
Software-Driven and Virtualized Architectures
for

Scalable 5G Networks

by

Mehrdad Moradi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2018

Doctoral Committee:
Professor Z. Morley Mao, Chair
Assistant Professor N M Mosharaf Kabir Chowdhury
Associate Professor Harsha Madhyastha
Assistant Professor Neda Masoud

Mehrdad Moradi

moradi@umich.edu

ORCID iD: 0000-0001-8158-2759

c© Mehrdad Moradi 2018

All Rights Reserved

This dissertation is dedicated to my family

for their endless love, support, and encouragement.

ii

ACKNOWLEDGEMENTS

I could not complete this dissertation without the encouragement and support of many

great people. First, I would like to thank my research advisor, Professor Z. Morley Mao.

Morley has taught me more than I could ever give her credit here. She helped me to improve

my research, writing, presentation, and critical thinking skills. More importantly, she created

a unique opportunity and environment for me to collaborate with six different network

operators and vendors (AT&T, NEC, Ericsson, Nokia, Huawei, and China Mobile) and to

solve some real problems in managing hyper-scale cellular and datacenter networks. Second,

I want to greatly thank my lovely wife, Maryam, for being able to accompany me for six

years during the Ph.D. program. Thank you for your constant support through the ups and

downs. While it has been bumpy at times, your confidence in me has enhanced my ability to

get through it all and succeed in the end.

I would also like to thank my dissertation committee, Professor Harsha Madhyastha,

Professor Mosharaf Chowdhury and Professor Neda Masoud, for their time and effort to

help improve and refine my work. I will never forget Neda’s help in the last minutes before

my thesis proposal. Moreover, I appreciate Dr. Shubho Sen and Dr. Oliver Spatscheck from

AT&T Labs for their great technical discussions and guidance throughout the SoftBox work,

where we designed a radical low-latency 5G architecture from the ground up. I truly enjoyed

working with Shubho in the past two years. Words cannot express my gratitude enough when

I think about his kindness and expertise. I also appreciate Dr. Karthik Sundaresan’s and

Dr. Eugene Chai’s mentorship and support throughout my 8-month internship at NEC Labs

in Princeton. The SkyCore project, where we built real UAV-based 5G cellular networks,

iii

could not be a successful work without their continuous and valuable help and support.

Besides being experts in wireless networking, Karthik and Eugene are fantastic people in

other aspects of life.

At the early stage of my graduate studies, Dr. Li Erran Li was the first person who

taught me how to think out-of-the-box by guiding me in the design and development of

the SoftMoW project aimed at conceptualizing the first hierarchical and recursive software-

defined architecture for globally controlling continent-wide cellular networks. I am also

deeply thankful to Dr. Ying Zhang who offered me to do my first internship in the US at

Ericsson research and truly supported me before and during the internship. Ying waited

four months until Ericsson got necessary permissions from the US government to hire me.

Finally, I thank Professor Mike Reiter and Professor Feng Qian who have been the most

influential people in improving my academic writing skills. I always remember their great

annotations all over my first paper draft in the Caesar project where I had to realize a complex

memory-efficient white box switch and router design.

The six-year life in graduate school has become wonderful because of many colleagues

and friends. I would like to thank all the students in our group: Yikai Lin, Ashkan Nikravesh,

Shichang Shawn Xu, Sanae Rosen, Yihua Guo, Alfred Qi Chen, Jeremy Erickson, David Ke

Hong, Yuru Shao, Xiao Zhu, and Yunhan Jia. I would also like to thank other friends in the

department, particularly for valuable discussions and suggestions on my works: Dr. Hamed

Yousefi, Amir Rahmati, Ofir Weisse, Morteza Sheikhsofla, and Javad Bagherzadeh.

Finally, but not least, my thanks go to my parents, Shahrbanoo Farahzadi and Esmaeil

Moradi, who have been a true source of inspiration and love throughout my life. My parents

always supported me to be an independent thinker and have confidence in my abilities to

follow new things that inspire me. Finally, my most heartfelt thanks to my brothers, Dr.

Mohammad Moradi and Dr. Alireza Moradi, and my sister Mozhgan. This dissertation is

heartily dedicated to them.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Background and Thesis Statement 1
1.2 Overview and High-level Approach 4

II. SkyCore: Moving Core to the Edge for Untethered and Reliable UAV-
based 5G Cellular Networks . 9

2.1 Introduction . 9
2.1.1 Summary of Contributions and Broader Implications . . 13

2.2 Motivation . 14
2.2.1 UAV-based LTE Networks 14
2.2.2 EPC Primer . 14
2.2.3 Limitations of Legacy EPC Architecture 15
2.2.4 Challenges in Edge EPC Architecture 18

2.3 SkyCore: Design Overview . 21
2.4 Software Refactoring of EPC . 22

2.4.1 Minimalistic SkyCore Agent Architecture 22
2.4.2 SkyCore Precomputed Policy Data Store 26

2.5 Efficient Inter-Agent Communication 28
2.5.1 Scalable SDN Control and Data Overlays 28
2.5.2 Proactive Stateless Mobility Support 29

v

2.6 Implementation . 31
2.7 Evaluation . 33

2.7.1 Small-Scale On-Drone Evaluation 33
2.7.2 Large-Scale On-Drone Evaluation 36
2.7.3 Scaling to Powerful UAV Platforms 40

2.8 Related Work . 41

III. SoftBox: A Customizable and Low-Latency, and Signaling-Efficient
5G Core Network Architecture . 42

3.1 Introduction . 42
3.1.1 Summary of Contributions and Roadmap 45

3.2 Motivation and Context . 46
3.2.1 Design Goals for SoftBox 46
3.2.2 EPC Architecture Challenges 47

3.3 SoftBox Core Architecture . 49
3.3.1 Need for the SoftBox Architecture 49
3.3.2 Overview: Transforming EPC into SoftBox 51
3.3.3 Software & Infrastructure Components of SoftBox . . . 53
3.3.4 Connecting SoftBox to LTE RANs and UEs 56
3.3.5 Putting all together: Orchestration of UE containers . . . 57
3.3.6 Optimized SoftBox: Design & Optimization Challenges 58

3.4 Scalable and Flexible Optimization of Idle UE Containers 61
3.5 Traffic Steering With Minimal and Stable Forwarding Rules 64
3.6 Scalable & Mobility-Aware UE Container Migration Scheme . . . 67

3.6.1 Distributed Planning of UE Container Migrations 68
3.6.2 Mobility-Aware Heuristics for UE Container Migrations 69

3.7 Scalable Interaction of SoftBox Core and LTE RAN 70
3.7.1 Fast and Mobility-Aware UE Container Discovery 71
3.7.2 Connectionless RAN-Core Signaling Traffic 72

3.8 Evaluation . 73
3.8.1 Prototype and LTE Dataset 74
3.8.2 Evaluation of Basic SoftBox Architecture 75
3.8.3 Evaluation of Optimized SoftBox Architecture 78

3.9 Related Work . 83

IV. SoftMoW: A Scalable and Reconfigurable 5G WAN Architecture . . . 86

4.1 Introduction . 86
4.1.1 Summary of Contributions 88

4.2 SoftMoW Design Overview . 89
4.2.1 SoftMoW Components 89
4.2.2 Design Challenges and Solutions 90

4.3 SoftMoW Control Plane . 93
4.3.1 Recursive Constructions 93

vi

4.3.2 G-Switch Virtual Fabric 95
4.3.3 Controller Architecture 96

4.4 Core Services . 97
4.4.1 Recursive Topology Discovery 98
4.4.2 Route Computation . 101
4.4.3 Global Path Implementation 103

4.5 Operator Applications . 107
4.5.1 UE Bearer Management 108
4.5.2 UE Mobility . 109
4.5.3 Region Optimization and Reconfiguration 111

4.6 Discussion . 114
4.7 Implementation and Evaluation 116

4.7.1 Prototype and Methodology 117
4.7.2 Routing Performance 118
4.7.3 Discovery Protocol Performance 119
4.7.4 Handover Optimization 119

4.8 Related Work . 121

V. Caesar: A High-Speed and Memory-Efficient
Forwarding Engine for Next-Generation Internet and Cellular Core
Architectures . 123

5.1 Introduction . 123
5.1.1 Summary of Contributions 125

5.2 Background and Motivation . 127
5.2.1 Caesar Design Goals and Challenges 128
5.2.2 Caesar Architecture Overview 131

5.3 Primary Forwarding Path . 131
5.3.1 Scalable and Reliable Filters 133
5.3.2 Memory Technology for Filters 136
5.3.3 Parallel Lookup of Filters 137
5.3.4 Reducing Next-Hop Fast Memory 140

5.4 Backup Forwarding Path . 141
5.4.1 High-Speed False Positive Detection 141
5.4.2 Blacklisting Mechanism 142

5.5 Forwarding Optimizations . 143
5.5.1 Scalable Hash Computation 143
5.5.2 Optimized Route Update Support 145

5.6 Evaluation . 147
5.6.1 Cost-Accuracy Analysis 147
5.6.2 Extensive Trace-Driven Simulation 150

5.7 Related Work . 156

VI. Concluding Remarks . 158

vii

LIST OF FIGURES

Figure

1.1 4G cellular wide area network (WAN) with two regions 1
1.2 A cellular core region-RAN+EPC network 2
1.3 Software-defined networking (SDN) . 4
1.4 Network function virtualization (NFV) 4
1.5 Mobile edge computing (MEC) . 4
1.6 Summary of projects supporting this dissertation 5
2.1 LTE UAV networks. 10
2.2 Legacy EPC architecture. 13
2.3 (a) AT&T’s and (b) Verizon’s Cell on Wings 14
2.4 (a) Degraded throughput on EPC-RAN link (10 MHz LTE link) when UAV

flies in LOS and NLOS (over a building) trajectory. (b) # of SCTP/TCP
(user data) retransmissions in NLOS . 15

2.5 Legacy EPC variants for UAV networks 16
2.6 Capacity bottleneck . 18
2.7 Edge EPC for LTE UAVs . 18
2.8 Edge-EPC has high overheads on UAVs and results in performance bottle-

necks and degraded user experience . 18
2.9 EdgeEPC fails in seamlessly handling increased handoffs in our LTE UAV

environment . 20
2.10 SkyCore network architecture . 21
2.11 SkyCore refactors the EPC functionality into a lightweight agent having

new interfaces for interaction with the local UAV and other UAVs. 21
2.12 SkyCore’s precomptation of network policies not only makes the core

resource-efficient but also minimizes network access delay 25
2.13 (a) SkyCore’s network-wide control and data plane connectivity for LTE

UAV networks. (b) Example of our segment routing 28
2.14 Multi-UAV SkyCore prototype . 31
2.15 LTE hotspot use case–exchanged data traffic over time 34
2.16 Standalone LTE network use case–control plane timeline 34
2.17 Breakdown of network access delay . 35
2.18 SkyCore provides seamless active-mode mobility while Edge-EPC causing

severe connection drops . 36

viii

2.19 SkyCore substantially reduces network access time in LTE UAV networks
within the limits of their compute resources 37

2.20 SkyCore uses minimal CPU resource to handle large-scale network access
requests . 37

2.21 SkyCore efficiently and seamlessly supports large-scale idle-mode and
connected-mode UE mobility between UAVs. 38

2.22 SkyCore supports large-scale idle-mode and connected-mode user mobility
among UAVs in a resource-efficient manner 38

2.23 SkyCore’s refactoring of the EPC increases the data rate support on
resource-challenged UAVs. 39

2.24 SkyCore’s refactoring of the EPC minimizes the CPU resource needed on
UAVs for achieving a specific data rate 40

3.1 SoftBox consolidates the policies associated with each UE into a UE
container in its proximity. 43

3.2 EPC network architecture . 46
3.3 Three conceptual benefits of SoftBox core networks 48
3.4 SoftBox redesigns the cellular core to build customized, signaling-efficient,

and low latency services. 51
3.5 Our scalable and flexible optimization of idle UEs’ container 62
3.6 Our “recursive middleboxes” abstraction to scalably steer UEs’ traffic

through containers . 65
3.7 Our container migration scheme with the distributed planning & mobility-

aware heuristics . 68
3.8 Connectionless per-UE mobility management equipped with mobility-

aware service discovery protocol. 70
3.9 Setup in the D2D experiment . 74
3.10 Effects of optimizing idle UEs’ container 75
3.11 Effects of optimizing UE container migrations 80
3.12 Efficiency of our migration algorithms 80
3.13 Effects of our traffic steering optimization. 82
4.1 An LTE WAN with two regions . 86
4.2 A 3-level SoftMoW architecture . 94
4.3 SoftMoW controller architecture . 96
4.4 A link discovery example in SoftMoW 100
4.5 Local optimal v.s. global optimal . 103
4.6 Recursive label swapping . 105
4.7 UE management application . 107
4.8 Inter-region handover optimization . 110
4.9 End-to-end hop count . 115
4.10 End-to-End latency . 115
4.11 Convergence time . 115
4.12 Cellular loads on balanced regions . 116
4.13 Handover optimization . 120
5.1 Caesar architecture. The backup path result is selected when MM (multi-

match) flag is high. 130

ix

5.2 Caesar’s scalable and reliable filter construction in border router R. 132
5.3 Two options for a parallel membership test in TCAM when there is no

false positive and k is 2 . 139
5.4 Address removal and insertion in filters when k and nmax are 2, and thus

s = blog2(nmax)c+1 = 2 . 145
5.5 Cost-accuracy analysis . 149
5.6 Address length vs. total cost of TCAM-based IP routers and Caesar routers

with w = 288, nmax = 4 . 150
5.7 Determining nmax. (a) Average filter utilization ratio of filters for w = 144

across all snapshots. (b) Distribution of ADs in IADs in the first and last
snapshots. 152

5.8 Total search energy breakdown for w = 144. 154
5.9 Normalized processing overhead of the hierarchical and flat schemes . . . 155

x

LIST OF TABLES

Table

1 Benefits of refactoring on UE-perceived QoS 35
1 SoftBox in the SDN/NFV design space 48
2 Summary of design decisions in the basic version of SoftBox. 49
3 Summary of design decisions in the optimized version of SoftBox. 61
4 EPC & SoftBox signaling overheads–**:common 74
5 Average RTTs for the D2D traffic . 75
6 Effects of our container discovery optimization 82
1 SoftMoW Controller Abstractions . 119
1 Fast memory reference price . 148
2 Experiment statistics . 150
3 Multi-match rate and TCAM memory consumption for w = 144 and vari-

able nmax. 151
4 Effects of permanent and per-flow blacklisting approaches 154

xi

ABSTRACT

In this dissertation, we argue that it is essential to rearchitect 4G cellular core networks–sitting

between the Internet and the radio access network–to meet the scalability, performance,

and flexibility requirements of 5G networks. Today, there is a growing consensus among

operators and research community that software-defined networking (SDN), network func-

tion virtualization (NFV), and mobile edge computing (MEC) paradigms will be the key

ingredients of the next-generation cellular networks. Motivated by these trends, we design

and optimize three core network architectures, SoftMoW, SoftBox, and SkyCore, for dif-

ferent network scales, objectives, and conditions. SoftMoW provides global control over

nationwide core networks with the ultimate goal of enabling new routing and mobility opti-

mizations. SoftBox attempts to enhance policy enforcement in statewide core networks to

enable low-latency, signaling-efficient, and customized services for mobile devices. Sky-

Core is aimed at realizing a compact core network for citywide UAV-based radio networks

that are going to serve first responders in the future. Network slicing techniques make it

possible to deploy these solutions on the same infrastructure in parallel. To better support

mobility and provide verifiable security, these architectures can use an addressing scheme

that separates network locations and identities with self-certifying, flat and non-aggregatable

address components. To benefit the proposed architectures, we designed a high-speed and

memory-efficient router, called Caesar, for this type of addressing scheme.

xii

CHAPTER I

Introduction

1.1 Background and Thesis Statement

Cellular networks have become an integral part of our society. We use them to make phone

calls, check news, watch videos, and make transactions. They are distributed throughout large

geographical areas (e.g., a country) and consist of tens of thousands of packet processing

elements (e.g., gateways, base stations).

PGW

SGW1

SGWn

S1U

S1U

S5

S5

Internet

S1U

S1U

Region 1

Region 2

Figure 1.1: 4G cellular wide area network (WAN) with two regions

Today’s 4G wide area networks (WANs) are organized into very large regions (Figure 1.1),

each having an evolved packet core (EPC) network and a radio access network (RAN). Each

EPC (Figure 1.2) contains an Internet edge comprised of packet data network gateways

(PGWs) and a radio edge connecting to RAN. RAN consists of only base stations and

provides LTE radio coverage for user equipments (UEs). EPC is responsible for processing

1

UEs’ signaling and data traffic; it enforces network policies, provides always-on Internet

connectivity, and offers seamless mobility support.

PCRF

MME

[NAS, S1AP, SCTP]

GTP-C

Diameter

GTP-C

Diameter ISP

PGWGTP-U

HSS

Diameter LTE RAN
EPC

GTP-USGW
Google

Data plane Control plane Signaling Data

eNB

UE

Figure 1.2: A cellular core region-RAN+EPC network

EPC has a hierarchical structure partitioning its functions among a group of dedicated

nodes. At the Internet edge, the PGW connects the core to Internet/content providers and

enforces most of the data plane policies (e.g., NAT, DPI). At the RAN edge, enhanced

node Bs (eNodeBs) are grouped into logical serving areas and connect to serving gateways

(SGWs). Each SGW acts as a mobility anchor point for its eNodeBs. It also forwards each

UE’s data traffic between the eNodeB and PGW using a separate GTP-U (GPRS tunneling

protocol) tunnel. To connect to the network, UEs must register with the mobility management

entity (MME) through eNodeBs. MME continuously exchanges signaling traffic with UEs

and eNodeBs to perform security and mobility functions (e.g., authentication, handover).

To handle these tasks, MME accesses home subscriber server (HSS) that is a centralized

database containing UE-related information (e.g., SIM card key). For connected UEs, policy

and charging rule function (PCRF) authorizes the treatment that UEs’ data flows receive by

supplying QoS rules to PGW/SGW in real time.

Unfortunately, today’s EPC networks suffer from an increasing pressure on their scalabil-

ity, performance, and flexibility. Thus, operators are actively exploring different designs for

5G core networks to overcome the EPC challenges and meet emerging 5G use cases.

• Scalability challenges. First, the number of global LTE subscribers is around 1.2 billion

with a peak daily addition of 2 million devices since 2016 [26]. On the one hand, this

2

trend and the continued exponential growth of mobile traffic put tremendous pressure

on the EPC’s data plane scalability. Soon, mobile traffic will represent around 20% of

total IP traffic on the Internet. On the other hand, the fast growth of signaling traffic

from mobile UEs poses a major challenge to scalability of EPC’s control plane [27].

In response to each UE signaling messages, EPC generates a huge amount of internal

control plane overheads or signaling storms [14, 27] due to its complex nodes and

distributed protocols.

• Flexibility challenges. Second, diversity of devices supporting LTE is going beyond

cell phones and is reaching to domestic robots, sensors, and cars. Unfortunately, the EPC

networks control and data planes lack fine-grained customizability and programmability.

EPC cannot easily realize diverse and customized 5G services for new use cases (e.g.,

public safety, tactile Internet, autonomous cars) [90].

• Performance challenges. Third, while many 5G use cases require ultra-low latency

and gigabit bandwidth, recent studies show that mobile application performance is

seriously degraded by EPC’s inefficient policy enforcement and routing. EPC routes

traffic of UEs destined to the Internet or other nearby UEs on long suboptimal paths

between RAN and PGW [130]. Moreover, there is no control plane interaction between

EPC instances located in different regions. Thus, UEs crossing region boundaries

experience significant service disruption.

Thesis statement. To address these challenges and realize emerging 5G use cases, my

thesis statement is that cellular networks, particularly their core, must be rearchitected

to provide scalability, flexibility, and performance as their first-order properties.

3

• Software-defined networking (SDN)
o Programmability and automation in design, reconfiguration, and

management of networks

4

Networking Paradigm Shifts (1)

P4
OpenFlow

Data plane

Figure 1.3: Software-defined networking (SDN)

Networking Paradigm Shifts (2)
• Network function virtualization (NFV)

o Migrate functions running on dedicated hardware to commodity X86 servers

5

Hardware Network Functions Virtualized Network Functions

Operators’
Public/Private

Cloud
CDN

DPI Firewall Carrier
Grade NAT

Session Border
Controller

WAN
Acceleration

PE
Router

BRAS Radio Access
Network Node

Message
Router

Commodity servers, switches, and storage units

Orchestration & Automation

Figure 1.4: Network function virtualization (NFV)

Networking Paradigm Shifts (3)
• Mobile edge computing (MEC)

o Cloud computing capabilities close to radio edges of cellular networks

6

MEC Server

Cellular
Core

Network

ISP

Google
Edge DC

Figure 1.5: Mobile edge computing (MEC)
1.2 Overview and High-level Approach

Today, there is a growing consensus that software-defined networking (SDN), network

function virtualization (NFV), and mobile edge computing (MEC) will be the dominating

ingredients of 5G networks. SDN is a network design paradigm that advocates for pro-

grammability and automation in design, reconfiguration, and managing networks. A typical

4

software-defined network consists of a logically centralized controller and programmable

switches (Figure 1.3). NFV is a network architecture concept arguing for migrating network

functions (NFs) that traditionally run on complex dedicated hardware to commodity x86

servers (Figure 1.4). Finally, MEC (Figure 1.5) is a conceptual proposal that attempts to

provide cloud computing capabilities close to radio edges of cellular networks to run low-

latency applications (e.g., big data and machine learning). We combine the benefits of the

SDN, NFV, and MEC paradigms in four different projects (as summarized in Figure 1.6) to

support the thesis statement.

Overview & Roadmap

Scalability &
Reconfigurability

SkyCore
(Chapter 2)

Reliability &
Flexibility

SoftBox
(Chapter 3)

Low latency &
Customizability

SoftMoW
(Chapter 4)

Forwarding
Performance &

Low memory usage

Caesar
(Chapter 5)

5G Cellular Core/WAN Architectures
Control plane and data plane designs based on SDN/NFV/MEC

Router/Switch Design
for Next-Gen Architectures

Citywide Statewide NationwideNetwork
Scale Internet-scale

Design
Goals

Project

Figure 1.6: Summary of projects supporting this dissertation

In particular, we first design and optimize three 5G core network architectures for differ-

ent network conditions, objectives and scales: (1) SkyCore that is an efficient core network

solution for UAV-based LTE RANs that are going to provide on-demand LTE coverage for

first responders and general public in citywide challenging environments, (2) SoftBox that

is a low-latency, signaling-efficient, and customizable core network covering larger scale

statewide LTE RANs, and (3) SoftMoW that is a scalable and dynamic cellular WAN archi-

tecture for managing nationwide LTE RANs. Finally, we present Caesar that is a high-speed

and memory-efficient router architecture and can be deployed as a complementary solution in

SkyCore, SoftBox, and SoftMoW or other future Internet architectures to improve mobility

5

support and verifiable security. In the following, we provide a more detailed overview of

each of these projects.

In chapter 2, we discuss SkyCore: moving core to the edge for untethered and reliable

UAV-based LTE networks. The advances in unmanned aerial vehicle (UAV) technology has

empowered mobile operators to deploy LTE base stations (BSs) on UAVs, and provide on-

demand, adaptive connectivity to hot-spot venues as well as emergency scenarios. However,

EPC that orchestrates the LTE RAN faces fundamental limitations in catering to such a

challenging, wireless and mobile UAV environment, particularly in the presence of multiple

BSs (UAVs). In this work, we argue for and propose an alternate, radical edge EPC design,

called SkyCore that pushes the EPC functionality to the extreme edge of the core network –

collapses the EPC into a single, light-weight, self-contained entity that is co-located with

each of the UAV BS. SkyCore incorporates elements that are designed to address the uniques

challenges facing such a distributed design in this UAV environment, namely the resource-

constraints of UAV platforms, and the distributed management of pronounced UAV and UE

mobility. We build and deploy a fully functional version of SkyCore on a two (rotary-wing)

UAV LTE network and showcase its (i) ability to inter-operate with commercial LTE BS as

well as smartphones, (ii) support both hot-spot and stand-alone multi-UAV deployments,

and (iii) superior control and data plane performance compared to other EPC variants in this

environment.

In chapter 3, we present SoftBox: a customizable, low-latency, and scalable 5G core

network architecture.SoftBox combines SDN, NFV, and MEC to enable the creation of

customized, low latency, and signaling-efficient services on a per user equipment (UE)

basis. SoftBox consolidates network policies needed for processing each UE’s data and

signaling traffic into a light-weight, in-network, per-UE agent. We designed a number of

mobility-aware techniques to further optimize: resource usage of agents, forwarding rules and

6

updates needed for steering a UE’s traffic through its agent, migration costs of agents needed

to ensure their proximity to mobile UEs, and complexity of distributing the LTE mobility

function on agents. In this project, we demonstrate that basic SoftBox has by 86%, 51%, and

83%-87% lower signaling overheads, data plane delay, and CPU core usage, respectively,

than open source EPC systems. Moreover, our optimizations efficiently cut the peak load in

SoftBox networks by 51%-78%. These results point to the feasibility and potential of the

SoftBox concepts.

In chapter 4, we explain SoftMoW: a scalable and reconfigurable cellular WAN archi-

tecture. SoftMoW supports seamlessly inter-connected core networks distributed over a

large geographical area (e.g., country or continent) by providing reconfigurable control

plane and global optimization. To scale the control plane nation-wide, SoftMoW recursively

builds up a hierarchical control plane with novel abstractions of both control plane and data

plane entities. SoftMoW supports new network-wide optimization functions such as optimal

routing and inter-region handover minimization. In this project, we demonstrate SoftMoW

improves the performance, flexibility and scalability of cellular WAN using real LTE network

traces with thousands of base stations and millions of subscribers. Our evaluation shows that

path inflation and inter-region handovers can be reduced by up to 60% and 44% respectively.

In chapter 5, we focus on Caesar: a high-speed and memory-efficient forwarding engine

for next-generation Internet and cellular core architectures. Many next-generation network

architectures depart from using IP addresses. Instead, they use an addressing scheme that

separates network locations and identities with self-certifying, flat and non-aggregatable

address components. This addressing scheme has been successful in improving seamless

mobility support and guarantees verifiable security. We can easily deploy this addressing

scheme in our software-defined SkyCore, SoftBox, and SoftMoW architectures to further

optimize them. However, the main challenge with this addressing scheme is that each of the

7

address components is often long, reaching a few kilobits, and would consume an amount

of fast memory in data plane devices that is far beyond existing capacities. To address

this challenge, we develop Caesar, a high-speed and length-agnostic forwarding engine for

future border routers, performing most of the lookups within three fast memory accesses.

To compress forwarding states, Caesar constructs scalable and reliable Bloom filters in

Ternary Content Addressable Memory (TCAM). Our evaluation shows that Caesar is more

energy-efficient and less expensive (in terms of total material cost) compared to optimized

IPv6 TCAM-based solutions by up to 67% and 43% respectively. In addition, the total cost

of our design is approximately the same for various address lengths.

8

CHAPTER II

SkyCore: Moving Core to the Edge for Untethered and

Reliable UAV-based 5G Cellular Networks

2.1 Introduction

LTE networks that are ubiquitous today are deployed after sufficient RF planning in a region.

However, the static nature of LTE base station (BS) deployments limits their ability to cater

to certain key 5G use cases – surging traffic demands in hot spots (e.g. stadiums, event

centers), as well as their availability in emergency situations (e.g. natural disasters), where

the infrastructure could itself be compromised. Providing an additional degree of freedom

for base stations, namely mobility, allows them to break away from such limitations.

UAV-driven LTE networks. In this regard, recent advances in unmanned aerial vehicle

(UAV) technology has empowered operators to take on-demand, outdoor connectivity to

another level, by allowing their base stations to be deployed aerially on UAVs (Figure 2.1),

thereby offering complete flexibility in their deployment and optimization. Mobile operators

like AT&T and Verizon have both conducted trials with LTE base stations mounted on

UAVs [8, 10] (helicopter and fixed-wing aircraft respectively, Figure 2.3). AT&T also

provided connectivity service from its UAV in the aftermath of hurricane Maria in Puerto

Rico last year [9]. Further, with the availability of shared access spectrum like CBRS [7] in

3.5 GHz, this also opens the door for smaller, green field operators to deploy and provide on-

9

Mobility

LTE UEs

LTE UAV

Command & Control (C2)

LTE

Ground Station

Satellite

Figure 2.1: LTE UAV networks.
demand, private LTE connectivity service without the heavy cost associated with spectrum

and deployment.

Limitations of legacy EPC. A typical LTE network requires the deployment of two

essential components: a radio access network (RAN) consisting of multiple base stations

(BSs) that provide wide-area wireless connectivity to clients (UEs), and a high-speed, wired

core network of gateways (evolved packet core, EPC) that sits behind the RAN and is

responsible for all the mobility, management and control functions, as well as routing user

traffic to/from the Internet. Realizing a multi-UAV-driven RAN (BSs deployed on UAVs)

with an EPC on the ground is one way to directly apply today’s EPC architecture to the

UAV environment (as shown in Figure 2.5) – this has been the case with current operator-

driven UAV efforts. However, this faces significant limitations in delivering real value to

this challenging environment. Specifically, while a tethered set-up (EPC-UAV link being

wired, Figures 2.3a, 2.5a) significantly limits the UAV’s mobility and ability to scale to

multiple UAVs, a wireless set-up (EPC-UAV link being wireless/mobile, Figures 2.3b, 2.5b)

incurs all the vagaries of the wireless channel. For the latter, the choice of the wireless

technology becomes critical given that the EPC is responsible for setting-up, routing, and

tearing down all voice/data bearers. It is essential for the EPC to reliably reach all the UAVs

wirelessly, including those that are potentially far away in the presence of non-line-of-sight

conditions (e..g buildings, foliage, etc.). Further it must deliver sufficient capacity to support

10

the traffic demands in the RAN. It is extremely challenging for a wireless technology, be

it lower frequency (sub-6 GHz like LTE, WiFi, etc.) or higher frequency (mmWave), to

simultaneously satisfy the needs of range, reliability/robustness, and capacity that the UAV

environment demands from the critical EPC-RAN link.

Core at the Edge. Given the fundamental limitations in deploying an EPC on the ground

to support a multi-UAV RAN, we advocate for a radical, yet standards-compliant re-design

of the EPC, namely the edge-EPC architecture, to suit the UAV environment. As the name

suggests, we aim to push the entire EPC functionality to the extreme edge of the core network,

by collapsing and locating the EPC as a single, light-weight, self-contained entity on each of

the UAVs (BSs) as shown in Figure 2.7. Being completely distributed at the very edge of the

network, such an architecture completely eliminates wireless on the critical EPC-RAN path

and hence the crippling drawbacks faced by the legacy architecture in this environment.

While definitely promising at the outset, realizing this radical design is not without its

own set of challenges that are unique to the UAV environment. In particular, (i) Resource-

challenged environment: The compute resources consumed by the numerous network func-

tions in EPC is appreciable and becomes a concern when all the EPC functionality is collapsed

into a single node, and deployed directly on a UAV platform – the latter being highly resource-

challenged to begin with. This could significantly affect both the UAV’s operational lifetime

as well as the processing (control and data plane) latency of its traffic, thereby resulting in a

reduced traffic capacity. (ii) Mobility management: The hierarchical nature of the legacy

EPC architecture, gives a single network gateway (like mobility management entity, MME) a

consolidated view of multiple BSs, thereby allowing it to efficiently manage handoffs during

mobility of active UEs as well as tracking/paging mobile UEs that are in idle mode. Mobility

of both active (handoffs) and idle UEs (paging) becomes a critical challenge, when the entire

EPC is located at each of the UAVs, thereby restricting their view of events to only those

that are local to the UAV.

Our proposal – SkyCore. Towards our vision of building an untethered yet reliable

11

UAV-based LTE networks, we present our novel EPC design, SkyCore. SkyCore embodies the

edge-EPC architecture, while introducing two key pillars in its design to address the associated

challenges – a complete software refactoring of the EPC for compute-efficient deployment on

a UAV, and a new inter-EPC communication interface to enable fully functional operation in

a multi-UAV environment. Through software-refactoring, SkyCore eliminates the distributed

EPC interfaces and collapses all distributed functionalities into a single logical entity (agent)

by transforming the latter into a series of switching flow tables and associated switching

actions. It also reduces control plane signaling and latency by pre-computing and storing

(in-memory data store) several key attributes (security keys, QoS profile, etc.) for the UEs

that can be accessed quickly in real-time without any computation. To ensure complete EPC

functionality, SkyCore manages mobility right at the edge of the network – it enables a new

control/data interface to realize efficient inter-EPC signaling and communication directly

between UAVs. This allows the SkyCore agents on each UAV to proactively synchronize

state with each other, thereby avoiding the real-time impact of wireless (UAV-UAV) links on

critical control functions – results in fast and seamless handoff of active mode UEs as well

as tracking of idle mode UEs across multiple UAVs.

Real-world prototype. We have built a complete version of SkyCore on a single board

server with a small compute and energy footprint; and deployed it on Matrix 600 Pro rotary-

wing drones to create a two-UAV LTE network. To the best of our knowledge, this is the

first realization of a self-contained edge-EPC solution that can support a multi-UAV network

and is a direct affirmation of SkyCore’s design. SkyCore’s feasibility and functionality is

validated by seamless integration and operation with a commercial LTE RAN (BS) from

ip.access and off-the-shelf UEs (Moto G and Nexus smartphones). We demonstrate SkyCore

UAVs to operate both as hot-spots that allow for better UE connectivity to the Internet, as

well as for stand-alone connectivity of geographically separated UEs through two different

UAVs (e.g. first responders in emergency scenarios), while also allowing for handoffs. Our

real world evaluations of SkyCore and its comparison with a state-of-the-art software EPC

12

PCRF

MME
[NAS, S1AP, SCTP]

Pa
ck

et
 N

et
w

o
rk

PGWGTP-U

HSS

RAN EPC

SGW

Data plane Control plane Signaling Data

eNBUE

Figure 2.2: Legacy EPC architecture.
(OpenEPC [34]) on UAV clearly showcases SkyCore’s superior performance and scalability

– SkyCore provides an order of magnitude lower control plane latencies, incurs 5× lower

CPU utilization, and provides data plane rates that currently scale up to a Gbps.

2.1.1 Summary of Contributions and Broader Implications

Our two key contributions in this chapter include,

• A novel edge-EPC solution, SkyCore that can reliably and scalably support a stand-

alone, multi-UAV LTE network deployment that was not possible earlier.

• A real-world implementation and evaluation that showcases both its feasibility and its

superior performance.

SkyCore’s underlying design is driven by the observation that when connectivity between

core network functions, which are on the critical path, is unreliable (wireless and mobile),

the merits of pushing functionality to the edge of the network significantly outweighs the

associated drawbacks. Hence, although designed for a multi-UAV environment, SkyCore’s

design can also benefit other deployments, where distributed critical network functions have

to communicate over unreliable links (e.g. distributed enterprise RANs).

13

(a) (b)
Figure 2.3: (a) AT&T’s and (b) Verizon’s Cell on Wings

2.2 Motivation

2.2.1 UAV-based LTE Networks

We consider low-altitude UAV networks, such as those considered by mobile operators [8, 10]

for on-demand, LTE network deployments. These are envisioned to serve as dynamic

small cells that add capacity to macrocell networks in hot-spot venues, as well as provide

stand-alone connectivity (without macrocells) for local communication in disaster scenarios.

Relevance of our work to high-altitude, long endurance platforms like Google’s Loon [19]

and Facebook’s Aquila [16] is discussed in Section 4.6. In a UAV-based LTE network, an

LTE BS (eNB) is directly deployed on each UAV, and multiple of them together provide

wireless connectivity to UEs over a desired wide area as shown in Figure 2.1. However,

not much thought has been paid towards the deployment of an EPC to support such a RAN.

Deploying and managing a traditional LTE EPC is a challenge in its own right. Designing one

to support an LTE RAN on UAVs, which are highly restrictive in their compute capabilities,

endurance and payload capacity, further amplifies the associated challenges.

To foster a better understanding, we first reiterate a short primer on EPC’s key function-

ality, followed by the limitations of today’s EPC for our target environment, and the benefits

and drawbacks of an “alternate" edge EPC architecture.

2.2.2 EPC Primer

Figure 2.2 shows the network architecture of EPC, which is a distributed system of different

nodes or network functions (NFs) that are required to manage the LTE network. The EPC

14

consists of data and control data planes: the data plane enforces operator policies (e.g., DPI,

QoS classes, accounting) on data traffic to/from user equipment (UE), while the control

plane provides key control and management functions such as access control, mobility

and security management. eNodeBs (RANs) are grouped into logical serving areas and

connected to serving gateways (SGW). The SGW is connected to an external packet network

(e.g. the internet) via a packet data network gateway (PGW). PGW enforces most of data

plane policies (e.g., NAT, DPI) and may connect the core to other IP network services (e.g.,

video server). The mobility management entity (MME) is responsible for access control,

security and mobility functions (e.g., attach/detach, paging/handoff) in conjunction with the

home subscriber server (HSS) database.

2.2.3 Limitations of Legacy EPC Architecture

The straight-forward way to apply EPC to our UAV network would be to collapse all the EPC

network functions into a single node (EPC-in-a-box) and deploy this EPC node on a resource-

capable node on the ground that can support multiple UAV BSs. This is the approach adopted

by operators like AT&T and Verizon in their recent trials (Figure 2.3) [8, 10].

0 10 20
EPC-RAN link bandwidth (Mbps)

0.00

0.25

0.50

0.75

1.00

CD
F

Degraded Connectivity

LOS
NLOS

(a)

200 400 600
Time (s)

0

100

200

Co

nt
ro

l/d
at

a
pl

an
e

 R
et

ra
ns

m
iss

io
ns

(b)
Figure 2.4: (a) Degraded throughput on EPC-RAN link (10 MHz LTE link) when UAV flies in
LOS and NLOS (over a building) trajectory. (b) # of SCTP/TCP (user data) retransmissions in
NLOS

15

2.2.3.1 Tethered Deployment (Wired EPC-UAV link)

In today’s traditional LTE networks, the connectivity between EPC and eNBs (RAN) is a

reliable, wired network provisioned with sufficient bandwidth for catering to the UE traffic

demands in both downlink and uplink. A similar approach can be adopted in our UAV

network, where the RAN runs on the UAV, which is tethered by a wire to a ground station

running the EPC (Figure 2.3a, 2.5a). However, such an approach significantly limits the

potential and flexibility of the UAV to fly and re-position itself to cater to network traffic

requirements, not to mention the associated safety concerns and the infeasibility of scaling

such a set-up to support a network of UAVs. With UAV technology advancing at a rapid

pace to provide longer operational times [4], such a tethered EPC-on-ground does not offer

a viable, future-proof solution.

(a) Legacy Wired EPC

RAN RAN

EPCEPC EPC

RAN RAN

(a) Legacy Wireless EPC

Wireless

Figure 2.5: Legacy EPC variants for UAV networks

2.2.3.2 Un-tethered Deployment (Wireless EPC-UAV link)

The other alternative is where the connectivity between EPC on the ground and eNBs (UAVs)

is wireless (Figure 2.3b, 2.5b).

Reliability vs. range vs. capacity: The wireless channel is inherently an unreliable medium,

and is subject to wireless artifacts such as shadowing (building, trees, obstacles), multi

path fading, etc. that can significantly degrade signal quality (by as much as 70% in our

experiments, Figure 2.4a) and cause high packet retransmissions (more than 100 SCTP/TCP

retransmissions, Figure 2.4b) and potentially cause disconnections. The choice of the

wireless technology also plays an important role. Using lower frequencies like 700MHz, 1

16

GHz, etc. allows for better penetration and hence longer communication ranges and better

reliability but significantly lesser bandwidth (capacity of few tens of MHz). In contrast,

higher frequencies like mmWave (28 gHz, 60 GHz, etc.) offer significantly more bandwidth

(hundreds of MHz to a GHz) but suffer from higher attenuation and hence lower range. While

the latter can employ beamforming to cope with attenuation, they are limited by line-of-sight

requirements and the need to constantly track the beam direction with respect to each UAV

as they move – impediment for reliable operation in low altitude deployments. Thus, it is

extremely challenging to identify a wireless modality for the critical EPC-RAN (ground

to UAV) link that can offer the simultaneous features of reliable connectivity, increased

communication range, and capacity, that is warranted by this EPC architecture.

Single point bottleneck: The EPC node on the ground becomes the routing focal point that

ferries traffic not only between the UEs and the Internet but also between UEs within the UAV

network. Hence, even if the UAV backhaul (connectivity between UAVs) is well-provisioned,

having a small set of ground EPC nodes, concentrates all the traffic on the UAV backhaul

towards these ground nodes, which in turn become the bottleneck. This would significantly

degrade the capacity of the network as a whole. For a low altitude UAV network deployed to

provide on-demand connectivity to a small geographic region, bulk of the traffic might be

local – e.g. between users and content servers in events, or between first responders and/or

affected people in emergencies. In such scenarios, incurring the wireless capacity bottleneck

due to EPC on the ground is un-warranted.

A simple illustration in Figure 2.6 shows that the capacity offered by an EPC-on-ground

architecture (capacity of x) even for a small 4-UAV network can be 6 times lower than if the

local traffic were to be served directly between the UAVs (capacity of 6x). In addition, UAV

and UE mobility are highly pronounced in these networks, which also leads to increased

control signaling and associated latency over multiple wireless hops between the ground

EPC node and the UAVs.

One option is to deploy multiple EPC nodes on the ground to allow for more reliable

17

EPC

RAN

RAN

RAN

RAN

x

x

x xx

x

x

x Link Capacity Wireless Link

Figure 2.6: Capacity bottleneck

RAN RAN
EPC EPC

Figure 2.7: Edge EPC for LTE UAVs
connectivity to all UAVs and to add capacity (akin to provisioning multiple gateways in

wireless mesh networks [55]). However, this adds to both the cost as well as reliance on

ground deployments, working against the flexibility offered by UAVs in the first place.

2.2.4 Challenges in Edge EPC Architecture

To counteract the challenges in deploying a legacy EPC architecture, we focus our attention

to a radically different “edge" EPC architecture. Here, the entire EPC is collapsed and

located as a single, self-contained entity on each of the UAVs as shown in Figure 2.7. Being

completely distributed at the edge of the network, such an architecture would completely

eliminate the crippling drawbacks of faced by the previous architecture resulting from

wireless connectivity between EPC and eNBs. While definitely promising at the outset, it

does encounter a different set of challenges in its realization.

1 20 40 60 80 100
LTE attach/detach events per sec.

0

2000

4000

6000

8000

A
v
g
.

u
se

r
p
e
rc

e
iv

e
d

 c
o
n
tr

o
l
p
la

n
e
 d

e
la

y
 (

m
s)

Legacy-Wired (Attach)

Legacy-Wired (Detach)

Edge-EPC(Attach)

Edge-EPC (Detach)

(a)

1 20 40 60 80
LTE attach/detach events per sec.

0

50

100

CP
U

ut
iliz

at
io

n
(%

) EPC Overload

(b)
Figure 2.8: Edge-EPC has high overheads on UAVs and results in performance bottlenecks and
degraded user experience

18

2.2.4.1 Resource-challenged

An EPC consists of multiple network functions along with the interfaces and tunneling

protocols between them. Further, most of these are stateful network functions and consist

of both control and data plane functionality. These network functions, which used to be

deployed by operators on specialized hardware, are now slowly migrating to a virtualization

environment with the recent advances in NFV (network function virtualization [28, 109, 57].

Nevertheless, the compute resources consumed by these network functions is appreciable

and becomes a concern when all the EPC functionality is collapsed onto a single node.

Deploying an EPC node on the UAV could significantly affect both its operational lifetime

as well as the processing (control and data plane) latency of its traffic, thereby resulting

in a highly reduced traffic capacity. This can be observed in Figures 2.8a, 2.8b, where the

latency and CPU utilization of control plane functions can be an order higher in Edge-EPC,

when the platform (such as that on a UAV) is resource-constrained (experimental details in

Section 2.7).

2.2.4.2 Handling Mobility at the Edge

Conventional EPC has a hierarchical structure, where a single PGW spans multiple SGWs,

and a single SGW spans multiple eNBs. As the UE (in active mode) moves from one cell

to another (handoff), this is handled locally by its SGW. Further, every UE has a tracking

area (TA, set of neighboring eNBs) associated with it, which the EPC will use to page (all

eNBs in its TA) to locate it when in idle mode. When the UE moves out of its current TA, it

notifies the EPC of its updated TA. Thus, UE mobility is handled seamlessly in legacy EPC.

Active-mode mobility (Handoffs). Network dynamics in the form of UE and/or UAV

mobility forms a significant part of our operating environment. However, with the collapse of

the hierarchical architecture in Edge-EPC, one needs to now enable communication between

the EPC entities on individual UAVs to enable seamless handoff across UAVs. In today’s

mobile networks, a UE hardly moves across different PGWs within the same operator’s

19

0 250 500 750 1000
Time(s)

120

110

100

90

RS
RP

 (d
B)

Handoff region
UE perceived

Figure 2.9: EdgeEPC fails in seamlessly handling increased handoffs in our LTE UAV environ-
ment
network (a single PGW spans a significantly large area - hundreds of miles). When such an

event does happen, the connection is terminated with the existing PGW and re-established

with the new PGW causing service disruption. However, such events are the norm rather

than an exception in our environment. Figure 2.9 illustrates the number of potential handoff

events that can be triggered due to appreciable signal variations even during a short UAV

flight (less than 50m) in our experiments. Hence, it becomes critical to enable seamless

EPC-EPC communication for handling mobility in the edge EPC architecture. This is needed

to also handle UAV mobility, i.e. when one UAV goes down for a re-charge and is replaced

by another UAV – a migration of state from one UAV (EPC) to another is imperative.

Idle-mode mobility (Tracking/Paging). With the ability to page idle UEs over large

tracking areas (spanning several BSs), it is fairly straight-forward to locate any UE in the

network in legacy EPC. This is however, a challenge for the edge-EPC architecture, where

there is no single PGW that spans all the UAVs (eNBs). Further, since the notion of tracking

area disappears (due to collapsed EPC), locating a UE when in idle mode appears to be

infeasible, prompting the need for new or adapted mobility mechanisms.

20

RAN

SkyCore
AgentRAN

SkyCore
Master

Backhaul
Agent Backhaul

Agent

eNodeB

SkyCore
Agent

Backhaul
Agent

SkyCore control plane protocols
User data over SkyCore data plane protocol

Wireless backhaul
Legacy EPC protocols

Figure 2.10: SkyCore network architecture

SGW-D

PCRFPGW-C

SGW-C

MME

HSS

PGW-D

LTE
Mobility

LTE
Policy

GTP-U

SCTP/
S1AP/NAS

UAV
Control

C
on

so
lid

at
io

n
&

 o
pt

im
iz

at
io

n

D
ec

ou
pl

in
g

EP
C

 c
on

tr
ol

 &
 d

at
a

pl
an

es

Refactored Legacy Apps

Other UAVs

SkyCore Apps

Inter-Agent
Communication

Other
 UAVs

or Internet

EPC control plane

EPC data plane

RAN

UAV engine

Precomputed In-Memory Policy Data Store
SkyCore Controller

OpenFow/P4

Step 1 Step 2-5

Charging QoS &
Rate

GTP-U
Processing

Firewall

SkyCore Switch
SkyCore
Overlay

SkyCore Agent

Figure 2.11: SkyCore refactors the EPC functionality into a lightweight agent having new inter-
faces for interaction with the local UAV and other UAVs.
2.3 SkyCore: Design Overview

SkyCore adopts the edge EPC architecture as shown in Figure 2.10. SkyCore collapses the

entire EPC and pushes it to the edge of our network, namely at each of the UAVs themselves,

where it is colocated with the RAN. While this completely eliminates wireless from the

critical path between EPC and RAN, to address the challenges associated with the edge

architecture, SkyCore introduces two novel design components. Briefly,

Software-refactoring of EPC functionality. To reduce its compute footprint on the

UAV, SkyCore adopts a software refactoring approach to eliminate distributed EPC interfaces

and collapse all distributed functionalities into a single logical entity. It realizes this by

transforming the distributed data plane functions into a series of switching flow tables and as-

sociated switching actions (corresponding to functions like GTP encapsulation/decapsulation,

charging, etc.). It also reduces control plane signaling and latency by pre-computing and

storing (in-memory) several key attributes relating to security keys, QoS profile, etc. for the

21

UEs that can be accessed locally in real-time without any computation.

Efficient Inter-EPC communication. With every UAV now running its own EPC agent,

even a simple eNB-eNB handoff of an active UE across two UAVs now becomes a inter-

MME (MME-MME) handoff, which needs to be accomplished across two different EPC

agents. SkyCore enables a new control/data interface that allows agents on different UAVs

to proactively (in background) synchronize the state of UEs. This bypasses the real-time

impact of wireless (UAV-UAV links) on critical control path functions, allowing for seamless

handoffs and tracking of idle mode UEs right at the edge. The HSS equivalent in each

SkyCore agent maintains the location (anchoring SkyCore agent) of all UEs in the network.

Hence, when an agent sends a UE location update, the agents in other UAVs update their

HSS accordingly. Thus, whenever traffic needs to be sent from a SkyCore agent to a specific

UE located at another UAV, the HSS will reveal the destination SkyCore agent at which the

UE is anchored and to whom the traffic has to be routed. The actual routing path to be taken

by the traffic on the mesh backhaul is then determined by SkyCore, with the underlying

backhaul topology information made available by a backhaul agent that resides on the UAV1.

We now explain each of these design components in detail.

2.4 Software Refactoring of EPC

2.4.1 Minimalistic SkyCore Agent Architecture

Each SkyCore agent has a minimalist and UAV-aware SDN-based architecture (Figure 2.11),

consisting of a controller that executes the control functions to process UEs’ signaling traffic

and to coordinate with other agents, and a switch that processes user data traffic. In the

following, we describe five high-level steps that we take to refactor and extend the EPC

functionality onto our agent architecture.

Step 1. Decoupling the EPC control and data plane pipelines. One of the main
1The design of the backhaul agents responsible for maintaining a well-provisioned, connected wireless

mesh topology is outside the scope of this work.

22

reasons behind high complexity and overhead of EPC is its nodes performing mixed control

and data plane functions. To make the EPC functionality suitable for UAVs, we first decouple

the EPC control and data planes. Among the EPC nodes, MME, PCRF, and HSS are pure

control nodes. Hence, our decoupling does not affect these elements, and only affects SGW

and PGW. The resulting control components from the decoupling are PGW-C, SGW-C,

MME, PCRF, and HSS, and the data elements include SGW-D and PGW-D (C stands for

control and D for data). While the benefits of decoupling control and data planes have been

articulated before [98, 86], we apply it in the context of UAV networks, and enhance it

substantially with the following mechanisms.

Step 2. Categorizing the functionality of the EPC control plane. Next, we categorize

the EPC control nodes based on their high-level functionality. In our decoupled EPC, there

are three types of control nodes. SGW-C and PGW-C are responsible for managing QoS

policy enforcement and routing on user data traffic. MME exchanges signaling traffic with

UEs and BSes. PCRF and HSS dynamically generate network security and QoS policies

for other nodes. To compress the EPC functionality, we try to consolidate the nodes in each

category on top of our agent controller and remove the EPC distributed protocols as follows.

Step 3. Collapsing SGW-C, PGW-C, and MME into light-weight applications. We

extract the internal functions in the SGW-C and PGW-C nodes and refactor them into a

single SDN application, called Policy Application, on top of the controller. We do the

same process for MME and transform it into a Mobility Application. One notable aspect

of this consolidation is that we naturally eliminate the complex GTP-C protocol, its six

interfaces, and continuous control messages from the core (Figure 2.2). This makes the

corresponding SDN applications extremely lightweight and extensible without hurting their

original functionality. Note that these applications still exchange information with each other

but through simple local publish-subscribe mechanisms.

Step 3. Eliminating HSS and PCRF from the LTE UAV core and replacing them

with a precomputed policy data store. Next, we focus on HSS and PCRF that are known

23

to be the source of today’s signaling storms in cellular networks [27, 35]. HSS stores

hundreds of database tables containing different UEs’ states often on disk. Moreover, it

acts as a proxy between MME and these tables and performs different types of complex

security and location tracking computations. Similarly, PCRF often accesses a logical

database (sometimes implemented in the HSS) and dynamically generates different QoS

and charging policies of UEs. In SkyCore, we completely eliminate these two nodes from

our agents. We show that dynamic policy generation can be carefully replaced with a

precomputed in-memory policy data store. Precomputation combined with in-memory

transactions substantially minimizes the overhead of the core on resource-challenged UAVs

(elaborated in Section 2.4.2). This also removes the complex Diamater protocol from the

core.

Step 4. Adding UAV-specific applications to the core. One of the key differences

between SkyCore and traditional EPC is in its continuous interaction with the UAV hardware

and its APIs. In particular, we advocate for two new applications on top of our agents.

Each SkyCore agent runs UAV Control Application that listens to flight change events

from UAV and remaining battery resources on the UAV. This is necessary for our agents

to properly handoff UEs to each other, e.g., when a UAV needs to immediately leave the

network for recharging. Such use cases clearly show the potential of our SDN-based UAV-

aware architecture. In addition, we design an Inter-UAV Communication Application that

exchanges control plane messages with its neighbor agents to synchronize states proactively,

thereby enabling seamless mobility (active and idle). Other legacy EPC applications and

new SkyCore core applications that need to exchange information with each other, do so

through our local publish-subscribe protocols (discussed in Section 2.5).

Step 5. Replacing the hierarchical data plane gateways with an SDN switch. Since

SkyCore is a flat architecture, it eliminates the need for hierarchical gateways on each UAV.

To further make our agents compact, we refactor the functionality of SGW-D and PGW-D into

a single software switch. Each data plane function in S/PGW-D is implemented as a separate

24

Match+Action table in this software switch. Each table performs a lookup on a subset of

user’s data traffic fields and applies the actions corresponding to the first match. Users’ traffic

travel through these tables before leaving or entering the UAV. In particular, our software

switch performs: (1) UL/DL data rates enforcement, (2) firewall operations, and (3) QoS

control by transport-level mechanisms (e.g., setting DiffServ) based on QoS class identifier

(QCI) associated with each UE. While legacy EPC tunnels each UE’s traffic into two tunnel

segments across the RAN, PGW-D, and SGW-D, SkyCore departs from this approach and

terminates GTP-U tunnels inside our the agent switch (decapsulates GTP-header from uplink

packets sent by the BS and encapsulates a proper GTP-U header in downlink packets to the

BS) for two reasons. First, per-UE tunnels do not scale in LTE UAV networks as UEs are

mobile and these tunnels are subject to frequent changes. Second, our consolidation already

eliminates the need for GTP-U tunnels between the SGW-D and PGW-D functionality.

00101123456…

00101123456… {security_profile: {},‘QoS_profile’:{‘max_up_bw’: 50mbps, ‘QCI’: 5,…},}

IMSI (Keys) Security and service profiles

{’security_profile’ :{‘k’: 10, {‘Vec1’: [AUTN,…] , ‘Vec2’: }, QoS_profile: {}}

(b) Skycore’s precomputation of network policies
Precomputed In-Memory Policy Data Store

F1 F2 F3 F4 F5

MAC

SQN

CK 1K AK

KASME

F7

KeNB

F8 F9

KNAS-enc KNAS-int

RAND
K

XRES

F6

AMF

AK

AUTN

Encryption & Integrity Vector
(KNAS-int, KNAS-enc, KeNB)

Authentication Vector
 (RAND, XRES, CK, 1K, ATUN)

(a) EPC’ heavy security procedures at HSS

Figure 2.12: SkyCore’s precomptation of network policies not only makes the core resource-
efficient but also minimizes network access delay

25

2.4.2 SkyCore Precomputed Policy Data Store

We now describe how HSS/PCRF can be replaced with precomputed network policies on

SkyCore agents. As shown Figure 2.12-(b), the SkyCore data store associates each UE

IMSI information with its precomputed policies, which can be quickly accessed by different

applications on the agent. Our pre-computation approach not only reduces the user perceived

network access delay but it also makes the core extremely resource-efficient. In Section 2.5,

we will discuss how policy changes by an agent are propagated to other agents in the network

to ensure their state is consistent.

2.4.2.1 Precomputation of Security Policies

Network Access Security in LTE networks relies on the shared user-specific key, K, that

is stored in HSS and UE sim cards. The LTE security processes assume that cloned UEs

and spoof networks do not know the correct value of K. From K, the HSS dynamically

computes (shown in Figure 2.12(a)) an authentication vector (AV) and an encryption vector

(EV) as part of a larger LTE attach process, when UEs switch on or enter an area with LTE

coverage. The EPC and the UE confirm each other’s identities using the AV. The signaling

traffic between the a UE and the network is encrypted using the EV to ensure intruders

cannot read and modify them. The computation of these vectors involves resource-intensive

cryptographic operations (F1-F9) on 256-bit long strings, thereby wasting valuable clock

cycles on UAVs.

Offline computation of security vectors. When there are a few UEs, the overhead of

computing such security vectors on UAVs is manageable. However, when UAVs are providing

on-demand LTE connectivity over a large geographical region, many UEs are likely to send

LTE attach requests to the network at the same time. Such realistic workloads can quickly

use the available compute resources (for core) on UAVs and substantially degrade the QoE

experienced by users. To resolve these issues, our key idea is to depart from real-time

security vector computations on UAVs. We precompute and store a reasonable number

26

of security vectors for each UE and store them on the SkyCore agent. All these vectors

are computed with the same K, and RAND (a random number generated by HSS) but with

different consecutive sequence numbers (SQN). Different SQN numbers ensures signaling

messages cannot be replayed by intruders.

Since each pair of vectors is computed with a different SQN number, it can be used

only once by SkyCore during the LTE attach procedure. If the same pair is reused, the

UE will reject the network assuming it is a spoof network that is trying to replay old

authentication messages. Thus, each of our agents locally removes a used pair of security

vectors and invalidates it at other agents through our inter-UAV communication application

(see section 2.5). Note that the number of attach requests generated by a legitimate UE, when

it switches on or comes back into network coverage, is limited. Hence, SkyCore precomputes

a small number of such vectors for a UE. In rare cases, when a UE uses all its precomputed

vectors (e.g., due to frequent restarts), SkyCore agents fall back to computing new vectors

for such UEs in real-time, and propagate them to other agents in the network.

2.4.2.2 Precomputation of Service Policies

In LTE networks, PCRF dynamically generates quality of service (QoS) and charging rules

for a UE. PCRF continuously feeds the PGW and SGW with real time QoS rules. Rather

than generating these rules in real-time by accessing many different tables, we precompute

the entire rule set that must be applied to UEs’ traffic, and consolidate and store them onto

our agents. In particular, SkyCore consolidates three types of rules that deal with (i) QoS

(bit rate, loss rate, etc.), (ii) priority (flow handling during congestion), and (iii) charging

(offline, online and time-dependent).

27

C1

C2

C3

S1

S2

S3
SkyCore P4-enabled

Segment Routing

SkyCore
Proactive
 Updates Cont

rol
Pla

ne

 SD
N O

ver
lay

P4/OpenFlow

Data plane SDN Overlay

SkyCore Agent Controller SkyCore Agent Switch

UAV 1 UAV 2 UAV 3

Segment #1 Segment #2

POP GTP-U
& Push [1,2]

POP TOS & Forward
 on Segment 2

POP TOS
& Push GTP-U

UE1 UE2

(a)

(b)

Figure 2.13: (a) SkyCore’s network-wide control and data plane connectivity for LTE UAV net-
works. (b) Example of our segment routing
2.5 Efficient Inter-Agent Communication

2.5.1 Scalable SDN Control and Data Overlays

SkyCore agents seamlessly exchange control and data traffic with each other, a functionality

that is lacking in today’s EPC instances. We leverage SDN overlays to create two virtualized

network layers (slices) on top of the physical UAV network (Figure 2.13). One of these

network slices is used for control plane traffic between SkyCore agents and the other is for

data traffic. Our separation of the control and data traffic ensures time-critical control plane

traffic is not affected when the network is saturated. To form the overlays, we use traffic

tunneling technologies but depart from existing approaches used in EPC and datacenter

(DC) networking [85, 83] since they require frequent changes to the network configuration

(discussed shortly). We adopt a variant of segment-based routing in SkyCore and propose

a design for its optimization based on the P4 language [60], thereby allowing operators to

define new packet headers for SDN switches.

Segment-based overlays equipped with global source routing. Tunneling: We inter-

connect each pair of neighboring (geographic proximity) agents using a tunnel defined with a

label. Whenever, an agent decides to send control or data plane traffic to any other agent in the

28

network, it pushes a stack of labels onto the packets. The top-of-the-stack label corresponds

to the next tunnel segment the packet must traverse. Whenever an agent receives a packet

from its neighbor, it checks the TOS label from the packet and forwards the packet based

on the inner label to its neighbor. There is a master that is responsible for computing the

label stack that each agent must use to communicate with the other agents. Instead of adding

separate MPLS packet headers for each label, SkyCore designs a new packet header based on

the P4 language to contain all the labels in the stack to reduce overhead. It equips switches

with new actions to read the labels at different positions. Routing: In SkyCore, one of the

UAVs is selected (periodically) to double up as a master agent that is responsible for global

route computation. It periodically collects information from other agents, related to average

loss rate and bandwidth on wireless links between different agents (UAVs), remaining battery

capacity on UAVs, and the amount of traffic demand between different UAVs. The master

agent uses this information to compute and disseminate forwarding rules for routing traffic

over the UAV mesh backhaul in the sky. Proximity-based segments enable scalability: Note

that UAV and UE mobility are common in our environment. Hence, a conventional EPC

approach of establishing per-UE tunnels (GTP-U tunnels) will require frequent tunnel updates

(tear down, modification, or set up). Similarly, employing a tunnel between every pair of

UAV agents (akin to remote DC-DC tunnels) will require updates to a large fraction of the

tunnels, even when only a small number of UAVs move. In contrast, most of SkyCore’s

tunnel segments do not change in such scenarios as they are designed to carry aggregate

traffic only between nearby pair of UAVs.

2.5.2 Proactive Stateless Mobility Support

SkyCore replaces the notion of centralized HSS and PCRF with precomputed policy data

store replicated at different agents. Hence, it is essential that the UE states and policies are

consistent across different agents, particularly during UE mobility. Reactive approaches to

consistency management e.g., Distributed hash table (DHT) [120], put wireless (inter-UAV

29

links) on the critical path of control functions. SkyCore avoids this real-time dependence

by adopting a proactive synchronization of state between agents – each agent proactively

broadcasts its changes to UE policies and states to other agents in the network. Such an

approach (i) minimizes the control plane delay between agents, particularly in mobility

scenarios as the destination agent already knows the latest information about the mobile UE;

(ii) enables seamless handoff of active UEs to a neighboring UAV, when the current UAV

goes down for a recharge; and (iii) is scalable because the amount of control plane traffic that

is broadcasted is negligible compared to user data plane traffic among agents. A SkyCore

agent needs to send only three types of broadcast update messages in the network to build

up a consistent network-wide view: (1) security update to notify other agents that it has used

one of the security vectors precomputed for a UE and to request other agents to invalidate

the vectors. (2) location update to inform other agents that a particular UE has attached to

its UAV. (3) policy update to communicate its local changes to the precomputed QoS and

charging profile of a UE.

2.5.2.1 Idle-Mode and Connected-Mode Mobility

SkyCore’s proactive state synchronization scheme accelerates the handling of increased

mobility events in multi-UAV LTE networks.

Idle-mode mobility (Paging). The underlying edge-EPC design in SkyCore limits each

UAV (BS) to its own tracking area. Hence, when our target UE When an idle mode UE

moves from one UAV to another, it realizes a change in its TA on waking up (prompted by a

periodic timer), and sends a TA update request to the SkyCore agent on the new UAV. Since

the agent at the new UAV already has the UE’s latest policies and states from SkyCore’s

proactive updates, it knows which security vectors to use for communication with the UE.

Hence, it immediately sends a TA update response back to the UE, which can then quickly

switch back to its idle mode to continue saving power. It also broadcasts the updated location

of the UE to all other SkyCore agents in the network, eliminating the need for explicit UE

30

	

eNodeB-1	

LTE	UAV	2	LTE	UAV	1	

Backhaul	SkyCore	
Agent-1	

	

SkyCore	
Agent-2	

	

eNodeB-2	
	

Figure 2.14: Multi-UAV SkyCore prototype
paging. This also ensures that the other agents can push the correct label stack on the packets

destined for this UE.

Active-mode mobility (Handoffs). Now, consider the UE to instead be in connected

(active) mode during the move. Based on the LTE protocol, it performs continuous signal

strength measurements and sends them to the first UAV’s BS. If the BS detects the signal

strength of the neighboring second UAV to be stronger, it sends a handoff request message to

its SkyCore agent. This agent then notifies the agent on the second UAV of the incoming UE

(without having to transfer/update any state on the destination agent) and then confirms the

handoff with its own BS, which then informs the UE. Then the UE connects to the BS on the

second UAV, whereupon its SkyCore agent notifies all other agents in the network with a loca-

tion update for this UE. Finally, our agent on the first UAVpushes the updated label stack corre-

sponding to the UE onto its pending downlink packets and forwards them to the second UAV.

2.6 Implementation

SkyCore prototype. We prototyped a complete version of SkyCore that involved extensive

engineering effort. Our prototype has four notable features: (1) seamlessly works with

commercial LTE RANs and off-the-shelf UEs (sim-cards are programmed to connect to

SkyCore) by exchanging signaling and data traffic with them; (2) is fully virtualized and can

manage multiple LTE UAVs out of the box by forming a wireless network of SkyCore agents;

and (3) fully adheres to our proposed designs both for a single agent (Figure 2.11) and across

31

agents (inter-agent communication) (Figure 2.10 and Figure 2.13). Each SkyCore agent

consists of a controller enforcing control plane policies and a switch processing user data

traffic. We developed a high-performance multi-threaded controller in C++ and built our

SkyCore switch on top of OVS [105] software switch in the kernel space. We substantially

instrumented and optimized OVS as it does not support our custom flow tables and switch ac-

tions (e.g., our P4-enabled tunneling scheme and GTP-U tunnel encapsulation/decapsulation

operations). Since our baseline (Edge-EPC based on OpenEPC [34]) operates in the user

space, we developed another variant of the SkyCore switch in the user space on top of

Lagopus software switch [23]. This ensures that our comparisons are at the architecture

level and independent of a particular packet forwarding technology.

UAV experiments. We conduct three kinds of experiments. (1) Outdoor Small-scale:

2 UAV, few UEs. We deploy the SkyCore prototype on two DJI Matrice 600 Pro drones (an

advanced off-the-shelf drone). We securely install two machines on each of drone. One of

the machines (platform P1) is a low-end single-board 4-core server with 8 GB of RAMs

and 1.9GHz CPU that executes SkyCore and Edge-EPC. It is also equipped with a wireless

network card to support our inter-agent communication. The other machine supports a

commercial LTE small cell (ip.access S60 eNB) supporting LTE UEs (50Mbps downlink

rate per UE) and connects through an Ethernet cable to platform P1. (2) Outdoor Large-scale:

2 UAV, tens of UEs. To stress test SkyCore’s control plane in the presence of a large number

of UEs, we replace the eNB on the drone with another single-board server that runs a unified

RAN emulator (emulates both eNB and activity of a large number of UEs). The emulator

interacts with the LTE core similar to real UEs. (3) Emulating Powerful UAV platforms.

To understand SkyCore’s performance with more powerful UAVs, we emulate the latter by

replacing platform P1 with a high-end server (platform P2) – an Intel Xeon E5-2687W pro-

cessor operating at 3.0 GHz with 12 CPU cores and 128 GBs of RAM. Since it is not possible

to fly our current drone with such a server, only these experiments are conducted in the lab.

Metrics. We study four performance metrics: (1) UE-perceived control delay in network

32

access (LTE attach/detach), (2) UE-perceived service disruption time in LTE active/idle-

mode mobility, (3) CPU usage on our resource-constrained UAVs, and (4) supported data

plane rate for user traffic.

2.7 Evaluation

We show the basic functionality and potential of SkyCore in realizing hotspot and stand-alone

LTE UAV networks. We then demonstrate that SkyCore is more efficient and lightweight

than Edge-EPC on different platforms both in small and large-scale experimental settings,

thanks to SkyCore’s software refactoring and efficient inter-agent communication scheme.

2.7.1 Small-Scale On-Drone Evaluation

We form a two-drone LTE network, each in partial line of sight (affected by one building) of

a single mobile UE on the ground. Each drone covers a region with the diameter of 650 feet.

The drones operate in a small overlapping area for our mobility experiments.

2.7.1.1 Basic Functionality: LTE Hotspots Use Case

Forming on-demand hotspots is an important use case for LTE UAV as well as 5G net-

works [67]. In a single-drone experiment, we show this functionality by connecting one

of our drones to the Internet through a wireless network not accessible to our UEs on the

ground. Next, we turn on a Moto G phone on the ground, which sends an LTE attach request

to the SkyCore agent through the on-drone eNB. SkyCore agent successfully completes the

LTE attach process by quickly accessing its precomputed policy data store. Then, we visit

CNN.com and watch a 4K Youtube video on the phone. Finally, we take Moto G into the

airplane mode, causing the UE to properly detach from our agent. Figure 2.15 shows this

basic functionality by depicting the data traffic exchanged between the UE and the Internet.

33

0 50 100 150 200
Time (s)

0

20

40

Ba
nd

wi
dt

h
 (M

bp
s)

LTE
 Attach

LTE
 Detach

CNN.com
4K Youtube

Figure 2.15: LTE hotspot use case–exchanged data traffic over time

755ms 5ms

SkyCore
Proactive
Update

850ms

Moto G : LTE
Attach process

Nexus 6: LTE
 Attach Process

SkyCore
Proactive
Update

2100ms

2100ms 300ms

Moto G: LTE
 Idle-mode process

310 ms

SkyCore Segment-
based Routing

Moto G:
HD Video

5ms

Nexus 6:
HD Video

User Data Traffic Time (ms) Control plane Time (ms)

Policy Data
Store update

Policy Data
Store update

Nexus 6: LTE
 Idle-mode process

SkyCore
Agent 1

SkyCore
Agent 2

Figure 2.16: Standalone LTE network use case–control plane timeline
2.7.1.2 Basic Functionality: Standalone LTE Use Case

Next, we show SkyCore’s ability to create standalone LTE networks (e.g., between first

responders across an impassable mountain). To emulate such a scenario, we establish a

direct video call between our two UEs across a building, each connected to a separate drone,

through our inter-agent data plane overlay. Figure 2.16 shows the timeline of control and

data plane traffic exchanges between the two drones. We again turn on a Moto G phone in the

area covered by the first drone. Its SkyCore agent handles the LTE attach process and sends a

background SkyCore update message to the other donor’s agent. The update message consists

of UE’s location and security update messages as described in Section 2.3. After the second

agent processes this update, we turn on a Nexus 6 phone in the area covered by the second

drone, triggering a similar SkyCore update message to the first agent in the background.

Finally, we establish a 35-sec HD video call from Nexus 6 to Moto Go. Owing to SkyCore’s

proactive background updates, the agent corresponding to Nexus 6 does not have to wait to

34

discover the location of other UE. Based on our segment-based tunneling scheme, it immedi-

ately pushes correct label stacks on its egress user data traffic and forwards it to the other agent.

A similar process manifests in the reverse direction. In this two-UAV enabled video call, 7.5K

video packets were successfully exchanged between the two UEs and delivered good quality.
Table 1: Benefits of refactoring on UE-perceived QoS

Avg. Data plane
Bandwidth (Mbps)

Avg. UE-perceived
Control delay (ms)

Downlink Uplink Attach Detach
SkyCore 48.2 17.8 921 300
Edge-EPC 21.7 10.9 1545 750

0 100 200 300
Core delay in LTE attach (ms)

SkyCore

Edge
EPC

Policy/context config.

Session management

Encryption

Authentication

0 20 40
Core delay in LTE detach (ms)

SkyCore

Edge
EPC

Reosurce release process

Figure 2.17: Breakdown of network access delay

2.7.1.3 Performance Benefits of Refactoring

Using the same setting, we show that SkyCore is significantly more lightweight than Edge-

EPC. For a fair comparison with Edge-EPC, we employ SkyCore’s user space version here.

We sample and average the LTE attach/detach delay and uplink/downlink bandwidth for Moto

G in the area covered by the first drone at 40 locations. As Figure 2.17 and Table 1 show,

SkyCore on average reduces the net control plane delay spent in the core by 69%-90% and the

UE-perceived control plane delay by 40%-60%. In addition, it doubles the uplink/downlink

rates measured for the UE. Further, SkyCore lowers the CPU usage on the LTE core machine

by 25% in the LTE attach/detach events. These savings come from our precomputation of

network policies and consolidation of the EPC functionality into a compact SDN design.

35

0 5 10 15 20 25
125
100
75

UE
 R

SR
P

(d
B) Handover Event Drone 1

Drone 2

0 5 10 15 20 25
Time (sec)

0
20
40
60

UE
 B

an
dw

id
th

 (M
bp

s)
Edge-EPC

SkyCore

Figure 2.18: SkyCore provides seamless active-mode mobility while Edge-EPC causing severe
connection drops
2.7.1.4 Efficient Inter-Agent Communication: Handoff

Unlike Edge-EPC, SkyCore supports seamless UE mobility. In this experiment, we measure

the service disruption experienced by a mobile UE moving between regions covered by our

two drones. Figure 2.18 depicts the signal strength received from the two drones on the

UE and its continuous bandwidth measurements using iPerf. Based on the measurements

received from the UE, the RAN on the first drone sends a Handoff Required message to

the core. In SkyCore, since the agents are already synced, the UE gets migrated to the

second drone within a minimal 140 ms (incurred in inter-agent coordination). In contrast,

Edge-EPC does not handle mobility of the UE and thus forces the UE to go through the

detach process with the first drone, followed by the heavy attach process with the second

drone. The entire process results in 2 seconds of disconnection time, significantly impacting

mobile application performance.

2.7.2 Large-Scale On-Drone Evaluation

Using the same two-drone experimental setting, we replace the ip.access eNBwith a RAN/UE

simulator on each drone to test SkyCore and Edge-EPC under large-scale network access

and mobility workloads.

36

20 40 80 100
LTE attach/detach events (1/s)

0

2

4

6

8

A
v
g
.
u
se

r
p
e
rc

e
iv

e
d

 c
o
n
tr

o
l
p
la

n
e
 d

e
la

y
 (

s) SkyCore (Detach)

SkyCore (Attach)

Edge-EPC (Detach)

Edge-EPC (Attach)

(a) Platform P1

100 200 300 400
LTE attach/detach events (1/s)

0

2

4

6

8

A
v
g
.
u
se

r
p
e
rc

e
iv

e
d

 c
o
n
tr

o
l
p
la

n
e
 d

e
la

y
 (

s)

(b) Platform P2
Figure 2.19: SkyCore substantially reduces network access time in LTE UAV networks within the
limits of their compute resources

1 20 40 60 80 100
LTE attach/detach events (1/s)

0

20

40

60

80

100

A
v
g
.

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

SkyCore (Attach)

SkyCore (Detach)

Edge-EPC (Attach)

Edge-EPC (Detach)

Edge-EPC (Attach)

Edge-EPC (Detach)

(a) Platform 1

1 100 200 300 400
LTE attach/detach events (1/s)

0

20

40

60

80

100

A
v
g
.

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

(b) Platform 2
Figure 2.20: SkyCore uses minimal CPU resource to handle large-scale network access requests
2.7.2.1 Attach/detach Storm (Flash Crowd)

This experiment demonstrate SkyCore’s operating potential in highly resource-constrained

UAV environments. Our RAN/UE emulator on the first drone emulates a flash crowd

event with a large number of users entering the region covered by the drone. Similarly, the

emulator creates LTE detach storms having many users gracefully disconnecting from the

drone. During this process, we sample the CPU utilization of the LTE core machine and

measure the average control plane delay perceived by UEs. In Figure 2.19a we observe

that users experience exponentially larger delays when the attach/detach load on Edge-EPC

increases. In particular, when the number of attach requests reaches 100, UEs must wait

by up to 6 seconds before connecting to the network, thereby degrading QoE. In contrast,

we notice that the network access delay is below 1s when the drone employs SkyCore. To

37

better understand the reason, we look at Figure 2.20a showing the CPU utilization of the

core machine. Since EPC is a complex system, we observe that Edge-EPC quickly uses

available CPU resources on the drone and thus faces performance bottlenecks. Although

user perceived control plane delay in the detach process is usually less critical in practice,

the same trend can be observed for both SkyCore and Edge-EPC.

20 40 80 100
Mobility events per sec.

0

3

6

9

12

 A
v
g
.
u
se

r
p
e
rc

e
iv

e
d

 c
o
n
tr

o
l
p
la

n
e
 d

e
la

y
 (

m
s)

SkyCore (Idle)

SkyCore (Active)

 Edge-EPC (Idle)

Edge-EPC (Active)

(a) Platform P1

100 200 300 400
Mobility events per sec.

0

3

6

9

12

 A
v
g
.
u
se

r
p
e
rc

e
iv

e
d

 c
o
n
tr

o
l
p
la

n
e
 d

e
la

y
 (

m
s)

(b) Platform P2
Figure 2.21: SkyCore efficiently and seamlessly supports large-scale idle-mode and connected-
mode UE mobility between UAVs.

1 20 40 60 80 100
Active/idle mobility events (1/s)

0

20

40

60

80

100

A
v
g
.

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

Edge-EPC (Active)

Edge-EPC (Idle)

SkyCore (Active)

SkyCore (Idle)

Edge-EPC (Active)

Edge-EPC (Idle)

SkyCore (Active)

SkyCore (Idle)

(a) Platform 1

1 100 200 300 400
Active/idle mobility events (1/s)

0

20

40

60

80

100

A
v
g
.

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

(b) Platform 2
Figure 2.22: SkyCore supports large-scale idle-mode and connected-mode user mobility among
UAVs in a resource-efficient manner

2.7.2.2 Mobility-Intensive LTE UAV

This experiment demonstrates SkyCore’s capability in handling increased mobility events in

LTE UAV networks. We add the second drone to our experiment. Our RAN/UE simulator

on the first drone and second drone simulate scenarios where a large number of connected

and idle UEs move between the areas covered by the two drones. We increase the number of

38

mobility events until either Edge-EPC or SkyCore face performance bottlenecks. Focusing

on the active-mode mobility, the RAN/UE simulator on the first UAV sends a variable number

of LTE Handoff Required Messages and TA Update Requests to the core network to trigger

active-mode and idle-mode mobility events. We measure the service disruption experienced

by the UEs when Edge-EPC and SkyCore are in place as well as the CPU utilization of the

LTE core machine. Figure 2.21a shows that UEs experience a large control plane delay and

service disruption in the Edge-EPC deployment. Due to lack of control plane communication

between Edge EPC instances, UEs have to undergo a complete detach (first drone) and attach

(second drone) process both during connected-mode and idle-mode mobility. In Edge-EPC,

when 100 mobility events occur per second, users on average experience by up to 10 second

of disruption, which is very significant. More importantly, by transforming each mobility

event to a pair of LTE attach-detach events, we observe in Figure 2.22a that Edge-EPC

creates severe bottlenecks on the drone platform. In contrast, the SkyCore agents sitting on

the two drones quickly and seamlessly execute the handoff and TA update operation, owing

to proactive synchronize of network policies associated with different UEs in the background.

Thus, they incur minimal computation during mobility workloads.

0

100

200

300

400

500

Fo
rw

a
rd

in
g
 r

a
te

 (
M

b
p
s)

Edge EPC (user space)

SkyCore (user space)

SkyCore (kernal space)

Maximum (kernel space)

(a) Platform P1
0

200

400

600

800

1000

Fo
rw

a
rd

in
g
 r

a
te

 (
M

b
p
s)

(b) Platform P2
Figure 2.23: SkyCore’s refactoring of the EPC increases the data rate support on resource-
challenged UAVs.

39

0

20

40

60

80

100

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

(a) Platform P1
0

20

40

60

80

100

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
) Edge-EPC (user space)

SkyCore (user space)

SkyCore (kernal space)

Maximum (kernel space)

(b) Platform P2
Figure 2.24: SkyCore’s refactoring of the EPC minimizes the CPU resource needed on UAVs for
achieving a specific data rate
2.7.2.3 Stress-testing Data Plane

In a single-drone experiment, we instruct our RAN/UE simulator to generate data traffic

for variable number of UEs in the network in parallel. It encapsulates the traffic of each

UE into a separate GTP tunnel similar to real RANs. We run iPerf3 bandwidth tests for

the simulated UEs in parallel. Figure 2.23a shows the aggregate, steady forwarding rate

supported by SkyCore and Edge-EPC. When using the same packet forwarding technology,

we observe SkyCore (user space) supports 2× more packet forwarding rate compared to

Edge-EPC on the drone. Our software refactoring and data plane consolidation substantially

removes the I/O costs and processing delays from the LTE core data plane. We were able to

further improve the throughput by 2× (close to a Gbps) by moving our software switch to

the kernel space. Maximum is the ideal version of our OVS switch that processes user data

traffic without applying any network policies.

2.7.3 Scaling to Powerful UAV Platforms

We replace the core machine (platform P1) with a high-end server (platform P2) to emulate

more power UAV platforms in the future. Figures 2.19b, 2.20b, 2.21b, 2.22b demonstrate

our evaluation results with platform P2 for the previous three experiments. We observe that

SkyCore is substantially more resource-efficient than Edge-EPC even on high-end servers.

SkyCore is able to scale and provide almost line-rate forwarding rate while using a fraction

40

of the drone’s CPU resources. We plan to move SkyCore’s implementation to OVS-DPDK

to more efficiently leverage the available CPU cores.

2.8 Related Work

Recently, the wireless networking community have proposed several software-defined

EPC solutions. SoftCell [86] and MCORD [28] enhance the programmability of EPC by

decoupling its control and data planes. KLEIN [108] optimizes the placement of EPC

components on geo-distributed DCs. ECHO [101] deals with EPC-node failure in unreliable

public clouds. PEPC [106] scales the EPC data plane by creating a per-UE EPC-in-box.

While there are some similarities between SkyCore and these proposals, the differences

are significant. These works make minimal or no change to the 3GPP EPC architecture

(protocols, nodes), thereby inheriting most of its complexities. In contrast, SkyCore signif-

icantly rearchitects EPC for resource-constrained LTE UAV networks. In addition, the prior

designs are customized for highly-reliable often hierarchical DC infrastructure, where over

provisioning and reactive network updates are inexpensive. In contrast, SkyCore operates

in an un-reliable wireless environment, where such approaches are not scalable, and thus

optimizes the core in this regard.

There is a rich literature in distributed SDN control planes designs with hierarchical

and flat structures (e.g., ONOS [58], [87, 81]). Most of the schemes are designed for DC

networks and operate based on a centralized data store or complex consensus algorithms,

which are ill-suited for our unreliable multi-UAV environment.

DroneNet [67] extends the coverage of existing LTE cells by creating WiFi on-drone

hotspots. Some recent works [91, 125] investigate the optimization of a UAV trajectory for

certain mobile users on the ground (e.g., maximize the min average rate among all user).

These RAN efforts are predominantly for a single UAV and complementary to SkyCore that

focuses on the EPC design for multi-UAV networks.

41

CHAPTER III

SoftBox: A Customizable and Low-Latency, and

Signaling-Efficient 5G Core Network Architecture

3.1 Introduction

In the previous chapter, we identified limitations of the EPC architecture in the city-scale

LTE UAV networks. In this chapter, we focus on statewide terrestrial EPC networks that

suffer from three critical issues: (i) lacks fine-grained customizability and programmability

in both its control and data planes [86], (ii) exhibits large control and data plane delays

because of routing UEs’ signaling and data traffic through long paths [130], and (iii) con-

sists of complex nodes and protocols generating huge control plane overheads or signaling

storms [36]. EPC’s inefficient network policy management lies at the root of these issues;

EPC partitions and distributes policies for a mobile UE on different nodes. These nodes

often must be placed in geo-distributed data centers to maximize EPC’s efficiency in mobility

support [24]. Thus, large forwarding delays, high signaling overheads, and bottlenecks in

massive service customization are inherent in EPC (Section 3.2.2).

Motivated by these issues, operators are exploring 5G core network designs [20, 2].

Although the requirements and use cases are not yet finalized, these networks are expected

to have three properties [47, 3, 121, 122]: (i) build optimized and customized services on a

per-UE basis to support the proliferation of heterogeneous devices (e.g., domestic robots), (ii)

42

realize ultra-low latency (e.g., sub-5ms) with gigabit experience for UEs that run real-time

applications (e.g., AR devices, self-driving cars), and (iii) have minimal signaling overheads

that cause severe performance degradation. Today, there is growing consensus among oper-

ators that SDN and NFV are among the key technologies for achieving these properties [5].

However, existing SDN/NFV solutions cannot easily realize these properties because they

often build on the EPC architecture and its inefficient policy management scheme, and thus

inherit main weaknesses of today’s EPC networks. On the one hand, virtual EPC designs

(e.g., SCALE [57], KLEIN [108], PEPC [106]) are focused on network automation and

make no major enhancement to the EPC architecture. On the other hand, SDN EPC designs

(e.g., SoftCell [86], SoftMoW [99, 98], MCord [28]), which decouple the EPC control and

data planes to independently scale each, make matters worse. Their decoupling further

distributes policies associated with mobile UEs on more nodes.

Mini Edge DC 1

UE Container
UE Container

UE Container
UE Container

Re
de

sig
ne

d
Co

re
-R

AN
 p

ro
to

co
ls

Mini Edge DC 2

SDN Fabric
(P4 Switches)

Global Unified
SDN+NFV

Optimization

UE Container
UE Container

Mini Edge DC 3

Edge
peering points

Figure 3.1: SoftBox consolidates the policies associated with each UE into a UE container in its
proximity.

To address the EPC issues and realize the 5G core properties, we explore a different point

in the SDN/NFV design space. We design SoftBox (Figure 3.1), a radical rethink of the

EPC architecture, that replaces the network policies scattered over the EPC nodes far from

users with a scalable, flat, and modular architecture where a per-UE agent close to RANs

enforces many complex policies (e.g., mobility management). Using NFV, SoftBox creates

a light-weight, programmable, logical box for each mobile UE in its proximity. The box

consolidates almost all control and data network functions (NFs) needed for processing the

43

UE’s signaling and data traffic. Leveraging SDN, SoftBox programs the data plane to steer

each UE’s traffic through the corresponding logical box. We argue that SoftBox is a flexible,

scalable, and novel architecture:

First, the SoftBox architecture meets the requirements of 5G core networks by en-

abling operators to build customized, low latency, and signaling-efficient services on a per-UE

basis. No existing solution supports all these simultaneously (see Table 1). SoftBox can

flexibly select and optimize a different set of control functions (e.g., security management)

and data functions (e.g., DPI) for each UE box based on the UE’s needs and capabilities

(e.g., battery life). In addition, SoftBox supports each mobile UE with a consistent low

latency experience; it migrates UE boxes independently and ensures each of them always is

in the UE’s proximity. Finally, our consolidation of policies into UE boxes eradicates EPC’s

distributed protocols that generate east-west signaling (control plane) overheads.

Second, the SoftBox architecture is scalable. We are not simply proposing a per-UE

EPC-in-a-box design [13]. In fact, we rearchitect and optimize the EPC functions for the

UE box environment. In addition, SoftBox realizes each UE box using a container that is

a lightweight, isolated Linux process. Containers have near zero virtualization overheads

compared with virtual machines (VMs) [73]. Finally, our UE containers are compact as they

only carry the binaries of optimized EPC functions. The combined effect is that SoftBox

systems support substantially more UEs on the same number of CPU cores than EPC systems

(6.2-8.3× more).

Third, SoftBox is a novel solution that redesigns the core from ground up. It goes

beyond being a UE container cluster management system (e.g., Google Kubernetes [18])

and carefully addresses five network design and optimization questions: Which and how

cellular core functions should be rearchitected for UE containers? How does a SoftBox

core interact with LTE RANs? Can we leverage UEs’ mobility patterns to more efficiently

place and migrate UE containers in the core? Can we leverage UEs’ radio state to reduce

resource usage of UE containers? And how should we steer each mobile UE’s traffic through

44

its container?

3.1.1 Summary of Contributions and Roadmap

In summary, we make the following three contributions in this chapter:

• We propose SoftBox, a scalable and novel architecture for the cellular core that fixes

EPC’s policy management issue and meets the customization, latency, and signaling

requirements of 5G core networks (Section 3.2). We explore the idea of slicing the

core into UE containers, flesh out different components of SoftBox, refactor the core

functionality into them, and design the lifecycle of UE containers and define their

interactions with LTE RANs (Section 3.3).

• We develop novel solutions to further optimize SoftBox by identifying challenges

of slicing the core into many UE containers (Section 3.3.6). We design efficient

mobility-aware mechanisms to optimize resource usage of UE containers (Section 3.4),

SDN forwarding rules and updates needed to steer UEs’ traffic through UE containers

(Section 3.5), control and data plane costs of UE container migrations (Section 3.6),

and performance of control plane (signaling) communication between UE containers

and RANs (Section 3.7).

• We build a detailed proof-of-concept prototype of SoftBox using open-source software

(e.g., Docker container [12], RYU SDN controller [41], OAI EPC [33]). We evaluate

SoftBox by combining real LTE traces collected from 200 PhoneLab testbed UEs [38],

synthesized LTE traces for 20M UEs, prototype experiments, and RAN+EPC testbed

experiments on PhantomNet [34] (Section 3.8).

Summary of results. We show that basic SoftBox has by 86%, 51%, and 83%-87% lower

signaling overheads, data plane delay, and CPU core usage, respectively, than two EPC

systems (i.e., OAI EPC, OpenEPC). The improvements are independent of the number of

45

UEs and packet processing technology. Moreover, our optimizations efficiently cut the data

and control plane loads in the basic SoftBox by 51%-98% (Section 3.8). These results point

to the feasibility and potential of the SoftBox concepts.

3.2 Motivation and Context

In addition to providing the EPC basic functionality (connect user equipments (UEs) to

the Internet, handle their mobility in the connected and idle modes, and enforce network

policies on their signaling and data traffic), SoftBox has three goals that will guide our design

decisions. These goals will be derived based on EPC architecture challenges (Section 3.2.2)

and emerging 5G use cases [47, 3].

PCRF

MME

[NAS, S1AP, SCTP]

ISP

PGW
GTP-U

HSS

LTE RAN

EPC

SGW

Google

Data plane Control plane Signaling Data

eNB

UE

Diameter Diameter

GTP-C

GTP-U

IP

IP
GTP-C

Diameter

Figure 3.2: EPC network architecture

3.2.1 Design Goals for SoftBox

Goal 1: per-UE customization of control and data functions. With the advent of IoT,

UEs connecting to 5G networks will be highly heterogeneous. Without creating performance

bottlenecks and network management complexities, SoftBox must enable operators to com-

pose a unique service for each UE or a class of UEs based on their needs and capabilities

(e.g., hardware, plan, mobility). The per-UE service customization and optimization must

go beyond data plane functions (e.g., DPI) that manipulate UEs’ data traffic in the core. It

46

should also encompass control plane functions (e.g., paging and handover management) that

process UEs’ signaling traffic.

Goal 2: ultra-low control and data plane latency. Today’s well-designed EPC de-

ployments typically have 10-30ms data plane delay and 10-60ms control plane delay [24].

To improve user experience and support a wide range of 5G use-cases (e.g., high-speed

mobility, device-to-device communication), SoftBox must be able to create services with

ultra-low control and data plane latency (e.g., sub-5ms [20, 92]) for UEs. Achieving this

goal is challenging particularly due to diversity of latency requirements across different UEs

and their unplanned mobility.

Goal 3: minimal signaling overhead. The problem of cellular network congestion

is not much about UEs’ data traffic, but in the EPC control plane generating tremendous

overheads in response to UEs’ signaling traffic [14]. The increasing number of UEs is further

escalating the signaling overhead and pushing EPC networks to their limit. Previous studies

report the global signaling overhead in EPC networks has increased from 30M to 200M

messages per sec in the past three years [36]. Optimizing sources of the signaling overheads

is of crucial importance for SoftBox.

3.2.2 EPC Architecture Challenges

Basing the design of SoftBox on the EPC architecture fundamentally limits us in efficiently

meeting the above design goals.

EPC partitions network policies or service associated with a UE and scatters the partial

policies on its different nodes (e.g., PGW, MME). To maximize the EPC efficiency, these

nodes must be deployed in geo-distributed DCs often far from users [24]. This distributed

network policy management has three known consequences. First, large control and data

plane delays are unavoidable due to increased propagation delay between distant EPC nodes,

extra I/O delays at each node, and sub-optimal routing protocol among EPC nodes [130].

Second, this design requires to frequently synchronize the partial network policies/states

47

Table 1: SoftBox in the SDN/NFV design space
Distributed SDN Per-UE SoftBoxvEPC EPC vEPC

Examples [57, 108] [86, 99] [106] -
Realizations of
+Ultra low latency
+Per UE customization
+Low signaling overhead
Optimizations of
+Idle UE containers N/A N/A
+Per-UE traffic steering N/A N/A
+UE container migration N/A N/A
+Core-RAN communication N/A N/A
Incrementally deployable

A B
C D

UE1
Container 1

UE2
Container 2

Container 1

(a) Per-UE customization

A B
C D

Migration

A B
C D

Handover

(b) Low-latency service

UE1

A C

B D
UE Container

(c) Local signaling

UE’s signaling traffic UE’s data traffic B Data NFs A Control NFs

UE states
synchronization

X G
E F

Figure 3.3: Three conceptual benefits of SoftBox core networks
scattered on the EPC nodes (e.g., QoS policies on PCRF and PGW, UEs’ locations on MME

and SGW) after each UE’s control/data packet or flow [14]. The synchronizations, which

often happen using complex distributed protocols (e.g., GTP-C, Diameter), incur significant

east-west signaling overheads [36]. As the third consequence, per-UE customization of con-

trol functions (e.g., paging at MME) and data functions (e.g., DPI at PGW) do not scale. As

such a customization enlarges the EPC internal states, together with the delay and signaling

overhead issues, performance bottlenecks quickly appear in EPC systems [110, 57]. Existing

NFV/SDNEPC systems virtualizing EPC on commodity servers or decoupling its control and

data planes often build on the EPC architecture (nodes, protocol, interfaces) and thus, as docu-

mented, they have most of its weaknesses (detailed in Section 3.9 and summarized in Table 1).

48

Table 2: Summary of design decisions in the basic version of SoftBox.

	
Components Motivation/Reason Benefits
UE containers consolidating
network policies close to RANs

EPC challenges are caused by its approach
of partitioning policies for a mobile UE on
geo-distributed nodes

• Enables scalable per-UE customization
• Realizes ultra-low control and data plane delays
• Minimizes east-west signaling overheads

Mini DCs and egress points close
to RANs

EPC is distributed in a few DCs far from
RANs and this infrastructure contributes to
many inefficiencies in EPC

• Ensures proximity of UE containers to mobile UEs
• Allows quickly exiting/entering UEs’ Internet traffic from/to the core

Programmable SDN fabric
interconnecting RANs and mini
DCs

EPC inefficiently routes UEs’ traffic, e.g.,
direct traffic of a UE to a nearby UE is
sent to the the Internet

• Allows properly steering mobile UEs’ traffic through their UE container
• Enables UE-to-UE traffic over optimal paths

Unified SDN/NFV controller with
distributed agents

EPC is not designed to perform global
network optimizations

• Enables global optimization of the core resources and performance
• Enables scalable execution of optimization results through agents

Upgrading protocols between
LTE RAN and SoftBox

Legacy EPC protocols (e.g., S1AP/SCTP,
GTP-U) do not	scale well with the
increased number of nodes in SoftBox
Changing LTE RANs is impractical

• Designed a minimally disruptive plan for their new protocol deployments
• By placing a proxy inside eNodeBs translating the legacy EPC protocols to

efficient SoftBox protocols and vice versa

Cellular-specific protocols for
UE container orchestrations

Effective orchestration of UE containers
without continuous interaction with LTE
RANs/UEs is impossible

• Efficiently manage UE containers based on LTE events generated by RANs/UEs

3.3 SoftBox Core Architecture

This section describes the basic design of the SoftBox architecture that overcomes the EPC

architecture challenges and realizes our design goals motivated by evolving 5G use cases.

Our key design decisions in the basic SoftBox are summarized in Table 2.

3.3.1 Need for the SoftBox Architecture

SoftBox is founded on a simple change to the EPC architecture. SoftBox consolidates each

mobile UE’s network policies, which are partitioned and placed on geo-distributed nodes in

EPC, into a UE container in its proximity. Containers use lightweight OS-level virtualization

technologies (e.g., Linux cgroups and namespaces) that allow us to flexibly package a logical

service with its entire runtime environment into a single Linux process. A container image

can be instantly executed on different servers while retaining its full functionality. Qualitative

performance benefits of containers over VMs already presented in Section 3.1. Our approach

of vertical slicing of the core functionality into UE containers at the radio edge equips

SoftBox with four validated properties (Section 3.8) that no EPC supports simultaneously

(see Table 1). Before going into detail, we first present these properties to motivate the need

for adoption of SoftBox.

Property 1: SoftBox scalably supports per-UE customization of the core control

49

and data planes. As shown in Fig 3.3-a, the isolation of UE services from each other

enables operators to select and optimize a different set of control and data NFs for each

UE, without making other UE services complex or degrading their performance. Another

aspect of per-UE customization support lacking in EPC is that SoftBox can flexibly allocate

RAM/CPU resources on servers to UE containers based on service requirements. Concep-

tually, as long as an NF meets the following two criteria, one can place it into UE containers

with no modification to its logic: (a) always creates a separate packet processing pipeline for

each UE and maintains no shared state for different UEs and their traffic and (b) always per-

forms local computation and does not need global network state to make efficient decisions.

Through our careful analysis of the 3GPP-defined EPC architecture [1] and systems [34, 33],

we have found all the EPC NFs already possess these properties and thus are amenable to

the SoftBox approach of refactoring into UE containers (more detail in Section 3.3.3). Note

that to improve the performance of EPC, sometimes operators attach generic middleboxes to

PGW (e.g., video optimizer, traffic compression). Most of these NFs meet the above features

as well so an operator can flexibly place them in UE containers.

Property 2: SoftBox realizes ultra-low control and data plane delays for mobile

UEs by minimizing different factors contributing to large delays in today’s EPC networks.

By placing the container for each UE in its proximity, SoftBox minimizes propagation delay

in the core. Also, SoftBox cuts extra I/O and processing delays, which EPC’s redirection

of a UE’s traffic through multiple nodes incurs. Moreover, by decoupling UE services from

each other, SoftBox independently migrates each mobile UE’s service to its proximity to

ensure a consistent delay experience (see Fig 3.3-b). Finally, by co-locating control and data

NFs into UE containers, SoftBox minimizes EPC’s large synchronization delay between its

control and data plane nodes.

Property 3: SoftBox can minimize signaling overheads in the core. EPC runs com-

plex protocols (e.g., Diameter, GTP-C) to synchronize mobile UE states on its different nodes,

causing east-west signaling overheads. SoftBox eradicates the need for these protocols by

50

centralizing and isolating the core NFs for each UE in a UE container. Because different NFs

inside our UE containers synchronize UE states through local message exchanges often on

top of inexpensive publish-subscribe mechanisms (Fig 3.3-c), SoftBox significantly reduces

the east-west signaling overheads in the core.

Property 4: SoftBox can be deployed at large scale. Later, we show that SoftBox sup-

ports substantially more UEs on the same number of CPU cores than today’s EPC (6.2-8.3×

more) for three reasons. First, we go beyond containerizing EPC and instantiating EPC

on a per-UE basis, and optimize the EPC NFs for the UE container environment. Second,

containers are lightweight Linux processes with near zero overheads (e.g., virtualization,

startup delay) compared to VMs [73]. Third, the binaries of NFs are very small in size and

per-UE instantiation of them in UE containers has insignificant overheads.

Global control

UE Container 1

Global SDN/NFV Network Controller

UE Container N

SoftBox

SoftBox

SoftBox P4/OpenFlow

SDN wide-area network Mini DCs
Buffer QoS

Mobility
App

Policy
App

Agent
App …

UE controller
Switch

DPI …

ContainerMgmt
App

TrafficSteering
App

Internet

(a) SoftBox Architecture (c) UE Container Design

(b) Mini DC Network UE 1 DC AgentsSwitch Agents

Subscribers
Information Base UE’s data

UE’s signaling

[NAS, SoftBox, RUDP]

IP

RANs

RAN
 Agents

UE N

SoftBox

P4/OpenFlow
switches

Figure 3.4: SoftBox redesigns the cellular core to build customized, signaling-efficient, and low
latency services.

3.3.2 Overview: Transforming EPC into SoftBox

We first provide an overview of five high-level steps that we take to systematically transform

EPC into the basic SoftBox. Each step is associated with proper forward references to our

detailed technical discussion.

Step 1: Rearchitecting the EPC functionality for UE containers. While each basic

UE container is expected to have the EPC functionality at the very least, a naive per-UE con-

tainerized EPC is far from our vision for SoftBox. EPC is originally designed for distributed

51

deployment scenarios and thus is too complex and inefficient for single-box deployments

in UE containers. Moreover, EPC is not programmable to support fine-grained per-UE

customization as described in Section 3.2.2. To develop SoftBox, we will refactor and

optimize the EPC functionality for the UE container environment (Section 3.3.2).

Step 2: Deriving SDN/NFV components of SoftBox. The most naive and incremental

realization of SoftBox is to replace EPC with UE containers in today’s EPC infrastructure

(Figure 3.2). One can put UE containers behind a logical load balancer inside existing EPC

DCs and connect LTE RANs to the load balancer instead of EPC. As it turns out, while this

naive SoftBox design still makes the core network more scalable and flexible, it substantially

limits us in meeting our three design goals (e.g., ultra-low latency for mobile UEs in Sec-

tion 3.2.1), largely because today’s infrastructure is not designed for SoftBox-like solutions.

Therefore, we derive a minimal set of necessary software and infrastructure components for

SoftBox (Figure 3.4) to ensure it can satisfy our expectations (Section 3.3.3).

Step 3: Connecting SoftBox to existing RANs/UEs. A practical core network design

must be incrementally deployable. SoftBox must not force operators to access or modify the

network stack of their subscribers, eNodeBs, or routers in peering ISPs. Hence we expand

the design of SoftBox to ensure it can efficiently and seamlessly interact with these players

(Section 3.3.4). In particular, the same as EPC, SoftBox continue to exchange IP traffic with

ISPs and signaling traffic over NAS (Non-Access Stratum) protocol with UEs. For different

performance and scalability reasons, we will develop new protocols between the SoftBox

core and LTE RANs but we deploy them in a minimally disruptive way without touching

the source code of eNodeBs.

Step 4: Orchestrating UE containers. Automatically managing the lifecycle of UE

containers (i.e., their creation, placement, migration, and termination) is an essential function

in SoftBox. It is impossible for SoftBox to properly perform these tasks without a direct and

continuous interaction with RANs andUEs. Existing NFV orchestration schemes (e.g., [107])

have serious functional limitations in this regard as they are originally designed for virtualiz-

52

ing wired networks functions. Consequently, we will design orchestration mechanisms and

protocols in SoftBox to effectively manage UE containers based on LTE events generated

by RANs/UEs. In Section 3.3.5, we largely focus on UE container creation and termination

and let our more advanced design for other operations to evolve in later sections.

Step 5: Global SDN/NFV optimization of SoftBox. The above steps result in a basic

version of the SoftBox architecture, which meets our three design goals in a scalable and

efficient fashion (Section 3.8). Our basic SDN/NFV architecture provides unique opportuni-

ties for global optimization of network resources and performance. We provide an overview

of the process of developing an optimized SoftBox in Section 3.3.6 and Table 2, while

presenting our technical solutions in the next four sections.

3.3.3 Software & Infrastructure Components of SoftBox

SoftBox replaces the EPC architecture with a fully SDN/NFV solution that globally controls

UE containers in a programmable and elastic environment via open protocols and interfaces.

Existing network infrastructures (deployed for EPC) make it either hard or impossible for

SoftBox to fully achieve its properties (discussed in Section 3.3.1). Therefore, SoftBox, as

a next-generation core network architecture, makes a set of critical changes to the existing

infrastructures. A SoftBox network consists of four main components: (1) mini data centers

(DCs), (2) SDN switching fabric, (3) UE containers, and (4) global SDN/NFV control plane.

We describe the rational behind these components and their functionality.

Component 1: Mini DCs and egress points close to RANs. Today’s EPC is distributed

in a few DCs far from RANs [24]. The EPC connects to ISPs at a single point where the

PGW is located (Fig 3.2). This DC infrastructure inherently contributes to a lot of the

inefficiencies in EPC (e.g., large Internet access delay). To ensure UE containers are always

in the proximity of mobile UEs, SoftBox envisions a sufficient quantity of mini DCs close to

RANs (e.g., a DC per state as shown in Figure 3.4-b). Moreover, for quickly processing UEs’

53

Internet traffic, a reasonable fraction of mini DCs are connected to the Internet. In general,

the number, capacity, and location of mini DCs depend on many factors (e.g., latency require-

ment). Note that the industry push towards multi access edge computing (MEC) [104] already

created the need for such DCs andmore egress points so SoftBox can benefit from such trends.

Component 2: Programmable switches interconnecting DCs and RANs. To enforce

network policies, SoftBox steers each mobile UE’s traffic through its corresponding UE

container. A UE may simultaneously communicate with different end points, e.g., other

UEs connected to nearby eNodeBs in the case of IoT Apps or external Internet hosts. To

quickly set up, modify, and tear down paths in the data plane, SoftBox contains a flat switch-

ing fabric of programmable SDN switches that seamlessly interconnect RANs and mini

DCs (Figure3.4-a). The inter-DC SDN network (Figure3.4-b) ensures our latency-sensitive

DC-to-DC traffic can be routed over efficient paths inside the SoftBox core. This type of

traffic is generated when UE containers migrate among mini DCs to ensure their proximity

to mobile UEs, or when two or more UEs (e.g., autonomous cars) with their UE container in

different mini DCs directly communicate. Today’s EPC architecture and infrastructure are

very inefficient in handling UE-to-UE traffic. First, EPC is designed to always route traffic of

a UE to the Internet, even if the destination is a UE connected to a nearby eNodeB. Second,

EPC instances (e.g., in different regions) cannot directly communicate with each other as

EPC DCs are not connected to each other through direct links.

Component 3: Customizable and optimized UE containers. In SoftBox, UE containers

are the smallest unit of service, each embedding a customized bundle of data and control

NFs for processing a UE’s data and signaling traffic. Our basic yet extensible UE containers

provide the EPC functionality. However, they are extremely more efficient, lightweight and

programmable compared to an EPC-in-box design. Our basic UE containers are derived

from EPC in two steps as follows:

54

1. Optimizing the EPC functionality: We first extract the functionality distributed on the

EPC nodes (i.e., S/PGW, MME, PCRF, HSS in Figure 3.2) and refactor them into a

set of programmable NFs. Each container is a single process, where communication

between its internal threads occur through local message passing mechanisms (e.g.,

pub-sub). Since we consolidate the NFs into UE containers, we naturally remove the

EPC distributed protocols (i.e., Diameter, GTP-C) from their implementation. We also

upgrade the protocols that run between EPC and RANs (e.g., GTP-U, S1AP/SCTP)

with more scalable ones (will be explained in Section 3.3). Our approach of remov-

ing/upgrading complex EPC protocols make the NFs and UE containers fast and

lightweight at the end. In particular, through the refactoring process, our basic UE

containers are equipped with the EPC data functions (DPI, NAT, firewall, buffers, ac-

counting/QoS) and control functions (LTE mobility, security, and policy management

NFs).

2. Developing a minimalist SDN architecture: Next, we design a programmable SDN

architecture for UE containers by decoupling their control and data planes. As shown

in Figure3.4-c, SoftBox isolates each of the data NFs into a Linux network namespace

and interconnects them using a software switch. Then, it places the control NFs on

a platform called UE controller running at least two applications: a) MobilityApp

executing the LTE mobility management operations (e.g., handover, paging) and

security management operations (e.g., authentication, encryption) by exchanging

signaling traffic with the UE through RANs. b) PolicyApp enforcing data plane

policies (QoS, monitoring, charging) by forwarding the UE’s data traffic through

different in-container data NFs.

Component 4: Unified SDN/NFV control plane. Finally, SoftBox core networks are

55

equipped with a global SDN/NFV controller (Figure 3.4-a) that optimizes their performance

and resources (e.g.,minimizes migrations of UE containers and flow rules in the SDN fabric).

For scalability and performance reasons, the global controller places an agent in each DC,

SDN switch, and eNodeB to execute its commands. Our global controller and SDN switch

agents communicate over the standard OpenFlow/P4 protocol. However, due to lack of

protocols for configuring eNodeB/DC agents, we develop custom protocols between our

global controller and them (will be presented in Section 3.3.5, Section 3.5-Section 3.7) .

3.3.4 Connecting SoftBox to LTE RANs and UEs

SoftBox is an incrementally deployable solution as elaborated in Section 3.3. Here, we ex-

plain how SoftBox connects to existing LTE RANs and UEs without any direct modification

to their network stack. In RAN+EPC networks, each LTE eNodeB exchanges two types

of traffic with EPC (see Figure 3.2). Without loss of generality, consider the traffic in the

uplink direction. An eNodeB encapsulates each UE’s data traffic into a separate GTP-U

tunnel and forwards it to EPC. GTP-U packets are further encapsulated into a UDP/IP header

by the eNodeB since commodity devices (e.g., routers) between EPC and RANs do not

process this protocol. Moreover, an eNodeB maintains a persistent SCTP (Stream Control

Transmission Protocol) connection to MME. Over this connection, it acts as a proxy and

multiplexes different UEs’ signaling or NAS (Non-Access Stratum) messages onto a single

4G S1AP (S1 Application Protocol) session and transports them to MME.

Each UE’s NAS signaling and data traffic is processed into a different UE container in

SoftBox. To properly forward different UEs’ traffic to their corresponding UE containers,

LTE RANs must communicate with the SoftBox control plane (UE controllers and global

controller) and exchange different control messages and events. Since modifying the network

stack of eNodeBs for implementing new protocols is impractical, we propose a minimally

disruptive design to facilitate communication of SoftBox with LTE RANs: We instruct our

agents at eNodeBs (introduced in Section 3.3.3) to implement a translation layer and map the

56

EPC protocols to custom SoftBox protocols and vice versa. At a high level, the translation

layer performs two operations (Figure 3.4). First, since some of the SDN switches (e.g., Open-

Flow switches) do not support match+action rules on GTP-U packets and GTP-U is a complex

protocol, it replaces each UE’s GTP-U tunnel with an MPLS tunnel. In Section 3.5, for min-

imizing the SDN rules and updates, we will propose a highly scalable SoftBox protocol over

MPLS. Second, our translation layer reverses the eNodeB’s multiplexing function, which puts

different UE’s signaling traffic onto a single S1AP/SCTP connection withMME. For each UE

connected to the eNodeB, it establishes a separate transport connection (e.g., TCP, reliable

UDP (RUDP)) with the corresponding UE controller, and properly forwards the UE’s signal-

ing traffic to it over our custom application layer protocol (will be elaborated in Section 3.5).

3.3.5 Putting all together: Orchestration of UE containers

SoftBox dynamically and quickly provisions UE containers over the network by continuously

and effectively interacting with LTE RANs. When a switched-on UE sends an attach request,

we instruct the eNodeB agent to send a UE container creation request to the global controller

that performs three operations: (1) fetches the UE’s profile (e.g., plan, type) from the sub-

scribers (Figure 3.4-a), (2) instantiates a customized UE container for the UE in a DC through

its DC agent, and (3) programs the eNodeB and SDN switches through its agents to direct the

UE’s traffic to the UE container. Next, the eNodeB establishes a session with the in-container

UE controller and starts forwarding the UE’s signaling traffic to it. In the meantime, the

UE controller installs rules into the in-container software switch to enforce different NFs

on the UE’s data traffic. When the UE moves, other procedures happen in SoftBox (e.g.,

updating data plane tunnels, container migration) that are discussed in the next four sections.

For scalability, the global controller communicates with UE containers through its DC-level

agents based on a publish-subscribe model. Through agents, it subscribes to certain events

in containers (e.g., low QoE) or reconfigures them with new policies in runtime. When a

UE turns off, the eNodeB agent notifies the global controller who fetches the UE states from

57

the container, backs them up in the subscribers database, and destroys the container.

3.3.6 Optimized SoftBox: Design & Optimization Challenges

The above basic version of SoftBox meets our design goals (Section 3.8). To make SoftBox

more effective and efficient for deployments at scale, we further optimize it along four

dimensions. Our optimization challenges and solutions to them are unique to and novel in

the context of SoftBox. We provide an overview on the optimized SoftBox in the below and

Table 3. For brevity, we delay detailed discussion of related work to later sections.

Challenge 1: Scalable optimization of idle UEs’ containers. In cellular networks,

UEs spend most of their time in the idle mode, so a large fraction of UE containers in

SoftBox can be underutilized at any point in time. Each of them incurs small CPU/RAM

overheads without receiving/sending any traffic from/to the UE. Adopting the traditional NFV

approach [132] suggests that SoftBox’s global controller must monitor, stop and resume UE

containers in response to UEs’ transitions between the idle and active modes. Unfortunately,

this approach does not meet our unique design requirements. First, the strategy of stopping

idle UEs’ container does not work as some in-container NFs (e.g., paging) must always run

in the core. Second, the global optimization is not scalable with many UEs continuously

changing their state in the network.

Solution: Self-optimizing UE container design (Section 3.4). To optimize idle

UEs’ containers, we propose a self-optimizing UE container design. Using the latest

capabilities in Linux, we develop a control logic inside each UE container that

monitors the UE’s connection state and quickly minimizes the container resource

usage when the UE becomes idle. Our distributed in-container approach is flexible in

customizing the optimization in each UE container depending on its set of always-on

NFs and the UE’s state changes pattern. In addition, it is more scalable and faster

than the centralized optimization method that is expected to place the burden of

optimization on SoftBox’s global controller.

58

Challenge 2: Minimizing the SDN fabric rules and updates. SoftBox steers traffic

of UEs through their respective containers for processing. Given there are millions of UE

containers in the network, scalable traffic steering is challenging. On the one hand, encap-

sulating each UE’s flows into a separate tunnel, similar to EPC, leads to huge forwarding

states in SDN switches equipped with very small flow tables. Also, the mobility of UEs

necessitates frequently updating the per-UE tunnels, degrading the controller throughput and

traffic performance. On the other hand, end-to-end traffic aggregation (e.g., between each

eNodeB and gateways) does not work as each UE’s traffic must be processed by a separate

middlebox (container).

Solution: Enhanced segment routing scheme (Section 3.5). To perform scalable

traffic steering, we design a segment routing (SR) [43]-based scheme for SoftBox.

By itself, SR is only a source routing mechanism on path segments, but not a ready

solution for our problem, e.g., SR does not specify where and how path segments

must be established, so it does not necessarily reduce the number and update rate

of flow rules in our SDN data plane. The key insight in our SR-based scheme is to

recursively derive a minimal set of path segments (by forming a novel abstraction

over the SoftBox’s SDN data plane), pre-establish the segments in the data plane

permanently, reuse them for steering different UEs’ traffic as much as possible, and

carefully perform SR-based source routing at RANs to relieve our SDN switches

of the task of switching UEs’ traffic between path segments.

Challenge 3: Minimizing UE container migrations costs. SoftBox initially places the

container of each UE in its proximity to realize ultra-low latency. Since UEs are mobile,

their latency to their container can increase so SoftBox needs to migrate each of such UE

containers to a DC that is closer to the corresponding UE. Cloud operators can often plan

VM migration in advance, and only a small fraction of their VMs need migration [95]. In

contrast, UE container migrations occur in real time and at a large scale as UE mobility

59

is the norm and unplanned in cellular networks. Such migrations pose two issues: incur a

control load on SoftBox’s global controller, thus needing us to scale it up, and result in an

imbalance of load distribution on mini DCs, thus forcing us to over-provision their capacity.

Solution: Distributed mobility-aware migration scheme (Section 3.6). SoftBox

introduces two online algorithms that leverage UEs’ mobility pattern to simultaneously

minimize the two container migrations overheads. For scalability and performance,

SoftBox offloads most of the logic and mechanisms of these algorithms onto UE

containers rather than centralizing them on its global controller: each UE container

independently captures and processes the UE’s mobility traces over time, determines

the timing of its migration, and finally notifies the global controller. The controller

makes a real-time decision on the destination mini DC based on the inputs from the

container and its global network view.

Challenge 4: Scalable signaling sessions between the SoftBox core and LTE RANs.

Today’s protocols between LTE RANs and EPC are designed with an assumption that a

single fixed node in EPC (i.e., MME) exchanges signaling traffic with UEs through eNodeBs

(Figure 3.2). Thus, SoftBox’s approach of processing each UE’s signaling traffic on a UE con-

troller (Figure 3.4) poses two challenges. First, it rapidly increases the number of connections

from the core to RANs, which becomes unmanageable as the network grows. Second, it needs

LTE RANs to be able to determine the network location of UE containers corresponding to

arbitrary UEs on the fly as they are dynamically created and can migrate between different

DCs. This is challenging because this functionality is not available in existing LTE RANs and

deploying a central off-path registry and discovery service [114] is not scalable or efficient.

Solution: Scalable and fast transport and discovery protocols (Section 3.7). To

overcome the challenges with signaling sessions between the SoftBox and LTE

RANs, we depart from connection-oriented transport protocol that runs between

today’s RANs and EPC (S1AP over SCTP in Figure 3.2). We replace it with a reliable

60

lightweight connectionless transport protocol (our SoftBox protocol over Reliable

UDP (RUDP) in Figure 3.4). This simple change enables an arbitrary number of

UE controllers with dynamic network locations to exchange signaling traffic with

their mobile UE through different eNodeBs. In addition, we design a fast service

discovery protocol between SoftBox and LTE RANs, enabling eNodeBs to locate the

UE container mapping to an arbitrary UE in zero-round trip time (0-RTT) as opposed

to the central off-path approach (discussed in the above) incurring high delays. Our

protocol is novel because it effectively uses existing LTE signaling messages that

mobile UEs exchange with the network.

Roadmap. Next, we go into the details of each challenge to realize the optimized version

of SoftBox.
Table 3: Summary of design decisions in the optimized version of SoftBox.

Minimization of Motivation Summary of Technical Solutions

Resource usage of
idle UE containers

A large fraction of UEs are idle most of the
time

Developed a self-optimizing UE container design
• Faster than the centralized optimization method on the global controller
• Seamlessly operates by using advanced Linux technologies

SDN fabric rules
and updates

Small flow tables in SDN switches and
Performance disruptions in flow rule updates

Designed a scalable segment routing (SR)-based scheme
• Recursively derive and pre-establish path segments in the data plane
• Reuse them for steering different UEs' traffic

UE container
migrations costs

Increased latency between mobile UEs and
UE containers

Built algorithms and mechanisms leveraging UEs' mobility patterns
• Minimize control loads and DC load imbalances caused by migrations
• Scalablely measure latencies between UEs and UE containers

Signaling
communication
costs with RANs

Increased number of connections from
SoftBox (UE containers) to LTE RANs
Dynamic network locations of UE containers

Realized scalable and deployable protocols between SoftBox and LTE RANs
• Replace legacy S1AP/SCTP transport protocol with SoftBox/RUDP
• Enable LTE RANs to determine the network location of an arbitrary UE container

	
	

Optimization
Decisions

 Summary of designs

Self-
optimizing
UE container
design

Minimize resource usage of idle UE
containers

• Proposed a
• Designed to be faster than the centralized

optimization method
• Provide seamless operation by using advanced

Linux technologies (e.g., cgroup freezer)
 Minimizing the SDN fabric rules and updates • Recursively derive and pre-establish minimal path

segments in the data plane
• Reuse them for steering different UEs' traffic by

source routing at eNodeB agents
Mobility Minimize UE container migrations costs • Proposed algorithms leveraging UEs' mobility

pattern to minimize migration costs
• Designed scalable mechanism for tracking the

latency between UEs and UE containers
Optimized
communication
with RAN

• • Designed scalable and fast protocols between
SoftBox and LTE RAN

• Replaced legacy S1AP/SCTP transport protocols
• Enabled LTE RANs to determine the network

location of UE containers
	

3.4 Scalable and Flexible Optimization of Idle UE Containers

Optimizing resource usage of UE containers on servers is crucial to minimize power consump-

tion of mini DCs in SoftBox. Each UE container runs some NFs, each spawning multiple

threads to process the UE’s traffic while building some UE-specific states in memory. Thus,

a UE container uses both RAM and CPU resources. Storing the states typically requires an

insignificant amount of RAM (Section 3.8.3). Therefore, we incorporate unique character-

istics of cellular networks to minimize CPU usage of UE containers. In LTE networks, UEs

61

switch between the idle and active modes to save battery power, while being idle most of

the time. Although an idle UE does not send or receive any traffic through LTE RANs, its

corresponding UE container still has a small CPU overhead on its server in the SoftBox core.

The overhead comes from the fact that in-container NFs actively access their ports and queues

via polling and manipulate their threads and internal states, even if they process no traffic.

Such tiny CPU overheads quickly add up since there are many UE containers in the network.

Critical NFs
Non-Criticial NFs

NF1 NF2 NF4NF3

NF1 NF2 NF4NF3

Optimization Module

Optimization Module

RAN

8.Seamless Unfreeze

2.Seamless Freeze

Active
State

Idle
State

Normal State

6. Wake-up

LTE Signaling

UE

4. Sleep
1. Service Release

3. Confirmation

Optimized State

7. Service Request

9. Confirmation

5. Send data

SoftBox Core Network

Figure 3.5: Our scalable and flexible optimization of idle UEs’ container

A naive approach: centralized optimization. We believe there is a good opportunity

to optimize such UE containers. One might think we should borrow the global optimiza-

tion approach adopted in many existing NFV platforms (e.g., Picocenter [132]): have our

global controller (Figure 3.4) continuously track each UE container, gracefully terminate

UE containers corresponding to idle UEs, and instantiate new UE containers for those UEs

once returning to the active mode. Although these procedures can be easily implemented in

SoftBox by sending asynchronous notifications on top the POSIX API [68] from the global

controller to UE containers, such global optimization approach does not meet our design

requirements. First, stopping idle UEs’ container ceases all in-container NFs while some of

them must always run, even though they are in the idle mode. For example, MobilityApp

refactoring MME in UE containers (Figure 3.4) needs to locate UEs particularly when they

are idle through the paging procedure. In theory, the set of “always-on” NFs can be different

for each UE. Second, it is not scalable to have our global controller monitor millions of UE

62

containers and stop/resume them in large-scale networks.

Our approach: self-optimizing UE container design. To overcome the above short-

comings, we propose to carefully design UE containers in SoftBox to optimize themselves

autonomously when their UE becomes idle. In other words, we distribute the logic and mech-

anisms of resource usage optimization into UE containers. Our design of self-optimizing UE

containers has two properties: (i) scalable and fast as it does not involve our global controller

in the optimization loop, and (ii) flexible as it allows us to customize the implementation of

optimization in each UE container depending on its potentially unique set of always-on NFs.

In more detail, we enhance our basic UE containers by developing a process management

module based on Supervisor [44] in them, which uses advanced capabilities in Linux to do

the optimization task. Our module listens to the UE state changes between idle and active

(see Figure 3.5). When the UE requests the UE controller to switch to the idle mode, it

quickly freezes all noncritical NFs (e.g., DPI) in the UE container and keeps only critical

ones (e.g., MobilityApp) running (Steps 1-4). When the UE returns to the active mode and

connects to the network, it instantly resumes the frozen NFs (Steps 5-9). To seamlessly

freeze/unfeeze the selected NFs, we leverage cgroupfreezer API [46] rather than the POSIX

API inside UE containers. The cgroupfreezer library uses the Linux kernel freezer code to

prevent the freeze/unfreeze cycle from becoming visible to the NFs being frozen so they can

keep their memory states. The POSIX signals are observable within the NFs so their threads

may select how to respond to them (e.g., block) that can cause them to break.

While our optimization method is not complex, it is novel and effective in the context of

SoftBox networks. On the one hand, it meets our unique design requirements. On the other

hand, it significantly cuts the peak CPU usage of UE containers as a large fraction of UEs

are always idle (3.8).

63

3.5 Traffic Steering With Minimal and Stable Forwarding Rules

In SoftBox, the global controller must program tunnels in the SDN fabric to properly steer

each mobile UE’s traffic through the corresponding UE container that can migrate among

mini DCs (Figure 3.4). Existing SDN switches have limited flow table entries and updating

them frequently (when UE and UE containers move) can cause traffic forwarding disruptions

(e.g., packet drops). To cope with these limitations, our key insight is to pre-compute and

pre-establish a minimal set of permanent tunnel segments into the data plane and reuse

them for steering different UEs’ traffic as much as possible. This approach naturally reduces

the numbers and update rates of flow rules in our SDN switches. We already discussed

shortcomings of other design options (e.g., establishing separate tunnel for each UE) in

Section 3.3.6, and thus focus on realizing our novel traffic steering scheme in four steps

in this section. Our scheme can be implemented on top of existing SR (segment routing)

mechanisms [43]. At a high level, we have SoftBox’s global controller: (Steps 1-2:) recur-

sively break down the problem of finding a minimal and reusable set of permanent tunnel

segments (endpoints and paths) into smaller subproblems by forming our novel abstraction,

called “recursive middleboxes”, over SoftBox’ SDN switches. (Step 3:) then leverage source

routing mechanism at RAN to relieve our SDN switches of the task of switching UEs’ traffic

between different tunnels (Step 4:) finally offload a part of traffic steering task onto UE

containers for scalability.

Step 1. Forming the recursive middleboxes abstraction. We first explain how the

global controller forms the “recursive middleboxes” abstraction to break down our large-

scale traffic steering problem. The controller views each DC, rack, host, and container in

SoftBox’s data plane as an abstract middlebox. These middleboxes are recursively nested

into each other, where mini DCs and UE containers are the outermost and innermost abstract

middleboxes respectively. Similar to hardware middleboxes, each abstract middlebox has two

logical ports to separate its ingress and egress traffic. Conceptually, each abstract middlebox

64

embeds a group of SDN switches in the network. Figure 3.6 depicts child middleboxes

recursively embedded into a DC middlebox.

Rack-10

Server-20

Container-1000

Server-1
Container-1

Rack-1

…
…

Mini DC

…

Internet

border points path segment

B C
DA E

F G H

G path label

eNB-1

…

eNB-10

Figure 3.6: Our “recursive middleboxes” abstraction to scalably steer UEs’ traffic through con-
tainers

Step 2. Recursive tunnel segment computation. Over our abstraction, the global

controller recursively pre-computes and pre-establishes a minimal set of permanent tunnel

segments in the data plane and later reuses them for different UEs. We now describe our

tunnel segment computation for UEs’ uplink traffic to the Internet and shortly discuss other

traffic types. Our tunnel segment computation procedure is as follows: (i) the controller

first addresses a small problem of steering aggregate uplink traffic of each eNodeB through

DC middleboxes: it sets up a label-based tunnel segment between each eNodeB and its

nearby DC middleboxes (e.g., tunnel A in Figure 3.6), and a segment between each DC

middlebox and close Internet gateways (e.g., tunnel H). The Internet gateways and DCs can

be determined based on operators’ requirements for closeness of UE containers to UEs

(Section 3.6), (ii) moving inside each DC middlebox, the controller solves the problem of

steering the DC’s aggregate ingress traffic through different rack middleboxes and exiting it

from the DC. In this case, it sets up a segment between the DC ingress point and each rack

middlebox (e.g., tunnel B) and a segment between each rack middlebox and the DC egress

point (e.g., tunnel G), and (iii) recursively, the same procedure continues in each rack and

then in each server. Conceptually, the controller sets up a segment between the ingress port

of each child middlebox and that of its parent (e.g., tunnels B,C,D), and one between the

65

egress port of each child middlebox and that of its parent (e.g., tunnels E,F,G). On servers,

the controller provisions tunnel segments for the maximum expected UE containers. When

it dynamically creates UE containers on servers, it reuses pre-established tunnel segments

(e.g., tunnels D,E) and only connects UE containers to them. Except UE specific tunnels on

servers (e.g., tunnels D,E), the rest of tunnels in the network will carry aggregate traffic of

different UEs as follows.

Step 3. Source routing on abstract middleboxes Next, we explain how the global

controller steers each UE’s uplink traffic through its UE container. To minimize the number

of rules needed in SDN switches for tunnel switching, it instructs agents in eNodeBs (see

Figure 3.4) to perform SR’s source routing. Assume a UE has sent a packet to an eNodeB

(e.g., eNB-1 in Figure 3.6). To redirect the packet through the nested middleboxes containing

the corresponding UE container (e.g., Container-1), our eNodeB agent encodes a stack of

labels into the packet (the stack can be compressed using P4 [60, 97]). The top half of

the stack consists of the labels of segments from the eNodeB down to the UE container

(e.g., [A,B,C,D]). The bottom half of them are labels from the UE container up to the

Internet egress point (e.g., [E,F,G,H]). After encoding the stack, the eNodeB agent sends

out the packet. Our data plane switches always forward the packet based on the outermost

label sitting on the top of the stack (TOS). When the packet arrives at the ingress port of

each abstract middlebox (i.e., DC ingress switch, TOR switch, server NIC/soft switch),

it pops the TOS label from the packet. Then, the packet is directed to the proper inner

middlebox based on the new TOS label. This continues until the packet reaches an ingress

port of the UE container. After the UE container completes its processing, the remaining

lower half of the stack is used to forward the packet from the container to the Internet gateway.

Step 4. Label stack distribution and handling other traffic types. First, our source

routing requires proper distribution of label stacks to eNodeB agents in the network. When

66

a UE sends LTE attach request through an eNodeB, the global controller creates the UE

container and instructs its eNodeB agent with the proper label stack (Section 3.3.3). For

scalability, the global controller preloads each UE container with the set of label stacks

in the network and instructs it to proactively inform different eNodeB agents with proper

label stacks when its UE moves or it migrates among mini DCs. Second, our traffic steering

scheme handles downlink and UE-to-UE traffic. For downlink traffic from the Internet

to UEs, the controller instructs Internet ingress switches to do source routing similar to

eNodeBs. For scalable classification of UEs’ downlink traffic needed pushing proper label

stacks onto each UE’s flows at the ingress switches, the controller uses the approach de-

scribed in SoftCell [86]. For UE-to-UE traffic, it pre-installs direct tunnel segments among

immediate child middleboxes of a middlebox (e.g., racks inside the DC in Figure 3.6) to

steer such traffic through multiple UE containers

We will show the above traffic steering scheme significantly reduces SDN rules and updates

in large-scale SoftBox (Section 3.8.3).

3.6 Scalable & Mobility-Aware UE Container Migration Scheme

In SoftBox, the UE container placement is crucial to build ultra-low latency services on a

per-UE basis. Since UEs are mobile, the latency between them and their container increases

so SoftBox’s global controller needs to transfer the UE containers between DCs. There are

diverse tools for seamless container migrations [30, 132]. Thus, we focus on two challenges

that are unique to SoftBox. Container migrations can (i) incur a large control load to the

global controller, and (ii) lead to an imbalanced distribution of containers among mini DCs.

Traditional VM/container migration schemes do not meet our performance and scalability

requirements (Section 3.3.6, Section 3.9) since our environment deals with unplanned UE

mobility, strict deadlines, and many UE containers. Thus, we develop a container migration

scheme that is novel in two aspects: it consists of distributed and scalable components

67

to schedule containers needing migration, and leverages UE mobility patterns to choose

migration destinations efficiently.

Migration Planner

…
…

.

UE Controller-1

Migration Heuristics
Network Controller

DC1

D
C

2

 Step (3)

Step (5)

Step(1)

DC2 DC1

 CO=100
CO=7

CO=10

LA=12 LA =10C

DC2 coverage DC1 coverage

Load= 0.5 Load=0.5

LA: Latency(ms), CO: Connection time(hour)

(a) Distributed planning of UE container migration (b) Example of a UE container migration

UE Controller-N

Figure 3.7: Our container migration scheme with the distributed planning & mobility-aware
heuristics

3.6.1 Distributed Planning of UE Container Migrations

SoftBox allows operators to flexibly determine the maximum latency between each UE and

its container (e.g., 5ms). Assuming UE containers are already placed inside DCs, a migration

event occurs when the UE-UE container latency becomes more than the migration threshold.

Since there are many containers in the network, our design principle is to reduce the role of

the global controller in migrations. It is not scalable to have the controller (i) continuously

track the latency between millions of UEs and containers to determine which containers

must be migrated, and (ii) collect and process fine-grained mobility patterns of many UEs

(e.g., handover and connection history) to be used in its migration decisions. To address

the issues, we distribute the load of scheduling migrations and collecting mobility history

of UEs on containers in five steps. We design the UE controller’s MobilityApp in each

container to: (Step 1.) measure its latency to the UE autonomously and continuously (see

Fig 3.7-a), (Step 2.) record and prune the mobility information of the UE, and (Step 3.) make

a decision locally regarding its migration timing and issue a migration event to the global

controller when it is necessary. Upon being notified, the global controller only: (Step 4.)

runs our migration algorithms (in Section 3.6.2) to select a mini DC for the container based

on its global view of DC capacities and the mobility pattern sent by the UE controller, and

(Step 5.) coordinates the old and new servers to handle the migration (Section 3.8.3).

68

3.6.2 Mobility-Aware Heuristics for UE Container Migrations

In response to eachmigration event, the global controller selects a mini DC from the pool of el-

igible DCs satisfying the migration threshold; it also tries to achieve two goals in its real-time

decision-making process (migration events are not known a priori thus offline optimal algo-

rithms cannot be used). First, it minimizes the total number of needed migrations over time to

reduce the load on itself. Second, it balances the load of containers among DCs (or minimizes

the max load of DCs in terms of the number of containers). In each migration event, our

heuristic is to have the controller migrate the UE container to a DC from the eligible DCs pool,

that maximizes the normalized term ContainerDurability(DC)+AvailableCapacity(DC).

The durability function computes how long a DC can host the UE container without forcing

it to issue a migration event. The capacity function returns the remaining capacity of the

input DC in terms of the number of containers. Intuitively, continuous sum of the product of

these two normalized functions in migration events reduces the needed container migrations

and DC load imbalances. The capacity function definition is easy but the durability one

can be realized in multiple ways. In this chapter, we suggest two algorithms that both use

the same capacity function but each having a different durability function. To simplify the

description of the algorithms, we use Figure 3.7-b where the attachment of a UE to eNodeB

C causes its container to issue a migration event. The problem is the controller needs to

migrate the container either to DC1 or DC2 to meet the latency requirement.

• Our Least-loaded-proximity (LLP) algorithm assumes the chance of next migrations

reduces if the UE container is moved closer to the UE. Thus, it has the durability

function return reciprocal of the normalized latency between an input DC and the UE.

In the example, LLP picks DC1 because it is closer to the UE and the two DCs are

equally loaded.

• Our Least-loaded-mobility (LLM) algorithm assumes the mobility/connection pat-

terns of the UE in past time windows (e.g., weeks) can determine the DC which can run

69

the container for the longest time. Thus, it computes the durability function output for

each eligible DC as follows: it (i) first identifies eNodeBs that their latency to the DC

is below the migration threshold, and (ii) normalizes and returns the total connection

time of the UE to those eNodeBs in the past time window as the function output. In the

example, LLM chooses DC2 as the UE has spent most of its time in the past with the

eNodeBs in the range of DC2 and the DCs are equally loaded.

Our distributed online container migration scheme is not complex, but it effectively cuts

peak loads on our global controller and DCs, has a high performance in diverse settings

compared to the optimal offline solutions, and meets our design constraints (Section 3.8).

3.7 Scalable Interaction of SoftBox Core and LTE RAN

For performance reasons, we distributed the MME on UE controllers inside UE containers.

The protocols carrying UEs’ signaling traffic between EPC MME and LTE eNodeBs are

not scalable and sufficient for the SoftBox core containing millions of UE controllers. They

were originally designed for an environment where a centralized fixed MME handles all

UEs’ signaling traffic. Our UE containers are in a far larger quantity and migrate between

different DCs so their network location continuously changes. To handle the signaling traffic

between SoftBox (UE controllers) and LTE RANs, we (1) design a fast and mobility-aware

service discovery protocol that enables the RANs to locate the UE containers and (2) carry

the signaling traffic over a more scalable transport protocol.

UE Controller -M

Tracking Area (TA) 1 Tracking Area 2

3. TA Update
 Response
[eNB1, eNB2]

1. TA Update
Request

2. Location Registration
[UE IMSI, Contianer (IP, Port)]

eNB1 eNB2

eNodeB

MME

Persistent SCTP Connections

… …

Enhancement 1

Connectionless Transport Service

UE controller-1 …UE controller -N

Enhancement 2

d

SoftBox

LTE
Signaling

(b) SoftBox’s UE container registration & discovery protocol (c) Connectionless transport of signaling traffic

4. Location
Deregistration

eNB3

eNB4

(a) LTE/EPC Networks

Figure 3.8: Connectionless per-UE mobility management equipped with mobility-aware service
discovery protocol.

70

3.7.1 Fast and Mobility-Aware UE Container Discovery

In a 4G RAN+EPC network, the MME node often is deployed at a fixed and static net-

work location (IP address and port). MME acts as a server and eNodeBs as clients (see

Figure3.8-a). Each eNodeB reads the network location of MME from a configuration file

and then permanently connects to it. In SoftBox, UE controllers in UE containers replace

MME. Unlike MME, both their numbers and network locations dynamically changes as

a result of UE mobility events causing UE container migration, creation, and termination

procedures. Clearly, the approach of storing configuration files in eNodeBs no longer is

effective or efficient as it would require tracking the location changes and frequently updating

the configuration file in every eNodeB in the network. Therefore, we propose that the we

enable eNodeBs to dynamically discover the latest location of UE controllers/containers

corresponding to UEs. This approach makes the network management easier compared

to the the traditional config file approach. Using the latest locations, the eNodeBs can

establish connections with UE controllers to properly forward UEs’ signaling traffic to them.

One generic model to realize this discovery is to place a global service registry in SoftBox

networks (e.g., [114]), register and update the location of each UE controller with it and

have different eNodeBs query the registry service. The clear drawbacks of this centralized

model is (1) scalability as the global registry service can become a hotspot and (2) increased

delay in accessing the LTE network as the global service can be far from eNodeBs and

mobile UEs must wait for the discovery process to complete. Rather than relying on such

generic mechanisms with their associated shortcomings, we believe a better approach to the

discovery process is to incorporate characteristics of mobility protocols in cellular networks.

We design a fast and mobility-aware UE container registry and discovery service. Rather

than having a global registry service, we place a local container registry service on each eN-

odeB (inside our agent/shim described in Section 3.3.3-5). Each eNodeB uses its local registry

to quickly resolve its queries in zero-round trip time (0-RTT). We design the UE controllers

to dynamically and proactively register/deregister themselves with the registry instances on

71

nearby eNodeBs before those eNodeBs need to discover them. To realize this, we build on

a key aspect of mobility support in cellular networks. In LTE networks, MME registers each

UE to a tracking area (TA). Each TA is a logical group of eNodeBs. At any time, MME limits

the mobility of a UE to its registered TA to ensure the broadcast paging procedure and its

associated radio wake-ups will not affect all UEs. This limitation has two consequences. First,

the UE runs a timer whose periodic expiration causes the UE to report back and confirm its

current TA toMME. Second, when a UEwants to exit its current TA, it must explicitly request

MME to assign it to a different TA. Based on this concept, our UE container registry protocol

works as follows (see Figure3.8-b): (Step 1.) When a UE controller receives a TA update re-

quest from the UE intending to exit its current TA, it computes a new TA for the UE (e.g., TA2

in the example). (Step 2.) Then, it registers its location (e.g., [192.168.4.82, 2153]) with the

registries on eNodeBs in the new TA (e.g., eNB1, eNB2). (Step 3.) Next, it sends a TA update

to the UE consisting of the new eNodeBs information. (Step 4.) Finally, the UE controller

deregisters itself from the registry instances on the eNodeBs in the old TA (e.g., eNB3, eNB4).

3.7.2 Connectionless RAN-Core Signaling Traffic

In 4G/LTE networks, each eNodeB establishes a S1AP/SCTP connection with MME Then,

MME and eNodeBs create logical NAS signaling sessions over these S1AP/SCTP connec-

tions for different UEs (detailed in 3.3.3). As a UE moves around, MME quickly migrate the

UE’s signaling session on the SCTP connections with different eNodeBs in the handover pro-

cedure. In SoftBox, because of distributing MME on UE controllers, multiplexing signaling

sessions of different UEs into the same set of fixed S1AP/SCTP connections is no longer an

option as each UE must communicate with a different end point (UE controller) in the Soft-

Box core. On the other hand, establishing dedicated connections for each UE controller with

different eNodeBs rapidly escalates the core-RAN connections by a factor equal to number

of UEs. Managing these connections is very costly both in terms of the network performance

and the overhead on RANs. As UE containers migrate between different DCs and UEs move,

72

RANs needs to continuously set up and tear down many connections with the SoftBox core.

To address these problems, we transport the signaling traffic between SoftBox (UE con-

trollers) and RAN (eNodeBs) through our custom application layer protocol over a reliable

connectionless transport protocol (see Figure 3.4 and Figure 3.8-c). This approach elimi-

nates the handshake cost/complexity while allowing an arbitrary number of UE controllers

and eNodeBs to have low-cost communication with the guaranteed-order packet delivery.

Our current prototype employs Reliable UDP (RUDP) [39] as a lightweight connectionless

protocol. It is worth mentioning that we continue using TCP between the global controller

and other entities (e.g., switches, eNodeBs) as these sessions are static and permanent.

3.8 Evaluation

Methodology. Using prototype and large-scale trace-driven evaluation, we first show that the

basic (unoptimized) SoftBox architecture is more scalable and efficient than EPC. Our metrics

are: (1) the number of CPU cores needed for a large-scale network, (2) the signaling overhead

in the core, (3) the performance for the device-to-device (D2D) communication. For com-

parison, we use widely-used EPC systems, OpenEPC [34] and OAI EPC [33]. We carefully

ensure that our comparisons with EPC are fair as our prototyped SoftBox has similar or better

functionality compared to the EPC systems, uses the same packet processing technology. In

addition, we study them under similar deployment conditions. We then demonstrate that the

enhanced version of SoftBox equipped with our four schemes optimizing UE container migra-

tions (Section 3.6), idle UEs’ containers (Section 3.4), traffic steering through UE containers

(Section 3.5), and UE container discovery (Section 3.7) is even more effective and efficient for

large-scale deployments due to having lower data and control loads and higher performance.

In the optimized SoftBox evaluation, we validate that each of our optimization techniques

is efficient in diverse settings with hundreds of mini DCs and tiny UE container migration

thresholds. Next, we describe the details of the SoftBox prototype and our LTE dataset fol-

lowed by our evaluation results. In evaluating SoftBox, we used tens of servers with 16 CPU

73

Table 4: EPC & SoftBox signaling overheads–**:common

																			

 EPC
Protocol Purpose #Msg

Si
gn

al
in

g
NAS** Mobility/security

management
8

S1AP/SCTP UE’s signaling transport 22

Diameter

Credit control
Accounting
Location update
Authentication

94

GTP-C GTP tunnel setup 10

D
B SQL** UE state persist & read 385

SoftBox
Protocol Purpose #Msg
NAS** Mobility/security

management
8

SoftBox/RUDP UE’s signaling transport 2
Docker Container creation

& destroy 2

JSON Container configuration 2
OpenFlow SDN switch

configuration
4

SQL** UE state persist & read 30

SGW PGW

MME

PRCF

S1 S2

DC

HSS

Internet

(a) EPC

(b) SoftBox

Internet

0
0

5
05

5

5

5

5
5

05

5

5

Ctrl
0

A

B

B

A

MO 1

MO 2

MO 2

M
O

: M
ob

ile
 S

w
itc

hi
ng

 O
ffi

ce 5

MO 1

Figure 3.9: Setup in the D2D ex-
periment

cores, 64GB RAM, and four 10GbE NICs on the Emulab-PhantomNet EPC/LTE testbed [37].

3.8.1 Prototype and LTE Dataset

Prototype. We developed a detailed prototype of SoftBox that can work with LTE eNodeBs

equipped with our protocols. We emulate each mini DC using 10 OVS switches organized

into a two-level leaf-spine topology and a variable number of UE containers. In our large-

scale experiments, we interconnect mini DCs and simulated RANs based on a realistic flat

topology containing 1K OVS switches [118]. Our global controller is implemented on top of

RYU [41] with its two apps (Figure 3.4-a). The first one instantiates and migrates containers

using Docker [12] and Flocker [30] respectively. The second one runs our recursive traffic

steering scheme by configuring switches using OpenFlow. Inside DCs, our prototyped UE

containers run a minimal Linux and fully realize our design (Figure 3.4-b). Inside individual

UE containers, we (i) refactor the EPC data plane by building high-performance DPI, fire-

wall, NAT, buffers and charging/QoS NFs using the Netfilter [32] and nDPI [31] libraries to

process UEs’ data traffic and (ii) refactor the EPC control plane through developing the UE

controller with its three apps on top of RYU to process UEs’ signaling traffic (MobilityApp

is a modified MME [33]).

Large-scale LTE traces. We also collected LTE traces from 200 real UEs by deploying a

mobile app on the PhoneLab testbed [38]. Over 2months, we captured the UEs’ radio and data

messages with LTE networks (accessed their Qualcomm Diagnostic Interface) and their GPS

locations. We then developed simple heuristics (e.g., time-shifting, mixing) to synthesize

74

traces for 20M UEs based on the real ones. We built a RAN simulator to feed our prototype

and EPC systems with the data. For 20MUEs, our final dataset has 30 billion idle-active state

changes, 10B handovers, 40K cells, and UEs’ real-time location. Since our dataset does not

have the cells’ location needed for our container migration study and public databases have

little coverages for them, we used multiple clustering algorithms [70] to estimate the location

of cells based on different UEs’ GPS samples. For brevity, we do not explain them here.
Table 5: Average RTTs for the D2D traffic

 Propagation
delay (ms)

Tunnel mgmt.
delay (ms)

RTT
(ms)

SoftBox 10 0.78 21.56
EPC 20 2.33 44.67

0 7 14 21
Time (days)

50

75

100

R
e
d
u
ct

io
n
 i
n
 p

e
a
k

 o
v
e
ra

ll
C

P
U

 u
sa

g
e
 (

%
)

Improvement

Average Improvement

0 5 10 15 20
Number of UEs (in millions)

0

50

100

P
e
a
k

o
f

o
v
e
ra

ll
 C

P
U

 u
sa

g
e
 (

%
)

Optimized SoftBox

Basic SoftBox (Baseline)

Figure 3.10: Effects of optimizing idle UEs’ container

3.8.2 Evaluation of Basic SoftBox Architecture

We show that even the basic SoftBox is more scalable, flexible, and efficient than EPC.

Additional optimizations for SoftBox as detailed in Section 3.4, Section 3.6, Section 3.5,

and Section 3.7 are disabled in the following experiments.

8.2.1. Scalability w.r.t. CPU Cores. We measure the CPU cores needed by the EPC sys-

tems and our prototyped SoftBox (the global controller and UE containers) to handle a 20M

UE network.

Finding 1: provisioning and maintenance costs of UE containers is minimal. We

characterize the number of CPU cores that SoftBox need to run the UE controller for 20M

UEs. measure the throughput of our global controller running on one server. We generate

75

synthetic attach requests from turned-off UEs and UE container migration events for regis-

tered mobile UEs. Our multi-threaded controller can simultaneously process at least 400K

attach and 300K migration requests per second on the server. In attach events, it instantiates

UE containers and similar to EPC, programs one tunnel per-UE in its data plane (as we do

not show our traffic steering optimization discussed in Section 3.5). In migration events, it

randomly picks an eligible sink mini DC and server (as we do not show our migration opti-

mization in Section 3.6) and coordinates the old servers and new servers to do the container

migration. As per prior large-scale studies [86], the peak numbers of simultaneous attach

and handover events for 20M UEs are significantly below 400K and 300K (our dataset shows

a similar pattern). Thus, we were able to provide low latency services for 20M UEs (with

any migration latency threshold) by using 16 CPU cores for the global controller, which is a

minimal cost.

Finding 2. Our UE containers are lightweight and SoftBox is more scalable than

EPC systems. We now characterize the number of CPU cores that SoftBox needs for 20M

UE containers. Each of our container images is light-weight and 40MB on disk. Each

running container is assigned to a single core in a server. Each UE container has a high

performance and can forward packets at 9-10Gbps when it is highly customized. By generat-

ing synthetic traffic based on rates captured from real UEs in our LTE dataset, we observe

each container consumes at most 1.2% of the CPU core’s processing capacity. Also, it

occupies less than 0.5% of the total RAM on the server. As a result, we were able to si-

multaneously execute 80 UE containers on each core and around 1250 of them on each of

the servers. We have observed that OpenEPC and OAI EPC support at most 200 and 150

simultaneous UEs respectively. Compared to them, SoftBox requires 6.2-8.3× fewer CPU

cores to support any given number of UEs. For 20M UEs, we require 1.35M-1.88M fewer

cores than these EPC systems. Vertical slicing of the core, eliminating most the EPC com-

plex protocols, engineering lightweight UE containers are the main reasons for this efficiency.

76

8.2.2. Scalability w.r.t. Signaling Overhead. Using the same setup, we now show SoftBox

is more scalable than EPC systems in terms of signaling overhead. We connect a simulated

eNodeB and a UE to each of SoftBox, OpenEPC and OAI EPC. We measure the number of

signaling messages exchanged in them for the UE when it attaches, downloads a 10MB file,

and gracefully detaches. In this specific experiment, we do not study the handover operation

due to the limitations of OpenEPC and OAI EPC but this only underestimates the capability

of SoftBox in this regard.

Finding 3. SoftBox generates 86% fewer signaling messages in the core compared

to EPC. Table 4 shows the breakdown of signaling messages exchanged in OpenEPC (OAI

EPC is similar) and SoftBox. OpenEPC creates 134 signaling messages and issues 385

database queries to handle the attach/detach procedure. This high overhead is because the

EPC architecture distributes the policies associated with the UE among different nodes,

continuously synchronizing them using complex protocols. SoftBox cuts these overheads

by consolidating the control and data functions for the UE into a container and eliminating

EPC’s complex protocols (e.g., GTP-C/U, Diameter, SCTP). For backward compatibility

purposes, SoftBox does not change the EPC’s signaling sessions (NAS) with the UE so the

NAS message type is common among SoftBox and OpenEPC. As shown in Table 4, SoftBox

generates 86% and 92% fewer control and DB messages, respectively, for the UE than EPC.

This is significant in large networks, e.g., SoftBox produces 23.2M fewer signaling messages

for 20M UEs.

8.2.3. Performance w.r.t. Data Plane Delay. The D2D traffic that is generated through

communication between nearby devices (e.g., autonomous cars) is expected to surge in 5G.

Most of D2D applications need small end-to-end delays. We show that SoftBox is more

efficient than EPC in supporting D2D low-latency communication due to consolidating

network policies close to RANs. In a simple experiment, we have two UEs attached to

77

different eNodeBs and ping each other through a SoftBox and OpenEPC (Figure 3.9). We

measure the data plane delay experienced by the UEs in terms of the propagation and tunnel

management delays inside the two core networks. For a meaningful comparison, we assume

an operator has two physical mobile switching offices (MOs) and the components of both

networks are similarly distributed among them: we place OpenEPC’s PCRF-PGW in office

MO2 and its MME-SGW-HSS in office MO1 similar to real deployments [24]. SoftBox has

an SDN switch, a mini DC, and a global controller in MO1, and another switch in MO2.

Finding 4. SoftBox has lower RTTs for D2D traffic than similarly deployed EPC.

First, SoftBox incurs 50% less propagation delay for the D2D traffic than EPC in the above

deployment since it creates two UE containers in the DC close to them and selects a more

direct path between the UEs through them (Table 5). In contrast, EPC inefficiently routes

the D2D traffic to the PGW for the policy enforcement. Second, EPC’s distributed tunneling

protocol (GTP-C/U in Figure 3.2) is very complex as explained in Section 3.3.2. Thus, we

observe EPC has 2.9× higher processing delay compared to SoftBox.

3.8.3 Evaluation of Optimized SoftBox Architecture

In this part, we evaluate the optimized version of SoftBox and show that our four optimiza-

tion techniques presented in Section 3.4, Section 3.5, Section 3.6, and Section 3.7 lead to

substantial improvements of SoftBox’s performance.

8.3.1. Benefits of Idle-mode Optimization.We first show that our optimization of idle UEs’

container (in Section 3.4) further improves SoftBox’s scalability. Recall that we placed a

module inside UE containers, which listens to UE state changes. When the UE becomes

idle, it freezes all the container NFs using cgroupfreezer (except MobilityApp that always

run for the paging operation). When the UE becomes active, it unfreezes them quickly.

Our optimized SoftBox is compared to the basic SoftBox as the baseline, which keeps UE

containers and their internal NFs active regardless of the UE state. Note that stopping idle

78

UEs’ containers did not meet our requirements. Based on the methodology described earlier,

our RAN simulator feeds our prototype with LTE traces (UEs’ signaling/data traffic).

Finding 5. Our idle-mode optimization cuts the peak of overall CPU usage of UE

containers by 51-73%. Figure 3.10-Right shows that instantaneous peak of CPU usage of

UE containers for a variable number of UEs in the optimized and basic SoftBox networks.

We observe that the optimization lowers the global peak of usage computed over 3 weeks by

almost 51-73% regardless of the number of attached UEs. The reason is that a small fraction

of UEs is simultaneously in the active mode at any point in time, which could be true for

any cellular network of any size. Figure 3.10-Left provides a daily view of the CPU usage

optimization of 20M UE containers over 3 weeks, showing that our optimization reduces

local (daily) peaks of CPU usage by 65-82%. The dramatic savings suggest the potential for

dynamically packing more containers on underutilized CPU cores, and reducing the overall

needed CPU cores. We leave this to future work.

8.3.2. Benefits of Migration Optimization. Using the same LTE traces, we show that our

migration optimization of UE containers simultaneously and efficiently (i) reduces the num-

ber of migrations and (ii) balances the load of UE containers on DCs. In a broader sense, it

enables us to provision fewer resources for the global controller and UE containers for a given

number of UEs. Our design of distributed migration scheme, online migration algorithms

(least-loaded-mobility (LLM), least-loaded-proximity (LLP)), and our implementation of

them discussed in Section 3.6 and earlier in this section. To show the potential for migration

optimization, we compare the LLM/LLP-equipped SoftBox with the unoptimized SoftBox

(baseline) that chooses an eligible DC in migration events randomly. To evaluate the per-

formance of our algorithms, we conduct Empirical Competitive Analysis: we measure the

performance of the LLM/LLP algorithm over optimal offline algorithms. In our experiments,

we change different parameters (e.g., # DCs, # UEs, migration threshold).

Finding 6: Our optimization significantly cuts the container migration costs in low

79

4 8 12 16 20
Number of UEs (millions)

0.0

1.5

3.0

4.5

P
e
a
k

#
 o

f
m

ig
ra

ti
o
n
s

 (
m

ill
io

n
s

p
e
r

se
co

n
d
)

Baseline

SoftBox-LLP

SoftBox-LLM

Offline-Optimal

4 8 12 16 20
Number of UEs (millions)

0.0

0.5

1.0

1.5

2.0

P
e
a
k

D
C

 l
o
a
d
 w

.r
.t

 #
 o

f
 U

E
 c

o
n
ta

in
e
rs

 (
m

ill
io

n
s)

Baseline

SoftBox-LLP

SoftBox-LLM

Offline-Optimal

Figure 3.11: Effects of optimizing UE container migrations

0 7 14
Time (days)

0.0

0.8

1.6

P
e
a
k

#
 o

f
m

ig
ra

ti
o
n
s

 (
m

ill
io

n
s

p
e
r

se
co

n
d
)

Offline-optimal

SoftBox-LLP SoftBox-LLM

0 7 14
Time (days)

0.0

0.4

0.8

P
e
a
k

D
C

 l
o
a
d
 w

.r
.t

 #
 o

f
 U

E
 c

o
n
ta

in
e
rs

 (
m

ill
io

n
s)

Offline-optimal

SoftBox-LLP SoftBox-LLM

Figure 3.12: Efficiency of our migration algorithms
latency SoftBox networks. We study an extreme case where the goal is to provide ultra-low

latency services for all UEs in the network. Thus, we set the migration threshold (max UE-

UE container latency) to 0.02ms. This extremely low value puts SoftBox under significant

pressure and thus better illustrates the implications of our optimization. Moreover, we evenly

distribute 100 DCs among cells and vary the number of UEs. Figure 3.11 shows the peak

number of migrations per second and the peak DC load for different systems over 2 weeks

with respect to the UE count. Compared to the baseline, we observe the online LLP and

LLM algorithms on average reduce the peak number of migrations by up to 66% and 77%.

Also, LLP and LLM on average cause by about 78% and 71% better DC load balancing

respectively. Figure 3.12 shows the daily (local) peaks of UE container migrations and DC

loads. We observe our LLM/LLP algorithm is close to the optimal offline algorithm for

each goal. LLM is more efficient than LLP in reducing migrations due to considering UEs’

mobility pattern in the past time windows (set to 7 days) in its decisions (Figure 3.12-Left).

LLP shows a higher performance in the DC load balancing than LLM (Figure 3.12-Right)

as it causes more migrations and thus balances the DCs load more frequently.

80

Finding 7: Our online algorithms for the migration optimization are efficient and

reasonably close to optimal offline algorithms. We show the efficiency of our algorithms

is not limited to one case by conducting empirical competitive analysis (defined earlier). We

repeat the above 2-week long experiment for every possible point in the space where the

migration threshold varies from 0.005 to 10ms, and the number of DCs varies from 100 to

1K. In this large set of experiments, (i) LLM and LLP are at most 2.99× and 8.53× worse

than the optimal offline migration optimizer, and (ii) LLM and LLP are at most 3.83× and

2.91× worse than the optimal offline DC load balancer. Overall, LLM is more efficient than

LLP. Note that LLM and LLP are multi-objective and online while the optimal algorithms

are single-objective and offline, so we believe these are promising results.

8.3.3. Benefit of Traffic Steering Optimization.We now validate if our enhanced segment

routing scheme steering UEs traffic through UE containers substantially minimizes (i) flow

rules in SoftBox’s SDN data plane and (2) flow rule updates when UEs and UE containers

move in the network. Our baseline is to establish a separate tunnel for each UE similar to

EPC. Recall that our large-scale steering problem is unique to SoftBox and there is no other

prior solution for it to the best of our knowledge. We continue using the previous setup with

the container migration threshold of 0.02 ms and 100 DCs.

Finding 8: Our enhanced segment routing significantly reduces tunnels and flow

rules in SoftBox. As the number of mobile UEs increases from 5M to 20M, Figure3.13-Left

depicts the maximum number of flow rules across SDN switches in the network (When

both downlink and uplink traffic are steered through UE containers). The max value stays

below 1K for the optimized SoftBox since it aggregates different UEs’ traffic into small set

of pre-established tunnel segments (derived through our recursive middlebox abstraction)

and employs source routing at RANs and Internet gateways to minimize rules needed for

switching tunnels in the core. Meanwhile, the max value rapidly grows to 447K for the

baseline due to its installation of two end-to-end tunnels per UE into the data plane. It is

81

Table 6: Effects of our container discovery optimization

Cache time at eNBs (minute) 0 1 2 5 10
Max ratio of discovery traffic-to-
data traffic per second (X 10-10)

9.78 3.24 2.57 2.27 2.12

	
	
Number of UEs (M) 5 10 15 20

Discovery
Time (ms)

SoftBox 0.051 0.054 0.058 0.06
Baseline 2.22 3.21 4.54 8.72

	

 Baseline Opt. SoftBox
0

2

4

M
a
x
.
S
D

N
 s

w
it

ch
 u

p
d
a
te

 r

a
te

 (
M

ill
io

n
 p

e
r

se
c) Aggregation switches

Access switches

Figure 3.13: Effects of our traffic steering optimization.
worthwhile that the optimized SoftBox demonstrates on average 0.5% and 0.3% smaller

packet drops and forwarding delays compared to the baseline as it precomputes and reuses

minimal tunnels in the data plane.

Finding 9: Our enhanced segment routing minimizes the data plane reconfigura-

tion rate in peak mobility. Because UE containers and UEs move, established tunnels for

UEs must be modified to ensure correct traffic steering. For 20M mobile UEs, Figure3.13-

Right depicts the flow rule modification rates in the optimized SoftBox and baseline. A

smaller update rate means a lower risk of transient packet forwarding delays. The baseline

issues by up to 4.7M rule updates per sec to the SDN switches in peak mobility hours. Due

to establishing a separate tunnel for each UE, it is more sensitive to mobility events and

modifies rules in many switches in response to them. A large fraction of the updates by the

baseline maps to aggregation layer switches in the WAN and mini DCs. Updating this type

of switches is riskier than edge layer software switches on servers. In contrast, because the

optimized SoftBox reuses pre-established tunnel segments in the data plane, it does not need

to update flow rules in its SDN switches. It only issues at most 700K per sec commands (not

flow rules) to access layer switches on servers to connect UE containers to existing tunnel

segments (see Section 3.5).

82

8.3.4. Benefits of UE container Discovery Optimization. In SoftBox, a UE container dis-

covery request is triggered by an eNodeB when it starts serving a UE but does not know the

network location of its corresponding UE controller. We designed a distributed mobility-

aware protocol between eNodeBs and UE containers to optimize the performance and

scalability of SoftBox in handling such discovery requests (Section 3.7.1). Our key idea was

to locally resolve them by placing a minimal container registry service at eNodeBs and having

UE controllers proactively and dynamically register with them as UEs move in the network.

Here, we compare our protocol against the centralized approach as the baseline, where a

global registry service co-located with our global controller handles discovery requests from

RANs.

Finding 10: Our optimized mobility-aware container discovery protocol has near

zero resolution time. For a variable number of mobile UEs from 5M to 20M in the network,

Table 6 shows the average of UE container discovery times aggregated across different eN-

odeBs. We observe that our protocol offers near-zero UE container discovery times because

it enables eNodeBs to resolve their queries locally. In contrast, the centralized approach

has large discovery times of 2.2-8.72ms, increasing the control plane delay in SoftBox and

degrading QoE experienced by mobile UEs. There are two reasons for this trend. First, the

queuing delay at the central registry increases with respect to the number of UEs. Second, the

propagation delay caused by round trips between RANs and the central registry significantly

contributes to the discovery time.

3.9 Related Work

Software EPC systems. Many virtual EPC systems (e.g., [108, 57]) port each of the EPC

nodes to a VM to provision and scale the nodes based on time-varying traffic load. They offer

almost no changes to the EPC architecture, build on EPC’s inefficient policy management

scheme, and thus inherit most of its weaknesses. Existing SDN EPC systems in the literature

83

(e.g., [86, 99, 28]) are targeted on providing independent scaling of control and data planes

and global routing of traffic in EPC. These systems decouple the EPC control and data

planes, centralize its control plane (i.e., MME, PCRF) on a logical SDN controller and

disaggregate its data plane (e.g., in S/PGW-Data) into single-function middleboxes (e.g.,

DPI). The decoupling/disaggregation further scatters the EPC policies around the network

and reproduces the known EPC issues in the SDN environment [79]. In a parallel work,

PEPC [106] suggests a per-UE EPC-in-a-box design to increase the EPC packet forwarding

rate. While there are some similarities between the SoftBox and PEPC proposals, differences

between them in terms of architecture and functionality are major. SoftBox is a clean-slate

architecture that completely redesigns and optimizes the core while PEPC is a different form

of vEPC deployment. Unlike SoftBox, PEPC (i) does not provide mechanisms for realizing

ultra-low delays in the core, (ii) its signaling overhead is similar to EPC due to running

EPC’s complex nodes (e.g., HSS) and protocols (e.g., Diameter, GTP-C, SCTP), and (iii)

more importantly, lacks global SDN/NFV control over the core that SoftBox provides to

identify and address four critical optimization problems.

Multi access edge computing (MEC) [104] is a conceptual proposal for deploying

general cloud services close to users in cellular networks. ACACIA [64] is an MEC real-

ization for the AR application. Unlike SoftBox, MEC is not a cellular core architecture and

almost does not touch the EPC stack. CloudLet [113] and MobiScud [124] create per-user

boxes similar to SoftBox but for a different problem. They view the core as a “blackbox”

and accelerate UE apps by offloading their execution to clouds. In contrast, SoftBox is an

architecture redesigning the core from ground up.

NFV research. Simple [107] uses OpenFlow to steer traffic through distributed middle-

box chains. Such systems are designed for the traditional NFV. SoftBox consolidates each

UE’s NFs into a box, thus eliminating such complexities. Moreover, a wide range of packet

processing platforms (e.g., DPDK), high-performance NFV libraries (e.g., ClickOS [93])

improve the efficiency of software packet processing. SoftBox can benefit from them. Our

84

prototype uses Netfilter while achieving a high throughput.

Container networking/migration. In the ISP context, CORD [48] leverages containers

and virtualizes the single-point functionality on a “residential gateway” into a single container

in the central office. SoftBox is conceptually different from CORD as it consolidates the

distributed EPC into UE containers close to RANs and solves challenges specific to cellular

networks (Section 3.1, Section 3.3.2). There are works in VM placement algorithms both for

intra and inter DCs [95, 53]. These algorithms are not well-suited for our container migration

problem dealing with unplanned UE mobility and orders of magnitude more boxes.

85

CHAPTER IV

SoftMoW: A Scalable and Reconfigurable 5G WAN

Architecture

4.1 Introduction

In the previous two chapters, we focused on designing and optimizing citywide and statewide

5G core networks. In this chapter, we focus on the challenges associated with managing

hyper-scale nationwide cellular wide area networks (WANs).

PGW

SGW1

SGWn

S1U

S1U

S5

S5

Internet

S1U

S1U

Region 1

Region 2

Figure 4.1: An LTE WAN with two regions

The current nationwide LTE WAN architecture is organized into very large and rigid

regions (Figure 4.1). Each large region has a core network and a radio access network.

The core network contains an Internet edge comprised of packet data network gateways

(PGWs). The radio network consists of only base stations. In this architecture, there are

86

minimal control plane and data plane interactions among regions other than distributed

interference management at radio access networks and limited coordination for mobility (e.g.

no inter-PGW mobility [135]). All users’ outgoing traffic must traverse a PGW and possibly

go through the Internet.

This rigid WAN architecture is becoming harder and harder to support new trends of

mobile traffic. First, mobile application performance is seriously impacted by the lack of

Internet egress points per region. Specifically, as shown by a recent study [131], the lack

of sufficiently close Internet egress points is a major cause of path inflation, suboptimal

routing, and QoS degradation in large operators. Second, the continued exponential growth

of mobile traffic puts tremendous pressure on the scalability of PGWs. Third, the fast growth

of signaling traffic known as the signaling storm problem [29] poses a major challenge to

the scalability of the control plane.

Rather than organizing mobile WANs as rigid regions with no direct traffic transit, we

argue that cellular networks should have a seamlessly inter-connected core network with a

logically centralized control plane. The inter-connected core network should consist of a

fabric of simple core switches and a distributed set of middleboxes (software or hardware).

The control plane directs traffic through efficient network paths that might cross region

boundaries rather than exiting to the Internet directly from the origin region. The control

plane should also globally support seamless UE mobility and optimize the performance of

mobile traffic. For example, mobile traffic routing should be globally optimized; regions

should be reconfigured to adapt to its workload.

Such an architecture raises unique challenges in scalability in comparison with data-

center networks [76, 102] and inter-data center WANs [85, 83] since the cellular WAN has

its own unique properties and challenges. First, the logically centralized control plane needs

to control tens of thousands of switches and middleboxes, and hundreds of thousands of base

stations in the data plane. A control plane with many controller instances in one data center

cannot effectively handle the signaling load (e.g., connection setups and handovers) from

87

hundreds of millions of subscribers distributed throughout a continent. Second, without

global network states and a single controller exerting control, it will be hard to perform

network wide routing optimization and inter-region handover minimization.

4.1.1 Summary of Contributions

To address these problems, we present SoftMoW, a scalable network-wide control plane

that supports global optimization and control plane reconfiguration. SoftMoW makes the

following contributions.

• First, SoftMoW recursively builds up the hierarchical control plane with novel abstrac-

tions consisting of both control plane and data plane entities. Key to our SoftMoW

architecture is the controller. It is designed to be modular which consists of the network

operating system (NOS), operator applications and the recursive abstraction application

(RecA). NOS provides core services such as routing and path implementation. NOS

does not handle cellular specific functions. Operator specific functions (e.g. mobility

management) are implemented as applications on top of NOS. All recursive abstraction

functions are implemented in RecA.

• Second, to enable scalable end-to-end path setup, SoftMoW presents a novel label

swapping mechanism such that each controller only operates on its logical topology

and each switch along a flow’s path only sees at most one label. This new mechanism

reduces the states in the switches.

• Third, SoftMoW designs new network-wide optimization functions such as optimal

routing and region optimization to minimize inter-region handover.

• Fourth, we demonstrate that SoftMoW improves the performance, flexibility and scala-

bility of cellular WAN using real LTE network traces with thousands of base stations

and millions of subscribers. Our evaluation shows that path inflation and inter-region

handovers can be reduced by up to 60% and 44% respectively.

88

4.2 SoftMoW Design Overview

SoftMoW’s goal is to design a scalable cellular WAN architecture (both the control plane

and data plane) to enable network-wide optimizations. We introduce the components in a

SoftMoW network, the design challenges and our solutions.

4.2.1 SoftMoW Components

SoftMoW does not require expensive, inflexible and specialized devices (e.g., PGWs and

SGWs) that integrate control and data plane operations with middlebox functions. SoftMoW

does not change the LTE protocols used in the user equipment (UE) and the protocols between

UE and base stations. SoftMoW has the following high-level architectural components.

Nation-wide inter-connected core networks. SoftMoW distributes and inter-connects

programmable switches nation-wide. The network in one region should have enough egress

points through a subset of the switches. An egress point can connect to other regions of the

same carrier, other carriers’ mobile networks, Internet service providers or content providers

at peering points to exchange traffic. This eliminates the internal path inflation problem

caused by the lack of sufficiently close egress points and enhances end-to-end QoS metrics

by offering better diversity of external paths.

Radio access networks. Radio access networks consist of base stations which are

organized and inter-connected into base station group (BS group) with different topologies

(e.g., ring, mesh, and spoke-hub) to ensure intra-BS-group fast-path communications. BS

groups are connected to core network switches locally. We assume each base station has an

access switch performing fine-grained packet classifications on traffic from UEs.

Middleboxes and service policies. SoftMoW departs from the centralized policy en-

forcement at PGWs and utilizes middleboxes which can be flexibly placed throughout the

cellular WAN. For scalability, middlebox functions will be mostly limited to edge networks of

the cellular WAN. Middlebox instances can potentially implement any sophisticated network

functions. The functions can be specific to application types (e.g., noise cancellation func-

89

tion and video transcoding function) and operators (e.g., charging and billing), and security

(e.g., firewall, and IDS). A service policy is then met by directing traffic through a partially

ordered set (also known as poset) of middlebox types. Given the location and utilization of

middlebox instances, the controller can implement a poset using various combinations of

physical instances.

Controller. The controller enforces a rich set of service policies on subscribers’ network

access through new global network applications. These applications are based on a global

view of the inter-connected core networks, which are not available in current LTE networks

or recently proposed cellular architectures such as SoftCell [126]. Specifically, the controller

sets up end-to-end optimal paths for aggregate flows and minimizes the number of inter

region handovers.

4.2.2 Design Challenges and Solutions

Challenge 1: scalable control plane. The logically centralized control plane needs

to control tens of thousands of switches and middleboxes, hundreds of thousands of base

stations in the data plane. A control plane with many controller instances in one data center

(e.g., [87, 58]) will not effectively handle the signaling loads (e.g., connection setups and

handover events) from hundreds of millions of subscribers distributed throughout a continent.

Also, a flat decentralized architecture where local controllers only communicate with their

neighbors (e.g., [123]) is not scalable enough to support fast and global optimizations. It

requires distributed algorithms that involve many rounds of message exchanges.

Solution: recursively build up a hierarchical and reconfigurable control plane.

SoftMoW hierarchically constructs a network-wide control plane that is reconfigured in re-

sponse to the signaling loads and traffic patterns. The control plane consists of geographically

distributed controllers that are organized into a tree structure. Recursively from the leaf level,

each controller (except the root) exposes a small number of logical and reconfigurable data

plane entities to its immediate parent. These entities aggregate many switches, middleboxes

90

and base stations. To enable global optimization such as routing optimization by ancestor

controllers, the exposed logical switches and their interconnections are described as a virtual

fabric with annotated bandwidth, latency, and hop count information.

Challenge 2: scalable end-to-end path implementation. Our cellular WAN provides

connections between millions of UEs and thousands of Internet egress points, the number of

routing states in the core network switches is tremendous. One way to implement the routes

is to aggregate flows traversing the same path, assign them one label and route on labels (e.g.

MPLS). In a decentralized flat control plane, implementing a label-switched path involves

all controllers and switches on the path. To do this, each controller has to know the global

state. Keeping entire data plane states consistent at each controller or storing them into a

central data base is not scalable. In SoftMoW, each controller has a limited summarized

view over a set of logical entities to improve scalability, but this makes the state management

and path implementation more challenging.

Solution: scalable recursive label swapping. SoftMoW leverages its tree structured

control plane architecture. Using a novel recursive label swapping approach, SoftMoW

implements end-to-end paths while keeping per packet overhead minimal. An ancestor con-

troller pushes labels onto packets of matching flows traversing its logical and reconfigurable

switches. Recursively, these labels will be replaced with local labels by each lower level

controllers. At the physical data plane switches, only a local label is pushed onto packets of

matching flows, which each represents a local regional path segment. When packets leaving

a region, the local label is popped off and an ancestor’s label is pushed.

Challenge 3: scalable topology discovery and maintenance. Topology discovery is

easy in flat multi-controller settings. Each switch is controlled by one controller instance. A

controller sends discovery messages from all ports of registered switches. When a switch

receives a discovery message, it forwards the message to the controller. The controller

then maintains the link between the source and destination switches and stores link-specific

information (e.g., port name, link capacity). In SoftMoW, detecting links is more challeng-

91

ing because each cross-region link is visible to only one non-leaf controller; the non-leaf

controller needs to discover it without breaking the abstraction.

Solution: recursive discovery protocol. We design and introduce a novel global dis-

covery protocol allowing recursive discovery of topologies by each controller. Each leaf

controller first discovers its own physical topology. Then the parent controller is exposed

with a logical topology and can discover the cross-region links it controls. This process

continues until the root controller discovers its topology. Controllers at the same level can

perform discovery at the same time in parallel. The sequential process only applies to the

bootstrapping phase. During normal operations, periodical discovery messages will be

carried out concurrently.

Challenge 4: network-wide optimization. SoftMoW’s goal is to enable global opti-

mizations for control plane and data plane functions such as optimal routing and inter-region

handover minimization. Maintaining and performing optimization with global network states

for a country-wide network is not scalable.

Solution: design algorithms on abstract topologies of hierarchical controllers. Soft-

MoW supports global network optimization without a global network state at each controller.

We demonstrate this feature using two important network functions. First, application traffic

may have its own requirements on the path (e.g. low-latency path for delay-sensitive VoIP).

In SoftMoW, the path is computed by controllers from the leaf to the root. If a local optimal

path meeting the application requirements is found, it is used without further delegating to

ancestor controllers. We show that the root controller is guaranteed to find an optimal path

in terms of performance metrics (e.g., latency and hop count). Second, an inter-region han-

dover requires the involvement of an ancestor controller, the source controller and destination

controller. In this procedure, new paths have to be implemented and in-flight packets have to

be diverted to the target base station. To minimize control plane load, SoftMoW performs

inter region handover optimization. The optimization is done from the root controller to leaf

controllers. We show that the process converges if handover traffic pattern does not change

92

during the optimization.

4.3 SoftMoW Control Plane

We first give an overview of how we recursively construct the control plane and the logical

data plane, and present the design of the controller architecture.

4.3.1 Recursive Constructions

As shown in Figure 4.2, SoftMoW hierarchically builds a reconfigurable network-wide

control plane. The control plane consists of geographically distributed controllers that are

organized into a tree structure, each controller associated with a level number and a globally

unique ID. The topmost node is the root controller which can make coarse-grained decisions

for the entire network, and level 1 nodes are leaf controllers close to the physical data plane.

The number of levels, the number of children per node, and the geographical location of

each node can be determined based on fine-grained latency budgets of control functions [25]

as well as the density and size of the physical topology.

SoftMoW partitions the physical data plane network into logical regions whose borders

can change over time based on traffic and failure patterns. Each leaf region is managed by a

leaf controller. In Figure 4.2, leaf controllers (level-1) discover their physical switches and

build the level-1 data plane, and they also abstract some entities for level-2 controllers. The

level-2 controllers obtain logical network entities from the leaf controllers, discover their

logical level-2 data plane and also make logical network entities. Finally, the root controller

(level-3) obtains logical network entities from the level-2 controllers and builds the level-3

data plane. When building these data planes recursively from the leaf level, each controller

simplifies its topology and exposes the following three types of logical and reconfigurable

data plane entities to its parent.

• Gigantic Switch (G-switch) aggregates a number of physical or gigantic switches and

the controller. A G-switch is programmable and characterized by an ID, ports, and a

93

C0 C1 C2

C3 C4

C5

Group 1 Group 2
BS1 BS2 BS3 BS4

G-BS1 G-BS2

G-BS3

GS1 GS2

GS4

GS3

GS5

SW1 SW2 SW3 SW4 SW5

SW6

Leaf Region 1 Leaf Region 2 Leaf Region 3

Root Region

Parent Region 1 Parent Region 2

Level 2
Level 3

Level 1

Abstraction
Figure 4.2: A 3-level SoftMoW architecture

virtual fabric (will be clear in Section 4.3.2) and flow table. Each port of a G-switch

corresponds to border ports of its constituent switches, i.e. is connected to either Internet

domains (e.g., ISP) or neighboring regions.

• Gigantic Middlebox (G-middlebox) hides physical or G-middlebox instances of the

same type and function (e.g., light weight DPI) and their controller. A G-middlebox can

be attached to G-switches, and is identified with the sum of the processing capacities

and utilization of constituent instances.

• Gigantic Base station (G-BS) summarizes one or more adjacent BS groups or G-BSes,

and their controller. A G-BS inherits the union of the radio coverage of underlying base

stations and connects to ports of a G-switch.

Abstracting the logical region for the parent. To build the first logical data plane (level

2), each leaf controller builds and exposes a single G-switch for all switches, a G-middlebox

94

for all middlebox instances of the same type, a G-BS for one or more adjacent BS groups

(will be clear in Section 4.5.2). Intuitively, a parent’s logical region is the union of regions

exposed from its children in the tree. Recursively, non-leaf controllers except the root (e.g.,

level-2 controllers in Figure 4.2) perform the same procedure on G-middleboxes, G-switches,

and G-BSes located in their logical region.

Reconfiguration of logical data plane devices. Each non-leaf controller can reconfigure

logical entities exposed from its children. This gives each controller the ability to optimize

its descendants’ control plane hierarchy and data plane operations without a global state,

solely based on its partial view and abstract topology. Any non-leaf controller can initiate a

reconfiguration that indirectly causes controllers in its subtree to level-by-level from bottom-

to-top interact with each other to modify the exposed logical entities. This new feature

enables interesting global applications such as minimizing “east-west” control load in the

cross-controller handovers (see Section 4.5).

4.3.2 G-Switch Virtual Fabric

To enable global optimization, e.g., traffic engineering and optimal routing, each controller in

the tree hierarchy should know a few pieces information about the internal inter-connections

behind its G-switches. SoftMoW exposes a virtual switch fabric for each G-switch. A

virtual switch fabric (vFabric) is a succinct representation allowing the parent controller to

have three pieces of information per G-switch port pair:latency, hop count, and available

bandwidth.

Using standard shortest path algorithms, each child controller constructs these metrics

by computing multiple shortest paths for each port pair in its topology. Note that, for the

bandwidth metric, different port pairs of the G-switch can share bottleneck links. In this case,

if the available bandwidth exposed for a port pair in the child controller’s data plane changes

more than a predetermined threshold, the child controller will recompute new bandwidths,

update the vFabric and notify the parent controller.

95

4.3.3 Controller Architecture

We design a modular controller architecture as shown in Figure 4.3. A SoftMoW controller

consists of a network operating system (NOS), operator applications and an application

called RecA that implements the recursive abstraction.

Southbound API

Northbound API

Eastbound API

Topology Discovery Path Implementation Routing NIB

Core Services

Topology Abstraction
RecA Agent

Region Optimization Mobility …

Operator Applications
SoftMoW Controller

To Parent Controller

G-switch

G-BS

To#Managment
#########Plane

Figure 4.3: SoftMoW controller architecture

Network operating system. SoftMoW expects a number of core services: path imple-

mentation, topology discovery, routing and network information base (NIB) query. SoftMoW

NOS can reuse any existing controller platforms that expose these services through a north-

bound API. SoftMoW NOS is agnostic of cellular specific functions and other controllers in

the hierarchy. NOS communicates with switches (logical or physical) using a southbound

API, e.g. OpenFlow API extended to support our virtual fabric feature.

Operator applications. SoftMoW cellular specific functions are implemented as opera-

tor applications on top of the NOS, e.g. functions similar to LTE such as home subscriber

server (HSS), policy charging and rule functions (PCRF), mobility and new functions such

as region optimization and routing optimization. Applications can use the northbound API

to get network information (e.g. topology) and set up their configurations (e.g. path setup,

sending messages).

Recursive abstraction application (RecA). To implement the recursive abstraction,

we design a NOS application called RecA. RecA encapsulates all functions related to the

recursive abstraction and provides an eastbound API for operator applications. RecA has two

96

basic modules: agent and topology abstraction. RecA’s topology abstraction module queries

the NIB using the NOS northbound API. It abstracts a network topology (including switches,

base stations and middleboxes) as one G-switch, a number of G-BSes (border BS groups

need to be exposed in a specific way, will be clear in Section 4.5) and one G-middlebox of

each type. The RecA agent communicates with a parent controller (if any). For each logical

device, the agent establishes a channel to its parent controller. This way logical devices act

as physical ones (e.g., a G-switch acts as a physical switch).

RecA provides the eastbound API to other operator applications. An operator application

can register its message type in RecA, and give messages that it cannot handle to RecA;

then RecA will send the message to its parent controller as a Packet-In event. The agent

also handles messages from the parent. If a message is about path implementation, the

agent sends it to the topology abstraction module, which translates the message to multiple

messages using the current network view of NIB; if the message is of a type registered by

an operator application, it is sent to the application. RecA and operator applications use

the northbound API to send messages to logical (child controllers) and physical data plane

entities.

Management plane. The management plane bootstraps the recursive control plane. It

configures all controllers in the hierarchy via dedicated channels (e.g. assigns IP addresses,

and region identifier, and configures the tree structure). The RecA at each controller exports

its topology to the management plane. The region optimization applications communi-

cate with the management plane to reconfigure local or physical network devices. The

management plane also coordinates UE state transfer during region optimization.

4.4 Core Services

SoftMoW core services provided by the network operating system includes the NIB, topol-

ogy discovery, routing and path implementation. Similar to the NIB in other controller

designs [87], SoftMoW’s NIB consists of network devices, device type (e.g. base station,

97

middlebox, switch), links and their metrics. We assume standard mechanisms (e.g. those

in [87]) to gather NIB and maintain NIB’s consistency. The NOS has visibility of its own

local network topology (physical or logical), does not maintain UE state, is not aware of

any ancestor or descendant controllers (may communicate with peer controllers). Now we

proceed to present the other three core services.

4.4.1 Recursive Topology Discovery

SoftMoW presents the first topology discovery protocol in a recursively built control plane

architecture. Topology discovery in SoftMoW is much more challenging than in flat archi-

tectures. This is because only leaf controllers have direct control over physical switches.

Yet each inter G-switch link is physical and is only visible to the ancestor controller of both

endpoints of the link.

In SoftMoW, each controller discovers a subset of total links of the physical topology.

Data plane switches and links (logical and physical) are discovered sequentially from bottom

to top; controllers at each level can discover their (inter G-switch) links in parallel. We now

proceed to describe the procedures of topology discovery: G-switch discovery, inter G-switch

link discovery and Computation of G-switch abstraction. These procedures are performed

by RecA and the topology discovery module. Base stations, middleboxes and links with

them as endpoints can also be discovered similarly. If base stations and middleboxes do not

implement our discovery protocol, they can also be configured by the management plane.

4.4.1.1 G-switch Discovery

Similar to physical switches, the RecA agent of each non-root controller connects to the

parent controller. After a controller starts, its topology discovery module first discovers

all switches (G-switches or physical switches) in its region. If the switch type is G-switch,

the controller also performs a feature request to obtain the virtual fabric information. The

G-switch device information is stored in NIB. The controllers use the southbound API (e.g.,

98

Openflow) to get the G-switch information.

4.4.1.2 Inter G-switch Link Discovery

Link discovery message. After G-switch discovery, a controller uses inter G-switch Link

Discovery Protocol to find the links between its G-switches. For each G-switch port, it

initiates a link discovery message, which has a meta data field and a stack field. The link

discovery message traverses through the controller hierarchy down to the physical data plane,

goes through a physical link, and is reported from the receiving switch back to its origin

along the controller hierarchy. The meta data field carries the properties of the traversed

physical link (e.g., latency and loss rate), which is filled by the leaf controller on its path.

The stack stores the traversed path in the controller hierarchy with the format of (Controller

ID, G-switch ID, G-switch port).

Origination path. In more detail, when the topology discovery module in a controller

discovers inter G-switch links, link discovery messages are sent out from each port of G-

switches (which is actually received by the corresponding child controller). Intuitively, the

link discovery message recursively is passed to lower-level child controllers and finally sent

out of a port of a physical switch. The initiating controller pushes its ID, the G-switch ID

and the port onto the stack. When the RecA agent of a child controller receives the message

from its parent, the message is forwarded to the RecA topology abstraction module. This

module extracts the G-switch and port from the top of the stack, and maps them to one of its

G-switches and its port. Then, RecA pushes its ID, the G-switch ID and port onto the stack.

If the controller is a leaf controller, it also encodes meta data of the physical link into the

meta data field. RecA calls the northbound API SendMsg(switch, port, msg) to send the

message.

Return path. Both topology discovery module and RecA register the link discovery

Packet-In message from the lower-level. When a controller receives a link discovery message

from one of its G-switches with an incoming port. It pops the stack to get the (Controller ID,

99

G-switch ID, G-switch port). In the topology discovery module, if the popped controller ID

is its ID, the link discovery message has been originated by itself, so a new inter G-switch

link is discovered. This inter G-switch link is added to the NIB of the current controller. In

RecA, if the controller ID is not its ID and the stack is not empty, the link discovery message

is reported to the parent by the RecA agent; if the stack is empty, the link discovery message

is dropped indicating the link discovery message can not return to the initiating controller

and there is no inter G-switch link on the path.

SW1$ SW2$

C1$

SW3$ SW4$

C2$
C0$

(C0,$GS1,$p1)$

(C0,$GS1,$p1)$
(C1,$SW2,$p2)$

(C0,$GS1,$p1)$
(C1,$SW2,$p2)$

(SW3,$p3)$

(C0,$GS1,$p1)$
(GS2,$p4)$

(1)$

(2)$

(3)$

(4)$GS1$ GS2$

Stack$Payload$
Figure 4.4: A link discovery example in SoftMoW

Example. Figure 4.4 shows an example of inter G-switch link discovery. The root

controller intends to discover the link between G-switch GS1 and GS2 on its logical data

plane. The link discovery protocol finishes in 4 steps. (i) The root controller C0 initiates

a link discovery message. It populates the stack with its own ID C0 and the G-switch ID

GS1 and port number p1. (ii) The child controller C1 receives the link discovery message. It

translates the G-switch ID and port number into the physical switch ID SW2 and port number

p2. Then, C1 pushes (C1, SW2, p2) onto the stack. (iii) Physical switch SW3 receives the

message at port p3 and passes it to its controller C2. C2 encodes the receiving (SW3, p3)

into link discovery message. C2 pops the stack and find the controller ID at the top of the

stack is C1, which is not its ID. So it translates the (SW3, p3) to corresponding ID and port

number of its abstract G-switch, which is (GS2, p4), and passes the link discovery message

to its parent C0. (iv) C0 pops the stack and find the controller ID at the top of the stack is its

ID. In this way, it finds the inter G-switch link between its G-switches (i.e. GS1 and GS2).

100

4.4.1.3 Computation of G-switch Abstraction

The RecA application in a controller uses the northbound API topo=GetTopology() to get

its G-switches and inter G-switch links, and then it computes one abstract G-switch. In

an abstract G-switch, all internal ports (i.e. ports between G-switches) are hidden, and all

border ports are exposed. SoftMoW also computes other properties between G-switch port

pairs, such as latency, bandwidth and hop count as discussed in Section 4.3.2. The parent

controller requests the G-switch features (e.g. virtual fabric) from the RecA agent in the

child controller via the southbound API. G-BS and G-middleboxes can also be computed

similarly. We do not go into the details in this dissertation.

4.4.2 Route Computation

SoftMoW must provide UEs with Internet access. The routing service computes end-to-end

optimal paths through the northbound API (path, match fields)=Routing(request, service

policy). The inputs are a routing request and a service policy. The outputs are a computed

path and match fields to classify the flow. The computed paths are implemented using the

path implementation service.

Interdomain routes. To perform routing, SoftMoW interacts with ISPs and content

providers through an interdomain routing protocol (e.g., BGP) at egress points. Similar to a

RCP server [61], leaf controllers run the route selection procedure on behalf of their gateway

switches, each keeping a session with an eBGP speaking router in a neighbor ISP. For

each gateway switch, leaf controllers select interdomain routes for all prefixes. In addition,

the network performance of each selected route is measured (e.g., hops, latency) [131].

Leaf controllers forward the selected routes to their parent as Packet-In messages, each is

associated with performance metrics. The routing module in each controller registers for

interdomain routing messages, and puts them into NIB. Recursively, the RecA agent reads

the interdomain routes from NIB and sends it to the parent (with translation to the G-switch).

This procedure finishes once the root receives interdomain routes from its G-switches.

101

Recursive routing. When a controller has a routing request from one of its operator’s

applications (e.g., bearer request), it first checks if its logical region has an interdomain route

to the destination on the Internet and the end-to-end internal path satisfies the performance

constraints if specified in the request (e.g., latency). In addition, it checks whether the

middlebox poset can be met in its logical region if specified in the service policy field. If so,

the routing module returns the path and match fields, and then the application implements

the path. If no path is found, the operator application delegates the request to RecA agent,

which creates a routing request and sends to the parent, where the application in the parent

controller registers in the core to get the message and process it. The application also registers

for the response in RecA (e.g., to store in local caches). The delegation procedure increases

the chance of satisfying the request since the parent has a better global view due to having a

larger logical region. We will explain the routing service usage in handling bearer requests

(Section 4.5.1).

Optimality discussion. Each controller might need to compute internal paths to inter-

domain routes through its own egress points. Using the virtual fabric of G-switches, the

routing service can find a shortest path between the logical or physical gateway switches and

base stations. We can guarantee a shortest path computed by a controller is the shortest is in

the controller’s region and its corresponding physical topology. We call such paths locally

optimal. However, the shortest path in a controller’s region may not be the global shortest

path in the entire topology. We define shortest paths computed by the root controller in its

global abstract topology as globally optimal. In general, a controller at a higher level is able

to compute more optimal paths compared to any controller in its subtree.

Example. Using the interdomain routing messages, we know egress points E1 and E2

are 10 hops away from the address prefix A in Figure 4.5. The leaf controller C2 receives

routing request (BS group= Group 2, destination=A) with the constraint of the maximum

end-to-end hop count of 14. C2 computes the shortest path (SW2, SW3, SW4) going through

E2 since it satisfies the performance requirement. This path is a local optimal path in C2’s

102

C2

SW2

GS2

SW1 SW3 SW4

C1

GS1

E2E1

E1 E2
Root

G-BS2

Group 2

G-BS1

Group 1

BS1 BS2BS0

Figure 4.5: Local optimal v.s. global optimal
region. With the global network view, path (SW2, SW1) is one hop closer to the destination.

The virtual fabric of a G-switch contains performance metrics for all port pairs. The root has

the virtual fabric of G-switches GS1 and GS2, so it can easily compute the globally optimal

path exiting from GS1.

4.4.3 Global Path Implementation

In SDN architectures where a controller has full visibility of its physical data plane topol-

ogy [85, 83], path setup is straight-forward. The controller installs a match-action rule on

each switch along the path. The match-action rule can match IP prefixes, VLAN tags, MPLS

labels or some combinations of them. In SoftMoW, a controller aggregates flows on the same

path, assigns them the same label and sets up routing on labels. So the states in switches

can be significantly reduced. However, non-leaf controllers do not have full visibility of

the physical data plane topology. We present a scalable mechanism that enables non-leaf

controllers to implement paths in their abstract topology onto the underlying physical data

plane. A northbound API PathSetup(match fields, path) is provided to applications to set

up an input path with certain match fields.

103

In SoftMoW, a leaf controller can simply implement any intra-region paths. Similar to

SoftCell [126], the access switch of base stations can perform fine-grained packet classi-

fication and push labels onto packets matching flow rules. Then, switches along the path

are programmed to forward traffic based on specified labels. A non-leaf controller does

not have control over physical switches, and multiple descendant controllers make partial

forwarding decisions; so its path setup is more challenging. Similar to leaf controllers, a

non-leaf controller should be able to instruct the access G-switch attached to each G-BS to

classify packets and push virtual labels into the traffic, and program its G-switches along

any desired path to operate based on pushed virtual labels.

To implement this operation, intuitively, when RecA agent in each child controller

receives virtual label switching or packet classification rules, it translates them using its

own topology. Each virtual label switching rule is mapped onto internal paths between the

egress and ingress ports of the child controller’s logical region, and the path computation is

performed by the routing module. During the recursive translations, descendant controllers

can establish any desired number of internal shortest paths between the ingress and egress

points as long as the performance metrics of computed paths comply with the parent’s virtual

fabric. A descendant controller should be able to push a separate local label on top of the

parent’s label to establish each local path. Accordingly, the classification rule should be

updated for each local path and installed into constituent access switches, each attached to a

component G-BS.

High-overhead label stacking. To implement the recursive translations of virtual rules

onto physical switches in underlying topology, a simple approach is to recursively stack k

labels in the packets where k is the level of the controller initiating the path setup. Label

stacking allows a label specified by an ancestor controller to be visible and available in the

packets traversing across physical inter-G-switch links detected by the controller itself. Label

stacking approach gives the illusion of packets traversing through the region of controllers at

different level. When traffic enters a logical region at any level, the controller reads the label

104

1

2

1

2

P 3

4

P 3

4

R

P RP

R

Leaf Region 1 Leaf Region 2

Parent Region

Root Region

GS1 GS2

S1 S2 S3 S4

BS1

BS2

GS3G-BS B Pop
Push

G-BS A

Figure 4.6: Recursive label swapping
in the stack at the same level. This approach is not scalable in nation-wide mobile networks

since it increases per-packet overhead due to encapsulating k labels in each packet, which

exacerbates the bandwidth consumption as the number of levels in the SoftMoW architecture

increases.

Label stacking example. Figure 4.6 shows logical regions of two leaf controllers, their

parent, and the root controller (controllers are excluded for simplicity). The root has a single-

path service policy for rate-limiting bidirectional traffic between G-BS B and a destination

address prefix. To satisfy this policy, the root pushes label R at access switch of G-BS B and

then installs the corresponding virtual rule into G-switch GS3 to forward traffic specified

by label R. At the level below, the parent controller receives the rules. Based on its local

view, it decides to stack label P on R (i.e., pushes [R P]) onto the packets. It programs the

G-switches GS1 and GS2 to process incoming traffic with label P. In this approach, leaf

controller 1 should at least push the stack [R P] onto each packet at the base stations. This

allows leaf region 2 to read P from the stack and perform the forwarding. Then the rest of the

network reads label R of the egress traffic from region 2. Intuitively, this gives the illusion of

packets traversing up to the parent region at S2, and traversing down at S3. Also, the packet

105

traverses up to the root level at S4. It is easy to imagine an increase in the packet header

space and network bandwidth consumption, as SoftMoW levels increases, due to stacking

multiple labels in packets.

Scalable recursive label swapping. We propose a novel recursive label swapping

mechanism eliminating the high bandwidth overhead per-packet. In our approach, each

packet has only one label at any given time. We have observed that a label specified by a

non-leaf controller only needs to be visible across physical inter G-switch links detected

by the controller itself. Thus we instruct controllers to perform label pop and label push

operations. Each controller at the ingress switch (physical or gigantic) of its logical region

pops the label (specified by an ancestor who controls the just traversed link) of the traffic.

It then pushes an internal label corresponding to each internal path. Finally, it programs

switches along each path. At the egress switch of its logical region, the controller aggregates

the internal paths by popping their label. It then pushes back the ancestor’s label onto packets

of the flow. This mechanism guarantees the global coordination between the controller by

having the necessary label at each switch while it minimizes the bandwidth overhead.

Recursive label swapping example. In Figure 4.6, the root adds label R to the traffic

group at access switch of G-BS A similar to the previous example. It then programs G-switch

GS3 to forward traffic based on label R to the rest of network. In this step, the controller of

parent region receives the classification and forwarding rules. Using the push operation, it

only pushes its local label P due to the local preference and does not mark the traffic with

label R. Using the pop operation, it pops P and pushes backs the root’s label R at G-switch

GS2 where it loses its control on the egress traffic.

In the leaf region 1, the leaf controller decides to load balance the packets between two

rate limiters, so it implements two local paths with label 1 and 2. With the push operation, it

pushes label 1 and 2 at access switches of BS1 and BS2 respectively. With the pop operation,

these two labels are replaced with the parent’s label P at egress switch S2, so the next leaf

region can process the traffic. In the leaf region 2, switch S3 is programmed to perform load

106

balancing on ingress traffic from region 1. The leaf controller implements two separate paths

by pushing local labels 3 and 4, and popping P at switch S3. These paths are aggregated

at egress switch S4. The local labels are popped off and the root’s label R is pushed back

onto the packets. As shown in the physical data plane, packets always carry a single label

denoted with different patterns while many controllers make partial decisions.

4.5 Operator Applications

A key cellular network function is mobility management which includes setting up bearers

(a bearer provides network connectivity service to the UE) and handovers. Mobility manage-

ment is performed by the Mobility Management Entity (MME) in LTE whereas it is done

by the mobility application in SoftMoW. The key differences are: (1) mobility application

is simpler because of the use of the controller’s northbound API which is not available in

LTE; (2) it supports mobility better (e.g., LTE does not support inter-PGW handovers [135]).

LTE mobility management has many procedures, due to the lack of space, we only discuss

main functions that highlight the differences. Besides the mobility management, we present

a new application, the region optimization application, to reduce the handover load of the

controllers.

NIB Path Implementation

Routing Core Services

RecA
Path Table UE Table

UE Management

To Parent Controller

Bearer
Request

Data
Flow

C0

C1 C2

Figure 4.7: UE management application

107

4.5.1 UE Bearer Management

In each SoftMoW controller, the mobility application registers for the bearer request message

type in the core. It also registers for the bearer response from the parent in RecA. The

mobility application maintains two tables (Figure 4.7): (i) UE table where each row contains

a bearer request and a local path ID. (ii) Path table that maps path IDs to the their details.

A bearer request can be in the format of (UE ID, BS ID, SRC IP, DST IP, REQ) where the

“DST IP" is the destination address on the Internet and “REQ” contains QoS. For example,

some UE applications can request for better QoS on the end-to-end latency.

When a UE sends a bearer request to the base station, the request is forwarded to the leaf

controller as a Packet-In message. The mobility application receives the request from the

core and associates a service policy (i.e., a middlebox chain) with it if necessary. If there

is no precomputed path in the path table, the mobility application calls the routing service

using the northbound API (path, match fields)=Routing(request, service policy). Then it

calls the northbound API (pathID, pathInfo)=PathSetup(path, matching fields) provided

by the path implementation service. Finally, the path information is cached in the path table

and the mobility application asks the base station to allocate the resources. As discussed in

Section 4.4.2, if the routing service cannot find an end-to-end path that satisfies the bearer

request and service policy, the mobility application sends the bearer request to RecA, which

is forwarded to the parent controller.

Example. In Figure 4.7, the UE requests for a path with a larger bandwidth, which

cannot be found by the routing service of C1 in its region; the request is sent to the root

controller C0. C0 computes the path, stores the UE and path information, and sends the UE

bearer response to C1’s RecA. The C1’s RecA implements the local path in it region, and

C1’s mobility application registers in its RecA to get the path information. Also, C2’s RecA

implements the rest of path in its region once it receives the virtual rule from C0.

The bearer state is synchronized between the UE and the mobility application. If the

UE becomes idle, its bearers will be deactivated. We add two more fields to the UE table

108

indicating whether a UE is active or idle, and whether the UE request has been handled locally

or by the parent. When the mobility application deactivates a bearer, it updates the tables and

also asks the path implementation service with the northbound API deactivatePath(pathID,

pathInfo) to deactivate its path. If the UE bearer has been handled by the parent controller,

the mobility application continues to request bearer deactivation from its parent via RecA.

4.5.2 UE Mobility

LTE has many handover procedures depending whether the source base station and target

base station has a direct connection or not and whether the UE’s current associated MME,

or the serving gateway needs to be changed or not, etc. Similarly, there are many handover

procedures in SoftMoW.We only discuss two main types of handovers: intra region and inter

region. The handovers are performed through the coordination of the mobility application,

RecA, the routing service and the path implementation service.

The Intra region type is used to handover a UE between a source base station and a target

base station when both of them are in the same leaf region. This type of handover is easy, so

we focus on complex inter region handovers. In inter region handovers, the source and target

base stations are located in different leaf regions. Thus each corresponding border G-BS is

exposed by a separate leaf controller. To simplify the inter region handover procedure and

allow fine-grained region optimizations, we assume controllers do not aggregate gigantic

stations and physical BS groups sitting at the border of their logical region with others in the

recursive abstraction procedure. A leaf controller abstracts each border BS group as a single

G-BS for its parent, and non-leaf controllers expose a single G-BS for each G-BS located at

their region’s boundaries. However, controllers can group, abstract, and expose their internal

G-BSes and BS groups in different ways.

To handover a UE from the source base station to the target base station in inter region

handover, SoftMoW only requires base stations abstracted as a border G-BS to advertise

the corresponding G-BS ID along with other information periodically through the physical

109

broadcast channel. When the source leaf controller and the UE agree on the handover target,

the source leaf controller sends a handover request to its parent. The request contains at least

source and target G-BS IDs and BS IDs. The mobility application registers for the handover

request in the core. If the current controller is the ancestor of both the source and target leaf

controllers, it starts a procedure to handle the request; otherwise the request is sent to RecA

and forwarded to the parent controller recursively. For simplicity, we explain the inter region

handover procedure through an example.

Example. To handover a UE from BS1 to BS2 in Figure 4.5, C1 sends a handover request

from (G-BS1, BS1) to (G-BS2, BS2) to the root. The root requests G-BS2 to allocate the

resources at the BS2 to the UE. Then, it implements a new path between G-BS1 and G-BS2

to transfer in-flight packets and establishes some paths E2 and G-BS2 for new flows. Once

the handover finishes, the root asks G-BS1 to release the resources. It then removes old paths

between G-BS1 and E1 as well as between G-BS1 and G-BS2.

2

3

0

1
4 5

100

200

200

600 100
100

Region B Region A

BS Groups

(a) Leaf controllers’ graph

2

3
100IB

200

400

4 IA
100

Connected to
GSA

Connected to
GSB 500

400

Internal G-BSBorder G-BS

(b) Root’s graph before the optimization

2
I’B

600

200 4
IA

100

Connected to
GSA

Connected to
GSB

400

31
200

200

500
100

(c) Root’s graph after optimization
Figure 4.8: Inter-region handover optimization

110

4.5.3 Region Optimization and Reconfiguration

Inter region handovers increase “east-west” control plane load because they require the

intervention of at least three controllers: the source and target leaf controllers, and the

ancestor controller. Allocating more resources to busy nodes in the controller hierarchy is

difficult due to the geographical distribution and also increases the intra-node coordination

costs. Thus the regions should be refined to reduce this type of load; each non-leaf controller

should reconfigure its own logical region to minimize the inter region handover load it

handles. To achieve this goal, the region optimization application changes borders between

sub-regions, each exposed by an immediate child controller, based on handover patterns.

Handover patterns vary across time-of-day. Thus it is difficult to find static borders using

an offline and static approach, so each controller should be able to perform optimizations

periodically and on a slow time-scale. In particular, we are interested in minimizing inter

region handovers at the root (level L) first because a handover request processed and handled

by the root goes through more controllers. Similarly, the controllers at the level n−1 have

a higher priority compared to the controllers at the level n−2. Hence we should run the

handover optimization algorithm first at the root. Once the root is done, all controllers at

level n−1 can run the optimization in parallel, and similarly for the levels below.

4.5.3.1 Region Optimization Algorithm

We now discuss the optimization algorithm for a non-leaf controller which we call the

initiator controller.

Handover graph input. When the mobility application processes handover requests, it

can log these processing. Then a handover graph can be computed, in which each node of

the graph is a G-BS and an edge shows the number of handover in the past time window

(e.g., several hours) between two nodes. The region optimization application can fetches

all handover graphs from the mobility application. The two applications can communicate

through mechanisms such as inter-process communication. We do not provide any further

111

details for lack of space.

Example. For a two-level SoftMoW architecture, Figure 4.8b represents a global han-

dover graph built by the root through aggregating histories. Figure 4.8a shows the leaf

regions’ BS group-level handover graph. As discussed earlier, to allow the root to run

fine-grained optimization at the site-group level, leaf controllers have abstracted each border

BS group (e.g., BS groups 3 and 2) as a single G-BS (e.g., G-BS 3 and 2) and have exposed

to the root. However, they have abstracted adjacent internal BS groups all together. A similar

rule applies to any other non-leaf controllers.

Greedy algorithm. Using the handover graph, the region optimization application in

the initiator controller computes the reconfiguration of its logical data plane by refining

sub-regions, each exposed from a child controller. The region optimization informs the

management plane about the changes. The management plane performs the actual reconfigu-

ration. In handover-specific reconfiguration, the initiator detaches a border G-BS connected

to a source G-switch and then re-associates it with a destination G-switch. The source

and destination G-switches are connected through an inter G-switch links (discovered by

the initiator). This operation transfers the control of the border G-BS to new descendant

controllers in the initiator’s subtree. We propose a simple greedy local search algorithm

to decide which border G-BS should be reconfigured by the initiator. In our algorithm,

the initiator at each step selects a border G-BS connected to a G-switch, which yields the

maximum gain. The gain is defined as the reduction in the amount of inter region handovers

requiring the intervention of the initiator.

Example. Figure 4.8b shows the root level handover graph before the optimization

showing the root handles 900 inter region handovers between G-switches A and B or the

corresponding leaf regions shown in Figure 4.8a. Based on the gain function, the controller

selects border G-BS 3 for the reconfiguration since it gives the maximum gain 200 (=500-

200-100). The root associates the G-BS with G-switch GSA.

Constraints. We assume we have the lower bound LBi and the upper bound UBi on the

112

amount of control plane loads (e.g., UE arrival) that each G-switch (or actual child controller)

can handle. When the initiator picks the maximum gain border G-BS, it avoids reducing

the load of a G-switch GSi to below LBi or increasing it to above UBi, assuming the load of

each type of control plane events (e.g., bearer arrival) incurred by a G-BS is given.

Termination and Convergence After the above steps, the initiator controller can enter

into a new iteration of reconfiguration computation by selecting the next G-BS. The algorithm

terminates when there is no more positive gain. The sequential-parallel approach converges

because the handover optimization at an initiator controller, which is done by refining its

logical sub-regions under its control, neither produces nor removes any gains for ancestor

controllers except for the initiator itself, and controllers in its subtree. This is because a

controller cannot affect inter region handovers seen at ancestor controllers.

4.5.3.2 Reconfiguration Protocol

Region optimization application computes the reconfiguration and sends reconfiguration

messages to the management plane.

Finding leaf controllers. The management plane subscribers to topologies changes

from NIB and abstraction changes from RecA. Using the topology information and configu-

ration information, the management plane finds the source and destination leaf controllers,

and instructs them to fulfill the G-BS re-association request from the region optimization

application.

Reconfiguration. At this step, the source leaf controller finds a cut containing switches

that are necessary to transfer the border BS group (abstracted as a single G-BS to allow fine-

grained optimization) to the target leaf’s region. It then communicates with the switches and

component base stations to seamlessly add the target leaf controller as their new controller.

In this procedure, the source leaf controller sets the role of the target leaf controller to the

equal role (e.g., OpenFlow “OFPCR_ROLE_EQUAL"). This role means both the source

and target leaf controllers receive all events generated by data plane devices (i.e., BS group,

113

switches, and middleboxes). The management plane instructs: (i) the source leaf controller

to handle events generated by existing rules and avoid installing new rules. (ii) the target

leaf controller to process all new requests (e.g., handover, routing, UE arrival, and path

implementation). To make states consistent, the source controller transfers existing UE states

and path information to the target controller in advance. When old communications finish,

the source controller disconnects itself from the data plane devices and the new controller

gets the master role.

Updating logical data planes. After a successful control transfer at the leaf level, the

logical regions are updated from bottom to top in a recursive fashion to reflect new abstract

topologies. Recursively, each RecA agent along the path modifies the G-switch ports and

the virtual fabric for its parent. Next, the parent automatically discovers new inter G-switch

links. Also, the RecA agents need to update, register, or deregister G-BSes. This is because

some internal BS groups in the source leaf region become border BS groups, which should

be reflected recursively. Figure 4.8c shows the root’s handover graph after reconfiguring

G-BS 3. The procedure transfers the control of BS group 3 from the source region B to

the target region A. As a result, the new border BS group 1 is separated from IB, abstracted

as border G-BS 1 and exposed to the root. This leads to updating the internal G-BS IB to

I′B which has lost BS group 1. Also, the target leaf controller might need to treat previous

border BS groups as internal BS groups due to an expansion of its region.

4.6 Discussion

We discuss how a basic SoftMoW can handle the controller, switch, and link failures,

and implement consistent paths.

Controller failure recovery. To guarantee the reliability of the control plane, each

logical node in the tree structure contains master and hot standby instances. For each node,

NIB is decoupled from the controller logic and stored in a reliable storage system (e.g.

Zookeeper [84]). The NIB is shared between the master and standby. The standby uses

114

2−egrs 4−egrs 8−egrs LTE10

15

20

25

30

H
op

 c
ou

nt
s

Figure 4.9: End-to-end hop count

0 200 400 600 800 10000

0.25

0.5

0.75

1

RTT (ms)

C
D

F
(%

)

2−egress
4−egress
8−egress
LTE

Figure 4.10: End-to-End latency

0 1 2 3 4 5

Leaf A

Leaf B

Leaf C

Leaf D

Root

Flat

Avgerage convergence time (s)

Standard
SoftMoW

Figure 4.11: Convergence time

a heartbeat protocol to detect the failure of its master. Also, each physical or logical (i.e.,

master and standby) switch connects to both master and standby instances. All messages

from a physical or a gigantic switch are duplicated and delivered to both instances. If a

master is alive, the standby does not do anything. Otherwise, it takes over the master’s work

immediately. When the master controller receives an event, it first logs the event arrival

in the NIB, and then processes it. When the master fails, the hot standby detects this and

immediately checks the event logs and redo unfinished events.

Switch and link failure recovery. When a link failure occurs, the leaf or ancestor

controller, which discovered the link, is notified through our recursive discovery protocol. If

the failure affects the exposed G-switch and virtual fabric in a way that cannot be masked

from the ancestor controllers, changes are reflected bottom up which may cause upper-level

controllers to recompute new paths. Otherwise the controller finds affected local paths and

implements alternative shortest paths with the same performance.

Consistent path setup. In SoftMoW, path implementations by a controller are pushed

top-down. However, the topology updates propagate bottom-up. If we want to provide

115

strong consistency between controllers in neighboring levels, messages needs to be ordered

(e.g., paxos, locks) which impacts the agility of path implementations. SoftMoW guarantees

eventual consistency. If a failure happens due to inconsistency (e.g., path implementation

during topology changes), SoftMoW’s controllers recomputes new paths. To guarantee a

packet goes through a consistent path during path updates, the new path and packets are

assigned a new version number. The packets with the old version number can still use old

rules to guarantee reachability.

4.7 Implementation and Evaluation

0 2 4 6 8 10
x 104

0

0.2

0.4

0.6

0.8

1

Bearers per min

C
D

F
(%

)

Leaf A
Leaf B
Leaf C
Leaf D

(a) Bearer Arrival

1000 1500 2000 2500 30000

0.2

0.4

0.6

0.8

1

UE arrivals per min

C
D

F
(%

)

Leaf A
Leaf B
Leaf C
Leaf D

(b) UE Arrival

1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

Handovers per min

C
D

F
(%

)

Leaf A
Leaf B
Leaf C
Leaf D

(c) Handover
Figure 4.12: Cellular loads on balanced regions

We prototype the architecture of SoftMoW to show the performance gains of SoftMoW

compared with current rigid LTE architecture and evaluate the scalability of our topology

discovery protocol. Finally we show the effectiveness of inter region handover optimization

using trace-driven simulations.

116

4.7.1 Prototype and Methodology

Data plane. We prototype SoftMoW on top of the Floodlight [17] andMininet [89]. Leaf

controllers use the OpenFlow protocol to communicate with switches while other controllers

interact with logical data plane elements through a custom API similar to OpenFlow. We

build realistic data plane topologies using the RocketFuel dataset [119]. We present the

results for a data plane containing 321 software switches. To attach radio access networks,

we use our LTE data set. We connect each BS group to an access switch. Each BS group

contains at most 6 inferred base stations organized in a ring topology. The minute-level

uplink and downlink traffic rates of BS groups is obtained from the dataset. We set the delay

and bandwidth of links to 5ms and 1Gbps respectively.

LTE dataset. We collected about 1TB traces from a large ISP’s LTE network during one

week in the summer of 2013. The dataset covers a large metropolitan area with more than

1000 base stations and 1 million mobile devices. The trace is bearer-level. A radio bearer is

a communication channel between a UE and its associated base station with a defined Quality

of Service (QoS) class. The trace includes various events such as radio bearer creation, UE

arrival to the network, UE handover between base stations. From the trace, we compute the

uplink and downlink traffic per minute per base station. When a flow arrives and there is an

existing radio bearer with the same QoS class, the flow will use the existing radio bearer.

Radio bearers time out in a few seconds, so a long flow may trigger several radio bearer

creation and deletion events. Because the data set does not contain flow-level information,

we use radio bearers to estimate flow activities.

BS group inference. Our LTE dataset does not contain BS-group level information, so

we infer BS groups by a simple algorithm. We assume each group has at most 6 base stations

organized based on the ring topology. Our algorithm aims to find groups maximizing the

weight of intra-group edges in the global handover graph. The optimal solution is NP-hard, so

we design a greedy algorithm. In each iteration, the edge with the lowest weight is removed

and then strongly connected components with fewer than 6 base stations are computed. We

117

remove the components from the working graph and mark each as a new BS group. Finally,

inferred BS groups are partitioned to form approximately equal-sized logical regions with

similar cellular loads. We carefully assign a geographical location to each BS group to

preserve the neighborhood relationship among them.

4.7.2 Routing Performance

We first focus on a two-level architecture with 4 leaf regions. We approximately place the leaf

controllers in the center of their region. The root controller runs in the middle of the complete

topology. SoftMoW’s inter-connected core network increases the choices of Internet egress

points so that the control plane can compute optimal end-to-end paths. We compare the

two-level SoftMoW architecture with an existing rigid LTE region for the same number of

base stations. To model egress points, we use iPlane [22] consisting of traceroute information

from PlanetLab [65] nodes to Internet destinations. To consider routing changes, we replay

the hop counts and latencies from multiple snapshots. The root implements internal shortest

paths for traffic by taking into account both internal hop counts (from the G-BS to an egress

point) and external hop counts (from an egress point to the destination).

Figure 4.9 illustrates the distribution of end-to-end hop counts as a function of the number

of egress points for 11590 destinations on the Internet. We observe the average hop count

decreases from 20.83 to 16 as the number of egress points increases from 2 to 8. This is

because internal path inflation disappears since the traffic is directed through sufficiently close

egress points, and also diversity of external paths improves the Internet access performance.

In particular, SoftMoW with 8 egress points can reduce the average end-to-end hop count by

36% compared to LTE network. In addition, SoftMoW can also reduce end-to-end latencies

by computing globally optimal paths at the root. Figure 4.10 depicts the CDF of RTT latency.

We observe the 75th and 85th percentile RTT latencies reduce by 43% and 60% when we

switch from the LTE network to the 8-egress point SoftMoW.

118

4.7.3 Discovery Protocol Performance

In the same setting, we nowmeasure the convergence time of our recursive discovery protocol.

The convergence time is measured per controller and starts from the beginning of a discovery

period until all links and ports are discovered and become stable. We compare our results to

the standard discovery protocol (e.g., LLDP) when a single controller is placed at the root’s

location and discovers all the links and ports.

Figure 4.11 shows the average convergence time for different controllers in our archi-

tecture and the flat control plane. We observe SoftMoW’s controllers detect their topology

between 44% and 58% faster compared to the flat discovery by the single controller. We

identified the queuing delay at controllers is the root cause of such differences and the propa-

gation delays between the controllers and switches have insignificant effects. The queuing

delay is in proportion to the number of ports and links in topology.
Table 1: SoftMoW Controller Abstractions

Discovered Exposed Exposed
SW Ports Links Ports Ports (%)

Leaf A 55 218 80 58 26
Leaf C 79 250 99 52 20
Leaf B 68 213 87 39 18
Leaf D 98 416 167 81 19
Root 4 230 115 - -

Basically, SoftMoW is more scalable and can detect faults faster compared to flat single

controller deployments because a large portion of links and ports are masked from each

controller. Table 1 shows the leaf controllers on average have exposed 20.75% of total ports

discovered in their logical region to the root controller. Also, 73% of total links are hidden

at the root level.

4.7.4 Handover Optimization

We characterize the cellular load on the leaf controllers and the effectiveness of inter region

handover optimization through network measurement and simulation. We simulate a Soft-

MoW with two levels. In the first level, we define four and eight roughly equal-sized logical

119

0 12 24 36 480

3

6

9

12 x 105

Time (h)

In
te

r−
re

gi
on

 h
an

do
ve

rs
 (#

)

4GS
4GS,Opt
8GS
8GS,Opt

Figure 4.13: Handover optimization
regions, each assigned to a leaf controller. In the second level, the root controller manages

the abstract topology.

Cellular loads. Each leaf controller should handle three types of cellular events in

addition to exposing logical devices to the root: bearer arrival, UE arrival, handover request.

In practice, each type of cellular event can triggers multiple rounds of message passing

between the controller and the logical data plane. Figure 4.12a shows the CDF of bearer

arrivals. We observe each leaf controller handles as high as 105 bearer arrivals per minute.

We use the bearer arrivals as the estimate of the number of packet-in messages received by

the leaf controllers. Figure 4.12b shows leaf controllers receive and process between 1000

and 3000 attachment requests from UEs connecting to a base station in their region, which

are triggered when users turn on their device. Figure 4.12c depicts the aggregate intra-region

and inter-region handover requests processed by leaf controllers that varies between 1000

and 4000 per minute.

Optimization results. Periodically, the root refines the abstract sub-regions exposed

from the leaf controllers based on its global handover graph. It strives to reduce the load of

inter region handovers, which also improves the handover performance. In the optimization,

we avoid drastically unbalancing the three cellular loads on each leaf controllers. Figure 4.13

120

shows the number of inter region handovers handled by the root over 48 hours for 8-region

and 4-region settings. We observe the number of handover requests increases (i) in peak

hours and (ii) by doubling the number of logical regions. The root runs the reconfiguration

algorithm every 3 hours by collecting local handover graphs. We assume each GS (i.e.,

leaf controllers) should not handle more (less) than 30% of their maximum (minimum)

initial cellular loads per minute. Given these constraints, Figure 4.13 depicts the root can

reduce the load of inter region handovers by 38.08% to 44.61% using our iterative greedy

reconfiguration algorithm.

4.8 Related Work

Scalable control planes. Maestro [62] utilizes parallelism to achieve high scalability on

multi-core machines. SoftMoW can benefit from the proposed techniques to make logical

and physical rule installations faster at each node. HyperFlow [123] and Onix [87] are

multi-controller designs without any explicit hierarchical structure. Kandoo [81] improves

HypeFlow by leveraging a two-level controller. Unlike SoftMoW,Kandoo cannot be extended

to more than two levels and can run specific applications such as elephant flow detection. In

contrast to SoftMoW, these systems do not offer sufficient scalability to support continent-

wide global applications.

Scalable data planes. To scale the data plane, SoftMoW, PNNI [74], XBar [94] hierar-

chically abstract a given network as logical entities. To control their specific target network

and satisfy requirements, each of them offers different abstractions. PNNI’s abstractions is

designed for ATM networks. SoftMoW is the first complete recursive and reconfigurable

architecture with richer abstractions suitable for cellular WAN operators. Unlike XBar and

PNNI, SoftMoW builds virtual fabrics for its G-switches to enable network-wide optimiza-

tion such as routing. In addition, SoftMoW runs a novel recursive label swapping mechanism

to minimize the bandwidth overhead and data plane states.

Inter-DC control plane. Control plane architectures for data center WANs such as

121

B4 [85] and SWAN [83] are specific to inter-DC traffic engineering. Inter-DC WAN topolo-

gies have several order of magnitudes fewer nodes and edges compared to the cellular WAN

topologies [63]. SoftMoW’s recursive and reconfigurable abstraction scales the network

much better.

Cellular network control plane. Recently, researchers have also proposed flexible

control plane architectures for cellular networks. SoftRAN [78] is a design specific to radio

access networks. SoftRAN handles intelligent resource block allocation to optimize utilities.

SoftCell [126] focuses on providing operators with fine-grained policies and compresses

data plane rules. In contrast to prior work, SoftMoW handles inter-connected cellular core

networks.

122

CHAPTER V

Caesar: A High-Speed and Memory-Efficient

Forwarding Engine for Next-Generation Internet and

Cellular Core Architectures

5.1 Introduction

Aiming at providing a more secure, robust, and flexible Internet and 5G cellular networks,

the networking research community recently has focused on developing new architectures

for these networks. For instance, our SoftBox, SkyCore, and SoftMoW proposals aim at

developing an efficient and scalable 5G core architectures to realize emerging mobility

services and use cases. AIP [54] introduces accountability at the IP layer, thus enabling

simple solutions to prevent a wide range of attacks. XIA [80] supports an evolvable Internet

by providing the capability to accommodate potentially unforeseen diverse protocols and

services in the future.

Most of these proposals either switch to or benefit from a network addressing scheme

instead of IP that has two important two features: Each address is decoupled from its owner’s

network location and permits its owner to cryptographically prove its ownership of the

address. The separation feature enables improved mobility support and multi-homing. The

cryptographic aspect facilitates authentication and authorization of control and data messages.

However, on the down side, both features require addresses to be inherently long and thus take

123

up significant memory space due to a lack of hierarchical structure to support aggregation.

For instance, in the design of MobilityFirst [50], each address component can be a few

kilobits in size. Not surprisingly, it is expected to have forwarding tables on the order of

gigabytes in future Internet and cellular architecture designs [80]. Such addressing schemes

make the design and implementation of high-speed border routers challenging as detailed

below.

First, memory provisioning becomes more difficult compared to existing network el-

ements. The future Internet and 5G networks will experience a tremendous surge in the

number of addressable end-points. Recent studies [49, 42] have predicted that the number

of connecting devices and active address prefixes will jump to 50 billion and 1.3-2.3 million,

respectively, by the end of 2020. On the other hand, the current rapid growth of the number

of address prefixes (i.e., about 17% per year) is the root of many existing problems for

operators, who have to continuously shrink the routing and forwarding tables of their devices

or upgrade to increasingly more expensive data planes [56].

Second, power consumption of border routers is expected to increase substantially. Most

high-speed routers and switches utilize a specialized fast memory called Ternary Content

Addressable Memory (TCAM) due to its speed and in particular its parallel lookup capabili-

ties. TCAM is the most expensive and power-hungry component in routers and switches. It

requires 2.7 times more transistors per bit [52] and consumes an order of magnitude more

power [133] compared with the same size of SRAM. Therefore, increased address length

imposes substantial cost and power consumption in particular on high-speed border routers

with TCAM. Although software-based solutions might seem viable, their forwarding speed

cannot compete with TCAM-based routers that can support up to 1.6 billion searches per

second under typical operating conditions [15].

Third, the critical-path fast memory components of high-speed routers are small in size,

and their capacity does not increase at a rate that would accommodate the large addresses of

future Internet and 5G designs in the foreseeable future. Moore’s law is only applicable to

124

slow memories (i.e., DRAM) but not to fast memories [21]. As a matter of fact, we have

observed that the TCAM capacity of the state-of-the-art high-speed routers has remained

mostly unchanged for several years. As a result of limited memory, network operators still

have difficulties in dividing the memory space between IPv4 and IPv6 addresses [45].

To address these challenges, recent research has offered scalable routing tables [115]

and forwarding engines (e.g., storage-based [100] and software-based [80]) for the new

addressing schemes. Unfortunately, these solutions have limited performance due to the

approach of storing addresses into slowmemories. Also, due to a lack of address compression,

efficiency and scalability of their proposed schemes are inversely proportional to the length

of addresses. The same limitation also makes a large body of research in IP lookup [111],

which optimizes longest prefix matching, ill-suited for flat and non-aggregatable addresses.

This chapter presents Caesar, a high-speed, memory-efficient, and cost-effective for-

warding and routing architecture for border routers of next-generation network architectures.

While we present Caesar for the generalized future Internet architecture, we can adopt

the Caesar design and techniques in SkyCore, SoftBox, and SoftMoW to further optimize

them. At a high level, Caesar leverages Bloom Filters [59], a probabilistic and compact data

structure, to group and compress addresses into flexible and scalable filters. Filters1 have

been used in designing routers for both flat (e.g., [128, 77]) and IP (e.g., [66, 117]) addresses.

These designs are optimized for small-scale networks (e.g., layer two networks) and do not

provide guaranteed forwarding speed and full correctness. Therefore, Caesar focuses on

improving performance, memory footprint, energy usage, and scalability of routers deployed

at future Internet domain borders.

5.1.1 Summary of Contributions

In particular, we make the following contributions:

• We propose a new method for grouping self-certifying addresses into fine-grained
1We use “filter” as a shorthand for Bloom Filter throughout this dissertation.

125

filters. The grouping scheme minimizes route update overhead and supports diverse

forwarding policies. We also design the first high-speed forwarding engine that can

handle thousands of filters and forward almost all incoming packets within three fast

memory accesses.

• We design a backup forwarding path to ensure the correctness of forwarding. Our

approach leverages the multi-match line of TCAM to detect false positives at high

speed. We also introduce a blacklisting mechanism that efficiently caches RIB lookup

results to minimize the frequency of accessing slow memory. In contrast, previous

work either accesses slow memory several times per packet [66] or randomly forwards

packets [128] when false positives occur.

• We strategically leverage counting filters [72] to support address removal while keeping

the memory usage benefits of standard filters for high-speed forwarding. To achieve the

best of both worlds, for each standard filter in TCAM, we construct a “shadow” counting

filter in slow memory and always keep standard filters highly utilized in address removal

and insertion procedures.

• Based on hash coding theory [134], we propose a hash computation scheme for filters

to reduce the number of computations from k to log(k) per lookup (k is the number

of hash functions for a filter). We show that the lookup processing overhead can be

reduced by up to 70% compared to the flat scheme. Also, our scheme requires at most

1.16log(k) hash computations for finding k different positions in a small filter while

the flat scheme needs up to 1.5k computations.

• We perform analysis and extensive simulations using real routing and traffic traces

to demonstrate the benefits of our design. Caesar is more energy-efficient and less

expensive (in terms of total material cost) compared to optimized IPv6 TCAM-based

solutions (e.g., [129]) by up to 67% and 43% respectively. In addition, the cost of our

126

design remains constant for various address lengths.

5.2 Background and Motivation

Caesar’s focus is on the generalized future Internet architecture but we can adopt the design

and techniques presented in this chapter in the SkyCore, SoftBox, and SoftMoW architectures

to further optimize them. As illustrated in Figure 5.2a, the generalized architecture is

comprised of a set of independent accountable domains (IADs). An IAD represents a single

administration that owns and controls a number of small accountable domains (ADs). For

example, an AD can be a university or an enterprise network. In this model, each end host

uses a global identifier (GID) to attach to ADs. In addition, a logically centralized name

resolution service stores GID←→ADmappings to introduce new opportunities for seamless

mobility and context-aware applications.

Packet forwarding at borders? The architecture has different routing and forwarding

mechanisms compared to today’s Internet. In particular, borders routers sitting at the edge

of ADs build forwarding states or mappings between destination ADs and next-hop ADs.

Formally, when a border router of ADi receives a packet destined to ADd : GIDd , it forwards

the packet, through a physical port, to a next hop AD on the path to ADd . The same procedure

occurs until the packet reaches a border router of ADd . Finally, based on GIDd , it is sent to

an internal router where the destination end host is attached. In this procedure, AD addresses

are cryptographically verifiable and thus they are long and non-aggregatable. The length of

addresses is typically between 160 bits [54] and a few kilobits [50] leading to forwarding

tables on the order of gigabytes [80]. In the future, larger address lengths are expected to

counter cryptanalytic progress.

Why Bloom filters? Caesar employs filters to compress the forwarding states, i.e., AD

to next hop ADmappings, in the border routers. However, Caesar can be extended to support

forwarding schemes with more components in its other pipelines (e.g., XIA [80]). It also

supports various standard forwarding policies (e.g., multi-path and rate-limiting). A filter

127

is a bitmap that conceptually represents a group. It responds to membership test queries

(i.e., “Is element e in set E?”). Compared to hash tables, filters are a better choice. First,

they are length-agnostic, i.e., both long and short addresses take up the same amount of

memory space. Second, a filter uses multiple hash values per key or address, thus leading to

fewer collisions. In the insertion procedure, a filter computes k different and uniform hash

functions (h1,h2, . . .hk) on an input and then sets the bits corresponding to the hash values

to 1. In a membership test, a similar procedure is followed; if all the bits corresponding to

hash results have the value of 1, it reports the element exists otherwise the negative result is

reported.

5.2.1 Caesar Design Goals and Challenges

Using filters for minimizing fast memory consumption poses several design challenges that

are unique to the future Internet scale and Caesar’s role as a high-speed border router, which

make our work different from previous designs using similar techniques (e.g., [77, 128, 117,

71]).

Challenge 1: Constructing scalable, reliable and flexible filters. Compared to the

future Internet scale, a data center or enterprise network is very small in size with orders

of magnitude fewer addresses. In such single-domain, small-scale networks, designing

filters to compress forwarding states of flat addresses (e.g., layer two (MAC) addresses) is

straight-forward. One widely used approach is to construct multiple filters in each switch,

each storing destination addresses reachable via the same next-hop port on the shortest path

(e.g., see [128, 77, 71]). Based on this approach, each switch generates and stores a few very

large filters in terms of bit length and constituent members (addresses) since the number of

ports on a switch is limited.

We argue this filter construction is very coarse-grained and thus not sufficiently scalable

and flexible to be used in Caesar, because our target network consists ofmultiple independent

domains and has a higher scale. First, there can be millions of AD addresses in the future

128

Internet, putting tremendous pressure on the forwarding plane. It is neither scalable nor

reliable to store hundreds of thousands of AD addresses into each filter. This is because

even a single bit failure in the filter bitmap can risk correctness by delivering a large portion

of traffic to wrong next-hop ADs. Second, AD addresses are from various administrative

domains, each of which can publish extensive routing updates. Because of storing many

addresses into a few large filters, the above approach interrupts or “freezes” packets in the

forwarding pipeline at a higher rate in response to each update. This is because modifying a

filter requires inactivating the entire bitmap for consistency. For these reasons, the design of

Caesar benefits from fine-grained filter construction with higher scalability and flexibility.

Challenge 2: Providing guaranteed high-speed forwarding. Caesar’s goal is to

achieve a forwarding rate similar to that of high-speed border routers (e.g., 100s of millions

of packets per second). However, compressing addresses into filters creates a bottleneck in

the processing pipeline. To run a membership test on a filter, we need to compute k hash

functions and access the memory k times in the worst case. Previous designs do not provide

hash computation optimization and also access filters naively (e.g., [66, 77]). Thus they have

limited peak forwarding speeds, on the order of a few hundred kpps (e.g., [128]), even for

fewer than a hundred filters. This is orders of magnitude smaller than Caesar’s objective.

Also, instantiating more filters to support fine-grained policies makes existing designs more

inefficient.

Challenge 3: Avoiding Internet-wide false positives. One key limitation of compres-

sion using filters is occasional false positives; that is, a filter incorrectly recognizes a non-

existing address as its member due to hash collisions. In this case, all positions that correspond

to hash values of the address have been set to 1 by insertions of other addresses. For a filter,

there is an inherent tradeoff between the memory size and false positive rate. A filter naturally

generates fewer false positives as memory footprint increases. For Caesar, false positives

can result in Internet-wide black holes and loops, thus disrupting essential Internet services.

To address this problem, multiple solutions have been proposed (e.g., [96, 128]) that either

129

are very slow, incur domain-level path inflation or offer partial correctness. Caesar cannot

borrow them because, as a border router, it must provide deterministic correctness at high

speed.

Challenge 4: Updating filters andmaximizing their utilization. Routing and forward-

ing tables might need to be updated. Supporting updates poses two challenges to Caesar.

First, a routing message can lead to address withdrawal from filters. However, removing an

address from a standard filter inevitably introduces false negatives. An address is mapped to

k positions, and although setting any of the positions to zero is enough to remove the address,

it also leads to removing any other addresses that use the same position. Second, even with

supporting address removal, the total utilization of filters and the compression rate can be

negatively impacted if many addresses are removed from a filter and distributed into other

filters.

��

��

��

���

���

���

	��� ������

�	�
������

�
��
�
�������
�
�
����
��
�����

����
���
�
�

�
����
��
�

������

��
��
	������

�����
�

��	��
�������	

�������������

��
�

���

	�
�����

�����
�
���

�������

	��������

��������
�

�����
���

	��

��
�������
��

�����
���
�
�����

�����
������

�������	
�

	
�

�

��

�
�

�
��
�
��
��
�

���
�

Figure 5.1: Caesar architecture. The backup path result is selected when MM (multi-match) flag
is high.

130

5.2.2 Caesar Architecture Overview

Caesar benefits from two logical data structures: a routing information base (RIB) and a

forwarding information base (FIB). The RIB maintains all paths to destinations ADs; the

FIB is used to match ingress packets to outgoing links. Similar to modern hardware routers,

Caesar implements the RIB and FIB using slow and fast memories respectively.

Caesar has a novel FIB design as illustrated in Figure 5.1, which consists of two for-

warding paths or pipelines. Each pipeline performs a different series of actions on the input

packet, but they both run in parallel. The vast majority of packets go through the primary

path that leverages our scalable and flexible filters constructed in TCAM (Section 5.3). The

backup path is built from the fast memory and handles uncommon cases where the primary

path is not reliable due to false positives in the filters thus rarely is less efficient when it

accesses the RIB (Section 5.4). In other words, the primary path ensures the common-case

high-speed forwarding while the backup path guarantees the correctness.

Caesar minimally extends the RIB to support routing updates and keep filters of the

primary path highly utilized in such events; it also optimizes the computational overhead

of hash functions to remove a potential processing bottleneck (Section 5.5). Our design

provides a practical solution that can be implemented by existing hardware (e.g., SDN

switches) with guaranteed performance. More importantly, our design can be replicated to

support specific future forwarding schemes (e.g., XIA [80] having more address components

and the backward compatibility feature).

5.3 Primary Forwarding Path

We first describe our design of the primary forwarding path. A simple approach to com-

pressing forwarding states is to group all destination addresses reachable through the same

outgoing interface into a filter (e.g., Buffalo [128]). In this section, we first discuss how our

high-speed filters minimize data path interruptions, improve the reliability, and allow rapid

131

false positive handling compared to the simple method (Section 5.3.1). Then we describe

how we dynamically instantiate filters and perform parallel membership tests (Section 5.3.3)

AD6 AD7

IAD2

AD4
AD3

AD2

AD5AD1
IAD1

AD9AD8

IAD3

AD10

IAD4Name
Resolution

Service
GID: AD 1

2 3
R

(a) Generalized future Internet architecture

Members Next Hop PairsFilter #

(AD6,3)

IAD32

IAD31

IAD21

{AD9}
{AD8}

(AD6,3), (AD9,2)
{AD1, AD2, AD3}

(AD8,1)

(AD8,1) IAD11
IAD12 {AD4, AD5}

(AD9,2)

{AD6, AD7 }

(b) Caesar approach. Filter IADi j denotes jth filter as-
signed to IADi

1 {AD1, AD2 , AD3 , AD8 }
Members Next Hop Pair

(AD6,3){AD4, AD5 , AD6 , AD7}3

Filter #
(AD8,1)

{AD 4, AD5 , AD9 } (AD9,2)2

(c) Simple approach (e.g., Buffalo [128]). Filter i is as-
signed to outgoing port i

Figure 5.2: Caesar’s scalable and reliable filter construction in border router R.

132

5.3.1 Scalable and Reliable Filters

As shown in Figure 5.2b, Caesar’s control logic stores forwarding states into multiple fine-

grained filters in the data path, presenting a new abstraction. Each filter encompasses a

group of destination AD addresses and is mapped to forwarding actions or instructions.

To forward an incoming packet, the data path in parallel performs membership tests on

filters and then learns how to deliver the packet to outgoing ports. At the control plane,

Caesar introduces two primary properties to group and store destination AD addresses into

filters. AD addresses that have the same properties at the same time get an identical group

membership, and consequently are encoded into the same logical filter. Caesar’s control

plane is also flexible to define additional properties to form various groups. The primary

properties are as follows (the design rationale will be clarified in subsections 5.3.1.1 and

5.3.1.2):

• Location property separates destination ADs that are advertised and owned by the

same IAD from the others.

• Policy property separates destination ADs that are under the same forwarding policy,

which is determined by Caesar’s control plane, from the others.

Caesar’s control logic continuously determines the FIB entries, and forms groups and

constructs filters based on the local properties. Then, it couples each filter to the forwarding

policy of the group. For simplicity, we focus on a basic forwarding policy below, even though

Caesar supports more complex policies (e.g., rate-limiting). For a destination AD address,

Caesar’s basic policy or next-hop information includes all (next-hop AD, outgoing port)

pairs that are selected by the control plane for forwarding ingress traffic destined for the AD.

For multi-path forwarding, the next-hop information simply consists of multiple such pairs.

Example. In a multi-path scenario, filters of border router R are shown in Figure 5.2b.

Based on the Caesar’s control logic outputs, destination ADs with the same policy and

location properties are filled with the same pattern, each representing an address group

133

(Figure 5.2a). Then the groups are stored into five filters in Caesar’s data path (Figure 5.2b).

In this example, traffic to each of the addresses AD4 and AD5 is desired to be forwarded

on multiple paths. For input packets, the data path runs parallel membership tests on the

filters to retrieve the next-hop information at high speed (Section 5.3.3). We save memory

from two aspects. First, we hash each long address into a few positions within a small

filter. Doing so consumes significantly less memory than storing the original address does.

Second, we reduce the memory usage of the next hop information by decreasing the number

of FIB entries. Caesar further minimizes the overhead of maintaining next-hop information

(Section 5.3.4).

5.3.1.1 Why Separation by Forwarding Policy?

At the high level, the policy property isolates destination AD addresses under the same

forwarding actions from the others, and allows us to guarantee data path correctness. For

any action or policy supported in the data path of Caesar routers (e.g., rate limiting, ACLs,

or next-hop information), the policy property ensures each address is only inserted into one

group and thus leads to disjoint filters. This is a key design decision that allows our false

positive detection procedure to work at high speed (will be detailed in Section 5.4.1).

Multi-match uncertainty problem. Existing address grouping approaches used in

previous filter-based routers mostly store an address into multiple filters and inevitably make

the reasoning about membership tests both hard and slow (e.g., [77, 117, 66, 128]). For

example, Figure 5.2c shows how Buffalo [128] establishes a simple approach to construct

one filter per outgoing port, which is referred as “simple grouping method” in this chapter.

Buffalo suffers from an uncertainty in its data path operations in multi-path forwarding

scenarios as follows. Assume we are interested in splitting incoming traffic destined for

an AD address into multiple outgoing links. The simple grouping method installs the AD

address into multiple filters, each assigned to one of the egress links. For example, Buffalo

inserts AD4 and AD5 into filters 2 and 3 in Figure 5.2c to perform load balancing. This

134

potentially equivocates the lookup operation output. If there are multiple matching filters, it

is impossible to immediately distinguish between two states: 1) true multiple matches in the

multi-path forwarding; and 2) multiple matches due to one or more false positives.

Current solutions. There are two solutions in the literature for mitigating the multi-

match uncertainty problem in filter-based routers and switches. The first category of solutions

accesses the RIB stored in slow memory and checks all candidates sequentially [66, 117]

when multiple matches happen in a lookup. The other category of solutions forwards packets

randomly without further checking or randomize filters [128, 112]. Because of insufficient

performance and poor correctness, Caesar constructs disjoint filters, each of which is coupled

and mapped to the entire forwarding actions of the group (e.g., all specified next-hop pairs

in multi-path scenarios) in its data path. For instance, in Figure 5.2b, Caesar stores AD4 and

AD5 only into the filter IAD12 that is associated with both next-hop pairs as its forwarding

actions. Therefore, Caesar expects exactly one matching filter from the lookup operation.

Note if there are other policies or actions in addition to next-hop pairs, we can aggregate

them in a similar way to build up disjoint filters.

5.3.1.2 Why Separation by Location?

As shown in Fig 5.2, the location property isolates destination AD addresses of different

IADs into separate logical groups and makes constructed filters flexible and reliable. It

minimizes processing interruption and performance degradation when the control plane

updates a forwarding state in the FIB once it receives route updates or locally enforces new

forwarding policies.

First, given there can be millions of AD addresses in the future Internet, the location-

based isolation systematically ameliorates the reliability challenges by making defined groups

small in size and shrinking filters in width substantially. Therefore a small portion of the

Caesar’s FIB becomes “frozen” when a desired filter is inactivated during its bitmap update,

or when a bit failure occurs in a bitmap. However, existing designs that use the simple filter

135

construction method (e.g., Buffalo [128]) can disrupt traffic forwarding to many destinations

and are prone to more failure. This is because they store millions of addresses into a few

very large filters.

One can use other properties to make groups more specific and smaller, but the location-

based separation also limits side effects of Route flapping events, which have been identified

by other work [69]. In the future Internet context, these events occur because of a hardware

failure or misconfiguration in a border router of an IAD. In this case, the router advertises a

stream of fluctuating routes for ADs in its owner IAD into the global routing system. However,

Caesar’s data plane keeps the majority of filters protected from any bitmap modification in

response to such route updates, except those filters built for that problematic IAD.

Second, the location-based isolation allows Caesar to enforce business-specific policy

efficiently. For example, Caesar’s control plane can dynamically stop forwarding traffic

to ADs in a specific IAD (e.g., due to political reasons [127]) without interrupting traffic

forwarding to other AD addresses.

5.3.2 Memory Technology for Filters

In practice, the number of filters generated based on the two primary properties can be

high. This is because Caesar constructs more specific and fine-grained address groups. We

approximate the worst case number of filters that might be constructed in our forwarding

engine. To achieve our performance requirement, the approximation is used to find the best

memory technology for filter implementation.

Let d denote the total number of IADs throughout the Internet. Also, let p be the total

number of different forwarding policies that can be defined by the control plane of a Caesar

router. Then the number of filters is O(d p). For example, 2M filters are generated for p = 20

and d = 105 in the worst case. This poses performance challenges because Caesar must test

filters very fast to achieve a high forwarding rate (e.g., 100s of millions of packets per second

(Mpps) [11]).

136

SRAM is the fastest memory technology in terms of access delay (about 4ns based on

Table 1). However, it can provide high-speed forwarding rates only when it stores a small

number of filters, and the performance dramatically degrades to a few kpps even when a

few hundred filters are tested in a lookup [128]. This is because the memory bandwidth is

limited (even for multi-port SRAMs) and there is a lack of parallelism in accessing multiple

filters, each requiring k memory accesses in a membership test in the worst-case (k is the

number of hash functions). Therefore serialization and contention become intensified as

many fine-grained filters are instantiated.

To overcome the above limitations, we propose to realize filters using TCAM due to its

three advantages over SRAM. First, it supports parallel search operation that can be used to

lookup filters in one clock cycle (Section 5.3.3). Second, we can intelligently leverage one of

its flags to handle false positives (Section 5.4). Third, it has less implementation complexity

compared to the approach of using distributed SRAM blocks [88].

5.3.3 Parallel Lookup of Filters

As shown in Figure 5.1, Caesar encodes filters that are heterogeneous in bit width and

constituent members in TCAM data entries to attain its desired forwarding rate. TCAM

is an associative memory that is made up of a number of entries. All data entries have an

identical width, which is statically configurable by combining multiple entries. For example,

a TCAM with a base width of 64 bits can be configured to various widths such as 128, 256,

and 512 [51]. As shown in Figure 5.3, each bit of the memory and input register can be set

to either 0, 1, or * (don’t-care). To search a key, TCAM in parallel compares the content of

the input register, which contains a search key, with all memory entries in one clock cycle.

When there are multiple matches, it returns the index of the matching entry with the highest

priority. Typically, an entry at a lower address has higher priority.

Heterogeneous filters. Since each IAD manages a different number of ADs, top-tier

IADs that form the core of the future Internet can own a lot more ADs compared to others.

137

Hence the grouping properties can produce heterogeneous filters from three aspects: for a

filter, the number of inserted addresses, the filter bit width, and the number of hash functions

(in the insertion and test procedures) can be different from the others. We can show it is

possible to store such heterogeneous filters in TCAM. For example, we can extend short-

width filters by filling the don’t-care values into different positions, but the memory space is

wasted and the filter management becomes complex in terms of the insertion and membership

test procedures.

Caesar memory allocation strategy. To avoid the low utilization and memory manage-

ment overhead, we construct equal-sized filters that have identical bit width (w) and use the

same k-hash functions. Caesar defines a global maximum capacity for filters by which it

restricts the number of ADs in them. This maximum capacity, nmax, can be configured by the

router’s bootstrap program. By defining the maximum capacity, we can limit false positives

in practice, and theoretically calculate an upper bound on their rate. Instead of storing all

addresses of a group into a large filter, Caesar allocates, releases, and combines equal-sized

filters depending on the size of a group that might change over time due to address insertion

and removal into the data path (details in Section 5.5.2). In the evaluation, we conduct

experiments to study how different nmax and w values affect the trade-off between the filter

utilization and false positive rate (Section 5.6.2). Below, for simplicity, we focus on the

lookup procedure in the primary path when nmax and w values are given.

Caesar’s parallel filter lookup. Assume Caesar’s TCAM contains a set of w-bit disjoint

filters, each storing at most nmax destination AD addresses. Each equal-sized filter occupies

a memory entry, as shown in Figure 5.3. We design two options in Caesar to perform parallel

filter lookups. Suppose we would like to retrieve the basic forwarding policy or the next-hop

pairs of an incoming packet destined for ADkey. First, k hash functions (H={h1,h2, . . .hk})

are computed on ADkey. In the first option (Figure 5.3a), we set all the positions of the

input register that do not correspond to H (i.e., not set by any of the k hash functions) to

the don’t-care value, and set all other positions to 1. When the search is issued, the TCAM

138

11000100010

00101100010

Input Register A

TCAM A

10100010010

10001010001

{a1, a2}
{a3, a4}
{a5, a6}
{a7, a8}

a5

1***1******

(a) Option 1

**000*000*0

00*0**000*0

*0*000*00*0

*00*00*000*

Input Register B

TCAM B

{b1, b2}
{b3, b4}

{b7, b8}
{b5, b6}

b2

10010000000

(b) Option 2
Figure 5.3: Two options for a parallel membership test in TCAM when there is no false positive
and k is 2
locates the target filter by matching 1s in one clock cycle. In the second option (Figure 5.3b),

we set all the positions of the input register that correspond to H to 1, and set all other

positions to 0. When we issue the search, the TCAM locates the filter whose positions that

correspond to H have the don’t-care value. Finally, we retrieve the next-hop information

mapped to the matching filter to continue the packet processing.

Design implications. The first difference between the two options is how filters are

represented in the TCAM. In the second option, all 1s within standard filters need to be

changed to don’t-cares. The second difference is about the number of writes to the input

register bits. Assume the input register has the default value of 0, the second option requires

setting only k positions in the input register while the first option needs to modify all w bits to

1s or *s. Although the power to toggle the memory and input register bits can be very small in

practice, one can benefit from one of the options to perform hardware-specific optimizations

for write-intensive workloads. Note that the encoding options do not change the false positive

139

rate or incur false negatives. Also, unlike IP routers that keep address prefixes sorted in

decreasing prefix-length order to implement the longest prefix matching algorithm, the order

of entries does not matter Caesar, except in uncommon cases where there are matches of

multiple entries due to false positives. In this case, there is no unique ordering with which

we can deterministically mask all false positives, so the backup forwarding path is triggered

(Section 5.4).

5.3.4 Reducing Next-Hop Fast Memory

Because routers usually have a limited number of (next-hop AD, outgoing port) pairs, often

many filters with different location properties are mapped to the same next-hop information

(e.g., AD8 and AD1 in Figure 5.2). We can eliminate the memory redundancy in storing

next-hop information and make Caesar’s data path more agnostic to the address length.

At a cost of an extra fast memory access per lookup, we can store all different next-hop

information into a separate fast memory space (i.e., SRAM C in Figure 5.1), and then map

each filter to a pointer (NH) pointing that memory. Each NH-pointer can be realized by

using only one byte in most cases because of the limited number of ports on a router. This

approach minimizes the fast memory overhead, in particular when TCAM contains a large

number of filters. A similar technique can be applied when other forwarding actions or

policies are supported in addition to (next-hop AD, outgoing port) pairs for filters.

Primary path performance implication So far, we have encoded AD addresses into

the primary path such that the next-hop information can be retrieved in at most three memory

access, each taking about 4ns delay based on Table 1. With using faster TCAMs [15], the

primary path can support up to 1.6 billion filter searches per second under typical operating

conditions

140

5.4 Backup Forwarding Path

We now describe the backup forwarding path and introduce a blacklisting mechanism to

handle false positives as shown in Figure 5.1.

5.4.1 High-Speed False Positive Detection

The grouping properties lead to disjoint filters in the presence of different forwarding policies

in a Caesar router. Therefore, we expect one matching filter in each parallel lookup and

thus do not need to deal with the multi-match uncertainty problem (Section 5.3.1). Caesar

deterministically interprets any multiple matching filters as an event that indicates the primary

path is no longer reliable, and the processed packet might be forwarded to an incorrect next

hop. Caesar intelligently detects such events using Multi-Match (MM) line of state of the

art TCAMs, a flag indicating that there are multiple matching entries. In every lookup, the

primary path is used if and only if the MM line output is low (see Figure 5.1). We describe

the details as follows.

• The low MM line ensures that the index of the matching entry reported by the TCAM is

the (only) correct filter. In other words, the destination address of the incoming packet

is encoded in the TCAM without ambiguity. Therefore, the packet is processed based

on the correct next-hop pointer (NHprimary) through the primary path.

• If the MM line is high, the true matching filter is at the ith position and there is at least a

filter at position j 6= i that has returned false positive. If j < i, the reported index is not

correct, otherwise the error is masked by the true matching filter that has higher priority

(lower address). However, distinguishing between these two cases is not possible, so

the backup forwarding path is triggered.

141

5.4.2 Blacklisting Mechanism

The backup forwarding path delays at most the first packet in a flow that is destined for an

AD on which the primary path encounters multiple matches. There are two components in

the backup path (see Figure 5.1):

• The Blacklist Memory is a very small, high-speed, and SRAM-based hash table that

maps the hash value of an AD to its correct next-hop pointer (NH). In addition, each

entry has an expiration or idle time that helps keep the hash table small and minimize

potential collisions. An entry is deleted from the blacklist memory if it is not used for a

predetermined period of time.

• The False Positive Resolver (FPR) is a component that creates entries in the Blacklist

memory. It accesses the RIB that is stored in a hash table in slow memory, and retrieves

the correct next-hop information, i.e., all (next-hop AD, port) pairs, in constant time.

Backup path. Given the above components, the backup path works as follows (Figure 5.1).

In parallel to the primary path, the backup path proactively retrieves the next-hop pointer

NHbackup from the blacklist memory for every incoming address ADd . If the primary path

activates the MM line, Chooser picks NHbackup from the backup path, otherwise it selects

NHprimary from the primary path. If the MM line is high and NHbackup does not exist in

Blacklist, the backup path delays forwarding and waits for FPR to retrieve the mapping from

the RIB. FPR then updates Blacklist to avoid delaying subsequent packets belonging the

same flow as well as future flows to the same destination AD. Finally, the NHbackup is sent

to Chooser in this case.

Backup path performance implication. The backup path is as performant as the pri-

mary path almost always for three reasons. First, for optimally configured filters, the backup

path result is rarely used because the multi-match rate is very small in theory and for actual

workloads. We show this by analysis and evaluating two extreme cases of blacklisting (Sec-

tion 5.6). Second, when a multi-match rarely occurs, the results of the backup and primary

142

paths are ready at the same time since the Blacklist memory mostly hits. Third, a Blacklist

miss occurs for the first packet of a flow in the worst case (when the idle time is minimum).

In such a case, the processing takes more time due to accessing slow memory. Caesar can

minimize this by employing two known techniques. Given only next-hop pointers are needed

to be retrieved, we can implement an efficient and summarized RIB to minimize the delay to

one slow memory access (about 20ns). Also, we can minimize the miss rate by establishing

a multi-level Blacklist approach similar to hierarchical caching schemes.

Security implication. From the security perspective, it is difficult for an attacker to

trigger the backup path and to infer what ADs use this path for two reasons. The inference

of k hash functions and filter organization, changing over time, is very hard. Second, the

observed delay caused by the slow memory access is very small and happens infrequently.

5.5 Forwarding Optimizations

The parallel paths can process almost all packets within three fast memory accesses and offer

deterministic correctness. However, the hash computation must be optimized to guarantee the

entire performance. Although there are solutions for building uniform hashing (e.g., [103]),

the computation overhead is still an unsolved issue [82]. Related designs (e.g., [128, 66, 77,

71]) have not taken into account this overhead. Our key idea is to exponentially minimize

the number of hash computations, and then run them in parallel similar to state-of-the-art

routers (Section 5.5.1). Caesar also handles route updates and optimizes the filter utilization

(Section 5.5.2).

5.5.1 Scalable Hash Computation

We leverage a simple but effective technique to reduce the number of hash computations.

Our approach is based on hash coding theory [134] with its basic property. If we have two

different and uniformly distributed hash values f (x) and g(x) for input key x, we can construct

hash value h(x) = f (x)⊕g(x) that is also from a uniform distribution. The main intuition is

143

that XOR is a uniform operation that generates both 0 and 1 with the same probability for

random inputs (i.e., 0 and 1 are equally likely to appear). This property is also applied to

n-bit inputs in practice. For example, SSL computes the MD5 and SHA-1 of its inputs and

combines them to avoid cryptanalytic attacks.

Hierarchical hash computation. Caesar recursively employs the property to faster

generate hash values in the lookup and update procedure of small filters (e.g., 288-bit), which

have specific characteristics compared to large filters (will be clarified below). Given k1

different hash values from uniform distributions, H = {h1,h2,h3, · · ·hk1}, any non-empty

subset of H is a candidate for constructing a new uniform hash value by performing the

XOR operation among its members. Because H has 2k1−1 non-empty subsets, we can build

2k1 − k1− 1 new uniform hash values. This dramatically improves the hash computation

performance. For instance, four different uniform hash values in H = {h1,h2,h3,h4} give us

G = {h1⊕h2,h1⊕h3,h1⊕h4, . . .h1⊕h2⊕h3⊕h4} that consists of 11 uniform hash values

by performing only 11 XOR operations.

Internal correlation. Theoretically, the correlation between recursively-constructed

hash values does not lead to more false positives as long as the seed set satisfies the unifor-

mity and diversity requirements. In practice, even cryptographic hash functions might not

completely satisfy the uniformity. In this case, we have observed negligible (positive and

negative) difference values between the flat and hierarchical hash computation schemes in

terms of false positive and multi-match rate, making this scheme practically useful.

Small filters and internal collision. Caesar’s focus is on very small filters, which is

different from a similar usage of the core property in previous work [117]. Particularly, our

results show small filters require k hash values of an address to be different in contrast to large

filters. However, k hash functions might generate fewer than k different hash values in practice.

Therefore, we proactively compute sufficient extra hash values for each address, which we

refer it as internal collision avoidance. In this case, we have observed the hierarchical

scheme has substantially lower computational overhead compared to the standard flat scheme

144

(complete details in Section 5.6.2.4).

5.5.2 Optimized Route Update Support

To handle control plane messages that change forwarding states, Caesar should be able to

remove any address from an old filter, and insert it into a new filter. However, a standard

filter does not support graceful address removal.

We leverage counting filters [72] to realize this operation. In a counting filter, each

position is extended from a single-bit (as in a standard filter) to an s-bit counter. To in-

sert/remove an address, the value of each of the k positions, each corresponding to a hash

value of the address, is incremented/decremented instead of being set/unset. Similarly, the

membership test checks the positions to see if all of them have non-zero values or not. To

integrate counting filters into Caesar, a trivial solution is to directly put them into TCAM,

but this increases the TCAMmemory usage as well as the complexity of the parallel lookups.

Instead, Caesar keeps a counting filter in slow memory for each standard filter in TCAM.

Caesar does not access the counting filters to perform forwarding, but only uses them to

assist updating standard filters.
{a1, a2}

1 0 0 0 1 1

0
0

0
1

1 0
1

0
0 00

0Counting
Filter

TCAM
Filter 1 0 0 0 1 0

{a1}

0
1

0
1

0 0
0

0
0 00

0S1
S0

S1
S0

Remove a2

Add a2

(a) Option 1
{b1, b2}

0 * 0 * 0 *

0
0

0
0

0 1
1

0
0 01

0Counting
Filter

TCAM
Filter

0 * 0 * 0 0

{b1}

0

0

0

0

0 0

0

0

0 11

0S1
S0

S1
S0

Removeb2

Add b2

(b) Option 2
Figure 5.4: Address removal and insertion in filters when k and nmax are 2, and thus s =
blog2(nmax)c+1 = 2

Insertion and zero overflow. To store an address in the data path, Caesar first learns

145

its group based on the primary properties (Section 5.3.1). Then it determines the insertion

position of the address in the TCAM based on its group. If the specified group is old, multiple

filters already have been assigned to old members of the group in the TCAM. In this case,

Caesar balances the load among existing filters of the group with a simple greedy approach.

It selects an available position or filter with the minimum utilization ratio, ni/nmax (ni is

the number addresses in the filter). Otherwise, Caesar assigns a new position to the group

and the address. The specified position is also recorded in the RIB to support removing the

address without false negatives later.

After determining the position, we first insert the address into the corresponding counting

filter and then the standard filter in a simple procedure (as shown in Figure 5.4). When a

counter changes from zero to non-zero, we change the corresponding bit in the standard filter

from zero to one for option 1 (Figure 5.4a) and from zero to the don’t care (*) for option 2

(Figure 5.4b). Unlike the previous usage of counting filters (e.g., [72]), our counting filters

can be configured to avoid overflows by setting s = blog2(nmax)c+1 because each standard

filter contains at most nmax addresses (Section 5.3.3).

Removal and high filter utilization. To remove an address, we first retrieve the its

position (in TCAM) from the RIB, which is necessary to avoid generating false negatives.

As shown in Figure 5.4, we then remove the address from the counting filter at the position

by decrementing the counters, each of which maps to a hash value of the address. If any

of the counters becomes zero, we set the corresponding bit in the standard filter to zero in

the both options. In the address removal procedure, Caesar checks the utilization ratio of

the affected standard filter. If the ratio is below a predetermined threshold, Caesar tries to

combine the filter with other filters allocated to the same group. This is necessary to reduce

the number of filters in the TCAM (We adjust the counting filters accordingly).

146

5.6 Evaluation

In this section, we first perform a cost-accuracy analysis (Section 5.6.1) and then do extensive

simulations using multiple workloads (Section 5.6.2) to study Caesar from different aspects.

5.6.1 Cost-Accuracy Analysis

We provide a simple approximation showing the inherent trade-off between false positives

of filters in the primary path and the total cost of Caesar. Note Caesar correctly processes

all packets and false positives only affect the amount of traffic handled in the backup path.

Similar to AIP and XIA [54], we assume each AD corresponds to an IP prefix in today’s

Internet but with larger size. The current number of active address prefixes is about 481k

and we envision 1M ADs to accommodate a reasonable growth rate [42].

False positive estimation. Intuitively, the false positive rate in the parallel filter lookup

procedure for a destination AD address depends on two factors. First, the position of the

true filter containing the address. Second, the fill factor (i.e., the ratio of bits with the value

1) of all the filters above the true filter. The fill factor of filter i is a function of the number

of inserted addresses in the filter (ni), the width of entries (w), and the number of hash

functions (k). Caesar does not insert more than nmax addresses in each filter, so we can

derive a theoretical upper bound on the maximum false positive rate (FP) of filter i, given ni

and w are fixed, by FP(i)6
(

1− e
−knmax

w

)k
. In this equation, k can be computed optimally

for given nmax and w, kopt = 9w/13nmax. We omit the detailed derivation for simplicity.

Assuming all addresses are accommodated into E entries and a given packet matches any

entry with the probability of 1/E, the maximum expected false positive rate in parallel filter

lookups can be calculated by Eq. 5.1.

E[false positive rate]6
(E−1)

2

(
1− e

−knmax
w

)k
(5.1)

The same approach can be used to derive the maximum expected multi-match rate in parallel

147

filter lookups, which results in Eq. 5.2.

E[multi-match rate]6 (E−1)
(

1− e
−knmax

w

)k
(5.2)

Table 1: Fast memory reference price
Memory Capacity Delay Price Company Cost/ MB
SRAM 9MB 3-4ns $90 Cypress $10
TCAM 2.5MB 3-4ns $390 Broadcom $156

Cost estimation. Now, we turn into estimating the total material cost. Our prices have

been quoted by Cypress and Broadcom for a TCAM and an SRAM working at 250 MHz

as shown in Table 1. As expected, the TCAM is more expensive compared to the SRAM.

Let CTCAM and CSRAM denote the cost-per-bit of TCAM and SRAM respectively. Assume

Caesar has h next-hop pairs and addresses are q-bit long. Then, Eq. 5.3 gives an estimation

of the total cost of a Caesar router excluding the blacklist memory which is expected to be

small, while also ignoring the RIB and counting filters which use inexpensive DRAM. The

first term is the TCAM cost, and the second term includes the cost of SRAM A and C (see

Figure 5.1).

TotalCost = EwCTCAM +(log(h)E +hq)CSRAM (5.3)

Based on Table 1, Figure 5.5a illustrates the total cost of Caesar for h = 64, q = 1kb, and

variable nmax and w. We assume filters are fully utilized (i.e., E = #ADs/nmax). We also

estimate the total costs of optimized TCAM-based IPv4 and IPv6 routers (e.g., [129]) to be

$604 and $2,389 respectively. For the same parameters and the optimal k values, Fig 5.5b

depicts the maximum expected false positive rate in parallel filter lookups.

Finding 1. Caesar can be substantially less expensive compared to TCAM-based

IPv6 routers. We observe there are several interesting options that provide a reasonable

accuracy for the filters with a feasible total cost. For nmax = 4 and w = 288, the maximum

expected false positive rate is around 10−10 and the total cost is $1,340. In this case, Caesar

is about 43% less expensive than the IPv6 router while our addresses are 8X longer than the

148

Maximum #ADs in filters (n
max

)
1 2 3 4 5 6 7 8 9 10

E
st

im
at

ed
 t

o
ta

l c
o

st
 (

$)

0

1000

2000

3000

4000

5000

6000
w=72
w=144
w=288
IPV4
IPV6

(a) Estimated cost for one million 1kb addresses; IP addresses are 32b and
128b.

Maximum #ADs in filters (n
max

)
1 2 3 4 5 6 7 8 9 10

M
ax

. e
xp

ec
te

d
 F

P
 r

at
e

(l
o

g
)

10-12

10-10

10-8

10-6

10-4

10-2

w=72
w=144
w=288

(b) Expected false positive rate in parallel lookups; k is optimal.
Figure 5.5: Cost-accuracy analysis

IPv6 addresses.

Finding 2. The total cost of Caesar is constant for very long addresses. To analyze

the sensitivity of our design to the AD address length, we compare the cost of Caesar router

with TCAM-based IP router. Fig 5.6 shows that the total cost of our design is roughly

constant even for very long addresses. In contrast, the total cost of IP routers increases

linearly as addresses become longer (assuming future IP addresses can be longer to support

new services).

149

Address length (bit)
0 200 400 600 800 1000

E
st

im
at

ed
 t

o
ta

l c
o

st
 (

$)

0

4000

8000

12000

16000
Caesar Router
IP Router

Figure 5.6: Address length vs. total cost of TCAM-based IP routers and Caesar routers with
w = 288, nmax = 4

5.6.2 Extensive Trace-Driven Simulation

We now evaluate Caesar under real workloads. Because existing prototyping platforms

such as NetFPGA lack sufficient TCAM, we implement an accurate packet-level simulation

framework in C/C++ (with 2500 LoCs) and “mix and match” various datasets. We measure

the multi-match rate, percentage of delayed flows, effects of grouping properties on the

memory utilization, efficiency of the hierarchical hash computation scheme, and energy

consumption.
Table 2: Experiment statistics

Experiment Total # forwarded Monitoring
/Snapshot # ADs packet duration(s)
Jan 1, 2008 149842 12481172 25
Jan 1, 2009 162102 12849066 31
Jan 1, 2010 180470 16516240 41
Jan 1, 2011 205361 25459705 52
Jan 1, 2012 234483 28460868 55
Jan 1, 2013 255424 16662799 42

Total 112 M 246s

5.6.2.1 Dataset and Methodology

We simulate the future Internet architecture using public datasets in six snapshots between

2008 and 2013 to consider the growth rate of IADs and ADs. In our simulation, IAD and

150

AD correspond to today’s AS and IP prefix respectively. We select only address prefixes

of length 24 to feed experiments with flat addresses. To consider high entropy of future

addresses, we replace them with their corresponding hash value, which is computed using

the SHA1 algorithm. To represent the business agreements among IADs, we utilize CAIDA

inferred relations between ASes [6] and leverage RIBs and update traces of Route Views [40]

to generate the FIBs based on the path length metric. We replay the packets in traffic traces

collected from backbone links [6] and use a recent power model [51] to measure the dynamic

power consumptions in the experiments. For each pair of nmax and w, we compute the

optimal k and then construct filters based on the primary properties. For the space reason,

we show the results for a single Caesar at the border of IAD 7726 when w is 144 and nmax is

between 2 and 6. The other Caesar routers and other settings follow a similar trend. Table 2

lists the number of ADs and forwarded packets by this Caesar router, and the duration of

traces in each snapshot. Although the monitoring duration is relatively short, the coverage

of destination addresses is high and sufficient for our evaluation purpose. In total, the Caesar

router forwards 112M packets, and upon receiving each route update message, it runs the

best route selection procedure and updates filters if necessary. The average rate of route

update messages varies between 88.2 and 277.1 across different snapshots.
Table 3: Multi-match rate and TCAM memory consumption for w = 144 and variable nmax.
nmax koptimal kCaesar Multi Match Rate(%)[w=144] TCAM Memory Footprint(MB)[w=144]

2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013
2 49 6 0 0 0 0 0 0 1.46 1.58 1.75 1.98 2.25 2.46
3 33 6 0.0002 0 0.0001 0 0.0001 0.0003 1.05 1.13 1.26 1.42 1.6 1.76
4 24 5 0.033 0.05 0.032 0.035 0.032 0.001 0.85 0.92 1.02 1.14 1.29 1.41
5 19 5 1.84 1.35 4.47 6.06 6.78 9.34 0.73 0.79 0.88 0.98 1.1 1.2
6 16 5 14.69 14.22 18.71 25.68 29.94 38.82 0.66 0.71 0.79 0.88 0.98 1.08

5.6.2.2 Multi-Match Rate and Memory Consumption

We first measure the multi-match rate in the primary path. This rate indicates the amount

of traffic that is forwarded by the backup path regardless of whether it is delayed by a slow

memory access to the RIB due to the blacklist memory miss or it is delivered without

any delay. Table 3 presents the multi-match results and the memory usage of filters in 30

151

configurations.

Finding 3. Caesar can forward most of the traffic through the primary path within

three fast memory accesses. As expected, Table 3 shows the multi-match rate in each

snapshot exponentially increases as nmax increases. Although predicting the exact multi-

match rate is impossible, we observe different snapshots have the same order of magnitude

of the multi-match rate for a fixed nmax. This indicates we can practically control the order

of magnitude of the multi-match rate in Caesar routers. In the case that nmax is 2, we observe

that the multi-match rate is zero thus the MM line never goes high. This means all the packets

are forwarded through the primary path, mainly due to using more hash functions.

Max #ADs in filters (n
max

)
2 3 4 5 6A

vg
 u

ti
liz

at
io

n
 r

at
io

(%
)

0

0.25

0.5

0.75

1

(a)
#ADs in IADs

20 40 60

C
D

F

0

0.25

0.5

0.75

1

2008
2013

(b)
Figure 5.7: Determining nmax. (a) Average filter utilization ratio of filters for w = 144 across all
snapshots. (b) Distribution of ADs in IADs in the first and last snapshots.

Finding 4. To find a reasonable nmax, both the memory utilization and multi-match

rate are determining factors. Based on Table 3, two important reasons suggest that we

should keep nmax smaller than 5 for w = 144. First, we observe the multi-match rate increases

several orders of magnitude, from -2 to 0, when nmax changes from 4 to 5. Second, the

memory utilization rate (i.e., the difference between the memory footprint of two consecutive

nmax values) becomes smaller as nmax increases. Now the question is why the memory

utilization rate decreases. Fig 5.7b shows the distribution of ADs in IADs between five

years. Also, Fig 5.7a illustrates the average utilization of filters in TCAM, which is defined

as ∑
E
i=1 ni/(nmaxE), across all snapshots for each nmax value. From these two figures, we

observe the memory utilization rate reduces because the average utilization of filters goes

152

below 75% for nmax values larger than 4 that is because about 77% of IADs own fewer than

5 ADs.

5.6.2.3 Energy Consumption Breakdown

Wenowmeasure the total dynamic energy consumption of Caesar and compare it to optimized

TCAM-based IPv4 and IPv6 solutions (e.g., [129]). TCAM is the most power consuming

component among different memory technologies in routers by several orders of magnitude.

Therefore, we can ignore the energy consumptions in the other memory components of

Caesar. The dynamic energy used in each search operation depends on many factors and

parameters but is used in three high level architectural components [51]:

• Match lines that are charged in every lookup, and then except the lines that match input

address, the others are discharged. The energy for this operation is proportional to the

sum of match lines capacitance (i.e., the ability to store charge).

• Select lines that are driven to allow the comparison between input address and entries

to happen. The energy used to drive select lines usually increases as the size of TCAM

increases.

• Priority encoder that needs some power to work and the required energy depends on

the number of filters (E), and is independent of the width of filters (w).

Finding 5. Caesar consumes 67% less total energy compared to TCAM-based IPV6

routers while the addresses are substantially longer. Fig 5.8 illustrates the total energy

consumption break down across the TCAM components for the snapshot 2012 (others have

similar results) for w = 144, variable nmax, and 65nm CMOS technology. We repeat the

similar experiments for the IP routers. We observe the total energy consumption of Caesar

for nmax = 4 is only 1% higher than the IPV4 router and 67% less than the IPV6 router while

addresses in Caesar are very longer.

153

T
o

ta
l s

ea
rc

h
 e

n
er

g
y(

n
J)

108

0

2

4

6

8

10

12

nmax
= 2

nmax
= 3

nmax
= 4

nmax
= 5

nmax
= 6

IPV 6
IPV 4

Match line
Search line
Priority encoder

Figure 5.8: Total search energy breakdown for w = 144.

Table 4: Effects of permanent and per-flow blacklisting approaches
nmax #Delayed Flows[Per-flow Blacklisting, w=144] #Delayed Flows[Permanent Blacklisting, w=144]

2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013
2 0 0 0 0 0 0 0 0 0 0 0 0
3 3 0 23 0 2 1 1 0 2 0 1 1
4 923 903 764 1371 885 2067 141 30 145 261 245 115
5 32209 20282 25670 45888 110984 47815 3359 628 3096 6303 6040 2978
6 271902 175575 284606 656360 457918 308102 21366 4559 28789 47024 50039 21231

5.6.2.4 Hierarchical Hash Computation Scalability

We now compare the hierarchical and flat hash computation schemes from two aspects.

Finding 6. The hierarchical scheme needs smaller number of hash computations

for handling internal collisions. Although filters use k different hash values to insert and

test an address, k hash functions might generate fewer than k different hash values in practice,

which we call it internal collisions. In small filters, we have observed such collisions can

increase the multi-match rate by up 50%. This is because the number of buckets in small

filters is limited, and the correlation among the k hash values computed for a given address

is stronger in practice. To control internal collisions, we proactively compute extra hash

values for each address in the insertion and test procedures. In this way, we obtain sufficient

different hash values in both the flat and hierarchical schemes. We measure the computational

overhead of the two schemes in terms of the number of hash computations and aggregate

the results across all snapshots and configurations. For a given k, the hierarchical scheme

154

#hash values
16 19 24 33 49

N
o

rm
al

iz
ed

 p
ro

ce
ss

in
g

 o
ve

rh
ea

d

0

0.25

0.5

0.75

1
Hierarchical (160-bit)
Hierarchical (320-bit)
Flat(160-bit)
Flat (320-bit)

Figure 5.9: Normalized processing overhead of the hierarchical and flat schemes
requires at most 1.16log(k) hash computations while the flat scheme needs at most 1.5k

hash computations to generate k different values. This indicates our scheme performs well

for small filters because an extra different hash value in the seed set can double the total

number of different hash values.

Finding 7. The hierarchical scheme substantially reduces hash computation pro-

cessing overhead. We also measure the computational overhead of the two schemes in terms

of CPU time when multi-threading is enabled for the same number of threads. We plot the

aggregate results in Fig 5.9. To study the effect of address length, we consider 160-bit and

320-bit AD addresses. For a fair comparison, we do not enable internal collision avoidance

that generates extra hash values. For a fixed k, we observe our scheme in average incurs by up

to 18% and 70% smaller processing overheads for 160-bit and 320-bit addresses compared

to the flat scheme. Note the overall number of XOR operations in the hierarchical scheme is

2kCaesar − kCaesar−1.

5.6.2.5 Blacklisting and backup path delay

Finally, we evaluate the blacklisting in two extreme cases: per-flow and permanent. Due to

blacklisting (Section 5.4.2), only a small amount of packets activating multi-match line and

going through the backup path are delayed. In the per-flow case, we store the destination AD

155

address of a flow that leads to a multi-match until the flow completes. In the permanent case,

we permanently store AD addresses that lead to a multi-match, upon the first detection.

Finding 8. Very few flows are delayed by both the permanent and per-flow black-

listing schemes. Table 4 shows the difference between these two cases. The permanent

case reduces the number of delayed flows by an order of magnitude compared with the

per-flow case. For example, for nmax = 4, fewer than 261 flows are delayed by the permanent

blacklisting while the per-flow blacklisting approach delays up to 17.93X more flows. Note

when a flow is delayed in both approaches, except its first packet, the other packets are

forwarded at high speed. In both approaches, the blacklist memory footprint is insignificant

because each next-hop pointer is only one-byte.

5.7 Related Work

In the past few years, filters have been used in designing routing and forwarding engines.

These efforts mostly have targeted improving the performance and simplifying traffic pro-

cessing in enterprise switches and routers.

Much of the previous work focuses on memory-efficient IP routers [66, 117]. Unlike

Caesar, these designs optimize the longest prefix matching algorithm to minimize the fast

memory consumption. In particular, they store all address prefixes of the same length

into a very wide filter. Given there can be multiple matches and the lookup uncertainty

problem, these systems mostly test all candidates against a very large hash table located on

slow memory to find the length of the longest match. Due to limited performance, these

approaches cannot be used in high-speed border routers. Also, their coarse-grained filter

construction is not reliable in practice.

Some other work focuses on designing low-cost and scalable switches handling flat

addresses in small-scale and single-domain enterprise networks [77, 128]. The primary

technique in such designs is constructing a very large filter per outgoing interface, each

containing flat addresses reachable from the port. Upon facing the multi-match uncertainty

156

problem, these designs mostly randomly choose among matching candidate filters, and thus

impose significant delays and path inflations. Also, they require many memory accesses per

lookup, and therefore have limited peak performance.

In contrast to the above techniques, Caesar is designed for high-speed border routers in

the future Internet. Caesar constructs fine-grained filters that are more reliable and scalable.

Caesar does not need to compute separate hash values for accessing each filter. It tests all

the filters in parallel in one clock cycle and does not waste many memory accesses to check

all the matching filters as it can detect false positives at high speed using a hardware flag.

Caesar minimizes hash computation overheads by recursively combining hash values.

Our idea of using filters in TCAM entries is similar to previous work [75]. However, the

authors focus on the case that input register is filled by a set of elements instead of one to

solve multiple string matching and virus detection problems. Although the authors propose

a theoretical upper bound on the maximum false positive rate, still they do not provide any

mechanism for detecting false positives at high speed. In contrast to this work, we reduce the

hash computation overhead, design parallel forwarding paths, cleanly detect false positives,

manage memory entries, and design an element removal procedure.

To optimize hash table operations in network processors, prior work [116] employs

counting filter per table bucket. Instead, we use an expiration timer per address to minimize

the size of the Blacklist memory and avoid occasional collisions. We can improve the

robustness of the backup path by benefiting from such techniques.

Our idea of using small counting filters to support route changes is similar to some

proposals (e.g., [128, 66, 72]). In contrast to existing approaches, Caesar constructs equal-

sized filters in terms of bit width and the maximum number of constituent members. We

dynamically allocate counting and standard filters while maintaining them highly utilized.

Also, our counting filters never experience overflow, and we do not modify the filters in the

critical forwarding path during updates.

157

CHAPTER VI

Concluding Remarks

In this dissertation, we discussed three novel network architectures, SkyCore, SoftBox, and

SoftMoW for 5G core networks to meet emerging 5G use cases and address key limitations of

4G core networks (EPC). These architectures provide scalability, performance, and flexibility

as the first-order properties by leveraging recent paradigm shifts in networking (SDN, NFV,

and MEC). Then, we architected Caesar that is a high-speed and memory-efficient router

architecture to be deployed as a complementary solution in our 5G core proposals or other

future Internet architectures to improve their mobility support and verifiable security. In the

following, we conclude our contributions in each of these works and further highlight the

connection among these works.

In the second chapter, we presented the design and real-world implementation of SkyCore

that is a core network architecture for on-demand airborne 5G networks. These networks are

expected to be deployed in challenging environments (e.g., natural disasters) to interconnect

first responders and the general public. Given the fundamental limitations in deploying

EPC (4G core) on the ground to support a multi-UAV RAN, we advocated for a radical,

yet standards-compliant re-design of the EPC, namely the edge-EPC architecture, to suit

the UAV environment. SkyCore embodied the edge-EPC architecture, while introducing

two key pillars in its design to address the associated challenges – a complete software

refactoring of the EPC for compute-efficient deployment on a UAV, and a new inter-EPC

158

communication interface to enable fully functional operation in a multi-UAV environment.

SkyCore’s design focused on the challenges unique to multi-UAV LTE networks that typically

span from a few to at most tens of UAVs (city-scale). While our design decisions (e.g.,

inter-agent proactive updates, policy pre-computation) are efficient and scalable for our target

environment, they are not designed to scale in nation-wide LTE networks with hundreds of

millions of UEs. There is one major future work for SkyCore. We did not discuss the design

of the backhaul agents forming the physical wireless mesh network among UAVs. The design

of an efficient backhaul needs to be jointly optimized with the RAN as the position of the

UAV simultaneously affects the performance of the backhaul as well as the access to the

UEs.

In the third chapter, we proposed SoftBox, a novel architecture for 5G cellular core networks

that enables customized, low latency, and signaling-efficient services on a per-UE basis.

Compared to SkyCore that is an airborne citywide solution, SoftBox handles terrestrial

RANs in larger geographical regions (e.g., multiple provinces or states). In particular, Soft-

Box consolidates the policies associated with each UE into a container in its proximity.

SoftBox has been designed to be incrementally deployable and scale to a large number of

UEs, with special attention to efficient schemes for further minimizing the resource usage

of UE containers, the migration costs of UE containers, data plane forwarding states, and

costs of signaling communications between the SoftBox core and LTE RANs. In particular,

our optimized version of SoftBox is equipped with self-optimizing UE containers, enhanced

segment routing protocol, mobility-aware container migration schemes, and fast protocols for

communication with RANs. Our results are promising and point to the practical feasibility

and potential of the SoftBox concept.

In the forth chapter, we discussed SoftMoW, a scalable cellular WAN architecture that is

based on effective recursive and reconfigurable abstractions for both control plane and data

plane. Compared to SoftBox and SkyCore that operate at the city-level and state-level scales,

SoftMoW is optimized to for nationwide 4G WANs consisting of multiple core networks

159

(e.g., SoftBox and SkyCore networks) and hundreds of millions of UEs. We designed a

recursive link discovery protocol and virtual fabrics to allow automatic topology construction

and support global resource management. SoftMoW optimizes network-wide objectives such

as inter-region handover, path implementation, and routing. SoftMoW achieves these goals

using novel algorithms benefiting from our scalable abstractions. Our evaluation results

show that SoftMoW is very efficient and scalable. For future work, one may want to deploy

SoftMoW in a large testbed.

Finally, we argued that many 5G core and future Internet architectures either advocate

for or benefit from replacing the IP addressing scheme with one that has two features: (1)

decouples each address from its owner’s network location and (2) permits its owner to

cryptographically prove its ownership of the address. The separation feature enables these

architectures to improve mobility support and multi-homing at the network layer. However,

such an addressing scheme requires addresses to be substantially long. To cope with this

challenge, we proposed Caesar that is a practical solution for high-speed routers of next-

generation networks using this modern addressing scheme. We designed scalable and reliable

filters to compress long addresses. Due to the poor performance of storing filters into SRAMs,

we designed a forwarding engine to search all the filters in parallel. To avoid forwarding

loops and black holes, the engine uses two forwarding paths. We offered a novel blacklisting

mechanism for accelerating the performance of the backup path. Caesar supports routing

updates and performs intelligent memory management by utilizing counting filters in slow

memory. For minimizing the computational overhead of hash functions, we proposed a

hierarchical hash computation scheme for our small filters. Our evaluation results indicate

our design is memory-efficient, energy-efficient, and high-performance in practice.

160

Bibliography

[1] 3GPP standard. http://www.3gpp.org/specifications.

[2] 5G systems. https://goo.gl/hrQec7.

[3] 5G vision. https://goo.gl/frAZxN.

[4] Amazon UAVs Charging. https://goo.gl/x66KXF.

[5] ATT-5G roadmap. http://goo.gl/eA0wSu.

[6] CAIDA Datasets. http://goo.gl/kcHlQf.

[7] CBRS Spectrum. https://goo.gl/3zbYyo.

[8] Cell on Wing (CoW): AT&T. http://about.att.com/innovationblog/cows_

fly.

[9] Cell on Wing (CoW): Puerto Rico. http://about.att.com/inside_

connections_blog/flying_cow_puertori.

[10] Cell on Wing (CoW): Verizon. https://goo.gl/q9YjNv.

[11] Cisco Routers. http://goo.gl/6CWpLA.

[12] Docker. https://goo.gl/hxsJZc.

[13] EPC-in-a-box. https://goo.gl/AdpKBU.

161

[14] Ericsson’s Signaling Storm Analysis. https://goo.gl/XWyFWF.

[15] Esilicon TCAMs. http://goo.gl/O3rloQ.

[16] Facebook project aquila. https://goo.gl/gHYVa7.

[17] Floodlight. http://goo.gl/eXUprV.

[18] Google Kubernetes. https://kubernetes.io/.

[19] Google x: Project loon. https://goo.gl/skSz1z.

[20] Huawei-5G systems. https://goo.gl/dpYvW5.

[21] Internet Architecture Board. http://goo.gl/cnMyY9.

[22] iplane dataset. http://goo.gl/JZWdK2.

[23] Lagopus: SDN switch. http://www.lagopus.org/.

[24] LTE deployment and design strategies. https://goo.gl/wZXhov.

[25] LTE design and deployment. http://goo.gl/DMKymH.

[26] LTE growth study. https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-

2016.pdf.

[27] LTE signaling storm. http://goo.gl/qk6Bp9.

[28] M-Cord: Mobile Cord. http://goo.gl/pZgSvg.

[29] Managing the signaling storm. http://goo.gl/lkTyb1.

[30] Migrating stateful containers. https://goo.gl/wqpUD5.

[31] nDPI: DPI functions. http://goo.gl/1Nc3QC.

[32] netfilter. http://www.netfilter.org/.

162

[33] OpenAirInterface. http://openairinterface.org.

[34] OpenEPC. http://www.openepc.com/.

[35] Oracle Signaling Storm Index. https://goo.gl/6BZ8Fo.

[36] Oracle Signaling Storm Index. https://goo.gl/2k0niu.

[37] PhantomNet: LTE testbed. https://www.phantomnet.org/.

[38] PhoneLab: smartphone testbed. https://phone-lab.org/.

[39] Reliable UDP (RUDP). https://goo.gl/F5Z3ls.

[40] Route Views Dataset. http://goo.gl/cn8sT6.

[41] RYU controller. https://goo.gl/TK7TSS.

[42] Scaling Issues. http://goo.gl/SAnq28.

[43] Segment Routing. http://www.segment-routing.net/.

[44] Supervisor: A Process Control System. http://supervisord.org/.

[45] TCAM Memory Challange. http://goo.gl/OGYyKn.

[46] The cgroup freezer. https://goo.gl/lHhaeD.

[47] View on 5G Architecture. https://goo.gl/EqAeao.

[48] Virtual Subscriber Gateway (vSG). http://goo.gl/ySflpc.

[49] Predictions. http://goo.gl/qmnVDy, 2012.

[50] MobilityFirst Project. http://goo.gl/sD64f9, 2014.

[51] B. Agrawal and T. Sherwood. Modeling TCAM Power for Next Generation Network

Devices. In Proc. IEEE ISPASS, 2006.

163

[52] M. Akhbarizadeh, M. Nourani, and D. Vijayasarathi. A Nonredundant Ternary CAM

Circuit for Network Search Engines. IEEE Trans. VLSI, 2006.

[53] M. Alicherry et al. Network aware resource allocation in distributed clouds. In Proc.

IEEE INFOCOM, 2012.

[54] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and S. Shenker.

Accountable Internet Protocol. In Proc. ACM SIGCOMM, 2008.

[55] B. Aoun, R. Boutaba, Y. Iraqi, and G. Kenward. Gateway placement optimization

in wireless mesh networks with qos constraints. IEEE Journal on Selected Areas in

Communications, 2006.

[56] H. Ballani, P. Francis, T. Cao, and J. Wang. Making Routers Last Longer with ViAggre.

In Proc. USENIX NSDI, 2009.

[57] A. Banerjee et al. Scaling the LTE Control-Plane for Future Mobile Access. In Proc.

ACM CoNEXT, 2015.

[58] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, et al. Onos: towards an open,

distributed sdn os. In HotSDN, 2014.

[59] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors. In ACM

CCR, 1970.

[60] P. Bosshart et al. P4: Programming protocol-independent packet processors. ACM

CCR, 2014.

[61] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe.

Design and implementation of a routing control platform. In Proc. USENIX NSDI,

2005.

[62] Z. Cai and et al. The preliminary design and implementation of the Maestro network

control platform, 2008.

164

[63] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu. A first look at inter-data

center traffic characteristics via yahoo! datasets. In Proc. IEEE INFOCOM, 2011.

[64] J. Cho et al. ACACIA: Context-aware Edge Computing for Continuous Interactive

Applications. In Proc. ACM CoNEXT, 2016.

[65] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bow-

man. Planetlab: an overlay testbed for broad-coverage services. In ACM CCR, 2003.

[66] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest Prefix Matching

Using Bloom Filters. In Proc. ACM SIGCOMM, 2003.

[67] A. Dhekne et al. Extending cell tower coverage through drones. In HotMobile, 2017.

[68] U. Drepper and I. Molnar. The native POSIX thread library for Linux. White Paper,

Red Hat Inc, 2003.

[69] A. Ermolinskiy and S. Shenker. Reducing transient disconnectivity using anomaly-

cognizant forwarding. In Proc. Workshop on Hot Topics in Networks, 2008.

[70] M. Ester et al. A density-based algorithm for discovering clusters in large spatial

databases with noise. In Kdd, 1996.

[71] C. Esteve, F. L. Verdi, and M. F. Magalhães. Towards a new generation of information-

oriented internetworking architectures. In Proc. ACM CoNEXT, 2008.

[72] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocol. IEEE Trans. Networking, 2000.

[73] W. Felter et al. An updated performance comparison of virtual machines and linux

containers. In IEEE ISPASS, 2015.

[74] T. A. Forum,M. Ahmed, and J. H. Rus. Private network-network interface specification

version 1.0 (pnni 1.0), 1996.

165

[75] A. Goel and P. Gupta. Small Subset Queries and Bloom Filters Using Ternary

Associative Memories, with Applications. In Proc. ACM SIGMETRICS, 2010.

[76] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network. 2011.

[77] B. GrtinvaU. Scalable Multicast Forwarding. In ACM CCR, 2002.

[78] A. Gudipati, D. Perry, L. E. Li, and S. Katti. SoftRAN: Software defined radio access

network. In HotSDN, 2013.

[79] B. Han et al. Network function virtualization: Challenges and opportunities for

innovations. IEEE Comm. Magazine, 2015.

[80] D. Han, A. Anand, F. R. Dogar, B. Li, et al. XIA: Efficient Support for Evolvable

Internetworking. In Proc. USENIX NSDI, 2012.

[81] S. Hassas Yeganeh and Y. Ganjali. Kandoo: a framework for efficient and scalable

offloading of control applications. In HotSDN, 2012.

[82] C. Henke, C. Schmoll, and T. Zseby. Empirical evaluation of hash functions for

multipoint measurements. In ACM CCR, 2008.

[83] C.-Y. Hong, S. Kandula, R. Mahajan, et al. Achieving high utilization with software-

driven wan. In ACM CCR, 2013.

[84] P. Hunt, M. Konar, et al. ZooKeeper: Wait-free coordination for internet-scale systems.

In USENIX ATC, 2010.

[85] S. Jain, A. Kumar, S. Mandal, et al. B4: Experience with a globally-deployed software

defined wan. 2013.

[86] X. Jin et al. Softcell: Scalable and flexible cellular core network architecture. In Proc.

ACM CoNEXT, 2013.

166

[87] T. Koponen, M. Casado, N. Gude, et al. Onix: A distributed control platform for

large-scale production networks. In OSDI, 2010.

[88] C. E. LaForest and J. G. Steffan. Efficient multi-ported memories for fpgas. In Proc.

ACM/SIGDA, 2010.

[89] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for

software-defined networks. In HotSDN, 2010.

[90] L. E. Li et al. Toward software-defined cellular networks. In EWSDN, 2012.

[91] X. Lin, V. Yajnanarayana, S. D. Muruganathan, et al. The sky is not the limit: Lte for

unmanned aerial vehicles. arXiv preprint arXiv:1707.07534, 2017.

[92] Y. Lin, U. C. Kozat, et al. Pausing and Resuming Network Flows using Programmable

Buffers. In Proc. ACM SOSR, 2018.

[93] J. Martins et al. ClickOS and the art of network function virtualization. In Proc.

USENIX NSDI, 2014.

[94] J. McCauley, A. Panda, M. Casado, T. Koponen, and S. Shenker. Extending SDN to

large-scale networks, 2013.

[95] X. Meng et al. Improving the scalability of DC networks with traffic-aware VM

placement. In Proc. IEEE INFOCOM, 2010.

[96] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Networking

(TON), 2002.

[97] M. Moradi et al. Caesar: High-speed and memory-efficient forwarding engine for

future internet architecture. In Proc. ACM/IEEE ANCS, 2015.

[98] M. Moradi, L. E. Li, et al. SoftMoW: a dynamic and scalable software defined

architecture for cellular WANs. In HotSDN, 2014.

167

[99] M. Moradi, W. Wu, et al. SoftMoW: Recursive and reconfigurable cellular WAN

architecture. In Proc. ACM CoNEXT, 2014.

[100] S. C. Nelson and G. Bhanage. GSTAR: Generalized Storage-Aware Routing for

MobilityFirst in the Future Mobile Internet. In Proc. ACM MobiArch, 2011.

[101] Nguyen, Binh and Zhang, Tian and Radunovic, Bozidar and others. A reliable

distributed cellular core network for hyper-scale public clouds. Technical report,

2018.

[102] R. NiranjanMysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan,

V. Subramanya, and A. Vahdat. PortLand: A scalable fault-tolerant layer 2 data center

network fabric. In Proc. ACM SIGCOMM, 2009.

[103] A. Ostlin and R. Pagh. Uniform Hashing in Constant Time and Linear Space. In Proc.

ACM STOC, 2003.

[104] M. Patel et al. Mobile-edge computing introductory technical white paper. White

Paper, MEC Industry Initiative, 2014.

[105] B. Pfaff, J. Pettit, T. Koponen, et al. The design and implementation of open vswitch.

In Proc. USENIX NSDI, 2015.

[106] Z. Qazi et al. A High Performance Packet Core for Next Generation Cellular Networks.

In Proc. ACM SIGCOMM, 2017.

[107] Z. A. Qazi et al. SIMPLE-fying middlebox policy enforcement using SDN. In ACM

CCR, 2013.

[108] Z. A. Qazi et al. KLEIN: A Minimally Disruptive Design for an Elastic Cellular Core.

In Proc. ACM SOSR, 2016.

[109] A. S. Rajan et al. Understanding the bottlenecks in virtualizing cellular core network

functions. In LANMAN, 2015.

168

[110] A. S. Rajan et al. Understanding the bottlenecks in virtualizing cellular core network

functions. In LANMAN, 2015.

[111] M. Á. Ruiz-Sánchez, E. W. Biersack, and W. Dabbous. Survey and taxonomy of ip

address lookup algorithms. Network, IEEE, 2001.

[112] M. Sarela, C. E. Rothenberg, T. Aura, and Zahemszky. Forwarding anomalies in

Bloom filter-based multicast. In Proc. IEEE INFOCOM, 2011.

[113] M. Satyanarayanan et al. The case for VM-based cloudlets in mobile computing.

Pervasive Computing, IEEE, 2009.

[114] A. Sharma et al. A global name service for a highly mobile internetwork. In Proc.

ACM SIGCOMM, 2014.

[115] A. Singla, P. Godfrey, K. Fall, G. Iannaccone, and S. Ratnasamy. Scalable Routing on

Flat Names. In Proc. ACM CoNEXT, 2010.

[116] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast hash table lookup using

extended bloom filter: an aid to network processing. In ACM CCR, 2005.

[117] H. Song, F. Hao, M. Kodialam, and T. Lakshman. IPv6 lookups using distributed

and load balanced bloom filters for 100gbps core router line cards. In Proc. IEEE

INFOCOM, 2009.

[118] N. Spring et al. Measuring ISP topologies with Rocketfuel. ACM CCR, 2002.

[119] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel.

In ACM CCR, 2002.

[120] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet

applications. IEEE/ACM TON, 2003.

169

[121] T. Taleb et al. PERMIT: Network slicing for personalized 5G mobile telecommunica-

tions. IEEE Communications Magazine, 2017.

[122] T. Taleb, A. Ksentini, et al. Lightweight mobile core networks for machine type

communications. IEEE Access, 2014.

[123] A. Tootoonchian and Y. Ganjali. Hyperflow: A distributed control plane for openflow.

In Proceedings of the 2010 internet network management conference on Research on

enterprise networking, 2010.

[124] K. Wang et al. MobiScud: A Fast Moving Personal Cloud in the Mobile Network. In

Proc. Workshop AllThingsCellular, 2015.

[125] Q. Wu, Y. Zeng, and R. Zhang. Joint trajectory and communication design for

multi-uav enabled wireless networks. 2018.

[126] Xin Jin and Li Erran Li and Laurent Vanbever and Jennifer Rexford. SoftCell: Scalable

and flexible cellular core network architecture. In Proc. ACM CoNEXT, 2013.

[127] W. Xu and J. Rexford. MIRO: Multi-Path Interdomain ROuting. In Proc. ACM

SIGCOMM, 2006.

[128] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: Bloom Filter Forwarding Architec-

ture for Large Organizations. In Proc. ACM CoNEXT, 2009.

[129] F. Zane, G. Narlikar, and A. Basu. Coolcams: Power-efficient tcams for forwarding

engines. In Proc. IEEE INFOCOM, 2003.

[130] K. Zarifis et al. Diagnosing path inflation of mobile client traffic. In Proc. PAM, 2014.

[131] K. Zarifis, T. Flach, S. Nori, D. Choffnes, R. Govindan, E. Katz-Bassett, M. Mao, and

M. Welsh. Diagnosing path inflation of mobile client traffic. In Proc. PAM, 2014.

170

[132] L. Zhang et al. Picocenter: Supporting long-lived, mostly-idle applications in cloud.

In Proc. ACM EuroSys, 2016.

[133] K. Zheng, C. Hu, H. Lu, and B. Liu. A TCAM-Based Distributed Parallel IP Lookup

Scheme and Performance Analysis. IEEE Trans. Networking, 2006.

[134] A. L. Zobrist. A New Hashing Method with Application for Game Playing. Technical

report, 1970.

[135] J. C. Zuniga, C. J. Bernardos, A. de la Oliva, T. Melia, R. Costa, and A. Reznik.

Distributed mobility management: A standards landscape. CommunicationsMagazine,

IEEE, 2013.

171

