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Abstract
Tools from network science can be utilized to study relations between diseases.
Different studies focus on different types of inter-disease linkages. One of them is the
comorbidity patterns derived from large-scale longitudinal data of hospital discharge
records. Researchers seek to describe comorbidity relations as a network to characterize
pathways of disease progressions and to predict future risks. The first step in such
studies is the construction of the network itself, which subsequent analyses rest upon.
There are different ways to build such a network. In this paper, we provide an overview
of several existing statistical approaches in network science applicable to weighted
directed networks. We discuss the differences between the null models that these
models assume and their applications. We apply these methods to the inpatient data of
approximately one million people, spanning approximately 17 years, pertaining to the
Montreal Census Metropolitan Area. We discuss the differences in the structure of the
networks built by different methods, and different features of the comorbidity relations
that they extract. We also present several example applications of these methods.
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Introduction
In the last decade, several network approaches have been introduced to study the inter-
relations between human diseases. Networks are constructed by connecting diseases that
share certain features, collapsing a bipartite graph into a unipartite graph. Examples
include genetic/interactomic association (Goh et al. 2007; Halu et al. 2017; Menche et al.
2015), similarity of symptoms (Zhou et al. 2014; Halu et al. 2017), similarity of pertinent
drugs (Yıldırım et al. 2007), commonality of etiological environmental factors associated
with diseases (Liu et al. 2009), adjacency of metabolic reactions catalyzed by correspond-
ing mutated enzymes (Lee et al. 2008), and co-occurrence in patients (Hidalgo et al. 2009;
Folino et al. 2010; Chmiel et al. 2014; Jensen et al. 2014; Jeong et al. 2017). Also sometimes
more than one of these networks are juxtaposed to build a multiplex characterization
(Halu et al. 2017). All of these strands of research are beneficial and insight-engendering
in their respective contexts, and the increase in the breadth of topics and the diversity of
approaches promises the emergence of a new field of research.
Here we focus on a methodological problem in this new field. We investigate differ-

ent statistical methods for defining a weighted and directed co-morbidity network from
longitudinal hospital in-patient data, and show that different methods capture different
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aspects of co-morbidity relations. We use a data set containing over a million people for
a period of approximately 17 years, and employ different statistical methods to extract
co-morbidity networks based on this data set.
Some of the previous studies have used a binary version of the comorbidity networks

to study the structural properties of diseases (Hidalgo et al. 2009; Folino et al. 2010;
Chmiel et al. 2014; Jeong et al. 2017). Measures for establishing unweighted binary
links between disease pairs include the φ-correlation (which is closely linked to the χ2

statistic) and relative risk (ratio of observed co-occurrence of a pair to the expected co-
occurrence of a null model) (Hidalgo et al. 2009; Folino et al. 2010; Chmiel et al. 2014;
Jeong et al. 2017). These methods capture useful information about co-morbidities, and
also have drawbacks. The φ-correlation underestimates the associations in disease pairs
in which one disease is rare and the other is prevalent. The relative risk tends to over-
estimate linkages between rare diseases and to underestimate those between prevalent
diseases. To use any of these methods, one inevitably chooses trade-off parameters to
construct the network with reasonable accuracy. Examples include the thresholds in Ref.
Chmiel et al. (2014), the choice of relative risk cutoff (4 in Ref. Jeong et al. (2017) and
20 in Ref. Folino et al. (2010)), and the choice of defining “lop-sided”ness if one direc-
tion of a reciprocal link weights at least twice as the other direction (Jeong et al. 2017).
These thresholds are chosen to be intuitively-reasonable values considering the respective
settings.
In this paper, we study different systematic statistical methods for building weighted

directed comorbidity networks. These methods use different criteria to deem statistical
significance for links. The resulting networks are sparser than the raw network, and the
links are in some sense adjudicated as meaningful, that is, non-noise. In addition to sta-
tistical considerations, working with sparser networks is easier both computationally and
intuitively, and the ultimate goal of gaining insight about paths of disease progression
is facilitated. Here we investigate the effect of the statistical procedure used to build a
network from the disease co-occurrence data on the structure of the resulting network.
We show that depending on the null model used for defining the statistical signifi-
cance of disease-disease links, different aspects of the comorbidity patterns are captured,
and the resulting networks can have different micro/meso structures, and the central-
ity/ranking measures of individual diseases can differ. We describe the networks built
from each method, discuss their similarities and differences, and present several example
applications using these constructed networks.

Data
Using the registry of all medically insured people in the province of Québec (fichier
d’inscription des personnes assures - FIPA) we randomly sampled 25% of the people resid-
ing in the Montreal Census Metropolitan Area (CMA) in 1998. In each subsequent year,
we used the FIPA to re-sample immigrants to the CMA and babies born to mothers
residing in the CMA to maintain a representative, 25% sample for each year. For sam-
pled individuals, we obtain regular data updates from the Régie de l’assurance maladie
du Québec (RAMQ) on physician billing, drugs dispensed, hospitalization records, and
death certificates. The data sets are linked with an anonymized unique identifier. At any
given time, the dynamic cohort contains approximately 1 million people and follow-up
data span approximately 17 years.
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Moreover, in one of the applications that we present below, we use the dataset that is
publicly available via Ref. Park et al. (2009) to connect our results to previous findings
in the literature. In this data set, the protein–protein interaction (PPI) and coexpression
networks and the inter-disease network of shared genes are linked to the comorbidity
network derived from US Medicare claims of over 13 million elderly patients. The data
set can be accessed online via http://msb.embopress.org/content/5/1/262.
The analyses reported in this paper has been conducted using MATLAB R2015b.

Network constructionmethods
ICD codes

We use the ICD9 coding scheme for the classification of diseases. To make the analysis
more tractable, we confine the analysis to the 3-digit classification.

Network terminology

Throughout, the pathways of disease progression are modeled by a network, where nodes
represent diseases and a link from node i to node j represents an instance of diagnosis
of disease i followed by a subsequent diagnosis of disease j. We denote the number of
connections of a node by its degree, denoted by k. The weight of the link from disease i to
disease j is denoted by wij, which is equal to the number of times a diagnosis of disease
i followed by a diagnosis of disease j is reported in the data set. By the strength (Serrano
et al. 2009) of a node, denoted by s, we refer to the sum of the weights of its links. We
use these for either directions of the links. For example, the ‘out-strength’ soutx = ∑

y wxy
denotes the sum of the weights of the out-links of node x to other nodes, and the out-
degree koutx denotes the number of such out-links. The out-strength of a node is equal to
the total number of times that the diagnosis of that disease was followed by the diagnosis
of any other disease. The out-degree of a node is the number of distinct diseases that
follow that particular disease, without counting the multiplicities. Similarly we can define
the in-strength and in-degree for each node.We denote the sum of the strength of all links
by S, that is, we have S = ∑

ij wij.

Raw network

In our data set, there are 1,700,000 distinct hospital visits, and the total number of unique
ICD9-coded diagnoses is 6,500,000. Among all the hospital visits, 35.3% where given only
one ICD9-coded diagnosis. Figure 1 presents the histogram of the number of ICD9-coded
diagnoses per hospital visit. Table 1 presents the top 10 disease in the data set with highest
prevalence. Figure 2 depicts the histogram of the prevalence of the diseases in our data
set. The distribution of the logarithm of the prevalences is normal-like, but the result
of the Kolmogorov-Smirnov test was that the normality assumption is rejected (on the
0.1 level). Though not strictly log-normal, the prevalence distribution is evidently heavy-
tailed, that is, most diseases have low levels of prevalence and a minority of the diseases
have extremely high levels of prevalence. The starting point of our analysis is to build
a raw network, which will be the substrate on which other methods construct different
derived networks.
We seek a weighted and directed characterization of the comorbidity patterns, where

the weight of the link from disease i to j equals the number of instances where a patient
with disease i later developed disease j. The raw network is made by sweeping over every

http://msb.embopress.org/content/5/1/262
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Fig. 1 Hospital visits. The distribution of the number of ICD9-coded diagnosis per hospital visit

hospital visit, and incrementing the weight of the link from disease i to disease j if in that
visit disease j is diagnosed for the first time in a patient for whom disease i had been
previously diagnosed. In other words, if a patient who previously had disease i but did
not have disease j visits the hospital and is diagnosed with disease j, then wij increments
by one. There are hospital visits where two diseases are co-diagnosed in a patient for the
first time. We do not observe what the temporal order of their occurrence was before
the patient visited the hospital. The link between the two diseases might be in either
direction. We have two possible choices: either to discard this observation or to count
this link in both directions. We choose the former, because we prefer less data to more-
but-noisy data. About 35% of the patients in the data set only visited the hospital once,
thus they did not constitute any comorbidity trajectory with the above criteria, and did
not contribute to the raw network. The weight distribution of the links are depicted in
Fig. 3. After undertaking the maximum likelihoodmethod devised in Clauset et al. (2009),
we conclude that although the distribution resembles a linear curve on the log-log scale,
the hypothesis that the weight distribution is power-law is rejected. Thus throughout the
paper we only use non-parametric statistical methods. We do not assume scale-freeness
of the distributions.

Table 1 Top 10 most-prevalent diseases in our data set

Rank ICD-9 Disease description Prevalence (× 1000)

1 250 Diabetes mellitus 206

2 414 Chronic ischemic heart disease 205

3 272 Disorders of lipoid metabolism 198

4 366 Cataract 154

5 427 Cardiac dysrhythmias 148

6 401 Essential hypertension 141

7 244 Acquired hypothyroidism 110

8 285 Other and unspecified anemias 107

9 041 Bacterial infection [unspecified site] 95

10 664 Trauma to perineum and vulva during delivery 80
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Fig. 2 Distribution of disease prevalence. The logarithm of the prevalences is normal-like, but the
Kolmogorov-Smirnov test rejects the normality hypothesis

Relative risk and observed-to-expected ratio

The relative risk (RR) is a measure of comorbidity strength used in previous studies of
disease networks (Hidalgo et al. 2009; Park et al. 2009; Jeong et al. 2017). In these studies,
the relative risk is equal to the ratio of the number of times that an ordered pair of diseases
occur in the empirical data to the expected number of times it would occur in a random
network. In Ref. Hidalgo et al. (2009), the threshold value for this quantity was obtained
from formulas for confidence intervals given in Ref. Katz et al. (1978).
Here we make a notational clarification. The problem considered in Ref. Katz et al.

(1978) is the problem of finding confidence intervals for risk ratios in the following sense.
Consider the 2 × 2 contingency table given in Table 2. In the following calculations, we
use the values of a, b, c, d defined in Table 2 for brevity of notation.
The relative risk considered in Ref. Katz et al. (1978), and conventionally in epidemi-

ology and biostatistics, is defined as
(

a
a+b

)
/
(

c
c+d

)
. But that is not how RR is defined

Fig. 3 Distribution of link weights. The distribution of link weights. According to the method devised in Ref.
Clauset et al. (2009), the null hypothesis that the weights have a power-law distribution is rejected



Fotouhi et al. Applied Network Science            (2018) 3:46 Page 6 of 34

Table 2 The contingency table to analyze the comorbidity of diseases i and j

Second disease is j Second disease is not j Total

First disease is i a = wij/S b = souti /S − wij/S a + b = souti /S

First disease is not i c = sinj /S − wij/S d = 1 − souti /S − sinj /S + wij/S c + d = 1 − souti /S

Total a + c = sinj /S b + d = 1 − sinj /S 1

The sum of all link weights in the network is denoted by S

in Refs. Hidalgo et al. (2009); Jeong et al. (2017); Park et al. (2009) to study comorbid-
ity links. Rather, these studies define RR as a

(a+b)(a+c) . The numerator is the observed
co-occurrence proportion, and the denominator is the expected co-occurrence propor-
tion under independence. The quantity a

(a+b)(a+c) is actually what is often called the
observed-to-expected ratio. Herein we denote it by OER. So we use this terminology in
our paper:

OERij = wij × S
sinj s

out
i

. (1)

Note that we can equivalently write:

logOERij = log
wij
S(

sinj
S

)

×
(
souti
S

) . (2)

In this form, logOER is equivalent to the point-wise mutual information that is used,
for example, in natural language processing to measure how likely two words are to co-
occur (Bouma 2009). The confidence intervals for OER can be obtained by applying the
delta method to logOER:

var(logOER) = 1
S

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bc−a2
a(a+b)(a+c)

−1
a+b

−1
a+c

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(1 − a) −ab −ac −ad

−ab b(1 − b) −bc −bd

−ac −bc c(1 − c) −cd

−ad −bd −cd d(1 − d)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bc−a2
a(a+b)(a+c)

−1
a+b

−1
a+c

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= bc(1 − a) + a2(1 − b − c) − a3

a(a + b)(a + c)S
, (3)

where T denotes transpose. So the 95% confidence intervals are obtained as follows:
CI(OER) =

[
ÔERe−1.96

√
var(logOER) , ÔERe+1.96

√
var(logOER)

]
.

We re- iterate that what we have defined here as OER is what the previous studies of
comorbidity networks have referred to as the relative risk, and what we define below as
the relative risk is not to be confused with their notation. As discussed above, for the
relative risk we define:

RR =
wij
souti

sinj −wij

S−souti

(4)

So the relative risk is the ratio of the probability that j receives one of the out-links of i to
the probability that j receives a link from another disease that is not i. In other words, the
relative risk is the ratio of the probability that disease j succeeds disease i to the probability
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that disease j succeeds any other disease. For the variance of the relative risk, we can
proceed similar to before and obtain the following result which is equivalent to what is
used in Ref. Hidalgo et al. (2009) for OER:

var(logRR) = 1
S

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b
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c(c+d)

1
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⎤

⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
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⎦

= b
a(a + b)S

+ d
c(c + d)S

(5)

Despite the technical distinction between RR and OER, we can show that for practical
purposes considered in this paper, these two measures are very close for almost all cases.
Dividing Eq. 1 by Eq. 4, we have:

RR
OER

= 1 − wij/sinj
1 − souti /S

� 1 − wij/sinj . (6)

This ratio is very close to one if wij is much smaller than sinj , that is, if disease i is not a
main predecessor of disease j in comorbidity patterns. However, if the in-degree of disease
j is small, so that it has few predecessors, then RR might deviate from OER. In our data
set, there are only 61 disease pairs for which wij/sinj exceeded 10%. Since this fraction
is negligibly small, the RR and OER measures are therefore almost identical. We use the
network constructed based on OER in the following analyses to be consistent with the
measures used in the previous literature.
A practical caveat of OER is that diseases with very low prevalence can produce unduly

large values of OER, which is evident from Eq. 2. This is also pointed out previously in the
disease networks literature (Park et al. 2009). A workaround is to discard disease pairs for
which the expected co-occurrence under independence is greater than a certain thresh-
old. As investigated in Ref. Park et al. (2009), as long as the threshold exceeds unity, the
structure of the OER comorbidity network remains robust against the choice of threshold.
In the present paper, we choose the threshold to be equal to unity.

φ coefficient

The φ correlation coefficient is a measure of association for two binary variables (here, the
binary variable indicates whether or not a certain disease is diagnosed). It quantifies the
tendency of the two binary variables to co-occur, that is, the concentration of the contin-
gency table towards the diagonal. Generalizing the undirected case considered before in
the literature (Hidalgo et al. 2009), we can define the directed version of the φ coefficient
as follows:

φij = wijS − souti sinj
√

souti sinj
(
S − souti

) (
S − sinj

) . (7)
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If the instances of disease j succeeding disease i are more frequent than the random
case, the φ coefficient will be positive. If these instances are less frequent than it would be
expected for the random case, the φ coefficient will be negative, and it means that having
developed disease i actually decreases getting disease j. The caveat in the performance
of the φ coefficient is that, the higher the disparity between the prevalences of the two
diseases, the less informative the φ coefficient becomes (Hidalgo et al. 2009). A techni-
cal caveat of the φ coefficient is that, although it is always in the [−1,+1] interval, the
absolute values of its theoretical extrema are less than unity (Guilford 1965; Davenport
Jr and El-Sanhurry 1991; Park et al. 2009). In the case of positive association, assuming

sinj < souti , the maximum value of φ which is theoretically attainable is φmax = (S−souti )sinj(
S−sinj

)
souti

.

Because both souti and sinj are much smaller than S in our analysis, this maximum value is
close to sinj /souti , which is less than unity. If we had started with the assumption sinj > souti ,
we would have found the inverse of the latter fraction, so the maximum value would again
be smaller than unity. A possible workaround would be to normalize φ via dividing it by
φmax (Davenport Jr and El-Sanhurry 1991; Park et al. 2009; Chmiel et al. 2014).
The φ coefficient is related to the conventional χ2 statistic in the following way:

φ2 = χ2/S. To determine statistical significance and to find a p-value for the φ coefficient,
Ref. Hidalgo et al. (2009) has employed a t-distribution approximation. The conditions
for the validity of the approximation are not discussed. Ref. Chmiel et al. (2014) uses a χ2

test. Moreover, it is important to note that the χ2 test involves underlying assumptions
regarding minimum expected cell counts in the 2 × 2 table (Everitt 1992). In our setting,
characterized by Table 2, the expected cell count for the (1, 1) cell is souti sinj /S, which is
smaller than unity for many existing disease pairs in our data set. Thus the requirements
for the χ2 test are not always met. In Ref. Park et al. (2009), the distributions of wij is
assumed to be binomial, and a Poisson approximation is used to calculate the p-values.
It is of note that the Poisson approximation to the binomial distribution also requires
the expected co-occurrence of the disease pairs not to be large (usually O(1) is advised
in statistics textbooks). For about 10% of the disease pairs in our data set, this condition
is not met. So this method is also not applicable to our data set. In this paper, we used
Fisher’s exact test to decide the significance of association.

Disparity filter

The disparity filter (DF) has a local node-based approach to define the network null model
(Serrano et al. 2009). We first consider unweighted networks for explanatory purposes.
The DF method asks that, for node x with given strength sx and degree kx, what would
we expect the weights of its links to look like if they were allocated randomly? In the null
model of the DF method, each node is assumed to possess a given strength sx that is to be
distributed among its kx neighbors uniformly at random. That is, if the null is true, node
x has no preference among its neighbors, and it would distribute its weights uniformly at
random. We can mathematically conceptualize this setting as follows: In the unit interval
[ 0, 1], k − 1 points are drawn uniformly at random, thus leading to k shares of strength
pertaining to k different links. Without loss of generality, consider the left-most interval
(between 0 and the left-most randomly-chosen point). The probability that the length of
this share (which corresponds to the weight of one of the links) is greater than x is equal
to the probability that all of the other k − 1 points fall in a piece with length 1 − x. This
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probability equals (1−x)k−1. This coincides with the p-value for that link, because it gives
the probability that, under the null, the share of that link exceeds the observed value.
The said procedure can be undertaken either for out-degrees or in-degrees, yielding

two distinct backbone networks. We define the p-value:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αout
ij =

(
1 − wij

souti

)(kouti −1)

αin
ij =

(
1 − wji

sini

)(kini −1
)

(8)

Then, a global thresholding can be done for a desired level of significance by discarding
links whose α values exceed a certain threshold value. In this paper we set α = 0.05
as the threshold value. We only consider the out-network in this study, because we are
concerned mainly with finding diseases that increase the risk of developing other diseases
(that is, those who perform as ‘roots’ in comorbidity paths).

Iterative proportional fitting procedure

The Iterative Proportional Fitting Procedure (IPFP) is a simple method used in the con-
text of US inter-countymigration flows (Slater 2009a; 2009b). Here we utilize it to analyze
disease flows. This method utilizes the Sinkhorn-Knopp algorithm (Sinkhorn and Knopp
1967), which involves iteratively normalizing the rows and columns of the adjacency
matrix until the row and column sums are sufficiently close to unity. In the IPFP method,
after constructing this bistochastic matrix via successive normalizations, we start from an
empty network and add the links successively in the decreasing order of their weight in
the bistochastic matrix until the largest connected component of the network comprises
every node. One can also use a global thresholding to obtain sparser networks. As the
threshold is lowered, more and more links whose values in the bistochastic matrix exceed
the threshold are allowed in. In this paper, we retain the top 5% of the heaviest links of the
resultant bistochastic matrix.
The mathematical procedure for the IPFP method is as follows. Suppose we seek B, a

transformation of the adjacency matrix A between theN distinct diseases, and we impose
the condition that every disease in Bmust have the same number of preceding diagnoses
and the same number of succeeding diagnoses as every other disease. If we interpret dis-
ease progressions as flows between diseases, this condition is the equality of in-flow and
out-flow for every disease. This fixed amount is arbitrary and can be set to unity, so the
elements of B can be interpreted as probabilities. We can also normalize the elements of
A by S, that is, we can interpret wij/S as the fraction of the total inter-disease flux that
flows from disease i to disease j, so it can be interpreted as a probability. Consider the
following minimum-cross-entropy estimation problem:

minimize{Bij}

N∑

i,j=1
Bij log

SBij

wij

subject to
N∑

j=1
Bij = 1, i = 1 . . .N ,

N∑

i=1
Bij = 1, j = 1 . . .N . (9)
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The task is to minimize the Kullback-Leibler divergence between the target matrix B
and the adjacency matrix A (whose ij element is wij), given the normalization constraints
of rows and columns of B. We denote the Lagrangian multipliers for the first con-
straint (normalization of rows) by λj and those of the second constraint (normalization of
columns) by μi. The Lagrangian is:

L =
∑

ij
Bij log

SBij

wij
−
∑

i
λi

⎛

⎝
∑

j
Bij − 1

⎞

⎠ −
∑

j
μj

(
∑

i
Bij − 1

)

. (10)

Setting the components of the gradient equal to zero, we get:

log
SBij

wij
+ 1 = λi + μj =⇒ Bij = wij

S
eλi+μj−1 (11)

Let � be a diagonal matrix with positive elements exp(λi − 1/2)/
√
S and let M be a

diagonal matrix with positive elements exp(μj − 1/2)/
√
S. Then, according to Eq. 11,

the above-formulated maximum entropy problem becomes equivalent to finding a
bistochastic matrix B such that: B = �AM, with the following pair of coupled
equations holding: �ii = 1/

∑
j AijMjj and Mii = 1/

∑
i Aij�ii. This is equivalent

to what the Sinkhorn-Knopp theorem states: iterating the matrices � and M from
the latter pair and inserting the limiting result into the equation B = �AM, the
unique bistochastic matrix B is obtained (Sinkhorn and Knopp 1967). For discus-
sions regarding convergence of the iteration, see Refs. Sinkhorn and Knopp (1967);
Chakrabarty and Khanna (2018). In brief, the method converges if and only if the adja-
cency matrix has total support, which means that for every nonzero element A, there
exists a column permutation of A such that the nonzero element is brought to the
main diagonal and every diagonal element is nonzero. Note that adding a nonzero
constant to every diagonal element of the adjacency matrix (which is equivalent to
adding a self-link for every disease) guarantees this property, because for every off-
diagonal element we can simply swap its column such that it is brought to the main
diagonal, and the main diagonal of the resulting matrix is already all-positive. Such
an addition, akin to Laplace smoothing in machine learning (Schütze et al. 2008),
is equivalent to viewing each disease as succeeding itself after a prior diagnosis, because
any two checks for the same patient during the period of an illness would produce such
a self-link. We performed a robustness check regarding the amount added to the main
diagonal. We observed reasonable robustness for any added value up to O

(
101

)
for the

network measures that we invoked in this paper. So we used unity; we increment the diag-
onal of the adjacency matrix by unity and then applied the IPFP procedure by iteratively
normalizing columns and rows until sufficient convergence.
The IPFPmethod has another property that facilitates the interpretation of its function.

Consider the m-th stage of the iterative normalization procedure in the IPFP method.
Denote the adjacency matrix at this stage by A(m). Denote the sum of row i at this stage by
r(m)
i and the sum of column i by c(m)

i . Denote the adjacencymatrix after row normalization
by A(m+1/2), and denote the result of the subsequent column-normalization by A(m+1).
The element ij of A(m+1/2) is given by

A(m+1/2)
ij = A(m)

ij
∑

a
A(m)
ia

. (12)
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After the subsequent column normalization, we have

A(m+1)
ij = A(m+1/2)

ij
∑

b
A(m+1/2)
bj

=

A(m)
ij

∑

a
A(m)
ia

∑

b

A(m)

bj
∑

a
A(m)

ba

= A(m)
ij

r(m)
i

∑

b
A(m)

bj /r(m)

b
(13)

Therefore, for two disease pairs ij and k�, we have:

A(m+1)
ij A(m+1)

k�

A(m+1)
i� A(m+1)

kj
= A(m)

ij A(m)

k�

A(m)
i� A(m)

kj
×
⎛

⎝
r(m)
i

∑

b
A(m)

b� /r(m)

b ×r(m)

k
∑

b
A(m)

bj /r(m)

b

r(m)
i

∑

b
A(m)

bj /r(m)

b ×r(m)

k
∑

b
A(m)

b� /r(m)

b

⎞

⎠ = A(m)
ij A(m)

k�

A(m)
i� A(m)

kj
.

(14)

Thus the quantity
[
A(m)
ij A(m)

k�

]
/
[
A(m)
i� A(m)

kj

]
is conserved. This can be interpreted as the

odds ratio in the contingency table formed by the four diseases i, j, k, �. This odds ratio
is the same between the final bistochastic matrix and the original raw adjacency matrix.
Thus the IPFP method focuses on relative inter-disease flows and discards the absolute
link weights.

The GloSS filter

We discussed above that the disparity filter had a local approach; focusing on the dis-
tribution of link strengths of individual nodes among their immediate in-neighbors or
out-neighbors. That is, the disparity filter assesses how likely a link strength is to be a non-
random fluctuation in the links of an individual node. An alternative approach would be
to allow the weights to be distributed globally, while still retaining the degrees fixed. This
leads to the Global Statistical Significance (GloSS) filter (Radicchi et al. 2011). The GloSS
filter assesses how likely a particular link weight is to be a nonrandom fluctuation in the
whole network. This method works as follows. We first fix the network topology, that is,
the node degrees and directions. This unweighted network is the substrate for the null
model. Denote the empirically-observed weight distribution of links by p̂(w). The null
model is constructed by assigning to each link of the substrate network a value randomly
drawn from the global empirical distribution p̂(w).
We introduce the auxiliary probability distribution F(s, k), which is the probability that

randomly drawing k values from the weight distribution p̂(w) will yield values that sum
up to s. It is straightforward to show that F(s, k) is obtained by convolving p̂(w) with itself
k times. More simply, we can take the inverse Fourier transform of the k-th power of the
Fourier transform of the original distribution:

F(s, k) = 1
2π

∫ ∞

0

[∫ ∞

0
p̂(w)eiwφdw

]k
e−isφdφ (15)

Now we can apply Bayes’ rule to obtain:

P
(
wij|souti , kouti , sinj , kinj

)
= p̂(wij)

P
(
souti , sinj |wij, kouti , kinj

)

P
(
souti , sinj |kouti , kinj

)

= p̂(wij)
F
(
souti − wij, kouti − 1

)
F
(
sinj − wij, kinj − 1

)

P
(
souti , sinj |kouti , kinj

) (16)
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We can thus compute αij, which is the probability that, under the null, the value of wij is
greater than a given value. So we arrive at the p-value for the observed weight wij:

αij =
∫∞
wij

p̂(w)F
(
souti − w, kouti − 1

)
F
(
sinj − w, kinj − 1

)
dw

∫∞
0 p̂(w)F

(
souti − w, kouti − 1

)
F
(
sinj − w, kinj − 1

)
dw

(17)

The method then proceeds by retaining those links whose p-values are smaller than a
threshold value which sets the significance level. In this paper, we set α = 0.05.
It is of note that the p-values of the links are not necessarily highly correlated with

link weights. This feature enables a trade-off between topology and weight. That is, the
method has the advantage that it can capture informative links whose weights might not
be outstandingly large.

Link salience

An alternative approach for assessing the importance of a link is link salience
(Grady et al. 2012). The link salience method takes a more global approach as com-
pared to the previous methods. The underlying rationale of this method can be intuitively
described with an analogy to road networks: if the network represents the network of
roads between locations, then the link salience method is trying to partition the links into
superhighways and roads (Wu et al. 2006). This method involves viewing the network
from the point of view of every single node, and measuring how important a given link
is viewed by all nodes. The algorithm works as follows. For a path {v1, . . . , v�} between
source node v1 and target node v�, we define the total effective distance as

∑�
i=1 1/wvivi+1 .

So between any pair of nodes, we can define a shortest path as the path that minimizes
the effective distances. For each node v, we find the shortest paths to every other node.
This can be done by standard methods, such as Dijkstra’s algorithm. The shortest-path
tree rooted at node v can be represented by a binary matrix T(v) with the same size as
the original network. So T(v)ij is 1 if the link from node i to node j exists on at least one
shortest path from v to some other node, and T(v)ij is zero otherwise. Finally, the salience
of the network is defined as the following matrix: S = (1/N)

∑
v T(v). This matrix gives

the link salience values to be used for extracting the network skeleton.
There are several advantageous of this method. First, if the salience of a link is high

(that is, close to unity), this means that it participates in most of the shortest-path trees.
Thus, viewed from the point of view of the majority of the nodes, this link is important
for reaching other nodes. This helps one capture pathways that are critical in reach-
ing certain diseases. For instance, a certain link might not be particularly heavy, yet this
method might pick it up because it is essential in reaching a certain disease which is oth-
erwise isolated. Second, this method is highly robust regarding the choice of significance
threshold. The distribution of link salience values calculated with the above procedure is
bimodal: most links have salience concentrated near zero, a small minority have salience
concentrated around unity, and the rest of the links take intermediate salience values.
Such a bimodal nature of this distribution considerably facilitates the choice of thresh-
old, because the links that fall in the intermediary region between the two peaks are a
negligibly-small minority and any threshold value in this region will retain almost the
same set of links. Third, this method enables characterizing the risks associated with links,
rather than the nodes. The global nature of this approach enables extraction of ‘disease
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highways’, which are the main multi-disease progression paths. In this paper, we used the
threshold value of 0.9 for the salience values. That is, we retain all the links with salience
greater than 0.9.

Comparing networks
In this section we first provide a broad overview of the structure of the constructed
networks. We then introduce different network measures for characterizing disease
importance and apply these measures to the constructed networks. The measures that we
use are in-strength, out-strength, eigenvector centrality, PageRank, Hubs and Authority
(the HITS algorithm (Kleinberg 1999)), and betweenness centrality.

Overview of the function of different networks

Table 3 presents the summary statistics of the networks built with the above methods.
For each network, we calculated the number of links, the percentage of links from the
raw network that the method retains, and the number of nodes for each network. To
describe the connectivity of nodes, we calculate the mean and standard deviation of
the out-strengths and out-degrees, which are mathematically identical to those for the
in-strengths and in-degrees, respectively. To characterize the relation between the
degrees of nodes and their neighbors, we calculate the nearest-neighbor degree statistics
as follows. For each node, we find the average out-degree of its out-neighbors. Then we
calculate the mean and standard deviation of these values across all nodes. This measure
quantifies the nearest-neighbor degree correlations of the network. For each network, we
denote the average prevalence of the diseases kept by the method by 〈P〉. For each disease,
we can find the average prevalence of its neighboring diseases. The average over all these
average values is denoted by Poutnn if we use the out-neighbors for calculations, and Pinnn if
we use the in-neighbors. Finally, we report a measure of homophily, calculated as the cor-
relation between the prevalence of diseases and the average prevalence of the neighbors
of diseases. This assortativity coefficient can be calculated using either the out-neighbors
or the in-neighbors. The resulting coefficients are denoted by routP and rinP , respectively.
These measures can also be visibly investigated from Figs. 5 and 6. Every constructed

Table 3 Summary statistics of the constructed networks

Raw OER phi DF IPFP GloSS Salience

# links 434418 96837 113715 36043 20745 9587 678

% link overlap with the raw network 100 22.3 26.2 8.30 4.87 2.21 0.16

# of nodes retained 912 837 911 832 870 280 711

〈kout〉 = 〈kin〉 460 115 124 43.3 23.8 34.2 0.954

std(kout)=std(kin) 229 107 105 24.8 14.5 46.5 0.211

〈koutnn 〉 603 227 194 80.1 29.11 127 0.42

std(koutnn ) 85.5 53.2 38.8 7.52 8.52 49.8 0.49

〈P〉 7160 7801 7169 7848 5751 16837 6478

median(P) 1439 1771 1445 1812 1384 9531 1341

〈Poutnn 〉 14554 24100 15443 55724 2957 63539 122077

〈Pinnn〉 15258 28665 16761 11059 2845 63820 2046

〈routP 〉 -0.295 -0.197 -0.027 -0.231 0.227 -0.482 0.038

〈rinP 〉 -0.259 -0.240 -0.071 0.102 0.164 -0.421 0.227

The 〈·〉 operator denotes average, and the nn subscript denotes nearest-neighbor
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network is a subsample of the raw network topologically (disregarding the link weights).
But there is no particular relation between the constructed networks, that is, one cannot
be derived from the other, because the methods employ different filtering rationales. The
OER, φ, and IPFPmethods, assign newweights to the inter-disease links, which are differ-
ent from the raw link weights which simply denote the number of diagnosis successions.
In contrast, in the DF, Gloss, and Salience methods, filtering techniques are applied only
to decide which links of the raw network to retain and which to discard, and the weights
of the retained links remain intact.
From Table 3 we can obtain quick insight into the differences between the function

of different methods. For the raw network, the correlations between the prevalence of
diseases with their in-neighbors and that with their out-neighbors, denoted by rinP and routP
respectively, are both negative. This is also evident from the negative slope of the curves
in Figs. 5 and 6 corresponding to the raw network. Also, the prevalence distribution
of the raw network, presented in Fig. 4, shows that the distribution of the prevalences
has a lognormal-like shape, so most diseases have small prevalence, and high-prevalence
diseases are relatively less common. Combining these two observations, we deduce that
the connections are strongly disassortative and mutual. That is, the network has a core-
periphery structure in which a few highly-prevalent nodes preferentially connect to many
low-prevalence nodes, and vice versa.
The OER and φ methods retain comparable portions of the links, but the OER network

discards about 10% of the nodes. We manually verified that all the diseases that the OER
method discards are in-fact extremely low-prevalence. This is also visible in Fig. 4, where
the left tail of the OER curve begins around 12, falling in the 6th percentile of the preva-
lence distribution of the raw network. So we observe that the OER network discards all
the diseases in the bottom 5 percentile of prevalence. From Figs. 5 and 6, we also observe
that the low-prevalence diseases are discarded by the OERmethod.We also observed that
the curves corresponding to the OERmethod have negative slopes, similar to the raw net-
work. This indicates that the OER method retains the structural core-periphery property
discussed above. For the φ network, correlation between the prevalence of diseases with
their in-neighbors and that with their out-neighbors are close to zero. This means that the
disease pairs in the φ network neither exhibit homophily nor heterophily in prevalence.

Fig. 4 Visualizing Prevalences. The distribution of the ln(prevalence) of the diseases in different constructed
networks sheds light on their selection criteria. The GloSS method retains disproportionately high-prevalence
diseases, the IPFP method discards disproportionately high-prevalence diseases, and the OER, DF, and
salience methods, discard disproportionately low-prevalence diseases
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Fig. 5 Comparing prevalences of neighboring nodes. The horizontal axis pertains to the prevalence of the
diseases, and the vertical axis depicts the distribution of the prevalences of their out-neighbors. The thick lines
denote median values and the shades demarcate 0.25 and 0.75 quantiles. The axes are natural-logarithmic

This is visible in Figs. 5 and 6, where the curves pertaining to the φ method have overall
slope close to zero.
The DF network is considerably sparser than OER though it retains roughly the same

number of nodes. In contrast to the OER and φ networks, the DF network exhibits a high
imbalance between 〈Poutnn 〉 and 〈Pinnn〉. This means that on average, the average prevalence
of out-neighbors of nodes is five times greater than the average prevalence of the in-
neighbors of nodes. This is expected by construction, because the way the DF network
was built was to retain disproportionately-large out-links of each node, and discard the
out-links with smaller weights. So for a typical disease, heavier out-links are systematically
selected, and these are the links that typically point to high-prevalence diseases. In other
words, high-prevalence diseases are the ones which appear with high frequency among
either the in-neighbors or the out-neighbors of a typical disease, and the DF method
systematically discards light out-links without doing the same to the in-links, thereby cre-
ating an imbalance. Consequently, high-prevalence nodes become more likely to appear
among the out-neighbors as before. This asymmetry is also evident from the mismatch
between the signs of rinP and routP . Moreover, as it is visible in Fig. 4, the DF method dis-
cards diseases with low prevalence almost entirely, which is a feature it shares with the
OER method.

Fig. 6 Comparing prevalences of neighboring nodes. The horizontal axis pertains to the prevalence of the
diseases, and the vertical axis depicts the distribution of the prevalences of their in-neighbors. The thick lines
denote median values and the shades demarcate 0.25 and 0.75 quantiles. The axes are natural-logarithmic
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The IPFP network is sparser than OER, φ, and DF networks. The average prevalence
of the diseases that IPFP retains is lower than the other three methods. Same is true
for the median of the prevalences. This means that the IPFP filter discards disease with
extremely high prevalence. This is also evident from the tail behavior of the distribution
of log(prevalence) in Fig. 4, where the tail of the IPFP curve visibly plummets below the
other curves. The 〈Poutnn 〉 and 〈Pinnn〉 values of the IPFP network are an order of magni-
tude smaller than the corresponding values in the OER, φ, and DF networks. Thus the
core-periphery feature is nonexistent in the IPFP network, and the prevalences of the dis-
ease pairs are on average less unequal than other networks. Moreover, the IPFP method
rewards intermediacy. As Fig. 4 shows, the intermediate-prevalence diseases constitute a
higher fraction of the IPFP method as compared to the raw network.
TheGloSS filter has a unique property: the average prevalence is twice as high as the raw

network. So the GloSS method has retained disproportionately high-prevalence diseases.
This is also evident from Fig. 4. The prevalence curve pertaining to the Gloss method
is shifted to the far right. In fact, the lowest prevalence in the GloSS network is 1176,
which in the raw network, is at the 47 percentile. So the Gloss network discards about
half of the diseases, and it suffers from this problem much more severely than OER and
DF methods. The values of 〈Poutnn 〉 and 〈Pinnn〉 are also much greater than the average and
median values of P. Moreover, rinP and routP are strongly negative. These indicate a strong
mutual core-periphery structure. This feature was also present in the raw network as
discussed above, but is markedly accentuated by the GloSS method. The GloSS method
discards low-prevalence diseases, and retains medium and high-prevalence diseases. As
Figs. 5 and 6 illustrate, in the remaining network, the out-links of high-prevalence diseases
are preferentially towards medium-prevalence diseases, and conversely, the out-links of
medium-prevalence diseases are preferentially towards high-prevalence diseases.
The Salience network is the most sparse, retaining less than 2.5% of all the links in

the raw data. The Salience network is small by construction because it seeks to retain
a small fraction of links that would capture the macro skeleton of the network. Since
according to Table 3 the number of links is smaller than the number of nodes in this
network, we deduce that the Salience network is disconnected. Via visualization we ver-
ified that the Salience network is in fact segregated to disjoint connected components.
The Salience method, like the OER, DF, and GloSS methods, is biased towards high-
prevalence diseases. However, the degree to which the Salience method suffers from this
bias is comparable to the OER and DF methods, and is not as severe as the Gloss method.
Another notable uniqueness of the Salience method is the great difference between 〈Poutnn 〉
and 〈Pinnn〉, with the former being about 60 times greater than the latter. This was the case
for the DF network too, but this ratio was about five, which is a much smaller difference
than in the Salience network. To investigate if the high skew of the prevalence distribu-
tion is disproportionately affecting the averages, we repeated the calculations using the
median instead of average, and we observed the same pattern both for DF and salience
networks. This indicates a highly-unequal three-level structure in the Salience network:
the Salience network comprises many locally-core-periphery substructures, where the
peripheral nodes preferentially connect to the core nodes, but the core nodes do not recip-
rocate. Some of the core nodes connect to other core nodes, and some of them do not.
That is, there are three types of nodes in the Salience network: (i) core nodes with high in-
strength (received by many unilateral links from small peripheral nodes), (ii) nodes with
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high in-strength and intermediate out-strength (the in-flow comes form many peripheral
nodes, the out-flow goes into the core nodes from the first category), and (iii) the small
peripheral nodes who do not receive any in-flow and form unilateral links towards the
former two categories. This topology can be simply conceptualized as follows: consider
a star graph with many leafs, all unilaterally linking to the central node. Now suppose
we take a fraction of the leafs, and for each of them introduce some new leaf nodes that
unilaterally connect to them, turning them into mini-authorities. This structure exhibits
the correlation properties observed in Table 3 for the Salience network. We also visually
verified this hypothesis. Note that the lack of reciprocation from high-prevalence nodes
is in contrast to the raw and OER networks, which although highly unequal, comprised
mostly-bidirectional links.

Applicability of different methods

To summarize, the OER and φ networks focus on disease-disease relationships in the
usual statistical way, that is, in the absence of network structure. If the task of a study
is to investigate the comorbidity between a certain pair of diseases, then these methods
are suitable. The OER network disproportionately discards diseases with low prevalences,
and the φ network disproportionately discards disease pairs with highly-unequal preva-
lences. The DF network is better if the questions of comorbidity are being formulated
conditional on having developed certain diseases first, and if one wants to compare
between the risks of different diseases that succeed the given initial diseases. The DF
method has the disadvantage that it discards diseases with low prevalence. The IPFP
method has an egalitarian approach which controls for disease prevalence. This method
prevents the results from being dominated by high-prevalence diseases. It asks if all
the diseases had the same in-flow and the same out-flux, what would be the best esti-
mate of the comorbidity matrix, given the information on the empirical matrix? In other
words, the IPFP method investigates comorbidity patterns controlled for individual dis-
ease prevalences. The Gloss method assesses link weight fluctuations on a global level. So
this method is preferred when the task of the study is to compare comorbidity links glob-
ally, not focusing on a particular disease. That is, if the emphasis of the study is on links
rather than the nodes. The Salience method is only relevant for disease trajectories glob-
ally and is not suitable for studying comorbidity statistics. The Salience method is suitable
if, for instance, one would like to investigate the expected distance between certain dis-
eases, that is, how many intermediate diseases it would typically take to develop disease
B having developed disease A. The OER, φ, and DF methods have a local approach. The
Gloss filter and the Salience method have global approaches. The IPFP method has a
meso-scale approach.

Example applications
In what follows we calculate several conventional measures of node importance. We
investigate the agreement between different networks on the importance profile of
diseases. We denote the diseases by 3-digit ICD9 codes.

Different measures for node importance

Node Strength. For directed weighted networks, we can use the out-strength and in-
strength to characterize nodal connectivity, as discussed above. Table 4 presents the top
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Table 4 Top 5 diseases with highest in-strength in different networks

Raw OER φ DF IPFP GloSS Salience

285 anemia
(unspecified)

474 Chronic
disease of tonsils
and adenoids

285 anemia
(unspecified)

285 anemia
(unspecified)

766 long
gestation

285 anemia
(unspecified)

366 cataract

041 bacterial
infection
(unspecified)

648 other
conditions
complicating
pregnancy,
childbirth or
puerperium

366 cataract 041 bacterial
infection
(unspecified)

773 Hemolytic
disease of fetus or
newborn due to
isoimmunization

041 bacterial
infection
(unspecified)

664 trauma
to perineum
and vulva
during
delivery

276 fluid
electrolyte
disorders

664 trauma to
perineum and
vulva during
delivery

584 acute
kidney failure

276 fluid
electrolyte
disorders

763 fetus or
newborn
affected by other
complications of
labor and delivery

276 fluid
electrolyte
disorders

401 essential
hypertension

366 cataract 654 pelvis
abnormalities
(e.g., previous
cesarean)

272 lipoid
metabolism
disorders

366 cataract 764 slow fetal
growth and fetal
malnutrition

427 Cardiac
dysrhyth-
mias

272 lipoid
metabolism
disorders

584 acute
kidney failure

381 otitis media
and eustachian
tube disorders

041 bacterial
infection
(unspecified)

584 acute
kidney failure

772 fetal and
neonatal
hemorrhage

414 chronic
ischemic
heart disease

414 chronic
ischemic
heart disease

5 diseases with highest in-strength, and Table 5 presents the top 5 diseases with highest
out-strength.
Eigenvector centrality. A basic measure to characterize the centrality of nodes in a

network is the eigenvector centrality (Bonacich 1987). The basic intuition behind this
measure is that important nodes are those that are connected to other important nodes.
This yields a self-consistent linear set of equations that yields the centrality scores of
nodes. Table 6 presents the top 5 diseases with highest eigenvector centrality for different
networks.
The rankings of top nodes show the differences between the networks constructed by

the different methods. It is of note that eigenvector centrality tends to capture nodes with
high in-strength. The OER and IPFP methods predominantly pick up pregnancy-related

Table 5 Top 5 diseases with highest out-strength in different networks

Raw OER φ DF IPFP GloSS Salience

401 essential
hypertension

664 trauma to
perineum and
vulva during
delivery

401 essential
hypertension

401 essential
hypertension

887 traumatic
amputation of
arm

401 essential
hypertension

401 essential
hypertension

414 chronic
ischemic
heart disease

474 Chronic
disease of tonsils
and adenoids

366 cataract 366 cataract 673 Obstetrical
pulmonary
embolism

414 chronic
ischemic
heart disease

244 acquired
hypothyroidism

272 lipoid
metabolism
disorders

663 umbilical
cord
complications
during delivery

414 chronic
ischemic
heart disease

414 chronic
ischemic
heart disease

896 traumatic
amputation of
foot

272 lipoid
metabolism
disorders

496 chronic
airway
obstruction
(unclassified)

366 cataract 658 problems of
amniotic cavity
membranes

272 lipoid
metabolism
disorders

272 lipoid
metabolism
disorders

817 multiple
fractures of arm
bone

250 Diabetes
mellitus

648 other
conditions
complicating
pregnancy,
childbirth or
puerperium

250 Diabetes
mellitus

656 other fetal
and placental
problems

250 Diabetes
mellitus

250 Diabetes
mellitus

897 traumatic
amputation of
leg

427 Cardiac
dysrhyth-
mias

413 Angina
pectoris
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Table 6 Top 5 diseases with highest eigenvector centrality in different networks

Raw OER φ DF IPFP GloSS Salience

041 bacterial
infection
(unspecified)

664 trauma to
perineum and
vulva during
delivery

654 trauma to
perineum and
vulva during
delivery

285 anemia
(unspecified)

651 multiple
gestation

041 bacterial
infection
(unspecified)

401 essential
hypertension

285 anemia
(unspecified)

412 old
myocardial
infarction

412 old
myocardial
infarction

041 bacterial
infection
(unspecified)

647 other
infections
complicating
pregnancy

285 anemia
(unspecified)

366 cataract

276 fluid
electrolyte
disorders

585 chronic
kidney disease

585 chronic
kidney disease

780 general
symptoms

652 malposition
and
malpresentation
of fetus

427 Cardiac
dysrhyth-
mias

664 trauma
to perineum
and vulva
during
delivery

780 general
symptoms

648 other
conditions
complicating
pregnancy,
childbirth or
puerperium

648 other
conditions
complicating
pregnancy,
childbirth or
puerperium

276 fluid
electrolyte
disorders

641 Antepartum
hemorrhage

276 fluid
electrolyte
disorders

272 lipoid
metabolism
disorders

427 Cardiac
dysrhyth-
mias

654 pelvis
abnormalities
(e.g., previous
cesarean)

654 pelvis
abnormalities
(e.g., previous
cesarean)

599 urinary
tract
infection

663 umbilical
cord
complications
during delivery

414 chronic
ischemic
heart disease

285 anemia
(unspecified)

diagnoses, whose comorbidity links (preceding or following other diseases or condi-
tions) to several different categories of diseases are well-researched (Desai et al. 2007;
James et al. 2005; Brabin et al. 2001; Kittner et al. 1996). The major difference between
pregnancy-related ICD codes (630-679) and other categories is cohesion. As shall be dis-
cussed below in Tables 19 and 20, the aggregated in-strength and out-strength of this
category of nodes is not high as compared to other categories (it ranks among the bot-
tom 5 in both cases), but interestingly, in terms of the weights of within-category links,
this category has an outstandingly large share (it ranks second, after the diseases of the
circulatory system). This means that the pregnancy-related nodes form a cohesive sub-
network. This dense clique-like structure is comprised of disease with intermediate-level
prevalence with prevalence values all relatively close to one another. The OER coefficient
is high for these disease pairs because in addition to high co-occurrence, all diseases have
intermediate levels of prevalence, so the overestimation and underestimation tendencies
of the OER method are not encountered. Another family of diseases that frequently have
high values of eigenvector centrality in all network construction methods is the family
of 28X diseases, which are the diseases of the blood and blood-forming organs. Notable
diseases in this family include different types of anemia, Haemophilia, and diseases of
white blood cells. Iron deficiency anemias (280) and ‘Other and unspecified anemias’
(285) appear consistently higher than Haemophilia. This is mainly caused by the high
prevalence of 280 and 285 anemias (with prevalences 40,000 and 107,000, respectively),
as compared to Haemophilia, whose prevalence is about 10,000 in our data set.
Table 7 presents the mutual correlation coefficients for the eigenvector centrality of

nodes computed for different networks. The IPFP method seems uncorrelated or nega-
tively correlated with the other methods. Most methods are strongly correlated in terms
of eigenvector centrality. The Salience method focuses on trajectories and distorts the
degrees, so the eigenvector centrality of this method is weakly correlated with that of the
other methods. The IPFP method changes the strengths and assigns new link weights
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Table 7 The correlation matrix for the eigenvector centrality of nodes between different networks

Raw OER φ DF IPFP GloSS Salience

Raw 1 0.799 0.783 0.424 -0.205 0.505 0.120

OER 0.799 1 0.996 0.558 0.017 0.330 0.212

phi 0.783 0.996 1 0.554 0.093 0.315 0.214

DF 0.424 0.558 0.554 1 -0.223 0.605 0.372

IPFP -0.205 0.017 0.093 -0.223 1 -0.414 -0.003

GloSS 0.505 0.330 0.315 0.605 -0.414 1 0.275

Salience 0.120 0.212 0.214 0.372 -0.003 0.275 1

after controlling for disease prevalences. The IPFP method has a strong negative asso-
ciation with the GloSS method, because by construction, the GloSS method rewards
high-prevalence diseases and the IPFP method does the converse.
PageRank. The second centrality measure that we use is the PageRank (Brin and Page

1998). The PageRank algorithm was originally used to characterize the importance of
websites. This algorithm basically quantifies the likelihood that a person clicking ran-
domly on links will arrive at a given website (Xing and Ghorbani 2004). This method
simulates random walks on the network, with a damping factor that characterizes the
probability that the walk terminates at any step and restarts at a node chosen uniformly
at random. We set the damping factor equal to 0.85, which is conventional in the litera-
ture. Table 8 presents the results for the top 5 diseases with highest PageRank for different
networks. An intuitive approximation is that PageRank tends to focus on nodes with high
in-strength (Fortunato et al. 2006). This is confirmed by comparing Table 8 with Table 4;
many of the top nodes are common between these two tables. Comparing Table 8 with
Table 6, we observe that IPFP is returning different results—mostly conditions pertain-
ing to the perinatal period. We point out that most of these diseases are not particularly
highly-connected nodes in the raw network. Motivated by this observation, we can gain
intuition about how IPFP works by noting that, when normalization of rows or columns is

Table 8 Top 5 diseases with highest PageRank in different networks

Raw OER φ DF IPFP GloSS Salience

285 anemia
(unspecified)

585 chronic
kidney disease

285 anemia
(unspecified)

285 anemia
(unspecified)

773 Hemolytic
disease of fetus or
newborn due to
isoimmunization

285 anemia
(unspecified)

366 cataract

041 bacterial
infection
(unspecified)

664 trauma to
perineum and
vulva during
delivery

366 cataract 041 bacterial
infection
(unspecified)

766 long
gestation

041 bacterial
infection
(unspecified)

401 essential
hypertension

276 fluid
electrolyte
disorders

428 heart failure 272 lipoid
metabolism
disorders

276 fluid
electrolyte
disorders

762
complications of
placenta
affecting
newborn

276 fluid
electrolyte
disorders

664 trauma
to perineum
and vulva
during
delivery

584 acute
kidney failure

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

584 acute
kidney failure

584 acute
kidney failure

769 Respiratory
distress
syndrome in
newborn

427 Cardiac
dysrhythmias

272 lipoid
metabolism
disorders

780 general
symptoms

474 Chronic
disease of tonsils
and adenoids

041 bacterial
infection
(unspecified)

366 cataract 652 malposition
and
malpresentation
of fetus

414 chronic
ischemic heart
disease

285 anemia
(unspecified)
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performed at each stage, nodes with large degrees can lose their weight if their neighbors
are also of large degree. For example, consider the row-normalization step, where rows
(and similarly columns) are normalized to add up to unity. At this step, a row that corre-
sponds to a node with out-degree 100 who is connected with heavy and equal out-links
to its 100 out-neighbors will become identical to a row corresponding to a node with out-
degree 3 who is connected with light and equal out-links to its 3 out-neighbors. In other
words, this method is capturing something that is inherently of a different nature than
every other method considered here. Table 9 presents the correlation values for PageR-
ank scores in different networks. Similar to the case of eigenvector centrality, IPFP is
negatively correlated with every other method. This observation highlights the difference
between IPFP and other methods, and invites more investigation into what this method
extracts.
Table 9 is also informative regarding the function of different methods. The PageRank

scores of the raw network have a strong positive correlation with those in the φ, DF, and
GloSS networks. The IPFP method shows a negative correlation, similar to the case of
eigenvector centrality, because it punishes diseases with high prevalence and assigns a
low strength to them, as discussed before. The Salience method constructs a network
comprising entirely of non-mutual links and distorts the in-strength and out-strength pat-
terns. The in-strength of most nodes are mapped to zero, because, as we discused above,
the Salience method comprises mostly of highly-unequal substructures with peripheral
nodes unidirectionally connected to core nodes. As mentioned above, the PageRank
scores of nodes can be approximated with their in-strength (Fortunato et al. 2006). Since
the Salience method maps the in-degrees of many nodes to zero (retaining only their out-
links to highly-prevalent core nodes, as discussed above), the concomitant distortion in
in-strengths results in a lower correlation between the PageRank of the Salience method
and other networks.
Hubs and authority.An alternative way we could characterize the importance of nodes

in terms of in-flow and out-flow is to employ the HITS algorithm (Kleinberg 1999). The
HITS algorithm is a simple and intuitive method that was originally devised to charac-
terize the rankings of websites. This algorithm focuses on simultaneously finding hubs
and authorities on the web. In that context, a hub is a website that is influential in direct-
ing users towards other highly-ranked websites, and an authority is a website which gets
directed to by highly-ranked nodes. In the context of diseases, a hub would be a disease
which, if developed, increases the risks of developing other diseases. An authority would
be a disease that follows many other diseases. Table 10 presents the results for the top 5
diseases in terms of hubness in different networks. Comparing the results in Table 10 with

Table 9 The correlation matrix for the PageRank of nodes between different networks

Raw OER φ DF IPFP GloSS Salience

Raw 1 0.371 0.986 0.966 -0.528 0.892 0.377

OER 0.371 1 0.408 0.250 -0.525 0.039 0.129

phi 0.986 0.408 1 0.961 -0.491 0.857 0.430

DF 0.966 0.250 0.961 1 -0.369 0.905 0.386

IPFP -0.528 -0.525 -0.491 -0.369 1 -0.217 -0.084

GloSS 0.892 0.039 0.857 0.905 -0.217 1 0.228

Salience 0.377 0.129 0.430 0.386 -0.084 0.228 1
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Table 10 Top 5 diseases with highest hub-ness scores in different networks, according to the HITS
algorithm

Raw OER φ DF IPFP GloSS Salience

041 bacterial
infection
(unspecified)

664 trauma to
perineum and
vulva during
delivery

664 trauma
to perineum
and vulva
during
delivery

276 fluid
electrolyte
disorders

666 postpartum
hemorrhage

041 bacterial
infection
(unspecified)

225 Benign
neoplasm of
brain and other
parts of nervous
system

285 anemia
(unspecified)

366 cataract 366 cataract 780 general
symptoms

656 other fetal
and placental
problems

427 Cardiac
dysrhythmias

303 alcohol
dependence
syndrome

780 general
symptoms

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

535 Gastritis
and
duodenitis

658 problems of
amniotic cavity
membranes

285 anemia
(unspecified)

344 other
paralytic
syndromes

276 fluid
electrolyte
disorders

656 other fetal
and placental
problems

656 other
fetal and
placental
problems

285 anemia
(unspecified)

628 female
infertility

250 Diabetes
mellitus

270 Disorders of
amino-acid
transport
metabolism

250 Diabetes
mellitus

250 Diabetes
mellitus

250 Diabetes
mellitus

486
Pneumonia

634 spontaneous
abortion

272 lipoid
metabolism
disorders

324 Intracranial
and intraspinal
abscess

those of Table 6, we observe that the hub-ness scores for all categories correlate highly
with those of eigenvector centrality, except DF and Salience. Table 11 presents the corre-
lation matrix for hubness. The hubness score is important in comorbidity studies because
the hubs that the HITS algorithm nominates are universal senders, and in the context of
comorbidity studies, these would pertain to diseases that substantially increase the risk of
many other diseases, demanding more prevention and care. Table 11 shows that there is
good agreement between the hub scores of different methods, so despite their structural
differences, the hub score is robust and can be reliably used. The two usual exceptions
are present here as well: the IPFP method, and the Salience method. These are expected
because their tasks are different: the hubness scores of the IPFP method pertain to an
alternative inflow-outflow comorbidity matrix where the prevalences are controlled for,
and the Salience method only focuses on distances and trajectories rather than actual
disease-disease relations. Table 12 presents the top 5 nodes for authority, and Table 13
presents the correlation matrix for authority scores. For the authority index too, there is
good agreement between every method except IPFP and Salience.
Betweenness centrality. Distance-based network measures capture different aspects

of how essential a node is in the reachability between other pairs of diseases. Here we

Table 11 The correlation matrix for the hubness score of nodes between different networks,
according to the HITS algorithm

Raw OER φ DF IPFP GloSS Salience

Raw 1 0.763 0.741 0.915 -0.054 0.408 0.132

OER 0.763 1 0.995 0.560 0.243 0.375 -0.199

φ 0.741 0.995 1 0.510 0.296 0.366 -0.222

DF 0.915 0.560 0.510 1 -0.404 0.349 0.212

IPFP -0.054 0.243 0.296 -0.404 1 -0.180 -0.217

GloSS 0.408 0.375 0.366 0.349 -0.180 1 -0.142

Salience 0.132 -0.199 -0.222 0.212 -0.217 -0.142 1.000
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Table 12 Top 5 diseases with highest authority scores in different networks, according to the HITS
algorithm

Raw OER φ DF IPFP GloSS Salience

285 anemia
(unspecified)

585 chronic
kidney disease

585 chronic
kidney
disease

285 anemia
(unspecified)

652 malposition
and
malpresentation
of fetus

285 anemia
(unspecified)

401 essential
hypertension

041 bacterial
infection
(unspecified)

664 trauma to
perineum and
vulva during
delivery

664 trauma
to perineum
and vulva
during
delivery

041 bacterial
infection
(unspecified)

656 other fetal
and placental
problems

041 bacterial
infection
(unspecified)

765 Disorders
relating to short
gestation and
low birthweight

276 fluid
electrolyte
disorders

411 old
myocardial
infarction

411 old
myocardial
infarction

276 fluid
electrolyte
disorders

651 multiple
gestation

427 Cardiac
dysrhythmias

041 bacterial
infection
(unspecified)

780 general
symptoms

428 heart failure 428 heart
failure

780 general
symptoms

647 other
infections
complicating
pregnancy

276 fluid
electrolyte
disorders

762
complications of
placenta
affecting
newborn

427 Cardiac
dysrhyth-
mias

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

599 urinary
tract
infection

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

272 lipoid
metabolism
disorders

769 Respiratory
distress
syndrome in
newborn

use betweenness centrality which characterizes the number of shortest paths between
different disease pairs that pass through each given disease. There might be a disease
that separates a dense module of diseases from the whole network, such that one would
develop the diseases within the module only when one first develops this gate-keeper dis-
ease. Or, conversely, after developing a disease within the module, subsequent diseases
outside the module occur typically after this gate-keeper disease is developed. Such a dis-
ease would have a high betweenness centrality. Another type of nodes that are typically
characterized by high betweenness centrality are the core nodes in strong core-periphery
structures, because to go from one peripheral node to another, one has to pass through
the core nodes. So this measure is helpful in detecting this structural feature of diseases.
Table 14 presents the top 5 nodes with highest betweenness centrality in the constructed
networks. In the raw, OER, φ, DF, and Gloss networks, the top nodes are those with
extremely high prevalence. The above-discussed core-ness underpins the high between-
ness centrality of these nodes. The Salience method assigns high betweenness centrality
scores to conditions pertaining to the perinatal period, which is potentially related to the

Table 13 The correlation matrix for the authority score of nodes between different networks,
according to the HITS algorithm

Raw OER φ DF IPFP GloSS Salience

Raw 1 0.806 0.786 0.410 -0.113 0.645 0.051

OER 0.806 1 0.994 0.556 0.146 0.355 0.084

phi 0.786 0.994 1 0.553 0.199 0.325 0.084

DF 0.410 0.556 0.553 1 -0.107 0.587 0.150

IPFP -0.113 0.146 0.199 -0.107 1 -0.461 -0.015

GloSS 0.645 0.355 0.325 0.587 -0.461 1 0.139

Salience 0.051 0.084 0.084 0.150 -0.015 0.139 1
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Table 14 Top 10 diseases with highest betweenness centrality

Raw OER φ DF IPFP GloSS Salience

272 lipoid
metabolism
disorders

366 cataract 366 cataract 654 trauma to
perineum and
vulva during
delivery

032 diphtheria 041 bacterial
infection
(unspecified)

401 essential
hypertension

276 fluid
electrolyte
disorders

276 nonde-
pendent
abuse of drugs

664 trauma to
perineum and
vulva during
delivery

789 Other
symptoms
involving
abdomen and
pelvis

073 Ornithosis 285 anemia
(unspecified)

779
ill-defined
conditions
originating
in prenatal
period

250 Diabetes
mellitus

276 episodic
mood
disorders

474 chronic
disease of
tonsils and
adenoids

466 Acute
bronchitis and
bronchiolitis

827 ill-defined
fractures of lower
limb

276 fluid
electrolyte
disorders

771
infections
specific to
prenatal
period

041 bacterial
infection
(unspecified)

414 chronic
ischemic heart
disease

414 chronic
ischemic heart
disease

474 Chronic
disease of tonsils
and adenoids

004 Shigellosis 427 Cardiac
dysrhythmias

770
respiratory
conditions of
fetus or
newborn

285 anemia
(unspecified)

272 lipoid
metabolism
disorders

428 heart
failure

041 bacterial
infection
(unspecified)

254 Diseases of
thymus gland

280 iron
deficiency
anemias

648 other
conditions
complicating
pregnancy,
childbirth, or
puerperium

first typical case of high betweenness mentioned above. That is, certain prenatal condi-
tions act as gatekeeping conditions between conditions before birth and conditions after
birth. The results of the IPFP method are less intuitive, consistent with the results for the
previous measures. Table 15 presents the correlations across different networks.

Example application: the role of disease prevalence

To get a better intuition into the network measures that we used to characterize diseases,
we investigate the correlation between each network measure and disease prevalence in
every constructed network. The results are presented in Table 16. In the raw network,
every measure has a strong positive association with disease prevalence. Thus highly-
prevalent diseases such as diabetes and hypertension receive a high score no matter the
network measure used to characterize the diseases. Same is true for the DF and GloSS
networks. In contrast, for the IPFP network, prevalence is negatively correlated with every
network measure except hub and authority, and for the latter two the association is close
to zero. For the Salience network, the correlation between the hub index and prevalence
is negative. Together with the positivity of the correlation between the authority index

Table 15 Correlation between the betweenness centrality of nodes across constructed networks

Raw OER phi DF IPFP GloSS Salience

Raw 1 0.760 0.427 0.494 -0.482 0.638 0.150

OER 0.760 1 0.637 0.530 -0.379 0.217 0.161

phi 0.427 0.637 1 0.457 -0.168 0.237 0.146

DF 0.494 0.530 0.457 1 -0.153 0.289 0.018

IPFP -0.482 -0.379 -0.168 -0.153 1 -0.187 -0.055

GloSS 0.638 0.217 0.237 0.289 -0.187 1 0.112

Salience 0.150 0.161 0.146 0.018 -0.055 0.112 1
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Table 16 The correlation between the network measures of diseases and disease prevalence, for
different constructed networks

PageRank Eig centrality Authority Hub Betweenness centrality In-strength Out-strength

Raw 0.794 0.38 0.383 0.395 0.768 0.804 0.946

OER 0.375 0.554 0.56 0.597 0.8 0.233 0.249

phi 0.819 0.557 0.563 0.597 0.708 0.834 0.954

DF 0.776 0.679 0.747 0.388 0.449 0.79 0.947

IPFP -0.371 -0.067 0.02 0.016 -0.326 -0.367 -0.396

GloSS 0.704 0.641 0.523 0.749 0.678 0.731 0.909

Salience 0.548 0.568 0.257 -0.151 0.265 0.536 0.348

Element i, j of this table is the correlation between measure j and disease prevalence in the constructed network i

and prevalence, this indicates that in the Salience network, high-prevalence nodes dispro-
portionately receive in-flows and do not reciprocate. This is in contrast with every other
method, where both of these correlations are positive, meaning that high-prevalence
nodes are characterized by both large in-flows and out-flows.
Note that the exact value of prevalence for each disease cannot be recovered from the

networks alone. This is due to the existence of disease progression trajectories with length
greater than two. If every patient had a registry of form A→B, that is, only two diseases,
then the prevalence of each disease would be simply the sum of the out-strength and
in-strength of its corresponding node in the raw network. But because many instances
of higher-order records such as A→ B →C exist, and those with greater lengths, the
prevalence information is lost. If we conceptualize the weighted links in the raw network
as distinct links with unit weight, then in this picture, each link would represent exactly
one patient if every disease trajectory had length one (that is, in the form A→B). But due
to the presence of higher-order trajectories, more than one link can together pertain to
a single patient, thus the prevalence information lost. However, Table 16 shows a strong
correlation between the out-degree of diseases (about 0.95) and their prevalence. So if
we did not have the prevalence data, we could use out-degree as a proxy for prevalence.
It would be interesting to investigate if this correlation pattern between various network
measures and prevalence would be replicated using data from other regions of the globe.

Example application: shared genes and protein-protein Interactions

We can use the results to investigate the relation to previous studies on disease networks,
which in addition to comorbidity observations, incorporate other disease-disease linkages
into the analysis. For example, in Ref. Park et al. (2009), the protein–protein interaction
(PPI) and coexpression networks and the inter-disease network of shared genes are com-
pared to the comorbidity records from US Medicare claims. Many observed comorbidity
patterns are therefore linked to the shared PPIs and the shared genes of the diseases. For
example, the significant comorbidity between Alzheimer’s disease and myocardial infarc-
tion is linked to their shared ACE and APOE genes. As another example, a PPI between
the genes associated with the autonomic nervous system disorder and the carpal tunnel
syndrome (IKBKAP and TTR, respectively) is suggested to contribute to the statistically-
significant comobrnidity between these two diseases. We can investigate how the results
of Ref. Park et al. (2009) are reflected in our constructed networks. Because of the link-
focused nature of these results, we expect the local methods to be relevant here, which
include the OER measure, the φ coefficient, and the DF method. In our data set, there
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are 747 cases where the Alzheimer’s disease is diagnosed following myocardial infarction.
All three methods deem this link as significant. There were 506 cases where, conversely,
Alzheimer’s disease preceded. Only the DF method deemed this direction of the link as
significant, which indicates that myocardial infarction attracts a significant share of the
out-strength of the Alzheimer’s disease. This implies that conditional on having devel-
oped the Alzheimer’s disease, there is an elevated chance of later developing myocardial
infarction. There were 38 cases were autonomic nervous system disorder is diagnosed
prior to the carpal tunnel syndrome, and OER and φ deem this link as significant. There
are 47 cases were the carpal tunnel syndrome precedes, and neither of the methods deem
this direction of the link as significant. This highlights the strength of the directed char-
acterization of the network over the undirected versions considered in the literature,
because in addition to association between disease pairs, the distinction between the sta-
tistical properties of the two directions sheds light on which of the two diseases is more
probable to cause the other, or at least to precede the other in the causal network that
subsumes them both besides other covariates.
Table 17 pertains to disease pairs that have OER > 1.5 and are related via shared PPI

or genes as deemed by Ref. Park et al. (2009). The table presents the percentage of such
disease pairs that are deemed significant by different constructed networks. As expected,
OER and φ have the best performance, and DF is also performing well. These three meth-
ods have a local focus, therefore, they are potent in detecting such link-based relations.
The other methods, however, focus more on the global structure of the network, and as
Table 17 shows, have poor performance for detecting such disease pairs, which matches
the expectation.

Example application: negative comorbidity and protective effects

As mentioned above, the φ coefficient and the OER measure can capture negative
comorbidities, that is, cases where developing disease A is negatively associated with
developing disease B. We can use the φ correlation to detect strong negative comorbidi-
ties, minding that distinguishing actual protection effects frommere negative associations
obviously requires more rigorous causal analysis and is not within the scope of this paper.
Throughout this paper, we only investigate associations. Here we consider several exist-
ing examples in the literature where such negative association has been suggested, and
to check if our data replicates these findings. A famous example is the negative associa-
tion between Alzheimer’s disease and various types of cancer (see Ref. Ma et al. (2014);
Tabarés-Seisdedos et al. (2011) and references therein). We focus on the ICD9 codes 140
to 239, which pertain to the neoplasms category, and investigate how the φ and OER
methods perform at capturing negative comorbidities. For the OER method, we look for
significant links with OER< 1 , and for the φ method, we look for significant links with

Table 17 Percentage of disease pairs retained by different constructed networks whose gene or PPI
commonality are deemed significant by Ref. Park et al. (2009)

OER φ DF IPFP GloSS Salience

Either direction 68.8 67.2 57.8 1.6 15.6 0

Both directions 43.8 41.1 17.2 1.6 14.1 0

Only one direction 25.0 26.1 40.6 0 1.5 0
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φ < 0. The φ method gives 29 distinct neoplasms exhibiting significant negative comor-
bidity with Alzheimer’s disease. The OER method detects 26 of those 29 links, and finds
no links that the φ method had not. From these two sets, 27 neoplasms are deemed as
significant by both methods. In the converse direction, where the initial diagnosis of a
neoplasm is associated with reduced risk of subsequent Alzheimer’s disease, the φ method
detects 30 neoplasms, and the OER detects a subset of them comprising 28 neoplasms.
For the Alzheimer’s-neoplasm direction of negative comorbidities, the strongest nega-
tive association that the φ method returns pertains to secondary/unspecified malignant
neoplasm of lymph nodes, and for the OER method, the strongest negative association
pertains to benign neoplasm of kidney. In the neoplasm-Alzheimer’s direction, the first
rank for the φ method is secondary malignant neoplasm of respiratory and digestive sys-
tems, and for the OERmethod the first rank belongs tomalignant neoplasm of gallbladder
and extra-hepatic bile ducts.

Example application: pregnancy-related codes

As discussed above, pregnancy-related codes are among the highly-comorbid codes in
several constructed networks. We can use the different constructed networks to investi-
gate these comorbidities. Most codes in the 630-679 range are highly connected to one
another. Here we focus on comorbidity with codes outside this category. We consider
ICD9 code 634 (spontaneous abortion) as an example. In the OER network, the diseases
with the highest correlations that tend to precede 634 include 792 (nonspecific abnormal
findings in other body substances), 282 (hereditary hemolytic anemias) and 218 (uter-
ine leiomyoma). These links are also deemed significant by the φ method. These are in
agreement with previous results in the literature (Serjeant et al. 2004; Pajor et al. 1993;
Powars et al. 1986; Coronado et al. 2000; Klatsky et al. 2008). The only link OER, φ, DF,
and IPFP methods all agree on is 792. Figure 7 shows the local graph of pregnancy related
codes. As stated above, pregnancy-related codes are highly cohesive and each of them
connects to many others. For better visualization, we sparsified the neighborhood net-
works as follows. For each node, we only retained the two pregnancy-related neighbors

Fig. 7 Local network of pregnancy-related codes. The neighborhood of the pregnancy-related codes
630-679 as deemed significant by the φ method. The blue links are between pregnancy codes and the
orange links are between pregnancy and non-pregnancy codes. Nodes sizes are proportional to in-strengths
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with highest weights and the two non-pregnancy codes with highest weights. In Fig. 7, the
blue links are between pregnancy codes and the orange links are between pregnancy and
non-pregnancy codes. We used the φ network. to generate this graph. Highly-connected
nodes in this subnetwork are iron deficiency anemia and other types of anemias (Serjeant
et al. 2004; Pajor et al. 1993; Powars et al. 1986) and Cholelithiasis (Ács et al. 2009; Dixon
et al. 1987).

Example application: insight from coarse-grained networks

We now construct a coarse-grained picture of the disease network based on the standard
17 categories of the ICD9 coding scheme (World Health Organization 2004). The list of
the 17 categories are presented in Table 18, along with the number of 3-digit ICD9 codes
contained within each category, percentage of 3-digit ICD9 codes contained within each
category, number of diagnoses in the data set that pertain to diseases within each category,
and the percentage of such diagnoses.
The network properties of the 17-node coarse-grained networks are summarized in

Table 19, which presents the percentage of the total link weight that flows into and out of

Table 18 Partitioning the diseases into 17 categories according to the ICD9 codes to obtain a
coarse-grained characterization of the disease networks

Diseases in category #diseases %diseases # prevalence %prevalence

1 Infectious and parasitic
diseases

115 12.57 196992 3.02

2 Neoplasms 93 10.16 376196 5.76

3 Endocrine; nutritional and
metabolic diseases; and
immunity disorders

39 4.26 763009 11.68

4 Diseases of the blood and
blood-forming organs

10 1.09 222671 3.41

5 Mental disorders 30 3.28 308321 4.72

6 Diseases of the nervous
system and sense organs

67 7.32 489541 7.50

7 Diseases of the circulatory
system

59 6.45 1090435 16.70

8 Diseases of the respiratory
system

51 5.57 475937 7.29

9 Diseases of the digestive
system

49 5.36 494421 7.57

10 Diseases of the
genitourinary system

47 5.14 458440 7.02

11 Complications of
pregnancy; childbirth; and
the puerperium

49 5.36 436281 6.68

12 Diseases of the skin and
subcutaneous tissue

26 2.84 96032 1.47

13 Diseases of the
musculoskeletal system
and connective tissue

30 3.28 308908 4.73

14 Congenital anomalies 20 2.19 54916 0.84

15 Certain conditions
originating in the perinatal
period

20 2.19 114847 1.76

16 Symptoms; signs; and
ill-defined conditions

20 2.19 331657 5.08

17 Injury and poisoning 190 20.77 311892 4.78
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Table 19 The percentage of the total link strength of the constructed networks that flows into and
out of each of the 17 disease categories in the coarse-grained network

Raw OER phi DF IPFP GloSS Salience

sin sout sin sout sin sout sin sout sin sout sin sout sin sout

1 4.58 3.41 3.60 3.06 4.56 3.03 5.99 3.24 13.04 13.06 5.35 4.42 0.91 1.23

2 3.84 3.74 7.14 7.73 3.43 3.57 1.24 3.39 12.16 12.88 3.81 3.06 0.12 6.28

3 8.32 9.99 3.49 2.73 8.77 10.90 10.46 10.43 2.68 3.13 11.07 13.93 9.37 6.61

4 4.77 4.02 1.58 1.45 4.80 4.06 5.64 4.15 0.21 0.25 8.52 7.05 3.44 2.55

5 4.33 4.86 5.22 5.19 4.53 5.26 3.46 4.71 2.57 2.54 4.00 3.74 1.94 3.49

6 7.03 7.35 9.74 7.26 6.74 7.28 4.07 7.21 5.34 5.07 6.77 5.67 34.99 9.72

7 15.71 19.83 5.19 5.33 17.23 22.68 17.52 21.09 2.80 2.84 17.74 26.35 20.13 19.09

8 8.93 7.59 7.61 5.99 8.96 7.45 9.36 7.71 3.88 4.02 5.32 5.82 1.58 6.27

9 8.94 8.64 6.96 5.66 8.02 7.27 8.31 8.53 2.68 2.68 8.77 6.50 0.11 3.08

10 8.04 7.08 8.23 7.37 8.98 7.23 8.40 7.00 3.87 3.62 3.89 3.33 0.15 4.32

11 2.15 2.70 18.93 20.75 3.11 3.89 2.23 2.76 11.16 10.87 4.86 5.67 24.70 22.37

12 2.38 1.79 3.08 2.25 2.11 1.13 1.97 1.62 1.83 1.92 1.05 0.62 0.00 1.08

13 5.21 5.46 3.84 3.09 4.94 4.82 4.18 5.36 1.50 1.26 4.59 4.10 0.53 5.16

14 0.38 0.52 3.42 3.73 0.24 0.42 0.01 0.40 2.54 2.98 0.08 0.09 0.00 1.15

15 0.06 0.50 0.13 6.33 0.02 0.61 0.00 0.46 6.17 4.89 0.01 0.60 0.45 0.80

16 9.05 6.41 2.80 2.82 8.62 6.07 12.86 6.47 0.58 0.83 8.52 4.21 1.57 0.36

17 6.27 6.11 9.02 9.24 4.93 4.32 4.29 5.46 26.98 27.16 5.66 4.85 0.01 6.43

each category. Table 20 presents the percentages of the total link weight of the network
that falls within each disease category, that is, pertaining to links that connect two nodes
that both belong to the same disease category. In the raw network, the highest self-flow
belongs to category 7 (disease of the circulatory system), with almost 4% of the total link
weight contained inside it. In every method except OER and IPFP, a comparatively high
fraction of the total link weight of the network flows within category 7. This category
includes, most notably, hypertension, cardiovascular disease, and Ischemic heart disease.
The second highest self-flow in the raw network belongs to category 11 (complications

of pregnancy, childbirth, and the puerperium). The OER network changes some of the
self-flows markedly. In the OER network, category 11 has an outstandingly high self-flow.
Its self-flow is almost the same as the self-flow of every other category combined. So the
OER method assigns a high value to disease pairs that both belong to this category. The
IPFP method also assigns an outstandingly high self-flow to this category. So, controlling
for prevalence, diagnosis pairs that both belong to category 11 typically receive a high
weight in the IPFP network. The Salience method assigns the most outstanding self-flow
to category 11. In the Salience network, self-flow of category 11 exceeds the self-flows
of every other category combined. This means that these diseases are highly central in
the disease-disease trajectories, and the links between these diseases contribute to many
shortest paths between every disease pair in the whole network.
In Table 21, we present the rankings of the disease categories in terms of what fraction

of the total link weight of the network flows out of each category. Except for the IPFP
network, the highest out-strength of all networks either belongs to category 11 (com-
plications of pregnancy, childbirth, and the puerperium) or category 7 (disease of the
circulatory system). Moreover, category 3 (endocrine/nutritional/metabolic/immunity
disorders) is consistently high in out-strength across different networks.
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Table 20 The sum of link weight and the percentage of total link weight of the constructed
networks that fall within each of the 17 disease categories in the coarse-grained network

Raw OER phi DF IPFP GloSS Salience

# % # % # % # % # % # % # %

1 34090 0.15 618.04 0.32 21160 0.15 23938 0.17 12.57 4.43 11242 0.21 241 0.18

2 69986 0.31 3726.90 1.93 53246 0.37 37437 0.27 16.32 5.75 23076 0.43 160 0.12

3 185910 0.81 648.26 0.34 145060 1.02 144230 1.03 0.88 0.31 54953 1.03 1100 0.82

4 43323 0.19 162.69 0.08 36460 0.26 37168 0.27 0.04 0.01 35628 0.67 3401 2.55

5 99701 0.44 2224 1.15 92924 0.65 76019 0.55 2.06 0.73 30659 0.58 2134 1.60

6 137860 0.60 3875.10 2.01 95919 0.68 53263 0.38 3.07 1.08 27017 0.51 9392 7.04

7 912650 3.99 2361.10 1.22 799820 5.63 685470 4.91 2.52 0.89 334060 6.27 8869 6.65

8 211480 0.92 2336.60 1.21 187490 1.32 155850 1.12 2.29 0.81 31529 0.59 1333 1.00

9 209060 0.91 1886.30 0.98 142120 1.00 132560 0.95 1.18 0.41 35310 0.66 4 0.00

10 152520 0.67 2982.10 1.54 130710 0.92 105760 0.76 2.47 0.87 20531 0.39 188 0.14

11 305670 1.34 27842 14.41 298570 2.10 276890 1.99 25.06 8.83 229200 4.30 29844 22.37

12 13016 0.06 528.46 0.27 9548 0.07 5360 0.04 0.31 0.11 1457 0.03 0 0.00

13 90585 0.40 988.67 0.51 78006 0.55 54257 0.39 0.28 0.10 18361 0.34 304 0.23

14 3752 0.02 1233.40 0.64 2217 0.02 719 0.01 1.66 0.59 0 0.00 0 0.00

15 3743 0.02 106.01 0.05 296 0.00 455 0.00 10.34 3.64 730 0.01 607 0.45

16 131150 0.57 167.91 0.09 77885 0.55 118540 0.85 0 0.00 13734 0.26 0 0.00

17 111740 0.49 5702.60 2.95 57825 0.41 34586 0.25 47.94 16.89 15082 0.28 17 0.01

Example application: comorbidity with the neoplasm category

Many studies in the literature have demonstrated comorbidity patterns between differ-
ent neoplasms and various other diseases (Mazza and Mitchell 2017; van Baal et al. 2011;
Piccirillo et al. 2004; Piccirillo 2000; Fleming et al. 1999; West et al. 1996; Yancik et al.
1996). We can use the coarse-grained networks to investigate neoplasm-related comor-
bidity patterns. Since we are conditioning on neoplasm being the first diagnosed disease
in comorbidity pairs, we can use the DF network. In the coarse-grained DF network, the

Table 21 Ranking of disease categories in terms of out-strength in the constructed networks

Rank Raw OER phi DF IPFP GloSS Salience

1 7: 15.7% 11: 18.9% 7: 17.2% 7: 17.5% 17: 27.0% 7: 17.7% 11: 35.0%

2 3: 9.1% 17: 9.7% 3: 9.0% 3: 12.9% 1: 13.0% 3: 11.1% 7: 24.7%

3 9: 8.9% 2: 9.0% 8: 9.0% 9: 10.5% 2: 12.2% 4: 8.8% 6: 20.1%

4 8: 8.9% 10: 8.2% 6: 8.8% 8: 9.4% 11: 11.2% 9: 8.5% 3: 9.4%

5 6: 8.3% 6: 7.6% 9: 8.6% 6: 8.4% 6: 6.2% 8: 8.5% 17: 3.4%

6 10: 8.0% 15: 7.1% 10: 8.0% 10: 8.3% 15: 5.3% 11: 6.8% 2: 1.9%

7 16: 7.0% 8: 7.0% 16: 6.7% 16: 6.0% 8: 3.9% 6: 5.7% 8: 1.6%

8 17: 6.3% 9: 5.2% 5: 4.9% 17: 5.6% 10: 3.9% 17: 5.4% 13: 1.6%

9 13: 5.2% 7: 5.2% 13: 4.9% 13: 4.3% 3: 2.8% 1: 5.3% 10: 0.9%

10 5: 4.8% 5: 3.8% 17: 4.8% 5: 4.2% 14: 2.7% 16: 4.9% 5: 0.5%

11 4: 4.6% 14: 3.6% 4: 4.6% 4: 4.1% 7: 2.7% 13: 4.6% 9: 0.5%

12 2: 4.3% 13: 3.5% 11: 4.5% 2: 3.5% 9: 2.6% 5: 4.0% 4: 0.2%

13 1: 3.8% 1: 3.4% 2: 3.4% 1: 2.2% 5: 2.5% 10: 3.9% 1: 0.1%

14 11: 2.4% 16: 3.1% 1: 3.1% 11: 2.0% 12: 1.8% 2: 3.8% 14: 0.1%

15 12: 2.2% 3: 2.8% 12: 2.1% 12: 1.2% 13: 1.5% 12: 1.0% 12: 0.0%

16 14: 0.4% 12: 1.6% 15: 0.2% 15: 0.0% 16: 0.6% 15: 0.1% 15: 0.0%

17 15: 0.1% 4: 0.1% 14: 0.0% 14: 0.0% 4: 0.2% 14: 0.0% 16: 0.0%

Each pair has the form i : x%, where i is the disease category number, and x is the percentage of the total link weight of the
network that flows out of category i
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out-links with the highest weights emanated from the neoplasm category are those to
node 7 (diseases of the circulatory system, with 21% of the total link weight of the net-
work), and node 3 (endocrine/nutritional/metabolic/immunity disorders, with 10% of the
total link weight). Same is true for the OER and φ networks; the top two disease categories
that follow neoplasms are 7 and 3.

Conclusion and future work
In this paper we provided a brief summary of some of the main existing methods in
the network science literature that could be utilized to construct disease comorbidity
networks from longitudinal hospital data. We showed that these methods capture differ-
ent aspects of the comorbidity patterns, and one must note their properties and choose
them according to the structural feature of interest. We presented several examples of the
applications of these methods in studying different comorbidity relations, both for single
diseases and disease groups. Methodological work in this domain is inchoate, similar to
the field of network medicine itself. So there are many interesting unexplored problems
of practical significance. Below we highlight a few of such problems.
As discussed above, there are many cases in which a patient visits the hospital and mul-

tiple diseases are diagnosed and stored in the data set for the same visit. The temporal
direction of such links is lost. We chose to discard such links and refrained from intro-
ducing noise to the data set by counting them as bidirectional. An interesting problem
would be to infer the direction of these undirected links using edge recovery algorithms
(Martin et al. 2016) (not to be confused with link prediction, where the task is to pre-
dict the existence of empirically-absent links). which can also be done as a byproduct of
community-detection algorithms (Martin et al. 2016). One has to first devise an inference
method which is applicable to weighted directed graphs.
In the construction of the networks discussed in the text, we did not use the covariates,

such as age and gender. The interplay between such covariates and structure is worth
serious investigation. Manual investigation, such as separating the data for different sexes
(such as in Ref. Chmiel et al. (2014); Jensen et al. (2014)) does provide insight, yet a sys-
tematic and algorithmic approach would be an interesting research problem. For example,
it would be interesting to formulate the macro/meso properties of the comorbidity net-
work, and the local properties of individual diseases, as a function of age. This would be
an example of link metadata: a disease would be connected to another disease via mul-
tiple links whose metadata (age/sex) are different. In this case, unlike what we did in the
present paper, one must not aggregate all the link weights into a single weight. Though
methods that incorporate nodal metadata exists (for example, for community detection
(Newman and Clauset 2016; Peel et al. 2017)), we are not aware of a systematic inves-
tigation for link-based metadata. A simpler approach for the age variable would be to
divide the age variables into discrete categories to construct a multiplex network, where
each layer represents an age group. Then methods for multiplex network analysis can be
applied (e.g., those of community detection (De Bacco et al. 2017)).
Perhaps more important would be to investigate multi-morbidity patterns. This would

be the first step towards controlling for age. That is, if instead of comorbidity pairs, we
limit the analysis to sets of, say, four diseases, the analysis would differ. We would look
for the number of instances that the ordered set of diseases A − B − C − D have been
diagnosed in the dataset. This probably evinces a more meaningful connection between
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these diseases, as opposed to only considering pairs separately. In other words, if there
are many instances of A − B − C − D, this is probably more informative regarding the
linkages of these diseases as compared to observing many A − B and B − C and C − D
pairs separately. Considering longer chains in such a manner is more likely to capture
actual disease progression pathways, because it reduces the likelihood that, for example,
A simply happens to be a disease that disproportionately occurs in early ages, and D at
later ages.
Another interesting direction forward would be to incorporate death. One could add

death as a new disease. We would obviously have soutdeath = 0, but it would be instructive
to study the in-links and the position of death in the disease network. More particularly,
different diseases can be characterized as their distance to this reference node. The first
step towards incorporating death into the disease network would be to check the rela-
tive network distance of certain diseases, or disease categories, to the death node, which
characterizes how deadly those diseases or disease categories are. This also enables focus-
ing the analyses on diseases that tend to appear late, and to characterize their relation to
death, and to investigate if they have special properties in this regard.
In addition to death, a more complete analyses would require the addition of a ‘noise’

node, which would represent unknown causes. Because currently, when a disease is diag-
nosed without any predecessor, it receives no in-link. This limits the analytical power to
investigate the importance of unknown causes, which characterizes the likelihood that a
healthy person would enter the disease comorbidity network. In other words, the inflow
of the network (which represent new patients) all enter through this root node, whence
they flow throughout the rest of the network.
Finally, we remark upon the importance of distinguishing between the structural fea-

tures of acute and chronic diseases in the comorbidity patterns. The temporal profile of
comorbidity of diseaseA, ifA is a chronic disease, looks like: {A} → {A,B} → {A,B,C} →
. . ., because chronic diseases tend to persist, by definition. An alternative pattern could
be {A} → {A,B} → {A,C} → . . .. On the contrary, if A is an acute disease, then the tem-
poral pattern of comorbidities would look like {A} → {B} → {C} → . . .. These patters
presumably undergird different mechanisms of comorbidity, because there is a difference
between having a certain disease and having a history of it. Thus a worthwhile problem
to study would be the algorithmic characterization of the chronic-ness of diseases and
the persistence of their damages, based on their structural properties in the comorbidity
network.
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