3.2.3 The Muon Spectrometer

The muon spectrometer [64] is the outermost part of ATLAS. It is a set of detec-
tor chambers that are designed to specifically detect and measure the position and
momenta of muons passing through the ID and calorimeters. In addition to detec-
tion, it is also designed to trigger on particles. The muon spectrometer contains four
different kinds of detectors as shown in Figure 3.14: the Monitored Drift Tube Cham-
bers (MDT), the Resistive Plate Chambers (RPC), the Thin Gap Chambers (TGC)
and the Cathode Strip Chambers (CSC).

Cathode Strip
Muon Spectrometer Chambers

Resistive Plate_
Chambers ™ _

Monitored Drift Tube
Chambers

Figure 3.14: The detectors of the muon spectrometer [22].

For precision tracking in the barrel region, a combination of MDTs and RPCs
are arranged in three concentric cylindrical shells around the beam pipe at radii of
approximately 5 m, 7.5 m, and 10 m. The MDT chambers contain three to eight layers
of 30 mm diameter, pressurized drift tubes operating with argon-CO, gas (93/7%)
at 3 bar. The tube acts as the cathode and contains a 50um gold-plated tungsten-
rhenium wire which acts as the anode with a potential of 3 kV. Charged muons ionize

the gas mixture in the tubes to create electrons (which are attracted to the wire) and
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positive ions (which drift towards the cathode). The electrical signals obtained from
the wire then provides information about the passing muon. Each MDT tube has a
space resolution of 80 ym and a time resolution of less than 1 ns. The RPCs consist of
parallel electrode-plates made of phenolic-melaminic plastic laminate. Two resistive
plates are separated by 2 mm using insulating spacers. The electric field between
the plates allow electrical signals to form due to electron avalanches produced due
to the ionizing muon tracks. They are kept at a potential difference of 9.8 kV and
the chamber is filled with a gas mixture of CoHsF4. The RPCs provide good time
resolution (less than 2 ns) and are used to trigger on muons.

In the end-cap regions, the muon chambers are arranged in eight large wheels
at distances of £7.4 m, £10.8 m, +14 m, and £21.5 m from the interaction point.
The chambers used are the MDTs, the TGCs and the CSCs. The MDTs provide
precision muon tracking and the TGCs provide muon trigger capabilities as well as
the measurement of azimuthal coordinate to complement the MDT measurements.
TGCs are multiwire proportional chambers filled with a highly quenching gas mixture
of COy and n-CsH;5. The wire-to-wire distance is 1.8 mm and the wire-to-cathode
distance is 1.4 mm. These high voltage of the wires (2.9 kV) and the small distances
between the wires and the cathode strips leads to a good time resolution of 4 ns. In
the region of || < 2, the inner most wheels contain the CSC chambers. Like the
TGCs, the CSC chambers are multiwire proportional chambers with wires running
in the radial direction. The wires are kept at a voltage of 1.9 kV and are filled with a
gas mixture of argon-CO3 (80/20%). These chambers provide good tracking (60 um)

and good timing resolution (less than 40 ns).

3.2.4 The Magnets

The ATLAS magnet system [65] provides magnetic fields over a volume of approxi-

mately 12,000 m?. The magnetic fields bend charged particles, allowing their charge
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and momentum to be measured. The magnet system consists of three large supercon-
ducting magnets: the barrel solenoid, the barrel toroid and the two end-cap toroid
magnets. In total, the system stores 1.6 GJ of energy and is 22 m in diameter and
26 m in length.

The barrel solenoid magnet envelopes the ID and is surrounded by the EMB
calorimeter. It is a single-layer coil made of 1,154 turns of 9 km of a high-strength
aluminium-stabilized niobium-titanium conductor. It provides a 2 T axial field op-
erating at a nominal current of approximately 7.7 kA. The thickness of its walls was
optimized to be the smallest possible to reduce the amount of energy lost by particles
entering the calorimeters. Figure 3.15 (a) shows the barrel solenoid magnet being
inserted into the EMB calorimeter.

The volume surrounding the calorimeters and encasing the muon spectrometer is
filled with magnetic fields produced by the barrel toroid magnet system. The system
consists of eight coils encased in individual racetrack-shaped, stainless-steel vacuum
vessels as shown in Figure 3.15 (b). Supported by eight inner and outer struts, the
barrel toroid system is 25.3 m long with an inner and outer diameter of 9.4 m and
20.1 m respectively. The coils are made of 56 km of wound pure aluminium-stabilized
niobium/titanium/copper conductor. Figure 3.15 (c¢) shows the transportation of
one of the barrel toroid coils. The two end-cap toroids (one on each side of the
detector) generate the magnetic field required for bending muons with high 7. They
are made using 13 km of the same conductor as the barrel toroids and are encased in
an aluminium housing. Figure 3.15 (d) shows an encased and a non-encased end-cap

toroid.

3.2.5 Trigger and Data Acquisition

Colliding proton bunches at a frequency of 40 MHz, the LHC produces approximately

1 billion collisions per second (40 million x ~ 25 interactions per collision). Since it
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(¢) Transporting a toroid magnet (d) Moving the end-cap toroid magnet

Figure 3.15: (a) The solenoid magnet being inserted into the electromagnetic barrel
calorimeter [23], (b) the installed toroidal magnet system [24], (c) transporting a
toroid magnet [25], (d) transporting the end-cap toroid magnet [26].
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is impossible to record all the collisions, there needs to be a system to filter out the
uninteresting collisions® from the interesting ones. The ATLAS trigger system [66]
is designed to do exactly this. It consists of a hardware-based trigger called Level-1
Trigger (L1) and a software-based trigger known as the High Level Trigger (HLT).
The L1 trigger uses coarse-granularity calorimeter and muon detector information to
determine Regions-of-Interest (Rols) in the detector. It reduces the event rate from
the LHC bunch crossing of 40 MHz to 100 kHz and makes a decision to keep or
reject an event in 2.5 us. The Rols are passed to the HLT which uses full-granularity
detector information and sophisticated algorithms to further accept or reject events.
It reduces the event rate from the L1 rate of 100 kHz to approximately 1 kHz and
makes a decision in 200 ms.

The data retained by the trigger system amounts to approximately 1 petabyte per
year. This data needs to be distributed efficiently across the world to thousands of
physicists. This is done by the Worldwide LHC Computing Grid (WLCG) [67]. The
WLCG is a global collaboration of over 170 computer centers spanning 41 countries.

Figure 3.16 shows the WLCG connections across the world.

Running jobs: 236092
Transfer rate: 11.41 GiB/sec

Figure 3.16: The Worldwide LHC Computing Grid connections across the earth [27].

The centers are arranged in four levels, or Tiers, known as 0, 1, 2 and 3. Tier 0 is

5These constitute the majority of the LHC collisions
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the central hub through which all the data from the LHC passes and it is located at
CERN. After the trigger system selects events, the Tier 0 is responsible for the first
pass of reconstructing the raw data produced by the millions of digital readings from
all the CERN detectors. The reconstruction involves creating energy clusters from
the calorimeter cells and towers and tracks and vertices from space-time detector hits.
The Tier 0 passes the raw and reconstructed data to the 13 Tier 1 centers across the
world using optical-fiber links working at 10 gigabits per second. The Tier 1 sites
are responsible for sharing, storing, processing and transmitted the data to the Tier
2 sites. The 155 Tier 2 sites are located at universities and scientific institutes and
contribute to the further processing and storage of analysis-specific data as well as
simulated data. At last there are the Tier 3 sites, through which scientists can access

and analyze the LHC data via their computers and laptops.
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CHAPTER 4

Measurement of Hadronic Jets in the

ATLAS Detector

During the Large Hadron Collider’s (LHC) high-energy proton-proton collisions, quarks
and gluons are scattered out of the colliding protons. They are not observed directly,
but materialize as collimated sprays of particles known as jets. Jets are the domi-
nant objects arising from these collisions and they play a major role in understanding
Standard Model (SM) processes and searching for new phenomena beyond the Stan-
dard Model (BSM). Thus, obtaining accurately measured and well-calibrated jets is
of prime importance. This chapter will describe the reconstruction and calibration of

jets in ATLAS.

4.1 Jet Production

The high energy partons (quarks and gluons) produced from the hard scattering col-
lision at the interaction point instantaneously fragment into a cascade of multiple
particles (as sketched in Figure 4.1). Due to color confinement, these particles re-
combine to form colorless hadrons (mostly 7 and K mesons). This process is known
as hadronization and it occurs within 107'® m of the interaction point. At this stage,
the collection of collimated hadrons are known as hardon jets. These jets cannot

be measured experimentally as they have not yet encountered any material of the
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detector. They are studied in MC simulations, where they are known as truth jets.
As the hardon jets continue to travel outwards, they cross the multiple layers of the
ID which record their tracks (only charged hadrons) in its three subdetector systems.
Jets created from the tracks (with momenta from the ID measurements) are known
as track jets and are mostly used for systematic studies and calibration. After the
ID, the outgoing hadrons encounter the finely-segmented electromagnetic (ECal) and
hadronic calorimeter (HCal), in which they deposit all of their energy by interacting
with the material of the calorimeters. Jets created from the energy deposited in the
calorimeter cells are known as calorimeter jets and are used for SM measurements
and Beyond the Standard Model (BSM) searches. The dijet search presented in this
thesis uses calorimeter jets. Their reconstruction and calibration will be discussed in

detail next.

Calorimeter-level jets
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Figure 4.1: Jet production from a LHC proton-proton collision [28].
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4.2 Jet Reconstruction

4.2.1 Topo-clusters

Calorimeter jets are formed by first combining several topologically adjacent calorime-
ter cell clusters into topo-clusters [68]. Topo-clusters are created to extract the energy
of the relevant decay particles from a background of irrelevant collisions and electronic
noise. They are formed by a growing-volume algorithm where neighboring cells are
clustered around the most energetic cells (known as the seed cells). The algorithm

starts by identifying seed cells as cells with electromagnetic energy (EE)) larger than

. . EM . . EM
four times the average expected noise (0,5 o) i the cell, i.e. seed cells have |EZ)

> 4 opl, cen- The cell energy and noise are measured at the Electromagnetic (EM)

energy scale, i.e. assuming that all incident particles are electromagnetically interact-

ing. Each seed cell forms a proto-cluster and neighboring cells with | EEM| > 2 ar%\fse’ceu

are collected into each corresponding proto-cluster. The proto-clusters grow in size by
further collecting neighbors of the neighboring cells and can span several calorime-
ter cells in the same layer or multiple layers. This process results in topo-clusters

with high-energy core cells enveloped by cells of decreasing energy. Topo-clusters are

PEM

characterized by four-vectors P,

expressed as,

EM _ pEM _EM EM EM
Pclus - clus’px,clumpy,clus? pz,clus (41)

=k (1; sin eclus COs (z)clusa Sin eclus sin ¢clus; COos eclus)

clus

geo

where E5M is the geometrically weighted (wSy

s ) sum of cell energies, ., is the polar

angle and ¢, is the azimuthal angle of the cluster. The polar angle is calculated
from the pseudorapidity (7cys) of the cluster. Weighted by the geometric weights and

cell energies, the energy, pseudo-rapidity and azimuthal angle of the cluster is defined
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as the following,

Neen

z : geo
clus wcell K cell K (42)

Ce
; w(g:;[iz ’Ecellz| Neell,i

Nclus = Neall (43)
2 e+ Bl
Z wfsﬁ ) | cell, 7,| gbcell,i
qbclus = Newn (44)
3% uh, - 18,
In n — ¢ space, the distance between two topo-clusters is defined as,
Ry = (i — ;)" + (6 — ¢5)° (4.5)

4.2.2 Jet Clustering

After the topo-clusters are formed, they are clustered together to form jets. In order
for the reconstructed jets to be well-defined at all orders of perturbation theory, the

clustering algorithm needs to satisfy two conditions:

e Infrared safety: In the presence of soft radiation, i.e. gluon splitting, the clus-

tering algorithm should always reconstruct the same number of jets in the event.

e Collinear safety: The splitting one parton into two partons should not change

the results of the jet clustering.

Out of the various clustering algorithms that exist, ATLAS uses an Infrared-Collinear
safe algorithm known as the anti-kr algorithm [29]. It is a sequential clustering algo-
rithm that groups topo-clusters by combining their four-vectors. It works by defining
two distance variables in momentum space: d;; and d;z. The former represents the

distance between two topo-clusters ¢ and 7, and the latter the distance between the
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beam axis and topo-cluster ¢. They are calculated as

11 R2
d;; =min [ —, — | x =2 4.6
’ Py v ) R o)
1
di = 5 47
v Py 47)

where pr stands for the transverse momentum of a cluster and R is the radius pa-
rameter that determines the final size of the jet. The anti-kt algorithm works by
first creating a list of d;; for each pair combination of topo-clusters and d;p for each
topo-cluster. From the list (d;;, d;p), it identifies the pair of clusters with the smallest
distance and if d;; < d;p, it combines the four-vectors of the two cluster into one
four-vector. After removing these clusters from the list, it repeats the process for the
next pair of clusters with the smallest distance. If at some point d;p < d;;, 7 is called
the final jet and is removed from the event. Continuing this way, all the clusters in
an event are grouped into jets. As an example, figure 4.2 shows jets clustered using

the anti-kt algorithm on a sample parton-level event with R = 1.0.

p, [GeV] | anti-k,, R=1 |

4

Figure 4.2: Jets produced using the anti-kt algorithm on a sample parton-level event
using R = 1.0. [29].
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Due to the 1/pr dependence in Equation 4.6, the anti-kr algorithm prefers to
cluster high energy clusters first. This leads to well-defined jet boundaries that are
resilient to the deformations due to emission of soft radiation. Thus, the anti-kt
algorithm is ideal for clustering high energy jets and is used as the jet clustering
algorithm for the analysis presented in this thesis. The radius parameter R is chosen

to be 0.4.

4.3 Jet Calibration

After the jets are reconstructed at the EM scale, they are calibrated. The jet energy
calibration restores the jet energy measured with the ATLAS calorimeters to the
true energy of the corresponding jet (i.e. the truth jet) of stable particles entering
the detector. It also corrects for the differences observed in the data and MC jet
reconstruction. The truth jets for the various calibration stages are obtained from
several MC simulations. They are reconstructed using the anti-kt algorithm with R
= 0.4 using final-state particles produced from MC generators as inputs.

As shown in Figure 4.3, the steps of the calibration procedure include origin
correction, pile-up correction, absolute correction, global sequential correction and
residual in-situ calibration. The first four steps use truth and reconstructed jets from
MC simulation only. The last step uses both data and MC jets. At each stage of
the calibration, corrections are applied to the full four-momenta of the reconstructed

jets. The subsequent sections will detail each stage of the calibration procedure.

4.3.1 Origin Correction

After clustering, jets point to the center of the detector. However, they truly origi-
nate from the hard-scatter vertex which generally does not coincide with the detector

center. The origin correction takes this difference into account by recalculating the
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Jetarea-based pile- Residual pile-up

EM-scale jets Origin correction

up correction correction
Jet finding applied to Changes the jet direction Applied as a function of Removes residual pile-up
topological clusters at to point to the hard-scatter event pile-up pr density dependence, as a
the EM scale. vertex. Does not affect E. and jet area. function of u and Npyv.

Absolute MC-based
calibration

Residual in situ
calibration

Global sequential
calibration

Corrects jet 4-momentum  Reduces flavor dependence A residual calibration

to the particle-level energy  and energy leakage effects is derived using in situ
scale. Both the energy and  using calorimeter, track, and measurements and is
direction are calibrated. muon-segment variables. applied only to data.

Figure 4.3: Calibration stages for EM-scale jets. [30].

four-momenta of the jets to point to the primary vertex instead of the detector cen-
ter. The primary vertex is defined as the vertex that consists of the highest scalar
sum of the transverse momentum square of tracks (> prz(track)) in an event and is
considered to be the hard-scatter vertex. This correction changes the direction of the

jet while keeping its energy constant. It improves the angular resolution of the jets.

4.3.2 Pile-up Corrections

The pile-up correction removes the excess energy of the jets due to in-time and out-of-
time pile-up. It consists of two parts: the jet-area-based pr density subtraction and
a residual pile-up correction. For each event, the jet-area-based correction subtracts
the pile-up contribution to the pr of each jet according to its area, A. The area of a
jet is calculated using ghost association where simulated “ghost” particles are added
to an event before jet reconstruction. The area is then measured by the number of
ghost particles contained in the jet. The pile-up contribution to the pt of each jet is
calculated from the median pr density p of jets in the n — ¢ plane with |n| < 2. As
the area-based correction is derived from the central calorimeter region with lower
occupancy, it does not correctly describe the pile-up levels in the forward calorimeter
regions or the high-occupancy cores of high pr jets. Hence, after this correction,

a dependency of the jet pr on the in-time pile-up and out-of-time pile-up is still
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observed. To correct for this, a residual pile-up correction is applied. The effect of

the two pile-up corrections on the jet pr as a function of 7 is shown in Figure 4.4.
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Figure 4.4: The dependence of EM-scale anti-k7 jet pr on (a) in-time pile up and (b)
out-of-time pile-up as a function of 7 for pi" = 25 GeV. The blue dots show the
dependence before the correction, the pink squares show the dependence after the
area-based correction and the red triangles show the dependence after the residual
correction.

4.3.3 Absolute MC-based Corrections

The absolute MC-based corrections consist of two components: the absolute Jet En-
ergy Scale Jet Energy Scale (JES) and the 7 calibration correction. These corrections
take into account differences caused by different detector granularities, transition re-
gions between the different detector technologies, etc. They correct the reconstructed
jet energy E™° and pseudorapidity n™%° to the truth jet energy E"™*" and pseu-
dorapidity 7" using correction factors derived from the PyYTHIA [69] dijet MC
simulation. PYTHIA is a particle collision simulation program that is capable of sim-
ulating hard and soft scatters, fragmentation, decays, multiple interactions and much
more. The correction factors are calculated after the origin and pile-up corrections

are applied.
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The JES correction works by first geometrically matching isolated, reconstructed
jets to truth jets within a distance of AR = 0.3. The distribution of the ratio of the
reconstructed energy E™ and the truth energy E"™ is fit to a Gaussian function.
The mean of the fit is called the average energy response and is calculated for different

values of truth energy E'uth

and detector nge. Figure 4.5 (a) shows the energy
response as a function of 7qe. The dips and gaps seen at |1get| ~ 1.4 and |nget| ~ 3.1
show lower energy response due to absorbed or undetected particles in the detector
transition regions. The |nget| ~ 1.4 and |nget| ~ 3.1 regions correspond to the barrel-

endcap and endcap-forward transition regions respectively. The JES correction is

then derived by numerically taking the inverse of the energy response [70].
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Figure 4.5: (a) The average energy response (E™®/E™h) as a function of detector
Naet in bins of E¥"E is shown. (b) The difference between the truth jet n'™" and
reconstructed jet 1™ is shown.

Figure 4.5 (b) shows a bias in the reconstructed jet 7 as a function of 7get.
Larger differences can be seen in the two transition regions again. To account for
this difference, the 7 calibration correction is derived from the difference between the

truth

reconstructed n**°° and the truth n as a function of 7qet.
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4.3.4 Global Sequential Calibration

After the preceding calibrations are applied, residual dependencies of the jet energy on
the longitudinal and transverse features of the jet are observed. These are primarily
caused by the difference in the initiating particle of the jet, i.e. quark-initiated vs
gluon-initiated. To correct for these differences, a series of independent and sequential
corrections are applied to the jet four-momentum based on a set of five observables.
This set of five corrections is known as the Global Sequential Calibration (GSC) and
it is derived as a function of pﬁfuth and 7ge- Like the JES correction factors, the

GSC correction is calculated by inverting the reconstructed jet response for the five

observables in MC events. The five observables are the following:

1. frieo: the fraction of jet energy deposited in the first layer of the hadronic Tile

calorimeter with |nqe| < 1.7,

2. fLarz: the fraction of jet energy deposited in the third layer of the electromag-

netic LAr calorimeter with [1g| < 3.5,

3. Nk the number of tracks with pr > 1 GeV associated with the jet with |7get| <

2.5,

4. Wik the average pr weighted transverse distance in the n — ¢ plane between

the jet-axis and all the ny,, with |[nge| < 2.5,

5. Ngegments: the number of muon track segments associated to the jet with [nget] <

2.7.

The effect of each correction is to remove the dependence of the jet response to each
of the five observables while maintaining the mean energy response obtained in the
JES correction stage. After the full GSC correction is applied, the dependence of the

jet response on each observable is reduced to less than 2%.
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4.3.5 Residual In-situ Calibration

The last stage of the jet calibration procedure is known as the residual in-situ cali-
bration and it accounts for the differences in the jet response between the data and
MC simulation. The calibration is derived by balancing the pr of a jet against a

well-measured reference object in data and MC and is defined as,

jet
T
Rdata < Pa?f = data

e "ot 48
e~ 1 (43)

< paTgf >MC

The in-situ calibration consists of four stages, each of which is derived and applied
sequentially, with systematic uncertainties propagating through the procedure. The
four stages (in order) are: the 7 intercalibration, the Z+jet balance, the y+jet balance
and the multijet balance.

The 7 intercalibration corrects the response of the forward jets (0.8 < [nqet| < 4.5)
to the well measured central jets (|nges] < 0.8) using dijet events. Using the central
jet as the reference jet and the forward jet as the probe jet, the correction is obtained
from the pr responses of the jets in data and MC as a function of pr and 7nge.
Figure 4.6 (a) and (b) show the relative pr jet response of the two jets from data and
two MC simulation samples. The data was collected in 2015 and 2016 and the two MC
generators used are POWHEG+PYTHIA [69, 71] and SHERPA [72], where the former
is used as the nominal MC generator and the latter is used to derive the systematic
uncertainty associated to this correction.

The Z/~v+jet balance calibration uses well-calibrated Z bosons or photons to
measure the pr response of the recoiling jet with |p| < 0.8. Due to the excellent
reconstruction of leptons, Z bosons decaying into pairs of muons and electrons are
used for the Z+jet balance. The calibration is obtained in a pr range of 20 to
500 GeV. For the y+jet balance, the well-measured photon is balanced against the

recoiling jet and the calibration is derived for a range of 36 < pr < 950 GeV.
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Figure 4.6: Jet response of reference and probe jets during the n intercalibration as
a function of detector nge for 85 < p7 ™ < 115 GeV for (a) 2015 data [31] and
(b) 2016 data [32]. p7" ¢ is the average transverse momentum of the reference and
probe jets.

To extend the calibration region up to 2 TeV, the multijet balance calibration is
performed. Events with multiple jets are used and a high pr jet is balanced against a
recoil system composed of several low-pr jets. The leading jet in each event is taken
to be the high pr jet and it calibrated up to the n intercalibration level. The recoil
system is obtained by summing the four-vectors of all the subleading jets, which are
fully calibrated up to the Z/y+jet balance level. This process is repeated iteratively
where each newly calibrated high-pr jet is used to calibrate even higher pr jets.

The data/MC ratio and its uncertainties for the Z+jet, y+jet and multijet balance
calibrations are combined over the pr regions. They are reproduced with finer pr
binning by interpolating second-order polynomial spline fits as shown in Figure 4.7.
The inverse of the data/MC ratio is taken to be the in-situ correction and is applied

to the data.

4.3.6 Systematic Uncertainties on the Jet Calibration

After the jet calibration is performed, its systematic uncertainties are evaluated. This

amounts to a total of 80 uncertainties as summarized in Table 4.1 out of which the
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Figure 4.7: Ratio of the EM+JES jet response in 2015 and 2016 data to that in the
MC simulation as a function of jet pr for the combined in situ calibrations: Z4jet,
~v+jet and multijet balance. The combined correction is shown by the black line and
the green and blue bands are its total and statistical uncertainties respectively.

in-situ calibrations (Z/y+jet, multijet) make up the majority (67). The remaining 13
originate from various other sources: three from 7 intercalibration, four from pile-up
calibrations, three from jet flavor, one from the global sequential calibration (GSC)
punch-through correction, one from the Atlfast-II (AFII) MC generator [73] samples
and the last one from the single-particle response. The jet flavor uncertainties take
into account the differences in jet response of gluon-initiated jets and b-quark initiated
jets. They also assign an uncertainty to the flavor composition of the jet, i.e. gluon-
initiated or quark-initiated. This uncertainty is derived from MC simulations and
is either analysis-dependent or is taken to be 100% with 50% quark and 50% gluon
initiated jets. AFII stands for Atlfast-II and it is a fast and full detector simulation
technique that is used for fast MC simulation production. The AFII uncertainty
accounts for the differences in the JES calibration of AFII sample jets and is only
applied to the AFII samples. The last uncertainty is obtained from single-particle
response studies [74] where the calorimeter response to isolated charged hadrons is
studied. The estimates on the response of single particles is used to derive the response

of high-pr jets (past 2 TeV) and an uncertainty on this is derived.
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Table 4.1: List of systematic uncertainties in the JES calibration.

Name

Description

Z + jet

Electron scale
Electron resolution
Muon scale

Muon resolution (ID)
Muon resolution (MS)
MC generator

VT

A¢

2nd jet veto
Out-of-cone
Statistical

Y +jet

Photon scale
Photon resolution
MC generator
VT

A¢

2nd jet veto
Out-of-cone
Photon purity
Statistical

Multijet balance
a™B selection
PMB selection
MC generator
Py selection
Jet pr threshold
Statistical components

n-intercalibration
Physics mismodeling
Nonclosure

Statistical component

Pile-up

u offset

Npy offset

p topology

pt dependence

Jet flavor

Flavor composition
Flavor response
b-jet

Punch-through
AFII non-closure

Single-particle response

Uncertainty in the electron energy scale

Uncertainty in the electron energy resolution
Uncertainty in the muon momentum scale
Uncertainty in muon momentum resolution in the ID
Uncertainty in muon momentum resolution in the MS
Difference between MC event generators

Jet vertex tagger uncertainty

Variation of A¢ between the jet and Z boson
Radiation suppression through second-jet veto
Contribution of particles outside the jet cone
Statistical uncertainty over 13 regions of jet pt

Uncertainty in the photon energy scale
Uncertainty in the photon energy resolution
Difference between MC event generators

Jet vertex tagger uncertainty

Variation of A¢ between the jet and y
Radiation suppression through second-jet veto
Contribution of particles outside the jet cone
Purity of sample in y + jet balance

Statistical uncertainty over 15 regions of jet pr

Angle between leading jet and recoil system

Angle between leading jet and closest subleading jet
Difference between MC event generators

Second jet’s pt contribution to the recoil system

Jet py threshold )
Statistical uncertainty over 16 regions of piy-“"®

Envelope of the MC, pile-up, and event topology variations
Nonclosure of the method in the 2.0 < |r4| < 2.6 region

Statistical uncertainty

Uncertainty of the ¢ modeling in MC simulation
Uncertainty of the Npy modeling in MC simulation

Uncertainty of the per-event pr density modeling in MC simulation

Uncertainty in the residual pp dependence

Uncertainty in the jet composition between quarks and gluons

Uncertainty in the jet response of gluon-initiated jets
Uncertainty in the jet response of b-quark-initiated jets

Uncertainty in GSC punch-through correction
Difference in the absolute JES calibration using AFII

High-pr jet uncertainty from single-particle and test-beam measurements
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Figure 4.8 shows the full combination of all the JES uncertainties for the 2015
and 2016 data, first as a function of pr for n = 0 and second as a function of 7 for pr
= 60 GeV. The 80 uncertainties are combined into 6 groups and are shown by the
different colored lines. The uncertainties that contribute most to the combination
as a function of pr are the absolute in-situ JES uncertainty in red and the flavor
composition uncertainty in blue. For the 2016 data, the pile-up uncertainty increases
by a factor of two at lower pr values due to the doubling of the average pile-up
observed. The absolute in-situ JES uncertainty includes the Z/y+jet, multijet and
single particle uncertainties. It is high at low pr and high again at high pr due to
statistical uncertainties associated to the in-situ calibration and it sharply increases
past 2 TeV due to the contribution of the single particle uncertainty. As a function of
7, the uncertainties that contribute the most are the flavor composition uncertainty
in blue and the relative in situ JES uncertainty in pink. The relative in situ JES
uncertainty represents the n intercalibration uncertainty and it spikes in the region of
2.0 < |n| < 2.6. This is due to the residual 7 intercalibration difference that remains
after the calibration is applied to jets, due to the non-perfect jet reconstruction in
the calorimeter transition regions.

Even though the set of the 80 uncertainties fully describe the JES uncertainty, it
is hard for jet analyses to take them all into account by introducing 80 variables while
searching for new physics. In addition to the difficulty of handling a vast number of
variables, not all uncertainties have equal weight, i.e. out of the 80 uncertainties, a
certain portion would drive the overall JES uncertainty. Taking these points into ac-
count, the full set of uncertainties is reduced to four sets of strongly reduced Nuisance
Parameter (NP)s that preserve as precisely as possible the bulk of the correlations
across jet pr and 7. This reduction occurs in two steps. First the 67 in situ uncer-
tainties are reduced to 6 uncertainties by diagonalizing the correlation matrix. Then,

the remaining 19 uncertainties (6 reduced in situ and 13 others) are reduced to four
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Figure 4.8: The combined JES uncertainties as a function of pr (a, b) and 1 (c, d)
for 2015 and 2016 data. The individual uncertainties are combined into 6 groups and
are shown by the different colored lines.
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NPs by combining the uncertainties in different ways (in different pr and 7 regions)
while minimizing the correlation loss.

In the analysis presented in this thesis, the first strongly-reduced NP combination
is used to account for the JES uncertainty. This choice was made after confirming

the negligible effect on signal limits produced by using the four different NPs.
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CHAPTER 5

The Two Jet Final State: Standard Model

Prediction and New Physics

This chapter will open the curtains to the search for new phenomena decaying to
two jets. Before discussing the signatures for new phenomena, it is crucial to un-
derstand the Standard Model (SM) distribution (the background) over which these
new phenomena would emerge. Hence, after defining some kinematic variables, the
production of the SM dijet background is discussed. After this, the signature for new
phenomena, i.e. the appearance of narrow structures over the smooth background, is
detailed with emphasis on excited quarks (¢*) and heavy gauge bosons (W’). The use
of Gaussian shapes to model any new physics signals is also described. The search
results for ¢* and W’ from past dijet analyses are also summarized. Following this,

the “traditional” dijet analysis strategy and the challenges it faces are discussed.

5.1 Standard Model Dijet Production

Jets are by far the most common product of energetic proton collisions. The vast ma-
jority are produced via the strong force (QCD) through 2 — 2 parton interactions i.e.
two incoming particle collide and interact and produce two outgoing particles. This
results in the production of a large number of two-jet events, known as dijet events.

Before discussing the dijet cross-section and kinematics in detail, some discussion
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about variables that are useful to describe 2 — 2 scattering is in order.
As discussed in Chapter 2, the scattering of two partons from the colliding hadrons
produces two outgoing partons that experimentally appear as jets. This relatively

simple two-body relativistic system is shown in Figure 5.1 and can be written as

P1+ P2 — P3+ D4, (5.1)

where p;, p2 are the four-momenta of the two incoming partons and ps, ps are the
four-momenta of the two outgoing partons. The four-momenta of the four partons
fully characterizes the system. In terms of the energy (E) and momenta (p) of each

parton, it can be expressed as

P = (E,p) = (E,pz: py: D) - (5.2)
P3
Py

Figure 5.1: A dijet event. The incoming partons have four-momenta P, and P, and
the outgoing jets have four-momenta P; and P;.

The center of mass frame of the parton-parton scattering is generally boosted,
i.e. it has some momentum along the longitudinal axis (parallel to the beam-pipe).
This occurs due to the unequal momenta of the two incoming partons. Thus, it is
convenient to define the four-momenta in terms of variables that transform simply
under longitudinal boosts. These variables are the rapidity y, the azimuthal angle ¢

and the transverse momentum pr. The transverse momentum is the component of
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the parton’s momentum perpendicular to the beam pipe. In terms of the polar angle
0, it is defined as, pr = psinf. Similarly, the longitudinal momentum is parallel to
the beam pipe, pr, = pcosf. In terms of these variables, the four-momenta of each

parton can be written as

P= (E7 pw’pyapz) (53)

= (mr coshy, prsin ¢, pr cos ¢, mr sinhy) , (5.4)

where mr is the transverse mass and is defined as mr = /p3 + m2.
The information about the energy and momentum of the partons can be encoded

in Lorentz-invariant variables known as the Mandelstam variables. These are

§=(p+p2) (5.5)
t= (p1 — p3)2 (5-6)
U= (p2 - p3)2 .

These variables also serve as labels for Feynman diagrams that show the three ways
in which two partons can interact. As seen in Figure 5.2, these are the s-channel,

t-channel and the u-channel.

R R H\/% R /F%

pz// b

) D g

(a) s-channel (b) t-channel (¢) u-channel

Figure 5.2: Feynman diagrams for the three ways in which two partons can interact
at leading-order [33-35].

The s-channel diagram represents the annihilation of the two incoming partons
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(partons 1 and 2) to an intermediate (also known as virtual) particle that decays
into two outgoing partons (partons 3 and 4). This is the sole process responsible for
the production of resonance phenomena, both known and unknown. The t-channel
channel diagram represents the scattering process where one incoming parton (e.g.
1) emits a virtual particle and converts to an outgoing parton (e.g. 3). The virtual
particle is absorbed by parton 2 that then converts to parton 4. The u-channel process
is the same as the t-channel process but with the outgoing partons exchanged. The
t- and u-channel processes are responsible for most of the QCD dijet events that

represent the background for searches for new resonance phenomena.

5.1.1 Dijet Kinematics

All of dijet experimental variables of interest can be derived from the four-momenta
of the two outgoing jets. The most important variables are the angular variable y*,
the center-of-mass boost variable yg and the dijet invariant mass m;.

The angular separation of the two jets is measured by y*. It is defined in terms

of the rapidities y3 and y, of the two jets as following

« Y3 —Ya
y =

. (5.7)

It is a Lorentz-invariant quantity (i.e. the same in all inertial frames) for boosts in
the z-direction and is related to the scattering angle #* in the center-of-mass frame
by 6* = tanh y*. In the center-of-mass frame the rapidities of the jets are +y*.

In a collision, the interacting partons generally have different momenta. The

imbalance in the longitudinal momenta gives rise to a longitudinal boost with respect
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to the lab frame. This boost is known as yg and is defined as

:y3+y4
2

" (2)
==In(— ],
2 T2

where x; and x5 are the longitudinal momentum fractions of the incoming partons.

(5.8)

UB

The most important dijet variable is the dijet invariant mass m;;. It is calculated
by taking the square root of the magnitude of the sum of the four vectors of the two

jets

mjj = \/(E3 + Ey)* = |ps + pal* (5.9)

where Fs, p3 and Fy, p; are the energy and momentum of the two outgoing jet. Like

y*, it is a Lorentz-invariant quantity and can also be expressed as

m;; = \/g =2 Pr COShy* . (5].0)

5.1.2 Dijet Cross-Section

The cross-section (denoted by o) is a constant of proportionality that gives the number

of events (N) as a function of integrated luminosity [ Ldt:
N = a/£dt. (5.11)

It is measured in units of area called barns (1 barn = 10~**cm?) and for two interact-
ing particles, it represents the probability of a scattering interaction between them.
Classically, the cross-section provides a measure of the area transverse to the motion
of the particles. When a cross-section is defined as a function of some variable, such

as the mass or angle, it is known as a differential cross-section. By integrating the
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differential cross-section over the variable (or variables incase of multiple variables),
a total cross-section is obtained.
The double-differential cross-section for dijet production as a function of mjzj and

cos 0* can be written as

Lo ! , ) , . dei
W = ij%g . d!Eldl'gfi(l’l, 1% )fj(l‘g, M )5(1‘1{)328 — mjj)m s (512)
with
do 1 = 1
_ i — kD)2 5.13
d cos 0* ; 327rm§jZ|M(Zj = kD)l 14+ 0 (5.13)

)

where i, 7, k and [ are labels for partons 1, 2, 3 and 4 respectively. The angle 6*
represents the scattering angle in the center-of-mass frame. Partons 3 and 4 are recon-
structed as the two jets with mass m;; and angular separation y*. The hard-scattering
cross-section ¢ is described by a matrix element M that encodes the transition proba-
bility of all ij — kl processes. i | M?| represents averaging and summing the square
of the matrix-element over the initial- and final-state spins and colors, respectively.
The Kronecker delta function ¢ inside ¢ accounts for identical final state partons.
Since the incoming partons carry a fraction of the parent proton’s momenta (z; and
T3), their energy is /T1@25. Thus, the delta function d(ziz9s — mﬁj) selects initial
states that produce events with the specified m;;.

The leading-order Feynman diagrams that contribute to M can be obtained from
those shown in Figure 5.3. In terms of the Mandelstam variables, the expressions for
37 |M?| for various diagrams can be seen in Table 5.1. To demonstrate the relative
importance of the diagrams, the last column of the table shows their values (é) for

the following conditions: 6* = 7/2, ¢

@ = —§/2. They are calculated using the
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following relation between the Mandelstam variables and 6*:

t

—=5(1 — cos0") (5.14)

n _

$(1 4 cos0").

N = DN =

The most important dijet production processes are gg — gg, qg — qg and qq — qq.

The differential cross-section as a function of cos 8* for each of these processes is

do' 1
dcos@*  sin*(6*/2)"

(5.15)

This is nothing but the Rutherford scattering behavior at small angles that charac-
terizes the exchange of a massless vector bosons in the t-channel.
Table 5.1: The matrix element squared expressions and values 0 (evaluated for

0 = /2, t =0 = —5/2) for dijet processes. The color and spin indices are averaged
and summed over respectively. [36]

Process > IMP/gt 0

99 — qq' S 222
9 — o7 222
s~ aq | §(5E ) - 5 | 320
9q — q'¢ 3 oH 022
0g —aq | §(FE + TH) - 5% | 259
a7 — 99 wa —se | 104
9907 | §TE TR0t
s—on | SRS e
99—99 | 3(3-%-#-%) | 304
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Figure 5.3: Leading-order Feynman diagrams for dijet production [36].
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Figure 5.4 shows a comparison of the measured double differential dijet cross-

section with respect to next-to-leading order (NLO) perturbative QCD predictions

[37]. It is shown as a function of m;; and y* for anti-kr jets with R = 0.4. The

shaded grey areas show the experimental systematic uncertainties and the yellow

boxes represent the theoretical predictions with their uncertainties. In general, the

agreement between the data and prediction is quite good.
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Figure 5.4: Dijet cross-section as a function of m;; and y* for anti-kr jets with
R =0.4. Tt is compared to NLO pQCD predictions. [37]

Figure 5.5 shows a grand comparison of the total cross-sections of all the SM

processes that have been measured by the ATLAS detector. At /s = 13 TeV (as

shown by the pink square in the second bin of the figure), the dijet production cross-

section is ~ 30 pb and is the largest of all the SM processes. This results in the large

production of dijet events, increasing the chances of observing new phenomena.
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5.2 Search for New Physics in the Dijet Mass Dis-
tribution

The invariant mass of a dijet event is given by Equation 5.9 and 5.10. Its distribu-
tion (i.e. number of dijet events as a function of m;;) is smooth and monotonically
decreasing. It is dominated by dijet events produced via t-channel scattering where
the jets are produced with high rapidities, i.e. more along the beam pipe. Its mono-
tonically decreasing shape can be inferred from the behavior of the PDFs. Due to the
steeply-falling shape of the PDFs (as a function of parton momentum fraction), it is
more probable to see a large number events with low m;; and fewer events at higher
m;;.

Many new physics theories propose new particles of definite mass that present
themselves as localized excesses - i.e. resonances - above the smooth QCD dijet
background. Such particles would be produced by the annihilation of partons from the
colliding protons via s-channel diagrams and would decay to two jets with invariant
mass equal to the mass of the particle. This would result in an excess of events over
the smooth background located at the mass of the new particle. Due to the non-
perfect detector resolution and the finite width ! of the particle, the excess would
be spread around its true mass with a width o. As these resonances are produced
via annihilation, they tend to decay isotropically and thus be central, i.e. the two
decay jets are produced with low rapidities. This angular characteristic can be used
to separate the resonances from the QCD background.

An example invariant mass distribution is shown in Figure 5.6. A narrow excess
with width o can be seen at mass My over the smooth QCD dijet distribution,
which represents the background. The blue curve shows a parameterization of the

background.

IThe particle’s width T' is related to its lifetime 7 by, I' = h/7, where A is the reduced Planck
constant with value 6.58 x 10722MeVs.
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Figure 5.6: An example resonance with mass My and width ¢ over the smooth dijet
invariant mass background distribution predicted by QCD.

Thus, the dijet analysis amounts to searching for a narrow resonance shape over a
smooth background. The specific new physics signals that are the focus of this thesis
are the excited quarks ¢* and heavy gauge bosons W’. Each one of these models is
associated to a specific signal shape that changes as a function of signal mass. The
theoretical details for these new physics models will be discussed next. This thesis
also presents general searches for Gaussian shapes, which are a good approximation
to many new physics signals. This is useful because the Gaussian distribution is the

lowest-order approximation for resonance signals.

5.2.1 Excited Quarks

As per our current understanding, quarks are fundamental particles. However, if this
were not true - if quarks had substructure - it would be possible to observe heavy
excited quark states, g*.

Excited quarks have been thoroughly searched for in dijet searches since their
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proposal in the 1980s [39] [75]. The model predicts the existence of excited quark
states that couple to the vector gauge bosons with SM-like couplings. They can be
produced at the LHC if the ¢* compositeness scale (the characteristic energy scale), A,
is less than the LHC center-of-mass energy. Requiring weak isospin gauge symmetry
(analogous to the SM quarks), the effective Lagrangian for spin 1/2 excited quarks is

given by

o N T - Y
gt [gsfS?FW + ngW;w 4 g/f’EBW]qL + h.c., (5.16)

Letr =

where h.c. stands for Hermitian conjugate. Here ¢* and ¢, represent the weak isospin
doublets of the excited and the SM left-handed quarks. The mass of the excited
quark state is denoted by M*. Here, the compositeness scale A is set equal to M*.
Each term of the Lagrangian shows the coupling of ¢* and ¢;, with the vector gauge
bosons: gluons F*, SU(2) bosons W and the U(1) boson B. g, g and ¢’ are the gauge
coupling constants and f,, f and f’ are free parameters determined by the composite
dynamics.

At the LHC, ¢* states would be predominantly produced from quark and gluon
interactions via the s-channel diagram. This can be seen in Figure 5.7 where the
¢* production cross-section from the various channels is shown as a function of the
q¢" mass. The solid lines, dashed lines and dotted lines represent the qg, ¢Z and gy
production modes. Curves for three collider center of mass energies (1.8 TeV, 17 TeV
and 40 TeV) are shown.

Excited quarks can decay to the following states: qg, ¢W, ¢Z and ¢y. Assuming

that M* is heavier than the mass of the W and Z gauge bosons and ignoring the SM
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Figure 5.7: ¢* production cross-section for various channels: solid lines qg, dashed
lines ¢Z and dotted lines ¢y and various center-of-mass energies: 1.8 TeV, 17 TeV
and 40 TeV [39].

quark masses, the decay rates of ¢* can be calculated from Equation 5.16:

* 1 *
[(q" = q9) = o fiM (5.17)
¥ - 19124/ 2 gk mIQ/V 2 m%[, 2
[(g" — qW) = S for M*(1 — M*Q) (2+ M*Q) (5.18)
% _ 195 o1 e my .o my
* 1 *
L'(¢* = qy) = Z—laf,?M , (5.20)
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where

Y
h=I+r5 (5.21)
fw = % (5.22)
2 /Y 22
fz = fls3cos” Oy — f - sin Ow (5.23)
V4
= i zj (5:24)
9z = COgSVgW . (5.25)

Here, oy, «, gw and gz are the strong, electromagnetic, and weak (W and Z boson)
coupling strengths. T3 is the third component of the weak isospin, Y is the hyper-
charge and 6y is the weak mixing angle. Setting f, = f = f’, the total ¢* width is

approximately

['(q*) ~ 0.04f>M* . (5.26)

If f is of order one, then the width of the ¢* signal shape is narrow- 4% of its mass.

The dominant ¢* decay state is ¢g. Experimentally, these would appear as two
jets whose invariant mass would be equal to the mass of the excited quark. Table 5.2
shows the final state decay probabilities for a ¢* of mass 1 TeV assuming exact SM
couplings. These probabilities are known as branching ratios.

To search for ¢* signals in the dijet invariant mass distribution, their signal shapes
are required. These are obtained from MC simulations. Before showing the search
results, Chapter 8 discusses the simulation and the experimental signature of ¢* sig-

nals.
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Table 5.2: Branching ratios for excited quarks of mass 1 TeV (u* and d*) for f; =

f=fand a; =0.1.

Decay Mode Branching Ratio (%)
u* — ug 83.4
u* — dW 10.9
ut — ud 3.5
u* — uy 2.2
d* — dg 83.4
d* — uW 10.9
d* — dZ 5.1
d* — dvy 0.5

5.2.2 Heavy Gauge Bosons

Heavier versions of the vector gauge bosons, known as W’ and Z’, are hypothesized

to exist in multiple theories that attempt to extend the electroweak sector of the

SM [76-79]. In this thesis, a search for the heavy gauge boson W’ is conducted by

using a simplified model described in [80]. The model assumes that the heavy gauge

bosons have the same coupling to fermions and bosons as the SM gauge bosons W and

Z. For the W’ these include: W’qq, W'l and W*W=Z. This assumption leads to

a large production cross-section from fermions (i.e. high production rate at hadrons

colliders) and a decay to the SM particles.

The W’ decay width to gauge bosons W*Z and fermions ff’ (f, f' = leptons or

quarks) is given by

DW= — zw*) = &

48

. :(1_

cot? Oy My + M%V]VWVZV (5.27)
3/2
ME - Mg\, My
M{%[//i Mg‘//i
2+ M2 N M}, + MJ + 10M3, M2
MI%V/:t M;/l[//i
My,
0 (5.28)
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where My, + is the mass of the W’ and N, is equal to 3 for quarks and 1 for leptons.

The W’ states are created from q¢’ annihilations via the s-channel diagram. Even
though this particular model predominantly decays to W Z, its shape is a useful proxy
for the more general family of W’ models. The W’ signal shapes used in this thesis

are shown in Chapter 8.

5.2.3 General New Physics Signal Shapes

For a narrow resonance of any kind, the signal will be well approximated by a Gaus-
sian shape with width given by the experimental resolution. More generally, to a first
approximation, any new particle can be characterized by a mass and a width. Hence,
generic Gaussian shapes are useful to quantify excesses in a model-independent way.
Due to their simplicity, they provide convenient and easy-to-produce shapes for con-
ducting resonance searches. Furthermore, their width can be readily adjusted, hence
they can be used to model both narrow and wide signals (here, narrow signals mean
those with width smaller than the dijet mass resolution). Narrow signals are modeled
using Gaussian shapes whose width is consistent with the mass resolution. For wide
signals, Gaussian shapes with varying widths are used.

The model-independent 95% confidence level upper limits provided by the Gaus-

sian shapes can be used to infer approximate limits for any new physics model.

5.3 Previous Searches for ¢* and W’

The dijet analysis is a flagship analysis for hadron colliders. Due to the wealth of
data and the great potential for discovering new phenomena, the analysis has been
conducted ever since the invention of hadron colliders. Table 5.3 summarizes the dijet
analyses conducted by different experiments colliding hadrons at different center-of-

mass energies y/s. The total amount of data analyzed, the dijet mass m;; range, and
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the excluded mass intervals for ¢* and W’ models are shown. UA1l (Underground

Area 1) and UA2 (Underground Area 2) were detectors that operated on CERN’s

Super Proton-Antiproton collider (SppS) that collected data from 1981 to 1990. The

SppS was modified to the present SPS that feeds protons to the LHC. CDF (Collider

Detector at Fermilab) and DO were experiments that analyzed hadron collisions from

the Tevatron, the world’s former highest energy particle accelerator at Fermilab in

[linois, USA. The Tevatron collected data from 1984 to 2011.

Table 5.3: Dijet resonance searches from past experiments. The name of the experi-
ment, the year of the analysis publication, the center-of-mass energy, the amount of
data analyzed and the dijet mass range covered are shown for each experiment. Also
shown are the excluded mass intervals for ¢* and W’ models.

Experiment Year NG [ Ldt mjj q w’ Reference
( TeV) (pb71) ( TeV) ( TeV) ( TeV)

UA1 1986  0.63  0.26 0.07—-0.3 — — [81]
UA1 1988  0.63  0.49 0.11-0.3 — — [82]
CDF 1990 1.8 0.026  0.06 — 0.5 — — [83]
UA2 1991  0.63 4.7 0.05—-10.3 — 0.10 — 0.16 [84]
CDF 1993 1.8 4.2 0.14—-1.0 — — [85]
UA2 1993  0.63 11 0.05—-0.3 0.14-0.29 0.13—0.26 [86]
CDF 1995 1.8 19 0.15—0.9 0.20 —0.56 — [87]
CDF 1997 1.8 106 0.18—1.0 0.20—-0.52 0.30 —0.42 [88]
7 7 7 7 7 0.58 — 0.76 K 7
DO 2004 1.8 109 0.18—-1.2 0.20—-0.78 0.30 — 0.80 [89]
CDF 2009 196 1130 0.18—1.3 0.26 —0.87 0.28—-0.84 [90]
ATLAS 2010 7 0.32 0.20—1.7 0.30 —1.26 — [91]
CMS 2010 7 2.9 0.22—-2.1 0.50 — 1.58 — [92]
ATLAS 2011 7 36 0.50 —2.8 0.60 —2.15 — [93]
CMS 2011 7 1000 0.84 —3.7 1.00—-2.49 1.00—-1.51 [94]
ATLAS 2011 7 1000 0.72—4.1 0.80 —2.99 — [95]
ATLAS 2015 8 2030 0.25—4.5 0.80—-4.06 0.80—2.45 [96]
CMS 2015 8 1970 0.89 —5.2 1.20—-3.50 1.20—1.90 [97]
ATLAS 2016 13 3600 1.10—7.1 2.00 —5.20 1.50 —2.60 [98]
CMS 2016 13 2400 1.20 - 6.3 1.50—5.00 1.50 —2.60 [99]
CMS 2017 13 12900 0.45—-2.0 0.60—5.40 0.60—2.70 [100]
7 7 7 7 1.06 — 8.0 K K K
ATLAS 2017 13 37000 1.10—-8.2 2.00—6.00 1.50— 3.60 [50]
CMS 2017 13 36000 0.49—-2.0 0.60—6.00 0.60—3.30 [101]
7 K K K 1.25 - 8.0 K 7 7
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These analyses have remained conceptually similar. The QQCD background was
modeled using either MC simulations (by UA1 and CDF before 1995) or fit functions
(starting with UA2 in 1990, continued by CDF in 1995 and used until the present
by ATLAS and CMS). The new physics resonances were modeled using a simple
lineshape (before 1993) - Breit-Wigner functions convoluted with Gaussian signals -
or by using shapes from MC simulations (after 1995).

The family of so-called ‘dijet functions’ has been particularly successful in pa-
rameterizing the QCD background in past analyses [90,91,93,94,96,100]. These are
defined as

f(2) = p1(1 — z)P2zPs T palosz + ps(logz)” (5.29)

where z = my;/+/s and p; are the parameters. These functions are physically moti-
vated: the (1 — z)P? term is related to the leading-order QCD matrix element and
the zP term follows the form of the steeply-falling PDFs as a function of momentum.
Depending on the number of parameters used, the functions are called the 3 param-
eter (py = ps = 0), the 4 parameter (p; = 0), and the 5 parameter dijet function.
Higher-order functions (with more log z terms) can also be made.

Traditionally (starting from 2010), the search for dijet resonances by the ATLAS
collaboration has been conducted by performing a model-independent search using the
BUMPHUNTER algorithm [102]. A background model is produced by parameterizing
the binned dijet data mass distribution using one of the forms of the dijet function
(Equation 5.29). BUMPHUNTER is then used to identify the region (in terms of a
group of adjacent bins) in the data that is the most discrepant with respect to the
background model. If the significance of the excess is large, then the search results in
the observation of an “interesting” excess. However, if no excess is found, then 95%

CL limits are calculated for specific theory models and general Gaussian signals using
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a Bayesian statistical method. These are used to rule out the theory models below
the calculated 95% upper limit. More details on the BUMPHUNTER search method

will be discussed later in Chapter 8.

5.4 Challenges in the Dijet Search

As described in the previous section, resonance searches in the dijet channel at ATLAS
are conducted by looking for a localized excess above a smooth background. The
smooth background is obtained by fitting the entire dijet mass distribution with ad-
hoc functions, such as the dijet functions. The problem with this approach is that
these functions do not necessarily reflect the true underlying mass distribution. They
have been successfully used until now due to the relatively smaller datasets and by
increasing the dijet mass distribution’s starting point. With increasing data, however,
their approximate nature becomes apparent and obtaining a background model using
fits becomes increasingly challenging, especially when the data can span more than 6
orders of magnitude!

This challenge is clearly illustrated in Figure 5.8 where the low-mass dijet data
distribution [40] is fitted using three dijet functions with different numbers of parame-
ters. The distribution is obtained from 3.4 fb™! of data collected in 2015 and contains
approximately 50 millions events between 450 - 2000 GeV.

The 3, 4 and 5-parameter fits in this range are shown in Figure 5.8 (a), (b) and
(c) respectively. The second panel of each plot shows the significance, defined as the
difference between the data and the fit divided by the square root of the data. The
difference is quantified using the y? p-value as shown on the plots 2. These values are
unacceptably small indicating that the data in inconsistent with these fits. The swings

in the significance, particularly with the 3-parameter function, also demonstrates the

2As a point of comparison, p-values of 0.01, 0.001, 0.0001 and 0.00001 correspond to a 2.3¢, 37,
3.70 and 4.2¢0 disagreement.
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Figure 5.8: Fits to the low-mass dijet invariant mass distribution obtained from
3.4 fb~" data collected in 2015 [40]. The functions used are (a) the 3-parameter, (b)
the 4-parameter and (c) the 5-parameter dijet functions. The significant swings seen
in second panel of (a) shows the inability of the 3-parameter function to model the
data. The higher-order functions ((b) and (c)) perform better, however the region
between 1 - 1.6 TeV is poorly modeled.

82



inability of the functions to model the data well.

One way to cope with such large statistics is to keep adding parameters until a
good fit to the data is obtained. Alternatively, one might test/invent new functions.
A third way to solve this problem is to reduce the fit range and consequentially reduce
the pressure on the fit functions, This would allow one to perform a localized resonance
search without fitting the entire data distribution. The method based around this
idea, i.e. the use of smaller window sizes, came to be know as SWIFT and the next

chapter is dedicated to describing it.
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CHAPTER 6

Sliding Window Fits

This chapter will present a general-purpose statistical tool for conducting resonance
searches: Sliding Window Fits (SWIFT). It was designed to address the difficul-
ties faced by the traditional resonance search method in the face of increasing data
statistics.

SWIFT solves the problem in two ways. It provides a method for conducting
model-dependent resonance searches by sliding over the data distribution in small,
overlapping, auto-sized windows. In each window, it checks for the presence of a new

particle by performing a series of fits. After a full slide, it provides,
e a likelihood-ratio-based local p-value scan for a given signal shape,

e 95% confidence level upper limits on the extracted signal using the profiled

likelihood method,

e the SWIFT background - a global background estimation created using a novel

technique.

The SWIFT background can also be used to conduct a model-independent search

using the BUMPHUNTER algorithm.

84



6.1 Statistical Concepts

Before describing SWIFT, this section will summarize several statistical concepts that

will be utilized later.

6.1.1 Likelihood Fits

SWIFT performs its fits by minimizing the negative log likelihood (LLH). The
likelihood (LH) function quantifies the probability of the model (specified by its
parameter values), given specific data. When the data is represented by a binned
histogram and the model is described in terms of parameters p, the LH can be de-

scribed using Poisson statistics:

H(p|z) = He m—)mi, (6.1)

where NN is the total number of bins, x; and \; are the content of the data histogram
and the model in the 7’th bin, respectively.

As the LH consists of a product of very small numbers, working with it directly is a
recipe for numerical disaster. Hence, instead of maximizing the LH, the negative LLH
is minimized to avoid these issues. The negative logarithm is a strictly decreasing
function of its argument, and so the negative log of a function reaches its minimum

value at the same point as the function itself. The negative LLH is described by

Mz

—LLH (P |z) = i (D) —xin (N (P)) + In (x,!)] . (6.2)

=1

Systematic uncertainties that alter the shape of the model are accounted for by
incorporating them into likelihood. Each uncertainty is associating to a nuisance
parameter (NP) that directly affects the model. For example, NPs associated to the

JES uncertainties change the shape of the signal model and the NP associated to the
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luminosity changes the relationship between the yield and cross-section. In general,
there is prior knowledge of the acceptable values of the NPs. This is incorporated by

adding a Gaussian penalty term for each NP to the likelihood function:

_ 7 — - (D) — 1 4 i M
LLH (e ‘x) ; D (7) — zidn (A (7)) + In (2:1)] + ; - (63)
where 7 is the number of NPs and 0 is the function parameters p together with all
the NP. The penalty terms disfavor drastic changes to the NPs. Note that the NPs
are scaled such that the variance of each is equal to one.

The minimizer then minimizes this penalized LLH and determines the best values
for the §. The minimization is conducted by a numerical minimizer that adjusts the
model’s parameters until it finds the combination that has the smallest negative LLH
value. This is the form of the model that best represents the data.

The minimizer used to perform the fits is MINUIT [103]. MINUIT is a numeri-
cal minimization package written specifically for high-energy physics applications in
C++ ! It contains implementations of several different minimization algorithms.
SWIFT uses the SIMPLEX and MIGRAD algorithms. SIMPLEX uses the Nelder-Mead
method [104] to find an approximate fit from which the MIGRAD minimization is
initialized. MIGRAD uses a variable-metric minimization method [105]. The com-
bination of the two minimization methods provides robust fitting, even in the cases

where the initial conditions are far away from the minimum.

6.1.2 Types of Fits

SWIFT performs two kinds of fits: background-only, and signal+background. The
comparison of these two fits allows one to quantify the significance of an excess, as

will be described later.

'MINUIT was originally written in FORTRAN in the 1970s but was later ported to C4+.
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The background-only fits provide a model for the smooth dijet background under
the assumption that there is no signal present in the data. The functions used are
the 3- and 4-parameter dijet functions (Equation 5.29).

The signal+background fits are performed under the assumption that there might
be signal present in the data. The model is a sum of a signal component and a
background component. The signal component could be any of the shapes of interest,
e.g. the Gaussian or excited quark (¢*) signal shape, and the background component
is the 3- or 4-parameter dijet function. Note that the background-only function is a
special case of the signal+background function (when the signal component is fixed

to zero).

6.1.3 ? p-value

The x? p-value provides a goodness-of-fit measure by comparing the data to a fit. It
is based on a quantity known as the chi-squared, which, given a data histogram with

N bins, can defined as

X' = Z - ;Ai) : (6.4)

=1

Here, x; and )\; are the content of the data histogram and the fit in the ¢th bin,
respectively, and o; is the variance of \;. If in each bin, the data has statistically
small differences with respect to the fit, then each term in the x? equation would
be of order one and the total x? would be around N. However, if the data is very
different as compared to the prediction, then the x? value can become much larger
than N.

To convert the x? value to a p-value (a probability), the probability distribution
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of the x? is used. For v degrees of freedom, the x? distribution is defined as

2 1 /2 (L2 (@/2)-1
f(X):me / (X) ) (6-5)

where I" is the gamma function. Figure 6.1 shows x? distributions for three values of

V.

oas

o] 4 B8 2 7] 20 24 28
-

Figure 6.1: The x? probability distributions for v = 2, 4 and 10. Here v is the number
of degrees of freedom. [41]

For a data histogram (with /N bins) that is fit with a function with P parameters,
the number of degrees of freedom is v = N — P. Thus, knowing v and the x? of the

data with respect to the fit (from Equation 6.4), the x? p-value can be calculated as

o0

x> p-value = / () dx>. (6.6)

2
v

If the experiment could be repeated a large number of times and the data from
each experiment fit to the same function, the p-value would give the probability of
obtaining a y? greater than or equal to what was observed in the actual data. A x?
p-value of 1 would mean that all the repeated experiments would have a x? greater

than what was seen in the data. A y? p-value of 0.05 would mean that only 5% of
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the repeated experiments would have a x? greater than the data. Thus, a x? p-value
of order 1 represents a good fit to the data. The smaller the p-value, the worse the

fit.

6.1.4 The Log Likelihood Ratio and The Local P-value

The log likelihood ratio (LLHR) is obtained by taking the log of ratio of the likelihoods
of two functions. Using the signal+background and background-only functions, it can

be defined as,

LH(signal+background)

LLHR =1 :
R=In LH(background—only)

(6.7)

The LLHR provides a powerful and robust measure of how much better the sig-
nal+background fit models the data than the background-only fit. In the presence of
a signal, the likelihood of the signal+background fit will be substantially better than
that of the background-only fit, resulting in a large LLHR value. If there is no excess,
then both functions will perform similarly, and the LLHR value would be small.
Wilks’ theorem [106], which is applicable to the present application, can be used
to convert the LLHR to a p-value. It states that, for a pair of nested functions, in the
limit of large statistics, two times the negative LLHR will be chi-square distributed

with degrees of freedom (v) equal to the difference in dimensions of the functions:

—2 x LLHR = 2. (6.8)

Here v is equal to one as the signal+background function has one extra free parameter
- the signal normalization.

The p-value derived from the LLHR is known as a local p-value. Assume that the
background-only hypothesis is true, but an excess at a specific point M is observed

with a LLHR p-value Py;. If the experiment were to be repeated multiple times, P,
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gives the probability of seeing a LLHR (at point M) greater than or equal to what
was actually observed. This quantifies the odds of observing a given excess by chance

alone.

6.1.5 The Global P-value

The local p-value quantifies the odds of observing an excess by chance alone at a
specific point. However, one typically tests many points and in principle an excess
(due to a statistical fluctuation) could have been observed at any of them. This is
known as the look-elsewhere effect [107], and a p-value that accounts for it is known
as a global p-value.

The global p-value is calculated from pseudo-experiments (PE). PEs are created
from a binned distribution that is presumed to provide a good model for the binned
data. This could be a MC model, a single parametric fit to the data, the SWIFT
background model, etc.

A PE is created by randomly varying the bin contents of the model using Poisson
statistics. The global p-value is obtained by repeating the full statistical analysis on
each PE. It is calculated by counting the fraction of PEs that have a LLHR (at any

point) equal to or greater than what was observed in the data:

# PEs with LLHR > LLLR of data

lobal p-value =
global prvatue Total # PEs

(6.9)

The global p-value is always larger (i.e. less significant) than the local p-value. It

provides a more realistic estimation of the significance of an excess.

6.1.6 95% CL Limits

A 95% CL limit on a theory model corresponds to the largest amount of signal (Ngs)

consistent with the data at the 5% level. A simple example that illustrates the concept
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is the following. Supposing some signal shape, one extracts 15 signal events from a
signal+background fit. The 95% CL limit is the number of signal events such that 15
is 20 down from Ngs. Assuming Gaussian statistics, this would be 25 events, since
25 — 24/25 = 15. Here the 20 uncertainty on 25 events is 24/25 = 10 events.

Rather than the number of events, limits are customarily expressed in terms of
a cross-section ggs. The 95% CL limit calculated from the data is known as the
observed limit. On the other hand, the limit calculated from the background model
(i.e. assuming zero signal events) is known as the expected limit. Typically, the
expected limit is shown with its 1o and 20 uncertainties.

The 95% CL limits calculated by SWIFT use the profiled likelihood method (a
frequentist approach). In this method, the NPs representing the uncertainties are
accounted for by profiling, i.e. by fitting them away. The starting point for the limit-
setting procedure is the best signal+background fit, the fit with signal normalization
Npest and parameter values 0 2 that minimize the negative LLH. The 95% CL limit
Ngs is defined as the the signal such that the LLH of Ngs5 is worse than the best LLH
by a specified value ALLH:

_LLH (N95,§ ‘x) — _LLH (Nbest, q ‘x) + ALLH (6.10)
~1 2
ALLH = w ,

where @1 is the inverse of the cumulative distribution function (also known as the
quantile function) of the normal distribution. For a probability ¢, it is defined in

terms of the error function erf:

O Ye) = V2 erf (2 — 1) (6.11)

For ¢ = 0.95, ALLH is equal to a value of 1.92073. Hence, the 95% CL limit amounts

2§ includes the background parameters p’and NPs for each uncertainty.
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to determining Nyg5 such that the yield extracted from the data is approximately 2o
below N95.

6.2 SWiFt in a Nutshell

SWIFT searches for localized excesses in data histograms by performing fits in many
small and overlapping windows. The window sizes are automatically determined (as
will be described later) around each bin of the histogram, called the window center
from now on. After the size for each window is determined, SWIFT checks for the
presence of an excess at the window center by comparing a signal+background and
background-only fits as described above.

Inputs

TR

1. Binned histogram (mjj resolution)
2. Signal shapes (parameterization)

Lsiind

Outputs

el ARSI . 3

For each window center,
Local p-value

95% C.L. upper limit
. SWiFt background

A. Optimize window size

B. Choose background function

C. Perform likelihood ratio test

SR W“*““*ﬁ’

Resonance found l

D. Perform signal subtraction on data === IV. New SWiFt background

Figure 6.2: Flow chart for the SWIFT procedure.

The entire SWIFT procedure is summarized in Figure 6.2. SWIFT takes a data

histogram and a set of signal shape parameterizations as inputs and performs its
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slide. The data histogram is binned according to the m;; resolution (see Figure 7.12).
The signal parameterizations are obtained by interpolating the limited number of
shapes obtained from MC simulations as described in Appendix B. During the slide,
the data distribution is analyzed window-by-window for the presence of an excess.
After the full slide, the LLHR based local p-values and 95% confidence limits as a
function of the window center are calculated. The SWIFT background estimation for
the full data distribution is also produced. If a “significant” excess is found, SWIFT
recalculates the background estimation by removing the excess from the data. The

next sections will describe the steps of the procedure in more detail.

6.2.1 The Slide and the Fits

The slide starts at the lower end of the data histogram. The first center is located
several bins in to steer clear of edge-effects. SWIFT then picks a window size around
the center and performs its fits within the window. After the fits finish, SWIF'T slides
the window center one bin to the right and re-optimizes the window size around the
new center. The initial parameters of the fits in the new window are initialized from
the fits in the previous window. Repeating this process, the window center slides
across the histogram bin-by-bin.

In each window, the following two pairs of fits are performed (that differ only in

the background function used):

e A nominal signal+background and a nmominal background-only fit. These
two fits are called nominal as they use the 3 parameter dijet function as the

background component.

e An alternate signal+background and an alternate background-only fit. These
fits are called alternate as they use the 4 parameter dijet function as the back-

ground component.
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The first two windows of the slide on a hypothetical distribution are shown in
Figure 6.3. The vertical green lines show the window centers and the shaded boxes
show the window sizes. Bin edges around the red dots represent the 15 window centers
that SWIFT will slide over and the black dots show the bins that are not used as

window centers. The blue curves show the background-only fits in the windows.
\ '
[ ]
®

Invariant Mass Invariant Mass

(a) First Window (b) Second Window

Figure 6.3: First two windows of the SWIF'T slide over a hypothetical mass distribu-
tion. The vertical green lines show the window centers (which match the bin-edges)
and the grey boxes represent the window size. Bin edges around the red dots show
all the possible window centers and the blue curves show background-only fits.

6.2.2 Picking the Window Sizes

The window sizes are automatically selected around each window center. This is done
by performing multiple nominal background-only fits with different window sizes. The
size with the best x? p-value is chosen. The x? p-value is used to correctly account for
the differences in the numbers of degrees of freedom (NDF) between different window
sizes. The NDF is equal to the number of bins in the window minus the number
of parameters of the function®. This procedure identifies a window size that ensures
good fits without fitting away the signal. It also performs well in the presence of a

signal. More details on this are provided later in this chapter.

3Without taking the NDF into account, the smallest window size would always be preferred.
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A reasonable lower limit is set on the sizes tested to prevent SWIFT from picking
very small windows. The lower limit is set to be at least three times larger than the
width of the widest signal of interest. The selection procedure is designed to ensure

a smooth evolution of the window sizes.

6.2.3 The Likelihood Ratio Scan

After the window sizes are fixed, the two pairs of the nominal and alternate sig-
nal+background and background-only fits are performed in each window. Figure 6.4
shows examples of these four fits for a window of a hypothetical data distribution.
The nominal background-only fit (blue curve) and nominal signal+background fit (red
curve) are shown in Figure 6.4 (a) and the alternate background-only fit (cyan curve)

and alternate signal+background fit (orange curve) are displayed in Figure 6.4 (b).

Invariant Mass Invariant Mass

(a) Nominal fits (b) Alternate fits

Figure 6.4: Two windows of the SWIFT slide over the mass distribution. The vertical
green lines show the window centers (which match the bin-edges) and the grey boxes
represent the window size. Bin edges around the red dots show all the possible window
centers. The blue (nominal, e.g. 3-parameter) and cyan (alternate, e.g. 4-parameter)
curves show background-only fits. The red (nominal, e.g. 3-parameter + signal) and
orange (alternate, e.g. 4-parameter + signal) curves show the two signal+background

fits.

At this stage, SWIFT chooses to keep either the set of nominal functions or

the set of alternate ones. The choice is made based on the x? p-value of the two sig-
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nal+background fits (i.e. the red and orange curves from Figure 6.4 (a) and Figure 6.4
(b), respectively). Using the x? p-value takes into account the number of degrees of
freedom. This allows for a fair comparison between the two signal+background func-
tions without always favoring the higher order one (hence preventing over-fitting).

After the choice between the nominal and alternate functions is made for a window,
the LLHR is constructed by taking the log of the likelihood ratio of the chosen set
of signal+background and background-only fits as shown in Equation 6.7. This is
converted to a local p-value using Wilks’ theorem (Equation 6.8).

At the end of the slide, SWIFT outputs a local p-value scan as a function of the
window center. Windows with low p-values correspond to excesses with larger signif-
icances. SWIFT identifies the window with the lowest local p-value and calculates

the corresponding global p-value.

6.2.4 The 95% Confidence Level Limits

After the local p-value calculation, SWIFT calculates the 95% CL limit on the signal
extracted from the signal+background fit. It is calculated using a binary search
algorithm which is sketched in Figure 6.5. In the figure, the likelihood is shown
as a function of the number of signal events. The red dots represent the number
of extracted signal events from the signal+background fit and the likelihood that
corresponds to this number of signal events is called the minimum likelihood.

For positive signal (Figure 6.5 (a)), the green dot represents the 95% CL limit on
the extracted signal. The purpose of the binary search is to start from the extracted
number of events (the red dot) and determine out the 95% CL limit (the green dot).
In each step of the search, the binary search increases/decreases the number of signal
events until it converges on the 95% CL limit. The steps are shown by the grey dots
and arrows in the figure.

For negative signals, the search for the 95% CL limit is performed by scanning
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Min. LLH + 20

0sig LLH + 20 Q

Zero signal
0sig LLH
Signal from s+b fit Signal from s+b fit
Min. LLH Min. LLH
(a) Limit scan for positive signal (b) Limit scan for negative signal

Figure 6.5: 95% C.L. limit calculation procedure for (a) positive extracted signal and
(b) negative extracted signal.

above the background-only fit (i.e. zero extracted signal events). This is demonstrated
in Figure 6.5 (b) where the blue dot represents zero signal events and the green dot
shows the target likelihood, worse by 20 w.r.t. the zero signal likelihood.

During each step of the search, all parameters except for the signal normalization
are free and are allowed to float to their best values. This is known as profiling and
it accounts for the systematic uncertainties by fitting them away.

The expected 95% limit is calculated from the same pseudo-experiments used for
the global p-value calculation. For each pseudo-experiment, a full SWIFT search is
performed and 95% CL limits are calculated. The expected limit is then obtained
by taking the median of all the limits from the pseudo-experiments. The 1o and 20
uncertainties on the expected limits are obtained by determining the range within

which 68% and 95% pseudo-experiments lie, respectively.

6.2.5 Systematic Uncertainties

The following systematic uncertainties are profiled during the fitting procedure:
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1. Background parameters: The uncertainties on the background parameters are

taken into account by allowing them to float during all the fits.

2. Signal shape: The signal shape is parameterized as a function of three JES
nuisance parameters. A gaussian penalty term for each is added to the likelihood

as described above. These uncertainties alter the signal shape.

3. PDF and Scale: A 1% flat systematic is applied to account for the PDF and
scale uncertainties. These uncertainties largely affect the normalization of the

signal and are applied as flat multiplicative scale factors.

4. Luminosity: A flat 3.2%