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Abstract 
 

Over-actuated (or input-redundant) systems are characterized by the use of more 

actuators than the degrees of freedom to be controlled. They are widely used in modern 

mechanical systems to satisfy various control requirements, such as precision, motion range, 

fault tolerance, and energy efficiency. This thesis is particularly motivated by an over-actuated 

hybrid feed drive (HFD) which combines two complementary actuators with the aim to reduce 

energy consumption without sacrificing positioning accuracy in precision manufacturing.  

This work addresses the control challenges in achieving energy optimality without 

sacrificing control performance in so-called weakly input-redundant systems, which characterize 

the HFD and most other over-actuated systems used in practice. Using calculus of variations, an 

optimal control ratio/subspace is derived to specify the optimal relationship among the redundant 

actuators irrespective of external disturbances, leading to a new technique termed optimal control 

subspace-based (OCS) control allocation. It is shown that the optimal control ratio/subspace is 

non-causal; accordingly, a causal approximation is proposed and employed in energy-efficient 

structured controller design for the HFD. Moreover, the concept of control proxy is proposed as 

an accurate causal measurement of the deviation from the optimal control ratio/subspace. The 

proxy enables control allocation for weakly redundant systems to be converted into regulation 

problems, which can be tackled using standard controller design methodologies. Compared to an 

existing allocation technique, proxy-based control allocation is shown to dynamically allocate 

control efforts optimally without sacrificing control performance.  

The relationship between the proposed OCS control allocation and the traditional linear 

quadratic control approach is discussed for weakly input redundant systems. The two approaches 

are shown to be equivalent given perfect knowledge of disturbances; however, the OCS control 

allocation approach is shown to be more desirable for practical applications like the HFD, where 

disturbances are typically unknown. The OCS control allocation approach is validated in 

simulations and machining experiments on the HFD; significant reductions in control energy 

without sacrificing positioning accuracy are achieved. 
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Chapter 1 Introduction and Literature Review 
 

1.1 Background of Over-Actuation 

Actuators play a fundamental role in motion control systems, as they provide the 

necessary forces to regulate the motion. Conventionally, each degree of freedom (DOF) of 

motion is controlled via a single actuator, resulting in so-called fully-actuated systems [1]. 

However, fully-actuated systems may be limited in meeting the increasingly multifaceted and 

stringent control requirements (e.g. fault tolerance, energy efficiency, accuracy) placed on 

modern motion control systems. Under these circumstances, over-actuation (or input-

redundancy) – the use of more actuators than the degrees of freedom to be controlled [2] – is 

increasingly being employed. To illustrate the wide usage of over-actuation, several 

representative case studies in aircraft, vehicles, and feed drives are discussed. 

1.1.1 Representative Usage of Over-Actuation 

1.1.1.1 Over-Actuation in Aircraft 

In conventional winged aircraft, roll, pitch and yaw are the three major DOFs to be 

controlled. These three DOFs are maneuvered through the effectors (i.e., actuators). Among the 

effectors, two ailerons, two elevators and one rudder formulate the most elemental configuration 

[3]. They can change the flow of the air around the wings and stabilizer, controlling the 

aerodynamic forces applied to the aircraft. Note that this elemental configuration yields over-

actuation, as more effectors are used compared to the motion DOFs to be controlled. Early 

aircraft mechanically coupled the motions of the effectors such that roll, pitch and yaw could be 

controlled separately; this original allocation strategy is referred to as mechanical ganging of 

effectors [3,4]. It was later discovered that the use of over-actuation could enhance the 

performance envelope of airplanes, especially during low-speed flight [4]. Over-actuation also 

allowed aircraft to recover from actuator failure, thus enhancing their fault tolerance [3,5,6]. For 

example, Figure 1.1 (a) illustrates the use of redundant effectors to compensate the yaw motion 
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due to a failed effector [7]. This capability of fault tolerance is especially important in the 

modern fly-by-wire aircraft, where mechanical connections between the pilot’s control 

sticks/pedals to the effectors are replaced by electric signals and distributed actuators [3,7].  

 

Figure 1.1: (a) The Use of Redundant Effectors to Compensate for a Failed Effector in an Airbus 
Plane [7], (b) Over-Actuation in the Vehicles using In-Wheel Motors and Steer-by-Wire System 
to Replace Conventional Powertrain and Steering [8], and (c) Over-Actuated Dual-Stage in Hard 

Disk Drive [9]  

1.1.1.2 Over-Actuation in Vehicles 

In rudimentary vehicle designs, the direction of the vehicle is controlled by its steering 

system while the speed is controlled through gas/brake combination. This combination can be 

viewed as an early usage of over-actuation: the engine cannot provide abrupt propulsion in 

reverse direction and brakes are used to overcome this deficiency. Over many decades of 

automobile development, the use of over-actuation has significantly increased. For instance, at 

the heart of so-called vehicle stability control, which is mandatory for most modern-day vehicles, 
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the braking forces to individual wheels of a vehicle are controlled separately to enable enhanced 

traction and yaw rate control [8,10–12].  Similarly, torque vectoring differentials [13] and multi-

axis steering [11,14] are used to enhance the maneuverability of the vehicle; redundant air-pass 

geometry compressors are used to enhance the response of vehicle turbochargers [15]; a 

redundant actuator is attached to the steering shaft to reduce the steering torque [16]. Current 

developments are focused on replacing conventional powertrain and steering system with in-

wheel motors and steer-by-wire system (shown in Figure 1.1 (b)) [8,17–19], targeted for 

improved maneuverability through over-actuation [8]. In steer-by-wire systems, hardware 

redundancy is usually required to ensure a certain level of fault tolerance [20]. Another important 

use of over-actuation in automotive applications is in hybrid electric vehicles [21,22] where 

redundant electric propulsion systems are used in collaboration with internal combustion engines 

to improve fuel economy. 

1.1.1.3 Over-Actuation in Feed Drives 

Feed drives are used to generate accurate motion of machine components in various 

applications like manufacturing, data storage and robotics [23]. In dual-stage feed drives, two 

feed drives are connected in series or parallel to deliver motion along one DOF. Dual-stage feed 

drive arrangements formulate over-actuated systems and can be employed to fulfill demanding 

quality, capacity, productivity, and energy efficiency requirements. One representative case is 

the combination of a short-range, precise actuator (e.g. piezoelectric actuator) in series with a 

long-range actuator with limited precision or response time (e.g. linear motor [24], voice coil 

[25],  ball screw feed drive [26,27]). Such a dual-stage configuration simultaneously delivers 

long-range, precise, and rapid motion, which would have been challenging to achieve with a 

single actuator. Figure 1.1 (c) illustrates a voice coil actuator connected in series with a piezo 

actuator for controlling the motion of the read/write head in hard disk drives [9,28–30]. The 

increased motion range and precision enabled by this dual-stage configuration enables faster 

read/write speeds (higher throughput) and higher data density (capacity). Apart from series 

configurations, parallel combinations of redundant actuators are also common in feed drives. For 

example, gantry structures are commonly actuated through the dual actuators in parallel, which 

reduces the unwanted yaw vibration [31,32]; in [33], a tilting platform is designed to combine a 

pneumatic actuator and voice coil motor in parallel to achieve high torque and fast response 

simultaneously; and in [34], a linear motor drive is connected in parallel with a screw drive to 
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provide additional damping. The work in this thesis is motivated, from a practical standpoint, by 

a parallel-configured, dual-stage hybrid feed drive designed to improve energy efficiency in 

manufacturing, as discussed in the following section. 

1.1.2 Hybrid Feed Drive ([35]) 

In manufacturing machines, such as machine tools, feed drives are responsible for 

generating accurate motion between tool and workpiece. Hence their positioning accuracy and 

speed are critical to the quality and productivity of the manufacturing processes [23]. They 

account for a significant portion of the energy consumption of manufacturing machines [36,37]. 

It is however recognized that, to achieve truly sustainable manufacturing, improvements in 

energy efficiency must be achieved without unduly sacrificing quality and productivity [38]. 

 

Figure 1.2: Schematic of HFD Prototype Proposed by Okwudire and Rogers [35] 

Screw drives (SDs), which convert rotary motion from a rotary motor to linear motion 

using a screw, are the most common choice for actuating the translatory feed axes of machine 

tools [23]. The reason is that SDs are cost-effective and have a high mechanical advantage which 

allows them to support high cutting (i.e., machining) forces with very low energy consumption 

[39,40]. The speed and accuracy of SDs are however limited because of mechanical issues like 

vibration, wear, backlash and geometric errors of the screw and associated mechanical 

components [23,40]. To mitigate these shortcomings, linear motor drives (LMDs) are 

increasingly being employed [40–45]. LMDs can achieve higher speeds and accelerations than 

SDs and are not subject to the inaccuracies caused by geometric errors, wear and structural 

deformations arising from the screw and other mechanical components like bearings, couplers 

and nuts that are connected to it [23,40]. LMDs are therefore generally more precise than SDs. 
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However, because they provide no mechanical advantage, they consume a lot more electrical 

energy to support cutting forces than SDs, thus significantly increasing the energy consumption 

of the machine [42].  

Machining operations typically consist of a combination of two modes – rapid traverse 

(i.e., high-speed, zero-cutting-force positioning moves) and cutting, usually involving low feed 

rates and large cutting forces. The idea behind the HFD is to: (i) drive the machine table using 

the LMD during rapid traverse to achieve very high speeds and accelerations with low energy 

consumption; (ii) drive the table using a low-lead SD during cutting to achieve the required 

cutting speeds with low energy consumption; (iii) use the LMD to compensate for vibrations and 

errors introduced by the SD during cutting; and (iv) ensure that the switch between the LMD and 

SD can be achieved rapidly and energy efficiently at any position of the table within its travel. 

These functionalities are realized through a reconfigurable traction SD comprising a 

rolling helix (Roh’lix®) nut which creates a virtual helix and screw motion when engaged with a 

smooth shaft [46,47]. The Roh’lix nut consists of two spring-loaded halves that can be separated 

to disengage the smooth shaft from the nut at any given location. Accordingly, the HFD is 

operated in two modes – (i) the rapid traverse mode, when the nut is disengaged from the shaft 

and the LMD acts alone; and (ii) the cutting mode, when the nut is engaged to the shaft, allowing 

the SD and LMD to work together in parallel to actuate the table, resulting in an over-actuated 

system where the goal is to minimize energy consumption without sacrificing positioning 

accuracy. 

1.1.3 Over-Actuated Systems Summary and Control Challenges 

Through the discussion of various applications, it can be summarized that the core 

purpose of adopting over-actuation is to satisfy supplementary control objectives, in addition to 

the primary control objectives fulfilled by its fully-actuated counterpart.  These supplementary 

objectives can be: 

 fault tolerance (e.g. redundant hardware in aircraft and vehicles), 

 response time reduction (e.g. gas/brake combination, redundant air-pass geometry 

compressor, coarse-fine dual stage feed drive),  

 enhanced maneuverability (e.g. vehicle stability control system, torque vectoring 

differentials, multi-axis steering) 
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 yaw vibration reduction (e.g. redundantly actuated gantry structures) 

 enhanced energy efficiency (e.g. hybrid electric vehicle, hybrid feed drive) 

 … 

Note that these objectives are not exclusive to each other, and an over-actuated system may be 

designed achieve multiple objectives. For example, the redundant effectors on the aircraft can 

both enhance the energy efficiency and fault tolerance.  

Though the satisfaction of the supplementary control objectives seems desirable, the 

control of over-actuated systems is not straightforward. All the expected functionalities are not 

realized through the simple augmentation of actuators, targeted control and sensing algorithms 

need to be designed accordingly. For example, the fault tolerant control of aircraft shown in 

Figure 1.1 (a) requires the detection of the effector failure, and a safe transition algorithm 

towards a different control framework with yaw compensation. In the applications where energy 

efficiency is required, it is important to ensure that the actuators are minimally counteracting, 

which otherwise would result in significant energy consumption. Accordingly, enhanced control 

methods for over-actuated systems are needed, to ensure the satisfaction of both primary and 

supplementary control objectives. 

1.2 Literature Review on Over-Actuated System Control Considering 

Energy Efficiency 

Among the supplementary control objectives, energy efficiency is a fundamental one 

across different applications. Energy efficiency quantitatively measures the level of control 

efforts (usually using the two-norm of control signals), and is a major indicator of the degree of 

collaboration in over-actuated systems. Due to redundancy, a primary control objective can be 

realized either in a collaborative or an uncooperative combination of actuators, indicating 

significant potential energy consumption difference. Therefore, minimization of control energy is 

usually desired, to enhance the synergy among the redundant actuators. 

In the early use of over-actuated systems, the avoidance of significant energy 

consumption was usually inherent. In these scenarios, the control system only needs to guarantee 

collaboration of actuators on a rudimentary level. Corresponding methods, without quantitatively 

optimized energy efficiency, are defined as rudimentary methods and discussed in Section 1.2.1. 

Further development of over-actuated system control optimizes energy efficiency explicitly. This 
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is usually achieved through two different directions: combining primary objectives with energy 

efficiency such that existing optimal control methods (e.g. linear quadratic control) can be 

employed, or decomposing primary and energy efficiency such that controller design follows a 

two-stage framework. These two different directions are referred as general optimal control 

methods and control allocation, which are discussed in details in Sections 1.2.2 and 1.2.3. 

1.2.1 Rudimentary Methods 

In the rudimentary methods, avoidance of significant energy consumption is realized 

through encouraging collaboration among redundant actuators. The mainstream of these 

rudimentary methods arises from extensions of existing methods for fully-actuated systems, and 

embraces a core concept of decomposition. One natural direction is to reduce the coupling 

among redundant actuators. This decoupling can be achieved in time domain, where the effective 

time spans of the redundant actuators are disjoint (e.g. gas/brake design), or in frequency 

domain, where the dominant working frequencies of redundant actuators minimally overlap (e.g. 

PQ control [48], decoupling network [49], etc.). This concept of decoupling minimizes the 

common regions where the redundant actuators are active, and thus reduces the probability of 

actuator counteracting. Another direction of decomposition is to adopt the master-slave 

framework [50–54], where certain “master” controls are first determined and then used to 

configure the rest “slave” control inputs. This framework is common in applications where a 

group of actuators is prioritized (e.g. in daisy chain methods [52,53]), or in applications where 

certain redundant actuators have limited effect on others (e.g. coarse-fine motion stages [54]). In 

robotics applications, a special type of master-slave framework is referred as impedance control 

[55–57], where redundant slave manipulators are controlled as if they are passively connected to 

the master manipulators. Accordingly, this hierarchy in the master-slave framework enforces 

actuator collaboration, which inherently benefits energy efficiency. However, these rudimentary 

methods only avoid significant energy consumption by encouraging actuator collaboration; they 

do not quantitatively account for energy efficiency and thus could be far from energy optimality. 

1.2.2 General Optimal Control Methods 

Unlike rudimentary methods, quantitative energy efficiency is considered in general 

optimal control methods. This optimization of control energy is not unique to over-actuated 
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systems. General optimal control methods concerns control energy, regardless of over-actuation. 

The two-norm of the control inputs, i.e. 

  T

0
,uJ dt


 u u Ru  (1.1) 

is commonly used to define control energy, and is referred to as energy in this dissertation. 

Without loss of generality, this use of terminology is guided by the hybrid feed drive where the 

selection of R is such that Ju represents the Joule heat energy expended by its actuators. The 

quadratic energy cost has to combine with other control performance metrics to formulate an 

effective objective function.  

For cases where the primary control objectives are also specified in this quadratic format, 

the optimal control of these two conflicting objectives yields a standard linear quadratic control 

[29,58]. For standard linear quadratic regulation (LQR) problems with infinite horizon, the 

solution is specified to be a static state feedback controller, whose gain matrices are specified by 

Riccati equations [58]. The LQR solutions can be further extended to tracking problems with 

exogenous inputs [59,60]. This generalization is referred as linear quadratic (LQ) control, which 

is discussed in detail in Section 5.2. This general optimal control method applies to over-actuated 

systems, and is shown to strictly enhance controllability with an increased degree of redundancy 

[61]. In over-actuated systems where the detailed state dynamics is not enforced, the redundancy 

in the state costs can be used to enhance the transient response of the system [28]. 

For cases where the primary control objectives are specified using the infinity norm, the 

optimal control formulate an H2/H∞ framework, and can be solved using convex optimization 

[62,63]. The application of the H2/H∞ methods enables a wide range of control objectives, 

including disturbance rejection, robustness, etc. [24,29]. Nonetheless, the H2/H∞ methods usually 

generate high order controllers even after model reduction, which may not be desirable for 

practical tuning and implementation [51]. 

One major critique of these general optimal control methods is that they do not 

distinguish between over-actuated and fully-actuated systems. Accordingly, they do not capture 

the characteristics of over-actuation, and thus the primary control objectives and energy are 

coupled in the design process. This coupling may require trial and error in weight selection and 

tuning, which is not desirable.  
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1.2.3 Control Allocation 

Unlike the general optimal control methods, control allocation approaches are proposed 

to take advantage of the structure of the over-actuated systems. The null space in over-actuated 

systems enables the redistribution of control efforts without affecting the primary control 

objectives. Accordingly, control allocation usually embraces a two-stage framework, having a 

high-level nominal controller (aka. ‘virtual controller’ [10,17,64,65]) which determines the 

overall control effort required to achieve desired output trajectories, and a control allocator 

designed to best distribute the control effort to the actuators [10,64–67].  

 

Figure 1.3: Two-Stage Framework in Control Allocation 

To facilitate the discussion, two definitions of over-actuated systems (i.e. strong and 

weak input redundancy), firstly introduced in [68], are discussed. Control allocations methods 

under each definition are discussed, followed by their connections to the optimal control 

methods. 

1.2.3.1 Definitions of Over-Actuation: Strong and Weak Input Redundancy 

Consider a controllable MIMO linear time-invariant (LTI) system  

,d y Gu G d  (1.2) 

where y ∈ ℝny  is the output of the system, while u ∈ ℝnu , d ∈ ℝnd  are the control input and 

disturbance, respectively. Assume that one minimal state-space realization of the system is given 

by 

;

,
d

d

  

  

x Ax Bu B d

y Cx Du D d


 (1.3) 

where x ∈ ℝnx is the state vector of the system. 

Definition 1 (strong and weak input redundancy): The system given by transfer 

function matrix (1.2) and state-space representation (1.3) is: 

(a) strongly input redundant if  

Over-actuated mechanical system

Virtual 
controller

Control 
allocator

Actuators
Mechanical 

system

Output

Overall 
control 
effort

Redundant 
control 
inputs

Reference
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Ker ;
  

   
  

B

D
 (1.4) 

(b) weakly input redundant if  

  Ker , for almost all .s sG  (1.5) 

Remark 1: Strong input redundancy in Definition 1 indicates that there exists a family of 

control inputs that does not affect the internal states, while weak input redundancy relaxes this 

constraints to output rather than states. Definition 1 arises from [68] but is slightly altered to 

enable broadband control allocation. The original definition of weakly input redundant systems 

in [68] focused on only static control allocation (i.e., for s→0). This original definition is 

extended to almost all frequencies as in (1.5), to make it applicable to dynamic (broadband) 

control allocation. 

Remark 2: From the relationship between state-space and transfer function 

representations of a system, i.e.  

  1
– ,s

 G C I A B D  (1.6) 

one can deduce that strongly input redundant systems formulate a subset of weakly input 

redundant systems, i.e., (1.4) ⇒ (1.5).  

Remark 3. The strong and weak input redundancy in Definition 1 can be extended to 

nonlinear systems. Assume a nonlinear system given by  

 
 

, ;

.





x f x u

y h x


 (1.7) 

The states x are assumed to have zero initial conditions to simplify the discussion. The output is 

given by  

    ,t ty uG  (1.8) 

where G represents an operator from input to output. The system is defined to be strongly input 

redundant if  

   , 0, s.t. , , ,    u u f x u f x u u  (1.9) 

and to be weakly input redundant if  

             , , s.t. ,t t t t t t    u u 0 u u uG G  (1.10) 

where 0(t) represents a constant zero function. 
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1.2.3.2 Control Allocation for Strong Input Redundancy 

Due to the null space defined in (1.4), there exists a set of control inputs that do not affect 

system internal states [64–67]. The control effective matrix B can be decomposed into 

,v B B B  (1.11) 

where rank(Bv) = rank(B) [64,69]. Accordingly, invariant control performance is guaranteed 

through the linear constraint: 

, B u τ  (1.12) 

where τ is generally non-redundant (i.e. having the same degree of freedom as y), and is 

specified from the high-level virtual controller in the first stage. Consider other possible linear 

constraints (e.g. saturation) and the control energy at a particular instance as an objective, i.e.  

Tmin ,

subject to .  

u Ru

U u U
 (1.13) 

The problem becomes a quadratic programming problem with linear constraints. The most basic 

configuration having two control inputs is illustrated in Figure 1.4, where there may exist single 

or multiple feasible solutions satisfying linear constraints in (1.12) and saturation-type 

constraints defined in (1.13). The minimization of the two-norm is used to determine the energy-

optimal control. There are several methods available in the literature to address this problem, 

including backstepping [6], redistributive pseudoinverse [69], fixed-point [70], etc. A detailed 

comparison of these methods is discussed in [67].  

 

Figure 1.4: Illustration of Control Allocation for Strong Input Redundancy  

1U 
1U 

2U 

2U 

2u

1u

1 B u τ

Constraints

2 B u τ
3 B u τ

4 B u τ

No solution

Single feasible solution
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Although the control allocation methods for strong input redundancy are relatively 

mature, it should be noted that strong input redundancy is a restrictive condition, which in 

practice often requires exact collocation of actuators or severe truncation of higher order 

dynamics [65]. This configuration leads to static allocator structure, fitted for slow allocation and 

applications where actuator dynamics are similar.  

1.2.3.3 Control Allocation for Weak Input Redundancy 

Recent advances in over-actuated system research indicate that dynamic allocation is 

necessary for applications where the fast response is required with unmatched redundant actuator 

dynamics [65,71]. Preliminary research on weak input redundancy borrow the static actuator 

model from strong input redundancy, however distribute the control efforts with heuristic 

dynamic filters [71], or introduce additional allocation memory and penalize actuator rates [65]. 

Though these dynamic allocation methods enable broadband allocation of control effort, they are 

still limited since the optimality under broadband disturbance is not guaranteed and the overall 

control performance may be affected by allocation. More systematic approaches for the weak 

input redundancy are needed. 

To address the dynamic control allocation for weakly input redundant systems, a general 

control allocation approach for weakly redundant systems is to use a model predictive control 

framework [15]; however, this often leads to computationally expensive real-time optimization. 

Using regulator theory, Galeani et al. [72] explored static state feedback structures for optimal 

control allocation in weakly input redundant systems, by minimizing the infinity norm of the 

control efforts; a finite dimension relaxation was employed to reduce the computational cost. 

However, this relaxation leads to a hybrid system, and the associated switching events may 

introduce undesirable transients. Zaccarian [68] proposed a dynamic allocation method based on 

a static redundancy model in weakly input redundant systems. The matrix B⊥ is defined as the 

orthogonal complement of the DC gain matrix, given by 

  
0

lim .
s

s 
G B 0  (1.14) 

The static-model-based dynamic allocation in [68] is expressed as 

;

,
z z

z







 

w K B Ru

u τ B w


 (1.15) 
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where Kz is a tuning parameter of the convergence speed and τ is the non-redundant overall 

general efforts generated through the high level virtual controller. This allocator design based on 

static redundancy is further expanded to nonlinear objectives in [73]. An allocation scheme 

following similar concept is proposed for first-order nonlinear systems [74]. While these 

approaches [68,73,74] greatly simplify the problem and reduces computational burden, it is 

incapable of optimal broadband control allocation. Moreover, given an accurate plant model, the 

approaches in [68] and [72] both cannot guarantee invariance of the controlled output (i.e., 

control performance) during broadband control allocation due to their statically-defined null 

space. Accordingly, computational efficient dynamic control allocation methods with minimal 

performance variation are needed, for weakly input redundant systems. 

1.2.3.4 Connections between Optimal Control and Control Allocation 

As two major approaches, the connections between the optimal control approach and 

control allocation should be explored. Harkegard and Glad [64] discussed the equivalence of the 

two frameworks in strongly input redundant systems. It is shown that the optimal control 

problem with a general positive definite performance cost Hy, given by 

   T

0
,uy yJ dt


 u H u Ru  (1.16) 

is equivalent to a control allocation two-stage framework, where the virtual control τ is 

optimized through  

   
 

T

0

11

;

,

y yJ dt 

  





 τ H τ R τ

R B RB
 (1.17) 

while the allocator decides u according to the following problem 

Tmin ,

subject to . 
u Ru

B u τ
 (1.18) 

However, this analysis only applies to strongly input redundant systems, and the relationship 

between the two approaches for weakly input redundant systems is not explored in previous 

literature.  
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1.2.4 Summary of Core Deficiencies in Existing Work 

In summary, the following deficiencies are found in existing methods for energy-optimal 

control of over-actuated system: 

 Rudimentary methods avoid significant energy consumption in over-actuated systems 

through decoupling, master-slave framework, passive connection, etc. They do not 

explicitly optimize energy consumption and thus could be far from energy optimality. 

 General optimal control methods do not exploit the structure introduced by redundancy. 

Accordingly, the control performance and energy are coupled in the design process, 

which is not desirable since it may require trial and error in weight selection. 

 Control allocation methods for strongly input redundant systems are mature; however, the 

definition of strong input redundancy is restricted since it often requires exact collocation 

of actuators or severe truncation of higher order dynamics, which impedes its practical 

employment in achieving optimal dynamic allocation. 

 Control allocation methods for weakly input redundant systems are either 

computationally expensive or they introduce approximations which result in control 

performance variations and/or do not guarantee optimality in dynamic (broadband) 

control allocation. 

 The relationship between control allocation and optimal control methods has not been 

explored for weakly input redundant systems.  

1.3 Dissertation Contributions and Outline 

To address the deficiencies enumerated above, specifically for weakly input redundant 

systems, the following contributions are made in this dissertation: 

1. An optimal control ratio/subspace for weakly input redundant systems is theoretically 

derived to specify the optimal relationship among the redundant actuators irrespective of 

external disturbances, leading to a new approach termed optimal control subspace-based 

(OCS) control allocation.   

2. The optimal control ratio/subspace is shown to be non-causal, which poses challenges for 

practical implementation. Therefore, a causal approximation is proposed and used to 

design structured energy-efficient controllers for a weakly input redundant HFD; a 

relationship quantifying the energy efficiency loss due to the approximation is derived.  
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3. A causal measurement of the deviation from the optimal control ratio/subspace is 

introduced as a proxy for deviation from energy optimality. The proxy is used to convert 

the control allocation problem to a regulation problem compatible with most standard 

controller design methodologies. Compared to an existing allocation technique [68], the 

proposed proxy-based control allocation method is shown to dynamically allocate control 

efforts optimally without sacrificing control performance. 

4. The proposed OCS control allocation technique is shown be equivalent to standard LQ 

control methods, assuming perfect knowledge of the disturbances acting on the controlled 

system. It is also shown that the OCS control allocation approach is preferable over the 

LQ control method in practical situations where the disturbance is typically unknown. 

5. The OCS control allocation technique is validated in simulation and experiments on the 

HFD. Significant enhancement in energy efficiency is demonstrated without sacrificing 

positioning accuracy.  

The concept of optimal control ratio, its causal approximation, and its application in HFD 

have been published in [75,76]. The concept of control proxy, as well as its usage to convert the 

control allocation problems into regulation problems, have been published in [77–79]. The 

connections between the proposed OCS control methods and LQ methods are discussed in [80]. 

The thesis is organized in following order: The concept of optimal control ratio for dual-

input, single-output (DISO) weakly input redundant system is introduced in Chapter 2. Using the 

ratio and its approximation, energy-efficient structured controllers are proposed for the HFD, and 

validated in simulations and experiments. In Chapter 3, to address the approximation error and 

implementation challenges of using the optimal control ratio, a proxy signal is established and its 

usage in OCS control allocation is discussed and validated on the HFD. The concepts of optimal 

control ratio and proxy for DISO systems is extended to multi-input, multi-output (MIMO) over-

actuated systems in Chapter 4. The relationship between the proposed OCS control allocation 

and the traditional linear quadratic control is then illustrated in Chapter 5, followed by 

conclusions and future work discussed in Chapter 6. 
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Chapter 2 Energy-Efficient Control of an Over-Actuated Hybrid Feed Drive 
via Optimal Control Ratio  

 

2.1 Overview 

This chapter explores the energy-efficient control of an over-actuated hybrid feed drive. 

It starts by deriving an optimal control ratio (OCR) for weakly input redundant dual-input, 

single-output systems. This OCR helps to determine the energy optimality of controllers in 

weakly input redundant systems, and is applied in this chapter to the hybrid feed drive (HFD) 

presented in Chapter 1. Though the OCR is shown to be non-causal (meaning that it cannot be 

directly evaluated in real time), a causal approximation of OCR is proposed to encourage its 

practical usage. The energy loss due to the approximation is analyzed and is shown to be small 

for the HFD. The causal approximation of the OCR is further exploited in structured feedforward 

and feedback control design and optimization.  

This chapter is organized as follows: The derivation of the OCR is provided in Section 

2.2. The modeling of HFD, its OCR and causal approximation is discussed in Section 2.3. The 

application of the causal approximation of the OCR to structured feedforward and feedback 

design for the HFD is presented in Section 2.4, followed by simulation and experimental 

validation in Section 2.5, and a chapter summary in Section 2.6. 

2.2 Optimal Control Ratio for Dual-Input, Single-Output Systems 

Assume a dual-input, single-output (DISO) LTI plant given by 

,dy  Gu G d  (2.1) 

where G = [G1, G2]; y, u = [u1, u2]T, and d are respectively the system output, control inputs and 

disturbance input; both u1 and u2 are assumed to belong to L2 space and has zero initial values. 

According to the definition in Section 1.2.3.1, such a system (with more inputs than outputs) is 

weakly input redundant. In weakly input redundant systems, there exists a family of input 

trajectories that yield the same output trajectory due to redundancy [15,68]. Assuming a nominal 

control input u0 yields a desirable output y0 under disturbance d0, i.e., 
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0 0 0.dy Gu G d  (2.2) 

The family of control signals that replicate y0 under d0 defines a set Ω, given by  

    2
0 0: 0 .   u u G u u   (2.3) 

Set Ω is the non-empty optimization space of over-actuated systems without affecting control 

performance, and can be calculated by establishing the orthogonal complement of system G.  

Assume the typical quadratic control energy cost functional 

 
T

1 11 12 1T

0 0
2 12 22 2

,u

u R R u
J dt dt

u R R u

       
      

     
 u Ru  (2.4) 

where R is a positive definite square symmetric matrix which, in general, is a design parameter. 

However, in certain scenarios, R can be determined by physical properties of the actuators. To 

achieve optimality, the variation of Ju should satisfy 

 T

0
0 0,uJ dt 


   u Ru  (2.5) 

where δu = [δu1, δu2]T. Moreover, based on (2.3), the variation of every member of set Ω should 

satisfy the relationship 

1 1 2 2 0.G u G u    (2.6) 

Combining (2.5) and (2.6), we get 

 
 

1 1
11 1 1 12 1 2 1 1 2 1 22 2 2 1 10

1 * 1 *
11 1 12 2 1 1 2 22 2 1 2 10

( ( ) ) 0

( ( ) ) ( ) 0,

R u u R u G G u u u R u G G u dt

R u R G G u u R G G u u dt

   



  

  

    

     




 (2.7) 

where superscript * represents the adjoint operator; the frequency response of the adjoint system 

is the complex conjugate of the original system at every frequency [81]. According to the 

fundamental lemma of calculus of variations [82], the integrand of (2.7) must be equal to zero at 

all time, which yields the energy-optimal control (input) ratio (OCR) 

   
 

* *
1* 22 1 12 2

* *
2 11 2 12 1

ˆ
,

ˆ

u s R G R G
s

u s R G R G
 




  (2.8) 

where the ^ accent is used to denote optimality. However, OCR in (2.8) contains adjoint 

dynamics, which in general is non-causally implementable. Therefore, it requires additional 

approximation or transformation to facilitate its use in practical applications like the HFD. 
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2.3 HFD Modeling and Its Optimal Control Ratio 

2.3.1 Overview of HFD 

As introduced in Section 1.1.2, the HFD is proposed to address the intrinsically different 

needs of two machining operation modes: high-speed, zero-cutting-force rapid traverse, and low-

speed, high-cutting-force cutting motion. According to the machining operation mode, the HFD 

reconfigurably combines an energy-efficient SD and an energy-costly but more precise LMD to 

achieve speed, precision and energy efficiency. The detailed schematic of the HFD is illustrated 

in Figure 1.2 and the prototype is shown in Figure 2.2. An air-core Kollmorgen IL18-100A3 

linear motor is placed in the middle while a SD with a smooth shaft is driven by a Kollmorgen 

AKM33H brushless DC motor on the side. The use of an air-core over an iron-core motor is 

because the LMD does not need to support large cutting forces. The HFD is equipped with a 0.08 

μm resolution optical linear encoder fixed to one side of the table, and a 157 μrad resolution 

motor-mounted optical rotary encoder.  

 

Figure 2.1: HFD Prototype 

To facilitate easy engagement and disengagement of the SD from the table, a traction 

drive SD which uses a rolling helix (or Roh’lix®) nut [46,47] is employed. The Roh’lix nut 

converts rotary motion to linear motion using rolling element ball bearings that trace a screw 

motion (of lead l = 5 mm) along a smooth shaft of 25 mm diameter and 965 mm length. It is 

designed to carry up to 444 N of thrust force without significant slippage between the nut and 

shaft. The Roh’lix nut consists of two spring-loaded halves that can be separated to disengage the 

smooth shaft from the nut at any given location. A simple toggle mechanism is designed to 

separate the two halves of the nut using a pair of fast-acting pneumatic pistons. The HFD is thus 
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operated in either (i) the rapid traverse mode, when LMD actuate the table alone with disengaged 

nut, or (ii) the cutting mode, when the SD and LMD synergistically actuate the table. This 

dissertation uses the cutting mode control design as a validation tool for the proposed energy-

optimal control methods for over-actuated systems. 

2.3.2 Two-Mass Model and Identification 

A simple two-mass model (like the one shown in Figure 2.2 for the HFD) is commonly 

used to analyze the mechanical dynamics of SDs for control purposes [83–86]. Even though 

more advanced SD models are available in the literature (e.g., [87]), the two-mass model is 

preferred because it is simple and it captures the first axial/torsional vibration mode, which is 

well known to be the bottleneck for controller design for SDs [83–86]. The LMD does not add 

any new low-order mechanical dynamics to the HFD shown in Figure 1.2. Therefore, the two-

mass model used for SDs can also be used for controller design and analysis of the HFD [34]. 

 

Figure 2.2: Simple Two-Mass Model of HFD 

In the two-mass model of Figure 2.2, m1 and m2 are the (equivalent) masses of the 

rotating and translating components of the HFD, while k and c represent the stiffness and viscous 

damping coefficient of the connecting mechanical components; z1, z2 and b1, b2 are the 

(equivalent) displacements and viscous damping coefficients at m1 and m2, respectively; u1 and 

u2 are the (equivalent) control forces applied by the rotary and linear motors, while d1 and d2 

represent external disturbance forces (e.g., non-viscous friction and cutting forces) applied to m1 

and m2, respectively. The equation of motion of the HFD is given by 

1 1 1 1 1 2 1 2 1 1

2 2 2 2 2 1 2 1 2 2

( ) ( ) ,

( ) ( ) .

m z b z c z z k z z u d

m z b z c z z k z z u d

      

      

     
     

 (2.9) 

Defining s as the Laplace variable, the plant transfer function matrix, Gm, between the input 

forces, u = {u1, u2}T and d = {d1, d2}T, and the output displacements, z = {z1, z2}T, of the HFD is 

derived as 

m2m1

u1

z2
c

z1

k
b1 b2

d1 

u2

d2

Rotating
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(2.10) 

where 
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 (2.11) 

The actual HFD system is experimentally measured from the frequency response 

functions (FRFs) at discrete frequencies (i.e., Ga(jω)). The two mass model is identified by curve 

fitting the two-mass model FRFs (i.e., Gm(jω)) with Ga(jω). Figure 2.3 compares the FRFs of the 

two-mass model (i.e., Gm(jω)) with the experimentally measured FRFs (i.e., Ga(jω)). As seen, 

the two FRFs are in good agreement up to 100 Hz, hence Gm captures the critical axial/torsional 

mode of the HFD, occurring at 41 Hz. The identified parameters are reported in Table 2.1. 

Table 2.1: Identified Parameters of the HFD’s Two-Mass Model 

m1 [kg] 616.2 b1 [kg/s] 44.8 c [kg/s] 5777.2 

m2 [kg] 46.3 b2 [kg/s] 83.3 k [N/μm]  3.1469 

 

 

Figure 2.3: Comparison of Two-Mass Model with Experimentally Measured FRF 
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The energy efficiency of electric motors (linear or rotary) is adversely affected by copper 

losses, iron losses, friction, and switching losses in the motors and their amplifiers [36,88]. Of 

these loss mechanisms, copper losses are by far the most dominant, especially at high loads [36], 

which are typical in machining. Therefore, in this chapter, the heat energy generated as a result 

of copper losses is used as a measure of actuator efficiency. It is given by the equation [88–93]  

2
2

0
1

.i
heat

i mi

u
E dt

K





 
  

 
  (2.12) 

The parameter Kmi represents the (equivalent) motor constant of the ith actuator in N/√W. It is 

often reported in the specification sheets of electric motors. Given the same RMS actuation 

force, the motor constant provides a measure of the comparative efficiency of each actuator; the 

larger the motor constant, the more efficient the motor. The motor constants for its rotary and 

linear motors are Km1 = 380.8 N/√W and Km2 = 21 N/√W, respectively, where Km1 has been 

converted from its nominal value in Nm/√W using a factor of 2π/l, with lead l = 5 × 10−3 m. 

Therefore, actuator efficiency ratio γ = (Km1/Km2)2 = 328.8, indicating two orders of magnitude 

difference in the energy efficiencies of the two actuators. 

2.3.3 Optimal Control Ratio of HFD  

The two-mass model Gm is fully-actuated. However, the position of the rotary component 

z1 does not affect machining accuracy, thus only the position of the table z2 is the focus. In this 

regard, the two-mass model of HFD is a DISO system in (2.1) assuming y = z2, G1 = G21, and G2 

= G22. The control energy defined in (2.4) relates to the heat generated in HFD through   

2 2
11 1 22 2 12, , 0.m mR K R K R     (2.13) 

Accordingly, the OCR, β*, between the SD force (u1) and the LMD force (u2) of the HFD is 

expressed as   

 
*

*1
1 22 21 2.u G G u



 




 
(2.14) 

Figure 2.4 shows the Bode plot of β*. Notice, according to (2.14), that β* combines the actuators’ 

frequency dependent maneuverability with their energy cost. At low frequencies, β*→γ, as in 

static-model-based dynamic allocation methods [68], indicating that the rotary motor is preferred 

for efficiency. However, at higher frequencies, β*→0, indicating that it is more efficient to utilize 

the linear motor for precision positioning, since the rotary motor loses control of the table at high 
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frequencies due to the mechanical decoupling effect in the two-mass system with non-collocated 

input and output [94]. This frequency dependent change in OCR requires broadband allocation, 

which cannot be achieved with static-model-based dynamic allocation methods (e.g., [68]). 

Notice the positive phase of β* at resonance and beyond, indicating that it is unstable hence not 

causally implementable. 

 

 

Figure 2.4: Optimal Control Ratio of HFD 

2.3.4 Causal Approximation of Optimal Control Ratio of HFD 

The OCR, β*, is not a causal operator. To facilitate causal evaluation of control 

optimality, a causal function is needed. Such a causal function can be attained by approximating 

β* by neglecting the adjoint operation, thus enforcing control ratio between u1 and u2 as  

 1
22 21 .G G    (2.15) 

The energy efficiency difference caused by using β in place of β* is analyzed in this section. 

Consider η describing an arbitrary ratio (both causal and non-causal) between u1 and u2. 

In accordance with (2.10), the two control signals are uniquely calculated as 
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where  
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indicating the pure contribution to the output from u1 and u2. Due to Parseval’s theorem, the 

integral of the time domain energy cost function defined in (2.12) can be expressed in the 

frequency domain. Accordingly, the integrand at each frequency is given by  
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 (2.18) 

Therefore, the frequency dependent energy efficiency ratio, Rβ, between the correct ratio (i.e. η = 

β*) and its causal approximation (i.e. η = β) is given by 
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Note that Rβ ≈ 1 when | β(jω) | ≫ 1, | β(jω) | ≪ 1 or ∠β(jω) ≈ nπ (n ∈ ℤ). Therefore, the deviation 

of Rβ from unity is limited to certain frequency ranges, based on these conditions.  

 

Figure 2.5: Energy Efficiency Ratio Rβ as a Function of Frequency 

The impact of using β in (2.15) instead of β* is investigated using Rβ, calculated with the 

hybrid feed drive parameters in Table 2.1; the result is shown in Figure 2.5. At most frequencies 

Rβ ≈ 1; the only exception is the region around 100 Hz, where Rβ deviates significantly from 

unity (because β(jω) violates the magnitude and phase relationships required to keep Rβ ≈ 1). 

Nonetheless, in the worst case, Rβ only drops to 85% at 89 Hz. Therefore, for the HFD, the 

overall efficiency cost of using the approximate ratio, β, instead of the correct ratio, β*, is small. 

Considering the practical benefits gained from its causality combined with its near-optimality, 
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we conclude that the approximate control ratio β in (2.15) is suitable for energy-efficient 

controller design for the HFD.  

2.4 Energy-Efficient Control of HFD 

In motion control applications, it is common to use a so-called two degree-of-freedom 

(DOF) structure, consisting of a feedforward (FF) and feedback (FB) controller. The FF 

controller focuses on tracking reference commands while the FB controller handles regulation 

tasks. The 2-DOF control structure for the HFD is shown in Figure 2.6. The FF controller, Cff, 

takes the desired position trajectory yd as its input and generates the FF component, uff = {uff1, 

uff2}T, of the control signal u, as well as the reference position signal, zr = {zr1, zr2}T, for the 

feedback controller. On the other hand, the FB controller, Cfb, determines the feedback 

component, ufb = {ufb1, ufb2}T, of u based on the error vector, ez = zr − z. It is of interest to design 

Cff and Cfb such that: 

(a)  The best positioning performance is achieved, subject to stability constraints; and 

(b) Specification (a) above is achieved as energy-efficient as possible (i.e., with minimal heat 

loss from the actuators). 

 

Figure 2.6: Block Diagram of Two-DOF Control Structure for HFD 

The underlying assumption in defining the two-tiered specifications above is that, in 

precision machining, positioning accuracy typically takes precedence over energy efficiency. 

Therefore, as much as possible, positioning accuracy should not be sacrificed for energy 

efficiency. It is assumed that, because of the redundant actuation of the HFD, there are multiple 

combinations of u1 and u2 that can achieve the best positioning performance; of those, the most 
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efficient should be selected. Due to the uncertainty of the disturbance, the FF and FB portions of 

the control inputs are both expected to align with the OCR β* or its causal approximation β 

introduced in Section 2.3.4. An elegant Cff and Cfb design methodology for achieving the stated 

goals is proposed in the following two subsections. 

2.4.1 Design of Energy-Efficient FF Controller  

In the FF controller design d = 0 is assumed, thus perfect tracking can be achieved if 

2 21 1 22 2.d ff ffy z G u G u    (2.20) 

This perfect tracking constraint, combined with the causal approximation of the optimal ratio β, 

yields a causal energy-efficient FF control law as 
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Accordingly, zr1 is given by 
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One major challenge that arises with the energy-optimal FF controller (given by (2.21)) is that, 

even though each element of G is minimum phase, the transfer function Gff may have non-

minimum phase (NMP) zeros, as such, it may not have a stable inverse. There are several 

methods in the literature for calculating a stable approximation for the inverse of a transfer 

function with NMP zeros (e.g., [95–97]). Amongst them, the most notable is Tomizuka’s zero 

phase error tracking control (ZPETC) [95]. ZPETC determines a stable inverse such that there 

are no errors in phase across all frequencies; however, it gives rise to errors in gain compared to 

the exact inverse. If the numerator and denominator polynomials of Gff are represented by Bff and 

Aff, respectively, its stable inverse with zero phase error is given by 
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,
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B s B




  (2.23) 

where Bffs and Bffu represent the stable and unstable portions of Bff. Note that (2.23) represents the 

continuous-time equivalent of Tomizuka’s discrete-time ZPETC [95].  

The problem with the approximate inverse of (2.23) is that it sacrifices energy optimality 

as well as perfect tracking because it satisfies neither (2.20) nor (2.21); this is also the case for 

the other similar approximate inversion methods available in the literature (e.g., [96,97]). We 
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therefore seek an approximation for Gff that can guarantee perfect tracking while maintaining 

near energy optimality. To determine such a near-energy-optimal (NEO) FF controller,  the 

minimum energy condition (2.5) for HFD, given by 

1 2
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1 2

2 2
0.

m m

u u
u u dt

K K
 

  
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 
  (2.24) 

is modified to be  

  1 2 1 2 20
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where Kff is a scalar gain. The implication of (2.25) is that energy optimality is sacrificed by 

making the variation of the energy functional in (2.24) to be non-zero by introducing Kff. 

Combining the perfect tracking constraint of (2.20) with (2.25), we get 
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It can be shown that there always exists a Kff  [0, ∞) that yields minimum phase Gff−neo. To do 

this, let us re-write Gff−neo as 

 1 2 2
22 22 21 21 22 .ff neo ffG G G G K G G

     (2.27) 

Therefore, the zeros of Gff−neo can be obtained from the roots of the polynomial 

     2 2
22 21 21 22num num num ,ffG G K G G   (2.28) 

where num is a function that returns the numerator of the transfer function in its argument. 

Notice that (2.28) is in the standard form for root locus analysis. When Kff = 0, the zeros of 

Gff−neo are the same as those of Gff. However, as Kff →∞, the zeros of Gff−neo approach the zeros 

of G22G21 which, according to (2.11), are always minimum phase. Since the objective functional 

of (2.12) is quadratic, near optimality is achieved by selecting the smallest value of Kff that 

makes the poles of 1
ff neoG
 stable, and provides sufficient damping to prevent ringing due to 

poorly damped poles [95]. Note that if Gff is minimum phase, Kff = 0 becomes the default 

solution for Kff, in which case Gff−neo equals Gff, which is the energy-optimal solution. Given Kff, 

zr1 can be calculated as 
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2.4.2 Design of Energy-Efficient FB Controller 

For the regulation problem, zr and uff are ignored such that u = ufb can be written as 

,fb  u Kx  (2.30) 

where x is the extended state vector of the HFD defined as 

 T
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 ;   .i iz z z z z z z dt


 x     (2.31) 

Observe that x contains all four states of the two-mass model of the HFD, plus an additional 

state, z2i, representing the integral of the table’s position signal, added to ensure zero steady-state 

regulation of the table’s position. Let us assume that K is a full state FB matrix which can be 

expressed as 
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,
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where K11…K25 are its gains. This means that the general form of Cfb, indicated in Figure 2.6, 

can be written as 
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In the rest of this section, we will show that there always exists some redundancy in the general 

form of Cfb, in terms of achieving the best FB positioning performance. We therefore propose a 

systematic method for using the available redundancy to maximize actuator efficiency without 

sacrificing positioning performance. 

2.4.2.1 Redundancy in Achieving Best Positioning Performance 

Recall that the precise positioning of the table (i.e., z2) is of primary concern for the HFD. 

Therefore, the goal of the FB controller is to minimize the effect of disturbance d on ez2. This 

objective can be written as 

 min   s.t. stability constraints,e e dJ W S  (2.34) 

where ║∙║ represents a suitable norm (e.g., H2 or H∞), We is a scalar weighting function of s that 

indicates the frequencies in ez2 that are of utmost importance, and Sd is defined as a scaled 

version of the closed loop (CL) disturbance transfer function from d to ez2, given by the 

expression 
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   1
0 1 ,d m fb m d


  S I G C G W  (2.35) 

where I is the identity matrix and Wd = diag({d1,max, d2,max}) is a matrix that scales d1 and d2 by 

their respective maximum values, d1,max and d2,max, so that their magnitudes are comparable when 

calculating the norm of (2.34) [62].  

Let J෠e represent the minimum value of Je obtained using the full state (i.e., unstructured) FB 

matrix K of (2.32); it represents the best positioning performance that can be achieved using Cfb 

defined in (2.33). The corresponding optimal CL disturbance transfer function, S෠d , can be 

expressed as 

   
   

T

24 22 1,max

2
1 1 14 12 2,max

5 4 3 2
,5 ,4 ,3 ,2 ,1 ,0

ˆ ˆ
1ˆ ;
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

d

cl

cl cl cl cl cl cl cl

s c K s k K d

D s m s b c K s k K d

D a s a s a s a s a s a

          
        

    

S



 (2.36) 

The coefficients of D෡cl are functions of K෡11…K෡25 and the plant parameters; their expressions are 

given by following equations. 
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 (2.37) 

Note that the ^ accent is used to denote optimality. A sufficient (but not necessary) condition to 

achieve J෠e, irrespective of the type of norm or weighting function (We) used in (2.34), is to match 

the numerator and denominator coefficients of S෠d. Matching these coefficients mathematically 

means that the gain matrix K, with 10 degrees of freedom (i.e., 10 gains to be determined), 

should satisfy 9 linear/bilinear equations; 4 for the numerators of S෠d and 5 for their common 

denominator. Therefore, at least 1 gain in K is redundant. As discussed in Section 2.3.2, it is not 
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uncommon for the condition d1,max << d2,max to hold since cutting force (d2) is dominant and 

cannot be compensated. Even when the Coulomb friction (d1) of the bearings is non-negligible, it 

can be measured and cancelled out reliably through feedforward friction compensation so that 

the FB controller does not have to deal with it. One can therefore conveniently consider d1,max ≈ 

0, such that S෠d
 is reduced to a scalar transfer function which can be matched using 7 gains. This 

leaves at least 3 redundant gains to achieve J෠e.  

2.4.2.2 Use of Redundant Gains for Optimizing Efficiency 

The set of all FB control inputs, ufb, that yield the same ez2 under the influence of a given 

disturbance input, d, must satisfy the relationship 

   2 21 1 1 22 2 2 21 1 22 2 0,fb fb fb fbz G u d G u d G u G u         (2.38) 

where δd1 = δd2 = δz2 = 0 because they are each specified, even if unknown, functions of time.  

Accordingly, similar to the FF design, the ufb is expected to approach the causal approximation 

of the optimal ratio β, i.e. 

1
1 22 21 2 .fb fbu G G u



   
(2.39) 

The implication of (2.39) is that to satisfy a given ez2 requirement at maximum efficiency, the 

control inputs are bound relationship given by β. This result is very powerful and can be used to 

directly or indirectly determine a FB controller that achieves the best performance, J෠e , more 

efficiently than the optimal full state FB controller. 

a. Energy-Efficient FB Controller Design  − Direct Approach  

The direct approach seeks to structure K such that (2.39) is satisfied (as much as 

possible) without compromising J෠e. To do this, note that ufb can be written as 
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,     ,

fb u

u fb m fb m dd d
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u S d
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where 1 2, [ 1,  1]d d    represent the scaled values of d1 and d2, respectively. Combining (2.40) 

with (2.39), we get the relationship that must be satisfied by the elements of the re-structured K 

in order to maximize efficiency; it is given by 
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Substituting s = jω into Γ1(s) and Γ2(s) in (2.41) (where ω represents the frequency content of d), 

we get a pair of complex-valued equations which are bilinear with respect to the elements of K. 

The real and imaginary parts of both equations must equal zero at every ω contained in d in 

order to attain optimal efficiency. Obviously, K may not have enough redundant gains to satisfy 

the equations for every ω contained in d. Therefore, one can maximize efficiency using the 

available redundancy by determining the K that minimizes the least-squares objective 
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where Γ = [Γ1(jω), Γ2(jω)]T and the superscript H represents the Hermitian transpose. If needed, 

the least squares objective in (2.43) can be weighted to emphasize some frequencies over others.  

b. Energy-Efficient FB Controller Design − Indirect Approach  

The traditional approach for enforcing an energy-efficient structure in K is to optimize 

for energy efficiency with positioning performance constraints; i.e., 

   
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e d e

J
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where Su is the transfer function matrix from input d  to output ufb as defined in (2.40), Wu is a 

diagonal weighting matrix whose elements reflect knowledge about the relative efficiencies of 

the actuators. The addition of the constraint related to J෠e indicates the knowledge that there is 

redundancy in K such that the same performance can be achieved in a more efficient manner. 

The weighting matrix, Wu, is very important because it indirectly determines the structure of K 

used in the optimization; a poor choice of Wu could lead to a sub-optimal structure for K, which 

cannot attain the best energy efficiency. In practice, Wu is typically chosen by intuition or trial 

and error. However, the optimum structure for K can be obtained, in theory, by selecting Wu = 

diag([1, β]), thereby eliminating the sub-optimality that could be created by a poor choice of Wu. 

Notice that the setup of (2.44) is very similar to (2.43). The only difference is that the objective 

in (2.43) is designed to directly enforce (as much as possible) the optimal relationship between 

ufb1 and ufb2. On the other hand, (2.44) enforces the optimal relationship indirectly by minimizing 

the feedback control forces using a suitable norm of Su, weighted by Wu. A demonstration of the 

direct and indirect approaches is provided in Section 2.5. 

It must be noted before leaving this section that the assumption of a static FB controller 

in (2.30) is arbitrary. It has been made purely based on its relevance to the desired control 

method for the HFD (which seeks to avoid high-order controllers). The methods proposed in this 

section can also be applied to the design of dynamic controllers (e.g., controllers with observers). 

Moreover, even though the proposed FF and FB controller design methods are presented in the 

context of the HFD described in Section 2.3, they can be applied more broadly to other over-

actuated systems. The methods are valid as long as the plant is dual input, controllable and 

minimum phase with positioning performance defined on one of its outputs (e.g., z2 in this 

work). 

2.4.3 Stability Constraints and Higher-Order Dynamics 

Thus far, only the low-order dynamics of the HFD, which is assumed to be accurately 

represented by its two-mass model, Gm, has been considered. Note, however, that stability 

constraints cannot be enforced in (2.34), (2.43) or (2.44) based on a CL system determined using 

Gm. This is because Gm has no NMP zeros, hence the gains of the FB controller can be infinitely 

high without causing any stability issues [62]. To enforce stability constraints, the actual plant 

dynamics Ga, which includes un-modeled higher-order dynamics, must be considered. Let us 
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assume that Ga is available in the form of a plant model or a frequency response function (FRF) 

measured at discrete frequencies, ω. Let Np denote the number of unstable poles in the system’s 

loop transfer function given by L = GaCfb. According to the Generalized Nyquist Theorem [62], 

the CL system is stable if and only if the Nyquist curve of det(I + L) makes Np counter-

clockwise encirclements of the origin without passing the origin. 

Most often, it is desired to enforce robust stability, meaning that there are sufficient margins of 

stability.  This is achieved by confining the maximum singular values  of the CL sensitivity 

function, S = (I + L)−1, below a specified threshold max  at frequencies above the CL bandwidth, 

ωBW, where instability is likely to occur [62]; i.e. 
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2.5 Simulations and Experiments 

 Simulation and experiment results are presented in this section to demonstrate the 

effectiveness of the proposed FF and FB controller design methods. Simulations are conducted to 

evaluate the tracking performance and energy efficiency of the near-energy-optimal (NEO) FF 

control method proposed in Section 2.4.1. FB control is not considered in the simulations 

because the plant is assumed to be perfectly described by its two-mass model, Gm, and no 

disturbances are introduced. Under the conditions described, the proposed NEO FF controller is 

able to achieve perfect tracking with near optimal or optimal efficiency, depending on whether 

Gff defined in (2.21) has NMP zeros or not. Evaluating Gff using the reported parameters of the 

HFD reveals that it has a complex conjugate pair of NMP zeros located at s = 196 ± 314j. 

Therefore, the gain Kff must be selected to ensure a stable inverse of Gff−neo while providing near 

energy optimality. Figure 2.7 shows the root locus of 1
ff neoG
 as Kff is varied in the interval [0, ∞). 

It is found that the unstable pole pair in 1
ff neoG
  (corresponding to the NMP zero pair in Gff−neo) 

becomes stable for values of Kff ≥ 30.3. Note that the point marked Kff = 1000 has been 

highlighted on purpose in the figure; it represents a value of Kff which is utilized for comparative 

simulations later in this section. 
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Figure 2.7: Root Locus of 1
ff neoG
 as a Function of Kff 

For tracking tests, a desired position trajectory, yd, of stroke 15 mm, with kinematic limits 

of 100 mm/s, 1×104 mm/s2, 1.5×106 mm/s3 and 5×108 mm/s4 for velocity, acceleration, jerk and 

snap, respectively, is used. Its velocity profile is shown in Figure 2.8 (a); its position, 

acceleration, jerk and snap profiles are omitted due to space limitations. A FF technique called 

rigid body FF (RB FF) [98] is used as the benchmark for evaluating the proposed NEO FF 

controller. RB FF is generated by specifying zr1 = zr2 = yd such that  
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The implication of (2.46) is that in RB FF each actuator is given the responsibility to move the 

mass to which it is attached, such that the two-mass system moves as one rigid body. It is very 

elegant and it guarantees perfect tracking. Note that the zero phase error FF approximation of 

(2.23) is not selected as the benchmark because it does not meet the perfect tracking requirement 

stipulated for FF control.  

Figure 2.8 (b)-(d) and Table II compare the tracking error (ez2) at the table, and the 

power/heat wasted by each actuator using RB FF and the proposed NEO FF, with Kff = 30.3 and 

Kff = 1000. All three controllers achieve perfect tracking, as expected. Notice, however, that RB 

FF depends heavily on the inefficient LMD. As a result, it is 71.5% less efficient than NEO FF, 

using Kff = 1000. In theory, NEO FF with Kff  = 30.3 should be the most efficient. However, 

notice from the figure that Kff = 30.3 results in undesirable ringing of the control signals because 

it gives rise to poorly damped poles in 1
ff neoG
 . The near-optimal energy formulation of (2.26) 

does not recognize the effect of poorly damped poles/zeros (much like the near-optimal energy 



 34

formulation of (2.21) misses the effect of NMP poles/zeros). Therefore, the onus falls on the 

controller designer to select a value of Kff that is high enough to avoid poorly damped poles in 

1
ff neoG
 . Figure 2.9 plots the total heat energy of NEO FF in tracking the reference trajectory of 

Figure 2.8 (a) using values of Kff ranging from 30.3 to 1000. Notice that the energy is initially 

very high but drops rapidly as the value of Kff increases and the poles become more damped. For 

this particular case, the energy continues to reduce as Kff is increased but the rate of decrease 

becomes very low after about Kff = 50. The decrease in energy continues until Kff = 1000 and 

beyond, but the difference between the energy at Kff = 1000 and that at Kff  = 10,000 is just 0.03 

J. It must be noted that the relationship between Kff and energy highly depends on the system and 

desired trajectory. 

 

Figure 2.8: Reference Velocity Profile and Comparison of Tracking Errors and  
Actuator Power of FF Controllers (Simulation) 

For instance, Figure 2.10 shows the energy vs. Kff plot generated based on another 

desired position trajectory, yd, of stroke 15 mm, with kinematic limits of 100 mm/s, 1×103 

mm/s2, 5×104 mm/s3 and 1×107 mm/s4 for velocity, acceleration, jerk and snap, respectively. Just 

as in Figure 2.9, there is initially a sharp drop in energy as Kff is increased and ringing is reduced. 

However, in Figure 2.10 there are three local minima at Kff = 66, 200 and 500; beyond Kff = 500, 

the energy begins to increase slightly but steadily. The difference in the energy vs. Kff profiles of 

Figure 2.9 and Figure 2.10 is because the trajectory used in Figure 2.10 is less aggressive than 

that used in Figure 2.9. Therefore, it has is less ringing due to poorly damped poles, and its 

efficiency is hurt rather than helped by having very high values of Kff. This is because, in theory 

(i.e., in the absence of ringing), efficiency should decrease as Kff increases.  Nonetheless, just as 

in Figure 2.9, as long as Kff is high enough to provide sufficiently damped poles in 1
ff neoG
 , the 
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efficiency of the proposed NEO FF is observed to remain near its optimal value, irrespective of 

the value of Kff. This arises from the fact that larger Kff encourages the use of more energy-

efficient SD. 

 

Table 2.2: Comparison of Tracking Errors and Energy Efficiency of FF Controllers (Simulation) 

 RB FF NEO FF  

(Kff = 30.3) 

NEO FF  

(Kff = 1000) 

Max Tracking Error [nm] 0.000 0.000 0.000 

Heat Energy SD [J] 3.967 27.918 3.242 

Heat Energy LMD [J] 7.398 24.358 0.001 

Total Heat Energy [J] 11.365 52.276 3.243 

 

 

Figure 2.9: Total Heat Energy of Proposed NEO FF as a Function of Kff  
(based on Reference Trajectory of Figure 2.8 (a)) – Simulation  

 

Figure 2.10: Total Heat Energy of Proposed NEO FF as a Function of Kff (Less Aggressive 
Trajectory) 

2.5.1 Evaluation of FB Controllers using Simulations 

Simulations are conducted to evaluate EE direct and EE indirect, the direct and indirect 

methods for using control ratio β derived in Section 2.4.2 for FB controller design. The 

benchmark is selected as the full (i.e., unstructured) state FB controller discussed in Section 

2.4.2. The practical scenario where d1,max = 0 and d2,max = 400 N (which is the cutting force limit 

of the HFD of Figure 2.1 [35]) is assumed. MATLAB’s hinfstruct command (which performs H∞ 

optimization based on a structured gain matrix) is used to determine the S෠d
 that minimizes the 
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objective of (2.34) using the H∞ norm. A weighting function, We, suggested by Skogestad and 

Postlethwaite [62] is adopted; it is given by 
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Equation (2.47) represents a filter of order nw, designed to weight very low frequencies by a 

factor of Mw/Aw compared to very high frequencies (i.e., frequencies much higher than ωB), so as 

to enforce integral action. We select nw = 2, Mw = 2, Aw = 5 × 10−6 and ωB = 200π rad/s 

(indicating that we want integral action to taper off beyond 100 Hz). 

The HFD is assumed to be perfectly modeled by Gm, and the table-side disturbance force, 

d2, is assumed to be a harmonic cutting force at 60 Hz, with an additional DC component; it is 

given by 

2( ) 200 200sin(120 )  [N].d t t   (2.48) 

However, as discussed in Section 2.4.3, applying the optimization of (2.34) to Gm could yield 

infinitely large gains. Therefore, a 7th order Butterworth low-pass filter, with a cutoff frequency 

of 1000 Hz, is applied to each element of Gm before carrying out the H∞ optimization in order to 

have finite stability limits. The default stability settings of MATLAB’s hinfstruct command are 

maintained for the optimization. The resulting S෠d(1,2) (scaled by 1/d2,max) is plotted in Figure 

2.11 (a) and the elements of the optimal full state FB gain matrix (i.e., K෡ ) are given in Table III. 

Note that only S෠d(1,2) is shown in the figure because Sd(1,1) = 0 based on the assumption that 

d1,max = 0. 

Figure 2.11 (b) shows the optimal transfer function relationship, β, for the HFD. It 

requires the magnitude of the ratio ufb1/ufb2 to be 50.3 dB at ω = 0, and to be 23.5 dB at ω = 120π 

rad/s. In employing β for energy efficiency optimization of K, we have chosen to use S෠d
 instead 

of its infinity norm, J෠e, as the performance constraint in (2.43) and (2.44). This is done in order 

to ensure that the exact same regulation performance as the optimal full state FB controller is 

achieved at all frequencies. Therefore, using (2.36), we derive 7 constraint equations to ensure 

that the poles and zeros of S෠d(1,2) are matched with 7 out of the 10 gains of K, leaving us with 3 

redundant gains. To obtain the energy-efficient controller using the direct method (i.e., EE 

direct), one of the remaining 3 gains is used to perfectly enforce (2.41) at ω = 0. In theory, the 

last two gains could be used to satisfy the real and imaginary parts of (2.41) at ω = 120π rad/s, 
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but the equations are highly nonlinear and difficult to solve analytically. Therefore, the 

remaining two gains are used to minimize Ju-d (i.e., (2.43)) at ω = 120π rad/s. The elements of the 

resulting gain matrix are given in Table III.  

To determine the energy-efficient controller using the indirect method (i.e., EE indirect), 

MATLAB’s hinfstruct command is used to minimize the H∞ norm of (2.44). A weighting 

function given by Wu = Wωdiag([1, β]) is selected, where Wω is a weighting filter designed to 

emphasize frequencies ω = 0 and ω = 120π rad/s contained in d2. It is defined as 
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Note that We is the exact same filter defined in (2.47); it is used in Wω to place a higher weight 

on frequencies close to ω = 0. The second-order filter multiplying We is designed with ωn = 120π 

rad/s and ζ = 8.2×10−6, such that its magnitude at resonance is equal to We(0). The constraint 

equations that were used to match the poles and zeros of S෠d(1,2) for the EE direct method are 

used to structure K within MATLAB’s hinfstruct function so that S෠d (1,2) is also matched 

perfectly in EE indirect. The elements of the resulting FB gain matrix are reported in Table III. 

Figure 2.11 (a) compares the magnitudes of Sd(1,2)/d2,max for the EE direct and EE 

indirect controllers to the original S෠d (1,2)/d2,max determined based on the optimal state FB 

controller; the plots are coincident, indicating that all three methods achieve the best positioning 

performance at all frequencies. Figure 2.11 (c) and (d) respectively compare Su(1,2)/d2,max and 

Su(2,2)/d2,max for the three methods. Notice that Su(1,2)/Su(2,2) = 50.3 dB for the EE direct 

controller, meaning that it perfectly matches β at ω = 0. However, at ω = 120π rad/s, it achieves 

a Su(1,2)/Su(2,2) ratio of 32 dB instead of the 23.5 dB stipulated by β, due to errors in the least 

squares solution applied at that frequency. The EE indirect controller does not perform as well as 

the EE direct in terms of matching β. This is because, in determining the gain matrix for the EE 

indirect controller, the hinfstruct command was initialized with the gain matrix of the optimal 

full state FB controller (i.e., K෡ ). Comparing the elements of the full state FB controller’s gain 

matrix to those of the EE indirect controller in Table III, one can conclude that the gradient-

based algorithm used in hinfstruct may have gotten stuck in a local minimum close to its initial 

value, thus preventing it from reaching a better solution.  This is a well-known limitation of 

gradient-based methods when performing non-convex optimizations. It could be mitigated by 

testing various initial values in hopes of finding other local minima. Note that the direct method 
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was also initialized with the elements of the full state FB matrix, when performing the nonlinear 

least-squares optimization of (2.43). Therefore, its solution could also get stuck in local minima 

around its starting point, but it appears from Table III that its gains are quite different from those 

of the full state FB matrix.    

The expression 
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representing the sum of the average power at ω = 0 and ω = 120π rad/s of each actuator’s steady-

state response to d2(t) given in (2.48), is used to calculate the average power dissipated in heat by 

each FB controller. The results are shown in Table 2.. EE direct and EE indirect are respectively 

60% and 33% more efficient than the full state FB method. Figure 2.12 compares the ratio of the 

average power of the EE direct and EE indirect based controllers, relative to that of the full state 

FB controller, using a disturbance input of d2(t) = sin(2πft). The EE direct controller is much 

more efficient than the full controller from f = 0 through f = 44 Hz, after which it becomes less 

efficient. Note that its relative efficiency is 8 dB worse at f = 60 Hz, due to the aforementioned 

errors in the least square solution. The EE indirect controller, on the other hand, is more efficient 

than the full controller at all frequencies, but only by a very small (0.6 dB) margin (except at f = 

0 and f = 60 Hz where it shows slightly better relative efficiencies of 4.2 dB and 0.8 dB, 

respectively). 

 

Table 2.3: Comparison of Elements of FB Gain Matrices Calculated using the Full State FB, EE 
Direct and EE Indirect Methods (Simulation) 

 K11 K12 K13 K14 K15 

Full State FB −8.2×105 −3.1×106 −3.1×108 −5.8×103 −9.3×105 

EE direct +9.2×105 −3.1×106 +3.8×109 −5.8×103 +8.5×106 

EE indirect −4.5×105 −3.1×106 −1.8×108 −5.8×103 −6.2×105 

 K21 K22 K23 K24 K25 

Full State FB −2.4×1010 +4.2×107 +5.2×107 +9.5×104 +1.6×105 

EE direct −5.2×107 −7.6×104 +1.1×108 −8.9×101 +1.6×105 

EE indirect −2.3×1010 +7.0×107 +6.8×107 +1.3×105 +1.6×105 
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Figure 2.11: Comparison of Positioning Performance and Control Effort of the Full State FB and 
the Energy-Efficient FB Controllers Designed via the EE Direct and EE Indirect Approaches 

(Simulation) 

 

Table 2.4: Comparison of Energy Efficiency of FB Controllers Based on Equation (2.50) 
(Simulation) 

Average Power Dissipated in Heat Full State FB EE direct EE indirect 

SD [W] 1.36 125.80 0.51 

LMD [W] 381.80 26.31 254.44 

Total [W] 383.16 152.11 254.95 

 

 

Figure 2.12: Comparison of Efficiencies of Controllers Designed using the EE Direct and EE 
Indirect Methods (Relative to Efficiency of Full State FB Controller) – Simulation  

 

2.5.2 Machining Experiments 

Machining experiments are conducted to evaluate the performance and energy efficiency 

of the proposed controller design methods. To perform the experiments, the HFD prototype of 

Figure 2.1 is mounted on the x axis of a FADAL VMC 4020 3-axis milling machine to cut a 15 
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mm long, 1 mm deep slot in an AISI 1018 steel workpiece. Table V summarizes the key cutting 

parameters for the operation. A spindle speed of 3600 rpm (i.e., 60 Hz) is selected for the cutting 

tests. To maintain a reasonable feed per tooth, the desired position trajectory, yd, is prescribed to 

travel at a maximum speed of 300 mm/min (i.e., 5 mm/s), with acceleration, jerk and snap limits 

of 62.5 mm/s2, 3125 mm/s3 and 6.25×105 mm/s4, respectively. At such low speeds and 

accelerations, the theoretical energy contributions of RB FF and NEO FF are negligible (< 6 mJ), 

and are indistinguishable from noise in the control signals. Consequently, the effect of FF is not 

considered in the machining tests. 

 

Table 2.5: Cutting Parameters 

Spindle speed 3600 rpm 

Tool 3/8” dia. HSS end mill 

Number of flutes 4 

Feed per tooth 0.02 mm/tooth 

Feed rate 300 mm/min 

Lubrication None 

 

The optimal full state FB controller is designed by optimizing the H∞ norm of (2.34) with 

the actual (i.e., measured) plant dynamics, Ga(jω), substituted for Gm. As mentioned in Section 

2.4, the Coulomb friction in the bearings of the rotary motor can be easily cancelled by 

feedforward action. Therefore, d1,max = 0 is assumed, and d2,max is selected as 400 N. Notch filters 

are placed at the 847 Hz resonance peak appearing in Ga(1,1) (in Figure 2.3), and at the 400 Hz 

and 487 Hz resonance peaks appearing in Ga(2,2) in order to increase stability margins. Robust 

stability constraints are enforced by limiting the maximum singular values of the sensitivity 

function for frequencies higher than ωBW = 628 rad/s (100 Hz) to max = 2.65.  

MATLAB’s hinfstruct command, which was used in the simulations, could not be 

employed for carrying out the optimization in (2.34) using Ga instead of Gm. This is because Ga 

is given as a FRF at discrete frequencies, not as a transfer function modeled in s-domain. 

Therefore, a Particle Swarm Optimization (PSO) Toolbox in MATLAB [99] is used to carry out 
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the H∞ optimization, based on a technique similar to the one reported in [100]. The elements of 

the resulting optimal full state FB gain matrix are provided in Table 2.6.  

Feed forces in milling typically have a DC portion, as well as harmonics at the spindle 

and tooth passing frequencies [101]. Therefore, for the EE direct controller, we follow the exact 

same procedure as used in Section 2.5.1. The elements of K are constrained to match S෠d(1,2) 

using (2.36), and the 3 redundant gains are used for enforcing the β constraint at ω = 0 and ω = 

120π rad/s, representing the lowest harmonic in d2.  For the EE indirect method, MATLAB’s 

PSO toolbox is used to carry out the optimization of (2.44) based on Ga, with the elements of K෡  

as its initial values; constraints are added to match S෠d(1,2) using (2.36), following the exact same 

procedure as in the simulations reported in Section 2.5.1. The gains of the EE direct and indirect 

controllers are reported in Table 2.6. 

 

Table 2.6: Comparison of Elements of FB Gain Matrices Calculated using the Full State FB, EE 
Direct and EE Indirect Methods (Experiments) 

 K11 K12 K13 K14 K15 

Full State FB 4.65×107 4.92×105 1.06×108 1.29×104 6.50×105 

EE Direct 5.48×107 4.92×105 8.90×107 1.29×104 5.93×105 

EE Indirect 4.80×107 4.92×105 8.57×107 1.29×104 5.46×105 

 K21 K22 K23 K24 K25 

Full State FB 1.52×107 6.15×105 1.02×107 4.85×102 4.30×104 

EE Direct 2.54×106 1.59×105 1.12×107 1.02×103 4.30×104 

EE Indirect 6.16×106 1.57×104 1.06×107 -4.25×101 4.30×104 

 

Figure 2.13 (a) compares Sd(1,2)/d2,max generated using the EE direct and EE indirect 

controllers to S෠d(1,2)/d2,max, generated using the full state FB controller. An almost perfect match 

is obtained, indicating that the positioning performances of all three controllers are virtually the 

same. Figure 2.13 (b) compares the maximum singular values of the CL sensitivity function for 

the three controllers; they are very similar and all satisfy max ≤ 2.65 for frequencies above 100 

Hz. Figure 2.13 (c) and (d) respectively compare Su(1,2)/d2,max and Su(2,2)/d2,max of all three 

controllers. In both figures, the two-mass model, Gm, has been used to generate data below 10 Hz 

which are not contained in the measured FRF, Ga. Again, EE direct is able to match the β 
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criterion at ω = 0. At ω = 120π rad/s, Su(1,2)/Su(2,2) = 21.7 dB, which is much closer to the 

target value of 23.5 dB than obtained in the simulations. A plot of the efficiencies of the EE 

direct and indirect controllers is provided in Figure 2.14, following the same procedure used in 

the simulation to generate Figure 2.12. The EE direct controller is more efficient than the full 

state FB controller for frequencies ranging from f = 0 to f = 170 Hz; and at its worst, it is only 0.3 

dB less efficient than the full state FB controller (at 848 Hz). The EE indirect controller is 3.1 dB 

and 2.8 dB more efficient than the full state FB controller at f = 0 and f = 60 Hz, respectively; at 

its worst, it is 3.8 dB less efficient than the full state FB controller (at 0.83 Hz). 

 

 

Figure 2.13: Comparison of Positioning Performance, Robustness and Control Effort of the Full 
State FB and the Energy-Efficient FB Controllers Designed via EE Direct and EE Indirect 

Approaches (Experiments) 

 

 

Figure 2.14: Comparison of Efficiencies of Controllers designed using the EE Direct and EE 
Indirect Methods (Relative to Efficiency of Full State FB Controller) – Experiments 
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Figure 2.15: Plots of Positioning Error, Cutting Force Spectrum and Actuator Power Dissipated 
in Heat during Machining Experiment 

 

The controllers are implemented on a dSPACE 1103 motion control platform at a 

sampling frequency of 10 kHz. A table-mounted high-resolution encoder (see Figure 1.2) is used 

to measure the position of the table, z2. However, the rotary position of the motor shaft z1 is 

obtained using the observer proposed in [102]. This is because readings from the motor-mounted 

rotary encoder had an undesirable drift caused by micro slippage, which is known to occur 

between the Roh’lix nut and smooth shaft [47]. The velocity feedback signals, 𝑥̇ଵand 𝑥̇ଶ, are 

acquired by taking discrete derivatives of the position signals measured from the rotary and 

linear encoders, respectively. Figure 2.15 (a) shows a comparison of the positioning errors (ez2), 

measured from the linear encoder. Notice that all three controllers have nearly identical 

positioning performance, as also confirmed by the maximum and RMS errors reported in Table 

2.7. The disturbance force d2 during cutting is estimated from the linear motor’s current by 

performing the cut using the LMD only (i.e., by disengaging the Roh’lix nut from the shaft).  

Figure 2.15 (b) shows the frequency spectrum of the estimated d2, which clearly shows dominant 

peaks at 0 and 60 Hz. Figure 2.15 (c) and (d) show the power dissipated as heat in the SD and 

LMD (calculated using (2.12) without the integral) for each controller; Table 2.7 summarizes the 

average power dissipated in heat by each actuator during cutting. Observe that even though the 

positioning performance of all three controllers is almost the same, the EE direct and EE indirect 

controllers are respectively 26% and 20% more efficient than the full state FB controller. 
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Table 2.7: Comparison of Tracking Errors and Energy Efficiencies of FB Controllers Based on 
Machining Experiments 

  Max ez2  

[μm] 

RMS ez2 

[μm] 

SD Avg. Pwr. 

[W] 

LMD Avg. Pwr. 

[W] 

Total Avg. Pwr. 

[W] 

Full State FB 12.7 4.3 13.3 24.2 37.5 

EE Direct 9.7 3.8 8.8 18.9 27.7 

EE Indirect 10.6 4.0 7.9 22.1 30.0 

  

2.6 Summary 

This chapter has presented a method for designing a controller that achieves the best 

positioning accuracy while maximizing the energy efficiency for an over-actuated hybrid feed 

drive (HFD). An optimal control (input) ratio (OCR) is proposed, for general weak input 

redundancy, to specify the optimal relationship between the control inputs without sacrificing 

positioning performance. The OCR is shown to be non-causal, and a causal approximation is 

proposed for practical real-time implementation. In HFD, the OCR ensures maximum efficiency 

for any specified positioning accuracy, and the energy efficiency loss due to the causal 

approximation is shown to be small. The control structure of the HFD is assumed to have a 

feedforward (FF) controller for tracking and a feedback (FB) controller for regulation. An 

approach for designing the FF controller using the approximate OCR to achieve perfect tracking 

while remaining stable and near-energy-optimal has been proposed and verified using 

comparative simulations. For FB controller design using the approximate OCR, two approaches 

have been proposed for energy-efficient controller design, without sacrificing positioning 

accuracy. The first approach directly constrains the control inputs to achieve the requirements of 

the approximate OCR. The second approach indirectly implements the optimal relationship in 

the form of a weighting filter for use in traditional H2/H∞ controller synthesis. Simulations and 

machining experiments have been used to demonstrate the benefits of the proposed approaches 

in significantly improving energy efficiency without sacrificing positioning accuracy for the 

HFD, under broadband disturbances.  
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Chapter 3 Proxy-Based Control Allocation for Dual-Input, Single-Output 
Over-Actuated Systems 

 

3.1 Overview 

In the preceding chapter, an optimal control ratio (OCR) was derived for dual-input over 

actuated systems and shown to be non-causal. Therefore, a causal approximation of the OCR was 

proposed to enable real-time implementation. However, the approximations involved could lead 

to significant loss of optimality under certain conditions, as shown in the preceding chapter. 

Accordingly, in this chapter, the non-causality issue of the OCR is tackled from a different 

approach that does not require a causal approximation. Through decomposition, a proxy signal is 

established based on the OCR, and is proven to accurately measure the over-actuated system’s 

deviation from energy optimality. The introduction of the proxy enables the control allocation 

problem to be converted to a regulation problem, which is solvable using standard control design 

methodologies. Its resultant optimal control allocation for weak input redundancy is thus 

achieved through a dynamic system, whose computational load is negligible. 

The derivation of the proxy and its relationship to energy optimality are discussed in 

Section 3.2. The use of the proxy in regulation framework, along with constraints handling 

techniques, is discussed in Section 3.3. The proposed proxy-based allocation method is validated 

using hybrid feed drive in simulations and experiments, in comparison with a state-of-the-art 

control allocation method for weakly redundant systems in Section 3.4, followed by a summary 

in Section 3.5. 

3.2 Control Proxy in Dual-Input, Single-Output Over-Actuated System 

3.2.1 Control Allocation Framework 

As shown in Figure 3.1, a dual-input, single-output (DISO) system y = Gu + Gdd is 

defined as in (2.1). This is a weakly input redundant system and has nonzero null space 

Ker(G(s)). The typical two-stage framework of control allocation is shown in Figure 3.1. A 

nominal control input u0 from a virtual controller C0 yields a desirable output y0 under 
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disturbance d0, i.e. the positioning performance is satisfied in this first stage. Set Ω defines the 

family of control signals that replicate y0 under d0. The goal of energy-optimal control allocation 

is to formulate a mapping P between u0 and u ∈ Ω such that control energy is minimized, under 

the influence of disturbance d0, without altering y = y0. Accordingly, energy optimality (one 

supplementary objective) is realized without sacrificing positioning performance (primary 

control objective). 

 

Figure 3.1: Generalized Block Diagram for Control Allocation of Over-Actuated Systems 

As discussed in Section 2.2, under quadratic energy cost Ju = ∫(uTRu)dt defined in (2.4), 

the control inputs should satisfy the OCR defined as  
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to guarantee optimality. However, this relationship was shown in Chapter 2 to be non-causally 

implementable. A causal stable approximation of β* (denoted as β) was proposed in Section 2.3.4 

however is only valid where the frequency response of β satisfies one of following conditions: 

|β(jω)| ≫ 1, |β(jω)| ≪ 1 or ∠β(jω) ≈ nπ (n ∈ ℤ). Significant deviations from energy optimality 

could result if these conditions are not met, and there is no guarantee that energy optimality is 

always improved as u1/u2 approaches β. To address these issues, a causal proxy signal, 

representing the deviation from the OCR, is proposed in the following. 

3.2.2 Causal Alignment Deviation from Optimal Control Ratio 

Given the optimal control ratio (β*) defined in the preceding section, we seek an allocator 

P that enforces the condition u1– β*u2 = 0. The operator s has adjoint  s* = –s [81], since the 

signals it operates on (i.e. u1 and u2) belong to the L2 space and has zero initial and final values. 

This assumption is valid for control signal u in almost all practical situations, hence it is adopted 

here. Accordingly, a causal implementation of β*(s) involves the evaluation of β(–s) [103] which 
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contains unstable poles. We address this challenge by defining uD, a causal stable measure of the 

deviation of u1/u2 from β*, as 

2 1 1 2,Du u u    (3.2) 

where β1 and β2 represent a factorization of β* defined as 
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 (3.3) 

Here G1n and G2n are respectively coprime numerators of G1 and G2 (i.e., G = [G1n, G2n]/Dol, 

where Dol is defined such that G1n and G2n do not have shared zeros). On the other hand, ψ is a 

causal stable denominator, whose selection is discussed in the following section.  

The implication of the proposed decomposition of β* is that its non-causally implementable 

denominator is replaced by the causal stable denominator, ψ, of β1 and β2. Note that G1n
* (s) = 

G1n(−s) and G2n
* (s) = G2n(−s) can induce non-minimum phase (NMP) zeros in β1 and β2, but they 

do not make β1 and β2  unstable. Therefore, β1 and β2, unlike β*, are causally implementable; 

hence the alignment deviation, uD, is determinable by a control system in real time.  

3.2.3 Relationship between Proxy and Energy Optimality 

Based on (3.2), the alignment deviation, uD, can be viewed as a proxy signal which is 

usable by a control allocator to indirectly achieve energy optimality. It is therefore instrumental 

to understand the relationship between uD and Ju. To do this, for any control input u =(û+δu) ∈ 

Ω(û), Ju can be decomposed as follows:  
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(3.4) 

where J෠u and ΔJu are positive definite terms representing the optimal value of Ju and the energy 

of deviation δu (i.e. Ju(δu)), respectively, while Jcc is a cross-coupling term between δu and û. 

Based on optimal control ratio β*=(R22G1
*–R12G2

*)(R11G2
*–R12G1

*)-1 (defined in (2.8)), the energy-

optimal control, û, can be written as 
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where e0 is a basis signal. Based on (3.5) and null space relationship 
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1 1 2 2 0,G u G u    (3.6) 

 the cross-coupling term Jcc is written as  
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 (3.7) 

meaning that Ju = Ju෡  + ΔJu. Knowing that uD = 0 when u = û, (3.2) can be re-written as  

2 1 1 2.Du u u      (3.8) 

Extracting the numerator of (3.6) and combining it with (3.8), uD can also be written in terms of 

δu1 and δu2 as 
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Based on β1 and β2 defined in (3.3) the following relationship is derived 
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Applying Parseval's theorem and the frequency domain expression of (3.8) to (3.10), the energy 

increment ΔJu can be expressed as 
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This leads to the relationship: 

2

2
,u DJ u   (3.13) 

if ψ is selected such that ψ*ψ = Π. The implication of (3.13) is that the deviation of uD from zero, 

measured by ||uD||2
2, equals the deviation of Ju from its optimal value of  J෠u. While the selection 

ψ*ψ = Π may be mathematically convenient, a question that remains is whether it is a causal 

stable choice for ψ. Notice from (3.11) that Π is self-adjoint (i.e., Π* = Π); it consists only of 

zeros, with each zero having a mirror image on the opposite side of the imaginary axis of the s 
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plane. One can therefore collect all the minimum phase zeros of Π into ψ, leading to a stable and 

causally implementable ψ. Note that R is positive definite, indicating based on (3.11) that 
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holds for all s = jω. Therefore, Π has no zeros on the imaginary axis (Π(jω) ≠ 0) as long as G1n 

and G2n do not share common zeros on the imaginary axis, which is satisfied due to the fact that 

G1n and G2n are coprime.  

3.3 Proxy-Based Control Allocation for DISO Systems 

Exploiting the causally implementable proxy uD, the control allocation problem can be 

converted into a standard regulation problem. Referring to Figure 3.1, control allocator P is any 

mapping between u0 and u ∈ Ω(u0). Based on (2.3), u0–u belongs to the orthogonal complement 

of G and thus u is explicitly written as  
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where v is an arbitrary signal while Hv is a user-defined pre-filter that can be applied to v (e.g., to 

attenuate high frequency model mismatch). Following the discussions in Sections 4.2.2 and 4.2.3 

above, the desire to make P an energy-optimal dynamic allocator can be indirectly achieved 

through regulation of uD. This can be achieved through FF and/or FB control, shown in Figure 

3.2 as Hff and Hfb, respectively. Note that the Sat(·) block and dotted lines in Figure 3.2 are 

related to input constraint enforcement discussed in Section 3.3.3; they are ignored in all 

derivations in this section.  

A control designer is free to implement Hff and Hfb using a wide range of FF and FB 

controllers (linear or nonlinear) available in the literature.  In the rest of this section, we present a 

sample FF and FB implementation of the proposed allocation scheme. The presented examples 

are classical controllers which can easily be implemented in real time, with low computational 

burden. However, the proposed scheme is also amenable to implementation via advanced 

controllers like H2/H∞ control, sliding mode control, and model predictive control. 
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Figure 3.2: General Structure of Proposed Allocation Approach Comprising FF Control (Hff), FB 
Control (Hfb) and Actuator Constraint Handling (Sat(·)) 

3.3.1 Classical Feedforward Implementation 

Focusing on FF control (marked in red in Figure 3.2) by setting Hfb = 0, uD = 0 requires 
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Note that selecting Hff as defined in (3.16) may not always be feasible in the presence of non-

minimum phase (NMP) zeros in β1G1 + β2G2; moreover, Hff may not be causal. The lack of 

perfect inversion of Hff indicates that the proxy-based control cannot be energy optimal for every 

frequency. It also introduces certain level of tradeoff, which can be manipulated by the regulated 

magnitude of uD. For practical feedforward implementation, approximate inversion techniques, 

like zero phase error tracking controller (ZPETC) [95], zero magnitude error tracking controller 

(ZMETC) [97], filter basis function (FBF) [104,105], etc., may be used to achieve uD0 ≈ 0 over 

certain frequency or time ranges. Note that these approximate inversion techniques may yield 

non-proper Hff, which can be addressed via non-causal implementation using future values of uD0 

(e.g., portions of uD0 calculated based on known reference command, yd) [95]. It can also be 

addressed by adding fast poles to Hff to make it proper [106], as is demonstrated in Section 

3.4.2.2.  

3.3.2 Classical Feedback Implementation 

Focusing on FB control (marked in green in Figure 3.2) by setting Hff = 0, we get 
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2 1 .fb fb D fbv H u H      u  (3.17)  

Accordingly, the overall transfer function of P is given by 
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The allocator’s effect on control alignment with the optimal ratio is evaluated as 
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Here the allocator’s characteristic equation 

   1 1 2 21 fb vs H H G G     (3.20)  

is crucial as it determines the allocator performance and stability [77].  FB controller, Hfb, can be 

shaped to deliver a large norm of θ at targeted frequency ranges where efficiency is most desired, 

while ensuring system stability (e.g., using classical root locus techniques) as demonstrated in 

Section 3.4.2.2. Note that even though FF and FB implementations have been discussed 

separately, they can be combined together, as in Figure 3.2, to give 

 
 

0

1 1 2 2

.
1

ff fb D

ff fb
fb v

H H u
v v v

H H G G 


  

 
 (3.21)  

3.3.3 Actuator Constraint Handling 

Following the FF and FB design discussed in Section 3.4.2, saturation-type constraints 

are handled in this section for the DISO system G = [G1, G2]. Assume that u1 and u2 have 

saturation bounds given by 

1 1 1 2 2 2; .U u U U u U        (3.22)  

As shown in Figure 3.2, we seek to enforce these bounds on u indirectly through v. This can be 

done by transferring output bounds to input bounds following the technique discussed in 

[107,108]. To do this, assume Ac,i, Bc,i, Cc,i, and Dc,i with corresponding state vectors xc,i (i =1,2), 

formulate discrete-time realizations of –HvG2 (for i = 1) and HvG1 (for i = 2). These two state-

space discrete systems are assumed to be strictly proper (Dc,i = 0) to avoid possible algebraic 

loops; this can be assured by a proper choice of Hv. The relative degrees of the two systems ri, 
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marked by the first nonzero Markov parameters, are each defined as the smallest integer 

satisfying  
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where ts represents the sampled indices of time t in discrete domain. In other words, the relative 

degree determines the minimum number of time steps needed before a system’s input affects its 

output. With relative degree ri, only constraints associated with u[ts+ri] and beyond can be 

enforced by v[ts] for a given xc,i[ts]; i.e., 
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Assuming that the fluctuation of u0i is negligible within ri time steps (i.e., u0,i[ts] ≈ u0,i[ts +1]… ≈ 

u0,i[ts+ri]), we can write 
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Accordingly, the limits on u can be indirectly satisfied by imposing constraints on v as 
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 (3.26)  

where v and vത respectively denote the lower and upper bounds on v; αi is the sign of the first 

nonzero Markov parameter. Accordingly, the saturation function in Figure 3.2 is defined as [108] 

       ˆ sat , , max min , ,min , max , .v v v v v v v v v   (3.27)  

Notice from (3.26) that v and vത are respectively determined by selecting the greater and the 

smaller value of constraints on v associated with u1 and u2. There is however no guarantee that v 

is always smaller than vത, meaning that it may be infeasible for v to lie between v and vത. This 

situation is likely to occur when the dynamics or constraints associated with u1 and u2 are very 

different from each other, especially when high frequency dynamics are considered [108]. High 

frequency dynamics also make it difficult to satisfy the assumption that u0i[ts] ≈ u0i[ts +1]… ≈ 

u0i[ts +ri]. In practice, these issues can be greatly mitigated by using only the low frequency 

portion of u0 in (3.26) and selecting pre-filter Hv as a low pass filter to attenuate high frequency 

dynamics outside the desired allocator bandwidth. The implication is that the Sat(·) block 
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imposes constraints on low frequency dynamics, but not necessarily on high frequency 

dynamics, as is illustrated in Section 3.4.3. 

3.4 Validation on Over-Actuated Hybrid Feed Drive 

3.4.1 Control Proxy for Hybrid Feed Drive  

The hybrid feed drive (HFD) [35] introduced in Section 1.1.2 is used to evaluate the 

proposed control allocation method; the schematic of this dual-input over-actuated system is 

shown in Section 2.3.  

 

Figure 3.3: Simplified Two-Mass Model of HFD with Cutting Disturbance 

Similar to Section 2.3.2, a simplified two-mass model shown in Figure 3.3 is given by 
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Note that the disturbance on m1 (mostly friction) is omitted in this formulation (compared to 

(2.9) and Figure 2.2) since the cutting force on m2 is dominating and cannot be pre-compensated. 

The experimentally identified parameters of the HFD’s two-mass model are shown in Table 2.1. 

Since the position of the shaft is not an output to be controlled, over-actuated system 

  T
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is formulated. This is a subset of the fully-actuated system defined in (2.10), assuming G21 = G1, 

and G22 = G2, d1 = 0 compared to Section 2.3.3. Note that G1 and G2 can be decomposed as  
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where Dol is the same as provided in (2.11). The control energy cost functional of the HFD is 

modeled as the thermal loss (defined in (2.12)) of the HFD, i.e. 
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where Km1 = 380.8 N/√W and Km2 = 21 N/√W are the motor constants of the rotary and linear 

motor, as discussed in Section 2.5. They each represent the efficiency of the corresponding 

actuator, and ratio γ = (Km1/Km2)2 = 328.8 represents the energy-optimal static control ratio. 

Notice that (3.31) follows the general quadratic format in (2.4) with R11 = (1/Km1)2, R22 = 

(1/Km2)2, R12 = 0. Accordingly, the HFD’s optimal control ratio and its factorization are given by 
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Accordingly Π and ψ are determined (based on ψ*ψ = Π) as 
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 (3.33)  

where 
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It can be verified that β1 and β2 are causal stable, with poles at –226 ± 204j rad/s.  

3.4.2 Design of Nominal Controller and Control Allocator  

3.4.2.1 Design of Nominal Controllers 

Let us assume that the HFD is required to track a broadband snap-limited reference 

position signal, yd, whose velocity profile is shown in Figure 3.4 (a), and kinematic limits are 

given in Table 3.1. Moreover, as shown in Figure 3.4 (b), during the constant velocity portion of 

yd, from 1s to 4.5s, the HFD must reject disturbance force d, given by   
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   2

Non-dominantDominant

 100cos 20   1 , N00 (0 )dd t H N     
(3.35)  

representing cutting force disturbance with a dominant DC and a harmonic portion (at 10 Hz), 

combined with a non-dominant broadband portion made up of zero-mean white noise with 

standard deviation σ = 100 N, low-pass filtered with Hd given by 

.d
d

d

H
s







 (3.36)  

Here ωd = 60π rad/s is employed such that the low pass filter has a cutoff frequency of 30 Hz. 

 

 

Figure 3.4: (a) Velocity Reference Command and (b) Disturbance Force Profiles 

 

Table 3.1: Kinematic Limits of Reference Trajectory and PID Controller Gains 

Pos. [mm] Vel. [mm∙s-1] Acc. [mm∙s-2] Jerk [mm∙s-3] Snap [mm∙s-4] 

5 10 20 200 1×104 

Kp [N∙m-1] Ki [N∙m-1∙s-1] Kd [N∙m-1∙s] Tf [s] 

7.46×106 4.07×106 1.01×105 1.39×10-4 

 

The nominal controller (i.e., C0 in Figure 3.1) is designed with a FF component (C0,ff) for 

reference tracking and a FB component (C0,fb) for regulation such that u0 = uff0 + ufb0.  

The FF controller can be designed as 
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2
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,ff ff d d
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u C  (3.37)  

which is the simplest FF controller for achieving perfect tracking of yd; it forces the two-mass 

HFD to move as one rigid body [109], as discussed in Chapter 2. 

 The FB controllers used in simulation and the experiment are different. In simulation, the 

nominal controller is designed to be a PID controller given by  

   0 0,

0

,

1
i dfb fb d d

p
f

K K sy y y y
K

s T s

 
      

  

u C  (3.38)  

where Kp, Ki, Kd, Tf are calculated using Matlab®’s PID tuning tool targeted at a crossover 

frequency of 10 Hz, and their values are provided in Table 3.1.  Notice that C0,fb uses only y = z2 

for feedback and only u2 for actuation (i.e., single-input single-output collocated control) which 

makes for ease of design. In experiments, since the linear motor drive cannot back drive the 

screw drive, a P/PI-PD controller reported in [98] is used as the feedback controller. The P/PI-

PD controller controls the rotary and linear motors using a P/PI and a PD controller, respectively, 

and is optimized for positioning performance using an H∞ approach [98]. Even though its design 

is more involved, it achieves higher bandwidth (107 Hz), and is heuristically more efficient than 

the PID control approach used in simulations – because it applies the integrator to the rotary 

motor rather than to the linear motor. Note that neither the FF nor FB controller is designed with 

efficiency in mind. They both rely on the control allocator to deal with efficiency. This 

demonstrates the elegance of the two-stage framework upon which the proposed allocator is 

built. 

3.4.2.2 Design of Proposed Energy-Optimal Control Allocator 

 The proposed allocator is designed using the classical FF and FB implementations 

discussed in Section 3.3. The FB allocator (Hfb) is designed to make uD ≈ 0 at 0 and 10 Hz, 

corresponding to the frequencies of the dominant components of d, which are often known in 

practical milling scenarios and are most critical to precision and control energy [98]. The FF 

allocator (Hff) is designed to yield uD ≈ 0 in a broadband sense, to provide allocation for portions 

of u0 induced by yd and the broadband portion of d. The pre-filter, Hv, is given by 

      ,v ol dH s D s D s  (3.39)  
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which replaces the denominator of the original system, Dol, containing undesirable structural 

modes, with a more desirable denominator, Dd. Here Dd is selected as a third order Butterworth 

low pass filter with cutoff frequency of 16 Hz, corresponding to the target bandwidth of the 

allocator (which is greater than the 10 Hz crossover frequency of C0,fb). The numerator of Dd is 

scaled with stiffness k (which is the DC gain of G1n and G2n) so that the v has force unit [N]. 

 The FB allocator, Hfb, is selected as 

    ,fb AL dH s K W s  (3.40)  

where KAL is a gain which selected to make θ(s) in (3.20) as high as possible; Wd is a weighting 

filter that emphasizes frequencies where high θ(s) is most desirable, since, due to stability 

constraints, it is impossible to make θ(s) very high at all frequencies. We select 

 
2

0
2 2

0 0

1

2dW s
s s s


  

 
  

 (3.41) 

with ω0 = 20π rad/s (i.e. 10Hz), so that Wd magnifies θ(s) at the dominant frequencies contained 

in d. Note that ε = 10-5 rad/s and ζ = 0.01 are introduced to ensure very high gains at the desired 

frequencies while keeping the energy of Wd finite. By treating WdHv(β1G1+β2G2) as an open loop 

plant, the standard root locus technique is used to determine KAL = 270 N √W⁄  as a high enough 

FB gain that ensures closed-loop stability. Figure 3.5 shows the root locus and final closed-loop 

poles of allocator P (i.e., the roots of θ(s)). 

 

Figure 3.5: Root Locus Plot of FB Allocator 

 According to (3.16), FF allocator, Hff, is given by 
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However, the expression ψ*(s) = ψ(–s) in the denominator of Hff has unstable poles (see (3.33)). 

Moreover, Hff  is non-proper hence non-causal. An approximation of Hff based on ZPETC [95] is 

given by 

   
 

 _ 02
,

0
d

ff ZPETC

s D s
H H s




  (3.43)  

where H0 is a sixth-order Butterworth low pass filter (similar to the inverse compensation filter 

[106]) added to make Hff_ZPETC causal.  

 

 

Figure 3.6: Comparison of Estimated Frequency Spectra of uD Achieved without Allocation and 
with the Proposed FF and/or FB Allocators 

As discussed in Section 3.3, the feedforward and feedback implementations of the 

proposed allocator can be employed independently, or combined. In Figure 3.6, the frequency 

spectra of uD for different implementations are compared by substituting d(s) ≈ Wd(s) and yd = 0 

in closed loop system transfer functions (i.e., by focusing on the dominant portions of d). Notice 

that, without allocation, uD inherits the high DC gain and peak at 10 Hz, corresponding to the 

dominant portions of d, resulting in ||uD||2 = 10.6 √J. The FB allocator eliminates the 10 Hz peak 

and flattens out the DC gain of uD such that ||uD||2 = 0.0205 √J. The FF allocator reduces uD 

(more than achieved by the FB allocator) for frequencies up to 10 Hz, but is not as effective as 

the FB allocator in suppressing the 10 Hz peak; the result is ||uD||2 = 0.282 √J. The combination 

of both FB and FF allocators does the best job of reducing uD in a broadband sense, including the 

10 Hz peak, resulting in ||uD||2  = 0.0161 √J. Therefore, the combination of FF and FB designs is 

employed in comparing the proposed allocator to an existing allocator in the following section. 
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3.4.3 Simulation and Experiment Results 

In this section, the proposed proxy-based (PB) dynamic allocator designed in Section 

3.4.2 above is compared to the static-model-based (SMB) dynamic allocator by Zaccarian [68], 

which circumvents time-consuming real-time optimization by approximating (1.5) as 

  
0

Ker lim ,
s

s


G  (3.44)  

In other words, it considers weak redundancy only in a static sense. The SMB allocator is 

implemented as detailed in [68] based on the parameters of the HFD, and with energy 

performance matrix R=diag(Km1
 –2, Km2

 –2) and allocator speed parameter Kz= 103 defined in [68] 

and in (1.15) as discussed in Section 1.2.3.3. 

3.4.3.1 Simulation Results 

The nominal FF and FB controllers designed in Section 3.3 are applied to both the PB and the 

SMB allocator; both allocators are benchmarked against the nominal controller with no allocator, 

regarding positioning error and control power (i.e. control energy per unit time). Also, in order to 

illustrate the constraint handling approach proposed in Section 3.3.3, an additional case with 

saturation limits U1
 ± = U2

 ± = ± 100 N applied to the PB allocator is simulated. The inputs to the 

simulation are yd and d given in Figure 3.4.  

 

Table 3.2: Positioning Performance and Average Control Power Consumption Comparison 
(Simulation) 

 
Pos. Err. [μm] Control Power [W] 

Max. RMS P1 P2 Ptotal 

No Allocator 22.73 8.96 0 21.982 21.982 

SMB Allocator [68] 23.08 9.41 0.038 11.092 11.130 

Proposed PB Allocator (w/o constraints) 22.73 8.96 0.047 1.108 1.155 

Proposed PB Allocator (w/ constraints) 22.73 8.96 0.034 1.396 1.430 

 

 As shown in the tracking results of Figure 3.7, and statistics reported in Table 3.2, 

relative to the no allocator case, the SMB allocator introduces 2% and 5% percent more 

maximum and RMS tracking errors, respectively. However, the proposed PB allocator (with and 

without constraints) preserves the tracking performance perfectly. Notice from Figure 3.7 that, as 
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expected, the PB and SMB allocators both re-assign more of the static control effort to the more-

efficient rotary motor, compared to the no allocator case which relies heavily on the less-efficient 

linear motor. The major difference between the SMB allocator and the PB allocator lies at higher 

frequencies. For instance, in keeping with β* (see Figure 2.4), the PB allocator assigns much 

more regulation of the 10 Hz disturbance signal to the rotary motor, as shown in Figure 3.7 and 

Figure 3.8; the SMB allocator does not. As a result, without constraints imposed, the PB 

allocator respectively consumes 95% and 90% less average control power than the no allocator 

and the SMB allocator cases. Figure 3.7 also illustrates the effectiveness of the constraint 

handling approach discussed in Section 3.3.3, applied to the PB allocator; notice that it truncates 

the portions of u1 that exceed the imposed limits and re-assigns them to u2. This re-assignment 

does not affect positioning performance, because, as shown in Figure 3.2, it occurs in the null 

space of G. However, the re-assignment violates the requirements of β* resulting in 24% more 

average control power consumption compared to the unconstrained case. Nonetheless, even with 

constraints imposed, the proposed PB allocator still significantly outperforms the no allocator 

and SMB allocator cases. 

 

Figure 3.7: Time Domain Comparison of Positioning Performance and Control Efforts of 
Allocation Methods (Simulation). 
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Figure 3.8: Comparison of Control Effort Frequency Spectra of Allocation Methods (Simulation)  

3.4.3.2 Experiment Results 

The proposed PB allocation approach is evaluated in experiments conducted on an in-

house built prototype of the HFD (see Section 1.1.2 for details), controlled at 10 kHz sampling 

frequency using dSPACE DS1103 control board. The same FF controller used in the simulations, 

combined with a P/PI-PD controller reported in [98], is used as the nominal FB controller in the 

experiments. The exact same reference command, disturbance forces, SMB allocator [68], and 

FF+FB implementations of proposed PB allocator as used in simulations are adopted in the 

experiments; the disturbance forces are applied to the table via the linear motor.  An additional 

case with saturation limits of U1
 ± = U2

 ± = ± 150 N is considered. The control signals are low-pass 

filtered with a cut-off frequency of 100 Hz before passing them to the constraint handler to avoid 

issues with high-frequency control signals, as discussed in Section 3.3.3. 

The time domain and frequency domain results from the experiments are shown in Figure 

3.9 and Figure 3.10, and the tracking error and average control power statistics are reported in 

Table 3.3. Unlike in the simulations, in the experiments, the tracking errors of the proposed PB 

allocator are slightly higher compared to those of the nominal controller. This is because the PB 

allocator, being model-based, can only guarantee invariance of control performance in the 

absence of modeling errors, which is not the case in the experiments. From the energy point of 

view, the SMB allocator [68] consumes only 2% less average control power than the no allocator 

case, due to the more-efficient nominal controller adopted in the experiments. However, for the 
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same reasons as discussed in the simulations, without constraints, the proposed PB allocator 

consumes 45% and 24% less control power than the SMB allocator, without and with constraints 

imposed, respectively. Notice from Figure 3.9 that even with constraints imposed, u1 appears to 

violate the constraints. The reason is that, as explained in Section 3.3.3, the constraint handler 

does not impose constraints on signals above the allocator bandwidth regulated by Hv (16 Hz). 

Figure 3.11 compares the control signals of Figure 3.9 for the proposed allocator with and 

without constraints, filtered using a low-pass filter with 16 Hz cut off frequency. Notice that, as 

expected, the constraint handler redistributes the control effort from u1 to u2 to satisfy the 

constraints. The constraint handler is thus suitable for many practical applications where 

constraint violation by high-frequency portions of signals is not a major concern.  

 

 

Figure 3.9: Time Domain Comparison of Positioning Performance and Control Efforts of 
Allocation Methods (Experiment). 
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Table 3.3: Positioning Performance and Average Control Power Consumption Comparison 
(Experiments) 

 
Pos. Err. [μm] Control Power [W] 

Max. RMS P1 P2 Ptotal 

No Allocator 4.02 1.04 0.065 2.016 2.081 

SMB Allocator [68] 3.94 1.02 0.068 1.964 2.031 

Proposed PB Allocator (w/o constraints) 3.98 1.20 0.072 1.055 1.127 

Proposed PB Allocator (w/ constraints) 4.19 1.12 0.062 1.472 1.534 

 

 

Figure 3.10: Comparison of Control Effort Frequency Spectra of Allocation Methods 
(Experiment). 

 

Figure 3.11: Comparison of Control Efforts of Proposed Proxy-Based Dynamic Allocator with 
and without Constraints, Low-Pass Filtered with 16 Hz Cut Off  
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3.5 Summary 

In this chapter, an elegant method is proposed for resolving the non-causality problem of 

the optimal control (input) ratio derived in Chapter 2 for energy-optimal dynamic control 

allocation of dual-input single-output over actuated systems. Through factorization, a causal and 

stable deviation measure from the optimal control ratio is derived. The deviation measure is 

shown to be an accurate proxy for deviation from control energy optimality for weak input 

redundancy. Hence a proxy-based dynamic allocation approach is proposed to drive the control 

system to control energy optimality by regulating the deviation measure using classical or 

advanced feedforward (FF) or feedback (FB) controllers. The resultant control allocator is simple 

and computationally efficient since it does not require real-time optimization. A method for 

handling actuator constraints without sacrificing performance is also presented. The proposed 

proxy-based dynamic allocation approach is compared to an existing static-model-based dynamic 

allocator in simulations and experiments on an over-actuated hybrid feed drive. Large 

improvements in efficiency without sacrificing performance are demonstrated. The effectiveness 

of the constraint handler on imposing constraints on low frequency portions of control signals is 

also shown. 
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Chapter 4 Proxy-Based Control Allocation for Multi-Input, Multi-Output 
Over-Actuated Systems 

 

4.1 Overview 

In this chapter, the proxy-based control allocation for dual-input, single-output (DISO) 

system is extended to multi-input, multi-output (MIMO) over-actuated systems. The concept of 

optimal control ratio is extended to optimal control subspace in Section 4.2, where the control 

proxy is also realized through matrix fraction description of MIMO systems. The proxy-based 

control allocation for MIMO system is discussed with feedback design through H∞ synthesis in 

Section 4.3, followed by simulation examples in Section 4.4 and a summary in Section 4.5. 

4.2 Control Proxy in Multi-input, Multi-output Over-Actuated System 

4.2.1 Optimal Control Subspace  

The concept of optimal control subspace (OCS) is a natural extension of the OCR in DISO 

systems. Consider a general MIMO weakly input redundant system given by 

,d y Gu G d  (4.1) 

where y ∈ ℝny  is the output of the system, while u∈ ℝnu , d ∈ ℝnd  are the control input and 

disturbance, respectively. All signals in u are assumed to belong to L2 space and have zero initial 

values. According to Section 1.2.3.1, such a system with more inputs than outputs is defined as 

weakly input redundant system since Ker(G(s)) ≠ ∅.  

For weakly input redundant system with nu > ny, define redundancy degree nr as 

.r u yn n n   (4.2) 

Without loss of generality, the first ny control inputs are assumed to formulate a non-redundant 

control input set, i.e. the overall system transfer function matrix is divided as 

TT T; ,p r p r      G G G u u u  (4.3) 
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where Gp is a nonsingular square transfer function matrix from the first ny principal control 

inputs up to the outputs, and Gr (ny × nr) is a transfer function matrix from the remaining nr 

redundant control inputs ur to the outputs. Due to the nature of over-actuated systems, there 

exists null space within which the control inputs’ variations would not affect the system outputs, 

i.e. 

1 .p
p r p p r r

r


 


 

       
 

u
G G 0 u G G u

u
 (4.4) 

A quadratic cost Ju is defined for the MIMO system as  

 
T

T
T0 0

,p prp p
u

pr rr r

J dt dt
      
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 
R Ru u

u u Ru
R Ru u

 (4.5) 

where R is a positive definite symmetric matrix divided according to the first ny principal control 

inputs and nr redundant inputs. To achieve energy optimality, the variation of Ju should satisfy 

T

T0
0.p prp p

u
pr rr r

J dt





     
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    


R Ru u

R Ru u
 (4.6) 

Consider the variation within the null space specified by (4.4), 

    T T1 1 T T T

0
.p r r p p p r r pr r r pr p r r r dt   

        G G u R u G G u R u u R u u R u 0  (4.7) 

Taking the adjoint operation of transfer function matrix Gp
-1Gr  

    T 1 * T 1 *

0
( ) ( ) ,r p r p pr p p r pr r r dt

      u G G R R u G G R R u 0  (4.8) 

where * indicate the adjoint operation as mentioned in Section 2.2. Based on the fundamental 

lemma of calculus of variation for multivariable systems [82], following condition holds for the 

energy-optimal control inputs. 

   * *1 T 1ˆ ˆ ,p r p pr p r p r pr r
            

G G R R u R G G R u  (4.9) 

where ^ accent is used to denote optimality as defined in Section 2.2. Note that (Gp
-1Gr)

* is non-

causal (because of the adjoint operator), and the relation in (4.9) formulates optimal control 

subspace.  
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4.2.2 Proxy as a Deviation from OCS  

To design an energy-optimal allocator P, as discussed in Section 3.3, it is desirable to 

enforce the optimal control subspace defined in (4.9). The operator s has adjoint s* = –s [81], 

since the signals it operates on (i.e. u) belong to the L2 space and have zero initial and final 

values. This assumption is valid for control signal u in almost all practical situations, hence it is 

adopted here. Here we propose a causal alignment deviation measure through decomposition of 

non-causal operators. First, matrix fraction description [110] is used to decompose Gp
-1Gr, whose 

adjoint operation in (4.9) is the source of the non-causality. The matrix fraction description is 

given by 

       1 1 ,p rs s s s G G N D  (4.10)  

where N (ny × nr) and D (nr × nr) are coprime transfer function polynomials without 

denominators, such that (4.10) formulates a right coprime fraction of Gp
-1Gr. Note that here N 

and D are not unique: all possible coprime N and D pairs are related to each other through 

unimodular transformation matrices [110]. The importance of this right coprime fraction is that 

N and D only contain the numerator polynomials, whose adjoint  

         * *T T;s s s s   N N D D  (4.11)  

are also numerator polynomials due to s*= –s [81], which does not lead to instability. Deviation 

from (4.9), which originally cannot be causally evaluated, is measured by proxy uD defined as  

,D p p r r u β u β u  (4.12)  

where 
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

 
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β ψ N R D R

β ψ D R N R
 (4.13)  

Here ψ is defined as a square (nr × nr) nonsingular numerator polynomial with minimum phase 

zeros such that both ψ-1D* and ψ-1N* are proper and stable transfer function matrices, and can 

thus be evaluated in real time. Comparing the results from the MIMO and DISO cases, one 

observes that the D and N matrices in (4.10) are generalizations of G1n and G2n defined in (3.3). 

4.2.3 Relationship between Proxy and Control Energy Optimality 

It is clear from (4.9) and (4.12) that enforcing uD = 0 ensures energy optimality. However 

this perfect condition may not be always satisfied due to various reasons such as limited control 
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bandwidth, non-minimum phase (NMP) zeros, etc., as discussed in Section 3.3. Therefore, it is 

instrumental to understand how nonzero uD is related to the energy cost Ju. For any control signal 

u = û +δu which belongs to Ω(û), its energy cost Ju is decomposed into 

 
   cc

T T T

0 0 0

ˆ

ˆ ˆ ˆ2 ,

u u
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J dt dt dt
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  
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u u

u u Ru u Ru u R u
  

 
(4.14)  

where Ju(û) and Ju(δu) are positive definite terms representing the optimal energy cost and 

energy cost of δu. Note that δu is assumed to satisfy the null space condition specified by (4.4), 

such that the cross-coupling term Jcc = 0, i.e. 
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 (4.15)  

The integrand in (4.15) is always zero due to the optimal control subspace condition in (4.9). 

This zero cross-coupling term indicates that the Ju(δu) comprises the positive definite energy 

increment Ju(u) = Ju(û) + Ju(δu) from the optimal control inputs. Knowing that uD = 0 when u = 

û, (4.12) can be re-written as  

.D p p r r  u β u β u  (4.16)  

Combined with (4.4), δu is related to the proxy uD as 
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where Π is defined to be a self-adjoint system given by 

*
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N N
Π R
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 (4.18)  

and according to (4.13), 

 1 1 1.p p r r
   β G G β ψ ΠD  (4.19)  

Applying Parseval's theorem and the frequency domain expression from (4.17) to (4.19), the 

energy increment due to deviation from optimal subspace ΔJu = Ju(u) – Ju(û) = Ju(δu) is given by 
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The energy increment ΔJu is the square of the two-norm of the proxy uD, i.e. 

2

2
,u DJ  u  (4.21)  

given 

*.Π ψψ  (4.22)  

The implication of (4.21) is that the deviation of uD from zero is directly proportional to the 

deviation of Ju(u) from its optimal value of Ju(û). Accordingly, decreasing the 2-norm of uD via 

regulation of the proxy uD strictly enhances the energy efficiency. 

Notice from (4.18) that the self-adjoint Π consists only of zeros symmetrically placed 

about the imaginary axis. One can therefore collect all the minimum phase zeros of Π into a 

stable and causally implementable ψ; this decomposition in (4.22) is referred as left spectral 

factorization [111].  Note that N and D are coprime (share no common zeros) and R is positive 

definite, indicating Π has no zeros on the imaginary axis because  
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holds for all s = jω. Under this condition, stable and minimum phase solutions ψ to (4.22) always 

exist [111].  

4.3 Proxy-Based Control Allocation Design for MIMO System 

As Figure 3.1 illustrates, the control allocator P aims at redistributing control efforts u0 

within Ω(u0) such that the control performance is preserved. Therefore, according to (4.4), it is 

assumed that  
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0 1
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where v ∈ ℝnr is an arbitrary signal while ψ0 is a user-defined nonsingular square polynomial 

transfer function numerator matrix with minimum phase zeros; ψ0 is a pre-filter that helps to 

eliminate in undesirable pole dynamics the original system. Note that (4.18) satisfies the null 

space defined in (4.4) as  
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0
1

0

.p r





 
    

 

Nψ
G G v 0

Dψ
 (4.25)  

 

 

Figure 4.1: Proposed Control Allocator based on Feedback Design  

Assume that the proxy of the nominal controller u0 (before allocation) is defined as  
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Then the proxy after allocation uD is given by 
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(4.27)  

where Hv is a square (nr × nr) dynamic system, mapping v to its manipulation of the proxy ΔuD. 

Notice from (4.27) that one possibility is to make uD = 0 via feedforward control using 

v = −Hv
−1uD0, which ideally would yield the energy-optimal control input. However, such a 

feedforward design is not robust and is limited by possible NMP zeros within Hv [77]. Therefore 

a feedback relationship 

fb Dv H u  (4.28)  

is assumed as shown in Figure 4.1. With this assumption, Hfb can be designed using various 

MIMO controller synthesis methods. Here a representative H∞ controller synthesis framework 
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[112] is illustrated in Figure 4.2, since infinity system norm marks the upper bound on the signal 

2-norm gain. In Figure 4.2, Wd is a weighting filter describing the disturbance profile; vw is 

signal v filtered by Wv to penalize the high frequency component; U0,d represents the transfer 

function matrix from disturbance to the nominal control u0 given by  

  1

0, 0 0 .d d

 U I C G C G  (4.29)  

Note that U0,d is invariant with respect to both P and Hfb, since the allocation process works in 

the null space and output is invariant. The equivalent plant marked in the blue box in Figure 4.2 

is referred to as Ld, i.e. 

.w
d

D

 
 

 

v
L d

u
 (4.30)  

Through feedback Hfb, the infinity norm of Ld is minimized with standard H∞ solvers. In cases 

where the allocator is expected to be designed without knowledge of the nominal controller C0, 

the frequency profile of uD0 can be assumed to be correlated with the disturbance frequency 

profile, i.e. the two blocks with dashed lines in Figure 4.2 are omitted and the sizes of Wd and d 

are adjusted to conform to the dimension of uD0. 

 

Figure 4.2: H∞ Controller Synthesis of Control Allocator  

4.4 Simulation Examples 

Simulation examples from [68] are used to illustrate the proposed proxy-based control 

allocation method. System G is defined to be a 3-input, 1-output system with state-space 

realization  
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As expressed in (4.1) and (4.3), the first ny = 1 input channel formulates a non-redundant set and 

the transfer function matrix is divided as  
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Note that the system G is a stable system with NMP zeros in each control channel. With this 

matrix partition, Gp
-1Gr is achieved and corresponding right coprime matrix fraction (N and D) 

defined in (4.10) is calculated as  
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 (4.33)  

With same R = diag(100,1,1) defined in [68], the self-adjoint system is given by  
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and its spectral factorization is calculated as  
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Note that although the original system G contains NMP zeros, Π is always self-adjoint and a 

minimum phase spectral factor ψ can always be found to satisfy (4.22).  Accordingly, βp and βr 

defined in (4.13) are given by 
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which are causal and stable, thus uD is evaluated and regulated in real time. The same LQG 

controller as in [68] is used as the nominal controller C0. Without loss of generality, disturbance 

d defined in Figure 3.1 is assumed to be affecting output from the first control channel, i.e. Gd = 

G(:,1). Here two nominal disturbance profiles are considered: 

(a) Step unit disturbance: d = 1 (t > 0); 

(b) Sinusoidal disturbance at 1 Hz: d = 100sin(2πt); 

Accordingly, Wd is defined as an integrator with resonance term 

 
2

0
2 2

0 0

1
,

2d s
s s s


    

W   (4.37)  

where ω0 = 2π rad/s (i.e. 1Hz), ζ = 0.1 and  ε = 10-5 rad/s are used. In other words, the internal 

model principle [113] is employed in Wd to magnify the targeted frequency ranges. Weighting 

filter Wv in Figure 4.1 is defined as a high pass filter: 

  2 1

1 2

,v

s
s

s

 
 




W   (4.38)  

where ω1 = 100π rad/s (i.e. 50 Hz) and ω2 = 1000π rad/s (i.e. 500 Hz). In the same vein, ψ0
-1

 in 

the allocator structure (Figure 4.2) is designed to be a diagonal transfer function consisting of 

identical third order low pass Butterworth filters each with a 10 Hz cutoff frequency. The designs 

of both Wv and ψ0 ensure that only the low frequency contents of the control efforts are 

redistributed within the allocator. This arises from practical robustness concerns as the model 

tends to be less accurate at higher frequencies. 

Following the H∞ design framework introduced in Figure 4.2, Hfb is designed without 

considering the controller dynamics, such that Ld maps the input uD0 to the output [vw
T, uD

T]T. 

This synthesis calculation is conducted with MATLAB 8® H∞ synthesis tool. The open loop (OL) 

and closed loop (CL) Bode plots of Ld are illustrated in Figure 4.3. Note that, in open loop, input 

uD0 does not affect vw, and it only diagonally contributes to the proxy uD. These diagonal 

components are inherited from Wd defined in (4.37), and are the major contributors to Ld in open 

loop. The large open loop DC gains of Ld are flattened and the resonance is smoothed with 

closed-loop feedback Hfb, indicating that the low frequency components as well as the resonant 

peak in uD0 are regulated. 
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Figure 4.3: Equivalent System Ld in H∞ Synthesis of Hfb  

The output and control inputs of the constant step disturbance (i.e. Case (a)) are shown in 

Figure 4.4. It is noticeable that the original LQG control input u0 has conflicting control inputs 

and does not yield an energy-efficient combination. Both the SMB allocator in [68] and the 

proposed proxy-based allocation method converge to an optimal solution where the heavily 

penalized u1 is avoided. Notice that, compared to the SMB dynamic allocation proposed in [68], 

the proxy-based allocation method does not change the original system output while the SMB 

allocator in [68] introduces large deviations from the original system output. This difference 

fundamentally arises from the fact that the SMB allocation method in [68] employs statically 

defined null space while the proxy-based method both defines the null space and optimally 

allocates control efforts in broadband. This difference is further illustrated in Case (b) with 

sinusoidal disturbance, whose output and control inputs are shown in Figure 4.5. The heavily 

penalized u1 is minimally redistributed by the SMB allocator in [68], while it is almost fully 

cancelled in the proposed proxy-based allocation scheme. The three input channels of the 

proposed proxy-based method work synergistically and thus greatly reduce the energy cost Ju 

without altering the controlled output. 
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Figure 4.4: Control Allocation Results with Step Disturbance (Case (a))  

To further quantify the performance of the allocators, signal Δy is defined as the output 

deviation from the case without allocation. Also, the steady state power consumption for each 

input P1, P2, P3 and their combination Ptotal are defined by their contributions to the total J in unit 

time. Pഥtotal  is the overall power averaged over the evaluated time horizon (i.e., including 

transients). The statistics for the deviations and power consumptions for Cases (a) and (b) are 

listed in Table 4.1. It is shown that the SMB allocator in [68] can introduce severe output 

deviation, especially for the step disturbance in Case (a) where the disturbance is not continuous, 

while the proxy-based method’s output deviations are negligible for both cases. In Case (a), both 

allocators consume less than 1% of the overall average power consumption of the nominal 

controller. Note that the overall average power consumption (Pഥtotal) of the proposed allocator is a 

bit higher than that of the SMB allocator in [68] because of the additional effort it takes to keep 

the output unaltered during transients; the SMB allocator in [68] is unable to maintain the desired 

output during transients hence it consumes less power. However, both of the allocators converge 

to same static optimal control as shown in Figure 4.4, resulting less than 2% steady state power 

difference (as observed from Ptotal). The benefit of the proposed allocator is more pronounced in 

Case (b), where the disturbance signal is more dynamic. The steady state power consumption of 

the SMB allocator in [68] over the no allocator case is 20% less, while the proposed proxy based 

allocator provides 99% less steady state power consumption than the no allocator case, due to its 

capability to optimally redistribute dynamic control efforts (at non-zero frequencies). Note that 
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in Case (b) the proposed allocator introduces more significant transients in some of the control 

efforts. This arises from the presence of NMP zeros in the controlled system, coupled with the 

relatively fast allocator dynamics. Even with these transients, the proposed allocator is capable of 

achieving 58% less overall average power consumption than the SMB allocator in [68], based on 

Pഥtotal. 

 

Figure 4.5: Control Allocation Results with Sinusoidal Disturbance (Case (b))  

 

Table 4.1: Output Deviation and Steady State Power Consumption Comparison 

 

max 

|Δy| 
Pഥtotal 

Steady State Power 

P1 P2 P3 Ptotal 

(a) 

Without allocation 0 263 309 21 0 331 

SMB Allocator in [68] 1.00 5.2 0.04 0.08 1.92 2.04 

PB allocator 3×10-5 8.88 0.07 0.05 1.94 2.06 

(b) 

Without allocation 0 14.87 9.90 0.11 0 10.02 

SMB Allocator in [68] 0.46 8.52 7.68 0.20 0.08 7.97 

PB allocator 1×10-5 3.56 0.01 0.06 0.01 0.08 
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4.5 Summary 

The concept of optimal control ratio for dual-input, single-output systems introduced in 

Chapter 2 is extended to optimal control subspace for multi-input, multi-output (MIMO) weakly 

input redundant systems in this chapter. The proxy-based control allocation introduced in 

Chapter 3 is also extended to MIMO systems using matrix fraction description and spectral 

factorization. The causality and accurate measurement of deviation from optimality are 

maintained in the proposed proxy signal for MIMO systems. The control allocation problem is 

converted into a regulation problem, and is solved with standard H∞ synthesis tools. The 

proposed proxy-based control allocation is compared with a state-of-art static-model-based 

dynamic allocation method in simulation studies. Significant improvements in energy efficiency 

without affecting system outputs are observed, especially under the influence of broadband 

disturbances. 
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Chapter 5 Connections between Energy-Optimal Control Allocation and 
Linear Quadratic Control 

 

5.1 Overview 

In this chapter, the relationship between energy-optimal control allocation developed in 

Chapter 3 and Chapter 4, and the traditional linear quadratic (LQ) control approach discussed in 

Chapter 1 is explored under weak input redundancy. In Section 5.2, the energy-optimal control 

allocation approach developed in the preceding chapters is formalized under the name of optimal 

control subspace-based (OCS) control allocation, and some background on LQ control are 

provided. In Section 5.3, it is shown that LQ control is a special case of energy-optimal control 

allocation, and yield identical solutions, under perfectly known exogenous disturbance and 

reference inputs. However, for most practical cases in which the disturbance is unknown, it is 

shown that both methods need a certain level of approximation. A Kalman filter is assumed for 

the LQ approach while zero magnitude/phase approximation of control allocation approach is 

assumed. In Section 5.4, the OCS control allocation method is shown to be superior to the LQ 

control because it is more explicit about its approximations, and a numerical example is provided 

to justify this position. A brief summary is provided in Section 5.5. 

5.2 Background 

Following the definition in (1.2) and (4.1), a redundant MIMO over-actuated system is 

defined as y=Gu + Gdd, where ny, nu, nd represent the dimension of the output, control input and 

disturbance, respectively. In this section we assume the system to be strictly proper, such that 

one minimal state-space realization of the system is given by 

;

,
d  



x Ax Bu B d

y Cx


 (5.1) 

where x ∈ ℝnx is the state vector of the system. Note that the assumption of a strictly proper 

system eliminates the direct feedthrough terms in the state-space representation (i.e. D = Dd = 0 

compared with (1.3)). This assumption simplifies the expression, and is consistent with the later-
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discussed linear quadratic (LQ) tracking controller. Accordingly, the condition of strong input 

redundancy becomes 

 Ker ;B  (5.2) 

while the condition for weakly input redundancy is same as in (1.5). The relationship between 

the state-space representation to the transfer function is given by 

   1 1
– ; ,d ds s

   G C I A B G C I A B  (5.3) 

Same as defined in (4.2), a positive integer nr = nu – ny, is used to indicate the system’s 

redundancy degree for weakly input redundant system. 

5.2.1 Optimal Control Subspace-Based (OCS) Control Allocation 

The methods developed in the preceding chapters for energy-optimal control allocation 

for DISO then MIMO systems can be referred to as optimal control subspace-based (OCS) 

control allocation. The overarching idea in OCS control allocation is to decompose a weakly 

input redundant system G and its quadratic energy cost R according to ny-dimension principal 

component and nr-dimension redundant component, i.e. 
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In order to achieve energy optimality, the optimal control should lie within the OCS, given by  
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G G I Ru 0
 (5.5) 

where * represents the adjoint operation [114] and ^ indicates optimality. The methods based on 

causal approximation of the OCR (Chapter 2) or proxy-based allocation (Chapters 3 and 4) can 

therefore be considered as specific realizations of OCS control allocation. 

5.2.2 LQ controller (with reference tracking and disturbance rejection) 

Besides control allocation, another natural thought in handling over-actuated system is to 

formulate the problem under the LQ control framework.  

Problem 1. Assume that yd represents the desired output of the system defined in (1.2) 

and (1.3), find optimal u such that the quadratic objective on tracking performance and control 

energy, given by 
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is minimized.  

Remark 4. The formulation of Problem 1 agrees with the framework of weak input 

redundancy since it does not involve the internal states in the objective. However, the results 

from the general LQ formulation based on system states are amenable to Problem 1 by defining  

T ,yQ C Q C  (5.7) 

such that xTQx=yTQyy. 

Theorem 1. Assume the disturbance d and desired output yd are generated from exo-

systems  

; .d d d Ed y Fy   (5.8) 

where E and F are square matrices with no eigenvalue on the right half-plane. Assume matrix A 

is Hurwitz, the optimal solution û to Problem 1 satisfies following feedback and feedforward 

structure: 

1 T

1 2 3

ˆ ;

,d

 
  

u R B p

p P x P d P y
 (5.9) 

where the P1, P2, and P3 satisfy the Riccati equation (5.10) and Sylvester equations (5.11)(5.12) 

as 

T 1 T
1 1 1 1 .   A P P A PBR B P Q 0  (5.10) 

T
2 2 1 ;cl d  A P P E P B  (5.11) 

T T
3 3 .cl y A P P F C Q  (5.12) 

Matrix Acl is part of the closed loop state-space model, i.e. 

1 T
1.cl

A A BR B P  (5.13) 

The solution to Sylvester equations (5.11) and (5.12) are unique if Acl shares no common 

eigenvalues with E and F.   

Remark 5. Theorem 1, which applies to infinite length d and yd in continuous systems, is a 

natural extension of the optimal control of finite length d and yd, as discussed in [60,115].  
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5.3 Equivalence of OCS Control Allocation and LQ Control with Known 

Disturbance Dynamics 

In this section, it is shown that the LQ solution for a weakly input redundant system, 

including general external disturbances and desired output tracking, formulates a two-stage stage 

structure as in control allocation. It is also shown that the optimal state feedback in (5.9) also 

yields the two-stage control allocation structure. 

Theorem 2. The optimal solution û to Problem 1 satisfies the following two-stage control 

allocation structure: 

1 *ˆ ;u R G τ  (5.14) 

 .y d τ Q y y  (5.15) 

Proof. According to Pontryagin’s minimum principle [116], the Hamiltonian of the 

system is written as  

      T T T T T1
,

2 d y d dH       x C y Q Cx y u Ru p Ax Bu B d  (5.16) 

where p is a vector of co-states. The co-states are crucial to the optimal solution because  

  T 1 Tˆ ˆ ˆ0 .
H 

      


u Ru B p 0 u R B p
u

 (5.17) 

The combination of state and co-state dynamics is written as  

T

1 T

T T

0
,

.

d
d

y

y

H

d

dt H



 
                             

 
   
  Q

x x Bp
M d y

C Qp p 0

x

A BR B
M C Q C A



 (5.18) 

Using Laplace transform, both x and p can be expressed as outputs relative to d and yd. The co-

state is expressed as  

    T ,d
d

y

     
              

0x B
p 0 I 0 I N d y

C Qp 0
 (5.19) 

where N ≜ (sI–M)-1. In N, only N21 and N22 contribute to the co-states, i.e. 
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T
21 2 22 ,y dN N p B d C Q y  (5.20) 

which can be analytically determined by the block-wise matrix inversion formula [117] as  

    
  

11 1T 1 T T
21

11T 1 T
22

;

.

N s s s

N s s

 

 

     

   

I A Q I A BR B I A Q

I A Q I A BR B

 (5.21) 

Using the relationship in (5.5) and the definition of the adjoint of system dynamics [103] 

 T 1* T T ,s


  G I A CB  (5.22) 

the optimal control in (5.17) yields 

 
 

11 T T T 1 T T

11 * 1 *

ˆ

.

y y d

y y d

s

s

 

 

   

  

u R B I A C Q GR B C Q y

R G Q C I A BR G Q C B d
 (5.23) 

Note that the inversions in (5.23) can be simplified using the Woodbury matrix identity formula, 

i.e. 

   

1 *

1 1

ˆ ;

,y y d y y d 



 



    

u R G τ

τ Q I G Q G d I Q G Q y
 (5.24) 

where τ ∈ ℝny is defined as the virtual control input and  

   1 * .s s
G G R G  (5.25) 

Replacing Gdd with y–Gττ in (5.24) and applying Woodbury matrix identity formula 

        
     

1 1 1 1

1
.

y y y y y y y d

y y y y d y d

    

 

   



        

       

I Q I G Q G τ I Q G τ Q I G Q y I Q G Q y

τ I Q G Q I G Q y Q y Q y y
 (5.26) 

This is identical to the expression shown in (5.14) and (5.15).∎ 

Theorem 3. The feedback/feedforward solution specified in Theorem 1 satisfies the 

control allocation structure in Theorem 2. 

Proof. The state dynamics of the corresponding system in closed loop is given by 

, , d ,cl cl d cl y  x A x B d B y  (5.27) 

where 
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1 T
, 2

1 T
, 3

;

.

cl d d

cl y





 

 

B B BR B P

B BR B P
 (5.28) 

The state dynamics of this system is expressed as  

        
   

, ,0

4 4 0 5 5 0 ,

cl

cl cl

t t
cl d cl y d

t tt t
d

t e d

e e e e

    

   

 A

A AE F

x B d B y

P P d P P y
 (5.29) 

where d0 and yd0 are the initial values of d and yd, respectively; P4 and P5 are matrices satisfying 

following Sylvester equations 

4 4 , ;cl cl d P E A P B  (5.30) 

5 5 , .cl cl y P F A P B  (5.31) 

Accordingly the optimal control is expressed as  

    1 T
1 4 2 1 4 0 1 5 3 1 5 0( ) ( ) .cl clt tt t

de e e e      A AE Fu R B P P P P P d P P P P P y  (5.32) 

From the control allocation structure, the adjoint system can be evaluated through convolution as 

 

    

 
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T T

T T

T

1 *

1 T T

1 T
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





 

 
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

 

 

  






A A
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R G Q y y

R B C Q y Cx

R B Q P QP d

QP C Q Q P y

 (5.33) 

This integration can be simplified with two equations 

   T
1 4 2 1 4 2 4;    A PP P PP P E QP  (5.34) 

   T T
1 5 3 1 5 3 5 ,y     A PP P PP P F QP C Q  (5.35) 

which can be conveniently shown by the Riccati equation (5.10) and Sylvester equations (5.11), 

(5.12), (5.30), and (5.31). Accordingly,  

  T T

1 4 2 4 ;t t t td
e e e e

dt
  A E A EP P P QP  (5.36) 

    T T T
1 5 3 5 .t t t t

y

d
e e e e

dt
  A F A FP P P C Q QP  (5.37) 

These relationships simplify the integration in (5.33) and lead to  

 1 *ˆ ,y d
 u R G Q y y  (5.38) 



 84

which is the structure specified in Theorem 2. ∎ 

Remark 6. The expression for û in (5.14) satisfies the optimal control subspace specified 

in (5.5). Accordingly, Theorem 3 indicates that that the LQ solution with perfectly known 

disturbance and reference models satisfies the two-stage structure of OCS control allocation. The 

only difference between the two frameworks is that the LQ control technique has a specific way 

of generating τ, while in OCS control allocation (and energy-optimal control allocation, in 

general) is open to many different ways of generating τ, according to different positioning 

objectives. Accordingly, the LQ control is a specific subset of OCS control allocation where τ is 

generated as in (5.15) under quadratic tracking cost. 

Remark 7. The OCS control allocation technique can be regarded as the solution to a 

more general objective Juy
 '  with incremental cost Hy on y and yd, i.e.  

  T

0

1
, .

2uy y dJ H dt


   y y u Ru  (5.39) 

Similar to derivations in Theorem 2, the two-stage framework is preserved in its optimal solution 

structure as 

1 *ˆ ;

.yH




 


u R G τ

τ
y

 (5.40) 

This generalization of the linear case in (5.14) and (5.15) indicates that, in OCS control 

allocation, the virtual control input τ can be generated in various ways to meet different control 

performance requirements. 

5.4 Differences between LQ and OCS Control Allocation with Unknown 

Disturbance 

While Theorem 3 has shown that û for LQ control (5.9) is identical to û for OCS control 

allocation (5.14) and (5.15), they approach the computation of û from different perspectives. The 

LQ control technique depends on perfect knowledge/model of internal states x, disturbance d and 

reference yd through an exo-system. On the other hand, OCS control allocation requires the 

determination of û from G*. Both of these approaches come with practical challenges. The 

operator G* is in general non-causal, hence it cannot be evaluated going forward in time. 

Therefore, in practice, it is typically approximated in one form or the other. The Static-model-
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based dynamic control allocation method in [68] can be interpreted as an approximation 

guaranteeing convergence to the DC gain of G*. Alternatively, OCS control allocation strives to 

approximate G* in broadband using, for instance, a causal approximation of G* in Chapter 2 and 

a proxy-based approximation of G* through feedforward and/or feedback regulation as discussed 

in Section 3.3 and Section 4.3. Similarly, in practice, the internal states of system, disturbance 

and reference may not be available for use in the LQ technique. In such a scenario, observers are 

utilized to estimate (approximate) these states. 

Remark 8. Even though both frameworks require some sort of approximation, the 

closeness of the approximate solutions to the optimal solution depends on how well they each 

approximate G*. In this regard, one can argue that the OCS control allocation framework is 

superior to the LQ framework because it is explicit about G* as the target of approximation while 

LQ indirectly approximates G* through observers.  

Remark 9. While accurately approximating G* is an obvious measure of nearness to 

optimality, it is shown in Section 3.3 and Section 4.3 that deviation from the optimal subspace 

defined in (5.5) is a more-straightforward measure of nearness to optimality in the OCS control 

allocation framework; specifically, it is shown that the two-norm squared of the deviation from 

the optimal subspace is directly proportional to the deviation of Ju from its optimal value. 

However, the optimal subspace is also non-causal, in general, so it needs to be approximated. 

The superiority of the OCS control allocation technique relative to the LQ control 

technique in accurately approximating the optimal solution (i.e., the deviation from the optimal 

subspace) is demonstrated in the following example. 

Example 1. Consider a dual-input, single-output (DISO) system derived from a 

truncation of the 3-input system in [68]. The state space representation is 

0.157 0.094 0.87 0.253

0.416 0.45 0.39 0.354

0 1 0 0

  
   

     
   

 

A B

C D
  (5.41) 

with disturbance term Bdd being zero-mean white noise with covariance Qn. Assume that yd = 0 

and the output y also suffers from zero mean white noise with covariance Rn; also assume that R 

= diag[1,2] and Qy = 1. In this context, the Kalman filter with feedback gain Lkf is usually 

adopted as an optimal observer for LQ control because it minimizes the covariance of state 

estimation error [58], i.e. 
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   1 T
1 ,o o kf o

   x A BR B P x L y Cx  (5.42) 

where xo is the observed state x. This observer essentially establishes a relationship from y to u, 

given by the transfer function  

  1T 1 T 1
1 1 ,kf kf kf ys

    G B P I A BR B P L C L Q  (5.43) 

such that u(s) = –R-1GkfQyy (s), which is in the same form as the control allocation structure 

specified in Theorem 2. Accordingly, Gkf is an approximation of G* from the realization through 

an optimal state observer. 

From the OCS control allocation viewpoint, one obvious way to approximate G* is to use 

GT (as in Section 2.3.4). This is an approximation which guarantees zero magnitude error in the 

approximation of G*; thus it is referred to, here, as the zero magnitude error approximation of G* 

(denoted by Gzm); i.e., 

   * .zm j j G G  (5.44) 

Another sensible approximation of G* arises from the zero phase error tracking controller [95], 

commonly used for approximating the inversion of non-minimum phase systems. It has the form 

       
 

T 2 0
,G G G

zp
lpf

s d s d
s

d s




Π
G  (5.45) 

where dlpf is a low-pass type denominator while pair (ΠG, dG) is a Smith-Mcmillan form of G 

[110] satisfying 

   
 

,G

G

s
s

d s


Π
G  (5.46) 

such that Gzp(0) = G*(0), and ∠Gzp(jω) ≈ ∠G*( jω) where the phase distortion introduced by the 

low-pass type denominator dlpf is minimal. 

Remark 10. The zero magnitude approximation, Gzm, and the zero phase approximation, 

Gzp, represent two general approximation methods of G* in the absence of any knowledge of d or 

yd. More tailored approximations of G* can be achieved, given more information on these 

signals, as in the proxy-based approach to OCS control allocation discussed in Chapters 3 and 4. 

Note that these approximations Gzm and Gzp do not guarantee that the closed loop system 

following original structure in (5.38) is causally stable. Therefore in practical implementations, 

additional virtual control components are needed. 
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Note from Remark 9 that the deviation from the optimal control subspace, compared to 

the absolute approximation error of G*, is a more straightforward way of determining nearness to 

optimality. In this DISO system example, the deviation from the optimal control subspace can be 

evaluated from the control input ratio between the two redundant inputs; i.e., u(1)/u(2). Figure 

5.1 compares the control ratio calculated based on Gkf, Gzm, and Gzp to that calculated using G*. 

For Gkf, Rn = I is used, while Qn varies from 0.01I to 100I.  

Notice that control ratio with Gzm matches the gain of G* exactly, while the phase is 

reversed, while Gzp matches both magnitude and phase of G* exactly. The perfect match with Gzp 

arises from the fact the magnitude deviation of G* is cancelled in calculating the ratio, i.e. 

|Gzp(1)|/|Gzp(2)| = |G*(1)|/|G*(2)| even though |Gzp| ≠ |G*|. However, notice that the control ratios 

in all instances of Gkf deviate significantly from those of G*, in both magnitude and phase. The 

implication of such large deviations in terms of optimal control allocation is huge. For instance, a 

phase error of around 180° is observed at most frequencies of the ratio calculated using Gkf. This 

implies that the two actuators would be in conflict with each other and ruin the energy 

performance at most frequencies. Therefore, while the Kalman filter is an optimal state observer, 

in this example, acts against the optimal alignment indicated by G*, hence yields far-from-

optimal control allocation. 

 

Figure 5.1: Comparison of Control Ratio (u(1)/u(2)) Calculated using G*, and its Zero-
Magnitude (Gzm), Zero-Phase (Gzp) and Kalman Filter (Gkf) Approximations.  

w. G* (baseline)

w. Gzm approx.

w. Gzp approx.

w. Gkf (Qn = 0.01I)

w. Gkf (Qn = I)

w. Gkf (Qn = 100I)
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5.5 Summary 

The connections between the control allocation and linear quadratic (LQ) control 

frameworks for optimally distributing control inputs in weakly input redundant systems are 

explored. It is analytically shown that, for a representative class of exogenous disturbance and 

references, the LQ control technique is identical to the optimal control subspace (OCS) based 

control allocation technique. However, for this equivalence to hold, the OCS based control 

allocation requires evaluation of a (generally) non-causal relationship between control inputs, 

while the LQ control technique requires perfect knowledge of the system, disturbance and 

reference states. Neither of these conditions is practically tenable, therefore, approximations are 

needed. In this regard, the OCS based control allocation technique is superior because it is 

explicit about the relationship that must be accurately approximated to attain optimality; 

therefore, desirable approximations of the optimal relationship can be achieved. On the other 

hand, the LQ control technique implicitly approximates the optimal relationship via estimation of 

states, disturbances and/or reference signals. Using a classical example based on the Kalman 

filter, it is shown that the implicit approach of the LQ control technique may yield very poor 

alignment among the redundant control inputs. The key takeaway from this study is that OCS 

control allocation technique maintains control alignment better for weakly redundant systems 

compared to the LQ framework when future disturbance or trajectory is unknown. 
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Chapter 6 Conclusion and Future Work 
 

6.1 Conclusions 

In this dissertation, novel energy-optimal control methods for over-actuated systems are 

proposed. They apply to the generally defined over-actuated systems (i.e. weak input 

redundancy), and address the challenges of existing methods for weak input redundancy, 

including computational efficiency and broadband suboptimality. Also, the connections between 

the optimal control and control allocation framework, which have not been elucidated for weakly 

input redundant systems in existing work, are demonstrated in this dissertation. The equivalence 

of control allocation framework and linear quadratic control under perfect knowledge of 

disturbance is proved, indicating that the two-stage framework in control allocation does not 

sacrifice optimality. The advantage of control allocation in preserving control inputs alignment is 

also shown, when the disturbance is not known a priori. 

Specifically, the theoretical contributions of this dissertation have been summarized as 

follows: 

1. The optimal control ratio/subspace for weakly input redundant systems is theoretically 

derived. It specifies the optimal relationship among the redundant actuators irrespective 

of external disturbances. The optimal relationship is broadband, and thus enables new 

dynamic control allocation approaches with negligible computational load. 

2. The optimal control ratio/subspace, shown to be non-causal, poses challenges for 

practical real-time implementation. A causal approximation is proposed and the 

corresponding energy efficiency loss due to the approximation is analyzed. Using this 

causal approximation, structured energy-efficient controllers for weakly input 

redundancy are designed and validated.  

3. A causal proxy signal is proposed to accurately measure the deviation from the optimal 

control ratio/subspace. It converts the control allocation problem to a regulation problem, 

which is compatible with most existing controller design methodologies. Its capability in 
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optimal dynamic control allocation without sacrificing control performance is shown, in 

comparison with a state-of-art control allocation method for weak input redundancy [68]. 

4. The equivalence between the OCS control allocation and standard LQ control methods is 

shown, with perfect knowledge of external disturbance. The OCS control allocation is 

shown to be more advantageous in maintaining redundant control inputs alignments, in 

practical situations where the disturbance is typically unknown. 

In addition to pursuing advancements in control theory on over-actuated systems, the 

study also focuses on its application on a hybrid feed drive (HFD) for machining applications. 

The HFD is an over-actuated system, since it adopts a precise but energy costly linear motor 

drive along with an energy efficient screw drive. The HFD is weakly input redundant since the 

linear motor drive and screw drives are non-collocated; it also requires dynamic control 

allocation to reject the broadband and unknown cutting disturbances. The proposed control 

allocation methods are shown to significantly reduce the energy consumption without sacrificing 

the positioning accuracy, under broadband cutting forces. Though the time-domain cutting forces 

are unknown, the dominant cutting frequencies, estimated from the type of cutting tool and the 

spindle speed, are shown to be helpful in the allocator design. Through this study on HFD, it is 

shown that the hardware redundancy in over-actuated systems cannot be fully exploited without 

advanced control allocation methods. 

The mentioned theoretical and practical significances are from the published journal 

articles ([75,76,78]), submitted journal article ([80]), and published conference articles ([77,79]).  

6.2 Future Research Directions 

6.2.1 Robust Control Allocation 

The proposed method is shown to allocate the control efforts of over-actuated systems 

effectively and efficiently with a reasonably accurate model of the system. However this accurate 

model of systems may not be always available and model mismatch usually exists. For example 

the two-mass model discussed in this dissertation introduces modeling errors, especially at high 

frequencies (shown in Figure 2.3). Also, considering possible actuator degradation, malfunction 

or failure, the probability of system dynamics variation is higher in over-actuated systems due to 

a larger quantity of actuators. To understand the effect of modeling error, on both primary 

control performance (e.g. positioning accuracy in HFD) and energy efficiency, the robustness of 
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current control allocation methods needs to be evaluated. For cases where model uncertainty is 

not negligible, robust control allocation methods are needed. 

The existing work on robust control allocation mainly focuses on strong input 

redundancy. For instance, a robust high-level virtual controller is proposed in [18] to avoid 

performance degradation. Damped least square approaches [118] are introduced to mitigate 

possible singularity introduced by model uncertainty. A robust least square approach is proposed 

in [119] to convert robust allocation problems into the H2/H∞ framework. Formulating a min-

max optimization, a robust control allocation method is presented in [120] such that both model 

uncertainty and actuator failure/degradation can be addressed in a unified framework. However 

all these methods apply to strong input redundancy and do not generalize to weak input 

redundancy. Existing methods for robust allocation in weak input redundancy only enforce a 

robust stable condition [121], which does not explicitly consider the structure of over-actuation 

and thus may introduce unnecessary tradeoff. Accordingly, robust control allocation for weak 

input redundancy is a meaningful future research direction. 

6.2.2 Nonlinear Control Allocation 

The proposed methods and validation applies to linear time-invariant systems. However 

in practical applications (e.g. aircraft and automobile discussed in Section 1.1.1), nonlinearity is 

frequently encountered. Most existing methods for strong input nonlinear redundancy linearize 

the system in certain working condition to simplify the discussion [10], or adopt a control-

Lyapunov approach to facilitate effective allocation [122]. The control allocation with weak 

input nonlinear redundancy usually embraces gradient-based methods [73,74]. However, they are 

limited to certain types of nonlinear systems [74], or may introduce performance tradeoff [73]. 

Current OCS control allocation has potential to be extended to nonlinear systems from 

following aspects: (i) The proxy signal established in Chapter 3 is shown to accurately measure 

the deviation from optimality since its squared two norm equals the energy increment. This 

condition may be relaxed into a general Lyapunov-like function for general nonlinear systems, or 

a partial set of nonlinearities. (ii) The adjoint dynamics G* is not a concept limited to linear 

systems. The adjoint dynamics of the nonlinear system may specify the optimal allocation 

structure, which may yield control allocation methods for nonlinear systems. Therefore, an 

extension of current framework to nonlinear systems is worth looking into. 
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6.2.3 Sensor Fusion 

Control and sensing are dual problems. Therefore, energy-optimal control allocation of 

over-actuated systems has a counterpart in the world of sensing: optimal estimation of signals 

from redundant sensors. This problem is referred to as sensor fusion, and has broad applications 

in machine fault diagnosis, sensor noise reduction, pattern recognition, etc. Most existing sensor 

fusion algorithms are based on linear minimum variance objective or maximum likelihood 

principle [123–126]. However, these methods assume identical state dynamics, such that the 

different measurements in redundant sensors arise from the output noise or different output 

matrices. This concept is similar to strong input redundancy in the over-actuated system. A 

generalization similar to weak input redundancy is needed to facilitate a computationally 

efficient and broadband optimal sensor fusion algorithm. 

 



 93

Bibliography 
 
[1] Xin, X., and Liu, Y., 2014, Control design and analysis for underactuated robotic systems, 

Springer London, London. 

[2] Schneiders, M. G. E., Molengraft, M. J. G. Van De, and Steinbuch, M., 2004, “Benefits of 

over-actuation in motion systems,” Proceedings of the 2004 American Control 

Conference, pp. 505–510. 

[3] Oppenheimer, M. W., Doman, D. B., and Bolender, M. A., 2010, “Control allocation,” 

The Control Handbook, W.S. Levine, ed., CRC Press, Boca Raton, pp. 8-1–24. 

[4] Durham, W., Bordignon, K. A., and Beck, R., 2016, Aircraft control allocation, John 

Wiley & Sons, Ltd, Chichester, UK. 

[5] Edwards, C., Lombaerts, T., and Smaili, H., 2010, Fault tolerant flight control, Springer. 

[6] Härkegård, O., 2003, “Backstepping and control allocation with applications to flight 

control,” Linköping University. 

[7] Goupil, P., 2011, “AIRBUS state of the art and practices on FDI and FTC in flight control 

system,” Control Eng. Pract., 19(6), pp. 524–539. 

[8] Edrén, J., 2014, “Motion modelling and control strategies of over-actuated vehicles,” KTH 

Royal Institute of Technology. 

[9] Numasato, H., and Tomizuka, M., 2003, “Settling control and performance of a dual-

actuator system for hard disk drives,” IEEE/ASME Trans. Mechatronics, 8(4), pp. 431–

438. 

[10] Johansen, T. A., and Fossen, T. I., 2013, “Control allocation—a survey,” Automatica, 

49(5), pp. 1087–1103. 

[11] Jonasson, M., Andreasson, J., Jacobson, B., and Trigell, A. S., 2010, “Global force 

potential of over-actuated vehicles,” Veh. Syst. Dyn., 48(9), pp. 983–998. 

[12] Jonasson, M., and Thor, M., 2018, “Steering redundancy for self-driving vehicles using 

differential braking,” Veh. Syst. Dyn., 56(5), pp. 791–809. 

[13] De Novellis, L., Sorniotti, A., and Gruber, P., 2014, “Wheel torque distribution criteria for 



 94

electric vehicles with torque-vectoring differentials,” IEEE Trans. Veh. Technol., 63(4), 

pp. 1593–1602. 

[14] Tagesson, K., Sundstrom, P., Laine, L., and Dela, N., 2009, “Real-time performance of 

control allocation for actuator coordination in heavy vehicles,” 2009 IEEE Intelligent 

Vehicles Symposium, IEEE, pp. 685–690. 

[15] Zhou, J., Canova, M., and Serrani, A., 2016, “Predictive inverse model allocation for 

constrained over-actuated linear systems,” Automatica, 67, pp. 267–276. 

[16] Zaremba, A. T., Liubakka, M. K., and Stuntz, R. M., 1998, “Control and steering feel 

issues in the design of an electric power steering system,” Proceedings of the American 

Control Conference, pp. 36–40. 

[17] Chen, Y., and Wang, J., 2014, “Adaptive energy-efficient control allocation for planar 

motion control of over-actuated electric ground vehicles,” IEEE Trans. Control Syst. 

Technol., 22(4), pp. 1362–1373. 

[18] Chen, Y., and Wang, J., 2012, “Fast and global optimal energy-efficient control allocation 

with applications to over-actuated electric ground vehicles,” IEEE Trans. Control Syst. 

Technol., 20(5), pp. 1202–1211. 

[19] Chen, Y., and Wang, J., 2014, “Design and experimental evaluations on energy efficient 

control allocation methods for overactuated electric vehicles: longitudinal motion case,” 

IEEE/ASME Trans. Mechatronics, 19(2), pp. 538–548. 

[20] Hayama, R., Higashi, M., Kawahara, S., Nakano, S., and Kumamoto, H., 2010, “Fault-

tolerant automobile steering based on diversity of steer-by-wire, braking and 

acceleration,” Reliab. Eng. Syst. Saf., 95(1), pp. 10–17. 

[21] Kim, N., Cha, S., and Peng, H., 2011, “Optimal control of hybrid electric vehicles based 

on Pontryagin’s minimum principle,” IEEE Trans. Control Syst. Technol., 19(5), pp. 

1279–1287. 

[22] Sciarretta, A., Back, M., and Guzzella, L., 2004, “Optimal control of parallel hybrid 

electric vehicles,” IEEE Trans. Control Syst. Technol., 12(3), pp. 352–363. 

[23] Altintas, Y., Verl, A., Brecher, C., Uriarte, L., and Pritschow, G., 2011, “Machine tool 

feed drives,” CIRP Ann. - Manuf. Technol., 60(2), pp. 779–796. 

[24] Zheng, J., Su, W., and Fu, M., 2010, “Dual-stage actuator control design using a doubly 

coprime factorization approach,” IEEE/ASME Trans. Mechatronics, 15(3), pp. 339–348. 



 95

[25] Dong, W., Tang, J., and ElDeeb, Y., 2009, “Design of a linear-motion dual-stage actuation 

system for precision control,” Smart Mater. Struct., 18(9), p. 095035. 

[26] Fujita, T., Matsubara, A., Kono, D., and Yamaji, I., 2010, “Dynamic characteristics and 

dual control of a ball screw drive with integrated piezoelectric actuator,” Precis. Eng., 

34(1), pp. 34–42. 

[27] Pahk, H. J., Lee, D. S., and Park, J. H., 2001, “Ultra precision positioning system for servo 

motor–piezo actuator using the dual servo loop and digital filter implementation,” Int. J. 

Mach. Tools Manuf., 41(1), pp. 51–63. 

[28] Suh, S., Chung, C. C., and Lee, S., 2002, “Design and analysis of dual-stage servo system 

for high track density HDDs,” Microsyst. Technol., 8(2–3), pp. 161–168. 

[29] de Callafon, R. A., Nagamune, R., and Horowitz, R., 2006, “Robust dynamic modeling 

and control of dual-stage actuators,” IEEE Trans. Magn., 42(2), pp. 247–254. 

[30] Peng, K., Chen, B. M., Lee, T. H., and Venkataramanan, V., 2004, “Design and 

implementation of a dual-stage actuated HDD servo system via composite nonlinear 

control approach,” Mechatronics, 14(9), pp. 965–988. 

[31] Gordon, D. J., and Erkorkmaz, K., 2012, “Precision control of a T-type gantry using 

sensor/actuator averaging and active vibration damping,” Precis. Eng., 36(2), pp. 299–

314. 

[32] Giam, T. S., Tan, K. K., and Huang, S., 2007, “Precision coordinated control of multi-axis 

gantry stages.,” ISA Trans., 46(3), pp. 399–409. 

[33] Shinno, H., Yoshioka, H., and Hayashi, M., 2009, “A high performance tilting platform 

driven by hybrid actuator,” CIRP Ann. - Manuf. Technol., 58(1), pp. 363–366. 

[34] Frey, S., Groh, K., and Verl, A., 2012, “Semi-active damping of drive systems,” J. Vib. 

Control, 19(5), pp. 742–754. 

[35] Okwudire, C., and Rodgers, J., 2013, “Design and control of a novel hybrid feed drive for 

high performance and energy efficient machining,” CIRP Ann. - Manuf. Technol., 62(1), 

pp. 391–394. 

[36] Saidur, R., 2010, “A review on electrical motors energy use and energy savings,” Renew. 

Sustain. Energy Rev., 14(3), pp. 877–898. 

[37] Vijayaraghavan, A., and Dornfeld, D., 2010, “Automated energy monitoring of machine 

tools,” CIRP Ann. - Manuf. Technol., 59(1), pp. 21–24. 



 96

[38] Helu, M., Behmann, B., Meier, H., Dornfeld, D., Lanza, G., and Schulze, V., 2012, 

“Impact of green machining strategies on achieved surface quality,” CIRP Ann. - Manuf. 

Technol., 61(1), pp. 55–58. 

[39] Dahmus, J. B., and Gutowski, T. G., 2004, “An Environmental Analysis of Machining,” 

Manufacturing Engineering and Materials Handling Engineering, ASME, pp. 643–652. 

[40] Pritschow, G., and Philipp, W., 1990, “Direct drives for high-dynamic machine tool axes,” 

CIRP Ann. - Manuf. Technol., 39(1), pp. 413–416. 

[41] Robert, A., 1997, “Attack of the linear motors,” Manuf. Eng., 5, pp. 60--64. 

[42] Pritschow, G., 1998, “A comparison of linear and conventional electromechanical dives,” 

CIRP Ann. - Manuf. Technol., 47(2), pp. 541–548. 

[43] Xu, L., and Yao, B., 2001, “Adaptive robust precision motion control of linear motors 

with negligible electrical dynamics: theory and experiments,” IEEE/ASME Trans. 

Mechatronics, 6(4), pp. 444–452. 

[44] Butcher, M., and Karimi, A., 2010, “Linear parameter-varying iterative learning control 

with application to a linear motor system,” IEEE/ASME Trans. Mechatronics, 15(3), pp. 

412–420. 

[45] Sato, K., Katori, M., and Shimokohbe, A., 2013, “Ultrahigh-acceleration moving-

permanent-magnet linear synchronous motor with a long working range,” IEEE/ASME 

Trans. Mechatronics, 18(1), pp. 307–315. 

[46] “Roh’Lix® linear actuators” [Online]. Available: https://www.zero-max.com/ce-rohlix-

linear-actuators. [Accessed: 08-Feb-2018]. 

[47] Buice, E. S., Otten, D., Yang, R. H., Smith, S. T., Hocken, R. J., and Trumper, D. L., 

2009, “Design evaluation of a single-axis precision controlled positioning stage,” Precis. 

Eng., 33(4), pp. 418–424. 

[48] Schroeck, S. J., Messner, W. C., and McNab, R. J., 2001, “On compensator design for 

linear time-invariant dual-input single-output systems,” IEEE/ASME Trans. 

Mechatronics, 6(1), pp. 50–57. 

[49] Juhász, L., and Maas, J., 2013, “Control of hybrid nanopositioning systems for trajectory-

tracking applications,” Mechatronics, 23(6), pp. 617–629. 

[50] Glöß, R., 2006, “Nanometer precise hybrid actuator in positioning mechanism with long 

travel range,” International Conference and Exhibition on New Actuators and Drive 



 97

Systems, Bremen, Germany, pp. 668–671. 

[51] Ding, J., Tomizukas, M., and Numasato, H., 2000, “Design and robustness analysis of 

dual stage servo system,” Proceedings of the 2000 American Control Conference, IEEE, 

pp. 2605–2609. 

[52] Bordignon, K. A., 1996, “Constrained control allocation for systems with redundant 

control effectors,” Virginia Polytechnic Institute and State University. 

[53] Buffington, J. M., and Enns, D. F., 1996, “Lyapunov stability analysis of daisy chain 

control allocation,” J. Guid. Control. Dyn., 19(6), pp. 1226–1230. 

[54] Hirano, T., Fan, L.-S., Lee, W. Y., Hong, J., Imaino, W., Patanaik, S., Chan, S., Webb, P., 

Horowitz, R., Aggarwal, S., and Horsley, D. A., 1998, “High-bandwidth high-accuracy 

rotary microactuators for magnetic hard disk drive tracking servos,” IEEE/ASME Trans. 

Mechatronics, 3(3), pp. 156–165. 

[55] Oh, Y., Chung, W. K., Youm, Y., and Suh, I.-H., 1998, “Experiments on extended 

impedance control of redundant manipulator,” Proceedings. 1998 IEEE/RSJ International 

Conference on Intelligent Robots and Systems, IEEE, pp. 1320–1325. 

[56] Lin, Z. C., Patel, R. V, and Balafoutis, C. A., 1995, “Impact reduction for redundant 

manipulators using augmented impedance control,” J. Robot. Syst., 12(5), pp. 301–313. 

[57] Saglia, J. A., Tsagarakis, N. G., Dai, J. S., and Caldwell, D. G., 2009, “A high-

performance redundantly actuated parallel mechanism for ankle rehabilitation,” Int. J. 

Rob. Res., 28(9), pp. 1216–1227. 

[58] Anderson, B. D. O., and Moore, J. B., 1971, Linear optimal control, Prentice-Hall, Inc., 

Englewood Cliffs, NJ. 

[59] Geering, H., 2007, Optimal control with engineering applications. 

[60] Singh, A. K., and Pal, B. C., 2017, “An extended linear quadratic regulator for LTI 

systems with exogenous inputs,” Automatica, 76, pp. 10–16. 

[61] Duan, Z., Huang, L., Yao, Y., and Jiang, Z. P., 2012, “On the effects of redundant control 

inputs,” Automatica, 48(9), pp. 2168–2174. 

[62] Skogestad, S., and Postlethwaite, I., 2007, Multivariable Feedback Control: Analysis and 

Design, Wiley New York. 

[63] Khargonekar, P. P., and Rotea, M. A., 1991, “Mixed H2/H∞ control: a convex 

optimization approach,” IEEE Trans. Automat. Contr., 36(7), pp. 824–837. 



 98

[64] Härkegård, O., and Glad, S. T., 2005, “Resolving actuator redundancy—optimal control 

vs. control allocation,” Automatica, 41(1), pp. 137–144. 

[65] Härkegård, O., 2004, “Dynamic control allocation using constrained quadratic 

programming,” J. Guid. Control. Dyn., 27(6), pp. 1028–1034. 

[66] Petersen, J. A. M., and Bodson, M., 2006, “Constrained quadratic programming 

techniques for control allocation,” IEEE Trans. Control Syst. Technol., 14(1), pp. 91–98. 

[67] Bodson, M., 2002, “Evaluation of optimization methods for control allocation,” J. Guid. 

Control. Dyn., 25(4), pp. 703–711. 

[68] Zaccarian, L., 2009, “Dynamic allocation for input redundant control systems,” 

Automatica, 45(6), pp. 1431–1438. 

[69] Kirchengast, M., Steinberger, M., and Horn, M., 2018, “Input matrix factorizations for 

constrained control allocation,” IEEE Trans. Automat. Contr., 63(4), pp. 1163–1170. 

[70] Naskar, A. K., Patra, S., and Sen, S., 2017, “New control allocation algorithms in fixed 

point framework for overactuated systems with actuator saturation,” Int. J. Control, 90(2), 

pp. 348–356. 

[71] Lallman, F., Davidson, J., and Bundick, W., 2001, “Integrated reconfigurable control 

allocation,” AIAA Guidance, Navigation, and Control Conference and Exhibit, American 

Institute of Aeronautics and Astronautics, Reston, Virigina. 

[72] Galeani, S., Serrani, A., Varano, G., and Zaccarian, L., 2015, “On input allocation-based 

regulation for linear over-actuated systems,” Automatica, 52(2015), pp. 346–354. 

[73] De Tommasi, G., Galeani, S., Pironti, A., Varano, G., and Zaccarian, L., 2011, “Nonlinear 

dynamic allocator for optimal input/output performance trade-off: Application to the JET 

tokamak shape controller,” Automatica, 47(5), pp. 981–987. 

[74] Passenbrunner, T. E., Sassano, M., and Zaccarian, L., 2016, “Optimality-based dynamic 

allocation with nonlinear first-order redundant actuators,” Eur. J. Control, 31, pp. 33–40. 

[75] Duan, M., and Okwudire, C. E., 2016, “Energy-efficient controller design for a 

redundantly-actuated hybrid feed drive with application to machining,” IEEE/ASME 

Trans. Mechatronics, 21(4), pp. 1822–1834. 

[76] Duan, M., and Okwudire, C. E., 2016, “Correction to ‘Energy-efficient controller design 

for a redundantly-actuated hybrid feed drive with application to machining,’” 

IEEE/ASME Trans. Mechatronics, 21(6), pp. 2999–3000. 



 99

[77] Duan, M., and Okwudire, C. E., 2016, “Near energy optimal control allocation for dual-

input over-actuated systems,” Proceedings of the ASME 2016 Dynamic Systems and 

Control Conference, Minneapolis, p. V001T01A011. 

[78] Duan, M., and Okwudire, C. E., 2018, “Proxy-based optimal control allocation for dual-

input over-actuated systems,” IEEE/ASME Trans. Mechatronics, 23(2), pp. 895–905. 

[79] Duan, M., and Okwudire, C., 2017, “Proxy-based optimal dynamic control allocation for 

multi-input, multi-output over-actuated systems,” Proceedings of the ASME 2017 

Dynamic Systems and Control Conference, ASME, Tyson, VA, p. V001T03A005. 

[80] Duan, M., and Okwudire, C. E., “Connections between control allocation and linear 

quadratic control for weakly redundant systems,” Automatica (under Revision). 

[81] Curtain, R. F., and Zwart, H., 2012, An introduction to infinite-dimensional linear systems 

theory, Springer Science & Business Media. 

[82] Komzsik, L., 2014, Applied calculus of variations for engineers, CRC Press. 

[83] Varanasi, K., and Nayfeh, S., 2004, “The dynamics of lead-screw drives: low-order 

modeling and experiments,” J. Dyn. Syst. Meas. Control, 126, pp. 388--396. 

[84] Okwudire, C., and Altintas, Y., 2009, “Minimum tracking error control of flexible ball 

screw drives using a discrete-time sliding mode controller,” J. Dyn. Syst. Meas. Control, 

131(5), pp. 051006-1–12. 

[85] Gordon, D. J., and Erkorkmaz, K., 2013, “Accurate control of ball screw drives using 

pole-placement vibration damping and a novel trajectory prefilter,” Precis. Eng., 37(2), 

pp. 308–322. 

[86] Sepasi, D., Nagamune, R., and Sassani, F., 2012, “Tracking control of flexible ball screw 

drives with runout effect and mass variation,” IEEE Trans. Ind. Electron., 59(2), pp. 

1248–1256. 

[87] Okwudire, C. E., and Altintas, Y., 2009, “Hybrid modeling of ball screw drives with 

coupled axial, torsional, and lateral dynamics,” J. Mech. Des., 131(7), p. 071002. 

[88] Wang, Y., Ueda, K., and Bortoff, S. A., 2013, “A Hamiltonian approach to compute an 

energy efficient trajectory for a servomotor system,” Automatica, 49(12), pp. 3550–3561. 

[89] Halevi, Y., Carpanzano, E., and Montalbano, G., 2014, “Minimum energy control of 

redundant linear manipulators,” J. Dyn. Syst. Meas. Control, 136(5), p. 051016. 

[90] Huang, M. S., Hsu, Y. L., and Fung, R. F., 2012, “Minimum-energy point-to-point 



 100

trajectory planning for a motor-toggle servomechanism,” IEEE/ASME Trans. 

Mechatronics, 17(2), pp. 337–344. 

[91] Yoon, D., and Okwudire, C. E., 2015, “Magnet assisted stage for vibration and heat 

reduction in wafer scanning,” CIRP Ann. - Manuf. Technol., 64(1), pp. 381–384. 

[92] Park, J., 1996, “Motion profile planning of repetitive point-to-point control for maximum 

energy conversion efficiency under acceleration conditions,” Mechatronics, 6(6), pp. 649–

663. 

[93] Wang, Y., Zhao, Y., Bortoff, S. A., and Ueda, K., 2015, “A real-time energy-optimal 

trajectory generation method for a servomotor system,” IEEE Trans. Ind. Electron., 62(2), 

pp. 1175–1188. 

[94] Schmidt, R. M., Schitter, G., and Rankers, A., 2014, The design of high performance 

mechatronics: high-tech functionality by multidisciplinary system integration, IOS Press, 

Amsterdam, Netherlands. 

[95] Tomizuka, M., 1987, “Zero phase error tracking algorithm for digital control,” J. Dyn. 

Syst. Meas. Control, 109(1), p. 65. 

[96] Rigney, B. P., Pao, L. Y., and Lawrence, D. A., 2009, “Nonminimum phase dynamic 

inversion for settle time applications,” IEEE Trans. Control Syst. Technol., 17(5), pp. 

989–1005. 

[97] Butterworth, J. A., Pao, L. Y., and Abramovitch, D. Y., 2012, “Analysis and comparison 

of three discrete-time feedforward model-inverse control techniques for nonminimum-

phase systems,” Mechatronics, 22(5), pp. 577–587. 

[98] Duan, M., and Okwudire, C. E., 2015, “Energy efficiency and performance optimized 

control of a hybrid feed drive,” Proceedings of ASME 2015 International Manufacturing 

Science and Engineering Conference, ASME, Charlotte, NC, p. V002T05A007. 

[99] Chen, S., 2014, “Another Particle Swarm Toolbox,” MATLAB Cent. File Exch. [Online]. 

Available: http://www.mathworks.com/matlabcentral/fileexchange/25986-another-particle 

-swarm-toolbox/content/psopt/pso.m. 

[100] Kim, T.-H., Maruta, I., and Sugie, T., 2008, “Robust PID controller tuning based on the 

constrained particle swarm optimization,” Automatica, 44(4), pp. 1104–1110. 

[101] Altintas, Y., 2012, Manufacturing automation: metal cutting mechanics, machine tool 

vibrations, and CNC design, Cambridge university press. 



 101

[102] Darouach, M., Zasadzinski, M., and Xu, S. J., 1994, “Full-order observers for linear 

systems with unknown inputs,” IEEE Trans. Automat. Contr., 39(3), pp. 606--609. 

[103] Kothare, M. V., and Morari, M., 1996, Multiplier theory for stability analysis of anti-

windup control systems, California Institute of Technology. 

[104] Ramani, K. S., Duan, M., Okwudire, C. E., and Ulsoy, A. G., 2017, “Tracking control of 

linear time-invariant nonminimum phase systems using filtered basis functions,” J. Dyn. 

Syst. Meas. Control, 139(1), pp. 011001-1–11. 

[105] Duan, M., Yoon, D., and Okwudire, C. E., 2017, “A limited-preview filtered B-spline 

approach to tracking control – With application to vibration-induced error compensation 

of a 3D printer,” Mechatronics. 

[106] Weck, M., and Ye, G., 1990, “Sharp corner tracking using the IKF control strategy,” CIRP 

Ann. - Manuf. Technol., 39(1), pp. 437–441. 

[107] Rojas, O. J., and Goodwin, G. C., 2002, “A simple antiwindup strategy for state 

constrained linear control,” IFAC World Congress, Elsevier, Barcelona, Spain, pp. 109–

114. 

[108] Chambon, E., Burlion, L., and Apkarian, P., 2018, “Time-response shaping using output 

to input saturation transformation,” Int. J. Control, 91(3), pp. 534–553. 

[109] Lambrechts, P., Boerlage, M., and Steinbuch, M., 2005, “Trajectory planning and 

feedforward design for electromechanical motion systems,” Control Eng. Pract., 13(2), pp. 

145–157. 

[110] Kailath, T., 1980, Linear systems, Prentice-Hall Englewood Cliffs, NJ. 

[111] Sebek, M., 2015, “Spectral factorization,” Encyclopedia of Systems and Control, Springer 

London, London, pp. 1289–1295. 

[112] Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., 1989, “State-space 

solutions to standard H2 and H∞ control problems,” IEEE Trans. Automat. Contr., 34(8), 

pp. 831–847. 

[113] Francis, B. A., and Wonham, W. M., 1976, “The internal model principle of control 

theory,” Automatica, 12(5), pp. 457–465. 

[114] Beard, R. W., 2002, “Linear operator equations with applications in control and signal 

processing,” IEEE Control Syst. Mag., 22(2), pp. 69–79. 

[115] Bryson, A., and Ho, Y., 1975, Applied optimal control: optimization, estimation, and 



 102

control, Blaisdell Publishing Company. 

[116] Kirk, D., 2012, Optimal control theory: an introduction, Dover Publications, Inc., 

Mineola, New York. 

[117] Petersen, K. B., and Pedersen, M. S., 2008, “The matrix cookbook,” Tech. Univ. 

Denmark. 

[118] Berge, S. P., and Fossen, T. I., 1997, “Robust control allocation of overactuated ships; 

experiments with a model ship,” IFAC Proc. Vol., 30(22), pp. 193–198. 

[119] Cui, L., and Yang, Y., 2011, “Disturbance rejection and robust least-squares control 

allocation in flight control system,” J. Guid. Control. Dyn., 34(6), pp. 1632–1643. 

[120] Shen, Q., Wang, D., Zhu, S., and Poh, E. K., 2017, “Robust control allocation for 

spacecraft attitude tracking under actuator faults,” IEEE Trans. Control Syst. Technol., 

25(3), pp. 1068–1075. 

[121] Cocetti, M., Serrani, A., and Zaccarian, L., 2016, “Dynamic input allocation for uncertain 

linear over-actuated systems,” Proceedings of the 2016 American Control Conference, 

IEEE, pp. 2906–2911. 

[122] Johansen, T. a, 2004, “Optimizing nonlinear control allocation,” Decision and Control, 

2004. CDC. 43rd IEEE Conference on, p. 3435–3440 Vol.4. 

[123] Saha, R. K., 1996, “Track-to-track fusion with dissimilar sensors,” IEEE Trans. Aerosp. 

Electron. Syst., 32(3), pp. 1021–1029. 

[124] Sun, S. L., and Deng, Z. L., 2004, “Multi-sensor optimal information fusion Kalman 

filter,” Automatica, 40(6), pp. 1017–1023. 

[125] Kim, K. H., 1994, “Development of track to track fusion algorithms,” Proceedings of 

1994 American Control Conference - ACC ’94, IEEE, pp. 1037–1041. 

[126] Chong, C., 2017, “Forty years of distributed estimation: A review of noteworthy 

developments,” 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF), IEEE, 

pp. 1–10. 

 


