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Abstract 
 

Wave-breaking in natural bodies of water forms bubbles that burst at the air-sea interface 

to produces atmospheric particles, known as sea spray aerosol (SSA) in marine environments and 

lake spray aerosol (LSA) in freshwater environments. While the properties and associated health 

and climate impacts of SSA have been widely reported, the impacts of SSA on atmospheric 

composition far from the ocean remain uncertain. In comparison, few studies of LSA exist. In this 

dissertation, the production and physiochemical properties of LSA and SSA at coastal and inland 

environments were examined. The results of this work increase our understanding of the 

atmospheric impacts of wave-breaking particle production from varied aquatic environments. In 

addition, this dissertation details efforts to integrate environmental chemistry research into 

introductory chemistry curricula to increase student engagement in the sciences. 

A laboratory-based LSA generator was constructed to produce and analyze particles from 

freshwater in a controlled environment for the first time. To evaluate the LSA generator, bubble 

and aerosol number size distributions were measured for salt solutions representative of freshwater 

and seawater, and a freshwater sample from Lake Michigan. The LSA generator was then utilized 

to produce particles from freshwater samples with varying blue green algae concentrations with 

analysis by single particle microscopy and mass spectrometry. Notably, the number fraction of 

LSA with organic carbon increased with decreasing diameters and the total number fraction of 

LSA with biological material increased directly with increased blue green algae concentration. 

During summertime ambient aerosol sampling conducted in northern Michigan, both SSA and 

LSA were observed by single particle microscopy and mass spectrometry. Air mass back trajectory 

analysis indicated that SSA originated from Hudson Bay, Canada and LSA originated from the 

Great Lakes, >700 km and >25 km from the sampling site, respectively. These results represent 

the furthest inland quantification of SSA particle mass contributions by single particle analysis and 

the first confirmation of the inland transport of LSA. 

Rapid sea ice loss is dramatically changing the Arctic surface, with increasing SSA 

production expected from newly exposed ocean surface. Multi-year bulk atmospheric particle 

inorganic ion concentrations, local sea ice conditions, and meteorology at Utqiaġvik, AK were 
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combined to investigate the dependence of SSA mass concentrations on Arctic sea ice coverage 

and wind speed. Supermicron (1–10 µm) SSA mass concentrations increased in the presence of 

nearby leads (fractures in the sea ice) and wind speeds greater than 4 m s-1. SSA produced from 

leads has the potential to alter the chemical composition of the Arctic atmosphere and snowpack. 

To investigate impacts of SSA production from Arctic sea ice leads on snow chemistry, a course 

based undergraduate research experience (CURE) centered on Arctic snow chemistry was 

implemented in an existing introductory general chemistry laboratory course. Survey evaluation 

results indicate students in the snow chemistry CURE experienced greater gains in confidence of 

research skills and general attitudes towards chemistry compared to a traditional course. To 

increase the accessibility of the environmental chemistry CURE, a research-based laboratory 

experiment for the determination of chloride content in snow and other environmental samples 

with basic laboratory equipment was designed for the high school classroom. The positive impacts 

on undergraduates of the snow chemistry CURE, and the potential for its translation into the high 

school classroom, motivates further incorporation of environmental research experiences at an 

early academic career stage. 
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Chapter 1 Introduction 
 

1.1. Atmospheric Particles 

Atmospheric particles have a profound impact on climate and human health (Pöschl 2005, 

Calvo et al. 2013, Pöschl and Shiraiwa 2015). Atmospheric particles impact climate by altering 

the balance between the energy the Earth receives from incoming solar radiation and that which it 

radiates back into space, known as radiative forcing (Boucher et al. 2013). The total radiative 

forcing due to atmospheric particles, estimated to be -0.9 ± 0.8 W m-2 (Boucher et al. 2013), is 

directly impacted by atmospheric particles either scattering or absorbing incoming solar radiation, 

and is indirectly impacted by atmospheric particles acting as cloud condensation nuclei (CCN) or 

ice nucleating particles (INP) (Boucher et al. 2013). Atmospheric particles represent the largest 

source of uncertainty in global radiative forcing predictions due to their complex and dynamic 

physiochemical properties, as well as their high temporal and spatial variability (Boucher et al. 

2013). In addition to impacting climate, increased concentrations of atmospheric particles are 

linked to reduced air quality and negative health effects (Pope and Dockery 2006), with over 3 – 

5 million premature deaths attributed annually to atmospheric particles worldwide (Lelieveld et al. 

2015, Cohen et al. 2017). 

Atmospheric aerosol particles range in size from 1 nm – 100 µm and contain hundreds to 

thousands of different chemical species (Prather et al. 2008). The size and chemical composition 

(physiochemical properties) of individual atmospheric particles largely determines their climate 

and health properties (Brook et al. 2004, Pöschl 2005, Furutani et al. 2008, Calvo et al. 2013, 

Fierce et al. 2016). Typically, atmospheric particles with diameters >100 nm will act as CCN at 

lower water vapor super saturation than atmospheric particles with diameters <100 nm (Dusek et 

al. 2006). Cloud formation by atmospheric particles is also influenced by composition, with 

particles composed of more hygroscopic material (i.e. ammonium sulfate) more readily taking up 

water to act as CCN compared to particles composed of less hygroscopic material (i.e. hydrophobic 

organic carbon) (Seinfeld and Pandis 2016). Atmospheric particle composition also affects the 

nature of their direct interactions with incoming solar radiation, with particles composed of 
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absorbing material (e.g. black carbon) resulting in a positive radiative forcing (warming) and 

particles composed of scattering material (e.g. organic carbon) resulting in a negative radiative 

forcing (cooling) (Kopp and Mauzerall 2010). In regards to health implications, atmospheric 

particles with diameters less than 100 nm, which represent the majority of atmospheric particles 

by number (Seinfeld and Pandis 2016), can enter the lungs and bloodstream, resulting in a larger 

impact on health than particles with larger diameters that are deposited in the upper respiratory 

system (Brook et al. 2004, Pope and Dockery 2006). The inclusion of transition metals and certain 

organic compounds can increase the negative health impacts of these atmospheric particles 

(Valavanidis et al. 2008). Atmospheric particle composition, and associated climate and health 

properties, can be altered by heterogeneous reactions and gas-particle partitioning (Moffet and 

Prather 2009, Riemer and West 2013) during atmospheric transport away from their source (Uno 

et al. 2009). Characterizing the size and chemical composition of atmospheric particles, as well as 

the changes in these properties during their lifetime in the atmosphere, is thus necessary to predict 

climate and air quality impacts (Calvo et al. 2013).  

1.2. Production and Characteristics of Wave Breaking Particles 

Wind-induced wave-breaking in marine environments, which directly emits sea spray 

aerosol (SSA), is one of the largest natural sources of atmospheric particles (Lewis and Schwartz 

2004, Andreae and Rosenfeld 2008). Wave-breaking entrains air beneath the water’s surface, 

forming bubbles that rise to the surface and burst to eject droplets that result in SSA after the 

evaporation of water (Lewis and Schwartz 2004). As the bubble-bursting droplet production 

mechanism is a function of wind-induced wave-breaking, the production flux of SSA is modelled 

as a function of increasing wind speed (Lewis and Schwartz 2004). Two distinct mechanisms in 

the bubble bursting process dominate the production of SSA (Blanchard and Woodcock 1957). 

First, the fragmentation of the top of the bubble membrane produces film drops. After the bubble 

membrane top bursts, droplets of water are flung upward from the bubble bottom during the 

collapse of the remaining cavity, producing jet drops. After evaporation of water, film drops 

mainly result in submicron particles and jet drops generally result in supermicron particles 

(O'Dowd et al. 1997). However, recent work has demonstrated that small bubbles (radius < 20 µm) 

produce jet drops that contribute a significant portion of submicron SSA (~20-40% by number) 

dependent on seawater composition (Wang et al. 2017).  
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Reflective of the composition of their seawater origin (Pilson 2013), SSA is composed 

primarily of NaCl and other inorganic salts, as well as organic compounds and biological material 

(Prather et al. 2013). The bubble bursting particle production method determines the distribution 

of inorganic salts, organic compounds, and biological material across the population of SSA (i.e. 

mixing state) (Prather et al. 2013, Wang et al. 2017). Understanding the bubble bursting particle 

production method is thus vital in determining the health and climate properties of SSA (Collins 

et al. 2013, Prather et al. 2013, Collins et al. 2014, Guasco et al. 2014). Hydrophobic organic matter 

accumulates at the surface of bubbles as they rise through the water column (O'Dowd et al. 2004, 

Keene et al. 2007, Bigg and Leck 2008, Facchini et al. 2008) and is further enriched by the sea 

surface microlayer, which contains a higher concentration of organics than bulk seawater (Zhang 

2003, Hawkins and Russell 2010). The concentration of organics at the bubble surface is then 

translated to an enrichment of organics in SSA resulting from the fragmentation of the bubble film 

cap (Blanchard and Syzdek 1975, Cheng et al. 2007, Backer et al. 2008, Backer et al. 2010, Wood 

and Dietrich 2011). The addition of less water soluble organic species to SSA resulting from film 

drops decreases SSA overall hygroscopicity and increases their CCN activation diameter (Andreae 

and Rosenfeld 2008). SSA resulting from jet drops are more representative of the inorganic-rich 

bulk seawater solution (Lewis and Schwartz 2004) and contain a higher concentration of biological 

material, as well as water soluble organic compounds, when produced from marine algal blooms 

(Blanchard and Syzdek 1972, Matthias-Maser et al. 1999, Aller et al. 2005, McCluskey et al. 

2017). The enrichment of biological matter and hydrophilic organic matter in SSA resulting from 

jet drops, as well as their larger size, increase their propensity to act as INP (DeMott et al. 2015, 

Wilson et al. 2015, Ladino et al. 2016, McCluskey et al. 2017, Vergara-Temprado et al. 2017, 

Wang et al. 2017). In addition to climate impacts, SSA can present an inhalation exposure risk if 

it contains organic and biological material from toxin containing marine algal blooms, most 

commonly from red tide containing brevotoxins (Cheng et al. 2005, Cheng et al. 2005, Cheng et 

al. 2010, Kirkpatrick et al. 2011). 

The production of particles from wave-breaking in freshwater environments, including the 

Laurentian Great Lakes, has been far less studied. Slade et al. (2010) first observed the production 

of atmospheric particles from the surface of Lake Michigan as a function of wind speed. Based on 

these observations, Chung et al. (2011) conducted the first regional chemical transport modelling 

that incorporated a freshwater particle source and predicted that the wind-dependent production of 
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atmospheric particles from the Great Lakes could affect aerosol number and CCN concentrations 

throughout the surrounding region. Motivated by these findings, Axson et al. (2016) first 

determined the chemical signature for atmospheric particles produced by freshwater wave-

breaking. These particle, termed lake spray aerosol (LSA), were determined to be primarily 

composed of calcium carbonate, along with contributions from other inorganic ions and organic 

material (Axson et al. 2016), reflective of the composition of their freshwater  origin (Chapra et 

al. 2012). The identification of calcium particles in Great Lakes region clouds (Lasher-Trapp et al. 

2008, Twohy and Anderson 2008), alongside previous studies of the cloud formation properties of 

CaCO3 particles (Gibson et al. 2006, Sullivan et al. 2009), suggests that the newly identified LSA 

may impact climate through participation in cloud formation. Freshwater wave-breaking may also 

impact climate through the introduction of INP active biological species (D'Souza et al. 2013, 

Pietsch et al. 2015, Pietsch et al. 2017), which are two to three orders of magnitude higher in 

concentration in freshwater than in seawater (Moffett 2016). In addition, investigations of aerosol 

production by bubble-bursting action from recreational activity in freshwater harmful algal blooms 

(HABs), composed primarily of microcystin producing cyanobacteria (blue-green algae), reported 

measurable concentrations of aerosolized toxins associated with human health impacts (Cheng et 

al. 2007, Backer et al. 2008, Backer et al. 2010, Wood and Dietrich 2011). Therefore, the 

production of organic and biological containing LSA from HABs, which are increasing in 

occurrence and severity in the Great Lakes (Michalak et al. 2013), should be considered for their 

potential impacts on both air quality and climate.  

 As LSA has only recently been identified, the discussion of the methods for 

physiochemical analysis of wave-breaking particles presented here will focus primarily on SSA. 

Traditionally, SSA was studied through offline bulk particle measurements achieved through 

filter-based sampling, followed by extraction and analysis (Shaw 1991, Quinn et al. 1998, 

Gustafsson and Franzén 2000, Quinn et al. 2002, Hara et al. 2004, Silva et al. 2007, Manders et al. 

2010, Santos et al. 2012, Udisti et al. 2012, Chalbot et al. 2013, Makowski Giannoni et al. 2016). 

However, traditional offline bulk particle measurements have significant analytical limitations. 

Time resolution of bulk particle methods is constrained by how often the filter is changed, typically 

multiple hours to days, which limits observation of changes in particles due to rapidly shifting 

conditions, such as shifts in wind direction or speed. In addition, bulk particle methods only 

provide an average chemical composition and cannot determine if a particle population exists as 
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an internal mixture, where all particles have all components and are well-mixed, or an external 

mixture, where individual components are present in separate particles (Riemer and West 2013, 

Ault and Axson 2017). Understanding chemical mixing state in a population of atmospheric 

particles is vital in determining climate and health properties (Jacobson 2001, Zaveri et al. 2010). 

Bulk methods also cannot determine the spatial distribution of chemical species within a particle, 

which can alter their climate properties (Ryder et al. 2015, Nguyen et al. 2017). Therefore, single 

particle techniques that can measure chemical species between and within individual particles are 

needed to address the complex and dynamic atmospheric particle populations present in the 

ambient atmosphere to fully understand their climate and health impacts.  

1.3. Chemical Characterization of Individual Wave Breaking Particles 

   For offline measurements of individual SSA and LSA, particles are collected on substrates 

using an impactor, such as a multiple orifice uniform deposition impactor (MOUDI, MSP Corp.) 

or a microanalysis particle sampler (MPS, California Instruments) that collect particles on size-

resolved stages. Particle morphology can then be measured by microscopy techniques, such as 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM) (Ault and 

Axson 2017). SEM measures the reflection of a beam of electrons off the particle (Ault and Axson 

2017) to collect detailed morphological images of single particles down to ~100 nm (Laskin and 

Cowin 2001). TEM can also collect morphological images of particles; however, these images are 

derived from the electrons transmitted through the particle and offer a higher spatial resolution 

(<0.1 nm) (Ault et al. 2013, Prather et al. 2013). The addition of computer-controlled automation 

to SEM allows for a larger number of particles to be analyzed (Laskin and Cowin 2001). TEM and 

SEM analysis have demonstrated that the morphology of SSA is typically cubic under vacuum, 

but can become more circular with greater total organic carbon concentrations in seawater (Ault 

et al. 2013) or after heterogeneous reaction with HNO3 (Ault et al. 2013). These microscopy 

techniques of have also identified cubic morphology in ambient and laboratory generated LSA 

under vacuum (Axson et al. 2016), which, in both LSA and SSA, is the result of inorganic salts 

crystalizing after drying on the substrate. 

 When SEM and TEM are coupled with energy dispersive X-ray (EDX) spectroscopy, semi-

quantitative chemical information can be obtained by measuring element specific X-rays emitted 

during interactions between the particle and the electron beam (Ault and Axson 2017). EDX 

coupled with microscopy has been used to analyze the composition and morphology of SSA in 
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both field (Allen et al. 2015, Chi et al. 2015, Bondy et al. 2017, Gunsch et al. 2017, Kirpes et al. 

2018) and laboratory studies (Ault et al. 2013, Ault et al. 2013, Prather et al. 2013, Ault et al. 2014, 

Guasco et al. 2014, Patterson et al. 2016), as well as both ambient and laboratory generated LSA 

(Axson et al. 2016). The elemental composition data from SEM-EDX and TEM-EDX allows for 

the differentiation of wave-breaking particles from their respective aquatic sources, with  LSA 

characterized by the predominance Ca, C, and O (Axson et al. 2016), reflective of the high CaCO3 

content of Great Lakes freshwater (Chapra et al. 2012), and SSA characterized by the 

predominance of Na and Cl (Laskin et al. 2002, Kirpes et al. 2018), reflective of the NaCl content 

of seawater (Pilson 2013).   

 Demonstrating the capability of EDX coupled with microscopy to determine size-

dependent chemical mixing state, SEM-EDX and TEM-EDX analysis of laboratory generated SSA 

showered that internal mixtures of inorganic salts and organic material are externally mixed with 

particles composed primarily of organic carbon, with organic carbon particles predominating at 

smaller sizes (<200 nm) in a manner consistent with the enhancement of organic material in film 

drops (Ault et al. 2013, Prather et al. 2013). SEM-EDX and TEM-EDX has also been used to 

demonstrate that heterogeneous reaction with HNO3 redistributes the NaCl core and Mg ring, 

typical of fresh SSA (Ault et al. 2013), evenly within the particle core and results in a more 

concentrated layer of organic matter at the surface (Ault et al. 2013, Chi et al. 2015, Kirpes et al. 

2018). However, as an offline technique, the utility of traditional SEM-EDX and TEM-EDX in 

assessing the native state of atmospheric particles can be limited by physicochemical changes that 

occur during storage and in the vacuum environment of a conventional electron microscope 

(Laskina et al. 2015). Recently, a modification of traditional TEM-EDX was introduced in an 

attempt to overcome these challenges. Cryogenic transmission electron microscopy (cryo-TEM), 

wherein SSA particles are flash frozen in their native state immediately following collection on 

substrates and before analysis by TEM, allows for the detection of whole hydrated bacteria, 

diatoms, virus particles, marine vesicles (Patterson et al. 2016). In general, single particle 

microscopy techniques coupled with EDX offer the advantage of the nondestructive analysis of 

chemical species between and within individual particles, but can only determine elemental 

composition and require impaction prior to analysis, which can limit time resolution and lead to 

artifacts (Ault and Axson 2017). 
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 Single particle mass spectrometers simultaneously measure the size and chemical 

composition of individual atmospheric particles in real-time (Murphy 2007, Pratt and Prather 

2012). One such single particle mass spectrometer is the aerosol time of flight mass spectrometer 

(ATOFMS), which was one of the first online single particle mass spectrometers developed 

(Prather et al. 1994) and has since incorporated technological advancements to increase analytical 

and field deployment capabilities (Pratt et al. 2009). Briefly, particles enter the ATOFMS through 

a nozzle or aerodynamic lens system, accelerating the particles to terminal velocity and focusing 

them in a beam. The particle beam then continues into the sizing region of the instrument, which 

consists of two continuous wave lasers spaced a set distance apart. The velocity of individual 

particles are measured based on the time it takes to pass between the two lasers and is calibrated 

to particle diameter based on the measured velocity of polystyrene latex spheres of a known size. 

After the sizing region individual particles are desorbed and ionized by a 266nm Nd:YAG laser 

triggered based on the particle velocity calculated in the sizing region. Generated ions enter the 

dual-polarity time-of-flight mass spectrometer, which produces individual particle positive and 

negative ion mass spectra.  

 To date, the ATOFMS has been used to analyze SSA from both field (Gard 1998, Pratt and 

Prather 2009, Gaston et al. 2010, Qin et al. 2012, Gunsch et al. 2017) and laboratory studies 

(Prather et al. 2013, Collins et al. 2014, Guasco et al. 2014, Lee et al. 2015, Sultana et al. 2017, 

Sultana et al. 2017), as well as laboratory generated LSA (Axson et al. 2016). Similar to single-

particle micro-spectroscopy techniques, single-particle mass spectrometry can be utilized to 

determine size-dependent mixing state (Prather et al. 2008). ATOFMS analysis of laboratory 

generated SSA demonstrated that particles composed primarily of inorganic material (NaCl) and 

particles enriched in biological materials predominated at diameters > 1 µm (Prather et al. 2013, 

Collins et al. 2014), reflective of the origin of larger SSA as inorganic and biological rich jet drops. 

ATOFMS analysis of laboratory generated SSA has also identified the increased predominance of 

internal mixtures of inorganic salts and organic material (SS-OC) with decreasing diameters < 1 

µm (Prather et al. 2013, Collins et al. 2014), reflective of the origin of smaller SSA as organic rich 

film drops. By varying the ionization laser energy the presence of organic rich coatings around an 

NaCl core can be identified by ATOFMS in both ambient and laboratory generated SSA (Sultana 

et al. 2017).  
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 The higher time resolution of ATOFMS (> 1 Hz), compared to offline micro-spectroscopy 

techniques (multi-hour sampling), enables the examination of changes in the composition of SSA 

with changes in seawater composition in laboratory studies (Collins et al. 2013, Guasco et al. 2014, 

Forestieri et al. 2016, Sultana et al. 2017). Measurements of seawater biological and organic 

content over the course of an induced algal bloom can be coupled with online analysis of generated 

SSA organic content by ATOFMS (Guasco et al. 2014, Sultana et al. 2017), alongside 

measurements of particle climate properties (Collins et al. 2013). In doing so, the impact of 

biological-mediated changes in seawater organic content on the climate properties (Cochran et al. 

2017) of particles can be studied more directly in a controlled environment. Field-study 

deployment of ATOFMS enables the real-time examination of changes in ambient SSA 

composition, such as the liberation of chlorine to the gas phase by heterogeneous reactions (Gard 

et al. 1998), and concentrations due to shifts in meteorological conditions (Qin et al. 2012, Gunsch 

et al. 2017). Coupling single-particle analysis of wave-breaking particles with measurements of 

their climate properties, alongside meteorological observations, represents an important means for 

better understanding their impacts on air quality and reducing the uncertainty due to atmospheric 

particles in global radiative forcing predictions (Boucher et al. 2013). 

1.3. Science Education Reform 

Numerous national reports conclude that reform is needed in science, technology, 

engineering, and mathematics (STEM) education (The Boyer Commission on Educating 

Undergraduates in the Research University 1998, National Research Council 1999, National 

Research Council 2011, National Research Council 2012, Olson and Riordan 2012, NGSS Lead 

States 2013, U.S. Department of Education 2016). This conclusion is largely a response to 

concerns that current STEM educational models are not retaining and training citizenry prepared 

to contribute to an increasingly technologically driven economy (Baldwin 2009). In addition, 

STEM educational reform is cited as a means to create a more “just and inclusive society” for 

women and minorities (Olson and Riordan 2012), who exhibit particularly low participation and 

achievement in STEM (Griffith 2010, Graham et al. 2013, Lewis 2014, Shedlosky-Shoemaker and 

Fautch 2015). Improvements in STEM education are also needed to better produce citizenry who 

possess the scientific literacy necessary to “address the global challenges that humanity now faces 

and that only science can explain and possibly mitigate, such as global warming, as well as to 

make wise decisions, informed by scientific understanding, about issues such as genetic 
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modification,” as noted by Nobel laureate Carl Wieman (Wieman 2007). Therefore, educators 

must confront this great challenge and offer an improved experience in STEM for a new generation 

of students.   

Poor teaching practices in college STEM courses appear to lie at the heart of some of these 

problematic STEM retention  and training trends (Seymour and Hewitt 1997). These problems are 

more pronounced in introductory courses, as the majority of students, especially underrepresented 

minorities (Griffith 2010, Graham et al. 2013, Lewis 2014, Shedlosky-Shoemaker and Fautch 

2015), leave STEM majors by their second year of undergraduate education  (Chen 2013). 

Introductory undergraduate STEM education often occurs in large halls and is heavily lecture 

based (Stains et al. 2018). In this setting, students are largely passive learners that rely heavily on 

memorization to pass tests and experience increased course failure rates (Freeman et al. 2014). 

The traditional lecture is thus an ineffective means for students to master the basic scientific 

concepts essential to advanced study and work in STEM fields (Wieman 2007). As a result, 

students who drop out of STEM after introductory courses are left with little understanding or 

appreciation of the true nature of science (Seymour and Hewitt 1997).  

 Replacing standard laboratory courses with discovery-based research courses is listed 

amongst the President’s Council of Advisors on Science and Technology top five 

recommendations for preparing a scientifically literate population prepared to excel in tomorrow’s 

STEM workforce and address global challenges (Olson and Riordan 2012). Such courses expose 

participating students to science as it is practiced in the real-world through collaborative, first hand 

engagement in the process of finding evidence-based answers to problems in the natural world for 

which no single correct answer exists (Chinn and Malhotra 2002). Course-based undergraduate 

research experiences (CUREs), in which whole classes of students address a research question 

(Auchincloss et al. 2014, Chase et al. 2017), have recently gained increased notice as a means for 

implementing discovery-based research experiences into the undergraduate classroom. CUREs 

have primarily been implemented in the fields of biology (Lopatto et al. 2014, Bakshi et al. 2016, 

Kowalski et al. 2016, Rodenbusch et al. 2016) and chemistry (Clark et al. 2016, Kerr and Yan 

2016, Chase et al. 2017). Increased implementation of such courses is supported by assessment 

data that demonstrate significant benefit to of participation in CUREs for both undergraduate 

students and faculty members (Auchincloss et al. 2014, Hanauer et al. 2016, Shortlidge et al. 2016). 

However, loss of student interest and engagement in STEM begins before students begin their 
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undergraduate education, with a decline in the attitudes of students’ towards science reported from 

age 11 onwards (Osborne et al. 2003). The Next Generation Science Standards (NGSS Lead States 

2013) attempt counteract this trend through the incorporation of discovery-based curriculum that 

incorporates authentic science practices into K-12 curricula. However, K-12 teachers often lack 

scientific research experience and feel unprepared to lead students in activities that are central to 

inquiry based learning, such as student led question formulation, experimental design, and data 

interpretation (Singer et al. 2000, Windschitl 2003). Therefore, future work is needed to support 

the implementation of discovery-based research experiences into K-12 science classrooms in order 

to fully address the decline in students choosing to pursue academic degrees in STEM fields and 

produce a population more prepared to address the scientifically challenging future. 

1.4. Goals of Dissertation 

 This dissertation focuses on using bulk and single particle chemical composition 

measurements to investigate wave breaking particles, as well the integration of environmental 

chemistry research into the introductory chemistry classroom. Chapter 2 describes the construction 

of a laboratory LSA generator and characterization of bubbles and aerosol size distributions 

produced from freshwater samples and model salt solutions. Chapter 3 details the chemical 

characterization by single particle microscopy and mass spectrometry of particles produced in the 

laboratory from freshwater samples collected from Great Lakes locations with varying 

concentrations of blue green algae. Chapter 4 describes the characterization of long-range 

transported sea spray and lake spray aerosols in remote northern Michigan using single particle 

microscopy and mass spectrometry. Chapter 5 details the multi-year dependence of bulk sea salt 

mass concentrations on sea ice coverage and wind speed in the Alaskan coastal Arctic. Chapter 6 

describes the implementation and outcomes of an Arctic snow chemistry themed CURE in an 

introductory general chemistry laboratory course. Chapter 7 details a research-based laboratory 

experiment for the determination of chloride content in authentic environmental samples with 

basic laboratory equipment for classrooms with fewer resources, including high school. Finally, 

Chapter 8 concludes the dissertation and discusses the proposed future directions of on-going 

projects.  
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Chapter 2 Lake Spray Aerosol Generation: A Method for Producing Representative 
Particles from Freshwater Wave Breaking 

 
Reproduced under the Creative Commons Attribution 3.0 License from:  

Atmospheric Measurement Techniques, 9, 4311–4325, 2016.  
DOI:10.5194/amt-9-4311-2016 

2.1. Introduction 

Particles produced from wave breaking in marine environments, known as sea spray 

aerosol (SSA), are one of the largest sources of naturally generated aerosol to the atmosphere 

(Lewis and Schwartz 2004, Andreae and Rosenfeld 2008). SSA contribute to both direct and 

indirect radiative forcing on a global scale (Murphy et al. 1998, Lohmann and Feichter 2005). 

Aerosol generation from freshwater sources, such as the Laurentian Great Lakes, has been far less 

studied, with only a single ambient measurement (Slade et al. 2010) and modelling study (Chung 

et al. 2011) having examined the process to our knowledge. Slade et al. (2010) observed the 

production of ultrafine (< 40 nm) aerosol, which increased in concentration as a function of wind 

speed, during periods of white-capped waves over Lake Michigan. Through regional chemical 

transport modelling, Chung et al. (2011) found that these particles could slightly increase surface 

level aerosol number concentrations, by ~20% over the remote northern Great Lakes and by ~5% 

over other parts of the Great Lakes, potentially affecting cloud nuclei (CCN) concentrations over 

the Great Lakes region. However, the study was challenging due to the need to use SSA-based 

parameterizations derived from bubble bursting of higher salinity seawater due to the lack of a 

bubble bursting parameterization for lower salinity freshwater. Due to their inherent differences 

from SSA, the term lake spray aerosol (LSA) is proposed to refer to aerosol formed from breaking 

waves in freshwater. Based on the intrinsic differences between SSA and LSA, and the 

heterogeneous water properties between and within the Great Lakes, methods are needed to 

understand aerosol production across a wide range of ionic and organic concentrations (Chapra et 

al. 2012, Shuchman et al. 2013). 

Breaking waves caused by winds that entrain air beneath the water’s surface, form bubbles 

that rise to the surface and burst to eject droplets into the atmosphere (Lewis and Schwartz 2004). 
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Therefore, droplet production flux is generally modelled as a function of increasing wind speed 

(Lewis and Schwartz 2004). Higher wind speeds are necessary to generate whitecaps, the product 

of bubbles formed by breaking waves rising to the surface, over freshwater compared to seawater 

(Monahan 1969). The minimum wind speed necessary for freshwater whitecap production was 

observed by Monahan (1969) to be 7-8 m s-1 over the Laurentian Great Lakes, compared to a 

threshold wind velocity for seawater whitecap production at 3-4 m s-1 (Blanchard 1963). However, 

wind speeds greater than this minimum wind speed necessary to produce breaking waves are still 

observed on large freshwater bodies of water such as the Laurentian Great Lakes (Monahan 1969, 

Slade et al. 2010), which have a yearly mean wind speed > 6.6 m s-1 at a height of 10 m above the 

lake surface for the majority of the Laurentian Great Lakes (Doubrawa et al. 2015). In addition to 

differences in differences in the dependence of wind speed on whitecap formation, the lifetime of 

freshwater whitecaps is shorter than saltwater whitecaps (Monahan and Zietlow 1969). Combined, 

the higher minimum wind speed necessary for whitecap formation and shorter whitecap lifetime 

in freshwater compared to seawater whitecap will likely lead to less aerosol produced from bubble 

bursting in freshwater than seawater.   

To produce aerosols from freshwater using this mechanism, inorganic ions or other non-

volatile material must be present in the droplets to form a dry particle after water evaporation. The 

Laurentian Great Lakes contain inorganic ions (Chapra et al. 2012) and dissolved organic carbon 

(DOC) (Shuchman et al. 2013), though differing in concentration and composition from that found 

in the ocean. Figure 2—1 shows the concentrations of a range of important ions and total organic 

carbon as a function of total water conductivity (Biddanda and Cotner 2002, Repeta et al. 2002, 

Chapra et al. 2012, Pilson 2013, Shuchman et al. 2013). Three key aspects of Great Lakes 

freshwater highlight the differences from seawater: 1) 2-5 orders of magnitude lower inorganic 

ions concentrations, 2) different relative concentrations of key inorganic ions (Ca2+ > Mg2+ ≈ Na+ 

≈ Cl- > SO42- > K+), and 3) total organic carbon (TOC) concentrations on the same order of 

magnitude as total inorganic ion concentrations. These differences in ion concentrations and ratios 

between seawater and freshwater will lead to important differences in the properties of bubbles 

from wavebreaking formed in the Great Lakes and thus lead to different physical and chemical 

properties of the resulting aerosol, in comparison to SSA.  
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Figure 2—1. Concentration versus conductivity versus of important ions (Na+, Mg2+, K+, Ca2+, 
Cl-, SO42-, and CO32-) for freshwater (Great Lakes) and mean seawater, as well as DOC. Great 
Lakes ion concentrations and conductivity are from Chapra et al. (2012), and seawater ion 
concentrations and conductivity are from Pilson (2013). TOC values for the Great Lakes are from 
Repeta et al. (2002), Shuchman et al. (2013), and Biddanda and Cotner (2002), while the TOC 
value for seawater is from Repeta et al. (2002). Note: K+ is fully obscured for seawater by Ca2+. 
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Previous work determined the bubble size distributions present in the water column for 

freshwater and seawater during laboratory simulations of wave breaking (Monahan and Zietlow 

1969, Carey et al. 1993, Spiel 1994, Slauenwhite and Johnson 1999, Blenkinsopp and Chaplin 

2011). An increase in the concentration of < 1 mm bubbles in seawater compared to freshwater 

primarily is thought to be due to differences in bubble coalescence (Monahan and Zietlow 1969, 

Carey et al. 1993, Blenkinsopp and Chaplin 2011). The higher ion concentrations in seawater 

inhibit bubble coalescence, leading to a higher proportion of small bubbles. In contrast, bubble 

coalescence occurs more freely in fresh water due to lower ion concentrations, leading to a higher 

proportion of large bubbles (Lessard and Zieminski 1971). Slauenwhite and Johnson (1999) 

suggest that, in addition to coalescence, increases in the initial break up of bubbles in seawater 

when compared to freshwater cause variation in the bubble size distributions. As droplet, and 

subsequent dry particle, production is in part dependent on the bubble size distribution (Prather et 

al. 2013, Stokes et al. 2013), the increase in smaller bubbles in seawater compared to freshwater 

translates into a different number size distribution of droplets, and therefore aerosol, produced by 

bubble bursting in freshwater compared to seawater. However, the bubble size distribution does 

not fully control the number size distribution of aerosols produced by bubble bursting. The 

concentration and composition of freshwater and seawater will further alter the dry particle 

formation by controlling the mass that remains, and thus the size, of a dry particle resulting from 

a droplet produced from bubble bursting. Droplets produced by bubble bursting in freshwater will 

have a lower solute concentration, and will form a dry particle of smaller size than those produced 

by bubble bursting in seawater, if the initial droplet is the same size (Slade et al. 2010).  

To examine aerosol production from freshwater wave-breaking, a LSA generator was 

constructed based on design elements from multiple previous laboratory SSA generators (Sellegri 

et al. 2006, Facchini et al. 2008, Fuentes et al. 2010, Hultin et al. 2010, King et al. 2012, Zábori et 

al. 2012, Stokes et al. 2013, Salter et al. 2014). The LSA generator can produce aerosols from a 

relatively small amount of freshwater, lowering the limitations surrounding the collection, 

transport, storage, and analysis of large surface lake water samples. This increases the possible 

number and variety of environmental samples that can be analyzed in a region with heterogeneous 

water properties. Systematic experiments were conducted in the LSA generator to determine the 

relationship between bubble size distributions and the resulting aerosol size, concentration, and 

composition. The bubble and aerosol properties were tested for simple salt solutions (NaCl and 
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CaCO3), simulated inorganic seawater and freshwater solutions, and a surface water sample from 

Lake Michigan. This study establishes a method to probe LSA with an interdisciplinary approach 

that draws from atmospheric science (production fluxes), physical oceanography (bubble 

measurements), atmospheric chemistry (aerosol physicochemical properties), and limnology 

(Great Lakes water properties). This work will broaden understanding of the effect of ion 

concentration and composition on aerosol production and properties, allowing for improved 

parameterization of LSA production from the Laurentian Great Lakes and other bodies of 

freshwater.  

2.2. Materials and methods 

2.2.1. Materials 

Synthetic seawater was produced using Instant Ocean™ (Atkinson and Bingman 1997) 

prepared with 18.2 MΩ ultrapure water. All remaining standard solutions were prepared using 18.2 

MΩ ultrapure water and anhydrous analytical grade inorganic salts (NaCl ≥ 99% and CaCO3≥ 

99%; Fisher Scientific). A solution of 1 mmol Ca2+, 1 mmol CO32-, 0.4 mmol Mg2+, 0.4 mmol 

SO42-, 0.3 mmol Na+, 0.3 mmol Cl-, and 0.02 mmol K+ was prepared as synthetic freshwater based 

on Lake Michigan ion concentrations reported by Chapra et al. (2012). Freshwater was collected 

from the surface of Lake Michigan near Muskegon, Michigan (N 43˚14’21.545, W 86˚20’45.153) 

on July 26, 2015 in an 8 L LDPE carboy. During freshwater sampling, a multi-parameter water 

quality sensor (Professional Plus, YSI, Inc.) was used to measure freshwater properties, including 

temperature, pH, salinity, and dissolved oxygen, and a handheld spectrophotometer (AquaFluor 

8000) was used to measure blue green algae content. The freshwater was frozen after sampling for 

storage and thawed prior to analysis. Analysis of frozen freshwater samples that have been thawed 

and analyzed by nanoparticle tracking analysis did not show changes in size or number 

concentration of insoluble components compared to unfrozen samples, indicating the sample was 

likely not significantly modified by freezing (Axson et al. 2016). 

2.2.2. Aerosol generation 

A LSA generator (Figure 2—2) was constructed based a design incorporating elements 

from previously published laboratory SSA generators (Sellegri et al. 2006, Fuentes et al. 2010, 

Hultin et al. 2010, Stokes et al. 2013, Salter et al. 2014). The LSA generator consists of an acrylic 

box with a total volume of 18 L (30 x 20 x 30 cm) and a water circulating system controlled using 
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a diaphragm pump (ShurFlo 2088). Water was circulated from the tank and cycled back into the 

tank at a rate of 2 L min-1 as plunging jets from four tubes (1/8” inner diameter) arranged in a 

square pattern 5 cm apart at the top of the tank, approximately 20 cm above the water surface 

(depending on fill level). Air was entrained by the plunging jets, creating a bubble plume of 

approximately 5 cm in depth with 5 cm between the plume and the base of the chamber, analogous 

to the wave breaking mechanism observed in nature (Fuentes et al. 2010). The four tubes were 

capped with mesh to break up the flow and increase the surface roughness of the plunging jet 

before it hit the water surface in order to obtain an accurate bubble size distribution (Zhu et al. 

2000, Stokes et al. 2013). Prior to each experiment, the LSA generator was rinsed with 18.2 MΩ 

ultrapure water. Prior to and during operation, HEPA-filtered particle free air was pulled through 

the LSA generator to prevent ambient particle contamination as flow was pulled to the instruments. 

The LSA generator was maintained at positive pressure with a constant overflow of 0.2 L min-1. 

All experiments were performed at room temperature, approximately 22.0 °C, and the relative 

humidity (RH) within the tank was maintained at ~85%, the standard RH for ambient and 

laboratory SSA generation (Lewis and Schwartz 2004).  

A major advantage of the LSA generator system is that it needs a relatively small volume of water 

(4 – 6 L) compared to other SSA generation systems (100 L) (Stokes et al. 2013, Salter et al. 2014). 

However, the shallow bubble plume generated in plunging water jet systems of reduced 

dimensions such as the one discussed in this study (5 cm), and others (Sellegri et al. 2006, Fuentes 

et al. 2010, Hultin et al. 2010), limits bubble plume lifetime, as discussed in detail by Fuentes et 

al. (2010). Large volume plunging jets with plume depths > 0.5 m are expected to be representative 

of the lifetime of oceanic plumes (Stokes et al. 2013), but those are only suitable when large 

amounts of sample are available. Due to difficulties in obtaining and storing large volume 

freshwater samples from multiple collection sites, these types of large-scale aerosol generation 

methods are not suitable for our research. In addition, work by Fuentes et al. (2010) demonstrated 

that the shortened bubble plume lifetime does not affect the adsorption of marine surfactant to 

rising bubbles in small volume SSA generation methods and these systems are appropriate for 

studying the effects of marine organics on SSA. Therefore, the LSA generator presented in this 

work, despite its reduced dimensions, should be suitable for the study of the 
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Figure 2—2. The constructed lake spray aerosol generator shown as a (A) schematic and (B) photograph with functional components 
labelled. Not all components of the LSA Generator shown in the (A) schematic are visible in the (B) photograph.  
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effect freshwater composition on LSA production. 

2.2.3. Bubble size distribution measurements 

Digital high-speed photographs of the LSA generator plunging jet bubble plume were 

collected to examine the bubble size distributions. The bubbles were photographed using a Nikon 

D100 camera fitted with an AF Nikkor 24 – 50 mm lens and placed approximately 45 cm from the 

front of the tank to capture side profiles of the bubble plume. An aperture of 4.5 was used to 

achieve the narrowest depth of field possible in the resulting images. To increase bubble clarity, 

two light sources (Ring 48, Neewer) were placed to the right and left of the tank illuminating the 

bubbles (Figure 2—2). Photographs were obtained at intervals > 60 seconds to ensure each bubble 

was counted only once (Salter et al. 2014).  

ImageJ was used to determine the bubble plume size distribution in each photograph. 

Individual bubbles were manually identified and a circle was fit to each bubble (Schneider et al. 

2012). The bubble dimensions obtained in pixels were converted to mm by a scaling factor 

calculated for individual photographs in the ImageJ software from measurements of a portion of 

the tank with known length visible in the photograph. The area was then converted to diameter, 

reported here in mm, assuming the bubbles to be circular (Lewis and Schwartz 2004). In 

determining the bubble volume density, the volume of the bubble plume was calculated from 

measurements of plume photographs in ImageJ. Due to interferences of light diffraction in the 

LSA generator and limitations in the camera, such as pixel size and resolution, bubbles < 100 µm 

in diameter could not be distinguished accurately from the background of the photograph and are 

not included in the analysis. Another limitation inherent in this method is that it is possible that 

not all bubbles were counted due to being obscured by other bubbles.  

2.2.4. Aerosol size distribution measurements 

Aerosols generated by bubble bursting exited the LSA generator and passed through two 

silica gel diffusion dryers to achieve a RH of ~15%, similar to the RH of previous measurements 

of aerosol size distributions of laboratory SSA (Fuentes et al. 2010, Stokes et al. 2013, Salter et al. 

2014). After exiting the diffusion driers, the aerosol number size distributions and total aerosol 

concentrations produced for each solution in the LSA generator were measured using a scanning 

mobility particle sizer (SMPS), consisting of a differential mobility analyzer (DMA; model 3082, 

TSI Inc.) and condensation particle counter (CPC; model 3775, TSI Inc.), as well as an 
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aerodynamic particle sizer (APS; model 3321, TSI Inc.). The SMPS operated at a sample flow rate 

of 0.3 L min-1 and sheath flow of 3 L min-1 and a scan rate of 5 minutes to obtain a size distribution 

for particles with an electrical mobility diameter (dm) between 14.1 - 736.5 nm. The APS was 

operated at a flow rate of 5.0 L min-1, with an aerosol and sheath flow of 1.0 and 4.0 L min-1 

respectively, and a scan rate of 30 sec to obtain a size distribution for particles with an aerodynamic 

diameter (da) between < 0.52 - 19.8 µm. For each sample solution, SMPS and APS particle size 

distributions were collected over a 3-hour period and averaged. In order to merge the SMPS and 

APS size distribution, measurements recorded in dm and da, respectively, were converted to 

physical (geometric) diameters (dp) (Khlystov et al. 2004). The relation:  

Equation 2—1 !" 	= 	!% 

was used to convert particles sized by the SMPS, under the assumption that the particles were 

spherical. Particles sized by the APS were assigned an effective density (ρeff) of 1.2 - 1.6 g cm-3, a 

value determined experimentally for particles produced from each individual solution, allowing 

for conversion based on the following relation:  

Equation 2—2 !% = !&
'
()**
(+

 

where ρ0 is equal to unit density (1 g cm-3). The SMPS has a tendency to undercount particle 

concentrations at the highest particle diameter bins, due to the cut-off from the particle impactor, 

and the APS has a tendency to undercount particle concentrations at the lower diameter bins, due 

to the poor scattering efficiency of the lowest particle diameter bins. To compensate for these 

limitations, the highest and lowest particle diameter bins of the SMPS and APS, respectively 

comprising the overlapping diameters of the two methods, were removed when stitching (Stokes 

et al. 2013). Aerosol blank measurements conducted before experiments by circulating 18.2 MΩ 

ultrapure water through the LSA generator showed that the background aerosol number 

concentrations were < 20 cm-3, compared to an average of 350 cm-3 during freshwater samples. 

2.2.5. Scanning electron microscopy 

Particles generated from the different solutions run in the LSA generator were impacted 

onto Carbon Type-B (Formar film coated with carbon on copper grid) transmission electron 

microscopy (TEM) grids, (01910-F, Ted Pella, Inc.) using a three stage Microanalysis Particle 

Sampler (MPS; model MPS-3, California Measurements, Inc.). Particles were examined from the 
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third (smallest) stage, with a size cut of < 700 nm. Scanning electron microscopy with energy 

dispersive x-ray (SEM-EDX) measurements were made at the Michigan Center for Materials 

Characterization (MC)2 located at the University of Michigan in Ann Arbor. An FEI Helios with 

environmental dual focused ion beam/scanning electron microscope (FIB/SEM) was used to obtain 

images of the particles. The FEI Helios was equipped with a Schottky field emitting source operating 

at an accelerating voltage of 15 kV and current of 0.58 nA. Scanning transmission electron microscopy 

(STEM) was conducted and a high-angle annular dark field (HAADF) electron detector was used to 

collect Z-dependent dark-field images of individual particles.  

2.3. Results and discussion 

2.3.1. Comparison of seawater and freshwater bubble plume size distributions 

Photographs of bubble plumes generated from synthetic seawater, synthetic freshwater, 

and Lake Michigan freshwater were collected to observe visual changes in bubble plumes and to 

determine their respective bubble plume size distributions (Figure 2—3). There was an observed 

decrease in the concentration of smaller bubbles in freshwater when compared to synthetic 

seawater, which has been observed in previous studies (Monahan and Zietlow 1969, Carey et al. 

1993, Spiel 1994, Slauenwhite and Johnson 1999, Blenkinsopp and Chaplin 2011). The visual 

differences in the images were reflected in the measured bubble size distributions (Figure 2—3d), 

with the synthetic freshwater and Lake Michigan freshwater sample producing a similar total 

bubble concentration that was only 12% and 8% (Figure 2—3e), respectively, of the total bubble 

concentration produced from the synthetic seawater solution. Bubble size distributions generated 

from synthetic seawater showed that bubbles were produced up to 4 mm in radius in the LSA 

generator (Figure 2—3d), similar to measurements of bubble size distributions for ocean waves 

(Deane 1997, Deane and Stokes 1999, Bowyer 2001, Deane and Stokes 2002).  

The production of bubbles with radii > 1 mm are important because droplet production 

from bubble bursting, and the resulting dry particle size distribution, is dependent on bubble size 

(Collins et al. 2014). The bubble bursting process in seawater ejects two types of droplets into the 

atmosphere: film and jet droplets (Blanchard and Woodcock 1957, Blanchard and Syzdek 1975). 

Film and jet droplets typically range in size from 0.2 – 10 µm and 1 – 200 µm, respectively (Lewis 

and Schwartz 2004). The number of film and jet droplets produced from a single bubble in 

seawater is dependent on the size of the bubble, and bubbles with radii  > 1 mm   
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Figure 2—3. Digital images of a bubble plume generated by one plunging jet in the LSA generator 
with (A) synthetic seawater, (B) synthetic freshwater, and (C) Lake Michigan freshwater, with 
brightness/contrast adjusted to increase bubble clarity. (D) Bubble number size distributions and 
(E) bubble concentrations generated by the LSA generator using synthetic seawater, synthetic 
freshwater, and Lake Michigan freshwater measured by the bubble photography method, as well 
as previously measured bubble size distributions generated from synthetic seawater with a 
plunging waterfall (Prather et al. 2013) and freshwater with a tipping trough (Carey et al. 1993). 
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produce more film drops and bubbles < 1 mm produce jet drops in quantities greater than 1 per 

bubble (Lewis and Schwartz 2004). In addition, jet drop size is directly correlated to bubble size 

(Lewis and Schwartz 2004). If bubbles > 1 mm are not produced by a generation method, then a 

higher proportion of jet droplets will be formed shifting the aerosol size distribution mode and 

modifying the aerosol chemical composition (Stokes et al. 2013, Collins et al. 2014). The 

replication of this power law decrease in bubble concentrations at larger radii using the LSA 

generator is therefore critical for the accurate reproduction of SSA (Prather et al. 2013, Stokes et 

al. 2013) and LSA.  

 The lognormal radius mode for the synthetic freshwater and Lake Michigan freshwater 

bubble size distributions were observed at 280 ± 70 µm and 250 ± 60 µm, respectively (Figure 2—

3D). This is consistent with freshwater laboratory measurements by Carey et al. (1993), which 

show a mode of 300 µm and a steep drop in bubble concentration for radii below 300 µm (Figure 

2—3d). This bubble size mode is much larger than that observed for seawater, for which bubble 

size distributions typically peak at a radius between 40 - 80 µm (Sellegri et al. 2006, Fuentes et al. 

2010, Hultin et al. 2010, Prather et al. 2013, Stokes et al. 2013). This means the peak mode for the 

synthetic seawater bubble size distribution produced in the LSA generator was below the 

detectable bubble size limit of the photographic technique used in this study. Indeed, the LSA 

generator bubble size distribution for seawater in Figure 2—3d has a peak mode lower than that 

for freshwater and is < 100 µm. Previous work examining seawater bubble size distributions have 

encountered this same measurement limitation (Carey et al. 1993, Deane and Stokes 2002, Hultin 

et al. 2010), which was resolved by comparing the power law dependent decrease in bubble 

concentrations at higher radii to confirm the accuracy of bubble size distribution. Results from this 

comparison are consistent with previous observations and confirm that the LSA generator 

produces bubble plumes representative of both oceanic and freshwater wave breaking. However, 

the concentration of bubbles produced from both freshwater and seawater samples in the LSA 

generator were lower than the concentrations representative of freshwater (Carey et al. 1993) and 

seawater (Stokes et al. 2013) wave breaking previously reported (Figure 2—3d). Further, the lower 

concentration of bubbles compared to previous measurements is more pronounced at larger radius 

(>1 mm) bubbles. This limitation of the LSA generator is likely due to its reduced dimensions 

compared to the bubble generation methods used for comparison (Carey et al. 1993, Stokes et al. 
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2013), which allows for small sample volume but limits the lifetime of the bubble plume (Fuentes 

et al. 2010), as discussed in Section 2.2.2.  

2.3.2. Aerosol generation from seawater and freshwater 

2.3.2.1. Validation of aerosol generated with synthetic seawater 

To both characterize the LSA generator and compare freshwater aerosols to those 

generated from seawater, aerosol size distributions generated from synthetic seawater, synthetic 

freshwater, and Lake Michigan freshwater were measured (Figure 2—4). The aerosol size 

distribution generated for synthetic seawater produced a total number concentration of 1195 cm-3 

and exhibited a single lognormal mode at a diameter of 110 ± 4 nm, with a geometric standard 

deviation (σ) of 1.52, and an amplitude of 1620 cm-3 (Table 2—1). This SSA lognormal mode is 

in agreement with the primary diameters of SSA lognormal modes, which ranged from 60 - 200 

nm, determined using various laboratory generation techniques (Sellegri et al. 2006, Fuentes et al. 

2010, Hultin et al. 2010, Stokes et al. 2013, Collins et al. 2014, Salter et al. 2014). It was 

determined that the LSA generator successfully reproduced seawater bubble and aerosol size 

distributions such that the system can be used to test other applications. 

2.3.2.2. Characteristics of aerosol generation from freshwater 

The synthetic freshwater and Lake Michigan freshwater produced 67% and 33% lower 

total (dp = 0.018-18 µM) aerosol number concentrations, compared to the synthetic seawater, 

respectively (Figure 2—4b). The lower total aerosol number concentration produced from the 

freshwater solutions, in comparison to the synthetic seawater, is a reflection of the lower bubble 

concentrations produced from the freshwater solutions in comparison to synthetic seawater 

(Figures 2—3b & 2—4). However, it is important to note that the Lake Michigan freshwater 

produced a larger total aerosol concentration normalized by the total bubble concentration 

generated than both the synthetic freshwater and the synthetic seawater solution, which were both 

similar (Figure 2—4c). In contrast to the unimodal synthetic seawater aerosol size distribution, 

both the synthetic freshwater and Lake Michigan freshwater aerosol size distributions were bi-

modal (Figures 2—4a & Table 2—1). The primary lognormal mode observed for the synthetic 

freshwater and Lake Michigan freshwater occurred at a diameter of 300 ± 40 nm and 180 ± 20 nm, 

respectively, which are larger than the dominant lognormal diameter mode observed for synthetic 

seawater (110 ± 4 nm). The secondary lognormal mode 
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Figure 2—4. (A) Average aerosol number size distributions fitted with lognormal peaks, (B) 
average total aerosol number concentration, and (C) average total aerosol number concentration 
normalized by average total bubble concentration produced by the LSA generator from synthetic 
seawater, synthetic freshwater, and Lake Michigan freshwater.  
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Table 2—1. Aerosol size distribution characteristics obtained from lognormal fitting for LSA 
generated from synthetic seawater, synthetic freshwater, and L. Michigan freshwater. 

 

was observed at a diameter of 80 ± 10 nm for the synthetic freshwater and 46 ± 6 nm for the Lake 

Michigan freshwater sample. The LSA secondary lognormal mode for the Lake Michigan 

freshwater is similar to previous aircraft measurements by Slade et al. (2010), who observed a 15 

– 40 nm particle lognormal diameter mode over Lake Michigan. Slade et al. (2010) performed 

calculations of expected dry particle diameter based on typical droplet size produced from oceanic 

wave-breaking and total dissolved ion content of freshwater. These calculations indicated that the 

aerosol size distribution of LSA would peak at a diameter smaller than SSA, and this would explain 

the measured secondary lognormal diameter mode generated from freshwater solutions in this 

study that was lower in diameter than the primary lognormal diameter mode of SSA (see Section 

2.2.3). These results indicate that wave breaking induced bubble bursting of freshwater in the Great 

Lakes can produce aerosols through mechanisms analogous to wave breaking on open oceans, but 

the size distribution of LSA has different characteristics than that of SSA.  

 The increased total particle concentration and as well as the shift in lognormal diameter 

mode to smaller sizes, for the Lake Michigan freshwater sample compared to the synthetic 

freshwater points to the possible additional influence of organic carbon present in the Lake 

Michigan freshwater sample. While the synthetic freshwater was a simplified mixture of inorganic 

ions representing freshwater, the Lake Michigan freshwater contained a more complex mixture of 

inorganic ions, as well as organic and biological material present in the surface water during 

collection. Like the synthetic freshwater, the synthetic seawater is a simplified mixture of inorganic 

ions representing seawater. The higher total particle concentration normalized by total  

 

Solution Mode Diameter  

(nm) 

Standard Deviation  

(σ) 

Amplitude  

(cm-3) 

Synthetic Seawater Primary 110 ± 4  1.52 1620 

Synthetic Freshwater Primary 300 ± 40 1.00 292 

 Secondary 80 ± 10 0.75 206 

L. Michigan Freshwater Primary 180 ± 20 0.66 794 

 Secondary 46 ± 6 1.42 286 
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Figure 2—5. Aerosol vs. bubble concentrations produced by the LSA generator from solutions of 
NaCl and CaCO3 of varying concentrations, Lake Michigan freshwater, synthetic freshwater, and 
synthetic seawater. A best-fit line is shown for the empirical relationship between aerosol and 
bubble concentrations. 
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bubble concentration observed for the Lake Michigan freshwater sample, compared to the total 

particle concentration normalized by total bubble concentration for the synthetic freshwater and 

synthetic seawater, further demonstrates the possible influence of organic carbon present in the 

Lake Michigan freshwater sample. The presence of biological material in the freshwater sample 

was confirmed by spectrophotometric measurements of bulk water at the site during sample 

collection, which indicated 57.2 ppb of blue green algae present. Given that the Lake Michigan 

freshwater sample was frozen prior to analysis, it is likely that the sample did not contain 

substantial living biological material when run in the LSA generator. To further determine the 

influence of organic carbon between the Lake Michigan freshwater sample aerosol populations, 

impacted particles were analyzed by SEM to determine circularity (Figure 2—6). Particles 

generated from the Lake Michigan freshwater sample showed median circularity values closer to 

1, indicative of a perfect circle (and thus spherical particle in the atmosphere), compared to 

particles generated from the synthetic freshwater sample for all size ranges measured (< 0.5 µm, 

0.5 – 1.0 µm, and > 1 µm). This increase in circularity is likely due to disruption of crystallization 

of the inorganic salts by the higher organic and biological content of the Lake Michigan freshwater 

sample, compared to the synthetic freshwater. Previous work has shown that the circularity of SSA 

particles increases with increased total organic carbon concentrations in seawater (Ault et al. 

2013). In addition, the complex salt mixture in the Great Lakes, where most ion concentrations are 

within an order of magnitude of each other, is likely to affect crystallization more than for seawater, 

where Na+ and Cl- are present in order of magnitude higher concentrations than any other inorganic 

ion (Figure 2—1). Future efforts will involve systematic studies of aerosols generated from 

freshwater samples with a range of inorganic, organic, and biological components. 

2.3.2.3. Freshwater droplet size distribution to freshwater aerosol size distributions 

 Calculations of the relationship between dry particle diameter and initial drop diameter 

were explored for seawater and freshwater to determine the effect of the initial droplet size 

distribution on aerosol formation. The physical diameter of a dry (RH = 0%) SSA particle (dp) will 

typically be ~4x smaller than the diameter of the droplet of seawater (dd) it originated from (Veron 

2015). Therefore, the dp = 110 ± 4 nm lognormal aerosol mode generated from the synthetic 

seawater in the LSA generator would have resulted from a roughly dd = 440 nm initial synthetic 

seawater lognormal droplet mode (Table 2—2). In contrast, due to the lower  
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Figure 2—6. Circularity of (A) Lake Michigan freshwater particle sample and (B) synthetic 
freshwater particles as a function of diameter from the LSA generator, as well as example SEM 
images of the impacted particles used in the analysis. 
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concentration of dissolved components in freshwater, the dp of an LSA particle is predicted to be 

~20x smaller than the dd of the freshwater droplet it originated from (Slade et al. 2010) (Table 2—

2). Using this relationship Slade et al. (2010) predicted that the size distribution of LSA shifts 

towards smaller, ultrafine diameters in comparison to the size distribution of SSA. However, these 

calculations were made under the assumption freshwater and seawater bubble bursting produce 

the same dd size distributions, which may not be accurate as there are differences in bubble size 

distributions generated in freshwater and seawater solutions (Figure 2—3d).  

Previous work, while limited, has shown differences in the size distribution of droplets 

produced from freshwater bubble bursting in comparison to droplet production from seawater 

bubble bursting (Resch 1986). Resch (1986) observed that film drops produced from freshwater 

are larger than those usually reported for seawater, which for SSA can range in d80 from 0.02 to 

200 µm (Lewis and Schwartz 2004). Therefore, the first lognormal diameter mode of the Lake 

Michigan freshwater aerosol size distribution (46 ± 6 nm) observed in this study could be the result 

of a freshwater film lognormal droplet mode of  dd = 920 nm that is larger than the dd ≈ 400 nm 

synthetic seawater film droplet mode (Table 2—2). The second lognormal mode (175 nm) of the 

observed Lake Michigan freshwater sample aerosol size distribution is likely the result of an even 

larger lognormal film droplet mode at dd = 3.5 µm. This second lognormal diameter mode is 

unlikely to be the result of jet drop production as bubble bursting, in seawater, typically produces 

jet drops with a dd that are 10% of the bubble diameter (dbub) (Lewis and Schwartz 2004), and 

individual bubbles in freshwater and seawater produce jet drops at similar numbers and sizes from 

bubbles with radii of 300 - 1500 µm (Spiel 1994). Therefore, even the smallest freshwater bubble 

measured in this study (dbub = 0.2 mm) would likely only produce jet drops of dd  = 20 µm and dp 

= 1 µm, a far higher diameter than the second lognormal diameter 

Table 2—2. Fresh- and seawater droplet diameters (dd) calculated from the mass (assuming 
particle density is 1.2 g/mL) of the dominant dry particle diameter (d0) modes produced from 
synthetic seawater (SSA) and the Lake Michigan freshwater sample (LSA).  

Observed Dry Diameter (d0) Droplet Diameter (dd) 

0.110 µm SSA 0.440 µm Seawater 

0.046 µm LSA 0.92 µm Freshwater 

0.175 µm LSA 3.5 µm Freshwater 



30 
 

mode observed in the aerosol size generated the freshwater samples (175 nm) (Figure 2—

4).work is needed to determine the differences in film droplet production between fresh and 

seawater bubble bursting to fully connect bubble and aerosol size distributions observed in this 

study. 

2.3.3. Aerosol & bubble generation from standard salt solutions 

2.3.3.1. Bubble size and concentration from standard salts 

To determine the influence of the dominant inorganic ions, and their concentrations, in 

freshwater and seawater (Figure 2—1) on bubble production, bubble size distributions for NaCl 

(seawater proxy) and CaCO3 (freshwater proxy) solutions were determined as a function of 

solution concentration (Figures 2—7a & 2—7b). The lognormal radii modes of the bubble size 

distributions produced from CaCO3 solutions of 0.05 g kg-1 and 0.15 g kg-1 (230 ± 90 µm) (Figure 

7a) were similar to the synthetic freshwater (280 ± 70µm) and Lake Michigan freshwater sample 

(250 ± 60 µm) bubble size distributions (Figure 2—3d). This similarity in bubble size distribution 

lognormal radii modes is consistent with Ca2+ and CO32- being the dominant cation and anion 

respectively in the calcareous Great Lakes (Chapra et al. 2012). No solutions of CaCO3 of 

concentration greater than 0.15 g kg-1 could be analyzed for bubble size distributions due to 

solubility limits. 

For NaCl solution concentrations 0.05 g kg-1 to 35 g kg-1, total bubble density increased 

with solution concentrations. The largest increase in bubble density (2-3 orders of magnitude) 

primarily occurred for the bubble size range smallest bubbles (radii < 0.3 mm) (Figure 2—7b), 

which is the same that the largest increase (2-3 orders of magnitude) in bubble density between 

freshwater and seawater solutions was observed (Figure 2—3d). This observed increase in bubble 

density from freshwater to seawater concentration solutions is likely the result of bubble 

coalescence inhibition at higher ionic concentration (Slauenwhite and Johnson 1999), as the two 

electrolyte combinations tested in this study (CaCO3 and NaCl) are known to exhibit concentration 

dependent bubble coalescence effects (Craig et al. 1993, Craig et al. 1993, Henry et al. 2007). 

Typically, increasing the solution salt concentration up to 0.01 M leads to minimal decreases in 

bubble coalescence relative to pure water (Henry et al. 2007). As a result, total bubble number 

concentrations increased only gradually for NaCl when solution concentrations
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Figure 2—7. Bubble size distributions (density vs. bubble radius) generated by the LSA generator as a function of solution concentration 
for (A) CaCO3 and (B) NaCl, as well as (C) total bubble density as a function of ion composition for CaCO3 and NaCl.  
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in the LSA generator increased from 0.05 g kg-1 to 1 g kg-1 NaCl (0.00086 – 0.017 M). However, 

when the solutions entered the 0.01 – 0.2 M solution concentration range (1 – 35 g kg-1 NaCl), 

where bubble coalescence is known to decrease significantly (Sovechles and Waters 2015), a 

greater rate of increase in total bubble number concentration with increased solution concentration 

was observed (Figure 2—7c). These results indicate that the different ionic concentrations affected 

bubble coalescence and bubble concentrations in this study, which in turn influenced aerosol 

concentrations produced by bubble bursting. 

2.3.3.2. Aerosol generation from standard salts 

The aerosol size distributions for the two standard salt solutions representative of seawater 

(NaCl) and freshwater (CaCO3) were measured as a function of solution concentration (Figures 

2—8a & 2—8b) to examine the effect of the dominant ion present, and ionic concentration, in 

solution on aerosol production. At concentrations representative of the Great Lakes, 0.05 and 0.15 

g kg-1, aerosol size distributions generated from solutions of NaCl and CaCO3 exhibited two 

lognormal diameter modes (Figures 2—8a & 2—8b). The primary aerosol lognormal modes 

produced from the 0.05 - 0.15 g kg-1 NaCl and CaCO3 solutions were larger in diameter than the 

secondary aerosol lognormal modes (Figures 2—8a & 2—8b). This is consistent with the bimodal 

lognormal aerosol size distributions generated from the synthetic freshwater (total inorganic ion 

content = 0.12 g kg-1) and Lake Michigan freshwater (total inorganic ion content = 0.14 g kg-1), 

which also exhibited primary aerosol lognormal modes higher in diameter than the secondary 

aerosol lognormal modes (Section 2.2.2).  At higher concentrations (0.5 - 35 g kg-1) more 

representative of seawater total inorganic ion content (35 g kg-1), the NaCl solutions produced 

unimodal lognormal size distributions (Figure 2—8b), consistent with the unimodal lognormal 

number size distribution produced from synthetic seawater (Figure 2—4a). The bimodal lognormal 

aerosol number size distribution that was observed for all freshwater concentration (0.05 - 0.15 g 

kg-1) standard salt solutions (Figures 2—8a & 2—8b) and the freshwater solutions (Figure 2—4a) 

indicates that solution concentration is important in determining aerosol size distribution.  

Solution composition, as well as concentration, was observed to the affect aerosol size 

distribution (Figure 2—8). The two lognormal modes of the aerosol size distribution produced 

from the 0.05 g kg-1 concentration solutions were located at a higher diameters for CaCO3 (83 ± 8 

nm; 340 ± 20 nm) compared to NaCl (55 ± 9 nm; 210 ± 20 nm). When CaCO3 and NaCl solution  
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concentrations increased from 0.05 to 0.15 g kg-1, the CaCO3 lognormal modes (60 ± 10 nm; 290 

± 10 nm) remained at higher diameters than the NaCl lognormal modes (40 ± 6 nm; 140 ± 10  

nm), but all lognormal modes shifted to smaller diameters (Figure 2—9b). The lognormal modal 

diameter of the 35 g kg-1 NaCl solution (81 ± 3 nm) was smaller than the lognormal modal 

diameter of the NaCl dominant synthetic seawater solution (110 ± 4 nm), suggesting that mixtures 

of ions affect aerosol size distributions. In addition, the lognormal modal diameters produced from 

the 0.15 g kg-1 CaCO3 solution (60 ± 10 nm; 290 ± 10 nm) were slightly smaller in comparison to 

the synthetic freshwater aerosol size distribution lognormal modes (80 ± 10 nm; 300 ± 40 nm), 

again indicating that mixtures of ions affect aerosol size distributions. As the Great Lakes have a 

wide and evolving range of inorganic ion compositions and concentration (Figure 2—1) (Chapra 

et al. 2012), the dependence of aerosol size distributions on solution composition and concentration 

observed in this study could significantly impact the range of LSA size distributions in the 

atmosphere.  

 The total aerosol concentrations generated from CaCO3 and NaCl solutions increased with 

solution concentration (Figure 2—8) in a similar manner to the increase in total bubble 

concentrations generated with increased solution concentration (Figure 2—7). The total aerosol 

concentration increased slowly between solution concentrations of 0.05 – 1.0 g kg-1, reflecting the 

low increase in bubble concentrations over this concentration range (Figure 2—7). At solution 

concentrations greater than 1.0 g kg-1 a shift to a larger increase in total aerosol concentration with 

increased solution concentration occurred. The change in relationship between solution and 

aerosol concentration at solution concentrations above 1.0 g kg-1 (NaCl = 0.017 M) reflects the 

change in bubble concentration above 1.0 g kg-1 (NaCl = 0.017 M) observed in this study (Figure 

2—8c) and the known transition in bubble coalescence behavior that occurs above ionic 

concentrations of 0.01 M (Sovechles and Waters 2015). Further, the direct relationship between 

bubble and aerosol concentrations for the increasing standard salt solution concentrations aligns 

well with the direct relationship in bubble and aerosol concentrations for freshwater and seawater 

solutions (Figure 2—5). These results confirm that there is a direct relationship between solution 

concentration, bubble concentration, and aerosol concentration that will result in the production of 

a lower number of particles from wave breaking in low salt concentration freshwater compared to 

wave breaking in high salt concentration seawater.  
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Figure 2—8. Average aerosol number concentration generated by the LSA generator as a function of solution concentration for (A) 
CaCO3 and (B) NaCl, as well as (C) total aerosol number concentration as a function of ion composition for CaCO3 and NaCl. 
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2.4. Conclusions 

We have constructed and demonstrated the capabilities of the newly developed LSA 

generator to reproduce SSA using marine salinities and to probe LSA generation under freshwater-

relevant low salt concentrations. The LSA generator utilizes plunging jets to entrain air and 

generate bubbles, similar to other SSA generation techniques, but with modifications, such as the 

addition of mesh caps on the plunging jet outlets to obtain more accurate air entrainment by 

increasing surface roughness of the plunging jet (Zhu et al. 2000, Stokes et al. 2013). The LSA 

generator requires lower sample volume to generate aerosols compared to other plunging jet SSA 

generators (Salter et al. 2014). The lower solution volume requirement (4 L) allowed for generation 

of LSA from a variety of samples, including a freshwater sample collected from Lake Michigan. 

This increases the ease of analyzing a large number of freshwater samples, which will be necessary 

to probe how the differences in composition between freshwater locations (Chapra et al. 2012, 

Shuchman et al. 2013) affect aerosol generation. 

This LSA generator-enabled laboratory study of LSA production allowed a direct 

investigation into the influence of salt concentration and composition on aerosol production from 

bubble bursting in freshwater and simplified model systems. The results show that freshwater 

bubble bursting, expected during periods of high winds and high waves over freshwater 

environments such as the Laurentian Great Lakes, will produce LSA. Distinct differences in the 

production and properties of LSA compared to SSA from marine environments are observed. For 

example, the lower concentration of salts in freshwater compared to seawater leads to lower 

number concentrations of bubbles in freshwater compared to seawater, such that a lower number 

concentration of LSA is produced compared to SSA. In addition, the differences in salt 

concentration and composition between seawater and freshwater leads to a size distribution of LSA 

that is bimodal compared to the unimodal SSA. The primary and secondary lognormal modes of 

the aerosol size distribution generated from the Lake Michigan freshwater sample were centered 

at larger diameters (180 ± 20 nm, 46 ± 6 nm) than the aircraft-measured lognormal mode (15-40 

nm) over Lake Michigan by Slade et al. (2010). Lower RH aloft and the presence of other aerosol 

present near the modes of the LSA size distribution in the ambient atmosphere sampled by Slade 

et al. (2010) could explain the discrepancy with this laboratory study in reported LSA diameter 

modes. The larger LSA observed in this study could better act as CCN (Lewis and Schwartz 2004) 
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than the smaller LSA observed by Slade et al. (2010) and the smaller SSA observed in this study 

and others; however, further studies are needed.  

While this laboratory study represents a fundamental exploration of the role of inorganic 

salts in LSA production, the role of organic and biological material present in lake water in 

determining LSA production and properties is currently poorly understood. Organic and biological 

content of seawater is known to affect SSA production and properties (Facchini et al. 2008, 

O'Dowd et al. 2008, Ault et al. 2013, Prather et al. 2013, Burrows et al. 2014, Quinn et al. 2014, 

Lee et al. 2015), and thus, organic and biological components of lake water are likely to affect 

LSA production, properties, and heterogeneous chemistry (Ault et al. 2013, Ault et al. 2014, Ryder 

et al. 2014). This study observed the effect of organic and biological materials in lake water on 

LSA through the differences in the aerosol size distributions and aerosol circularity generated from 

the organic and biological rich Lake Michigan freshwater sample, and the organic and biological 

free synthetic freshwater. Lake water has a higher ratio of organic to inorganic content than 

seawater (Chapra et al. 2012, Pilson 2013), so the organic content in lake water likely plays a larger 

role in LSA than the organic content in SSA. In addition, recent increases in toxic cyanobacteria 

blooms in the Great Lakes (Michalak et al. 2013) may impact air quality if toxic components are 

aerosolized with LSA, as has been observed for marine algal blooms (i.e. red tides) (Woodcock 

1948, Cheng et al. 2010). Therefore, future studies are needed to determine the effect of the organic 

and biological content in freshwater on aerosol production and resulting properties.  

The impact of LSA on radiative forcing and precipitation in the Great Lakes region is 

currently uncertain (Chung et al. 2011). For example, SSA impacts radiative forcing directly 

through scattering and indirectly by acting as CCN, which influences cloud properties and 

precipitation patterns (Wise et al. 2009), and LSA could have a similar effect. The Great Lakes’ 

impact on downwind cloud cover and precipitation, known as lake effect, is well known and LSA 

could play a role in this process (Scott and Huff 1996). The contribution of LSA to regional aerosol 

concentrations may have seasonality, with the highest production likely occurring in the fall and 

late spring when wind speeds are highest and the lakes are not covered in ice. With global climate 

change predicted to decrease ice extent during winter (Wang et al. 2012) and observed increases 

in wind speed, linked to warming temperatures (Desai et al. 2009), the impact of LSA is expected 

to increase in the future.  
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Chapter 3 Aerosol Emissions from Great Lakes Harmful Algal Blooms 
 

Reprinted (adapted) with permission from: 
 Environmental Science & Technology, 52, 2, 397–405, 2017.  

DOI: 10.1021/acs.est.7b03609.  
Copyright 2017 American Chemical Society.  

3.1. Introduction 

Eutrophication of freshwater resulting from increased anthropogenic nutrient loading has 

led to a global increase in harmful algal blooms (HABs), which are typically caused by 

Cyanobacteria (blue-green algae) (Smith 2003). Biogenic organic toxins (e.g. microcystis) 

contained within, and introduced into the aquatic environment by, blue-green algae (BGA) are a 

threat to both human and animal health through direct ingestion (Carmichael and Boyer 2016). 

Marine wave breaking under HAB conditions introduces toxic marine HAB products into the 

atmosphere alongside sea spray aerosol (SSA), with air concentrations of toxins as low as 2 – 7 ng 

m-3 inducing upper respiratory symptoms (Cheng et al. 2005, Kirkpatrick et al. 2011), suggesting 

the same process could occur in freshwater. Since freshwater recreational activity aerosolizes toxic 

HAB products (0.1 – 0.4 ng m-3) (Backer et al. 2008, Backer et al. 2010), it is likely that freshwater 

wave breaking producing LSA under HAB conditions may be a previously unrecognized exposure 

route for HAB toxins. However, the only previous measurements of LSA chemical composition, 

which showed that the inorganic composition of LSA is reflective of freshwater, occurred during 

a period of low biological activity in Lake Michigan (Axson et al. 2016). As a result, there is 

currently a lack of understanding of how freshwater HABs affect the incorporation of biological 

material in LSA.  

 The relationship between seawater composition and SSA (Prather et al. 2013, Quinn et al. 

2015) can inform our currently limited understanding of the links between the compositions of 

freshwater and LSA. Organics present in SSA are enriched relative to bulk seawater due to two 

mechanisms in the bubble bursting particle production method. Hydrophobic organic matter first 

accumulates at the surface of bubbles as they rise through the water column (O'Dowd et al. 2004, 

Keene et al. 2007, Bigg and Leck 2008, Facchini et al. 2008), and then organics in the sea surface 

A 
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microlayer (60 µm thick) (Zhang 2003) are added to the bubble surface (Hawkins and Russell 

2010). The concentration of organics at the bubble surface is then translated to an enrichment of 

organics in particles formed from droplets produced from the fragmentation of the bubble film cap 

(Blanchard and Syzdek 1975). It is likely, given that organic material is also concentrated in films 

at the surface of freshwater (100 µm thick) (Andren et al. 1976, Fuhs 1982, Meyers and Kawka 

1982), that LSA also become enriched in organics relative to bulk freshwater concentrations 

through the same mechanisms identified for SSA. Dissolved organic content in freshwater without 

algal blooms (10−180 µM C) (Biddanda and Cotner 2002, Repeta et al. 2002, Shuchman et al. 

2013) and with algal blooms (400 µM C) (Cory et al. 2016) is similar in concentration to seawater 

without and with algal blooms (80 and 50−300 µM C, respectively) (Ittekkot 1982, Repeta et al. 

2002, Pilson 2013). The lower inorganic ion concentration in freshwater (0.05 – 0.15 g L-1) 

(Chapra et al. 2012) compared to seawater (35 g L-1) (Pilson 2013) results in a higher ratio of 

organic to inorganic content in freshwater compared to seawater (May et al. 2016). Therefore, 

organics may comprise a larger fraction by mass in LSA compared to SSA, likely impacting 

particle hygroscopicity and reactivity (Andreae and Rosenfeld 2008, Forestieri et al. 2016). The 

enrichment of organics in particles affects cloud condensation nuclei (CCN) activity of SSA, and 

possibly of LSA, as the addition of less water soluble organic species to salt particles decreases 

the overall hygroscopicity and increases the diameter at which particles can activate as CCN 

(Andreae and Rosenfeld 2008). In addition, organic compounds and biological material 

aerosolized from marine algal blooms by bubble bursting (Matthias-Maser et al. 1999, Aller et al. 

2005, McCluskey et al. 2017) contribute to marine ice nucleating particle (INP) populations 

(DeMott et al. 2015, Wilson et al. 2015, Ladino et al. 2016, McCluskey et al. 2017, Vergara-

Temprado et al. 2017), and organic compounds and biological material aerosolized from 

freshwater algal blooms may do the same in freshwater environments. Furthermore, biological 

species in freshwater with the potential to act as INP (D'Souza et al. 2013) are two to three orders 

of magnitude higher in freshwater than in seawater (Moffett 2016). These potential climate impacts 

of LSA may be reduced, compared to SSA, by the lower concentration of particles produced from 

bubble-bursting in freshwater compared to seawater (May et al. 2016). However, the distribution 

of organic and biological material across the population of bubble bursting particles (i.e. mixing 

state) plays an important role in determining their climate properties (Collins et al. 2013, Prather 

et al. 2013, Collins et al. 2014, Guasco et al. 2014).  
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Blue-green algae are the most widespread and common cause of HABs in the Laurentian 

Great Lakes of North America and have become increasingly important due to their significant 

resurgence near population centers (Steffen et al. 2014, Carmichael and Boyer 2016). The Great 

Lakes are characterized by large surface area, frequent high wind speeds, and significant fetch, 

leading to extensive wave breaking, which is conducive to LSA production (Doubrawa et al. 2015). 

LSA with variable biological content could be produced throughout the region due to the 

variability in the BGA concentration across the Great Lakes (Carmichael and Boyer 2016). Since 

the Laurentian Great Lakes system is a contiguous body of water, the effect of blue-green algae 

concentrations on LSA composition can be examined using samples collected from different lakes 

because of their similar inorganic ion composition (Chapra et al. 2012). In this study, freshwater 

samples were collected from Lake Erie and Lake Michigan from three locations with varying levels 

of BGA (Marion et al. 2012). The freshwater samples were used to generate LSA in the laboratory 

using a recently constructed laboratory LSA generator with a plunging jet system (May et al. 2016) 

that produces particles analogous to natural wave-breaking (Fuentes et al. 2010). Individual 

particles were analyzed using single-particle mass spectrometry and microscopy to determine size-

resolved chemical composition. Chemical signatures of individual LSA particles were identified 

based on inorganic, organic, and biological ion markers. For each of the three freshwater samples, 

the relationship between freshwater BGA concentration and LSA chemical composition was 

examined. Fluorescence microscopy provided additional confirmation of the incorporation of 

biological material within individual particles. This information can be used for future 

identification of atmospheric LSA produced from freshwater of varying HAB content through field 

studies.  

3.2. Experimental Methods 

3.2.1. Freshwater Sample Collection & Aerosol Generation 

Freshwater was collected from the top ~5 cm of the surface of three Great Lake sites in 8 

L LDPE carboys. The three samples and corresponding collection times were as follows: 1) Lake 

Erie - Maumee Bay State Park, Oregon, Ohio (N 41.686365, W -83.372286) collected on 

September 12, 2014, 2) Lake Erie - Catawba Island State Park, Port Clinton, Ohio (N 41.573131, 

W -82.857192) collected on September 12, 2014, and 3) Lake Michigan – Washington Park Beach, 

Michigan City, Indiana (N 41.727573, W -86.909516) collected on October 12, 2014. An 
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additional freshwater sample was collected from the Lake Erie - Maumee location on September 

20, 2017 to test the effect of freshwater sample freezing on LSA composition. Figure 3—1 shows 

the sampling locations on a NASA MODIS satellite image from September 17, 2014, the nearest 

clear sky day that allowed for a full visualization of the Great Lakes; photographs of the surface 

freshwater at the three sites at the time of collection are also shown. For comparison, Figure 3—2 

shows NASA MODIS satellite images from October 12, 2014 and September 22, 2017, the nearest 

clear sky days that allowed for a full visualization of the Great Lakes; a photograph of the 

September 20, 2017 Lake Erie – Maumee surface freshwater is also shown. During freshwater 

sampling, a handheld spectrophotometer (AquaFluor 8000) measured BGA content through 

phycocyanin fluorescence, which serves as an indicator for algal cell and microcystin 

concentrations (Marion et al. 2012).  

 The three 2014 freshwater samples were frozen (-20 ˚C) after sampling for storage over a 

period of 20 months and thawed prior to aerosol generation in a laboratory LSA generator. Half of 

the 2017 Lake Erie - Maumee freshwater sample was used for aerosol generation in the laboratory 

LSA generator on the day of collection. The other half of the 2017 Lake Erie - Maumee freshwater 

sample was frozen (-20 ˚C) after sampling for storage over a period of 24 hours and thawed prior 

to aerosol generation in the laboratory LSA generator. Details of the LSA generator construction, 

operation, and validation studies are provided by May et al. (2016). Briefly, the LSA generator 

circulates 4 L of freshwater sample at 2 L min−1 via a diaphragm pump into four plunging jets, 

which creates bubbles that burst at the freshwater sample surface to generate aerosol particles. 

During all experiments the tank was kept at room temperature (23 ± 1 °C) with a relative humidity 

(RH) of 85%. Generated freshwater aerosols were passed through two silica gel diffusion dryers 

to achieve a relative humidity of ∼15% before measurement to reduce the suppression of negative 

ion mass spectra by particle phase water in the single-particle mass spectrometer (Neubauer et al. 

1997). Prior to particle generation, particle-free air (Pall, HEPA Capsule Filter) was cycled through 

the LSA generator. Background particle concentrations were negligible (<20 particles cm−3; <5%), 

in comparison to the average total particle concentration generated from the freshwater samples 

(∼750 particles cm−3), and below sizes (da <250 nm) chemically analyzed by single particle 

analysis. The aerosol number size 
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Figure 3—1. NASA MODIS satellite images of the Great Lakes region on September 17, 2014 
with locations of Great Lakes surface freshwater sampling locations: (A) Lake Michigan – 
Michigan City, (B) Lake Erie – Catawba, and (C) Lake Erie – Maumee, with corresponding 
photographs of surface freshwater at sampling locations with blue green algae concentrations 
measured inset.  
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Figure 3—2. NASA MODIS satellite imagery of the Great Lakes region on (top) October 12, 
2014 and (bottom left) September 22, 2017 with locations of Great Lakes surface freshwater 
sampling locations: (A) Lake Michigan – Michigan City (N 41.727573, W -86.909516), (B) Lake 
Erie – Catawba (N 41.573131, W -82.857192), and (C) Lake Erie – Maumee (N 41.686365, W -
83.372286). (Bottom right) Photograph of 2017 surface freshwater at the Lake Erie – Maumee (N 
41.686365, W -83.372286) with the measured blue green algae concentration noted. 
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distributions and total aerosol concentrations (Figure 3—3) for each LSA sample were measured 

by a scanning mobility particle sizer (SMPS), consisting of a differential mobility analyzer (DMA; 

TSI Inc., model 3082) and a CPC (TSI Inc., model 3775) for particles with electrical mobility 

diameters (dm) between 14.1 and 736.5 nm, as well as an aerodynamic particle sizer (APS; TSI 

Inc., model 3321) for particles with aerodynamic diameters (da) between 0.52 and 19.8 µm. 

3.2.2. Single Particle Analysis  

An aerosol time-of-flight mass spectrometer (ATOFMS) was used for the real-time 

analysis of the size and chemical composition of individual LSA particles ranging from vacuum 

aerodynamic diameters of 0.25−1.5 µm (Pratt et al. 2009). Briefly, particles enter the instrument 

through an aerodynamic focusing lens creating a narrow particle beam. Particles are then 

accelerated to terminal velocities, which are measured by the time a particle takes to pass between 

two continuous wave lasers, with wavelengths of 488 and 405 nm, respectively, separated by 6 

cm. Particle aerodynamic diameter is obtained by calibrating size dependent particle terminal 

velocity using polystyrene latex spheres of known diameter (0.1−2.5 µm) and density (1 g/cm3). 

Individual particles entering the mass spectrometer are desorbed and ionized by a 266 nm Nd:YAG 

laser (1.2 mJ) generating positive and negative ions. Ions are detected using a dual polarity time-

of-flight mass spectrometer. All particle measurements discussed here describe nascent LSA, 

sampled less than 10 s following production, thus minimizing subsequent chemical processing of 

these particles. 8,857 particles were chemically analyzed by ATOFMS for the 2014 Lake Michigan 

– Michigan City sample, 11,407 particles for the 2014 Lake Erie – Maumee sample, and 9,827 

particles for the 2014 Lake Erie – Catawba sample. 4,651 particles were chemically analyzed by 

ATOFMS for the 2017 Lake Erie – Maumee sample pre-freeze particles and 5,255 particles for 

the 2017 Lake Erie – Maumee sample post-freeze particles. Mass spectral peak identifications 

correspond to the most probable ion(s) for a given m/z ratio based on previous studies (Prather et 

al. 2013, Guasco et al. 2014, Cahill et al. 2015, Axson et al. 2016). Relative peak area searches for 

combinations of inorganic, organic and biological marker ions within single-particle mass spectra 

were completed using the MATLAB toolkit FATES (Flexible Analysis Toolkit for the Exploration 

of Single-particle mass spectrometry data) (Sultana et al. 2017) to identify and separate the distinct 

single-particle types observed.   
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Figure 3—3. Average aerosol number size distributions produced by the LSA generator from the 
Lake Michigan – Michigan City, Lake Erie – Catawba, and Lake Erie – Maumee freshwater 
samples collected in 2014. 
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 A microanalysis particle sampler (MPS, California Measurements, Inc.) was used to impact 

particles from the three 2014 freshwater samples onto Formvar coated copper microscopy grids 

(Ted Pella, Inc.) for analysis by scanning electron microscopy (SEM) and onto aluminum foil for 

fluorescence analysis. The MPS is operated at 2 L min-1 and consists of 3 stages with aerodynamic 

diameter size cuts of 2.5-5.0 µm for stage 1, 0.7-2.5 µm for stage 2, and <0.7 µm for stage 3. 

Aerosols collected on stage 3 of the MPS were analyzed using a Quanta environmental scanning 

electron microscope (ESEM, FEI). The FEI Quanta was operated at 20 kV and used a high angle 

annular dark field (HAADF) detector and an EDAX energy dispersive X-ray spectroscopy (EDX) 

detector to collect images and EDX spectra of 30 individual particles, respectively. In addition, 

particle circularity distributions were determined using SEM for 1,250 particles from the Lake 

Michigan – Michigan City sample, 2,016 particles from the Lake Erie – Catawba sample, and 

1,766 particles from the Lake Erie – Maumee sample, from stages 2 and 3 of the MPS. 

Aerosols from the three 2014 freshwater samples collected on stage 2 of the MPS were 

analyzed with a Raman microspectrometer (Horiba LabRAM HR Evolution) with a confocal 

microscope (100x objective) and a Nd:YAG laser (532 nm, 50 mW) for fluorescence analysis. The 

Raman spectrometer was operated in Swift mode with a 600 groove/mm grating and used a CCD 

detector. Fluorescence spectra were acquired from 545 to 605 nm over an area of 50 x 53 µm with 

a step size of 0.5 µm using 0.1 s acquisitions to create fluorescence maps of individual particles. 

The summed fluorescence intensities of 5 maps, each with ~20 particles, for each sample were 

averaged together and normalized to the highest average fluorescence intensity sample.  

3.3. Results & Discussion 

3.3.1. LSA Particle Chemical Composition & Morphology 

Three distinct individual types of particles were identified by ATOFMS from the LSA 

generated in the laboratory from the freshwater surface samples. These three individual particle 

types are identified as: LSA primarily composed of inorganic salts (LSA-Salt), LSA with elevated 

organic carbon content (LSA-Organic), and LSA with biological material (LSA-Bio). This 

classification of LSA particle types is consistent with previous single particle mass spectrometry 

studies of laboratory generated SSA, which defined particle types on a scale of increasing organic 

and biological content: sea salt (SS), sea salt with organic carbon (SS-OC), bioparticles (Bio), and 

organic carbon (OC) (Prather et al. 2013, Guasco et al. 2014) (Lee et al. 2015). The seawater-
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sourced OC particles are typically smaller in diameter (< 0.2 µm) (Guasco et al. 2014) than the 

lower size limit (0.25 µm) of the ATOFMS used in this study, such that freshwater-sourced OC 

particles may not be expected to be detected herein, as observed. Average dual polarity mass 

spectra from all three freshwater samples are shown for each of the three particle types, with major 

ions labeled, in Figure 3—4. Difference mass spectra, calculated as the difference between the 

average mass spectra between pairs of particle types, highlight the major changes in composition 

between the three particle types and are shown in Figure 3—5.  

The individual LSA-Salt particle mass spectra were characterized by m/z 40 [Ca+] as the 

highest intensity peak (Figure 3—4A), reflective of calcium as the highest concentration cation in 

Great Lakes freshwater (Chapra et al. 2012) and consistent with previous ATOFMS analyses of 

LSA generated from Lake Michigan freshwater with low BGA concentration (11 ppb) (Axson et 

al. 2016). Minor inorganic ion peaks included m/z +23 [Na+], +24 [Mg+], +39 [K+], and +56 

[CaO+]. The LSA-Salt particle mass spectra were further defined by the lack of significant organic 

ions in the positive ion mass spectra. The LSA-Salt particle type negative ion mass spectrum was 

characterized by m/z -26 [CN-] and -42 [CNO-], representative of organic nitrogen (Guasco et al. 

2014), as the most prominent peaks, consistent with our previous ATOFMS study of laboratory 

generated LSA from a Lake Michigan freshwater sample (Axson et al. 2016).  

The individual LSA-Organic particle mass spectra (Figure 3—4b) exhibited similar 

inorganic ions as the LSA-Salt particle mass spectra, again with m/z +40 [Ca+] as the most 

prominent peak in the positive ion mass spectrum. However, the LSA-Organic particle mass 

spectra were differentiated from the LSA-Salt particle mass spectra by the presence of significant 

m/z +66 [CaCN+] and +82 [CaCNO+] peaks, consistent with enhanced organic nitrogen content 

(Guasco et al. 2014). Additional significant organic ions were detected: m/z +74 [N(CH3)4+]) and 

negative (m/z -45 [CHOO-], -59 [CH3COO-], and -71 [C3H3O2-] (Figure 3—4) (Cahill et al. 2015). 

Therefore, similar to the classification of ATOFMS particles in SSA studies, the LSA-Organic 

particles are similar to the LSA-Salt particles, but with an enrichment in organic carbon internally 

mixed with the salt particles (Prather et al. 2013, Guasco et al. 2014). 

The individual LSA-Bio particles (Figure 3—4c) exhibited similar organic ions as the 

LSA-Organic particle mass spectra. However, as shown in the mass spectral difference plots 
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Figure 3—4. Average negative (left) and positive (right) mass spectra of individual particles 
defined as: (A) LSA – Salt, (B) LSA – Organic, and (C) LSA – Bio. Ions significantly enhanced 
in LSA-Organic and LSA-Bio, compared to LSA-Salt, particles are highlighted in blue, and ions 
significantly enhanced in LSA-Bio, compared to LSA-Organic and LSA-Salt, particles are 
highlighted in green; for comparison, mass spectral difference plots are shown in Figure A—4. 
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Figure 3—5. Mass spectral subtraction plots of relative peak areas for average mass spectra: A) 
LSA – Organic minus LSA – Salt, B) LSA – Bio minus LSA – Salt, and C) LSA – Bio minus LSA 
– Organic.  
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and highlighted in Figure 3—4, the LSA-Bio particles were distinguished from the LSA-Salt and 

LSA-Organic particles by the significant presence of m/z +89, suggested to be the common amino 

acid aspartic acid observed as [Asp – CO2], based on previous bio-aerosol studies (Russell et al. 

2004). The LSA-Bio particle mass spectra were further defined by the presence of a significant 

phosphate ion peak (m/z -79 [PO3-]) (Figure 3—5), which previous ATOFMS studies have found 

to be unique to particles containing primary biological material, when combined with organic 

nitrogen ion markers (m/z -26 [CN-] and -42 [CNO-]) (Pratt et al. 2009, Guasco et al. 2014, Sultana 

et al. 2017). Similar to the established marine biological aerosol mass spectral signature (Guasco 

et al. 2014), this LSA-Bio mass spectral signature likely represents fragments of BGA cells, which 

are typically 3 – 7 µm (Yan and Jameson 2004), as well as BGA exudates. Therefore, the LSA-

Bio particles could potentially contain toxins from the BGA measured in the freshwater samples. 

Future measurements to differentiate between toxic and non-toxic biological species in particles 

are needed to assess the toxicity and public health impacts of the individual LSA-Bio particles. 

 The identification of the LSA-Salt, LSA-Organic, and LSA-Bio particles by ATOFMS was 

complemented by EDX analyses of single particle elemental composition (Figure 3—6). The EDX 

spectrum of a representative LSA-Salt particle was characterized by inorganic elements Na and 

Mg, with Ca as the highest intensity peak (Figure 3—6a), consistent with the ATOFMS mass 

spectra (Figure 3—4) and Great Lakes freshwater composition (Chapra et al. 2012). This Ca-

dominant elemental composition and cubic morphology is similar to previous SEM-EDX analyses 

of ambient LSA collected on the coast of Lake Michigan and LSA generated in the laboratory 

from Lake Michigan freshwater of low BGA concentration (Axson et al. 2016). The EDX 

spectrum of a LSA-Organic particle was also characterized by Ca as the highest intensity peak 

(Figure 3—6b), consistent with the LSA-Organic ATOFMS mass spectra (Figure 3—4) and Great 

Lakes freshwater (Chapra et al. 2012); however, this particle had lower relative contributions from 

other inorganic elements present in the EDX spectra of LSA- Salt particles. While the C peak in 

the EDX spectrum is partly due to contributions from the microscopy substrate, the lack of other 

elements present suggests that carbon and oxygen from organic compounds comprised a 

significant fraction of the LSA-Organic particle mass. The LSA-Bio particle was further 

differentiated from the LSA-Organic particle by the presence of N  
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Figure 3—6. Scanning electron microscopy images with 1 µm scale bars (left) and corresponding 
energy dispersive X-ray spectra (right) of representative individual particles defined as: (A) LSA 
– Salt, generated from the 2014 Lake Michigan – Michigan City freshwater sample, (B) LSA – 
Organic, generated from the 2014 Lake Michigan – Michigan City freshwater sample, and (C) 
LSA – Bio, generated from the 2014 Lake Erie – Maumee freshwater sample.  
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and P, known markers of biological content (Mensah-Attipoe et al. 2016), in the EDX spectra 

(Figure 3—6c) and consistent with the ATOFMS spectra. 

 The identification of the individual LSA-Salt, LSA-Organic, and LSA-Bio particles by 

EDX analysis of single particle elemental composition was further supported by SEM analysis of 

single particle morphology (Figure 3—6). The LSA-Salt particle was defined in SEM images by 

a cubic core surrounded by a circular shell, the result of water loss from the particle after deposition 

to form a salt crystal (Ault et al. 2013). Increased total organic carbon concentration in seawater 

has been shown to disrupt the crystallization of salts in SSA during drying on the substrate resulting 

in more circular particles (Ault et al. 2013). In addition, previous SEM analysis demonstrated that 

LSA generated from Lake Michigan freshwater exhibited increased circularity compared to LSA 

generated from a synthetic freshwater representative of Great Lakes inorganic ion content without 

organic content (May et al. 2016). Therefore, the increased circularity of the LSA-Organic particle 

type observed in the SEM image, in comparison to the LSA-Salt particle type, further supports the 

increased incorporation of organic carbon identified by EDX analysis. The LSA-Bio particle type 

exhibited similar circularity to the LSA-Organic particle type, which is consistent with 

transmission electron microscopy studies of laboratory generated SSA that found biological 

particles to be circular (Patterson et al. 2016).  

3.3.2. Effect of Blue Green Algae Content on LSA Composition 

A direct relationship was observed between the BGA content of the 2014 surface 

freshwater samples and the submicron and supermicron ATOFMS number fractions of individual 

LSA-Bio particles (Figure 3—7). The low biological activity Lake Michigan – Michigan City 

sample (7 ppb BGA) produced the lowest LSA-Bio submicron (1 ± 1% (standard error)) and 

supermicron (3 ± 1%) particle number fractions. The Lake Erie – Catawba sample, which had the 

second highest biological activity (23 ppb BGA), produced the second highest submicron (11 ± 

1%) and supermicron (34 ± 1%) number fractions of LSA-Bio particles. The highest biological 

activity Lake Erie – Maumee sample (84 ppb BGA) produced the correspondingly highest 

submicron (17 ± 1%) and supermicron (44 ± 1%) particle number fractions of LSA-Bio particles. 

A similar positive association between seawater biological content and SSA biological particle 

type number fraction was shown in a laboratory SSA generation study, where increasing seawater 

biological content (chlorophyll-a: 0.5 to 5 mg/m3; heterotrophic bacteria 1x106 to 7x106 cells/mL) 

corresponded to the SSA-Bio number fraction  
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Figure 3—7. Number fractions of ATOFMS particle types, with standard errors shown, for 
submicron (0.25-1.0 µm) (top) and supermicron (1.0-1.5 µm) (bottom) particles generated in the 
laboratory from freshwater samples collected in 2014 from Lake Michigan – Michigan City (left), 
Lake Erie – Catawba (center), and Lake Erie – Maumee (right). Average blue green algae 
concentrations, with standard deviations shown, of the freshwater samples measured at the time of 
collection are also shown. 
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increasing from 18% to 30% (using ATOFMS to probe 0.5 – 3.0 µm particles) (Guasco et al. 

2014). Therefore, the increase in the number fractions of individual LSA-Bio particles with 

increasing measured BGA concentration further demonstrates the incorporation of biological 

material in LSA.   

 As shown in Figure 3—8, similar size dependence was observed in the number fractions 

of LSA-Bio and LSA-Salt particles produced by the three 2014 freshwater samples. For the 

elevated biological content Lake Erie – Catawba (23 ppb) and Lake Erie – Maumee (84 ppb) 

freshwater samples, the number fraction of individual LSA-Bio particles increased substantially 

as particle diameters increased from 0.4 µm to 1.5 µm (1% to 40% and 3% to 50%, respectively). 

While evident, this increase was less substantial for the low biological content (7 ppb) Lake 

Michigan – Michigan City freshwater sample, with the number fraction of individual LSA-Bio 

particles increasing from 0.6% to 6% for particle diameters from 0.4 µm to 1.5 µm. Consistent 

with this size-dependent trend, previous ATOFMS measurements of laboratory generated SSA 

from an induced phytoplankton bloom observed the greatest contribution of biological aerosols at 

supermicron diameters (Prather et al. 2013, Collins et al. 2014, Sultana et al. 2017), which was 

attributed to the enrichment of biological material in marine jet drops (Blanchard and Syzdek 

1972). Since the LSA-Bio particles primarily exist at larger diameters resulting from freshwater 

jet drops (May et al. 2016), the jet drop aerosol generation process likely leads to the enrichment 

of biological material within LSA, similar to SSA. Following a similar process, LSA-Salt particles 

were also primarily observed in particles at larger diameters, regardless of freshwater sample 

(Figure 3—8). For the low biological content (7 ppb BGA) Lake Michigan – Michigan City 

freshwater sample, the LSA-Salt particle number fraction increased substantially as particle 

diameters increased from 0.25 µm to 1.5 µm (26% to 76%). A previous ATOFMS study of 

laboratory generated SSA observed a comparable increase in inorganic-rich sea salt particles as 

particle diameters increased from 0.55 to 3 µm (Prather et al. 2013, Collins et al. 2014). The 

increase in the number fraction of inorganic-rich aerosols at larger diameters in both SSA and LSA 

is attributed to their production by jet drops (Kientzler et al. 1954), which are larger and more 

representative of the inorganic-rich bulk solution than film drops (Lewis and Schwartz 2004).  

 The size dependence of LSA-Organic particle number fractions produced from all three 

2014 freshwater samples, characterized by greater contributions to smaller particles, is distinct 
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Figure 3—8. Size-resolved (0.25 
– 1.5 µm) particle type number 
fractions measured by ATOFMS 
for particles generated in the 
laboratory from freshwater 
samples collected in 2014 from 
Lake Michigan – Michigan City 
(top), Lake Erie – Catawba 
(middle), and Lake Erie – 
Maumee (bottom).   
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from the size dependence of LSA-Salt and LSA-Bio particles. The LSA-Organic particle number 

fraction decreased as particle diameters increased from 0.25 µm (Lake Michigan – Michigan City 

= 74%; Lake Erie – Catawba = 88%; Lake Erie – Maumee = 90%) to 1.5 µm (Lake Michigan – 

Michigan City = 18%; Lake Erie – Catawba = 30%; Lake Erie – Maumee = 15%) for all three 

2014 freshwater samples (Figure 3—8), similar to studies of laboratory generated SSA that 

observed a decrease in SSA-Organic particle type number fractions from 0.3 to 1.5 µm in diameter 

(Prather et al. 2013). In the marine environment, smaller particles resulting from film drops in the 

bubble bursting process are enriched in organic compounds due to the high concentration of 

organics at the surface of seawater and bubbles (Lewis and Schwartz 2004). Therefore, increase 

in the LSA-Organic particle number fractions at smaller particle diameters is consistent with an 

enrichment in organics at the surface of freshwater (Andren et al. 1976, Fuhs 1982, Meyers and 

Kawka 1982), leading to an enrichment in smaller LSA particles resulting from the freshwater 

bubble bursting process. All freshwater samples produced higher total number fractions (46-60%) 

of LSA-Organic particles, compared to the total number fractions (23-27%) of SSA-Organic 

particles generated from subsurface seawater enriched in organic material by a laboratory induced 

phytoplankton bloom (Collins et al. 2014). This is likely due to the higher proportion of organic 

material relative to inorganic material present in freshwater (Biddanda and Cotner 2002, Repeta et 

al. 2002, Chapra et al. 2012, Shuchman et al. 2013), compared to seawater, even under 

phytoplankton bloom conditions.(Repeta et al. 2002, Pilson 2013) Particle circularity distributions 

(measured from SEM images), shown in Figure 3—9, demonstrate that, for all three freshwater 

samples, the distribution maximum was close to 1, indicative of primarily spherical particles. 

These data are consistent with circularity distributions of particles previously generated from a 

Lake Michigan freshwater sample (May et al. 2016) and suggest that all of the freshwater samples 

are comprised of sufficient organic matter to disrupt cubic crystal formation within the LSA (Ault 

et al. 2013, May et al. 2016).  

 Normalized average fluorescence intensity derived from fluorescence microspectroscopy 

mapping of impacted particles (Figure 3—10 & 3—11) further suggests a direct relationship 

between the increased contributions of individual LSA-Bio particles with measured BGA 

concentration. For the lowest BGA concentration (7 ppb) Lake Michigan – Michigan City 

freshwater sample, the lowest normalized average fluorescence intensity (0.34 ± 0.09 (standard 

deviation)) was observed. The Lake Erie – Catawba freshwater sample (23 ppb BGA) was 
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Figure 3—9. Circularity 
distributions as a function of 
aerodynamic particle diameter, 
where a value of 1 is indicative 
of a perfect circle, of particles 
produced from the 2014 (A) 
Lake Michigan – Michigan 
City, (B) Lake Erie – Catawba, 
and (C) Lake Erie – Maumee 
freshwater samples, as 
measured by SEM.  
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Figure 3—10. Optical images (left) and fluorescence maps with fluorescence intensity scales in 
counts, (right), of particles generated from the Lake Michigan – Michigan City (top), Lake Erie – 
Catawba (middle), and Lake Erie – Maumee (bottom) freshwater samples collected in 2014, as a 
function of freshwater blue green algae concentrations measured at the time of collection. All scale 
bars are 5 µm. 
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Figure 3—11. Normalized fluorescence intensity, an indicator of biological content, for particles 
generated from the Lake Michigan – Michigan City, Lake Erie – Catawba, and Lake Erie – 
Maumee freshwater samples collected in 2014, as a function of blue green algae concentrations of 
the freshwater samples at the time of collection. Error bars shown are standard deviations. 
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characterized by an intermediate normalized average fluorescence intensity (0.7 ± 0.3), and the 

Lake Erie – Maumee freshwater sample, with the highest BGA concentration (84 ppb), exhibited 

the highest normalized average fluorescence intensity (1.0 ± 0.3). While a statistically significant 

increase in fluorescence intensity of particles was only observed between the lowest (7 ppb BGA) 

and highest (84 ppb BGA) biological content samples, it is supportive of the statistically significant 

increase in the LSA-Bio particle number fractions with increasing freshwater BGA concentration, 

and provides further evidence of the bubble bursting production of bioaerosols from freshwater 

environments, with a dependence on biological activity. The increased fluorescence of particles 

associated with increased BGA concentration is indicative of increased biological particle content 

as organic molecules of biological origin, such as proteins and coenzymes, exhibit intrinsic 

fluorescence, providing a means for bioaerosol detection (Pöhlker et al. 2012, Lee et al. 2015).  

3.3.3. Effect of Freezing on LSA Composition 

 The 2017 Lake Erie – Maumee freshwater sample was used to test for differences in BGA 

concentration and LSA composition prior to freezing and after 24 h frozen and then thawed. The 

measured BGA concentration of 39 ppb did not change with freezing. The trends in the size 

dependence of the number fractions of all three particle types (LSA-Salt, LSA-Organic, and LSA-

Bio) produced by the pre- and post-freeze 2017 Lake Erie – Maumee freshwater  

samples (Figure 3—12) are consistent that observed for the LSA produced  from the three 2014 

freshwater samples (Figure 3—5). For both the pre- and post-freeze 2017 Lake Erie – Maumee 

freshwater samples, the number fraction of individual LSA-Bio particles increased as particle 

diameters increased from 0.4 µm to 1.5 µm (pre-freeze = 18% to 35%; post-freeze = 15% to 27%, 

Figure 3—12). Similarly, the number fraction of individual LSA-Salt particles increased as particle 

diameters increased from 0.25 µm to 1.5 µm (pre-freeze = 10% to 38%; post-freeze = 5% to 33%). 

Similar to the 2014 samples, the size dependence of the number fraction of individual LSA-

Organic particles produced from the pre- and post-freeze 2017 Lake Erie – Maumee freshwater 

samples freshwater samples was distinct from the size dependence of LSA-Salt and LSA-Bio 

particles. The number fraction of individual LSA-Organic particles for both the pre- and post-

freeze 2017 Lake Erie – Maumee freshwater samples decreased as particle diameters increased 

from 0.25 µm to 1.5 µm (pre-freeze = 80 ± 1% - 27 ± 1%; post-freeze = 87 ± 1% - 38 ± 1%). These 
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results indicate that freezing of freshwater samples does not affect the size dependent trends and 

relative order of abundance in the number fractions of individual LSA particles produced.  

The number fraction of individual submicron LSA-Organic particles increased from 52 ± 

1% to 62 ± 1% from pre- to post-freeze for the 2017 Lake Erie – Maumee sample (Figure 3—13). 

This ~10% increase in the number fraction of individual submicron LSA-Organic particles may 

be the result of the release of organic material from cell lysis during the freeze-thaw process, as 

suggested by the concurrent decrease in the number fraction of individual submicron (19 ± 1% to 

15 ± 1%) and supermicron (36 ± 2% to 28 ± 2%) LSA-Bio particles from pre- to post-freeze for 

the 2017 Lake Erie – Maumee sample (Figure 3—13). Therefore, it is possible that the number 

fraction of submicron LSA-Organic particles generated from the three 2014 freshwater samples 

post-freeze was biased higher than the number fraction of individual submicron LSA-Organic 

particles that would have been generated from the three 2014 freshwater samples pre-freeze. 

Correspondingly, the number fraction of individual submicron and supermicron LSA-Bio particles 

generated from three 2014 freshwater samples post-freeze was biased lower than the number 

fraction of individual submicron and supermicron LSA-Bio particles that would have been 

generated from the three 2014 freshwater samples pre-freeze. However, the relative abundance 

and size-dependent trends in the LSA-Organic and LSA-Bio particles hold when comparing pre- 

and post-freeze samples, providing support for the findings from the 2014 samples. When possible, 

future experiments should not freeze freshwater samples prior to LSA generation. 

 The 2017 Lake Erie – Maumee sample confirmed the direct relationship between BGA 

content and the submicron (and total) ATOFMS number fractions of LSA-Bio particles. In the 

context of the 2014 samples, the post-freeze 2017 Lake Erie – Maumee (39 ppb BGA) was the 

third highest biological activity freshwater sample, and it produced the third highest submicron 

number fraction of LSA-Bio particles (15%) (see Figure 3—7 for comparison). Similarly, this 

sample produced the third highest total number fraction of LSA-Bio particles (17%) (for 

comparison: 2014 Lake Michigan – Michigan City (7 ppb BGA) = 1%; 2014 Lake Erie – Catawba 

(23 ppb BGA) = 12%; 2014 Lake Erie – Maumee (84 ppb BGA) = 33%). However, the post-freeze 

2017 Lake Erie – Maumee sample (39 ppb BGA) produced a lower number fraction  
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Figure 3—12. Size-resolved (0.25 – 1.5 µm) particle type number fractions measured by 
ATOFMS for particles generated in the laboratory from the pre- (top) and post-freeze (bottom) 
Lake Erie – Maumee freshwater samples collected in 2017. Measured blue green algae 
concentrations pre- and post-freeze are noted.  



63 
 

 

 

Figure 3—13. Number fractions of ATOFMS particle types, with standard errors shown, for submicron (0.25-1.0 µm) (top) and 
supermicron (1.0-1.5 µm) (bottom) particles generated in the laboratory from the pre- and post-freeze Lake Erie – Maumee freshwater 
samples collected in 2017. 
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of supermicron LSA-Bio particles (28%) than the lower biological activity 2014 Lake Erie – 

Catawba sample (23 ppb BGA; 34%). In addition, higher contributions of the LSA-Bio particle 

type were observed for number fractions of 0.25 – 0.4 µm particles for the pre- and post-freeze 

2017 freshwater sample (11% and 9%, respectively) compared to the three 2014 freshwater 

samples (all <1%). Recent work has shown that variations over the course of phytoplankton 

blooms significantly changes the contribution of jet drops and associated biological material to the 

submicron SSA population (Pham et al. 2017, Wang et al. 2017). Therefore, the decrease in LSA-

Bio particle number fractions at supermicron diameters in the 2017 samples and simultaneous 

increase in LSA-Bio particle number fractions at smaller (0.25 – 0.4 µm) diameters suggests that 

HAB variations (e.g. bloom progression), which were not assessed through BGA measurements, 

may affect the contribution of freshwater jet drops to the submicron LSA population, similar to 

SSA, and therefore, explain the observed differences in LSA-Bio contributions. Future studies of 

the size dependent composition of LSA over the development and decay of HABs, similar to 

seawater mesocosm studies of SSA (Forestieri et al. 2016, Jayarathne et al. 2016, Pham et al. 

2017),  are needed to understand variations in how biological material is incorporated in LSA 

impacts toxicity and climate properties.  

3.4. Atmospheric Implications 

This study examined the individual particle chemical composition of LSA generated from 

freshwater of varying BGA content. Individual LSA particles primarily composed of inorganic 

salts, inorganic salts with organic compounds, and inorganic salts with biological material were 

identified, with the biological content of individual LSA particles increasing with freshwater 

BGA content. This information is essential for improving our currently limited understanding of  

the potentially wide ranging atmospheric impacts of LSA, particularly in regions with large 

freshwater surface area, high wind speeds, and increasing HAB severity, such as the Great Lakes 

(Chung et al. 2011, Michalak et al. 2013, Doubrawa et al. 2015). The identification of biological 

material associated with individual LSA particles and its relation to BGA concentration in this 
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study demonstrates that freshwater wave breaking should be further studied as a vector for the 

introduction of aquatic toxins into the atmosphere. The LSA-Bio ATOFMS spectra characterized 

in this study could thus be used in future field measurements to identify the presence in the ambient 

atmosphere of potentially toxic bioaerosols produced by wave breaking induced bubble bursting 

from freshwater containing HABs. However, as the species present in freshwater algal blooms can 

range in toxicity,(Gobler et al. 2016) LSA produced by wave breaking induced bubble bursting 

from freshwater containing HABs also needs to be studied with techniques that can assess the 

molecular composition and toxicity of HAB products present to fully assess the public health 

impacts of freshwater wave breaking (Msagati et al. 2006, Gambaro et al. 2012).  

The identification of biological material associated with individual LSA particles 

demonstrates freshwater wave breaking as a potentially important process for the introduction of 

freshwater biological INP into the atmosphere  (D'Souza et al. 2013, Pietsch et al. 2015, Moffett 

2016). The relative enrichment of organic compounds in smaller diameter LSA, similar to SSA, is 

also important to consider in predicting cloud droplet formation. Previous SSA studies have 

concluded that particles composed mostly of hygroscopic salts will activate into cloud drops at 

relatively smaller sizes, with the addition of less soluble organic species decreasing the overall 

hygroscopicity and increasing the size at which the particles can activate (Prather et al. 2013). 

However, studies on the effect of the distribution of inorganic and organic material on the 

hygroscopic properties of SSA may not be able to fully predict LSA climate impacts because of 

the differences in inorganic and organic species and associated concentrations present between 

freshwater and seawater (May et al. 2016). Laboratory measurements of the relationship between 

freshwater biological activity and LSA INP and CCN activity are needed to improve prediction of 

LSA climate impacts in models. In addition, field measurements of the size-dependent fluxes of 

LSA, including those particles containing biological material, from the freshwater to the 

atmosphere need to be conducted across various stages of freshwater algal bloom development to 

improve understanding of LSA production and air quality model simulations.  
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Chapter 4 Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland 
Particulate Matter 

 

Submitted to Environmental Science & Technology: Letters 

4.1. Introduction 

Sea spray aerosol (SSA) produced from oceanic wave breaking impact climate by 

scattering solar radiation, acting as cloud condensation nuclei (CCN), and serving as a source of 

reactive halogen gases (Andreae and Rosenfeld 2008, Quinn et al. 2015). SSA is primarily 

observed over marine and coastal locations, where it dominates particle mass concentrations (Ault 

et al. 2009, Grythe et al. 2014). Remote and rural inland regions often have fewer local PM sources 

than urban or coastal regions, such that, under certain meteorological conditions, transported 

particles from distant sources contribute significantly to PM mass (Sheesley et al. 2004, Spak and 

Holloway 2009, Allen et al. 2015, Bondy et al. 2017). Bulk PM measurements have demonstrated 

that SSA undergoes long-range transport to inland regions 100 – 1,100 km from the ocean (Shaw 

1991, Gustafsson and Franzén 2000, Hara et al. 2004, Silva et al. 2007, Manders et al. 2010, Santos 

et al. 2012, Udisti et al. 2012, Chalbot et al. 2013, Makowski Giannoni et al. 2016). However, 

these methods rely on Na+, Mg2+, and Cl- ratios, which can lead to an underestimation of inland 

SSA concentrations due to contributions from other particle sources (e.g. dust) (Sullivan et al. 

2007, Pratt et al. 2010) and changes in initial source ratios due to multiphase reactions causing Cl- 

depletion (Pakkanen 1996, Bondy et al. 2017). 

The atmospheric abundance and climate impacts of lake spray aerosol (LSA) produced 

from freshwater wave breaking are more uncertain (Slade et al. 2010, Chung et al. 2011, Axson et 

al. 2016, May et al. 2016). Ambient identification of LSA is restricted to one aircraft study over 

portions of northern Lake Michigan and Lake Huron (Slade et al. 2010) and one ground-based 

coastal Lake Michigan study (Axson et al. 2016). However, previous identification of calcium-

containing particles in clouds over the Great Lakes region (Lasher-Trapp et al. 2008, Twohy and 

Anderson 2008) suggests participation of calcium-rich LSA (Axson et al. 2016) in cloud droplet 
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formation. LSA may also have potential climate (Pietsch et al. 2015, Moffett 2016, Pietsch et al. 

2017) and health (Cheng et al. 2007, Backer et al. 2008, Backer et al. 2010) implications due to 

the incorporation of organic and biological material from harmful algal blooms (HABs) (May et 

al. 2018). Identification and quantification of LSA in the atmosphere has been limited as chemical 

characterization of LSA has only occurred recently (Axson et al. 2016, May et al. 2018), and 

differentiating LSA from other sources of calcium-containing particles using bulk analytical 

measurements can be difficult (Sullivan et al. 2007, Allen et al. 2015). Herein, we show periodic 

contributions of transported SSA and LSA to ambient PM in northern Michigan during July 2014, 

motivating further study of the impacts of wave breaking particles on inland atmospheric 

composition, climate processes, and air quality.  

4.2. Methods  

4.2.1. Aerosol Measurements 

Atmospheric measurements were conducted from July 13-24, 2014 at the University of 

Michigan Biological Station (UMBS) near Pellston, MI, >700 km from the nearest seawater source 

(Hudson Bay) and >25 km from Great Lakes sources (Lake Michigan = 25 km; Lake Superior = 

100 km). Instrumentation was located within a laboratory at the base of a 30 m tall tower 

(45°33'31"N, 84°42'52"W) and individually connected by insulated 0.79-cm I.D. copper tubing to 

a manifold that sampled air at ambient relative humidity (RH) from 34 m above ground level 

(AGL) through insulated 1.09-cm I.D. copper tubing at a flow rate of 9.25 L min-1 (laminar) with 

a residence time of 15 s (Carroll et al. 2001), as described in detail by Gunsch et al. (2018). An 

aerosol time-of-flight mass spectrometer (ATOFMS, TSI 3800) (Gard et al. 1997, Dall'Osto et al. 

2004) measured the size and chemical composition of 11,430 individual atmospheric particles 

ranging from 0.5 – 2 µm (vacuum aerodynamic diameter, dva) in real-time, with particle losses in 

the sampling inlet tubing calculated to be <5% over this size range. An ART-2a algorithm clustered 

individual particle dual-polarity mass spectra (Song et al. 1999). Differences in the ion identities 

and intensities, the SSA and LSA individual particle mass spectra, discussed here, were separated 

by the ART-2a clustering. Additional resulting particle types are described by Gunsch et al. (2018), 

in which SSA and LSA were discussed as the combined Na/Ca Salt particle type. No internal 

mixtures of SSA and LSA identified. Size-resolved ATOFMS particle counts were scaled with 

size-resolved number concentrations of 0.5 – 2.0 µm aerodynamic diameter (da) particles, 
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measured by an aerodynamic particle sizer (APS, TSI model 3321), to obtain chemically-resolved 

particle number concentrations, following the method in Qin et al. (2006). The conversion of 

number to mass concentrations assumed spherical shape, as observed for the particles by scanning 

electron microscopy (SEM) (Figure 4—1). As wave breaking forms wet aerosols and RH was high 

enough to avoid efflorescence (ambient RH range: 40-80%) (Gunsch et al. 2018), a density of 1.5 

g cm-3 was used for the SSA and LSA conversions of number to mass concentrations, based on the 

assumption of considerable aerosol liquid water (Moffet et al. 2008). Mass concentrations were 

also calculated assuming the material densities of NaCl (2.16 g cm-3) and CaCO3 (2.71 g cm-3), 

with the understanding that this represents an upper bound for aerosols with low liquid water 

content. 

For off-line analysis of individual particles, a micro-orifice uniform deposit impactor 

(MOUDI, MSP Corp., model 110) (Marple et al. 1991) impacted particles onto transmission 

electron microscopy (TEM) grids (Cu 400 mesh, Carbon type-B, Ted Pella, Inc.). 409 ambient 

particles collected on stage 4 (1 – 1.8 µm da) on July 16, 2014 (9:00-21:00 EDT) were analyzed 

by computer-controlled scanning electron microscopy with energy dispersive X-ray (CCSEM-

EDX) spectroscopy to determine particle size, morphology, and elemental composition. K-means 

clustering of individual particle EDX spectra was used to identify the sources of particles present 

(Ault et al. 2012, Axson et al. 2016, Shen et al. 2016). 

In addition to ambient sampling, particles were produced in a LSA generator (May et al. 

2016) from freshwater samples collected August 1 and 2, 2014 in 8 L LDPE carboys from the 

surfaces of Lake Superior and Lake Michigan at sites upwind of UMBS. An ATOFMS, based on 

the design of Pratt et al. (2009), measured the size and chemical composition of 337 (Lake 

Superior) and 396 (Lake Michigan) laboratory generated particles (0.25 − 1.5 µm dva). A three-

stage microanalysis particle sampler (MPS-3, California Measurements, Inc.) impacted particles 

onto TEM grids (Cu 400 mesh, Carbon type-B, Ted Pella, Inc.) for analysis by CCSEM-EDX to 

determine single particle size, morphology, and elemental composition (Ault et al. 2012, Axson et 

al. 2016). The composition of LSA generated from these August 2014 freshwater samples can be 

compared to the July 2014 ambient LSA composition because significant changes in inorganic ion 

composition over a period of < 1 month are not expected (Chapra et al. 2012).  
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4.2.2. Backward Air Mass Trajectory Analysis & Wave Conditions  

72 h backward air mass trajectories arriving at UMBS at heights of 100, 200, 500, 1000, 

and 3000 m AGL were calculated for every 12 h of the field study using the NOAA HYSPLIT4.8 

(Hybrid Single-Particle Lagrangian Integrated Trajectory) model with 1˚ GDAS (Global Data 

Assimilation System) meteorology (Stein et al. 2015). Changes in measured particle composition 

associated with air mass transport pathways were investigated through potential source 

contribution function (PSCF) analysis, which combines backward air mass trajectories and 

atmospheric chemistry (ATOFMS particle type number fractions) to determine the probabilities 

of geographical areas being source locations of the measured chemical components (Polissar et al. 

2001, Yu et al. 2016). Hudson Bay wind speed data at Fort Severn, Ontario (56°01'08" N 87°40'34" 

W) (wave height data not available) were provided by Environment Canada 

(https://www.canada.ca/en/services/environment.html). Lake Superior and Lake Michigan wind 

speed and wave height data at Stations 45001 (48°3'41" N 87°47'33" W) and 45024 (43°58'24" N 

86°33'23" W), respectively, were from the NOAA National Data Buoy Center 

(http://www.ndbc.noaa.gov/).  

4.3. Results & Discussion 

4.3.1. Identification and Quantitation of Sea Spray Aerosol  

 On multiple occasions during the northern Michigan study, SSA were identified by 

ATOFMS based on comparison of individual particle dual-polarity mass spectra (Figure 4—2) 

with previous SSA ATOFMS mass spectra (Prather et al. 2013). While SSA negative ion mass 

spectra did not exhibit significant m/z -35 (Cl-), characteristic of fresh SSA (Prather et al. 2013), 

nitrate markers, m/z -46 (NO2-) and -62 (NO3-), were observed, indicative of the multiphase 

reactions of HNO3(g) and/or N2O5(g) that liberate chlorine to the gas phase (Gard et al. 1998, Ault 

et al. 2014). The SSA mass concentration mode identified by ATOFMS was >1 µm (Figure 4—

2c), consistent with previous SSA observations (Lewis and Schwartz 2004, Ault et al. 2009, Qin 

et al. 2012). Consistent with the ATOFMS results, CCSEM-EDX also identified SSA particles 

based on elemental composition similar to seawater (Ault et al. 2013, Ault et al. 2013, Prather et 

al. 2013) following chloride depletion (Ault et al. 2013, Ault et al. 2014, Bondy et al. 2017). The 

EDX spectrum and elemental map of a representative individual SSA particle are shown in Figures 

4—2d and 4—1, respectively, and are consistent with previous observations of the distribution of 
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major elements in SSA (Ault et al. 2013, Ault et al. 2013). The average SSA single particle Mg/Na 

elemental mole ratio (0.11 ± 0.07) was consistent with seawater (0.11) (Pilson 2013), and the 
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Figure 4—1. SEM images and EDX elemental maps of representative: (A) SSA and (B) LSA particles collected at UMBS on July 16, 
2014 9:00 – 21:00 EST, as well as LSA generated in the laboratory from (C) Lake Superior and (D) Lake Michigan freshwater sample.
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Figure 4—2. Average ATOFMS positive and negative ion mass spectra of individual ambient (A) sea spray aerosol (SSA) and (B) lake 
spray aerosol (LSA). (C) Average size-resolved aerosol mass distributions of ambient SSA and LSA, calculated from ATOFMS and 
APS data. (D) Representative EDX spectra of individual ambient SSA and LSA, with sample holder and substrate contributions (Al, Si, 
Cu) to the spectra denoted with asterisks. (E) Comparison of seawater, Lake Michigan freshwater, Lake Superior freshwater, ambient 
SSA, and ambient LSA elemental mole ratios. Ambient SSA and LSA mole ratios were calculated from the atomic weight percentages 
of each element measured by CCSEM-EDX with respect to the 15 elements that were analyzed (C, N, O, Na, Mg, Al, Si, P, S, Cl, K, 
Ca, Ti, Fe, Zn). Seawater, Lake Michigan freshwater, and Lake Superior freshwater mole ratios were calculated from ion concentrations 
reported by Pilson (2013) and Chapra et al. (2012). 
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average SSA particle Ca/Na (0.04 ± 0.06) and K/Na (0.04 ± 0.06) elemental mole ratios were also 

within error of seawater (both 0.02) (Pilson 2013) (Figure 4—2e). Overall, 35% and 65% of 

individual SSA particles, by number (measured by CCSEM-EDX), were aged (Cl/Na mole ratios 

< 0.1) or partially aged (1 ≥ Cl/Na ≥ 0.1) (Bondy et al. 2017), respectively (Figure 4—3). No SSA 

particles were observed without at least some chloride depletion. The capability of both single 

particle measurement techniques (ATOFMS and CCSEM-EDX) to identify individual SSA, even 

after Cl depletion, and differentiate between multiple sources contributing to Na and Mg (Gard et 

al. 1998, Allen et al. 2015, Bondy et al. 2017) , provides an advantage over bulk methods relying 

on average elemental ratios (Pakkanen 1996), which hinder accurate identification and 

quantification of inland SSA.  

The PSCF trajectory domain of the observed SSA extended north and northeast of the 

UMBS sampling site to Hudson Bay (Figure 4—4), where wind speeds capable of producing SSA 

(> 3 m s−1) (Lewis and Schwartz 2004, Stokes et al. 2013) were present for 78% of the July 2014 

sampling period (Figure 4—5). As the nearest point of Hudson Bay is over 700 km away from 

UMBS, the SSA particles underwent long-range transport (>48 h), providing time for chloride 

depletion (Gard et al. 1998) by reaction with HNO3 and N2O5. As shown by Gunsch et al. (2018), 

this air mass was also impacted by Canadian wildfire smoke, the long-range transport of which is 

associated with elevated NOx levels (Dreessen et al. 2016). SSA contributions to particle mass 

concentrations were largest during two separate periods of Hudson Bay influenced air masses 

(Figures 4—5 & 4—6), as determined by 72 h HYSPLIT backward air mass trajectories arriving 

at UMBS at 100 m AGL. During these two periods (7/15/2014 12:00 - 7/18/2014 0:00 EST & 

7/23/2014 0:00 - 7/25/2014 0:00 EST), SSA comprised 20 ± 10% (0.06 ± 0.04 µg m-3) and 15 ± 

6% (0.09 ± 0.04 µg m-3) of 0.5 – 2 µm particle mass on average, corresponding to number 

concentrations of 0.03 ± 0.02 and 0.06 ± 0.02 particles cm-3, respectively (Figure 4—5). Elevated 

wind speeds capable of producing SSA (Lewis and Schwartz 2004, Stokes et al. 2013) (5 ± 2 m 

s−1 and 5 ± 2 m s−1, respectively) were present over Hudson Bay when these two air masses crossed 

over the water (Figure 4—5). Outside of these periods, SSA mass contributions were minor 

(average 3 ± 3%; 0.03 ± 0.02 µg m-3), although number concentrations were similar (0.03 ± 0.02 

particles cm-3). Air mass PSCF analysis, in combination with ATOFMS and CCSEM-EDX data, 

suggests that SSA produced over Hudson Bay contributed to atmospheric particle mass 
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Figure 4—3. Cl/Na elemental mole ratio distribution for individual ambient sea spray aerosol 
(SSA), as measured by EDX. Ambient SSA mole ratios were calculated from the atomic weight 
percentages of each element measured by CCSEM-EDX with respect to the 15 elements that were 
analyzed (C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe, Zn).
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Figure 4—4. (Top) Particle source contribution factor (PSCF) maps, with representative 72 h 100 m AGL HYSPLIT backward 
trajectories (black lines) and (Bottom) heights (red lines), associated with (A) SSA and (B) LSA levels observed at UMBS (white circle). 
Imagery adapted from Landsat, NOAA, Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Map data adapted from Google. Copyright 2016. 
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Figure 4—5. (A) Air mass period classification from HYSPLIT modeling and (B) Hudson Bay 
wind speed, with the minimum wind speed necessary for SSA production(Lewis and Schwartz 
2004) denoted with the black dashed line, shown as a bolded line during Hudson Bay influenced 
air mass periods. To account for transport time to the sampling site, wind speed data were offset 
by -48 hours. (C) 12 h time resolution SSA mass fractions and concentrations (0.5 – 2 µm) 
measured by ATOFMS. 
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Figure 4—6. 12 h time resolution SSA upper bound mass fractions and concentrations, along with 
air mass period classification from HYSPLIT analysis. SSA upper bound mass fractions and 
concentrations (0.5 – 2 µm) were measured by ATOFMS using the material density of NaCl (2.16 
g cm-3). 
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concentrations in the upper Midwestern United States. The results presented here represent the 

furthest inland quantification of SSA particle mass contributions by single particle analysis (Bondy 

et al. 2017) and support previous bulk particle measurements that suggested long-range transport 

of SSA >500 km inland (Shaw 1991, Hara et al. 2004, Udisti et al. 2012, Chalbot et al. 2013). 

4.3.2. Identification and Quantitation of Lake Spray Aerosol 

LSA were identified by ATOFMS based on individual particle dual-polarity mass spectra 

consistent with previous LSA studies (Axson et al. 2016), as well as LSA generated in the 

laboratory from freshwater collected from both Lake Michigan and Lake Superior during this study 

(Figures 4—2b & 4—7). Calcium is the highest concentration cation in freshwater from the 

calcareous Great Lakes (Chapra et al. 2012), and both the ambient and laboratory-generated LSA 

were characterized by m/z +40 (Ca+) as the highest intensity positive ion (Figures 4—2b & 4—7). 

Minor inorganic ion peaks included m/z +23 (Na+), +24 (Mg+), +39 (K+), and +56 (CaO+) (Figures 

4—2b & 4—7). The significant presence of organic nitrogen (m/z -26 (CN-)) is consistent with 

mass spectra of LSA generated in the laboratory in this study, and previously, from Lake Michigan 

freshwater (Axson et al. 2016, May et al. 2018). The laboratory-generated LSA mass spectra also 

showed a minor contribution from a nitrate marker at m/z -46 (NO2-). However, the average relative 

peak area ratio of m/z -46 (NO2-) / m/z -26 (CN-) was lower in the mass spectra of individual LSA 

generated in the laboratory from Lake Michigan (1.0 ± 0.4) and Lake Superior (0.2 ± 0.2) 

freshwater (Figure 4—7), compared to the ambient LSA mass spectral ratio (11 ± 5) (Figure 4—

2b). Similar to SSA, the enriched presence of nitrate markers, m/z -46 (NO2-) and -62 (NO3-),(Ault 

et al. 2014) suggests atmospheric processing of ambient LSA particles during transport, as shown 

in laboratory studies of calcite (Sullivan et al. 2009). This result suggests the ambient LSA had 

undergone multiphase reactions, with the formation of nitrate increasing its ratio relative to organic 

nitrogen, during transport inland. Similar to calcite dust aging (Gibson et al. 2006), LSA aging 

could impact particle optical properties and cloud activation efficiencies. Since soil in the region 

is rich in Fe (Cahill 1981), the observed LSA was differentiated from mineral dust (Axson et al. 

2016) based on the lack of iron (m/z +54 (Fe+) (Sullivan et al. 2007)) in the ambient mass spectra 

(Figure 4—2b) and EDX spectra (Figure 4—2d). In addition, the ambient LSA mass distribution 

identified by ATOFMS peaked near 0.7 µm da (Figure 4—2c), consistent with previous 
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measurements of laboratory generated LSA (mass distribution mode of 0.75 µm) (Axson et al. 

2016) and distinct from mineral dust (mass distribution mode >1 µm) (Mahowald et al. 2014). 

CCSEM-EDX analysis further confirmed the identification of LSA particles with 

elemental composition consistent with Lake Michigan and/or Lake Superior freshwater sources 

(Figure 4—2e). As observed previously on the shore of Lake Michigan by Axson et al. (2016), the 

LSA EDX spectra are defined by calcium with abundant carbon and oxygen (Figure 4—2d), due 

to the presence of carbonate in Great Lakes freshwater (Chapra et al. 2012). Ca, Mg, Na, K, C, and 

O were evenly distributed across the individual ambient and laboratory generated LSA particles 

(Figure 4—1). The average ambient LSA Mg/Na mole ratio (1.8 ± 0.5) is consistent with that of 

Lake Michigan (1.72) and Lake Superior (1.88) freshwater (Chapra et al. 2012). Similarly, the 

average ambient LSA K/Na and Ca/Na mole ratios (0.2 ± 0.2; 3 ± 3) were both consistent with the 

corresponding ratios in Lake Michigan (0.13; 3.31) and Lake Superior (0.21; 5.48) freshwater, 

respectively (Chapra et al. 2012). 

 The PSCF trajectory domain of ambient LSA extended to the west over the Great Lakes 

region of the upper Midwestern United States (Figure 4—4). While all air masses during the 

sampling period crossed over Lake Michigan and/or Lake Superior, wind speeds capable of 

producing LSA (> 3.5 m s−1) (Slade et al. 2010, Axson et al. 2016) were present for 68% and 51% 

of this period for each lake, respectively (Figure 4—8). The highest contributions of LSA to 0.5 – 

2 µm PM mass concentrations (6 ± 1%; 0.2 ± 0.1 µg m-3) and number concentrations (0.5 ± 0.3 

particles cm-3) occurred during a period (7/22/2014 0:00 – 7/23/2014 0:00 EST) of air transport 

over Lake Michigan (Figures 4—9 & 4—10) when elevated wind speeds (6 ± 2 m s−1) and wave 

heights (1.0 ± 0.5 m) capable of producing LSA (Slade et al. 2010, Axson et al. 2016) were present 

across Lake Michigan (Figure 4—8). Since this period was also associated with elevated mass 

concentrations of urban pollution aerosols from Milwaukee and Chicago (Gunsch et al. 2018), the 

increase in LSA mass fractions, in comparison to other periods, was not proportional to the 

increase in LSA mass concentrations. During the remainder of the UMBS study (92% of the 

sampling time), the constant presence of lake-influenced air masses and elevated wind speeds 

resulted in a consistent background LSA contribution to 0.5 – 2 µm PM mass concentrations 

(average 3 ± 1%; 0.02 ± 0.01 µg m-3) (Figure 4—9) and number concentrations (0.03 ± 0.03 

particles cm-3).  
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Figure 4—7. Average positive and negative ion single-aerosol mass spectra, with characteristic 
peaks labeled, of aerosol generated in the laboratory from (top) Lake Michigan and (bottom) Lake 
Superior freshwater. 
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Figure 4—8. Air mass period classification from HYSPLIT analysis and Lake Superior and Lake 
Michigan wave heights and wind speeds, with the minimum wind speed necessary for LSA 
production (Slade et al. 2010) denoted with the black dashed line.
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Figure 4—9. (A) Air mass period classification from HYSPLIT modeling and (B) Lake Superior 
and Lake Michigan wave heights, shown as bolded lines during air mass periods influenced by the 
respective lake(s). (C) 12 h time resolution LSA mass fractions and concentrations (0.5 – 2 µm) 
measured by ATOFMS. 
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Figure 4—10. 12 h time resolution LSA upper bound mass fractions and concentrations, along 
with air mass period classification from HYSPLIT analysis. LSA upper bound mass fractions and 
concentrations (0.5 – 2 µm) were measured by ATOFMS using the material density of CaCO3 
(2.71 g cm-3). 
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Inland contributions of LSA were thus determined for the first time, by single particle 

chemical analysis (ATOFMS and CCSEM-EDX) (Figures 4—2 & 4—9). The identification and 

quantification of inland LSA and SSA, and their differentiation from mineral dust, in this study 

further supports the previously demonstrated advantage of single particle measurements 

techniques to overcome complications in the use of ion ratios in bulk methods to accurately 

identify inland contributions of wave breaking particles (Pakkanen 1996, Bondy et al. 2017). 

Combined with previous identification of particles similar in composition to LSA in clouds over 

the Great Lakes region (Lasher-Trapp et al. 2008, Twohy and Anderson 2008) and the known 

participation of SSA in cloud formation (Cochran et al. 2017), the results herein motivate future 

study of the roles of LSA and SSA on inland environments. In particular, the impacts of inland 

LSA and SSA, which reached 0.5 – 2 µm PM number concentrations of 0.5 ± 0.3 particles cm-3 

and 0.06 ± 0.02 particles cm-3, respectively, on atmospheric composition and cloud formation may 

be important in the rural northern Great Lakes region (Chung et al. 2011) where low particle 

number concentrations (<1700 cm-3) are present (VanReken et al. 2015). Clouds are highly 

sensitive to even low concentrations of ice nucleating particles (Ault et al. 2011, Creamean et al. 

2013, Rosenfeld et al. 2014, Brooks and Thornton 2018), which are produced by marine wave 

breaking (DeMott et al. 2016) and present in high concentrations in freshwater (Moffett 2016) and 

aerosols produced from it (Pietsch et al. 2015, Pietsch et al. 2017). Future studies are also needed 

to measure the potential health implications of inland LSA modified by harmful algal blooms 

(HABs) (May et al. 2018). This will improve understanding of the impacts that freshwater wave 

breaking particles have in the upper Midwestern United States (Chung et al. 2011) and other 

regions with large freshwater lakes, such as eastern Africa (African Great Lakes), Canada (Lake 

Winnipeg, Great Bear Lake, Great Slave Lake), and Russia (Lake Baikal, Lake Ladoga, Lake 

Onega). 
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Chapter 5 Multi-Year Study of the Dependence of Sea Salt Aerosol on Wind Speed and Sea 
Ice Conditions in the Coastal Arctic 

 
Reprinted (adapted) with permission from:  

Journal of Geophysical Research: Atmospheres, 121, 9208–9219, 2016.  
DOI:10.1002/2016JD025273. 

Copyright: John Wiley and Sons 

5.1. Introduction 

Rapid sea ice loss is dramatically changing the Arctic surface (Serreze and Stroeve 2015). 

Mean September coverage of Arctic sea ice decreased by -13.3% dec-1 for the period of 1979-2014 

(Serreze and Stroeve 2015), and complete summertime loss of sea ice is expected within 50 years 

(Overland and Wang 2013). In the winter-spring, the Arctic is becoming increasingly dominated 

by first-year sea ice cover (Maslanik et al. 2011). Thinner first-year sea ice is less structurally 

stable and more prone to fracturing, likely resulting in the formation of leads (transient areas of 

open water surrounded by sea ice), as well as more pancake ice (Stroeve et al. 2012). Increasing 

sea salt aerosol production is expected from the newly exposed ocean surface (Struthers et al. 2011, 

Browse et al. 2014). Sea ice loss is also expected to increase the emissions of marine primary 

organic aerosol and dimethyl sulfide, as well as lead to changes in aerosol processing and removal 

in the Arctic boundary layer through changing meteorology (Browse et al. 2014).  

Atmospheric aerosols represent the largest source of uncertainty in global radiative forcing 

predictions (Boucher et al. 2013). An increase in sea salt aerosol emissions will increase Arctic 

aerosol optical depth, increasing the magnitude of aerosol direct radiative forcing (cooling) 

(Struthers et al. 2011). Sea salt aerosols can also indirectly alter radiative forcing by acting as cloud 

condensation nuclei (CCN) (Wise et al. 2009). Simulations by Browse et al. (2014) suggested that 

the CCN response to increased sea salt aerosol from the Arctic Ocean is weak due to efficient 

scavenging of particles and decreased new particle formation from a greater condensation sink. 

However, the predicted CCN response was spatially non-uniform, with coastal Arctic regions 

predicted to have a larger CCN response than the central Arctic Ocean (Browse et al. 2014). 

Further, deposition of sea salt aerosol to the snow surface contributes to springtime atmospheric 
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reactive bromine chemistry and ozone depletion (Pratt et al. 2013). However, due to limited Arctic 

aerosol measurements, the contributions and radiative impacts of sea salt aerosol under changing 

sea ice conditions are uncertain.  

Under open ocean conditions, sea salt aerosol mass concentrations typically increase with 

increasing wind speed (Lewis and Schwartz 2004) and decreasing water temperature (Salter et al. 

2015). Airborne sea salt aerosol particles are formed by two distinct processes when bubbles on 

the seawater surface burst (Blanchard and Woodcock 1957). The fragmentation of the top of the 

bubble membrane produces film drops. After the bubble membrane top bursts, droplets of water 

are flung upward from the bubble bottom, producing jet drops. Particles result from film and jet 

drops after evaporation, with film drops mainly resulting in submicron particles and jet drops 

generally resulting in supermicron particles (O'Dowd et al. 1997). Over the open ocean, the bubble-

bursting production of sea salt aerosol is driven by wind-induced wave breaking that entrains air 

underneath the ocean surface. However, there is still uncertainty regarding the mechanism of 

aerosol production from leads. Nilsson et al. (2001) and Leck et al. (2002) measured wind-

dependent number fluxes of particles, likely produced through the bubble-bursting mechanism, 

from open leads at a rate ~10 times less than the open ocean, which was attributed to the decreased 

fetch over the open leads.  However, Nilsson et al. (2001) found that an additional particle emission 

mechanism was needed to explain the particle number fluxes at low wind speeds. Studies 

conducted under lower wind speed conditions have proposed emission mechanisms, including the 

transport of bubbles to the surface by increased turbulence caused by supercooling conditions 

(Grammatika and Zimmerman 2001), gas released from melting ice (Leck and Bigg 1999, Nilsson 

et al. 2001), phytoplankton respiration (Johnson and Wangersky 1987), and a surface heat flux 

driven mechanism (Norris et al. 2011). 

Sea salt aerosol is a significant contributor to Arctic particle mass (Quinn et al. 2002). 

Given the impacts of sea salt aerosol on climate and the changing sea ice surface, it is imperative 

to evaluate the contribution of sea salt aerosol produced from leads. Previous Arctic spring (Scott 

and Levin 1972, Radke et al. 1976) and summer (Leck and Persson 1996, Leck and Bigg 1999, 

Nilsson et al. 2001, Leck et al. 2002, Held et al. 2011, Held et al. 2011, Leck and Svensson 2015) 

short-term intensive studies measured the direct flux of particles from leads over the pack ice. 

However, significant uncertainty remains regarding the extent leads currently influence Arctic 

particle mass concentrations over multiple seasons and at coastal locations. Therefore, to build on 
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previous work on the production of aerosols from leads and to probe the wind dependence of sea 

salt aerosol production from Arctic leads across multiple seasons and years, we present an 

examination of sea salt concentrations near Barrow, Alaska under varying local sea ice and wind 

speed conditions from April 2006 to December 2009.  

5.2. Methods 

5.2.1. Meteorology 

Wind speed and wind direction were monitored with 1 min resolution at the NOAA Barrow 

Observatory (71° 32′ 30″ N, 156° 61′ 14″ W) at 10 m above ground. The meteorological data used 

in this study can be found on the NOAA Barrow, Alaska Observatory website 

(http://www.esrl.noaa.gov/gmd/obop/brw/). Given that wind speeds ≥ 4 m s-1 over open ocean are 

typically associated with the formation of bubbles responsible for sea salt aerosol production 

(Monahan and O'Muircheartaigh 1986), wind speed data were divided into three average wind 

speed categories: 1) “low” < 4 m s-1 , 2) “moderate” 4-7 m s-1 , and 3) “high” >7 m s-1. As there 

are no direct measurements of wind speed over the adjacent Arctic Ocean available, it is assumed 

that local measured wind speed is representative of the wind speed over the nearby sea ice and 

open water. The local wind speeds observed in this study are consistent with previous observations 

of Arctic wind speeds over sea ice (Tjernström et al. 2012), with low or moderate wind speeds 

present for 22% and 62% of supermicron, respectively, and 29% and 48%, respectively, of 

submicron particle sampling periods.  

5.2.2. Sea Ice Radar 

The coverage of local near-shore sea ice at Barrow, AK was determined by examination of 

radar backscatter maps (http://seaice.alaska.edu/gi/data/barrow_radar) produced from a Furuno 10 

kW, X-band marine radar, which provides high spatial resolution sea ice imaging during dark 

periods (Figure 5—1). The radar operated atop a building in downtown Barrow (71° 17′ 33″ N, 

156° 47′ 17″ W) 22.5 m above sea level, with a range of up to 11 km to the northwest 

(Druckenmiller et al. 2009, Eicken et al. 2011). While the radar only covered sea ice conditions to 

the northwest in this analysis, any lead activity observed within the 11 km range analyzed   
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Figure 5—1. Representative radar backscatter maps of 
local near-shore sea ice at Barrow, AK. The yellow 
arrow indicates direction of north, the aerosol sampling 
location is marked by a yellow circle, and the radar 
backscatter location is marked with a yellow square. 
Land is colored green, white is indicative of sea ice, and 
black is shown for open water. Sea ice conditions 
include: (A) full sea ice coverage, indicated by the full 
coverage of the white signal indicative of sea ice, (B) 
leads present, identified from the area of dark signal in 
the upper left indicative of open ocean present in the 
middle of the white signal indicative of sea ice, and (C) 
open ocean, identified from the full coverage of the 
dark signal indicative of open ocean.  
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in this study was assumed to reflect lead activity along the coast to the southwest and northeast, as 

observed frequently by Mahoney et al. (2014). Radar backscatter maps were manually analyzed to 

divide the observed local sea surface into three categories: 1) full sea ice cover present, when local 

sea ice cover was complete and no areas of exposed ocean surface were present, 2) leads present, 

when local sea ice cover with areas of exposed ocean surface was present, 3) open ocean, when no 

major local sea ice cover was observed on the radar map (Figure 5—1).  

5.2.3. Aerosol Chemical Composition 

Atmospheric particles were sampled at the NOAA Barrow Observatory 10 m above the 

surface from April 2006 to December 2009. Real-time wind direction was used to sample only 

from the clean air sector (0˚-129˚) to avoid influence from local pollution (Quinn et al. 2002). The 

Beaufort and Chukchi Seas are 2-25 km upwind of the aerosol sampling site in the clean air sector, 

so all air sampled is assumed to be of direct marine origin. A Berner type multijet cascade impactor 

operating at a sample flow rate of 30 L min-1 with 50% cut points at aerodynamic diameters (D50) 

of 10 µm and 1 µm was used to collect particles with aerodynamic diameters < 1 µm (referred to 

as submicron particles) and 1-10 µm (referred to as supermicron particles). Particles with 

diameters < 1 µm passed through an impactor to a rotating filter carousel housing 8 Millipore 

Fluoropore filters (1.0 mm pore size). For every revolution of the rotating submicron filter 

carousel, 7 filters were sampled individually, with sampling time varying depending on season and 

particle loadings, and one filter, exposed to ambient air for 10 s, served as a blank. Particles with 

aerodynamic diameters between 1 and 10 µm were collected on Tedlar films over the course of 

one revolution of the rotating submicron filter carousel, with one additional film collected as a 

blank for every supermicron sample collected. To minimize bounce of large particles onto 

downstream submicron filters, a 12 mm grease cup coated with silicone grease and a film coated 

with silicone spray were placed on the 10 µm jet (Quinn et al. 2002). Sample air was heated to 

maintain a stable reference relative humidity (RH) of 40% despite changes in ambient RH. The 

stable sampling RH allows for a constant instrumental size segregation, and all measurements are 

reported at the reference RH (Quinn et al. 2002). Submicron and supermicron particle sampling 

periods ranged from 1-11 days and 5-35 days, respectively. After collection, sealed filters and 

films were shipped to the National Oceanic and Atmospheric Administration (NOAA) Pacific 

Marine Environmental Laboratory for analysis. 
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For inorganic ion analysis, filters and films were first wetted with 1 mL of spectral grade 

methanol. 5 mL of distilled deionized water was then added to the solution, and the samples were 

extracted by sonicating for 30 min. Concentrations of major cations (Na+, NH4+, K+, Mg2+, Ca2+) 

and anions (CH3SO3-, Cl-, Br-, NO3-, SO42-, C₂O₄2-) extracted from each submicron and 

supermicron particle sample were measured by ion chromatography (Quinn et al. 1998). Details 

of the inlet, sampling procedures, and chemical analyses can be found in Delene and Ogren (2002) 

and Quinn et al. (2002). Based on the aerosol sampling flow rate (30 L min-1) and typical sampling 

time, the detection limits calculated as two times the standard deviation of the blank for the major 

sea salt ions of interest, Na+ and Cl-, were both 0.0002 µg m-3. For periods that were below the 

detection limit, a value of half the detection limit (0.0001 µg m-3) was substituted for calculations. 

Periods below the detection limit constituted 0% of supermicron and 12% submicron sampling 

periods for Na+ and 3% of supermicron and 20% submicron sampling periods for Cl-. Na+ mass 

concentration is a conservative tracer for sea salt mass (Legrand et al. 2016) and will be discussed 

henceforth in the place of sea salt mass to avoid biases from varying chloride depletion. While sea 

spray aerosol is a complex mixture of inorganic salts and organic compounds, the distribution of 

which alters the chemical and physical properties of the particle, sea spray aerosol is primarily 

(>60%) composed of inorganic salt (Quinn et al. 2015). All Na+ is assumed to be derived from 

seawater (Quinn et al. 2002), as Sirois and Barrie (1999) showed that the majority of Na+ in the 

Arctic is associated with sea salt aerosol. Error was calculated as the standard error of the mean 

and is not shown for periods when only one sampling period fell into the given sea surface and 

wind speed category.  

5.3. Results & Discussion 

5.3.1. Sea Salt Mass Concentrations 

A clear dependence of supermicron (1-10 µm) Na+ (sea salt) mass concentrations on the 

combination of local sea ice coverage and wind speed was observed (Figure 5—2a). There was 

little difference in the supermicron Na+ mass concentrations observed for periods with no leads 

present and low (< 4 m s-1) (0.04 ± 0.01 µg m-3) or moderate (4-7 m s-1) (0.03 µg m-3) wind speeds 

compared to periods with leads and low wind speeds (0.026 ± 0.009 µg m-3). However, for periods 

characterized by moderate wind speeds, supermicron Na+ mass concentrations were higher when 

leads were present (0.11 ± 0.03 µg m-3) compared to when full sea ice cover was  
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Figure 5—2. Average mass concentrations of Na+ for the supermicron (1-10 µm) (A), submicron 
particle (<1 µm) (B) size ranges, and (C) total respectively, and (d) the fraction of the total Na+ 
mass that was observed in the supermicron size range, separated into 9 bins based on local sea ice 
extent and wind speed. Sea ice extent categories include: full ice, leads present, and open water.  
Wind speed categories include: low (<4 m s-1), mid (4-7 m s-1), and high (>7 m s-1). All error 
bars were calculated as the standard error of the mean, and the numbers above each category 
indicate the number of samples in that category.   
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present (0.03 µg m-3). Unfortunately, no supermicron sampling periods of full sea ice coverage 

with high wind speeds (>7 m s-1) were present for comparison to periods of leads present with high 

wind speeds.  

 When leads were present, supermicron Na+ mass concentrations were 4 and 10 times 

greater for periods with moderate (0.11 ± 0.03 µg m-3) and high (0.3 ± 0.1 µg m-3) wind speeds, 

respectively, in comparison to low wind speeds (0.03 ± 0.01 µg m-3) (Figure 5—2a). This is 

consistent with wind-driven sea salt aerosol number fluxes from leads observed directly by Nilsson 

et al. (2001) and Leck et al. (2002). Local leads, when observed by the sea ice radar, are the most 

likely source for the wind dependent supermicron Na+ mass observed in this study, as the lifetime 

of supermicron aerosols in the boundary layer is typically < 12 hours (Williams et al. 2002). The 

short lifetime of these supermicron particles limits the distance from which the majority of these 

particles could have originated, for the wind speeds observed, to a scale of a few hundred 

kilometers, which would fall within the area of Arctic sea  

ice coverage in the winter-spring and for which the sea ice radar is representative of ice fracturing 

conditions (Mahoney et al. 2014).   

The highest supermicron Na+ mass concentrations are expected for open ocean and high 

wind speeds, as sea salt aerosol production generally increases with increasing wind speed and 

fetch (Lewis and Schwartz 2004). While no supermicron particle sampling periods occurred for 

open ocean and low wind speeds, periods of open ocean with moderate wind speeds showed 

supermicron Na+ mass concentrations (0.5 ± 0.1 µg m-3) 5 times greater than for periods when 

leads were present with moderate winds. Previously, sea salt aerosol number fluxes over leads 

were measured to be 10 times smaller than those over the open ocean at similar wind speeds, an 

observation which  was attributed to the smaller fetch and area of exposed water (Nilsson et al. 

2001, Leck et al. 2002). Therefore, these long-term measurements show that, while a smaller 

source than open water, leads are a significant wind-dependent source of supermicron sea salt 

particle mass in the Arctic. The supermicron Na+ mass concentration for the one period of open 

ocean with high wind speeds (0.3 µg m-3) was slightly lower than for periods of open ocean with 

moderate winds (0.5 ± 0.1 µg m-3), contrary to that expected based on the dependence of sea salt 

aerosol mass over open ocean on wind speed (Lewis and Schwartz 2004). Only one open ocean 

aerosol sampling period was characterized by sustained high winds, imparting uncertainty in the 

trend that can be attributed to the small sample size and natural variability in meteorological 
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conditions that would  impact sea salt aerosol concentrations through deposition and marine 

boundary layer mixing (Lewis and Schwartz 2004). However, it is important to note that despite 

these confounding factors there are statistically significant trends overall in the dependence of 

supermicron sea salt concentrations on local sea ice extent and local wind speed. 

There was no overall dependence of submicron (<1 µm) Na+ mass concentrations on local 

sea ice coverage and wind speed (Figure 5—2b). Unlike supermicron Na+ mass concentrations, 

submicron Na+ mass concentrations did not increase substantially when leads were present. The 

average submicron Na+ mass concentration when leads were present was 0.25 ± 0.03 µg m-3, 

compared to 0.21 ± 0.06 µg m-3 when leads were not present. In further contrast to supermicron 

Na+ mass concentrations, a wind speed dependence in submicron Na+ mass concentration was not 

observed when leads were present (Figure 5—2b). In fact, open ocean periods with low or 

moderate wind speeds resulted in the lowest observed submicron Na+ mass concentrations (0.03 ± 

0.02 µg m-3 and 0.11 ± 0.03 µg m-3, respectively). The lack of correlation of submicron Na+ mass 

concentrations with local sea ice coverage and wind speed is most likely due to due to the longer 

atmospheric residence time of submicron sea salt particles, compared to supermicron sea salt 

particles (Gong et al. 2002, Williams et al. 2002). The shorter residence time of supermicron sea 

salt aerosol decreases the influence of long range transport, which significantly influenced the 

observed submicron sea salt aerosol, as discussed in section 3.2. The long range transport of 

submicron sea salt aerosol produced from high latitude open ocean sources to the Arctic could 

therefore have a significant influence on submicron Na+ mass concentrations, as previously 

concluded (Sturges and Barrie 1988, Barrie and Barrie 1990, Barrie et al. 1994, Sirois and Barrie 

1999, Quinn et al. 2002).  

During periods of full sea ice cover and open ocean, submicron Na+  mass concentrations 

exhibited a correlation with wind speed. For full sea ice periods, submicron Na+ mass 

concentrations increased from low (0.19 ± 0.05 µg m-3) and moderate (0.2 ± 0.1 µg m-3) to high 

wind speed (0.3 µg m-3), although the increase from moderate to high wind speed was not 

statistically significant, in part due to the availability of only one sampling period at high wind 

speed for comparison (Figure 5—2b). Under full ice conditions, a non-wave breaking source of 

Na+, as discussed in section 3.4, could potentially contribute, in addition to long-range transport, 

as discussed in section 3.2. For open ocean periods, submicron Na+ showed a greater dependence 

on local meteorology. Submicron Na+ mass concentrations increased from low (0.03 ± 0.01 µg m-
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3) to moderate (0.11 ± 0.03 µg m-3) and high (0.2 ± 0.1 µg m-3) wind speeds. However, the increase 

from moderate to high wind speeds was not statistically significant. The higher sea salt 

concentrations under these open ocean conditions, along with the decrease in the fraction of aged 

submicron sea salt periods discussed in Section 3.2, suggests the influence of submicron sea salt 

production from local wind-driven wave breaking processes.  

Overall, the supermicron fraction of the total Na+ mass concentration increased with 

decreasing sea ice coverage and, in the presence of leads, increasing wind speed (Figure 5—2c 

and 2—2d). Supermicron Na+ mass concentrations comprised less than 20% of the total Na+ mass 

concentrations for periods with full sea ice cover and with leads and low winds. In the presence of 

leads, the supermicron Na+ mass fraction increased with increasing wind speed. At moderate wind 

speeds the supermicron Na+ mass concentration comprised 40% of the total Na+ mass concentration 

for periods with leads, ~4 times greater than periods with leads and low wind speeds. Then, for 

periods with leads and high wind speeds, the supermicron Na+ mass fraction increased to 50% of 

the total Na+ mass concentration. Finally, the supermicron Na+ mass fraction was the most 

dominant for periods with open ocean, comprising 60-80% of the total Na+ mass concentration. 

The dependence of supermicron Na+ mass fraction on local sea ice coverage and wind speed 

highlights that the supermicron sea salt aerosol population is more directly influenced by local sea 

ice coverage and wind speed than the submicron sea salt aerosol population, as expected due to 

the longer atmospheric residence time of submicron sea salt particles (Gong et al. 2002, Williams 

et al. 2002). 

5.3.2. Contributions of Aged Sea Salt Aerosol 

Cl-/Na+ molar ratios were calculated to investigate sea salt aerosol lifetime and chemical 

processing, a measure of the influence of long-range transport. Sea salt aerosol retains the Cl-/Na+ 

molar ratio of seawater (1.16) when introduced into the atmosphere (Keene et al. 1986). This ratio 

is altered in the atmosphere through the displacement of chlorine through reaction with acidic 

gases, such as H2SO4, or aqueous oxidation of SO2(g) (Keene et al. 1998). The extent of aging is 

thus dependent on atmospheric residence time, as well as the original particle mass and acidic 

precursor concentrations in the atmosphere (Leck et al. 2002). Previous work has shown that fine 

sea salt aerosol (aerodynamic diameter < 2.5 µm) are more likely to have greater chloride depletion 

than those of larger diameter coarse (aerodynamic diameter > 2.5 µm) sea salt aerosol (Barrie et 

al. 1994, Hara et al. 2002, Leck et al. 2002). In addition, previous work has shown sea salt aerosols 
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exhibit greater depletion following polar sunrise when production of sulfuric acid from the 

oxidation of SO2(g) occurs in the Arctic troposphere (Sirois and Barrie 1999). Using Cl-/Na+ molar 

ratios (Figure 5—3), fractions of sampling periods dominated by “aged” sea salt were calculated 

for each sea ice and wind speed category (Figure 5—4). “Aged” sea salt was defined as having a 

Cl- enrichment factor < 0.75. Cl- enrichment factor is determined by dividing the Cl-/Na+ ratio of 

the aerosol sample by the Cl-/Na+ ratio of bulk seawater (Newberg et al. 2005). Therefore an 

enrichment factor < 0.75 corresponds to the depletion of 25% or more of Cl- from sea salt aerosol 

and represents particles that have undergone significant atmospheric processing. Sampling periods 

with a Cl-/Na+ enrichment factor > 0.75 were considered to consist primarily of “fresh” sea salt 

produced from local sources. 

The average fraction of aged submicron sea salt periods (0.74 ± 0.07) across all local sea 

ice coverage and wind speed categories was higher than the fraction of aged supermicron sea salt 

periods (0.39 ± 0.06) (Figure 5—4). The median Cl-/Na+ molar ratios for submicron and 

supermicron sea salt aerosol sampling periods also exhibited a dependence on local sea ice 

coverage and wind speed (Figure 5—5). Overall, the median Cl-/Na+ molar ratio of submicron sea 

salt periods (0.62) was lower than the median Cl-/Na+ molar ratio for supermicron sampling 

periods (0.86) (Figure 5—5). This indicates that the atmospheric processing undergone by the 

submicron sea salt resulted in a greater Cl- depletion than the supermicron sea salt, as expected 

since smaller particles have a longer residence time (Williams et al. 2002) and a higher surface 

area to volume ratio (McInnes et al. 1994). 

The highest fractions (0.7-0.8) of aged sea salt sampling periods were observed when full 

sea ice cover with low and moderate wind speeds were present, consistent with the lack of a local 

sea salt source (Figure 5—6). The fractions of aged submicron and supermicron sea salt periods 

when leads or open ocean were present with low wind speed were similarly high (0.6-0.8). That 

some of the highest fractions of aged sea salt were observed under low wind conditions across all 

sea ice coverage categories indicates that the sea salt observed during low wind periods, regardless 

of sea ice coverage, experienced increased atmospheric processing, likely due to long range 

transport.  

For periods with leads present, the fraction of aged submicron and supermicron sea salt 

periods, respectively, decreased from low (0.77 ± 0.06; 0.7 ± 0.2) to moderate (0.74 ± 0.05; 0.39  
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Figure 5—3. Cl- concentration vs. Na+ concentration for supermicron (top) and submicron 
(bottom) particle samples divided into categories based on sea ice conditions and wind speed. The 
Cl-/Na+ ratio of ocean water is shown in the solid black line, with points falling below the line 
representing periods where atmospheric Cl- depletion has occurred (Keene et al. 1986). The extent 
of Cl- depletion is denoted by the dotted dark grey line representing 25% depletion and the dashed 
light grey line representing 75% depletion. 
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Figure 5—4. Median Cl-/Na+ molar ratios for the submicron (<1 µm) (S), and supermicron (1<10 
µm) (B) particle size ranges separated into 9 bins based on local sea ice extent and wind speed, 
with the Cl-/Na+ ratio of ocean water shown in the dashed black line. Sea ice extent categories 
include: full ice, leads present, and open water.  Wind speed categories include: low (<4 m/s), mid 
(4-7 m/s), and high (>7 m/s).  
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Figure 5—5. The fraction of sampling periods with a Cl- enrichment factor < 0.75, corresponding 
to aged sea salt for supermicron (A) and submicron (B) size ranges, respectively, divided into 
categories based on sea ice conditions and wind speed.  
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± 0.09) to high wind speed (0.64 ± 0.06; 0.1 ± 0.1), consistent with greater contributions from a 

wind-dependent local sea salt aerosol source (Figure 5—5). However, this potential decrease in 

the fraction of aged submicron sea salt periods with increased wind speed, when leads were 

present, was partly within error. When open ocean was present, the fraction of aged submicron sea 

salt periods decreased, partly within error, with increasing wind speed (low wind speed = 0.8 ± 

0.2; moderate wind speed = 0.75 ± 0.07; high wind speed = 0.3 ± 0.1), again consistent with a 

wind-dependent local sea salt aerosol source. These trends in sea salt aging are consistent with 

local sea salt aerosol production increasing with decreasing local sea ice coverage and increasing 

wind speed. This further supports wind-driven sea salt aerosol production, dominated by 

supermicron particles, from leads. 

5.3.3. Difference in Particle Production from Leads versus Open Ocean 

In addition to differences in particle lifetime between submicron and supermicron sea salt 

aerosol (Williams et al. 2002), differences in the production mechanisms of submicron and 

supermicron sea salt aerosol from leads likely also contributed to the observed trends in aged 

fractions and sea salt mass fractions. Leck et al. (2002) and Nilsson et al. (2001) hypothesized that, 

compared to open ocean production, film drop particle production from leads depends less on wind 

speed than jet drop particle production. As a result, the sea salt aerosol size distribution over pack 

ice is dominated by a larger particle diameter lognormal mode at ~2 µm, while over open ocean, 

a smaller particle diameter lognormal mode centered at 100 nm dominates (Nilsson et al. 2001). 

This is consistent with the lognormal size distribution of sea salt aerosol resulting from film and 

jet drops centered at ~100-200 nm and ~1-2 µm dry diameters, respectively, measured by O'Dowd 

et al. (1997). Thus, the larger contribution of fresh supermicron sea salt, compared to submicron 

sea salt, observed during periods with leads and moderate to high winds (Figure 5—5) is consistent 

with the hypothesis that jet drops are the dominant production mechanism of sea salt aerosol from 

leads. Additionally, the increased presence of smaller particles over open ocean observed by 

Nilsson et al. (2001) is evident in this study by the increased presence of fresh submicron sea salt 

during periods of open ocean and high wind speeds (Figure 5—5). These results therefore suggest 

that the differences in wind driven production of sea salt aerosol from leads, compared to open 

ocean, shifts the mass distribution of sea salt aerosol in the Arctic towards larger sizes when leads 

were present. This could impact radiative forcing and cloud processes in the Arctic as CCN 

efficiency is size dependent (Dusek et al. 2006).  
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5.3.4. Non-Wave Breaking Particle Sources 

 Sea salt aerosol production from local leads or open ocean appears to be the dominant 

contributor to sea salt mass concentrations in this study. However, submicron sea salt mass 

concentrations, sampled under conditions where local sea salt aerosol production are not expected 

[e.g., 0.21 ± 0.06 µg m-3 when full sea ice cover was present], were of equal to or greater than 

those from other categories where local sea salt production are expected (e.g., 0.12 ± 0.03 µg m-3 

when open ocean was present). This suggests that there were sea salt aerosol sources even when 

no exposed ocean surface was present (Figure 5—2b). Frost flowers, highly saline ice crystals 

grown on rapidly freezing open leads, are a potential source for wind-driven sea salt aerosol 

production when no open ocean is present (Rankin et al. 2000). SO42-/Na+ molar ratios were 

calculated to determine the potential contribution of wind-blown frost flowers to the observed SSA 

mass concentrations. The SO42-/Na+ molar ratio of frost flowers in Barrow, AK was previously 

determined to be largely below 0.02 due to the precipitation of mirabilite (Na2SO4) at low 

temperatures (Douglas et al. 2012). In comparison, SO42-/Na+ ratios for fresh seawater and fresh 

SSA are ~0.06 (Keene et al. 2007). Therefore, the fractions of sampling periods with a SO42-/Na+ 

molar ratio < 0.02, suggesting possible significant frost flower aerosol influence, were calculated, 

as show in Figure 5—6. Very few sampling periods were characterized by these ratios. Sulfate-

depleted periods were only observed for supermicron and submicron sampling periods, 

respectively, with leads present and moderate (0.03 ± 0.04; 0.02 ± 0.02) to high (0.1 ± 0.2; 0.02 ± 

0.02) wind speeds (Figure 5—6). The presence of periods with SO42-/Na+ molar ratios < 0.02, as 

well as increased wind speed, is possibly indicative of aerosolized frost flowers from newly 

forming sea ice (Rankin et al. 2000). However, the increase in the fraction of potential frost flower 

influenced supermicron periods from low to moderate and high wind speeds when leads were 

present is not statistically significant, and the fraction of periods (0.02-0.1) is relatively low. 

Therefore, overall, the influence of wind-blown frost flowers on the SSA mass concentrations in 

this study was likely minor, and wave-breaking represents a greater influence on the local aerosol. 

Sulfate isotope analysis would be necessary to fully determine the influence of frost flowers, as 

anthropogenic sulfates can mask the sulfate depleted frost flower sea salt (Norman et al. 1999, 

Seguin et al. 2014).  
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Figure 5—6. The fractions of sampling periods with SO42-/Na+ < 0.02, potentially indicative of 
aerosolized frost flowers, for supermicron (A) and submicron (B) particle size ranges, respectively, 
divided into categories based on sea ice conditions and wind speed. 
  



104 
 

 High winds can also loft saline snow particles, which are suggested to form aerosols by 

sublimation (Yang et al. 2008, Lieb-Lappen and Obbard 2015). The increase in submicron Na+ 

mass concentrations from low wind speed (0.19 ± 0.05 µg m-3), to moderate wind speed (0.2 ± 0.1 

µg m-3), to high wind speed (0.3 µg m-3) for periods with full sea ice cover was not also observed 

in the supermicron Na+ mass concentrations. Therefore, additional detailed field measurements of 

aerosol size and chemical composition are required to examine the potential size-dependent 

production of aerosols from blowing snow. However, this increase in submicron Na+ mass 

concentration was within error. In addition, the Cl-/Na+ ratio of blowing snow in Barrow, AK is 

expected to be similar to the ocean water ratio (Jacobi et al. 2012), such that any fresh sea salt 

observed during full ice periods can potentially be attributed to this source. Therefore, with less 

than 30% of the full sea ice cover submicron and supermicron sampling periods characterized by 

fresh sea salt, the contribution from blowing snow production to the observed Na+ mass 

concentrations is likely minor with transported sea salt aerosol representing a greater contribution. 

5.3.5. Seasonality of Sea Salt Aerosol Production 

 The Arctic sea ice coverage undergoes seasonal changes, with growth during winter, loss 

during summer, and pack ice movement due to winds and currents (Mahoney et al. 2014). In this 

study, particle sampling periods with local full sea ice cover occurred during the months of 

November through June (Figure 5—7). For these months, 11-36% and 0-25% of all submicron 

and supermicron particle sampling periods, respectively, corresponded to local full sea ice 

coverage. For Barrow, AK, Quinn et al. (2002) previously observed a winter maximum in 

submicron sea salt aerosol, attributed to long-range transport from high-latitude regions of the 

Pacific and Atlantic Oceans with seasonally high winds. This is consistent with the observations 

of the highest fractions of aged sea salt and submicron Na+ mass concentrations during sampling 

periods with full sea ice cover, suggesting that the winter sea salt aerosol population had the longest 

transport time from its source. As expected, open ocean near Barrow was observed between July 

and November (Figure 5—7). The minimum fractions of aged sea salt and maximum supermicron 

Na+ mass concentrations were observed during these periods of local open ocean, suggesting the 

sea salt aerosol population during summer had the shortest transport time from its source. The 

lower particle deposition velocity, and resulting longer particle lifetime, over sea ice compared to 

over open ocean in the Arctic may also have contributed to the 
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Figure 5—7. Fractions of supermicron and submicron sampling periods in the three local sea 
surface categories as a function of month. 
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higher fraction of aged sea salt and higher submicron Na+ mass concentrations during sampling 

periods with full sea ice cover compared to periods of local open ocean (Nilsson and Rannik 2001). 

Nearby leads were observed to be present between October and July and were the dominant sea 

ice category over the entire study (Figure 5—7). Supermicron particle sampling periods with leads 

present comprised 50-91% of the supermicron particle sampling periods months of October to 

July. Submicron particle sampling periods with leads present comprised 64-91%, and 5%, of 

submicron particle sampling periods November to July, and October, respectively. This suggests 

that sea salt aerosol production from leads currently impacts sea salt aerosol mass concentrations, 

especially in the supermicron particle size range, in the Arctic atmosphere throughout the majority 

of the year.  

5.4. Conclusions 

 This three-year study at Barrow, AK allowed a comprehensive investigation into the 

influences of sea ice coverage and wind speed on sea salt mass concentrations in the coastal Arctic. 

Wind-driven production of sea salt aerosol from leads contributes significantly to sea salt aerosol 

mass concentrations in the Arctic, but to a lesser extent than wind-driven production of sea salt 

aerosol from open ocean. This is consistent with previous short-term summertime number flux 

measurements of sea salt aerosol over open leads, where sea salt aerosol emissions were ~10 times 

smaller than the open ocean (Nilsson et al. 2001, Leck et al. 2002). The influence of sea salt aerosol 

production from open leads was most apparent in the supermicron size range, as evidenced by the 

strong dependence on wind speed of supermicron sea salt mass concentrations, which increased 

by a factor of 10 from periods with low wind speed to periods with high wind speeds, when leads 

were present. The increase in supermicron Na+ mass concentration from 0.035 ± 0.007 µg m-3, 

when leads were not present, to 0.12 ± 0.02 µg m-3 when leads were present, provides further 

evidence of the influence of sea salt aerosol production from leads. There was evidence of wind-

driven submicron sea salt production from local leads, but submicron sea salt, depleted in chloride, 

from long range transport comprised the majority (~70%) of the submicron sea salt mass (Figure 

5—3). The influence of long range transport was greatest when local sea salt aerosol production 

would not be expected, including periods of low winds and full sea ice cover. 

 

This improves our knowledge of complex atmosphere-sea ice feedbacks (Shepson et al. 

2012). Supermicron sea salt aerosol production from leads could increase direct radiative forcing, 
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as supermicron sea salt can contribute significantly to scattering in the remote marine boundary 

layer (Quinn et al. 1998). This supermicron sea salt aerosol could also impact indirect radiative 

forcing and cloud properties as giant CCN (2 – 10 µm), which can induce the formation of larger 

cloud droplets and accelerate precipitation in the presence of smaller particles (Yin et al. 2000). 

The CCN response to supermicron sea salt aerosol produced from leads may be reduced by the 

efficient removal of large particles in the highly scavenging nature of the Arctic atmosphere, 

particularly in summer (Browse et al. 2012). Supermicron sea salt aerosol emissions from leads 

would also increase the atmospheric condensation sink, which is predicted to suppress particle 

nucleation from dimethyl sulfide and reduce total CCN concentrations (Browse et al. 2014). 

Increased emissions of supermicron sea salt aerosol from leads thus plays an important role in 

controlling the CCN response to changes in sea ice (Browse et al. 2014). Supermicron sea salt 

aerosol could also alter snowpack and atmospheric halogen photochemistry, and therefore 

atmospheric oxidation, through heterogeneous reactions (Simpson 2005). The impacts of wind 

driven production of sea salt aerosol from leads could be particularly evident in winter and early 

spring when sea ice coverage is at its maximum and submicron sea salt mass concentrations are 

typically higher than supermicron sea salt mass concentrations due to a lack of local open ocean 

source (Quinn et al. 2002). Given decreasing multi-year sea ice extent and increasing ice fracturing 

(Stroeve et al. 2012), wind-driven production of supermicron sea salt aerosol from leads could 

therefore increase the supermicron sea salt aerosol mass fraction in the Arctic in the winter-spring, 

changing the annual contributions of sea salt aerosol to the atmosphere. In addition, lower particle 

scavenging efficiency and very stable thermal stratification in the boundary layer in the Arctic 

winter and early spring (Sirois and Barrie 1999) may further increase the atmospheric sea salt mass 

burden (Browse et al. 2012). To fully understand the influence of sea salt aerosol produced from 

leads, measurements of sea salt aerosol concentrations with higher time resolution must be 

combined with sea ice coverage measurements that take into account a larger area. Furthermore, 

to understand the long-term impacts of changing sea ice on the Arctic, decadal comparisons 

between sea ice conditions and sea salt aerosol are necessary.  
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Chapter 6 Polar Plunge: Semester-Long Snow Chemistry Research in the General 
Chemistry Laboratory  
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6.1. Introduction 

 Concern has grown in the past decade in the science education community regarding the 

number of students who leave science, technology, engineering, and math (STEM) majors, 

especially among underrepresented minorities (Griffith 2010, Graham et al. 2013, Lewis 2014, 

Shedlosky-Shoemaker and Fautch 2015), by their second year of undergraduate education (Chen 

2013). In response, introductory first- and second-year science courses have incorporated 

pedagogical techniques to increase student motivation and positive attitudes towards a subject 

(Williams and Bramwell 1989, Nagda et al. 1998, Russell et al. 2007, Canaria et al. 2012). The 

American Chemical Society Committee on Professional Training (ACS-CPT) (American 

Chemical Society 2015) advocates for incorporation of research into undergraduate chemistry 

curriculum to establish the relationship between content and the real-world (Kember et al. 2008, 

Williams and Williams 2011). In response, many introductory and upper level chemistry courses 

have integrated research (Williams and Bramwell 1989, Kharas 1997, Ford et al. 2008, Carpenter 

and Pappenfus 2009, Richter-Egger et al. 2010, Tomasik et al. 2014). Recently, course-based 

undergraduate research experiences (CUREs), where whole classes of students address a research 

question (Auchincloss et al. 2014, Chase et al. 2017), have been implemented in biological science 

courses (Lopatto et al. 2014, Bakshi et al. 2016, Kowalski et al. 2016, Rodenbusch et al. 2016), as 

well as introductory (Clark et al. 2016, Chase et al. 2017) and upper level chemistry courses (Kerr 

and Yan 2016). Compared to traditional undergraduate research experiences, in which 

undergraduates work one-on-one with a research mentor, CUREs offer the ability to scale up the 

research experience of a single professor’s (principal investigator’s, PI’s) research group to involve 

more students (Auchincloss et al. 2014). The CURE format is a promising means for expanding 
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undergraduate involvement in chemistry research to a broader population and with a lower demand 

on resources (Bangera and Brownell 2014, Linn et al. 2015). 

 The integration of environmental topics in the classroom can provide a connection between 

the undergraduate chemistry curriculum and the natural world (Kegley and Stacy 1993, Swan and 

Spiro 1995, Mihok et al. 2006, Bachofer 2008, Richter-Egger et al. 2010, Robelia et al. 2010, 

Tomasik et al. 2013, Tomasik et al. 2014). This has previously been accomplished through the 

incorporation of experiments with environmental themes into pre-existing courses (Sinniah and 

Piers 2001, Salido et al. 2003, Bachofer 2008, Tomasik et al. 2013) and development of courses 

with environmental themes (Kegley and Stacy 1993, Tabbutt 2000, Mihok et al. 2006, Richter-

Egger et al. 2010, Robelia et al. 2010). The combined incorporation of an environmental theme 

and research-based laboratory activities in an upper division analytical chemistry course positively 

impacted student attitudes towards chemistry (Tomasik et al. 2014). Similar introductory level 

courses could address student attrition from STEM majors prior to reaching upper level 

coursework (Chen 2013). Herein we describe a new environmental research-focused general 

chemistry laboratory course and investigate the impact of this pedagogical approach (CURE and 

an environmental theme) through pre- and post-semester surveys. In an attempt to improve STEM 

retention and prepare students to be active members of the scientific community, this introductory 

level, authentic research-based course aimed to engage students through exposure to all steps of 

the research process, while simultaneously teaching general chemistry skills. To our knowledge, 

this work represents the first semester-long environmental chemistry CURE in the general 

chemistry laboratory.  

6.2. Course Description 

 At the University of Michigan – Ann Arbor (U-M), a semester-long general chemistry 

laboratory course with a focus on snow chemistry research (Chem 125–Snow) was designed and 

piloted during the Fall 2015 and 2016 semesters. Chem 125–Snow was implemented in 

conjunction with the University of Michigan Authentic Research Connection program (Vernon et 

al. 2016), which supports the integration of faculty-led semester-long research projects into 

introductory biology and chemistry laboratory courses and is examining the impacts of early 

research exposure on retention in STEM majors. This pilot course was run in parallel, and as an 

alternative, to the traditional general chemistry laboratory course (Chem 125–Traditional), which 

did not include a research project. Students are typically co-enrolled in a semester-long general 
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chemistry lecture course (Matz et al. 2012). Both Chem 125–Traditional and Chem 125–Snow are 

semester-long (12 week) 2-credit laboratory courses that include a 1 h pre-laboratory lecture given 

by the course instructor and a 3 h laboratory session, led by a graduate student instructors (GSIs), 

where students work in groups of three. Unlike Chem 125–Traditional, the Chem 125–Snow 

instructional team mirrored the composition of a multi-generational research group, and included 

the PI, one postdoctoral fellow, two graduate student instructors, and two-four undergraduate 

assistants. In both courses the pre-laboratory lecture introduces content and techniques for the 

upcoming laboratory session. In Chem 125–Snow, the pre-laboratory lecture was also used to 

provide background knowledge on the research topic (snow chemistry) and broader context 

(climate change). Chem 125–Snow mirrored the course structure and assessment, including pre-

laboratory quizzes, post-laboratory written reports, and a midterm exam, used in Chem 125–

Traditional.  

 As a pilot course, Chem 125–Snow engaged a smaller number of students in Fall 2015 (28 

students) and Fall 2016 (35) split into 2 laboratory sections, compared to the number of students  

enrolled in Chem 125–Traditional (Fall 2015 = 1061; Fall 2016 = 1109) that were split into 48 and 

49 laboratory sections, respectively (Table 6—1). Students enrolled in the general chemistry 

laboratory course are typically not prospective chemistry majors, as those students usually test out 

of general chemistry at U-M. For enrollment in Chem 125-Snow, students expressed interest in 

participation through a brief, online form. In 2015, all first and second year students who submitted 

requests were enrolled. In 2016, students were randomly selected among those who had applied, 

until reaching the criteria of 70% freshmen and 30% sophomores, reflective of Chem 125–

Traditional demographics (Table 6—1). Chem 125–Snow uniquely featured a larger fraction of 

female students in both Fall 2015 (78%) and Fall 2016 (63%), compared to Chem 125–Traditional 

(Fall 2015 = 46%; Fall 2016 = 49%). The large percentage of female students in Chem 125–Snow 

provided a unique opportunity to use context-based content to positively impact (Machina and 

Gokhale 2010) a larger population of an underrepresented group in the sciences.  

 The structure of Chem 125–Snow, presented in Table 6—2 and discussed in detail in the 

following sections, was designed to provide all components of an authentic research experience 

wherein students investigated the chemical composition of snow, which influences its propensity 

to undergo photochemical reactions (Pratt et al. 2013). This research utilized ion
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Table 6—1. Comparison of Student Demographics for the Snow Chemistry and Traditional General Chemistry Laboratory Courses. 

 
 Category Snow Chemistry Course 

(Respondents, N) 
Traditional Chemistry Course 

(Respondents, N) 
2015 2016 2015 2016 

Sections 2 2 48 49 
Total Students, N 28 (22) 35 (34) 1061 (700) 1109 (920) 
Class Standing 

Freshman 16 (12) 27 (26) 735 (488) 759 (634) 
Sophomore 12 (10) 8 (8) 277 (181) 291 (241) 
Junior 0 (0) 0 (0) 29 (17) 40 (29) 
Senior 0 (0) 0 (0) 16 (11) 18 (15) 
Undisclosed 0 (0) 0 (0) 4 (3) 1 (1) 

Gender of Respondents 
Male 6 (4) 13 (12) 576 (349) 571 (454) 
Female 22 (18) 22 (22) 485 (347) 538 (460) 
Undisclosed 0 (0) 0 (0) 0 (4) 0 (6) 

aStudent survey response numbers shown in parentheses.  
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 chromatography (IC) and was directly adapted from work in the PI’s laboratory, where snow 

chemistry is actively investigated for its links to climate change (Domine et al. 2004, Jacobi et al. 

2012, Krnavek et al. 2012, Pratt et al. 2013, Simpson et al. 2015). As an introductory general 

chemistry laboratory course, Chem 125–Snow also addressed key chemistry concepts and 

laboratory techniques, fulfilling the guidelines set by the ACS-CPT regarding general chemistry 

courses in that they are “hands-on, supervised laboratory experiences” where students were 

instructed in “basic laboratory skills such as safe practices, keeping a notebook, use of electronic 

balances and volumetric glassware, preparation of solutions, chemical measurements using pH 

electrodes and spectrophotometers, data analysis, and report writing” (American Chemical Society 

2015). Discussion of these laboratory experiments (Laboratory sessions 1, 3, 5, 8, and 9), the 

general chemistry skills and concepts they addressed, as well as their connection to the snow 

chemistry research, are presented in the Laboratory Experiments section. Additional laboratory 

sessions (2, 4, 7, and 10) focused on exposure to individual components of an authentic research 

experience, including scientific literature, data processing, instrument calibration and operation, 

and Arctic snow composition analysis, are presented in the Arctic Snow Analysis section. The 

completion of the authentic research experience involved synthesis and public presentation of 

research results (Laboratory sessions 6, 11, and 12), as discussed here in the Synthesis & 

Presentation of Research Results section.  

6.2.1. Laboratory Experiments 

 General chemistry concepts of measurements and uncertainty were explored in the first 

laboratory experiment session of Chem 125–Snow through experimental determination of water 

density. Lab. 1 was primarily intended to develop error propagation skills used throughout the 

course to calculate uncertainties for snow chemistry research data. Lab. 3 was designed to prepare 

students for their snow chemistry research through exposure, in a simplified manner, to calculating 

concentration, making solutions, and carrying out serial dilutions. This laboratory session, where 

students prepared dye solutions of varying concentration and related concentrations to absorbance 

spectroscopy measurements, was implemented for the first time in 2016 in response to 

observations of student difficulties with preparation of solutions for IC calibration in 2015 (Lab. 

4, discussed in the Arctic Snow Analysis section). Lab. 1 and Lab. 3 were skill development based, 

and the post-laboratory worksheets assessed student understanding of laboratory procedures 

through calculations and short answer questions.  
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Table 6—2. Lab Experiments in the Snow Chemistry General Chemistry Laboratory Course, with Central General Chemistry Concepts 
Applications to Snow Chemistry Research 

Lab Experiment  General Chemistry Concept Snow Chemistry Research Application 
Measurements and uncertainty Use of glassware; Calculation of error; 

Accuracy and precision 
Reporting ion composition and pH of snow samples 
with uncertainty 

Scientific literature Comprehension of technical writing Interpretation of snow sample analysis data 

Preparation of solutions, Part 1 Use of mass balances; Solution making; 
Dilutions; Absorbance spectroscopy 

Preparation of anion and cation standard solutions 
for ion chromatography calibration 

Preparation of solutions, Part 2: 
Ion chromatography calibration 

Use of mass balances; Solution making; 
Dilutions 

Preparation of anion and cation standard solutions 
for ion chromatography calibration 

pH and Buffering  Techniques for pH measurements 
(indicator paper, digital meter); Buffering 
and titration 

Buffering capacity and pH of ocean water and 
snowmelt 

Poster design workshop Presentation of results Presentation of snow chemistry research 

Data analysis Calculations of concentration; Chemistry 
specific use of data analysis software 

Construction of ion chromatography calibration 
curves; Interpretation of snow composition data 

Quantification of Cl– by Mohr 
method 

Stoichiometry; Precipitation reactions; 
Titration 

Determination of Cl– content of snow 

Cl2(g) synthesis and 
quantification 

Redox reactions; Ideal gas laws; 
Absorbance spectroscopy 

Quantification of the production of Cl2(g) for 
calibration of a chemical ionization mass 
spectrometer 

Ion chromatography and pH 
analysis of Arctic snow 

Concentration; Cations and anions; pH Determination of ion composition and pH of snow 
samples 

Creating research posters,  
Parts 1 and 2 

Data synthesis and interpretation; Poster 
creation 

Presentation of snow chemistry research 

Research poster symposium Presentation of results Presentation of snow chemistry research 
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 In Lab. 5, students were exposed to pH measurement through experimental determination 

of buffering capacity and pH (Ibanez et al. 2008) of melted snow samples and synthetic seawater 

(a solution that replicates the salt composition of the ocean, the main source of salts in Arctic 

snow). An understanding of, and ability to measure, pH is important because many reactions in 

Arctic snow are pH-dependent (Pratt et al. 2013). For Lab. 8, students examined Cl- content in 

authentic snow samples by titration with the Mohr Method,(Ibanez et al. 2008) which involved the 

general chemistry concepts of molarity, stoichiometry, and precipitation reactions. Use of 

environmental samples in Lab. 5 and Lab. 8 exposed students to proper sample handling practices 

and created an exploratory laboratory experience as environmental samples are, by nature, not 

well-defined (Kegley and Stacy 1993). These exploratory laboratory experiences were extended 

in assigned written post-laboratory reports, for which students were required to critically interpret 

collected data to form independent conclusions on the chemistry of their snow samples.   

 In Lab. 9, students were exposed to general chemistry concepts of gas-phase and redox 

reactions, ideal gas laws, and absorbance spectroscopy, through the synthesis and measurement of 

Cl2(g). This laboratory experiment was based on procedures established for the calibration of a 

chemical ionization mass spectrometer (CIMS) (Liao et al. 2014), which is used in the PI’s 

laboratory to study Arctic snowpack Cl2(g) production (Custard et al. 2017). Heightened safety 

concerns surrounding Cl2(g) were used to highlight the importance of laboratory safety (American 

Chemical Society 2015) through a pre-laboratory worksheet that assessed student understanding 

of safety data sheets. As a post-laboratory assignment, students demonstrated their understanding 

of the connection between measurements of standard concentrations of Cl2(g) and snowpack 

production of gas-phase halogens in a worksheet.  

6.2.2. Arctic Snow Analysis 

 To interpret their Arctic snow chemistry data and place it in the context of previous work, 

students required a comprehension of scientific literature. Students were introduced to scientific 

literature in a laboratory session held in an on-campus computing facility (Lab. 2). Students 

received instruction, with assistance from a chemistry librarian, in the search for, and 

comprehension of, primary scientific literature. For the assigned research manuscript (Domine et 

al. (2004)), students identified important sections and specific concepts needed for their Arctic 

snow chemistry research project through a scavenger hunt activity and wrote a journal style 

introduction section as a post-lab assignment. The instructional staff provided feedback on the 
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introduction section to allow students to make revisions before its incorporation into their final 

research presentations. This laboratory session was designed to develop scientific literacy and 

establish a skill base in the use of primary literature to support data interpretation, while providing 

learning benefits of exposure to scientific literature (Ferrer-Vinent et al. 2015). 

 Data processing skills were also required for students to carry out their research. Most 

undergraduate students matriculate without spreadsheet experience,(Schlotter 2013) which 

increases the time required to complete coursework and detracts from learning.(Rubin and Abrams 

2015) In response, students were introduced to data processing in Microsoft Excel in the on-

campus computing facility in Lab. 7. Earlier in the course, using skills from Lab. 3, students 

prepared IC calibration standard solutions containing either seven anions (F-, Cl-, NO2-, SO42-, Br-

, NO3-, PO43-) or six cations (Li+, Na+, NH4+, K+, Mg2+, Ca2+) (Lab. 4). Students were supplied in 

Lab. 7 with raw data from IC analyses of these calibration standards (IC analysis conducted by the 

course instructional staff due to time constraints) and followed a tutorial to construct calibration 

curves. Using these calibration curves, students practiced converting Arctic snow IC raw data, 

previously collected by the PI’s laboratory, into concentrations and produced figures. During this 

laboratory session, instructors emphasized general data processing skills (spreadsheet 

organization, performing calculations within the software, constructing figures with proper labels 

and error shown) applicable to other data processing computer programs (e.g. KaleidaGraph 

(Synergy Software), Origin (OriginLab Corp.), IGOR Pro (WaveMetrics), R (rproject.org), 

Mathematica (Wolfram), and Matlab (Mathworks)). Students continued to utilize these data 

processing skills and their calibration curves throughout the course to process raw data generated 

in their independent IC analysis of Arctic snow (Lab. 10, described below) and construct figures 

to present their research. Similar to other CUREs, student involvement in data processing over 

multiple laboratory sessions increased the connection of the authentic research experience across 

the semester-long course and student ownership of research data (Bakshi et al. 2016). 

 To analyze students’ individual Arctic snow samples by IC, Lab. 10 was held in the PI’s 

laboratory, where students completed 1.5 h laboratory sessions scheduled at alternate times 

(individually in Fall 2015 and in pairs in Fall 2016). Students independently operated the ICs with 

course instructor guidance. To prepare students to conduct IC of melted Arctic snow, one lecture 

session prior to the laboratory session was devoted to IC fundamentals. For the Fall 2015 course, 

snow samples were collected in Feb. and Mar. 2015 during the day from locations on the Beaufort 
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Sea (Harrison Bay and Camden Bay) and Chukchi Sea by a collaborator. Following the first course 

pilot, two student alumnae and one GSI accompanied the PI to Utqiaġvik, AK in Feb. 2016 and 

collected snow samples during the day from locations on the Chukchi Sea, Elson Lagoon, and 

tundra surrounding Utqiaġvik, AK; these samples were used analyzed the Fall 2016 course. Snow 

was kept frozen during transport and stored at -40˚C until it was melted for analysis by anion and 

cation (Dionex ICS 2100 and 1100; Thermo Scientific) IC, as well as a digital pH meter. The use 

of IC in the snow chemistry research presented here introduced students to advanced 

instrumentation through a guided inquiry approach, a practice shown to improve student learning 

and problem solving skills.(Warner et al. 2016) In addition, snow composition data collected by 

students contribute to ongoing research on Arctic air-snow interactions in the PI’s laboratory (Pratt 

et al. 2013). 

6.2.3. Synthesis & Presentation of Research Results 

 Students completed the final components of the authentic research process through a series 

of laboratory sessions, in which they individually developed research questions to test with their 

data, analyzed and interpreted their data in this context, and then presented their research results 

through individual posters and written manuscripts. These final presentation forms were chosen 

because they are common mediums used to present research results in both the classroom, and 

professional scientific research settings (Kennedy 1985, Dunstan and Bassinger 1997, Sisak 1997, 

Marino et al. 2000, Whelan and Zare 2003, Wimpfheimer 2004, Raines et al. 2005, Squier et al. 

2006, Dillner et al. 2011, Logan et al. 2015, Danowitz et al. 2016), allowing for evaluation of 

students’ comprehension of their semester-long snow chemistry research experience. 

Incorporating science communication also served as a tool to engage students, promote critical 

thinking, and provide a method for student discovery and growth (Bressette and Breton 2001). The 

practice of communicating science among peers in a classroom setting may also help prepare 

students to communicate science in future research experiences (Logan et al. 2015) . 

 Lab. 11 focused on the integration and interpretation of data to develop and answer research 

questions. Data from individual student snow sample analyses were aggregated and made available 

to all students for their final research analysis. To aid in interpretation of snow sample data, 

supporting documentation was provided on the location and time of snow collection, as well as 

concurrent meteorological observations. In addition, students obtained satellite sea ice imagery 

from NASA MODIS Worldview to determine the local sea ice extent, which can influence snow 
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composition (Domine et al. 2004). The combination of snow inorganic ion composition, pH, and 

supporting information, as well as the knowledge of snow chemistry developed in lectures and the 

scientific literature laboratory session, allowed students to independently develop research 

questions to test with the available data. For example, some students investigated the relationship 

between the distance to the exposed ocean surface and snow chemical composition, to predict trace 

halogen gas production (Pratt et al. 2013) as a function of distance from open water. These students 

built upon previous studies of Arctic snow composition (Domine et al. 2004, Krnavek et al. 2012, 

Pratt et al. 2013) with their original research to examine whether increasing Arctic sea ice loss 

(Stroeve et al. 2011) will affect snow chemistry and air-snow interactions. The PI’s laboratory is 

compiling the Arctic snow composition data and students’ findings to produce a manuscript for 

submission to a peer-reviewed journal. 

 Similar to other CURE courses (Bakshi et al. 2016), a number of laboratory sessions were 

needed to help students translate the results and interpretation of their research into posters. First, 

a laboratory session was dedicated to the fundamentals of poster design (Lab. 6). The importance 

of the balance of text and graphs in posters (Furlan et al. 2007) was emphasized through an activity 

where students discussed the strengths and weaknesses of authentic scientific research posters, 

from both the PI’s laboratory and outside sources. The final laboratory session(s) (one in Fall 2015; 

two in Fall 2016) were held at an on-campus computing facility where students constructed their 

research posters under the guidance of the course instructional staff (Lab. 11). The expansion of 

the research poster creation laboratory session into two laboratory sessions in Fall 2016 was 

intended to give students more time and guidance in the creation of their first research posters.  

 The student poster symposium was open to the public,(Logan et al. 2015) and each poster 

was judged three times for content and oral presentation by volunteers recruited from graduate 

students, postdoctoral researchers, and professors in the U-M Department of Chemistry (Lab. 12). 

In Fall 2015, individual written manuscripts were due one week after the poster symposium, 

allowing students to receive and incorporate poster feedback to make improvements to their 

manuscripts. This progression mirrored the traditional research process, wherein preliminary 

research results are often presented at scientific conferences before they are submitted to peer-

reviewed journals. In contrast, the Fall 2016 poster session was held after the written manuscript 

was submitted, thereby allowing manuscript feedback to be incorporated into the posters. This 
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change was intended to make the poster session more satisfying for students as a culminating final 

experience. No assessment was conducted to compare these two approaches.  

6.3. Results & Discussion 

 Quantitative and qualitative methods were used to investigate the impacts of Chem 125–

Snow on students from the Fall 2015 and 2016 semesters. Responses to course specific survey 

questions (Table 6—3), the “Interest and Utility” factor (Bauer 2008) from the Attitude toward the 

Study of Chemistry Inventory (ASCI) (Table 6—4) (Xu and Lewis 2011) , and open-ended 

prompts were collected from participants who voluntarily responded (Fall 2015 = 79% response 

rate; Fall 2016 = 97%) (Table 6—1) (Vernon et al. 2016). Students in the concurrent Chem 125–

Traditional, who received no exposure to snow chemistry or research, were designated as the 

control group and were surveyed in the same voluntary manner (Fall 2015 = 66% response rate; 

Fall 2016 = 83%) (Table 6—1). Institutional review board (IRB) approval and informed consent 

from participants were obtained before beginning this work (Vernon et al. 2016). 

6.3.1. Survey Results 

 A series of survey questions were utilized pre- and post-course during the Fall 2016 

semester to gauge student confidence in their familiarity with the snow chemistry research topic 

(Figure 6—1) and their ability to perform general research skills (Figure 6—3). The same series 

of survey questions were utilized only post-course during the Fall 2015 semester (Figures 6—2 & 

6—4). Responses were recorded on a scale of 1 being “not confident” to 5 being “very confident.” 

To test whether the Chem 125–Snow and Chem 125–Traditional student survey responses were 

significantly different, unpaired Student’s t-tests (α = 0.05) were applied, and Cohen’s d effect 

sizes were calculated (Table 6—5). In response to all statements gauging student confidence in 

their familiarity with the snow chemistry research topic, the pre-course survey results for Fall 2016 

Chem 125–Snow students showed no statistical difference compared to Chem 125–Traditional 

students, based on the t-test (p > 0.05), but the calculated effect size (d < 0.35) indicates a possible 

small difference (Figure 6—1). There was no statistical significance observed between students’ 

pre-course confidence in general research skills for Fall 2016 Chem 125–Snow and Chem 125–

Traditional courses (p > 0.05; d < 0.2) (Figure 6—3). This establishes that the two student 

populations are generally comparable in their self-reported confidence in their familiarity with the 

snow chemistry research topic and general research skills. While survey response data are not 
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available to assess the Fall 2015 student populations on their pre-course confidence, it is expected 

that the Fall 2015 students were also comparable because they were recruited in a similar manner 

from a similar population of students to Fall 2016. 

 For both Fall 2015 and 2016, post-course survey responses demonstrated that students who 

received lecture- and research-based instruction on snow chemistry exhibited significantly higher 

confidence, compared to Chem 125–Traditional students, in the fundamentals of snow chemistry 

research (p < 0.001; d > 0.8) (Figures 6—1 & 6—2). While it is unsurprising that Chem 125–Snow 

students’ self-reported greater confidence towards their understanding of the techniques and 

concepts central to their snow chemistry research, confidence towards a subject is an important 

factor in student persistence in STEM (Dweck 1986, Graham et al. 2013). The significantly higher 

post-course survey responses of Chem 125–Snow students to the statement “I feel more informed 

about climate change” was an especially important finding because recent work has shown that 

the United States public is under-informed about climate change and its consensus in the scientific 

community (Leiserowitz et al. 2008, Leiserowitz et al. 2010, Leiserowitz et al. 2012). Chem 125–

Snow lectures incorporated climate change science because of its important links to the research 

conducted by students (Domine et al. 2004, Jacobi et al. 2012, Krnavek et al. 2012, Pratt et al. 

2013, Simpson et al. 2015) and a lack of climate change curriculum at all levels of education (Walz 

and Kerr 2007). Integrating climate change themes and instruction into existing courses,(Mahaffy 

et al. 2017, Versprille et al. 2017) as shown here, may contribute to efforts to improve climate 

change understanding amongst the United States public (Walz and Kerr 2007, Leiserowitz et al. 

2008, Leiserowitz et al. 2010, Leiserowitz et al. 2012).  

 Notably, a significantly greater self-reported confidence in response to the statement “I can 

briefly describe the method of ion chromatography” was observed post-course for both the 2016 

Chem 125–Traditional (p < 0.001) and Chem 125–Snow (p < 0.001) students, compared to their 

respective pre-course responses. However, the post-course increase in self-reported confidence 

towards understanding of ion chromatography in Chem 125-Snow (158% increase; d 
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Table 6—3. Summary of self-assessment survey questions used to gauge student confidence in their ability to perform general research 
skills and familiarity with the snow chemistry research topic. Survey were completed by students in the Fall 2015 and 2016 snow 
chemistry (Chem 125–Snow) and traditional (Chem 125–Traditional, control) general chemistry laboratory courses.  

How confident do you feel about the following statements below: 

Creating and presenting a research poster. (1) Not Confident : (5) Very Confident 

Determining the main conclusions in a published journal 
manuscript. 

(1) Not Confident : (5) Very Confident 

I understand the likely origins of ions in snow.  (1) Not Confident : (5) Very Confident 

I know examples of how snow influences the atmosphere. (1) Not Confident : (5) Very Confident 

I can briefly describe the method of ion chromatography. (1) Not Confident : (5) Very Confident 

I feel informed about climate change. (1) Not Confident : (5) Very Confident 
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Table 6—4. Self-assessment survey questions from the “Interest and Utility” factor (Bauer 2008) of the Attitude toward the Study of 
Chemistry Inventory (ASCI) (Xu and Lewis 2011) that composed the “feelings about chemistry” survey category. Students in the Fall 
2015 and 2016 snow chemistry (Chem 125–Snow) and traditional (Chem 125–Traditional, control) general chemistry laboratory courses 
completed the survey. The numerical scale was reversed for some questions during analysis to reflect a scale of 1 being a less positive 
attitude to 5 being a more positive attitude.

A list of opposing words appears below. Rate how well these words describe your feelings about chemistry. 
Think carefully and try not to include your feelings toward chemistry teachers or chemistry courses. For each 
line, choose a position between the two words that describes exactly how you feel. The middle position (3) is if 
you are undecided or have no feelings related to the terms on that line.  Chemistry is: 

(1) Worthless : (5) Beneficial 
(1) Exciting : (5) Boring 
(1) Good : (5) Bad 
(1) Interesting : (5) Dull 
(1) Worthwhile : (5) Useless 
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Table 6—5 . Summary of statistical analysis, including p values, Cohen’s d effect size, and % changes marked with an asterisk to denote 
statistical significant changes at the 95% confidence interval, of all self-assessment survey data for students in the Fall 2015 and 2016 
snow chemistry (Chem 125–Snow) and traditional (Chem 125–Traditional, control) general chemistry laboratory course. 

Survey Question 
  

I understand the 
likely origins of 

ions in snow 

 
I know 

examples of 
how snow 

influences the 
atmosphere 

 
I can briefly 
describe the 

method of ion 
chromatography 

 
I feel informed 
about climate 

change 

Creating and 
presenting a 

research poster 

Determine the 
main 

conclusions in a 
published 

journal 
manuscript 

Attitudes 
towards 

chemistry 

 p Change d p Change d p Change d p Change d p Change d p Change d p Change d 

Traditional 
Pre vs.  
Snow Pre  
(2016) 

0.75 -3% -0.06 0.29 10% 0.17 0.06 -15% -0.31 0.071 9% 0.33 0.95 0% -0.01 0.75 2% 0.06 0.16 2% 0.11 

Traditional 
Post vs.  
Snow Post 
(2016) 

2.2 
E-
16 

91%* 2.04 1.1 
E-
13 

80%* 1.72 3.0 
E-
10 

39%* 1.20 1.4 
E-06 

28%* 0.83 1.4 
E-4 

21%* 0.63 0.038 9%* 0.36 0.24 3% 0.09 

Traditional 
Pre vs.  
Traditional 
Post (2016) 

1.3 
E-
15 

21%* 0.36 0.37 -2%* -
0.04 

4.5 
E-
92 

58%* 0.89 4.0 
E-4 

-5%* -0.15 1.5 
E-
05 

-7%* -0.18 1.1 
E-17 

12%* 0.40 2.5 
E-
71 

-10%* -0.37 

Snow Pre vs.  
Snow Post 
(2016) 

8.8 
E-
17 

139%* 3.08 1.1 
E-
07 

61%* 1.41 3.1 
E-
20 

158%* 4.03 0.079 11% 0.49 0.07
3 

14% 0.44 0.005 21%* 0.74 2.1 
E-4 

-10%* -0.44 

Traditional 
Pre vs.  
Snow Pre  
(2015) 

- - - - - - - - - - - - - - - - - - 0.21 2% 0.11 

Traditional 
Post vs.  
Snow Post 
(2015) 

1.6 
E-
16 

75%* 1.76 1.1 
E-
14 

80%* 1.81 2.7 
E-
10 

37%* 1.33 1.4 
E-23 

64%* 1.91 8.49 
E-
15 

36%* - 2.0 
E-06 

23%* 1.50 3.1 
E-
08 

12%* 0.50 

Traditional 
Pre vs.  
Traditional 
Post (2015) 

- - - - - - - - - - - - - - - - - - 9.0 
E-
33 

-7%* -0.29 

Snow Pre vs.  
Snow Post 
(2015) 

- - - - - - - - - - - - - - - - - - 0.74 1% 0.05 
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Figure 6—1. Average pre- and post-course responses to self-assessment survey questions regarding confidence in snow chemistry 
research topics, on a scale of 1 being “not confident” to 5 being “very confident” and with error bars shown as standard error of the 
mean, for students in the Fall 2016 snow chemistry (Chem 125–Snow; N = 34) and traditional (Chem 125–Traditional; N = 920) general 
chemistry laboratory courses (control). ǂ indicates pre-course and post-course responses for students in the snow chemistry course that 
are statistically significant at the 95% confidence interval compared to the traditional general chemistry laboratory course students.  
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Figure 6—2. Average post-course responses to self-assessment survey questions regarding confidence in snow chemistry research 
topics, on a scale of 1 being “not confident” to 5 being “very confident”, for students in the Fall 2015 snow chemistry (Chem 125–
Snow) and traditional (Chem 125–Traditional, control) general chemistry laboratory courses. ǂ indicates responses for students in the 
snow chemistry course that are statistically significant at the 95% confidence interval compared to the traditional general chemistry  
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> 4) was much larger than the increase observed for the Chem 125-Traditional (58% increase; d > 

0.8). In addition, the self-reported confidence towards understanding of ion chromatography was 

significantly higher (p < 0.001; d > 1) post-course for Chem 125-Snow compared to Chem 125–

Traditional. Therefore, we can conclude that the integration of ion chromatography into Chem 

125-Snow had a measurable effect on student self-reported confidence. The significant increase in 

confidence in Chem 125–Traditional, which did not include ion chromatography, is possibly the 

result of the students’ participation in a laboratory experiment on the use of thin layer 

chromatography that may have led to students to falsely state high confidence in other types of 

chromatography. 

 The post-course survey responses also indicated that Chem 125–Snow positively impacted 

students’ confidence in general research skills (Figures 6—3 & 6—4). In particular, these students, 

who participated in a scientific literature laboratory session and incorporated scientific literature 

into their posters and manuscripts, had a significantly greater self-reported confidence (p < 0.05; 

d > 0.3) in utilizing scientific literature at the end of the semester compared to Chem 125–

Traditional students, who had no formal instruction or practice with scientific literature. Similarly, 

Chem 125–Snow students, who received instruction on poster-making, made a poster, and then 

presented it at the public poster session, exhibited significantly higher self-reported confidence in 

creating and presenting a research poster at the end of the semester (p < 0.001; d > 0.6). Overall, 

the higher self-reported student confidence in research skills suggests that students left Chem 125–

Snow more prepared than students in Chem 125–Traditional to be active members of the scientific 

community where these research skills are consistently utilized.  

 At the beginning and end of the Fall 2015 and 2016 courses, students were asked a series 

of questions, from the “Interest and Utility” factor (Bauer 2008) of the ASCI (Xu and Lewis 2011), 

about their feelings, on a scale of 1 being a less positive attitude to 5 being a more positive attitude, 

about chemistry. Unpaired Student’s t-tests (α = 0.05) were conducted, along with calculation of 

Cohen’s d effect sizes, between Chem 125–Snow and Chem 125–Traditional student survey 

responses to determine if the responses of the two populations were significantly different (Table 

6—5). The student responses to these questions regarding feelings about chemistry were averaged 

together (Figure 6—5), with individual questions shown in Table 6—4. 
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Figure 6—3. Average pre- and post-course responses to self-assessment survey questions 
regarding confidence in general research skills, on a scale of 1 being “not confident” to 5 being 
“very confident” and with error bars shown as standard error of the mean, for students in the Fall 
2016 snow chemistry (Chem 125–Snow; N = 34) and traditional (Chem 125–Traditional; N = 920) 
general chemistry laboratory courses (control). ǂ indicates pre-course and post-course responses 
for students in the snow chemistry course that are statistically significant at the 95% confidence 
interval compared to the traditional general chemistry laboratory course students.   
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Figure 6—4. Average post-semester responses to self-assessment survey questions regarding 
confidence in general research skills, on a scale of 1 being “not confident” to 5 being “very 
confident”, for students in the Fall 2015 snow chemistry (Chem 125–Snow) and traditional (Chem 
125–Traditional, control) general chemistry laboratory courses. ǂ indicates responses for students 
in the snow chemistry course that are statistically significant at the 95% confidence interval 
compared to the traditional general chemistry laboratory course students.
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Figure 6—5. Average pre-course and post-course responses to survey questions regarding 
attitudes towards chemistry, on a scale of 1 being a less positive attitude to 5 being a more positive 
attitude and with error bars shown as standard error of the mean, for students in the Fall 2015 and 
2016 snow chemistry (Chem 125–Snow; N = 34) and traditional (Chem 125–Traditional; N = 920) 
general chemistry laboratory courses (control). ǂ indicates pre-course and post-course responses 
for students in the snow chemistry course that are statistically significant at the 95% confidence 
interval compared to the traditional general chemistry laboratory course student. 
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 For both years, the pre-course surveys in both Chem 125–Snow and Chem 125–Traditional 

showed no statistically significant differences (p > 0.1; d < 0.15). In the Fall 2015 post-course 

survey, Chem 125–Snow students responded with a significantly higher score (p < 0.001; d > 0.5) 

compared to the Chem 125–Traditional students, which exhibited a significant decrease in positive 

attitudes compared to pre-course (p < 0.001; d > 0.5). For Fall 2016, the post-course responses in 

both Chem 125-Snow and Chem 125-Traditional were significantly lower than the pre-course 

responses (p < 0.001, d > 0.3; p < 0.001, d > 0.4), respectively. While the Fall 2016 Chem 125-

Snow post-course response was higher than Chem 125-Traditional, no statistical difference was 

discerned (p > 0.1; d < 0.1) (Figure 6—5). Similar post-course decreases in student attitudes have 

been reported, using the ASCI survey tool, for low-performing general chemistry students 

(Brandriet et al. 2011) and organic chemistry students (Mooring et al. 2016). Most notably, 

previous ASCI survey responses for general chemistry courses report male students having post-

course attitude gains in contrast to their female counterparts who demonstrated post-course losses 

(Brandriet et al. 2011). Therefore, pervasive negative attitudes exhibited toward science by female 

students (Weinburgh 1995, Cheung 2007, Barmby et al. 2008) may have skewed the Chem 125 – 

Snow (female majority) survey results low, compared to the gender balanced Chem 125 – 

Traditional course. Continuing work by the Authentic Research Connection Program is 

investigating student outcomes in detail to examine potential long-term impacts of this CURE, 

including increased retention in STEM majors of participating students.  

6.3.2. Student Feedback 

 As a part of the post-course survey process, students were asked two open-ended questions 

to assess the aspects of the course students viewed as positives, or those needing improvement. 35 

student responses, collected between the Fall 2015 and 2016 semesters of Chem 125 – Snow were 

qualitatively analyzed by emergent and multiple coding, with the number of related responses for 

each thematic category and representative quotes provided here. In response to the first question 

(“What do you like most about the course? Why?”), the most common responses (15 responses) 

emphasized the integration of the research experience into all aspects of the course: “I like the 

integration of research questions into the course because it makes what we are learning more 

applicable and interesting.” These responses demonstrate that the integration of research helps 

students establish a relationship between content and the real-
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world (Kember et al. 2008, Williams and Williams 2011), while also highlighting the potential of 

CUREs to develop a larger population of students with interest in current research (Bakshi et al. 

2016). Another common response subject focused on the relevancy of the course to students’ life 

(9 responses): “I liked how the topics were related to every day concepts and things that I care 

about like climate change and the environment.” These response demonstrate that integration of 

environmental topics and research into courses helps students establish a relationship between 

content and the real-world (Kegley and Stacy 1993, Swan and Spiro 1995, Bachofer 2008, Kember 

et al. 2008, Williams and Williams 2011, Tomasik et al. 2013, Tomasik et al. 2014). Most other 

responses were related to the interactive nature of the laboratory course (8 responses): “I liked the 

hands-on application of the topics learned in the course.” The consensus of student comments 

supports the quantitative student survey response data that the integration of the environmental 

research experience had a positive influence on their experience with chemistry. 

 Responses to the second question (“What would you change about the course? Why?”) 

highlight the challenges of implementing a new laboratory course, especially one that is research-

based. For example, the most common student responses were focused on the need for more 

guidance due to the challenges of the research experience (15 responses): “More specific directions 

as to what we should be doing and how to approach the research assignment” and “By going over 

lab procedure a little bit more thoroughly.” These responses show that these students faced similar 

challenges, as those in previous CURE courses (Kowalski et al. 2016), due to the increased 

independent thought and effort required in a research experience. The open-ended nature of 

research requires course instructors in CUREs to offer increased encouragement in response to 

experimental difficulties to help students understand that failure is a part of science (Bakshi et al. 

2016). The Fall 2015 responses guided revisions to the following year’s course, with the additional 

structure (e.g. expansion of the research poster creation laboratory session) added to the course, 

yet the challenge of greater uncertainty in authentic research, compared to traditional experiments, 

still remains. Despite these challenges, none of the student responses to the second question 

mentioned the snow chemistry research focus as a reason for disliking the course, further 

supporting that integration of an environmental research experience had a positive influence.  

6.4. Conclusions 

 A snow chemistry research-based general chemistry laboratory course was developed and 

piloted at the University of Michigan during Fall 2015 and 2016. First and second year students 
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learned traditional general chemistry laboratory concepts and skills through Arctic snow chemistry 

research (Pratt et al. 2013) during interconnected research-based laboratory experiments. These 

students conducted independent analyses of Arctic snow composition in a semester-long authentic 

research experience using ion chromatography, with results contributing to the PI’s ongoing 

research. This work represents a successful combination of the pedagogical approaches of 

incorporating an environmental focus and research into the general chemistry laboratory 

curriculum through the CURE format (Auchincloss et al. 2014). 

 The structure of Chem 125 – Snow provides a framework for others to similarly transform 

their general chemistry laboratory curricula to incorporate authentic environmental chemistry 

research. This pilot implementation of the environmental chemistry CURE included exposure to 

scientific literature and data analysis, and culminated in the development of research questions, 

data interpretation, and the presentation of results through a public, volunteer judged poster 

symposium and a written manuscript, thus mirroring all steps of the research process. While this 

particular course focused on Arctic snow chemistry, the course could be adapted for analysis of 

other water-related research questions (e.g. increasing freshwater salinity due to road salt usage) 

(Dugan et al. 2017). A current advantage, and yet limitation, of this pilot course is its reliance on 

the resources of the PI’s laboratory, which, in its current form, may limit the feasibility of future 

implementation of this course format by others (Lopatto et al. 2014). As discussed by Brownell et 

al. (2015), the implementation of CUREs, such as Chem 125 – Snow, can be challenging for larger 

enrollment settings due to higher costs, in-lab computer access, and the need for an increased 

number of research-trained instructors, compared to traditional laboratory courses. A particular 

challenge for scale-up, and yet a significant benefit (according to student surveys), of Chem 125 – 

Snow is Experiment 10, which involves student visits to the PI’s laboratory for individual snow 

analyses using IC. In future work we will seek to determine best practices for incorporating 

environmental chemistry research into the curricula at primarily undergraduate institutions. 

 Student survey evaluation results showed that students in Chem 125 – Snow developed 

self-confidence in their understanding of the snow chemistry research topic and general research 

skills. Together with the increase in positive attitudes towards chemistry, these results are 

important as confidence and attitudes toward chemistry are both identified as key factors for 

retention in STEM (Dweck 1986, Graham et al. 2013). In addition, responses to open-ended 

questions revealed students appreciated that the research-based laboratory model provided real-
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world applications of class material and that students were engaged by connections to the natural 

environment. The positive impacts on undergraduate students of this, and other, research-based 

introductory chemistry courses (Holme 1994, Hutchison and Atwood 2002, Ford et al. 2008, 

Richter-Egger et al. 2010, Clark et al. 2016) demonstrate that undergraduate students are capable 

of participating in, and benefiting from, research experiences at an early academic career stage. In 

addition, the leadership of the PI in the CURE provided access to a female research mentor for 

undergraduate women, an important step in increasing their retention in sciences (Wendel 2015). 

This general chemistry laboratory course thus demonstrates, like other implementations of CUREs 

in chemistry laboratory courses,(Clark et al. 2016, Kerr and Yan 2016) that a greater number of 

students can be exposed to the benefits of a research-experience through the CURE format, 

compared to traditional undergraduate research experiences in individual laboratories 

(Auchincloss et al. 2014, Rodenbusch et al. 2016). 
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Chapter 7 Determination of Chloride Content in Snow & Water Samples: Environmental 
Chemistry Research Based Laboratory Experiment  

 
In preparation for submission to Journal of Chemical Education 

7.1. Introduction 

In the environment, chloride exists at concentrations that span several orders of magnitude, 

ranging from 0.1 mg/L in rainwater (Junge and Werby 1958, Post et al. 1991, Neal et al. 2007) to 

35 g/L in seawater (Table 7—1) (Pilson 2013). Chloride in environmental waters can come from 

natural sources such as dissolved rocks and minerals (Lisensky and Reynolds 1991). In addition, 

anthropogenic sources, such as the application of salt to roads during winter for de-icing (Kolesar 

et al. 2018), can result in chloride accumulation in snow (Oliver et al. 1974, Mihailovic et al. 2014) 

and surface waters (Jackson and Jobbagy 2005, Dugan et al. 2017). The chloride content of natural 

waters is of interest to the environmental chemistry (Dugan et al. 2017) community because high 

concentrations of chloride can negatively impact ecosystems (Findlay and Kelly 2011) and damage 

metal structures (Fink 1960). The examination of chloride concentrations in environmental 

samples is an ideal topic for a research-based introductory chemistry laboratory experiment as it 

addresses active topics in the scientific community using locally accessible samples.  

Chloride concentrations can be determined in the laboratory using the Mohr Method 

titration (Park 1958, Ibanez et al. 2008), involving the following precipitation reactions: 

Ag+ (aq) + Cl- (aq)  à  AgCl (s) 

2Ag+ (aq) + CrO42- (aq) à  Ag2CrO4 (s) 

A measured amount of a known concentration standard Ag+(aq) solution is added to a sample of 

unknown Cl- (aq) concentration with CrO42-(aq) indicator added. After all Cl-(aq) has reacted with the 

added Ag+(aq) to form AgCl(s) (white precipitate), Ag2CrO4(s) (red precipitate) forms and signals the 

endpoint of the titration. Lisensky and Reynolds (1991) presented an analytical chemistry 

laboratory experiment for the determination of chloride in freshwater samples using a 

potentiometric titration method. However, the potentiometric detection method requires 

specialized equipment with a relatively complex assembly (Lisensky and Reynolds 1991) and is a 
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Table 7—1. Environmental water sample chloride concentrations 

Environmental Source Concentration Range 
Rain 
(Junge and Werby 1958, Post et al. 1991, Neal et al. 2007) 

0.l – 200 mg/L 

Snow 
(Oliver et al. 1974, Krnavek et al. 2012, Mihailovic et al. 
2014) 

0.4 mg/L – 15 g/L 

Freshwater lakes 
(Chapra et al. 2012, Dugan et al. 2017) 

1 – 240 mg/L 

Ground/drinking water 
(Mullaney et al. 2009) 

3 – 250 mg/L 

Stormwater/urban streams 
(Corsi et al. 2010, Corsi et al. 2015) 

0.01 – 11 g/L 

Seawater 
(Pilson 2013) 

19.4 g/L 

 

concept not typically introduced in introductory chemistry curriculum , which may challenge its 

implementation in the introductory undergraduate or high school laboratory.  

With the National Research Council’s 2012 Framework for K-12 Education (National 

Research Council 2012) and the Next Generation Science Standards (NGSS Lead States 2013) 

advocating for increased implementation of authentic science practices into the high school and 

undergraduate curricula, it is vital to present accessible research-based laboratory experiments to 

educators. Environmental chemistry is well suited for creating an exploratory laboratory 

experience more akin to authentic research as the samples under investigation are by nature not 

well-defined (Kegley and Stacy 1993, May et al. 2018). In addition, measuring the concentrations 

of chemical species in environmental samples engages students with real-world connections while 

providing a quantitative laboratory experiment experience (Lisensky and Reynolds 1991, Tabbutt 

2000, Salido et al. 2003, Bachofer 2008, May et al. 2018). The Mohr Method utilizes low-cost, 

accessible laboratory equipment to determine chloride concentrations in environmental samples, 

and, with the authentic research-based experimental structure presented here, provides a means for 

integrating science practices outlined in recent science reform efforts (National Research Council 

2012, NGSS Lead States 2013). 
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7.2. Experimental 

7.2.1. Materials, Safety, & sample Handling 

Using distilled or deionized water, the 5% chromate indicator solution is prepared with 

potassium chromate (K2CrO4), and the silver titrant solution (0.001 – 0.01 M) is prepared with 

silver nitrate (AgNO3). All stock solutions should be prepared by the instructor using personal 

protective equipment (PPE) because AgNO3 and K2CrO4 solutions are strong oxidizers that can 

cause injuries and stain skin. The required laboratory equipment includes burettes, glassware, 

polypropylene scoops, and polyethylene bags. To minimize ion loss during storage and sample 

contamination, it is recommended to collect samples in pre-cleaned polyethylene bags (Whirl-Pak, 

Nasco), freeze after collection, and then thaw immediately prior to analysis. All containers used 

for sample analysis are triple rinsed with deionized or distilled water to prevent contamination of 

samples with chloride. For the first implementation in a class of 30 students working in pairs, the 

total chemical and laboratory equipment per student cost is ~$15. However, this represents an 

upper cost limit as the consumable (chemicals, sample bags) costs for further iterations is less than 

$5 per student. PPE, including safety glasses, protective gloves, lab coat, long trousers, and 

covered shoes, must be worn during the experiment to prevent chemical exposure. Disposable 

nitrile gloves also prevent the contamination of samples with chloride.  

7.2.2. Determination of Chloride Content in Environmental Samples 

Pour the selected AgNO3(aq) solution into a 25 mL burette and record the position of the 

meniscus on the burette. Next, introduce approximately 3 drops of the 5% K2CrO4(aq) solution to a 

5 mL portion of the chloride-containing aqueous solution, yielding a yellow tint. Add the 

AgNO3(aq) solution from the burette into the sample in a dropwise manner, mixing the solution 

after every addition of AgNO3(aq) by manually swirling, or by the use of a stir bar and stir plate. 

As the AgNO3(aq) solution from the burette is added to the sample, an orange-red will start to 

appear, but will disappear with mixing. Continuously add the AgNO3(aq) titrant solution from the 

burette into the sample until the color change persists with stirring. The persistence of the color 

change indicates that all of the Cl-(aq) in the sample reacted with the Ag+(aq) from the titrant to form 

AgCl(s), and the Ag+(aq) from the titrant is reacting with the CrO42-(aq) added to the sample to form 

the red Ag2CrO4(s). Repeat this process over 3 trials for each sample analyzed to ensure precision 
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of results. The students should compare the endpoint color of the triplicate titration solutions to 

maintain consistency in endpoint determination. 

The ideal concentration of AgNO3(aq) titrant solution used is dependent on the range of 

concentrations expected for the particular environmental samples (Table 7—1). For Cl-(aq) 

solutions ranging from 0.002 to 0.1 g/L, an AgNO3(aq) concentration of 0.001 M limits the titrant 

volume between 0.5 and 15 mL. Similarly, an AgNO3(aq) concentration of 0.01 M limits the titrant 

volume to 0.5 to 15 mL for Cl-(aq) solutions ranging from 0.05 to 1.0 g/L. Using a higher 

concentration of AgNO3(aq) than recommended here results in small titrant volumes (<0.5 mL) 

needed to reach the end point; these are more difficult to measure reproducibly using standard 25 

mL burettes with 0.1 mL graduations. Using a lower concentration of AgNO3(aq) results in larger 

titration volumes (>25 mL), which will require students to refill burettes. Solutions with Cl-(aq) 

concentrations above 1.0 g/L, such as seawater (35 g/L), should be diluted to reduce the need for 

high volume or concentration AgNO3(aq) titrant.  

7.3. Results & Discussion 

This Mohr Method laboratory experiment to measure chloride in environmental samples 

was successfully implemented into the introductory undergraduate laboratory as a part of a 

semester-long course-based undergraduate research experience in Arctic snow chemistry (May et 

al. 2018). Through this experiment, the undergraduate students in this course were exposed to 

general chemistry concepts and laboratory skills, as well as snow chemistry fundamentals, needed 

to complete their semester-long research project (May et al. 2018). However, this experiment does 

not require a semester-long  course for implementation and could provide a means for integration 

authentic science practices into undergraduate or high school curricula as a stand-alone research 

experience (National Research Council 2012, NGSS Lead States 2013). To extend this work and 

evaluate the ability of high school students to conduct this environmental chemistry research, this 

laboratory experiment was implemented in a professional development workshop for high school 

teachers held on the University of Michigan (U-M) campus through the Inter-professional STEM 

Learning Community (STEM-IPLC) program. On the first day of this workshop, three high school 

teachers participated in the experiment to familiarize themselves with the material. On the 

following day, the high school teachers guided a group of 16 volunteer high school students 

through the environmental chemistry research experience. The environmental chemistry research 

experience was completed in a 3 h session, with each hour devoted to individual sections focused 
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on: 1) formation of research questions, 2) laboratory experiment, and 3) synthesis of experimental 

results in the context of research questions. As demonstrated in previous integrations of research 

experiences into introductory undergraduate and high school courses, it was important in each of 

these sections for the instructor to provide the structure and guidance vital for the success of young 

researchers (Harris 1977, Newton et al. 2006, Ford et al. 2008, Canaria et al. 2012, Pueyo et al. 

2013, May et al. 2018). While 3 h was sufficient to expose the high school students to science 

practices outlined in the Framework for K-12 Science Education (National Research Council 

2012) through the research-based laboratory experiment, time constraints associated with the 

workshop limited portions of the research experience. Therefore, recommendations are presented 

for implementation in an extended time format, wherein individual classroom meetings are 

devoted to each section of the research experience.  

The high school workshop began by establishing the broader context of the sources and 

impacts of chloride in the environment through a teacher-led discussion. However, if more time is 

available, students can independently investigate primary scientific literature using a scavenger 

hunt activity, which can reduce challenges associated with introducing young students to primary 

scientific literature (Lijek and Fankhauser 2016, May et al. 2018). This was successfully completed 

as one 3 h session in our introductory undergraduate laboratory (May et al. 2018). Following this 

introduction, the instructors focused on specific implications for the local environment, in this case 

an urban wintertime environment where road salt accumulates in snow. The teachers then engaged 

the students in the Framework for K-12 Science Education’s science practice of “asking questions” 

(National Research Council 2012) by leading them to utilize their own life experiences living in a 

cold climate and their new understanding of chloride in the environment to develop research 

questions and hypotheses to test through the measurement of chloride concentrations in local snow. 

To aid in the high school students’ formation of hypotheses, the instructors presented a general 

format of a hypothesis in the form of a “If ______, then  ______, because ______” statement, 

wherein the “if” is followed by a statement of how the independent variable (in this case the sample 

location) will be manipulated, the “then” is followed by a statement of how the dependent variable 

(in this case the chloride concentration) is anticipated to respond to the change, and the “because” 

is followed by an explanation that links the variables. For example, the high school students 

utilized this format to hypothesize: If snow is closer to roadways where salt is applied, then the 

snow chloride concentration will be higher, because road salt composed primarily of sodium 
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chloride will be flung from the road by cars driving and deposit on the nearby snow. The high 

school students were then provided with local snow samples, collected by the instructional staff 

during a previous winter, to test their hypotheses. However, if additional time is available, this 

section of the research experience can include instructor-guided environmental sample collection 

planning, including the sample collection procedure and location(s) and time(s) of sample 

collection. Students can then collect samples during or outside of class sessions, dependent upon 

time availability and sampling site accessibility. In doing so, students would receive a deeper 

exposure to the “planning” portion of the Framework for K-12 Science Education’s science 

practice of “planning and carrying out investigations” (National Research Council 2012). 

The second section of the research experience focused on the measurement of chloride 

concentrations in the environmental samples. To introduce the concept of titration and associated 

calculations, the high school students completed a worksheet. After completing the worksheet, the 

teachers discussed practical experimental tips for titration, including reading the burette meniscus 

at eye level, as well as adding drops slowly from the burette and stirring the sample constantly. As 

a part of this discussion, the teachers demonstrated the ideal titration endpoint using a snow 

sample. Given the small color changes observed, this demonstration helps overcome potential 

challenges students may face in endpoint determination (Lisensky and Reynolds 1991). The 

endpoint is best visualized by comparison with a flask containing 5 mL of water with 3 drops of 

5% K2CrO4(aq) solution added, but with no AgNO3(aq) titrant solution introduced (Figure 7—1). In 

future implementations, it is recommended to demonstrate the endpoint with a solution of 0.004 

g/L Cl-(aq) titrated by 0.001 M AgNO3(aq) solution (Figure 7—1a) and a 0.5 g/L Cl-(aq) solution 

titrated by 0.01 M AgNO3(aq) solution (Figure 7—1b) show differences in endpoint appearance 

based on concentration. The students will observe that the formation of the white AgCl(s) 

precipitate produces an opaquer final solution when the 0.01 M AgNO3(aq) titrant solution is used 

to measure higher concentration Cl-(aq) solutions, compared to when the 0.001 M AgNO3(aq) titrant 

solution is used to measure lower concentration Cl-(aq) solutions.  
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Figure 7—1. Comparison of starting solution color (yellow) and endpoint solution color (orange) 
for (A) 0.004 g/L Cl- (aq) titrated by 0.001 M AgNO3 (aq) and (B) 0.5 g/L Cl- (aq) titrated by 0.01 M 
AgNO3 (aq). 

 

Students, working in pairs, measured the chloride concentration, in triplicate, of snow 

samples collected on the U-M campus from “Roadside” locations directly adjacent to a street 

where road salt was applied, as well as “Campus” locations surrounded by buildings and >100 m 

from any streets, but near sidewalks where deicing brine was applied. Snow chloride 

concentrations measured by the students ranged from 0.006 to 0.14 g/L, with higher chloride 

concentrations present in Roadside samples (0.05 ± 0.05 g/L) compared to Campus samples (0.02 

± 0.02 g/L). While this result was not statistically significant, it reflected the student-generated 

hypothesis that samples collected closer to roads would have higher chloride concentrations and 

could be further confirmed by a larger sample size (Figure 7—2). Only one sample collected away 

from the road (2/16/16 Campus) exhibited a higher chloride concentration (0.040 ± 0.005 g/L) 

than samples collected near roads; however, the sample collected near the roadway (2/16/16 

Roadside) that same day was characterized by the highest chloride concentration measured across 

all samples (0.12 ± 0.02 g/L) (Figure 7—2). The high school students interpreted this to be the 

result of the snowpack remaining undisturbed preceding this date, leading to an accumulation of 

road salt-derived chloride in the snowpack, followed by heavy snowfall that diluted the 

concentration of chloride in subsequent samples, such as the 2/27/16 Roadside sample (0.012 ± 

0.002 g/L). While 5 out of the 8 pairs of students had reasonable precision in their triplicate 

measurements (%  
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Figure 7—2. Snow chloride concentrations measured by high school students utilizing the Mohr 
Method for samples collected in Ann Arbor, MI near (Roadside) and away (Campus) from roads 
in February and March 2016. 
 

standard deviation < 0.2), the remaining 3 pairs of students of reported low precision (% standard 

deviation = 0.4 – 0.7) (Figure 7—2). High school students may thus require more titration practice 

or instructional guidance to ensure higher precision. To complete this section of the research 

experience, the students entered individual snow sample data generated from their titrations into a 

shared spreadsheet to produce a dataset to be analyzed by the entire class. Through the process of 

measuring the chloride concentration of local snow samples, the students were engaged in the 

Framework for K-12 Science Education’s science practice of “Planning and carrying out 

investigations” (National Research Council 2012). 

While there was not sufficient time for testing with the high school workshop, calibration 

of the titration method using known concentration Cl- (aq) solutions prepared by the instructor will 

improve the accuracy of the measured concentrations of the environmental samples in future 

implementations. The standard solutions may alternatively be made by students if there is further 

class time available, and this activity would be beneficial as even advanced chemistry students 

often struggle preparing simple solutions (Quigley 1991, Marino 1993, Wang 2000). However, 

given student challenges observed at the undergraduate level in solution preparation (May et al. 

2018), it is recommended that students receive prior exposure to the preparation of solutions of 

known concentration through published exercises (Quigley 1991, Marino 1993, Wang 2000) prior 



142 
 

to preparing standard solutions for this laboratory experiment. An example calibration curve, 

produced by titrating prepared solutions of known chloride concentrations (0.002 to 1.0 g/L), is 

shown in (Figure 7—3). Results of this calibration show that measured Cl-(aq) concentrations were 

biased high (slope > 1), especially when titrating lower concentration Cl-(aq) solutions using lower 

concentration AgNO3(aq). It is recommended that students use data processing software (i.e. 

Microsoft Excel or Google Sheets) to generate the calibration curves to be used to calculate Cl-(aq) 

concentrations. Incorporating the use of data processing (May et al. 2018), which is commonly 

employed across all scientific research fields, facilitates the classroom research experience by 

allowing calibration and sample class data to be compiled in an accessible spreadsheet in order for 

students to construct figures and make conclusions about their experimental results from a larger 

data set. This also exposes students to the science practice of “Using mathematics and 

computational thinking” from the  Framework for  K-12 Science Education (National Research 

Council 2012) and addresses the fact that students often matriculate into undergraduate science 

programs without prior spreadsheet experience (Schlotter 2013), which increases the time required 

to complete coursework and detracts from learning of chemistry (Rubin and Abrams 2015). 

 

Figure 7—3. Chloride concentrations measured by titration using 0.001 M and 0.01 M AgNO3 (aq) 
solutions versus known standard chloride concentrations, with linear fits and AgNO3 (aq) volumes 
used shown. 
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In the third and final section of the research experience, the high school students converted 

their raw titration data to chloride concentrations, collaboratively interpreted the class data set, and 

constructed explanations for experimental results in the context of research questions and 

hypotheses established in the first section. The science practices of “Analyzing and interpreting 

data” and “Using mathematics and computational thinking” from the Framework for  K-12 Science 

Education were thus integrated (National Research Council 2012). To aid the high school students 

in this process, the teachers presented a step-wise explanation of the process of translating raw 

data into chloride concentrations. In addition, the teachers led discussions on the construction of a 

narrative for presenting research results to help the high school students place their direct 

observations in context and inform their audience of the broader implications of their results. The 

high school students, again working in pairs, were given whiteboards to present their results and 

were shown a template to guide organization. This template included: a descriptive research title, 

a figure that best represents the main findings, and bulleted lists of research motivations, methods, 

conclusions in the context of their hypothesis, and ideas for future work. Students completed their 

research-based laboratory experience through the presentation of results to other class members 

who were encouraged to participate in a discussion by posing questions or alternate explanations. 

This portion of the research experience introduced the following science practices outlined in the 

Framework for K-12 Science Education: “Constructing explanations,” “Engaging in argument 

from evidence,” and “Obtaining, evaluating, and communicating information analyzing and 

interpreting data” (National Research Council 2012). While the implementation presented here 

was a standalone research experience, in future implementations this three-section structure could 

be iterated by utilizing the results of previous student analyses to inform development of new 

research questions and identification of other environmental samples to investigate.  

7.4. Conclusion 

An effective and inexpensive means for conducting classroom-based authentic research is 

shown through experimental (titration) determination of chloride in environmental samples over a 

range of chloride concentrations (>2 mg/L) (Table 7—1). This experiment engages students in 

fundamental introductory chemistry laboratory concepts, including stoichiometry, precipitation 

reactions, dilutions, titrations, and calibration curves, in an environmental chemistry research 

setting designed for the resources and educational level of high school and introductory 

undergraduate chemistry courses. The authentic research-based structure presented here, wherein 
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students use results from laboratory experimentation to address self-generated research questions, 

thus provides an accessible means for instructors to incorporate recent science reform efforts by 

engaging high school and introductory undergraduate students in authentic science practices 

(National Research Council 2012, NGSS Lead States 2013) in a manner that connects them with 

their local environment. 
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Chapter 8 Conclusions and Future Directions 

8.1. Conclusions 

Wind-induced wave-breaking in marine and freshwater environments directly emit sea 

spray aerosol (SSA) and lake spray aerosol (LSA), respectively. The participation of individual 

wave-breaking particles in the formation of clouds, as well as their impact on air quality, is 

determined by their size, morphology, and chemical composition (i.e. physiochemical properties). 

Understanding the chemical composition of individual particles generated from wave-breaking in 

a variety of aquatic environments is crucial for determining their climate and human health effects. 

This dissertation focused on the measurement of the physiochemical properties of wave-breaking 

particles produced from both marine and freshwater environments, through a combination of 

ambient and laboratory-based studies that primarily employed single-particle chemical analysis 

techniques. In addition, this dissertation details effort, undertaken in response to calls for science 

education reform, to expose introductory undergraduate and high school students to the 

environmental chemistry research presented here. 

 Chapter 2 detailed the characterization of the first laboratory system constructed for the 

generation of aerosol from freshwater samples. To evaluate this new LSA generator, bubble and 

aerosol number size distributions were measured for salt solutions representative of freshwater 

(CaCO3) and seawater (NaCl) at concentrations ranging from that of freshwater to seawater (0.05 

- 35 g kg-1), as well as synthetic seawater (inorganic), synthetic freshwater (inorganic), and a 

freshwater sample from Lake Michigan. Decreasing salt solution concentrations from seawater to 

freshwater led to greater bubble coalescence and the formation of larger bubbles, which generated 

larger particles and lower aerosol number concentrations. The systematic studies of particles 

produced from synthetic seawater and freshwater, as well as the Lake Michigan freshwater sample, 

indicate that LSA is characterized by a bimodal lognormal aerosol size distribution with a primary 

mode diameter larger than that of SSA, and a secondary mode diameter smaller than that of SSA. 

This new LSA generator offers a means to investigate a potentially important source of aerosol 

over bodies of freshwater that needs to be thoroughly characterized, as the sizes produced are 
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relevant to the direct scattering of solar radiation light scattering, as well as the formation of CCN 

and INP. 

Chapter 3 discussed measurements of LSA produced in the laboratory using the newly 

characterized LSA generator from freshwater samples collected from Lake Michigan and Lake 

Erie during HAB and non-bloom conditions. The incorporation of biological material within the 

individual HAB-influenced LSA particles was examined by single-particle mass spectrometry, 

scanning electron microscopy with energy-dispersive X-ray spectroscopy, and fluorescence 

microscopy. Freshwater with higher blue-green algae content produced higher number fractions 

of individual LSA particles that contained biological material, showing that organic molecules of 

biological origin are incorporated in LSA from HABs. The number fraction of individual LSA 

particles containing biological material also increased with particle diameter (greater than 0.5 µm), 

a size dependence that is consistent with previous studies of sea spray aerosol impacted by 

phytoplankton blooms. Similar to sea spray aerosol, organic carbon markers were most frequently 

observed in individual LSA particles less than 0.5 µm in diameter. Understanding the transfer of 

biological material from freshwater to the atmosphere via LSA is crucial for determining health 

and climate effects of HABs. 

 Chapter 4 discussed the identification of individual SSA and LSA particles by single 

particle mass spectrometry and electron microscopy during a field study conducted at the 

University of Michigan Biological Station in northern Michigan. During the July 2014 sampling 

period, SSA comprised 34% and 20% of PM mass (0.5 – 2.0 µm) during two, separate multiday 

transport events from Hudson Bay and an average of 5% background outside these periods. LSA 

transported from Lake Michigan reached a maximum of 11% of PM mass (0.5 – 2 µm) during a 

daylong high wind event, but also contributed a 5% average background during 92% of the study. 

Air mass trajectory analysis determined that SSA and LSA were transported >700 km and >25 km 

from the nearest ocean and Great Lakes sources, respectively. The results presented here represent 

the furthest inland quantification of SSA particle mass contributions by single particle analysis and 

the first confirmation of inland transport of LSA.  

Chapter 5 detailed measurements of the dependence of submicron (aerodynamic diameter 

< 1 µm) and supermicron (aerodynamic diameter 1-10 µm) sea salt mass concentrations on sea ice 

coverage and wind speed at Utqiaġvik, AK from 2006-2009. Consistent with a wind-dependent 

source, supermicron sea salt mass concentrations increased in the presence of nearby leads and 
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wind speeds greater than 4 m s-1. Increased supermicron and submicron sea salt chloride depletion 

was observed for periods of low winds or a lack of nearby open water, consistent with transported 

sea salt influence. SSA produced from leads has the potential to alter cloud formation, as well as 

the chemical composition of the Arctic atmosphere and snowpack.   

 Chapter 6 described a new introductory general chemistry laboratory course that was 

developed to provide an authentic research experience on the impact of SSA produced from leads 

on Arctic snow chemistry. First and second year students learned general chemistry concepts and 

laboratory skills in the context of snow chemistry, while participating in the course-based 

undergraduate research experience (CURE). Students were guided through all steps of the research 

process, including research question development, data collection and processing, interpretation 

of results in the context of scientific literature, and both written and oral presentations. A key 

component of the course was an individual laboratory experiment in which snow samples from the 

Arctic were analyzed for pH and ion content. Assessment of the course via pre- and post-term 

surveys indicated that students, the majority of whom were women, experienced greater gains in 

confidence of research skills and general attitudes towards chemistry as compared to the traditional 

general chemistry laboratory course. This course represents a novel integration of environmental 

chemistry research into an introductory level chemistry laboratory course, and this approach has 

significant potential to increase student engagement in the sciences. 

 Chapter 7 detailed an introductory level, research-based laboratory experiment involving 

the determination of chloride concentration in environmental samples by the Mohr method. 

Chloride concentrations (>2 mg/L) in easily accessible environmental samples, including 

rainwater, snow, freshwater, seawater, groundwater, and stormwater, can be quantified through 

this titration experiment using standard laboratory equipment. This exploratory laboratory 

experiment is designed to incorporate authentic science practices through the process of asking 

questions and developing hypotheses, collecting environmental samples, measuring chloride 

content by titration, calculating chloride concentrations from experimental data, interpreting data, 

constructing explanations, and presenting results to others. This simple, effective, and inexpensive 

environmental chemistry laboratory experiment is proposed as a means for engaging high school 

and introductory undergraduate students in authentic science practices, as advocated by recent 

science education reform efforts. 
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8.2. Future Directions 

8.2.1. Climate Impacts of Lake Spray Aerosol  

While Chapters 2 and 3 explored the relationship between freshwater composition and the 

physiochemical properties of LSA (May et al. 2016, May et al. 2017), the resulting CCN and INP 

efficiencies of LSA are currently unknown. However, recent work has demonstrated that ice 

nucleating biological material is present in freshwater at 102–103 higher concentrations than in 

marine waters (Moffett 2016) and is linked to ice formation within the Great Lakes (D'Souza et al. 

2013). Furthermore, a laboratory study demonstrated the INP viability of aerosolized freshwater 

bacteria (Pseudomonas syringae) (Pietsch et al. 2015), with a subsequent field study demonstrating 

that ice nucleating strains of P. syringae are present in freshwater lakes (Pietsch et al. 2017). 

Organic compounds and biological material aerosolized from marine algal blooms by bubble 

bursting (Matthias-Maser et al. 1999, Aller et al. 2005, McCluskey et al. 2017) impact the CCN 

and INP activities of SSA (DeMott et al. 2015, Wilson et al. 2015, Ladino et al. 2016, McCluskey 

et al. 2017, Vergara-Temprado et al. 2017). Organic compounds and biological material 

aerosolized from freshwater algal blooms, as identified in Chapter 3 (May et al. 2017), may have 

similar effects on CCN and INP activities of LSA. Therefore, direct measurements of the CCN 

and INP activities of LSA produced from freshwater of varied chemical and biological 

composition are needed. Previous laboratory studies of the relationship between seawater 

composition and SSA cloud formation can inform the approach to future studies of LSA climate 

properties. For example, Prather et al. (2013) demonstrated that following the addition of bacteria 

and ZoBell growth medium to natural seawater, the relative number fraction of OC-dominated 

SSA in the (da) 60–180 nm range increased from 0.26 to 0.85, and the measured mean activation 

diameter at which particles began to serve as CCN nearly doubled from 63 nm to 118 nm. 

Similarly, a laboratory study of SSA generated over the course of an algal bloom induced in a 

natural seawater sample demonstrated that increased chlorophyll-a led to an increase in INP 

number concentrations, measured online with a continuous flow diffusion chamber and offline 

with a droplet freezing method (DeMott et al. 2015). Initial LSA studies could thus mirror these 

previous laboratory studies of SSA cloud formation properties by generating aerosols from natural 

freshwater over the course of an induced algal bloom. Measurements of single particle 

physiochemical properties using ATOFMS and CCSEM-EDX, as demonstrated in Chapter 3, 

could then be coupled with CCN and INP activity measurements used in previous laboratory SSA 
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studies (Prather et al. 2013, DeMott et al. 2015). Such studies would expand the work undertaken 

by the SSA community to better understand the role aquatic environments play in regulating 

atmospheric chemistry and climate (Cochran et al. 2017) and improve parameterizations of LSA 

in regional climate models (Chung et al. 2011).  

8.2.1. Aircraft Measurements of Lake Spray Aerosol  

In addition to proposed laboratory experiments, measurements of the potential 

incorporation of LSA into clouds in the Great Lakes region are needed. This work is motivated by 

the previous identification of LSA in the ambient atmosphere in the Great Lakes region presented 

in Axson et al. (2016) and in Chapter 4, as well as the previous identification of calcium particles 

in Great Lakes region clouds (Lasher-Trapp et al. 2008, Twohy and Anderson 2008). The 

enhancement of cloud cover and precipitation resulting from transfer of heat and moisture from 

the surface of the Great Lakes (Scott and Huff 1996), known as lake effect, further motivates study 

of the role of LSA in cloud formation. An initial investigation of the potential incorporation of 

LSA in clouds in the ambient atmosphere over the Great Lakes was conducted over two days (July 

9 and 12, 2016) of aircraft sampling on a Beechcraft Duchess twin-engine aircraft (Purdue 

University Airborne Laboratory for Atmospheric Research (ALAR)) over northern Lake 

Michigan. During both the July 9 and July 12 aircraft particle sampling, white capped waves were 

observed, and Lake Michigan wave heights peaked above 1 m, with wind speeds reaching over 9 

m s-1. Samples of atmospheric particles were collected on aluminum foil during multiple passages 

of the aircraft over the water through the same flightpath using a modified rotating drum impactor. 

For cloud water collection, a modified Mohnen slotted rod extended out of the top of the aircraft 

(Huebert et al. 1988). Following the method of Hill et al. (2007), cloud droplets were impacted 

onto Teflon rods, which are characterized by a 50% cutoff diameter of ∼5.5 µm, and collected into 

glass vials (sample volume ranging from 5−15 mL each). For the July 9 flight, atmospheric particle 

sampling was conducted over a portion of northwest Lake Michigan in the area of Platte Bay from 

11:59 AM – 12:39 PM eastern daylight time (EDT) at 100 meters above sea level (MASL) and 

then from 2:51 PM – 3:51 PM EDT at 300 MASL. Cloud water samples were not collected July 9 

due to lack of cloud cover. For the July 12 flight, atmospheric particle sampling was conducted 

between from 2:51 PM – 3:51 PM EDT at 300 MASL over a portion of north Lake Michigan in 

the area of Manistique Bay between Thompson, MI and Seul Choix Point, MI. The cloud layer 

present on July 12 was near enough to the surface such that the aircraft could not safely fly below 
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and as a result the particle samples were collected above the cloud layer. Cloud water samples 

were used to produce particles in the laboratory using a nebulizer, and, for comparison, freshwater 

samples, collected from Lake Michigan at the time of aircraft sampling, were used to produce 

particles in the laboratory using the LSA generator presented in Chapter 2 (May et al. 2016). 

From the July 2016 flights, ambient and laboratory generated particles were examined 

using SEM-EDX to identify LSA particles based on elemental composition and morphology. 

Preliminary results show that particles with strong Ca, C, and O peaks, indicative of CaCO3, and 

a crystalline morphology, after drying on the substrate, were observed in in ambient particle 

samples, as well as in the particle samples generated from cloud-water and freshwater samples. 

This Ca-dominant elemental composition and cubic morphology is consistent with Great Lakes 

freshwater composition (Chapra et al. 2012) and previous measurements of LSA chemical 

composition (Axson et al. 2016, May et al. 2017). Preliminary CCSEM analysis was conducted 

on ambient atmospheric particles and particles nebulized from cloud water, both collected on July 

12. LSA composed 9% and 7%, by number, of the total particles analyzed by CCSEM in the 

0.7−5.0 µm size range. These results suggest that LSA participates in cloud formation over the 

Great Lakes. Additional bulk composition measurements of cloud water and Lake Michigan fresh 

water were conducted using ion chromatography (IC) and inductively couple plasma mass 

spectrometry (ICP-MS). However, an enhancement in bulk calcium concentration was not 

definitively observed by these techniques, likely because the cloud water samples were collected 

in glass, which can adsorb ions, and the blank concentrations were abnormally high. Therefore, in 

future LSA investigations using bulk cloud water analysis to investigate the impact of LSA should 

employ plastic collection materials, as well as observing precautions in regard to the purity of 

water and rinsing procedures used in blank collections. In addition, the low solubility of CaCO3 

may have impacted results. Further analysis of the differences in size-dependent chemical 

composition between ambient particle samples collected at multiple heights and within clouds 

during the July 2016 aircraft sampling, as well as laboratory experiments using the simultaneously 

collected freshwater, will improve our understanding of the role that fresh-water wave-breaking 

plays regional climate in the Great Lakes region. 

8.2.2. Health Impacts of Lake Spray Aerosol  

 The Great Lakes have recently experienced some of the largest cyanotoxin producing 

harmful algal blooms (HABs) in recorded history due to an increased input of nutrients (Michalak 
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et al. 2013). In addition to posing a threat to water quality, HABs also have the potential to be 

detrimental to air quality if HAB toxins are included in the organic and biological component of 

LSA identified in Chapter 3. Previous work has demonstrated that aerosols produced by 

recreational activity in freshwater HABs can present a significant public health risk due to 

inhalation of cyanotoxins, presenting a variety of symptoms including gastrointestinal, respiratory, 

dermatologic, and allergic reactions, as well as acute hepatotoxicity or neurotoxicity (Cheng et al. 

2007, Backer et al. 2008, Backer et al. 2010). The effects of cyanotoxin inhalation can last for days 

after only a brief exposure and are more potent than the effects from oral ingestion of contaminated 

water (Backer et al. 2010). Previous work on marine HABs has shown that wind-induced wave 

breaking during active blooms lead to detectable concentrations of aerosolized toxins within SSA 

(Cheng et al. 2005, Cheng et al. 2010, Kirkpatrick et al. 2011). However, little is known about how 

wind-induced wave breaking in freshwater HABs aerosolizes toxins and how this may affect 

regional inhalation exposure risk.  

 A combination of laboratory and field studies that incorporate measurements of aerosol 

physiochemical properties and human health effects are needed to understand the likely impacts 

of LSA produced from freshwater HABs on human health. As an initial study, the concentration 

of toxic compounds could be measured in LSA generated in the laboratory from freshwater 

collected during an active HAB and impacted onto filters, with analysis by liquid chromatography-

mass spectrometry (LC/MS) (Maizels and Budde 2004, Gambaro et al. 2012) and enzyme linked 

immunosorbent assay (ELISA) techniques (Cheng et al. 2007, Backer et al. 2008, Backer et al. 

2010). Once the incorporation of toxins into LSA has been confirmed in the laboratory, ambient 

atmospheric particle sampling next to freshwater bodies impacted by HABs during periods of high 

winds is proposed to assess the inhalation exposure risk of LSA. Such field studies could employ 

online analysis of LSA biological content by ATOFMS, as characterized in Chapter 3 (May et al. 

2017), alongside bulk filter sampling for analysis by ELISA or LC/MS to confirm the 

incorporation of toxins (Maizels and Budde 2004, Cheng et al. 2007, Backer et al. 2008, Backer 

et al. 2010, Gambaro et al. 2012). The significance of such field studies would be vastly increased 

through the incorporation of direct measurements of health impacts. For example, Cheng et al. 

(2010) interviewed an asthma cohort for health symptoms after they spent 1 h on an ocean beach 

during aerosolized red tide events and non-exposure periods, with concurrent measurements of 

ambient aerosol concentration and hourly filter samples collected to determine brevotoxin and 
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NaCl concentrations. Similarly, Backer et al. (2010) offers an example for a comprehensive field 

study of the health impact of aerosolized freshwater HABs, with water samples, personal air 

samples, nasal swabs, and blood samples analyzed for microcystin concentrations, respectively. 

Laboratory and field studies that combine measurements of atmospheric particle composition with 

assessments of health impacts will expand our understanding of the impacts of freshwater HABs 

beyond traditional water quality concerns. In doing so, stakeholders in regions impacted by 

freshwater HABs will be further motivated to implement scientifically guided management plans 

to mitigate the predicted rise in freshwater HABs (Michalak et al. 2013). 

8.2.3. Heterogeneous Reactions on Sea Spray Aerosol Produced from Leads  

In Chapter 5, wind-dependent production of fresh SSA in the presence of local leads, as 

well as aged SSA during periods of full sea ice coverage and low wind speeds, was observed (May 

et al. 2016). While this multi-year study at Utqiaġvik, AK allowed a comprehensive investigation 

into the influences of sea ice coverage and wind speed on SSA in the coastal Arctic, there were 

significant limitations in the atmospheric chemistry sampling methodology that could be addressed 

in future studies. First, the bulk-filter based particle measurements used in this study were 

temporally limited, with submicron and supermicron particle sampling periods ranging from 1-11 

days and 5-35 days, respectively. As shifts in sea ice and meteorology that impact SSA production 

often occur on much shorter time-scales, measurements of sea salt aerosol concentrations with 

higher time resolution are needed to fully understand the influence of SSA produced from leads 

(Kirpes et al. 2018). In addition, laboratory studies have shown that heterogeneous reactions on 

SSA can release gaseous halogen species, such as HBr(g) and HCl(g) (Saiz-Lopez and von Glasow 

2012, Simpson et al. 2015), and evidence of heterogeneous reactions was observed in the aged 

SSA population measured in Chapter 5. However, no gas phase measurements were conducted as 

a part of the study presented in Chapter 5 and partitioning of halogens between the gas and particle 

phase has been minimally studied in the Arctic (Berg et al. 1983, Li et al. 1994, Langendörfer et 

al. 1999, Hara et al. 2002). Given decreasing multi-year sea ice extent and increasing ice fracturing 

(Stroeve et al. 2012), studies of the impacts of SSA produced from leads on ambient gas and 

particle composition in the Arctic are particularly needed in winter and early spring when sea ice 

coverage is at its maximum and local contributions to SSA were not previously present (Quinn et 

al. 2002).  
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A recently developed online atmospheric aerosol and trace gas IC technique – the URG 

Corp. 9000D Ambient Ion Monitor Ion Chromatography (AIM-IC) system (Markovic et al. 2012) 

could improve the time resolution of aerosol measurements and enable the study of heterogeneous 

reactions in the Arctic. By using the AIM-IC to perform online IC measurements, the sampling 

time will be reduced to the scale of hours, from the multi-day scale typical of filter sampling (Quinn 

et al. 2002, Markovic et al. 2012). In the AIM-IC, soluble gas-phase species, such as HCl and HBr, 

are first collected using a parallel plate wet denuder, while particles pass through due to their lower 

rate of diffusion. Soluble particle-phase species are subsequently collected in the particle 

supersaturation chamber where particles are grown in a steam chamber and collected as a solution 

by an inertial particle separator. The simultaneous measurement of gas and particle phase species 

allows for the study partitioning of species between particle and gas phases (Ellis et al. 2011, 

Markovic et al. 2012, VandenBoer et al. 2014, VandenBoer et al. 2014, Croft et al. 2016, 

Wentworth et al. 2016). Previous studies with the AIM-IC examined the partitioning of particulate 

NO2- and HONO(g) in California (VandenBoer et al. 2014, VandenBoer et al. 2014), as well as the 

partitioning of particulate NH4+ and NH3(g) in Ontario, Canada (VandenBoer et al. 2011, 

VandenBoer et al. 2012) and the summertime Canadian Arctic (Croft et al. 2016, Wentworth et al. 

2016). 

In order to reduce gas-particle partitioning artifacts that can occur in the sampling line, 

which is a particular issue in the Arctic, where outdoor temperatures of -40°C and indoor 

temperatures of 20 °C are common, modifications were made to the AIM-IC based on work 

described by Markovic et al. (2012) for reducing artifacts under mid-latitude sampling conditions. 

A heated chamber, with a short (0.3 m) inlet, was constructed: this contains the parallel plate wet 

denuder that collects gases and the particle super saturation chamber that collects aerosols. Gases 

and particles are thus immediately collected from the air flow into solution, reducing the 

partitioning of particle species into the gas phase due to the increase in temperature from the 

ambient atmosphere into the sampling chamber. To prevent freezing during the transfer of the 

aqueous phase gas and particle samples into the research laboratory for IC analysis, a custom 

heated sampling line was constructed (Clayborn Labs). The heated sampling line is regulated by 

an external temperature controller, features 2 layers of nomex felt insulation and industrial strength 

silicone fire-sleeve outer cover, and is capable of maintaining a constant temperature of 20 °C in -

40 °C ambient temperature. The AIM-IC was further modified from its commercial configuration 
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by the replacement of the commercial LiBr internal standard with LiF to enable measurements 

ambient Br- and the installation of concentrator columns for sample loading to reduce limit of 

detections (LODs). The modified AIM-IC was successfully deployed into the field on two separate 

occasions, summer 2016 at the University of Michigan Biological Station (temperature range = 3 

to 33 °C) and winter 2018 in Kalamazoo (temperature range = -18 to 15 °C), with the second 

instance demonstrating that the heated sampling chamber and line could function at temperatures 

<0 °C.  

In its commercial configuration, the AIM is operated at 1 h sampling intervals. However, 

particulate bromide, the lowest concentration species of interest in Utqiagvik, AK, is much less 

abundant (0.001-0.03 µg m-3) than the concentration of atmospheric species previously measured 

by AIM-IC (> 0.05 µg m-3) (Ellis et al. 2011, Markovic et al. 2012, VandenBoer et al. 2014, 

VandenBoer et al. 2014, Croft et al. 2016, Wentworth et al. 2016). By calculating theoretical AIM-

IC loading based on aerosol concentration data from the NOAA Barrow Observatory filter data 

and experimentally-determined IC 3σ LOD, it was determined that one-hour sampling would not 

be sufficient to measure Arctic aerosol Br-. An extended 12 h sampling period would increase the 

LOD (Br- = 0.0025 µg m-3) by over a factor of 10 compared to the traditional 1 h sampling period. 

In doing so, the estimated fraction of particulate Br- samples below the LOD would be reduced to 

<15%. The improvement in LOD comes at the cost of time resolution; however, the 12 hour 

sampling time will be an improvement over the average multi-day filter sampling presented in 

Chapter 5 (May et al. 2016). The multi-hour sampling functionality of the AIM-IC was previously 

employed with success during its two deployments in Michigan, sampling at 2 h intervals during 

summer 2016 at the University of Michigan Biological Station and 3 h intervals during winter 

2018 in Kalamazoo. Deployment of the AIM-IC in its modified configuration to Utqiagvik, AK 

will therefore enable the assessment of the level to which changes in sea ice extent and 

meteorology impact SSA concentrations, as well as their participation in heterogeneous reactions, 

with higher time resolution than traditional offline chromatography. Such measurements are vital 

in the rapidly changing Arctic, where warming induced sea ice loss is expected to drastically alter 

the composition and processes of the atmosphere (Struthers et al. 2011, Bhatt et al. 2014).  

8.2.4. Environmental Chemistry Research in the High School Classroom  

Translating research-based laboratory practices, such as the Arctic snow chemistry in the 

snow chemistry CURE presented in Chapter 6 (May et al. 2018) and the research laboratory 
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experiment established Chapter 7, into the high school chemistry classroom poses unique 

challenges for high school instructors. Teachers without scientific research experience feel 

unprepared to lead students in pedagogically risky activities that are central to inquiry based 

learning, such as student led question formulation, experimental design, and data representation 

(Singer et al. 2000, Windschitl 2003). Lack of direct research experience may also lead to 

misconceptions regarding what constitutes authentic science practices (Keys and Bryan 2001). 

Therefore, while the snow chemistry research laboratory experiment established in the previous 

chapter will be designed to be accessible to an introductory chemistry course, its implementation 

at the high school level should be examined to develop a model of best practices that will enable 

secondary science educators to easily integrate it into their classroom.  

As an initial step, I helped lead a group of pre-service high school teachers through the 

snow chemistry laboratory experiment from Chapter 7 as a part of Inter-Professional STEM 

Learning Community (STEM-IPLC) program in the School of Education during winter 2016. 

Through the 3-week STEM-IPLC snow chemistry module the participating pre-service teachers 

followed the procedures and general research structure presented in Chapter 7 to investigate the 

effect of deicing practices on chloride content in snow by collecting and analyzing snow samples 

from their local environment. Qualitative data, primarily written reflections from the participating 

pre-service teachers, were collected and analyzed to identify major themes. In my preliminary 

analysis, the experience of analyzing environmental samples, which they collected, to address a 

real-world problem was identified as a particularly impactful experience. However, many 

participating teachers noted that increased scaffolding of the research experience would be needed 

prior to its implementation. The feedback received in this first iteration was used to improve further 

implementations of the snow chemistry laboratory experiment through the STEM-IPLC program, 

with reflections from participants again evaluated by qualitative analysis, such as a multi-day 

workshop that I helped design and implement in August 2017 with four secondary science 

teachers. The teachers conducted the snow chemistry research experiment presented in Chapter 7 

under my guidance, revised it based on their experience and prior knowledge from high school 

teaching, and then led a group of volunteer high school students through the revised snow 

chemistry research experience. The teachers reflected on their experience at multiple points over 

the course of the workshop in written responses, with conversations amongst the teachers and 

educational researchers video recorded. Similar to the qualitative data collected winter 2016, these 
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materials will be analyzed to identify major themes. In the future, instructional kits containing all 

laboratory materials needed to perform the snow chemistry research experiment and guidelines of 

best practices for its implementation at the high school level will be distributed to a limited number 

of local high school science teachers. The effectiveness of this real-world implementation will be 

evaluated through feedback from the participating teachers and students. The expected result of 

this work will be the development of knowledge useful for introducing environmental chemistry 

research laboratory experiments into high school chemistry courses, which will support broader 

efforts to address the decline in students choosing to pursue academic degrees and careers in 

STEM. 
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