
Shedding Light on the Dark: Exploring the

Relation Between Galaxy Cluster Mass and

Temperature Through Weak Gravitational

Lensing

by

Rutuparna Das

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2018

Doctoral Committee:

Professor Gregory Tarlé, Chair
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ABSTRACT

The evolution of the abundance of galaxy clusters is a powerful tool for quantifying

the presence of dark energy in the universe. To use this tool, it is necessary to

measure precise cluster masses. As masses are difficult to measure directly, this

often requires understanding the scaling relation between mass and one of several

observables. In this dissertation we work with optical data from the Dark Energy

Survey’s Science Verification (DES-SV) run and X-ray data from the XMM Cluster

Survey to examine the scaling relation between cluster mass and X-ray temperature.

As our mass measurements are derived using weak gravitational lensing, the first

component of this thesis describes the measurement of galaxy shapes, a necessary

step in lensing studies. In the process of gathering data to cover our entire cluster

sample, we measure ellipticities of approximately 590,000 galaxies, and make this

additional data public to complement the official DES-SV shape catalog. The second

component of the dissertation describes our measurement of stacked weak lensing

masses of 133 clusters. As SV data quality varies over different parts of the sky,

we develop a method for modeling observations that accounts for inhomogeneous

data quality. This method makes it possible to incorporate clusters with partial data

into lensing analyses. In the final section, we constrain the galaxy cluster mass-

temperature scaling law, and find it to be consistent with the self-similar model and

with previous measurements in the literature. We also examine the effect on the

scaling relation of several variations on the data.
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CHAPTER I

Introduction

Humans have been curious about the universe since the dawn of our race. The

earliest records of this astronomical curiosity are related to timekeeping, from bone

sticks dating back to 32,000 BCE Africa and Europe recording the phases of the moon

to calendars from an array of ancient civilizations centered around the movements

of the moon and Sun. Incorporating celestial measurements into architecture, the

ancient Egyptians align the pyramids by the pole star, and orient the Great Temple to

match the rising of the sun at the winter solstice. A precursor to object catalogs, the

bread and butter of modern cosmology, is found in 2nd millenium BCE Babylon—a

catalog of planets, stars, and constellations, amassed from several earlier sources.

Chinese astronomers record the appearance of twenty possible supernovae in the 1st

millenium CE.

We next remember the ancient Greek philosophers, who represent the celestial

motions using epicycles and propose the first-known heliocentric model of the solar

system. In the 4th-5th century CE, we find astounding astronomical accuracy in

the Indian text Surya Siddhanta, which calculates the sidereal year to within three

minutes, the moon’s period to within a second, and the diameters of Mercury and

Saturn to within 1%. A few centuries later, civilizations around the world record a

1
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“guest star”—the supernova that created the crab nebula.

In more recent times, we search the skies with the likes of Tycho Brahe, whose

mind-bogglingly meticulous records of celestial objects allow his student, Johannes

Kepler, to model planetary motion. With improvements in early telescopes, we

discover the moons of Jupiter with Galileo Galilei and develop a classical theory of

gravitation with Isaac Newton.

Over the last few centuries, we observe our universe through the eyes of ever-

increasing numbers of scientists. We discover the rest of the planets in our backyard—

modifying the definition of a planet along the way—and look far further out to

probe the properties of every type of astrophysical object, from supernovae to distant

galaxies. We attempt to comprehend the complexities of gravity and find it to be

embedded in the very fabric of space. We look to the earliest moments of the cosmos

and endeavor to understand its conception and growth and composition. We discover

unthinkably massive structures—clusters of galaxies—at the nodes of an even vaster

cosmic web.

Upon learning of the expansion of the universe, we set out to measure how it slows

and when it will collapse, only to find to our utter astonishment that it is somehow,

inconceivably—impossibly—accelerating.

1.1 Dissertation Overview

Humanity’s legacy of curiosity about the universe is exemplified today by the

endeavor to quantify dark energy, the name given to the invisible source of nega-

tive pressure causing the universe to accelerate, and to understand the history (and

perhaps the future) of cosmic expansion. This dissertation focuses on characterizing

the relation between galaxy cluster mass and temperature, a step on the path to
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characterizing dark energy using clusters of galaxies. The next few sections give an

overview of modern observational cosmology, focusing in particular on galaxy clus-

ters and methods of observing them. The last few sections of this chapter discuss the

datasets used throughout this work. Chapter II focuses on measuring and validating

galaxy shapes for weak lensing measurements, and presents measured shape catalogs

for public use. Chapter III discusses our cluster weak lensing analysis, including a

method we develop to account for inhomogeneities in cluster data, and provides the

resulting cluster masses. Chapter IV covers our constraining and examination of the

cluster mass-temperature scaling law.

1.2 Modern Observational Cosmology

In our efforts to understand and quantify the cosmos, we divide its energy density

into four components: matter, radiation, dark energy, and curvature. The energy

density of a flat universe, where there is no curvature, is called the critical density.

The “energy budget,” or total energy of the universe, can be written as the sum of

the energy densities of each of these components relative to the critical density:

(1.1) ΩM + Ωr + ΩDE − Ωk = 1

where Ωi is the energy density of the component i, divided by the critical density

of the universe, and M , r, DE, and k represent matter, radiation, dark energy, and

curvature, respectively. The expansion rate of the universe, H(z), can be expressed

as:

(1.2) H2(z) = H2
0

[
ΩM(1 + z)3 + Ωr(1 + z)4 + ΩDE(1 + z)3(1+wDE) + Ωk(1 + z)2

]
where z denotes the redshift, a measure of time. z = 0 signifies present day, making

H0 the current expansion rate of the universe. The exponents of each term dictate
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how each component affects the expansion rate as time goes by. Note that for

dark energy, this exponent is defined in terms of a variable wDE, the dark energy

equation of state, defined as the ratio of its pressure to its energy density. In fact, all

components affect the expansion rate according to their equations of state; however,

wi for the other components is well understood, leading to the exponents above.

wDE is one of the main parameters used to quantify dark energy. It can be written

as the sum of two terms, one constant and one time-dependent:

(1.3) wDE(z) = w0 + wa
z

1 + z

Precise measurements of w0 and wa can inform us about the effect of dark energy on

our universe, and how that effect is changing over time. If wDE = −1, dark energy

can be modeled as a cosmological constant, with no time dependence.

For more thorough background and derivations, see the recent review of cosmology

by Huterer & Shafer (2018).

Recent observations imply the current status of the universe to be flat, with Ωr

orders of magnitude smaller than ΩM and ΩDE. This results in a universe consisting

almost entirely of matter and dark energy:

(1.4) ΩM + ΩDE ≈ 1

Recent results from the Dark Energy Survey find ΩM = 0.279+0.043
−0.022 and wDE =

−0.80+0.20
−0.22 (DES Collaboration et al. (submitted)). As this analysis assumes a flat

cosmology, constraints on ΩM also imply constraints on ΩDE.

1.2.1 Probes of Dark Energy

There are various methods in use today to measure these parameters and quantify

the presence of dark energy in the cosmos. These include, but are not limited to:
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• Type Ia Supernovae (SNe) result when white dwarfs in binary star systems

accrete mass from their companions and approach the Chandrasekhar limit,

the amount of mass necessary for a supernova to occur. The similar nature of

Type Ia Sne progenitors across the universe makes them standard candles—

they exhibit a predictable absolute luminosity, allowing theoretical predictions

of observed luminosity, which is tied to the expansion of the universe. Compar-

ing observed luminosities to those predicted by cosmological models led to the

discovery of dark energy, and continues to constrain cosmological parameters

today. See Howell (2011) for a review.

• Baryon Acoustic Oscillations (BAO) are relics of the decoupling of matter

and radiation. Concentrations of primordial plasma, caught between gravity

and radiation pressure, exhibit oscillatory behavior. At the time of decoupling,

photons disperse, leaving behind shells of baryonic matter with known radius,

and providing standard rulers for cosmology. Observing this radius at various

distances is another modern probe of cosmic expansion. See Bassett & Hlozek

(2009) for a review.

• The Cosmic Microwave Background (CMB) provides us with an image of

the universe at the time of recombination, before the rise of dark energy. Oscil-

lations of matter-radiation couplings—similar to BAO—have left imprints that

can be observed today by measuring the distribution of hot and cold spots on

the CMB. Due to the absence of dark energy at the time of recombination, this

distribution can be characterized based solely on interactions between matter

and radiation, giving us a second standard ruler. Dark energy influences the

later universe, and thus affects the distance between us and the CMB. This in

turn affects the angle that this standard ruler subtends on the sky, making the
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angular distribution of CMB anisotropies a powerful probe of cosmology. See

Hu (2001) for a review.

• Weak Gravitational Lensing is the slight bending of light from background

objects by the gravitational potential of foreground objects. This phenomenon

manifests through distortions in both shapes of faraway galaxies and CMB

anisotropies. As this effect depends entirely on mass, it provides powerful in-

sight into the cosmic distribution of otherwise-invisible dark matter, allowing

us to probe cosmological parameters by comparing observed rates of structure

growth to those predicted by models. See Hoekstra & Jain (2008) for a review.

• Galaxy Clusters are massive objects whose growth is hampered by the pres-

ence of dark energy. We explore this cosmological probe further in the next

section.

Each of these methods exhibits various strengths and weaknesses, constraining some

cosmological parameters better than others. By combining the results from multiple

probes, we can understand the presence and history of dark energy more precisely

than with any one method. Figure 1.1 shows recent measurements of cosmological

parameters through the combination of several probes. For overall reviews of modern

observational cosmology, see Weinberg et al. (2013) and Huterer & Shafer (2018).

1.3 Galaxy Clusters

Galaxy clusters are the most massive gravitationally-bound objects in the uni-

verse, weighing in at 1013 − 1015M� (mass of the Sun) of matter. Their large grav-

itational potentials cause them to accrete mass, growing over time. However, the

presence of Dark Energy causes expansion, hindering this growth. This means that

one of the most powerful methods of characterizing the evolution of the dark energy
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Figure 1.1 Recent constraints on cosmological parameters, combining various cosmic probes, from
Vikhlinin et al. (2009b). Individual probes cannot constrain all parameters—for example, as seen
above, BAO analysis is not informative about the value of w0, and using SN Ia does not strongly
constrain ΩDE (marked as ΩX in this figure). However, combining several methods leads to the
much tighter constraints given by the red field marked “all.”



8

equation of state, w(z), is the study of how the number density of massive clusters

varies over time. By comparing the observed abundances of galaxy clusters over a

wide range of redshifts to simulations of the evolution of dark matter halos under

varying cosmological models, we can extract w(z) (see reviews in Weinberg et al.

(2013) and Voit (2005)).

1.3.1 Anatomy of a Cluster

Galaxy clusters are made up of ∼ 90% dark matter and ∼ 10% baryons. A cluster,

or collapsed dark matter halo, is defined as a sphere of radius rx, where the matter

density inside that radius is equal to x times the critical density of the universe at

the cluster’s redshift z, written ρcrit(z). The resulting mass within that radius is

taken to be the cluster mass, Mx:

Mx =
4

3
πr3

x × xρcrit(z)

ρcrit(z) =
3H2(z)

8πG

(1.5)

where H2(z) is the Hubble constant at the cluster’s redshift, and G is the universal

gravitational constant. The most commonly used measurements in cluster studies

are M200 and M500.

Most of a cluster’s baryons exist in the form of ionized hydrogen and helium

atoms, and make up the superheated gas permeating the halo, known as the intra-

cluster medium (ICM). This gas can be observed through various methods, discussed

in section 1.3.4, and is a gateway into learning more about the properties of clusters.

Only about a tenth of the baryonic matter rests in cluster galaxies. Cluster mem-

bers include a set of elliptical and lenticular galaxies known as the red sequence.

These old galaxies show a tight correlation between their colors and brightnesses,

or magnitudes, and are instrumental in detecting clusters and measuring their prop-
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erties such as redshift (Bower et al. (1992)). Figure 1.2 show the color-magnitude

diagrams of several clusters’ red sequences. Redder galaxies are brighter, with a

lower magnitude. The extremely low scatter seen here is instrumental in identifying

and characterizing these red sequences. The brightest of these galaxies are known as

BCGs, or brightest cluster galaxies. They are often assumed to be at—and used as

measures of—the centers of clusters.

Figure 1.2 Color-magnitude diagrams of a cluster, through multiple filters. Includes all objects
within a 3 arcmin × 3 arcmin cutout around the cluster center, with member galaxies marked in
color. For member galaxies, lower magnitudes correlate with greater brightness, and color is defined
as the difference in magnitudes of the object in images taken with different optical filters.

1.3.2 Cluster Cosmology

The cluster mass function, N(M, z), measures the number density of galaxy clus-

ters as a function of mass and redshift, and is the key to probing dark energy with

galaxy clusters. We observe this mass function in the nearby recent (low-redshift)

universe as well as the faraway old (high-redshift) universe, and compare the ob-

served structure growth rate to those calculated from varying cosmological models.

Figure 1.3, adapted from Vikhlinin et al. (2009b), shows an observed mass function

compared with expected values using two different values of ΩΛ. Note that the mod-

els not only cause the expected mass functions to shift, but also change the observed
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cluster abundances. This is because measuring cluster masses requires use of the

distance-redshift relation, which is also affected by cosmological parameters. Figure

1.4, adapted from a review of observational cosmology by Huterer & Shafer (2018),

shows the sensitivity of expected cluster counts to ΩM and wDE. Recent results in

cluster cosmology from Vikhlinin et al. (2009b) are shown in Figure 1.5.

Figure 1.3 Observed mass function using data from the Chandra X-ray Telescope (data points
and errors), overlaid with expected mass functions (solid lines) at different redshifts from two
cosmological models. The modeled absence of dark energy (right panel) predicts a much higher
cluster growth rate than the one observed. Figure credit Vikhlinin et al. (2009b).

In order to find the cluster mass function, N(M, z), it is necessary to obtain precise

measurements of cluster masses over a large range of redshifts and masses. This is

complicated by the fact that ∼ 90% of a cluster’s mass is made up of dark matter,

which does not interact with photons and thus cannot be detected using traditional

electromagnetic telescopes.

1.3.3 Direct Measurements of Cluster Mass

There are several methods of directly measuring cluster mass, among them weak

lensing, dynamical mass measurements, and X-ray hydrostatic measurements. Un-
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Figure 1.4 Sensitivity of cluster abundances over time to variations in ΩM and wDE . Comparing
observed abundances to these expectations from a variety of cosmological models lets us constrain
these parameters. Figure credit Huterer & Shafer (2018).
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Figure 1.5 Constraints on cosmological parameters w0 and ΩDE (here named ΩX) using two different
methods of cluster mass measurement, by Vikhlinin et al. (2009b). Combining the evolution of the
mass function with information about its shape gives tighter constraints, as seen by the red ellipse.
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fortunately, these measurements are highly susceptible to systematic bias, making

it difficult to simultaneously characterize both the data and the errors. Here, we

review some of these methods and their challenges.

Weak Lensing Mass

As discussed in Section 1.2.1, lensing is the distortion of light traveling from

faraway objects as it passes by strong gravitational fields on its way to our telescopes.

Galaxy clusters provide such strong gravitational fields, and studying the light from

galaxies behind clusters gives us a direct way of measuring cluster mass.

As noted in the name, weak lensing very faintly distorts observations from back-

ground galaxies. This distortion, known as shear, is too faint to be discernible by

looking at images of clusters, but can be detected statistically with large ensembles

of galaxies. Galaxies are intrinsically elliptical, and, in the absence of a lens, will be

observed to be randomly oriented on the sky. Shear causes galaxies to seem to align

around the central cluster, giving the ensemble a non-zero tangential component of

ellipticity. Figure 1.6 shows an exaggerated visualization of this effect. Note that,

as expected, the distortion is greatest near the cluster center, and fades as we move

further away.

The amplitude of the lensing signal is directly affected by the strength of the

gravitational potential causing the distortion. By measuring this shear in the shapes

of the background galaxies, we can calculate the amount of mass necessary in the

foreground to create the signal observed.

While this seems simple enough in theory, cluster weak lensing is riddled with

the same challenges as using lensing as a cosmological probe in its own right. First

and foremost, galaxy shapes are notoriously hard to measure. Uncontrollable factors

such as humidity and wind cause their own distortions to light as it travels through
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Figure 1.6 The (exaggerated) weak lensing effect of a lens on observations of a field of background
galaxies. On the left are the galaxies without a lens, randomly oriented across the sky. On the
right we add a cluster and the resulting shear. Image modified from Wikipedia.

the Earth’s atmosphere, skewing and possibly reversing the effects of shear. While

trying to measure shear around a particular cluster, nearby structure, such as another

cluster close to the line of sight, can further distort the images of background galaxies

in unexpected ways. Because the signal is weak, we also require observations of a

great number of background galaxies, which usually requires detection of very faint

and faraway objects.

More details and mathematical background on this topic follow in Section 3.1.

For a review on cluster weak lensing, see Hoekstra et al. (2013).

X-ray Hydrostatic Mass

This method of mass measurement assumes clusters are in hydrostatic equilibrium—

at any radius within a cluster, the pressure of the intracluster gas balances out the

inward gravitational pull, giving the cluster a stable structure:

(1.6)
dPg
dr

=
−GM(r)ρg

r2
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Here, Pg and ρg are the gas pressure and density, respectively, G is the universal

gravitational constant, and M(r) is the mass of a cluster contained within radius r.

By measuring the temperature and density of the intracluster gas (through X-ray

observations, as described in 1.3.4) and expressing the gas pressure in terms of these

quantities, we can calculate the mass necessary to achieve this equilibrium:

(1.7) M(r) = − kbTg
µmpG

(
d(ln ρg(r))

d(ln r)
+
d(lnTg)

d(ln r)

)
r

where kb is Boltzmann’s constant, µmp is the mean mass of the gas particles, and Tg

is the gas temperature. See Section 5.5 of Sarazin (1988) for a review on hydrostatic

masses.

Unfortunately, this method is complicated by the possibility of clusters not ex-

hibiting hydrostatic equilibrium - for example, merging clusters and clusters accreting

mass experience far more agitated gas flows. Cooling of the gas at cluster cores can

also cause disturbances to this equilibrium. In fact, existing measurements of the

mass-temperature scaling relation, using both hydrostatic and other types of mass

measurements, indicate that hydrostatic masses may be biased low, especially in

the low-mass regime (Kettula et al. (2013), Mahdavi et al. (2013)). We explore the

possibility of this further in Chapter IV.

Dynamical Mass

Dynamical mass measurements also capitalize on a cluster’s gravitational poten-

tial. Instead of looking behind clusters, they make use of observations of the velocity

dispersions of cluster member galaxies. Assuming galaxies in a cluster are bound

to each other through gravity, otions of member galaxies are directly related to the

strength of the gravitational potential - in the most simplified model, a greater mass

will cause higher galaxy orbital velocities. This fundamental concept is tempered by
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complications such as unrelaxed clusters, mergers, infalling mass, etc.

This dissertation is based on weak lensing mass measurements, and explores ques-

tions related to hydrostatic masses. However, we do not explore dynamical masses

further in this work. For further details and a comparison of dynamical mass mea-

surement methods, see Old et al. (2014) and Old et al. (2015).

1.3.4 Cluster Finding and Mass Proxies

Clusters can be detected through a number of electromagnetic methods, spanning

the optical, microwave, and X-ray wavelengths. Observables from these methods

can serve as proxies for cluster mass (Weinberg et al. (2013)). These observables are

relatively easier to measure than direct cluster masses, making them ideal candidates

for conducting large-scale mass measurements.

The use of these proxies is limited by the precision to which we understand the

mass-observable scaling relationship, p(O|M, z). Constraining this relation requires

a set of clusters for which both observations of the proxy and reliable direct mass

measurements are independently available.

Optical and Near-Infrared Observations of Clusters

Optical and near-infrared surveys find clusters by searching for bunches of galaxies

of similar redshifts that are spatially close to each other. For example, the redMaPPer

algorithm finds clusters by searching for red sequences in galaxy catalogs (Rykoff

et al. (2014)). redMaPPer also measures the most common optical observable of a

cluster - the count of its galaxies, known as its richness. Though only ∼ 1% of a

cluster’s mass resides in its galaxies, richness grows with cluster mass, and serves as a

relatively easily-measurable proxy. A second observable matches a cluster’s mass to

the combined stellar mass of its members, µ?. Figure 1.7a shows recent constraints
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on the richness-mass relation from the Dark Energy Survey collaboration (Melchior

et al. (2017)), and Figure 1.7b shows a scaling relation between stellar mass and

cluster mass using data from the Sloan Digital Sky Survey (Pereira et al. (2017)).

(a)

(b)

Figure 1.7 Scaling relations between optical observables and cluster mass. (a) Comparison of recent
scaling relations between cluster richness and mass, showing 1 − σ intervals. Figure taken from
(Melchior et al. 2017) - labeled “this work” - presenting results from the Dark Energy Survey’s
Science Verification data. (b) Scaling relation between total stellar mass and cluster mass, showing
a 2− σ interval. Figure taken from (Pereira et al. 2017) presenting results from the Sloan Digital
Sky Survey’s Stripe 82 data.

CMB Observations of Clusters

The cosmic microwave background (CMB) provides us with another way of detect-

ing and characterizing clusters. Radiation from the CMB passing through a cluster

is inverse-Compton scattered by the intra-cluster medium (ICM) in a process known

as the Sunyaev-Zel’dovich effect (Sunyaev & Zeldovich (1972)). Measuring these

aberrations in the CMB not only help us detect clusters, but also provide us with

an observable which scales with cluster mass. Recent scaling relations between mass

and the strength of the SZ signal have been derived using CMB data from Planck

(Ade et al. (2011)) and the South Pole Telescope (SPT) (Stern et al. (submitted)),

and are shown in Figure 1.8.
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(a) (b)

Figure 1.8 Scaling relations between CMB observables and cluster mass. (a) Scaling relation between
SZ observable and cluster mass, showing results using Planck data with a 1σ interval, and comparing
to previous works. Figure taken from (Ade et al. (2011)). (b) Comparison of recent works on the
SZ observable and mass, showing mass probability distributions for a single SZ cluster using various
recent scaling relations. Figure taken from (Stern et al. (submitted))—denoted by the red curve
and labeled “this work”—presenting results from the Dark Energy Survey’s Science Verification
data.

X-ray Observations of Clusters

The superheated gas of the intracluster medium emits bremsstrahlung radiation

in the X-ray spectrum. This allows the detection of galaxy clusters by searching

for extended sources in data from X-ray telescopes. The extended, or spread-out,

nature of the ICM helps discern clusters from other strong X-ray sources, such as

active galactic nuclei. Spectral data of clusters in the X-ray range provides infor-

mation about the energy of the observed radiation, and allows measurement of the

temperature of the ICM. This temperature, as well as the cluster luminosity - a

measure of the strength of the X-ray radiation - can be used as proxies for cluster

mass. The brightness of the radiation over the extended area also allows calculation

of the cluster gas mass, which when multiplied with temperature gives the thermal

energy of the ICM, a quantity that has been observed to scale with cluster mass with

relatively low scatter. Figure 1.9 shows a few recent scaling relations between cluster

mass and X-ray observables.
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(a)
(b)

(c)

Figure 1.9 Scaling relations between X-ray observables and cluster mass. (a) Scaling relation be-
tween thermal energy of ICM and cluster mass, showing results using Chandra data (Vikhlinin
et al. (2009a)). (b) Scaling relation between cluster temperature and mass, using Chandra and
XMM data (Kettula et al. (2013). (c) Scaling relations between cluster mass and luminosity (left)
and temperature (right), using data from Chandra and ROSAT (Mantz et al. (2010)).
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The extended X-ray data is also used to measure each cluster’s X-ray barycenter.

The X-ray emission is a direct indicator of the presence of the intracluster medium—

barring any interference from extraneous point sources such as active galactic nuclei,

which are subtracted from the signal—and the ICM is assumed to trace the dark

matter distribution, making this an ideal measure of the cluster center for lensing

studies.

See Sarazin (1988) for a review of the X-ray properties of clusters.

1.4 The Dark Energy Survey (DES)

Modern observational cosmology capitalizes on large-scale surveys—explorations

of gargantuan swathes of the night sky, aiming to gather information on as-yet undis-

covered cosmic objects. These surveys provide the large statistical datasets necessary

for most probes of cosmology.

The Dark Energy Survey (DES) is a multi-band optical survey of an eighth of the

sky, aiming to constrain w(z) through the use of several probes, including the study

of the evolution of galaxy clusters over time. The survey consists of two parts - wide

field imaging of 5000 sq. deg. in the grizY bands, and recurring deep field imaging

of 30 sq. deg. in the griz bands, both through the Dark Energy Camera (DECam)

(Flaugher et al. (2015)) mounted on the 4m Blanco telescope at the Cerro Tololo

Inter-American Obseratory in Chile. Over the course of this extensive survey, DES

expects to find ∼ 100, 000 galaxy clusters and ∼ 300 million galaxies. Objects as dim

as the 24th magnitude and as far away as z6 have been observed and analyzed, with

more to be found as the survey progresses. This unique data set provides us with a

sufficient statistical sample and large enough redshift range for a cluster-WL analysis

that is significantly improved over previous surveys (such as the Sloan Digital Sky
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Survey, where the limiting magnitude is ∼ 221).

The data used in this work is from the DES Science Verification (SV) run, a four-

month testing period that followed first light in 2012. As this was a testing run, it

brought about many improvements to the instrumentation, honing it for subsequent

runs. As such, data from this run is of a lower quality than can be expected of the

entire survey. However, in this work, we show that even SV data is sufficient to place

meaningful constraints on the cluster M − Tx scaling relation.

Data from the SV run is distilled into the DES SVA1-Gold catalog, a list of

observed sources passing numerous quality cuts. All objects were observed at least

once in each of the griz bands, with the possibility of multiple measurements in

each band. The individual measurements are combined to determine positions and

magnitudes, among other properties. Further details, including calibrations and

quality cuts, can be found in the documentation for the official DES-SVA1 data

release2.

1.4.1 Star-Galaxy Separation

Lensing studies only use galaxies—stars are, of course, in the foreground of any

object of interest. The SVA1-Gold catalog sorts objects using the DES-developed

“Modest Star-Galaxy Separation,” which finds galaxies by looking at how point-like

objects are, through the use of the spread model output from object-finder Source

Extractor. This estimator catches & 98% of galaxies, with a false contamination rate

. 3%. Further details can be found in the DES-SVA1 data release documentation2.

1http://www.sdss.org/dr13/scope/
2https://des.ncsa.illinois.edu/releases/sva1
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1.4.2 Photometric Redshifts

Object redshifts, from which we infer object distances, are imperative to lensing

studies—they let us measure of how far behind a cluster a source is observed. How-

ever, galaxy spectra take great amounts of telescope time to observe—for example,

the Dark Energy Spectroscopic Instrument (DESI), currently being built and ex-

pected to provide at least an order of magnitude increase in the number of observed

galaxies over current surveys, will only measure spectra from ∼ 30 million galax-

ies over five years3, an order of magnitude less than DES’s expected galaxy count

over the same time period. This makes it unrealistic to attempt to measure true

spectroscopic redshifts for the entire DES ensemble of galaxies.

Instead, photometric redshift (photo-z) measurements are found through the use

of several independent machine-learning pipelines. These algorithms estimate the

probability density function p(z) of the redshift of an object, using its magnitudes

through various filters, calibrating their estimates on results from a representative

subsample of galaxies for which both photometric and spectroscopic redshifts are

available (Sánchez et al. (2014)). This work primarily uses mean photo-z measure-

ments from the DES TPZ pipeline, with some use of the DESDM Neural Network

results for testing purposes.

1.5 The DES-SV-XCS Cluster Sample

The clusters used in this dissertation are detected by the XMM-Newton Cluster

Survey (XCS) (Lloyd-Davies et al. (2011), Mehrtens et al. (2012), Viana et al. (2013))

and followed-up by DES. Optical data from DES SV confirm the X-ray detections

and provide photometric data for measurement of cluster redshifts, which are then

3See DESI final design report: http://desi.lbl.gov/tdr/
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combined with XCS data to measure X-ray temperatures for each cluster.

The XMM-Newton Cluster Survey (XCS) conducts a serendipitous search of

archival XMM-Newton data for galaxy clusters and groups, looking for extended X-

ray sources using the XAPA pipeline Manolopoulou et al. (in prep.). Once detected,

candidates are confirmed through visual follow-up using data from overlapping opti-

cal surveys—in our case, DES. During this follow-up, we remove false detections and

clusters that have been detected twice (with different centers). We also mark clusters

which have been mis-centered, possibly due to the presence of point X-ray sources

that were missed by the automatic pipeline. This last set is then rerun through the

pipeline to obtain better measurements of the center.

Once clusters are confirmed, the next step is to assemble redshifts. Spectroscopic

redshifts are used where available from previous literature. For the rest, photomet-

ric redshifts are measured using multi-band DES data to examine the cluster red

sequences, as described in Appendix B of Das et al. (in prep.).

1.5.1 Cluster X-Ray Temperatures

Cluster temperatures, Tx, are measured from X-ray spectra, as described in Sec-

tion 1.3.4. XCS measures both core-excised and non-core-excised temperatures for

each cluster. The non-core-excised temperature makes use of spectra from an ellipti-

cal aperture with semi-major axis equal to each cluster’s R500, centered on the cluster

detection region. For more details on aperture selection and Tx measurements, see

Manolopoulou et al. (in prep.).

Core-excised temperatures were measured using the same apertures as above, but

with a central area of radius 0.15R500 removed. In order to avoid biased temperature

measurements due to cool cluster cores, we use these Tx values through most of this

work.
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1.6 DES Simulated Sample

To validate the analysis presented in this work, we test our pipeline on data from

the Buzzard v1.1 simulations. Buzzard covers 10313 sq. deg. and contains 971

million galaxies “observed” in the DES filter bands, and out to DES depth. The

simulation provides a halo catalog, from which we choose halos to match our cluster

sample. For each cluster in the DES-XCS sample, we choose a halo of similar mass

and redshift, creating our simulated halo sample (for more details, see section 3.7.1).

The galaxy catalog provides redshifts, magnitudes, and positions, comparable to the

DES object catalog, and shears for each object are measured using ray-tracing. For

further details, see DeRose et al. (in prep.) and Wechsler et al. (in prep.).



CHAPTER II

Galaxy Shape Measurements

Weak gravitational lensing is the most direct method of measuring masses of

galaxy clusters, and is the method used throughout this work. It is also one of the

most difficult methods, due to the intricacies of measuring galaxy shapes, which form

the backbone of weak lensing measurements. Measuring shapes requires extremely

high-resolution data - multiple pixels on the image for each faraway galaxy - and is

complicated by the fact that light passing through our atmosphere is refracted by

environmental factors such as wind and water vapor, distorting images of objects

by the time they reach the telescope. Adding in the fact that weak lensing is only

measurable as an averaged effect over an ensemble of hundreds to thousands of

galaxies, we also require large amounts of data and computing time in order to make

meaningful measurements.

This work uses galaxy shapes from the Dark Energy Survey Science Verification

(DES-SV) data. The official DES-SV shape catalog contains measurements spanning

a 139 sq. deg. patch of sky. However, the DES-SV observations cover an additional

∼ 110 sq. deg. of sky, for which photometric and astrometric object data is available.

As a majority of the clusters in our sample lie in these extra regions, we run the DES-

SV shape measurement pipeline on areas of sky surrounding these clusters, test our
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results, and present them for public use. In this effort, we make available shapes for

an additional 590,000 galaxies, ∼ 27% the size of the official DES-SV release.

This chapter presents the galaxy shape catalogs used throughout this work. We

briefly describe the DES-SV shape measurement pipeline in Section 2.1. In Section

2.2, we present the data from our additional runs of the pipeline, including various

quality checks. Section 2.2.2 details how to access this data. Related to this chapter,

Appendix B provides a short set of instructions on how to run the shape measurement

pipeline.

2.1 Galaxy Shapes from the Dark Energy Survey

The DES-SV shape measurement pipeline and associated data products are docu-

mented by Jarvis et al. (2016) in the DES-SV Weak Lensing Shear Catalogues paper,

from which we present some pertinent details below. This pipeline takes data from

the SVA1-Gold catalog and processes it through several steps:

1. MEDS file creation: Multi-Epoch Data Structures (MEDS) are created to col-

late all available relevant information for a given object into one easily-accessible

file, using the meds1 and deswl shapelets2 libraries. Each MEDS file orga-

nizes data for all observations of all objects in a given DES tile. For each object,

the file includes cutout images of all instances of observation in all filters, after

initial calibrations (sky-background subtraction, magnitude calibration, etc.). It

also includes segmentation and weight maps from Source Extractor (SEx-

tractor), the program used to identify objects in DES images. These maps

contain pixel-by-pixel information about image detection and quality (for fur-

ther details about SExtractor outputs, see Bertin & Arnouts (1996) and

1https://github.com/esheldon/meds
2https://github.com/rmjarvis/deswl shapelets
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additional documentation3). Finally, MEDS files flag any observations whose

quality is compromised, such as images that have airplanes flying through. For

further details on the creation and use of MEDS files, see Section 5 and Ap-

pendix A of Jarvis et al. (2016).

2. PSF measurement and inclusion: The point-spread-function (PSF) informs how

much an object’s shape is distorted due to atmospheric (and sometimes instru-

mental) effects. By examining stars - which should ideally look like points - in

a given image, we can calculate and reverse this effect on other nearby objects.

This step calculates the estimated PSF at the position of each galaxy for each

observation of that galaxy, and creates a list of images whose PSFs are too large

to pass data quality checks (PSF blacklist). To do this, the PSF is first mea-

sured at the positions of stars in the CCD where the galaxy is observed, using

the PSF Extractor (PSFEx) package (Bertin (2011)). These individual

measurements are then interpolated to measure the PSF at any other location

on the CCD. For further details, see Section 4 of Jarvis et al. (2016).

3. Shape measurement pipeline: DES uses two different shape measurement pipelines,

Im3shape and ngmix, which work with the outputs of the previous steps. Fur-

ther details on both pipelines can be found in Section 7 of Jarvis et al. (2016).

In this work, we use results from the Im3shape pipeline, as it covers a larger

section of sky than ngmix (and thus includes more of our clusters). We describe

this pipeline further in the following section.
3https://www.astromatic.net/software/sextractor
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2.1.1 Im3shape

A galaxy’s observed shape and orientation can be quantified by two components

of ellipticity, e1 and e2:

(2.1) e = e1 + ie2 = |e| exp(2iφ)

where φ represents the galaxy’s orientation angle. The ellipticities used in this work

are measured from optical DES r-band data using the Im3shape v9 shape measure-

ment pipeline, described in depth in Section 7.3 of Jarvis et al. (2016). This pipeline

fits both a bulge and disc model to each galaxy, retaining the result with greater

likelihood, and translates the fit into e1 and e2 values. It also provides a weight for

each galaxy, based on both shape noise and the measurement uncertainty for that

particular galaxy (details in section 7.3.4 of Jarvis et al. (2016)).

As Im3shape is a maximum-likelihood model-fitting program, its estimated ellip-

ticities are affected by noise bias. To correct for this, as well as small selection effects

and a low model bias, the pipeline includes a noise bias correction (NBC), providing

multiplicative and additive correctors for each galaxy. The multiplicative term, m,

is applied collectively to an ensemble of ellipticities, while the additive terms, c1 and

c2, are applied individually to each galaxy’s e1 and e2, respectively (see Section 3.1.3

for details on applying these corrections). These correctors are measured using sim-

ulated data from the GreatDES suite, which matches well with DES data quality

(see Section 2.2.1 for details).

To ensure unbiased scientific results, Im3shape ellipticities are blinded. Each

e1 and e2 is multiplied by an unknown α between .9 and 1, preventing us from

subconsciously skewing our analysis to match results from previous literature. Only

after all analysis methods and corrections are finalized is the data unblinded, keeping
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final results free from experimenter’s bias.

Further details on Im3shape and corrections can be found in the DES SV Weak

Lensing Shear Catalogues paper (Jarvis et al. (2016)). We also outline the steps

necessary to measure shapes using Im3shape in Section ??)

Im3shape Data Quality Cuts

Once shapes have been measured, they undergo several quality cuts, based on

runs of Im3shape on simulations, to weed out unreliable results. These include the

following conditions, where each parameter below is an output of the pipeline:

• error flag == 0: ensures that the pipeline ran and converged properly; weeds

out objects that are too large or faint

• info flag == 0: more conservative - removes objects that are: too small;

flagged by the object detection software SExtractor; in parts of the sky for

which we cannot measure photometry properly; etc.

• (S/N)w > 15: removes objects with low signal-to-noise ratio (SNR); (S/N)w

measures a galaxy’s SNR by taking a weighted average of the SNR values of all

pixels in the galaxy (see Section 7.2 of Jarvis et al. (2016) for details)

• Rgp/Rp > 1.2: removes objects that are not sufficiently well-defined beyond the

PSF (Rgp is the size of the object convolved with the PSF, while Rp is the PSF

size)

2.2 Shapes for the DES-SV-XCS Cluster Sample

The official DES-SV Im3shape catalog contains shear measurements spanning

a 139 sq. deg. patch of sky known as the SPT-E region (Jarvis et al. (2016)).

However, the DES-SV observations cover an additional ∼ 110 sq. deg. of sky,
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and the official object catalog—DES-SVA1 gold4—provides vetted astrometric and

photometric data in these extra regions. These extra regions contain 104 of the 133

clusters in our sample (see Figure 2.1). In order to use as many clusters as possible,

we run the Im3shape and noise bias calibration pipelines on 80arcmin x 80arcmin

areas of sky surrounding these clusters.
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Figure 2.1 Positions of clusters in our sample. Cyan shows clusters for which shape measurements
are available through the official DES-SV Im3shape catalog. Blue shows clusters for which we run
the pipeline ourselves.

In this effort, we generate shapes for approximately 590,000 galaxies in the DES-

SV sky outside the SPT-E region, adding to the 2.12 million galaxies in the official

catalog. These shape measurements were run before the cluster list was finalized—

thus, these additional catalogs include areas around clusters in our final sample, as

4https://des.ncsa.illinois.edu/releases/sva1
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well as areas of sky containing potential clusters that were later dropped.

2.2.1 Validating Additional Catalogs

As mentioned in Section 2.1.1, noise bias corrections and shape quality cuts de-

pend on the physical properties of the ensemble of objects to be calibrated. The

corrections and cuts for the official catalog were calculated using the Great-DES

simulation suite, and multiple tests were conducted to ensure that the simulations

were an accurate representation of the dataset (Jarvis et al. (2016)). In order to use

the same cuts and NBC calcuations for our measurements, we must show that the

additional regions of sky are comparable to the regions in the official catalog, making

them also representable by Great-DES. For reference, the tests between the DES

official catalog and Great-DES are shown in Figure 2.2 and listed here:

• the ensemble’s distribution of the magnitude of ellipticity, |e| =
√
e2

1 + e2
2 (top

left panel)

• the ensemble’s distribution of Rgp/Rp, defined in Section 2.1.1 (top middle

panel)

• the ensemble’s distribution of (S/N)w (signal-to-noise ratios), defined in Section

2.1.1 (top right panel)

• comparison of galaxy sizes to signal-to-noise ratios (bottom left panel)

• comparison of Rgp/Rp values to signal-to-noise ratios (bottom middle panel)

• bulge fraction: portion of the ensemble for which the bulge model is deemed to

fit best, as varies with signal-to-noise ratio (bottom right panel)

NBC measurements particularly depend on the distribution of an ensemble’s |e|,

and on the relationship between object size and (S/N)w (the two leftmost panels in

Figure 2.2). Figure 2.3 shows these properties for both the official catalog and the
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ensemble of additional areas. We find that these properties are similar for both sets,

allowing us to use the same noise bias calibration for the extra regions of sky.

Figure 2.2 Comparison of official DES-SV Im3shape catalog to Great-DES simulations, from
Jarvis et al. (2016). See bulleted list in Section 2.2.1 for details about each panel.

To further ensure catalog quality, we follow Jarvis et al. (2016) and run all the

other comparisons shown in Figure 2.2. Our results, shown in Figure 2.4, assure us

that the additional regions of sky are comparable to the regions in the official release,

and thus also comparable to Great-DES. We conclude that both the quality cuts

and the noise bias calibrations for the official catalogs are applicable to our entire

sample.

2.2.2 Accessing Additional Catalogs

The official DES-SV shape catalog has already been released to the public (see

details in Jarvis et al. (2016)). In the interests of promoting open science and research
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Figure 2.3 Comparison of official DES-SV Im3shape catalog to runs of Im3shape on additional
areas of sky. Top shows histograms of |e|, and bottom shows the dependence of object size on
signal-to-noise ratio, denoted (S/N)w. See bulleted list in Section 2.2.1 for definitions of each
quantity.
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Figure 2.4 More comparisons of official DES-SV Im3shape catalog to runs of Im3shape on addi-
tional areas of sky. Top shows histograms of e1 and e2, middle shows histograms of Rgp/Rp and
(S/N)w, bottom shows the dependences of Rgp/Rp and bulge fraction on (S/N)w. See bulleted list
in Section 2.2.1 for definitions of each quantity.
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repeatability, we make these additional catalogs also available. Currently, they can

be found in the University of Michigan Deep Blue repository, at:

http://dx.doi.org/10.7302/Z2F769SJ

In the near future, we expect to also make these available at the same location as

the official DES SVA1 release5.

As with the official release, these catalogs are unblinded. Unlike the official release,

however, which presents a single list of galaxies over its entire footprint, this data

is arranged by cluster (for ease of use with our analysis). Each catalog contains

information for galaxies in a 80′ × 80′ cutout centered at a given cluster, and is

named by both the cluster name and the DES tile in which the cluster is found:

“[des tile] [cluster name].fits”. Note that these catalogs are not entirely analogous

to the official SV catalog. For one, we only measure shapes for galaxies, as stars

and other objects are not needed for this analysis. Our catalogs also only extend to

a magnitude of 24 in r-band, whereas a small fraction of the objects in the official

Im3shape catalog are dimmer (see Figure 29 of Jarvis et al. (2016)). This does not

affect our analysis as we use objects with a magnitude of 23 and lower for our main

analysis, and only use objects up to a magnitude of 24 for checking the robustness

of our results (see Sections 3.4.1 and 3.7.2).

We also include other information necessary for weak lensing studies. Aside from

all fields from Im3shape and noise bias calibration (listed and described in Jarvis

et al. (2016)), these catalogs contain columns for object positions (“ra gold”,

“dec gold”) and magnitudes (“mag detmodel g”, “mag detmodel r”, “mag

detmodel i”, “mag detmodel z”) from the SVA1-Gold catalog. Addition-

ally, we include mean redshift measurements from two DES photo-z measurement

5https://des.ncsa.illinois.edu/releases/sva1
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pipelines, TPZ and DESDM Neural Network (“z TPZ”, “z DESDMnn”) (Sánchez

et al. (2014)).

For completeness associated with this work, we present catalogs for all the clusters

in our analysis, including the ones that are present in the official release. This makes

this work more easily reproducible, as all the data is in one place. We also include

the extra catalogs around possible clusters that were later dropped from our sample,

in order to maximize the part of DES-SV footprint for which shapes are available.

The area covered by all catalogs in our repository is shown in Figure 2.5.
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Figure 2.5 Area covered by catalogs provided (arranged by cutouts around clusters). Cyan shows
areas for which shape measurements are available through the official DES-SV Im3shape catalog.
Blue shows areas for which we run the pipeline ourselves.
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2.3 Summary

In this chapter, we discuss the optical data—namely, the galaxy shape catalogs in

areas of sky surrounding the DES-SV-XCS cluster sample—that are used through the

rest of this dissertation. All shapes are calculated using the Im3shape v9 pipeline

and associated noise bias calibrations. Our final optical sample can be divided into

two areas of sky:

• areas covered by the official DES SV shape catalogs, for which we use the official

data

• areas observed during the DES SV run and for which we have photometric data,

but which were excluded from official shape measurements in order to expedite

work on the included regions

For the latter areas of sky, we run the Im3shape pipeline ourselves, and conduct

quality checks on these additional measurements by comparing ensemble properties

with those of the official catalog. We present this data, shapes for an additional

∼ 590, 000 galaxies in the DES-SV sky, for public use. We conclude with addi-

tional material in Appendix B—a brief description of how to measure shapes with

Im3shape, documenting for use in any future such ventures.



CHAPTER III

Stacked Cluster Weak Lensing Masses

The first step of cluster cosmology is measuring cluster masses. The most direct

way of measuring cluster mass uses weak gravitational lensing (WL), quantifying the

distortion of background galaxies by large masses in the foreground. Light traveling

to the instrument from distant (background) galaxies is bent by the gravitational

potential of nearby (foreground) massive objects, such as galaxy clusters. By mea-

suring this distortion in the shapes of the background galaxies, we can calculate the

amount of mass necessary in the foreground to create the signal observed. Unfor-

tunately, these measurements are highly susceptible to systematic bias, making it

difficult to simultaneously characterize both the data and the errors.

A number of observables, such as X-ray temperature, can serve as proxies for

cluster mass (Weinberg et al. (2013)). These observables are relatively easier to

measure, making them ideal candidates for conducting large-scale mass measure-

ments. The use of these proxies is limited by the precision to which we understand

the mass-observable scaling relationship, p(O|M, z). Further discussion of scaling

relationships can be found in Chapter IV. Constraining this relation requires a set of

clusters for which both observations of the proxy and reliable direct mass measure-

ments are independently available. In this chapter, we probe such a set of clusters,
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measuring masses using weak lensing with the aim of comparing to observations of

X-ray temperatures.

Using weak lensing to measure cluster mass requires measuring a lensing signal

with relatively low noise, which in turn requires measurements of a large number

of background galaxies. In order to strengthen the cluster lensing signal—especially

for less massive clusters, where the effect is weaker—we bin clusters by temperature

and stack the clusters of each bin to measure a combined lensing signal. Stacking

is a common method used by several studies to measure cluster mass-observable

relationships—see Sheldon et al. (2001), Johnston et al. (2007b), Okabe et al. (2010),

Melchior et al. (2017), and Pereira et al. (2017) for a few examples.

These previous studies assume homogeneity of data throughout the cluster sample,

allowing them to model stacked cluster lensing signals using a single theoretical signal

calculated using a model cluster mass. However, our data is highly patchy, meaning

we cannot assume uniform data quality across our cluster sample, or even across the

field of a single cluster. For this reason, we develop a way of modeling stacked cluster

lensing profiles that takes into account data inhomogeneity, both between clusters

and within individual cluster fields. This method gives us the ability to measure

cluster masses using any dataset, without needing to exclude clusters for low data

quality. This is a great advantage for weak lensing studies, where the signal is only

as strong as the abundance of background galaxies, as it allows us to make use of

every bit of data available.

This chapter is organized as follows: first, we review the math behind cluster weak

lensing, and draw a path from observations to a measured lensing signal. Section

3.2 describes and characterizes the datasets used, followed by our measurement of

the lensing signal and errors in Section 3.3. Section 3.5 focuses on our methodology
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for modeling the lensing signal while taking into account the wide range of cluster

redshifts as well as inhomogeneities in our data, and Section 3.6 shows our results.

In Section 3.7, we perform various tests to validate our new analysis method, as well

as our results. We name our analysis pipeline LensStack, and make it available for

public use—Appendix A describes where to find it and how to run it.

3.1 Clusters and Weak Lensing

3.1.1 Halo Mass Profile

The radial mass distribution of a dark matter halo, ρ(r), can be modeled by the

Navarro-Frenk-White (NFW) density profile:

(3.1) ρ(r) =
ρ0

(r/rs)(1 + r/rs)2

where ρ0 and rs - known as the scale radius - are free parameters (Navarro et al.

(1996)).

The halo at redshift z is considered bounded by its virial radius, r200, the radius

within which the mass density equals 200 times the critical density of the universe,

ρcrit = 3H2(z)
8πG

. The corresponding mass is then:

(3.2) M200 = 200ρcrit
4

3
πr3

200 = 100
H2(z)

G
r3

200

The mass distribution can also be defined by r200 - and thus by M200 - and a

parameter known as concentration, c = r200/rs:

(3.3) ρ(r) =
δcρcrit

(rc/r200)(1 + rc/r200)2

where δc, known as the halo’s characteristic overdensity, is

(3.4) δc =
200

3

c3

ln(1 + c)− c/(1 + c)
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3.1.2 Shear and Surface Mass Density Contrast

The weak lensing effect a halo has on its surroundings can be distilled into two

components, convergence κ and shear γ. Convergence changes the observed size of

objects behind the halo, while shear distorts their shapes. The strength of these

effects at a distance r from the halo center can be quantified with respect to the

halo’s surface mass density, Σ(r), and the critical surface mass density between the

halo and the distorted object, Σcrit (Wright & Brainerd (2000)):

(3.5) Σcrit =
C2

4πG

Ds

DlDls

C is the speed of light, and Ds, Dl, and Dls denote angular diameter distances - to the

source, to the lens, and between the lens and source, respectively (Miralda-Escude

(1991)).

The surface mass density of an NFW halo is given as a function of a dimensionless

radius x = r/rs by

(3.6) Σ(x) =


2rsδcρcrit
x2−1

[
1− 2√

1−x2 arctanh
√

1−x
1+x

]
x < 1

2rsδcρcrit
3

x = 1

2rsδcρcrit
x2−1

[
1− 2√

x2−1
arctan

√
x−1
1+x

]
x > 1

Convergence can be expressed simply as

(3.7) κ(x) =
Σ

Σcrit

but shear depends on both the surface mass density at a given radius and the mean

surface mass density within that radius, Σ(x), given by

(3.8) Σ(x) =
2

x2

∫ x

0

x′Σ(x′)dx′

Shear is then given by

(3.9) γ(x) =
Σ(x)− Σ(x)

Σcrit

=
∆Σ(x)

Σcrit
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(Wright & Brainerd (2000)).

∆Σ is known as the surface mass density contrast, and is the lensing observable

that we measure and model in this work in order to measure cluster masses.

3.1.3 From Shapes to ∆Σ

In a sky free of lenses, galaxies are oriented randomly. Foreground masses (i.e.

lenses) distort the shapes of background galaxies, resulting in an observed net tan-

gential orientation of galaxy images. This tangential component of ellipticity is our

estimator for shear, and can be calculated for each galaxy in our shape catalog as

(3.10) et = −(e1 − c1)cos(2φ) + (e2 − c2)sin(2φ)

where ellipticities e1 and e2, from the Im3shape catalogs 1, are corrected respectively

by c1 and c2 from the NBC calibrations, and

(3.11) φ = arctan

(
∆dec

∆RA

)
where ∆RA and ∆dec give the position of the galaxy on the sky with respect to the

lens. For each individual galaxy, this distortion is much smaller than the galaxy’s

intrinsic ellipticity. It is only by combining the signals from thousands of background

galaxies that we can measure a visible lensing signal:

(3.12) gt =

∑
iw

jejt∑
j w

j(1 +mj)

Here, gt is the net tangential ellipticity, ejt is the individual tangential ellipticity of

each galaxy j, wj is the weight for each galaxy, and mj is the multiplicative correction

for each galaxy from the noise bias calibrations.

One thing to note is that et is an estimator for shear, but et 6= γ. From the

ellipticities we observe in the sky, we measure shear modified by convergence, called
1Note that the signs on the terms in Eqn. 3.10 are dependent on the conventions used by the shape catalogs—our

first term is negative and the second positive because e1 and e2 are defined as such by Im3shape.
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“reduced shear” and quantified for each galaxy as:

(3.13) ejt =
γj

1− κj

From this, we measure a modified surface mass density contrast for each galaxy:

(3.14) ∆Σj = Σj
crite

j
t

For simplicity, we will henceforth use ∆Σ to refer to the modified surface mass density

contrast, both in our observations and our theoretical modeling.

From the ensemble of background galaxies, we measure a net lensing signal:

(3.15) ∆Σ =

∑
i Σ

j
critw

jejt∑
j w

j(1 +mj)

However, for galaxies with redshift z only slightly greater than zlens, Dls is small,

making Σcrit extremely large.To prevent these galaxies from disproportionately skew-

ing the net ∆Σ, we scale galaxy weights by Σ−2
crit, giving us a final ∆Σ of

(3.16) ∆Σ =

∑
i Σ

i
crit

wi

Σi
crit

2
eit∑

i

wi

Σi
crit

2
(1 +mi)

3.2 Data

In this work, we analyze a set of 133 clusters spanning a wide range in both TX

and z. All optical data for lensing measurements are taken from the Dark Energy

Survey Science Verification data, and all X-ray data and temperature calculations

are provided by the XMM Cluster Survey (XCS). More about the surveys and initial

data reductions can be found in Sections 1.4 and 1.5. Figure 3.1 shows optical data

for a single cluster superimposed on X-ray contours.

We work with the set of clusters in the XCS DR2 dataset for which we have

corresponding galaxy shapes from DES SV. While some of these shape catalogs are



44

Figure 3.1 Image of cluster with overlaid optical and X-ray data—coadded optical image from DES,
X-ray flux contours from XCS.
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part of the official DES SV data release, a number of clusters reside in areas of sky

observed during the SV runs, but not processed as part of the official release. For

these, we run the DES shape-measurement pipelines separately, and validate the

catalogs before use. Further details of these measurements are in Chapter II.

Our analysis assumes that the lensing signal around any given cluster is solely a

result of the presence of that cluster. However, several members of our sample sit

very close on the sky to other clusters, leading to contamination of our measured

signal by lensing from these nearby structures—for example, see Figure 3.2. To avoid

this effect, we inspect each cluster in this set by eye, and remove those which are too

close to other clusters. Table 3.1 lists the clusters we removed with the reasons for

exclusion. The final sample used in this work is described in Tables 3.2-3.5.

(a) (b)

Figure 3.2 Cluster to be excluded due to nearby structure. (a) Close-up cutout of this cluster,
where all seems well. (b) Zooming out, we see a massive cluster nearby (upper left corner). Most
of the lensing signal attributed to the original cluster (see (a)) is in actuality an effect of the nearby
cluster. For this reason, the cluster in (a) is excluded from our lensing analysis.
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Table 3.1. List of clusters excluded from weak lensing analysis due to nearby structure.

Cluster Name from XCS Reason for Exclusion

J003659.3-431826.9 large X-ray structure nearby
J065755.8-560244.3 massive cluster nearby
J100141.7+022538.0 low-z cluster in line of sight
J043750.2-541940.8 massive cluster nearby
J022530.8-041421.1 another cluster very close by
J003407.6-432236.2 two massive clusters nearby
J022156.8-054521.9 low-z cluster in line of sight
J041328.7-585844.3 massive cluster nearby
J022912.4-060122.5 massive clusters nearby
J021612.5-041426.2 low-z cluster in line of sight
J022512.2-062305.1 low-z cluster in line of sight
J065900.5-560927.5 low-z cluster in line of sight

3.3 Cluster Stacking

Weak lensing measurements require a large sample of background galaxies. The

low numbers of background galaxies behind individual clusters are not sufficient to

detect a significant lensing signal, especially for low-mass clusters, where the lensing

effect is weaker. We stack multiple clusters and combine their background galaxies in

an effort to raise the shear signal-to-noise ratio. Stacking clusters also helps average

out any non-spherical structure of individual clusters, as we expect these extraneous

structures to be oriented randomly over a large sample set. Stacking is a common

method used by several studies to measure cluster mass-observable relationships—

see Sheldon et al. (2001), Johnston et al. (2007b), Okabe et al. (2010), Melchior et al.

(2017), and Pereira et al. (2017) for a few examples.

We bin the cluster sample by X-ray temperature in order to constrain the M −Tx

scaling relation. Our sample is divided into four temperature bins such that the

stacked bin temperatures are fairly evenly distributed in temperature logspace. The

large temperature range of the sample allows us to examine masses for both low- and

high-temperature clusters. Details of each bin are given in Table 3.6. Temperature

(kbT in units of keV) and redshift distributions of each bin are shown in Figure 3.3.
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Figure 3.3 Temperature and redshift distributions of our four cluster bins, in order of increasing
temperature from top to bottom.
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Table 3.6. Properties of the stacked Tx bins. Column 1 names each bin, for ease of referral
henceforth. Column 2 gives the size of each bin, and columns 3 and 4 give the lowest and highest

temperatures in each bin.

Number of Lowest Highest
Bin Name Clusters Tx[keV ] Tx[keV ]

bin0 35 .235 1.48
bin1 29 1.53 2.11
bin2 50 2.17 3.97
bin3 19 4.03 11.1

Many recent cluster mass-observable-relation studies have stacked their halo sam-

ples not only by the observable, but also by redshift. However, these studies usually

use thousands of clusters, allowing them to divide the samples into finer bins (eg.

Melchior et al. (2017), Pereira et al. (2017)). This makes it simpler to model the

expected ∆Σ, as one need not worry about the effects of lensing over a variety of

redshifts.

Our sample consists of only 133 clusters, which is barely enough to divide into four

bins. Lower numbers of clusters per bin would lead to an inability to distinguish the

WL signal from noise. Due to this, we only bin the clusters by X-ray temperature.

As shown in Figure 3.3, each bin spans a wide range of redshifts—we must account

for this, both when measuring the stacked ∆Σ signal (see Section 3.4) and when

theoretically modeling it (see Section 3.5).

3.4 Measuring the Stacked Lensing Signal

We measure the stacked lensing signal, given by Eqn. 3.16, in radial bins (Rs)

centered at the X-ray barycenter of the clusters:

(3.17) ∆Σ(R) =

∑
i∈R Σi

crit

wi

Σi
crit

2
eit∑

i∈R
wi

Σi
crit

2
(1 +mi)

As we are stacking clusters only by Tx, we need to account for the wide range
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Table 3.7. Details of radial bins for each stack. Column 1 is the stack id, and column 2 gives the
width of each radial bin in that stack. Column 3 gives the center of the first radial bin (if this is
shorter than half the bin width, then the first bin stretches from 0 to half the bin width beyond

this value), and column 4 gives the number of radial bins used.

Temperature Stepsize Center of First Number of
Bin Name [Mpc] Radial Bin [Mpc] Radial Bins

bin0 .15 .05 8
bin1 .25 .1875 6
bin2 .3 .075 7
bin3 .4 .6 7

of redshifts in each temperature bin. A cluster at higher z covers a smaller part of

the sky, making it seem as if the amplitude of its ∆Σ(R) drops off more sharply

in celestial coordinates. To correct for this, we convert the separation between each

background galaxy and its corresponding lens from sky coordinates into megaparsecs

(Mpc).

We measure the signal for each stack out to a high enough radius Rmax such that

Rmax > R200max, where R200max is the boundary of the cluster in the stack with the

largest R200 (in Mpc). This ascertains that we capture data from the full range of

each cluster’s mass profile. To this end, we measure R200 for each cluster using a

R200−Tx relation provided by Table 2 of Arnaud et al. (2005). The size of the radial

bins varies for each temperature bin, as higher-Tx clusters will span a much larger

area. We attempt various radial bin widths for each stack, and settle on the narrowest

bins that still smooth out the lensing signals enough to be prominent relative to noise.

This maximizes the number of data points we can fit to, while maintaining a usable

signal to noise ratio. Table 3.7 shows details of the radial binning for each stack.

At one point in our analysis, we attempted to scale the radial bins by R200 in an

effort to account for the wide range of temperatures in each Tx bin. A cluster of

lower Tx covers a smaller part of the sky, making the amplitude of its gt(r) drop off

more sharply in celestial coordinates. To correct for this, we scaled the position of
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each background galaxy by its corresponding cluster’s R200. However, this correction

depends greatly on the accuracy of the R200 − Tx scaling relation used, which can

directly affect the spread of the resulting ∆Σ profiles and the corresponding measured

masses. For instance, overestimating R200 “squeezes” the x-axis (radius, in terms of

R200), causing individual data points of the lensing signal to be located closer to the

y-axis than they should be. This makes it seem as though the ∆Σ signal relative to

radius, especially near the cluster center, is higher than it actually is. We eventually

found that this method was indeed biasing our results, causing us to measure cluster

masses that were much higher than known cluster populations, and decided to avoid

the issue by only scaling galaxy positions to account for different redshifts, as detailed

above.

3.4.1 Galaxy Selection

Of the galaxies that fall within each radial bin, we must choose which ones to

include in our lensing signal. This consists of two types of cuts: removing galaxies

that do not fulfill the shape catalog quality requirements, and choosing only galaxies

that are behind the cluster.

Shape Catalog Cuts

We use galaxy shapes from the Im3shape r-band galaxy catalogs described in

Chapter II, and so must apply the quality cuts recommended for this pipeline in order

to avoid questionable objects or ellipticities. More details and reasoning behind these

selection criteria can be found in Section 9.1 of Jarvis et al. (2016).

We first require that both error flag == 0 and info flag == 0. er-

ror flag tags objects for reasons such as: the shape pipeline failed to converge;

the object is too large; the object is too faint; etc. info flag is more conservative,
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and removes objects that are: too small; flagged by the object detection software

SExtractor; in parts of the sky for which we cannot measure photometry prop-

erly; etc. Further details about these flags can be found in Appendix B of Jarvis

et al. (2016). We also remove any galaxies for which noise-bias calibrations were

inconclusive (returned nan).

Im3shape also recommends the following cuts, which we use:

• (S/N)w > 15

• Rgp/Rp > 1.2

(S/N)w is the galaxy’s signal-to-noise ratio, and Rgp/Rp is the ratio of a galaxy’s

observed size to the size of the observed point spread function (see Section 2.1.1

for more details). We also require that the magnitude of the galaxy through the

r-filter be less than 23, removing dim objects for which we may not have reliable

photometry. We test the robustness of our choices by varying galaxy selection cuts,

detailed in Section 3.7.2.

Background Galaxy Selection

From the list of remaining galaxies, we use color-cuts to determine which sources

are in the background of the cluster. “Color,” denoted as Cab is defined as the

difference between the source’s magnitudes in filters a and b. Though images of each

object are available in four different filters, we choose to use only the r, i, and z

filters:

Cri = magr −magi

Ciz = magi −magz

(3.18)

Galaxies in the background are further from us than the cluster, and thus will be

“redder” than the cluster. The color of a cluster, as mentioned in Section 1.3.1, is



56

taken to be the mean of the colors of the five brightest objects in its color-magnitude

diagram. As the slope of the color-magnitude relation is negative, this ensures that

anything redder than the cluster is almost definitely in the cluster’s background. We

require the color of a source galaxy, Cs, to be redder than the color of its correspond-

ing lens, C l:

Cs
ri > C l

ri + .05

Cs
iz > C l

iz + .05

(3.19)

where the .05 serves as a buffer to further prevent contamination of the lensing signal

by cluster galaxies. While this buffer does remove a number of definite background

galaxies from our sample, our aim is purity rather than completion. Missing back-

ground galaxies may cause the final lensing profile to have a lower signal-to-noise

ratio, but cluster galaxy contamination would dampen the lensing profile itself. Our

ri colorcut is visually represented in Figure 3.4. Additionally, we require that back-

Figure 3.4 Color-magnitude diagrams of a cluster, overlaid with colorcuts. Colored points are cluster
member galaxies, while black points are all other galaxies in a 3 arcmin × 3 arcmin cutout around
the cluster center. The green lines show our cutoffs for background galaxies. Only galaxies above
(redder than) the green lines in both r − i and i− z are included in our ∆Σ calculations.

ground galaxy redshifts be greater—“redder”—than the lens redshifts. This is a

requirement of the mathematics of lensing: Dls is undefined for sources with lower
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redshifts than their lenses, making us unable to measure Σcrit (and thus ∆Σ) for

such objects. Of course, mathematical concerns aside, it would be unwise to include

sources with lower redshifts anyways, as they are supposed to be in front of the

cluster.

3.4.2 ∆Σ Errors

Using the above cuts, we finalize the set of background galaxies and measure the

stacked ∆Σ in each radial bin R in accordance with Equation 3.17. The next step is

to measure the uncertainties on the measured signal.

Statistical errors are found using non-parametric bootstrap sampling with replace-

ment, as described by Efron (1982). From a radial bin with N background galaxies,

we randomly choose a galaxy N times, allowing individual galaxies to be chosen

multiple times or not at all, and compute the ∆Σ for this chosen set. We repeat this

process 100 times and take the standard deviation of the resulting ∆Σ values as the

error for each bin, σ∆Σ(R).

We test a few variations of this bootstrap sampling. In one method, we choose

clusters rather than galaxies - that is, for a temperature bin with X clusters, for

each radial bin, we randomly choose X clusters with replacement and calculate ∆Σ

using only the background galaxies of the chosen clusters, and repeat the process

for each radial bin 100 times. This shows no discernible difference from the original

(galaxy) method. In other variations, we repeat the galaxy- and cluster-replacement

methods 500 times for each radial bin. These show no discernible differences from the

calculations with 100 runs, showing us that 100 repetitions is enough to sample the

set of background galaxies in each radial bin. The results of these error estimations

on the lensing profile of a subsample of our clusters is shown in Figure 3.5. We

choose the initial method (replacing galaxies, repeating 100 times) to estimate the
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errors that we use in the rest of our analysis.

(a) (b)

(c) (d)

Figure 3.5 Comparison between variations in non-parametric bootstrap sampling for errors. These
plots show the lensing signal and errors on a subsample of our dataset. This subsample is further
described in Section 3.7.2 (a),(b) Errors by choosing galaxies from each bin with replacement,
repeated 100 and 500 times, respectively. (c),(d) Errors by choosing clusters from each bin with
replacement, repeated 100 and 500 times, respectively.

3.5 Modeling the Stacked Lensing Profile

Once we have measured the stacked lensing signals and associated errors, the next

step is to generate model ∆Σ profiles. As described in Section 3.1, the radial mass

distribution of a galaxy cluster can be modeled by the Navarro-Frenk-White (NFW)

density profile, which can be parametrized by mass M200 and concentration c. The

lensing signal around an NFW halo can then be calculated analytically in terms of

these parameters.

We calculate the ∆Σ we expect to see for various models, and use a maximum
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likelihood method to match our observed ∆Σ to a best-fit mass for each Tx bin.

Ideally, each model would consist of an independent M200 and c, but in practice, the

data is not sufficient to simultaneously fit for both mass and concentration. For this

work, we only fit to find an optimum M200 for each bin. c for each model NFW halo

is calculated using the M200 − c relation given by Merten et al. (2015).

To generate theoretical ∆Σ profiles, we use the GalSim 1.3.0 suite, which simu-

lates NFW halos for given values of M200, zlens, and c, and can calculate the reduced

shear for an object with redshift zsource at a radius r from the cluster center (see

Rowe et al. (2015) for more details about GalSim).

3.5.1 Modeling ∆Σ for a Cluster Stack with a Wide z Range and Uneven Data

As shear is not redshift-independent, using it as a lensing estimator is complicated

when working with a stack of clusters with a wide redshift range. Clusters with the

same mass but varying zs will generate varying shear, making it hard to fit them

to any one model profile. For this reason, ∆Σ, which is redshift-independent, is

traditionally used to model stacked weak lensing signals (eg. Melchior et al. (2017),

Pereira et al. (2017)). Usually, a single ∆Σ profile is generated for each model M200,

and the model that best fits the observed stacked profile is chosen. However, this

assumes a uniform dataset, where each cluster contributes evenly to the stacked

lensing signal - i.e., each cluster contributes about the same number of background

galaxies.

Unfortunately, DES SV data quality is highly patchy. Equipment malfunctions

in the early days of DES caused data quality issues in several of our images, in some

cases resulting in unusable PSFs across whole tilings. Many galaxies in these areas of

sky were removed by lensing quality cuts. The resulting effect is that several clusters

contribute very few background galaxies to the stacked lensing signal, whereas others
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- in areas of sky with better data quality - sit in front of dense high-quality galaxy

fields. Figures 3.6 and 3.7 show the effect of this on our effective temperature and

redshift distributions. Figure 3.6 is a copy of Figure 3.3, showing the Tx and z

distribution of each cluster stack. Figure 3.7 shows the same distributions, but

weights each cluster by the number of background galaxies it contributes. This

effectively gives us the total number of background galaxies in each temperature or

redshift range for each stack. From these figures, we can clearly see that clusters

contribute background galaxies inhomogenously.

To account for these inhomogeneities, we develop a ∆Σ modeling method that

recreates our observations by using multiple ∆Σ profiles for each model M200,model,

rather than relying on one sole theoretical lensing signal. For each M200,model, we

use GalSim to generate several shear profiles, each calculating the effect of some

part of our observed source and lens z distributions. We convert these shears to ∆Σ

profiles, weighting by Σ−2
crit to mimic data. These weighted model ∆Σ signals are

then combined to generate our final ∆Σmodel for each mass. We do this using two

different methods, and show that results for both are consistent with each other.

This method gives us the ability to measure cluster masses using any dataset,

without needing to exclude clusters for low data quality. This is a great advantage

for weak lensing studies, where the signal is only as strong as the abundance of

background galaxies, as it allows us to make use of every bit of data available.

Modeling with Background z Distributions Per Cluster

The first method builds up the ∆Σmodel profile for each Tx bin using the separate z

distribution of background galaxies for each cluster in that bin. For every M200,model,

we generate as many NFW profiles as there are clusters i in the bin, each with z

equal to the redshift of one of the real clusters and denoted as M200,model,i. Then,
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Figure 3.6 Temperature and redshift distributions of our four cluster bins, unweighted, in order of
increasing temperature from top to bottom, with each cluster counted once. Same as Figure ??,
reproduced here to allow easy comparison with Figure 3.7.
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Figure 3.7 Temperature and redshift distributions of our four cluster bins, weighted, in order of in-
creasing temperature from top to bottom, with each cluster counted once for each of its background
galaxies - effectively gives the number of background galaxies in each Tx-bin for each range in lens
properties.
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we bin the redshifts of background sources for each cluster separately into 10 zsource

bins per cluster. The mean z of each of these bins is used to calculate the reduced

shear gt,model,i,z around the corresponding M200,model,i. After converting these shears

to ∆Σmodel,i,z profiles, we take the average of all profiles - that is, the profiles for each

z-bin for each cluster i - weighted by the number of sources in each z-bin, N(i, z),

to get

(3.20) ∆Σmodel =

∑
i,z Σcrit,i,zgt,model,i,z

(
N(i,z)

Σ2
crit,i,z

)
∑

i,z
N(i,z)

Σ2
crit,i,z

Modeling with Individual Source-Lens Pairs

As discussed above, the DES SV dataset is not complete, excluding a large fraction

of sources due to quality issues. This not only varies the number of background

galaxies per cluster, but also causes the number density of background galaxies,

n(i, r), to fluctuate across radial bins for any given cluster.

While the above method should model the observed ∆Σ well given ideal condi-

tions, it depends on a source redshift distribution for each cluster that is independent

of radial bin. Given the homogenous and isotropic nature of the universe, this should

not be a concern as long as there is ample data. However, with a dataset where n(i, r)

varies to such a degree, where some bins contain only a handful of background galax-

ies, the source-z distribution may vary with radial bin. This means that a cluster’s

presence can potentially be felt differently in each radial bin of the observed lensing

signal, and choosing a single source-z distribution per cluster can lead to incorrect

modeling of each cluster’s contribution to each ∆Σ(r).

To ensure this is not the case, we build up the model ∆Σ piece-by-piece, recreating

the signal for each individual observed source-lens pair. For each model of mass
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M200,model, we again generate separate NFW profiles for each cluster in our dataset,

assigning the respective cluster’s redshift to its corresponding model profile. For

each radial bin, we average the ∆Σ signals between every cluster and each of its

background galaxies j in that bin to get

(3.21) ∆Σmodel(r) =

∑
i,j∈r Σcrit,i,jgt,model,i,j

(
1

Σ2
crit,i,j

)
∑

i,j∈r
1

Σ2
crit,i,j

Figure 3.8 shows the best-fit stacked ∆Σ profile for a subset of our clusters, found

using both methods. Note that this is not one of the Tx bins used in our final analysis.

As testing between these modeling methods was conducted before the cluster sample

was finalized, we show this comparison using an older sample on which we tested.

Also due to the early nature of these tests, they were conducted while we were still

scaling the radial bins by each cluster’s R200 (see Section 3.4 for details). As both

methods are scaled the same way, their results are comparable.

We find, to our surprise, that both methods give us extremely close results. This

suggests that the spatial spread of our background galaxies is more even than we

had anticipated. This also provides a robustness check for our methods - varying the

method of modeling does not change the measured mass.

We choose the second method - modeling with individual source-lens pairs - for

the rest of our analysis, as it has the ability to account for potential inhomogeneities

in our background galaxy sample that may have arisen from the extra cluster fields

added later.

3.6 Stacked Weak Lensing Masses

We find the best-fit stacked M200,fit of each Tx bin by maximizing the likelihood

(3.22) L = e−χ
2/2
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(a) (b)

Figure 3.8 Comparison between two types of modeling of theoretical ∆Σ profiles. (a) Best-fit ∆Σ
profile measured using background-z distributions per cluster, overlaid with observed stacked ∆Σ .
(b) Best-fit ∆Σ profile measured using individual source-lens pairs, overlaid with observed stacked
∆Σ .

(3.23) χ2 =
∑
r

(
∆Σmodel(r)−∆Σobs(r)

σ∆Σ(r)

)2

and take the 1σ bounds of the likelihood curve to define the M200,fit uncertainties.

As noted in Section 3.4.2, our measurements of ∆Σ uncertainties through the

bootstrap method are purely statistical. Possible systematic biases, which would

come into play given a larger statistical dataset, can include

• halo modeling effects: our choice to model halos as NFW profiles, and to ignore

the effects of the 2-halo term—small percent-level effects (Melchior et al. (2017))

• projection effects: possible nearby large structure interfering with lensing measurements—

about a 2% effect (Melchior et al. (2017))

• M−c relation effects: any biases resulting from our choice of mass-concentration

relation—about 5− 15%, but smaller when extending lensing signals out to at

least cluster R200 (as we do) (Kettula et al. (2013))

We ignore systematic uncertainties as they are well overshadowed by our statistical

uncertainties, courtesy of a relatively low number of background galaxies.

Cluster mass scaling relations are conventionally written in terms of M500. We
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Table 3.8. Best-fit M500 for each stack. Column 1 is the stack id, column 2 gives the best-fit
mass, and columns 3 and 4 give the lower and upper bounds respectively on 1σ uncertainties.

Temperature Best-fit M500

Bin Name [1014M�]

bin0 0.250+0.453
−0.211

bin1 0.681+1.059
−0.569

bin2 1.90+1.16
−0.92

bin3 5.20+3.64
−2.70

convert M200,fit to M500,fit following the method outlined in Appendix C of Hu &

Kravtsov (2003). We use the same method to convert the bounds of our M200,fit

uncertainties. Table 3.8 shows our results.

Figure 3.9 shows the best-fit ∆Σmodel, overlaid on ∆Σobs, for each temperature

bin, as well as the likelihood curves, with 1σ bounds marked.

3.7 Testing the Stacked WL Masses

In this section, we discuss several checks on the robustness of our measured masses.

We first validate our analysis method and code by running on simulations and com-

paring to results from existing code. We then ascertain that our signals are truly

due to lensing, and that they do not depend on our fiducial choices and background

galaxy selection. Finally, we check for any contamination of the signal by cluster

galaxies.

3.7.1 Analysis Pipeline Validation

Simulation Tests

To check the accuracy of our method of building up the model ∆Σ profiles using

individual source-lens pairs, we run the same analysis on simulated data from the

Buzzard v1.1 suite. Buzzard covers 10313 sq. deg. and contains 971 million galaxies

“observed” in the DES filter bands, and out to DES depth. The simulation provides
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Figure 3.9 (left) Best-fit ∆Σ profiles, overlaid on the measured ∆Σ values, for each of our four Tx
bins of data. (right) Likelihoods for our model masses for each bin, with 1σ uncertainties marked.
Bins go from low to high Tx, from top to bottom.
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a halo catalog with positions, redshifts, masses, and concentrations, among other

properties. The galaxy catalog provides redshifts, magnitudes, and positions, com-

parable to the DES object catalog, and shears for each object are measured using

ray-tracing. For further details about the Buzzard suite, see DeRose et al. (in prep.)

and Wechsler et al. (in prep.).

We compile a simulated sample from the Buzzard halo catalog, choosing halos

to match our real cluster sample. For each cluster in the DES-SV-XCS sample,

we choose a halo of similar mass and redshift from Buzzard. To do this, we first

need estimates of masses for each DES-SV-XCS cluster, for which we only have

measurements of redshift and temperature. We use the M500 − Tx relation from

Vikhlinin et al. (2009a) to measure M500 masses for each cluster. As Buzzard provides

M200 masses, we convert our estimated M500 values to M200 masses following the

procedure in Appendix C of Hu & Kravtsov (2003), assuming cluster concentrations

to be 4. For each cluster, we then pick a random halo from Buzzard whose M200 lies

within 10% of our estimated cluster mass, and whose redshift lies within .05 of our

cluster’s observed redshift, compiling our simulated sample set.

We run the ∆Σ and mass measurement pipeline on a subset of the simulated halo

sample. Note that this set does not correspond directly to one of the Tx bins used in

our final analysis. As testing was conducted before the cluster sample was finalized,

we show this comparison using a sample whose properties match one of our older

Tx bins. We find the best-fit ∆Σ profile to be consistent with the theoretical profile

calculated using “true” halo masses, as shown in Figure 3.10, validating our ∆Σ

modeling methodology.
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(a) (b)

Figure 3.10 Analysis tested on simulated sample from Buzzard v1.1. (left) Best-fit ∆Σ with 1σ
uncertainties around a set of simulated halos, overlaid on the “true” profile. (right) Likelihood for
our model masses for the simulated sample, with 1σ uncertainties marked. Recovering the true
stacked mass validates our ∆Σ modeling methodology.

Comparison to xshear

There exist several publicly-available libraries of code that measure the lensing

signal around a given point on the sky. Given lists of lenses (positions, redshifts) and

sources (positions, redshifts, ellipticities), these codes output the final shear or ∆Σ in

chosen radial bins. However, they do not store information on individual source-lens

pairs. As this information is crucial to our ∆Σ modeling technique, we write our

own code to measure the lensing signal rather than using a ready-made suite.

In order to validate our code and weed out any possible bugs or miscalculations,

we test it against an established library. One such existing shear-measurement repos-

itory is xshear2, which has been used in several DES analyses. We use both our

code and xshear to measure ∆Σ profiles around a set of simulated clusters from

the Buzzard v1.1 suite. Note that, due to the early nature of this test, it was con-

ducted while we were still scaling the radial bins by each cluster’s R200 (see Section

3.4 for details). As runs with both codes are scaled the same way, their results are

comparable.

2https://github.com/esheldon/xshear
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Figure 3.11 shows the results - as expected, both codes match perfectly.

Figure 3.11 Code check with xshear. ∆Σ around a set of simulated halos from Buzzard v1.1,
measured by both our code and the xshear suite, used to validate our code.

3.7.2 Shear Profile Tests

We perform several checks to ascertain the robustness of the measured ∆Σ profiles.

These checks test shape measurements, background galaxy selection, and cluster

selection.

These checks look at the lensing profile of the ensemble of clusters under varying

conditions, extending out to 6Mpc. Our shape catalogs for each cluster extend out to

40′, which does not necessarily cover the 6Mpc range. Furthermore, due to inhomo-

geneities in SV data quality, several portions of the footprint have been masked out

and excluded from our catalogs. While we take these inhomogeneities into account

for our primary analysis during modeling for mass calibration (see Section 3.5.1),

these checks only run on the observed lensing signal, which has not been corrected

for this. Thus, these checks are only relevant for clusters where the number density
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of sources is uniform throughout the area used.

We run these checks on the subset of 67 clusters whose source catalogs contain a

uniform distribution of galaxies within the area bounded by 6Mpc from the cluster

center. As discussed in Section 2.2, the quality of used shapes is consistent across

our various areas of sky, allowing us to extrapolate the results from this subset to

the whole sample.

All checks, described below, are shown in Figure 3.12.

Shape Measurement Checks

We test our measured ellipticities to ensure that the observed ∆Σ is truly a result

of lensing. Lensing affects the tangential component of the ellipticities of background

galaxies. It does not, however, affect the perpendicular component, given by

(3.24) e× = (e1 − c1)sin(2φ) + (e2 − c2)cos(2φ)

As this perpendicular ellipticity is independent of lensing, the corresponding net g×

and ∆Σ× should be consistent with zero. The upper left plot shows ∆Σ×, with the

tangential signal ∆Σt for comparison.

As has been the case through this paper, in the following sections, we will continue

to use ∆Σ to represent the tangential background lensing signal, ∆Σt.

Photo-z Pipeline Check

We ensure that our results are not biased by our choice of source redshift mea-

surement techniques. Our analysis uses photo-z measurements from the DES TPZ

pipeline, assigning each source galaxy the mean photo-z from its redshift probability

distribution. The upper right plot shows that our measurements are consistent with

results using photo-zs from the DESDM Neural Network pipeline instead.
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Figure 3.12 Robustness checks on our lensing signal, performed on a subset of 67 clusters. The
upper left shows the perpendicular ∆Σ check. Upper right shows comparisons using two photo-z
catalogs. Middle left varies the magnitude cut through the r filter, middle right varies the cut on
mean rgpp rp, lower left varies the SNR cut, and lower right varies the colorcut for background
galaxy selection.
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Background Galaxy Selection Checks

We perform several checks to ensure that our results are not dependent on the

quality cuts involved in our selection of background galaxies.

The middle plots show ∆Σ measured with varying magnitude and rgpp rp cuts,

each consistent with the signal from our chosen cuts, mag r < 23 and rgpp rp > 1.2.

The lower left plot shows the results for cuts by signal-to-noise ratio, for which our

chosen cut is (S/N)w > 15.

To ensure that our color-cuts are not allowing contamination of the background

sample by cluster galaxies, we measure ∆Σ while varying the buffer between lens

and background source colors. The lower right plot shows these ∆Σ profiles to be

consistent with each other.

3.7.3 Cluster Contamination Check

Cluster galaxies sneaking into our “background” sample, lacking any overall tan-

gential alignment, would dampen the lensing signal. This is often a concern in cluster

lensing studies, especially ones that use redshift cuts to choose background galaxies,

and must be corrected (eg. Melchior et al. (2017)).

However, when using colorcuts, the background galaxy selection is usually con-

servative enough to avoid including cluster galaxies. As discussed in Section 3.4.1

and shown in Figure 3.4, our cuts look to be well behind the clusters. Addition-

ally, Medezinski et al. (2018) recently show that using colorcuts leads to lensing

measurements unaffected by cluster contamination.

Regardless, we still check to ascertain that the measured ∆Σ profiles are not

affected by cluster contamination. We compare the redshift distributions of sources

near and far from the cluster centers. Cluster members have lower redshifts than
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background galaxies, and would cause the background z distribution to be skewed

towards lower redshifts near the cluster centers. Assuming there is no cluster member

contamination, the redshift distributions should be about the same.

As the potential for contamination primarily exists near the cluster center, and

fades away as we reach cluster boundaries, we must check clusters of different sizes

for contamination at different radii. In order to simplify this, we scale the radial

bins for each cluster by its R200 (as described in Section 3.4), and stack the resulting

bins. Figure 3.13 shows the background z distributions for four radial bins to be

consistent with each other.
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Figure 3.13 Testing for contamination of the ∆Σ signal by cluster members. Figure shows back-
ground galaxy redshift distributions in four radial bins. The agreement between the distributions
rules out concern over cluster contamination of the ∆Σ signal.
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3.8 Discussion and Summary

In this chapter, we measure stacked weak-lensing masses for 133 clusters in the

DES-SV-XCS cluster sample. We sort the clusters into four temperature bins, de-

scribed in Table 3.6 and measure ∆Σ around each stack.

We then model theoretical ∆Σ profiles for an array of masses, using two tech-

niques to account for inhomogeneities in our data, and find best-fit masses for each

stack. Our technique using individual source-lens pairs to build up theoretical ∆Σ

profiles allows us to measure masses for clusters with extremely varied sets of avail-

able background galaxies. To facilitate further studies, we make the code for our

analysis, which we have named LensStack, available for public use (see Appendix

A for details).

To ensure the validity of our measurements, we test both our analysis methodology

and our code, run checks on our optical measurements, and conduct several tests to

ensure that our selection of background galaxies has not biased our results. Final

masses for each cluster stack are given in Table 3.8.

There are several avenues for this work to follow in the future. Possibilities arise

both from hopes of more data and from the ability we now have to probe imperfect

datasets.

First, the uncertainties in our resulting masses are quite high, due in part to the

low number of background galaxies in each bin, which lead to noisy ∆Σ profiles. This

issue can be attributed to the fact that several of our clusters contribute very few

background galaxies (some contribute hundreds, some dozens, others only a handful,

and others none at all) due to issues with SV data quality. The areas around two

clusters are shown in Figure 3.8, where each point is a galaxy (including foreground,
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cluster, and background galaxies). For one cluster, we see a dense field, representative

of good DES data. For the other, we see only a few galaxies—the other objects in

the field were likely left out due to SV data quality cuts. We eagerly anticipate

(a) (b)

Figure 3.14 Sparse and dense galaxy fields—galaxy catalogs around two clusters at comparable
redshifts and temperatures. Blue circles mark R200. (a) lies in a field with a dense, mostly uniform
galaxy catalog, while (b), just the next tiling over, lies in a much less homogeneously observed field
due to SV data quality cuts.

upcoming DES Year 3 (Y3) data, where it is likely that most fields will resemble

the denser area of Figure 3.8, providing far more background galaxies to work with

and allowing narrower constraints on masses. Y3 shape catalogs will also undergo far

stronger calibrations—Year 1 catalogs showed a > 50% decrease in shear calibration-

related errors over SV (see Section 8 of Mcclintock et al. (submitted)), and Y3 is

expected to improve upon that. Aside from Im3shape, Y3 will also provide the DES

metacalibration shape catalog (Zuntz et al. (submitted)), allowing tests of mass-

measurement robustness with different methods of shape measurement. With greater

amounts of higher-quality shape data, Y3 looks promising for the measurement of

stacked cluster masses with tighter uncertainties.

On the other hand, this work provides us with a method for analyzing datasets

without regard for data uniformity. We can use the method presented to examine

both types of fields shown in Figure 3.8. With this, we can examine clusters that
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reside in fields where optical data quality is extremely poor, or clusters that lie at the

edges of our fields of view, without hindrance from asymmetries or inhomogeneities,

either in any given cluster’s background galaxy catalog or in the sample as a whole.

We can also incorporate whatever data is available for high-z clusters, which are

usually left out of analyses due to low background galaxy counts. For example, in

their work on using weak lensing to constrain the scaling relation between mass and a

CMB observable, Stern et al. (submitted) mention that they exclude high-z clusters

due to low numbers of background galaxies—with this method, we would be able

to incorporate information from those clusters into a stacked weak lensing analysis.

This gives us an extremely powerful tool for weak lensing studies, where the signal

is only as strong as the abundance of background galaxies, as it allows us to make

use of every bit of data available.



CHAPTER IV

The Galaxy Cluster Mass-X-ray Temperature Scaling
Relation

The scaling relation between galaxy cluster mass and X-ray temperature is in-

strumental both for cosmology studies using cluster abundances and for studying

the properties of clusters themselves. The use of Tx as a mass proxy is limited by

the precision to which we understand the scaling relation and associated errors.

Existing measurements of the M −Tx relation indicate that hydrostatic bias may

be affecting the accuracy of X-ray inferred cluster masses, especially in the low-

mass regime (Kettula et al. (2013), Mahdavi et al. (2013)). Currently, the best

datasets that have been used to measure this are based on heterogeneous X-ray and

optical data, using 65 clusters (Kettula et al. (2013)). In this chapter, we probe the

M − Tx relation using a homogenous sample of 133 clusters, spanning a wide range

of temperatures, giving us greater ability to explore this tension. While we do stack

the cluster sample, effectively resulting in 4 data points—compared to Kettula’s 65—

we still incorporate information from a far larger sample with a wider temperature

range, allowing us to probe further into the low-mass regime.

Figure 4.1, taken from Zhang et al. (2016), summarizes the current state of cluster

mass-temperature scaling relations across a range of masses. This figure compares

masses calculated using the M − Tx relation from Kettula et al. (2013) with masses

78
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using several other scaling relations from literature. In each panel, masses using the

Kettula relation are plotted along the x-axis, and masses using other relations are

shown on the y-axis. The blue dotted lines mark y=x, and red marks the best-fit

lines through the data points.

Figure 4.1 Comparison of cluster mass-temperature scaling relations from various existing studies.
Masses for a given set of temperatures are calculated using each scaling relation (y-axes) and then
compared to masses calculated using results from Kettula et al. (2013) (x-axes). The blue dotted
lines mark y=x, and red marks the best-fit lines through the data points. M − Tx relations from
Kettula et al. (2013), Mahdavi et al. (2013), Vikhlinin et al. (2009a), Sun et al. (2009), Eckmiller
et al. (2011), Mantz et al. (2010). Figure compiled by Zhang et al. (2016).

4.1 Scaling Relation Model

The cluster mass-temperature scaling relation can be written as

(4.1) ME(z) ∝ Tαx

for some growth rate α, where E(z) ≡ H(z)/H0 accounts for self-similar evolution

of clusters over time (Kaiser (1986), Bryan & Norman (1998)). Assuming virial
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equilibrium, where Tx scales with the depth of the gravitational potential, we would

get α = 3/2 (Kaiser (1986), Bryan & Norman (1998)).

For this work, we use M500 - the amount of mass contained within a radius R500,

within which the matter density is 500 times the critical density of the universe.

Taking this into account, normalizing units, and linearizing Eqn. 4.1 for easier

fitting, we get

(4.2) ln
M500E(z)

2× 1014M�
= α× ln

kbTx
keV

+M0

where M0 is a normalization factor. As scaling relations are often represented in

linear form, α is traditionally called the “slope” of the relation.

For the course of this work, we assume a flat ΛCDM universe, with ΩM ≈ .29

and ΩDE ≈ .71. We discuss possibilities of cosmology-independent studies in Section

4.6.1.

4.2 Bayesian Framework and Likelihood Model

We use a Bayesian framework to measure the maximum-likelihood scaling relation

parameters, slope α and normalization M0. Unlike the simple minimal-χ2 fit used

to measure masses in the previous chapter, this method allows us to take into ac-

count various sources of information—and the uncertainties of these sources—when

calculating the likelihood of a model. Here, we are effectively asking: given our set

of individual observed temperature measurements and some values for the scaling

relation parameters, what is the probability of observing the stacked masses that we

measure. We then optimize for the values of the scaling relation parameters that

give us the highest probability. Throughout this analysis, we assume that observed

cluster properties are independent of each other.
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As we assume log-normal uncertainties for both temperature and mass measure-

ments, we work in log-space (as given in Eqn. 4.2), defining ln(M500E(z)) = µt and

lnT = τt, both of which exhibit Gaussian uncertainties. µ and τt represent the true

masses and temperatures of the system.

Assuming that the probability density function (PDF) of mass at any particular

Tx is lognormal, a cluster’s chances of having mass µ given temperature τt is

(4.3) P (µ|τt, θ) =
1

(2π)1/2σ
exp

{
−(µ− ατt −M0)2

2σ2

}
where θ = (α,M0, σ) and σ is the scatter in the M − Tx relation.

We incorporate the observed temperatures, τo, by examining the probability of

a cluster having a certain true temperature, given our observed values. We assume

this probability, P (τt|τo), to also be Gaussian:

(4.4) P (τt|τo) =
1√

2πσ2
err

exp

{
−(τo − τt)2

2σ2
err

}
Here, σerr is the observed Tx uncertainty. We can combine the two above equations

to find the probability of measuring a mass, given scaling relation parameters and

an observed temperature:

(4.5) P (µ|τo, θ) =

∫
dτt P (µ|τt, θ)P (τt|τo)

and, integrating, take the true temperature out of the equation:

(4.6) P (µ|τo, θ) =
1

(2πσ2
N)1/2

exp

{
−(µ− ατo −M0)2

2σ2
N

}
where σ2

N = σ2 + α2σ2
err.

Taking this a step further, we look at the likelihood for a stack of clusters,

rather than individual ones. Assuming the stacked mass can be represented as
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µs =
∑

iwi × µi, where wi is the weight of each cluster i (in our case, the num-

ber of background galaxies contributed), we get a joint PDF:

(4.7) P (µs =
∑

wiµi|τo,i, θ) =

∫ ∏
dµi P (wiµi|τo,i, θ)δD(µs −

∑
wiµi)

Here, δD(µs −
∑
wiµi) represents the Dirac delta function. Integrating, we find

(4.8) P (µs =
∑

wiµi|τo,i, θ) =
1

(2πσ2
s,N)1/2

exp

{
−(〈µ〉 − α〈τo〉 −M0)2

2〈σ2
N〉

}
where 〈σ2

N〉 =
∑
w2
i σ

2
i,N and 〈τo〉 =

∑
wiτo,i, and 〈µ〉 is the expected true stacked

mass.

Finally, we move from true to observed masses, as we did earlier with tempera-

tures, and incorporate our results from Chapter III along with mass-measurement

uncertainties. Assuming these uncertainties to take log-normal form, we integrate

out the true mass to calculate our final likelihood for each bin j:

(4.9) P (µj,o|τo,i, θ) =
1

(2πσ2
j,N)1/2

exp

{
−(µj,o − α〈τo〉 −M0)2

2〈σ2
N + σ2

j,err〉

}
where µj,o and σ2

j,err are the observed stacked mass and corresponding fractional mass

error for cluster stack j.

Further details of these calculations can be found in the appendix of Das et al.

(in prep.).

4.3 Cluster Mass and Temperature Data

Constraining the cluster mass-temperature relation requires a homogenous sample

of clusters for which both X-ray observations and reliable direct mass measurements

are independently available. The combination of DES-SV optical data and XCS X-

ray observations provide such a sample, described in Section 3.2. This is the largest

such sample for which homogeneous datasets are available for both X-ray and optical
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observations, removing the need to worry about discrepancies in systematics between

several different sources of data. Furthermore, this sample spans a large range in

both Tx (∼ .2− 11keV ) and z (∼ .07− 1.2), allowing us to examine a larger variety

of clusters. The large z range requires us to rethink usual analysis procedures, and

leads us to develop a pipeline for simultaneously analyzing clusters at varying zs, as

described in Chapter III. The large Tx range, in particular the inclusion of many low-

Tx clusters, allows us to probe the low-mass regime of the M − Tx relation further

than previous studies (Kettula et al. (2013), Mantz et al. (2010), Vikhlinin et al.

(2009a)), giving us deeper insight into the question of hydrostatic bias.

We bin 133 clusters of the DES-SV-XCS sample into four Tx bins, and measure

stacked weak lensing masses for each bin. This process is described in detail in

Chapter III; binning information is provided in Table 3.6, and the resulting masses

are given in Table 3.8.

The self-similar scaling model examines the relation between M500E(z) and Tx.

For each bin, we calculate E(zbin) where zbin is the average z of all clusters, weighted

by their number of background galaxies in order to account for inhomogeneities in

data.

Our likelihood model assumes log-normal uncertainties for both bin mass and

individual cluster temperature. We take the fractional uncertainty for each mass bin

to be

(4.10) σM,bin =

√
M500,upper

M500,lower

.

and similarly, for each cluster i,

(4.11) σT,i =

√
Tx,upper
Tx,lower

,

For the one cluster in the lowest Tx-bin with Tx,lower = 0, we take σT,i = Tx,upper/Tx.
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We combine individual Tx values to calculate stacked quantities:

(4.12) 〈τo〉 =

∑
wiτo,i∑
wi

Here, τo,i is the log of the observed temperature for a binned cluster i, wi is the

number of galaxies that cluster contributes to the lensing signal for that bin, and

〈τo〉 is the log of the stacked temperature of the bin.

To calculate uncertainties on 〈τo〉, we take the root-mean-square combination of

the observed fractional errors for all temperatures in a bin:

(4.13) 〈σerr〉 =

√∑
wiσ2

err,i∑
wi

where σerr,i is the observed fractional uncertainty for the cluster i, and 〈σerr〉 is the

uncertainty on the stacked bin temperature.

4.4 The Measured Scaling Relation

We run the above data through the Bayesian analysis described in Section 4.2,

measuring the maximum-likelihood scaling relation slope and normalization. Given

that we only have four Tx bins, we do not attempt to measure the scatter in the

relation, but assume a scatter of 28%, as measured by Kettula et al. (2013). For

slope α and normalization M0, we use uniform priors:

(4.14) α ∈ [−5, 5] , M0 ∈ [−10, 10] .

We evaluate the likelihood using the pymc module’s implementation of the Markov

Chain Monte Carlo method, running 10 sets of 3,000,000 iterations each, discarding

the first 50,000 iterations each time. We then average the posterior results to obtain

our maximum-likelihood scaling relation parameters. Results are presented in Table

4.1, and Figure 4.2 shows our resulting M − Tx relation.
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Table 4.1. Results of Bayesian analysis of cluster mass-temperature scaling relation. We present
our primary results, using core-excised temperatures and assuming the X-ray barycenter to be the
true cluster center. In addition, we present results of variations in our data: using non-core-excised

temperatures, centering on BCGs. See Section 4.5 for further details on the variations.

Tx Type Lensing Center Slope α Normalization M0

core-excised X-ray 1.53 ±.69 -1.52 ±.88
core-excised BCG 1.41 ±.76 -1.45 ±.86

non-core-excised X-ray 1.92 ±.88 -1.95 ±1.08

100 101

kbTx [keV ]

10−2

10−1

100

101

102

E
(z

)
∗M

50
0

[1
014
M
�

]

Figure 4.2 Measured M − Tx scaling relation, using stacked weak lensing measurements of 133
clusters of the DES-SV-XCS sample. This analysis uses core-excised temperatures, and assumes
X-ray barycenter to be cluster center. Shaded regions show 1 and 2σ bounds.
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4.5 Scaling Relation Variations

In order to understand possible sources of bias in our results, we measure the

M − Tx scaling relation under multiple conditions. This includes testing the effect

of cluster centering on our weak lensing results, as well as the effect of core-excision

on X-ray measurements. Table 4.2 gives pertinent additional information for each

cluster in our sample.

4.5.1 BCG Centering

Accurate pinpointing of cluster centers is imperative for weak lensing studies.

Off-centering radial bins dampens the lensing signal, underestimating the cluster (or

stack) mass (Johnston et al. (2007a)). As the intra-cluster medium is a good tracer

for a halo’s dark matter distribution, the X-ray barycenter is usually considered a

good representation of the cluster center. However, most large-scale studies operate

only with optical data, using the BCG (brightest cluster galaxy or bright central

galaxy) as the center. While the BCG is usually close to the true center, there

are concerns that this approach leads to miscentering and subsequent significant

suppression of the lensing signal (Johnston et al. (2007a), Melchior et al. (2017)).

As we have both X-ray and optical data for our cluster sample, we can examine

the effect of possible miscentering on the resulting scaling relation. BCGs for each

cluster are found by visual examination, choosing the brightest galaxy near each

cluster center. Figure 4.3 shows the separations between X-ray and BCG centers for

the sample.

We re-measure ∆Σ profiles for each stack using the same process described in

Chapter III, using BCGs as lensing centers instead of X-ray barycenters. The radial

binning for each stack remains the same as given in Table 3.7. The resulting masses
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Figure 4.3 Separations between X-ray and BCG centers: (a) Separation in Mpc, plotted against
temperature. (b) Histogram of separations, in units of R200.

Table 4.6. Best-fit M500 for each stack, centered on cluster BCGs. Column 1 is the stack id,
column 2 gives the best-fit mass, and columns 3 and 4 give the lower and upper bounds

respectively on 1σ uncertainties.

Temperature Best-fit M500 M500,lower M500,upper

Bin Name [1014M�] [1014M�] [1014M�]

bin0 0.0508 ∼ 0 0.283
bin1 1.89 0.901 3.38
bin2 1.15 0.416 2.23
bin3 3.83 1.48 6.95

are given in Table 4.6. Observed and best-fit lensing profiles and likelihoods with 1σ

bounds are shown in Figure 4.4.

We follow the same procedure for constraining the scaling relation as we did

with our primary analysis, including modeling log-normal uncertainties for input

into the Bayesian framework. The exception is bin0, where M500,lower ∼ 0—we use

σM,bin = M500,upper/M500 instead. The resulting scaling relation parameters are given

in Table 4.1, and comparisons to our primary analysis are shown in Figure 4.5.

4.5.2 Non-core-excised Temperatures

Galaxy cluster profiles may exhibit cooler central regions than the rest of the ICM

due to processes such as radiative cooling (Fabian (1994), Henning et al. (2009)).

These “cool cores” can bias measurements of Tx, affecting subsequent constraints



92

0.0 0.2 0.4 0.6 0.8 1.0 1.2

radius [Mpc]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
Σ

[M
�
M
pc
−

2
]

×1014

∆Σfit
∆Σobs

10−6 10−5 10−4 10−3 10−2 10−1 100

M200 [1014M�/h]

0.0000

0.0005

0.0010

0.0015

0.0020

lik
el

ih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

radius [Mpc]

0

1

2

3

4

5

∆
Σ

[M
�
M
pc
−

2
]

×1014

∆Σfit
∆Σobs

10−3 10−2 10−1 100 101

M200 [1014M�/h]

0.000

0.002

0.004

0.006

0.008

0.010

lik
el

ih
oo

d

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

radius [Mpc]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
Σ

[M
�
M
pc
−

2
]

×1014

∆Σfit
∆Σobs

10−3 10−2 10−1 100 101

M200 [1014M�/h]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

lik
el

ih
oo

d

0.0 0.5 1.0 1.5 2.0 2.5 3.0

radius [Mpc]

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
Σ

[M
�
M
pc
−

2
]

×1014

∆Σfit
∆Σobs

10−2 10−1 100 101

M200 [1014M�/h]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

lik
el

ih
oo

d

Figure 4.4 Lensing signals and best-fit models using BCG centering. (left) Best-fit ∆Σ profiles for
each Tx bin, overlaid on the measured ∆Σ values. (right) Likelihoods for our model masses for each
bin, with 1σ uncertainties marked. Bins go from low to high Tx, from top to bottom.
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cluster centers. Shaded regions show 1σ bounds.
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on scaling relations. It has been observed that excluding cluster cores from X-ray

calculations decreases the scatter in scaling relations (Vikhlinin et al. (2009a))—as

such, most recent cluster X-ray studies measure temperatures using spectra outside

the cluster core (e.g., Kettula et al. (2013), Vikhlinin et al. (2009b), Mantz et al.

(2010), among others). For our primary analysis, we use core-excised Tx measure-

ments, where spectra from a central region of radius .15R200 have been excluded from

calculations.

To understand possible effects of cool cores on theM−Tx relation, we constrain the

scaling law using non-core-excised temperatures as well, where spectra from within

the entire detection aperture are used. Figure 4.6 shows the variations between the

two different Tx measurements.
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Figure 4.6 Comparison between core-excised and non-core-excised cluster temperatures.
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We use the same cluster stacks and measured masses as our primary analysis, given

in Tables 3.7 and 3.8, and substitute in non-core-excised Tx values. The resulting

scaling relation parameters are given in Table 4.1, and comparisons to our primary

analysis are shown in Figure 4.7. Note that this method varies somewhat from our

primary method - clusters are not binned strictly by non-core-excised temperatures,

but rather left in the bins defined by core-excised measurements. This allows us

to compare results for each bin. A more independent scaling relation between mass

and non-core-excised temperatures would be obtained by binning the sample directly

using these values, and is worth exploring in future works.
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Figure 4.7 Comparing measured M − Tx scaling relations: using core-excised vs non-core-excised
temperatures. Shaded regions show 1σ bounds.
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4.6 Discussion and Summary

In this chapter, we constrain the galaxy cluster mass-temperature scaling relation

using the DES-SV-XCS cluster sample. This is the largest sample of clusters cur-

rently used to constrain the M−Tx relation where both optical and X-ray data come

from homogeneous sources. We use stacked weak lensing masses derived from DES

optical data (see Chapter III) and core-excised temperatures from XCS X-ray data.

The wide Tx range of this sample gives us unprecedented ability to probe the

M − Tx relation in the low-mass regime. Our measured slope, α = 1.53 ± .69, is

consistent with the self-similar model in virial equilibrium.

Figure 4.8 shows our scaling relation overlaid with several measurements from pre-

vious literature. For relevancy in comparison, we only look at other scaling relations

measured using core-excised temperatures. We find our constraints to be consistent

with these studies to within 1σ uncertainties. The green line in the figure shows

results from Mantz et al. (2010), who use masses calculated assuming hydrostatic

equilibrium and measure a steeper scaling relation slope than other recent studies.

While our results match up well to measurements by Kettula et al. (2013), who ob-

served a significant difference between their slope (constrained using weak lensing

masses) and ones calculated using hydrostatic measurements, our uncertainties are

too high to either confirm or rule out hydrostatic bias, based on our comparison with

the Mantz2010 relation..

Centering the lensing analysis on BCGs rather than X-ray centers does not pro-

duce any significant changes in our scaling relation. Though the ∆Σ profiles are

noisier and look suppressed near the cluster centers, the final masses agree within 1σ

uncertainties.
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Figure 4.8 Our measured M − Tx scaling relation, with 1 and 2σ bounds, compared with results
from Kettula et al. (2013), Vikhlinin et al. (2009b), and Mantz et al. (2010). Vertical lines mark
lower bounds on temperature of the samples used in the scaling relations marked with the same
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Including spectra from cluster cores in the Tx measurements also does not change

the scaling relation significantly. We compare our results to a M−Tx scaling relation

measured using non-core-excised temperatures by Mantz et al. (2010) and find them

to be consistent with each other (see Figure 4.9) . It is interesting to note that excising

the core seems to lower temperatures for low-Tx clusters, but increases temperatures

for high-Tx clusters. This matches with measurements of cluster temperature profiles

presented in Section 5 of Vikhlinin & Kravtsov (2006), where low-Tx clusters exhibit

a much sharper temperature rise and fall near the core. For several of our low-Tx

clusters, it is likely that temperature profiles keep rising within the .15R200 range—

though they may drop off into a cool core at smaller radii, the presence of this higher-

temperature gas would be noted by our non-core-excised temperature measurements.

Rasmussen & Ponman (2007) find that the ratios of core to peak temperatures are

higher for low-Tx systems, and that their peak temperatures occur closer to their

cores—this also aligns with our observations.

4.6.1 Future Prospects

Our ability to distinguish between scaling models, measure possible biases, and

examine effects of variations on cluster properties depends directly on the size of

the uncertainties on our measured M − Tx relation. Working with DES Science

Verification data, we measure a scaling relation that is consistent with the expected

self-similar model, but is not constrained enough to rule out or confirm hydrostatic

bias. While replacing X-ray centers with BCGs as lensing centers changes resulting

stack masses by considerable amounts, both measurements are still consistent within

the large 1σ uncertainties.

The DESY3-XCS sample will contain clusters from the entire Dark Energy Survey

footprint, and will be backed up by galaxy ellipticity data from the first three years
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of DES operations. This increases the dataset two-fold: not only will we gain a

substantial number of clusters, but many clusters will have a much deeper and/or

denser sample of background galaxies (see Section 3.8 for details on galaxy count

increase). The DESY3-XCS cluster sample is currently being assembled, and is

expected to contain at least ∼ 400 clusters, possibly more. This would at a minimum

almost triple our lens sample. The DES-Y3 shape galaxy shape catalogs are expected

within the next few months. Greater numbers of background galaxies will cause the

uncertainties on mass measurements to shrink, and a larger cluster sample will likely

allow an increase in the number of temperature bins. Both these effects should lead

to lower uncertainties in the resulting scaling law. Given enough data, it may be

possible to constrain not only the slope and normalization, but the scaling law scatter

as well.

Despite the greater quantities of data, it is unclear whether future DES-XCS clus-

ter samples will be large enough to constrain the M−Tx scaling relation independent

of cosmological parameters. Our analysis framework is dependent on an assumed cos-

mology in order to measure angular diameter distances, crucial both for measuring

∆Σ and for converting sky separations into Mpc. A cosmology-independent analy-

sis would require the use of shear as the lensing estimator, rather than ∆Σ , which

subsequently requires careful treatment of the range of cluster background galaxies—

this we have already done with our use of individual source-lens pairs to model the

lensing signal, and can modify our analysis easily to use shear instead of the surface

mass density contrast. However, to conduct a stacked-cluster weak lensing analy-

sis without converting background galaxy separations into Mpc would require tight

binning in redshift, as nearer clusters of the same mass will spread out far more in

angular coordinates. Requiring z-binning in addition to Tx binning demands a far
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higher number of clusters in order to maintain detectable lensing signals, especially

in the low-Tx and high-z regimes. It is unclear whether the overlap of the DES and

XCS footprints will provide such a large sample of clusters. Studies of this type may

instead fare better with samples where XCS has greater overlap with an optical sur-

vey, such as the SDSS-XCSDR2 cluster set, containing 1255 clusters (Manolopoulou

et al. (in prep.)). Given such a large sample of clusters, our analysis method is

adaptable for use for constraining the scaling relation independent of cosmology.



CHAPTER V

Conclusion

This dissertation combines information about galaxy clusters from the Dark En-

ergy Survey (DES) and the XMM Cluster Survey (XCS) with observations of galaxies

from DES to measure the relation between cluster mass and temperature, a step in

the path towards using cluster abundances to understand dark energy.

We begin in this endeavor by measuring the shapes of galaxies. Following in the

footsteps of the Dark Energy Survey weak lensing team, we measure galaxy shapes

in areas of the sky that were observed as part of the DES Science Verification (SV)

run, but left out of the official DES SV shear catalog. We validate these additional

measurements by comparing their ensemble qualities to those of the official catalog,

showing that the extra areas are usable for our studies. We present this data, shapes

for ∼ 590, 000 galaxies in the DES-SV sky—an approximately 27% addition to the

official catalog—for public use. We also include a brief description of how to measure

shapes with Im3shape, documenting for use in any future such ventures.

We then use weak gravitational lensing to measure direct masses for a sample of

133 galaxy clusters, stacking them into four bins by core-excised temperatures in

order to strengthen the observed signal, and adopting X-ray barycenters as lensing

centers. In order to work with the inhomogeneous nature of SV data, we develop

102
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a method of modeling the lensing signal that takes into account the sparsity (or

abundance) of galaxy data behind any given cluster, and check its robustness by

subjecting it to various tests. This method builds up the theoretical model profile

by incorporating information about observed individual source-lens pairs, making

sure that clusters contribute to the model in a way that is representative of their

contributions to the observed signal. Thus, this method maximizes the data we can

use in cluster weak lensing studies by allowing us to include clusters for which we

have incomplete background galaxy samples. For example, clusters near the edges

of fields of view, clusters with inhomogeneous data due to weather conditions, and

high-z clusters can now be examined through stacked weak lensing methods. See

Appendix A for details on how to access and run this pipeline, which we name

LensStack.

Having measured best-fit masses for four temperature bins, we adopt a Bayesian

framework to constrain the mass-temperature scaling relation. We find our results to

be consistent with the self-similar model and virial collapse, with a scaling relation

slope α = 1.53± .69, but find our uncertainties too high to discern the presence (or

absence) of hydrostatic bias in cluster mass measurements. In exploring the effect

on the scaling law of several variations in our dataset, we find that neither the use of

non-core-excised cluster temperatures, nor the adoption of cluster BCGs as lensing

centers, affects the results beyond the range of uncertainties.

The limiting factor in our analysis is, of course, the quantity and quality of data.

DES SV only covers a small part of the sky, leading to a small cluster sample.

Furthermore, the SV run was meant to be a test run, a time to fix any remaining

issues with instrumentation or analysis methods. Due to this, galaxy data quality

is not consistent across the whole SV sky. However, shape catalogs from DES’s Y3
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dataset—containing information from the first three years of observing—will likely

be available by the end of this year, providing a more homogenous and dense galaxy

sample around many of our clusters. The list of clusters cross-matched between DES

Y3 and XCS is also under development, and will contain anywhere from twice to

five times as many clusters as our current sample. We look forward to the use of

these samples, and of course larger samples from upcoming surveys such as LSST, to

measure this scaling relation with greater precision, possibly constraining the scatter

as well. Should a large enough cluster sample become available (∼ 4 − 5 times the

size of our current sample, with the same depth of field), our analysis method is well-

prepared to (with a few modifications) constrain the M−Tx scaling law independent

of underlying cosmology—a step in the path of using this relation to constrain dark

energy.

It has ever been in the nature of humankind to explore, to learn, to attempt

to comprehend the universe we inhabit. Millenia of curiosity have revealed to us a

growing, quickening cosmos, and now challenge us to understand the very fabric of

space and time. We honor this legacy of learning by adding this little drop to the

sea, a strand to the cosmic web of knowledge.
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Figure 5.1 Inspiration, from http://theawkwardyeti.com/comic/stars/
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APPENDIX A

Accessing and Using LensStack

In this dissertation, we develop a stacked cluster weak lensing pipeline, LensStack,

which enables us to incorporate clusters into our lensing analysis regardless of back-

ground data quality. Given a list of galaxy clusters, as well as background galaxy

catalogs for each cluster, this code measures the stacked weak lensing mass of the

list, providing tangential and perpendicular shear and ∆Σ measurements along the

way. Further details about exact procedures can be found in Chapter III.

In this appendix, we present this pipeline for public use, and briefly describe how

to run it. LensStack can be downloaded at:

https://github.com/rutudas/LensStack.git

Currently, this repository is presented as a combination of Python scripts and, after

being cloned, does not require any further installation.

The repository contains the following files:

• README.md: contains everything in this appendix, as well as additional de-

tails

• measure lensing signal.py: measures shear and ∆Σ around a given stack of clus-

ters

• fit mass.py: finds the best-fit mass of the cluster stack
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• plot obs fit.py: plots the best-fit model ∆Σ , overlaid with the observed signal

• mass conversions.py: converts between M200 and M500

• paramfile.py: list of parameters. Some have default values, some (such as cata-

log locations) must be specified by user.

A.1 Python and Package Requirements

This repository was built using Python 2.7, and likely requires this version to run.

We have not tested it using Python 3.x, and thus cannot comment on compatibility.

Future updates may include a Python 3.x-compatible version, time allowing.

Several Python packages are required for use with this code. We require the usual

list of packages associated with scientific analysis (these are included with most

Python distributions):

• numpy

• math

• os

• matplotlib

• pickle

• time

We also require the following astronomy/cosmology-specific packages, some of which

probably need to be separately installed:

• astropy (version 1.3.2 is compatible): generic astronomy/astrophysics package

• pyfits: package to work with FITS files

• GalSim: simulates dark matter halos, among other cosmological applications.

Can be found at https://github.com/GalSim-developers/GalSim.git
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A.2 Running LensStack

To run LensStack, follow these steps:

• Prepare input data files as described below.

• Enter parameters into paramfile.py

• Run measure lensing signal.py

• (optional) Check resulting lensing signal and decide whether to change radial

binning (if so, go back to second step). Also check which radial bins to include

in fitting, and adjust paramfile.py accordingly (for example, one may want to

exclude the innermost radial bin if it contains too few background galaxies for

proper error measurement).

• Run fit mass.py.

• (optional) Run plot obs fit.py to visually examine data and fit.

A.2.1 Required Inputs

The following catalogs are required for running this pipeline, formatted as detailed:

List of Clusters

This list, formatted as a single FITS file, describes a single cluster stack. Data

must be arranged into the following columns, with the specified column names (not

case-sensitive):

• name: some sort of unique identifier for each cluster. Galaxy shape catalogs for

each cluster will be identified using this name.

• ra: right-ascension of cluster, in degrees

• dec: declination of cluster, in degrees

• z: cluster redshift



110

• color 1: cluster color using two filters (we used r − i)

• color 2: a second cluster color, using two different filters (we used i− z).

Note: this code uses colorcuts to distinguish background galaxies. We use two dif-

ferent colorcuts—if only one set of colors is available, it must be listed twice (once

labeled “color 1” and once labeled “color 2”) for the code to run properly.

Set of Galaxy Shape Catalogs

This is a set of FITS files. Each file in this set should provide shape data for

galaxies in the area of sky around a particular cluster. We used 80′ × 80′ cutouts

of sky around each cluster, and found the radial range sufficient even for the most

nearby clusters.

Files for each cluster should be named as ”[“name” from cluster list].fits” and all

placed in the same folder (to be specified by the user in the parameter list).

Each file should contain the following columns, with the specified column names

(not case-sensitive). The essential columns are:

• ra: right-ascension of galaxy, in degrees

• dec: declination of cluster, in degrees

• e1: first component of ellipticity in the parametrization described by Eqn. 2.1

• e2: second component of ellipticity in the parametrization described by Eqn.

2.1

• mag1a: magnitude of galaxy through first filter in “color 1” from cluster catalog

(in our case, r)

• mag1b: magnitude of galaxy through second filter in “color 1” from cluster

catalog (in our case, i)
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• mag2a: magnitude of galaxy through first filter in “color 2” from cluster catalog

(in our case, i)

• mag2b: magnitude of galaxy through second filter in “color 2” from cluster

catalog (in our case, z)

• z: galaxy redshift

Note: the signs on e1 and/or e2 may need to be flipped, depending on how the

parametrization is defined. Neither needs a sign flip if the parametrization matches

Im3shape’s conventions. The best way to test this is to run the code once—if a

distinct positive lensing signal is returned, the parametrizations match. If only noise

is returned, it is likely either e1 or e2 needs to be multiplied by -1.

We understand datasets vary, and some of the following columns may not be

available. We provide information on how to format each non-essential column, in

case the corresponding data is not available/relevant. To be compatible with this

code, all columns must be included (this may change over future updates, but is a

requirement as of now). Descriptions of most of these quantities can be found in

Section 2.1.1. The non-essential columns are:

• identifier: unique galaxy identifier (not essential, but makes it easier to run

follow-up checks on outputs)

• w: weight for each galaxy (if not available, set all values to 1)

• snr: signal-to-noise ratio for each galaxy (if not available, set to any constant

number, and set snr cut in parameter file to a lower number)

• rgpp rp: Rgp/Rp (if not available, set to any constant number, and set rgp-

prp cut in parameter file to a lower number)

• nbc m: multiplicative noise bias correction (if not available, set all values to 0)
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• nbc c1: additive noise bias correction for e1 (if not available, set all values to 0)

• nbc c2: additive noise bias correction for e2 (if not available, set all values to 0)

• error flag: Im3shape flag (in not available, set all values to 0)

• info flag: Im3shape flag (in not available, set all values to 0)

List of Parameters

The list of parameters, paramfile.py, contains several required components, and

several components that can be run with defaults unless the user chooses otherwise.

The parameters the user must provide are:

• cluster filename: string containing location of cluster list

• shapecat folder: string containing location of folder containing galaxy shape

catalogs

• output folder: string containing location in which to store outputs

• run name: an identifier given to each run, common to all scripts (outputs will be

marked with this identifier, allowing multiple scripts to access the same results)

Parameters that have defaults, but can be changed:

• start: center of first radial bin

• step: width of each radial bin

• stop: where to end radial bins: bin centers are defined by np.arange(start,stop,step)

• rstart: index of first radial bin to be used for fitting

• numbin: number of radial bins to use for fitting

• masses: array of masses to use as models for fitting

Other parameters also exist, for setting data quality cuts or defining cosmology.

These are further detailed in comments in paramfile.py.
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A.2.2 Outputs

This pipeline provides several outputs. Running measure lensing signal.py returns

arrays for stacked tangential and perpendicular shear and ∆Σ , arrays for their asso-

ciated errors, an array containing the number of background galaxies per cluster per

radial bin, a list of background galaxy redshifts per cluster, and, for good measure,

a list of all background galaxies used in the stack, with associated properties. These

are all saved as pickle files. This script also outputs plots of the ∆Σ signal for visual

inspection of results.

Running fit mass.py returns the best-fit mass in terms of M200 and M500, along

with 1σ uncertainties, all in one pickle file. It also stores the input masses and the

resulting likelihood of fits as pickle files, and plots the likelihood against the array

of masses.

Running plot obs fit.py plots the best-fit ∆Σ profile, overlaying it on the observed

signal.

Further details on how these arrays/files are arranged are given in the README.md

file.
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APPENDIX B

Running Im3shape

Upon endeavouring to measure additional shape catalogs using the tried-and-tested

Im3shape v9 pipeline, we were dismayed to find that no central documentation

existed, even within the collaboration itself, detailing all the necessary steps (and

possible pitfalls). This resulted in months of delays as we attempted to track down

missing pieces of data or code, or doubled-back in the process to complete an earlier

step of which we had previously been unaware. Im3shape is available in the public

domain for anyone to use—to prevent others from repeating these issues, and to

generally document the process for future reference and experiment repeatability, we

provide a list of steps detailing the necessary components of running this pipeline.

This list was compiled partially by referring to the DES SV shape catalog paper

(Jarvis et al. (2016)), but mostly through multiple conversations/emails with the

primary authors of said work.

B.0.1 Necessary repositories/modules/programs:

Im3shape and the associated noise bias calibration pipeline require several pack-

ages to function properly:

• Im3shape repository: https://bitbucket.org/joezuntz/im3shape-git

• meds python module: https://github.com/esheldon/meds
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• fitsio python module: https://github.com/esheldon/fitsio

• ucl des shear git - https://bitbucket.org/joezuntz/ucl des shear git

• GREAT-DES repository: https://github.com/tomaszkacprzak/GREAT-DES

• tktools repository: https://github.com/tomaszkacprzak/tktools

• GalSim: https://github.com/GalSim-developers/GalSim.git

B.0.2 Steps to Measure Shapes

Necessary Inputs

In order to run Im3shape, one must start with:

• MEDS files for the areas of sky to be examined

• PSF measurements at the positions of objects for every exposure in the MEDS

file

• PSF blacklist: a list of exposures for which PSF measurements failed—to be

used to exclude these exposures from shape measurements

See Section 2.1 (or Sections 4 and 5, and Appendix A, of Jarvis et al. (2016)) for

more details on these files and measurements.

The PSF information must then be added to the MEDS file. This can be done us-

ing a script in the ucl des shear git repository: ucl des shear git/utils/meds tools

/collect psf.py by running the following command in a terminal:

python collect psf.py meds.txt v4

Here, “meds.txt” is a text file containing paths to the MEDS files to be run (one

on each line). Unfortunately, it seems as though this script is specialized to be used

with DES —the “v4” refers to the version of PSF runs, and this script must be

run in a particular online DES repository. However, it may be possible to modify
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it slightly for use in other filesystems—one would have to contact Joe Zuntz, the

creator of this repository and Im3shape (contact information available through the

official repository pages).

Running Im3shape

Once we have the MEDS files, with PSF information added, we can move on

to running the Im3shape pipeline. To measure shapes for a MEDS file, run the

following command in a terminal:

python -m py3shape.analyze meds $MEDS $INI $CAT $OUT $RANK $SIZE

• MEDS is the path to the MEDS file

• INI is a parameter file. The required parameters are described in the Im3shape

readme file.

• CAT is a text file containing a list of object identifiers that tells Im3shape

which objects to run on. These should match up with object identifiers in the

MEDS file. If running for all objects in the MEDS file, we can type ”all” in

place of CAT.

• OUT is the base name for the output, which includes both the directory for the

output and a name for the run. For example, if OUT is ‘some folder/results’

then the output files will be stored in some folder, and the filenames will be

‘results.main.txt’ and ‘results.epoch.txt’.

• RANK and SIZE are integers with RANK¡SIZE. This will assume that the job

is to be split up into SIZE separate chunks and that this command is number

RANK in that group (starting at 0).

As mentioned in Section 2.1.1, this pipeline fits each galaxy to both bulge and disc

models, keeping the result with the maximum likelihood. In order to do this, the
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above command must be run twice for all galaxies, once for the bulge model and

once for the disc model. The model to be used is specified in the INI parameter file.

Note: This method of running Im3shape focuses on examining MEDS files one

at a time. If one wants to examine multiple MEDS files at once, this can be done

through the use of mpi4py. The functionality is built into the pipeline, and further

details on that procedure can be obtained by examining the Im3shape readme file

or by contacting the creator of the pipeline, Joe Zuntz (contact information available

through the official repository).

Postprocessing

The outputs from each run of Im3shape are two catalogs, named [OUT].main.txt

and [OUT].epoch.txt. The “main” file contains the measured shapes and corrections,

while the “epoch” file contains information about every exposure used to fit each

galaxy. These catalogs must go through postprocessing to choose between the bulge

and disc models, and to format them for the next steps. In order to avoid researcher’s

bias during data analysis, this postprocessing also blinds the catalogs, multiplying

each e1 and e2 by some number between .9 and 1 (the same number for all galaxies),

as described in Section 7.5 of Jarvis et al. (2016). Postprocessing follows these steps:

• import the necessary scripts into a python environment, using “from des post.

postprocess import process text”. des post is a subdirectory of the ucl des

shear git) package.

• run the following command in python:

process text(main file, epoch file, out main, out epoch, band,

blind=True,quiet=True, report=False)

The first two inputs are the raw Im3shape outputs, “out main” and “out epoch”
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are paths to where the postprocessed catalogs should be saved, and band is the

filter used for measuring shapes (‘g’, ‘r’, ‘i’, or ‘z’). The outputs are FITS files,

and should be named as such.

• now we run the merging code that chooses between the bulge and disc models.

Import the module in python: “from des post.merge bulge disc import merge”

• run the following command in python:

merge(bulge main, bulge epoch, disc main, disc epoch, bord main,

bord epoch)

The first four files are the postprocessed result files from the previous step.

“bord main” and “bord epoch” are the names that will be given to the merged

output files, again in FITS format.

Noise Bias Calibration

The final step is to apply the noise bias correction described in Section 7.3 of

Jarvis et al. (2016). In a terminal, run:

python /GREAT-DES/nbc-v7/nbc v7.py -c nbc.yaml -a apply calibration to file

–filename to calibrate [filename]

The [filename] should be the postprocessed merged “bord main” file. The “nbc.yaml”

file can be found in the same directory as this script. The output file will automati-

cally be placed in the same folder as the input file. Its name will be the same as the

input file’s, with the letters “nbc” inserted before the “.fits” extension.

The output of this step gives the final shape catalog for the analyzed MEDS file.

All included columns of the catalog are described in the documentation for the official

release of DES-SV shapes1. After many measurements and corrections, we are done.

1https://des.ncsa.illinois.edu/releases/sva1
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