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Abstract

Designing clinical trials to study treatments for rare diseases is challenging because of the
limited number of available patients. A suggested design is known as the small-n Sequential
Multiple Assignment Randomized Trial (snSMART), in which patients are first randomized to
one of multiple treatments (stage 1). Patients who respond to their initial treatment continue
the same treatment for another stage, while those who fail to respond are re-randomized to
one of the remaining treatments (stage 2). The data from both stages are used to compare the
efficacy between treatments. Analysis approaches for snSMARTs are limited, and we propose
a Bayesian approach that allows for borrowing of information across both stages. Through
simulation, we compare the bias, root mean-square error (rMSE), width and coverage rate
of 95% confidence/credible interval (CI) of estimators from of our approach to estimators
produced from (a) standard approaches that only use the data from stage 1, and (b) a log-
Poisson model using data from both stages whose parameters are estimated via generalized
estimating equations. We demonstrate the rMSE and width of 95% CIs of our estimators are
smaller than the other approaches in realistic settings, so that the collection and use of stage 2
data in snSMARTs provide improved inference for treatments of rare diseases.
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1 Introduction

The Orphan Drug Act defines rare diseases as disorders affecting fewer than 200,000 individuals in

the United States [1]. More than 8,000 recognized rare diseases affect almost 30 million individuals

and their families in the United States [2]. Identifying optimal treatment options for patients living

with rare diseases is challenging due to the low number of individuals affected. Randomized

clinical trials (RCTs) are generally regarded as providing the strongest scientific evidence for the

efficacy of a treatment. RCTs attempt to minimize bias and balance confounders across treatments

by employing randomization [3]. However, confirmatory RCTs often require a large number of

subjects, which is difficult to attain in rare disease trials. Thus, RCTs studying treatment for rare

diseases commonly have reduced power compared to studies of non-rare diseases. As a result,

rare disease trials are more likely to be single arm (63.0% vs. 29.6% for non-rare disease trials)

and non-randomized (64.5% vs. 36.1% for non-rare disease trials) [4]. Small sample trials of rare

diseases that are randomized and multi-arm are most likely crossover, n-of-1, or adaptive designs

[5].

There are disadvantages of the trial designs currently used in the rare disease landscape. For

example, single arm studies are employed when the objective of the trial is to obtain preliminary

evidence of the treatment efficacy and to collect additional safety data. As a result, single arm

trials are not generally used to confirm efficacy [6]. In a crossover study, all subjects receive all

experimental treatments. By design, each subject is their own control so that confounding and

between-subject variance is reduced, leading to the need of fewer subjects than a parallel design.

However, since all participants receive all candidate treatments by crossover, the treatments may

expose participants to additional toxicities than a standard RCT or switch participants from an

efficacious treatment to a non-efficacious treatment. These challenges have inspired the design of

alternative crossover trials so that recruitment might be enhanced by offering patients the ability to

switch treatment if they received no benefit from the first [7].

An n-of-1 trial is conducted in a single participant with multiple crossover treatment assign-
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ments. In an n-of-1 trial, a participant is their own control so that confounding is reduced and the

data can suggest which treatment produces a satisfactory outcome for the participant. However, an

n-of-1 trial usually requires multiple crossover treatment assignments to defend against the effect

of treatment across time, measurement error, and error from the participant’s condition differing

across time. The multiple crossover treatment assignments potentially prolong the duration of the

trial which may be burdensome for the participant and requires a well developed trial protocol to

keep the participant engaged.

Adaptive designs allow for design parameters, such as the sample size, randomization fraction,

population recruited, or doses, to be altered during the trial after interim data evaluation [6]. The

adaptiveness may reduce the number of subjects recruited to inferior treatment, increase efficiency,

improve recruitment and take advantage of accumulating data to enable early stopping of the trial.

Alternatively, an adaptive trial is often more complex to design and analyze than other standard

clinical trial designs and is susceptible to bias due to temporal drift in participant characteristics.

Although the designs described above may be useful to study treatments in rare diseases, many

have called for more innovative trial designs [5]. An example of such a design was proposed

by Honkanen, et al [8]. This design consists of an initial randomized placebo-controlled stage, a

randomized withdrawal stage for subjects who responded, and a third randomized stage for placebo

non-responders who subsequently respond to treatment. As an alternative way for re-randomizing

subjects, we propose design and methodological improvements for a small n sequential multiple

assignment randomized trial, the snSMART [9].

An snSMART is an application of a SMART design [10, 11, 12] in small samples (e.g., rare

diseases). In SMARTs, and hence snSMARTs, patients may be sequentially randomized to treat-

ments where second-stage treatment depends on response to first-stage treatment. For example,

in the ARAMIS trial, a two-stage snSMART design to compare three active treatments (Figure

1), patients are randomized equally to one of the treatment arms and followed for six months.

The responders continue the same treatment for another six months, while the non-responders are
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re-randomized to one of the remaining treatments for an additional six months. The outcome of

interest is a binary indicator of response to treatment as defined by a combination of participant

and physician measures.

Although SMARTs and snSMARTs have similar designs, we have differentiated their names

because each has a distinctly different inferential goal. In a SMART, often the goal is to identify

effective treatment sequences or dynamic treatment regimens that define a personalized treatment

guideline for each patient that consists of a first stage treatment followed by a second stage treat-

ment [13, 14]. In contrast, the goal of an snSMART here is in finding one superior treatment

among several that would be used by itself to treat patients. Thus, in this manuscript, we are not

interested in identifying dynamic treatment regimens within an snSMART.

We also highlight that some existing designs allow for absorbing endpoints, at which point

all patients are assigned to a different treatment [7, 15]. In contrast, SMARTs and snSMARTs

typically do not deal with absorbing endpoints because a treatment is assigned at each stage se-

quentially depending on the observed outcome of response at the end of current treatment stage in

SMARTs and snSMARTs.

Compared to a traditional multi-stage design, such as a crossover design, the snSMART is

attractive because it allows participants who have a satisfactory outcome from their treatment to

continue to receive that treatment and who do not have a satisfactory outcome from the treatment

to switch to another treatment. Hence, an snSMART design may help to improve participant

recuitment and retention. However, analytic methods for an snSMART are not fully established,

so that the efficiency gains of an snSMART design compared to other designs in rare disease

research have not yet been confirmed.

Our methods are motivated by the snSMART ARAMIS (A RAndomized Multi-center study

for Isolated Skin vasculitis trial), the design of which mimics the SMART design in metastatic

renal cancer [16, 17]. ARAMIS (NCT02939573) is a multi-national trial to evaluate different

treatment options for patients with skin vasculitis. Vasculitides are uncommon diseases which can
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affect almost any organ, although vasculitis frequently involves the skin as an isolated process

or as part of systemic vasculitis. Without high quality studies to guide the management of skin

vasculitis, treatment decisions are made based on anecdotal experience and expert opinions. This

uncertainty is reflected in variation between providers, leading to patients being treated with agents

of uncertain efficacy and unknown relative merit. ARAMIS compares the efficacy of three of

the most commonly used treatments for the treatment of skin vasculitis: colchicine, dapsone and

azathioprine (Figure 1). Eligible patients are randomized with equal chance of receiving one of

the three treatments under investigation for six months. Those who do not respond after the first

stage (i.e., six months) are re-randomized equally between the other two treatments. Responders

in stage 1 remain on their treatment in stage 2. The outcome of interest is response to treatment at

six months as defined by a combination of participant and physician measures.

In Section 2, we present a method to analyze data from an snSMART by sharing information

across stages to evaluate the efficacy of each single treatment. The efficacy of a treatment is defined

as the response rate at 6 months after initiating that treatment. In Section 3, we present simulation

studies to illustrate our model’s properties under various scenarios. Our manuscript concludes with

a discussion in Section 4.

2 Method

The outcome of interest after each stage is a dicotomized variable, where 1 denotes response and

0 denotes non-response to the assigned treatment. We propose a Bayesian approach that borrows

information across both stages to estimate the individual response rate of each treatment. The

individual response rate we are interested in is a permanent feature of treatment similar to the

treatment effect in a large parallel group trial. We model the first stage outcome as the probability of

having a response to the first stage treatment. The second stage outcome is modeled conditionally

on the first stage outcome linking the first and second stage response probabilities through linkage

parameters.
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We compare the estimator of the response rate using the proposed method to estimators pro-

duced from three other methods: (a) a log-Poisson model using data from both stages whose pa-

rameters are estimated via generalized estimating equations (GEE), (b) a Bayesian method using

only the first stage data, and (c) a maximum likelihood method (MLE) using only the first stage

data. The details of our proposed model and the log-Poisson model will be discussed next and

simulation results for the comparison of estimators produced from the four methods will be shown

in the Section 3.

2.1 Bayesian Joint Stage Modeling

For each subject i = 1, . . . ,N, stage j = 1,2, and treatment k = A,B, . . . K, where N denotes the

total sample size and K denotes the number of arms, let Yi jk denote the observed response outcome.

We model the first stage outcome and the second stage outcome given the first stage outcome each

as a Bernoulli random variable. The first stage response rate is denoted as πk for treatment k.

The second stage response rate for first stage responders is equal to β1πk. For non-responders to

treatment k in the first stage who receive treatment k′ in the second stage, the second stage response

rate in the second stage is equal to β0πk′. In practice, we assume: (i) The linkage parameters

(β0,β1) do not depend on the initial treatment k. (ii) The linkage parameter for non-responders is

smaller than 1, i.e., β0 < 1. (iii) The linkage parameter for responders is greater than 1, i.e, β1 > 1.

Via simulation, we examine the violations of the assumptions in section 3.

Our proposed Bayesian joint stage model (BJSM) is as follows:

Yi1k|πk ∼ Bernoulli(πk)

Yi2k′|Yi1k,πk ∼ Bernoulli((β1πk)
Yi1k(β0πk′)

1−Yi1k)

Prior distributions on the first stage response rates and the linkage parameters are used to in-

corporate physician beliefs about the treatments. For the ARAMIS trial, we specify priors for

the parameters involved in the model: πk ∼ Beta(ζk,ηk), β0 ∼ Beta(ζ0,η0), β1 ∼ Pareto(1,φ).

For πk, we have chosen to use the hyperparameter values ζk = 0.4 and ηk = 1.6 for two reasons.
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First, these parameters lead to a prior mean of ζk/(ζk +ηk) = 0.2 for each of the arms, which was

a reasonable a priori setting for the ARAMIS study. Second, the sum of the two parameters of

a Beta distribution can be viewed as a prior sample size because the prior variance is inversely

proportional to that sum. Thus, we assume our prior information is based upon a sample size of

ζk+ηk = 2 patients. For β0, we have chosen hyperparameter values ζ0 = 1 and η0 = 1, which lead

to a uniform distribution over the interval [0,1]. For β1, we have assumed a hyperparameter value

of φ = 3, so that, on average, the second stage response rate is φ/(φ −1) = 1.5 times as large as

the first stage response rate.

2.2 Log-Poisson Joint Stage Modeling

The log-Poisson joint stage model, which we refer to LPJSM, is a frequentist way of modeling

data from two stages, where we use a log link to model the mean and the Poisson family to model

the variance of the outcome. We model the the log of each response rate instead of the logit of

each response rate mainly for interpretability. The model is as follows:

log(E(Yi1k)) = log(µi1k) = αA1{k = A}+αB1{k = B}+αC1{k =C} (1)

log(E(Yi2k′)) = log(µi2k′) = αA1{k′= A}+αB1{k′= B}+αC1{k′=C}+ γ1Yi1k + γ0(1−Yi1k)

(2)

where 1{·} is an indicator function. The response rates, πk, and the linkage parameters β1 and β0

from the BJSM are equivalent to the exponentiated values of αk, γ1 and γ0, respectively.

We estimate the parameters via GEE [18]:

N

∑
i=1

∂µT
i

∂θ
V −1

i (Yi−µi) = 0, (3)

where Yi = (Yi1k,Yi2k′)
T , µi = (µi1k; µi2k′)

T , θ is the parameter vector with θ = (αA,αB,αC,

γ1,γ0)
T ; Vi is the working covariance matrix of Yi with Vi =A

1/2
i R(α)A

1/2
i [19], where A1/2

i is

a diagonal matrix with elements being the square root of Var(Yi jk), the variance of the outcome of

the ith patient at the jth stage under treatment k. The variance of the outcome of the ith patient at the
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jth stage is modeled with a Poisson family variance structure, Var(Yi jk) = µi jk. We use the Poisson

family variance structure to construct Vi in equation (3) to find the estimator of θ as opposed to the

binomial family variance structure, because others have reported that estimation sometimes fails

to converge when attempting to fit log-binomial models with a small sample size [20]. In addition,

we use an independence working correlation structure R(α) = I2×2 in the estimating equation

because the independence working correlation structure is recommended when binary responses

have less than binomial variation over clusters [21].

In estimating the variance of θ̂, we use the robust ‘sandwich’ covariance estimator, Σ−1
0 Σ1Σ

−1
0 ,

where Σ0 = ∑
N
i=1

∂µT
i

∂θ V
−1

i
∂µT

i
∂θ and Σ1 = ∑

N
i=1

∂µT
i

∂θ V
−1

i (Yi−µi)(Yi−µi)
TV −1

i
∂µT

i
∂θ . We use the

binomial family variance structure, Var(Yi jk) = µi jk(1−µi jk), to construct Vi in Σ0 and Σ1 to es-

timate variance of θ̂, because the ‘sandwich’ estimator is consistent, when Vi is correctly specified

and even ifR(α) misspecified [22].

3 Simulations

We set up the scenarios for our simulation studies in two subsections: simulations when the as-

sumptions for BJSM are satisfied and simulations when our assumptions are violated. We compare

the bias, root mean-square error (rMSE), coverage rate and width of the 95% credible/confidence

interval (CI) of the estimated parameters. When the BJSM assumptions are true, we compare

the estimators from our proposed method (BJSM) to estimators produced from other three meth-

ods: the log-Poisson joint stage model (LPJSM), described in Section 2.2, Bayesian first stage

model (BFSM), and a first stage maximum likelihood estimates (FSMLE). For both the BFSM and

FSMLE, we only use the first stage data for estimation and for the BFSM, we assume the same

prior distribution for πk as the BJSM. When assumptions are violated, we compare the BJSM to an

extension with multiple linkage parameters (BJSMM), and the LPJSM. The BJSMM is the same

as that of the BJSM except that we allow the linkage parameters to depend on the initial treatment,

i.e., β0 is now replaced by β0k and β1 is now replaced by β1k. We use exactly the same values
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for the hyperparameters as the BJSM for the prior densities of the BJSMM so that we allow for

estimating β0k and β1k values that differ among different treatments k, but we give each the same

prior distribution.

Bias is defined as the average of the differences between the true value of πk and the estimated

πk in all simulations. The rMSE is calculated by taking the square root of the mean-square error

of the estimators in all simulations. The simulated coverage rate is the frequency that the true

value of the response paramter falls in the 95% CI for all simulations. The 95% CIs for the

BJSM, BFSM and BJSMM are the highest posterior density (HPD) credible intervals, which is

the narrowest interval that covers the 95% of the posterior distribution of πk. The 95% CIs for the

LPJSM and FSMLE are derived based on the asymptotic normality of the estimator of πk in these

two methods, and calculated by the estimator plus or minus 1.96 times of the standard error of the

estimator. The parameters are estimated via the R function jags and gee in the R package rjags

and gee respectively. The computer programs used to derive estimates and CIs are available upon

request from the primary author.

3.1 Simulation Scenarios

We simulate 2000 realizations per scenario; each scenario is a three-arm snSMART. The true val-

ues of the response rates in each arm and the linkage parameters in each stage vary in different

scenarios; details are presented in Table 1. We focus on simulation results where the total snS-

MART sample size is 90 (30 patients per treatment), but we provide results for total sample sizes

of 45 and 180 in Section 6.

Scenarios 1, 2 and 3 represent three ideal settings. In these scenarios, the linkage parameters

for non-responders and for responders are the same for all three treatments, which means the

model specification is the same as the data generating process. In scenarios 4 to 12 we vary the

values of the linkage parameters to investigate model properties when assumptions are violated

(the assumptions are enumerated in Section 2.1). Assumption (i) is violated in scenarios 4-7 and
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10-12. Assumption (ii) is violated in scenarios 8, 10 and 12 and assumption (iii) is violated in

scenarios 9, 11 and 12.

3.2 Simulation Results When the BJSM Assumptions are True

For scenarios 1, 2 and 3, the bias and rMSE for estimators of the response rates are shown in Ta-

ble 2. The response rate estimators of the BJSM have the smallest rMSEs among all four methods.

The rMSEs of the estimators from the BJSM and LPJSM are smaller than the rMSEs provided by

the BFSM and FSMLE, which only use data from the first stage. In scenario 2, the BJSM provides

the estimators with smallest bias compared to other three methods. In scenarios 1 and 3, the bias

of the estimators for the BJSM is still small but slightly higher than the bias for the other three

methods. This may be because the prior mean for the linkage parameter for non-responders is 0.5

which is closer to 0.6, the setting in scenario 2, than 0.8, the setting in scenarios 1 and 3. These

observations suggest that, in settings where the assumptions are satisfied, jointly modeling data

from two stages provides improved estimators for treatment due to smaller rMSEs. In particular,

the biggest gain in rMSE is given by the BJSM which also produces small to negligible bias. Ta-

ble 3 presents the 95% CI width and coverage rates. Here we see the average width of the 95% CI

of the BJSM is smaller than the other approaches and the coverage rate is around the target 95%.

3.3 Simulation Results When the BJSM Assumptions are Violated

Simulation results when the assumptions for the BJSM are violated are shown in Tables 4 and 5.

When only assumption (i) is violated (scenarios 4-7), we see that the bias for the response rate

estimators is small for all three methods. The estimators of the BJSMM has the smallest bias

in scenario 4-6 and BJSM has the smallest bias in scenario 7. The estimators of the BJSM and

BJSMM have smaller rMSEs than the LPJSM approach. When only assumption (ii) is violated, as

in scenario 8, we see that the response rates are overestimated for all treatment arms by the BJSM

and BJSMM. The response rates are overestimated to balance the effect of the underestimated β0

on the stage 2 response rates of non-responders. The bias for the estimators is higher for BJSM
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and BJSMM but still small. The estimators from the LPJSM have the smallest bias and rMSEs.

When only assumption (iii) is violated as in scenario 9, the response rates are underestimated for

all arms by the BJSM and BJSMM. The response rates are underestimated to balance the effect of

the overestimated β1 on the stage 2 response rates of responders. The estimators from the LPJSM

have smallest bias but the rMSEs are higher compared with those from the BJSM and BJSMM.

When more than one assumption is violated (scenarios 10-12), the bias for the estimators of

the response rates is lower in scenario 11, where assumption (i) holds and assumptions (ii) and

(iii) are violated. This finding occurs because when assumption (ii) is violated, the BJSM and

BJSMM tend to overestimate the response rates, and when assumption (iii) is violated, the BJSM

and BJSMM tend to underestimate the response rates. and when both assumptions (ii) and (iii) are

violated, two errors cancel each other. The BJSM and BJSMM have smaller rMSEs in all three

scenarios.

In general, when the assumptions are violated, the response rate estimators of the BJSM have

smaller bias and rMSEs than the LPJSM in most of the settings, and smaller rMSEs than the

standard approaches that only use the data in stage 1. When multiple linkage parameters are

considered in the BJSMM, we do not see a large reduction of bias or rMSEs.

In Table 5, we can see the average width of the 95% CI of the BJSM is smaller than the other

approaches. When only assumption (i) is violated (scenarios 4-7), the coverage rates of 95% CIs

for treatments B and C are around the target 95%. The coverage rate is readily below the target for

all three approaches in scenarios 4 and 6. When only assumption (ii) (scenario 8) or assumption

(iii) is violated (scenario 9), the coverage rate for the treatment C is below the target. This can be

explained by the larger bias in the response rate estimator for treatment C in scenarios 8 and 9. In

scenario 10, (when assumption (i) and (ii) are violated), and Scenario 12, when all the assumptions

are violated, the coverage rates of 95% CIs are below the target 95% for treatment A and C because

the response rate estimators have higher bias compared to the estimators of the treatment B. When

assumptions (ii) and (iii) are violated at the same time, the coverage rates are greater than the

11

This article is protected by copyright. All rights reserved.



target 95% for the BJSM and BJSMM and below the target 95% for the LPJSM. Similar trends

were observed for sample sizes of n=45 and 180; details are given in Table ??-?? in the Section 6.

4 Discussion

In this manuscript, we present a Bayesian method (BJSM) to estimate the response rates of mul-

tiple treatments from snSMART with two stages. The BJSM is a novel method that links the

response rates from two stages of one clinical trial via linkage parameters. The BJSM provides

accurate estimators and straight forward clinical interpretations for the parameters. We compared

the proposed method to three other methods via simulation and found that the BJSM provides the

most accurate estimators among all four methods in small samples.

The BJSM relies on three key assumptions as outlined in Section 2.1. These assumptions

simplify our model and make our model easier to interpret. However, there might be situations

where the assumptions are violated. Simulation results suggest that the BJSM is able to estimate

treatment arm response rates with small sample sizes even when the linkage parameters actually

vary among the treatment arms. Nonetheless, further research is certainly warranted to determine

the sample size at which moving from a BJSM to a BJSMM might be warranted.

Assumptions (ii) and (iii) in Section 2.1 that constrain the values of the linkage parameters

generally hold when the response rates are similar and low (i.e., less than 50%) for all treatments

in the trial. For many rare diseases, these assumptions are realistic and, thus, violations generally

do not pose problems. If the assumptions are violated, the BJSM provides more biased estimates

than the LPJSM, but is more efficient. Sensitivity analyses using the LPJSM can always be done

to compare results for the two methods.

A limitation that develops from our assumptions and corresponding priors is that the posterior

distributions of β1 and πk can have positive probability for β1πk > 1. In reality, we can not have a

response rate greater than 1, but our models allow for this. To circumvent this potential problem we

considered a power model formulation of the BJSM. In the power model formulation, the second
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stage response rates are defined as π
β0

k′
and π

β1
k for non-responders and responders, respectively.

This allows β0 and β1 to vary on the positive real line. Ultimately, we decided against the power

formulation as the linkage parameters are not clinically interpretable and our simulations for the

proposed version of BJSM did not draw any samples such that β1πk > 1, making it unlikely for

this limitation to be a problem in practice in similar settings.

For ARAMIS, the binary six-month response is based on an objective measure (number of

new lesions) that is further combined with two subjective measures, one from the physician and

one from the patient. Thus, it seemed reasonable to collapse this complex set of outcomes into

a single binary outcome of response. If ARAMIS had instead had a single objective, continuous

measure of efficacy, analysis of a dichotomized endpoint would have been unwise, due to the

loss of information that dichotomization creates. We also emphasize that ARAMIS assumes no

carry-over effects and no period effects. If carry-over effects and/or period effects exist in other

applications, our proposed model would need to be modified.

Future work includes extending the BJSM to non-binary outcomes (i.e. continuous and survival

outcomes) and establishing sample size calculations based on the analysis of snSMARTs using the

BJSM. We aim to develop sample size calculations and an easy-to-use corresponding applet that

can target specific differences between treatment arms. The sample size calculations will lead us

to consider alternative designs of snSMARTs where more than three treatments are involved or

there is an imbalance in second-stage randomization. We are also working on another manuscript

in which we extend our Bayesian joint stage model to estimate the treatment effects of dynamic

treatment regimens.
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6 Supplementary Materials

Simulation results for sample sizes of 45 and 180 (15 and 60 per arm) are in Table 6-13.
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Table 1: Simulation scenarios. πk is the response rate at six months for the treatment k = A,B,C.
β0k is the linkage parameter for the first stage non-responders treated with treatment k. β1k is the
linkage parameter for the first stage responders treated with treatment k. The linkage parameters
link the second stage response rates with the first stage response rate in our proposed model. The
three assumptions are: (i) The linkage parameters do not depend on the initial treatment k, i.e.,
β1k = β1 and β0k = β0. (ii) The linkage parameter for non-responders is smaller than 1, i.e.,
β0 < 1. (iii) The linkage parameter for responders is greater than 1, i.e, β1 > 1.

Scenarios πA πB πC β0A β0B β0C β1A β1B β1C Assumptions Violated

1 0.3 0.3 0.3 0.8 0.8 0.8 1.5 1.5 1.5 none

2 0.2 0.3 0.4 0.6 0.6 0.6 1.5 1.5 1.5 none

3 0.2 0.3 0.4 0.8 0.8 0.8 1.5 1.5 1.5 none

4 0.2 0.3 0.4 0.3 0.6 0.9 1.5 1.5 1.5 (i)

5 0.2 0.3 0.4 0.6 0.6 0.6 1.2 1.5 1.8 (i)

6 0.2 0.3 0.4 0.3 0.6 0.9 1.2 1.5 1.8 (i)

7 0.2 0.3 0.4 0.9 0.6 0.3 1.2 1.5 1.8 (i)

8 0.2 0.3 0.4 1.2 1.2 1.2 1.5 1.5 1.5 (ii)

9 0.2 0.3 0.4 0.6 0.6 0.6 0.8 0.8 0.8 (iii)

10 0.2 0.3 0.4 0.3 0.6 1.2 1.2 1.5 1.8 (i), (ii)

11 0.2 0.3 0.4 1.2 1.2 1.2 0.8 0.8 0.8 (ii), (iii)

12 0.2 0.3 0.4 0.3 0.6 1.2 0.8 1.5 1.8 (i), (ii), (iii)
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Table 2: Simulated bias and root mean-square error (rMSE) for the estimators of πk where the
BJSM assumptions are satisfied. Four modeling approaches: Bayesian joint stage modeling
(BJSM), log-Poisson joint stage modeling (LPJSM), Bayesian first stage modeling (BFSM) and
first stage maximum likelihood estimation (FSMLE) are compared. The sample size per treatment
arm is 30. πk is the response rate at six months for treatment k, k = A,B,C.

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

1 πA 0.008 0.062 -0.001 0.069 -0.008 0.079 -0.002 0.084
πB 0.008 0.062 0.002 0.069 -0.006 0.078 0.001 0.083
πC 0.008 0.061 -0.002 0.068 -0.008 0.078 -0.001 0.083

2 πA -0.001 0.056 -0.001 0.059 -0.002 0.069 -0.002 0.074
πB 0.001 0.063 0.000 0.070 -0.006 0.078 0.001 0.083
πC 0.000 0.067 0.002 0.077 -0.014 0.085 -0.002 0.089

3 πA 0.005 0.056 -0.001 0.057 -0.002 0.069 -0.002 0.074
πB 0.008 0.062 0.000 0.069 -0.006 0.078 0.001 0.083
πC 0.011 0.064 0.002 0.076 -0.014 0.085 -0.002 0.089

Table 3: Simulated width and coverage of 95% CI for the estimators of πk where the BJSM assump-
tions are satisfied. Four modeling approaches: Bayesian joint stage modeling (BJSM), log-Poisson
joint stage modeling (LPJSM), Bayesian first stage modeling (BFSM) and first stage maximum
likelihood estimation (FSMLE) are compared. The sample size per treatment arm is 30. πk is the
true response rate at six months for the treatment k, k = A,B,C. CR=Coverage Rate.

BJSM LPJSM BFSM FSMLE

Scenario Width CR Width CR Width CR Width CR

1 πA 0.240 0.944 0.265 0.931 0.299 0.903 0.321 0.950
πB 0.240 0.948 0.266 0.936 0.300 0.908 0.322 0.949
πC 0.240 0.944 0.265 0.934 0.299 0.908 0.321 0.950

2 πA 0.213 0.929 0.228 0.932 0.256 0.945 0.277 0.945
πB 0.245 0.940 0.269 0.936 0.300 0.908 0.322 0.949
πC 0.265 0.948 0.305 0.937 0.323 0.930 0.344 0.930

3 πA 0.210 0.936 0.222 0.936 0.256 0.945 0.277 0.945
πB 0.240 0.942 0.263 0.936 0.300 0.908 0.322 0.949
πC 0.258 0.956 0.300 0.937 0.323 0.930 0.344 0.930
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Table 4: Simulated bias and root mean-square error (rMSE) for the estimators of πk when assump-
tions are violated. Three modeling approaches: Bayesian joint stage modeling (BJSM), Bayesian
joint stage modeling with multiple linkage parameters (BJSMM), and log-Poisson joint stage mod-
eling (LPJSM) are compared. The sample size per treatment arm is 30. πk is the response rate at
six months for treatment k, k = A,B,C.

BJSM BJSMM LPJSM

Scenario Bias rMSE Bias rMSE Bias rMSE

4 πA -0.024 0.060 -0.021 0.059 -0.029 0.064
πB -0.004 0.063 -0.001 0.062 -0.007 0.070
πC 0.027 0.068 0.032 0.071 0.037 0.086

5 πA -0.010 0.054 -0.005 0.055 -0.011 0.056
πB -0.003 0.062 0.003 0.063 -0.005 0.068
πC 0.022 0.072 0.017 0.070 0.017 0.080

6 πA -0.033 0.061 -0.027 0.060 -0.038 0.066
πB -0.008 0.062 0.000 0.062 -0.012 0.069
πC 0.048 0.080 0.048 0.081 0.050 0.093

7 πA 0.014 0.055 0.017 0.058 0.017 0.059
πB 0.001 0.062 0.007 0.063 0.001 0.069
πC -0.004 0.073 -0.013 0.073 -0.018 0.080

8 πA 0.023 0.060 0.029 0.063 -0.001 0.054
πB 0.036 0.069 0.042 0.073 0.000 0.065
πC 0.047 0.076 0.054 0.081 0.001 0.073

9 πA -0.015 0.054 -0.016 0.054 -0.001 0.061
πB -0.029 0.064 -0.030 0.063 0.000 0.073
πC -0.047 0.075 -0.047 0.075 0.002 0.081

10 πA -0.038 0.063 -0.030 0.060 -0.045 0.069
πB -0.015 0.063 -0.005 0.062 -0.024 0.070
πC 0.073 0.095 0.078 0.099 0.071 0.105

11 πA 0.011 0.053 0.014 0.054 0.000 0.056
πB 0.010 0.055 0.013 0.056 0.000 0.067
πC 0.006 0.055 0.010 0.055 0.001 0.076

12 πA -0.047 0.066 -0.039 0.063 -0.053 0.073
πB -0.014 0.063 -0.005 0.062 -0.022 0.070
πC 0.075 0.097 0.078 0.099 0.076 0.109
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Table 5: Simulated width and coverage of 95% CI for the estimators of πk when assumptions
are violated. Three modeling approaches: Bayesian joint stage modeling (BJSM), Bayesian joint
stage modeling with multiple linkage parameters (BJSMM), and log-Poisson joint stage modeling
(LPJSM) are compared. The sample size per treatment arm is 30. πk is the true response rate at six
months for the treatment k, k = A,B,C. CR=Coverage Rate.

BJSM BJSMM LPJSM

Scenario Width CR Width CR Width CR

4 πA 0.200 0.868 0.206 0.890 0.220 0.854
πB 0.240 0.933 0.247 0.948 0.266 0.929
πC 0.262 0.950 0.264 0.938 0.303 0.931

5 πA 0.208 0.932 0.213 0.936 0.215 0.915
πB 0.243 0.942 0.250 0.950 0.262 0.930
πC 0.270 0.942 0.278 0.951 0.311 0.942

6 πA 0.194 0.854 0.203 0.880 0.207 0.824
πB 0.238 0.936 0.248 0.946 0.259 0.923
πC 0.266 0.912 0.271 0.912 0.310 0.917

7 πA 0.220 0.957 0.223 0.949 0.222 0.948
πB 0.247 0.948 0.253 0.950 0.264 0.936
πC 0.272 0.928 0.284 0.935 0.313 0.930

8 πA 0.211 0.926 0.219 0.927 0.210 0.930
πB 0.235 0.922 0.245 0.922 0.252 0.938
πC 0.246 0.899 0.255 0.882 0.291 0.944

9 πA 0.206 0.926 0.207 0.933 0.238 0.934
πB 0.235 0.916 0.236 0.918 0.282 0.927
πC 0.250 0.892 0.251 0.900 0.316 0.932

10 πA 0.188 0.834 0.199 0.868 0.202 0.787
πB 0.232 0.922 0.244 0.942 0.255 0.902
πC 0.260 0.825 0.264 0.811 0.308 0.876

11 πA 0.207 0.949 0.212 0.950 0.217 0.928
πB 0.230 0.960 0.235 0.968 0.260 0.932
πC 0.238 0.972 0.243 0.974 0.298 0.944

12 πA 0.183 0.792 0.194 0.838 0.192 0.735
πB 0.232 0.925 0.244 0.942 0.258 0.907
πC 0.259 0.814 0.264 0.810 0.312 0.863
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