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Abstract 

 

Silane protecting groups are traditionally only viewed as inert protecting groups to mask 

an alcohol functionality, allowing for orthogonal reactivity compared with other protecting groups 

and chemoselective protection or deprotection through silane attenuation. Therefore, due to the 

prevalence of silyl ethers in organic chemistry, they are attractive as C-O bond coupling partners 

that can be carried through syntheses for direct late-stage coupling without intermediate 

deprotection-activation strategies. However, silyloxyarenes have not been viewed as competent C-

O coupling partners, and exploration of their C-O bond reactivity and general use as electrophilic 

coupling partners have not been previously developed as a general strategy.  

In this thesis, silyloxyarene C-O bond reactivity has been explored through development 

of new silylation and reduction reactions, allowing for direct comparison to other electrophilic 

coupling partners.  Additional cross-coupling reactions have been developed, including amination, 

borylation, and Suzuki couplings to display the utility of silyloxyarenes as C-O electrophiles. 

Orthogonal couplings with aryl methyl ethers have been developed where chemoselective coupling 

of either electrophile can be obtained by catalyst-controlled selectivity. Sequential coupling routes 

with silyloxyarene C-O bonds are described, demonstrating where current silyloxyarene C-O bond 

coupling reactions can be applied. Additionally, these routes display examples of carrying a 

silyloxyarene C-O bond through numerous steps for late-stage coupling. Finally, preliminary 

future work includes utilizing other classes of silyl-protected C-O bonds, developing an unrealized 

electrophile into a general handle for diversification.  
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Chapter 1  
 

Late-Stage Functionalization of C-H and C-X Bonds 

1.1 Introduction on Late-Stage Couplings 

The development of pharmaceuticals and agrochemicals hinges on the ability to rapidly 

construct chemical libraries and screen molecules for activity. This allows medicinal chemists to 

explore structure-activity relationships and determine efficacy of complex molecules. Novel 

strategies to expediently access and diversify complex molecules are required to generate 

compound libraries. An approach that has been considered highly attractive, and broadly 

applicable in developing libraries of related compounds, is the use of methods for late-stage 

functionalization. Ideally, this approach allows for one general scaffold to be diversified with any 

functional group late in a synthetic route. (Scheme 1-1).  

 

Scheme 1-1. Diversification through Late-Stage Functional Group Interconversion.  

This strategy is advantageous over linear approaches that diverge early in a synthesis, as 

linear routes require separate syntheses for each compound in a library (Scheme 1-2). There has 
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been substantial interest in the chemical community to move away from linear syntheses due to 

the increased effort required for accessing related compounds. As such, numerous protocols have 

been developed for late-stage modification of complex molecules, including many examples 

utilizing transition metal catalysis. The ability to attenuate reactivity of a transition metal catalyst 

through their ligands allows for high functional group tolerance to be obtained.   

 

Scheme 1-2. Traditional Linear Synthesis Approach. 

Countless methods exist for modification of alkyl scaffolds with or without transition 

metals. However, prior to the 1970’s, no general method existed for derivatization of aryl C-sp2 

carbons that did not require harsh reaction conditions or specific electronic or steric environments. 

This gap in synthetic organic methods led to the cross-coupling revolution in organic synthesis, 

where modification of aryl scaffolds became possible. However, two general characteristics are 

required for late-stage coupling that limit additional activation steps: stability and reactivity. 

Traditional coupling methods have advanced to where reactivity of aryl halides is high; however, 

this limits their application in late-stage functionalization. As stability and reactivity are 

interconnected, an optimal group for late-stage coupling needs high stability while maintaining 

high reactivity towards a specific transition metal catalyst system. Therefore, there has been great 

interest in exploring new groups and transition metal catalysts for late-stage coupling, most 

prevalent being aryl C-H bonds and inert C-X bonds.  

1.2 C-H Bond Derivatization 
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Due to the prevalence of C-H bonds in organic molecules, their selective modification has 

been a very attractive method. This has led to numerous reports of C-H bond functionalization for 

installation of nearly any group, making these powerful methods in organic chemistry. However, 

the prevalence of C-H bonds in organic molecules is also problematic, as selectivity between 

similar C-H bonds becomes challenging.  

Two general solutions for high selectivity have been the use of directing groups and 

utilizing electronically or sterically differentiable C-H bonds.1 However, this limits the 

generalizability of these methods as specific functional groups or substitution patterns are required 

for directed C-H functionalization. Without a directing group, electronic or steric biases are 

required for good selectivity. These restraints limit current methods to specific substitution patterns 

or require additional steps for installation and removal of directing groups. While there have been 

many creative solutions to solve these restrictions, improvement is still necessary for general 

application of C-H bond functionalization, particularly for late-stage applications. Therefore, 

utilizing a different functional group that can be carried through a synthesis and selectively 

derivatized at a late-stage would be preferred. 

1.3 C-X Bond Derivatization 

A method that removes problems of selectivity is the use of a pre-functionalized group that can 

be interconverted into nearly any desired group through transition metal catalysis. There have been 

many electrophilic or nucleophilic coupling partners employed in transition metal-catalyzed cross-

couplings. Use of different electrophilic coupling partners allows for new reactivity that can be 

deployed alongside current methodology. Most prevalent are the halide derivatives, but more 

recently use of protected phenols and anilines have been explored as sources of renewable starting 



 4 

materials. Furthermore, they have the ability to obtain complementary reactivity alongside other 

aryl electrophiles.  

1.3.1 Aryl Halides as Electrophilic Cross-Coupling Partners 

Use of transition metal-catalyzed cross-coupling reactions of alkyl and aryl halides has 

revolutionized synthesis of organic molecules due to their high selectivity and reactivity. Aryl 

halides have been the most influential as they have proved advantageous over previous methods.  

Currently, palladium has emerged as the most effective metal for cross-coupling aryl halides,2,3,4 

and is one of the most reliable homogeneous catalysts used in industry.5,6 However, more abundant 

transition metals have also been utilized as alternatives to palladium, most commonly nickel.  

Nickel catalysts have been shown to be competent replacements for palladium in cross-

coupling and allow for new, complementary, or even improved reactivity. For example, a recent 

review of nickel catalyzed cross-couplings states,7 “Comparative cross-coupling experiments of 

substituted aryl chloride with phenyl boronic acid demonstrated nearly uniformly higher yields for 

NiIICl2(dppf) than for Pd0(PPh3)4, especially for electron-donating or nitrogenous substituents, 

thereby providing strong support for the assertion that Ni0 catalysis is more robust for less reactive 

halide and pseudohalide leaving groups.” Nickel has been shown to be more reactive to inert C-X 

bonds than palladium, which would be necessary for late-stage applications without intermediate 

activations.  

Aryl fluorides are the most attractive aryl halide for late-stage application because they are 

more inert and this lower reactivity allows them to be carried through synthetic steps. Aryl C-F 

bonds have been shown to be competent electrophilic coupling partners under nickel catalysis.8,9 

Despite the several methods for aryl C-F coupling, limitations still remain in obtaining high 

reactivity due to the high C-F bond strength.10  
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In addition to direct transition metal-catalyzed C-F bond activation, nucleophilic aromatic 

substitution, SNAr, is typically a milder method to utilize C-F bonds for derivatization, and is more 

amenable for late-stage applications.11 This has solved reactivity problems but has introduced 

limitations on aryl functional groups which derive from the limited arene scope for SNAr reactions. 

Together, both approaches work towards a dependable method of late-stage derivatization; 

however, availability of aryl fluorides is problematic. As many halides are often synthesized 

through C-H halogenations,12 use of aryl halides does not actually remove selectivity issues 

observed in aryl C-H functionalization. Furthermore, aryl halides are not readily derived from 

renewable sources. Therefore, use of an abundant group that can be tuned for stability and 

reactivity would be advantageous.  

1.3.2 Protected C-X bonds as Electrophilic Cross-Coupling Partners 

 Protected heteroatoms, such as anilines and phenols, are typically used as alternative 

electrophilic coupling partners to aryl halides. The advantages of utilizing aniline and phenol 

electrophiles include the ability to use starting materials derived from feedstock chemicals for 

green chemistry methods13 and the access to new reactivity through tuning the protecting group. 

Unlike anilines,14 phenols have been explored with a range of protecting groups, generating 

distinct classes of electrophilic C-O bond coupling partners. The array of protecting groups allows 

for tunable reactivity, which has led to numerous coupling reactions.15,16,7,17,18,19,20,21,22 

1.3.2.1 Activated C-O bonds as Electrophilic Cross-Coupling Partners 

 Development of coupling methods for phenol C-O bond derivatives is challenging due to 

the strength of an aryl C-O bond, requiring high amounts of energy for activation. Therefore, initial 

development of C-O bonds as cross-coupling partners used strong activating groups and has since 

been extensively explored. An early example of using activated phenol C-O bonds as an 
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electrophilic coupling partner with palladium catalysts was in Heck and Sonogashira type reactions 

(Scheme 1-3).23 Of all the fluorinated sulfonates that were explored, triflate (1-1) resulted in the 

best results. High yields were obtained using palladium catalysts with alkynes or alkenes to 

generate the arylated alkynes (1-2) or styrene (1-3) derivatives, respectively.  

 

Scheme 1-3. Palladium-Catalyzed Coupling of Aryl Sulfonates.  

However, the first coupling of an activated sp2 C-O bond was not of an aryl system, but 

used vinyl triflates and organostannanes as reported by Stille.24 Stoichiometric and catalytic 

reactions were explored to investigate the use of vinyl triflates as an extension to the use of allylic 

sulfonates for coupling reactions under palladium25 or nickel25 catalysis. The power of coupling 

enol C-O electrophiles was displayed by regioselectively generating the two isomeric vinyl 

triflates of 2-methylcyclohexanone (1-5, 1-6) using well known enolate chemistry. Subsequent C-

O coupling of the vinyl triflates displayed the power of such C-O coupling methods by generating 

isomeric products which would be difficult to obtain through alternative methods (Scheme 1-4). 

 

Scheme 1-4. Palladium-Catalyzed Coupling of Isomeric Vinyl Triflates with Organostannanes. 
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Following reports of these methods using vinyl and aryl triflates as electrophilic coupling 

partners, countless advances have been described with different coupling partners, catalysts, 

ligands, and protecting group variations. The first nickel-catalyzed method using activated phenol 

C-O bonds was reported by Yamashita in a homocoupling of aryl triflates with zinc as a reducing 

agent (Table 1-1).26 Other sulfonate derivatives, such as methanesulfonate and p-toluenesulfonate, 

were explored but resulted in significantly lower yields.  

 

Table 1-1. Nickel-Catalyzed Homocoupling of Aryl Triflates.  

Due to the high cost and low stability of triflates, other sulfonate protecting groups were 

explored. Early in their development as coupling partners, Percec investigated common sulfonates 

and observed reactivity for all of the sulfonates explored, with mesylate and tosylate giving slightly 

lower reactivity under nickel catalysis.27 Since these initial reports using nickel catalysts for 

activated C-O bond couplings, the field has expanded immensely.7 Some of the main activating 

groups that are commonly explored when developing new reactions or exploring new catalysts are 

the sulfonate, sulfamate, and phosphate derivatives.28  
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The use of activated C-O bonds has been very powerful; however, their direct application 

in late-stage diversification is not possible due to their high reactivity and instability across many 

common reaction conditions. In most cases, to conduct late-stage coupling of an activated C-O 

bond, the alcohol needs to be protected with a more stable protecting group as a placeholder, 

resulting in additional steps for deprotection-activation strategies, thereby lengthening syntheses.29 

An example of this approach is observed in the synthesis of 10,12-peroxycalamenene by the 

Woerpel group, where a silyl-protected alcohol (1-15) is carried through numerous synthetic steps, 

deprotected, activated to the aryl triflate (1-18), and then coupled in an intramolecular Heck 

reaction (Scheme 1-5).30 Protecting group manipulations comprise a large number of steps in 

syntheses, both industrially and academically.31,32As such, the synthetic community has been 

pushing new methods that remove or limit protecting group manipulations.33,34 Therefore, due to 

the instability of the pseudohalides, more robust C-O protecting groups would be needed for 

applications in late-stage diversification. 

 

Scheme 1-5. Woerpel’s Synthesis of 10,12-peroxycalamenene with Deprotection and Activation Strategy for C-O Coupling.  

1.3.2.2 Inert C-O Bonds as Electrophilic Cross-Coupling Partners 

 Inert C-O bonds are derivatives that are attractive for applications in late-stage coupling 

because they are stable across a vast range of reaction conditions and can have high enough 

reactivity to be functionalized with the appropriate catalyst system. Aryl esters, carbamates, silyl 
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ethers, aryl ethers, and alkyl ethers are typically viewed as inert aryl C-O bonds. Palladium 

catalysts have not been widely shown to couple these aryl electrophiles and nickel has been the 

primary focus. There is a range of inert C-O bonds that balances reactivity of the C-O bond, or 

ease of oxidative addition to a nickel catalyst, and the stability of the protecting group (Figure 1-1). 

Ester, carbonate, carbamate, and some heterocyclic aryl derivatives have significantly higher 

reactivity over the simple ether derivatives, making them more analogous to the pseudohalide 

derivatives, and could be classified as semi-inert C-O bonds.  

 

Figure 1-1. Stability and Reactivity of Inert C-O Bonds.  

The range in reactivity can be rationalized by considering the conjugate acid pKa of the 

corresponding alcohol for the different protecting groups (Figure 1-2). However, this is only a 

general approximation as other factors need to be taken into consideration, most important of 

which is the ability of the protecting group to act as a directing group. Ester, carbonates, carbamate, 

and heterocyclic aryl protecting groups readily direct the nickel catalyst. Even simple aryl 

protecting groups for diaryl ethers can act as a weak directing group through η-coordination of the 

nickel catalyst to the π system of an aryl substituent. Another reason that conjugate acid pKa’s of 

the protecting groups only provide an approximation is because the same catalyst system is not 

utilized for all inert C-O derivatives, leading to indirect comparisons. 

 

Figure 1-2. pKa Values of Common Inert C-O Protecting Groups 

1.3.2.2.1 Carbamates, Carbonate and Esters as Electrophilic Cross-Coupling Partners 
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 Nickel catalysts have primarily been the focus for C-O coupling of aryl carbamates, 

carbonates, and esters. This area of using carbamates or esters in cross-couplings has evolved 

independently, with initial reports of C-O coupling of carbamates reported in the early 1990’s and 

esters being developed later in the 2000’s. Of these two classes, the main protecting groups have 

included diethyl carbamates and pivalates due to their increased stability from electronic or steric 

effects, limiting deprotection. 

Aryl carbamates were first used as C-O coupling partners with Grignard reagents without 

β-hydrogens under nickel catalysis by Snieckus.35 Carbamates were displayed as attractive groups 

for directed ortho-metalation,36 an advantage over previously developed aryl C-O electrophiles. 

After generation of the aryl carbamate (1-21), iterative ortho metalations, and subsequent 

quenching with an electrophile, resulted in a trisubstituted naphthyl substrate (1-22, Scheme 1-6). 

Finally, use of carbamates as traceless directing groups was displayed by removal of the aryl C-O 

bond through reduction with a nickel catalyst and a Grignard reagent with β-hydrogens. 

 

Scheme 1-6. C-O Coupling of Aryl Carbamates and Directed Ortho Metalation.  

 Since this initial report, many coupling reactions have been developed to explore new 

nucleophilic coupling partners in aryl carbamate C-O bond couplings (Scheme 1-7). In addition to 

Snieckus’ display of carbamates as traceless directing groups with Grignard reagents containing 

β-hydrogens, silanes have also been shown as competent reductants for reductive deoxygenation 

of carbamate C-O bonds.37  

 However, there have also been numerous methods for installation of new functionality 

through C-O bond coupling (Scheme 1-7). Alkyl boranes have been utilized to install a variety of 
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alkyl substituents through in situ generation of coupling partners by hydroboration of olefins with 

9-BBN.38 Several methods have been developed to generate biaryl compounds by pairing the 

electrophilic C-O bond of aryl carbamates with common nucleophilic coupling partners, such as 

Grignard reagents,35 boroxines,39 boronic acids,40,41 boronate esters,42 silanes,43 and aluminum 

reagents.44,45 Other developed coupling reactions with aryl carbamate or carbonate C-O bonds 

include generation of aryl boron reagents,46 anilines,47,48 α-aryl ketones,49,50 benzonitriles,51 and 

biaryl compounds through C-H functionalization.52  

 

Scheme 1-7. Nickel-Catalyzed C-O Couplings with Aryl Carbamates.  

 It is important to note that different metals have been utilized besides nickel in C-O bond 

couplings of aryl carbamates, including cobalt for a directed C-H arylation.53 Iron has been used 

for alkylations with Grignard reagents54 and arylation with silanes.43 Rhodium displayed arylation 

with boronate esters55 or reductive deoxygenation with isopropanol.56  

In addition to carbamates and carboxylates, esters have recently been explored in aryl C-O 

coupling. Garg and Shi independently reported the first nickel-catalyzed C-O coupling of aryl 
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esters with aryl boron reagents. Garg demonstrated C-O coupling of aryl pivalates with boronic 

acids,57 while Shi reported coupling of aryl acetates with boroxines.58 Since these initial reports, 

many different groups have developed C-O couplings with different nucleophilic coupling partners 

(Scheme 1-8). In addition to the aforementioned couplings of aryl esters with nickel catalysts, 

other nucleophiles include organozinc59 and aluminum reagents44,45 for aryl couplings. C-O bond 

coupling reactions with aryl esters also exist for generation of aryl phosphates,60,61 styrene 

derivatives,62 anilines,63,64 and benzonitriles.51 Removal of the C-O bond through reductive 

deoxygenation can also be accomplished with silanes65 or sodium formate.66 Several C-H/C-O 

couplings have been reported using heterocycles,67 ortho-substituted phenols,68 and α-

carbonyls.69,70 Aryl ester C-O coupling has also been shown with carbon dioxide,71 isocyanates,72 

silylboron reagents,73 and silyltin reagents.74 Metals besides nickel have also been utilized in C-O 

couplings of aryl pivalates, including an iron catalyst in the coupling of aliphatic Grignard 

reagents,75 and a rhodium catalyst for borylation.76   

 

Scheme 1-8. Nickel-Catalyzed C-O Couplings of with Aryl Esters. 
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 Despite the numerous methods developed for C-O coupling of carbamates, carbonates, and 

esters, there are stability issues with these C-O protecting groups, just like the pseudohalides. This 

is less of an issue with pivalates due to the increased sterics over acetates, but the presence of a 

carbonyl protecting group makes them generally unstable to basic conditions. There are also 

selectivity concerns with the ester derivatives due to the presence of an aryl C-O bond and an acyl 

C-O bond ((Scheme 1-9),77,78 which can also be an issue for carbamates.79,80 More inert protecting 

groups would be advantageous for the late-stage functionalization due to their increased stability.  

 

Scheme 1-9. Selectivity in Nickel-Catalyzed C-O Bond Activation of Esters.  

1.3.2.2.2 Aryl and Alkyl Ethers as Electrophilic Cross-Coupling Partners 

 Very inert protecting groups for oxygen are the aryl or alkyl ethers, which were first 

explored as electrophilic coupling partners by Wenkert in Kumada couplings with a nickel catalyst 

(Scheme 1-10).81 Only a small number of aryl methyl ethers were explored, with only extended 

aryl systems, such as naphthyl (1-24), resulting in high yields. Aryl methyl ether substrates with 

isolated aromatics resulted in poor yields.  

 

Scheme 1-10. Wenkert Nickel-Catalyzed C-O Coupling of Aryl Methyl Ethers with Grignard Reagents.  

 The lower reactivity of aryl methyl ether C-O bonds is an issue that hinders application for 

late-stage functionalization, as simple aryl systems show low activity. However, the Dankwardt 

group later improved the activity to allow coupling of isolated aromatics (1-25) by increasing 

catalyst reactivity with a more electron-rich phosphine ligand (Scheme 1-11).82 This allowed for a 
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large substrate scope containing unprotected alcohols and amines. However, the use of such a 

strong nucleophilic coupling partner limits use of substrates with base-sensitive functionality. 

Therefore, milder nucleophilic coupling partners would be desired for applications in late-stage 

functionalization.  

 

Scheme 1-11. Dankwardt C-O Coupling of Aryl Methyl Ethers with Grignard Reagents.  

 Since initial reports by Wenkert and Dankwardt, several new coupling methods with C-O 

bonds of aryl methyl ethers have been developed (Scheme 1-12). Reactions include other aryl 

couplings using Grignard reagents,83,84,85,86 zinc reagents,87 organolithiums,88 aryl boronate 

esters,89,90 and aryl bromides with metal reductants.91 A number of alkyl groups without β-

hydrogens have been coupled, employing Grignard,92,93,94 organolithium,95 and aluminum 

reagents.96 More recently, a number these reactions have been expanded to compounds with β-

hydrogens by use of different ligands, including aluminum,97 Grignard,98 and boron reagents.99  
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Scheme 1-12. Nickel-Catalyzed C-O Couplings with Aryl Methyl Ethers.  

In addition to aryl and alkyl couplings, reductive deoxygenation reactions using 

silanes100,65 or the methoxy group through β-hydride elimination101 have been reported. Further 

couplings to increase diversity include alkynylation with Grignard reagents,102 homocoupling with 

a diboron reductant,103 silylation,104 amination,105,106 and borylation.107 Despite the large number 

of coupling reactions developed with aryl methyl ethers under nickel catalysis, the low reactivity 

of aryl methyl ether C-O bonds still hinders these coupling reactions. This is apparent when 

moving away from strongly Lewis acidic or nucleophilic coupling partners, such as Grignard, 

organolithium, and zinc reagents. In these reactions with less nucleophilic coupling partners, lower 

reactivity is observed with biphenyl and completely isolated aromatic systems.  

 

Scheme 1-13. Nickel-Catalyzed Amination of Aryl Methyl Ethers.  
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The lower reactivity with biphenyl and isolated phenyl systems is observed in reductive 

deoxygenation of aryl methyl ether C-O bonds (Scheme 1-13),101 where moderate yields are 

obtained with biphenyl (1-26) and poor yields are observed with tert-butyl substrate 1-27. In 

another reductive deoxygenation reaction with silane as the reductant, no product was observed 

with a biphenyl substrate65 and a directing group was necessary to observe C-O bond activation.100 

Use of a directing group to overcome low reactivity of aryl methyl ether C-O bonds was further 

demonstrated in a borylation,107 where an electron-deficient directing group was necessary to 

obtain moderate yields of isolated aromatic products. However, a directing group approach is not 

a long-term solution to the lower reactivity of aryl methyl ethers. There have been some 

developments in exploring new ligands to improve reactivity,90 but has not led to significant 

improvements as low yields are still obtained (Scheme 1-14). 

 

Scheme 1-14. Nickel-Catalyzed Suzuki Coupling of Aryl Methyl Ethers.  

 Diaryl ethers have also been explored as C-O electrophiles, although the focus has mainly 

been on applications for lignin degradation. One of the first major papers in this area was by the 

Hartwig group where they utilized a nickel catalyst to reduce the C-O bond of diaryl ethers with 

hydrogen gas (Scheme 1-15).108 Since this report, there have been a number of follow-up papers 

focusing on heterogeneous catalysts,109 selectivity,110 and mechanistic analysis111 of the C-O bond 

reduction of diaryl ethers. Although this methodology is exciting for lignin degradation, diaryl 

ethers are not particularly attractive as C-O electrophiles for cross coupling, as they are commonly 

synthesized through a coupling reaction themselves, not through a simple protection. 
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Scheme 1-15. Nickel-Catalyzed Hydrogenolysis of Diaryl Ethers.  

Lower reactivity is also observed when moving away from a naphthyl substrate to a 

biphenyl or isolated aromatic in couplings of diaryl ethers. However, using the aryl protecting 

group as a directing group, such as 2-pyridyl, has been successful for improving conversion. Yet, 

yields can remain low and a more common approach has been the use of a 1,3,5-triazine group 

which has good directing capabilities and withdrawing influence to weaken the C-O bond. As 

such, significantly higher yields are observed using triazine as a protecting group over 2-pyridyl 

or simple phenyl groups (Scheme 1-16).112 

 

Scheme 1-16. Nickel-Catalyzed Comparison of Diaryl Ether Protecting Groups.  

This higher reactivity of the triazine derivatives has led to the development of coupling 

reactions beyond the hydrogenolysis reaction mentioned above. A couple of examples exist with 

rhodium113 or ruthenium,114 but methods primarily focus on nickel. Aryl coupling reactions with a 

nickel catalyst include use of aryl boron112,115 or Grignard reagents.116 Other nickel-catalyzed 

reactions include borylation,117 amination,118,119 homocoupling,120 and Heck couplings.121 

Additionally, methods for reductive deoxygenation have also been reported using alcohol 

reductants (Scheme 1-17).120,122 Utilizing the 2-pyridyl or triazine group also allows for directed 

C-H functionalization at the ortho position, followed by coupling of the C-O bond.123  
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Scheme 1-17. Nickel-Catalyzed C-O Couplings of Diaryl Ethers.  

Due to applications for lignin degradation, other methods have been utilized to reduce the 

strong C-O bond in aryl or alkyl ethers. Early work by Milstein described stoichiometric studies 

with rhodium, palladium, and nickel in activation of inert C-O bonds with pincer ligands.124,125  

Agapie also explored stoichiometric experiments with related ligands for reductive deoxygenation 

reactions.126–128 Ruthenium was displayed in stoichiometric experiments by Murai129 and 

Kakiuchi,114 and developed catalytic couplings of olefins and aryl boronate esters with ortho-

directing groups. Additional advances have been realized for catalytic coupling of alkyl ethers, 

including, ruthenium,130,131 chromium,132,133 iridium,134 and a titanium Lewis acid.135 However, 

nickel has been shown to be one of the few transition metals that can activate the inert C-O bond 

of aryl alkyl ethers without a directing group. There are a select few examples with other transition 

metals, such as iron136 or cobalt,137 but they typically require strong nucleophilic coupling partners 

and are proposed to undergo a range of different mechanisms,138,139,140,141,142,143,144 as opposed to 

formal oxidative addition that is typically proposed for homogeneous nickel-catalyzed methods.  
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In exploration of the nickel-catalyzed mechanism, a nickel(0)-ate complex is commonly 

proposed to facilitate oxidative addition,145,146 as a super-stoichiometric amount of base is typically 

employed. Other proposals for the base are to aid in coordination of the nickel catalyst to the aryl 

system,147,148,149 to prevent off-cycle pathways,111 and destabilization of the resting state.150 

Beyond the exploration of a Ni(0) complex for oxidative addition, Ni(I) intermediates have been 

proposed under certain reaction conditions when using silanes151 or silyl boranes.104,150  

Despite the many mechanistic papers, further developments to improve reactivity have not 

led to significant improvements or been reaction specific. One such example appears to be an 

advance in reactivity, allowing for silylation at room temperature.104 However, this nickel-

catalyzed silylation is very different than all of the other nickel-catalyzed C-O bond couplings as 

no ligand is utilized and the reaction proceeds at room temperature. Upon closer analysis, use of 

in situ generated, strong silyl anions result in the improved reactivity,150 analogous to how strongly 

nucleophilic carbon coupling partners (e.g.: Grignard, organolithium, aryl zinc reagents) allow for 

coupling of aryl methyl ethers under nickel catalysis at room temperature. Due to the limitation of 

nickel-catalyzed C-O coupling of aryl and alkyl ethers, other methods that allow for higher 

reactivity while maintaining high stability would be advantageous for applications in late-stage 

functionalization. 

1.3.2.2.3 Silyloxyarenes as Electrophilic Cross-Coupling Partners 

 Silyloxyarenes should have both high stability and higher C-O bond reactivity over aryl or 

alkyl ethers. Furthermore, silyloxyarenes are attractive as C-O electrophiles because silanes have 

become one of the most useful protecting groups in organic synthesis for oxygen functionalities. 

Silanes have many widely available structures, allowing for tunability and chemoselective 

protection or deprotection.152,153,154,155 Common silane protecting groups utilized for organic 
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synthesis are trimethysilyl (TMS), triethylsilyl (TES), tert-butyldimethylsilyl (TBS), 

triisopropylsilane (TIPS), and tert-butyldiphenylsilyl (TBDPS) (Figure 1-3).  

 

Figure 1-3. Common Silane Protecting Groups.  

One reason silanes have become such a popular protecting group is their complementary 

deprotection with fluoride ions, making them orthogonal to other common protecting groups. 

Furthermore, sterics around the silicon allows for a range of stability, where more steric hinderance 

around silicon allows for less labile silane protecting groups. Additionally, electronics on the silane 

play an important role where withdrawing substitutes increases susceptibility for basic hydrolysis 

but decreases sensitivity for acidic hydrolysis. The ability to tune silane protecting groups has 

allowed for selective deprotections of more labile silanes in the presence of more stable silane 

protecting groups.156,157 Remarkably, even small changes in sterics or electronics can result in 

selective deprotection, such as the example by Carreira where one primary TBS ether can be 

deprotected in the presence of another primary TBS ether (Scheme 1-18).158  

 

Scheme 1-18. Carreira Selective Deprotection Between two Primary Silyl Ethers.  

Typically, selective protection of alcohols depends on the sterics and electronics of 

alcohols in a molecule. Generally, less sterically hindered and more electron-rich alcohols are 

protected before more hindered or less electron-rich alcohols. Analogues to selective deprotection, 

there are examples of only slight differences in either sterics or electronics for selective 
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protections, such as the example by Danishefsky where a secondary alcohol was protected in the 

presence of a secondary allylic alcohol (Scheme 1-19).159  

 

Scheme 1-19. Danishefsky Selective Protection of Secondary Alcohol over Secondary Allylic Alcohol.  

These characteristics of silane protecting groups have enabled the synthesis of many 

complex molecules, such as the first synthesis of Taxol (1-37) by the Holton group (Figure 1-4).160 

This synthesis demonstrates the ability to sequentially deprotect various trialkylsilanes based on 

the sterics of the groups, where iterative deprotections of three secondary alcohols was described. 

Use of different deprotection conditions allowed for selective deprotection from most labile to 

most stable silane protecting group (TMS, TES, TBS). Being able to sequentially deprotect silyl-

protected alcohols allowed for each of them to be derivatized chemoselectively. The unique 

characteristics and prevalence of silanes as protecting groups in organic chemistry presents silyl 

ethers as an attractive C-O coupling partner. 

 

Figure 1-4. Use of Silane Protecting Groups in the Synthesis of Taxol.  

Despite the advantage of silane protecting groups, silyloxyarene C-O bonds have not been 

viewed as competent coupling partners. Only a few examples exist and are limited to Kumada 

couplings. One of the first examples that explored silyloxyarene C-O bonds as aryl electrophilic 

coupling partners was by Dankwardt (Scheme 1-20), where he only explored two silyloxyarene 
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substrates in a protecting group screen.82 However, these examples displayed the first use of silyl-

protected phenol derivatives as electrophilic coupling partners. 

 

Scheme 1-20.  Dankwardt Silyloxyarene Kumada Coupling. 

  Several other reports have also explored use of silyloxyarenes ac C-O coupling partners, 

but only explored their use in screening different protecting groups for methods developed for aryl 

alkyl ether C-O bond coupling.92,83,88 Trimethylsilane was the silane protecting group typically 

used in these studies, which is the most labile trialkylsilane protecting group. Therefore, this ability 

to be readily deprotected under acid or basic conditions limits use in late-stage functionalization. 

 

Table 1-2. Silane Protecting Groups in Kumada Coupling with Phenyl Magnesium Bromide. 

A recent method by Shi was the first report that focused on developing silyloxyarenes as 

C-O electrophiles161 and not simply showing one example in an optimization table. The scope was 

mostly limited to naphthyl substrates, where good yields were obtained. Few examples displayed 

use of isolated aromatic systems, which resulted in moderate yields. In the initial optimization, 

several different silane groups were also explored. Interestingly, all of the different silanes gave 

yields between 76 and 89 percent, even very labile silane protecting groups (Table 1-2). As 
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strongly basic nucleophiles are used, this is surprising that labile silane protecting groups are not 

deprotected and result in lower yields. Furthermore, bis(phenoxy)disilane 1-40 was also utilized 

as a substrate with four equivalents of Grignard reagent (Scheme 1-21). Typically, dialkoxy-

silanes are not stable and rapidly deprotect under strongly acidic or basic conditions, suggesting 

that something else may be occurring in these reactions besides direct C-O bond coupling of the 

silyloxyarene. 

 

Scheme 1-21. C-O Bond Cleavage in Bis(2-naphthoxy)diethylsilane.  

The Uchiyama group did state that using a trimethylsilyl protecting group in C-O bond 

coupling reactions with organolithium reagents, resulted in deprotected of starting material to 2-

naphthol (Scheme 1-22).88 However, increasing to a bulkier silane, tert-butyldimethylsilane, 

resulted in the desired product. Therefore, previous reports of using trimethylsilyl (TMS) 

protecting groups in C-O bond coupling reactions with Grignard reagents may have resulted in 

deprotection and C-O bond coupling was with the free phenol. Such coupling of free phenols with 

Grignard reagents has been reported before, where activation of the C-O bond is through 

coordination of a magnesium salt to generate a magnesium naphtholate complex.162 However, in 

these examples, coupling was only described with naphthyl substrates and has not been shown 

with isolated phenols. Additionally, aggregation of phenyl magnesium bromide may lead to 

significantly different reactivity and could not deprotect trimethylsilyl as rapidly as phenyl lithium. 

Regardless of the identity of the C-O bond coupling partner, use of strongly nucleophilic coupling 

partners limit application to late-stage functionalization due to the inability to tolerate base-
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sensitive functionality. Therefore, other reactions should be explored that use milder coupling 

partners with silyloxyarene C-O bonds.  

 

Scheme 1-22. Silyloxyarene Coupling with Organolithium.  

The Nakao group explored the use of alkoxysilanes as in situ protecting groups and the 

reductant with a nickel catalyst for hydrogenolysis of phenols.163 A mechanism was proposed 

(Scheme 1-23) that begins with nickel-catalyzed dehydrogenative silylation between the phenol 

(1-41) and silane. Upon generation of the silyloxyarene (1-42), oxidative addition of the C-O bond 

to the nickel(0) catalyst generates a nickel(II) silyloxy intermediate (1-43). This complex 

undergoes transmetallation with another equivalent of silane, producing a nickel hydride (1-44) 

and disiloxane byproduct. The nickel hydride then reductively eliminates to produce the desired 

product (1-45) and turnover the nickel catalyst.  

 

Scheme 1-23. Proposed Mechanism for Nickel-Catalyzed Hydrogenolysis of Phenols with Hydrosilanes. 
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 Experiments were conducted to support the proposed mechanism. First, as hydrogen gas is 

generated through the proposed dehydrogenative silylation, hydrogen could be acting as the 

reductant for the hydrogenolysis step. However, the process was separated into two steps where 

an equimolar amount of silane and phenol (1-46) was utilized to generate the silyloxyarene (1-47), 

which was verified by 1H NMR. The reaction mixture was then transferred to a closed vessel, 

placed under two atmospheres of hydrogen gas, and set up under standard reaction conditions. It 

was found that only trace product (1-48) was observed with hydrogen. Additionally, they also 

conducted the same experiment but did not place the reaction under a hydrogen atmosphere and 

added another equivalent of silane, resulting in similar yields to the standard reaction setup. These 

experiments suggest that hydrogen produced from the dehydrogenative silylation is not playing a 

large role in this reaction, and the silane is acting as the protecting group and the reductant (Scheme 

1-24).  

 

Scheme 1-24. Reductant Control in Hydrogenolysis of Phenols.  

 Another series of experiments were conducted to support the formation of a silyloxyarene 

substrate prior to C-O insertion (Table 1-3). Use of trimethylsilyl (TMS) protecting group was 

used to support the generation of a silyloxyarene, in situ, by starting with a discrete silyloxyarene 

substrate. The trimethylsilyl protected starting material was found to have analogous reactivity to 

the in-situ procedure under standard reaction conditions. Notably, there was a significant 

difference in yield between a biphenyl and tert-butyl substituted phenol, with the TMS-protected 
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tert-butyl phenol resulting in a 45% yield (entry 1, Table 1-3). Furthermore, the analogous phenols 

were also explored as their methyl ether counterparts, to compare reactivity of their C-O bonds. 

Lower yields were obtained with the aryl methyl ether derivatives with trace product for the 

isolated tert-butyl phenol derivative and modest yield for biphenyl. These experiments suggest 

that silyloxyarene C-O bonds have higher reactivity compared to aryl methyl ethers under these 

reaction conditions, presenting them as attractive coupling partners for late-stage functionalization.  

 

Table 1-3. Hydorgenolysis of Silyoxyarenes and Aryl Methyl Ethers.  

1.4 Conclusions on Strategies for Late-Stage Functionalization of C-H and C-X Bonds 

 There has been substantial interest in the late-stage diversification of complex molecules 

and in the development of new methods for this efficient approach. An immense amount of effort 

has been directed towards developing selective C-H functionalization that allow for derivatization 

of complex scaffolds. However, the field is currently limited to the use of biased substrates or 

directing groups, limiting the generalizability of current methods.  

 However, the development of aryl halides as electrophilic coupling partners utilizes a pre-

functionalized substrate to generate complex scaffolds without selectivity issues, as coupling 

occurs exclusively at the site of the halide. Methods using halides are extremely powerful and have 

revolutionized the synthesis of molecules since their discovery. Yet the desire to utilize an 

abundant starting material that could be accessed from natural sources has led to the development 

of alternative methods. One common approach has been the use of phenol derivatives with 
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activated protecting groups, allowing for the same type of coupling as aryl halides. These 

pseudohalides have similar reactivity to commonly employed aryl halides. However, halides and 

pseudohalides do not typically allow for their use in late-stage functionalization unless 

intermediate protecting group interconversions or activations are utilized. 

 Therefore, use of less activating protecting groups have been developed to attenuate the 

stability and reactivity of the C-O bond. Carbonyl-derived protecting groups, such as esters, 

carboxylates, and carbamates have high reactivity, due to the higher electron-withdrawing nature 

of the carbonyl and directing ability of the protecting group. However, they are also susceptible to 

deprotection under basic conditions or through competing transition metal-catalyzed C-O bond 

activation of the aryl or acyl C-O bond. These features make the carbonyl derivatives less 

advantageous for use as late-stage coupling surrogates over more other inert C-O bonds.  

 The aryl ether derivatives are the most inert C-O bond derivatives. Aryl methyl ethers have 

been the focus of significant research efforts, as they are an inert protecting group, allowing for 

them to be carried through nearly any organic reaction. However, their high stability results in a 

very low reactivity of the C-O bond, limiting possible types of coupling reactions and substrates. 

High reactivity is observed when strong nucleophiles or extended aryl systems are utilized; 

however, use of milder coupling partners and isolated aromatic systems result in poor yields. 

Diaryl ethers are also plagued by these limitations, along with limitations for their synthesis. 

 However, aryl silyl ethers, or silyloxyarenes, have been widely utilized in protecting group 

chemistry due to their tunable nature. This allows them to be highly stable and carried through 

numerous synthetic steps. The prevalence of silyl ethers in organic chemistry, and their tunable 

nature, makes them excellent candidates as electrophilic coupling partners for late-stage 

functionalization. Until now, silyloxyarenes have not been viewed as competent C-O coupling 
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partners and have not been explored beyond use in Kumada couplings. Therefore, their C-O bond 

reactivity has not been explored to determine if they will facilitate improved reactivity over aryl 

methyl ethers. Determination of silyloxyarene C-O bond reactivity, and subsequent development 

of useful coupling reactions, would be advantageous for diversification and synthesis of complex 

molecules. 
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Chapter 2  
 

Nickel-Catalyzed Reduction and Silylation of Silyloxyarenes 

2.1 Introduction on Reduction Reactions of C-O Bonds 

Reduction of inert C-O bonds was first explored as a method of using C-O bonds as a 

traceless directing group. The protected C-O bond would allow for a directed functionalization on 

the aryl ring and could be removed through C-O bond coupling. Snieckus explored the use of 

carbamates with Grignard reagents containing β-hydrogens as the reducing agent (Scheme 1-6).35 

The reductive deoxygenation of aryl ether C-O bonds has also been explored for traceless directing 

group strategies. Martin explored the use of nickel catalysts with silanes as reducing agents for the 

reduction of aryl methyl ether C-O bonds (Scheme 2-1).100 However, the lower reactivity of aryl 

methyl ether C-O bonds limited this method. Use of non-extended aryl systems required a directing 

group to be installed through ortho-functionalization that could direct the nickel catalyst to the aryl 

methyl ether C-O bond for activation. 

 

Scheme 2-1. Martin’s Nickel-Catalyzed Reduction of Aryl Methyl Ether C-O bonds with Silanes. 

 Aryl ethers (2-4) have also been explored for C-O bond reduction under nickel catalysis. 

However, instead of applications in directed functionalization the main application has been for 

depolymerization of lignin. Hartwig described a nickel catalyst facilitated C-O bond reduction of 

diaryl ethers with silane or hydrogen gas as a reductant (Scheme 2-2).108 These reductions did 
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require high catalyst loadings and stoichiometric trimethylaluminum for moderate yields in the 

reduction of more inert C-O bonds, such as aryl methyl ethers.  

 

Scheme 2-2. Hartwig’s Nickel-Catalyzed C-O Reduction of Diaryl Ethers.  

 Since these three initial papers in the field of inert C-O reduction, numerous papers have 

been reported using similar strategies and protecting groups to facilitate reduction of strong C(sp2)-

O bonds. For example, other carbonyl derived protecting groups (2-9), such as carbamate37 and 

pivalate,65 were used under nickel catalysis with silanes (Scheme 2-3). Recently, other reducing 

agents or metals have been used, including sodium formate66 with pivalate C-O bonds, or alcohols 

containing β-hydrogens56 with carbamates and rhodium catalysts. 

 

Scheme 2-3. Further Developments in Carbonyl Derivatives C-O Bond Reductions. 

In addition to the carbonyl derivatives (2-9), several additional methods of aryl ether C-O 

reduction have been reported (2-10, Scheme 2-4). Shortly after Martin’s report of aryl methyl ether 

C-O reduction with silanes, an analogous method was reported with trialkylsilanes.65 Subsequent 

reports have focused on utilizing different transition metals or reductants. Iridium has been shown 

to be competent for aryl methyl ether C-O reductions using a directing group and alcohols 
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containing β-hydrogens.134 Nickel can also utilize alcohols containing β-hydrogens as the reducing 

agent, even using the methoxy group derived from the aryl methyl ether protecting group.101 Use 

of diaryl ethers has been further explored in heterogeneous nickel catalysts,109,110 expanding on the 

initial report by Hartwig. More activated aryl substituents with directing capabilities have also 

been explored using homogeneous nickel catalysts and alcohols containing β-hydrogens as a 

reductant.120,122  

 

Scheme 2-4. Further Developments in Aryl and Alkyl Ether C-O Bond Reductions.  

In addition to the most commonly employed inert aryl C-O bonds, there is one report of 

using in-situ generated silyloxyarenes as electrophiles for C-O reduction,163 which was published 

towards the end of our studies. One key finding in the hydrogenolysis of phenols was the use of 

electron-rich, bulky NHC ligands (entry 1, Table 2-1). Phosphine ligands (entry 2, Table 2-1) did 

not result in the desired product (2-12). Additionally, other less electron-rich NHC ligands resulted 

in lower yields, with the least donating ligands resulting in the worst results (entries 3-6, Table 

2-1). Use of a NHC salt of the starting ligand also did not result in the desired product, potentially 

due to the high pKa of electron-rich NHC ligand (entry 7, Table 2-1). Finally, only 

dimethoxymethylsilane resulted in appreciable yield, with other silanes explored resulted in poor 

results, including a trialkylsilane, trialkoxysilane, polymeric silane, and another mixed silane 

(entries 8-11, Table 2-1).  
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Table 2-1. Hydrogenolysis of 4-tert-butylphenol.  

 The phenol scope displayed a small number of substrates, with high yields shown for 

naphthyl, unhindered biphenyl, and some isolated aromatics (Table 2-2). However, basic 

functionalities beyond phenols or protected alcohols were not displayed, likely due to competing 

in-situ protection and consumption of the reductant. Some sterically encumbered and orthogonal 

functional groups were tolerated, such as ortho phenyl substituents (2-16) and silyl-protected 

benzylic alcohols (2-17). Interestingly, for the silyl-protected benzylic alcohol, a less electron-rich 

ligand, IPrMe, was used. This could suggest that a more electron-rich ligand facilitates benzylic 

silyl ether C-O bond activation. Most importantly, the method was able to tolerate aryl methyl 

ethers, as good yields were obtained with ortho (2-18) or para (2-19) substituted anisole 

derivatives.   



 33 

 

Table 2-2. Arene Scope for Hydrogenolysis of Phenols with Silanes.  

 The general trends in these inert aryl C-O reductions are that reductants such as silanes or 

alcohols with β-hydrogens are effective for reductive deoxygenation. Interestingly, in the case of 

C-O bonds, use of a silane reductant only results in arene product and generation of aryl silanes 

has not been observed. This is reversal in selectivity has been observed with more activated 

coupling partners under palladium catalysis.164 There have been numerous reports for synthesis of 

aryl silanes using aryl halides and hydrosilanes.165 However, selectivity between arene and aryl 

silane is often substrate dependent, based on electronics of the aryl halide166 or the silane 

employed. Often electron deficient aryl halides and trialkyl silanes favor formation of the arene 

product.164 There have been some reports utilizing trialkyl silanes to favor the aryl silane 

product,167 but high ratios are still often limited to specific substrate classes based on electronics 

of the aryl electrophile (Scheme 2-5).168  

 

Scheme 2-5. Electronic Influence in Palladium-catalyzed Aryl Halide Silylation with Hydrosilanes.   
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Just as disilane reagents are commonly utilized for silylation of more activated aryl 

electrophiles,169,170 use of silylboranes have been used for silylation of aryl C-O bonds with 

pivalate73 or methyl104 protecting groups. These methods show good functional group tolerance; 

however, use of silylboranes limits these methods as they are not readily available and need to be 

synthesized.171 Therefore, we hoped to explore reactivity of discrete silyloxyarene C-O bonds in 

reduction reactions for a direct comparison to other inert C-O bonds. Furthermore, as 

silyloxyarenes have been rarely utilized in coupling reactions, new reactions or selectivities could 

be discovered that have not been previously reported for other C-O bonds. 

2.2 Initial Discovery and Exploration into Reduction of Silyloxyarene C-O Bonds 

Studies began by exploring nickel catalysts as they have been the primary transition metal 

utilized for inert C-O bond activation. NHC ligands were used due to previous group expertise on 

reversing selectivity based on ligand size.172 A common triethylsilyl protecting group (2-20) was 

initially explored along with triethylsilane as the reductant. Initially, a mild Lewis acid, titanium 

isopropoxide, was employed to potentially weaken the C-O bond for coupling (Scheme 2-6). We 

hypothesized that coordination of the oxygen to titanium could lower the barrier of C-O bond 

activation and improve reactivity, as has been shown with related aryl and alkyl ether 

derivatives.128 

 

Scheme 2-6. Initial Exploration into Nickel-Catalyzed C-O Reductions of Silyloxyarenes.  

Very excitingly, naphthalene (2-20A) was observed under these reaction conditions. 

However, naphthalene was the minor product and an unexpected aryl silane product 2-20B was 

observed as the major product. This result was very interesting as all previous reports of utilizing 
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silanes as reductants with inert aryl C-O bonds exclusively yielded the reduced arene. Furthermore, 

access to aryl silanes from inert C-O bonds have only been shown from silylboranes and methods 

using commercially available silanes would be advantageous. Therefore, we explored the 

optimization of this reaction to obtain selectivity over the two reactions while exploring reactivity 

of the silyloxyarene C-O bond.  

 

Table 2-3. Initial Optimization of Nickel-Catalyzed C-O Reduction and Silylation of Silyloxyarenes. 

Further optimization of the silylation and reduction reaction began with ([1,1'-biphenyl]-

4-yloxy)(tert-butyl)dimethylsilane (2-21) as the model substrate (Table 2-3). This substrate was 

explored to optimize around a more challenging isolated aryl substrate where successful 

optimization would allow for coupling of these more challenging substrates and present higher 

reactivity over other inert C-O bond couplings. A larger silane protecting group was also used to 

decrease deprotection observed with the triethylsilyl group. Furthermore, a large silane, tert-
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butyldimethylsilane, is more commonly used as a protecting group in organic synthesis. 

Development of C-O bond coupling methods of these derivatives would allow for direct coupling 

of a commonly used functionality.  

Optimization of the reduction and silylation reactions uncovered divergent reactivity that 

appeared to derive from the silane. Larger trialkylsilane, such as triisopropylsilane, gave the 

reduction product (2-21B) and none of the corresponding silylation product. A large influence was 

also observed based on the ligand with small, aryl NHC ligands resulting in poor ratios. Small 

trialkylsilanes, such as triethylsilane, and large NHC ligands resulted in ratios of silylation (2-21A) 

over reduction (Table 2-3, Entries 1-3). Other common ligands, such as phosphines and alkyl NHC 

ligands did not result in the desired product (Table 2-3, Entry 4). An extremely bulky aryl NHC 

ligand, IPr*OMe, resulted in the best results for both reactions, with high yields and ratios of 

products.  

Other bases were explored, with sodium tert-butoxide being uniquely effective for 

silylation, where other counterions resulting in poor yields (Table 2-3, Entries 5-6). Interestingly, 

base effects were less significant for the reduction reaction with triisopropylsilane. Sodium 

isoproxide did not work for silylation, and utilizing it as both the base and/or reductant did not 

work for the reduction reaction (Table 2-3, Entry 7). Fewer equivalents of base could be used, 

although lower yields were observed for both reactions (Table 2-3, Entry 8). Although higher 

yields were observed when using bis(1,5-cyclooctadiene)nickel(0) as a pre-catalyst in the 

reduction reaction with triisopropylsilane, lower yields were obtained for silylation (Table 2-3, 

Entry 9). However, due to the advantages of nickel(II) acetylacetonate, such as cost and air 

stability, it was used as the optimal nickel pre-catalyst. Finally, lower yields were observed in both 
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reactions when looking at triethylsilane as the protecting group due to deprotection (Table 2-3, 

Entry 10). 

 

Scheme 2-7.  Divergent Reduction Reactions with Silane Reductants.  

Two novel reactions were developed where selectivity was observed based on silane 

choice, where small trialkylsilanes resulted in aryl silylation and large trialkylsilanes resulted in 

arenes (Scheme 2-7). Due to the large influence in silane identity, the silane scope was explored 

(Table 2-4). Small, trialkylsilanes resulted in the best yields and ratios, with small amounts of 

arene product observed for diethylmethylsilane (Table 2-4, entry 3) and ethyldimethylsilane (Table 

2-4, entry 4). As mentioned previously, large trialkylsilanes do not result in any of the aryl silane 

product and arene is exclusively observed (Table 2-4, entry 2). Moving to larger alkyl substituents, 

tripropylsilane (Table 2-4, entry 5) gives larger amounts of arene product. The influence of steric 

hindrance of the silane can be observed by moving through the tert-butyldimethylsilane (Table 

2-4, entry 6), di(tert-butyl)methylsilane (Table 2-4, entry 7), and tri(tert-butyl)silane (Table 2-4, 

entry 8) series. This series shows that the arene product is increasingly favored with larger 

substituents, and eventually reactivity decreases with no silylation product being observed. Other 

large silanes, such as triisobutylsilane (Table 2-4, entry 9) and di(tert-butyl)silane (Table 2-4, entry 

10) result in low yields and exclusively generate the arene product. This method was limited to 

trialkylsilanes, as several alkoxysilanes did not result in the desired products. Although this was 

disappointing due to limited application of trialkylarylsilanes in Hiyama-Denmark couplings,173,174 

benzyldimethylsilane (Table 2-4, entry 11) could be used as a silane coupling partner.  
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Table 2-4. Silane Scope for Divergent Silylation/Reduction Reactions.  

Having explored trends in the silane utilized for silylation and reduction reactions, the 

silyloxyarene scope was next explored (Table 2-5). A range of naphthyl substrates were all coupled 

in good yield for both reactions, including naphthyl rings containing two silyloxy groups (2-22), 

other silane functionality (2-23), and a methoxy group (2-24). However, when using the disilyloxy 

naphthyl substrate (2-22), silylation only occurred at the 6-position and the 1-position remained 

untouched. This noted high sensitivity to sterics in the silylation reaction, which was not the case 

for the reduction reaction as both silyloxy groups were reduced. The ability to tolerate a methoxy 

group was exciting as it allowed for further functionalization. 

Next, we began exploring other functional groups that could be tolerated, and further 

explored C-O bond reactivity by utilizing isolated aromatic systems. Biphenyl substrates 

containing unprotected alcohols (2-25), benzyl silyl ethers (2-26), and methyl ethers (2-27) were 

all tolerated for both reactions. Heterocycles could also be utilized, with carbazoles (2-28) and 

pyridines (2-29) resulting in good yields. Interestingly, benzylic silyl ethers resulted in good yield 

for silylation of the aryl C-O bond, with the benzylic C-O bond untouched. However, the reduction 
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reaction product could not be quantified as the proposed product was also the solvent for the 

reaction.  

 

Table 2-5. Silyloxyarene Scope for Divergent Silylation/Reduction Reactions.  

Use of other isolated aromatic systems resulted in good yields, in contrast to current 

methods for aryl methyl ether activation. Electron-withdrawing substituents in the para or meta 

positions gave good yields for reduction, although yields for silylation were lower. However, with 

more electron-rich isolated aromatic systems, the opposite trend appears with high yields observed 

for silylation and lower yields for reduction. Thus, these two reactions appeared to have opposite 

influences from electronics on the aryl system, suggesting different mechanisms could be operable.  
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Scheme 2-8. Deuterium Labeling Experiment with Deuterated Triisopropylsilane. 

We first started exploring the mechanism further by utilizing a deuterated triisopropylsilane 

to determine the reductant for the reaction. However, low deuterium incorporation was observed 

when using deuterated triisopropylsilane (Scheme 2-8). This led to a series of control experiments 

to further explore the role of each component in these reactions.  

 

Table 2-6. Controls for Divergent Silylation/Reduction Reactions.  

Both reactions showed no reactivity in the absence of nickel pre-catalyst, ligand, base, or 

silane (Table 2-6, Entries 2-5). However, when using a nickel(0) pre-catalyst, where reduction to 

the active nickel(0) is not necessary, exclusion of silane still resulted in reduction product. This 

led us to believe that silane was not necessary in the reduction reaction and that titanium 

isopropoxide was the reductant. Running the standard reaction conditions with triisopropylsilane 

and without titanium isopropoxide gave none of the arene product (Table 2-6, Entry 7). Titanium 

isopropoxide could have two roles as reductant and Lewis acid, which could be the reason for no 
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observed reactivity. However, this theory was refuted when only slightly lower yields were 

observed for silylation without titanium isopropoxide, showing titanium was not necessary for 

silylation. 

2.3 C-O Bond Reduction of Silyloxyarenes under Nickel Catalysis with Titanium Reductants 

When synthesizing a deuterated titanium isopropoxide and subjecting it to the reaction 

conditions without silane, high deuterium incorporation was observed (Scheme 2-9). However, 

when using both triisopropylsilane and deuterated titanium isopropoxide, deuterium incorporation 

was much lower (Scheme 2-10). 

 

Scheme 2-9. Deuterium Labeling Experiment with Deuterated Titanium Isopropoxide Without Silane. 

The lower deuterium incorporation when using silane and deuterated titanium isopropoxide 

suggests that there could be a synergistic influence when both are included in the reaction mixture, 

or that scrambling of a nickel hydride could be taking place prior to reductive elimination. To 

simplify the reaction and utilize exclusively titanium isopropoxide as reductant in C-O bond 

activation, further optimization was necessary as low yields were observed under previous 

conditions while excluding triisopropylsilane (Table 2-6, entries 5-6).  

 

Scheme 2-10. Deuterium labeling of Reduction with Triisopropylsilane and Deuterated Titanium Isopropoxide.  

2.3.1 Optimization for C-O Bond Reduction of Silyloxyarenes  
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Additional optimization found that comparable yields to the previous conditions could be 

obtained by using fewer equivalents of titanium isopropoxide, 2:1 ratio of nickel pre-catalyst to 

ligand, and shorter reaction times (Table 2-7, Entry 1). However, a different ligand, IPrMe, resulted 

in superior results over the previous ligand (Table 2-7, Entry 2). The importance of the donating 

ability of the NHC ligand can be observed by looking at the IPr series from the most donating to 

least donating (IPrMe, IPr, IPrCl). This comparison shows that more donating ligands result in higher 

yields (Table 2-7, entries 2-4). Other common phosphine ligands used for C-O bond activation, 

such as tricyclohexylphosphine, did not result in product formation (Table 2-7, entry 6). Other 

nickel pre-catalysts or reductants could be used, although lower yields were observed (Table 2-7, 

entries 7-9). Sodium isopropoxide was again explored as base and/or reductant but did not result 

in any product (Table 2-7, entries 10-11). Finally, because the reaction utilizes a nickel(II) pre-

catalyst, the reaction does not require the use of a glovebox and can be set up on the benchtop 

(Table 2-7, entry 12).  

 

Table 2-7. Optimization for Nickel-Catalyzed C-O Bond Reduction with Titanium Isopropoxide.  



 43 

The aryl electrophile was further explored to compare and investigate silyloxyarene 

reactivity alongside other common aryl electrophiles (Table 2-8). Several different silane 

protecting groups were utilized, and for the reduction reaction with titanium isopropoxide, most 

large silane protecting groups work well (Table 2-8, entries 1-3). Smaller silane protecting groups, 

such as triethylsilane, give lower yields due to increased amounts of deprotection under the 

reaction conditions (Table 2-8, entry 4). Diaryl ethers gave slightly lower yields than the larger 

silane protecting groups, but other common aryl C-O electrophiles did not give good yields, with 

aryl methyl ethers, aryl pivalates, aryl triflate all resulting in poor yields (Table 2-8, entries 5-8). 

Finally, aryl bromides can be utilized but result in slightly lower yields than the silyloxyarene 

derivatives (Table 2-8, entry 9).  

 

Table 2-8. Protecting Group Screen in Nickel-Catalyzed Reduction of C-O Bonds with Titanium Isopropoxide.  

2.3.2 Substrate Scope for C-O Bond Reduction of Silyloxyarenes  

Having found optimized conditions for the model substrate, the scope of the silyloxyarene 

was next explored (Table 2-9). Simple naphthyl substrates all gave good yields, including more 

sterically hindered tert-butyldimethyl(naphthalen-1-yloxy)silane (2-37B) and naphthyl substrates 

with silane functionality (2-23B). High reactivity was maintained moving from naphthyl to  
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Table 2-9. Silyloxyarene Scope for Nickel-Catalyzed C-O Bond Reduction with Titanium Isopropoxide.  

biphenyl, where several other functional groups were tolerated, including unprotected hydroxyls 

(2-25B), benzylic silyl ethers (2-26B), and aryl methyl ethers (2-27B). Double reduction was 

achieved in good yield with a disilyloxy substrate (2-38B). Several heterocycles were utilized and 

resulted in good yields, including quinoline (2-39B), carbazole (2-28B), and pyridines (2-29B). 

Very electron rich, isolated aromatics were coupled including 4-(3-((tert-

butyldimethylsilyl)oxy)phenyl)morpholine (2-40B) and an acetaminophen derivative 2-41B. 

Although yields were much lower for these substrates, the reactivity is high compared to aryl 
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methyl ethers, and a more thorough substrate-by-substrate optimization might be necessary for 

these lower yielding examples. However, slightly less electron rich isolated aromatic systems gave 

good yields, including an estradiol derivative (2-35B).  

2.3.3 Mechanism for C-O Bond Reduction of Silyloxyarenes  

Deuterium labeling studies were again conducted using the new reaction conditions and a 

deuterated titanium isopropoxide that was synthesized from titanium isopropoxide and deuterated 

isopropanol. High deuterium labeling was observed under the new reaction conditions using IPrMe 

as ligand and Ni(COD)2 as pre-catalysts (Scheme 2-11). This again confirmed that titanium 

isopropoxide was the reductant in our developed methodology.  

 

Scheme 2-11. Deuterium Labeling for C-O Bond Reduction of Silyloxyarenes under Nickel Catalysis with Titanium Isopropoxide. 

Although no detailed mechanistic experiments have been conducted to fully elucidate the 

mechanism, a mechanistic proposal has been developed (Scheme 2-12). The proposed mechanism 

is based on deuterium labeling studies, empirical findings discovered through development of the 

methods, and computations from previously reported mechanisms of other inert C-O bonds. The 

catalytic cycle begins with generation of Ni(IPrMe)2 from the nickel(II) pre-catalyst, IPrMe ligand, 

and titanium isopropoxide. Displacement of one NHC ligand with tert-butoxide results in complex 

A, which then coordinates to the silyloxyarene substrate, through η2 binding. The resulting 

complex (B) inserts into the silyloxyarene C-O bond and dissociates the silyloxy group to generate 

a neutral complex (C). The tri-substituted complex (C) undergoes a six-membered transition state 

to transfer a β-hydrogen from an isopropoxy group from titanium isopropoxide to nickel (D), 
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producing acetone and nickel hydride E. Finally, reductive elimination and association of sodium 

tert-butoxide completes the catalytic cycle and generates the desired product.  

 

Scheme 2-12. Proposed Mechanism for Nickel-Catalyzed C-O Bond Reduction of Silyloxyarenes with Titanium Isopropoxide.   

 Many empirical results and reported computational studies on related C-O bond coupling 

reactions support the proposed mechanism for C-O bond reduction of silyloxyarenes. While 

interpreting the experimental data, it was noted that two equivalents of NHC ligand result in 

significantly higher yields than with one equivalent of NHC ligand. This is likely due to the 

stabilization of the nickel catalyst throughout the reaction, where another NHC ligand stabilizes 

highly reactive intermediates, preventing catalyst decompositions through comproportionation, 

and other unproductive pathways. Additionally, previous computational studies on related C-O 

bond activations using IPr ligands propose Ni(IPrMe)2 and Ni(IPrMe)(Ln) exist in equilibrium in 
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solution, with Ni(IPrMe)2 typically being proposed to be more thermodynamically stable.147 

Furthermore, Ni(IPrMe)2 was synthesized and shown to be  competent under the reaction conditions 

(Table 2-10). 

 

Table 2-10 Diligated Nickel-NHC Complex in Reductive Deoxygenation of Silyloxyarene C-O Bonds.  

 One of the possible ligands in equilibrium with the second IPrMe ligand is proposed to be 

sodium tert-butoxide, which has been supported by literature precedent.146 Another species in 

equilibrium is the silyloxyarene, where association through η-coordination is again supported by 

literature precedent in related reactions.147 Often, η2 is proposed to be the penultimate intermediate 

for C-O bond activation and is important for insertion into the C-O bond. Previous computations 

have shown that η2 and η6 coordination are very close in energy and help stabilize the complex.148 

The importance of coordination explains the small difference in reactivity between naphthyl, 

biphenyl, and isolated aromatics, as the more conjugated aryl systems would have more favorable 

coordination to the nickel(0) catalyst.148 Furthermore, use of electron-withdrawing groups also 

supports this proposal as increased yields are observed with electron-deficient silyloxyarene 

substrates, where a more favorable η2 coordination has also been shown computationally.147 

However, this increased reactivity could also involve a lower barrier to oxidative addition due to 

a weaker C-O bond with electron-deficient silyloxyarene substrates.  
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 Oxidative addition to the silyloxyarene C-O bond is proposed to undergo a 3-centered, 2-

electron transition state, which is typically proposed for oxidative addition to inert C-O bonds with 

nickel-NHC complexes.111,146–148 Use of a titanium Lewis acid could also result in coordination to 

the silyloxyarene C-O bond, weakening the bond and facilitating oxidative addition. Improved 

reactivity for aryl methyl ether C-O bond has been widely shown with several Lewis acids, such 

as magnesium salts and trimethylaluminum.128 However, due to the size of titanium isopropoxide 

and tert-butyldimethylsilane this interaction would likely be very small or non-existent.  

Alternate pathways have also been explored in reported computational papers where 

coordination of tert-butoxide base to the nickel(0) pre-catalyst is not proposed.146 This pathway is 

also possible in the reductive deoxygenation of silyloxyarene C-O bonds with titanium 

isopropoxide. However, due to the excess amounts of base and higher computed146 transition state 

energy for oxidative addition without a nickelate, this is unlikely unless the presence of titanium 

isopropoxide and the silyloxy group results in significant changes of the energy barriers.  
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Table 2-11 Influence of Equivalents of Base on Yield for Reductive Deoxygenation of Silyloxyarenes.  
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There are two conflicting empirical results on how the importance of sodium tert-butoxide 

on the reductive deoxygenation reaction. First, in experiments using a discrete nickel(0)-NHC 

complex (Table 2-10), base is not required for the reaction and does not have an influence on the 

yield. However, when using our standard reaction conditions for in-situ generation of the catalyst, 

higher amounts of base result in higher yields (Table 2-11). These finding are complicated using 

titanium isopropoxide due to the presence of isopropoxide in these reactions. Instead of tert-

butoxide, isopropoxide or the silyloxy group could generate a nickelate. Furthermore, excess base 

is likely interacting with titanium isopropoxide in addition to the nickel catalyst. Other roles of 

base have also been proposed, including shifting the equilibrium from the Ni(IPrMe)2 complex148 

or limiting off-cycle intermediates.111 

2.4 C-O Bond Silylation of Silyloxyarenes under Nickel Catalysis with Silanes 

Having found judicious choice of silane resulted in two very different reaction manifolds, 

and that titanium isopropoxide was not necessary for the silylation reaction, further optimization 

was necessary without titanium isopropoxide. 

2.4.1 Optimization for C-O Bond Silylation of Silyloxyarenes 

Unlike the reduction reaction, yields were found to be lower when using nickel(II) 

acetylacetonate as pre-catalyst without titanium isopropoxide. However, moving to bis(1,5-

cyclooctadiene)nickel(0) resulted in a good yield (Table 2-12, entry 1). The decrease in reactivity 

is likely slower reduction of the nickel(II) pre-catalyst to the active nickel(0) catalyst in the absence 

of titanium isopropoxide. An increase in the ratio of silylation product to reduction product was 

observed, where only trace amounts of the arene product were observed, due to the absence of 

titanium isopropoxide. Having obtained an improved yield and ratio of products, a quick ligand 

screen again showed that the extremely bulky IPr*OMe ligand was uniquely effective in this 
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silylation reaction. Other large NHC ligands, such as IPr derivative, resulted in significantly lower 

yields and worse ratios of products (Table 2-12, entries 2-3). A smaller aryl NHC ligand also gave 

a lower yield and the opposite ratio of products, favoring the reduction product (Table 2-12, entry 

4). Common phosphine ligands for C-O activation again did not result in any of the desired product 

(Table 2-12, entry 5). Finally, lowering equivalents of base and silane was found to be detrimental 

to the reaction, resulting in modest yields and lower ratios of products (Table 2-12, entries 7-9).  

 

Table 2-12. Optimization of Nickel-Catalyzed C-O Bond Silylation of Silyloxyarenes. 

The electrophile scope was also explored to determine whether this unique reactivity was 

limited to silyloxyarenes, or if other common aryl electrophiles could be utilized. A range of 

different silane protecting groups were explored. Large, sterically hindered silane protecting 

groups resulted in lower yields due to low conversion (Table 2-13, entries 1-2). Deprotection of 

the silyl group was not a problem, and smaller silane protecting groups, such as triethylsilane, gave 

similar results to tert-butyldimethylsilane (Table 2-13, entries 3-5). In general, other common aryl 

electrophiles resulted in poor yeilds and silyloxyarenes were uniquely effective for the reaction. 

Diaryl ethers gave the most similar results to the silyloxyarene derivatives with the aryl silane 

product being favored, although the yield and ratio of products was lower (Table 2-13, entry 6).  
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Table 2-13. Electrophile Scope for Nickel-Catalyzed Silylation of Silyloxyarenes.  

Interestingly, aryl methyl ethers resulted in low conversion and gave the opposite 

selectivity with only trace silylation product observed (Table 2-13, entry 7). This notes that simply 

changing the size of the electrophile completely switches the selectivity of the reaction. Further 

demonstration for the influence of the protecting group can be observed moving to a trimethylsilyl 

protecting group, where a larger ratio of biphenyl is observed. Although reversal in selectivity for 

aryl methyl ethers was unexpected, C-O bond reduction of aryl methyl ethers under nickel catalysis 

with silanes has been reported before.100,65,151 This difference in reactivity for accessing the aryl 

silane instead of arene again showcases the new and unique reactivity discovered. More activated 

C-O electrophiles, such as pivalates or triflates, were unselective and resulted in poor yields due 

to deprotection (Table 2-13, entries 8-9). Aryl bromides gave similar results to aryl methyl ethers, 

with lower yields and the major product being arene with only small amounts of the aryl silane 

observed (Table 2-13, entry 10).  

2.4.2 Substrate Scope for C-O Bond Silylation of Silyloxyarenes 
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Table 2-14. Silane Scope in Nickel-Catalyzed C-O Bond Silylation.  

The silane scope was again explored due to the influence of titanium isopropoxide on the 

ratio of products. However, very similar results were obtained in comparison to reactions with 

titanium isopropoxide. Small, trialkylsilanes again gave the best yields and ratios of products, such 

as ethyldimethylsilane (Table 2-14, entry 1) and diethylmethylsilane (Table 2-14, entry 2), gave 

slightly lower yields. The lower yields could be due to the lower boiling points these silanes have 

compared to the reaction temperature. Larger silanes than triethylsilane gave lower yields and 

decreased ratios of silylation product to reduction product. Eventually increasing size up to tert-

butyldimethylsilane (Table 2-14, entry 6) gave equivalent amounts of aryl silane and arene. 

Increasing size further to triisopropylsilane (Table 2-14, entry 7) resulted in low conversion and 

only small amounts of arene product. Low reactivity of triisopropylsilane explains why arene 

product was observed in the mixed system with titanium isopropoxide and triisopropylsilane. 

Benzyldimethylsilane (Table 2-14, entry 8) can also be used to generate aryl silanes that can be 

used for Hiyama-Denmark couplings. Although triethylsilylarenes have been shown to be 

competent in select couplings,175 trimethylsilylarenes are more useful and should be accessible 

through our methodology with the correct equipment to handle trimethylsilane.  
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Table 2-15. Silyloxyarene Substrate Scope in Nickel-Catalyzed C-O Silylation. 

Having optimized the silylation reaction and explored other aryl electrophiles, the 

silyloxyarene substrate scope was explored next (Table 2-15). The scope was analogous to the 

reduction reaction with titanium isopropoxide. Substrates included a range of naphthyl substrates, 

including those more sterically hindered (2-37A) and those containing other aryl silane 

functionalities (2-23A). Unprotected phenols (2-25A), benzyl silyl ethers (2-26A), and aryl methyl 

ethers (2-27A) were again tolerated and resulted in good yields. Disilyloxy functionalities were 

also disilylated in good yield (2-38A). Several heterocyclic substrates resulted in good yields, 
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including quinoline (2-39A), carbazole (2-28), and pyridine (2-29A). There was not as dramatic 

of a decrease in yield moving from biphenyl substrates to very electron-rich isolated aromatic 

systems, as compared to the reduction reaction. A range of different isolated aromatics resulted in 

high yields. Acetaminophen (2-41A) and estradiol (2-35A) derivatives were coupled in very good 

yields, displaying tolerance of unprotected amides and aliphatic silyl ethers. 

2.4.3 Mechanism for C-O Bond Silylation of Silyloxyarenes 

The mechanism for C-O bond silylation of silyloxyarenes has also not been explored in 

detail and our proposed mechanism is based on empirical findings and related computational 

reports. The reactivity difference between aryl methyl ethers and silyloxyarenes with silane 

reductants is unique. Whereas, aryl methyl ether C-O bonds with silane reductants produces arene 

products, silyloxyarene C-O produce aryl silanes as the product. However, with aryl methyl ether 

C-O bonds, a unique mechanism is proposed with a nickel catalyst, phosphine ligands, and 

silanes.151 The mechanism includes dearomatization and leads to a significant difference in 

reactivity between naphthyl substrates and isolated aromatics. If a similar pathway were operable 

under our reaction conditions, a dramatic difference between isolated and conjugated aryl systems 

would be observed. However, similar reactivity is observed for both classes of substrates. 

Furthermore, isolated aryl methyl ether substrates can also be utilized, suggesting that this 

mechanism is also not operable under our reaction conditions for either electrophile. One 

possibility for the change in mechanism derives from the ligand. Computations support formation 

of a nickel(I) complex in aryl methyl ether C-O bond couplings with phosphine ligands and 

silane.151 However, reported computations on a aryl methyl ether silylation reaction suggest the 

same nickel(I) complexes are not operable with NHC ligands.146  
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The silylation reaction of aryl methyl ether C-O bonds with silylboranes has also been 

reported.104 This reaction does not use added ligands and can be run at room temperature, where 

aryl methyl ether C-O bond activation is typically run at 100 °C. Computational papers on this aryl 

methyl ether silylation,150,171 as well as empirical results from the original paper, suggest that a 

silyl anion is generated. Therefore, this would be analogous to use of strongly nucleophilic 

Grignard reagents and explains the mild reaction conditions. Additionally, the polarity of the silane 

is reversed between silanes and silylboranes, where the silane silicon is electrophilic and 

silylborane silicon atom is nucleophilic. Based on findings in our silylation methodology, it is 

unlikely that an analogous silyl anion is generated in situ using our method. First, high reaction 

temperatures are required and if a silyl anion was generated, lower reaction temperatures would 

be possible, as has been previously shown in silyloxyarene C-O bond Kumada couplings.161  

 

Scheme 2-13. Silylation of tert-butyl((7-methoxynaphthalen-2-yl)oxy)dimethylsilane with Silylborane.  

Furthermore, use of an unbiased substrate with both methoxy and silyloxy C-O 

electrophiles, using reported conditions for aryl methyl ether silylation with silylboranes,104 

resulted in selectivity for the aryl methyl ether C-O bond. Although there are products derived 

from silyloxyarene C-O bond silylation, where both electrophiles were silylated, no product 

corresponding to initial silylation of the silyloxy group first is observed (Scheme 2-13). This is the 

opposite trend observed when using our reaction conditions, where the silyloxyarene C-O bond is 

preferred (Scheme 2-14). Furthermore, under our reaction conditions with the difunctionalized 
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compound, the only conversion of the aryl methyl ether C-O bond was reduction to the arene. 

(Scheme 2-14). Therefore, these experiments suggest that neither mechanism for aryl methyl ether 

C-O bond silylation with a silylborane or reduction with a silane is operable in our reaction. 

 

Scheme 2-14. Silyloxyarene C-O Bond Silylation of tert-butyl((7-methoxynaphthalen-2-yl)oxy)dimethylsilane. 

Currently, our proposed mechanism begins with generation of a mono-ligated nickel(0)-

NHC complex (F), which coordinates the silyloxyarene through η2 coordination (Scheme 2-15). 

A three-centered, two-electron oxidative addition generates complex H, which then undergoes 

sigma-bond metathesis with a silane through a four-membered transition state, generating tert- 

 

Scheme 2-15. Proposed Mechanism for Nickel-Catalyzed C-O Bond Silylation of Silyloxyarenes.  
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butyldimethylsilanol and nickel complex J. Finally, reductive elimination generates the aryl silane 

product and addition of another ligand completes the catalytic cycle, to generate the mono-ligated 

nickel(0)-NHC complex F.  

The proposed mechanism is supported by empirical findings and computations on related 

C-O bond coupling reactions. Additionally, a more detailed discussion on some aspects of the 

silylation mechanism are covered in section 2.3.3. A diligated nickel(0)-NHC complex Ni(NHC)2 

is not proposed as only one equivalent of NHC ligand is used. Additionally, the increased size of 

IPr*OMe over IPr decreases the stability of Ni(NHC)2 and would only be present in small 

concentrations under the reaction conditions. 

Instead of another NHC ligand for complex F, the other ligand, Ln, could be several species 

in solution and is likely to be tert-butoxide, generating a nickelate. An alternative type of oxidative 

addition, such as an ion-pair (SNAr-like) pathway, could also be operable instead of a traditional 

oxidative addition, as has been proposed through computations of related reactions.146 However, 

these computations show that this pathway becomes less favorable with more substituted diaryl 

ethers and unsubstituted aryl alkyl ethers. Use of a silane protecting group could change the 

energetics of both pathways and could lead to competitive mechanisms for some substrates, 

although these possibilities are all speculative.  

After C-O bond insertion, sigma-bond metathesis with an aryl or alkoxy group is possible 

to generate an aryl silane or alcohol. The selectivity observed in our reaction likely depends on 

this sigma bond metathesis transition state (I). We observe that a large ligand is important for high 

selectivity of the aryl silane product, where smaller ligands result in larger amounts of reduction 

product. This can be explained through generation of the more stable oxygen-silicon bond when 

using a smaller ligand. With a larger NHC ligand, increased steric interactions with the silane could 
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result in the opposite selectivity by potentially reversing orientation of the silane for sigma-bond 

metathesis. Additionally, this is further supported by observing lower conversions and larger ratios 

of reduction product with increased sterics at the ortho position on the aryl substituent. 

This analysis can also be used to explain the increase in reduction product by increasing 

silane size from triethylsilane, and the absence of reactivity with triisopropylsilane. Increasing size 

of the silane plays a large role in the selectivity through steric interactions, where reversal in 

selectivity is observed until the silane becomes too large and is unable to approach for sigma bond 

metathesis. Other factors could also be responsible for the observed selectivity, such as influences 

from the protecting group, interactions of silane and base, or from the NHC ligand used in the 

reaction beyond what is mentioned above. These could be important differences compared to aryl 

methyl ether coupling with silanes as a different protecting group, no base, and phosphine ligands 

are used.   

2.5 Conclusions and Future Directions for C-O Bond Reduction and Silylation of 

Silyloxyarenes 

Exploration into the C-O bond reactivity of silyloxyarenes under nickel catalysis has led to 

the development of two new reactions. Initial investigation into the C-O bond reactivity of 

silyloxyarenes with silanes and Lewis acids led to the discovery of divergent silylation and 

reduction reactions. Further control experiments and optimization discovered the role of titanium 

isopropoxide as the reductant in generating arene products and a unique manifold for C-O coupling 

reactions with nickel catalysts and silane coupling reagents. Generation of aryl silanes from aryl 

C-O bonds with silanes, to the best of our knowledge, has not been previously reported with nickel 

catalysts. Portions of the work described in this chapter has been published: Wiensch, E. M.; Todd, 

D. P.; Montgomery, J. ACS Catal. 2017, 7, 5568–5571. 
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Future directions on this project would be to explore the mechanisms for these two 

reactions, especially silylation, as current mechanistic proposals do not fully explain all the 

observed selectivity in the reaction. There are also many synthetic future directions for both 

reduction and silylation methods, which are discussed in chapter 5.  
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Chapter 3  
 

Nickel-Catalyzed C-O Bond Amination, Borylation, and Suzuki Coupling of Silyloxyarenes 

3.1 General Introduction on Buchwald-Hartwig and Suzuki-Miyaura Couplings of C-O 

Bonds 

Having explored the reactivity of silyloxyarenes under nickel catalysis, development of 

methods for late-stage diversification was explored. Reaction development focused on the two 

most utilized coupling reactions in organic synthesis, Buchwald-Hartwig aminations and Suzuki-

Miyaura couplings for C-C bond formation. Development of these coupling reactions would then 

allow for use of silyloxyarenes C-O bonds as electrophilic coupling partners for diversification 

into a variety of commonly installed functionalities. 

3.2 C-O Bond Amination of Silyloxyarenes under Nickel Catalysis 

Initial exploration into Buchwald-Hartwig aminations focused on expanding previous 

work for amination of inert C-O bonds. There have been a few reports using aryl methyl ethers C-

O bonds for aminations. However, there are not any reports of using silyloxyarene C-O bonds for 

aminations. Therefore, we sought to develop silyloxyarenes as a viable electrophile for Buchwald-

Hartwig amination and hoped that exploring this new electrophilic coupling partner would allow 

for complementary reactivity to existing methods, thereby broadening the scope of C-N coupling 

partners for inert C-O bonds. 

3.2.1 Background in Aminations of C-O Bonds 
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Since the groundbreaking work by Buchwald and Hartwig,176 several advances have been 

made to improve catalyst loadings, coupling partners, and reproducibility. Recently, there has been 

increased interest in developing methods complementary to those using aryl halides, allowing for 

sequential and/or orthogonal couplings that can eliminate protecting group manipulations while 

utilizing renewable, feedstocks chemicals. Inert C-O bonds of phenol derivatives are one of the 

most explored green alternatives to aryl halides or pseudohalides because of their relative 

abundance, complementary reactivity, and tuneability derived from the protecting group installed. 

As such, they have been explored in amination reactions.  

Initial reports by Chatani63 and Garg47 demonstrated semi-inert C-O bonds, such as 

carboxylates and carbamates, as electrophilic coupling partners with a range of secondary amines 

under nickel catalysis. The scope of amines displayed with aryl carbamate electrophiles was better 

as couplings with primary and secondary anilines were achieved. Although, use of acyclic 

secondary aliphatic amines resulted in moderate yields, this was an improvement over use of 

acyclic secondary aliphatic amines with aryl pivalates. However, primary aliphatic amines were 

not shown to be competent coupling partners in either report and were explicitly described by Garg 

as a limitation of the method. Since these two seminal reports, several advances have been made, 

including the utilization of an air-stable pre-catalyst.48 More recently, a small number of examples 

have been shown for coupling specific primary aliphatic amines using unique ligand 

scaffolds.177,178  

 

Scheme 3-1. Nickel-Catalyzed Amination of Isolated Aryl Methyl Ethers.  
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However, more inert C-O bonds are much more attractive than the carbonyl derivatives for 

late-stage coupling, due to their stability across a larger range of conditions. Reports of aminations 

using diaryl ether derivatives have utilized protecting groups that have directing capabilities, such 

as 2-pyridiyl.119 These directing aryl protecting groups have led to advances in the substrate scope 

of these reactions due to higher reactivity of the C-O bond. However, these diaryl ethers are not 

attractive for cross-coupling due to use of a coupling reaction to install the aryl protecting group.  

Aryl methyl ethers have been reported as competent electrophilic coupling partners with 

amines under nickel catalysis. Although high loadings of amine, base, and catalyst was used, an 

early example demonstrate aminations of aryl methyl ethers, where high yields were observed for 

aryl substrates with extended π systems.105 However, the naphthyl problem was significant, as only 

43% yield was obtained when moving to a biphenyl scaffold (3-1) and no product was observed 

when using anisole (3-2) (Scheme 3-1). The amine scope also had limitations as only cyclic, 

secondary aliphatic amines were displayed in good yields. Primary aliphatic amines were not 

shown and acyclic, secondary aliphatic amines resulted in modest yields.  

 

Scheme 3-2. Nickel-Catalyzed Amination of Heterocyclic Aryl Methyl Ethers.  

The substrate scope was later expanded to use of heterocyclic aryl methyl ethers.106 

However, as the same catalyst system was utilized, the method was still limited to use of extended 

aryl systems for good yields. Furthermore, the amine scope was still limited to cyclic secondary 

aliphatic amines, where N-methylbutylamine gave 26% yield of the product with an activated 

naphthyl substrates (3-3, Scheme 3-2). Therefore, development of an amination with high 
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reactivity, broad amine scope, and use of an easily accessible or readily used inert C-O bond would 

be attractive. 

3.2.2 Optimization for C-O Bond Amination of Silyloxyarenes 

C-O bond amination of silyloxyarenes, mediated by nickel catalysis, was investigated using 

conditions analogous to those used in our reductive deoxygenation reaction. Having previously 

obtained high reactivity for silyloxyarene C-O bonds,179 changing the catalyst system was not 

necessary. We were excited to find that simply introducing an amine coupling partner gave high 

yields of the aniline product (3-4) with the biphenyl model substrate (Table 3-1, entry 1).  

 Other variations on the catalyst system were also explored. As a secondary aliphatic amine 

with β-hydrogens was utilized, a nickel(II) pre-catalyst could be used in the reaction, where the 

nickel catalyst can be reduced to the active nickel(0) species with the amine. Although a slight 

decrease in yield is observed, use of the nickel(II) pre-catalyst allows for the reaction to be setup 

without the need of a glovebox (Table 3-1, entry 2). A 2:1 ratio of ligand to nickel proved to be 

optimal, where smaller ratios of ligand resulted in inferior results (Table 3-1, entries 3-4). A range 

of other ligands were also explored, focusing on electron-rich phosphine and NHC ligands.  

 Interestingly, another large, electron-rich NHC ligand, IPr*OMe, that was used in C-O 

bond silylation of silyloxyarenes resulted in no observed product with a 2:1 or 1:1 ratio of ligand 

to nickel pre-catalyst (Table 3-1, entries 5-6). This was surprising due to previous use of nickel 

and IPr*OMe for silyloxyarene C-O bond coupling and for aminations of aryl halides. A large 

dependence on the donating ability of the of the IPr derivative to the nickel center was observed, 

with low yields obtained using electron-withdrawing IPrCl (Table 3-1, entry 6), and increased 

yields from IPr (Table 3-1, entry 7) to the model ligand IPrMe (Table 3-1, entry 1). Previous work 

in inert C-O bond activation also led to exploration of other common, large, and electron-rich NHC  
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Table 3-1. Optimization of Nickel-Catalyzed Amination of Silyloxyarene via C-O Bond Activation. 

ligands, such as IMes, ICy and IAd. However, none of these ligands resulted in observable product 

(Table 3-1, entries 8-12). Several ligands beyond NHCs were also explored, including phosphines 

and bidentate N-donor ligands. Phosphine ligands used in aryl methyl ether C-O bond activation 

did not result in product with silyloxyarenes (Table 3-1, entries 13-14). Other phosphine ligands 

and bpy derivatives also did not result in any of the desired product (Table 3-1, entries 15-17).  
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 Several variables beyond the catalyst were also explored. Intriguingly, of the many 

alkoxide bases deployed, only sodium (Table 3-1, entry 1) and lithium (Table 3-1, entry 18) tert-

butoxide resulted in the desired product with several other bases not generating aniline (Table 3-1, 

entries 19-22). Concentration and solvent studies showed that the reaction could be run more dilute 

with a small decrease in yield (Table 3-1, entry 23), and other ethereal solvents could be employed 

with moderate to small decreases in yield (Table 3-1, entries 24-25). Finally, the reaction can be 

run for shorter reaction times, at lower temperatures, and with fewer equivalents of base or amine, 

although small decreases in yield are observed (Table 3-1, entries 26-29). 

 

Table 3-2. Electrophile Scope in Nickel-Catalyzed C-O Bond Amination of Silyloxyarenes. 

Other aryl electrophiles were also explored to compare reactivity of silyloxyarenes to 

commonly used coupling partners and to ensure that another silyloxyarene derivative did not give 

superior results. Exploring the use of other silyloxyarene derivatives showed a dependence on size 

and electronics of the silane protecting group, with TBS being optimal (Table 3-2, entry 1). 

Although, high yields were obtained with TBDPS (Table 3-2, entry 2), lower yields were observed 

with TIPS and TES (Table 3-2, entries 3-4). Other common aryl electrophiles resulted in inferior 
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results, with OMe (Table 3-2, entry 5) only showing trace product and other C-O electrophiles, 

including OPh, OPiv, or OTf (Table 3-2, entries 6-8), resulting in moderate yields. Finally, aryl 

halides (Br, F) resulted in low yields, due to conversion of the aryl halides to biphenyl by 

competing reduction through β-hydride elimination (Table 3-2, entries 9-10).  

3.2.3 Substrate Scope for C-O Bond Amination of Silyloxyarenes 

With optimized conditions in hand, the scope of amine coupling partners was explored. 

Several cyclic amines were coupled in good yields, including amines with basic functionality, such 

as a piperazine derivative (Table 3-3, 3-5), and a more sterically hindered amine (3-6). However, 

increasing further to more a sterically hindered cyclic amine resulted in a lower yield (3-7). 

Exploring acyclic secondary aliphatic amines, a very sterically hindered amine, diisobutylamine 

(3-8), resulted in a lower yield but other acyclic secondary amines (3-8, 3-9, 3-10) coupled in high 

yields. Although secondary aniline derivatives (3-11) resulted in moderate yield, sterically 

hindered primary anilines (3-12, 3-13) resulted in good yields. Sterically hindered anilines were 

necessary as using an unhindered aniline (3-14) as a coupling partner only resulted in trace product. 

However, exploring the use of primary aliphatic amines showed promising results (3-15, 3-16), as 

these amines have been difficult to couple with inert C-O bonds using previously reported 

methods. Gratifyingly, use of unhindered, primary aliphatic amines provided the coupled products 

in high yield (3-17, 3-18, 3-19). A series of increasingly sterically encumbered nucleophilic 

primary amines were explored, with aliphatic amines from n-butyl (3-17) to cyclobutyl (3-20) all 

resulting in good yields. Increasing to more sterically hindered, tert-butylamine (3-21), did result 

in lower yield but even 1-adamantyl amine (3-22) was isolated in a high yield, showing the first 

example of a general coupling for primary aliphatic amines with inert C-O bonds.  
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Table 3-3. Amine Scope for Nickel-Catalyzed C-O Bond Amination of Silyloxyarenes.  

However, despite the large amine scope for primary and secondary aliphatic amines, there 

were several amines that did not result in any observed product (Table 3-4). Due to the inability 

of aniline to act as coupling partner, generation of primary anilines appeared obtainable and a 

variety of coupling partners as primary amine equivalents were explored. However, ammonia, as 

a solution or as lithium amide, did not result in the free aniline. Furthermore, other primary amine 

equivalents did not result in product, including hexamethyldisilazane derivatives or 

diphenylmethanimine.  

A range of small, low boiling amines were also unsuccessful coupling partners, including 

methylamine, dimethyl amine, cyclopropylamine, and allylamine. This is likely due to the high 

reaction temperatures utilized in our reactions and the low boiling points of these amines. Other 

extremely sterically hindered primary and secondary aliphatic amines did not give product, 

including 2,4,4-trimethylpentan-2-amine, dicyclohexylamine, dibenzylamine, diisopropylamine, 
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and 2,2,6,6-tetramethylpiperidine. Finally, non-nucleophilic amines did not result in any 

observable product, including amides, pyrroles, and primary unhindered anilines.  

 

Table 3-4. Unsuccessful Amines in Nickel-Catalyzed Amination of Silyloxyarene C-O Bonds.  

Having a good understanding of the limitations in the amine scope, the silyloxyarene 

component was next explored, utilizing a challenging amine or silyloxyarene as one of the 

coupling partners. Naphthyl substrates substituted at the 1 or 2 positions were coupled in good 

yield with primary aliphatic amines (Table 3, 3-23 and 3-24). A variety of substitutions were 

tolerated on the silyloxyarene substrate, including silyl groups (3-25) and ortho substitution (3-

26). However, large ortho substituents, such as phenyl, resulted low reactivity. For 2-

phenylhydroquinone derivative 6, the meta C-O bond was preferred in a 5.7:1 ratio of product 3-

27 to 4-([1,1’-biphenyl]-3-yl)morpholine over the ortho position for this electron-rich 

silyloxyarene. A variety of heterocycles are tolerated, including quinoline, pyridine, and carbazole 

(3-28, 3-29, and 3-30). Additionally, C-O bonds substituted on the heterocycles are coupled in 

high yield, such as quinoline substrate 3-31. Other protecting groups for alcohols or amines, such 
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as aryl methyl ethers or tert-butyloxycarbonyl are tolerated, allowing for further derivatization of 

complex substrates (3-32 and 3-33). Finally, C-O bonds substituted on isolated phenyl substrates 

are coupled, including very electron-rich silyloxyarenes (3-34 and 3-35), resulting in good yields. 

Acetaminophen derivative 3-35 also shows the tolerance of unprotected amides. High yields are 

observed with less electron-rich isolated aromatics (3-36), including estradiol derivative 3-37. 

 

Table 3-5. Silyloxyarene Scope for Nickel-Catalyzed C-O Amination of Silyloxyarenes.  
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3.2.4 Mechanism for C-O Bond Amination of Silyloxyarenes 

The proposed mechanism for nickel-catalyzed C-O bond amination of silyloxyarenes is 

analogous to the proposed mechanism for our titanium mediated reduction reaction due to the use 

of the same catalysts system. Generation of Ni(NHC)2 from the nickel pre-catalyst, followed by 

displacement of one NHC ligand with sodium tert-butoxide, generates the active nickelate 

complex F (Scheme 3-3). Coordination of silyloxyarene substrate generates complex G, which 

explains the small reactivity differences between extended and isolated aromatic systems due the 

stronger η2 coordination with extended aryl systems. Oxidative addition of the aryl C-O bond to 

nickel generates neutral complex G after dissociation of an alkoxide. Exchange of an amine with 

the remaining alkoxide generates a nickel amido (I), which undergoes deprotonation to generate 

complex J. Reductive elimination and association of tert-butoxide completes the catalytic cycle.  

 

Scheme 3-3. Proposed Mechanism for Nickel-Catalyzed C-O Bond Amination of Silyloxyarenes.  
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This mechanism is proposed based on empirical findings through discoveries in our 

developed silyloxyarene C-O bond couplings and computational reports on related methods, see 

section 2.3.3 for a more detailed discussion. Our mechanism does not fully explain the difference 

between our reported method and aryl methyl ether C-O bond amination. A similar ligand is used 

and presumably goes through a related mechanism. The difference in poor reactivity with aryl 

methyl ethers can be explained by the stronger C-O bond as compared to silyloxyarene C-O bonds. 

However, the improved amine scope in our methodology is not explained and could be due to a 

variety of reasons, including a full amine scope was not explored, a different mechanism is 

operating, or the protecting group is resulting in improved scope for the reaction. Additionally, the 

methoxy group could be resulting in off cycle intermediates, such as nickel carbonyl complexes 

through β-hydride elimination and resulting in undesired outcomes.  

3.3 C-O Bond Borylation and Suzuki Couplings of Silyloxyarenes 

In addition to developing Buchwald-Hartwig type aminations through C-O bond activation 

of silyloxyarenes, C-C bond forming reactions were desired. Due to the widespread use of Suzuki 

couplings in organic synthesis, development of a Suzuki coupling with silyloxyarene C-O bonds 

would be attractive for C-C bond formation and has not been previously explored. Therefore, we 

investigated C-O bond activation with nickel catalysts for development of a Suzuki coupling, 

which we believed could lead to improvements for current inert C-O bond coupling methods and 

prove complementary to these existing procedures. 

3.3.1 Background in Suzuki-Miyaura Couplings of C-O Bonds 

Several methods exist for Suzuki coupling or borylation of C-O bonds using carbonyl or 

aryl methyl ether derivatives. An example of using carbamates as aryl C-O electrophiles for 

borylation was reported with yields ranging from 42-84% (Scheme 3-4).46 However, use of a 
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strong base, sodium tert-butoxide, resulted in poor results when moving from naphthyl substrates 

to biphenyl and isolated aromatics. They could obtain improved yields by using increased 

temperatures and a weaker base, potassium phosphate. Notably, they also showed several 

heterocyclic substrates and alkenyl substrates for generation of heterocyclic aryl or vinyl boranes. 

Other groups have also explored borylation of more activated aryl C-O bonds, such as 2-pyridyl 

protecting groups, with nickel117 or rhodium113 catalysts. However, inert C-O bond borylations 

have been limited to aryl methyl ethers. 

 

Scheme 3-4. Nickel-Catalyzed C-O Borylation of Aryl Carbamates with Bis(neopentyl glycolato)diboron.  

An example for borylation of aryl methyl ethers was displayed where many naphthyl and 

extended aryl systems (3-38) gave good yields.107 However, due to low C-O bond reactivity of aryl 

methyl ethers, use of isolated aromatics were not general as electron-deficient groups were 

required to act as directing groups for the nickel catalyst to obtain moderate yields (Table 3-6). 

Substrates with ortho-ester groups (3-39, 3-40) or an ortho-trifluoromethyl group (3-41) were the 

only isolated aromatic derivatives that were shown to result in product.  

 

Table 3-6. Nickel-Catalyzed C-O Borylation of Aryl Methyl Ethers with Bis(neopentyl glycolato)diboron. 
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  An earlier report described that some aryl methyl ether substrates could be used in 

homocouplings with bis(neopentyl glycolato)diboron as reductant, where the aryl boron is 

generated in-situ (Scheme 3-5).103 Although yields were good for extended aryl systems, use of 

isolated aromatics gave poor yields, with anisole resulting in a 33% yield. In addition to this 

example of in-situ generation of an aryl boron reagent for Suzuki couplings, many direct Suzuki 

couplings with aryl borons have been reported. 

 

Scheme 3-5. Nickel-Catalyzed C-O Homocoupling of Aryl Methyl Ethers with Bis(neopentyl glycolato)diboron. 

Early developments by Garg,58 Shi,57 and Snieckus39 showed Suzuki couplings of carbonyl 

derivatives, such as pivalates, acetates, and carbamates, with boronic acids or boroxines. These 

methods used nickel catalysts with tricyclohexylphosphine as a ligand, four equivalents of aryl 

borane, and more than five equivalents of potassium phosphate. In general, high yields were 

obtained for the substrates explored. Early findings by Snieckus showed that excess water impeded 

the reaction and that boroxines did not couple under strictly anhydrous conditions; therefore, a 

10:1 ratio of boroxine to boronic acid was used.39 Due to some discrepancies between the work of 

Garg and Snieckus, they followed up by exploring Suzuki couplings of aryl carbamates 

experimentally and computationally with Houk.41 They found water stabilized the resting state and 

a five-membered transition state was operable for oxidative addition, leading to improved results. 

Other coupling partners have also been used for Suzuki couplings of C-O bonds, including 

more activated aryl C-O electrophilic coupling partners.112,115 Furthermore, aryl boronic esters can 

also be utilized, as was later displayed in Suzuki couplings of aryl carbamates using aliphatic NHC 
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ligands and nickel catalysts.42 There has also been a couple of examples using more inert aryl 

electrophiles, which would be advantageous for late-stage coupling.  

 

Scheme 3-6. Nickel-Catalyzed Suzuki Coupling of Aryl Methyl Ether with Nickel(0) Cyclooctadiene and Tricyclohexylphosphine. 

An early example of coupling aryl methyl ethers was limited to naphthyl substrates, and 

other extended ring systems, using tricyclohexylphosphine, nickel(0) pre-catalyst, and cesium 

fluoride (Scheme 3-6).89 The scope for this reaction was quite limited as few functional groups 

were tolerated in the reaction. As few base sensitive functional groups were displayed, this Suzuki 

coupling presented few advantages over coupling reactions using strongly nucleophilic coupling 

partners, where high yields are obtained for even isolated aromatics.128 However, it was a 

important initial discovery early in the development of aryl methyl ether couplings with milder 

nucleophilic coupling partners.  

 

Scheme 3-7. Nickel-Catalyzed Suzuki Coupling of Aryl Methyl Ethers using Aliphatic NHC Ligands and Cesium Fluoride.  

The method was later explored, with improved conditions obtained for Suzuki couplings 

of aryl methyl ethers and aryl boronate esters, using aliphatic NHC ligands, nickel(0) pre-catalyst, 

and cesium fluoride (Scheme 3-7).90 Although significantly higher yields were obtained with 

biphenyl substrates, isolated aromatics still suffered from low yield with 1-(tert-butyl)-4-

methoxybenzene resulting in a 32% yield (3-44). Use of benzylic methyl ethers were also shown 

to be competent in the developed Suzuki coupling for Csp2-Csp3 coupling, with even higher yields 
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obtained over aryl methyl ether C-O bond coupling. One interesting discovery was the necessity 

of cesium fluoride in the original method for Suzuki coupling with tricyclohexylphosphine. 

Cesium fluoride was found to not be needed with aliphatic NHCs in the Suzuki coupling of aryl 

methyl ethers. This difference was explored computationally, and was determined to derive from 

a lowering of the transition state energy by forming a quaternary complex with 

tricyclohexylphosphine. This stabilization was not necessary for the aliphatic NHC method due to 

increased stabilization of the nickel catalyst by the NHC ligand.180 Of the inert C-O bonds, only 

aryl methyl ethers have been utilized in Suzuki-Miyaura couplings and we sought to develop 

Suzuki-Miyaura couplings of silyloxyarene C-O bonds to further show the utility of these aryl 

electrophiles and potentially increased the substrate scope for inert C-O bond couplings. 

3.3.2 C-O Bond Borylation of Silyloxyarenes 

Nickel-catalyzed C-O bond borylation of silyloxyarenes was explored as another method 

of transforming the C-O bond of silyloxyarenes into an aryl nucleophile. Previous work (chapter 

2) displays generation of aryl silanes from silyloxyarene C-O bonds. However, current use of such 

products has only limited use as nucleophilic coupling partners in Hiyama-Denmark reactions and 

development of a more useful aryl nucleophile would be advantageous. Therefore, due to the 

prevalence of Suzuki couplings, borylation, or Miyaura couplings, was explored. 

3.3.2.1 Optimization for C-O Bond Borylation of Silyloxyarenes 

Initial experiments began by exploring H-Bpin for the coupling partner, as a method to 

expand on our silylation methodology by switching Bpin for SiEt3. However, due to initial 

experiments showing instability of H-Bpin to our reaction conditions, use of H-Bpin was not 

further explored. Instead, diboron reagents were explored with our catalyst systems for 

silyloxyarene C-O bond activation, a nickel(0) pre-catalysts and IPrMe. However, no product was 
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observed while screening many bases and solvents. Therefore, co-catalysts were explored that are 

known to rapidly transmetallate with diboron species and generate metal-boronates. Copper 

appeared to be an ideal candidate due to prevalence in borylation reactions181,182 and previously 

shown compatibility with nickel catalysis.73 Indeed, when a range of copper sources were 

explored, product was observed (Table 3-7). There did not seem to be a significant difference or 

any observable trend between copper(II) or copper (I) sources, as both copper(II) and copper(I) 

acetates resulted in observed product. However, there did appear to be an importance on the 

anionic ligand, as copper(II) triflate did not work (Table 3-7, entries 1-3). In general, copper(I) 

generally gave the best results across halide derivatives and discrete copper complexes (Table 3-7, 

entries 4-11). 

 

Table 3-7.  Copper Screen for Nickel-Catalyzed Borylation of Silyloxyarene C-O Bonds.  

Based on conversion to the silyloxyarene to product, copper(II) acetate and IMesCuCl were 

further optimized. Initial optimization of IMesCuCl resulted in yields around 50%. However, 

further optimization proved challenging as yields plateaued and altering other reaction conditions 
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did not result in improved yields. Therefore, copper(II) acetate was then explored as an alternative 

copper co-catalyst, which was advantages due the low cost.  

 

Table 3-8. Diboron Equivalents in C-O Bond Borylation of Silyloxyarenes.  

Equivalents of the diboron reagent was explored, where low yield were observed with 

fewer than 1.5 equivalents (Table 3-8, entries 1-2). Two equivalents gave a moderate yield of 55% 

(Table 3-8, entry 3), but increasing to 2.5 and 3.0 equivalents gave good yields of 72 and 83%, 

respectively (Table 3-8, entries 4-5). Increasing further resulted in decreased yields, with only a 

small amount of product using five equivalents of B2pin2 (Table 3-8, entries 6-7). The amount of 

diboron used going forward was 2.5 equivalents, to balance yield and the amount of B2pin2.  

 

Table 3-9. Copper Loading in C-O Bond Borylation of Silyloxyarenes.  
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Next, amounts of copper co-catalyst was then explored. Based on the amount of nickel 

catalyst, a 1:1 ratio of copper to nickel resulted in inferior results than the 2:1 ratio previously used 

(Table 3-9, entries 1-2). A 2:1 ratio proved to be optimal between copper and nickel, with increased 

amounts of copper resulting in inferior results (Table 3-9, entries 3-4). Interestingly, increasing 

further to a 5:1 ratio of copper to nickel resulted in only trace product being observed (Table 3-9, 

entry 5). Several solvents were explored, which all proved inferior to toluene, although cyclopentyl 

methyl ether resulted in only a small decrease in yield. Therefore, a 2:1 ratio of copper to nickel 

and toluene were kept as the optimal conditions going forward.  

 

Table 3-10. Catalyst Optimization in C-O Bond Borylation of Silyloxyarenes.  

The nickel catalyst was then explored, looking at catalysts loadings and other pre-catalysts. 

Using bis(1,5-cyclooctadiene) nickel(0), cutting the catalyst loading in half to 5 mol% resulted in 

a 50% yield, from 72% yield (Table 3-10, entries 1-2). However, using 10 mol% nickel(II) 

acetylacetonate resulted in near quantitative yield (Table 3-10, entry 3). The catalyst loading could 

be cut in half without any significant decrease in yield (Table 3-10, entry 4), although decreasing 

catalyst loadings by half again resulted in only 34% yield (Table 3-10, entry 5). Switching to a 

nickel(II) pre-catalyst also allowed the reaction to be set up without a glovebox. Due to only a 
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small decrease in yield by cutting the catalyst loading to 5 mol% with nickel(II) acetylacetonate, 

this pre-catalyst and loading was used for further optimization.  

 

Table 3-11. Sodium tert-butoxide Equivalents in C-O Bond Borylation of Silyloxyarenes.  

The stoichiometry of sodium tert-butoxide was next investigated, and using catalytic 

amounts only gave trace product (Table 3-11, entry 1). Increasing to one equivalent also resulted 

in poor yield, with 15% product observed (Table 3-11, entry 2). Although use of 1.5 or 2.0 

equivalents gave good yields (Table 3-11, entries 3-4), they were both inferior to the 2.5 

equivalents used in previous studies (Table 3-11, entry 5). Additional equivalents of base above 

2.5 resulted in poor yields (Table 3-11, entries 6-7).  

 

Table 3-12. Silane Protecting Groups in C-O Bond Borylation of Silyloxyarenes.  
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Finally, several different silane protecting groups were explored to ensure tert-

butyldimethysilyl was again optimal. A smaller silane protecting group, triethylsilyl, resulted in 

only a small decrease in yield with 77% product observed (Table 3-12, entry 1). A larger silane 

protecting group, triisopropysilyl, resulted in a moderate yield of 46% (Table 3-12, entry 3). 

Therefore, tert-butyldimethylsilyl was maintained as the optimal protecting group. Control 

reactions were also run to ensure all catalytic components were required for product formation, 

and no product was observed without nickel pre-catalyst, ligand, or base. However, a moderate 

yield of 34% can be obtained without copper co-catalyst.  

3.3.2.2 Substrate Scope for C-O Bond Borylation of Silyloxyarenes 

After good yields were obtained for C-O bond borylation of silyloxyarenes, an initial 

substrate scope was explored (Table 3-13). In addition to our model substrate (3-45), other simple 

biphenyl and naphthyl silyloxyarenes were borylated under our reaction conditions in good yields. 

Both meta (3-48) and ortho substitution resulted in good yields, with only a 10% decrease in the 

case of 1-naphthyl (3-48) substrate, compared to the 2-naphthyl (3-47) compound. Finally, isolated 

aromatic substrates (3-49, 3-50) also gave good yields of the borylated product, considering the 

difficulty in activating the C-O bond of these isolated aromatic systems. For example, the method 

reported for C-O borylation of aryl methyl ethers was unable to borylate isolated aromatic systems 

without directing groups. Heterocycles were also explored and currently result in modest yield (3-

51). The decreased yield for these substrates results from mixtures of products derived from C-H 

borylation, where an increased acidity of C-H bonds on heterocyclic substrates result in increased 

borylation. Such C-H borylations have been reported recently.183,184 However, this currently 

complicates use of heterocyclic substrates in this C-O bond borylation of silyloxyarenes.  
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Table 3-13. Initial Substrate Scope for C-O Bond Borylation of Silyloxyarenes.  

3.3.2.3 Mechanism for C-O Bond Borylation of Silyloxyarenes 

Although no detailed mechanistic investigations have been conducted, our proposed 

mechanism is based on reaction trends observed in our silyloxyarene C-O bond couplings and 

literature precedent. Our proposed mechanism for borylation is analogous to our proposed 

mechanism for C-O bond reduction of silyloxyarenes, with a more complete mechanistic 

description on aspects of the proposed mechanism available in section 2.3.3. Generation of 

Ni(IPrMe)2 is proposed, which then produces the catalytically active catalyst through substitution 

of one NHC ligand with tert-butoxide, generating complex K. Next, coordination of nickel catalyst 

of substrate, through η2 coordination, makes complex L. Oxidative addition of the silyloxyarene 

C-O bond to the nickel catalyst and dissociation of one alkoxide generates a neutral nickel complex 

(M). With a copper co-catalyst, copper(II) acetate produces a copper alkoxide through ligand 

substitution, which transmetallates with bispinacolatodiboron, to form a copper-boryl complex for 

transmetallation with nickel complex M. This regenerates copper alkoxide and produces a nickel-
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boryl complex (N). Alternatively, nickel complex M can directly transmetallate with 

bispinacolatodiboron to generate complex N, which then undergoes reductive elimination to 

produce the aryl boron and close the catalytic cycle upon association of tert-butoxide. As copper 

is not required to obtain moderate yields of product, direct transmetallation of B2pin2 with complex 

M is operable but competitive with the copper co-catalyzed pathway in the presence of copper(II) 

acetate. 

 

Scheme 3-8. Proposed Mechanism for C-O Bond Borylation of Silyloxyarenes.  

3.3.3 C-O Bond Suzuki Coupling of Silyloxyarenes 

Direct aryl-aryl coupling of silyloxyarene C-O bonds and aryl borons was also explored to 

access biaryl compounds. Furthermore, the unexpected C-H borylation currently presents 
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limitations in the in C-O bond borylation with heterocyclic substrates, and direct coupling was 

explored as a complementary and alternative method by focusing on using heterocyclic 

silyloxyarene substrates. 

3.3.3.1 Optimization for C-O Bond Suzuki Coupling of Silyloxyarenes 

Suzuki coupling of silyloxyarene C-O bonds was first explored with inspiration from 

Garg.57 Similar conditions were explored using combinations of sodium tert-butoxide and 

potassium phosphate. However, no product was observed using combinations of these bases across 

a variety of ligands commonly employed for inert C-O bond activation, such as electron-rich 

phosphines and aliphatic or aryl NHC ligands. Some dual-catalytic methods were also briefly 

explored using palladium or copper co-catalysts; however, this approach did not result in the 

desired product. Drawing inspiration from aryl methyl ether C-O bond Suzuki coupling, addition 

of cesium fluoride resulted in product formation, although yields were low (Scheme 3-9). Aryl 

boronate esters derived from Bpin could also be used and generally resulted in slightly better 

yields.  

 

Scheme 3-9. Initial Suzuki Coupling of Boronic Acids and C-O Bonds of Silyloxyarene with Cesium Fluoride. 

In addition to the low yields, high loadings of base and cesium fluoride were used and 

further optimization was necessary to move away from these limitations. A range of different 

solvents were explored but did not improve yields. Water as a co-solvent was employed but did 

not result any significant product. Other ligands used in inert C-O bond activation were explored 

but did not result in improved yields. Higher yields could be obtained by decreasing the amounts 
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of both bases and moving to a conjugated silyloxyarene substrate (Scheme 3-10). These conditions 

also gave similar yields using ([1,1'-biphenyl]-4-yloxy)(tert-butyl)dimethylsilane as a substrate. 

 

Scheme 3-10. Suzuki Coupling of Aryl Borons and C-O Bonds of Silyloxyarenes with Cesium Fluoride.  

Several heterocyclic silyloxyarene substrates were explored, including 6-((tert-

butyldimethylsilyl)oxy)-2-methylquinoline, 3-((tert-butyldimethylsilyl)oxy)pyridine, 2-((tert-

butyldimethylsilyl)oxy)pyridine, and 2-(4-((tert-butyldimethylsilyl)oxy)phenyl)pyridine, all 

resulting in yields ranging from 30-60%. These substrates showed a variety of heterocyclic 

silyloxyarene substrates would be compatible with the methodology. However, improved yields 

were desired, and the ratio of aryl boron to silyloxyarene was then explored for optimization. 

Yields decreased when using a lower ratio than 1.5:1, and increased slightly when 1.75 equivalents 

of aryl boron to silyloxyarene were used. However, a 1.5:1 ratio of aryl boron to silyloxyarene was 

maintained as the optimal conditions, where increased amounts of aryl boron could be used for 

challenging substrate.  

 

Table 3-14. Suzuki Coupling of Aryl Boronic Acid or Boronate Esters and C-O Bonds of Silyloxyarenes with or without Lewis 

Basic Sites. 
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Interesting, looking at lower loadings of either cesium fluoride or sodium tert-butoxide, 

ranging from catalytic amounts to four equivalents, did not result in a change to the yield outside 

of the 60-70% range, with 3-((tert-butyldimethylsilyl)oxy)quinoline and phenyl boronic acid 

pinacol ester as substrates. This questioned the role of cesium fluoride in these reactions. Through 

some control experiments across several different substrates, cesium fluoride was found to be 

required for reactivity when using aryl boronic acids and simple silyloxyarenes without Lewis 

basic sites. However, cesium fluoride was not required for heterocyclic aryl boronic acids or for 

both classes of substrates with aryl boronate ester coupling partners (Table 3-14). 

 

Table 3-15. Current Optimized Conditions for Suzuki Coupling of 3-((tert-butyldimethylsilyl)oxy)quinoline. 

Fewer equivalents of sodium tert-butoxide could also be used with activated substrates 

containing Lewis basic sites on the silyloxyarene or aryl boron coupling partner. Additionally, for 

activated naphthyl substrates, slightly higher yields were obtained using lower reaction 

temperatures to 110 or 100 degrees Celsius. More optimization needs to be conducted to obtain 

higher yields, and currently there are two different conditions based on the substrate employed. 

One for the highly reactive 3-quinoline substrate, where yields in the 90s are obtained (Table 3-15), 

and another for other silyloxyarene substrates which are not as activated, and do not have the C-O 

bond on the heterocyclic ring (Table 3-16). Slightly higher yield in these reactions can be obtained 

by increasing the amount of aryl boron. 
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Table 3-16. Current Optimized Conditions for Suzuki Coupling of Silyloxyarene.  

3.3.3.2 Substrate Scope for C-O Bond Suzuki Coupling of Silyloxyarenes 

An exploration of substrate scope has not been conducted yet as further optimization needs 

to be preformed to obtain higher yields. However, after further optimization, the method should 

be general to a range of substrates, as several different heterocyclic silyloxyarene substrates have 

already been shown to be competent in the Suzuki reaction. One area that needs further attention 

is the use of isolated aromatic substrates. These substrates were briefly explored in our 

optimization but due to low yields in the 20s-30s, biphenyl and naphthyl substrates when then 

explored for ease of isolation.  

3.4 Conclusions and Future Directions for C-O Bond Amination, Borylation, and Suzuki 

Coupling of Silyloxyarenes 

A variety of transformations have been developed to display the toolbox of methods that 

could be used in late-stage silyloxyarene C-O bond coupling, including, amination, borylation, and 

Suzuki coupling. Development of C-O bond amination of silyloxyarenes has improved the reaction 

scope for inert C-O bonds, allowing for isolated aromatic substrates and primary aliphatic amines. 

Miyaura couplings have also led to improvements in scope for inert C-O bonds, as isolated 

aromatics systems without a directing group can now be utilized as substrates. Further work needs 

to be conducted to fully explore the capabilities of both the borylation and Suzuki reactions. 
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However, early findings suggest both reactions should have good substrate scope and be broadly 

applicable.  

Future directions include completing the substrate scope for Miyaura coupling. 

Additionally, direct coupling of the in-situ generated aryl boronate ester should be, allowing for 

homocoupling of silyloxyarene C-O bonds. This was briefly explored but may be easier to develop 

after we have a greater understanding of the Suzuki coupling reaction. This would allow 

silyloxyarene C-O bonds to be used as both electrophilic and nucleophilic coupling partners in 

homo or heterocoupling reactions. Other future directions related to these projects are described 

in chapter 5.  
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Chapter 4  
 

Nickel-Catalyzed Sequential and Orthogonal Couplings of Silyloxyarenes 

4.1 Introduction to Sequential and Orthogonal Couplings 

The ability to conduct a late-stage, selective coupling is important to medicinal chemists 

for rapid diversification of a common intermediate, allowing for molecules to be efficiently 

stitched together and to rapidly build up complexity. Two methods are commonly employed, 

iterative and sequential derivatization (Scheme 4-1).185 Whereas iterative routes have intermediate 

deprotection or deprotection-activation strategies, sequential routes allow for direct coupling of 

functional groups in a molecule in succession, without intermediate steps. Iterative routes are 

commonly employed in synthesis; however, the increased step count from deprotection or 

deprotecting-activation make them less advantageous than direct sequential routes (Scheme 4-1).  

 

Scheme 4-1. Iterative Diversification and Sequential Diversification.  
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Sequential diversification allows for a rapid growth in complexity of a core scaffold and 

efficiently accesses related molecules for creating chemical libraries. Most importantly, utilizing 

routes that do not require intermediate protecting group manipulations provides the most direct 

and attractive routes due to minimization of step count, time, reagents, and waste generated in such 

steps. However, development of sequential diversification routes is challenging, often due to the 

similarity in reactivity of coupling groups. Therefore, sequential coupling strategies are typically 

limited to two or three steps. Commonly utilized strategies to obtain high selectivity is through 

attenuating reactivity of the electrophile and selectivity derived from the nucleophile or catalyst 

system. The most commonly explored area for developing sequential coupling routes are with aryl 

electrophiles due to the diverse number of electrophilic derivatives and coupling methods. 

Aryl electrophiles are attractive because of the large range of reactivity in common aryl 

electrophilic coupling partners, from aryl iodides to aryl methyl ethers, where the large range of 

reactivity allows for sequential couplings. Sequential couplings with aryl electrophiles 

demonstrates a proof-of-principle on how other substrate classes could be developed. Utilizing 

methods with coupling groups that are typically considered inert is necessary for sequential 

couplings as later steps require these handles to be stable through previous steps. In this way, the 

same properties that make inert electrophiles useful for late-stage diversification, also make them 

relevant in sequential couplings. However, sequential coupling routes of aryl electrophiles are still 

challenging to design due to the lability of some aryl electrophiles and low functional group 

tolerance or low activity in a coupling reaction. Despite many challenges, there have been several 

examples of sequential coupling routes using aryl electrophiles.  

The vast majority of sequential couplings only display two sequential couplings in a row, 

where few examples show three sequential couplings. Therefore, this background section will 
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focus on sequential couplings of aryl electrophiles with greater than two steps, concentrating on 

how longer sequential couplings could be developed. An early example displayed use of a 

trisubstituted benzene ring (4-1) with chloride, nitrile, and methoxy groups for sequential 

coupling.186 This allowed them to access a benzene product (4-4) with three different aryl 

substituents by coupling from most reactive chloride to least reactive methoxy (Scheme 4-2). Two 

Suzuki couplings were used to install the first two aryl groups and a Kumada coupling installed 

the final phenyl group. 

 

Scheme 4-2. Sequential Coupling towards Trisubstituted Benzene using Chloride, Nitrile, and Methoxy Groups.  

This approach for generation of tri-substituted benzene compounds was further expanded 

with a full publication dedicated to the programmed selective couplings of C-O bonds (Scheme 

4-3).187 Substrate scopes for each of the three coupling reactions was displayed, where three 

different C-O electrophilic coupling partners were utilized (4-5). Use of three different protected 

C-O bonds, triflate, carbamate, and methoxy, allowed for a range of reactivity of the C-O bonds 

and for selective coupling of the most activated C-O bond, triflate, to the most inert C-O bond, 

methoxy. 
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Scheme 4-3. Programmed Selective Sequential Coupling using Triflate, Carbamates, and Methoxy Groups.  

Since these two initial reports, other analogous strategies have been used with the same tri-

substituted starting material. A similar sequential coupling using three C-O bonds was reported, 

except a pivalate (4-6) was used instead of the carbamate (Scheme 4-4).38 Although they utilized 

the same first step, a Suzuki coupling mediated by palladium catalysis for C-O bond coupling of 

the triflate, the strategies diverged by using two aryl-alkyl couplings for subsequent steps. First the 

pivalate (4-7) was coupled with an alkyl boron and then the methyl ether (4-8) was coupled with 

an organolithium reagent to generate the final product (4-9).  

 

Scheme 4-4. Programmed Selective Sequential Coupling Using Triflate, Pivalate, and Methoxy Groups.  
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 One final example explored a similar strategy with the tri-functionalized benzene ring, 

containing bromo, chloro, and pivalate electrophiles (Scheme 4-5).74 This displayed tolerance of 

pivalates in two transition metal-catalyzed couplings of a bromide and a chloride. Additionally, 

use of three different transition metals for the three different couplings added significance to this 

example. A copper-catalyzed amination of the aryl bromide (4-10), palladium-catalyzed Suzuki 

coupling of the aryl chloride (4-11), and nickel-catalyzed stannylation of the pivalate (4-12) 

displayed the reactivity order of these aryl electrophiles.  

 

Scheme 4-5. Programmed Selective Sequential Coupling Using Bromo, Chloro, and Pivalate Groups.  

The above examples are excellent illustrations of how these commonly utilized C-O bond 

electrophiles can be utilized in selective, sequential couplings. However, as they all utilize the 

same starting material scaffold, other configurations of electrophiles would further show the 

significance of this strategy. Furthermore, adding additional couplings would substantially 

increase the diversity and modularity of the final compound. In addition to developing longer and 

more diverse sequential coupling routes, ideally being able to reverse the inherent reactivity that 

determines coupling order of aryl electrophiles would be even more advantageous and add 

additional modularity to these approaches.   
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This ability to orthogonally couple aryl electrophiles would represent a large advance and 

be useful for applications in sequential couplings and for organic synthesis. Orthogonal couplings 

are attractive because divergent, selective coupling of two different aryl electrophiles allows for 

increased modularity in synthetic routes (Scheme 4-6). However, this is even more challenging 

than developing sequential couplings, and has only been displayed on unbiased substrates between 

aryl triflates and aryl chlorides or bromides. This is due to the difficultly in overcoming the 

inherent reactivity of one of the coupling partners while maintaining high selectivity. 

 

Scheme 4-6. Orthogonal Coupling Strategies.  

One of the early examples in exploring orthogonality between two aryl electrophiles (4-

13) was conducted in Stille couplings with vinyl stannanes (Scheme 4-7).188 Decent selectivity 

was observed between bromide and triflate, based on the starting catalyst and solvent choice. Non-

polar solvents with tetrakis(triphenylphosphine)palladium(0) resulted in moderate selectivity for 

coupling the bromide (4-14) and polar solvents with bis(triphenylphosphine)palladium(II) 

dichloride resulted in moderate selectivity for coupling the triflate (4-15). Higher selectivity was 

observed when temperatures were decreased for these reactions. The observed selectivity between 
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triflate and bromide electrophiles was proposed to derive from coordination number on the 

palladium catalyst and ability of the triflate to direct the palladium catalyst.  

 

Scheme 4-7. Orthogonal Coupling of Aryl Bromide and Aryl Triflate in Palladium-catalyzed Stille Couplings. 

Hayashi explored the orthogonal coupling of 4-bromophenyl trifluoromethanesulfonate (4-

13) in Kumada couplings with phenyl magnesium bromide.189 It was found that a bidentate ligand, 

1,3-bis(diphenylphosphino)propane, resulted in selective coupling of the triflate (4-17), and a 

monodentate ligand, 2-(diphenylphosphino)-2'-methoxy-1,l'-binaphthyl, resulted in selective 

coupling of the bromide (4-16, Scheme 4-8). No traces of coupling the opposite aryl electrophile 

first was observed, although small amounts of the di-coupled products were detected. This was the 

first successful example of orthogonal coupling with a palladium catalyst, determined solely by 

choice of ligand.  

 

Scheme 4-8. Orthogonal Coupling of Aryl Bromide and Aryl Triflate in Palladium-catalyzed Kumada Couplings. 

Another example of orthogonal coupling of aryl electrophiles was described by the Fu 

group (Scheme 4-9).190 The unbiased substrate utilized in the orthogonal couplings was 4-

chlorophenyl trifluoromethanesulfonate (4-18), where a phenyl ring contained para-substituted 

chloride and triflate electrophiles. The Fu group found that judicious choice of catalyst enabled 

orthogonal coupling of these aryl electrophile in a Suzuki coupling. Using 
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tris(dibenzylideneacetone)dipalladium(0) with tri-tert-butylphosphine the aryl chloride was 

coupled (4-19), and using palladium(II) acetate with tricyclohexylphosphine the aryl triflate was 

reacted (4-20).  

 

Scheme 4-9. Orthogonal Coupling of Aryl Chloride and Aryl Triflate in Palladium-catalyzed Suzuki Couplings.  

Houk and Schoenebeck explored the origin of selectivity for the above example (Scheme 

4-9) and found that reversal in the inherent reactivity of the aryl chloride is due to having a 

monoligated palladium complex. This complex reacts with the weaker aryl electrophile C-X bond, 

the aryl chloride C-Cl bond. Selectivity for the triflate C-O bond is due to having a di-ligated 

palladium complex that is directed by the triflate protecting group.191 Subsequent studies further 

explored this catalyst selectivity by investigating a larger range of phosphines.192 Schoenbeck 

further explored solvent effects in this system and also found that selective coupling of the triflate 

was possible using conditions to couple the aryl chloride (4-21), except using a polar solvent, 

acetonitrile. (Scheme 4-10).193 

 

Scheme 4-10. Orthogonal Coupling of Aryl Chloride and Aryl Triflate in Palladium-catalyzed Suzuki Couplings Based on Solvent. 

Schoenbeck went on to show selectivity between the two aryl electrophiles in nonpolar or 

polar solvents was derived from generation of an anionic palladium complex. Initially, 
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computations were conducted to explore solvent coordination or electrostatic stabilization, but 

neither was shown to support the observed selectivity. Another proposal involved coordination of 

a fluoride ion to generate an anionic palladium complex and activate the triflate. This was 

supported by using the Stille coupling as a model reaction, as the stannane coupling partners are 

not coordinating and can be conducted without additives. These experiments validated this 

proposal where Stille couplings with a coordinating ion, fluoride, results in coupling of the triflate 

(4-23) and use of a non-coordinating ion, PF6, resulted in coupling of the aryl chloride (4-24, 

Scheme 4-11).193,194 

 

Scheme 4-11. Orthogonal Coupling of Aryl Chloride and Aryl Triflate in Palladium-catalyzed Stille Couplings Based on Additive. 

An example showing orthogonal selectivity based on the nucleophilic coupling partner has 

also been described between triflate and bromide.195 Based off of the above works by Hayashi189 

and Fu,190 a variety of different coupling reactions were explored and discovered that using the 

same reactions conditions for Suzuki couplings with boronic acids resulted in coupling the aryl 

bromide. However, other common nucleophilic coupling partners reacted with the triflate, 

including Kumada, Negishi, Stille, amination, and Heck reactions (Scheme 4-12).195 They 

proposed the observed selectivity was determined by the nucleophilic coupling partner. The 

difference between the boronic acid and the other coupling partners was proposed to derive from 

activation of the boronic acid by the bromide. However, they also propose that other activation 

processes for the boron species could be operable and no support for any of these hypotheses was 

included.  
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Scheme 4-12. Orthogonal Couplings of Triflate and Bromide Based on Nucleophilic Coupling Partner.  

A recent example explored use of a palladium-catalyzed amino carbonylation reaction for 

orthogonal couplings of bromide and triflate electrophiles (Scheme 4-13).196 Chemoselective 

coupling was observed based on the ligand and solvent utilized. A combination of xantphos and 

toluene resulted in coupling of the aryl bromide (4-28), where dppf ligand and dimethylsulfoxide 

resulted in coupling of the triflate (4-29). A large solvent effect was observed for these two ligands. 

Interestingly, when instead exploring bulky, monodentate phosphine ligands, solvent choice did 

not influence the chemoselectivity. They supported the empirical findings through computations 

and found that differences in polarities of the bromide and triflate C-X bonds resulted in the 

selectivity, as triflate activation required polar solvents to stabilize the transition state and the 

bromide did not.  

 

Scheme 4-13. Orthogonal Coupling of Aryl Bromide and Aryl Triflate in Palladium-catalyzed Carbonylation Based on Solvent 

and Ligand. 

In addition to the above examples for unbiased orthogonal couplings, where 

chemoselectivity is derived from the catalyst or nucleophilic coupling partner, there are also many 
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examples using biased substrates where selectivity is determined on the electrophilic coupling 

partner. A recent example of utilizing biased substrates to obtain orthogonal coupling is from the 

Sigman group.197 Although these cases are useful, they are limited to the specific substrate 

explored and are not general as if unbiased substrates were not used the same selectivity would 

not be obtained. Thus, the development of methods that have catalyst selectivity are the most useful 

for general application. All the above examples have utilized activated electrophilic coupling 

partners and palladium catalysts. Therefore, developing orthogonal couplings using inert 

protecting groups and nickel catalysts would both explore new areas in the field of orthogonal 

couplings.  

4.2 Orthogonal Couplings with Silyloxyarenes and Aryl Methyl Ethers 

Inspired by palladium-catalyzed orthogonal couplings of triflates with bromides or 

chlorides, the use of aryl methyl ethers and silyloxyarenes as orthogonal coupling partners was 

envisioned under nickel catalysis. This approach was hypothesized, as aryl methyl ethers are well 

tolerated under reaction conditions we developed for silyloxyarene C-O bond coupling. However, 

as the aryl methyl ether C-O bond is stronger than a silyloxyarene C-O bond, this result follows 

the reactivity order of the two inert C-O bonds. The more challenging part of developing 

orthogonal couplings of aryl methyl ethers and silyloxyarenes would be reversing this inherent 

selectivity to couple the aryl methyl ether C-O bond first.  

Reversing coupling order is extremely challenging and has only been demonstrated using 

triflates in the field of cross-coupling. The ability of the triflate to act as a directing group allows 

a palladium catalyst to activate the stronger aryl C-O bond over the aryl C-Br or C-Cl bonds. The 

difference between aryl C-OMe and aryl C-OSiR3 bonds is less significant than the difference 

between aryl C-OSO2CF3 and aryl C-Br or C-Cl. Neither aryl methyl ethers nor silyloxyarenes 
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possess significant directing capabilities for a transition metal catalyst, and the only major 

difference between the groups is their size. Silane protecting groups utilized in C-O couplings are 

typically large compared to a methyl group. Therefore, finding a method that could utilize the 

steric differences between the two electrophiles, with the higher reactivity of silyloxyarene C-O 

bonds, could lead to orthogonal couplings of the two groups (Scheme 4-14). 

 

Scheme 4-14. Sequential Coupling Strategy of Aryl Methyl Ethers and Silyloxyarenes.  

  One key finding towards orthogonal coupling of aryl methyl ethers and silyloxyarenes was 

discovered through optimization of silyloxyarene C-O bond coupling reactions (Chapters 2 and 3). 

Use of phosphine ligands and aliphatic NHC ligands, common ligands for aryl methyl ether C-O 

activation, did not activate the silyloxyarene C-O bond. This suggested that catalyst selectivity 

could be feasible and lead to selective activation of the more inert aryl C-OMe bond with these 

ligands. Furthermore, support for this approach was found by use of very large TIPS protecting 

groups being tolerated in aryl methyl ether C-O bond couplings.88,107  

Studies exploring orthogonal couplings began with an unbiased, difunctionalized naphthyl 

substrate with methoxy and silyloxy substituents (4-30). A naphthyl substrate was explored due to 

the low reactivity of aryl methyl ethers with biphenyl or isolated aromatic systems under nickel 

catalysis. Additionally, milder nucleophilic coupling partners were explored as strongly 

nucleophilic reagents have been shown to couple silyloxyarene C-O bonds under nickel catalysis 

with phosphine ligands.161  
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Scheme 4-15. Aryl Methyl Ether C-O Bond Reductive Deoxygenations of tert-butyl((7-methoxynaphthalen-2-

yl)oxy)dimethylsilane. 

 Initial experiments suggested that selective coupling of the aryl methyl ether C-O bond 

could prove general with phosphine ligands, as good yields were obtained in reductive 

deoxygenation reactions using silane reductants. Both trialkoxysilanes100 and trialkylsilanes65 

resulted in good yields of the desired product with only trace amounts of products derived from 

silyloxyarene C-O bond coupling (Scheme 4-15).  

We also found that silylation of the aryl methyl ether C-O bond can be favored by use of 

previously reported methods using silylborons with nickel catalysts, which presumably makes a 

silyl anion.104 Although this reaction does not use a mild coupling partner or a ligand, and could 

thus couple the silyloxyarene C-O bond, it was explored to determine the origin of selectivity. 

Conversion for this reaction was low, but the major product was silylation of the aryl methyl ether 

C-O bond, with significant amounts of disilylation (Scheme 2-13). However, no appreciable 

amounts of the product corresponding to initial silylation of the silyloxyarene C-O bond were 

observed, where the silyloxyarene C-O bond was coupled and the aryl methyl ether remained 

untouched. Interestingly. the opposite selectivity was observed with our silylation method (Scheme 

2-14). Other reactions were also explored following previously published methods, including 

amination,105 borylation,107 and Suzuki reactions.180 However, compatibility issues with ligand or 

bases used in these reactions need to be resolved as poor results are currently obtained. 
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Scheme 4-16. Silyloxyarene C-O Bond Reductive Deoxygenation of tert-butyl((7-methoxynaphthalen-2-yl)oxy)dimethylsilane. 

Looking at selective coupling of the silyloxyarene C-O bond, the same reductive 

deoxygenative coupling can be conducted, resulting in a high yield of the desired product using 

our developed method (Scheme 4-16). Even though C-O bond selectivity was high, there were 

small amounts of products derived from activation of the aryl methyl ether C-O bond, primarily 

naphthalene due to over reduction of the substrate after silyloxyarene C-O bond reduction. 

Next, coupling reactions to increase functionality through C-O bond coupling of 

silyloxyarenes and aryl methyl ethers were explored to illustrate orthogonal coupling routes. 

Starting from the same difunctionalized naphthyl substrate (4-30), use of our amination 

methodology with octylamine results in coupling of the silyloxyarene C-O bond (4-35, Scheme 

4-17). Subsequent coupling of the remaining aryl methyl ether C-O bond, using a reported method 

for Csp2-Csp3 coupling with an aliphatic NHC ligand,96 resulted in alkylation of the aryl methyl 

ether (4-36). The low yield for this coupling was likely due to the use of an unprotected primary 

aliphatic amine.  

Orthogonality was then shown by starting from the same difunctionalized naphthyl starting 

material (4-30), where the product (4-36) can be accessed by reversing the order of the steps. 

Trimethylaluminum can again be used for selective coupling of the aryl methyl ether C-O bond 

(4-37). Next, the silyloxyarene C-O bond can be coupled with octylamine to generate the same 

final product in good yield (4-36). This divergent, convergent sequence displays the orthogonality 



 102 

of aryl methyl ether with silyloxyarenes. However, due to moderate yields being obtained, 

alternative coupling partners were explored to obtain higher yields.  

 

Scheme 4-17. Orthogonal Coupling Routes with Octylamine and Trimethylaluminum.  

As secondary aliphatic amines typically result in higher yields in our developed nickel-

catalyzed amination reactions of silyloxyarene C-O bonds than primary aliphatic amines, they 

were explored to improve the yield (Scheme 4-18). Simply switching amines did resulted in an 

improved yield for product, where selective coupling of the silyloxyarene C-O bond with 1-

methypiperazine was observed (4-38). Next, coupling of the aryl methyl ether C-O bond with 

triethylaluminium gave a good yield of the product (4-39), where a bidentate phosphine ligand 

could be used.97 The order of reactions can again be reversed by first coupling the aryl methyl 

ether C-O bond with triethylaluminium (4-40). Coupling of the aryl methyl ether C-O bond first 

showed excellent selectivity, where no product derived from silyloxyarene C-O bond coupling was 

observed. Finally, the same product (4-39) can be obtained by coupling the silyloxyarene C-O 

bond with 1-methypiperazine in high yield. Use of different coupling partners resulted in higher 

yields, but both of these orthogonal coupling routes explicitly show the first display of switching 

the selectivity between aryl methyl ethers and silyloxyarenes. 
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Scheme 4-18. Orthogonal Coupling Routes with 1-methylpiperazine and Triethylaluminum.  

The origin of the selectivity between aryl methyl ether C-O bonds and silyloxyarene C-O 

bonds could be due to several different reasons, including selectivity derived from the catalyst, 

electrophilic partner, or nucleophilic partner. As an unbiased substrate (4-30) was utilized in these 

orthogonal coupling experiments, the electrophilic coupling partner is not resulting in the observed 

selectivity. Additionally, the nucleophilic coupling partner is unlikely resulting in the observed 

selectivity as several nucleophilic coupling partners have been shown to generate the same 

selectivity, including, silanes, trialkylaluminum reagents, silylboranes, and amines. Finally, the 

most likely factor that determines orthogonal coupling of the two electrophiles is catalyst 

selectivity, which derives from the ligands utilized in the two couplings.  

A range of ligands has been shown to selectively activate aryl methyl ether C-O bonds 

while not activating silyloxyarene C-O bonds, such as, PCy3, ICy, and dcype. This suggests that 

chemoselectivity is derived from the catalyst system. Furthermore, selectivity is poor when ligands 

are removed from the reaction (Scheme 2-13). Additionally, use of a ligand that has been shown 

to activate aryl methyl ether C-O bonds and silyloxyarene C-O bonds, such as amination methods 

for aryl methyl ethers,105,106 shows a mixture of products. Strong evidence for catalyst selectivity 
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is observed when looking at silane coupling partners, as the nucleophilic coupling partner does not 

change but orthogonal reactivity is still observed due to differences in the ligands for the two 

reactions (Scheme 4-19). Despite the lower yields observed for these reactions, reaction trends 

suggest ligands are influencing the selectivity. 

 

Scheme 4-19. Orthogonal Coupling of Aryl Methyl Ethers and Silyloyxarene C-O Bonds with Silanes.  

One possibility of how the ligands are influencing selectivity can be observed by evaluating 

the catalyst employed. Aryl methyl ether C-O bond activation with PCy3 and ICy use a 2:1 ratio 

of ligand to nickel catalyst. It is proposed that having two of these ligands on nickel is too large to 

allow for activation of the silyloxyarene C-O bond due to the large silane protecting group. The 

presence of a di-ligated nickel complex using these mono-dentate ligands is supported by use of a 

bidentate phosphine ligand, dcype, which also selectively activates the aryl methyl ether C-O bond. 

In our catalyst system, the active catalyst is proposed to only have one NHC ligand bound. Having 

one large NHC ligand is not too sterically encumbered to approach the large silyl protecting group, 

allowing for activation of the more reactive C-O bond. Additionally, another reason for our catalyst 

system favoring the silyloxyarene C-O bond could be generation of inactive catalysts if an aryl 

methyl ether C-O bond is activated by generation of a nickel carbonyl complex148,151 

However, further studies need to be conducted to confirm catalyst selectivity and rule out 

the influence of the nucleophilic coupling partner on selectivity. Although preliminary studies have 

been conducted, current methods that use the same nucleophilic coupling partner for both C-O 

bonds need to be further developed. Currently, poor yields are obtained for aryl methyl ether 

coupling due to inefficient catalysts for electron-rich aryl systems or having a ligand that activates 
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both C-O bonds with conjugated aryl systems. For example, aminations of aryl methyl ethers use 

IPr as a ligand, which is a moderate ligand for silyloxyarene C-O activation, and mixtures of 

products are observed. Suzuki or borylation couplings of aryl methyl ethers use bases that result 

in some deprotection of the silyloxy group or have low reactivity for the aryl methyl ether C-O 

bond. Even with some uncertainty in the mode of selectivity, implications of the general 

orthogonal coupling strategy are very exciting and should be a powerful method alongside other 

coupling reactions.  

4.3 Sequential Couplings with Silyloxyarenes 

Having developed orthogonal couplings of aryl methyl ethers and silyloxyarenes, 

applications of this orthogonality was explored in sequential couplings. Furthermore, 

demonstration of silyloxyarene C-O bonds for late-stage coupling was envisioned, where the inert 

silyloxyarene C-O bond could be carried through multiple steps and coupled late in the sequence. 

Therefore, two distinct sequential coupling routes were envisioned where the orthogonality of 

silyloxyarenes and aryl methyl ethers could be displayed by switching the order of their couplings.  

Planning for the first sequential coupling began by exploring benzene rings with three 

unique aryl electrophiles, where a fourth would be introduced through the first aryl coupling 

reaction and generate a biphenyl scaffold. Selective generation of the biphenyl scaffold would 

demonstrate a coupling of one aryl electrophile in the presence of four possible aryl electrophilic 

coupling partners. Sequential coupling of the three remaining aryl electrophiles on the biphenyl 

scaffold would then demonstrate four sequential couplings without any protecting group 

manipulations. 

Studies began by exploring 2-bromo-5-chlorophenol (4-43) and (4-((tert-

butyldimethylsilyl)oxy)phenyl)boronic acid (4-45) as the two substrates contained four different 
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aryl electrophiles, where coupling would generate the biphenyl scaffold (Scheme 4-20). Initial 

protection of the phenol with a methyl group set all the aryl electrophiles, thereby removing 

intermediate protecting group manipulations between coupling reactions. Initial coupling of the 

aryl bromide (4-44) and boronic acid (4-45) under palladium catalysis gave a good yield of the 

biphenyl scaffold containing chloro, methoxy, and silyloxy electrophiles (4-46). 

 

Scheme 4-20. Sequential Coupling with Biphenyl Scaffold with Bromo, Chloro, Pivalate, and Carbamate.  

 A range of commonly utilized aryl electrophiles was desired to describe how a variety of 

substrates could be utilized alongside silyloxyarenes in future coupling reactions or sequential 

coupling routes. Therefore, 4-bromo-3-methoxyphenol (4-49) was also explored and was 

considered analogous to 2-bromo-5-chlorophenol (4-43), upon protection with a carboxylate or 

carbamate protecting group. This would maintain the bromide as the most activated partner and 

generate the same scaffold derived from 2-bromo-5-chlorophenol (4-46), where an activated C-O 
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bond replaced the chloro substituent. Protection of 4-bromo-3-methoxy with pivaloyl chloride or 

diethylcarbamoyl chloride gave the desired intermediates (4-59, 4-51), which were carried on to 

the same palladium-catalyzed Suzuki coupling with (4-((tert-

butyldimethylsilyl)oxy)phenyl)boronic acid (4-45) to give the analogous biphenyl scaffold (4-50, 

4-52) previously obtained (4-46).  

 

Scheme 4-21. Sequential Coupling with Biphenyl Scaffold with Silyloxyarene and Aryl Methyl Ether.  

For the next step, several coupling reactions were envisioned with the chloro, pivalate, or 

carbamate. Initially, another Suzuki coupling was explored with a heterocyclic aryl boronic acid 

to add polarity and show tolerance of heterocyclic substrates in subsequent reactions. However, 

this coupling proved unsuccessful as a large quantity of deprotection was observed. Additionally, 

a convergent approach was desired where all three substrates would generate a single product 

through coupling each of the three aryl electrophiles, pivalate, carbamate, and chloro. Therefore, 

to provide diversity in the type of coupling reactions used in this sequential coupling route, and to 
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allow for high functional group tolerance to be displayed in subsequent couplings, a Buchwald-

Hartwig amination was explored.  

Based on previously reported methods, a nickel catalysts with a NHC ligand was utilized 

in each of the three couplings with chloro,198 pivalate,63 and carbamate47 electrophiles. The pivalate 

proved to be the most problematic electrophilic coupling partner as the standard conditions for 

amination of aryl pivalates only resulted in a 14% yield, with the remaining mass balance being 

primarily deprotection. However, adding higher loadings of catalyst, ligand, amine, and base gave 

a good yield of 62%. This decrease in yield from the standard conditions is likely due to the large 

amount of electron-density in the aryl ring, slowing the oxidative addition and leading to 

competing deprotection. Higher yields were obtained for both carbamate and chloro electrophiles 

when using the same catalyst loading, allowing for direct comparison. Although, lower yields were 

also observed using 5 or 10 mol% catalyst for these two electrophiles, significantly higher yields 

were observed compared to coupling of the pivalate.  

Having all three starting aryl scaffolds converge to a single product (4-47), a divergent 

approach was then envisioned going forward to display the toolbox of couplings that we have 

currently developed for silyloxyarenes (Scheme 4-21). Amination and silylation reactions were 

conducted on the biphenyl scaffold (4-47), which contained both silyloxy and methoxy 

functionalities. Both secondary (4-53) and primary (4-54) aliphatic amines can be coupled in good 

yield, with slightly lower yields observed with primary aliphatic amines on the electron rich 

biphenyl substrate (4-47). No coupling of the aryl methyl ether is observed and most of the 

remaining mass-balance of the reactions can be recovered as starting material. Use of our silylation 

methodology also resulted in a good yield of the aryl silane product (4-55), with great selectivity 

between the two inert aryl electrophiles.  
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For the final step, a variety of reactions were explored for aryl methyl ether C-O bond 

coupling. Initial use of a Suzuki coupling reaction90 resulted in low conversion of the C-O bond 

and only gave reduction of the C-O bond. Use of stronger nucleophilic coupling partners was then 

explored. However, in-situ generation of heterocyclic, aryl organolithium reagents resulted in low 

conversion, where starting material was recovered. Therefore, use of preformed 

trimethylsilylmethyl lithium can be utilized following a reported methodology95 to give the final 

product (4-56). Although the yield is moderate for this last step, the reported method notes that 

presence of an ortho-phenyl substituent hinders conversion for their reaction, as they saw a 68% 

yield for 2-methoxy-1,1'-biphenyl. Coupling the aryl methyl ether in this final step displays a 

sequential coupling sequence of four steps that circumvents intermediate protecting group 

manipulations or activations. To the best of our knowledge, this is the first example of such a route 

(Scheme 4-22).  

 

Scheme 4-22. Four-step Sequential Coupling Sequence without Protecting Group Manipulations of Biphenyl Scaffold.  

Next, having developed orthogonal couplings between aryl methyl ethers and 

silyloxyarenes, the reversal in inherent reactivity of the C-O bonds was demonstrated in another 

sequential coupling. Studies began with generation of an aryl methyl ether (4-58) through 
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protection of 6-bromonaphthalen-2-ol (4-57). Suzuki coupling of the aryl bromide with a 

difunctionalized boronic acid (4-59) gave a naphthyl scaffold with three different aryl electrophiles 

(4-60, Scheme 4-23).  

 

Scheme 4-23. Synthesis of Naphthyl Scaffold for Sequential Coupling Route.  

 Subsequent coupling began with the aryl chloride (4-60), the next most reactive aryl 

electrophile. Upon exploring potential coupling reactions, it was found that very few coupling 

reactions of aryl chlorides tolerate an ortho-phenyl or ortho-naphthyl group. An amination reaction 

with morpholine was first explored using a nickel-NHC catalyst.199 However, as this method did 

not report any large ortho substituents in the substrate scope, the yield for coupling this sterically 

hindered aryl chloride was a modest 36% yield. However, switching to a palladium catalyst,200 an 

improved yield of 65% was obtained with morpholine (4-61, Scheme 4-24). Next, coupling of the 

aryl methyl ether C-O bond, and reversing the inherent order of reactivity with silyloxyarenes was 

explored. However, using a method reported for alkylation96 of aryl methyl ethers gave poor yields 

of the coupled product (4-62). Therefore, alternate routes were explored due to the low yields for 

these two steps.  
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Scheme 4-24. Sequential Coupling of Naphthyl Scaffold.   

Starting from the aryl chloride (4-60), a less hindered amine was utilized to give a higher 

yield. Use of aniline resulted in a higher yield of the coupled product (4-63), using the same 

palladium-catalyzed method used with morpholine. Next, coupling of the aryl methyl ether C-O 

bond with triethylaluminium gave a high yield of the desired product (4-64). Finally, coupling of 

the silyloxyarene C-O bond, which was carried through all previous coupling steps intact, was 

conducted using our developed amination methodology. However, the presence of the unprotected 

aniline proved problematic as a low yield was obtained due to competing coupling, as a mixture 

of products was observed. Additionally, low conversion was observed due to the electron-rich 

nature of the silyloxyarene substrate. Therefore, to improve yields, another route was constructed 

that would increase yields for the final step by removing competing reactions and decrease the 

electron density on the silyloxyarene.  
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Scheme 4-25. Four-step Sequential Coupling of Naphthyl Scaffold.  

Installation of a heterocycle at the aryl chloride was explored to withdraw electron density 

from the silyloxyarene ring. Initially, a C-H coupling was investigated using substrates with acidic 

C-H bonds, such as 4,5-dimethylthiazole. However, deprotection was observed as the major 

product. Thus, a Suzuki coupling201 was explored using (1-propyl-1H-pyrazol-4-yl)boronic acid 

(4-66), which resulted in a good yield of the desired product (4-67). Coupling of the aryl methyl 

ether C-O bond with triethylaluminium gave a very good yield of the product (4-68). Finally, 

coupling of the silyloxyarene C-O bond with our amination methodology gave the fully 

functionalized product (4-69) in high yield with N-methylbutylamine as the coupling partner. 

Cyclohexylamine could also be utilized in this step, but a lower yield of 54% was obtained due to 

the more challenging primary aliphatic amine coupling partner. This sequential coupling sequence 

is another example of four sequential coupling reactions without any protecting group 

manipulations. Furthermore, it displays a practical example of the reversal in the inherent coupling 
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order between aryl methyl ethers and silyloxyarene C-O bonds (Scheme 4-25), and a late-stage 

coupling of a silyloxyarene C-O bond in the last step. 

4.4 Conclusions and Future Directions of Sequential and Orthogonal Couplings if 

Silyloxyarenes 

Exploring nickel-catalyzed C-O bond coupling of silyloxyarenes has led to the 

development of orthogonal and sequential couplings. Orthogonal coupling of aryl methyl ethers 

and silyloxyarenes was discovered though the optimization of silyloxyarene couplings. Selectivity 

derives from the ligand used in the nickel-catalyzed coupling reaction. This is the first example of 

utilizing inert C-O bonds in orthogonal couplings. Four step sequential coupling routes have also 

been developed, where no intermediate activation or protecting group manipulations were 

required. Previous methods have been limited to three steps and these two examples are the first 

instances of sequential couplings with aryl electrophiles that are greater than three steps. Although 

palladium has been the transition metal of choice for orthogonal couplings, nickel has been proven 

to be a competent transition metal for developing orthogonal and sequential routes. Our newly 

developed strategies have been paired with known routes that utilized pallidum for coupling aryl 

halides. These developments will hopefully lead to further advancements and result in 

improvements for the synthesis of complex molecules.  

Future directions on these projects include further validating catalyst selectivity in 

orthogonal couplings of silyloxyarenes and aryl methyl ethers by utilizing the same coupling 

partner with only a change in ligand. Additionally, moving to a phenyl system instead of the highly 

explored naphthyl system would be important, as phenyl scaffold are significantly more prevalent 

than naphthyl scaffolds. However, due the lower reactivity of aryl methyl ether C-O bonds, further 

developments would first be required in aryl methyl ether C-O bond activation to obtain reactivity 
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that is robust enough to realize this goal. Further applications of our developed orthogonal and 

sequential couplings would also be important to show, such as applications in the synthesis of a 

biologically relevant compound to highlight the power of these strategies. An interesting 

orthogonal coupling example that was briefly explored, and needs to be further developed, was 

using orthogonality between triflates and aryl chlorides or bromides under palladium catalysis 

along with our developed orthogonality to show the modularity these approaches allow.  

For future directions in development of sequential couplings, additional routes containing 

a larger variety of electrophiles and transformations would be useful. However, applying these 

sequential and late-stage couplings of silyloxyarenes in syntheses is the next area that needs to be 

developed, demonstrating these methods on biologically relevant scaffolds. I hope that these initial 

discoveries in orthogonal, sequential, and late-stage couplings of silyloxyarenes prove useful in 

organic synthesis. 
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Chapter 5  
 

Beyond Silyloxyarene: Future Directions of Nickel-catalyzed C-O Couplings of Silyl Ethers 

5.1 General Introduction on Silyl-Protected C-O Bonds as Electrophilic Coupling Partners 

Phenol derivatives were initially explored as a direct method to explore their reactivity 

compared to other inert aryl electrophilic coupling partners. However, other silyl ether derivatives 

beyond silyloxyarenes could also be used as C-O electrophilic coupling partners. Expansion of 

current nickel-catalyzed methods for aryl C-OSiR3 activation to other silyl-protected electrophilic 

coupling partners would allow for derivatization of many common organic scaffolds, including 

alkyl, allylic, and vinyl alcohols. This chapter provides future directions regarding C-O bond 

coupling of a more diverse range of silyl ethers. 

5.2 Silyl-Protected Allylic Alcohols as C-O Bond Electrophilic Coupling Partners 

Allylic alcohols are attractive handles for functionalization due to their prevalence in 

biologically relevant compounds. Due to the abundance of allylic alcohols, there are numerous 

methods for their synthesis, and many more for modulation of the allylic alcohol scaffold. In 

addition to traditional syntheses adding vinyl nucleophiles to aldehydes or reducing α-β 

unsaturated ketones, new variations on these methods have also been developed. For example, the 

Nozaki-Hiyama-Kishi (NHK) reaction is an in-situ, transition metal mediated method of 

generating a nucleophilic vinyl species and adding them to aldehydes with a nickel catalyst and 

stoichiometric chromium. The NHK reaction has become a powerful method due to high 

functional group compatibility; however, use of vinyl halides and stoichiometric chromium present 
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limitations.202 An alternative method is the nickel-catalyzed reductive coupling of an aldehyde and 

alkyne with a mild reducing agent, which has been developed by our group (Scheme 5-1).203,204  

 

Scheme 5-1. Regiocontrol in Nickel-Catalyzed Reductive Coupling of Aldehydes and Alkynes with Silane Reductants.  

With powerful methods of generating silyl-protected allylic alcohols in our group, 

expansion of silyloxyarene couplings to these derivatives was explored to allow for further 

functionalization. Transition metal-catalyzed methods for the diversification of allylic alcohols 

have been widely developed and have been shown to be extremely useful synthetic tools.205 

However, most of these methods have used allylic alcohols with activated protecting groups and a 

palladium catalyst. Only few reactions have been developed with inert ether protecting groups.  

 

Scheme 5-2. Diversification of Silyl-Protected Allylic Alcohols.  

There have been many methods using other inert protecting groups,206 or those that directly 

use the unprotected alcohol.207 However, only few reports exist using silyl-protected allylic 

alcohols as electrophilic coupling partners. Furthermore, as with silyloxyarene substrates for C-O 

bond activation, most reactions use strong nucleophilic coupling partners, such as Grignard 

reactions (Scheme 5-2).208,209,210  

 

Scheme 5-3. Synthesis of Welwitindolinone Core Through Cycloaddition with Trimethylenemethane Precursor.  
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One application we became interested in that would utilize both our current reductive 

coupling methodology to synthesize allylic alcohol derivatives and allow for diversification of 

silyl-protected allylic alcohols through C-O bond coupling was synthesis of trimethylenemethane 

(TMM) precursors. The Trost group has developed allylic alcohol derivatives with strongly 

activating protecting groups that generate trimethylenemethane complexes with palladium. They 

have shown many applications of these complexes in cycloaddition reactions, where a range of 

five or seven membered products are generated.211–213 Additionally, they have shown many 

applications of the developed methods in several syntheses, such as the welwitindolinone core (5-

3, Scheme 5-3).214–217 However, trimethylenemethane precursors are not readily available and 

require three steps for an unsubstituted derivative, or four to six steps for more substituted 

derivatives.211 Therefore, we proposed rapid access to a library of substituted trimethylenemethane 

precursors through the nickel-catalyzed reductive coupling of propargyl silanes and aldehydes.  

 

Table 5-1. Scope of Nickel-Catalyzed Reductive Coupling toward Trimethylmethaneprecursors.  

The same TMM precursors would be accessible, except with a silane protecting group on 

the alcohol instead of a more activated protecting group, such as an acetate or phosphate. After 
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some optimization, good yields of the desired products were possible using conditions derived 

from our nickel-catalyzed reductive couplings of terminal alkynes. A brief exploration of substrate 

scope tested generality for a variety of functionalities (Table 5-1). Benzaldehyde and 

trimethylpropargyl silane resulted in a good yield and high ratio of branched to linear products. 

Although aliphatic aldehydes resulted in lower yields and a decreased ratio of products, both yield 

and product ratio could be improved by decreasing the concentration of the reaction. Electron-rich 

and electron-deficient aryl substituents both resulted in good yields and good ratios of products.  

Having developed access to silyl-protected trimethylenemethane precursors, development 

of a nickel-catalyzed method for the [3+2] cycloaddition was explored. Nickel-catalyzed [3+2] 

cycloadditions of TMM precursors with activating protecting groups has been described once 

before.218 However, after exploring several nickel and palladium catalyst systems, cycloaddition 

product was not observed. As an alternative route, a protecting group swap was conducted to 

replace the silane protecting group with a more activating protecting group, accessing the same 

TMM precursors previously utilized in [3+2] cycloadditions with palladium catalysts. However, 

as a direct route from silyl-protected TMM precursors was still desired, other reactions were 

explored to validate activation of the silyl-protected allylic alcohol C-O bond.  

 

Scheme 5-4. Nickel-Catalyzed Suzuki Coupling of Silyl-Protected Allylic Alcohols.  

Initially, a model substrate similar to the silyl-protected TMM precursors was explored, 

resulting in good yields for Suzuki coupled products, where a 2:1 ratio of E:Z isomers was obtained 

(Scheme 5-4). The ability to readily activate and couple these silyl-protected allylic alcohol 

derivatives suggested that activation of the silyl-protected TMM precursors was not limiting 
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reactivity. Therefore, the [3+2] cycloaddition was likely problematic. This was supported by 

finding that ligands used to activate the C-O bond had not been shown for the [3+2] cycloaddition. 

Based on these findings, other coupling reactions of silyl-protected allylic alcohols were explored. 

To show generality in coupling of silyl-protected allylic alcohol substrates, other 

substitution patterns were explored using our reductive deoxygenation or Suzuki coupling reaction 

conditions. With terminal allylic alcohol compunds derived from cinnamaldehyde, a good yield of 

the Suzuki coupling product was obtained at 40 degrees Celsius, with both higher and lower 

temperatures resulting in lower yields (Scheme 5-5). Use of our conditions for our reduction 

reaction on a fully conjugated and symmetrical allylic alcohol derivative resulted in a good yield 

of the alkene at 80 degrees Celsius, again with lower yields being obtained at both higher and 

lower temperatures (Scheme 5-6).  

 

Scheme 5-5. Suzuki Coupling of Silyl-Protected Allylic Alcohol Derivatives.  

Future work should build on these initial results for C-O bond coupling of silyl-protected 

allylic alcohol derivatives. One area that needs to be further explored is the regioselectivity for 

these reactions by examining different substrates classes and ligands to control the product 

distribution. Expansion to other reactions previously developed for silyloxyarenes would also be 

beneficial, such as generation of allylic boron or silicon reagents. Finally, expanding beyond allylic 

derivatives to benzylic or aliphatic silyl ether C-O bonds would allow nearly any alcohol to be 

functionalized. Although this is extremely challenging, and a unique reaction pathway would have 

to be developed, reports do exist for aliphatic C-O diversification with methyl protecting groups.219  
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Scheme 5-6. Reduction of Silyl-Protected Allylic Alcohol Derivative. 

5.3 Enol Silanes as C-O Bond Electrophilic Coupling Partners 

In addition to silyloxyarenes and silyl-protected allylic alcohols, silyl enol ethers, or enol 

silanes, are the other major C-O electrophilic coupling partner that would be attractive. 

Additionally, considering other traditionally used vinyl electrophiles, enol silanes are arguably 

even more attractive compared to the advantages of using silyloxyarenes over other aryl 

electrophiles. These advantages for enol silanes derive from the utility of enol silanes in synthesis, 

where their regioselective synthesis allows for excellent control of regiochemical outcomes in 

synthesis (Scheme 1-4),220 a common limitation of vinyl halides. Additionally, enols are easily 

prepared from readily available ketones or aldehydes. Enol triflates are commonly used as the enol 

derivative for vinyl C-O bond coupling. Development of enol silane C-O bond coupling could 

result in complementary and new reactivity. Despite the advantages of enol silanes, they have not 

been widely used beyond α-functionalization and their use as electrophilic, vinyl coupling partners 

would be valuable. 

 

Scheme 5-7. Kumada Coupling of Enol Silanes under Nickel Catalysis.  

Enol silanes, along with other ether protecting groups, have been explored previously as 

electrophilic C-O coupling partners, with some representative examples described using methyl 

enol ethers,81,83,99,221–223 cyclic alkyl enol systems,224–226 pivalates.227 One of the early examples of 

using enol silanes as electrophilic coupling partners was by Kumada in 1980 (Scheme 5-7).228 
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However, deprotection of the TMS group needs to be considered, as strongly nucleophilic coupling 

partners can deprotect these labile silane protecting groups. Furthermore, the desired product 

derived from the deprotected ketone, where addition of Grignard to the carbonyl carbon and 

subsequent elimination would access the same product as the coupled compound.  

 

Scheme 5-8. Enol Silane Coupling with Organolithium Reagents under Nickel Catalysis.  

Regardless, other reports of enol silane C-O bond coupling has been reported, although the 

focus has been on use of strongly nucleophilic coupling partners. Another, more recent example 

uses Grignard reagents with TMS-protected enol silanes with a nickel catalyst.161 Use of 

organolithium reagents has also been described in coupling of enol silane C-O bonds, where 1.3 

equivalents of organolithium was used with a nickel(0) pre-catalyst (Scheme 5-8).223 Many other 

reports of using enol silanes as vinyl electrophilic coupling partners have been described, often as  

an isolated example in a substrate table.93,98,99,102 However, all of these methods are generally 

limited by two constraints, use of strongly nucleophilic coupling partners and/or necessitating 

conjugation of the enol silane to an aryl system. Therefore, a general coupling method with mild 

coupling partners, across conjugated and non-conjugated enol silanes would be beneficial.  

 

Scheme 5-9. Nickel-Catalyzed Reduction of Conjugated Enol Silane C-O Bonds.  

Use of mild coupling partners with enol silanes was initially explored in conjugated 

systems to explore reactivity of the C-O bond. Use of our reductive deoxygenation reaction 

conditions resulted in high conversion of the starting enol silane and good yield of product (5-14), 
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although over reduction of stilbene to the alkane was a major byproduct (Scheme 5-9). To confirm 

the order of reduction steps to the alkane, stilbene was subjected to the same reaction conditions 

and reduction to alkane was again observed. This suggested that the enol silane C-O bond was 

initially reduced, followed by reduction of the alkene. Decreasing the amount of alkane byproduct 

should be possible by exploring milder conditions and shorter reaction times, but this was not 

explored.  

 

Scheme 5-10. Nickel-Catalyzed Suzuki Coupling of Conjugated Enol Silane C-O Bonds. 

Instead, a Suzuki coupling of enol silanes was next explored to increase complexity, instead 

of removing functionality. High reactivity was again observed with conjugated enol silanes under 

our Suzuki coupling conditions, generating a trisubstituted olefin in good yield (5-15, Scheme 

5-10). Interestingly, replacing the α-phenyl with an α-methyl resulted in only trace product. This 

suggests that sterics are influencing reactivity of this substrate or the α-phenyl group is resulting 

in increased yields through additional conjugation or by acting as a directing group. Other reactions 

developed for silyloxyarenes were also explored, including silylation and borylation, but only trace 

product was observed with this substrate. 
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Scheme 5-11. Nickel-Catalyzed Coupling of Isolated Enol Silane C-O Bonds.    

Another substrate was then explored to move away from the more reactive, conjugated 

enol silanes. Using our reduction methodology for silyloxyarenes on an enol silane derived from 

4-phenylcyclohexanone, low conversion to phenyl cyclohexane was observed, where over 

reduction of the alkene was the major product. This reaction demonstrated the drastic difference 

in reactivity between conjugated and non-conjugated enol silanes (Scheme 5-11). Use of our 

silylation and borylation methodology generates vinyl nucleophiles, although low yields were 

again observed. Suzuki coupling with these challenging enol silane substrates only resulted in trace 

product. However, comparable yields to silylation and borylation should be obtainable once 

Suzuki coupling of silyloxyarene C-O bonds is optimized. Importantly, low yields of the products 

were not due to degradation of starting material, but low reactivity of the C-O bond as starting 

material was the only other major species observed from these reactions. Therefore, this low 

conversion can be overcome with further optimization.  

Of all the silyl-protected alcohol derivatives, enol silanes are the most attractive and should 

be a major area of focus for future development. Exciting preliminary results show that current 

methods could be generally applied across even challenging isolated enol silanes. One explanation 

for the reactivity difference between conjugated and isolated enol silanes could be the poor 
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coordinating ability of isolated systems over conjugated systems. This is analogues to differences 

between naphthyl and isolated aromatics in aryl C-O bond couplings. One solution that was briefly 

explored to overcome this lack of reactivity was installing a directing group in the silane protecting 

group, such as aryl or pyridyl. Other methods of increasing conversion for C-O bond coupling of 

these inert enol silanes should be explored, such as exploring new catalysts systems or ligands to 

improve reactivity.  

Another area that was briefly explored for catalyst improvement was exploring different 

ligands. Optimization of an improved catalysts system could lead to a broader substrate scope, 

lower reaction temperatures, and lower catalyst loadings for currently developed coupling 

reactions. In addition, this could allow for higher conversion of challenging substrates, such as 

isolated aryl and vinyl silyl ethers. As oxidative addition is presumed the rate determining step, 

ligands were explored that could lower the activation barrier by stabilizing the nickel complex. 

Such ligands explored were similar in structre but were more donating thatn IPrMe, such as those 

with anionic donating groups229 or CAAC ligands.230  These ligands were explored for in-situ 

generation of the catalyst. However, no product was observed, which could be due to their higher 

pKas. Therefore, future work with these ligands should be to synthesize discrete complexes and 

explore their reactivity.  

5.4 Conclusions on Silyl-Protected C-O Bonds as Electrophilic Coupling Partners 

 Future directions in silyloxyarene C-O bond couplings include further mechanistic 

investigations, development of new coupling reactions, improvements on currently developed 

methods, and new sequential or orthogonal coupling routes. Other transition metals such as iron231 

or cobalt232 may allow for these improvements and should be explored. Outside of continuing to 

improve current methods, future directions should focus on other silyl-protected alcohol 
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derivatives, namely silyl-protected allylic alcohols and enol silanes. Preliminary studies have 

shown these substrates to be competent coupling partners with our developed reaction, but 

additional work is necessary to improve selectivity, conversion, and generality across substrate 

classes. Gaining mechanistic insights for current methods, and further development of reactions 

for these electrophiles, would solidify silyl ethers as a ubiquitous class of electrophiles in transition 

metal-catalyzed cross-coupling reactions. Furthermore, they could be used in a complementary, or 

even standalone fashion, for orthogonal and sequential coupling strategies, which will have a 

profound impact on the late-stage diversification of complex molecules.  

 

 

 

 



 126 

Chapter 6  
 

Supporting Information 

6.1 General Supporting Information 

Unless otherwise noted, all reactions were conducted in flame-dried or oven-dried (120 °C) 

sealed tubes with magnetic stirring sealed in a nitrogen glovebox. Solvents were purified under 

nitrogen using a solvent purification system (Innovative Technology, Inc. Model # SPS-400-3 and 

PS-400-3). Et3SiH (Sigma-Aldrich), i-PrMe2SiH (Gelest Chemicals) and BnMe2SiH (Gelest 

Chemicals) were passed through basic alumina before use and stored under nitrogen. All liquid 

amines were distilled over calcium hydride before use and stored under nitrogen and solid amines 

were used without further purification, morpholine (Sigma-Aldrich), N-methylbutylamine (Sigma-

Aldrich), dibutylamine (Sigma-Aldrich), 2-methylpiperdine (Sigma-Aldrich), 2,6-

dimethylpiperdine, predominantly cis (Alfa Aesar), 1-methylpiperazine (Sigma-Aldrich), N-

methylbenzylamine (Sigma-Aldrich), N-methylaniline (Sigma-Aldrich), 2,4,6-trimethylaniline 

(Oakwood Chemicals), 2,6-diisopropylaniline (Oakwood Chemicals), aniline (Sigma-Aldrich), 

octylamine (Sigma-Aldrich), sec-butylamine (Sigma-Aldrich), iso-butylamine (Sigma-Aldrich), 

cyclohexylamine (Sigma-Aldrich), 1-adamantylamine (Oakwood Chemicals), butylamine 

(Sigma-Aldrich), benzylamine (Sigma-Aldrich), pyrrolidine (Sigma-Aldrich), piperazine (Sigma-

Aldrich), 2-(piperazin-1-yl)pyrimidine (Oakwood Chemicals). Bis(pinacolato) diboron and all 

other diboron reagents (Combi Blocks) were recrystallized in pentane before use. All aryl boron 

species (Combi Blocks) were used as received without any further purification. Anhydrous 

Ni(acac)2 (Strem Chemicals), Ni(COD)2 (Strem Chemicals), IPrMe·HCl (made from known 

procedure233), IMesMe·HCl (made from known procedure233), ICy·HCl (Sigma-Aldrich), IAd·HCl 

(Sigma-Aldrich), IPrCl·HCl (made from known procedure234), IPr·HCl (made from known 

procedure235), IMes·HCl (made from known procedure235), IPr*OMe·HCl (made from known 

procedure236), IPr*OMe (Strem Chemicals), and NaO-t-Bu (Strem Chemicals) were stored and 

weighed in an inert atmosphere glovebox.  
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Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 (250 μm 

silica gel) glass plates and compounds were visualized with UV light and p-anisaldehyde, 

potassium permanganate or ceric ammonium molybdate stains. Flash column chromatography was 

performed using Kieselgel 60 (230-400 mesh) silica gel. Eluent mixtures are reported as v:v 

percentages of the minor constituent in the major constituent. All compounds purified by column 

chromatography were sufficiently pure for use in further experiments unless otherwise indicated. 

1H NMR spectra were collected at 400 MHz on a Varian MR400, at 500 MHz on a Varian 

Inova 500 or Varian vnmrs 500, or at 700 MHz on a Varian vnmrs 700 instrument. The proton 

signal of the residual, nondeuterated solvent (δ 7.26 for CHCl3 or 7.15 for C6D6) was used as the 

internal reference for 1H NMR spectra. 13C NMR spectra were completely heterodecoupled and 

measured at 125 MHz or 175 MHz. Chloroform-d (δ 77.00), dimethylsulfoxide-d6 (δ 39.95), or 

benzene-d6 (δ 128.0) was used as an internal reference. High resolution mass spectra were recorded 

on a VG 70-250-s spectrometer manufactured by Micromass Corp. (Manchester UK) at the 

University of Michigan Mass Spectrometry Laboratory. GCMS analysis was carried out on a HP 

6980 Series GC system with HP-5MS column (30 m x 0.250 mm x 0.25 μm). GCFID analysis was 

carried out on a HP 6980N Series GC system with a HP-5 column (30 m x 0.32 mm x 0.25 μm). 
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6.2 Experimental Details for Chapter 2 

6.2.1 General Procedures for Chapter 2 

General Procedure the for Ni(COD)2/IPr*OMe promoted silylation or reduction of 

silyloxyarenes using titanium isopropoxide and triethylsilane or triisopropylsilane (A): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(acac)2 (10 mol%) and IPr*OMe (10 mol%) in a nitrogen atmosphere glovebox. The 

sealed reaction tube was brought outside the glovebox where toluene (0.5 M), silane (6 equiv), and 

titanium isopropoxide (2.0 equiv) were sequentially added via syringe. The reaction tube was then 

placed in a heated block set to 120 °C and stirred for 16 h. The mixture was allowed to reach rt, 

internal standard was added (tridecane, 40 µL, 0.164 mmol), diluted with EtOAc (5 mL) and 

deionized water (3 mL), then extracted with EtOAc (3 x 5 mL), dried over MgSO4, filtered, 

concentrated under reduced pressure and purified by flash column chromatography on silica gel to 

afford the desired product. 

 

General Procedure for the Ni(acac)2/IPrMe·HCl promoted reductive deoxygenation of 

silyloxyarenes using titanium(IV) isopropoxide (B): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(acac)2 (5 mol%) and IPrMe·HCl (10 mol%). The reaction tube was sealed and 

pump/purged with nitrogen three times. Toluene (0.5 M) and titanium (IV) isopropoxide (1.1 

equiv) were sequentially added via syringe, and the reaction tube was then placed in a heated block 

set to 120 °C and stirred for 6 h. The mixture was allowed to reach rt, internal standard was added 

(tridecane, 40 µL, 0.164 mmol), diluted with EtOAc (5 mL) and 1 M HCl (3 mL), then extracted 

with EtOAc (3 x 5 mL), dried over MgSO4, filtered, concentrated under reduced pressure and 

purified by flash column chromatography on silica gel to afford the desired product. Note: slightly 

higher yields (5-10%) were obtained by utilizing a nitrogen atmosphere glovebox and yields in the 

text utilized the glovebox procedure. 

 

General Procedure the for Ni(COD)2/IPr*OMe promoted silylation of silyloxyarenes using 

triethylsilane (C): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(COD)2 (10 mol%) and IPr*OMe (10 mol%) in a nitrogen atmosphere glovebox. The 
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sealed reaction tube was brought outside the glovebox where toluene (0.5 M) and silane (6 equiv) 

were sequentially added via syringe. The reaction tube was then placed in a heated block set to 

120 °C and stirred for 16 h. The mixture was allowed to reach rt, internal standard was added 

(tridecane, 40 µL, 0.164 mmol), diluted with EtOAc (5 mL) and deionized water (3 mL), then 

extracted with EtOAc (3 x 5 mL), dried over MgSO4, filtered, concentrated under reduced pressure 

and purified by flash column chromatography on silica gel to afford the desired product. 

 

6.2.2 Procedure for Generating Calibration Curves Utilizing a GC-FID 

Solutions containing a constant concentration of an internal standard (tridecane (0.164 M) and 

varying concentrations of the desired product (0.05, 0.10, 0.15 and 0.20 M) were prepared in ethyl 

acetate. Each was analyzed by GC-FID and the response factor (F) calculated by solving equation 

S1 for the area of product to give equation S2, where the response factor (F) is the slope. Yields 

of crude reactions mixtures, containing a known amount of internal standard, were then determined 

by solving Equation S1 for the concentration of the product to give Equation S3 and filling in the 

known data from a crude reaction.   

 

 

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑷𝒓𝒐𝒅𝒖𝒄𝒕 

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑷𝒓𝒐𝒅𝒖𝒄𝒕
= 𝑭 (

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅
) 

Equation 1. Response Factor. 

 

 

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑷𝒓𝒐𝒅𝒖𝒄𝒕 = 𝑭 (
(𝑨𝒓𝒆𝒂 𝒐𝒇 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 )(𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑷𝒓𝒐𝒅𝒖𝒄𝒕)

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅
) 

Equation 2. Area of Product. 

 

 

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑷𝒓𝒐𝒅𝒖𝒄𝒕 =
(𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅)(𝑨𝒓𝒆𝒂 𝒐𝒇 𝑷𝒓𝒐𝒅𝒖𝒄𝒕)

𝑭(𝑨𝒓𝒆𝒂 𝒐𝒇 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅)
 

Equation 3. Concentration of Product. 
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Calibration Curve for biphenyl: 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.951 and b 

= 4 x 107 with a R2 of 0.9998. 

 

 

 

concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0509 17.07 x 108 56.48 x 108 17.42 x 108 

0.0966 37.00 x 108 65.97 x 108 38.86 x 108 

0.1582 61.49 x 108 66.22 x 108 63.88 x 108 

0.1920 68.92 x 108 61.77 x 108 72.28 x 108 

  

Table 6-1. Calibration Curve for biphenyl. 
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Calibration Curve for [1,1'-biphenyl]-4-yltriethylsilane. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 1.6459 and 

b = -2 x 108 with a R2 of 0.9994. 

 

 

 

Concentration of 

analyte 

 

Area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0484 33.29 x 108 75.35 x 109 22.25 x 108 

0.0872 59.61 x 108 69.62 x 109 36.99 x 108 

0.1430 87.51 x 108 62.43 x 109 54.43 x 108 

0.1929 11.81 x 109 62.54 x 109 73.57 x 108 

 

Table 6-2. Calibration Curve for [1,1’-biphenyl]-4-yltriethylsilane.  
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Calibration Curve for naphthalene. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.729 and b 

= 7 x 107 with a R2 of 0.9949. 

 

 

 

Concentration of 

analyte 

 

Area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0492 13.53 x 108 55.61 x 109 16.66 x 108 

0.1038 33.53 x 108 71.85 x 109 45.45 x 108 

0.1545 46.15 x 108 69.04 x 109 65.02 x 108 

0.2013 62.96 x 108 67.90 x 109 83.33 x 108 

 

Table 6-3. Calibration Curve for naphthalene.  
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Calibration Curve for 4-phenylmorpholine. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.7511 and 

b = -2 x 108 with a R2 of 0.9993. 

 

 

 

Concentration of 

analayte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0545 13.38 x 108 59.08 x 108 19.63 x 109 

0.1017 26.91 x 108 60.88 x 108 37.75 x 109 

0.1482 38.17 x 108 60.03 x 108 54.24 x 109 

0.2169 56.51 x 108 58.08 x 108 76.80 x 109 

 

Table 6-4. Calibration Curve for 4-phenylmorpholine.  

 

 

 

 

 

y = 0.7511x - 2E+08
R² = 0.9993

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

0 5,000,000,000 10,000,000,000

a
n

a
lt

y
e
 a

re
a
 x

 1
0

8
(a

u
)

(std area x [analyte])/ [std] x 108 au



 134 

Calibration Curve for N-phenylacetamide. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.6379 and 

b = 1 x 108 with a R2 of 0.9985. 

 

 

 

Concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0444 9.806 x 108 53.02 x 108 14.35 x 109 

0.0888 24.84 x 108 67.18 x 108 36.36 x 109 

0.1480 33.68 x 108  55.81 x 108 50.34 x 109 

0.1850 44.52 x 108 61.05 x 108 68.83 x 109 

 

Table 6-5. Calibration Curve for N-phenylacetamide.  
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Calibration Curve for tert-butylbenzene. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.6932 and 

b = -2 x 107 with a R2 of 0.9981. 

 

 

 

Concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0425 10.52 x 108 60.91 x 108 15.77 x 108 

0.0969 23.16 x 108 58.41 x 108 34.49 x 108 

0.1378 34.82 x 108  57.91 x 108 48.66 x 108 

0.2161 56.38 x 108 62.45 x 108 82.26 x 108 

 

Table 6-6. Calibration Curve for tert-butylbenzene.  
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Calibration Curve for 2,3-dihydro-1H-indene. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.6166 and 

b = -8 x 107 with a R2 of 0.9986. 

 

 

 

Concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0550 10.99 x 108 57.69 x 108 19.34 x 108 

0.1090 26.37 x 108 64.57 x 108 42.91 x 108 

0.1506 35.03 x 108 64.65 x 108 59.36 x 108 

0.2488 50.99 x 108 55.12 x 108 83.61 x 108 

 

Table 6-7. Calibration Curve for 2,3-dihydro-1H-indene.  
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Calibration Curve for 1,2,3,4-tetrahydronaphthalene. 

 

 

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.7636 and 

b = -8 x 107 with a R2 of 0.9989. 

 

 

 

Concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0431 10.52 x 108 56.40 x 108 14.82 x 108 

0.0938 20.99 x 108 48.83 x 108 27.93 x 108 

0.1354 33.67 x 108 56.08 x 108 46.29 x 108 

0.2080 53.80 x 108 56.01 x 108 71.03 x 108 

 

Table 6-8.  Calibration Curve for 1,2,3,4-tetrahydronaphthalene.  
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Calibration Curve for 2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 

 

  

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 1.704 and b 

= -2 x 108 with a R2 of 0.9862. 

 

 

 

concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0532 35.45 x 108 70.06 x 108 22.71 x 108 

0.0974 60.30 x 108 61.94 x 108 36.79 x 108 

0.1545 11.77 x 109 70.68 x 108 66.60 x 108 

0.1981 11.94 x 109 61.82 x 108 74.65 x 108 

  

Table 6-9. Calibration Curve for 2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. 
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Calibration Curve for 2-methoxynaphthalene: 

 

  

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.9179 and 

b = -2 x 108 with a R2 of 0.9979. 

 

 

 

concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0487 15.82 x 108 64.28 x 108 19.07 x 108 

0.0967 34.62 x 108 67.89 x 108 40.03 x 108 

0.1479 49.84 x 108 64.91 x 108 58.53 x 108 

0.2035 75.29 x 108 67.22 x 108 83.41 x 108 

  

Table 6-10.  Calibration Curve for 2-methoxynaphthalene.  
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Calibration Curve for tert-butyldimethyl(naphthalen-2-yloxy)silane: 

 

  

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 1.4668 and 

b = -4 x 108 with a R2 of 0.9934. 

 

 

 

concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0518 31.73 x 108 82.65 x 108 26.13 x 108 

0.0987 49.09 x 108 59.15 x 108 35.58 x 108 

0.1517 79.87 x 108 58.76 x 108 54.34 x 108 

0.1981 11.80 x 109 69.96 x 108 84.49 x 108 

  

Table 6-11. Calibration Curve for tert-butyldimethyl(naphthalen-2-yloxy)silane. 
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Calibration Curve for 4,4,5,5-tetramethyl-2-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)-1,3,2-

dioxaborolane: 

 

  

Plot of analyte area versus (std area x [analyte]) / [std] fitted to y = mx + b where m = 0.6494 and 

b = -5 x 106 with a R2 of 0.9981. 

 

 

 

concentration of 

analyte 

 

area of analyte area tridecane (std) (std area x [analyte]) / 

[std] 

0.0242 5.68 x 108 57.63 x 108 8.53 x 108 

0.0510 10.66 x 108 56.34 x 108 17.52 x 108 

0.0989 22.50 x 108 55.70 x 108 33.57 x 108 

0.1548 37.09 x 108 61.00 x 108 57.58 x 108 

  

Table 6-12. Calibration Curve for 4,4,5,5-tetramethyl-2-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)-1,3,2-dioxaborolane.  
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6.2.3 Table 2-9 Substrate Scope 

1,1'-biphenyl [CAS: 92-52-4]. 

 

 

 

Table 2-9, 2-21B: Following general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), IPrMe·HCl 

(6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (42.0 mg, 0.148 mmol) and titanium(IV) isopropoxide (49 μL, 0.165 mmol) 

gave a crude residue. The yield was determined by GC-FID analysis using tridecane as an internal 

standard due to volatility of the product (tridecane integration: 329116406, biphenyl integration: 

265260257, 0.139 mmol, 94%). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.61 (d, J = 7.5 Hz, 4H), 7.45 (t, J = 7.5 Hz, 4H), 7.36 (t, J = 7.5 

Hz, 2H). 

 

 

naphthalene [CAS: 91-20-3]. 

 

 

 

Table 2-9, 2-20B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-

butyldimethyl(naphthalen-2-yloxy)silane (39.0 mg, 0.151 mmol), and titanium(IV) isopropoxide 

(49 μL, 0.165 mmol) at 120 °C for 3 h gave a crude residue. The yield was determined by GC-FID 

analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 332901580, naphthalene integration: 191812112, 0.130 mmol, 86%). The spectral 

data matches that previously reported in the literature. 
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1H-NMR (500 MHz, CDCl3): δ 7.85 (m, 4H), 7.49 (m, 4H).  

 

 

naphthalene [CAS: 91-20-3]. 

 

 

 

Table 2-9, 2-37B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-

butyldimethyl(naphthalen-1-yloxy)silane (39.4 mg, 0.152 mmol), and titanium(IV) isopropoxide 

(49 μL, 0.165 mmol) at 120 °C for 3 h gave a crude residue. The yield was determined by GC-FID 

analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 229475874, naphthalene integration: 127832132, 0.125 mmol, 82%). The spectral 

data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.85 (m, 4H), 7.49 (m, 4H).  

 

 

trimethyl(naphthalen-2-yl)silane. 

 

 

 

Table 2-9, 2-23B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyldimethyl((6-

(trimethylsilyl)naphthalen-2-yl)oxy)silane (50.0 mg, 0.151 mmol), and titanium(IV) isopropoxide 

(49 μL, 0.165 mmol) at 120 °C for 3 h gave a crude residue which was purified by flash 

chromatography (100% hexanes) to afford the desired product (25.4 mg, 0.127 mmol, 84% yield). 

The spectral data matches that previously reported in the literature. 
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1H-NMR (500 MHz, CDCl3): δ 8.01 (s, 1H), 7.84 (m, 3H), 7.61 (d, J = 8.0 Hz, 1H), 7.48 (m, 2H), 

0.34 (s, 3H). 

 

 

[1,1'-biphenyl]-4-ol [CAS: 92-69-3]. 

 

 

 

Table 2-9, 2-25B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.6 mmol), 4'-((tert-

butyldimethylsilyl)oxy)-[1,1'-biphenyl]-4-ol (45.1 mg, 0.15 mmol), and titanium(IV) 

isopropoxide (49 μL, 0.165 mmol) at 120 °C for 16 h gave a crude residue which was purified by 

flash chromatography (hexanes: ethyl acetate 95:5) to afford the desired product (17.7 mg, 0.104 

mmol, 69% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.54 (m, 2H), 7.48 (m, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.32 (m, 

1H), 6.91 (m, 2H), 4.70 (br, 1H). 

 

 

([1,1'-biphenyl]-4-ylmethoxy)(tert-butyl)dimethylsilane. 

 

 

 

Table 2-9, 2-26B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((4'-((tert-

butyldimethylsilyl)oxy)-[1,1'-biphenyl]-4-yl)methoxy)dimethylsilane (68.5 mg, 0.15 mmol), and 
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titanium(IV) isopropoxide (49 μL, 0.165 mmol) at 120 °C for 16 h gave a crude residue which was 

purified by flash chromatography (100% hexanes) to afford the desired product (41.3 mg, 0.138 

mmol, 91% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.58 (m, 4H), 7.42 (m, 4H), 7.33 (t, J = 7.5 Hz, 1H), 4.79 (s, 2H), 

0.96 (s, 9H), 0.13 (s, 6H). 

 

 

4-methoxy-1,1'-biphenyl [CAS: 613-37-6]. 

 

 

 

Table 2-9, 2-27B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((4'-methoxy-[1,1'-

biphenyl]-4-yl)oxy)dimethylsilane (48.1 mg, 0.153 mmol), and titanium(IV) isopropoxide (49 μL, 

0.165 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 99:1) to afford the desired product (18.6 mg, 0.101 mmol, 66% yield). The 

spectral data matches that previously reported in the literature. [A 6:1 (4-methoxy-1,1’-biphenyl 

and 1,1’-biphenyl) ratio of products was observed.] 

 

1H-NMR (500 MHz, CDCl3): δ 7.55 (m, 4H), 7.42 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H), 

6.99 (m, 2H), 3.86 (s, 3H). 

 

 

1,1'-biphenyl [CAS: 92-52-4]. 
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Table 2-9, 2-38B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.6 mmol), 4,4'-bis((tert-

butyldimethylsilyl)oxy)-1,1'-biphenyl (61.8 mg, 0.149 mmol) and titanium(IV) isopropoxide (98 

μL, 0.330 mmol) at 130 °C for 16 h gave a crude residue. The yield was determined by GC-FID 

analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 254280859, biphenyl integration: 144283275, 0.098 mmol, 66%). The spectral data 

matches that previously reported in the literature.  

 

1H-NMR (500 MHz, CDCl3): δ 7.61 (d, J = 7.5 Hz, 4H), 7.45 (t, J = 7.5 Hz, 4H), 7.36 (t, J = 7.5 

Hz, 2H). 

 

 

2-methylquinoline. 

 

 

 

Table 2-9, 2-39B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 6-((tert-

butyldimethylsilyl)oxy)-2-methylquinoline (40.9 mg, 0.150 mmol), and titanium(IV) 

isopropoxide (49 μL, 0.165 mmol) at 120 °C for 3 h gave a crude residue which was purified by 

flash chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (15.8 mg, 0.110 

mmol, 74% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 8.04 (m, 2H), 7.77 (d, J = 7.0 Hz, 1H), 7.68 (t, J = 7.0 Hz, 1H), 

7.48 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 2.75 (s, 3H). 
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9-methyl-9H-carbazole [CAS: 1484-12-4]. 

 

 

 

Table 2-9, 2-28B: Following general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), IPrMe·HCl 

(6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 2-((tert-butyldimethylsilyl)oxy)-9-

methyl-9H-carbazole (47.2 mg, 0.152 mmol), and titanium(IV) isopropoxide (49 μL, 0.165 mmol) 

gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 98:2) to 

afford the desired product (22.7 mg, 0.125 mmol, 83% yield). The spectral data matches that 

previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 8.11 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (d, J = 8.0 

Hz, 2H), 7.24 (t, J = 7.0 Hz, 2H), 3.87 (s, 3H). 

 

 

2-phenylpyridine [CAS: 1008-89-5]. 

 

 

 

Table 2-9, 2-29B: Following a modified general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 2-(4-((tert-

butyldimethylsilyl)oxy)phenyl)pyridine (42.9 mg, 0.150 mmol), and titanium(IV) isopropoxide 

(49 μL, 0.165 mmol) at 120 °C for 3 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 95:5) to afford the desired product (19.8 mg, 128 mmol, 

85% yield). The spectral data matches that previously reported in the literature. 
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1H-NMR (500 MHz, CDCl3): δ 8.73 (d, J = 5.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.79 (m, 2H), 

7.51 (t, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 1H), 7.27 (m, 1H). 

 

 

4-phenylmorpholine [CAS: 92-53-5]. 

 

 

 

Table 2-9, 2-40B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), 4-(3-((tert-

butyldimethylsilyl)oxy)phenyl)morpholine (44.5 mg, 0.152 mmol), and titanium(IV) isopropoxide 

(49 μL, 0.165 mmol) at 130 °C for 16 h gave a crude residue. The yield was determined by GC-

FID analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 289820445, 4-phenylmorpholine integration: 61169732, 0.046 mmol, 30%). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.29 (m, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.89 (t, J = 7.5 Hz, 1H), 

3.87 (t, J = 5.0 Hz, 4H), 3.16 (t, J = 5.0 Hz, 4H). 

 

 

N-phenylacetamide [CAS: 103-84-4]. 

 

 

 

Table 2-9, 2-41B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), N-(4-((tert-

butyldimethylsilyl)oxy)phenyl)acetamide (39.0 mg, 0.147 mmol), and titanium(IV) isopropoxide 
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(49 μL, 0.165 mmol) at 130 °C for 16 h gave a crude residue. The yield was determined by GC-

FID analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 258912979, N-phenylacetamide integration: 22126637, 0.022 mmol, 15%). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.50 (d, J = 8.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 2H), 7.4-7.2 (br, 1H), 

7.11 (t, J = 7.5 Hz, 1H), 2.18 (s, 3H).  

 

 

tert-butylbenzene [CAS: 98-06-6]. 

 

 

 

Table 2-9, 2-42B: Following a modified general procedure B, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), tert-butyl(4-(tert-

butyl)phenoxy)dimethylsilane (39.8 mg, 0.150 mmol), and titanium(IV) isopropoxide (49 μL, 

0.165 mmol) at 130 oC for 16 h gave a crude residue. The yield was determined by GC-FID 

analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 581498251, tert-butylbenzene integration: 170920319, 0.070 mmol, 46%). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.41 (d, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.19 (t, J = 7.5 

Hz, 1H), 1.34 (s, 9H). 

 

 

2,3-dihydro-1H-indene [CAS: 496-11-7]. 
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Table 2-9, 2-33B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), tert-butyl((2,3-dihydro-1H-

inden-5-yl)oxy)dimethylsilane (37.0 mg, 0.149 mmol), and titanium(IV) isopropoxide (49 μL, 

0.165 mmol) at 130 °C for 16 h gave a crude residue. The yield was determined by GC-FID 

analysis using tridecane as an internal standard due to volatility of the product (tridecane 

integration: 355781667, 2,3-dihydro-1H-indene integration: 153470439, 0.117 mmol, 77%). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.26 (m, 2H), 7.16 (m, 2H), 2.94 (t, J = 7.5 Hz, 4H, 2.10 (pentet, 

J = 7.5 Hz, 2H). 

 

 

1,2,3,4-tetrahydronaphthalene [CAS: 119-64-2]. 

 

 

 

Table 2-9, 2-34B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaOtBu (57.7 mg, 0.60 mmol), tert-butyldimethyl((5,6,7,8-

tetrahydronaphthalen-2-yl)oxy)silane (39.5 mg, 0.150 mmol), triisopropylsilane (184 μL, 0.9 

mmol), and titanium(IV) isopropoxide (89 μL, 0.3 mmol) at 130 oC for 16 hours gave a crude 

residue. The yield was determined by GC-FID analysis using tridecane as an internal standard due 

to volatility of the product (tridecane integration: 377773699, 1,2,3,4-tetrahydronaphthalene 

integration: 153470439, 0.109 mmol, 73%). The spectral data matches that previously reported in 

the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.02 (m, 4H), 2.73 (m, 4H), 1.76 (m, 4H). 
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tert-butyldimethyl(((8R,9S,13S,14S,17S)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthren-17-yl)oxy)silane. 

 

 

 

Table 2-9, 2.35B: Following a modified general procedure B, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), (((8R,9S,13S,14S,17S)-13-

methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-

diyl)bis(oxy))bis(tert-butyldimethylsilane) (75.0 mg, 0.15 mmol), and titanium(IV) isopropoxide 

(49 μL, 0.165 mmol) at 130 °C for 16 h gave a crude residue which was purified by flash 

chromatography (100% hexanes) to afford the desired product as a white solid (42.5 mg, 0.115 

mmol, 76% yield).  

 

1H-NMR (700 MHz, CDCl3): δ 7.30 (d, J = 7.0 Hz, 1H), 7.14 (t, J = 7.0 Hz, 1H), 7.11 (t, J = 7.0 

Hz, 1H), 7.08 (d, J = 7.0 Hz, 1H), 3.65 (t, J = 8.4 Hz, 1H), 2.86 (m, 2H), 2.32 (m, 1H), 2.23 (m, 

1H), 1.89 (m, 3H), 1.66 (m, 1H), 1.50 (m, 4H), 1.33 (m, 2H), 1.18 (m, 3H), 0.90 (s, 9H), 0.75 (s, 

3H), 0.03 (d, J = 9.1 Hz, 6H). 

13C-NMR (175 MHz, CDCl3): δ 140.5, 136.8, 129.0, 125.5, 125.5, 125.3, 81.8, 49.8, 44.6, 43.6, 

38.6, 37.2, 31.0, 29.6, 27.3, 26.3, 25.9, 23.3, 18.1, 11.4, 4.5, 4.8. 

IR (film, cm-1): 2923, 2852, 1469, 1247, 1097. 

HRMS (EI) m/z: [M]+ predicted for C24H38OSi, 370.2692; found, 370.2689. 
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6.2.4 Scheme 2-12 Deuterium Labeling Studies 

tetrakis((propan-2-yl-d7)oxy)titanium. 

 

 

 

Titanium(IV) isopropoxide (1.0 ml, 3.4 mmol) was added to a flame dried round bottom under a 

nitrogen atmosphere. To this was added 2-propanol-d8 (99.5%) (2.0 ml, 26.1 mmol) and the 

mixture was allowed to stir for 2 h. The reaction mixture was then concentrated, and the addition 

of 2-propanol-d8 (99.5%) (2.0 ml, 26.1 mmol) and subsequent concentration after stirring for two 

h was repeated two more times to afford the desired product with 92% deuterium incorporation. 

Standard Titanium(IV) isopropoxide, MS (EI) m/z: [M-CH3]+ calc. for C12H28O4Ti, 269.12, 

found, 269.1. 

Titanium(IV) isopropoxide-d28 MS (EI) m/z: [M-CD3]+ calc. for C12D28O4Ti, 294.28, found, 

294.3. Small amounts of d21, d14, or d7 products detected. Characteristic peaks at m/z 290.3, 287.2, 

283.2, 280.2, 276.2, and 273.1 indicate incomplete deuterium incorporation. Relative intensities:  

M/Z Intensity Percent Deuterium Deuterium Intensity 

294.2 (d28)(-CD3) 10330 100 10330 

290.3 (d21)(-CH3) 960 75 720 

287.2 (d21)(-CD3) 1562 75 1171.5 

283.2 (d14)(-CH3) 109.5 50 54.75 

280.2 (d14)(-CD3) 274.4 50 137.2 

276.2 (d7)(-CH3) 128.3 25 32.075 

273.1 (d7)(-CD3) 191.3 25 47.825 

Total: 13555.5  12493.35 

 

12493.35

13555.5
= 0.92 = 92% deuterium incorporation 
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4-(trifluoromethyl)-1,1'-biphenyl. 

 

 

 

Following general procedure B, Ni(acac)2 (1.9 mg, 0.0075 mmol), IPrMe·HCl (6.8 mg, 0.015 

mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyldimethyl((4'-(trifluoromethyl)-[1,1'-

biphenyl]-4-yl)oxy)silane (56.6 mg, 0.161 mmol) and titanium(IV) isopropoxide (49 μL, 0.165 

mmol)  gave a crude residue which was purified by flash chromatography (100% hexanes) to 

afford the desired product as a white solid (19.2 mg, 0.086 mmol, 54% yield). The spectral data 

matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.70 (m, 4H), 7.60 (d, J = 7.0 Hz, 2H), 7.48 (t, J = 7.0 Hz, 2H), 

7.41 (t, J = 7.0 Hz, 1H). 

 

 

4-(trifluoromethyl)-1,1'-biphenyl-4'-d. 

 

 

 

Scheme 2-12, 2-36D: Following a modified general procedure B, Ni(COD)2 (4.1 mg, 0.015 

mmol), IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-

butyldimethyl((4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)oxy)silane (52.7 mg, 0.150 mmol) and 

tetrakis((propan-2-yl-d7)oxy)titanium (51.5 mg, 0.165 mmol) gave a crude residue which was 

purified by flash chromatography (100% hexanes) to afford the desired product as a white solid 

(13.3 mg, 0.060 mmol, 40% yield) with 89% deuterium incorporation at the proton shown above, 

as determined by 1H-NMR.  
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1H-NMR (500 MHz, CDCl3): δ 7.70 (m, 4H), 7.64 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.5 Hz, 2H), 

7.43 (t, J = 7.5 Hz, 0.11H). 

13C-NMR (175 MHz, CDCl3): δ 144.7, 139. 7, 129.3 (q, J = 32.6 Hz), 128.9, 127.9 (t, J = 24.4 

Hz), 127.4, 127.3, 126.2 (q, J = 3.7 Hz), 124.3 (q, J = 270.3 Hz). (minor proteo peak at 128.2) 

IR (film, cm-1): 2924, 2854, 2360, 1614, 1396, 1327. 

HRMS (EI) m/z: [M]+ predicted for C13H8DF3, 223.0714; found, 223.0711. 

 

 

 

6.2.5 Table 2-14 Substrate Scope 

[1,1'-biphenyl]-4-yl(ethyl)dimethylsilane. 

 

 

 

Table 2-14, entry 1: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaOtBu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (43.4 mg, 0.153 mmol), and dimethylethylsilane (119 µL, 0.9 mmol) gave a 

crude residue which was purified by flash chromatography (100% hexanes) to afford the desired 

product (26.6 mg, 0.111 mmol, 73% yield). The yield for biphenyl was determined by GC-FID 

analysis using tridecane as an internal standard due to sublimability of the product (tridecane 

integration: 318617645, biphenyl integration: 12130473, 0.007 mmol, 4%). 

 

1H-NMR (500 MHz, CDCl3): δ 7.61 (m, 6H), 7.45 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 

1.00 (t, J = 7.5 Hz, 3H), 0.78 (q, J = 7.5 Hz, 2H), 0.30 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 141.5, 141.2, 138.2, 134.1, 128.7, 127.3, 127.1, 126.4, 7.4, 3.5. 

IR (film, cm-1): 3023, 2953, 2873, 1597, 1484, 1247. 

HRMS (EI) m/z: [M]+ predicted for C16H20Si, 240.1334; found, 240.1326. 
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[1,1'-biphenyl]-4-yldiethyl(methyl)silane. 

 

 

 

Table 2-14, entry 2: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaOtBu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (42.4 mg, 0.149 mmol), and diethylmethylsilane (131 µL, 0.9 mmol) gave a 

crude residue which was purified by flash chromatography (100% hexanes) to afford the desired 

product (28.3 mg, 0.111 mmol, 75% yield). The yield for biphenyl was determined by GC-FID 

analysis using tridecane as an internal standard due to sublimability of the product (tridecane 

integration: 231029643, biphenyl integration: 6144535, 0.005 mmol, 3%). 

 

1H-NMR (500 MHz, CDCl3): δ 7.62 (m, 6H), 7.45 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 

1.00 (t, J = 7.5 Hz, 6H), 0.81 (q, J = 7.5 Hz, 4H), 0.29 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 141.5, 141.2, 137.2, 134.4, 128.7, 127.3, 127.1, 126.4, 7.4, 5.5, 

-6.0 

IR (film, cm-1): 3022, 2952, 2873, 1597, 1484, 1251. 

HRMS (EI) m/z: [M]+ predicted for C17H22Si, 254.1491; found, 254.1491. 

 

 

[1,1'-biphenyl]-4-yl(isopropyl)dimethylsilane. 

 

 

 

Table 2-14, entry 4: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaOtBu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (44.1 mg, 0.155 mmol), and dimethylisopropylsilane (127 µL, 0.9 mmol) 
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gave a crude residue which was purified by flash chromatography (100% hexanes) to afford the 

desired product (31.3 mg, 0.123 mmol, 79% yield). The yield for biphenyl was determined by GC-

FID analysis using tridecane as an internal standard due to sublimability of the product (tridecane 

integration: 217553870, biphenyl integration: 11731319, 0.009 mmol, 6%). 

 

1H-NMR (500 MHz, CDCl3): δ 7.61 (m, 6H), 7.45 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 1H), 

1.00 (m, 7H), 0.28 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 141.5, 141.1, 137.4, 134.4, 128.7, 127.3, 127.1, 126.3, 17.6, 13.8, 

-5.3. 

IR (film, cm-1): 2953, 2862, 1597, 1484, 1383, 1249, 1114. 

HRMS (EI) m/z: [M]+ predicted for C17H22Si, 254.1491; found, 254.1495. 

 

 

[1,1'-biphenyl]-4-yltripropylsilane. 

 

 

 

Table 2-14, entry 5: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaOtBu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (43.5 mg, 0.153 mmol), and tripropylsilane (188 µL, 0.9 mmol) gave a crude 

residue which was purified by flash chromatography (100% hexanes) to afford the desired product 

(40.7 mg, 0.131 mmol, 85% yield). The yield for biphenyl was determined by GC-FID analysis 

using tridecane as an internal standard due to sublimability of the product (tridecane integration: 

296020364, biphenyl integration: 26809476, 0.016 mmol, 10%). 

 

1H-NMR (500 MHz, CDCl3): δ 7.60 (m, 6H), 7.45 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 1H), 

1.40 (m, 6H), 0.99 (t, J = 7.5 Hz, 9H), 0.83 (m, 6H). 

13C-NMR (125 MHz, CDCl3): δ 141.3, 141.2, 137.0, 134.6, 128.7, 127.2, 127.1, 126.3, 18.6, 17.5, 

15.3. 
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IR (film, cm-1): 2952, 2922, 2866, 1597, 1484, 1196. 

HRMS (EI) m/z: [M]+ predicted for C21H30Si, 310.2117; found, 310.2117. 

 

 

[1,1'-biphenyl]-4-yl(tert-butyl)dimethylsilane 

 

 

 

Table 2-14, entry 6: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaOtBu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (40.2 mg, 0.141 mmol), and tert-butyldimethylsilane (150 µL, 0.9 mmol) 

gave a crude residue which was purified by flash chromatography (100% hexanes) to afford the 

desired product (05.3 mg, 0.020 mmol, 14% yield). The yield for biphenyl was determined by GC-

FID analysis using tridecane as an internal standard due to sublimability of the product (tridecane 

integration: 323972611, biphenyl integration: 93135824, 0.050 mmol, 34%). 

 

1H-NMR (500 MHz, CDCl3): δ 7.59 (m, 6H), 7.44 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 1H), 

0.91 (s, 9H), 0.30 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 141.4, 141.1, 136.6, 134.9, 128.7, 127.3, 127.1, 126.1, 26.5, 16.9, 

6.1. 

IR (film, cm-1): 2924, 2852, 1595, 1468, 1252. 

HRMS (EI) m/z: [M]+ predicted for C18H24Si, 268.1647; found, 268.1648. 

 

 

[1,1'-biphenyl]-4-yl(benzyl)dimethylsilane 
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Table 2-14, entry 8: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaOtBu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (43.3 mg, 0.152 mmol), and benzyldimethylsilane (140 µL, 0.9 mmol) gave 

a crude residue which was purified by flash chromatography (100% hexanes) to afford the desired 

product (20.0 mg, 0.066 mmol, 43% yield). The yield for biphenyl was determined by GC-FID 

analysis using tridecane as an internal standard due to sublimability of the product (tridecane 

integration: 244625734, biphenyl integration: 27662478, 0.020 mmol, 12%). 

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (m, 6H), 7.47 (t, J = 7.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 

7.21 (t, J = 7.5 Hz, 2H), 7.09 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.5 Hz, 2H), 2.36 (s, 2H), 0.30 (s, 

6H). 

13C-NMR (125 MHz, CDCl3): δ 141.8, 141.0, 139.6, 137.2, 134.2, 128.8, 128.3, 128.1, 127.4, 

127.1, 126.4, 124.1, 26.2, 3.4. 

IR (film, cm-1): 3026, 2961, 2889, 1596, 1492, 1483, 1246. 

HRMS (EI) m/z: [M]+ predicted for C21H22Si, 302.1491; found, 302.1491. 

 

 

 

6.2.6 Table 2-15 Substrate Scope 

[1,1'-biphenyl]-4-yltriethylsilane. 

 

 

 

Table 2-15, 2-21A: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-yloxy)(tert-

butyl)dimethylsilane (42.6 mg, 0.15 mmol), and triethylsilane (144 μL, 0.9 mmol) gave a crude 

residue which was purified by flash chromatography (100% hexanes) to afford the desired product 

(36.6 mg, 0.137 mmol, 91% yield). The yield for biphenyl was determined by GC-FID analysis 
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using tridecane as an internal standard due to volatility of the product (tridecane integration: 

163648334, biphenyl integration: 776212, 0.0008 mmol, 1%; [1,1'-biphenyl]-4-yltriethylsilane 

integration: 238889415, 0.145 mmol, 97%). The spectral data matches that previously reported in 

the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.64 - 7.58 (m, 6H), 7.46 (dt, J = 7.3, 0.7 Hz, 2H), 7.36 (m, 1H), 

1.02 (t, J = 8.0 Hz, 9H), 0.85 (q, J = 8.0, 6H). 

 

 

triethyl(naphthalen-2-yl)silane.  

 

 

 

Table 2-15, 2-20A: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyldimethyl(naphthalen-2-

yloxy)silane (39.1 mg, 0.151 mmol), and triethylsilane (144 μL, 0.9 mmol) gave a crude residue 

which was purified by flash chromatography (100% hexanes) to afford the desired product (27.2 

mg, 0.112 mmol, 74% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 8.0 (s, 1H), 7.83 (m, 3H), 7.58 (d, J = 8.0, 1H), 7.49 (dd, J = 6.3, 

3.2 Hz, 2H), 1.02 (t, J = 7.5 Hz, 9H), 0.89 (q, J = 7.6 Hz, 6H). 

 

 

triethyl(naphthalen-1-yl)silane. 
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Table 2-15, 2-37A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-

butyldimethyl(naphthalen-1-yloxy)silane (39.3 mg, 0.152 mmol), and triethylsilane (144 μL, 0.9 

mmol) at 130 °C for 24 h gave a crude residue which was purified by flash chromatography (100% 

hexanes) to afford the desired product (22.9 mg, 0.094 mmol, 62% yield). The spectral data 

matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 8.10 (d, J = 7.5 Hz, 1H), 7.86 (m, 2H), 7.8 (m, 1H), 7.47 (m, 3H), 

0.99 (m, 15H). 

 

 

triethyl(6-(trimethylsilyl)naphthalen-2-yl)silane. 

  

 

 

Table 2-15, 2-33A: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyldimethyl((6-

(trimethylsilyl)naphthalen-2-yl)oxy)silane (49.3 mg, 0.149 mmol), and triethylsilane (144 μL, 0.9 

mmol) gave a crude residue which was purified by flash chromatography (100% hexanes) to afford 

the desired product (37.1 mg, 0.118 mmol, 79% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.989 (s, 1H), 7.97 (s, 1H), 7.82 (dd, J = 8.0, 4.5 Hz, 2H), 7.61 

(d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 1.00 (t, J = 8.5 Hz, 9H), 0.88 (q, J = 8.0 Hz, 6H), 

0.35 (s, 9H).  

13C-NMR (125 MHz, CDCl3): δ 138.3, 135.4, 134.6, 133.5, 133.1, 133.0, 130.7, 129.7, 127.0, 

126.8, 7.4, 3.4, 1.1.  

IR (film, cm-1): 3039, 2952, 2874, 1577, 1456, 1312, 1246. 

HRMS (EI) m/z: [M]+ predicted for C19H30Si2, 314.1886; found, 314.1889. 
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4'-(triethylsilyl)-[1,1'-biphenyl]-4-ol. 

 

 

 

Table 2-15, 2-25A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 4'-((tert-

butyldimethylsilyl)oxy)-[1,1'-biphenyl]-4-ol (44.3 mg, 0.147 mmol), and triethylsilane (144 μL, 

0.9 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (30.4 mg, 0.107 mmol, 72% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.55 - 7.49 (m, 6H), 6.90 (dt, J = 8.8, 2.2 Hz, 2H), 4.78 (s, 1H), 

1.00 (t, J = 8.3 Hz, 9H), 0.83 (q, J = 7.8 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 155.1, 140.9, 135.5, 134.7, 134.0, 128.4, 125.9, 115.6, 7.4, 3.4. 

IR (film, cm-1): 3290, 2951, 2873, 1596, 1521, 1458, 1244. 

HRMS (EI) m/z: [M]+ predicted for C18H24OSi, 284.1596; found, 284.1606. 

 

 

tert-butyldimethyl((4'-(triethylsilyl)-[1,1'-biphenyl]-4-yl)methoxy)silane. 

 

 

 

Table 2-15, 2-26A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((4'-((tert-

butyldimethylsilyl)oxy)-[1,1'-biphenyl]-4-yl)methoxy)dimethylsilane (67.3 mg, 0.157 mmol), and 

triethylsilane (144 μL, 0.9 mmol) at 100 °C for 8 h gave a crude residue which was purified by 

flash chromatography (100% hexanes) to afford the desired product (50.2 mg, 0.122 mmol, 78% 

yield). 
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1H-NMR (500 MHz, CDCl3): δ 7.58 (m, 6H), 7.40 (d, J = 8.0 Hz, 2H), 1.00 (t, J = 8.0 Hz, 9H), 

0.97 (s, 9H), 0.83 (q, J = 8.0 Hz, 6H), 0.13 (s, 6H).  

13C-NMR (125 MHz, CDCl3): δ 141.3, 140.5, 139.8, 136.0, 134.7, 126.9, 126.5, 126.3, 64.8, 26.0, 

18.5, 7.4, 3.4, -5.2. 

IR (film, cm-1): 2951, 2874, 1599, 1462, 1375, 1252.  

HRMS (EI) m/z: [M]+ predicted for C25H40OSi2, 412.2618; found, 412.2628. 

 

 

triethyl(4'-methoxy-[1,1'-biphenyl]-4-yl)silane.  

 

 

 

Table 2-15, 2-27A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((4'-methoxy-[1,1'-

biphenyl]-4-yl)oxy)dimethylsilane (45.9 mg, 0.146 mmol), and triethylsilane (144 μL, 0.9 mmol) 

at 100 °C for 8 h gave a crude residue which was purified by flash chromatography (hexanes: ethyl 

acetate 99:1) to afford the desired product (31.1 mg, 0.104 mmol, 71% yield). [A 37:7:1 

(triethyl(4’-methoxy-[1,1’-biphenyl]-4-silane:4-methoxy-1,1’-biphenyl:[1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane) ratio of products was observed.] 

 

1H-NMR (500 MHz, CDCl3): δ 7.55 (m, 6H), 6.98 (dt, J = 8.8 Hz, 2H), 3.86 (s, 3H), 1.00 (t, J = 

8.1 Hz, 9H), 0.81 (q, J = 7.8 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 159.2, 141.0, 135.4, 134.7, 133.7, 128.1, 125.9, 114.2, 55.3, 7.4, 

3.4. 

IR (film, cm-1): 2952, 1602, 1492, 1462, 1248.  

HRMS (EI) m/z: [M]+ predicted for C19H26OSi, 298.1753; found, 298.1763. 
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4,4'-bis(triethylsilyl)-1,1'-biphenyl. 

  

 

 

Table 2-15, 2-38A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 4,4'-bis((tert-

butyldimethylsilyl)oxy)-1,1'-biphenyl (63.9 mg, 0.154 mmol), and triethylsilane (144 μL, 0.9 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (100% 

hexanes) to afford the desired product (43.1 mg, 0.113 mmol, 73% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.58 (m, 8 H), 1.0 (t, J = 8.0 Hz, 18H), 0.83 (q, J = 8.0 Hz, 12H).  

13C-NMR (125 MHz, CDCl3): δ 141.4, 136.2, 134.7, 126.3, 7.4, 3.4. 

IR (film, cm-1): 3068, 2950, 2872, 1594, 1455, 1380, 1236.  

HRMS (EI) m/z: [M]+ predicted for C19H26OSi, 382.2512; found, 382.2510. 

 

 

2-methyl-6-(triethylsilyl)quinolone. 

 

 

 

Table 2-15, 2-39A: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 6-((tert-butyldimethylsilyl)oxy)-2-

methylquinoline (44.7 mg, 0.163 mmol), and triethylsilane (144 μL, 0.9 mmol) gave a crude 

residue which was purified by flash chromatography (hexanes: ethyl acetate 95:5) to afford the 

desired product (22.5 mg, 0.087 mmol, 53% yield).  
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1H-NMR (500 MHz, CDCl3): δ 8.04 (d, J = 8.5Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.89 (s, 1H), 

7.77 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 2.75 (s, 3H), 0.94 (t, J = 8.0 Hz, 9H), 0.88 (q, J 

= 8.0 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 159.2, 136.2, 135.1, 134.3, 134.3, 129.6, 127.5, 126.0, 121.9, 

25.4, 7.4, 3.4. 

IR (film, cm-1): 2950, 2873, 1612, 1560, 1465, 1223. 

HRMS (ESI+) m/z: [M+H]+ predicted for C16H23NSi, 258.1673; found, 258.1671. 

 

 

9-methyl-2-(triethylsilyl)-9H-carbazole.  

 

 

 

Table 2-15, 2-28A: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 2-((tert-butyldimethylsilyl)oxy)-9-

methyl-9H-carbazole (46.1 mg, 0.148 mmol), and triethylsilane (144 μL, 0.9 mmol)gave a crude 

residue which was purified by flash chromatography (hexanes: ethyl acetate 99:1) to afford the 

desired product (38.1 mg, 0.130 mmol, 87% yield). The spectral data matches that previously 

reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 8.10 (m, 2H), 7.53 (d, J = 2.5 Hz, 1H), 7.47 (t, J = 7.0 Hz, 1H), 

7.41 (d, J = 8.0 Hz, 1H), 7.37 (dd, J = 7.5, 3.0 Hz, 1H), ( 7.23, dt, J = 8.0, 2.5 Hz, 1H), 3.89 (s, 

3H), 1.03 (dt, J = 8.0 Hz, 3.5 Hz, 9H), 0.91 (dq, J = 8.0, 3.5 Hz, 6H).   
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2-(4-(triethylsilyl)phenyl)pyridine. 

  

 

 

Table 2-15, 2-29A: Following general procedure C, Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 2-(4-((tert-

butyldimethylsilyl)oxy)phenyl)pyridine (40.0 mg, 0.139 mmol), and triethylsilane (144 μL, 0.9 

mmol) gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 

90:10) to afford the desired product (26.4 mg, 0.098 mmol, 70% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 8.70 (d, J = 5.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.76 (m, 2H), 

7.61 (d, J = 8.0 Hz, 2H), 7.24 (m, 1H), 0.98 (t, J = 8.0 Hz, 9H), 0.83 (q, J = 8.0 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 157.6, 149.7, 139.6, 138.4, 136.7, 134.7, 126.0, 122.1, 120.6, 

7.4, 3.3. 

IR (film, cm-1): 2951, 2873, 1586, 1464, 1430, 1382, 1236. 

HRMS (ESI+) m/z: [M+H]+ predicted for C17H23NSi, 286.1622; found, 286.1623. 

 

 

4-(3-(triethylsilyl)phenyl)morpholine. 

 

 

 

Table 2-15, 2-40A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 4-(3-((tert-

butyldimethylsilyl)oxy)phenyl)morpholine (44.0 mg, 0.15 mmol), and triethylsilane (144 μL, 0.9 

mmol) at 130 °C for 24 h gave a crude residue which was purified by flash chromatography (100% 

hexanes) to afford the desired product (32.0 mg, 0.116 mmol, 77% yield). 
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1H-NMR (500 MHz, CDCl3): δ 7.28 (d, J = 7.6 Hz, 1H), 7.05 (d, J = 2.5 Hz, 1H), 7.02 (d, J = 7.1 

Hz, 1H), 6.91 (dd, J = 8.1, 2.5 Hz, 1H), 3.88 (t, J = 4.9 Hz, 4H), 3.17 (t, J = 4.9 Hz, 4H), 0.97 (t, 

J = 7.8 Hz, 9H), 0.78 (q, J = 7.8 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 150.6, 138.4, 128.5, 126.1, 121.6, 116.2, 67.0, 49.6, 7.5, 3.4. 

IR (film, cm-1): 2953, 2873, 1586, 1449, 1229. 

HRMS (EI) m/z: [M]+ predicted for C16H27NOSi, 277.1862; found, 277.1863. 

 

 

N-(4-(triethylsilyl)phenyl)acetamide. 

 

 

 

Table 2-15, 2-41A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), N-(4-((tert-

butyldimethylsilyl)oxy)phenyl)acetamide (39.8 mg, 0.15 mmol), and triethylsilane (144 μL, 0.9 

mmol) at 130 °C for 24 h gave a crude residue which was purified by flash chromatography (100% 

hexanes) to afford the desired product (27.7 mg, 0.111 mmol, 74% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.46 (m, 4H), 7.30 (b, 1H), 2.17 (s, 3H), 0.95 (t, J = 8.0 Hz, 9H), 

0.77 (q, J = 8.0 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 168.3, 138.3, 135.0, 133.0, 119.0, 24.6, 7.3, 3.6.  

IR (film, cm-1): 3307, 2952, 2874, 1669, 1590, 1526, 1388. 

HRMS (EI) m/z: [M]+ predicted for C14H23NOSi, 249.1549; found, 249.1548. 
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(4-(tert-butyl)phenyl)triethylsilane. 

 

 

 

Table 2-15, 2-42A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl(4-(tert-

butyl)phenoxy)dimethylsilane (39.6 mg, 0.15 mmol), and triethylsilane (144 μL, 0.9 mmol) at 130 

°C for 24 h gave a crude residue which was purified by flash chromatography (100% hexanes) to 

afford the desired product (34.0 mg, 0.137 mmol, 91% yield). The spectral data matches that 

previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.43 (m, 2H), 7.37 (m, 2H), 1.32 (s, 9H), 0.97 (t, J = 7.5 Hz, 9H), 

0.78 (q, J = 7.5 Hz, 6H).   

 

 

(2,3-dihydro-1H-inden-5-yl)triethylsilane.  

 

 

 

Table 2-15, 2-33A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((2,3-dihydro-1H-

inden-5-yl)oxy)dimethylsilane (37.2 mg, 0.15 mmol) and triethylsilane (144 μL, 0.9 mmol) at 130 

°C for 24 h gave a crude residue which was purified by flash chromatography (100% hexanes) to 

afford the desired product (29.7 mg, 0.128 mmol, 85% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.37 (s, 1H), 7.25 (m, 2H), 2.92 (dt, J = 7.5, 3.0 Hz, 4H), 2.06 

(pentet, J = 7.5 Hz, 2H), 0.97 (t, J = 7.5 Hz, 9H), 0.78 (q, J = 7.5 Hz, 6H).  
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13C-NMR (125 MHz, CDCl3): δ 145.0, 143.5, 134.5, 132.0, 130.1, 123.9, 32.9, 32.8, 25.1, 7.5, 

3.5. 

IR (film, cm-1): 2950, 2873, 1458, 1415, 1236. 

HRMS (EI) m/z: [M]+ predicted for C15H24Si, 232.1647; found, 232.1646. 

 

 

triethyl(5,6,7,8-tetrahydronaphthalen-2-yl)silane.  

 

 

 

Table 2-15, 2-34A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaOtBu (36.0 mg, 0.375 mmol), tert-butyldimethyl((5,6,7,8-

tetrahydronaphthalen-2-yl)oxy)silane (39.1 mg, 0.149 mmol), and triethylsilane (144 μL, 0.9 

mmol) at 130 °C for 24 hours gave a crude residue which was purified by flash chromatography 

(100% hexanes) to afford the desired product (29.3 mg, 0.119 mmol, 82% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.21 (d, J = 7.5 Hz, 1H), 7.18 (s, 1H), 7.05 (d, J = 7.5 Hz, 1H), 

2.78 (m, 4H), 1.81 (m, 4H), 0.98 (t, J = 8.0 Hz, 9H), 0.78 (q, J = 8.0 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 137.8, 136.3, 135.2, 133.9, 131.2, 128.5, 29.42, 29.39, 23.3, 23.2, 

7.5, 3.4. 

IR (film, cm-1): 2929, 2873, 1458, 1415, 1236.  

HRMS (EI) m/z: [M]+ predicted for C16H26Si, 246.1804; found, 246.1807. 
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tert-butyldimethyl(((8R,9S,13S,14S,17S)-13-methyl-3-(triethylsilyl)-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)oxy)silane. 

 

  

 

Table 2-15, 2-35A: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPr*OMe (35.5 mg, 0.038 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), (((8R,9S,13S,14S,17S)-13-

methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-

diyl)bis(oxy))bis(tert-butyldimethylsilane) (77.4 mg, 0.155 mmol), and triethylsilane (144 μL, 0.9 

mmol) at 130 °C for 24 h gave a crude residue which was purified by flash chromatography (100% 

hexanes) to afford the desired product (70.2 mg, 0.148 mmol, 94% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.28 (m, 2H), 7.19 (s, 1H), 3.65 (t, J = 8.0 Hz, 1H), 2.86 (m, 2H), 

2.31 (m, 1H), 2.24 (dt, J = 11.5, 4.0 Hz, 1H), 1.89 (m, 3H), 1.66 (m, 1H), 1.49 (m, 3H), 1.32 (m, 

2H), 1.18 (m, 2H), 0.97 (t, J = 7.5 Hz, 9H), 0.90 (s, 9H), 0.77 (q, J = 8.0 Hz, 6H), 0.74 (s, 3H), 

0.03 (d, J = 6.5 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 141.1, 135.9, 135.0, 134.0, 131.5, 124.6. 81.7, 49.9, 44.7, 43.6, 

38.6, 37.2, 31.0, 29.7, 27.3, 26.0, 25.9, 23.3, 18.2, 11.4, 7.5, 3.4, -4.5, -4.8. 

IR (film, cm-1): 2949, 2866, 1594, 1462, 1371, 1253. 

HRMS (EI) m/z: [M]+ predicted for C30H52OSi2, 484.3557; found, 484.3558. 
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6.3 General Experimental Details for Chapter 3 

6.3.1 General Procedures for Chapter 3 

General Procedure for the Ni(COD)2/IPrMe·HCl promoted amination of silyloxyarenes using 

amines (D): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv.), Ni(COD)2 (5 

mol%), IPrMe·HCl  (10 mol%), NaO-t-Bu (2.5 equiv.), toluene (0.5 M) and amine. The sealed 

reaction tube was brought outside the glovebox and placed in a heated block set to 120 oC and 

stirred for 16 hours, unless noted otherwise. The mixture was cooled to room temperature, 

quenched with dichloromethane (1 mL), and diluted with EtOAc (3 mL). The mixture was then 

run through a silica plug, concentrated under reduced pressure and purified by flash column 

chromatography on silica gel to afford the desired product. 

 

General Procedure for the Ni(acac)2/IPrMe·HCl and Cu(OAc)2 promoted borylation of 

silyloxyarenes using bis(pinacolato)diboron (E): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(acac)2 (10 mol%), IPrMe·HCl (20 mol%), Cu(OAc)2 (20 mol%), and B2pin2 (2.5 equiv). 

Toluene (0.3 M) was then added added, and the reaction tube was then placed in a heated block 

set to 120 °C and stirred for 16 h. The mixture was allowed to reach rt, taken up in ethyl acetate 

and filtered through silica (boric acid impregnated silica) plug via a glass fritted filter and 

concentrated under reduced pressure. The crude material was placed under reduced pressure via 

high vacuum until purification via column chromatography (boric acid impregnated silica gel) to 

afford the desired product.  

 

General Procedure for the Ni(COD)2/IPrMe·HCl promoted Suzuki coupling of silyloxyarenes 

using aryl boronate esters (F): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv.), Ni(COD)2 (10 

mol%), IPrMe·HCl (20 mol%), NaO-t-Bu (2.5 equiv.), aryl boronate ester (1.5 equiv), and toluene 

(0.3 M). The sealed reaction tube was brought outside the glovebox and placed in a heated block 

set to 120 oC and stirred for 16 hours, unless noted otherwise. The mixture was cooled to room 

temperature, quenched with dichloromethane (1 mL), and diluted with EtOAc (3 mL). The mixture 
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was then run through a silica plug, concentrated under reduced pressure and purified by flash 

column chromatography on silica gel to afford the desired product. 

 

 

 

6.3.2 Table 3-3 Substrate Scope 

N-octyl-4-(pyridin-2-yl)aniline. 

 

 

 

Table 3-3, 3-4: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (79.3 mg, 0.279 mmol), and morpholine (39 µL, 0.45 mmol) at 

120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: ethyl 

acetate 92.5:7.5) to afford the desired product (62.3 mg, 0.260 mmol, 93% yield). The spectral 

data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.55 (m, 4H), 7.41 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 

6.98 (d, J = 8.5 Hz, 2H), 3.89 (t, J = 5.0 Hz, 4H), 3.22 (t, J = 5.0 Hz, 4H). 

 

 

1-([1,1'-biphenyl]-4-yl)-4-methylpiperazine. 

 

 

 



 172 

Table 3-3, 3-5: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (84.0 mg, 0.295 mmol), and 1-methylpiperazine (50 µL, 0.45 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate:triethylamine 72.5:25:2.5) to afford the desired product (64.6 mg, 0.256 

mmol, 87% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.58 (d, J = 7.0 Hz, 2H), 7.54 (dd, J = 8.0 Hz, 3.0 Hz, 2H), 7.42 

(t, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.5 Hz, 2H), 3.29 (t, J = 5.0 Hz, 4H), 2.61 

(t, J = 5.0 Hz, 4H), 2.38 (s, 3H).   

 

 

1-([1,1'-biphenyl]-4-yl)-2-methylpiperidine. 

 

 

 

Table 3-3, 3-6: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (85.3 mg, 0.300 mmol), and 2-methylpiperidine (53 µL, 0.45 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (57.9 mg, 0.230 mmol, 77% yield). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 8.0 

Hz, 2H), 7.27 (m, 1H), 6.98 (d, J = 7.5 Hz, 2H), 4.02 (s, 1H), 3.32 (dt, J = 12.2, 4.0 Hz, 1H), 3.0 

(t, J = 10.0 Hz, 1H), 1.88 (m, 1H), 1.77 (m, 1H), 1.62 (m, 4H), 1.05 (d, J = 6.5 Hz, 3H).   
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1-([1,1'-biphenyl]-4-yl)-2,6-dimethylpiperidine. 

 

 

 

Table 3-3, 3-7: Following a modified general procedure D, Ni(COD)2 (8.3 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (84.0 mg, 0.295 mmol), and 2,6-dimethylpiperdine (49 µL, 0.45 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (18.3 mg, 0.069 mmol, 23% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.59 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.42 (t, J = 8.0 

Hz, 2H), 7.30 (t, J = 7.0 Hz, 1H), 7.16 (d, J = 8.5 Hz, 2H), 3.10 (m, 2H), 1.77 (m, 3H), 1.53 (m, 

3H), 0.87 (d, J = 6.5 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 150.0, 140.9, 136.3, 128.7, 128.3, 126.8, 126.7, 124.9, 55.9, 34.5, 

22.6, 21.4. 

IR (film, cm-1): 2956, 2924, 2855, 2791, 1602, 1485. 

HRMS (ESI+) m/z: [M+H]+ predicted for C19H23N, 266.1903; found, 266.1903. 

 

 

N,N-diisobutyl-[1,1'-biphenyl]-4-amine. 

 

 

 

Table 3-3, 3-8: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (87.4 mg, 0.307 mmol), and diisobutylamine (131 µL, 0.75 
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mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes) to afford the desired product (16.4 mg, 0.058 mmol, 19% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.54 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 

Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 8.5 Hz, 2H), 3.19 (d, J = 7.0 Hz, 4H), 2.13 (septet, 

J = 7.0 Hz, 2H), 0.92 (d, J = 7.0 Hz, 12H). 

13C-NMR (125 MHz, CDCl3): δ 147.6, 141.3, 128.8, 128.7, 128.6, 126.1, 125.7, 115.5, 60.4, 26.4, 

20.4. 

IR (film, cm-1): 2948, 2929, 2863, 1609, 1518, 1486. 

HRMS (ESI+) m/z: [M+H]+ predicted for C20H27N, 282.2216; found, 282.2219. 

 

 

N,N-dibutyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-9: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (85.9 mg, 0.302 mmol), and dibutylamine (126 µL, 0.75 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 99:1) to afford the desired product (69.8 mg, 0.248 mmol, 82% yield). The spectral 

data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.55 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.24 (m, 1H), 

6.71 (d, J = 8.0 Hz, 2H), 3.31 (t, J = 8.0 Hz, 4H), 1.61 (m, 4H), 1.38 (m, 4H), 0.98 (t, J = 7.5 Hz, 

6H).  
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N-butyl-N-methyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-10: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (84.8 mg, 0.298 mmol), and N-methylbutylamine (53 µL, 0.45 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (63.8 mg, 0.267 mmol, 89% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.39 (t, J = 7.0 

Hz, 2H), 7.25 (m, 1H), 6.77 (d, J = 8.0 Hz, 2H), 3.36 (t, J = 7.5 Hz, 2H), 2.98 (s, 3H), 1.60 (m, 

2H), 1.38 (m, 2H), 0.97 (t, J = 7.5 Hz, 3H). 

13C-NMR (125 MHz, CDCl3): δ 148.7, 141.3, 128.6, 128.4, 127.7, 126.2, 125.8, 112.2, 52.5, 38.4, 

28.9, 20.4, 14.0.  

IR (film, cm-1): 3033, 2952, 2870, 1608, 1527, 1491. 

HRMS (ESI+) m/z: [M+H]+ predicted for C17H21N, 240.1747; found, 240.1748. 

 

 

N-methyl-N-phenyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-11: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (84.8 mg, 0.298 mmol), and N-methylaniline (81 µL, 0.75 mmol) 
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at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

toluene 90:10) to afford the desired product (33.2 mg, 0.128 mmol, 43% yield). The spectral data 

matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (d, J = 7.0 Hz, 2H), 7.50 (d, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 

Hz, 2H), 7.31 (m, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 7.01 (t, J = 7.0 Hz, 1H), 

3.36 (s, 3H). 

 

 

N-mesityl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-12: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.6 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (84.1 mg, 0.296 mmol), and 2,4,6-trimethylaniline (63 µL, 0.45 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (68.0 mg, 0.237 mmol, 80% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.54 (d, J = 8.0 Hz, 2H), 7.41 (m, 4H), 7.26 (t, J = 7.5 Hz, 1H), 

6.98 (s, 2H), 6.57 (d, J = 8.5 Hz, 2H), 2.34 (s, 3H), 2.22 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 146.1, 141.2, 136.0, 135.5, 135.3, 130.8, 129.2, 128.6, 127.9, 

126.3, 126.1, 113.5, 20.9, 18.3.  

IR (film, cm-1): 3390, 3022, 2916, 1613, 1519, 1484. 

HRMS (ESI+) m/z: [M+H]+ predicted for C21H21N, 288.1747; found, 288.1753. 
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N-(2,6-diisopropylphenyl)-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-13: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (84.7 mg, 0.298 mmol), and 2,6-diisopropylaniline (131 µL, 0.75 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (54.0 mg, 0.164 mmol, 55% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (d, J = 7.5 Hz, 2H), 7.40 (m, 4H), 7.33 (t, J = 7.5 Hz, 1H), 

7.26 (m, 2H), 6.57 (d, J = 8.0 Hz, 2H), 5.21 (s, 1H), 3.25 (septet, J = 7.0 Hz, 2H), 1.18 (d, J = 7.0 

Hz, 12H). 

13C-NMR (125 MHz, CDCl3): δ 147.6, 141.1, 135.0, 130.5, 128.6, 127.8, 127.3, 126.2, 126.0, 

123.9, 115.6, 113.2, 28.2, 23.9.  

IR (film, cm-1): 3398, 3031, 2961, 2867, 1612, 1521, 1486. 

HRMS (ESI+) m/z: [M+H]+ predicted for C24H27N, 330.2216; found, 330.2217. 

 

 

N-phenyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-14: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-
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yloxy)(tert-butyl)dimethylsilane (84.7 mg, 0.298 mmol), and aniline (68 µL, 0.75 mmol) at 120 

°C for 16 h gave a crude residue which was analyzed by 1H-NMR and GC-MS where the product 

was observed. The spectral data matches that previously reported in the literature. 

 

 

N-cyclohexyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-15: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (41.2 mg, 0.145 mmol), and cyclohexylamine (26 µL, 0.225 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (31.8 mg, 0.127 mmol, 87% yield). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.52 (d, J = 7.5 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 

Hz, 2H), 7.24 (m, 1H), 6.69 (m, 2H), 3.67 (bs, 1H), 3.30 (m, 1H), 2.09 (dd, J = 12.5 Hz, 3.0 Hz, 

2H), 13.5 Hz, 4.0 Hz, 2H), 1.66 (m, 1H), 1.38 (m, 2H), 1.28-1.19 (m, 3H). 

 

 

N-(cyclopropylmethyl)-[1,1'-biphenyl]-4-amine.  
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Table 3-3, 3-16: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.6 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (85.4 mg, 0.300 mmol), and cyclopropylmethylamine (65 µL, 

0.75 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (47.4 mg, 0.212 mmol, 71% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.54 (d, J = 7.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 7.5 

Hz, 2H), 7.26 (m, 1H), 6.69 (d, J = 8.5 Hz, 2H), 3.88 (br, 1H), 3.01 (d, J = 7.0 Hz, 2H), 1.13 (m, 

1H), 0.57 (d, J = 7.5 Hz, 2H), 0.27 (d, J = 5.0 Hz, 2H). 

13C-NMR (125 MHz, CDCl3): δ 147.9, 141.3, 130.1, 128.6, 127.9, 126.3, 126.0, 113.0, 49.1, 10.9, 

3.5. 

IR (film, cm-1): 2926, 2853, 1609, 1503, 1471. 

HRMS (ESI+) m/z: [M+H]+ predicted for C16H17N, 224.1434; found, 224.1433. 

 

 

N-butyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-17: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (87.3 mg, 0.307 mmol), and butylamine (74 µL, 0.75 mmol) at 

120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: ethyl 

acetate 95:5) to afford the desired product (48.0 mg, 0.213 mmol, 69% yield). The spectral data 

matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.53 (d, J = 7.0 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 8.0 

Hz, 2H), 7.25 (m, 1H), 6.70 (d, J = 8.5 Hz, 2H), 3.91 (bs, 1H), 3.16 (t, J = 7.0 Hz, 2H), 1.64 (pentet, 

J = 7.5 Hz, 2H), 1.45 (sextet, J = 7.5 Hz, 2H), 0.97 (t, J = 7.5 Hz, 3H).    
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N-isobutyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-18: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (83.9 mg, 0.295 mmol), and isobutylamine (75 µL, 0.75 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (50.0 mg, 0.222 mmol, 75% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.57 (d, J = 6.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.42 (t, J = 7.5 

Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 6.70 (d, J = 8.5 Hz, 2H), 3.83 (bs, 1H), 3.00 (d, J = 7.0 Hz, 2H), 

1.95 (septet, J = 7.0 Hz, 1H), 1.03 (d, J = 6.5 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 148.0, 141.3, 129.8, 128.6, 127.9, 126.2, 125.9, 112.8, 51.8, 28.0, 

20.5.  

IR (film, cm-1): 3393, 2951, 2927, 2854, 1610, 1492. 

HRMS (EI) m/z: [M]+ predicted for C16H19N, 225.1517; found, 225.1513. 

 

 

N-(sec-butyl)-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-19: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (86.0 mg, 0.302 mmol), and sec-butylamine (76 µL, 0.75 mmol) 
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at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (45.4 mg, 0.201 mmol, 67% yield). The spectral 

data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.53 (d, J = 8.0 Hz, 2H), 7.44-7.37 (m, 4H), 7.25 (m, 11H), 6.65 

(d, J = 7.0 Hz, 2H), 3.55 (bs, 1H), 3.44 (m, 1H), 1.61 (m, 1H), 1.50 (m, 1H), 1.21 (d, J = 5.5 Hz, 

3H), 0.98 (t, J = 7.0 Hz, 3H). 

 

 

N-cyclobutyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-20: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (87.5 mg, 0.308 mmol), and cyclobutylamine (64 µL, 0.75 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (37.7 mg, 0.169 mmol, 55% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (d, J = 7.0 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.41 (t, J = 7.5 

Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 6.64 (d, J = 8.5 Hz, 2H), 3.98 (m, 1H), 3.92 (bs, 1H), 2.47 (m, 

2H), 1.88 (m, 4H). 

13C-NMR (125 MHz, CDCl3): δ 146.6, 141.3, 130.2, 128.6, 127.9, 126.3, 126.0, 113.2, 48.9, 31.2, 

15.3. 

IR (film, cm-1): 3380, 2954, 2928, 2853, 1607, 1518, 1472. 

HRMS (ESI+) m/z: [M+H]+ predicted for C16H17N, 224.1434; found, 224.1438. 
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N-(tert-butyl)-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-3, 3-21: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (83.2 mg, 0.292 mmol), and tert-butylamine (79 µL, 0.75 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (10.2 mg, 0.045 mmol, 15% yield). The spectral 

data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.54 (d, J = 7.5 Hz, 2H), 7.43-7.37 (m, 4H), 7.26 (m, 1H), 6.82 

(m, 2H), 3.62 (bs, 1H), 1.38 (s, 9H).  

 

 

(3s,5s,7s)-N-([1,1'-biphenyl]-4-yl)adamantan-1-amine.  

 

 

 

Table 3-3, 3-22: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), ([1,1'-biphenyl]-4-

yloxy)(tert-butyl)dimethylsilane (87.5 mg, 0.308 mmol), and 1-adamantylamine (113.4 mg, 0.75 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (51.9 mg, 0.171 mmol, 56% yield). The 

spectral data matches that previously reported in the literature. 
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1H-NMR (500 MHz, CDCl3): δ 7.53 (d, J = 7.5 Hz, 2H), 7.41-7.37 (m, 4H), 7.26 (m, 1H), 6.65 

(d, J = 8.0 Hz, 2H), 3.45 (bs, 1H), 2.13 (m, 3H), 1.92 (m, 6H), 1.69 (m, 6H). 

 

 

 

6.3.3 Table 3-5 Substrate Scope 

N-benzylnaphthalen-1-amine. 

 

 

 

Table 3-5, 3-23: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (115.6 mg, 1.20 mmol), tert-

butyldimethyl(naphthalen-1-yloxy)silane (77.5 mg, 0.300 mmol), and benzylamine (50 µL, 0.45 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 99:1) to afford the desired product (53.0 mg, 0.227 mmol, 76% yield). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.83 (t, J = 7.5 Hz, 2H), 7.46 (m, 4H), 7.39 (t, J = 7.5 Hz, 2H), 

7.34 (m, 2H), 7.27 (m, 1H), 6.65 (d, J = 7.5 Hz, 1H), 4.71 (b, 1H), 4.51 (s, 2H). 

 

 

N-isobutylnaphthalen-2-amine. 

 

 

 

Table 3-5, 3-24: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.75 mmol), tert-butyldimethyl(naphthalen-

2-yloxy)silane (79.4 mg, 0.307 mmol), and isobutylamine (45 µL, 0.45 mmol) at 120 °C for 16 h 
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gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 95:5) to 

afford the desired product (42.5 mg, 0.213 mmol, 69% yield). The spectral data matches that 

previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.66 (8.0 Hz, 1H), 7.61 (m, 2H), 7.35 (t, J = 7.5 Hz, 1H), 7.18 (t, 

J = 7.5 Hz, 2H), 6.88 (dd, J = 8.5 Hz, 2.0 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 3.90 (bs, 1H), 3.05 (d, 

J = 7.0 Hz, 2H), 1.98 (septet, J = 6.5 Hz, 1H), 1.04 (d, J = 7.0 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 146.2, 135.3, 128.8, 127.6, 127.3, 126.2, 125.8, 121.7, 117.9, 

104.1, 51.8, 28.0, 20.6.  

IR (film, cm-1): 3421, 3050, 2955, 2868, 1629, 1522. 

HRMS (ESI+) m/z: [M+H]+ predicted for C14H17N, 200.1434; found, 200.1439. 

 

 

N-methyl-N-phenyl-6-(trimethylsilyl)naphthalen-2-amine. 

 

 

 

Table 3-5, 3-25: Following general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), IPrMe·HCl (27.2 

mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), tert-butyldimethyl((6-

(trimethylsilyl)naphthalen-2-yl)oxy)silane (99.8 mg, 0.302 mmol), and N-methylaniline (49 µL, 

0.45 mmol) gave a crude residue which was purified by flash chromatography (hexanes: ethyl 

acetate 99:1) to afford the desired product (56.4 mg, 0.184 mmol, 61% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.91 (s, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.0 Hz, 1H), 

7.32 (m, 3H), 7.21 (m, 1H), 7.12 (d, J = 8.5 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H), 3.44 (s, 3H), 0.36 

(s, 9H). 

13C-NMR (125 MHz, CDCl3): δ 149.0, 146.9, 135.1, 134.9, 133.4, 130.3, 129.3, 128.7, 128.6, 

125.8, 122.1, 121.64, 121.61, 114.0, 40.6, -1.0. 

IR (film, cm-1): 3038, 2952, 1625, 1589, 1488. 
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HRMS (ESI+) m/z: [M+H]+ predicted for C20H23NSi, 306.1673; found, 306.1669. 

 

 

N-benzyl-N,3-dimethyl-[1,1'-biphenyl]-4-amine.  

 

 

 

Table 3-5, 3-26: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyldimethyl((3-methyl-

[1,1'-biphenyl]-4-yl)oxy)silane (46.2 mg, 0.155 mmol), and N-benzylmethylamine (29 µL, 0.225 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (28.9 mg, 0.101 mmol, 65% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.59 (d, J = 7.5 Hz, 2H), 7.46-7.16 (m, 10H), 7.15 (d, J = 8.0 Hz, 

1H), 4.10 (s, 2H), 2.64 (s, 3H), 2.48 (s, 3H). 

13C-NMR (125 MHz, CDCl3): δ 151.8, 141.0, 139.0, 135.7, 132.9, 129.9, 128.6, 128.32, 128.30, 

127.0, 126.8, 126.7, 125.1, 120.2, 60.7, 40.8, 18.7. 

IR (film, cm-1): 3060, 3028, 2948, 2791, 1603, 1485. 

HRMS (ESI+) m/z: [M+H]+ predicted for C21H22N, 288.1747; found, 288.1748. 

 

 

4-(6-((tert-butyldimethylsilyl)oxy)-[1,1'-biphenyl]-3-yl)morpholine.  
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Table 3-5, 3-27: Following a modified general procedure D, Ni(COD)2 (6.2 mg, 0.0225 mmol), 

IPrMe·HCl (20.4 mg, 0.045 mmol), NaO-t-Bu (57.7 mg, 0.6 mmol), ([1,1'-biphenyl]-2,5-

diylbis(oxy))bis(tert-butyldimethylsilane) (63.2 mg, 0.152 mmol), and morpholine (33 µL, 0.375 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (27.0 mg, 0.073 mmol, 48% yield). The 

product was isolated as a mixture of the desired product and 4-([1,1'-biphenyl]-3-yl)morpholine. 

The spectral data for 4-([1,1'-biphenyl]-3-yl)morpholine matches that previously reported in the 

literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.48 (d, J = 7.5 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.5 

Hz, 1H), 6.88 (d, J = 3.0 Hz, 1H), 6.84 (d, J = 9.0 Hz, 1H), 6.80 (dd, J = 8.5, 2.5 Hz, 1H), 3.86 (t, 

J = 5.0 Hz, 4H), 3.11 (t, J = 5.0 Hz, 4H), 0.80 (s, 9H), -0.11 (s, 6H). 

Minor product peaks of 4-([1,1'-biphenyl]-3-yl)morpholine: 7.57 (d, J = 7.5 Hz, 0.43H), 7.43 (t, J 

= 7.5 Hz, 0.48H), 7.35 (m, 0.26), 7.11 (m, 0.50H), 6.93 (m, 0.26H), 3.89 (t, J = 5.0 Hz, 0.90H), 

3.23 (t, J = 5.0 Hz, 0.71H), 

13C-NMR (175 MHz, CDCl3): δ 146.5, 145.9, 139.4, 133.8, 129.7, 127.8, 126.7, 120.9, 119.2, 

118.9, 116.2, 67.1, 50.5, 25.6, 18.0, -4.7.  

Minor product peaks of 4-([1,1'-biphenyl]-3-yl)morpholine: 129.5, 128.7, 127.2, 114.76, 114.66, 

66.9, 49.4. 

IR (film, cm-1): 3032, 2957, 2928, 2855, 1599, 1486. 

HRMS (ESI+) m/z: [M+H]+ predicted for C22H31NO2S, 370.2197; found, 370.2206. 

 

 

2-methyl-6-(4-(pyrimidin-2-yl)piperazin-1-yl)quinolone. 
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Table 3-5, 3-28: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), 6-((tert-

butyldimethylsilyl)oxy)-2-methylquinoline (82.6 mg, 0.302 mmol), and 1-(2-

pyrimidyl)piperazine (106 µL, 0.75 mmol) at 120 °C for 16 h gave a crude residue which was 

purified by flash chromatography (hexanes: ethyl acetate: triethylamine 85:12.5:2.5) to afford the 

desired product (65.8 mg, 0.215 mmol, 71% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 8.35 (d, J = 5 Hz, 2H), 7.92 (t, J = 9.0 Hz, 2H), 7.51 (dd, J = 7.0, 

1.5 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.05 (d, J = 1.5 Hz, 1H), 6.53 (t, J = 4.5 Hz, 2H), 4.04 (t, J 

= 5.0 Hz, 4H), 3.36 (t, J = 5.0Hz, 4H), 2.70 (s, 3H). 

13C-NMR (125 MHz, CDCl3): δ 161.7, 157.7, 156.2, 148.8, 143.6, 135.0, 129.4, 127.4, 122.7, 

122.2, 110.2, 110.0, 109.8, 49.5, 43.6, 25.0. 

IR (film, cm-1): 2362, 2322, 1584, 1546, 1498, 1448. 

HRMS (ESI+) m/z: [M+H]+ predicted for C18H19N5, 306.1713; found, 306.1708. 

 

 

N-octyl-4-(pyridin-2-yl)aniline. 

 

 

 

Table 3-5, 3-29: Following general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), IPrMe·HCl (27.2 

mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), 2-(4-((tert-

butyldimethylsilyl)oxy)phenyl)pyridine (85.0 mg, 0.298 mmol), and N-octylamine (73 µL, 0.45 

mmol) gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 

90:10) to afford the desired product (62.0 mg, 0.220 mmol, 74% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 8.61 (d, J = 5.0 Hz, 1H), 7.86 (d, J = 9.0 Hz, 2H), 7.64 (m, 2H), 

7.09 (t, J = 5.5 Hz, 1H), 6.67 (d, J = 8.5 Hz, 2H), 3.83 (b, 1H), 3.16 (t, J = 7.0 Hz, 2H), 1.63 

(pentet, J = 7.5 Hz, 2H), 1.40 (m, 2H), 1.31 (m, 8H), 0.90 (t, J = 8.0 Hz, 3H). 
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13C-NMR (125 MHz, CDCl3): δ 157.6, 149.3, 149.3, 136.4, 128.0, 127.9, 120.5, 119.0, 112.5, 

43.8, 29.5, 29.4, 29.2, 27.1, 22.6, 14. 

IR (film, cm-1): 3392, 2922, 2851, 2361, 1612, 1582, 1460. 

HRMS (EI) m/z: [M]+ predicted for C19H26N2, 282.2096; found, 282.2093. 

 

 

N-cyclohexyl-9-methyl-9H-carbazol-2-amine.  

 

 

 

Table 3-5, 3-30: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 2-((tert-

butyldimethylsilyl)oxy)-9-methyl-9H-carbazole (46.9 mg, 0.151 mmol), and cyclohexylamine (26 

µL, 0.225 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 95:5) to afford the desired product (30.4 mg, 0.109 mmol, 

73% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.90 (d, J = 7.5 Hz, 1H), 7.81 (d, J = 8.5 Hz, 1H), 7.34-7.28 (m, 

2H), 7.15 (t, J = 7.5 Hz, 1H), 6.53 (dd, J = 8.0, 2.0 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 3.75 (s, 3H), 

3.42 (m, 1H), 2.15 (dd, J = 13.5, 4.0 Hz, 2H), 1.81 (m, 2H), 1.70 (m, 1H), 1.45 (m, 2H), 1.25 (m, 

3H).   

13C-NMR (125 MHz, CDCl3): δ 146.8, 143.1, 140.7, 123.64, 123.61, 123.3, 121.1, 118.6, 114.1, 

107.8, 107.6, 91.2, 52.2, 33.6, 28.9, 26.0, 25.1. 

IR (film, cm-1): 3033, 2952, 2870, 1608, 1527, 1491. 

HRMS (ESI+) m/z: [M+H]+ predicted for C19H22N2, 279.1856; found, 279.1862. 
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N,N-dibutylquinolin-3-amine.  

 

 

 

Table 3-5, 3-31: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), 3-((tert-

butyldimethylsilyl)oxy)quinoline (40.7 mg, 0.157 mmol), and dibutylamine (63 µL, 0.375 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (25.5 mg, 0.099 mmol, 63% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 8.63 (d, J = 3.0 Hz, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.0 

Hz, 1H), 7.38 (m, 2H), 7.04 (d, J = 3.0 Hz, 1H), 3.39 (t, J = 8.0 Hz, 4H), 1.63 (pentet, J = 8.0 Hz, 

4H), 1.40 (sextet, J = 7.5 Hz, 4H), 0.98 (t, J = 7.5 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 141.7, 141.1, 140.8, 129.5, 128.8, 126.7, 125.8, 124.4, 111.4, 

50.8, 29.3, 20.3, 14.0. 

IR (film, cm-1): 3062, 2956, 2929, 2871, 2208, 1697, 1594. 

HRMS (ESI+) m/z: [M+H]+ predicted for C17H24N2, 257.2012; found, 257.2014. 

 

 

1-(4'-methoxy-[1,1'-biphenyl]-4-yl)-4-methylpiperazine. 

 

 

 

Table 3-5, 3-32: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (115.3 mg, 1.20 mmol), tert-butyl((4'-methoxy-[1,1'-

biphenyl]-4-yl)oxy)dimethylsilane (95.4 mg, 0.303 mmol), and 1-methylpiperazine (50 µL, 0.45 
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mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate: triethylamine 85:12.5:2.5) to afford the desired product (54.0 mg, 0.191 

mmol, 63% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.48 (t, J = 8.0 Hz, 4H), 6.98 (m, 4H), 3.84 (m, 3H), 3.26 (t, J = 

5.0 Hz, 4H), 2.60 (t, J = 5.0 Hz, 4H), 2.37 (s, 3H). 

13C-NMR (125 MHz, CDCl3): δ 158.5, 150.1, 133.5, 132.0, 127.5, 127.3, 116.1, 114.1, 55.3, 55.1, 

49.0, 46.1. 

IR (film, cm-1): 2932, 2840, 2790, 1606, 1500, 1443. 

HRMS (ESI+) m/z: [M+H]+ predicted for C18H22N2O, 283.1805; found, 283.1802. 

 

 

tert-butyl 4-([1,1'-biphenyl]-3-ylamino)piperidine-1-carboxylate.  

 

 

 

Table 3-5, 3-33: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), ([1,1'-biphenyl]-3-

yloxy)(tert-butyl)dimethylsilane (41.8 mg, 0.147 mmol), and tert-butyl 4-aminopiperidine-1-

carboxylate (45.1 mg, 0.225 mmol) at 120 °C for 16 h gave a crude residue which was purified by 

flash chromatography (hexanes: ethyl acetate 95:5) to afford the desired product (30.0 mg, 0.085 

mmol, 60% yield).  

 

1H-NMR (700 MHz, CDCl3): δ 7.56 (d, J = 7.7 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.34 (t, J = 7.0 

Hz, 1H), 7.24 (t, J = 7.7 Hz, 1H), 6.93 (d, J = 7.7 Hz, 1H), 6.80 (s, 1H), 6.60 (d, J = 7.7 Hz, 1H), 

4.11 (m, 2H), 3.62 (s, 1H), 3.50 (pentet, J = 8.4 Hz, 1H), 2.94 (s, 2H), 2.07 (d, J = 13.3 Hz, 2H), 

1.47 (s, 9H), 1.37 (m, 2H). 

13C-NMR (175 MHz, CDCl3): δ 154.8, 147.1, 142.6, 141.7, 129.7, 128.6, 127.18, 127.16, 116.7, 

112.2, 112.1, 79.6, 50.1, 32.4, 28.4.  
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IR (film, cm-1): 3366, 2974, 2931, 2854, 1679, 1598, 1448. 

HRMS (ESI+) m/z: [M+H]+ predicted for C22H28N2O2, 353.2224; found, 353.2230. 

 

 

4-(3-(2-methylpiperidin-1-yl)phenyl)morpholine.  

 

 

 

Table 3-5, 3-34: Following a modified general procedure D, Ni(COD)2 (6.2 mg, 0.0225 mmol), 

IPrMe·HCl (20.4 mg, 0.045 mmol), NaO-t-Bu (57.7 mg, 0.6 mmol), 4-(3-((tert-

butyldimethylsilyl)oxy)phenyl)morpholine (45.6 mg, 0.155 mmol), and 2-methylpiperidine (44 

µL, 0.375 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (25.0 mg, 0.096 

mmol, 62% yield).  

 

1H-NMR (700 MHz, CDCl3): δ 7.15 (t, J = 7.7 Hz, 1H), 6.52 (m, 2H), 6.43 (d, J = 8.4 Hz, 1H), 

3.86 (m, 5H), 3.15 (m, 5H), 2.98 (dd, J = 10.5, 3.5 Hz, 1H), 1.86 (m, 1H), 1.74 (m, 1H), 1.64 (m, 

2H), 1.57 (m, 2H), 0.99 (d, J = 7.0 Hz, 3H).  

13C-NMR (175 MHz, CDCl3): δ 152.6, 152.3, 129.4, 110.3, 107.5, 106.2, 67.0, 51.8, 49.7, 45.6, 

31.9, 26.2, 19.9, 14.1. 

IR (film, cm-1): 2928, 2850, 2816, 1595, 1576, 1498, 1448. 

HRMS (ESI+) m/z: [M+H]+ predicted for C16H24N2O, 261.1961; found, 261.1964. 

 

 

N-(4-(butyl(methyl)amino)phenyl)acetamide. 
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Table 3-5, 3-35: Following a modified general procedure D, Ni(COD)2 (6.2 mg, 0.0225 mmol), 

IPrMe·HCl (20.4 mg, 0.045 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), N-(4-((tert-

butyldimethylsilyl)oxy)phenyl)acetamide (42.4 mg, 0.160 mmol), and N-methylbutylamine (44 

µL, 0.375 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (15.2 mg, 0.069 

mmol, 43% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.28 (d, J = 9.0 Hz, 2H), 7.00 (br, 1H), 6.64 (d, J = 9.0 Hz, 2H), 

3.27 (t, J = 7.5 Hz, 2H), 2.89 (s, 3H), 2.13 (s, 3H), 1.53 (pentet, J = 7.5 Hz, 2H), 1.32 (sextet, J = 

7.5 Hz, 2H), 0.93 (t, J = 7.5 Hz, 3H). 

13C-NMR (125 MHz, CDCl3): δ 168.1, 146.8, 127.9, 126.9, 122.3, 112.4, 112.0, 52.8, 38.4, 28.7, 

24.2, 20.3, 14.0 

IR (film, cm-1): 3284, 2955, 2870, 1653, 1598. 

HRMS (ESI+) m/z: [M+H]+ predicted for C13H20N2O, 220.1576; found, 220.1572. 

 

 

1-(5,6,7,8-tetrahydronaphthalen-2-yl)pyrrolidine. 

 

 

 

Table 3-5, 3-36: Following a modified general procedure D, Ni(COD)2 (12.4 mg, 0.045 mmol), 

IPrMe·HCl (40.8 mg, 0.09 mmol), NaO-t-Bu (115.6 mg, 1.20 mmol), tert-butyldimethyl((5,6,7,8-

tetrahydronaphthalen-2-yl)oxy)silane (79.7 mg, 0.300 mmol), and pyrrolidine (38 µL, 0.45 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 99.5:0.5) to afford the desired product (44.3 mg, 0.220 mmol, 72% yield). The 

spectral data matches that previously reported in the literature. 
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1H-NMR (500 MHz, CDCl3): δ 6.93 (d, J = 8.0 Hz, 1H), 6.40 (dd, J = 8.5, 2.5 Hz, 1H), 6.28 (s, 

1H), 3.25 (m, 4H), 2.71 (m, 4H), 1.98 (m, 4H), 1.77 (m, 4H). 

 

 

1-((8R,9S,13S,14S,17S)-17-((tert-butyldimethylsilyl)oxy)-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)piperidine.  

 

 

 

Table 3-5, 3-37: Following a modified general procedure A, Ni(COD)2 (6.2 mg, 0.0225 mmol), 

IPrMe·HCl (20.4 mg, 0.045 mmol), NaO-t-Bu (57.7 mg, 0.60 mmol), (((8R,9S,13S,14S,17S)-13-

methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-

diyl)bis(oxy))bis(tert-butyldimethylsilane) (75.7 mg, 0.151 mmol), and piperidine (37 µL, 0.375 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 95:5) to afford the desired product (65.0 mg, 0.143 mmol, 95% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.18 (d, J = 8.5 Hz, 1H), 6.77 (dd, J = 8.5, 2.5 Hz, 1H), 6.67 (d, 

J = 3.0 Hz, 1H), 3.65 (t, J = 8.5 Hz, 1H), 3.10 (t, J = 5.5 Hz, 4H), 2.82 (m, 2H), 2.28 (dd, J = 13.5, 

4.0 Hz, 1H), 2.16 (m, 1H), 1.94-1.85 (m, 3H), 1.73-1.62 (m, 5H), 1.58-1.12 (m, 10H), 0.91 (s, 9H), 

0.75 (s, 3H), 0.04 (d, J = 6.0 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 150.2, 137.2, 131.7, 125.9, 117.0, 114.5, 81.8, 51.0, 49.7, 44.1, 

43.6, 39.0, 37.2, 31.0, 30.0, 27.5, 26.3, 26.0, 25.9, 24.3, 23.3, 18.1, 11.4, -4.5, -4.8. 

IR (film, cm-1): 2926, 2854, 1608, 1503, 1450, 1127. 

HRMS (ESI+) m/z: [M+H]+ predicted for C29H47NOSi, 454.3500; found, 454.3504. 
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6.3.4 Table 3-13 Substrate Scope 

2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. 

 

 

 

Table 3-13, 3-45: Following a modified general procedure E, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), Cu(OAc)2 (2.8 mg, 0.150 

mmol), ([1,1'-biphenyl]-4-yloxy)(tert-butyl)dimethylsilane (39.4 mg, 0.139 mmol), B2pin2 (95.2 

mg, 0.375 mmol), and toluene (0.3 M) at 120 °C for 16 h gave a crude residue. The yield was 

determined by GC-FID analysis using tridecane (40 µL, 0.164 mmol) as an internal standard 

(tridecane integration: 273004807, product integration: 361762783, 0.128 mmol, 92%). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.88 (d, J = 8.0 Hz, 2H), 7.62 (m, 4H), 7.44 (m, 2H), 7.36 (m, 

1H), 1.35 (s,12H). 

4,4,5,5-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane. 

 

 

 

Table 3-13, 3-46: Following a modified general procedure E, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), Cu(OAc)2 (5.5 mg, 0.300 

mmol), tert-butyldimethyl(naphthalen-2-yloxy)silane (39.0 mg, 0.147 mmol), B2pin2 (95.2 mg, 

0.375 mmol), and cyclopenylmethylether (0.3 M) at 120 °C for 16 h gave a crude residue which 

was purified by flash chromatography (boric acid impregnated silica gel, hexanes: ethyl acetate 
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95:5) to afford the desired product (25.4 mg, 0.100 mmol, 68% yield). The spectral data matches 

that previously reported in the literature. Experiment was conducted by Wesley Pein.  

 

1H-NMR (500 MHz, CDCl3): δ 8.36 (s, 1H), 7.85 (m, 4H), 7.50 (m, 2H), 1.38 (s, 12H). 

 

 

2-([1,1'-biphenyl]-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. 

 

 

Table 3-13, 3-47: Following a modified general procedure E, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), Cu(OAc)2 (5.5 mg, 0.300 

mmol), ([1,1'-biphenyl]-3-yloxy)(tert-butyl)dimethylsilane (42.7 mg, 0.150 mmol), B2pin2 (95.2 

mg, 0.375 mmol), and cyclopenylmethylether (0.3 M) at 120 °C for 16 h gave a crude residue 

which was purified by flash chromatography (boric acid impregnated silica gel, hexanes: ethyl 

acetate 95:5) to afford the desired product (26.5 mg, 0.094 mmol, 63% yield). The spectral data 

matches that previously reported in the literature. Experiment was conducted by Wesley Pein.  

 

1H-NMR (500 MHz, CDCl3): δ 8.04 9s, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 

7.63 (d, J = 7.5 Hz, 2H), 7.44 (m, 3H), 7.33 (m, 1H), 1.35 (s, 12H). 

 

 

4,4,5,5-tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane. 
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Table 3-13, 3-48: Following a modified general procedure E, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), Cu(OAc)2 (5.5 mg, 0.300 

mmol), tert-butyldimethyl(naphthalen-1-yloxy)silane (46.0 mg, 0.180 mmol), B2pin2 (95.2 mg, 

0.375 mmol), and cyclopenylmethylether (0.3 M) at 120 °C for 16 h gave a crude residue which 

was purified by flash chromatography (boric acid impregnated silica gel, hexanes: ethyl acetate 

95:5) to afford the desired product (25.8 mg, 0.101 mmol, 57% yield). The spectral data matches 

that previously reported in the literature. Experiment was conducted by Wesley Pein.  

 

1H-NMR (500 MHz, CDCl3): δ 8.65 (d, J = 8.0 Hz, 1H), 8.08 (s, J = 7.0 Hz, 1H), 7.93 (d, J = 8.0 

Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.53 (m, 1H), 7.47 (m, 2H), 1.43 (s, 12H).   

 

 

4,4,5,5-tetramethyl-2-(5,6,7,8-tetrahydronaphthalen-2-yl)-1,3,2-dioxaborolane. 

 

 

 

Table 3-13, 3-49: Following a modified general procedure E, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), Cu(OAc)2 (5.5 mg, 0.300 

mmol), tert-butyldimethyl((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)silane (39.3 mg, 0.150 mmol), 

B2pin2 (95.2 mg, 0.375 mmol), and cyclopenylmethylether (0.3 M) at 120 °C for 16 h gave a crude 

residue which was purified by flash chromatography (boric acid impregnated silica gel, hexanes: 

ethyl acetate 95:5) to afford the desired product (17.8 mg, 0.069 mmol, 46% yield). The spectral 

data matches that previously reported in the literature. Experiment was conducted by Wesley Pein.  

 

1H-NMR (500 MHz, CDCl3): δ 7.52 (m, 2H), 7.09 (d, J = 7.5 Hz, 1H), 2.80 (m, 4H), 1.8 (m, 4H), 

1.38 (s, 12H). 
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2-(4-(tert-butyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. 

 

 

 

Table 3-13, 3-50: Following a modified general procedure E, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), Cu(OAc)2 (5.5 mg, 0.300 

mmol), tert-butyl(4-(tert-butyl)phenoxy)dimethylsilane (39.8 mg, 0.151), B2pin2 (95.2 mg, 0.375 

mmol), and cyclopenylmethylether (0.3 M) at 120 °C for 16 h gave a crude residue which was 

purified by flash chromatography (boric acid impregnated silica gel, hexanes: ethyl acetate 95:5) 

to afford the desired product (14.1, 0.054 mmol, 36% yield). The spectral data matches that 

previously reported in the literature. Experiment was conducted by Wesley Pein.  

 

1H-NMR (500 MHz, CDCl3): δ 7.78 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 1.34 (s, 9H), 

1.35 (s, 12H). 

 

 

2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyridine. 

 

 

 

Table 3-13, 3-51: Following a modified general procedure E, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (72.0 mg, 0.750 mmol), Cu(OAc)2 (5.5 mg, 0.300 

mmol), 2-(4-((tert-butyldimethylsilyl)oxy)phenyl)pyridine (41.5 mg, 0.145 mmol), B2pin2 (95.2 

mg, 0.375 mmol), and toluene (0.3 M) at 120 °C for 16 h gave a crude residue which was purified 
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by flash chromatography (hexanes: ethyl acetate 95:5) to afford the desired product (16.0 mg, 0.57 

mmol, 39% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 8.72 (m, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.92 (d, J = 8.2 Hz, 2H), 

7.75 (m, 2H), 7.25 (m, 1H), 1.35 (s, 12H). 
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6.4 General Experimental Details for Chapter 4 

6.4.1 Scheme 4-17 Substrates 

7-methoxy-N-octylnaphthalen-2-amine. 

 

 

 

Scheme 4-17, 4-35: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((7-

methoxynaphthalen-2-yl)oxy)dimethylsilane (44.0 mg, 0.153 mmol), and octylamine (30 µL, 0.18 

mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate 85:15) to afford the desired product (20.8 mg, 0.0729 mmol, 48% yield). 

The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7-55 (m, 2H), 6.96 (d, J = 2.0 Hz, 1H), 6.86 (m, 1H), 6.72 (m, 

2H), 3.90 (s, 3H), (3.20 (t, J = 7.0 Hz, 2H), 1.68 (m, 2H), 1.38 (m, 10H), 0.91 (t, J = 7.0 Hz, 3H). 

 

 

7-methyl-N-octylnaphthalen-2-amine. 

 

 

 

 

Scheme 4-17, 4-36: Following a modified previously published procedure,96 Ni(COD)2 (3.5 mg, 

0.0126 mmol), ICy·HBF4 (4.0 mg, 0.0126 mmol), NaO-t-Bu (12.1 mg, 0.126 mmol), 7-methoxy-

N-octylnaphthalen-2-amine (18.0 mg, 0.063 mmol), and trimethylaluminum (2 M in hexanes, 63 

µL) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (5.8 mg, 0.022 mmol, 34% yield).  
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1H-NMR (500 MHz, CDCl3): δ 7.56 (dd, J = 9.0, 2.0 Hz, 2H), 7.40 (s, 1H), 7.02 (dd, J = 8.5, 2.0 

Hz, 1H), 6.80 (dd, J = 9.0, 2.5 Hz, 1H), 6.73 (d, J = 2.0 Hz, 1H), 3.74 (br, 1H), 3.20 (t, J = 7.5 Hz, 

2H), 2.46 (s, 3H), 1.68 (pentet, J = 7.5 Hz, 2H), 1.44 (m, 2H), 1.34 (m, 10H), 0.90 (t, J = 7.0 Hz, 

3H). 

13C-NMR (125 MHz, CDCl3): δ 146.2, 135.8, 135.5, 128.5, 127.4, 125.6, 125.0, 124.0, 117.0, 

103.8, 44.1, 31.8, 29.5, 29.4, 29.3, 27.2, 22.6, 21.8, 14.1.  

 

 

tert-butyldimethyl((7-methylnaphthalen-2-yl)oxy)silane. 

 

 

 

Scheme 4-17, 4-37: Following a modified previously published procedure,96 Ni(COD)2 (4.1 mg, 

0.015 mmol), ICy·HBF4 (4.8 mg, 0.015 mmol), NaO-t-Bu (28.8 mg, 0.30 mmol), tert-butyl((7-

methoxynaphthalen-2-yl)oxy)dimethylsilane (43.3 mg, 0.150 mmol), and trimethylaluminum (2 

M in hexanes, 75 µL) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes) to afford the desired product (23.7 mg, 0.087 mmol, 58% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.65 (m,2H), 7.12 (d, J = 2.5 Hz, 1H), 7.01 (m, 2H), 6.93 (dd, J 

= 9.0, 2.5 Hz, 1H), 3.91 (s, 3H), 1.04 (s, 9H), 0.26 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 153.5, 135.8, 134.8, 129.0, 127.5, 127.4, 126.0, 125.7, 121.1, 

114.4, 25.7, 21.7, 18.3, -4.3. 

 

 

7-methyl-N-octylnaphthalen-2-amine. 
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Scheme 4-17, 4-36: Following a modified general procedure D, Ni(COD)2 (4.8 mg, 0.0175 mmol), 

IPrMe·HCl (15.9 mg, 0.035 mmol), NaO-t-Bu (21.1 mg, 0.220 mmol), tert-butyldimethyl((7-

methylnaphthalen-2-yl)oxy)silane (24.0 mg, 0.088 mmol), and octylamine (18 µL, 0.106 mmol) 

at 120 °C for 16 h gave a crude residue which was purified by flash chromatography (hexanes: 

ethyl acetate 95:5) to afford the desired product (14.9 mg, 0.055 mmol, 63% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.56 (dd, J = 9.0, 2.0 Hz, 2H), 7.40 (s, 1H), 7.02 (dd, J = 8.5, 2.0 

Hz, 1H), 6.80 (dd, J = 9.0, 2.5 Hz, 1H), 6.73 (d, J = 2.0 Hz, 1H), 3.74 (br, 1H), 3.20 (t, J = 7.5 Hz, 

2H), 2.46 (s, 3H), 1.68 (pentet, J = 7.5 Hz, 2H), 1.44 (m, 2H), 1.34 (m, 10H), 0.90 (t, J = 7.0 Hz, 

3H). 

13C-NMR (125 MHz, CDCl3): δ 146.2, 135.8, 135.5, 128.5, 127.4, 125.6, 125.0, 124.0, 117.0, 

103.8, 44.1, 31.8, 29.5, 29.4, 29.3, 27.2, 22.6, 21.8, 14.1.  

 

 

 

6.4.2 Scheme 4-18 Substrates 

tert-butyl((7-methoxynaphthalen-2-yl)oxy)dimethylsilane.  

 

 

 

Scheme 4-18, 4-30: Following a previously published procedure,179 7-methoxynaphthalen-2-ol 

(890 mg, 5.1 mmol), imidazole (681 mg, 10 mmol), tert-butyldimethylsilyl chloride (1.13 g, 7.5 

mmol) gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 

= 99:1) to afford the desired product as a clear oil (1.43 g, 4.96 mmol, 97% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.65 (t, J = 8.5 Hz, 2H), 7.11 (m, 1H), 6.99 (m, 2H), 6.93 (dt, J 

= 9.0 Hz, 2.5 Hz, 1H), 3.91 (s, 3H), 1.03 (s, 9H), 0.25 (s, 6H).   

13C-NMR (125 MHz, CDCl3): δ 158.0, 154.1, 135.9, 129.1, 129.0, 124.7, 119.5, 116.5, 114.2, 

104.8, 55.2, 25.7, 18.3, -4.3. 

IR (film, cm-1): 2954, 2928, 2857, 1631, 1511. 
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HRMS (ESI+) m/z: [M+H]+ predicted for  C17H24O2Si, 289.1618; found, 289.1620. 

 

 

1-(7-methoxynaphthalen-2-yl)-4-methylpiperazine.  

 

 

 

Scheme 4-18, 4-38: Following a modified general procedure D, Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.03 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((7-

methoxynaphthalen-2-yl)oxy)dimethylsilane (44.2 mg, 0.153 mmol), and 1-methylpiperazine (25 

µL, 0.225 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate: triethylamine 75:24:1) to afford the desired product (32.2 

mg, 0.125 mmol, 82% yield).  

 

1H-NMR (700 MHz, CDCl3): δ 7.64 (d, J = 8.4Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.12 (d, J = 9.1 

Hz, 1H), 7.05 (s, 1H), 7.02 (s, 1H), 6.95 (d, J = 9.1 Hz, 1H), 3.99 (s, 3H), 3.32 (t, J = 4.9 Hz, 4H), 

2.63 (t, J = 4.9 Hz, 4H), 2.38 (s, 3H).  

13C-NMR (175 MHz, CDCl3): δ 158.1, 149.6, 135.8, 128.9, 128.4, 123.8, 116.8, 115.8, 109.4, 

105.1, 55.2, 55.1, 49.4, 46.2.  

IR (film, cm-1): 2932, 2839, 2798, 1629, 1515, 1462. 

HRMS (ESI+) m/z: [M+H]+ predicted for  C16H20N2O, 257.1648; found, 257.1653. 

 

1-(7-ethylnaphthalen-2-yl)-4-methylpiperazine.  
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Scheme 4-18, 4-39: Following a modified published procedure,97 Ni(COD)2 (1.7 mg, 0.0062 

mmol), 1,2-bis(dicylohexylphosphino)ethane (dcype) (2.6 mg, 0.0062 mmol), 1-(7-

methoxynaphthalen-2-yl)-4-methylpiperazine (16.0 mg, 0.062 mmol), triethylaluminum (25 wt% 

in toluene, 34 µL), toluene (0.3 mL), and diisopropylether (0.3 mL) at 120 °C for 16 h gave a crude 

residue which was purified by flash chromatography (hexanes: ethyl acetate: triethylamine 

72.5:25:2.5) to afford the desired product (15.0 mg, 0.059 mmol, 94% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.68 (d, J = 9.1 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.49 (s, 1H), 

7.21 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.09 (s, 1H), 3.32 (t, J = 4.9 Hz, 4H), 2.77 (q, J 

= 7.7 Hz, 2H), 2.64 (t, J = 4.9 Hz, 4H), 2.39 (s, 3H), 1.31 (t, J = 7.7 Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 149.2, 142.2, 134.8, 128.4, 127.3, 127.0, 124.6, 124.5, 118.6, 

110.0, 55.1, 49.5, 46.2, 29.1, 15.5.  

IR (film, cm-1): 2963, 2928, 2839, 2787, 1629, 1514.  

HRMS (ESI+) m/z: [M+H]+ predicted for  C17H22N2, 255.1856; found, 255.1856. 

 

 

tert-butyl((7-ethylnaphthalen-2-yl)oxy)dimethylsilane.  

 

 

 

Scheme 4-18, 4-40: Following a modified published procedure,97 Ni(COD)2 (4.1 mg, 0.015 

mmol), 1,2-bis(dicylohexylphosphino)ethane (dcype) (6.3 mg, 0.015 mmol), tert-butyl((7-

methoxynaphthalen-2-yl)oxy)dimethylsilane (43.2 mg, 0.150 mmol), triethylaluminum (25 wt% 

in toluene, 161 µL), toluene (0.3 mL), and diisopropylether (0.3 mL) at 120 °C for 16 h gave a 

crude residue which was purified by flash chromatography (hexanes) to afford the desired product 

(29.2 mg, 0.102 mmol, 68% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.69 (m, 2H), 7.49 (s, 1H), 7.21 (dd, J = 8.5, 2.0 Hz, 1H), 7.15 

(d, J = 2.0 Hz, 7.02 (dd, J = 9.0, 2.5 Hz, 1H), 2.79 (q, J = 8.0 Hz, 2H), 1.33 (t, J = 8.0 Hz, 3H), 

1.03 (s, 9H), 0.25 (s, 6H).  
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13C-NMR (125 MHz, CDCl3): δ 153.5, 142.1, 134.9, 129.0, 127.7, 127.5, 125.0, 124.4, 121.2, 

114.6, 29.0, 25.7, 18.3, 15.5, -4.3.   

IR (film, cm-1): 2958, 2929, 2857, 1632, 1606, 1511, 1461. 

HRMS (ESI+) m/z: [M+H]+ predicted for C18H26OSi, 287.1826; found, 287.1829. 

 

 

1-(7-ethylnaphthalen-2-yl)-4-methylpiperazine.  

 

 

 

Scheme 4-18, 4-39: Following a modified general procedure D, Ni(COD)2 (3.0 mg, 0.011 mmol), 

IPrMe·HCl (9.80 mg, 0.022 mmol), NaO-t-Bu (25.9 mg, 0.270 mmol), tert-butyl((7-

ethylnaphthalen-2-yl)oxy)dimethylsilane (31.0 mg, 0.108 mmol), and 1-methylpiperazine (18 µL, 

0.162 mmol) at 120 °C for 16 h gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate:triethylamine 72.5:25:2.5) to afford the desired product (26.8 mg, 0.105 

mmol, 97% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.68 (d, J = 9.1 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.49 (s, 1H), 

7.21 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.09 (s, 1H), 3.32 (t, J = 4.9 Hz, 4H), 2.77 (q, J 

= 7.7 Hz, 2H), 2.64 (t, J = 4.9 Hz, 4H), 2.39 (s, 3H), 1.31 (t, J = 7.7 Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 149.2, 142.2, 134.8, 128.4, 127.3, 127.0, 124.6, 124.5, 118.6, 

110.0, 55.1, 49.5, 46.2, 29.1, 15.5.  

IR (film, cm-1): 2963, 2928, 2839, 2787, 1629, 1514.  

HRMS (ESI+) m/z: [M+H]+ predicted for  C17H22N2, 255.1856; found, 255.1856. 
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6.4.3 Scheme 4-19 Substrates 

triethyl(7-methoxynaphthalen-2-yl)silane. 

 

 

 

Scheme 4-19, 4-41: Following a modified general procedure A, Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPr*OMe (14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), tert-butyl((7-

methoxynaphthalen-2-yl)oxy)dimethylsilane (45.1 mg, 0.156 mmol), titanium(IV) isopropoxide 

(89 μL, 0.90 mmol),  and triethylsilane (144 μL, 0.90 mmol) at 120 °C for 5 h gave a crude residue 

which was purified by flash chromatography (hexanes: ethyl acetate 98:2) to afford the desired 

product (16.0 mg, 0.059 mmol, 43% yield). The spectral data matches that previously reported in 

the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.88 (s, 1H), 7.73 (m, 2H), 7.43 (dd, J = 8.0, 2.0 Hz, 1H), 7.15 

(m, 2H), 3.93 (s, 3H), 1.00 (m, 9H), 0.88 (m, 6H). 

 

tert-butyldimethyl(naphthalen-2-yloxy)silane. 

 

 

 

Scheme 4-19, 4-42: Following a modified published procedure,151 Ni(COD)2 (4.1 mg, 0.015 

mmol), PCy3 (8.4 mg, 0.030 mmol), tert-butyl((7-methoxynaphthalen-2-yl)oxy)dimethylsilane 

(42.6 mg, 0.148 mmol), and triethylsilane (48 μL, 0.30 mmol) at 120 °C for 16 h gave a crude 

residue which was purified by flash chromatography (hexanes: ethyl acetate 98:2) to afford the 

desired product (20.7 mg, 0.080 mmol, 55% yield). The spectral data matches that previously 

reported in the literature. 
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1H-NMR (500 MHz, CDCl3): δ 7.77 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.8, 1H), 7.69 (d, J = 8.3 

Hz, 1H), 7.42 (dt, J = 7.8, 1.2 Hz, 1H), 7.33 (dt, J = 6.8, 1.2, 1H), 7.19 (d, J = 2.2, 1H), 7.08 (dd, 

J = 8.8, 2.2 Hz, 1H), 1.04 (s, 9H), 0.26 (s, 6H). 

 

 

 

6.4.4 Scheme 4-20 Substrates 

1-bromo-4-chloro-2-methoxybenzene. 

 

 

 

Scheme 4-20, 4-44: Following a previously reported procedure,179 2-bromo-5-chlorophenol (2.09 

g, 10.1 mmol), K2CO3 (2.76 g, 10 mmol), methyl iodide (1.25 mL, 20 mmol), and DMF (10 mL) 

gave a crude residue which was purified by flash chromatography (hexanes) to afford the desired 

product as a white solid (2.1 g, 9.48 mmol, 94% yield). The spectral data matches that previously 

reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.43 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.83 (d, J = 7.5 Hz, 1H), 

3.88 (s, 3H).  

 

 

tert-butyl((4'-chloro-2'-methoxy-[1,1'-biphenyl]-4-yl)oxy)dimethylsilane. 

 

 

 

Scheme 4-20, 4-46: Following a previously reported procedure,179 1-bromo-4-chloro-2-

methoxybenzene (32.7 mg, 0.148 mmol), (4-((tert-butyldimethylsilyl)oxy)phenyl)boronic acid 
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(56.7 mg, 0.225 mmol), K3PO4 ( 191 mg, 0.9 mmol), PdCl2(PPh3)2 (5.3 mg, 0.0075 mmol), toluene 

(0.45 mL), and degassed H2O (0.45 mL) at 90 oC for 16 hours gave a crude residue which was 

purified by flash chromatography (hexanes: ethyl acetate = 98:2) to afford the desired product 

(50.1 mg, 0.144 mmol, 97% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.35 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 1H), 6.99 (dd, J = 

8.0, 1.5 Hz, 1H), 6.94 (d, J = 1.5 Hz, 1H), 6.86 (d, J = 8.5 Hz, 2H), 3.81 (s, 3H), 1.00 (s, 9H), 0.23 

(s, 6H).  

13C-NMR (125 MHz, CDCl3): δ 156.9, 155.0, 133.3, 131.3, 130.4, 130.3, 129.0, 120.8, 119.6, 

111.8, 55.8, 25.7, 18.2, -4.4. 

IR (film, cm-1): 2955, 2929, 2857, 1606, 1514, 1483. 

HRMS (ESI+) m/z: [M+H]+ predicted for C19H25ClO2Si, 349.1385; found, 349.1386. 

 

 

4-(4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine. 

 

 

 

Scheme 4-20, 4-47: Following a previously reported procedure,237 tert-butyl((4'-chloro-2'-

methoxy-[1,1'-biphenyl]-4-yl)oxy)dimethylsilane (53.5 mg, 0.153 mmol), NaO-t-Bu (25.9 mg, 

0.27 mmol), Ni(COD)2 (6.2 mg, 0.0225 mmol), SIPr·HCl (9.6 mg, 0.0225 mmol), morpholine (20 

µL, 0.225 mmol) gave a crude residue which was purified by flash chromatography (hexanes: ethyl 

acetate = 95:5) to afford the desired product (55.4 mg, 0.139 mmol, 90% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.37 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 1H), 6.84 (d, J = 8.5 

Hz, 2H), 6.55 (m, 2H), 3.89 (t, J = 5.0 Hz, 4H), 3.80 (s, 3H), 3.21 (t, J = 5.0 Hz, 4H), 1.00 (s, 9H), 

0.23 (s, 6H). 
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13C-NMR (125 MHz, CDCl3): δ 157.2, 154.3, 151.6, 131.3, 131.0, 130.3, 122.6, 119.4, 107.9, 

99.9, 66.9, 55.5, 49.5, 25.7, 18.2, -4.4. 

IR (film, cm-1): 2955, 2856, 1606, 1496, 1448. 

HRMS (ESI+) m/z: [M+H]+ predicted for C23H33NO3Si, 400.2302; found, 400.2299. 

 

 

4-bromo-3-methoxyphenyl pivalate. 

 

 

 

Scheme 4-20, 4-49: Following a modified reported procedure,57 4-bromo-3-methoxyphenol (1.22 

g, 6.01 mmol), triethylamine (0.84 mL, 6 mmol), N,N-dimethylpyridin-4-amine (73.3 mg, 0.6 

mmol), pivaloyl chloride (0.74 mL, 6 mmol) gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate = 95:5) to afford the desired product as a white solid (1.69 

g, 5.91 mmol, 98% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.50 (d, J = 8.5 Hz, 1H), 6.63 (d, J = 1.0 Hz, 1H), 6.57 (dd, J = 

8.5, 1.0 Hz, 1H), 3.88 (s, 3H), 1.35 (s, 9H). 

13C-NMR (125 MHz, CDCl3): δ 176.7, 156.4, 151.3, 133.2, 114.7, 108.0, 106.2, 56.3, 39.1, 27.1. 

IR (film, cm-1): 2979, 747, 1595, 1479, 1395, 1272. 

HRMS (EI) m/z: [M]+ predicted for C12H15BrO3, 286.0205; found, 286.0205. 

 

 

4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl pivalate. 
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Scheme 4-20, 4-50: Following a modified reported procedure,179 4-bromo-3-methoxyphenyl 

pivalate (141.2 mg, 0.494 mmol), 4-(tert-Butyldimethylsilyloxy)phenylboronic acid (189 mg, 0.75 

mmol), Bis(triphenylphosphine)palladium(II) dichloride (35.0 mg, 0.05 mmol), potassium 

phosphate (635 mg, 3 mmol) gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate = 99:1) to afford the desired product as a white solid (200 mg, 0.482 mmol, 

98% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.37 (d, J = 8.5 Hz, 2H), 7.27 (m, 1H), 6.86 (d, J = 8.5 Hz, 2H), 

6.71 (dd, J = 8.0, 2.0 Hz, 1H), 6.67 (d, J = 2.0, 1H), 3.80 (s, 3H), 1.38 (s, 9H), 1.00 (s, 9H), 0.23 

(s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 157.0, 154.8, 151.0, 130.9, 130.7, 130.5, 127.9, 119.5, 113.4, 

105.1, 55.7, 39.1, 27.2, 25.7, 18.2, -4.4. 

IR (film, cm-1): 2932, 2858, 1746, 1600, 1490, 1253. 

HRMS (ESI+) m/z: [M+H]+ predicted for C24H34O4Si, 415.2299; found, 415.2298. 

 

 

4-(4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine. 

 

 

 

Scheme 4-20, 4-47: Following a previously reported procedure,63 4'-((tert-

butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl pivalate (61.7 mg, 0.149 mmol), NaO-t-

Bu (31.7 mg, 0.33 mmol), Ni(COD)2 (6.3 mg, 0.0225 mmol), IPr·HCl (19.2 mg, 0.045 mmol), 

morpholine (24 µL, 0.27 mmol) gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate = 95:5) to afford the desired product as a white solid (36.6 mg, 0.092 mmol, 

62% yield). 
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1H-NMR (500 MHz, CDCl3): δ 7.37 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 1H), 6.84 (d, J = 8.5 

Hz, 2H), 6.55 (m, 2H), 3.89 (t, J = 5.0 Hz, 4H), 3.80 (s, 3H), 3.21 (t, J = 5.0 Hz, 4H), 1.00 (s, 9H), 

0.23 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 157.2, 154.3, 151.6, 131.3, 131.0, 130.3, 122.6, 119.4, 107.9, 

99.9, 66.9, 55.5, 49.5, 25.7, 18.2, -4.4. 

IR (film, cm-1): 2955, 2856, 1606, 1496, 1448. 

HRMS (ESI+) m/z: [M+H]+ predicted for C23H33NO3Si, 400.2302; found, 400.2299. 

 

 

4-bromo-3-methoxyphenyl diethylcarbamate. 

 

 

 

Scheme 4-20, 4-51: Following a previously reported procedure,47 4-bromo-3-methoxyphenol 

(1.014 g, 4.99 mmol), sodium hydride (300.0 mg, 12.5 mmol), Diethylcarbamoyl chloride (0.79 

mL, 6.25 mmol) gave a crude residue which was purified by flash chromatography (hexanes: ethyl 

acetate = 90:10) to afford the desired product (1.468 g, 4.86 mmol, 97% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.48 (d, J = 8.5 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.64 (m, 1H), 

3.88 (s, 3H), 3.41 (m, 4H), 1.22 (m, 6H). 

13C-NMR (125 MHz, CDCl3): δ 156.2, 153.7, 151.7, 132.9, 114.9, 107.4, 106.5, 56.3, 42.3, 41.9, 

14.2, 13.3. 

IR (film, cm-1): 2973, 1712, 1594, 1472, 1416. 

HRMS (ESI+) m/z: [M+H]+ predicted for C12H16BrNO3, 302.0386; found, 302.0382. 

 

 

 

 

 

 



 211 

4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl diethylcarbamate. 

 

 

 

Scheme 4-20, 4-52: Following a previously reported procedure,179 4-bromo-3-methoxyphenyl 

diethylcarbamate (1.35 g, 0.447 mmol), 4-(tert-Butyldimethylsilyloxy)phenylboronic acid (1.70 

g, 6.75 mmol), Bis(triphenylphosphine)palladium(II) dichloride (158 mg, 0.225 mmol), potassium 

phosphate (5.73 g, 27 mmol) gave a crude residue which was purified by flash chromatography 

(hexanes: ethyl acetate = 90:10) to afford the desired product (1.87 g, 4.35 mmol, 97% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.37 (m, 2H), 7.26 (m, 1H), 6.86 (m, 2H), 6.78 (m, 2H), 3.80 (s, 

3H), 3.43 (m, 4H), 1.25 (m, 6H), 1.02 (s, 9H) -0.24 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 156.8, 154.6, 154.2, 151.4, 130.9, 130.7, 130.4, 127.4, 119.4, 

113.7, 105.5, 55.6, 42.2, 41.9, 25.7, 18.2, 14.2, 13.4, -4.4. 

IR (film, cm-1): 2931, 2857, 1718, 1604, 1492, 1417. 

HRMS (ESI+) m/z: [M+H]+ predicted for C24H35NO4Si, 430.2408; found, 430.2403. 

 

 

4-(4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine. 

 

 

 

Scheme 4-20, 4-47: Following a previously reported procedure,47 4'-((tert-

butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl diethylcarbamate (428.3 mg, 0.997 

mmol), NaO-t-Bu (211.8 mg, 2.2 mmol), Ni(COD)2 (41.3 mg, 0.15 mmol), SIPr·HCl (178.1 mg, 
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0.3 mmol), morpholine (157 µL, 1.8 mmol) gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate = 95:5) to afford the desired product as a white solid 

(324.0 mg, 0.811 mmol, 81% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.37 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 1H), 6.84 (d, J = 8.5 

Hz, 2H), 6.55 (m, 2H), 3.89 (t, J = 5.0 Hz, 4H), 3.80 (s, 3H), 3.21 (t, J = 5.0 Hz, 4H), 1.00 (s, 9H), 

0.23 (s, 6H). 

13C-NMR (125 MHz, CDCl3): δ 157.2, 154.3, 151.6, 131.3, 131.0, 130.3, 122.6, 119.4, 107.9, 

99.9, 66.9, 55.5, 49.5, 25.7, 18.2, -4.4. 

IR (film, cm-1): 2955, 2856, 1606, 1496, 1448. 

HRMS (ESI+) m/z: [M+H]+ predicted for C23H33NO3Si, 400.2302; found, 400.2299. 

 

 

 

6.4.5 Scheme 4-21 Substrates 

4-(2-methoxy-4'-(4-methylpiperazin-1-yl)-[1,1'-biphenyl]-4-yl)morpholine. 

 

 

  

Scheme 4-21, 4-53: Following a modified general procedure D, Ni(COD)2 (10.3 mg, 0.038 mmol), 

IPrMe·HCl (34.0 mg, 0.075 mmol), NaO-t-Bu (144.2 mg, 1.50 mmol), 4-(4'-((tert-

butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine (60.8 mg, 0.152 mmol) and 

1-methylpiperazine (67 μL, 0.60 mmol) at 130 °C for 16 h gave a crude residue which was purified 

by flash chromatography (hexanes: ethyl acetate: triethylamine = 50:47.5:2.5) to afford the desired 

product as a tan solid (37.5 mg, 0.102 mmol, 67% yield). 

 



 213 

1H-NMR (500 MHz, CDCl3): δ 7.42 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 8.5 

Hz, 2H), 6.56 (dd, J = 8.5, 2.0 Hz, 1H), 6.53 (d, J = 2.0 Hz, 1H), 3.88 (t, J = J = 5 Hz, 4H), 3.79 

(s, 3H), 3.25 (t, J = 5 Hz, 4H), 3.20 (t, J = 5 Hz, 4H), 2.59 (t, J = 5 Hz, 4H), 2.36 (s, 3H). 

13C-NMR (125 MHz, CDCl3): δ 157.2, 151.5, 149.7, 130.8, 129.9, 127.1, 122.6, 115.5, 107.8, 

99.8, 66.9, 55.5, 55.1, 49.5, 49.0, 46.1. 

IR (film, cm-1): 2933, 2824, 1607, 1499, 1446, 1234. 

HRMS (ESI+) m/z: [M+H]+ predicted for C22H29N3O2, 368.2333; found, 368.2337. 

 

 

2'-methoxy-4'-morpholino-N-octyl-[1,1'-biphenyl]-4-amine. 

 

 

  

Scheme 4-21, 4-54: Following a modified general procedure D, Ni(COD)2 (8.2 mg, 0.03 mmol), 

IPrMe·HCl (27.2 mg, 0.06 mmol), NaO-t-Bu (72.0 mg, 0.75 mmol), 4-(4'-((tert-

butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine (43.3 mg, 0.108 mmol) and 

octylamine (73 μL, 0.45 mmol) at 130 °C for 16 h gave a crude residue which was purified by 

flash chromatography (hexanes: ethyl acetate = 90:10) to afford the desired product (24.5 mg, 

0.062 mmol, 57% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.34 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 

Hz, 1H), 6.55 (m, 2H), 3.89 (t, J = 4.5 Hz, 4H), 3.80 (s, 3H), 3.65 (b, 1H), 3.20 (t, J = 4.5 Hz, 4H), 

3.13 (t, J = 7.5 Hz, 2H), 1.63 (p, J = 7.0 Hz, 2H), 1.40 (m, 2H), 1.31 (m, 8H), 0.90 (t, J = 7.5 Hz, 

3H). 

13C-NMR (125 MHz, CDCl3): δ 157.2, 151.2, 147.2, 130.7, 130.1, 127.0, 123.2, 112.3, 107.9, 

100.0, 66.9, 55.5, 49.6, 44.0, 33.8, 29.6, 29.4, 29.3, 27.2, 22.6, 14.1. 

IR (film, cm-1): 2924, 2853, 1610, 1501, 1447. 

HRMS (ESI+) m/z: [M+H]+ predicted for C25H36N2O2, 397.2850; found, 397.2847. 
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4-(2-methoxy-4'-(triethylsilyl)-[1,1'-biphenyl]-4-yl)morpholine. 

 

 

 

Scheme 4-21, 4-55: Following a modified general procedure C, Ni(COD)2 (10.3 mg, 0.0375 

mmol), IPr*OMe (35.4 mg, 0.0375 mmol), NaO-t-Bu (36.0 mmol, 0.375 mmol), 4-(4'-((tert-

butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine (60.4 mg, 0.151 mmol) and 

triethylsilane (144 μL, 0.90 mmol) at 120 °C for 16 h gave a crude residue which was purified by 

flash chromatography (hexanes: ethyl acetate = 90:10) to afford the desired product (18.9 mg, 0.05 

mmol, 64% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.51 (s, 4H), 7.26 (m, 1H), 6.57 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.54 

(d, J = 2.0 Hz, 1H), 3.89 (t, J = 5.0 Hz, 4H), 3.82 (s, 3H), 3.23 (t, J = 5.0 Hz, 4H), 1.00 (t, J = 7.5 

Hz, 9H), 0.81 (q, J = 8.0 Hz, 6H). 

13C-NMR (125 MHz, CDCl3): δ 157.3, 152.0, 138.7, 135.0, 133.9, 131.3, 128.5, 122.6, 107.8, 

99.5, 66.9, 55.5, 49.4, 7.5, 3.5. 

IR (film, cm-1): 2955, 2874, 1608, 1567, 1518, 1447. 

HRMS (ESI+) m/z: [M+H]+ predicted for C23H33NO2Si, 384.2353; found, 384.2349. 

 

 

4-(4'-(triethylsilyl)-2-((trimethylsilyl)methyl)-[1,1'-biphenyl]-4-yl)morpholine. 
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Scheme 4-21, 4-56: Following a modified previously published procedure,95 Ni(COD)2 (1.1 mg, 

0.004 mmol), 4-(2-methoxy-4'-(triethylsilyl)-[1,1'-biphenyl]-4-yl)morpholine (15.0 mg, 0.039 

mmol) and (trimethylsilyl)methyllithium (51 μL, 0.051 mmol) at 100 °C for 2 h gave a crude 

residue which was purified by flash chromatography (hexanes: ethyl acetate = 95:5) to afford the 

desired product as a clear oil (10.1 mg, 0.023 mmol, 59% yield). 

 

 

1H-NMR (500 MHz, CDCl3): δ 7.48 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.5 

Hz, 1H), 6.72 (dd, J = 8.0, 2.5 Hz, 1H), 6.63 (d, J = 2.5 Hz, 1H), 3.88 (t, J = 5.0 Hz, 4H), 3.18 (t, 

J = 5.0 Hz, 4H), 2.22 (s, 2H), 0.99 (t, J = 7.5 Hz, 9H), 0.82 (q, J = 8.0 Hz, 6H), -0.20 (s, 9H). 

13C-NMR (125 MHz, CDCl3): δ 150.1, 142.5, 139.1, 134.7, 133.8, 132.9, 131.0, 129.1, 116.2, 

111.9, 67.0, 49.4, 24.0, 7.4, 3.4, -1.2. 

IR (film, cm-1): 2954, 2821, 1608, 1500, 1448, 1236.  

HRMS (ESI+) m/z: [M+H]+ predicted for C26H41NOSi2, 440.2799; found, 440.2806. 

 

 

 

6.4.6 Scheme 4-23 Substrates 

2-bromo-6-methoxynaphthalene. 

 

 

 

Scheme 4-23, 4-58: Following a previously reported procedure,179 6-bromonaphthalen-2-ol (2.2 

g, 9.86 mmol), K2CO3 (2.76 g, 10 mmol), methyl iodide (1.25 mL, 20 mmol), and DMF (10 mL) 

gave a crude residue which was purified by flash chromatography (hexanes) to afford the desired 

product as a white solid (2.065 g, 8.71 mmol, 88% yield). 

 

1H-NMR (700 MHz, CDCl3): δ 7.92 (s, 1H), 7.65 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 

7.50 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 7.10 (s, 1H), 3.92 (s, 3H). 
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13C-NMR (175 MHz, CDCl3): δ 157.9, 133.0, 130.0, 129.64, 129.60, 128.5, 128.4, 119.8, 117.0, 

105.7, 55.3.    

IR (film, cm-1): 3061, 2966, 2840, 1625, 1584, 1498.  

HRMS (EI) m/z: [M]+ predicted for C11H9BrO, 235.9837; found, 235.9836. 

 

 

tert-butyl(3-chloro-4-(6-methoxynaphthalen-2-yl)phenoxy)dimethylsilane. 

 

 

 

Scheme 4-23, 4-60: Following a previously reported procedure,179 2-bromo-6-

methoxynaphthalene (36.2 mg, 0.153 mmol), (4-((tert-butyldimethylsilyl)oxy)-2-

chlorophenyl)boronic acid (64.5 mg, 0.225 mmol), K3PO4 ( 191 mg, 0.9 mmol), PdCl2(PPh3)2 (5.3 

mg, 0.0075 mmol), toluene (0.45 mL), and degassed H2O (0.45 mL) at 90 oC for 16 hours gave a 

crude residue which was purified by flash chromatography (hexanes: ethyl acetate = 98:2) to afford 

the desired product (49.7 mg, 0.125 mmol, 82% yield). 

 

1H-NMR (700 MHz, CDCl3): δ 7.79 (s, 1H), 7.77 (m, 2H), 7.54 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 

8.7 Hz, 1H), 7.18 (s, 2H), 7.00 (s, 1H), 6.83 (s, J = 8.3 Hz, 1H), 3.95 (s, 3H), 1.02 (s, 9H), 0.26 (s, 

6H).  

13C-NMR (175 MHz, CDCl3): δ 157.8, 155.4, 134.6, 133.64, 133.60, 132.8, 132.0, 129.6, 128.4, 

128.1, 126.2, 121.4, 119.0, 118.8, 105.6, 55.3, 25.6, 18.2, -4.4.    

IR (film, cm-1): 2951, 2929, 2856, 1603, 1496, 1471.  

HRMS (ESI+) m/z: [M+H]+ predicted for C23H27ClO2Si, 399.1542; found, 399.1540. 
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6.4.7 Scheme 4-24 Substrates 

4-(5-((tert-butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)phenyl)morpholine. 

 

 

 

Scheme 4-24, 4-61: Following a previously reported procedure,238 tert-butyl(3-chloro-4-(6-

methoxynaphthalen-2-yl)phenoxy)dimethylsilane (61.0 g, 0.153 mmol), NaO-t-Bu (21.6 mg, 

0.225 mmol), Pd(OAc)2 (3.4 mg, 0.015 mmol), P(t-Bu)3 (6.1 mg, 0.03 mmol), morpholine (16 µL, 

0.18 mmol), and toluene (0.2 M) at 120 oC for 16 hours gave a crude residue which was purified 

by flash chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (44.8 mg, 

0.100 mmol, 65% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.90 (s, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.73 (t, J = 9.0 Hz, 2H), 

7.20 (d, J = 8.0 Hz, 1H), 7.15 (m, 2H), 6.60 (dd, J = 8.5, 2.5 Hz, 1H), 6.54 (d, J = 2.0 hz, 1H), 3.94 

(s, 3H), 3.58 (t, J = 4.5 Hz, 4H), 2.82 (t, J = 4.5 Hz, 4H), 1.02 (s, 9H), 0.26 (s, 6H).  

 

4-(5-((tert-butyldimethylsilyl)oxy)-2-(6-methylnaphthalen-2-yl)phenyl)morpholine. 

 

 

 

Scheme 4-24, 4-62: Following a previously reported procedure,96 4-(5-((tert-

butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)phenyl)morpholine (18.0 mg, 0.040 

mmol), NaO-t-Bu (7.7 mg, 0.080 mmol), Ni(COD)2 (2.2 mg, 0.008 mmol), ICy·HBF4 (3.6 mg, 

0.011 mmol), trimethylaluminum (2 M in hexanes, 24 µL), and toluene (0.5 M) at 120 oC for 16 
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hours gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 

90:10) to afford the desired product (7.3 mg, 0.017 mmol, 42% yield). 

 

1H-NMR (500 MHz, CDCl3): δ 7.92 (s, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.74 (dd, J = 7.5, 2.0 Hz, 

2H), 7.62 (s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.5 Hz, 1H), 6.60 (dd, J = 8.0, 2.0 Hz, 1H), 

6.54 (d, J = 2.0 Hz, 1H), 3.57 (t, J = 4.0 Hz, 4H), 2.81 (t, J = 4.5 Hz, 4H), 2.53 (s, 3H), 1.02 (s, 

9H), 0.28 (s, 6H).  

 

 

5-((tert-butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)-N-

phenylanilinedimethylsilane. 

 

 

 

Scheme 4-24, 4-63: Following a previously reported procedure,238 tert-butyl(3-chloro-4-(6-

methoxynaphthalen-2-yl)phenoxy)dimethylsilane (392.4 mg, 0.983 mmol), NaO-t-Bu (144.2 mg, 

1.50 mmol), Pd(OAc)2 (11.2 mg, 0.05 mmol), P(t-Bu)3 (20.2 mg, 0.10 mmol), aniline (109 µL, 

1.20 mmol) at 120 oC for 16 hours gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (419.1 mg, 0.920 

mmol, 94% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.81 (s, 1H), 7.45 (m, 2H), 7.50 (dd, J = 8.5, 3.0 Hz, 1H), 7.27 

(m, 2H), 7.19 (m, 3H), 7.06 (d, J = 7.5 Hz, 2H), 6.94 (m, 2H), 6.53 (dd, J = 8.0, 2.5 Hz, 1H), 3.95 

(s, 3H), 1.01 (s, 9H), 0.24 (s, 6H).  

13C-NMR (125 MHz, CDCl3): δ 157.8, 155.8, 143.2, 141.2, 134.1, 133.5, 131.7, 129.5, 129.3, 

129.2, 128.3, 128.0, 127.1, 124.7, 121.1, 119.1, 118.3, 113.0, 108.7, 105.6, 55.4, 25.7, 18.2, -4.3. 

IR (film, cm-1): 3348, 2956, 2928, 2855, 1630, 1488. 

HRMS (ESI+) m/z: [M+H]+ predicted for C29H33NO2Si, 456.2353; found, 456.2358. 
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5-((tert-butyldimethylsilyl)oxy)-2-(6-ethylnaphthalen-2-yl)-N-phenylaniline. 

 

 

 

Scheme 4-24, 4-64: Following a previously reported procedure,97 5-((tert-

butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)-N-phenylanilinedimethylsilane (66.0 mg, 

0.145 mmol), Ni(COD)2 (4.0 mg, 0.0145 mmol), 1,2-bis(dicylohexylphosphino)ethane (dcype) 

(6.1 mg, 0.0144 mmol),  triethylaluminum (25 wt% in toluene, 156 µL), toluene (0.29 mL), and 

diisopropylether (0.29 mL) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (55.6 mg, 0.123 

mmol, 85% yield).  

 

1H-NMR (500 MHz, CDCl3): δ 7.80 (m, 3H), 7.65 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.37 (d, J = 

8.5 Hz, 1H), 7.26 (m, 2H), 7.19 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 2H), 6.96 (t, J = 7.5 Hz, 

1H), 6.90 (d, J = 2.5 Hz, 1H), 6.53 (dd, J = 8.0, 2.5 Hz, 1H), 5.64 (br, 1H), 2.83 (quartet, J = 7.5 

Hz, 2H), 1.34 (t, J = 7.5 Hz, 3H), 1.00 (s, 9H), 0.234 (s, 6H).  

13C-NMR (125 MHz, CDCl3): δ 155.9, 143.1, 142.1, 141.2, 135.6, 132.7, 132.2, 131.7, 129.3, 

127.90, 127.89, 127.86, 127.64, 127.5, 1125.3, 124.7, 121.1, 118.3, 113.0, 108.6, 29.1, 25.7, 18.2, 

15.6, -4.3.  

 

 

4-(5-((tert-butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)phenyl)-1-propyl-1H-

pyrazole. 
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Scheme 4-24, 4-67: Following a modified previously reported procedure,239 tert-butyl(3-chloro-

4-(6-methoxynaphthalen-2-yl)phenoxy)dimethylsilane (52.3 mg, 0.131 mmol), (1-propyl-1H-

pyrazol-4-yl)boronic acid (23.1 mg, 0.15 mmol), K3PO4 (45.1 mg, 0.213 mmol), Pd2dba3 (11.4 

mg, 0.0125 mmol), PCy3 (3.5 mg, 0.0125 mmol), and dioxane (0.25 mL) at 80 oC for 16 hours 

gave a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 90:10) 

to afford the desired product (48.4 mg, 0.102 mmol, 78% yield). 

 

1H-NMR (700 MHz, CDCl3): δ 7.69 (m, 2H), 7.61 (d, J = 8.4 Hz, 1H), 7.38 (s, 1H), 7.25 (m, 2H), 

7.13 (m, 2H), 6.90 (s, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.74 (s, 1H), 3.93 (s, 3H), 3.84 (t, J = 6.9 Hz, 

2H), 1.67 (m, 2H), 1.04 (s, 9H), 0.72 (t, J = 7.4 Hz, 3H), 0.28 (s, 6H).  

13C-NMR (175 MHz, CDCl3): δ 157.6, 155.1, 138.5, 133.30, 133.28, 132.5, 131.9, 129.4, 128.9, 

128.5, 127.9, 126.1, 121.4, 120.3, 118.7, 118.1, 105.6, 55.3, 53.6, 25.7, 23.6, 18.2, 10.9, -4.3.  

IR (film, cm-1): 2956, 2929, 2857, 1605, 1496. 

HRMS (ESI+) m/z: [M+H]+ predicted for C29H36N2O2Si, 473.2619; found, 473.2619. 

 

 

4-(5-((tert-butyldimethylsilyl)oxy)-2-(6-ethylnaphthalen-2-yl)phenyl)-1-propyl-1H-pyrazole. 

 

 

 

Scheme 4-24, 4-68: Following a previously reported procedure,97 4-(5-((tert-

butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)phenyl)-1-propyl-1H-pyrazole (33.0 mg, 

0.070 mmol), Ni(COD)2 (1.9 mg, 0.007 mmol), 1,2-bis(dicylohexylphosphino)ethane (dcype) (3.0 

mg, 0.007 mmol),  triethylaluminum (25 wt% in toluene, 75 µL), toluene (0.14 mL), and 

diisopropylether (0.14 mL) at 120 °C for 16 h gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 90:10) to afford the desired product (31.0 mg, 0.066 

mmol, 94% yield).  
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1H-NMR (700 MHz, CDCl3): δ 7.72 (t, J = 4.0 Hz, 2H), 7.64 (d, J = 8.4 Hz, 1H), 7.60 (s, 1H), 

7.38 (s, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.25 (m, 2H), 6.99 (s, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.74 (s, 

1H), 3.84 (t, J = 7.0 Hz, 2H), 2.82 (q, J = 7.6 Hz, 2H), 1.66 (sextet, J = 7.2 Hz, 2H), 1.34 (t, J = 

7.6 Hz, 3H), 1.04 (s, 9H), 0.72 (t, J = 7.7 Hz), 3H), 0.28 (s, 6H).  

13C-NMR (175 MHz, CDCl3): δ 155.1, 141.7, 138.8, 138.5, 133.3, 132.5, 132.4, 132.0, 131.9, 

128.5, 127.83, 127.77, 127.2, 126.7, 125.3, 121.4, 120.3, 118.1, 53.6, 29.0, 25.7, 23.6, 18.2, 15.5, 

10.9, -4.3.  

IR (film, cm-1): 2959, 2929, 2857, 1602, 1495, 1472. 

HRMS (ESI+) m/z: [M+H]+ predicted for C30H38N2OSi, 471.2826; found, 471.2833. 

 

 

N-butyl-4-(6-ethylnaphthalen-2-yl)-N-methyl-3-(1-propyl-1H-pyrazol-4-yl)aniline. 

 

 

 

Scheme 4-24, 4-69: Following a modified general procedure D, 4-(5-((tert-

butyldimethylsilyl)oxy)-2-(6-ethylnaphthalen-2-yl)phenyl)-1-propyl-1H-pyrazole (42.8 mg, 

0.091 mmol), Ni(COD)2 (2.5 mg, 0.0091 mmol), IPrMe·HCl (8.2 mg, 0.0182 mmol), NaO-t-Bu 

(21.9 mg, 0.228 mmol), and N-methylbutylamine (16.2 µL, 0.136 mmol) at 120 °C for 16 h gave 

a crude residue which was purified by flash chromatography (hexanes: ethyl acetate 90:10) to 

afford the desired product (29.0 mg, 0.068 mmol, 75% yield).  

 

1H-NMR (700 MHz, CDCl3): δ 7.72 (m, 2H), 7.60 (m, 2H), 7.47 (s, 1H), 7.33 (d, J = 8.4 Hz, 1H), 

7.30 (d, J = 8.4 Hz, 1H), 7.25 (m, 1H), 6.80 (s, 1H), 6.78 (s, 1H), 6.72 (d, J = 8.4 Hz, 1H), 3.85 (t, 

J = 7.0 Hz, 2H), 3.39 (t, J = 7.7 Hz, 2H), 3.02 (s, 3H), 2.82 (q, J = 7.0 Hz, 2H), 1.66 (m, 4H), 1.41 

(sextet, J = 7.0 Hz, 2H), 1.34 (t, J = 7.7 Hz, 3H), 0.99 (t, J = 7.0 Hz, 3H), 0.73 (t, J = 7.0 Hz, 3H).  
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13C-NMR (175 MHz, CDCl3): δ 148.8, 141.3, 139.2, 138.5, 132.2, 132.03, 131.97, 128.9, 128.7, 

128.0, 127.7, 127.6, 127.0, 126.5, 125.2, 122.3, 115.5, 110.7, 55.6, 52.5, 38.4, 29.02, 29.01, 23.6, 

20.4, 15.6, 14.0, 10.9.   

IR (film, cm-1): 2961, 2930, 2871, 1604, 1514, 1455. 

HRMS (ESI+) m/z: [M+H]+ predicted for C29H35N3, 426.2904; found, 426.2912. 
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6.5 General Experimental Details for Chapter 5 

6.5.1 General Procedures for Chapter 5 

General Procedure for the Ni(acac)2/IPrMe·HCl promoted reductive deoxygenation of 

silyloxyarenes using titanium(IV) isopropoxide (B): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(acac)2 (5 mol%) and IPrMe·HCl (10 mol%). The reaction tube was sealed and 

pump/purged with nitrogen three times. Toluene (0.5 M) and titanium (IV) isopropoxide (1.1 

equiv) were sequentially added via syringe, and the reaction tube was then placed in a heated block 

set to 120 °C and stirred for 6 h. The mixture was allowed to reach rt, internal standard was added 

(tridecane, 40 µL, 0.164 mmol), diluted with EtOAc (5 mL) and 1 M HCl (3 mL), then extracted 

with EtOAc (3 x 5 mL), dried over MgSO4, filtered, concentrated under reduced pressure and 

purified by flash column chromatography on silica gel to afford the desired product. Note: slightly 

higher yields (5-10%) were obtained by utilizing a nitrogen atmosphere glovebox and yields in the 

text utilized the glovebox procedure. 

 

General Procedure the for Ni(COD)2/IPr*OMe promoted silylation of silyloxyarenes using 

triethylsilane (C): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(COD)2 (10 mol%) and IPr*OMe (10 mol%) in a nitrogen atmosphere glovebox. The 

sealed reaction tube was brought outside the glovebox where toluene (0.5 M) and silane (6 equiv) 

were sequentially added via syringe. The reaction tube was then placed in a heated block set to 

120 °C and stirred for 16 h. The mixture was allowed to reach rt, internal standard was added 

(tridecane, 40 µL, 0.164 mmol), diluted with EtOAc (5 mL) and deionized water (3 mL), then 

extracted with EtOAc (3 x 5 mL), dried over MgSO4, filtered, concentrated under reduced pressure 

and purified by flash column chromatography on silica gel to afford the desired product. 

 

General Procedure for the Ni(COD)2/IPrMe·HCl promoted amination of silyloxyarenes using 

amines (D): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv.), Ni(COD)2 (5 

mol%), IPrMe·HCl  (10 mol%), NaO-t-Bu (2.5 equiv.), toluene (0.5 M) and amine. The sealed 

reaction tube was brought outside the glovebox and placed in a heated block set to 120 oC and 
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stirred for 16 hours, unless noted otherwise. The mixture was cooled to room temperature, 

quenched with dichloromethane (1 mL), and diluted with EtOAc (3 mL). The mixture was then 

run through a silica plug, concentrated under reduced pressure and purified by flash column 

chromatography on silica gel to afford the desired product. 

 

General Procedure for the Ni(acac)2/IPrMe·HCl and Cu(OAc)2 promoted borylation of 

silyloxyarenes using bis(pinacolato)diboron (E): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv), NaO-t-Bu (2.5 

equiv), Ni(acac)2 (10 mol%), IPrMe·HCl (20 mol%), Cu(OAc)2 (20 mol%), and B2pin2 (2.5 equiv). 

Toluene (0.3 M) was then added added, and the reaction tube was then placed in a heated block 

set to 120 °C and stirred for 16 h. The mixture was allowed to reach rt, taken up in ethyl acetate 

and filtered through silica (boric acid impregnated silica) plug via a glass fritted filter and 

concentrated under reduced pressure. The crude material was placed under reduced pressure via 

high vacuum until purification via column chromatography (boric acid impregnated silica gel) to 

afford the desired product.  

 

General Procedure for the Ni(COD)2/IPrMe·HCl promoted Suzuki coupling of silyloxyarenes 

using aryl boronate esters (F): 

A reaction tube containing a stir bar was charged with aryl silyl ether (1 equiv.), Ni(COD)2 (10 

mol%), IPrMe·HCl (20 mol%), NaO-t-Bu (2.5 equiv.), aryl boronate ester (1.5 equiv), and toluene 

(0.3 M). The sealed reaction tube was brought outside the glovebox and placed in a heated block 

set to 120 oC and stirred for 16 hours, unless noted otherwise. The mixture was cooled to room 

temperature, quenched with dichloromethane (1 mL), and diluted with EtOAc (3 mL). The mixture 

was then run through a silica plug, concentrated under reduced pressure and purified by flash 

column chromatography on silica gel to afford the desired product. 

 

General Procedure for the Ni(COD)2/PhSIPr·HCl promoted reductive coupling of propargyl 

silanes, aldehydes and triethyl silane (G): 

A round bottom flask containing a stir bar was charged with Ni(COD)2 (12 mol%), PhSIPr·HCl (10 

mol%), KO-t-Bu (10 mol%). The flask was sealed, brought out of the glovebox, and THF (0.1 M) 

was added. The solution was stirred for 10 minutes at rt until the solution turned light yellow 
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brown. Alkyne (1.2 equiv), aldehyde (1.0 equiv), and silane (2.0 equiv) were combined in 2 mL 

of THF and added to the flask over 60 minutes using a syringe pump and stirred overnight. The 

reaction was run through a silica plug, concentrated under reduced pressure and purified by flash 

column chromatography on silica gel to afford the desired product. 

 

 

 

6.5.2 Scheme 5-4 Substrates 

(Z)-(2-methylprop-1-ene-1,3-diyl)dibenzene. 

 

 

 

Scheme 5-4, 5-10: Following general procedure F, tert-butyldimethyl((2-methyl-1-

phenylallyl)oxy)silane (38.5 mg, 0.147 mmol), Ni(COD)2 (4.1 mg, 0.015 mmol), IPrMe·HCl (13.6 

mg, 0.030 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), CsF (22.8 mg, 0.15 mmol), phenyl boronic 

acid (27.4 mg, 0.225 mmol), and toluene (0.3 M) at 120 oC for 16 hours, gave a crude residue 

which was purified by flash chromatography (hexanes: ethyl acetate 99:1) to afford the desired 

product (25.3 mg, 0.121 mmol, 83% yield) as a 2:1 mixture of E:Z isomers. The spectral data 

matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ major E isomer: 7.29 (m, 10H), 6.40 (s, 1H), 3.50 (s, 2H), 1.82 

(m, 3H). minor E isomer: 2.75 (m, 4.5H), 6.54 (s, 0.45), 3.63 (s, 1H), 1.83 (m, 1.5H). 

 

 

6.5.3 Scheme 5-5 Substrates 

(E)-prop-1-ene-1,3-diyldibenzene. 
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Scheme 5-5, 5-11: Following general procedure F, tert-butyl(cinnamyloxy)dimethylsilane (38.0 

mg, 0.153 mmol), Ni(COD)2 (4.1 mg, 0.015 mmol), IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu 

(36.0 mg, 0.375 mmol), CsF (22.8 mg, 0.15 mmol), phenyl boronic acid pinacol ester (45.9 mg, 

0.225 mmol), and toluene (0.3 M) at 40 oC for 16 hours, gave a crude residue. The 75% yield was 

determined by 1H-NMR yield with dibromomethane as internal standard (21µL, 0.30 mmol). The 

spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.31 (m, 10H), 6.48 (d, J = 15.5 Hz, 1H), 6.39 (m, 1H), 3.58 (d, 

J = 6.5 Hz, 2H). 

 

 

 

6.5.4 Scheme 5-6 Substrates 

(E)-prop-1-ene-1,3-diyldibenzene. 

 

 

 

Scheme 5-6, 5-11: Following general procedure B, (E)-tert-butyl((1,3-

diphenylallyl)oxy)dimethylsilane (48.0 mg, 0.148 mmol), Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), titanium(IV) isopropoxide 

(49 µL, 0.165 mmol), and toluene (0.5 M) at 80 oC for 16 hours, gave a crude residue which was 

purified by flash chromatography (hexanes: ethyl acetate 99:1) to afford the desired product (26.1 

mg, 0.134 mmol, 91% yield) as a 94:4 ratio of E:Z isomers. The spectral data matches that 

previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.31 (m, 10H), 6.48 (d, J = 15.5 Hz, 1H), 6.39 (m, 1H), 3.58 (d, 

J = 6.5 Hz, 2H). 
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6.5.5 Scheme 5-9 Substrates 

(E)-1,2-diphenylethene. 

 

 

 

Scheme 5-9, 5-14: Following general procedure B, tert-butyl((1,2-

diphenylvinyl)oxy)dimethylsilane (47.6 mg, 0.153 mmol), Ni(acac)2 (3.9 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), titanium(IV) isopropoxide 

(49 µL, 0.165 mmol), and toluene (0.5 M) at 120 oC for 16 hours, gave a crude residue. The 51% 

yield for (E)-1,2-diphneylethene and 39% yield for 1,2-diphenylethane was determined by 1H-

NMR yield with dibromomethane as internal standard (21µL, 0.30 mmol). The spectral data 

matches that previously reported in the literature. 

 

 

 

6.5.6 Scheme 5-10 Substrates 

(Z)-(1-(p-tolyl)ethene-1,2-diyl)dibenzene. 

 

 

 

Scheme 5-10, 5-15: Following general procedure F, tert-butyl((1,2-

diphenylvinyl)oxy)dimethylsilane (47.0 mg, 0.151 mmol), Ni(COD)2 (4.1 mg, 0.015 mmol), 

IPrMe·HCl (13.6 mg, 0.030 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), CsF (22.8 mg, 0.15 mmol), 

4,4,5,5-tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane (49.2 mg, 0.225 mmol), and toluene (0.3 M) 

at 120 oC for 16 hours, gave a crude residue which was purified by flash chromatography (hexanes: 
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ethyl acetate 99:1) to afford the desired product (29.0 mg, 0.107 mmol, 71% yield) as a 9.4:1 

mixture of Z:E isomers. The spectral data matches that previously reported in the literature. 

 

 

 

6.5.7 Scheme 5-11 Substrates 

Cyclohexylbenzene. 

 

 

 

Table 5-11, 5-17: Following general procedure B, tert-butyldimethyl((1,2,3,6-tetrahydro-[1,1'-

biphenyl]-4-yl)oxy)silane (43.6 mg, 0.151 mmol), Ni(acac)2 (3.9 mg, 0.015 mmol), IPrMe·HCl 

(13.6 mg, 0.030 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), titanium(IV) isopropoxide (49 µL, 

0.165 mmol), and toluene (0.5 M) at 120 oC for 16 hours, gave a crude residue. The yield was 

determined by GC-FID analysis using tridecane (40 µL, 0.164 mmol) as an internal standard 

(tridecane integration: 15632686, product integration: 3154344, 0.036 mmol, 24%). The spectral 

data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.30 (m, 2H), 7.19 (m, 3H), 2.50 (m, 1H), 1.90 (m, 4H), 1.76 (m, 

1H), 1.30 (m, 5H). 

 

 

triethyl(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)silane.  
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Table 5-11, 5-18: Following general procedure C, tert-butyldimethyl((1,2,3,6-tetrahydro-[1,1'-

biphenyl]-4-yl)oxy)silane (44.3 mg, 0.154 mmol), Ni(COD)2 (4.1 mg, 0.015 mmol), IPr*OMe 

(14.2 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.375 mmol), triethylsilane (144 µL, 0.90 mmol), 

and toluene (0.5 M) at 120 oC for 16 hours, gave a crude residue which was purified by flash 

chromatography (hexanes: ethyl acetate 99:1) to afford the desired product (7.0 mg, 0.026 mmol, 

17% yield). The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.39 (m, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.24 (m, 2H), 6.14 (m, 

1H), 2.79 (m, 1H), 2.37 (m, 2H), 2.21 (m, 2H), 1.97 (m, 1H), 1.74 (m, 1H), 0.98 (m, 9H), 0.62 (m, 

6H). 

 

 

4,4,5,5-tetramethyl-2-(1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)-1,3,2-dioxaborolane. 

 

 

 

Table 5-11, 3-45: Following a modified general procedure E, Ni(acac)2 (1.9 mg, 0.0075 mmol), 

IPrMe·HCl (6.8 mg, 0.015 mmol), NaO-t-Bu (36.0 mg, 0.750 mmol), Cu(OAc)2 (2.8 mg, 0.150 

mmol), tert-butyldimethyl((1,2,3,6-tetrahydro-[1,1'-biphenyl]-4-yl)oxy)silane (42.6 mg, 0.148 

mmol), B2pin2 (95.2 mg, 0.375 mmol), and toluene (0.3 M) at 120 °C for 16 h gave a crude residue. 

The yield was determined by GC-FID analysis using tridecane (40 µL, 0.164 mmol) as an internal 

standard (tridecane integration: 427319552, product integration: 82868177, 0.032 mmol, 22%). 

The spectral data matches that previously reported in the literature. 

 

1H-NMR (500 MHz, CDCl3): δ 7.30 (t, J = 7.0 Hz, 2H), 7.21 (m, 3H), 6.66 (dd, J = 5.5, 2.5 Hz, 

1H), 2.77 (m, 1H), 2.33 (m, 4H), 1.96 (m, 1H), 1.71 (m, 1H), 1.28 (s, 12H).  

 

6.6 Spectra of New Compounds 
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Table 2-9, tert-butyldimethyl(((8R,9S,13S,14S,17S)-13-methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-17-yl)oxy)silane (2-35B). 
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Scheme 2-12, 4-(trifluoromethyl)-1,1'-biphenyl (2-36B). 
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Scheme 2-12, 4-(trifluoromethyl)-1,1'-biphenyl-4'-d (2-36D). 
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Scheme 2-12, 4-(trifluoromethyl)-1,1'-biphenyl-4'-d (2-36D).  
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Table 2-14, [1,1'-biphenyl]-4-yl(ethyl)dimethylsilane (entry 1).  
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Table 2-14, [1,1'-biphenyl]-4-yldiethyl(methyl)silane (entry 2).  
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Table, 2-14, [1,1'-biphenyl]-4-yl(isopropyl)dimethylsilane (entry 4).  
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Table 2-14, [1,1'-biphenyl]-4-yltripropylsilane (entry 5). 
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Table 2-14, [1,1'-biphenyl]-4-yl(tert-butyl)dimethylsilane (entry 6). 
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Table 2-14, [1,1'-biphenyl]-4-yl(benzyl)dimethylsilane (entry 8). 

 



 240 

Table 2-15, triethyl(6-(trimethylsilyl)naphthalen-2-yl)silane (2-33A).  

 



 241 

Table 2-15, 4'-(triethylsilyl)-[1,1'-biphenyl]-4-ol (2-25A). 

 



 242 

Table 2-15, tert-butyldimethyl((4'-(triethylsilyl)-[1,1'-biphenyl]-4-yl)methoxy)silane (2-

26A). 

 



 243 

Table 2-15, triethyl(4'-methoxy-[1,1'-biphenyl]-4-yl)silane (2-27A).  

 



 244 

Table 2-15, 4,4'-bis(triethylsilyl)-1,1'-biphenyl (2-38A).  

 

 



 245 

Table 2-15, 2-methyl-6-(triethylsilyl)quinolone (2-39A). 

 



 246 

Table 2-15, 2-(4-(triethylsilyl)phenyl)pyridine (2-28A).  

 



 247 

Table 2-15, 4-(3-(triethylsilyl)phenyl)morpholine (2-40A). 

 



 248 

Table 2-15, N-(4-(triethylsilyl)phenyl)acetamide (2-41A). 

 



 249 

Table 2-15, (2,3-dihydro-1H-inden-5-yl)triethylsilane (2-33A). 

  



 250 

Table 2-15, triethyl(5,6,7,8-tetrahydronaphthalen-2-yl)silane (2-34A). 

 

 



 251 

Table 2-15, tert-butyldimethyl(((8R,9S,13S,14S,17S)-13-methyl-3-(triethylsilyl)-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)oxy)silane (2-

35A). 

 



 252 

Table 3-3, 1-([1,1'-biphenyl]-4-yl)-2,6-dimethylpiperidine (3-7). 

 

 



 253 

Table 3-3, N,N-diisobutyl-[1,1'-biphenyl]-4-amine (3-8).  

 

 



 254 

Table 3-3, N-butyl-N-methyl-[1,1'-biphenyl]-4-amine (3-10). 

 

 



 255 

Table 3-3, N-mesityl-[1,1'-biphenyl]-4-amine (3-12).  
 

 



 256 

Table 3-3, N-(2,6-diisopropylphenyl)-[1,1'-biphenyl]-4-amine (3-13). 

 

 



 257 

Table 3-3, N-(cyclopropylmethyl)-[1,1'-biphenyl]-4-amine (3-16). 

 

 



 258 

Table 3-3, N-isobutyl-[1,1'-biphenyl]-4-amine (3-18). 

 

 
 



 259 

Table 3-3, N-cyclobutyl-[1,1'-biphenyl]-4-amine 3-20). 

 



 260 

Table 3-5, N-isobutylnaphthalen-2-amine (3-24). 

 



 261 

Table 3-5, N-methyl-N-phenyl-6-(trimethylsilyl)naphthalen-2-amine (3-25).  

 



 262 

Table 3-5, N-benzyl-N,3-dimethyl-[1,1'-biphenyl]-4-amine (3-26). 

 



 263 

Table 3-5, 4-(6-((tert-butyldimethylsilyl)oxy)-[1,1'-biphenyl]-3-yl)morpholine (3-27) and 4-

([1,1’-biphenyl]-3-yl)morpholine.  

 

 



 264 

Table 3-5, 2-methyl-6-(4-(pyrimidin-2-yl)piperazin-1-yl)quinolone (3-28). 

 



 265 

Table 3-5, N-octyl-4-(pyridin-2-yl)aniline (3-29). 

 



 266 

Table 3-5, N-cyclohexyl-9-methyl-9H-carbazol-2-amine (3-30). 

 



 267 

Table 3-5, N,N-dibutylquinolin-3-amine (3-31). 

 
 



 268 

Table 3-5, 1-(4'-methoxy-[1,1'-biphenyl]-4-yl)-4-methylpiperazine (3-32). 

 



 269 

Table, 3-5, tert-butyl 4-([1,1'-biphenyl]-3-ylamino)piperidine-1-carboxylate (3-33). 

 



 270 

Table 3-5, 4-(3-(2-methylpiperidin-1-yl)phenyl)morpholine (3-34).

 



 271 

 

Table 3-5, N-(4-(butyl(methyl)amino)phenyl)acetamide (3-35). 

 



 272 

Table 3-5, 1-((8R,9S,13S,14S,17S)-17-((tert-butyldimethylsilyl)oxy)-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)piperidine (3-45).  

 



 273 

Scheme 4-17, 7-methyl-N-octylnaphthalen-2-amine (4-36).

 



 274 

Scheme 4-17, tert-butyldimethyl((7-methylnaphthalen-2-yl)oxy)silane (4-37).

 



 275 

Scheme 4-18, tert-butyl((7-methoxynaphthalen-2-yl)oxy)dimethylsilane (4-30). 

 



 276 

Scheme 4-18, 1-(7-methoxynaphthalen-2-yl)-4-methylpiperazine (4-38). 

 



 277 

 

Scheme 4-18, 1-(7-ethylnaphthalen-2-yl)-4-methylpiperazine (4-39). 

 



 278 

 

Scheme 4-18, tert-butyl((7-ethylnaphthalen-2-yl)oxy)dimethylsilane (4-40). 

 



 279 

Scheme 4-20, tert-butyl((4'-chloro-2'-methoxy-[1,1'-biphenyl]-4-yl)oxy)dimethylsilane (4-

46). 

 



 280 

Scheme 4-20, 4-(4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl)morpholine 

(4-47). 

 



 281 

Scheme 4-20, 4-bromo-3-methoxyphenyl pivalate (4-49). 

 



 282 

Scheme 4-20, 4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl pivalate (4-50). 

 



 283 

Scheme 4-20, 4-bromo-3-methoxyphenyl diethylcarbamate (4-51). 

 

 



 284 

Scheme 4-20, 4'-((tert-butyldimethylsilyl)oxy)-2-methoxy-[1,1'-biphenyl]-4-yl 

diethylcarbamate (4-52). 

 

 



 285 

Scheme 4-21, 4-(2-methoxy-4'-(4-methylpiperazin-1-yl)-[1,1'-biphenyl]-4-yl)morpholine (4-

53). 

 



 286 

Scheme 4-21, 2'-methoxy-4'-morpholino-N-octyl-[1,1'-biphenyl]-4-amine (4-54). 

 



 287 

Scheme 4-21, 4-(2-methoxy-4'-(triethylsilyl)-[1,1'-biphenyl]-4-yl)morpholine (4-55). 

 



 288 

Scheme 4-21, 4-(4'-(triethylsilyl)-2-((trimethylsilyl)methyl)-[1,1'-biphenyl]-4-

yl)morpholine(4-56). 

 



 289 

 

Scheme 4-23, 2-bromo-6-methoxynaphthalene (4-58). 

 



 290 

Scheme 4-23, tert-butyl(3-chloro-4-(6-methoxynaphthalen-2-yl)phenoxy)dimethylsilane (4-

60). 

 



 291 

Scheme 4-23, 5-((tert-butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)-N-

phenylanilinedimethylsilane (4-63). 

 



 292 

Scheme 4-23, 5-((tert-butyldimethylsilyl)oxy)-2-(6-ethylnaphthalen-2-yl)-N-phenylaniline (4-

64). 

 



 293 

Scheme 4-23, 4-(5-((tert-butyldimethylsilyl)oxy)-2-(6-methoxynaphthalen-2-yl)phenyl)-1-

propyl-1H-pyrazole (4-67). 

 
 



 294 

Scheme 4-23, 4-(5-((tert-butyldimethylsilyl)oxy)-2-(6-ethylnaphthalen-2-yl)phenyl)-1-

propyl-1H-pyrazole (4-69). 

 



 295 

Scheme 4-23, N-butyl-4-(6-ethylnaphthalen-2-yl)-N-methyl-3-(1-propyl-1H-pyrazol-4-

yl)aniline (4-69). 
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