes.
They simply represent the three types of SU(3) charges, and could have also been called Mothra,
Simon and Wilson.
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- gauge bosons being square, unitary matrices with determinant one and fermions

being column matrices.

2.1.1 The Electroweak Interaction

All particles have the U(1) and SU(2) gauge invariances, the gauge bosons for which

are the B

µ

and the three W

a=1,2,3
µ

, respectively. However, there is a di↵erence in the

way these symmetries are manifested in nature: whereas all fermions contain the U(1)

hypercharge Y , only pairs of left-handed fermions, called doublets, transform under

the SU(2) weak isospin, T . The right-handed fermions (e
R

, µ

R

, ⌧

R

) are electroweak

singlets. The left-handed fermion doublets are:

0

B@
⌫

e

e

1

CA

L

,

0

B@
⌫

µ

µ

1

CA

L

,

0

B@
⌫

⌧

⌧

1

CA

L

,

0

B@
u

d

1

CA

L

,

0

B@
c

s

1

CA

L

,

0

B@
t

b

1

CA

L

. (2.2)

Rotations in SU(2) space can transform each ‘up’ element of the doublet into the

‘bottom’ element, e.g. ⌫

e

transforms to e, u transforms to d, etc. These rotations

are brought about by the two (out of four) physical gauge bosons of the unified

U(1) ⇥ SU(2) electroweak force: W

+ and W

�. The interaction of these two bosons

in addition to the interactions with the neutral Z boson with the left-handed fermion

doublets creates the weak force. The fourth physical gauge boson is the photon (�),

which is responsible for the electromagnetic force. The physical gauge bosons of the
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electoweak force are written as a combination of the B

µ

and W

a=1,2,3
µ

bosons:

W

+ = (W 1
µ

� iW

2
µ

)/
p
2 (2.3)

W

� = (W 1
µ

+ iW

2
µ

)/
p
2

Z = cos ✓
W

·W 3
µ

� sin ✓
W

· B
µ

� = sin ✓
W

·W 3
µ

+ cos ✓
W

· B
µ

.

(2.4)

Here ✓

W

is the weak mixing angle. It specifies the rotation angle of the W

3
µ

and B

µ

states, as a result producing the Z and the �.

Since the photon is a mixture of W 3
µ

and B

µ

, the electric charge, denoted by Q,

is a combination of the U(1) and SU(2) charges

Q = T3 +
Y

2
, (2.5)

where T3 is the third component of the weak isospin charge. Particles with non-zero

electric charge interact with the photon. Table 2.2 summarizes the charges of the

electroweak sector. Notice that there are no right-handed neutrinos in the table.

Either they do not exist, or if they do, they are either too heavy or too weakly

interacting to be produced and detected in accelerators.

The fundamental interactions allowed by the electroweak force are shown by the

Feynman diagrams in Figure 2.2. Feynman diagrams are pictorial representations

of particle interactions. They provide a simple visualization of complicated particle

physics formulae and thus help in simplifying complex calculations. Each line in the

diagram represents a particle (fermion or boson) and point of convergence of these

lines is called a vertex which is characterized by a coupling strength. Figure 2.2 (a)

shows the basic Feynman diagram for the electromagnetic interaction, the vertex of
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Table 2.2: The charges of the electroweak force. Y represents the U(1) hypercharge,
T3 stands for the third component of the SU(2) weak isospin charge and Q is the
electromagnetic charge.

Generations Electro-weak Charges
I II III Y T3 Q

Quarks u

L

c

L

t

L

1/3 1/2 2/3
d

L

s

L

b

L

1/3 -1/2 -1/3
u

R

c

R

t

R

4/3 0 2/3
d

R

s

R

b

R

-2/3 0 -1/3

Leptons ⌫

e

L

⌫

µ

L

⌫

⌧

L

-1 -1/2 0
e

L

µ

L

⌧

L

-1 1/2 -1
e

R

µ

R

⌧

R

-2 0 -1

which is characterized by the coupling constant ↵ = 1/137 (at low q

2). The remaining

diagrams show the interactions of the weak force, characterized by the coupling con-

stant ↵
W

= 1/30 (at low q

2). The last six diagrams show the interaction amongst the

gauge bosons. These interactions are allowed as the bosons carry electroweak charges

themselves. The W+ and W

� have an electric charge of +1 and -1, respectively, and

all three W

+, W�, Z carry weak isospin. The Z and � are electrically neutral and

they are both mixed states of W 3
µ

and B

µ

. For each interaction where photons can

be exchanged, Z bosons can be exchanged as well. However, the opposite does not

always work - Z bosons can interact with neutrinos, however, photons do not.

Unlike the photon and the gluons, the bosons of the weak force, W+, W� and Z,

are massive. This is why the weak force is short-ranged (and hence is called weak).

The masses of the weak gauge bosons cannot be described by simply adding mass

terms to the Lagrangian3. This is because the added mass terms break the local

gauge invariance of the SU(2) symmetry. Hence, a mechanism that preserves local

invariance while giving mass to the weak bosons is required. The mechanism that

does so is known as the Higgs mechanism and this, in conjunction with the process

3The Lagrangian is a quantity that describes the state of a physical system. It is the kinetic
energy minus the potential energy of the system.
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(a) �ff

(b) W±l⌫ (c) W±qq (d) Zff

(e) ZW+W� (f) ZZW+W� (g) W+W�W+W�

(h) �W+W� (i) ��W+W� (j) �ZW+W�

Figure 2.2: Feynman diagrams for the basic interactions allowed by the electroweak
force. The wavy lines represent photons, the dotted lines show the W

±, Z bosons,
and the solid lines represent fermions. (a) The electromagnetic interaction, where f

can be any fermion except neutrinos. (b), (c), (d) represent the interactions of the
weak force, where the Z boson interacts with all fermions. Diagrams (e) and up show
the interactions between the bosons themselves.
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of electroweak unification, is known as spontaneous electroweak symmetry breaking.

2.1.2 Spontaneous Electroweak Symmetry Breaking

Spontaneous electroweak symmetry breaking is the process responsible for explaining

the masses of the W/Z bosons. In fact, the same mechanism is also responsible for

giving mass to the fermions. During this process, the SU(2)
L

⇥ U(1)
Y

symmetry

(corresponding to the electroweak force) is broken, leaving behind a U(1) symmetry

(corresponding to the electromagnetic force) with a massless photon � and three

massive gauge bosons; the W

+, W� and Z. The process supposes a complex, scalar

(spin-0) field, known as the Higgs field �, which is a doublet in SU(2) space and

carries non-zero hypercharge. The field’s Lagrangian L is invariant under local gauge

transformations

L = T � V (2.6)

= (@
µ

�)†(@µ

�)� (µ2
�

†
�+ �(�†

�)2) ,

where T is the kinetic energy and V is the potential energy (also known as the

interaction term). If the field exists in the universe, its symmetry is spontaneously

broken. This is a result of the interplay of the two self-interaction terms: the �

†
�

and (�†
�)2 terms. If µ2

> 0 and � > 0, the potential, as a function of the field, has

a minimum at zero and no symmetry breaking occurs - the minimum is at the point

of symmetry. For µ

2
< 0 and � > 0, the potential as a function of the field is the

mexican hat potential, Figure 2.3. The minimum acquires a non-zero value, called the

vacuum expectation value (vev), along the circle at the base of the potential. The vev

is a measure of the vacuum energy density of the universe and its value of 246 GeV

signifies the existence of a Higgs field in empty space! The particles associated with

the field manifest as small perturbations around the minimum, where the original
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Figure 2.3: Higgs potential in two dimensions. [2].

symmetry of the Lagrangian is hidden. Three (of the four) excitations of the Higgs

field become the longitudinal components of the W

+, W�, Z bosons, hence making

them massive. After symmetry breaking, a U(1) symmetry remains. This is the

electromagnetic force with its massless boson, the photon. The fourth excitation of

the Higgs field remains unabsorbed and is known as the Higgs boson.

Since the universe is filled with the Higgs field with non-zero vev, fermions gain

their masses by interacting with it. More specifically, the Higgs field couples the left-

and right-handed fermions, and the strength of this coupling provides their masses.

2.1.3 The Strong Interaction

Quarks carry the SU(3) color charge and interact with each other via the exchange

of massless gluons. This interaction is the strong force, the study of which is known

as Quantum Chromodynamics (QCD). Each quark can be either red (r), green (g)

or blue (b) and each anti-quark can be anti-red (r̄), anti-green (ḡ) or anti-blue (b̄).

Each gluon carries one unit of color and one unit of anti-color. As the gluons carry
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color, they can interact amongst themselves.

(a) gqq (b) ggg (c) gggg

Figure 2.4: Feynman diagrams for the basic interactions allowed by QCD. The curling
lines represent gluons and the straight lines show quarks. (a) Interaction where a
quark emits/absorbs a gluon, (b) gluon splitting into two gluons and (c) four-point
gluon self-interaction.

The basic interactions allowed by QCD are shown by the Feynman diagrams

in Figure 2.4. The vertex of each diagram is characterized by the strong coupling

constant ↵
S

. At a particular four-momentum4 transfer of Q2, it can be written as

↵

s

(Q2) =
1

b0 ln(Q2
/⇤2

QCD

)
, (2.7)

where b0 = (11n
c

� 2n
f

)/12⇡, ⇤2
QCD

is the QCD energy scale (around 200 MeV)

and n

c

and n

f

are the numbers of color and quark flavors, respectively. For Q

2

< ⇤2
QCD

, bound quark states exist. At high Q

2 ( >> ⇤2
QCD

), the QCD coupling

decreases logarithmically as shown in Figure 2.5. This is known as the “running”

of the coupling and it leads to asymptotic freedom - at high-energy, the coupling

between quarks and gluons weakens and, as a consequence, they behave almost as

free particles. This is the region where perturbative QCD can be used.

The predictions of QCD (above ⇤2
QCD

) the are computed perturbatively, i.e. using

a power-series expansion in the coupling constant. The first term in this expansion -

4Four-momentum is the generalization of the three-dimensional momentum to the four-
dimensional spacetime, i.e. P = (E/c, p

x

, p
y

, p
z

). E is the energy of the particle and (p
x

, p
y

, p
z

) is
its momentum.
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leading order (LO) prediction - is used as the simplest model of QCD’s e↵ects. LO

predictions can be represented using Feynman diagrams with O(↵2
S

), i.e. consisting

of two vertices. These diagrams represent the scattering of two particles (a 2 ! 2

interaction). Expansions with the first two powers of the coupling are called next-to-

leading order (NLO), expansions with the first three are called next-to-next-to-leading

order (NNLO), etc. Each provides a more refined prediction of QCD’s e↵ects than

the last. Feynman diagrams representing NLO interactions are of O(↵3
S

) with three

vertices. Examples of such an interaction would be the emission of a quark or gluon

after a two body scattering event, i.e. a 2 ! 3 interaction.

Figure 2.5: Measurement of the strong coupling constant, ↵
s

as a function of energy
scale Q. The respective degree of QCD perturbation theory used in the extraction
of ↵

s

is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to
leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO) [3].

The strong force is responsible for creating colorless quark bound states known as

hadrons. Each hadron comprises of two or three valance quarks bound to each other

via the exchange of gluons. The bound quarks exist in a virtual sea of non-valance

quarks and gluons. The two-quark hadrons are known as mesons and they always

contains a color/anti-color quark set. On the other hand, the three-quark hadrons are
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know as baryons and they contain a red/blue/green set of quarks. The combination

of color/anti-color and red/blue/green quarks is what makes the hadrons colorless.

Out of the vast number of hadrons, the most familiar and the only stable ones are

the proton (uud) and neutron (udd) (technically, a neutron is only stable inside a

nucleus. A free neutron decays in approximately 13 minutes). All the other hadrons

are created by cosmic rays or particle accelerators. Being highly unstable, they decay

within a range of 10�24 to 10�8 seconds.

Isolated quarks are never observed. This is due to the property of color confine-

ment. This property arises due the linear increase in potential energy of two quarks

with increasing distance between them. It would take an infinite supply o↵ energy

to separate them and hence they remain confined within hadrons. If the quarks

are forced apart (for example, by energetic pp collisions), they fragment into multiple

hadrons and the fragmentation continues until all of the collision energy is exhausted.

This leads to the production of conical sprays of particles known as jets.

2.2 The Parton Model and The Hadronic Jet Pro-

duction

Jets are conical sprays of colorless hadrons that are ubiquitously produced during high

energy hadron-hadron collisions. They are an inevitable consequence of asymptotic

freedom and color confinement. Jets are easy to identify in detectors and play an

important role in searching for new physics. In high energy hadron-hadron collisions

(e.g. proton-proton collisions), they are produced by the direct interaction of partons

(the quarks and gluons of the colliding hadrons) in three consecutive steps: hard

scattering, parton showering and hadronization. Figure 2.6 shows a schematic view

of this process.
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Figure 2.6: Creation of jets from hard scattering of hadrons.

2.2.1 Parton Distribution Functions and the Hard Scatter

The incoming hadrons, with four-momenta P1 and P2, contain various valence and

sea partons. The partons possess varying fractions of the hadrons momentum, the

distribution of which is given by the Parton Distribution Functions (PDF). At a

momentum scale µ

2, they describe the probability that a parton will carry a specific

fraction of the hadrons momentum, x. They are extracted by fitting deep inelastic

lepton-nucleon scattering data and are shown for two momentum scales (µ2 = 10 and

104 GeV2) in Figure 2.7.

When two highly energetic partons (of types i and j) interact with each other

(carrying momenta p1 = x1P1, p2 = x2P2, respectively), they produce an interaction

known as a hard scatter. The probability of such an interaction, known as the cross-

section, is given by �̂

ij

and is calculated using perturbative QCD. The total cross-

section for the collision process is given by integrating over all possible initial state
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Figure 2.7: Parton Distribution Functions [3] obtained in NNLO NNPDF3.0 global
analysis [4] at scales µ2 = 10 GeV2 (left) and µ

2 = 104 GeV2 (right).

momenta for i and j weighted according to their PDF functions f
i

(x1) and f

j

(x2)

�(P1, P2) =
X

i,j

Z
dx1dx2fi(x1, µ

2
F

)f
j

(x2, µ
2
F

) �̂
ij

(p1, p2,↵S

(µ2
F

), Q2
/µ

2
F

) , (2.8)

where Q denotes the characteristic scale of the hard scattering and µ

F

represents the

factorization scale. The factorization scale separates the “long” and ”short” distance

physics. A parton with a transverse momentum less than µ

F

is considered to be

a part of the hadron and does not contribute to �

ij

. On the other hand, partons

with transverse momenta larger than µ

F

are part of �
ij

and contribute to the hard

scatter. The non-interacting partons are known as the spectator partons as they do

not participate in the hard scattering interaction.

2.2.2 Parton Shower

After the energetic hard interaction, violently accelerated partons are created. Just as

highly accelerated electric charge produces electromagnetic radiation, highly energetic

colored partons will create QCD radiation by emitting gluons. As gluons themselves
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carry color charge, they radiate more gluons until the energy of the hard scatter is

exhausted, leading to parton showers.

2.2.3 Hadronization

At the end of the showers, the parton energies reduce enough (down to ⇠ 1 GeV) for

the strong confining color force to dominate, as a result of which hadrons are formed.

This process is known as hadronization. The theory of the process of hadronization

is not fully understood (as it cannot be treated perturbatively), however, is can be

successfully described by a few models that rely on general features of QCD. One of

them (which is also used in the simulation of jet events in the analysis presented in this

thesis) is the string model [47]. It is based on the observation that at large distances,

as the color sources (suppose quark-antiquark pair) separate, their potential energy

increases linearly. This is thought to be so because of a gluon string connecting the

quark-antiquark pair. When the potential energy becomes of the order of the mass

of the quarks, the string snaps, creating a new quark-antiquark pair. The original

quark combines with the new anti-quark and the original anti-quark combines with

the new quark. The two new pairs of quark-antiquark separate and split into four

pairs and this process repeats itself a large number of times. At the end, many new

mesons and baryons are created. The collection of these hadrons, traversing through

detectors, are then identified as jets.

2.3 Beyond the Standard Model

The Standard Model of particle physics discussed in the previous sections is a very

successful theory and over the past decades, its predictions have been verified by

experiment over and over again. It provides us with a sound understanding of the

fundamental forces, particles and their interactions. Despite its success, there are a
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number of questions it provides no answers to, such as: why do fermions come in

such di↵erent flavors and masses, why does the weak force operate on left-handed

doublets only, why are all the parameters of the theory so specific (so finely tuned),

why is gravity so weak as compared to the other forces and how does it fit into the

Standard Model, and why is there more matter than anti-matter in the universe?

These questions seem to imply that perhaps the Standard Model is a low-energy ap-

proximation of a more general theory. There is also mounting experimental evidence

from cosmology - the existence of dark matter [48] and dark energy [49] - that suggest

the existence of new physics.

Many of the theories that attempt to solve these problems predict the existence

of new particles. If the masses of these particles are within the reach of the LHC,

they might appear in its proton-proton collisions. In particular, if they interact

strongly, i.e. via quarks and gluons, they would decay strongly to quarks and gluons

as well. The decaying particles would appear as jets in the detectors of the LHC.

This makes events with two jets the first and simplest state to search. Some new

particles/states that are predicted to decay into two jet and appear as resonances

in the dijet invariant mass distribution are excited quarks and new heavy gauge

bosons. This thesis presents a search for excited quarks and heavy gauge bosons that

decay to two jets. The details of the theories that predict these particles as well

as the simulation of their experimental signatures are discussed in Chapters 8 and 5

respectively. To lowest-order, many new physics models can be roughly approximated

with a Gaussian shape. Thus, results using a variety of Gaussian shapes are also

shown. Some of the search results presented in this thesis were published in Ref. [50].
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CHAPTER 3

The Experiment

The Large Hadron Collider (LHC) and its experiments are the end result of decades

of research and development by thousands of scientists and engineers from all over the

world. The data analyzed in this thesis was collected by the ATLAS detector. This

chapter will describe the LHC accelerator complex as well as the ATLAS detector.

3.1 The Large Hadron Collider

The LHC [51] is a circular proton-proton accelerator that sits in a 3.8 m wide concrete-

lined tunnel, 100 m below the French and Swiss border. It is 27 km in circumference

and consists of superconducting magnets that are designed to accelerate proton beams

to energies of 7 TeV1. Due to a magnetic quench accident in 2008 [52], the beam

energies are set to 6.5 TeV.

The LHC is the last stage of a complex chain of machines that accelerate particles

to increasingly higher energies, Figure 3.1. Starting from a simple bottle of hydro-

gen, the accelerator complex creates highly energetic beams of protons. The steps

involved in this are discussed next. Protons are obtained from a bottle containing

hydrogen gas by stripping away electrons using an electric field. They are accelerated

to an energy of 50 MeV by the first accelerator in the chain, Linac 2, which uses

radio frequency cavities, with alternating positive and negative charge, to accelerate

1This corresponds to a speed of 99.9999991% times the speed of light.
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Figure 3.1: The CERN Accelerator Complex. The LHC is the last ring (the largest
circle) in a set of complex accelerators [5].

the protons. The beam is then injected into the Proton Synchrotron Booster (PSB),

which boosts the protons to 1.4 GeV. Next, the beam is injected into the Proton

Synchrotron (PS), which accelerates the protons to 25 GeV, followed by the Super

Proton Synchrotron (SPS) where they are accelerated to 450 GeV. The PS has 277

conventional electromagnets, including 100 dipole magnets to bend the beams around

the ring. The SPS has 1317 conventional electromagnets, including 744 dipole mag-

nets. Before the LHC, it was Center of European Nuclear Research (CERN)’s most

powerful proton accelerator and it collided protons and anti-protons. In 1983, the W

and Z bosons were discovered by the UA1 [53] [54] and UA2 [55] [56] collaborations

from the data collected using the SPS. Finally, the beams are injected into the LHC

(one traveling clockwise and the other counter-clockwise) and proton-proton collisions

occur at a frequency of 40 MHz (every 25 ns). The peak instantaneous luminosity

of the beams is a staggering 1034 cm�2s�1. Instantaneous luminosity measures how
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many protons can be squeezed in a given space in a given time and is proportional

to the number of collisions. It is defined as

L = k

b

N

2
b

frev
�F

4⇡✏
n

�

⇤ , (3.1)

where k

b

is the number of bunches per ring, N
b

is the number of protons per bunch

and frev is the revolution frequency of 11.2 kHz. � is the relativistic factor for the

protons and ✏

n

is the normalized RMS transverse beam emittance. �

⇤ is the beta-

function at the interaction point. It corresponds to the narrowness of the beam and

depends on the focusing magnets. F is a geometric reduction factor that accounts for

the loss in luminosity due to the crossing angle of the beams.

The instantaneous luminosity is integrated over time to obtain the integrated lu-

minosity (
R Ldt) with units of inverse barns. Typically inverse femtobarns are used

where 1 femtobarn (fb) = 10�39cm2. The integrated luminosity is related to the

collision cross-section (�events) by

Z
Ldt = Nevents

�events

, (3.2)

where Nevents is the number of events. For example, 1 fb�1 integrated luminosity

corresponds to 1 event per femtobarn of cross-section in the data.

Due to the radio frequency acceleration, the proton beams are not continuous.

They are designed to have 2, 808 bunches where each bunch contains 1.15 ⇥ 1011

protons spread over a length of approximately 30 cm. The bunches are separated by

7.5 m or 25 ns.

It takes 4 minutes and 20 seconds to fill the LHC ring starting from the hydro-

gen gas. Once in the LHC, each beam reaches a maximum energy of 6.5 TeV after

20 minutes of circulation. After stable beams are achieved, collisions occur (with a

center-of-mass energy of 13 TeV) at four interaction points (IP), each housing a dif-
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(a) Superconductor Dipole (b) LHC Tunnel

Figure 3.2: (a) A cross-section of the superconducting dipole magnet is shown [6] and
(b) a string of these magnets can be seen in the LHC tunnel [7].

ferent particle detector: ATLAS [9], ALICE [57], CMS [58] and LHCb [59]. Collisions

continue for roughly 24 hours. Once the bunches lose 50% of their protons, the LHC

is injected with new beams.

The LHC is mainly made of vacuum-sealed pipes (104 km), vacuum systems, cryo-

genics and lot of magnets (total of 9, 593). The beams are focused by using 392 main

quadpole magnets and steered by using 1, 232 superconducting dipole electromagnets

made of niobium-titanium (NbTi) cables. The dipole magnets are 15 m long and

weigh around 35 tons each. They draw a current of 11, 850 A, generate a magnetic

field of 8.33 T, and are kept at a temperature of 1.9 K (271.3 C)2. This temperature

is reached by pumping liquid helium from the cryogenics system into the magnet

systems. The LHC cryogenics system is the largest and coldest cryogenics system in

the world. It uses 120 tons of gaseous helium and 10, 000 tons of liquid helium to cool

4, 700 tons of material. The 54 km of piping that makes the two beam pipes (carrying

the two proton beams in opposite directions) are kept at ultra-high vacuum: 10�10

to 10�11 mbar3.
2This temperature is colder than the temperature of outer space: 2.7 K or 270.5 C.
3This is equivalent to vacuum found on the surface of the Moon.
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3.1.1 Running Conditions in 2015 and 2016

In 2015 and 2016, the LHC operated at a center-of-mass energy of 13 TeV. The total

integrated luminosity delivered was 42.7 fb�1, which is twice the amount collected at
p
s = 8 TeV.

In 2015, an integrated luminosity of 4.2 fb�1 was delivered with a peak instanta-

neous luminosity of 5.02⇥ 1033 cm�2s�1. The ATLAS detector successfully recorded

3.9 fb�1. With bunches colliding every 25 ns, the average number of collision events

per bunch crossing was 13.7. Out of the multiple pairs of protons colliding in bunch

crossing, only one pair contains the interesting hard scattering event. The remaining

collisions create a background which is know as pileup. There are two kinds of pileup:

in-time and out-of-time pileup. The former represents the number of collisions in each

bunch crossing and the latter is the number of collisions coming from the previous

bunch crossing.

In 2016, the LHC’s performance was outstanding - it delivered 60% more data

than predicted. The data collected was more than the sum of data collected in 2012

and 2015. It delivered an integrated luminosity of 38.5 fb�1, out of which ATLAS

recorded 35.6 fb�1. The peak instantaneous luminosity was 1.38⇥ 1034 cm�2s�1 with

an average of 24.9 collisions per bunch crossing.

Figure 3.3 shows the 2015 and 2016 run conditions as a function of time for the

ATLAS detector: the total integrated luminosity, the peak luminosity and the peak

interaction per bunch crossing. Figure 3.4 shows the pileup condition for the two

years.

3.2 The ATLAS Detector

A Toroidal LHC ApparatuS (ATLAS) is a general purpose, hermetically-sealed detec-

tor that records the results of LHC’s proton-proton collisions. It provides nearly full
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(a) 2015 Integrated Luminosity (b) 2016 Integrated Luminosity

(c) 2015 Peak Luminosity (d) 2016 Peak Luminosity

(e) 2015 Peak Interaction/bunch crossing (f) 2016 Peak Interaction/bunch crossing

Figure 3.3: The LHC run conditions as a function of time as seen by the ATLAS
detector for 2015 and 2016 [8]. (a), (b) show the integrated luminosity. (c), (d)
show the peak luminosity per beam injection into the LHC. (e), (f) show the peak
interaction per bunch crossing.
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Figure 3.4: Pileup condition for 2015 and 2016 [8]. The plot shows the delivered
luminosity as a function of average interactions per bunch crossing.

azimuthal coverage and is designed to reconstruct particles produced during collisions.

In total, it weights 7000 tons and is 44 m long with a diameter of 25 m.

The coordinates and orientation of ATLAS are described using a right-handed

coordinate system centered at the nominal collision point. The beam pipe defines

the z-axis, the positive x-axis points to the center of the LHC ring and the positive

y-axis points upwards. The azimuthal angle � is measured from the x-axis in the x-y

plane perpendicular to the z-axis. The polar angle ✓ is the angle from the z-axis. A

more useful way of defining the polar angle, to describe detector coordinates as well

as coordinates of a particle moving relative to the beam axis, is the pseudorapidity

⌘. It is defined as

⌘ = � ln


tan

✓
✓

2

◆�
=

1

2
ln

✓ |~p|+ p

z

|~p|� p

z

◆
, (3.3)

where ~p is the three-momentum and p

z

is the longitudinal momentum of a moving

particle. In the case of massive objects traveling very close to the speed of light, the
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pseudorapidity converges to the rapidity y which is defined as:

y =
1

2
ln

✓
E + p

z

E � p

z

◆
, (3.4)

where E is the energy of the object. The transverse momentum pT and transverse

energy ET of the object are defined in the x-y plane and are perpendicular to p

z

. The

distance �R in the pseudorapidity-azimuthal space is defined as:

�R =
p
�⌘

2 +��

2
. (3.5)

ATLAS is composed of several subdetector and magnet systems that sit concentri-

cally around the beam pipe (Figure 3.5). The main subdetectors are the inner tracker,

the electromagnetic calorimeter, the hadronic calorimeter, and the muon spectrome-

ter. The main magnet systems are the central solenoid and the barrel toroid.

Figure 3.5: The ATLAS detector drawn to scale with its subdetectors [9].

Each subdetector system plays a unique and complementary role in detecting dif-
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ferent particles from the proton-proton collisions. The finely segmented inner detector

tracks the paths traversed by charged particles. As it is surrounded by the central

solenoid, the tracks associated to charged particles bend in di↵erent directions (de-

pending on the charge of the particles). The electromagnetic calorimeter is intended

to measure the energy deposited by electromagnetically interacting particles, mainly

photons and electrons. Then, the hadronic calorimeter detects the energies deposited

by hadrons. Unlike the inner tracker, the calorimeters provide energy measurements

in a destructive way, i.e. the particles are fully absorbed by material of the calorime-

ters. Finally, the muon spectrometer detects the tracks of long-lived muons produced

during the collisions. It is immersed in strong magnetic fields produced by the barrel

and end-cap toroid magnets and this allows the measurement of the energies and

momenta on the muons. Figure 3.6 shows a sketch of how particles are detected by

the ATLAS detector.

Next, each subdetector system will be described in more detail. More emphasis

will be laid on the calorimeters as they play an important role in measuring jets.

Figure 3.6: The detection of particles by the subdetectors of the ATLAS detector [10].
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3.2.1 The Inner Detector

The ATLAS Inner Detector (ID) [60] is designed to provide high-precision measure-

ments of the position and momentum of charged particles produced during the colli-

sions. It is contained in a cylindrical enclosure of length 7 m and radius 1.15 m and is

enveloped by the barrel solenoid magnet, which produces a magnetic field of 2 T. The

ID detects charged tracks, with pT greater than 0.5 GeV, within the pseudorapidity

range |⌘| < 2.5 using a combination of three detector technologies: the Pixel detec-

tor, the Semi-Conductor Tracker (SCT) and the Transition Radiation Tracker (TRT).

These are illustrated in Figure 3.8 and will be discussed next.

Figure 3.7: A segment of the barrel inner detector of the ATLAS [9].

3.2.1.1 The Pixel Detector

The pixel detector is the innermost detector of the ID. It plays an important role in

accurately identifying the multiple collision vertices coming from the proton-proton
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Figure 3.8: A segment of an end-cap inner detector of the ATLAS [9].

interaction region as well as secondary vertices from particles containing a b-quarks.

It is arranged in ten layers: four cylindrical barrel layers concentrically surrounding

the beam pipe and six disk layers (known as the endcaps), three each at the end of

the two sides of the barrel layers. Each layer contains pixel modules which contain

a sensor area and various readout electronics. Excluding the innermost barrel layer,

there are 1744 pixel modules with dimensions 19 mm ⇥ 63 mm each. To meet the

stringent specifications on resolution, occupancy and radiation-hardness, the sensors

are made of oxygenated n-type silicon wafers of thickness 250 µm. Each sensor contain

47232 pixels with a nominal pixel size of 50 µm in the R-� plane and 400 µm along the

z axis. For identifying points produced by a traveling charged particle, this provides

a spacial resolution of (R-�) ⇥ z = 10 µm ⇥ 115 µm. The innermost barrel layer is

known as the insertable B-layer (IBL) and was installed in 2014 to cope with high

radiation and occupancy. It uses faster read-out electronics, two di↵erent silicon

sensor technologies, reduced pixel sizes of (R-�) ⇥ z = 50 µm ⇥ 250 µm and new

carbon foam structures to support the modules [61]. The reduced pixel size provide

a spacial resolution of (R-�) ⇥ z = 8 µm⇥ 40 µm.
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Including the IBL, the ID has approximately 88.4 million electronic readout chan-

nels. Figure 3.9 (a), (b) show a pixel module and half of an assembled barrel layer,

respectively.

3.2.1.2 The Semi-Conductor Tracker

The SCT surrounds the pixel detector and is the second layer of the ID. It is arranged

in twenty-two layers: four cylindrical barrel layers and eighteen disk layers, nine on

each endcap. In the barrel region, the SCT is designed to provide at least four

precision space-point measurements in the (R� �), z coordinates using 4 pairs of

small-angle stereo strips. The stereo strips are created by laying out two individual

strips at an angle of 40 mrad. Each layer is made of p-n silicon semiconductor modules

of nominal size 6.36 cm ⇥ 6.40 cm with 780 readout strips. Each strip has length

12 cm and pitch 80 µm. The spatial hit resolution of the strips is (R-�) ⇥ z =

17 µm ⇥ 580 µm. The end-cap modules are very similar in construction but use

tapered strips with one set aligned radially.

The SCT has a total of 6.3 million readout channels. Figure 3.9 (c), (d) show a

module and the assembled barrel SCT, respectively.

3.2.1.3 The Transition Radiation Tracker

The outermost layer of the ID is the TRT. It is made of 4 mm diameter polyimide

tubes filled with a mixture of gases: 70% Argon, 27% CO2 and 3% O2. At the center

of each tube, there is a 31 µm diameter tungsten wire plated with 0.5� 0.7 µm gold

held in place with an end-plug. The barrel region has 50, 000 longitudinally arranged

tubes with length 144 cm, and in the end-caps there are 320, 000 radially-arranged

tubes with length 32 cm. The tube wall is kept at a high voltage of �1.5 kV and

acts as the cathode and the wire is kept at ground and it acts as the anode. As

charged particles cross a tube, they ionize the gas, creating electrons that drift to the
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anode. This drift-time measurement provides a signal proportional to the energy of

the particle and on average, each particle track hits 36 tubes. Each tube provides a

spatial hit resolution of 130 µm in a plane perpendicular to the wire.

The total number of TRT readout channels is approximately 351, 000. Figure 3.9

(e), (f) show a TRT tubes and the assembled barrel TRT, respectively.

3.2.2 The Calorimeters

The calorimeter system of ATLAS is located around the ID and functions to measure

the energy of particles produced during the collisions. It is finely segmented in the

⌘ and � direction and covers the full azimuthal range and |⌘| < 4.9. It is made of

five subsystems: the Tile Barrel Hadronic Calorimeter (TileCal), the Electromagnetic

Barrel Calorimeter (EMB), the Electromagnetic End-Cap Calorimeter (EMEC), the

Hadronic End-Cap Calorimeter (HEC) and the LAr Forward Calorimeter (FCal). The

Electromagnetic Calorimeters (ECal) measure the energy of particles that interact

electromagnetically, e.g. electrons and photons. On the other hand, the Hadronic

Calorimeters (HCal) measure the energy of particles that interact via the strong force,

e.g. pions and kaons. Particles that interact both electromagnetically and strongly

deposit energy in both the ECal and HCal. Figure 3.10 shows a cutaway view of the

calorimeter system of ATLAS.

The calorimeters are made of alternating layers of active and passive material.

Incoming particles produce a cascade of successively lower-energy particles (known as

a particle shower) by interacting with the dense passive material of the calorimeters.

The cascade continues until the entire energy of the incoming particle is exhausted.

The active layers collect the energy of particles via ionization (ECal) or scintillation

(HCal) and the passive layers act as absorbers.
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(a) A pixel module (b) A barrel layer of the pixel detector

(c) A SCT module (d) Assembeled barrel SCT

(e) TRT tubes (f) Assembeled barrel TRT

Figure 3.9: The three ID detectors and their modules: (a), (b) the pixel detector [11],
[12], (c), (d) the semiconductor tracker [13], [14] and (e), (f) the transition radiation
tracker [15], [16].
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Figure 3.10: Diagram of the ATLAS detector calorimeter system in cutaway view [17].

3.2.2.1 The Electromagnetic Calorimeters

The electromagnetic calorimeters [62] directly surround the ID and barrel solenoid

magnet. They are lead and Liquid-Argon (LAr) detectors with accordion-shaped

kapton electrodes, where the accordion geometry provides a full, gap-less azimuthal

coverage. The liquid argon serves as the active material due to its radiation hardness

and the lead absorber plates act as the passive material.

The electromagnetic calorimeters are divided into three parts: the barrel (EMB)

(|⌘| < 1.475), the end-caps (EMEC) (1.375 < |⌘| < 3.2) and the first section of the

forward calorimeters, known as FCal1 (3.1 < |⌘| < 4.9)4. The EMB is made of two

half-barrels, separated by 4 mm at z = 0. It is 6.4 m long and has an inner and

outer diameter of 2.8 m and 4 m respectively. In total, the EMB is made of 2048

accordion-shaped absorbers, interleaved with readout electrodes. The electrodes are

positioned in the middle of two absorbers (2.1 mm from each absorber) by honeycomb

4FCal1 has copper absorber plates instead of lead.
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spacers. The EMB is segmented in three layers in depth, as shown in Figure 3.11.

The first layer is finely segmented in the ⌘ direction. The second layer has square cells

Figure 3.11: The three layers of the barrel electromagnetic calorimeter [9].

of dimension �⌘ ⇥�� = 0.025⇥ 0.025 and the third layer has twice the granularity

in ⌘. A separate 11 mm deep LAr layer, known as the presampler (PS), is inserted in

front of the first layer and it provides a coverage of |⌘| < 1.475. Including the PS, the

EMB has 109, 568 readout cells. The PS, three EMB layers and the vast number of

cells provide excellent electromagnetic shower sampling. The EMEC consist of two

wheels, one on each side of the EMB. It is also segmented into three layers in depth

with an additional PS layer covering 1.5 < |⌘| < 1.8. In total, each end-cap has

31, 872 readout channels.
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3.2.2.2 The Hadronic Calorimeters

The hadronic calorimeters [63] surround the ECal. They consist of the barrel TileCal

(|⌘| < 1.7), the end-cap HEC (1.5 < |⌘| < 3.2) and the two remaining FCals: FCal2,

FCal3 (3.1 < |⌘| < 4.9). The calorimeters use steel as the absorber and polystyrene

scintillating tiles as the active material.

Figure 3.12: The three layers of the barrel electromagnetic calorimeter [9].

The TileCal is divided into two regions: the barrel (|⌘| < 1.0) and the extended-

barrel (0.8 < |⌘| < 1.7) region. Both region are divided azimuthally into 64 modules

that are further divided into three layers. The modules extend from an inner radius

of 2.28 m to an outer radius of 4.25 m. A single module with alternating steel and

scintillating tiles is shown in Figure 3.12. Wavelength-shifting fibers are used to

connect the tiles to Photomultiplier Tubes (PMT) at the edge of the modules. This

matches the scintillator wavelength to the PMT sensitivity. The PMTs amplify the

scintillator signal produced due to passing particles and convert it to an electrical
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signal. In total, the HCal uses 9, 852 PMTs.

The HEC contains two separate wheels per end-cap. They are located directly

behind the EMEC. Each wheel is built using 32 wedge-shaped modules that contain

copper plates (passive material) interleaved with LAr (active material). The FCal2

and FCal3 detectors use tungsten at the passive material and LAr as the active

material. Each module contains the metal matrix with electrode channels parallel to

the beam axis. The HEC and FCals share the cryostat with the EMEC.

(a) Accordion-shpae of EMB layer (b) Fully cabled EMB

(c) TileCal module (d) Collection of TileCal modules

Figure 3.13: (a) The accordion-like shape of the electromagnetic barrel calorimeter’s
absorbers and spacers [18], (b) fully assembled and cabled electromagnetic barrel
calorimeter [19], (c) a tile calorimeter module [20], (d) storage of the tile calorimeter
modules [21].
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