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Abstract 

Catalyst-transfer polymerization (CTP) is a living, chain-growth method for 

synthesizing conjugated polymers, which are attractive materials for organic electronics. 

What separates CTP from traditional cross-coupling polymerizations is a metal–polymer 

π-complex that enables the catalyst to stay associated to the growing polymer chain. 

This association yields polymers with targeted molecular weights, narrow dispersities, 

and tunable sequences. However, the utility of CTP is limited by a narrow monomer 

scope, wherein the most desirable polymers remain inaccessible via controlled 

methods. This thesis aims to advance CTP by designing catalysts capable of widening 

monomer pairings for block copolymers, exploring ligand electronics in designing an 

optimal CTP catalyst for previously inaccessible monomers, and optimizing a new user-

friendly CTP method.  

 Chapter 1 briefly summarizes CTP with a focus on how understanding 

polymerization mechanisms can facilitate catalyst design. Specifically, how exploiting 

the metal-π complex has led to expanded, albeit limited monomer scope, and new 

copolymer sequences. The major conclusions of chapters 2–5 and our efforts to expand 

CTP catalyst scope are briefly outlined followed by the implications of this work on 

future CTP systems. 

 Chapter 2 reports the trials and tribulations of designing a single catalyst to 

perform two sequential, living polymerizations to access thiophene/olefin block 

copolymers in a one-pot synthesis. Lessons learned include the influence of catalyst 

reactive ligand and cocatalyst identity on successful thiophene polymerization as well as 

the inhibitory nature of olefins on thiophene polymerization, requiring olefin monomer 

removal to induce a switch-in-mechanisms. While a small amount of copolymer was 

synthesized, the major products were undesired homopolymer.  
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We attributed these homopolymers to a high-barrier reductive elimination when the 

catalyst switches mechanisms and subsequent chain-transfer during thiophene 

polymerization. This work highlights the need to identify conditions that facilitate living 

behavior for both polymerizations as well as promotes efficient cross-propagation.  

 Chapter 3 describes efforts to design catalysts for CTP that expand monomer 

scope by tuning ligand electronics to stabilize the metal-π complex. A pyrrolidinyl-based 

bisphosphine precatalyst was explored in poly(thiophene) and 

poly(hexylesterthiophene) synthesis and yields polymers with targeted molecular 

weights as well as high end-group fidelity, suggesting this newly designed catalyst 

forms a stabilized metal-π complex.  While poly(phenylene) synthesis was attempted, 

gel permeation chromatography revealed a multimodal polymer trace, suggesting 

multiple catalytic species in the polymerization and an uncontrolled reaction. This 

catalyst should be further explored in polymerizing previously inaccessible monomers, 

whose polymerizations are often marred by chain-transfer events. 

 Chapter 4 describes efforts towards developing a more user-friendly CTP. An 

NHC-ligated palladium precatalyst with a 3–fluoropyridine ligand polymerized electron-

rich and electron-poor monomers of the form, Ar–ZnClMg(OPiv)2, in-air via a 

controlled, chain-growth method. Ongoing work is focused on showing the utility of this 

method to a broader community in synthesizing relevant materials for organic 

electronics. 

 Chapter 5 summarizes each chapter and provides an outlook for how these 

results can be informative for the CTP community. The results in accessing 

conjugated/olefin block copolymers will inform the design of alternative precatalysts that 

promote Csp2–Csp3 reductive elimination in copolymerizations. The pyrrolidinyl-based 

bisphospine precatalyst for CTP will add to the toolbox of catalysts, particularly for 

electron-deficient polymerizations. Finally, our work in identifying a user-friendly CTP 

route will aid researchers from a variety of backgrounds in synthesizing conjugated 

polymers with control over molecular weight open-to-air. 
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Chapter 1  

Introduction 

 

Catalyst-transfer polymerization (CTP) is a transition-metal catalyzed, chain-

growth polymerization method used for synthesizing conjugated (hetero)arene 

polymers, attractive materials for the active layer of organic electronics (e. g. solar cells, 

transistors, light-emitting diodes).1 Because CTP is a living, chain-growth method, 

researchers can access polymers with targeted number average molecular weights 

(Mn), narrow dispersities (Ð), end groups, and specific sequences. The first reported 

living, chain-growth synthesis for conjugated polymers (poly(3-hexylthiophene) (P3HT)) 

were in 2004 by Yokozawa and McCullough independently, both using Ni bisphosphine 

catalysts.2,3 This work has enabled the field of CTP to expand to other monomers; 

including thiazole,4,5 pyrrole,6 phenylene,7 fluorene,8,9 benzotriazole,10 and most of the 

chalcogen analogues of thiophene (O, Se, Te)11,12,13 (Chart 1.1). Organometallic 

functionality of (hetero)arene monomers has also expanded with monomer scope. While 

an aryl-magnesium species is a common motif used in CTP, researchers have also 

incorporated other functionalities such as zinc,14 boronic acids15/esters,16 stannanes,17 

and less commonly gold18 and lithium19. While Ni bisphosphine catalysts are the 

common choice for CTP, expanding to other metals (Pd) as well as other ancillary 

ligands (N–heterocyclic carbenes (NHCs),19,20 Buchwald ligands,21 and diimines22) has 

provided routes for accessing alternative conjugated polymers. 
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Chart 1.1 Selected monomers polymerized via CTP. 

 

CTP advancements have only been possible through mechanistic understanding 

of the catalytic cycle (Scheme 1.1).23 CTP is initiated via a transmetalation event 

between the organometallic (hetero)arene and a metal precatalyst, wherein the number 

of transmetalation events depends on the precatalyst identity. A dihalide precatalyst 

(LnMX2) requires a double transmetalation, while a precatalyst of the form LnMArX 

require a single transmetalation. The resulting biaryl metal complex then undergoes 

reductive elimination to yield a metal–polymer π-complex (I). The catalyst stays 

associated with the polymer chain, ring-walking to the C–Br bond of the terminal arene 

(II), and enters propagation by intramolecular oxidative addition into the C–Br bond to 

yield complex III. Propagation additionally includes transmetalation with monomer (IV) 

and reductive elimination to yield a metal–polymer π-complex that has been extended 

by one monomer unit. Propagation continues until all monomers are consumed.  
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Scheme 1.1 Catalytic cycle in CTP (M = Ni or Pd, X = halide, RL = reactive ligand (Ar), 
Mʹ = organometallic group). 

 

McNeil and coworkers have been at the forefront of elucidating the CTP 

mechanism of P3HT and poly(phenylene) syntheses using 31P NMR spectroscopic 

analysis to support the various aforementioned intermediates throughout initiation and 

propagation.24,25,26 While most intermediates can be observed using this technique, the 

metal–polymer π–complex (I) is often elusive during polymerization due to relatively fast 

intramolecular oxidative addition. Koeckelburghs observed a metal–π complex using 

31P NMR spectroscopy in an attempted thienothiophene polymerization. 27 The stability 

of this species enabled NMR spectroscopic detection, providing indirect evidence of the 

complex but stalled the catalytic cycle (no polymer formation). McNeil and Bryan have 

also used small-molecule competition experiments to probe the π-complex 

intermediate.28 

Because the catalyst stays associated with the growing polymer chain and the 

chain ends remain active at the end of the polymerization, other CTP-compatible 

monomers can be enchained into the growing polymer and give rise to copolymers (e.g. 

block,29 random,29a,30 and gradient29a,31). These copolymers are used as donor materials 

in organic electronics (i. e., solar cells) and as compatibilizers32,33 in thin films to promote 

film stability and inhibit phase separation, a process that decreases the efficiency of a 
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solar cell over time. Accessing copolymers can be streamlined when the monomers 

have similar polymerization mechanisms. However when the mechanisms are 

dissimilar, numerous synthetic steps and multiple purifications are required to make the 

pure copolymers.34 We were interested in synthesizing block copolymers that contained 

insulating and conducting segments, as these block copolymers exhibit improved thin 

film morphology.35,36 

In Chapter 2 we report our work in identifying a single catalyst (“multitasking 

catalyst”) capable of enchaining monomers with dissimilar mechanisms in one pot 

(Scheme 1.2).37 We evaluated a Ni diimine-ligated catalyst and optimized conditions for 

polymerizing 1-pentene and 3-hexylthiophene (3HT). While we were able to isolate the 

desired copolymer, albeit in low yields, the major products were both homopolymers, 

suggesting that catalysts dissociate during and/or after the switch-in-mechanism. 

Experimental and theoretical studies revealed a high-energy barrier for the catalyst to 

switch mechanisms, coupled with infrequent catalyst dissociation as the reason for low 

copolymer yield. Combined, these studies highlight the difficulties associated with 

identifying multitasking catalysts and further catalyst optimization (ancillary ligand, 

metal) is necessary for this specific copolymerization. 

Scheme 1.2 Copolymerization between 1-pentene and 3HT via a Ni diimine precatalyst. 
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While we chose diimine precatalysts for our copolymerization system because 

they had literature precedent for polymerizing both olefins38 and thiophenes,22a  

commercially available Ni(diphenylphosphinoethane)Cl2 and 

Ni(diphenylphosphinopropane)Cl2 are typically used in CTP. Moving beyond these 

catalysts, researchers have also expanded ligand scope to include 

bisalkylphosphinoethane and substituted bisarylphosphinoethane ligands and NHCs for 

CTP.25,39 Increasing electron density of the catalyst via ligand modifications has 

provided a measurable increase in end-group control and narrow dispersities for 

conjugated polymers. We were interested in exploring a new ligand scaffold, nitrogen-

based bisphosphinoethane, and comparing this catalyst to the previous work in the field 

through dispersity and end-group analysis.   

Chapter 3 describes our efforts in synthesizing conjugated polymers via CTP with 

a new ligand scaffold (Figure 1.1). We synthesized a bis(dipyrrolidinylphopshino)ethane 

(dpyrpe) Ni dihalide precatalyst (L2MX2) that yielded poly(bishexyloxyphenylene) 

(PBHP) and P3HT with multimodal gel permeation chromatograms, suggesting 

numerous catalytic cycles. 31P NMR spectroscopic studies of BHP polymerization 

revealed slow initiation. To ensure that all chains were initiating in unison, we modified 

our precatalyst to have a biphenyl reactive ligand, as work by McNeil and coworkers40 

showed that this biphenyl reactive ligand increased the rate of initiation in PBHP 

synthesis. While a multimodal peak persisted for PBHP using our new precatalyst 

(L2MArX), a unimodal polymer peak was observed for P3HT with a narrow dispersity (Ð 

= 1.13) and almost complete end-group incorporation (99.5%). In addition, an electron 

deficient polymer, poly(3-hexylesterthiophene) (P3HET) was synthesized with L2MArX 

with a moderate dispersity (Ð = 1.31) and 99% incorporation of end-groups. A low 

molecular weight tail was seen, suggesting slow initiation. Comparing our system to 

past work, dpyrpe–ligated Ni catalysts should be further explored for polymerizing 

electron-deficient monomers. 
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Figure 1.1 Dpyrpe-ligated Ni catalyst for CTP 

 

Another limitation of CTP is that most catalysts and organometallic monomers 

suffer from air and/or moisture sensitivity, rendering researchers limited to working in 

gloveboxes and/or using Schlenk techniques. We were inspired by work from Knochel 

and coworkers,41 wherein ArMgCl with Zn(OPiv)2 salt produced an air- and moisture-

tolerant ArZnCl and Mg(OPiv)2. This combination was still >90% active material after 4 h 

exposed to air. Mechanistic work by Knochel in 2014 revealed stability is due  

Mg(OPiv)2 salt absorbing H2O, preventing hydrolysis of the Zn–C bond.42 We 

hypothesized that a monomer with the above organometallic functionality would enable 

us to perform CTP in air and Chapter 4 describes our efforts in outlining a user-friendly, 

open-to-air synthesis. We reported a precatalyst that (IPentF) (Scheme 1.3) shows 

promise as a suitable precatalyst for an in-air conjugated polymer synthesis via CTP 

yielding polymers with targeted molecular weights and narrow dispersities. This 

motivating result suggests that CTP can be made available to a broader scientific 

community, as a glovebox is not necessary for polymerization.  

Scheme 1.3 Open-to-air CTP polymerization conditions. 
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Overall, this thesis aims to advance copolymer sequence of CTP, design new 

CTP precatalysts, and provide an air-tolerant CTP route to the broader scientific 

community. Specifically, we look at accessing block copolymers with insulating and 

conducting segments in one-pot using a single catalyst. While some copolymer is 

generated, the major products of the reaction mixture are homopolymers due to a high 

energy barrier switching between mechanisms coupled with chain-transfer reactions.  

Lessons learned are also discussed that should aid in future “multitasking” catalyst 

design. We next seek to expand ligand scope of bisphopsphine–ligated Ni precatalysts 

to include dpyrpe ligands. These catalysts polymerize thiophene-based electron-rich 

and electron-poor monomers with exclusive end-group incorporation. Mechanistic 

studies are suggested for future work to understand this new catalyst’s behavior in CTP. 

Finally, we provide an outline of a potential open-to-air route for accessing conjugated 

polymers via CTP that enables researchers to generate important materials for organic 

electronics without the need for a glovebox. 
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Chapter 2 

Trials and Tribulations of Designing Multitasking Catalysts for Olefin/Thiophene 

Block Copolymerizations* 

INTRODUCTION 

Block copolymers have had an outsized impact on materials science, with 

applications including templating nanostructures1,2 and thermally stabilizing polymer 

blends.3–6 Synthesizing block copolymers is facile when the co-monomers are similar 

because they can be enchained sequentially in the same flask via the same mechanism 

(Scheme 2.1A). In contrast, synthesizing block copolymers from dissimilar monomers is 

significantly more challenging. Most approaches require multiple synthetic and 

purification steps to isolate the desired copolymer from unreacted polymer precursors. 

Scheme 2.1. One-pot approaches for synthesizing block copolymers. 

 

*
 
Reproduced with permission from Souther, K. D.; Leone, A. K.; Vitek, A. K.; Palermo, E. F.; LaPointe, A. M.; Coates, G. W.; 

Zimmerman, P. M.; McNeil, A. J. Trials and Tribulations of Designing Multitasking Catalysts for Olefin/Thiophene Block 
Copolymerizations. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 132–137.  

** A.K.L. identified living, chain-growth conditions for Ni-diimine mediated 3HT polymerization. A.K.V. performed all computations. 
E.F.P. ran an initial diimine catalyst screen with precatalysts provided by G.W.C. and ran control experiments for Et2AlCl and THF 
influence on the copolymerization.      
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An alternative strategy involves using “switchable catalysts” that rely on an 

external stimulus to alter their reactivity.7 This approach requires installing stimuli-

responsive functional groups on the catalyst, which usually adds synthetic steps and 

can generate compatibility issues. Moreover, this method has so far only been 

demonstrated with monomers enchained via the same mechanism. 

Another strategy would be to identify a single “multitasking” catalyst that can 

mediate sequential, mechanistically distinct polymerizations (Scheme 2.1B). Deming 

and Novak reported an early example of a multitasking polymerization catalyst in 1991.8 

A single, cationic Ni(II) species was used to sequentially polymerize butadiene via a 

coordination/insertion mechanism, followed by isocyanide via a 

coordination/nucleophilic addition mechanism. This work was later extended to other co-

monomer pairs using similar Ni precatalysts.9–19 In each example, the same active 

catalyst mediates mechanistically distinct polymerizations to generate a block 

copolymer. 

Motivated by these studies, we sought to identify a single multitasking catalyst for 

copolymerizing olefins with thiophene to generate insulating/conductive block 

copolymers. Similar materials have been made with multi-step processes.20 For 

example, Stingelin-Stutzmann showed that even with only 10 wt% thiophene in the 

copolymer, the resulting materials exhibited higher charge mobility, strength and 

flexibility than poly(3-hexylthiophene) (P3HT).21 Similarly, Chen and co-workers showed 

that a thiophene/syndiotactic polypropylene block copolymer exhibited higher charge 

mobilities and air-stability than P3HT alone.22  

While both Ni and Pd catalysts have been used for poly(olefin) and 

poly(thiophene) syntheses, we focused on Ni because it out-performs Pd in the latter 

case.23 Diimines were selected as the ancillary ligands for our multitasking catalyst 

based on their wide use in poly(olefin) synthesis,24–26 with recent applications in 

conjugated polymer synthesis.27–31 Both olefin and thiophene enchainment mechanisms 

involve a Ni(II) intermediate, suggesting that switching from one mechanism to the other 

may be possible. 
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We report herein our efforts to synthesize olefin/thiophene block copolymers 

using Ni-diimine precatalysts. Extensive optimization was needed to identify the 

appropriate reactive ligands, activator, olefin monomer, and reaction conditions for the 

copolymerization. Although some block copolymer was isolated, the reaction mixture 

contained mostly homopolymers, suggesting widespread chain termination and/or chain 

transfer. This result was traced to a high activation barrier for the “switch” from one 

mechanism of enchainment to the other, with concomitant chain transfer and/or catalyst 

dissociation. 

EXPERIMENTAL 

Activation of 2,5-Dibromo-3-Hexylthiophene (eq 1) 

In the glovebox, 2,5-dibromo-3-hexylthiophene (250 mg, 0.768 mmol, 1 

equiv.), n-docosane (approx. 4 mg), and tetrahydrofuran (THF, 7.40 mL) were added 

sequentially to a 20 mL vial equipped with a stir bar. To this solution iPrMgCl (268 µL, 

0.537 mmol, 2.00 M in THF, 0.7 equiv.) was added. The resulting thiophene Grignard 

solution was stirred for 30 min at rt and then titrated using salicylaldehyde 

phenylhydrazone.32 An aliquot of the Grignard solution (0.3 mL, 0.070 M) was quenched 

with aq. HCl (0.5 mL, 12 M) outside the glovebox, extracted with CHCl3 (2 mL), dried 

over MgSO4, and analyzed by gas chromatography (GC) to show a mixture of 

regioisomers (79:21). 

 

Copolymerization of 1-Pentene and Thiophene 

In the glovebox, precatalyst C2 (15.7 mg, 0.0177 mmol, 1.0 equiv.) and cold 1-

pentene (2.00 mL, kept at −30 °C) were added to a 4 mL vial while stirring. After 2 min, 

the mixture was filtered through a PTFE syringe filter (0.2 µm) into a 50 mL round-

bottom flask equipped with a stir bar. A solution of B(C6F5)3 (18.0 mg, 0.0354 mmol, 2.0 
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equiv.) in cold 1-pentene (1 mL) was added and the reaction stirred for 20 s. Then, THF 

(5.0 mL) and toluene (3.0 mL) were added. The flask was then held under reduced 

pressure for 30 min (until ∼2 mL solvent remained). An aliquot (0.50 mL) of the 

remaining solution was added to a J-Young tube and analyzed by 1H NMR 

spectroscopy before quenching with MeOH (2 mL) and concentrating in vacuo. The 

residue was redissolved in THF (1.5 mL), passed through a PTFE syringe filter (0.2 

µm), and analyzed by gel permeation chromatography (GPC) to estimate the 

macroinitiator molecular weight. THF (8.0 mL) and thiophene Grignard (4.0 mL) were 

added to the remaining macroinitiator solution. After 2 h, the reaction was quenched 

with aq. HCl (10 mL, 12 M). The resulting polymer was extracted with CHCl3 (2 × 15 

mL), dried over MgSO4, and filtered using a Buchner funnel. An aliquot (0.5 mL) of this 

solution was split into two equal portions. The first portion was diluted with CHCl3 (2.0 

mL) and analyzed by GC to determine the thiophene conversion. The second portion 

was concentrated in vacuo and then redissolved in THF/toluene (99:1; 1.5 mL) with mild 

heating, passed through a PTFE filter, and analyzed by GPC. After analysis, both 

portions were recombined with the mother liquor and the solvent was removed in vacuo, 

yielding a maroon solid (25 mg). 

Block Copolymer Purification 

The maroon solid was dissolved in CHCl3 (0.5 mL) and precipitated with MeOH 

(15.0 mL). The mixture was spun in a centrifuge for 10 min. The supernatant was 

decanted and saved. The precipitate was dried under reduced pressure, yielding 15 mg 

of polymer. 1H NMR spectroscopic analysis revealed that this solid resembled P3HT 

homopolymer. The supernatant was concentrated under reduced pressure to generate 

a purple solid (10 mg). MeOH (10 mL) was added followed by sonication for 1 min. The 

resulting mixture was spun in the centrifuge for 10 min, and then the supernatant was 

removed and saved. This process was repeated three times. Hexanes (10 mL) was 

added to the remaining solid, followed by centrifugation (10 min). The resulting yellow 

supernatant was collected, passed through a PTFE syringe filter (0.2 μm), and 

concentrated in vacuo to yield a solid (4 mg). 1H NMR spectroscopic analysis revealed 
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that the solid contained a mixture of the desired copolymer and poly(1-pentene) 

homopolymer. 

Computational Details 

Quantum chemical simulations were performed on key reaction steps, with 

pathways and transition states optimized using the growing string method.33–35 Reported 

energies come from the ωB97X-D density functional36 using the triple-zeta, polarized cc-

pVTZ basis set,37 and the SMD solvation model38 with THF as the solvent. 

RESULTS AND DISCUSSION 

Identifying Reactive Ligands 

We initially selected Ni precatalyst C1 (Chart 2.1), which was chosen based on 

its reported living, chain-growth olefin polymerization behavior39–43 as well as its ability to 

synthesize P3HT with a targeted number-average molecular weight (Mn) and moderate 

dispersity (Đ).44,45 Due to the high sensitivity of the olefin polymerization to coordinating 

substrates, including thiophene and THF, we synthesized the polyolefin block first, 

followed by polythiophene. 

Chart 2.1 Precatalyst Structures 

 

To initiate thiophene polymerization, the two reactive ligands in C1 (i.e., Br) are 

displaced via two sequential transmetalations with thiophene Grignard, followed by 

reductive elimination to generate bithiophene. In contrast, to initiate olefin 

polymerization, an alkyl aluminum reagent (e.g., Et2AlCl) is needed to perform the 

sequential transmetalations followed by alkyl group abstraction to generate a cationic 



18 
 

catalyst. We hypothesized that the residual Et2AlCl and generated alkyl aluminum 

species may interfere with the thiophene polymerization. Indeed, no P3HT was formed 

when Et2AlCl was added to the standard thiophene polymerization conditions (Figure 

S1.6). Most likely, the Grignard and aluminum reagents formed a less reactive mixed 

aggregate.46,47 To avoid using an aluminum activator, the Br reactive ligands in 

precatalyst C1 were replaced with trimethylsilylmethylene (“TMSCH2”) to yield 

precatalyst C2 (Chart 2.1).44 

Selecting a Cocatalyst 

We next sought to identify a co-catalyst that could generate a cationic Ni(II) 

species by abstracting one TMSCH2 from precatalyst C2. Triarylboranes were evaluated 

based on their known ability to act as a co-catalyst for poly(olefin) synthesis48 and their 

anticipated lack of reactivity with Grignard reagents. Indeed, PH3T synthesis was 

unaffected by the presence of tris(pentafluorophenyl)borane (B(C6F5)3) (eq 2, Figure 

S1.10). Note that, in this case, initiation involves thiophene transmetalation with a 

cationic Ni(II) intermediate; computational studies revealed a low activation barrier (10.2 

kcal/mol) for this step (Figure S1.26b). 

 

In addition, this precatalyst/co-catalyst combination led to poly(1-hexene) with 

narrow dispersities and molecular weights that tracked linearly with time, suggesting a 

living, chain-growth polymerization (Figure S1.9). The olefin polymerization mechanism 

involves predominantly 1,2-insertion, followed by chain-walking to generate mostly 

linear polyolefin (eq 3, Figure S1.8). Under these conditions, however, neat olefin was 

necessary because borane-activated catalysts have lower reactivity than aluminum-

activated catalysts. 
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First Copolymerization 

Olefin enchainment begins when the borane co-catalyst is added to a solution 

containing precatalyst C2 and 1-hexene (eq 4). After a few minutes, an aliquot of THF is 

added to stall the polymerization and to target a lower molecular weight macroinitiator. 

THF should bind to the open coordination site on Ni(II), inhibiting further olefin binding 

and insertion. Indeed, a control experiment confirmed that adding THF prevents further 

olefin incorporation (Figure S1.12). The thiophene monomer was subsequently added to 

the reaction mixture and the polymerization continued for 60 min. 

 

Gel permeation chromatography (GPC) was used to monitor block copolymer 

formation (Fig. 2.1(A)). Almost no change in number-average molecular weight of the 

macroinitiator was observed, suggesting minimal thiophene addition into the chains. 

Nevertheless, the UV and RI traces exhibit similar peak shapes, suggesting that some 

thiophene units were incorporated. In addition, a new polymer peak with a lower 

molecular weight was observed, which is consistent with shorter thiophene 

homopolymers. Thiophene conversion in the block copolymerization was significantly 

lower than observed in thiophene homopolymerization (cf., 11% vs. 70%), suggesting 

that not all catalysts were actively enchaining monomer. Combined, these results 

suggest low thiophene incorporation in the block copolymer with a subsequent chain-
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transfer or chain-termination event releasing catalysts capable of synthesizing P3HT, 

albeit slowly. 

To understand these results, we considered the differences between the 

copolymerization and thiophene homopolymerization. The most significant change is 

the presence of unreacted olefin during the copolymerization. Based on this 

observation, we suspected that olefin competitively displaces the polymer from Ni(0).49 

This hypothesis is based on studies by McCullough and coworkers50,51 and Pickel and 

coworkers,52 where added olefin attenuated catalyst reactivity during P3HT synthesis. 

To probe this hypothesis, the relative binding energies for 1-hexene and thiophene to 

diimine-ligated Ni(0) were calculated and found to be similar (ΔG = 0.6 kcal/mol; eq 5), 

suggesting that olefin can displace the copolymer from Ni(0) under the reaction 

conditions. This hypothesis is further supported by our data showing that even 1 equiv. 

of 1-hexene (relative to thiophene Grignard) inhibits thiophene homopolymerization with 

precatalyst C2 [Figure 2.1(B)] 

 

 

Figure 2.1 Gel permeation chromatograms for (A) 1-hexene and thiophene Grignard 
copolymerization, and (B) thiophene homopolymerization in the presence of 1-hexene. 
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To overcome olefin inhibition, we replaced 1-hexene (bp = 63 °C) with the more 

volatile 1-pentene (bp = 30 °C). As a consequence, the olefin can be removed prior to 

adding thiophene Grignard (Figure S1.15), preventing competitive displacement on 

Ni(0). 

Second Copolymerization 

An apparent, significant chain extension was observed when the 

copolymerization was performed with 1-pentene [eq 6 and Figure 2.2(A)]. This result 

suggests that the desired block copolymer was formed. However, the 1H NMR spectrum 

of the crude reaction mixture (by precipitation in CHCl3/MeOH) suggested the major 

product was P3HT homopolymer (Figure S1.18). After removing the P3HT and 

unreacted monomer, a mixture of poly(olefin) and apparent block copolymer was 

isolated (Figure S1.20). 

 

Identifying whether or not block copolymer was synthesized was difficult due to 

overlapping NMR signals from the CH2 moieties on the hexyl side chain on thiophene 

and poly(olefin). Nevertheless, comparing the 1H NMR spectra of independently 

synthesized homopolymers (P3HT and poly(olefin)) versus the copolymer mixture 

revealed two new resonances at 2.92 and 3.04 ppm [Figure 2.2(B)]. These resonances 

were tentatively assigned to hydrogens on the poly(olefin) carbon directly attached to 

the first thiophene unit. Further evidence was provided by their NOE correlations with 

the aromatic–1H resonances from poly(thiophene) (7.0–7.1 ppm) via 1H/1H NOESY 

(Figure S1.21). Combined, these data suggest successful copolymer formation.  
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Figure 2.2 (A) Gel permeation chromatograms for 1-pentene and thiophene Grignard 
copolymerization. (B) 1H NMR spectral comparison of the macroinitiator, P3HT, and the 
isolated block copolymer. 

Obtaining some block copolymer (albeit in low quantities) demonstrates that this 

multitasking catalyst does sequentially polymerize two dissimilar monomers via distinct 

mechanisms. To increase the yield, an understanding of the unproductive pathways is 

needed. 

Identifying the Problematic Step(s) 

To understand the origin(s) of the unproductive pathways, we considered the key 

intermediate between the two mechanistically distinct polymerizations. For the catalyst 

to switch enchainment mechanisms, a reductive elimination must occur between 

poly(olefin) (Csp3) and a thiophene monomer (Csp2) (Scheme 2.2). 

Scheme 2.2 Comparison of reductive elimination barriers. 
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To provide insight into this step, DFT computations were used to assess the 

relative rates of Csp2–Csp3 and Csp2–Csp2 reductive eliminations. These computations 

found that the barrier for the Csp3–Csp2 elimination was 3.4 kcal/mol higher, and the 

reaction would therefore be approximately 300 times slower than bis-thiophene 

reductive elimination [Figure S1.26(c)]. To probe the Csp3–Csp2 elimination 

experimentally, we synthesized a neutral precatalyst (C3) containing both a 

TMSCH2 and Br reactive ligand. After transmetalation with thiophene Grignard, a Csp2–

Csp3 reductive elimination should occur. Indeed, P3HT was observed with 

precatalyst C3 (eq 7). Nevertheless, the isolated polymer exhibited a higher number-

average molecular weight than expected based on the initial monomer/precatalyst ratio 

(Figure S1.25),53 suggesting that not all catalysts are active. To determine whether the 

precatalyst initiation proceeded through the proposed Csp2–Csp3 reductive elimination, 

polymer end-groups were analyzed via MALDI-TOF-MS. The data showed negligible 

TMSCH2 incorporation (Figure S1.24), suggesting that initiation proceeds either by the 

proposed reductive elimination followed by dissociation from the chain, or by 

disproportionation to generate Ni(0) and Ni(II), both of which are active for P3HT 

synthesis. 

 

We suspect dissociation might be occurring based on our concurrent work with 

precatalyst C1,45 where we observe some catalyst dissociation. In this case, however, 

the catalyst preferentially re-inserts into polymer chains rather than the monomer. This 

result was attributed to a statistical effect, where the polymer chain outcompetes the 

monomer for Ni(0) based on the greater number of π-binding sites. In contrast, in the 
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block copolymerization described herein, catalyst re-association into a polymer is less 

likely to occur because the polymer chains are predominantly poly(olefin), which have 

no π-binding sites. Therefore, we suspect that the macroinitiator undergoes initiation 

followed by some propagation and ultimately dissociation. Subsequent insertion into a 

thiophene monomer leads to P3HT homopolymers. In addition, we believe that only a 

small percentage of catalysts are active at any time due to the slow Csp2–Csp3 

reductive elimination. 

CONCLUSIONS 

Combined, these studies highlight the challenges associated with identifying 

multitasking catalysts that can enchain different monomers via distinct mechanisms in 

the same pot. Even though both homopolymerizations were optimized under identical 

conditions, their combination in the same pot led to unanticipated challenges. 

Specifically, the diimine-ligated Ni precatalyst studied herein suffered from slow 

“switching” between the mechanisms, and from catalyst dissociation, resulting in a 

mixture of poly(olefin), P3HT, and block copolymer. However, our systematic 

investigation into the elementary steps of this polymerization provides fundamental 

insight that should be leveraged when designing new multitasking catalyst systems. 
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Chapter 3 

Bis(pyrrolidinylphosphino)ethane Ni Mediated Catalyst-Transfer Polymerization 

Introduction 

 The 2004 discovery of a living, chain-growth method for conjugated polymer 

synthesis, catalyst-transfer polymerization1 (CTP), has enabled access to many 

materials for use in the active layer of organic electronics (e. g., solar cells, transistors, 

and light-emitting diodes).2,3,4,5,6 Since this advent, McNeil and coworkers elucidated the 

mechanism of bis(aryl/alkylphosphino)-,7,8,9 and diimine-ligated10 nickel catalysts in CTP. 

In CTP, a precatalyst must first undergo initiation, yielding a metal-π complex that 

persists as an intermediate throughout propagation (Scheme 3.1). It has been 

hypothesized that the stability and reactivity of this complex dictates CTP behavior, 

ensuring that intramolecular oxidative addition occurs after the catalyst ring walks to the 

terminal Ar–Br bond. The stability of this complex can be directly correlated to the σ-

donating (bonding) and π-accepting properties of the ancillary ligand which influence 

metal backbonding interactions into the antibonding π-orbitals of the arene monomer.  

McNeil and coworkers have specifically looked at σ-donating properties of 

bisphosphine ligands and hypothesized that electron-rich phosphines would yield a 

stable π-complex as well as induce faster intramolecular oxidative addition. This 

hypothesis was explored via small molecule competition experiments in which product 

ratios of intramolecular versus intermolecular oxidative addition into a biaryl complex 

generated in situ were measured.11 All four electron-rich ligands screened 

(diphenylphosphinoethane (dppe), triphenylphosphine, diethylphosphinoethane (depe), 

and diparamethoxyphenylphosphinoethane) yielded the major intramolecular oxidative 

addition product, suggesting that the metal-π complex was forming. An additional 

experiment showed that the most electron-rich ligand (depe), had
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the fastest relative rates of intramolecular oxidative addition. These results supported 

their hypothesis that more σ-donating  ligands stabilize the metal π-complex as well as 

increase rates of intramolecular oxidative addition. The CTP literature has thus focused 

on varying steric and electronic properties of metal-ligand pairs to achieve the 

aforementioned polymer properties and access new conjugated polymers.12,13,14 

Scheme 3.1 Catalytic cycle for CTP. 

 

McNeil and coworkers have also hypothesized that varying σ-donating properties 

of bisphosphine ligands in polymerizations would enhance the metal’s binding affinity to 

the polymer as well as increase intramolecular oxidative addition rate, yielding better 

CTP behavior. Evidence for improved CTP behavior in a polymerization can be 

supported through accessing polymers with narrow dispersities (Ð) as well as exclusive 

end-group incorporation (analyzed using Matrix-Assisted Laser Desorption/Ionization-

Time of Flight/Mass Spectrometry (MALDI-TOF/MS)). In 2011, McNeil and coworkers 

screened three electron-donating ligands complexed with Ni for CTP (Chart 3.1), and 

found that (Ni(depe)Cl2) yielded polymers with narrower dispersities and complete end-

group control for poly(phenylene), poly(thiophene), and poly(pyrrole) compared to the 

more common bisphosphine CTP catalysts Ni(dppe)Cl2 and Ni(dppp)Cl2, with complete 

end-group fidelity.  
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Chart 3.1 Selected bisphosphine ligands explored in CTP 

 

However, metal-π complex formation in CTP is dependent on σ-donating and π-

accepting properties of the ligand, as well as monomer identity. Motivated by McNeil’s 

work, we sought to explore the scope of electron-donating ligands in Ni-catalyzed CTP. 

Infrared spectroscopy can be used to measure electron-donating abilities of ligands by 

measuring CO stretching frequencies in ligand–metal–CO complexes; an electron-

donating ligand lengthens and weakens the CO bond, leading to a smaller CO 

frequency. A bis(pyrrolidinylphosphino)ethane (dpyrpe) ligand was recently reported to 

yield similar (Chart 3.1) wavenumbers to dppe when ligated to a metal-CO complex 

(1960 cm-1 vs 1961 cm-1 respectively).16 This result suggests that dpyrpe-ligated Ni 

catalysts would most likely yield polymers with similar CTP properties to dppe-ligated Ni 

catalysts, leading us to consider the π-acceptor character of dpyrpe.  

Work by Michalak and coworkers measured differences in orbital energies of a 

variety of substituted phosphines and found that while alkyl and alkoxy substituted 

phosphines had similar sigma donating strength; alkoxy substituted phosphines were 

better π-acceptors, represented by a smaller energy difference between orbitals.17 

Overall, phosphines substituted with more electronegative atoms were better π-

acceptors. While amino-substituted phosphines were not measured directly in the above 

work, the small increase in electronegativity from carbon to nitrogen suggests that 

nitrogen-based phosphino ligands should be better π-acceptors. We hypothesized that 

dpypre’s π-acidity coupled with its σ-donating abilities may show improved CTP 

polymerization behavior compared to carbon-based bisphosphines. Herein, we report a 

dpyrpe–ligated Ni precatalyst for CTP that yields poly(3-hexylthiophene) (P3HT) with 

better dispersity and comparable end-groups compared to a dppe-ligated Ni precatalyst. 

We also expanded monomer scope for this catalyst to include an electron-deficient 
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hexylesterthiophene (3HET). While we sought to expand monomer scope of this 

precatalyst to 2,5-bishexyloxyphenylene (BHP), the polymerization was marred by slow 

initiation and the presence of multiple catalytic species. 

Precatalyst synthesis 

Ligand exchange between dpyrpe (synthesized in 1 step with 76% yield) and 

dimethoxyethylene glycol (DME) from Ni(DME)Br2 in DCM at rt overnight yielded C1 

(44% yield) (Scheme 3.2). Ligand exchange between the trans-triphenylphosphine 

ligands on nickel precursor (1) (synthesized in 1 step with 65% crude yield) and dpyrpre 

at rt for 90 min in THF yielded C2 (54% yield). 

Scheme 3.2 C1 and C2 synthesis. 

 

Results and Discussion 

Precatalyst C1 was screened in BHP polymerization, yielding PBHP with a 

multimodal gel permeation chromatography (GPC) trace (Mn = 16.9 kDa, Ð = 4.81, 89% 

conversion) (Figure 3.1). This result suggests multiple catalytic species are present 

throughout the polymerization. 31P nuclear magnetic resonance (NMR) spectroscopy 

was performed to monitor the catalytic species present. Reacting C1 with 15 equiv of 

BHP yielded two species: a pair of doublets (117.65, 111.90 ppm, J = 40.5 Hz) and a 

singlet (121.70 ppm) (Figure 3.2). The doublet was assigned to complex II (Figure 3.1) 

based on similar coupling constants seen for C2. Complex II forms after an initial BHP 

transmetalation event with C1, giving rise to a non-symmetric phosphine precatalyst. 

Complex II is then converted to complex III via a second transmetalation event with 
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BHP, yielding a symmetric bisphosphine precatalyst. As the reaction proceeds, the 

singlet at 121.70 ppm begins to disappear as reductive elimination occurs and a new 

set of doublets appear (117.36, 111.60 ppm, J = 37.7 Hz). Given the similar chemical 

shifts to complex II and coupling constants to C2, we assigned this complex IV, 

representing the catalyst resting state for propagation. While complex III completely 

disappears after 50 min, complex II persists; suggesting the second transmetalation is 

slow, possibly due to steric crowding around the metal center from the BHP monomer.   

 

Figure 3.1 GPC trace of PBHP synthesized with C1 or C2 (1.3 mol%) ([mon] = 0.1 M, 
[cat] = 1.36 mM) at rt for 8 h. (theor. Mn = 20.7 kDa) 

We synthesized a potentially faster initiating precatalyst with a biphenyl reactive 

ligand (RL) (Scheme 3.2, C2) containing an ortho-methoxy group, requiring only a 

single transmetalation with the BHP monomer. McNeil and coworkers have also used 

this precatalyst in PBHP synthesis.18 When BHP was polymerized using C2, a bimodal 

GPC trace was observed with a narrower dispersity (Mn = 13.8 kDa, Ð = 3.43, 86 % 
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conversion) compared to PBHP synthesized via C1. This data suggests that multiple 

catalytic species still remain leading us to explore other monomers for polymerization. 

 

 

Figure 3.2 31P NMR spectra for polymerizing BHP (15 equiv) with C1 (1 equiv) and the 
various catalytic species throughout the polymerization ([mon] = 0.17 M, [cat] = 9.0 
mM). 

 

Polymerizing 3HT with C1 yields P3HT at approximately the theoretical molecular 

weight (Mn = 11.8 kDa, theor. Mn = 12.5 kDa) and Ð = 1.34, with only the major 

regioisomer consumed and a bimodal peak observed via GPC (Figure 3.3).  When 

polymerizing 3HT with C2, P3HT (Mn = 14.9 kDa, theor. Mn = 14.0 kDa) with a narrower 

dispersity (Ð = 1.11) and unimodal GPC trace was observed (Figure 3.3). Similar to C1, 
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only the major 3HT regioisomer is consumed with precatalyst C2. Luscombe 

polymerized 3HT with a dppe-ligated Ni precatalyst with a tolyl-reactive ligand to give 

P3HT (Mn = 9.8 kDa, Ð = 1.2) with complete end-group incorporation.19 Compared to 

our system, the narrower dispersity obtained using C2 (compared to Luscombe’s 

precatalyst) supports our hypothesis that the dpyrpe ligand may stabilizing the metal-π 

complex and enhancing oxidative addition rates. Given the above polymer properties, 

the living and chain-growth nature of C2-mediated 3HT polymerization was explored. 

 

Figure 3.3 GPC trace of P3HT synthesized with C1 or C2 (1 mol%) ([mon] = 0.02 M, 
[cat] = 0.3 mM) for 90 min at rt. 

 As expected for a chain-growth polymerization, a linear relationship between  

monomer conversion and polymer molecular weight was observed (Figure 3.4A).  Living 

chains ends were supported by a chain-extension experiment in which a second 

monomer aliquot is added to the polymerization after the initial monomer is mostly 

consumed (99%). Comparing GPC traces before and after monomer addition, show a 

shift to a higher molecular weight polymer without broadening the dispersity. (Figure 
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S2.16, P3HTinitial = 7.3 kDa, Ð = 1.13, P3HTextended = 14.9 kDa, Ð = 1.13). Approximately 

theoretical molecular weights were also achieved at each catalyst loading (mon:cat = 

25:1, 50:1, 75:1) with consistently narrow Ð < 1.13, (Figure 3.4B), indicating that most 

catalysts initiate and polymerize a single chain.  Finally, end-group analysis after 

quenching with acid using MALDI-TOF/MS revealed exclusive RL/H end-groups (Figure 

3.4C). This result suggests that the catalyst stays associated to the growing polymer 

chain throughout propagation. Combined, successful chain-extension, targeted 

molecular weight, and high end-group fidelity all indicate that C2 polymerizes 3HT via a 

living, chain-growth mechanism with minimal side reactions or catalyst dissociation. 

Figure 3.4 3HT polymerizations with C2 to support chain-growth behavior showing A) 
number-average molecular weight (Mn) versus percent conversion of 3HT, B) varying 
monomer:catalyst ratio (25:1, 50:1, 75:1) with percent monomer conversion and C) 
MALDI-TOF MS of P3HT (Mn = 5.25 kDa, Ð = 1.13). 
 

 While the living chain-growth synthesis for electron-deficient polymers are of 

continued interest in the CTP field, reports of these syntheses are few.20,21,22,23 

Polymerizing electron-deficient monomers via CTP can be difficult, as low catalyst-

turnover in these reactions can potentially lead to unproductive pathways. However, 

Noonan and coworkers polymerized 3-hexylesterthiophene, 3HET, an emerging 

monomer of interest for donor-acceptor copolymers, under Suzuki CTP conditions with 

various nickel precatalysts, including Ni(dppe)Cl2.
23 While living conditions were 
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identified, MALDI-TOF/MS showed end groups consistent with chain-transfer. We were 

thus interested in applying C2 to a 3HET polymerization. Monomer 3HET was 

synthesized herein via zinc metalation with hexyl 2-bromo-3-thiophenecarboxylate and 

2,2,6,6-tetramethylpiperidinylzinc chloride at 65 C to give the monomer as a single 

regioisomer. This mild activation route was necessary as esters are sensitive to 

Grignards, and could not be synthesized via Grignard metathesis. Precatalyst C2 

yielded poly(3-hexylesterthiophene) (P3HET) with a targeted Mn = 3.6 kDa (theor. Mn = 

3.2 kDa) (for MALDI-TOF/MS analysis) and moderate Ð (1.31). Because a single 

regioisomer reacts with the precatalyst, the resulting P3HET is regioregular (head-to-

tail). MADLI-TOF/MS analysis of P3HET revealed high end-group incorporation (99% 

RL/H–polymers), indicating that chain-transfer to monomer was not occurring. 

Nevertheless, low molecular weight tailing in the GPC trace suggests 3HET 

polymerization suffers from slow initiation. Future work probing the mechanism should 

glean insight into the rate-limiting step, which could assist our design of an optimal 

catalyst to increase the initiation rate and narrow the resulting polymer’s dispersity. 
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Figure 3.5 GPC and MALDI-TOF/MS trace for P3HET synthesized with C2 (5.8 mol%) 
([mon] = 0.02 M, [cat] = 0.3 mM) for 3 h at rt. 

 

Conclusions and Future Directions 

We hypothesized that dpyrpe, a strong σ-donating ligand with increased π-

acceptor character compared to dppe, would promote CTP behavior. Using C2, P3HT 

was synthesized with a narrow dispersity (Ð = 1.11) and complete incorporation of 

reactive ligand/H end groups. This precatalyst also polymerized an electron-deficient 

monomer, 3HET; yielding polymer with high end-group fidelity. Future work should 

focus on expanding monomer scope to other electron-poor monomers. Finally, while a 

BHP polymerization was attempted, multimodal GPC peaks were observed using C1 

and C2, suggesting multiple catalytic species and an uncontrolled polymerization. 

Overall, future work should include kinetic and spectroscopic studies to probe the CTP 

mechanism of this new catalyst. Mechanistic insight will inform future catalyst design for 
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tuning the σ-donating and π-accepting character of ancillary ligands to influence 

productive CTP pathways. 
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Chapter 4 

User-Friendly Synthesis for Conjugated Polymers 

Introduction 

 Transition metal-catalyzed cross-coupling is an often utilized method for forming 

carbon–carbon bonds in the pharmaceutical, agrochemical and material fields.1,2,3,4 A 

particularly useful application of cross-coupling chemistry is in conjugated polymer 

synthesis via catalyst-transfer polymerization (CTP), a living, chain-growth method.5,6,7 

This polymerization proceeds through a Ni(0)/Ni(II) catalytic cycle (Scheme 4.1) in 

which the catalyst stays associated to the growing polymer chain via a metal-π polymer 

complex.8,9,10 This association ensures addition into the same chain, enabling access to 

targeted molecular weight  polymers, a narrow molecular weight distribution (dispersity, 

Ð), and sequence control.11 

Scheme 4.1 General mechanism for catalyst-transfer polymerization. 
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 A major limitation with cross-coupling chemistry is that the organometallic 

transmetalating agent and transition metal catalyst are often air- and moisture-sensitive. 

When exposed to water, organometallic reagents hydrolyze making them inactive for 

synthesis. Additionally, transition metal catalysts are often poisoned by oxygen and/or 

water. Combined, these oxygen/water sensitivities require many cross-coupling 

reactions to be conducted in inert atmospheres (i.e., N2 or Ar). To circumvent these 

limitations, Knochel and coworkers first reported an air-stable cross-coupling reagent by 

reacting ArMgX (X = Cl, Br, I) with Zn(OPiv)2 to generate ArZnCl with a noncoordinated 

Mg(OPiv)2 salt (Figure 4.1, past work).12,13 The organozinc arenes were then used in 

high-yielding Negishi cross-coupling reactions via air-tolerant N-heterocyclic 

carbene(NHC)-ligated palladium (Pd) precatalysts, known as PEPPSI (pyridine-

enhanced precatalyst preparation, stabilization, and initiation).14 Mechanistic studies by 

Knochel hypothesized that the Mg(OPiv)2 sequesters H2O, reducing the probability of 

hydrolyzing the Zn–C bond.15 We were motivated to expand this work to CTP (Figure 

4.1, this work). Herein we report our initial work in identifying an open-to-air synthesis 

for poly(3-hexylthiophene) (P3HT) and poly(3-hexylesterthiophene) (P3HET). 

 

 

Figure 4.1 Air-tolerant Negishi cross-couplings with Pd-PEPPSI precatalysts (past 
work). Air-tolerant catalyst-transfer polymerization with Pd-PEPPSI precatalyst (this 
work). 
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As a control, P3HT synthesis was first performed in the glovebox. Monomer Zn-

3HT was generated via Grignard metathesis between iPrMgCl-LiCl with 2,5-dibromo-3-

hexylthiophene, followed by transmetalation with Zn(OPiv)2 (95% conversion). After 

transmetalation, a new shift in the 1H nuclear magnetic resonance (1H NMR) spectrum 

of the thiophene aromatic proton downfield (Δ = 0.03 ppm) was observed (Figure S3.4). 

Commercially available NHC-ligated Pd precatalysts were first screened for Zn-3HT 

polymerization (Chart 4.1). 

Chart 4.1 Selected commercially available NHC-ligated Pd precatalysts 

 

 When Zn-3HT was polymerized with IPr and its saturated analogue SIPr in the 

glovebox, targeted molecular weight polymers (theor. Mn = 15.5 kDa) were achieved for 

IPr (Mn = 17.7 kDa) and SIPr (Mn = 12.3 kDa) albeit with broad dispersities (IPr: Ð = 

2.25, SIPr: Ð = 2.10) (Figure 4.2). This result is in contrast to Kumada-CTP reported by 

McNeil and coworkers in which IPr yielded P3HT (Mn = 28.2 kDa) with narrow dispersity 

(Ð = 1.19) with Mg-3HT.16 End-group analysis of our polymers via matrix-assisted laser 

desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), showed Br/H 

(83%), Br/Br (17%) for IPr and Br/H (78%), Br/Br (8%), iPr/H (3%) for SIPr with 11% of 

end-groups unaccounted for (Figure 4.2). These results suggest that catalyst 
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dissociation from the growing polymer chain is happening, indicated by Br/Br end-

groups coupled with broad dispersity. Precatalyst IPent polymerized Zn-3HT to yield 

P3HT with a narrower dispersity (Ð = 1.55) than IPr/SIPr and a higher percentage of 

Br/H end-groups (Br/H (91%) and Br/Br (9%)), indicating fewer catalysts were 

dissociating. Fewer catalysts dissociating could be due to an increase in electron 

density at the metal center compared to IPr and a stronger metal-π complex. We also 

explored an IPent derivative with chlorines replacing the H’s on the NHC (IPentCl). This 

precatalyst gave P3HT (Mn = 12.3 kDa) with a narrower dispersity (Ð = 1.33) compared 

to IPent. Unfortunately end-group analysis revealed poor end-group fidelity (Br/H (73%), 

Br/Br (11%), iPr/Br (9%), iPr/H (6%)). Loss of end-group control could stem from a 

weaker metal-polymer complex with the electron-withdrawing chlorines compared to 

IPent. Finally, an NHC-ligated Pd precatalyst with an allyl stabilizing ligand, IPr-allyl, 

was evaluated. A polymer with Mn greater than 3 times the theoretical molecular weight 

(Mn = 87 kDa, theor. Mn = 15.5 kDa) with a broad dispersity (Ð = 2.57) was synthesized. 

These results suggest that fewer catalysts were initiated than anticipated, generating 

higher-than targeted molecular weight polymers. Summarizing these results, IPent 

polymerized Zn-3HT with a narrow dispersity and highest end-group fidelity among 

screened precatalysts and was selected for further catalyst optimization. 
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Figure 4.2 Zn-3HT monomer synthesis and polymerization with commercially available 
NHC-ligated Pd precatalysts and corresponding MALDI-TOF/MS plots ([mon] = 0.02 M, 
[cat] = 0.3 mM). 
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Computational work by Zimmerman and coworkers has recently elucidated the 

role of 3-chloropyridine during Kumada CTP of thiophene via IPr.17 While initially 

thought of as only a “throw-away” ligand,18 3-chloropyridine participates in both initiation 

and propagation. During initiation, the pyridine must dissociate from the metal center. 

However, 3-chloropyridine was also found to bind the metal catalyst center during 

propagation, creating an off-cycle species and limiting catalyst-turnover. We 

hypothesized that using a more electron-withdrawing group on the pyridine would 

enable faster pyridine dissociation, as well as decrease the binding affinity of pyridine to 

the metal center during propagation resulting in polymers with narrower dispersities. 

Thus we generated 3–fluoro and 3–trifluoromethylpyridine IPent derivatives and applied 

them to Zn-3HT polymerization (Figure 4.3). Both precatalysts yield P3HT with narrower 

dispersities than  IPent (Ð = 1.49), 3-trifluoromethyl IPent (Ð = 1.41) and 3-fluoro IPent 

(Ð = 1.39). While a dramatic change in dispersity was not observed, we were 

encouraged to see a small decrease (Δ = 0.10), suggesting that a more electron-

withdrawing group on pyridine may influence binding affinity to the metal center. Having 

designed an optimal precatalyst, IPentF, we next evaluated the air-tolerance of this 

system.  

 

Figure 4.3 Zn-3HT polymerization using IPent with various pyridine ligands ([mon] = 
0.02 M, [cat] = 0.3 mM) for 30 min. 

 

To evaluate the air-tolerance of Zn-3HT with IPentF, both monomer and catalyst 

solutions were prepared and then capped and removed from the glovebox. Outside of 

the glovebox, the caps were removed from each vial, monomer solution was injected 

into the catalyst solution, and the polymerization vial was re-capped and stirred for 30 

min (Figure 4). Using this initial setup, a higher than targeted molecular weight (Mn = 
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19.7 kDa, theor. Mn = 14.0 kDa) polymer was synthesized with a dispersity similar to 

glovebox polymerizations (Ð = 1.40). A lower molecular weight polymer (Mn = 4.11 kDa, 

Ð = 1.70, Figure S3.9) was also synthesized for end-group analysis by MALDI-TOF/MS, 

showing 93% Br/H and 7% Br/Br. The percentage of active chain-ends was assessed 

via a chain-extension experiment, in which a second aliquot of monomer is injected after 

initial monomer is mostly consumed (conversion of 1st aliquot = 93%). The chain-

extension experiment generated a higher molecular weight polymer (P3HTinitial: Mn = 

8.96 kDa, Ð = 1.51, P3HTextended: Mn = 18.3 kDa, Ð = 1.38), wherein the entire polymer 

peak shifts, suggesting most chain-ends are active. These results were promising and 

encouraged us to expand monomer scope using the polymerization setup describe 

above. 

 

Figure 4.4 Zn-3HT polymerization exposed to air using IPentF and experimental setup 
([mon] = 0.02 M, [cat] = 0.35 mM) for 30 min. 

 

 Poly(3-hexylesterthiophene) (P3HET) has emerged as an attractive polymer for 

potential use in donor-acceptor copolymers,19 and inspired us to explore this polymer’s 

synthesis open-to-air. However, the ester functionality is sensitive to Grignard reagents, 

requiring us to modify our monomer synthesis. Knochel and coworkers accessed air-

tolerant organometallic arenes with sensitive functional groups by reacting a 2,2,6,6-

tetramethylpiperidinylmagnesium chloride lithium chloride solution with Zn(OPiv)2 
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(Scheme 4.2).20 This complex metalates the most acidic proton in arenes. Applying this 

route to Zn-3HET synthesis yielded the monomer in 51% yield. 

Scheme 4.2 Synthetic route for accessing ZnCl–Ar with sensitive functional groups. 

 

 We next polymerized Zn-3HET with IPentF open-to-air as well as in the glovebox 

for a control. Similar molecular weight polymers (glovebox: Mn = 12.1 kDa, Ð = 1.54, 

open-to-air: Mn = 12.2 kDa, Ð = 1.35) were observed in each environment with similar 

peak shapes (Figure 4.5). Because a single regioisomer of Zn-3HET is reacted with the 

precatalyst, a regioregular polymer (head-to-tail coupling) is generated. A lower 

molecular weight P3HET (Mn = 2.56 kDa, Ð = 1.40) was also synthesized open-to-air 

using IPentF for MALDI-TOF/MS analysis, revealing 92% Br/H and 8% Br/Br end-

groups. These results suggest that open-to-air conjugated polymer synthesis can be 

achieved for an electron-deficient monomer using IPentF. 
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Figure 4.5 P3HET generated in the glovebox versus open-to-air ([mon] = 0.02 M, [cat] = 

0.25 mM) for 15 min. 

 

 In conclusion, we described a new route for accessing P3HT and P3HET open-

to-air using IPentF. This route yields polymers with targeted molecular weights and end-

group fidelity. Future work will include identifying a synthetic route that includes 

monomer activation outside of the glovebox coupled with our conditions for open-to-air 

polymer synthesis. This work is applicable to chemists and engineers interested in 

having a quick and efficient route to accessing conjugated polymers, and thus the utility 

of this reaction must be further explored. One’s ability to access polymers with different 

Mn is important to those interested in materials for organic electronics, as some reports 

show the dependence of device performance on polymer molecular weight.21 Future 

work will show the range of accessible molecular weights for both P3HT and P3HET.  
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Chapter 5 

Conclusions and Future Directions 

Over the past decade, catalyst-transfer polymerization has enabled access to a wide 

variety of conjugated polymers,1,2,3 although monomer scope has been limited to 

electron-rich hetero(arene) with similar structures  and few reports of electron deficient 

arenes. This thesis first describes our efforts in expanding monomer pairings in 

synthesizing copolymers containing conducting/insulating segments in a one-pot 

synthesis.4 While we designed a catalyst capable of polymerizing each monomer 

independently, copolymer yield was low due to a high-energy barrier for the catalyst to 

switch mechanisms. We also expanded monomer scope to an electron-deficient 

monomer with high end-group fidelity by using a pyrrolidinyl-based bisphosphine nickel 

catalyst. Finally, a user-friendly CTP method was optimized and shown to polymerize an 

electron-rich and electron poor monomer. 

In Chapter 2 we were interested in synthesizing copolymers whose monomers 

had two mechanistically distinct living polymerizations in one-pot using a single catalyst. 

We hypothesized this route would give a streamlined approach to accessing a wide 

variety of monomer pairings for conjugated/insulating copolymers. Our approach was to 

identify a precatalyst that could polymerize each monomer independently via a living, 

chain-growth mechanism and then optimize reaction conditions to induce successful 

copolymerization.5,6 Since poly(olefin) metal complexes are sensitive to coordinating 

substrates, it was necessary for poly(olefin) to be used as the macroinitiator. An initial 

control experiment revealed aluminum reagents (a cocatalyst for diimine-Ni(II) mediated 

olefin polymerization) inhibited thiophene polymerization, leading us to redesign our 

precatalyst and replace the halide reactive ligands with alkyl groups. This modification 

enabled us to use a boron cocatalyst which did not inhibit thiophene polymerization. A 

consequence of this change in cocatalyst required poly(olefin) synthesis to be 

performed under neat monomer conditions, with olefin remaining after
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macroinitiator synthesis. Combined computational and experimental work revealed 

olefin inhibited thiophene polymerization, presumably due to competitive binding to the 

nickel center. Thus, our optimized copolymerization system required us to remove olefin 

before extending the macroinitiator with thiophene. However, the major products of the 

copolymerization were thiophene and olefin homopolymers. Computations revealed a 

high-energy reductive elimination barrier for the catalyst to switch mechanisms coupled 

with chain-transfer events, as likely sources for homopolymer formation. 

 Work in our lab by Amanda Leone has focused on circumventing this dilemma by 

inducing a “ligand-switch” from a diimine ancillary ligand on the olefin macroinitiator 

complex to a bisphosphine ancillary ligand (Scheme 5.1). Preliminary thiophene 

polymerization studies that use this ligand-switch approach show unproductive chain-

transfer reactions have been mitigated. Studies are ongoing in our lab to apply this 

approach to copolymerizing olefin and thiophene as a model system. If successful, we 

envision this method being applied to synthesizing relevant block copolymers for 

organic electronics. A recent multistep synthesis for block copolymers containing 

poly(fluorene) and isoindigo-functionalized polyacrylates,7 a promising material for 

resistive memory applications, gave 70% copolymer yield (from the 2nd step) suggesting 

the synthesis could be improved. Our “ligand-switch” approach would be attractive for 

this particular block copolymer synthesis as Ni diimines have polymerized 

methacrylates8 and dppp-ligated Ni precatalyst has synthesized poly(fluorene)9, leading 

us to hypothesize a successful ligand-switch induced copolymerization possible. 

Scheme 5.1 Ligand-switch approach for accessing conjugated/olefin block copolymers 
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 In Chapter 3 we were interested in exploiting ancillary ligand electronics to gain 

access to new catalysts for CTP that stabilized the metal-π complex and enhanced 

intramolecular oxidative addition. While most ligand modification in catalyst design of 

bis(phosphine)ethane complexes has focused on σ-donating properties of the 

phosphine,10 exploring the influence of π-acceptor character on CTP behavior is rare.11 

We selected a pyrrolidinyl bisphosphine ancillary ligand for our study as the σ-donating 

properties are the same as a commonly used ligand for CTP: dppe. It has been reported 

that phosphines with more electronegative atoms are better π-acceptors.12 Since 

nitrogen is slightly more electronegative than carbon, we thought this ligand would be 

favor formation of the metal-π complex in CTP, enabling narrower dispersities and end-

group control. 

 A pyrrolidinyl bisphosphine-ligated Ni precatalyst (C1) with dihalide reactive 

ligands gave both poly(phenylene) and P3HT with multimodal GPC traces, suggesting 

multiple catalytic species present in the polymerization. A 31P NMR spectroscopic study 

of phenylene polymerization revealed second transmetalation rate-limiting for initiation. 

enhance the rate of transmetalation, we synthesized an analogue to C1 to include a 

biphenyl reactive ligand where only one transmetalation event would be required, 

referred to as C2. This new precatalyst gave poly(phenylene) with a multimodal GPC 

trace, suggesting an uncontrolled polymerization. However, when P3HT was 

synthesized using C2, a unimodal GPC trace was observed, as well as polymer with 

consistently narrow dispersity (Ð = 1.11–1.13) and high-end group fidelity. Comparing 

these results to P3HT synthesis via a similar dppe-ligated Ni catalyst, our system 

yieleded polymers with narrower dispersity and improved end-groups. Future work 

exploring the mechanism of C2 in conjugated polymer synthesis can glean insight into 

the effect of pyrrolidinyl-based bisphosphine ligands on CTP. 

 We also expanded monomer scope of C2 polymerization to include an electron-

deficient polymer, poly(3-hexylesterthiophene). High end-group fidelity was observed for 

this polymerization, suggesting that chain-transfer reactions, which can inhibit access to 

high molecular weight polymers, were not occurring. Our catalyst should be further 

explored in polymerizing electron-deficient monomers not currently accessible via CTP. 
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A monomer of specific interest is thienopyrrole-dione (TPD) (Scheme 5.2), which has 

been used as an acceptor unit in donor-acceptor copolymers for the active layer in a 

photovoltaic solar cell with high power conversion efficiency (7.3%), a measure of the 

device efficiency in converting sunlight to electricity.13 The controlled synthesis of this 

monomer could enable access to new donor-acceptor copolymers, specifically coupled 

with donor polymers already accessed via CTP. 

Scheme 5.2 TPD polymerization with C2 

 

 Finally, Chapter 4 described our efforts in identifying user-friendly CTP 

conditions. Organometallic arenes, Ar-ZnCl Mg(OPiv)2, have shown remarkable air 

stability.13 This functionality was incorporated into monomers of interest for CTP 

polymerization. These monomers were then polymerized in air using a new NHC–

ligated Pd catalyst with 3-fluoropyridine as a stabilizing ligand to yield P3HT and 

poly(hexylesterthiophene). Using this route, targeted molecular weights were accessed 

as well as end-group fidelity observed (> 90% Br/H) for both polymers. Future work will 

focus on optimizing a synthesis to be done without the use of a glovebox (including 

monomer activation). We envision this work being easily accessible to undergraduate 

laboratories, where a lab focused on CTP and the importance of controlling polymer 

properties (molecular weight, dispersity, sequence) can be fully explored by studying 

the resulting polymer’s optoelectronic behavior and morphology. 

 This work aims to advance conjugated polymer synthesis by expanding 

monomer scope of CTP through catalyst design. The implications of this thesis should 

enable researchers to expand monomer pairings in accessing block copolymers with 
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conducing/insulating segments in one-pot, to synthesize thiophene-based electron 

deficient monomers, while also providing a user-friendly CTP route.  
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I. Materials  
Flash chromatography was performed on SiliCycle silica gel (40–63 μm). Thin layer 
chromatography was performed on Merck TLC plates (pre-coated with silica gel 60 F254). 
iPrMgCl (2M in THF) was purchased in 25 mL quantities from Aldrich. All other reagent grade 
materials and solvents were purchased from Aldrich, Acros, ArkPharm, or Fisher and used 
without further purification unless otherwise noted. 3HT was purified via flash chromatography 
with hexanes as the eluent. THF was dried and deoxygenated using an Innovative Technology 
solvent purification system composed of activated alumina, a copper catalyst, and molecular 
sieves. The glovebox in which specified procedures were carried out was an MBraun 
LABmaster 130 with a N2 atmosphere and H2O levels below 4 ppm. Compounds S1,1 S2,1 C1,1 
C2,2 C32 were prepared using modified literature procedures.  
 
II. General Experimental 
NMR Spectroscopy: Unless otherwise noted, 1H and 13C spectra for all compounds were 
acquired at rt in CD2Cl2, CDCl3, C6D6 on a Varian vnmrs 700 operating at 700 and 176 MHz or a 
Varian vnmrs 500 operating at 500 and 126 MHz, respectively. For 1H and 13C spectra in 
deuterated solvents, the chemical shift data are reported in units of δ (ppm) relative to 
tetramethylsilane (TMS) and referenced with residual solvent. Multiplicities are reported as 
follows: singlet (s), doublet (d), apparent doublet, (ad), doublet of doublets (dd), apparent 
doublet of doublets (add), triplet (t), apparent triplet (at), quartet (q), multiplet (m), and broad 
resonance (br). * denotes Si grease. 
 
Mass Spectrometry: HRMS data were obtained on a Micromass AutoSpec Ultima Magnetic 
Sector mass spectrometer.  
 
MALDI-TOF-MS: MALDI-TOF mass spectra were recorded using a Bruker AutoFlex Speed in 
linear or reflectron mode. The matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB), was prepared at a concentration of 0.1M in CHCl3. The 
instrument was calibrated with a sample of polythiophene with H/Br endgroups. The polymer 
sample was dissolved in THF or CH2Cl2 to obtain an approx.1 mg/mL solution. A 2.5 μL aliquot 
of polymer solution was mixed with 2.5 μL of the DCTB. This mixture (1 μL) was placed on the 
target plate and then air-dried. The data was analyzed using flexAnalysis. 
 
Gel-Permeation Chromatography: Polymer molecular weights were determined by comparison 
with polystyrene standards (Varian, EasiCal PS-2 MW 580–377,400) on a Malvern Viscotek 
GPCMax VE2001 equipped with two Viscotek LT-5000L 8 mm (ID) × 300 mm (L) columns and 
analyzed with Viscotek TDA 305 (with R.I.,  UV-PDA detector model 2600 (190–500 nm), 
RALS/LALS, and viscometer). Samples were dissolved in THF (with mild heating) and passed 
through a 0.2 µm PTFE filter prior to analysis. The RI detector was used for determining 
poly(olefin) MWs while the UV-PDA detector was used for determining poly(thiophene) and 
poly(olefin)-b-poly(thiophene) MWs. 
 
Titrations of the Grignard Reagents: An accurately weighed sample of salicylaldehyde 
phenylhydrazone3 (typically between 90–100 mg) was dissolved in 5.00 mL of THF. An aliquot 
(0.25 mL) of this solution was stirred at rt while the Grignard of interest was added dropwise 
using a 500 μL syringe. The initial solution is yellow and turns bright orange at the end-point.  
 
Gas Chromatography: Gas chromatography was carried out using a Shimadzu GC 2010 
containing a Shimadzu SHRX5 (crossbound 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 
0.25 mm ID, 0.25 μm df) column. 
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III. Synthetic Procedures of S1, S2, C1, C2, C3 
 

 

 
 
2-(1-mesitylethyl)-4-methylaniline (S1): To a 50 mL bomb flask equipped with a stir bar were 
added 2,4,6-trimethylstyrene (1.07 mL, 6.62 mmol, 1.0 equiv), ρ-toluidine (1.06 g, 9.93 mmol, 
1.5 equiv) and xylenes (1.73 mL). To the stirring solution was added triflic acid (0.12 mL, 1.3 
mmol, 0.2 equiv). The flask was sealed and stirred at 160 °C for 18 h. After 18 h the reaction 
solution was cooled to rt, diluted with EtOAc (10 mL), transferred to a round-bottom flask, 
concentrated in vacuo, and subjected to flash chromatography with hexanes/EtOAc (90:10) as 
the eluent to produce 709 mg of S1 as a white solid (42% yield). HRMS (EI): Calcd. for C18H23N  
[M] 253.1830, found 253.1835. 

 
 
 

 
 
(1E,2E)-N1-N2-bis(2-(1-mesitylethyl)-4-methylphenyl)acenaphthylene-1,2-diimine (S2): To 
a 20 mL vial equipped with a stir bar were added S1 (171 mg, 0.675 mmol, 2.05 equiv), 
acenaphthylenequinone (60.1 mg, 0.329 mmol, 1.0 equiv), glacial acetic acid (0.75 mL, 13 
mmol, 40 equiv), and toluene (0.39 mL). The reaction was stirred at 100 °C for 3 h and then 
cooled to rt. The yellow precipitate that formed after cooling was then collected by vacuum 
filtration, washed with MeOH (10 mL) and hexanes (10 mL), and dried under vacuum to produce 
144 mg of S2 as a yellow solid (77% yield). HRMS (EI): Calcd. for C48H48N2 [M] 652.3817, 
found, 652.3829. 
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(1E,2E)-N1-N2-bis(2-(1-mesitylethyl)-4-methylphenyl)acenapythylene-1,2-diimine nickel 
dibromide (C1): To a 50 mL Schlenk  flask equipped with a stir bar was added S2 (152 mg, 
0.233 mmol, 1.00 equiv), Ni(DME)Br2 (75.0 mg, 0.244 mmol, 1.05 equiv) and DCM (4.7 mL). 
The flask was sealed with a rubber septum and the reaction stirred for 16 h at rt under an N2 
atmosphere. The dark red solution was then filtered through celite and concentrated in vacuo. 
The crude product was redissolved in a minimal amount of DCM (3 mL), layered with pentanes 
(20 mL), and recrystallized in a -20 °C freezer to afford 126 mg of C1 as dark red crystals (62% 
yield).  

 
 

 
 
(1E,2E)-N1-N2-bis(2-(1-mesitylethyl)-4-methylphenyl)acenaphthylene-1,2-diimine nickel 
bismethylenetrimethylsilyl (C2): In the glovebox were added C1 (119 mg, 0.137 mmol, 1.0 
equiv) and Et2O (3.7 mL) to a 20 mL vial equipped with a stir bar. The vial was sealed with a 
teflon cap and placed in the freezer (-30 °C) for 15 min. After 15 min, the vial was removed and 
to the stirring mixture was added TMSCH2MgCl (340 μL, 0.850 M in Et2O, 3.00 equiv). The 
reaction was warmed to rt and stirred for 30 min after which the initial dark green solution turned 
dark purple. The Et2O was removed under high vac until 0.5 mL remained, then cold MeOH (5 
mL) was added and the solution was passed through a syringe equipped with a 0.2 µm PTFE 
filter into a 20 mL vial. The solvent was removed under vacuum giving 55 mg of C2 as a purple 
solid (45% yield).  
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(1E,2E)-N1-N2-bis(2-(1-mesitylethyl)-4-methylphenyl)acenaphthylene-1,2-diimine nickel 
monomethylenetrimethylsilyl monobromide (C3): In the glovebox were added C1 (14.0 mg, 
0.0169 mmol, 1.00 equiv) and Et2O (0.45 mL) to a 20 mL vial equipped with a stir bar. The vial 
was sealed with a teflon cap and placed in the freezer (-30 °C) for 15 min. After 15 min, the vial 
was removed and to the stirring mixture was added TMSCH2MgCl (17.0 μL, 0.0145 mmol, 0.850 
M in Et2O, 0.900 equiv). The reaction was warmed to rt and stirred for 30 min, turning a dark 
green over time. After 30 min, the Et2O solution was filtered through a glass wool plug to 
remove unreacted C1. The glass wool plug was rinsed with additional Et2O (2.0 mL). The 
solvent was removed under high vac to produce a dark green solid. The solid was then 
dissolved in cold MeOH (1.0 mL) and filtered through a glass wool plug to produce a dark green 
filtrate. The solvent was removed under vacuum giving a green solid. The solid was dissolved in 
a minimal amount of Et2O (0.5 mL) and pentane (5 mL) was added to the vial, producing a 
green precipitate. The mixture was filtered through a glass wool plug, leaving behind the solid at 
the top of the plug. This solid was rinsed with additional pentanes (1 mL). The solid was then 
redissolved in THF (1 mL) by passing the solvent through the glass wool plug into a new 20 mL 
vial. The solvent was then removed under vacuum to yield 7 mg of C3. (50% yield). 
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IV. NMR spectra of S1, S2, C1, C2, C3 
 

 

 
Figure S1.1. 1H and 13C NMR spectra of S1 
1H NMR (500 MHz, CDCl3) δ 7.19 (s, 1H), 6.86 (dd, J = 7.9, 1.9 Hz, 1H), 6.81 (s, 2H), 6.48 (d, J 
= 7.9 Hz, 1H), 4.37 (q, J = 7.3 Hz, 1H), 3.13 (s, 2H), 2.32 (s, 3H), 2.24 (s, 3H), 2.17 (br s, 6H), 
1.63 (d, J = 7.3 Hz, 3H) 
13C NMR (126 MHz, CDCl3) δ 142.21, 137.36, 136.32, 135.64, 130.49, 129.80, 128.17, 127.23, 
126.98, 115.72, 35.91, 20.89, 20.77, 20.57, 17.17 
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Figure S1.2. 1H and 13C NMR spectra of S2 

1H NMR (500 MHz CDCl3) δ 7.61 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 1.8 Hz, 2H), 7.18 (dd, J = 8.2, 
1.8 Hz, 2H), 7.10 (dd, J = 8.2, 7.2 Hz, 2H), 6.89 (d, J = 7.8 Hz, 2H), 6.68 (d, J = 7.2 Hz, 2H), 
5.95 (br s, 2H), 5.40 (br s, 2H), 4.59 (q, J = 7.4 Hz, 2H), 2.52 (s, 6H), 2.38 (br s, 6H), 1.73 (br s, 
6H), 1.57 (d, J = 7.4 Hz, 6H), 0.96 (s, 6H) 
13C NMR (126 MHz, CDCl3) δ 160.75, 148.55, 140.87, 138.74, 136.7 (br), 134.21, 133.32, 
132.45, 130.02, 129.56, 129.25, 127.60, 127.03, 126.33, 122.16, 117.53, 36.50, 25.77, 21.60, 
19.55, 16.56 
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Figure S1.3. 1H NMR spectrum of C1 
 
1H NMR (500 MHz CD2Cl2) δ 35.53 (s, 6H), 24.88 (s, 2H), 23.17 (s, 2H), 21.45 (br s, 2H), 20.14 
(s, 2H), 14.03 (s, 2H), 6.27 (s, 2H), 4.82 (br s, 6H), 1.99 (s, 6H), 1.44 (s, 2H) 0.87 (s, 2H), 0.45 
(s, 6H), -16.43 (br s, 2H) (One Ar-CH3 (6H) is unaccounted for. Spectrum matches literature1) 
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Figure S1.4. 1H and 13C NMR spectra of C2 

1H NMR (700 MHz, C6D6) δ 7.73 (s, 2H), 7.65 (d, J = 7.7 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.32 
(d, J = 7.8 Hz, 2H), 6.56 (ad, J = 7.2 Hz, 2H), 6.48 (dd, J = 7.8, 7.7 Hz, 2H), 5.72 (br s, 2H), 5.52 
(q, J = 7.4 Hz, 2H), 5.43 (br s, 2H), 2.80 (s, 6H), 2.46 (s, 6H), 1.83 (s, 6H), 1.69 (d, J = 7.4 Hz, 
6H), 1.03 (s, 6H), 0.33 (m, 4H), 0.24 (s, 18H) 
13C NMR (176 MHz, C6D6) δ 163.93, 147.81, 140.02, 137.85, 136.46, 135.65, 135.22, 133.89, 
131.66, 131.26, 130.60, 127.33, 123.19, 120.47, 36.96, 24.07, 21.37, 19.54, 16.59, 3.85, ‒8.09 
(* denotes Si grease) 
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Figure S1.5. 1H and 13C NMR spectra of C3 

1H NMR (700 MHz, C6D6) δ 7.56 (ad, 2H), 7.45 (s, 2H), 7.36 – 7.00 (m, 2H(C3), 6H (C6D6)), 
6.52 (at, 4H), 6.14 – 5.87 (m, 2H), 5.73 (br s, 2H), 5.33 (br s, 2H), 5.16 (br s, 2H), 3.77 (s, 6H), 
2.32 (ad, 6H), 1.87– 1.47 (m, 12H), 1.37 (d, J = 9.4 Hz, 2H), 0.94 (add, 6H), 0.46 (s, 9H)  
13C NMR(176 MHz, C6D6) δ 167.95, 165.59, 143.54, 139.54, 138.06, 138.00, 137.70, 136.55, 
136.52, 136.12, 136.09, 136.08,135.65, 135.62, 135.23, 135.21, 135.19, 134.36, 134.34, 
133.76, 133.72, 130.66, 130.55, 130.21, 127.25, 127.07, 125.38, 123.79, 122.95, 122.09, 
121.93, 37.43, 37.10, 24.11, 21.43, 21.41, 21.33, 21.09, 21.00, 19.53, 16.51, 3.19, 1.30  

( – = baseline used, * denotes Si grease) 
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V. Polymerization of 3HT monomer with precatalyst C1 and Et2AlCl 
 
General Procedure: Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl  
 

 

 
 
In the glovebox 2,5-dibromo-3-hexylthiophene (169 mg, 0.518 mmol, 1 equiv) was added to a 
20 mL vial equipped with a stir bar, n-docosane (approx. 4.0 mg) and THF (4.99 mL). To the 
stirring solution was added iPrMgCl (196 µL, 0.363 mmol, 2.00  M in THF, 0.900 equiv) and 
stirred for 30 min. 3HT was titrated to be 0.071 M using salicylaldehyde phenylhydrazone. An 
aliquot (0.3 mL) of 3HT was quenched with aq. HCl (0.50 mL, 12 M) outside of the box. The 
quenched monomer was extracted with CHCl3 (2.0 mL), dried over MgSO4, and analyzed by GC 
to show a mixture of regioisomers (79:21). 
 

 
 
In the glovebox to a 20 mL vial equipped with a stir bar were added Et2AlCl (0.14 mL, 1.6 M in 
toluene, 200 equiv), toluene (2.5 mL), and C1 (2.8 mg, 0.0060 mmol, 1 equiv) in 0.5 mL DCM to 
yield a purple opaque solution. To the stirring solution was added 3HT (1.00 mL, 0.0720 mmol, 
100 equiv). After 30 min the reaction was taken out of the box and quenched with aq. HCl (2 
mL, 12 M). The reaction mixture was extracted with CHCl3 (5 mL), dried over MgSO4, filtered 
through a glass wool plug and split into two portions. The first portion was analyzed by GC 
showing 24% conversion of 3HT. All solvent was removed from the other portion under reduced 
pressure. The oil was then dissolved in THF:PhMe (99:1) with mild heating, passed through a 
PTFE filter (0.2 µm), and analyzed by GPC.  
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Figure S1.6. GPC trace for polymerization of 3HT monomer with catalyst C1 and Et2AlCl.  
(BHT (Butylated hydroxytoluene) = THF stabilizer) 
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VI. Polymerization of 1-hexene monomer with precatalyst C2 and B(C6F5)3 

 

 
 
To a 4 mL vial in the glovebox were added C2 (2.7 mg, 0.0030 mmol, 1.0 equiv) and 1-hexene 
(1.00 mL). This solution was then passed through a syringe fitted with a PTFE filter (0.2 µm) into 
a 20 mL vial equipped with a stir bar. In another 4 mL vial were added B(C6F5)3 (3.1 mg, 0.0061 
mmol, 2.0 equiv) and 1-hexene (0.50 mL). The B(C6F5)3 solution was then injected into the C2 
solution. The solution immediately turned dark green and then transitioned to a light pink. The 
polymerization was stirred for 5 min, turning slightly viscous, before being quenched outside of 
the box with MeOH (3 mL), precipitating poly(1-hexene) as a white solid (13.0 mg). The solvent 
was removed by decanting and the polymer was dissolved in THF:PhMe (99:1) (1.5 mL), and 
after mild heating passed through a PTFE filter (0.2 µm) to be analyzed by GPC. Integrated 
area on GPC trace is from retention volume of 14 mL to 20 mL.  
 
Run 1: Mn = 78.2 kDa, Ð = 1.60 (13.0 mg) 
Run 2: Mn = 64.1 kDa, Ð = 1.59 (8.0 mg) 
 
 

      
               

Figure S1.7. GPC trace for polymerization of 1-hexene monomer with catalyst C2 and 
B(C6F5)3. 
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Figure S1.8. 1H NMR spectrum of poly(1-hexene) generated with catalyst C2 and B(C6F5)3 
 

 
 
Equation S1.1. Calculating br/1000C of poly(1-hexene) using 1H NMR spectroscopy3 
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Procedure: Mn versus time of 1-hexene polymerization with precatalyst C2 and B(C6F5)3 
 
C2 and B(C6F5)3 stock solutions 
 
In the glovebox were added C2 (12.0 mg, 0.014 mmol, 0.50 mM) and 1-hexene (2.71 mL) to a 
20 mL vial. In another 20 mL vial were added B(C6F5)3 (19 mg, 0.0074 mmol, 0.50 mM) and 1-
hexene (7.42 mL).  
 

 
 
In the glovebox to a 20 mL vial equipped with a stir bar were added C2 (0.50 mL, 0.0025 mmol, 
0.50 mM solution in 1-hexene, 1.0 equiv) and B(C6F5)3 (1.0 mL, 0.0050 mmol, 0.50  mM solution 
in 1-hexene, 2.0 equiv). Aliquots were taken at 125, 210, 290, 385, and 530 s. Each aliquot was 
taken out of the glovebox and quenched with MeOH. If polymer did not precipitate, the solvent 
was removed under reduced pressure. If polymer did precipitate after quenching, the solvent 
was removed by decanting. The aliquots were then dissolved in THF:PhMe (99:1) (1.5 mL) and 
after mild heating were passed through a PTFE filter (0.2 µm) to be analyzed by GPC. 
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Figure S1.9. Mn versus time for polymerizing 1-hexene monomer with precatalyst C2 and 
B(C6F5)3. 
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VII. Polymerization of 3HT monomer with precatalyst C2 and B(C6F5)3 
 
Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl  
 

 

 
 
In the glovebox 2,5-dibromo-3-hexylthiophene (90.0 mg, 0.276 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, n-docosane std. (approx. 4 mg) and THF (2.66 mL). 
To the stirring solution was added iPrMgCl (100 µL, 0.193 mmol, 1.89 M in THF, 0.700 equiv) 
and stirred for 30 min. 3HT was titrated to be 0.071 M using salicylaldehyde phenylhydrazone. 
An aliquot (0.3 mL) of the Grignard solution was quenched with aq. HCl (0.5 mL, 12M) outside 
of the glovebox. The quenched monomer was extracted with CHCl3 (2 mL), dried over MgSO4, 
and analyzed by GC to show a mixture of regioisomers (79:21). 
 
C2 and B(C6F5)3 stock solutions 
 
In the glovebox were added C2 (5.2 mg, 0.0059 mmol, 0.50 mM) and toluene (1.18 mL) to a 4 
mL vial. In another 4 mL vial were added B(C6F5)3 (3.8 mg, 0.0074 mmol, 0.50 mM) and toluene 
(1.48 mL). C2 solutions were made fresh for each 3HT polymerization 
 
Activation of precatalyst C2 with B(C6F5)3  
 
 

 
 
C2 (0.11 mL, 0.50 mM in toluene, 1.0 equiv) and B(C6F5)3 (0.11 mL, 0.50 mM in toluene, 1.0 
equiv) were added to a 4 mL vial equipped with a stir bar and stirred for 5 min. C2’ solution must 
be made fresh for each 3HT polymerization. 
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Procedure: Polymerization of 3HT monomer with catalyst C2’ 
 

 
 
In the glovebox to a 20 mL vial equipped with a stir bar was added 3HT (1.00 mL, 0.0700 mmol, 
125 equiv relative to C2’) and THF (1.63 mL) to give an overall [3HT] of 0.02 M. To the stirring 
solution was added C2’ (0.22 mL, 0.57 µmol, 1.0 equiv). The polymerization was stirred for 1 h 
before being quenched outside of the box with aq. HCl (2.0 mL, 12 M). The reaction mixture 
was extracted with CHCl3 (5.0 mL), dried over MgSO4, and filtered through glass wool. The 
organic layer was then split into two equal portions. The first portion was diluted with additional 
CHCl3 (2.0 mL) and analyzed by GC to show 70% conversion. The other portion was 
concentrated in vacuo and then redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, 
passed through a PTFE filter (0.2 µm), and analyzed by GPC. After GC and GPC analysis, both 
portions were recombined and the solvent removed in vacuo to yield a purple solid. The solid 
was dissolved in a minimum amount of CHCl3 (0.5 mL), and precipitated with MeOH (15.0 mL). 
The mixture was then centrifuged, the solvent decanted, and the solid dried under vacuum to 
afford P3HT as a purple solid. Regioregularity of P3HT was calculated to be 75%. 
 
Run 1:  Mn = 23.5 kDa, Ð = 1.98 (6.7 mg, 58% yield) 
Run 2:  Mn = 19.5 kDa, Ð = 2.05 (5.5 mg, 47% yield) 
 
 

      
 
Figure S1.10. GPC trace of P3HT generated with catalyst C2’ 
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Figure S1.11. 1H NMR spectrum of P3HT generated with C2’.
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VIII. THF impact on 1-hexene polymerization 
 
B(C6F5)3 solution preparation 
 
In a 4 mL vial were added B(C6F5)3 (2.5 mg, 0.0050 mmol, 2.0 equiv) and 1-hexene (0.5 mL).  
 
Procedure 

 
 

In the glovebox was added C2 (2.2 mg, 0.0025 mmol, 1 equiv) and 1-hexene (1.0 mL) to a 4 
mL vial. This solution was then passed through a syringe fitted with a PTFE filter (0.2 µm) into a 
20 mL vial equipped with a stir bar. The B(C6F5)3 solution was then injected into the 20 mL vial. 
Upon adding the activator, the solution immediately turned dark green and then transitioned to a 
light pink. The reaction stirred for 3 min and THF (3.0 mL) was added to the vial. An aliquot (0.3 
mL) was taken and quenched outside of the box with MeOH (2.0 mL). After 1 h the reaction was 
quenched outside of the box with MeOH (5.0 mL). The solvent was removed under reduced for 
both the first aliquot and final polymer. The resulting residues were dissolved in THF:PhMe 
(99:1) (1.5 mL), and after mild heating, passed through a PTFE filter (0.2 µm) to be analyzed by 
GPC.  
 

             
 
Figure S1.12. GPC trace of 1-hexene polymerization at 3 min and 1 h after THF addition. 

 
 
 
 



 
79 

 

 
IX. Copolymerization of 3HT and 1-hexene monomers with precatalyst C2 and B(C6F5)3 

 
B(C6F5)3 stock solution prep 
 
In a 4 mL vial was added B(C6F5)3 (3.1 mg, 0.0062 mmol, 2.0 equiv) and 1-hexene (0.5 mL).  
 
Procedure 

 
 
In the glovebox was added C2 (2.8 mg, 0.0031 mmol, 1.0 equiv) and 1-hexene (1.0 mL) to a 4 
mL vial. This solution was then passed through a syringe fitted with a PTFE filter into a 20 mL 
vial equipped with a stir bar. The B(C6F5)3 solution was then injected into the C2 solution. Upon 
adding the activator, the solution immediately turned dark green and then transitioned to a light 
pink. The reaction stirred for 3 min at rt and THF (3.00 mL) was added to the vial. Then an 
aliquot (0.5 mL) was taken and quenched outside of the glovebox with neutral MeOH (2 mL). To 
the remaining reaction was added 3HT (1.0 mL, 0.070 mmol, 23 equiv). After 1 h the 
polymerization was quenched with aq HCl (2.00 mL, 12 M) outside of the glovebox. The mixture 
was extracted with CHCl3 (5.00 mL), dried over MgSO4, and filtered through glass wool. The 
organic layer was then split into two portions. The first portion was analyzed by GC to show 
11% conversion. The solvent was removed under reduced pressure from the second portion. 
The resulting solid was dissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, passed 
through a PTFE filter (0.2 µm), and analyzed by GPC.  
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Figure S1.13. GPC trace of copolymerization of 1-hexene and 3HT product mixture. 
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X. Polymerization of 3HT monomer with varying amounts of 1-hexene 
 
Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl 
 
 

 
 
In the glovebox 2,5-dibromo-3-hexylthiophene (45.0 mg, 0.138 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, n-docosane (approx. 4.0 mg) and THF (1.33 mL). To the 
stirring solution was added iPrMgCl (48.0 µL, 0.0966 mmol, 2.00 M in THF, 0.700 equiv) and 
stirred for 30 min. 3HT was titrated to be 0.070 M using salicylaldehyde phenylhydrazone. An 
aliquot (0.3 mL) of 3HT was quenched with aq HCl (0.50 mL, 12 M) outside of the box. The 
quenched monomer was extracted with CHCl3 (2.0 mL), dried over MgSO4, and analyzed by GC 
to show a mixture of regioisomers (79:21). 
 
C2 and B(C6F5)3 stock solutions 
 
In the glovebox were added C2 (6.0 mg, 0.0068 mmol, 0.50 mM) and toluene (1.35 mL) to a 4 
mL vial. In another 4 mL vial were added B(C6F5)3 (7.0 mg, 0.014 mmol, 0.50 mM) and toluene 
(2.73 mL). C2 solutions were made fresh for each 3HT polymerization 
 
Activation of precatalyst C2 with B(C6F5)3  
 
 

 
 
C2 (0.10 mL, 0.50 mM in toluene, 1.0 equiv) and B(C6F5)3 (0.10 mL, 0.50 mM in toluene, 1.0 
equiv) were added to a 4 mL vial equipped with a stir bar and stirred for 5 min. C2’ solution must 
be made fresh prior to use in 3HT polymerization. 
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3HT stock solution preparation  
 
In the glovebox to four separate 20 mL vials equipped with a stir bar was added 3HT (100 equiv 
rel. to cat.), THF (X mL, 0.02 M), 1-hexene 
 
Vial 1: 3HT (1 mL, 0.07 M), THF (2.4 mL), 1-hexene (0 mL, 0 equiv)  
Vial 2: 3HT (1 mL, 0.07 M), THF (1.65 mL), 1-hexene (0.75 mL, 12000 equiv) 
Vial 3: 3HT (1 mL, 0.07 M), THF (2.34 mL), 1-hexene (60 µL, 1000 equiv) 
Vial 4: 3HT (1 mL, 0.07 M), THF (2.39 mL), 1-hexene (10 µL, 50 equiv) 
 
Procedure 

 
 
To each vial was added the C2’ solution (0.20 mL, 0.50 µmol, 1 equiv). The reactions were 
stirred at rt for 1 h before being quenched outside of the box with aq HCl (2.0 mL, 12 M). Each 
vial was extracted CHCl3 (2.0 mL), dried over MgSO4, and filtered through glass wool. The 
organic layer was then split into two portions The first portion was analyzed by GC. The solvent 
was removed under reduced pressure from the second portion. The resulting solid was then 
dissolved in THF (1.5 mL) with mild heating, passed through a PTFE filter (0.2 µm), and 
analyzed by GPC.  
  
Table S1.1: P3HT synthesis with varying equiv of 1-hexene 
 
Run 1:                                                                  Run 2: 
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Figure S1.14. GPC trace of P3HT synthesis with varying equiv of 1-hexene. 
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XI. Copolymerization of 1-pentene and 3HT monomers with precatalyst C2 and B(C6F5)3 

 
Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl  
 

 

 
In the glovebox, 2,5-dibromo-3-hexylthiophene (250 mg, 0.768 mmol, 1 equiv), n-dodecane 
(approx. 4 mg), and tetrahydrofuran (THF, 7.40 mL) were added sequentially to a 20 mL vial 
equipped with a stir bar. To this solution iPrMgCl (268 µL, 0.537 mmol, 2.00 M in THF, 0.7 
equiv) was added. The resulting thiophene Grignard solution was stirred for 30 min at rt and 
then titrated using salicylaldehyde phenylhydrazone.i An aliquot of the Grignard solution (0.3 
mL, 0.070 M) was quenched with aq. HCl (0.5 mL, 12 M) outside the glovebox, extracted with 
CHCl3 (2 mL), dried over MgSO4, and analyzed by gas chromatography (GC) to show a mixture 
of regioisomers (79:21). 
 

 
Copolymerization procedure 
 
In the glovebox, precatalyst C2 (15.7 mg, 0.0177 mmol, 1.0 equiv) and cold 1-pentene (2.00 
mL, kept at -30 °C) were added to a 4 mL vial while stirring. After 2 min, the mixture was filtered 
through a PTFE filter (0.2 µm) into a 50 mL round-bottom flask equipped with a stir bar. A 
solution of B(C6F5)3 (18.0 mg, 0.0354 mmol, 2.0 equiv) in cold 1-pentene (1 mL) was added and 
the reaction stirred for 20 s. Then, THF (5.0 mL) and toluene (3.0 mL) were added.  The flask 
was then held under reduced pressure for 30 min (until ~2 mL solvent remained).  
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An aliquot (0.50 mL) of the remaining solution was added to a J-Young tube and analyzed by 1H 
NMR spectroscopy (Figure S15) before quenching with MeOH (2 mL) and concentrating in 
vacuo. The residue was redissolved in THF (1.5 mL), passed through a PTFE syringe filter (0.2 
µm), and analyzed by gel permeation chromatography (GPC) to estimate the macroinitiator 
molecular weight.  THF (8.0 mL) and thiophene Grignard (4.0 mL) were added to the remaining 
macroinitiator solution. After 2 h, the reaction was quenched with aq. HCl (10 mL, 12 M). The 
resulting polymer was extracted with CHCl3 (2 x 15 mL), dried over MgSO4, and filtered using a 
Buchner funnel.  An aliquot (0.5 mL) of this solution was split into two equal portions. The first 
portion was diluted with CHCl3 (2.0 mL) and analyzed by GC to determine the thiophene 
conversion. The second portion was concentrated in vacuo and then redissolved in THF/toluene 
(99:1; 1.5 mL) with mild heating, passed through a PTFE filter, and analyzed by GPC. After 
analysis, both portions were recombined with the mother liquor and the solvent was removed in 
vacuo, yielding a maroon solid (25 mg). 
 
Block Copolymer Purification 
 
The maroon solid was dissolved in CHCl3 (0.5 mL) and precipitated with MeOH (15.0 mL). The 
mixture was spun in a centrifuge for 10 min. The supernatant was decanted and saved. The 
precipitate was dried under reduced pressure, yielding 15 mg of polymer. 1H NMR 
spectroscopic analysis revealed that this solid resembled P3HT homopolymer (Figure S18). 
The supernatant was concentrated under reduced pressure to generate a purple solid (10 mg). 
MeOH (10 mL) was added followed by sonication for 1 min. The resulting mixture was spun in 
the centrifuge for 10 min, and then supernatant was removed and saved. This process was 
repeated 3 times. Hexanes (10 mL) was added to the remaining solid, followed by centrifugation 
(10 min). The resulting yellow supernatant was collected, passed through a PTFE syringe filter 
(0.2 μm), and concentrated in vacuo to yield a solid (4 mg). 1H NMR spectroscopic analysis 
revealed that the solid contains a mixture of the desired copolymer and poly(1-pentene) 
homopolymer (Figure S20). 
 

 
 

Figure S1.15. 1H NMR spectrum of the poly(1-pentene) macroinitiator from glovebox after being 
held reduced pressure for 30 min. 
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 Figure S1.16. 1H NMR spectrum of poly(1-pentene) macroinitiator  
 

 
 
Equation S1.2. Calculating br/1000C of poly(1-pentene) using 1H NMR spectroscopy.3 
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Figure S1.17. GPC trace of product mixture from copolymerization between 1-pentene and 
3HT monomers using catalyst C2 and B(C6F5)3. 
 
 

 
 

Figure S1.18. 1H NMR spectrum after initial precipitation from copolymerization 
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Figure S1.19. GPC trace of block copolymer (poly(1-pentene)-b-P3HT) after purification from 
copolymerization between 1-pentene and 3HT monomers using catalyst C2 and B(C6F5)3 
 

 
 

 
 
Figure S1.20. 1H NMR spectrum of purified poly(1-pentene)-b-P3HT.  
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Figure S1.21. 1H/1H NOESY spectrum of purified poly(1-pentene)-b-P3HT.  
 

 
 
 
 
 
 
 
 
 
 
 
 



 
90 

 

XII. Mn versus percent conversion in polymerization of 3HT monomer with precatalyst C2 
and B(C6F5)3 

 

Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl 
 
 

 
 
In the glovebox 2,5-dibromo-3-hexylthiophene (70.0 mg, 0.215 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, n-docosane (approx. 4.0 mg) and THF (2.07 mL). To the 
stirring solution was added iPrMgCl (80.0 µL, 0.150 mmol, 2.00  M in THF, 0.700 equiv) and 
stirred for 30 min. 3HT was titrated to be 0.070 M using salicylaldehyde phenylhydrazone. An 
aliquot (0.3 mL) of 3HT was quenched with aq HCl (0.50 mL, 12 M) outside of the box. The 
quenched monomer was extracted with CHCl3 (2.0 mL), dried over MgSO4, and analyzed by GC 
to show a mixture of regioisomers (79:21). 
 
C2 and B(C6F5)3 stock solutions 
 
In the glovebox were added C2 (6.0 mg, 0.0068 mmol, 0.50 mM) and toluene (1.35 mL) to a 4 
mL vial. In another 4 mL vial were added B(C6F5)3 (7.0 mg, 0.014 mmol, 0.50 mM) and toluene 
(2.73 mL). C2 solutions were made fresh for each 3HT polymerization 
 
 
Activation of precatalyst C2 with B(C6F5)3  
 
 

 
 
C2 (0.11 mL, 0.50 mM in toluene, 1.0 equiv) and B(C6F5)3 (0.11 mL, 0.50 mM in toluene, 1.0 
equiv) were added to a 4 mL vial equipped with a stir bar and stirred for 5 min. C2’ solution must 
be prepared fresh for each 3HT polymerization. 
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Procedure  
 

 
In the glovebox to a 20 mL vial equipped with a stir bar were added 3HT (1.00 mL, 0.07 mmol, 
125 equiv relative to C2’) and THF (1.63 mL) to give an overall [3HT] of 0.02 M. To the stirring 
solution was added C2’ (0.22 mL, 0.57 µmol, 1 equiv). Aliquots were taken at 2 min, 4 min, 6 
min, 8 min, and 10 min and quenched with aq. HCl (2.0 mL, 12 M) outside of the box. Each 
aliquot was extracted with CHCl3 (2.0 mL), dried over MgSO4, and filtered through glass wool. 
The organic layer was then split into two equal portions. The first portion was diluted with 
additional CHCl3 (2.0 mL) and analyzed by GC. The second portion was concentrated in vacuo 
and then redissolved in THF (1.5 mL) with mild heating, passed through a PTFE filter (0.2 µm), 
and analyzed by GPC. 
 
 

      
 
 
Figure S1.22. Mn versus percent conversion for polymerization of 3HT monomer with catalyst 
C2’. 
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XIII. Polymerizations of  3HT monomer with precatalyst C3 
 
Procedure: Mn versus percent conversion for polymerization of 3HT monomer with 
catalyst C3 
 
Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl 
 
 

 
 
In the glovebox 2,5-dibromo-3-hexylthiophene (68.0 mg, 0.209 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, n-docosane (approx. 2.0 mg) and THF (2.01 mL). To the 
stirring solution was added iPrMgCl (73.0 µL, 0.146 mmol, 2.00 M in THF, 0.700 equiv) and 
stirred for 30 min. 3HT was titrated to be 0.070 M using salicylaldehyde phenylhydrazone. An 
aliquot (0.3 mL) of 3HT was quenched with aq HCl (0.50 mL, 12 M) outside of the box. The 
quenched monomer was extracted with CHCl3 (2.0 mL), dried over MgSO4, and analyzed by GC 
to show a mixture of regioisomers (79:21). 
 
C3 stock solution: C3 (2.0 mg, 0.0023 mmol, 0.50 mM) was added to a 4 mL vial equipped 
with a stir bar, followed by THF (0.46 mL). The solution was stirred for 5 min before using. 
 
Procedure 
 

 
 

In the glovebox, to a 20 mL vial equipped with a stir bar was added 3HT (0.50 mL, 0.035 mmol, 
117 equiv relative to C3) and THF (5.00 mL) to give an overall [3HT] of 0.005 M. To the stirring 
solution was added the C3 solution (60.0 µL, 0.300 µmol, 1.00 equiv). Aliquots were taken at 2, 
4, 6, 8, and 10 min and quenched with aq. HCl (0.5 mL, 12 M) outside of the box. Each aliquot 
was extracted with CHCl3 (2.0 mL), dried over MgSO4, and filtered through glass wool. The 
organic layer was then split into two equal portions. The first portion was diluted with CHCl3 (2.0 
mL) and analyzed by GC. The second portion was concentrated in vacuo and redissolved in 
THF (1.5 mL) with mild heating, passed through a PTFE filter (0.2 µm), and analyzed by GPC. 
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Figure S1.23. Mn versus percent conversion for polymerization of 3HT monomer with 
precatalyst C3. 
 
 

 
 

Figure S1.24. MALDI-TOF spectrum of the aliquot taken at 2 min in the polymerization of 3HT 
monomer with precatalyst C3. 
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Procedure: Mn vs varying monomer:catalyst ratio in polymerization of 3HT monomer with 
catalyst C3 
 
Activation of 2,5-dibromo-3-hexylthiophene with iPrMgCl 
 
 

 
 
In the glovebox 2,5-dibromo-3-hexylthiophene (73.0 mg, 0.224 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, n-docosane (approx. 2.0 mg) and THF (2.16 mL). To the 
stirring solution was added iPrMgCl (78.0 µL, 0.157 mmol, 2.00 M in THF, 0.700 equiv) and 
stirred for 30 min. 3HT was titrated to be 0.070 M using salicylaldehyde phenylhydrazone. An 
aliquot (0.3 mL) of 3HT was quenched with aq HCl (0.50 mL, 12 M) outside of the box. The 
quenched monomer was extracted with CHCl3 (2.0 mL), dried over MgSO4, and analyzed by GC 
to show a mixture of regioisomers (79:21). 
 
C3 stock solution: C3 (1.7 mg, 0.0019 mmol, 0.50 mM) was added to a 4 mL vial equipped 
with a stir bar, followed by THF (0.39 mL). The solution was stirred for 5 min before using. 
 

 
 
To three 4 mL vials equipped with stir bars were added the C3 solution (50 µL, 0.25 µmol) and 
the respective amounts of THF and 3HT listed below. 
 
Vial 1: THF (0.2 mL), 3HT (0.10 mL, 0.0070 mmol, 28 equiv) 
Vial 2: THF (0.4 mL), 3HT (0.20 mL, 0.014 mmol, 56 equiv) 
Vial 3: THF (0.8 mL), 3HT (0.40 mL, 0.028 mmol, 112 equiv) 
 
The polymerizations were stirred for 1 h at rt, after which each vial was removed from the box 
and quenched with aq. 12 M HCl (0.5 mL). Each vial was extracted with CHCl3 (1.0 mL), dried 
over MgSO4, and filtered through glass wool. The organic layer was then split into two equal 
portions. The first portion was diluted with CHCl3 (2.0 mL) and analyzed by GC. The second 
portion was concentrated in vacuo and redissolved in THF (1.5 mL) with mild heating, passed 
through a PTFE filter (0.2 µm), and analyzed by GPC. 
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Figure S1.25. Plot of Mn versus monomer:catalyst ratio in polymerization of 3HT monomer with 
precatalyst C3. 
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XIV. Computational Details* 

 
All quantum chemical calculations were performed using density functional theory (DFT) in the 
Q-Chem quantum chemistry package.4 The restricted B3LYP density functional5-6 with singlet 
spin was used with the LANL2DZ basis set and core potential7-8 to acquire geometries for all 
intermediates and transition states. The growing string method was used to optimize reaction 
paths and transition states,9-11 followed by eigenvector optimization to fully refine these 
structures. The ωB97X-D density functional12 and the triple-zeta, polarized cc-pVTZ basis set13 

were used to calculate energies with the SMD solvation model14 using THF as the implicit 
solvent. The long alkyl chain of the polyolefin macroinitiator and the hexyl group of the 3-
hexylthiophene Grignard monomer were substituted with methyl groups to reduce computational 
cost. Thermodynamic corrections were applied to the solvated energies at a temperature of 298 
K.  

 
 
Figure S1.26a. Binding energy calculations of Ni(0) to species in copolymerization 
 

 
Figure S1.26b. The potential energy surface for transmetalation with thiophene at the cationic 
nickel center 
*
All XYZ coordinates for structures used to calculate binding energies (Figure S26a), tranmetalation (Figure S26b), and reductive 

elimination barriers (Figure S26c) are provided in original publication 
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After borane activation of C2 and olefin enchainment, the resulting cationic macroinitiator must 
undergo transmetalation via thiophene monomer to begin thiophene polymerization. This 
reaction, which transforms the active nickel complex from cationic to neutral, is shown in Figure 
S26b. Transmetalation at the cationic macroinitiator, C0Me, begins after a thiophene monomer 
binds to the catalyst to form TMrct. In TMrct, the chloride of the thiophene monomer acts as a 
bridging ligand between the monomer and catalyst with a strong binding energy (over 25 
kcal/mol). A facile transmetalation occurs via TMTS with a barrier of 10.2 kcal/mol. The 
transmetalation product, TMprd, exhibits a lingering interaction between the nucleophilic carbon 
atom of thiophene and the electrophilic magnesium. Alkyl – aryl reductive elimination at TMprd 
was performed but proved to be kinetically infeasible with a barrier over 30 kcal/mol. Upon 
addition of THF to TMprd, the MgCl complex dissociates from the nickel complex as cationic 
MgCl(THF)3. This dissociation results in the neutral nickel species, RErct, which can undergo 
reductive elimination. 
 

 
Figure S1.26c. The potential energy surfaces for sp2-sp3 and sp2-sp2 reductive elimination 
 
 The relative rates of sp2-sp3 reductive elimination, (Figure S26b, red pathway) compared to 
thiophene homopolymerization (sp2-sp2 reductive elimination, black pathway) were computed 
for catalyst C2. The reaction begins at RErct and proceeds through the three-membered 
transition state, REts to form the π-complex intermediate REprd. The calculated difference 
between the two reductive elimination pathways predicts slow sp2-sp3 reductive elimination and 
fast thiophene homocoupling. At room temperature, the 4.2 kcal/mol preference for the black 
pathway would result in a switching step that is approximately 1,000 times slower than 
thiophene homocoupling. This is in good agreement with experiments that exhibited slow 
switching (main text, eq 3 and eq 4).  The reductive elimination barriers for other alkyl and 
thiophene ligands were examined in the ligand survey in Figure S26b. These calculations 
showed that sp2-sp3 reductive elimination barriers slightly decrease with decreasing size of the 
alky reactive ligand. Reductive elimination involving two thiophene ligands remains fast in 
comparison, and the activation barrier decreases by about 3 kcal/mol for the dithiophene 
reactive ligand. 
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I. Materials  
Flash chromatography was performed on SiliCycle silica gel (40–63 μm). Thin layer 
chromatography was performed on Merck TLC plates (pre-coated with silica gel 60 F254). 
iPrMgCl (2M in THF) was purchased in 25 mL quantities from Aldrich and titrated as described 
below. 2,2,6,6-tetramethylpiperidinylmagnesium chloride lithium chloride complex solution was 
purchased from Aldrich and titrated as described below. Bis(cyclooctadiene)nickel (Ni(cod)2) 
was purchased from Strem. All other reagent grade materials and solvents were purchased 
from Aldrich, Acros, ArkPharm, or Fisher and used without further purification unless otherwise 
noted. 2,5-dibromo-3-hexylthiophene was sourced from McNeil lab; synthesis previously 
reported.1 purified via flash chromatography with hexanes as the eluent. 1,4-dibromo-2,5-
bishexyloxyphenylene used THF was dried and deoxygenated using an Innovative Technology 
(IT) solvent purification system composed of activated alumina, a copper catalyst, and 
molecular sieves. The glovebox in which specified procedures were carried out was an MBraun 
LABmaster 130 with a N2 atmosphere and H2O levels below 0.1 ppm. Compounds S1,2 C1,3 
S2,1  C2,1 S4,4 were prepared using modified literature procedures.  
 
II. General Experimental 
 
NMR Spectroscopy: Unless otherwise noted, 1H, 13C, 31P spectra for all compounds were 
acquired at rt in CD2Cl2 or CDCl3 on a Varian vnmr 500 operating at 500, 126, 202 MHz, 
respectively. For 1H, 13C, 31P spectra in deuterated solvents, the chemical shift data are reported 
in units of δ (ppm) relative to tetramethylsilane (TMS) and referenced with residual solvent. 
Multiplicities are reported as follows: singlet (s), doublet (d), apparent doublet (ad), triplet (t), 
apparent triplet (at), quartet (q), multiplet (m).  
 
Mass Spectrometry: HRMS data were obtained on a Micromass AutoSpec Ultima Magnetic 
Sector mass spectrometer.  
 
MALDI-TOF-MS: MALDI-TOF mass spectra were recorded using a Bruker AutoFlex Speed in 
linear or reflectron mode. The matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB), was prepared at a concentration of 0.1 M in THF. The 
instrument was calibrated with a sample of poly(3-decylthiophene) with H/Br end-groups. The 
polymer sample was dissolved in THF to obtain an approx.1 mg/mL solution. A 5.00 μL aliquot 
of polymer solution was mixed with 2.5 μL of the DCTB solution. This mixture (1 μL) was placed 
on the target plate and then air-dried. The data were analyzed using flexAnalysis. 
 
GC and GPC Prep: An aliquot of the heterogenous reaction mixture was extracted with CHCl3 
(5.0 mL), dried over MgSO4, and filtered through glass wool. The organic layer was then split 
into two equal portions. The first portion was diluted with additional CHCl3 (2.0 mL) and 
analyzed by GC. The other portion was concentrated in vacuo and then redissolved in 
THF:PhMe (99:1) (1.5 mL) with mild heating, passed through a PTFE filter (0.2 µm), and 
analyzed by GPC.  
 
Gas Chromatography: Gas chromatography was carried out using a Shimadzu GC 2010 
containing a Shimadzu SHRX5 (crossbound 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 
0.25 mm ID, 0.25 μm df) column. 
 
Gel-Permeation Chromatography: Polymer molecular weights were determined by comparison 
with polystyrene standards (Varian, EasiCal PS-2 MW 580-377,400) on a Malvern Viscotek 
GPCMax VE2001 equipped with two Viscotek LT-5000L 8 mm (ID) × 300 mm (L) columns and 
analyzed with Viscotek TDA 305 (with R.I.,  UV-PDA Detector Model 2600 (190–500 nm), 
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RALS/LALS, and viscometer). Samples were dissolved in THF (with mild heating) and passed 
through a 0.2 µm PTFE filter prior to analysis. UV-PDA was used for all polymer MWs. 
 
Titrations of the Grignard Reagents: An accurately weighed sample of salicylaldehyde 
phenylhydrazone4 recrystallized from CHCl3

 (typically between 90–100 mg) was dissolved in 
5.00 mL of THF. An aliquot (0.25 mL) of this solution was stirred at rt while the Grignard of 
interest was added dropwise using a 500 μL syringe. The initial solution is yellow and turns 
bright orange at the end-point.  
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III. Synthetic Procedures for S1, C1, S2, C2, S3 
 

 
 
1,2-bis(pyrrolidinylphosphino)ethane (S1): In the glovebox to a 20 mL vial equipped with a 
stir bar were added 1,2-bis(dichlorophosphino)ethane (0.15 mL, 1.0 mmol, 1.0 equiv) and Et2O 
(4.6 mL). To an 8 mL vial were added pyrrolidine (0.83 mL, 10 mmol, 10 equiv) and Et2O (2.3 
mL). Both vials were placed in a -30 °C freezer and chilled for 10 min. After this time, the vials 
were removed from the freezer and the vial containing the dichlorophosphinoethane was put 
under vigorous stirring (1500 rpm). To the stirring vial was added the pyrrolidine solution 
dropwise over 1 min. Upon addition, a white solid immediately began to precipitate. The vial was 
sealed, warmed to rt, and stirred for 4 h. The heterogeneous mixture was filtered, and the 
solid was washed with Et2O (15 mL) and the filtrate collected. The volatiles were removed under 
vacuum to yield 284 mg of S1 in 77% yield as a white solid. 

 
 
 

 
 
1,2-bis(pyrrolidinylphosphino)ethane nickel dibromide (cat 1): In the glovebox to a 20 mL 
vial equipped with a stir bar were added Ni(DME)Br2 (36.0 mg, 0.117 mmol, 1.00 equiv) and 
DCM (3.8 mL). S1 (47 mg, 0.127 mmol, 1.09 equiv) was dissolved in DCM (1.5 mL) and then 
added via pipette to the stirring nickel solution. The reaction was stirred overnight yielding an 
orange solution. The volatiles were removed under vacuum yielding an orange/yellow solid that 
was washed with pentanes (20 mL) and filtered through a PTFE filter. DCM (5 mL) was then 
passed through the filter to dissolve the solids into a 20 mL vial. The volatiles were removed 
under vacuum to yield 30 mg of C1 as an orange powder (44% yield).  
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2-chloro-5-phenylanisole (S2): A 25 mL Schlenk flask was equipped with a stir bar in the 
glovebox and charged with Pd(PPh3)4 (136 mg, 0.118 mmol, 0.0600 equiv). The flask was then 
removed from the glovebox and charged with phenylboronic acid (358 mg, 2.94 mmol, 1.50 
equiv) and K2CO3 (813 mg, 5.89 mmol, 3.00 equiv). A solution of 1,4-dioxane and water (20 mL, 
9:1) was sparged with N2 for 30 min. Then, 9 mL were added to the flask. 4-bromo-1-chloro-2-
methoxy-benzene (434 mg, 1.96 mmol, 1.00 equiv) dissolved in the dioxane/water solution (6 
mL) was then added to the reaction mixture. The reaction mixture was heated to 90 °C for 6 h. 
The reaction was quenched with saturated NH4Cl (50 mL), extracted with EtOAc (3 x 30 mL), 
washed with brine (30 mL), dried over MgSO4, filtered, and concentrated in vacuo. The product 
was purified by silica gel chromatography using 10/90 (v/v) EtOAc/hexanes to give 322 mg of 
S2 a colorless oil (75% yield). HRMS (EI): [M+] Calc’d for C13H11ClO, 218.0498; found, 
218.0499.  

 
 

 
 
1,2-bis(pyrrolidinylphosphinoethane [3-methoxy(1,1’-biphenyl)-4-yl] nickel(II) chloride 
(C2): In the glovebox, a 20 mL vial equipped with a stirbar was charged with Ni(cod)2 (296 mg, 
1.07 mmol, 1.00 equiv) and  PPh3 (564 mg, 2.15 mmol, 2.00 equiv) and dissolved in THF (6 mL) 
with stirring. In a separate 20 mL vial, 2-chloro-5-phenylanisole (306 mg, 1.40 mmol, 1.3 equiv) 
was dissolved in THF (4 mL) and transferred to the stirring Ni(cod)2/PPh3 solution via pipette. 
The now red solution was stirred for 4 h. Then the volatiles were removed under vacuum until 
0.5 mL of solvent remained. Adding hexanes (15 mL) lead to a yellow precipitate. This 
precipitate was filtered, washed with hexanes (10 mL), and the solids collected (561  mg, 65% 
crude yield) and used without further purification. A new 20 mL vial equipped with a stir bar was 
charged with the isolated solid (119 mg, 0.149 mmol, 1.00 equiv) and THF (1.0 mL). S1 (66.0 
mg, 0.178 mmol, 1.20 equiv) was dissolved in THF (1.0 mL) and added via pipette to the stirring 
nickel solution. The yellow solution turned orange upon ligand addition. The reaction was stirred 
for 60 min before the volatiles were removed under vacuum until 0.5 mL of solvent remained. 
Adding hexanes (15 mL) precipitated a yellow solid. The vial was placed in a freezer (-30 °C) for 
16 h, after which the mixture was filtered, washed with hexanes (15 mL), and the solid collected 
and dried under vacuum to yield 52 mg of C2 (54% yield) as a yellow solid. Elemental Analysis: 
Calcd for C31H47ClN4NiOP2, C, 57.47; H, 7.31; N, 8.35 Found C, 57.22; H, 7.33; N, 8.62.  
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Hexyl 2-bromothiophene-3-carboxylate (S4): To an oven dried 25 mL round-bottom flask 
equipped with a stir bar were added 2-bromothiophene-3-carboxylic acid (1.015 g, 4.902 mmol, 
1.00 equiv), K2CO3 (2.03 g, 14.7 mmol, 3.00 equiv) and DMF (6.5 mL). Then 1-bromohexane 
(1.37 mL, 9.80 mmol, 2.00 equiv) was added. The flask was sealed with a rubber septum, 
placed under N2, and stirred at 90 °C for 12 h. The reaction was then cooled to rt and then H2O 
(20 mL) was added. The resulting mixture was added to a separatory funnel and the aqueous 
layer extracted with Et2O (3 x 10 mL) and the combined organic extracts washed with brine (2 x 
10 mL), dried over MgSO4, and filtered. The filtrate solvent was concentrated in vacuo leaving 
behind a yellow oil. The yellow oil was purified by flash chromatography with a gradient of 
hexanes/EtOAc (99:1 to 94:6) as the eluent to afford 956 mg of S3 as a clear oil (67% yield).  
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IV. NMR spectra of S1, C1, S2, C2, S3 
 

 
 

Figure S2.1. 1H and 31P NMR spectra of S1. 
1H NMR (500 MHz, CD2Cl2) δ 3.34–2.74 (m, 16H), 1.94–1.31 (m, 20H) ppm. 
31P NMR (202 MHz, CD2Cl2) δ 73.07 ppm. 
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Figure S2.2. 1H and 31P NMR spectra of C1. 
1H NMR (500 MHz, CD2Cl2) δ 3.57–3.43 (m, 8H), 3.43–3.27 (m, 8H), 2.07–1.73 (m, 16H), 1.49–
1.31 (m, 4H) ppm. 
31P NMR (202 MHz, CD2Cl2) δ 118.97 ppm. 
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Figure S2.3. 1H and 13C NMR spectra of S2 
1H NMR (500 MHz, CD2Cl2) δ 7.62–7.56 (m, 2H), 7.45 (app t, 2H), 7.42–7.35 (m, 2H), 7.17 (m, 
1H), 7.15 (m dd, 1H), 3.97 (s, 3H) ppm 
13C NMR (126 MHz, CD2Cl2) δ 155.18, 141.28, 140.23, 130.23, 128.79, 127.70, 126.97, 121.41, 
119.86, 110.98, 56.11 ppm *denotes impurity 
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Figure S2.4. 1H and 31P NMR spectra of C2 
1H NMR (500 MHz, CD2Cl2) δ 7.59–7.52 (m, 2H), 7.44–7.18 (m, 5H), 6.88 (app d, 1H), 6.65 
(app dd, 1H), 3.87 (s, 3H), 3.75–3.60 (m, 2H), 3.59–3.32 (m, 8H), 3.31–3.18 (m, 2H), 2.85–2.74 
(m, 2H), 2.39–2.22 (m, 2H), 2.02–1.57 (m, 16H), 1.58–1.31 (m, 4H) ppm 
31P NMR (202 MHz, CD2Cl2) δ 113.57 (d, J = 42.7 Hz), 108.01 (d, J = 42.8 Hz) ppm. 
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Figure S2.5. 1H and 31P NMR spectra of S3. 
1H NMR (500 MHz, CD2Cl2) δ 7.36 (d, J = 5.8 Hz, 1H), 7.26 (d, J = 5.7 Hz, 1H), 4.26 (t, J = 6.6 
Hz, 2H), 1.81–1.67 (m, 2H), 1.51–1.39 (m, 2H), 1.39–1.27 (m, 4H), 0.99–0.81 (m, 3H) ppm. 
13C NMR (126 MHz, CD2Cl2) δ 162.37, 132.13, 129.92, 126.56, 119.70, 65.68, 32.02, 29.15, 
26.29, 23.13, 14.36 ppm. 
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V. BHP polymerizations using C1 and C2 
 
Representative catalyst stock solution prep 
 

    
 
To a 4 mL vial in the glovebox were added C1 (10.0 mg) and THF (3.4 mL) and stirred until 
homogeneous (1 min) to yield a 5 mM solution. 
 

 
 
To a 4 mL vial in the glovebox were added C2 (2.5 mg) and THF (0.77 mL) and stirred until 
homogeneous (1 min) to yield a 5 mM solution. 
 
Representative 1,4-dibromo-2,5-bishexyloxyphenylene Grignard Metathesis 
 

 
 
In the glovebox, 1,4-dibromo-2,5-bishexyloxyphenylene (763 mg, 1.75 mmol, 1.00 equiv) was 
added to a 20 mL vial equipped with a stir bar, followed by n-docosane (approx. 4.0 mg) and 
THF (2.10 mL). The mixture was stirred until homogeneous (5 min). To the stirring solution was 
added iPrMgCl (0.70 mL, 1.4 mmol, 2.0 M in THF, 0.80 equiv) and stirred for 16 h. BHP was 
titrated (see page 102) to be 0.40 M. An aliquot (0.3 mL) of BHP was quenched with aq. HCl 
(0.5 mL, 12 M) outside the box and the reaction mixture extracted with CHCl3 (2.0 mL), dried 
over MgSO4, filtered through glass wool and analyzed by GC. 
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i. BHP homopolymerizations using C1 and C2 
 

 
 

C1: In the glovebox to an 8 mL vial equipped with a stir bar were added C1 (0.32 mL, 1.6 µmol, 
1.0 equiv, 5 mM) and THF (0.58 mL). To the stirring solution was added BHP (0.3 mL, 0.12 
mmol, 75 equiv, 0.40 M). The polymerization was stirred for 8 h before being poured into a 20 
mL vial containing aq. HCl (5.0 mL, 12 M). The reaction was worked up according to the GC 
and GPC prep found on page 101.  
 
C2: In the glovebox to an 8 mL vial equipped with a stir bar were added C2 (0.32 mL, 1.6 µmol, 
1.0 equiv, 5 mM) and THF (0.58 mL). To the stirring solution was added BHP (0.3 mL, 0.12 
mmol, 75 equiv, 0.40 M). The polymerization was stirred for 8 h before being poured into a 20 
mL vial containing aq. HCl (5.0 mL, 12 M). The reaction was worked up according to the GC 
and GPC prep found on page 101.  
 

 
 

Figure S2.6. GPC trace for BHP polymerization using C1 and C2. 
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ii. 31P NMR BHP polymerization using C1 
 

 
 

In the glovebox C1 (6.3 mg, 0.011 mmol, 1.0 equiv) was dissolved in THF (0.7 mL) then added 
to a J. Young NMR tube which was sealed with a septum and placed in the spectrometer where 
an initial 31P NMR spectrum was recorded. A solution of BHP (0.5 mL, 0.19 mmol, 15 equiv, 
0.37 M) was added, and the tube was inverted twice to mix, placed back into the spectrometer, 
and the array immediately started. All 31P NMR spectra were acquired with a time point taken at 
5 min intervals over an 80 min period. (scan size = 16, d1 = 0.5 sec) 
 

 

 
Figure S2.7 31P spectra for polymerizing BHP (15 equiv) with C1 (1 equiv) and the various 
catalytic species throughout the polymerization 

 
 
 



113 

 

VI. 3HT polymerizations using C1 and C2 
 
Representative catalyst stock solution prep 
 

    
 
To a 4 mL vial in the glovebox were added cat 1 (10.0 mg) and THF (3.4 mL) and stirred until 
homogeneous (1 min). 
 

 
 
To a 4 mL vial in the glovebox were added cat 2 (5.5 mg) and THF (1.7 mL) and stirred until 
homogeneous (1 min). 
 
Representative 2,5-dibromo-3-hexylthiophene Grignard Metathesis 
 

 
 
In the glovebox, 2,5-dibromo-3-hexylthiophene (107 mg, 0.328 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, followed by n-docosane (approx. 4.0 mg) and THF (2.18 
mL). To the stirring solution was added iPrMgCl (115 µL, 0.230 mmol, 2.00 M in THF, 0.700 
equiv) and stirred for 30 min. 3HT was titrated (see page) to be 0.089 M. An aliquot (0.3 mL) of 
3HT was quenched with aq. HCl (0.5 mL, 12 M) outside the box and the reaction mixture 
extracted with CHCl3 (2.0 mL), dried over MgSO4, filtered through glass wool and analyzed by 
GC. 
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i.  3HT polymerization using C1 
 

 
 
In the glovebox to an 8 mL vial equipped with a stir bar were added cat 1 (0.10 mL, 0.50 µmol, 
1.0 equiv, 5 mM) and THF (1.36 mL). To the stirring solution was added 3HT (0.42 mL, 0.037 
mmol, 75 equiv, 0.089 M). The polymerization was stirred for 90 min before being poured into a 
20 mL vial containing aq. HCl (2.0 mL, 12 M). The reaction was worked up according to the 
GPC prep found on S2.  
 

                  
 
Figure S2.8. GPC trace for 3HT polymerization using C1.
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ii. 3HT polymerization using C2  
 
 

 
 
In the glovebox to an 8 mL vial equipped with a stir bar were added C2 (0.10 mL, 0.50 µmol, 1.0 
equiv, 5 mM) and THF (1.36 mL). To the stirring solution was added 3HT (0.42 mL, 0.037 mmol, 
75 equiv, 0.088 M). The polymerization was stirred for 90 min before being poured into a 20 mL 
vial containing aq. HCl (5.0 mL, 12 M). The reaction was worked up according to the GC and 
GPC prep found on S2. After GC and GPC analysis, both portions were recombined and the 
solvent removed in vacuo to yield a purple solid. The solid was dissolved in a minimum amount 
of CHCl3 (0.5 mL), and precipitated with MeOH (15.0 mL). The mixture was then centrifuged, 
the solvent decanted, and the solid dried under vacuum to afford P3HT as a purple solid. (KDS-
4-147) 
 
Run 1:  GC: major regioisomer consumed only (90%). 3.2 mg, 52% yield. 
Run 2:  GC: major regioisomer consumed only (99%). 3.0 mg, 48% yield. 
 

                  
 
Figure S2.9. GPC trace for 3HT polymerization using C2. 
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Figure S2.10. 1H NMR spectrum for 3HT polymerization using C2. *residual C22H46 standard, 
**H2O 
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iii. Vary monomer:catalyst in 3HT homopolymerization with C2  
 

 
 

To three 8 mL vials equipped with stir bars were added the C2 solution (100 µL, 0.5 µmol, 1.0 
equiv, 5 mM) and the respective amounts of THF and 3HT listed below. 
 
Vial 1: THF (0.38 mL), 3HT (0.10 mL, 0.013 mmol, 25 equiv) 
Vial 2: THF (0.87 mL), 3HT (0.20 mL, 0.025 mmol, 50 equiv) 
Vial 3: THF (1.36 mL), 3HT (0.40 mL, 0.037 mmol, 75 equiv) 
 
The polymerizations were stirred for 90 min at rt, after which each vial was removed from the 
box and poured into a 20 mL vial containing aq. HCl (5.0 mL, 12 M) to quench. Each quenched 
reaction was worked up according to the GC (only major regioisomer consumed) and GPC prep 
found on 101. 
 

 
 

              
 
Figure S2.11. Plot of the number-average molecular weight versus monomer-to-catalyst ratio in 
polymerization of 3HT with C2. 
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Figure S2.12. GPC traces for polymerization of 3HT with C2. 
 

 
 
Figure S2.13 MALDI-TOF/MS spectrum for 3HT polymerization using C2 (25:1 mon:cat from 
above experiment). 
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iv. Number-average molecular weight versus percent conversion of monomer in 3HT 
homopolymerization using C2 
 
 

 
In the glovebox to a 20 mL vial equipped with a stir bar were added C2 (0.20 mL, 1.0 µmol, 1.0 
equiv, 5 mM) and THF (2.45 mL). To the stirring solution was added 3HT (0.84 mL, 0.075 mmol, 
75 equiv, 0.088 M). Aliquots (0.3 mL) were taken at 20, 30, 40, 50, and 60 min and quenched 
with aq. HCl (0.5 mL, 12 M) outside of the box.  Each aliquot was worked up according to the 
GC (only major regioisomer consumed) and GPC prep found on page 101. 
 

 
Figure S2.14. Plot of number-average molecular weight versus percent conversion for 
polymerization of 3HT with C2. 
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Figure S2.15. GPC traces of number-average molecular weight versus percent conversion for 
polymerization of 3HT with C2. 
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v. Chain extending P3HTinitial with 3HT using C2 
 

 
 
In the glovebox to an 8 mL vial equipped with a stir bar were added cat 2 (0.10 mL, 0.50 µmol, 
1.0 equiv, 5 mM) and THF (0.43 mL). To the stirring solution was added 3HT (0.21 mL, 0.018 
mmol, 37 equiv, 0.088 M). The polymerization was stirred for 30 min before an aliquot was 
taken and quenched outside the box with HCl (0.5 mL, 12M). The aliquot was worked up 
according to the GC and GPC prep found on S2. To the stirring P3HTinitial solution was added 
additional 3HT (0.21 mL, 0.018 mmol, 37 equiv, 0.088 M) and the polymerization stirred for 30 
min. The polymerization was then removed from the glovebox and poured into a 20 mL vial 
containing aq. HCl (5.0 mL, 12 M). The reaction was worked up according to GPC prep found 
on S2. 
 
Run 1: P3HTinitial: GC: major regioisomer consumed only (98%). GC analysis not performed on 
P3HTextended. 
Run 2: P3HTinitial: GC: major regioisomer consumed only (99%). GC analysis not performed on 
P3HTextended. 
 
 

                     
 
Figure S2.16. GPC traces for chain extending P3HTinitial with 3HT using C2. 
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VI. 3HET Polymerization using C2 
 
 

 
 

ZnCl-TMP: In the glovebox, Zn(OPiv)2 (71 mg, 0.267 mmol, 1.10 equiv) was added to a 4 mL 
vial equipped with a stir bar. To the vial was added 2,2,6,6-tetramethylpiperidinylmagnesium 
chloride lithium chloride complex solution (310 µL, 0.242 mmol, 0.77 M in THF, 1.00 equiv) and 
the heterogeneous mixture stirred for 30 min. THF (0.17 mL) was added to the vial and the 
mixture stirred for an additional 5 min, turning a clear, light yellow solution. 
 

 
 

In the glovebox, hexyl 2-bromo-3-thiophenecarboxylate (25 mg, 0.086 mmol, 1.00 equiv) was 
added to a 4 mL vial equipped with a stir bar and THF (0.69 mL). To the stirring solution was 
added ZnCl-TMP (170 µL, 0.0860 mmol, 0.50 M in THF, 1.00 equiv) and stirred for 60 min. An 
aliquot (0.3 mL) of 3HET was quenched with I2 (4 mg) outside the box. Excess iodine was 
quenched with sat’d sodium thiosulfate, until the brown solution turned white (1.0 mL). The 
reaction mixture was extracted with CHCl3 (2.0 mL), dried over MgSO4, filtered through glass 
wool and analyzed by GC to show 58% active monomer. In the glovebox to a 4 mL vial 
equipped with a stir bar were added C2 (0.10 mL, 0.50 µmol, 1.0 equiv) and THF (0.5 mL). To 
the stirring solution was added 3HET (0.15 mL, 0.0087 mmol, 17 equiv, 0.058 M). The 
polymerization stirred for 3 h, before the polymerization was removed from the box and 
quenched with HCl (0.5 mL, 12 M). The reaction mixture was extracted with CHCl3 (2.0 mL), 
dried over MgSO4, and filtered through glass wool. The solvent was removed in vacuo, yielding 
an orange solid, and then redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, passed 
through a PTFE filter (0.2 µm), and analyzed by GPC and MALDI-TOF mass spectrometry. 
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Figure S2.17. GPC trace for 3HET polymerization using C2 (Mn = 3.6 kDa, Ð = 1.31, theor. Mn 
= 3.2 kDa) 
  

 
 

Figure S2.18. MALDI-TOF/MS spectrum for 3HET polymerization using C2. 
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I. Materials  
Flash chromatography was performed on SiliCycle silica gel (40–63 μm). Thin layer 
chromatography was performed on Merck TLC plates (pre-coated with silica gel 60 F254). 
iPrMgCl (2M in THF) was purchased in 25 mL quantities from Aldrich and titrated as described 
below before each reaction. All other reagent grade materials and solvents were purchased 
from Aldrich, Acros, ArkPharm, Oxchem or Fisher and used without further purification unless 
otherwise noted. 2,5-Dibromo-3-hexylthiophene from ArkPharm was purified via flash 
chromatography with hexanes as the eluent. THF was dried and deoxygenated using an 
Innovative Technology (IT) solvent purification system composed of activated alumina, a copper 
catalyst, and molecular sieves. The glovebox in which specified procedures were carried out 
was an MBraun LABmaster 130 with a N2 atmosphere and H2O levels below 0.1 ppm. 
Compounds Zn(OPiv)2,

1 IPentF,2 IPentCF3
2 were prepared using modified literature 

procedures.  
 
II. General Experimental 
NMR Spectroscopy: Unless otherwise noted, 1H and 19F NMR spectra for all compounds were 
acquired at rt in CDCl3 or CD2Cl2 on a Varian vnmr 500 operating at 500 and 470 MHz, 
respectively. For 1H, 13C, 19F spectra in deuterated solvents, the chemical shift data are reported 
in units of δ (ppm) relative to tetramethylsilane (TMS) and referenced with residual solvent. 
Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), 
doublet of quartets (dq), quartet (q), multiplet (m).  
 
MALDI-TOF-MS: MALDI-TOF mass spectra were recorded using a Bruker AutoFlex Speed in 
linear or reflectron mode. The matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB), was prepared at a concentration of 0.1 M in THF. The 
instrument was calibrated with a sample of poly(3-decylthiophene) with H/Br endgroups. The 
polymer sample was dissolved in THF to obtain an approx.1 mg/mL solution. A 5.00 μL aliquot 
of polymer solution was mixed with 2.5 μL of the DCTB solution. This mixture (1 μL) was placed 
on the target plate and then air-dried. The data were analyzed using flexAnalysis. 
 
Gas Chromatography: Gas chromatography was carried out using a Shimadzu GC 2010 
containing a Shimadzu SHRX5 (crossbound 5% diphenyl – 95% dimethyl polysiloxane; 15 m, 
0.25 mm ID, 0.25 μm df) column. 
 
Gel-Permeation Chromatography: Polymer molecular weights were determined by comparison 
with polystyrene standards (Varian, EasiCal PS-2 MW 580–377,400) on a Malvern Viscotek 
GPCMax VE2001 equipped with two Viscotek LT-5000L 8 mm (ID) × 300 mm (L) columns and 
analyzed with Viscotek TDA 305 (with R.I.,  UV-PDA Detector Model 2600 (190–500 nm), 
RALS/LALS, and viscometer). Samples were dissolved in THF (with mild heating) and passed 
through a 0.2 µm PTFE filter prior to analysis. UV-PDA detection was used for all polymer MWs. 
 
Titrations of the Grignard Reagents: An accurately weighed sample of salicylaldehyde 
phenylhydrazone4 (typically between 90–100 mg) was dissolved in 5.00 mL of THF. An aliquot 
(0.25 mL) of this solution was stirred at rt while the Grignard of interest was added dropwise 
using a 500 μL syringe. The initial solution is yellow and turns bright orange at the end-point.  
 
Measuring [ZnCl–Ar]: An aliquot (0.3 mL) of ZnCl–Ar was quenched with I2 (4 mg) outside the 
box. Excess iodine was quenched with sat’d Na2S2O3 until the brown solution turned white (1.0 
mL). The reaction mixture was extracted with CHCl3 (2.0 mL), dried over MgSO4, filtered 
through glass wool and analyzed by GC. Active monomer was measured by comparing ratio of 
starting material to iodinated product. 
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III. Synthetic Procedures for Zn(OPiv)2, IPentF, IPentCF3, S1 
 

 

 
 
Zinc pivalate (Zn(OPiv)2): A 50 mL oven-dried Schlenk flask equipped with a stir bar was 
cooled under N2. Subsequently pivalic acid (1.21 g, 11.8 mmol, 2.00 equiv) and dry THF (6 mL) 
were added to the flask and the solution was cooled to 0 °C using an ice-water bath. After 20 
min, diethyl zinc (5.66 mL, 5.66 mmol, 1.00 equiv, 1M in hexanes (not titrated)) was added to 
the flask and a white solid formed. The flask was removed from the ice-water bath and the 
mixture warmed to rt and then the solvent was removed under reduced pressure. The white 
fluffy solid was transferred to a 20 mL vial and dried under high vacuum at 90 °C to remove 
excess pivalic acid yielding 1.04 g of Zn(OPiv)2 (67.5% yield). 

 
 

 
 
(IPentF): To a 20 mL vial equipped with a stir bar were added sequentially, PdCl2 (25.0 mg, 
0.139 mmol, 1.00 equiv), K2CO3 (96.0 mg, 0.693 mmol, 5.00 equiv), 1,3-bis(2,6-di(pentan-3-
yl)phenyl)-1H-imidazol-3-ium chloride (82.0 mg, 0.152 mmol, 1.10 equiv) and 3-fluoropyridine 
(0.50 mL, 5.8 mmol, 42 equiv). The vial was sealed with a teflon cap, and heated for at 80 °C for 
24 h. The reaction mixture was cooled to rt, diluted with DCM (2.0 mL) and passed through a 
short plug of silica and celite. The filtrate was then concentrated in vacuo to yield a pyridine 
solution which was purified via flash chromatography (hexanes:EtOAc 1:1) to yield 57 mg of 
IPentF as a pale yellow solid (53 % yield). 
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(IPentCF3): To a 20 mL vial equipped with a stir bar were added sequentially, PdCl2 (7.0 mg, 
0.041 mmol, 1.00 equiv), K2CO3 (29.0 mg, 0.174 mmol, 5.00 equiv), 1,3-bis(2,6-di(pentan-3-
yl)phenyl)-1H-imidazol-3-ium chloride (25.0 mg, 0.0456 mmol, 1.10 equiv) and 3-fluoropyridine 
(0.20 mL, 1.7 mmol, 42 equiv). The vial was sealed with a teflon cap, and heated for at 80 °C for 
24 h. The reaction mixture was cooled to rt, diluted with DCM (2.0 mL) and passed through a 
short plug of silica and celite. The filtrate was then concentrated in vacuo to yield a pyridine 
solution which was purified via flash chromatography (hexanes:EtOAc 1:1) to yield 57 mg of 
IPentCF3 as a pale yellow solid (67 % yield). 

 
 

 
 
Hexyl 2-bromothiophene-3-carboxylate (S1): To an oven-dried 25 mL round-bottom flask 
equipped with a stir bar were added 2-bromothiophene-3-carboxylic acid (1.015 g, 4.902 mmol, 
1.00 equiv), K2CO3 (2.03 g, 14.7 mmol, 3.00 equiv) and DMF (6.5 mL). Then 1-bromohexane 
(1.37 mL, 9.80 mmol, 2.00 equiv) was added. The flask was sealed with a rubber septum, 
placed under N2, and stirred at 90 °C for 12 h. The reaction mixture was then cooled to rt after 
which H2O (20 mL) was added. The mixture was added to a separatory funnel and the aqueous 
layer extracted with Et2O (3 x 10 mL) and the combined organic extracts washed with brine (2 x 
10 mL), dried over MgSO4, and filtered. The filtrate was concentrated in vacuo to give a yellow 
oil. The yellow oil was subjected to flash chromatography with a gradient of hexanes/EtOAc 
(99:1 to 94:6) as the eluent to afford 956 mg of S1 as a clear oil (67% yield) 
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IV. NMR spectra of IPentF and IPentCF3 

 

 
Figure S3.1. 1H and 19F NMR spectra of IPentF 
1H NMR (500 MHz, CDCl3) δ 8.57 (d, J = 2.9 Hz, 1H), 8.48 (d, J = 5.4 Hz, 1H), 7.43 (t, J = 7.8 
Hz, 2H), 7.27–7.18 (m, 4H), 7.07 (s, 2H), 2.78 (dq, J = 10.3, 5.5Hz, 4H), 2.11 (ddd, J = 12.7, 
7.4, 4.8 Hz, 4H), 1.94–1.76 (m, 4H), 1.59–1.44 (m, 12H), 1.12 (t, J = 7.3 Hz, 12 H), 0.78 (t, J = 
7.5 Hz, 12 H) ppm. (4H additional protons in spectrum from unknown source). 
19F NMR (470 MHz, CDCl3) δ -121.39 ppm. 
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Figure S3.2. 1H and 19F NMR spectra of IPentCF3 
1H NMR (500 MHz, CDCl3) δ 8.98 (d, J = 2.1 Hz, 1H), 8.84 (d, J = 5.6 Hz, 1H), 7.81 (d, J = 8.0 
Hz, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.28–7.19 (m, 4H), 7.08 (s, 2H), 2.77 (dd, J = 9.7, 4.9 Hz, 4H), 
2.11 (dd, J = 6.6, 2.0 Hz, 4H), 1.87 (dd, J = 6.7, 2.5 Hz, 4H), 1.64–1.44 (m, 12H), 1.13 (t, J = 7.3 
Hz, 12 H), 0.79 (t, J = 7.5 Hz, 12 H) ppm. (4H additional protons in spectrum from unknown 
source). 
19F NMR (470 MHz, CDCl3) δ -62.89 ppm. 



131 

 

 

 
 

Figure S3.3. 1H and 13C NMR spectra of S1 
1H NMR (500 MHz, CD2Cl2) δ 7.36 (d, J = 5.8 Hz, 1H), 7.26 (d, J = 5.7 Hz, 1H), 4.26 (t, J = 6.6 
Hz, 2H), 1.81–1.67 (m, 2H), 1.51–1.39 (m, 2H), 1.39–1.27 (m, 4H), 0.99–0.81 (m, 3H) ppm. 
13C NMR (126 MHz, CD2Cl2) δ 162.37, 132.13, 129.92, 126.56, 119.70, 65.68, 32.02, 29.15, 
26.29, 23.13, 14.36 ppm. 
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V. Zn-3HT polymerization catalyst screen  
 
Chart S3.1 Commercially available precatalysts 
 

 
 
Precatalyst stock solution prep 
    
To a 4 mL vial in the glovebox were added the respective precatalyst and THF in the quantities 
listed below sequentially and stirred until homogeneous to yield a 5 mM solution (approx. 1 
min). 
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Grignard Metathesis 
 

 
 
In the glovebox, 2,5-dibromo-3-hexylthiophene (111 mg, 0.341 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, followed by n-docosane (approx. 2.0 mg), LiCl (2.38 mL, 
0.238 mmol, 0.7 equiv, 0.1 M in THF) and THF (1.03 mL). To the stirring solution was added 
iPrMgCl (130 µL, 0.238 mmol, 0.700 equiv, 1.85 M in THF) and stirred for 30 min. An aliquot 
(0.3 mL) of 3HT was quenched with aq. HCl (0.5 mL, 12 M) outside the box and the reaction 
mixture extracted with CHCl3 (2.0 mL), dried over MgSO4, filtered through glass wool and 
analyzed by GC to show a mixture of regioisomers. An additional aliquot (0.1 mL) was 
quenched with I2 (approx. 5 mg) outside of the box, yielding a dark brown solution. To quench 
excess I2, saturated aq. Na2S2O3 (1 mL) was added to the vial, capped and shaken until the 
solution turned cloudy white. The resulting solution was extracted with CHCl3 (2.0 mL), dried 
over MgSO4, and analyzed by GC to show [3HT] = 0.070 M. 
 
Zn(OPiv)2 Transmetalation with 3HT 
 

 
 

To a 20 mL vial equipped with a stirbar was added sequentially Zn(OPiv)2 (56.0 mg, 0.210 
mmol, 1.00 equiv) and 3HT (3.0 mL, 0.21 mmol, 0.07 M, 1.0 equiv). The reaction stirred for 15 
min, becoming yellow over time. An aliquot of Zn-3HT (0.1 mL) was quenched with I2 (approx. 5 
mg) outside of the box, yielding a dark brown solution. To quench excess I2, saturated aq. 
Na2S2O3 (1 mL) was added. The vial was capped and shaken until the solution turned opaque. 
The resulting solution was extracted with CHCl3 (2.0 mL), dried over MgSO4, and analyzed by 
GC to show [Zn-3HT] = 0.066 M. 
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Figure S3.4 1H NMR spectrum of 3HT before and after reacting with Zn(OPiv)2. 
 
 
General Zn-3HT polymerization for catalyst screen 
 

 
 
In the glovebox to a 4 mL vial equipped with a stir bar was added Zn-3HT (0.5 mL, 0.028 mmol, 
100 equiv) and THF (0.84 mL) to give an overall [Zn-3HT] of 0.02 M. To the stirring solution was 
added precatalyst solution (60 µL, 0.28 µmol, 1.0 equiv). The polymerization was stirred for 30 
min before being quenched outside of the box with aq. HCl (2.0 mL, 12 M). The reaction mixture 
was extracted with CHCl3 (2.0 mL), the organic layer dried over MgSO4, and filtered through 
glass wool. The solvent was removed in vacuo and the remaining residue redissolved in 
THF:PhMe (99:1) (1.5 mL) with mild heating, passed through a PTFE filter (0.2 µm), and 
analyzed by GPC.  
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Figure S3.5 GPC overlay of P3HT generated with various precatalysts 
 

 
 
Figure S3.6 MALDI-TOF/MS spectra of P3HT generated with various precatalysts 
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VI. Zn-3HT polymerization using IPent with 3-Xpyridine  
 
Precatalyst stock solution prep 

 
 
To a 4 mL vial in the glovebox were added the respective precatalyst and THF in the quantities 
listed below sequentially and stirred until homogeneous to yield a 5 mM solution (approx. 1 
min). 
 

 
 
3HT synthesis 
 

 
 

In the glovebox, 2,5-dibromo-3-hexylthiophene (69.0 mg, 0.212 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar and THF (2.04 mL). To the solution was added iPrMgCl (74 
µL, 0.15 mmol, 0.70 equiv, 2.0 M in THF) and stirred for 30 min. An aliquot (0.3 mL) of 3HT was 
quenched with HCl (0.5 mL, 12 M) outside the box and the reaction mixture extracted with 
CHCl3 (2.0 mL), the organic layer dried over MgSO4, filtered through glass wool and analyzed 
by GC to show a mixture of regioisomers. 
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Zn(OPiv)2 transmetalation with 3HT 
 

 
 

To a 20 mL vial equipped with a stir bar was added sequentially Zn(OPiv)2 (37.0 mg, 0.139 
mmol, 1.00 equiv) and 3HT (2.0 mL, 0.14 mmol, 0.070 M, 1.0 equiv). The reaction was stirred 
for 15 min, becoming yellow over time.  
 
 
Polymerization 
 

 
 
In the glovebox to a 4 mL vial equipped with a stir bar was added Zn-3HT (0.50 mL, 0.028 
mmol, 100 equiv) and THF (0.84 mL) to give an overall [Zn-3HT] of 0.02 M. To the stirring 
solution was added precatalyst solution (60 µL, 0.28 µmol, 1.0 equiv). The polymerization was 
stirred for 30 min before being quenched outside of the box with aq. HCl (2.0 mL, 12 M). The 
reaction mixture was extracted with CHCl3 (2.0 mL), the organic layer dried over MgSO4, and 
filtered through glass wool. The solvent was removed in vacuo and the remaining residue 
redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, passed through a PTFE filter (0.2 
µm), and analyzed by GPC.  
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Figure S3.7 GPC traces for the polymerization of 3HT with IPentX. 
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VII. Zn-3HT polymerizations in air using IPentF 
 
Representative 3HT synthesis 
 

 
In the glovebox, 2,5-dibromo-3-hexylthiophene (110 mg, 0.285 mmol, 1.00 equiv) was added to 
a 20 mL vial equipped with a stir bar, followed by n-docosane (approx. 2.0 mg) and THF (2.75 
mL). To the stirring solution was added iPrMgCl (100 µL, 0.200 mmol, 0.700 equiv, 1.85 M in 
THF) and stirred for 30 min. An aliquot (0.3 mL) of 3HT was quenched with aq. HCl (0.5 mL, 12 
M) outside the box and the reaction mixture extracted with CHCl3 (2.0 mL), the organic layer 
dried over MgSO4, filtered through glass wool and analyzed by GC to show a mixture of 
regioisomers. 
 
Representative Zn(OPiv)2 Transmetalation with 3HT 
 

 
 
To a 20 mL vial equipped with a stir bar was added sequentially Zn(OPiv)2 (47.0 mg, 0.176 
mmol, 1.00 equiv) and 3HT (2.5 mL, 0.14 mmol, 0.070 M, 1.0 equiv). The reaction was stirred 
for 15 min, becoming yellow over time.  
 
Zn-3HT polymerization with 1.2  mol% IPentF 
 
 
 

 
 
 
In the glovebox to a 4 mL vial equipped with a stir bar were added IPentF (0.10 mL, 0.50 µmol, 
1.0 equiv) and THF (1.40 mL). To another 4 mL vial was added Zn-3HT (0.60 mL, 0.042 mmol, 
84 equiv). Both vials were capped and removed from the glovebox. Outside the box, Zn-3HT 
solution was added to the IPentF solution and the vial capped. The polymerization was stirred 
for 10 min before being quenched with aq. HCl (1.0 mL, 12 M). The reaction mixture was 



140 

 

extracted with CHCl3 (2.0 mL), the organic layer dried over MgSO4, and filtered through glass 
wool. An aliquot of the organic layer (1.0 mL) was split into two equal portions. The first portion 
was diluted with additional CHCl3 (2.0 mL) and analyzed by GC. The other portion was 
concentrated in vacuo and then redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, 
passed through a PTFE filter (0.2 µm), and analyzed by GPC. Both the GC and GPC aliquots 
were recombined with the original organic layer and the solvent removed under reduced 
pressure to yield a maroon solid. The solid was dissolved in a minimum amount of CHCl3 (0.1 
mL), and precipitated with MeOH (10.0 mL). The mixture was then centrifuged, the solvent 
decanted, and the solid dried under vacuum to afford P3HT as a maroon solid.  
 
Run 1: Mn = 19.7 kDa, Ð = 1.40, 97.7% conversion of Zn-3HT (4.8 mg, 69% yield)  
Run 2: Mn = 23.5 kDa, Ð = 1.38, 96.7% conversion of Zn-3HT (4.4 mg, 63% yield) 
 

                  
 
Figure S3.8. GPC trace of P3HT from Zn-3HT polymerization using IPentF. 
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Figure S3.9. 1H NMR spectrum of P3HT from Zn-3HT polymerization using IPentF (Run 1). 
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Zn-3HT polymerization with 3.6 mol% IPentF 
 

 
 
In the glovebox to a 4 mL vial equipped with a stir bar were added IPentF (0.10 mL, 0.50 µmol, 
1.0 equiv) and THF (0.5 mL). To another 4 mL vial was added Zn-3HT (0.20 mL, 0.014 mmol, 
27 equiv). Both vials were capped and removed from the glovebox. Outside the box, Zn-3HT 
solution was added to the IPentF solution via syringe and the vial capped. The polymerization 
was stirred for 10 min before being quenched with aq. HCl (1.0 mL, 12 M). The reaction mixture 
was extracted with CHCl3 (2.0 mL), the organic layer dried over MgSO4, and filtered through 
glass wool. An aliquot of the organic layer (1.0 mL) was split into two equal portions. The first 
portion was diluted with additional CHCl3 (2.0 mL) and analyzed by GC. The other portion was 
concentrated in vacuo and then redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, 
passed through a PTFE filter (0.2 µm), and analyzed by GPC.  
 
Run 1: Mn = 4.11 kDa, Ð = 1.70, 84.1% conversion of Zn-3HT  
Run 2: Mn = 4.23 kDa, Ð = 1.71, 75.9% conversion of Zn-3HT  
 

     
 
Figure S3.10. MALDI-TOF/MS spectrum of P3HT from Zn-3HT polymerization using IPentF 
(Run 1). 
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Chain Extending P3HTinitial with Zn-3HT using IPentF 

 
 

In the glovebox to a 4 mL vial equipped with a stir bar were added IPentF (0.10 mL, 0.50 µmol, 
1.0 equiv) and THF (1.40 mL). To two additional 4 mL vials was added Zn-3HT (0.30 mL, 0.021 
mmol, 42 equiv). All vials were capped and removed from the glovebox. Outside the box, Zn-
3HT solution (0.3 mL) was added to the iPentF solution via syringe and the vial capped. The 
polymerization was stirred for 10 min before an aliquot (0.1 mL) was taken and quenched with 
aq. HCl (0.5 mL, 12 M). To the stirring P3HTinitial solution was added additional Zn-3HT (0.3 
mL), the vial was capped and the reaction stirred 10 min before being quenched with aq. HCl 
(1.0 mL, 12 M). Both the P3HTinitial and P3HTextended reaction mixtures were extracted with 
CHCl3 (1.0 mL), dried over MgSO4, and filtered through glass wool. The P3HTinitial organic layer 
was split into two equal portions. The first portion was diluted with additional CHCl3 (2.0 mL) and 
analyzed by GC to show 93% conversion. The other P3HTinitial portion and the P3HTextended 
organic layer were concentrated in vacuo and then redissolved in THF:PhMe (99:1) (1.5 mL) 
with mild heating, passed through a PTFE filter (0.2 µm), and analyzed by GPC.  
 
Run 1: P3HTinitial: Mn = 8.96 kDa, Ð = 1.51, 93% conversion of Zn-3HT. P3HTextended: Mn = 18.3 
kDa, Ð = 1.38. GC analysis not performed on P3HTextended 
Run 2: P3HTinitial: Mn = 9.67 kDa, Ð = 1.44, 94% conversion of Zn-3HT. P3HTextended: Mn = 18.8 
kDa, Ð = 1.37. GC analysis not performed on P3HTextended 
 

              
 
Figure S3.11. GPC traces of extending P3HTinitial with Zn-3HT. 
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VIII. Zn-3HET Polymerization using IPentF 
 
2,2,6,6-tetramethylpiperidinylzinc chloride synthesis 
 

 
In the glovebox Zn(OPiv)2 (74.0 mg, 0.277 mmol, 1.10 equiv) was added to a 4 mL vial 
equipped with a stir bar. To the vial was added 2,2,6,6-tetramethylpiperidinylmagnesium 
chloride lithium chloride complex solution (330 µL, 0.252 mmol, 0.76 M in THF (titrated), 1.00 
equiv) and the heterogeneous mixture stirred for 30 min. THF (0.17 mL) was added to the vial 
and the mixture stirred for  5 min, turning a clear, light yellow solution. 
 
Zn-3HET synthesis using Zn-TMP 
 

 

 
 
In the glovebox, S1 (56.0 mg, 0.193 mmol, 1.00 equiv) was added to a 4 mL vial equipped with 
a stir bar and THF (1.65 mL). To the stirring solution was added ZnCl-TMP (170 µL, 0.0860 

mmol, 0.50 M in THF, 1.00 equiv). The vial was sealed and heated to 65 °C and stirred at this 
temperature for 4 h. An aliquot (0.3 mL) of Zn-3HET was quenched with I2 (4 mg) outside the 
box. Excess iodine was quenched with sat’d aq. Na2S2O3 until the brown solution turned white 
(approx. 1.0 mL). The reaction mixture was extracted with CHCl3 (2.0 mL), dried over MgSO4, 
filtered through glass wool and analyzed by GC to show 51% active monomer. 
 
 
 
 
 
 
 
 
 
 
 



145 

 

Zn-3HET polymerization with IPent in glovebox 
 

 
 

In the glovebox to a 4 mL vial equipped with a stir bar were added IPentF (70 µL, 0.35 µmol, 1.0 

equiv) and THF (0.93 mL). The vial was sealed and heated to 65 °C (the desired polymerization 
temperature) for 15 min. The cap was then removed and to the stirring solution was added Zn-
3HET (0.40 mL, 0.028 mmol, 58 equiv, 0.051 M). The vial was sealed and the polymerization 
stirred for 10 min before being quenched with aq. HCl (1.0 mL, 12 M) outside the box. The 
reaction mixture was extracted with CHCl3 (2.0 mL), the organic layer dried over MgSO4, and 
filtered through glass wool. The solution was concentrated in vacuo and then the residue 
redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, passed through a PTFE filter (0.2 
µm), and analyzed by GPC.  
 

 
 

Figure S3.12. GPC trace of Zn-3HET polymerized with IPentF in the glovebox (theor. Mn = 12.2 
kDa based on initial monomer:catalyst ratio). 
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Zn-3HET polymerization with IPent open-to-air  
 

 
 
In the glovebox to a 4 mL vial equipped with a stir bar were added IPentF (70 µL, 0.35 µmol, 1.0 
equiv) and THF (0.93 mL). To another 4 mL vial were added Zn-3HET (0.40 mL, 0.028 mmol, 
58 equiv, 0.051 M). All vials were capped and removed from the glovebox. Outside the box, the 

vial containing IPentF was heated to 65 °C (desired polymerization temperature) for 10 min 
after which the cap was removed and Zn-3HET solution (0.4 mL) was added to the catalyst vial. 
The polymerization vial left open to air. After 15 min of stirring, the polymerization was 
quenched with aq. HCl (1.0 mL, 12 M). The reaction mixture was extracted with CHCl3 (2.0 mL), 
dried over MgSO4, and filtered through glass wool. The solution was concentrated in vacuo and 
then the residue redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, passed through a 
PTFE filter (0.2 µm), and analyzed by GPC. 
 

 
 
Figure S3.13. GPC trace of Zn-3HET polymerized with IPentF open-to-air (theor. Mn = 12.2 
kDa based on initial monomer:catalyst ratio). 
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Zn-3HET polymerization with IPent open-to-air for MALDI-TOF/MS analysis 
 

 
 
In the glovebox to a 4 mL vial equipped with a stir bar were added IPentF (70 µL, 0.35 µmol, 1.0 
equiv) and THF (0.93 mL). To another 4 mL vial were added Zn-3HET (0.10 mL, 0.0051 mmol, 
14 equiv, 0.051 M). The vials were capped and removed from the glovebox. Outside the box, 

the vial containing IPentF was heated to 65 °C (desired polymerization temperature) for 10 min 
after which the cap was removed and Zn-3HET solution (0.4 mL) was added to the catalyst vial. 
The polymerization vial left open to air. After 15 min of stirring, the polymerization was 
quenched with aq. HCl (1.0 mL, 12 M). The reaction mixture was extracted with CHCl3 (2.0 mL), 
dried over MgSO4, and filtered through glass wool. The solution was concentrated in vacuo and 
then the residue redissolved in THF:PhMe (99:1) (1.5 mL) with mild heating, passed through a 
PTFE filter (0.2 µm), and analyzed by GPC. 
 

 
 
Figure S3.14. MALDI-TOF/MS spectrum of Zn-3HET polymerized with IPentF open-to-air (Mn = 
2.56 kDa, Ð = 1.40). 
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