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Abstract

Biallelic PDE6C mutations are a known cause for rod monochromacy, better known as autoso-
mal recessive achromatopsia (ACHM), and early-onset cone photoreceptor dysfunction. PDE6C
encodes the catalytic @’-subunit of the cone photoreceptor phosphodiesterase, thereby consti-
tuting an essential part of the phototransduction cascade. Here, we present the results of a study
comprising 176 genetically preselected patients who remained unsolved after Sanger sequencing
of the most frequent genes accounting for ACHM, and were subsequently screened for exonic and
splice site variants in PDE6C applying a targeted next generation sequencing approach. We were
able to identify potentially pathogenic biallelic variants in 15 index cases. The mutation spectrum
comprises 18 different alleles, 15 of which are novel. Our study significantly contributes to the
mutation spectrum of PDE6C and allows for a realistic estimate of the prevalence of PDE6C muta-
tions in ACHM since our entire ACHM cohort comprises 1,074 independent families.
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Achromatopsia (ACHM; ACHM2 MIM# 216900, ACHM3 MIM#
262300, ACHM4 MIM# 613856, ACHM5 MIM# 613093, ACHM6
MIM# 610024, and ACHM7 MIM# 616517) is a rare autosomal reces-
sive cone disorder characterized by color vision defects, photophobia,
nystagmus, and severely reduced visual acuity. To date, six genes have
been linked to ACHM. In the Western population, approximately 80%
of the patients carry mutations in the genes CNGA3 (MIM# 600053;
Kohl et al,, 1998) and CNGB3 (MIM# 605080; Kohl et al., 2000; Sundin
et al., 2000) encoding the two subunits of the cone photoreceptor
cyclic nucleotide-gated channel. Much less frequently, causative muta-
tions have been found in genes encoding other crucial components of
the cone phototransduction cascade, namely GNAT2 (MIM# 139340;
Aligianis et al., 2002; Kohl et al., 2002), PDE6C (MIM# 600827; Chang
et al., 2009; Thiadens et al., 2009), and PDE6H (MIM# 601190; Kohl
et al., 2012), or in ATF6 (MIM# 605537; Kohl et al., 2015), which is not
involved in the phototransduction cascade, but in the unfolded pro-
tein response pathway. Larger case series or genetic screens of ACHM-
associated genes are sparse (Kohl et al., 2005; Mayer et al., 2017;
Nishiguchi, Sandberg, Gorji, Berson, & Dryja, 2005; Wissinger et al.,
2001; Zelinger et al., 2015), therefore we lack a comprehensive view
of the prevalence especially of the minor disease genes in ACHM.

In the present study, 176 patients diagnosed with ACHM who
remained unsolved after Sanger sequencing of the most frequent
genes accounting for ACHM, namely CNGB3, CNGA3, and GNAT2, were
screened for exonic and splice site variants in the PDE6C gene. Samples
from all patients and family members were recruited in accordance
with the principles of the Declaration of Helsinki and were obtained
with written informed consent accompanying the patients’ samples.
The study was approved by the institutional review board of the Ethics
Committee of the University Hospital of Tuebingen.

While two patients were screened using a custom capture panel
targeting 105 retinal disease genes including PDESC (Glockle et al.,
2014), the others were analyzed by means of an amplicon-based
next generation sequencing approach. Briefly, target enrichment
of coding sequences including exon-intron boundaries of PDE6C
(Supporting Information, Table S1) was performed with Fluidigm, CA,
USA 48.48 Access Arrays. Library capture was completed using the
Nextera XT DNA Library Prep Kit and sequencing was performed
on a MiSeq instrument at a core facility (c.ATG, Tubingen, Germany,
CA, USA). Sequence data were aligned using the Burrows-Wheeler
Aligner (Li & Durbin, 2009), and variants were called using an in-house
bioinformatic pipeline. Only nonsynonymous single nucleotide vari-
ants, nonsense variants, splice site (+10 bps) variants, insertions,
duplications, and deletions represented by more than 20 sequence
reads were considered for further analysis. In addition, variants with
a minor allele frequency (MAF) >1% in the Genome Aggregation
Database (gnomAD) Version r2.0.2 were excluded from further
investigation. The potential pathogenicity of missense changes was
assessed using five online prediction software tools, namely SIFT
(https://sift.jcvi.org/; Kumar, Henikoff, & Ng, 2009), PolyPhen-2
(https://genetics.bwh.harvard.edu/pph2/; Adzhubei et al, 2010),
Mutation Taster (https://www.mutationtaster.org/; Schwarz, Cooper,
Schuelke, & Seelow, 2014), Mutation Assessor (https:/mutation
assessor.org/r3/; Reva, Antipin, & Sander, 2011), and Provean
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(https://provean.jcvi.org; Choi & Chan, 2015). Prediction outcomes are
given in Supporting Information, Table S2. The variant designation is
based on the NCBI reference sequence for PDE6C (NC_000010.11,
NM_006204.3; GRCh38) comprising 22 coding exons. We were able
to identify potentially pathogenic biallelic variants in 15 index cases,
thereby achieving a detection rate of 8.5%. All putative disease-
associated variants in the PDE6C gene were validated and tested for
segregation with the phenotype in available family members by con-
ventional Sanger sequencing. The variants were seen in true homozy-
gous state in two patients and in apparent homozygous state in seven
patients, respectively (Supporting Information, Table S3). Compound
heterozygosity was observed for two patients based on the analysis
of paternal alleles. In one patient, trans configuration of variants was
established by allelic cloning. Compound heterozygosity could not be
demonstrated for three patients because DNA of family members was
not available and the respective variants were located too far apart for
allelic cloning. The mutation spectrum comprises 18 different alleles,
15 of which are novel (Table 1). All novel variants were deposited to
the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/; Landrum
et al., 2014) with accession codes provided in Table 1. The location of
the variants identified in this study with respect to the PDE6C protein
is depicted in Figure 1a.

All index patients harbored unique PDE6C genotypes with the
exception of the missense variant p.I714N, which was found in
homozygous state in three independent patients. In gnomAD, this
variant is present in heterozygous state in only one single subject
(1/245,508 alleles). The fact that we saw it in three independent
patients was therefore indicative of a founder effect. Genotyping of
microsatellite and single-nucleotide polymorphism markers indeed
revealed a common haplotype for the three patients (see Supporting
Information, Figure S1).

Potential pathogenicity of variants was determined on the basis
of: (1) representing ultrarare alleles observed only in single cases or
being absent in 277,264 general population alleles in gnomAD; (2) in
the case of missense variants being predicted to be damaging by at
least four out of five effect prediction programs listed above; (3) repre-
senting likely null alleles (nonsense, canonical splice site and frameshift
variants); (4) having already been described to be pathogenic; and (5)
analyzed functionally (p.R29W; Grau et al., 2011). All variants were
classified according to their pathogenicity based on the American Col-
lege of Medical Genetics and Genomics (ACMG) guidelines (Richards
et al.,, 2015; see Table 1). Because nonsense, canonical splice site and
frame-shifting variants have a strong weight in the ACMG scoring sys-
tem, this class of variants are consequently classified either as likely
pathogenic or pathogenic. An exception is the known noncanonical
splice site variant c.939+5G>A (Abouelhoda et al., 2016), which is clas-
sified as a variant of unknown significance (VUS) because the +5 posi-
tion is not invariable.

All missense variants we identified have an extremely low MAF or
are even absent in gnomAD. In addition, their evolutionary conserva-
tion and localization as well as the type of the respective amino acid
substitution are strong indicators of pathogenicity. However, following
the ACMG guidelines, seven of the eight missense variants we iden-

tified are classified as VUS. This classification would only change to


https://sift.jcvi.org/
https://genetics.bwh.harvard.edu/pph2/
https://www.mutationtaster.org/
https://mutationassessor.org/r3/
https://mutationassessor.org/r3/
https://provean.jcvi.org
https://www.ncbi.nlm.nih.gov/clinvar/

WEISSCHUH ET AL.

s | WILEY

*S39ydeUq Ul USAIZ S| |9A9] ula3o.d uo 3uiddiys

uoxa aAI3eInd ayj Jo 2ouaNbasuod ay | "A|91] S| UOXd dA13dadsa. 3y} Jo Suiddiys yey3 pa3aipaad (W0D'21eMHOSOI]-DAIFIBIDIUIMMM//:SA}3Y) 1EMOS INWE|Y SY3 Ul PIPPIGWS SWY3IIOS|E SAl4 BUlSN JUSWSSSSSE 0I1|1S U],
'$9140891e2 Aj121uUa80y3ed SA1) JO SUO Ul UOIIeDIISSe[D [BuUl) 03 SUlIped| S910IS JO UOoIjeulquo)),

"SaUIaPINS DINDV 9Y3 Ul paysijqnd saL10393eDq

‘(40SSasSY UOIIEIN|A PUB U3)SE] UoIIRIN|A ‘Z-UBUdAI0d ‘NVIAOYC ‘14IS) suoledljdde paseq-gqam a4 9Al JO IN0J ISES)| 18 AQ 199443 SuiSewep e Jo uol3d1paud Se paulwIa}ap SNSUSSUOD .

‘Aduanbauy s|9]|e Joulw 4| 22UedIJIUSIS UIe1IaduUn JO JUBLIBA ‘SNA 3|gedljdde Jou “Bru ($OILOUI9) pUe SJ112Ua5) [BDIP3IA JO 9383]|0D UBdLIBWY ‘DINDY

SUON SNA €dd'TINd‘TINd 3uiSeweq ulewop d13AjezeD) €%8/9000ADS Apnis siyL 969/,ad J<V¥6222
SUON SNA €dd'TINd‘TINd 3uideweq ulewop oijAjezeD) €€¥8/9000ADS ApnissiyL 1e9/nWd 0<1882¢?
SUON SNA €dd'TINd'TINd 3uideweq ulewop Ji3Aje3e) 2€¥78/9000ADS Apnis siyL 36%/9d V<9922
£5%90000°0 SNA €dd'TINd'TINd Suideweq ulewop di3Ae3ed T€78/9000ADS Apmis siyl 16T/Wd D<19512?
£0%700000°0 SNA €dd'TINd'TINd 3uideweq ulewop J13Aje3eD 0£%8/9000ADS Apn3s siy1 N#TZId V<1T#122
SuoN SNA €dd'TINd'TINd Suideweq ulewop J13Ae3ed) 62%78/9000ADS Apnissiyl N9¥GLd V<DLE9TD
(A1)

08700000 ojuagdoyed A1 €INd-E€dd‘ TINd‘TINd Suideweq ulewop 4vy9 8¢%78/9000ADS Apns siy | 16/z1d 0<19€8"
SUON SNA €dd'TINd'TINd 3uideweq urewop 4y £T%8/9000ADS Apnissiyy MzoTyd 1<0%0€2

6002

ulewop .._m J9 suapely |
#9120000°0 (11) o1uasoyzed €5d‘€dd TINdZNd Suiseweq [eulwIR) N T°6£6980000ADS ‘TTOT “[e 32 Neu Mézyd 1<0582
EIN (1) 21uasdoyyed Aj1 TSAdTINd eu 9Z¥8/9000ADS ApnissiyL 9T.,55498ZM)d [9p£582
SUON (1) 21uasoyyed A1 TSAdTINd e'u GZ¥8/9000ADS Apnis siy 8¢.Siv99Tad 19pL6172
EN (1) 21ua3oyzed A1 TSAdTINd eu ¥2#8/9000ADS Apnissiyy £2:84522d [9pgL™d
/¥¥0000°0 (1) 21us3oyzed A1 TSAd-CINd eu €2%78/9000ADS Apnys siyL «25yd 1<26/ST?
€18000000 (1) 21ua3oyzed Aj1 TSAdCINd eu 22¥8/9000ADS ApnyssiyL «66zyd 1<26/447
€1800000°0 (1) 21uasoyzed A1 TSAdCINd eu T2¥#8/9000ADS Apnis siyL «123d 1<9112?
EN (q1) o1uadoyred PINdTSAD TN eu 0¢#8/9000ADS ApnissiyL (IpgCyI LEN ) pE'U V<9T+692172
822£0000°0 (31) 21uasoyied €dd‘TSAd‘ZINd eu e'u €70 “|e 32 8ueny (TT.S¥apyread) yeu V<9T+£00T2

910C
SuoN SNA €dd'vINd'TNd eu 1'S8TTZT000ADY “|e 33 epoy|anoqy (I9P¥TE3 06C4d) pE'U V<95+6£6
4VIN gvwous >uolpipatd NIV DDV eSJUELIEA urewop uia)0.d ou (s)aduaiajey (€°'56T900 dN) (€'702900 INN)
asuassiw uolissadde Jepul]d uiajoid H93ad apnospPnNN

Joj uoidipasd
SNSUasuo)

193Qd Ul SjuelieAa2usnbas T 379VL


https://www.interactive-biosoftware.com

WEISSCHUH ET AL.

1369

WILEY

a PDEase | - catalytic domain
Zn**-binding area b'_"d'_"g_ domain
. o R forinhibitory y-PDE
Non-catalytic cGMP-binding domain H-D-X-X-H

~ . ) sEw @ < sz Zr weo
52 p § ¢ 227 & & & 5 g 25§52
w w < 2 N @ a 2 W e e
he 2 = €= F P T e g s 858

= ° 5 e = a

o o @ @ o o

= - ~N o =] ~

a S =

¢ S
D. rerio R R C T I M 6 MD
B. taurus Q R I T I M G MD
M. musculus R R I T I M 6 MD
C. lupus R 1 T I M G MD
H. sapiens R R 1 T I M 6 MD
H. sapiens PDEGA I R v v v M G MD
H. sapiens PDE6B s R v v vV M G MD

unsolved

(25.5%)

PDE6H (0.4%)
ATF6(0.8%)
GNAT2 (1.7%)
PDEG6C (2.4%)

FIGURE 1 Localization and prevalence of PDE&C variants. (a) Localization of protein truncating (nonsense, frame-shifting) (in red/gray) and
missense variants (in black) identified in this study. The relative position of the three splice site variants is indicated with black stars. A
comparative sequence analysis is given below the missense variants, showing conservation of the respective cone photoreceptor specific PDE6C
amino acid residue according to HomoloGene (https://www.ncbi.nlm.nih.gov/homologene/). In addition, the respective amino acid residues in
human rod photoreceptor PDE6A and PDE6B are shown. NCBI reference sequences are as follows: Danio rerio (NP_957165.1), Bos taurus
(NP_776844.1), Mus musculus (NP_291092.1), Canis lupus (XP_543934.3), Homo sapiens (NP_006195.3), Homo sapiens PDE6A (NP_000431.2), and
Homo sapiens PDE6B (NP_000274.2). (b) Prevalence of mutations in genes causing achromatopsia (ACHM) relating to our cohort of 1,074
independent families. Mutations in approximately 25% of ACHM cases remain to be identified, or clinical diagnosis recapitulated

pathogenic if functional data (e.g., of an enzymatic activity assay) were
supportive of a damaging effect as is the case for the p.R29W variant
(Grauetal.,, 2011).

A summary of clinical findings is shown in Supporting Information,
Table S3 including all index patients and two affected siblings (patients
1-1 and 1-2). All patients were diagnosed in early childhood (rang-
ing from birth to 5 years) and displayed characteristics of ACHM like
photophobia, nystagmus, and impaired color vision. Electroretinogra-
phy (ERG) results were not available from every patient but gener-
ally revealed normal rod responses and either extinguished or severely
reduced cone responses with the exception of patient 6 in whom
ERG recordings also showed reduced b-waves in the scotopic ERG
and an electronegative standard flash. We therefore reclassified his
diagnosis from ACHM to cone-rod dystrophy. Optical coherence
tomography images were only available from six patients and revealed
the typical disappearance of P2 (photoreceptor reflectivity) in patients
with ACHM (Barthelmes et al., 2006).

The Human Gene Mutation Database currently lists 38 variants in
PDEG6C that explain the disease phenotype in the respective patients.
Our study significantly contributes to the mutation spectrum of
PDE6C and allows for a realistic estimate of the prevalence of PDE6C
mutations in ACHM in the European population because our entire
cohort comprises 1,074 independent families mainly originating from

Europe or being of European descent (USA, Canada, Australia, and

New Zealand). Considering an estimated prevalence of 1:30,000 to
1:50,000 for ACHM in Europe, this number is certainly high enough to
give a comprehensive view on the spectrum and prevalence not only
of the more common CNGB3 and CNGA3 mutations, but also on the
four minor, non-CNG channel encoding ACHM genes. Taking together
the results of the present study and a previous screening approach
(Grau et al., 2011), we calculate a prevalence of 2.4% for PDE6C muta-
tions in our cohort, which is most probably representative for ACHM
in the Western population (Figure 1b). As ACHM is in the focus of
retinal gene therapy with four clinical trials ongoing, our study pro-
vides a valuable resource for putative gene therapy trials targeting
PDE6C.
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