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Abstract
Biallelic PDE6C mutations are a known cause for rod monochromacy, better known as autoso-

mal recessive achromatopsia (ACHM), and early-onset cone photoreceptor dysfunction. PDE6C

encodes the catalytic 𝛼
′-subunit of the cone photoreceptor phosphodiesterase, thereby consti-

tuting an essential part of the phototransduction cascade. Here, we present the results of a study

comprising 176 genetically preselected patients who remained unsolved after Sanger sequencing

of themost frequent genes accounting for ACHM, andwere subsequently screened for exonic and

splice site variants in PDE6C applying a targeted next generation sequencing approach. We were

able to identify potentially pathogenic biallelic variants in 15 index cases. The mutation spectrum

comprises 18 different alleles, 15 of which are novel. Our study significantly contributes to the

mutation spectrumof PDE6C and allows for a realistic estimate of the prevalence of PDE6Cmuta-

tions in ACHM since our entire ACHM cohort comprises 1,074 independent families.
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Achromatopsia (ACHM; ACHM2 MIM# 216900, ACHM3 MIM#

262300, ACHM4 MIM# 613856, ACHM5 MIM# 613093, ACHM6

MIM# 610024, and ACHM7MIM# 616517) is a rare autosomal reces-

sive cone disorder characterized by color vision defects, photophobia,

nystagmus, and severely reduced visual acuity. To date, six genes have

been linked to ACHM. In the Western population, approximately 80%

of the patients carry mutations in the genes CNGA3 (MIM# 600053;

Kohl et al., 1998) and CNGB3 (MIM# 605080; Kohl et al., 2000; Sundin

et al., 2000) encoding the two subunits of the cone photoreceptor

cyclic nucleotide-gated channel.Much less frequently, causativemuta-

tions have been found in genes encoding other crucial components of

the cone phototransduction cascade, namely GNAT2 (MIM# 139340;

Aligianis et al., 2002; Kohl et al., 2002), PDE6C (MIM# 600827; Chang

et al., 2009; Thiadens et al., 2009), and PDE6H (MIM# 601190; Kohl

et al., 2012), or in ATF6 (MIM# 605537; Kohl et al., 2015), which is not

involved in the phototransduction cascade, but in the unfolded pro-

tein response pathway. Larger case series or genetic screens ofACHM-

associated genes are sparse (Kohl et al., 2005; Mayer et al., 2017;

Nishiguchi, Sandberg, Gorji, Berson, & Dryja, 2005; Wissinger et al.,

2001; Zelinger et al., 2015), therefore we lack a comprehensive view

of the prevalence especially of theminor disease genes in ACHM.

In the present study, 176 patients diagnosed with ACHM who

remained unsolved after Sanger sequencing of the most frequent

genes accounting forACHM, namelyCNGB3,CNGA3, andGNAT2, were

screened for exonic and splice site variants in thePDE6C gene. Samples

from all patients and family members were recruited in accordance

with the principles of the Declaration of Helsinki and were obtained

with written informed consent accompanying the patients’ samples.

The studywas approved by the institutional review board of the Ethics

Committee of the University Hospital of Tuebingen.

While two patients were screened using a custom capture panel

targeting 105 retinal disease genes including PDE6C (Glöckle et al.,

2014), the others were analyzed by means of an amplicon-based

next generation sequencing approach. Briefly, target enrichment

of coding sequences including exon–intron boundaries of PDE6C

(Supporting Information, Table S1) was performed with Fluidigm, CA,

USA 48.48 Access Arrays. Library capture was completed using the

Nextera XT DNA Library Prep Kit and sequencing was performed

on a MiSeq instrument at a core facility (c.ATG, Tübingen, Germany,

CA, USA). Sequence data were aligned using the Burrows–Wheeler

Aligner (Li & Durbin, 2009), and variants were called using an in-house

bioinformatic pipeline. Only nonsynonymous single nucleotide vari-

ants, nonsense variants, splice site (±10 bps) variants, insertions,

duplications, and deletions represented by more than 20 sequence

reads were considered for further analysis. In addition, variants with

a minor allele frequency (MAF) >1% in the Genome Aggregation

Database (gnomAD) Version r2.0.2 were excluded from further

investigation. The potential pathogenicity of missense changes was

assessed using five online prediction software tools, namely SIFT

(https://sift.jcvi.org/; Kumar, Henikoff, & Ng, 2009), PolyPhen-2

(https://genetics.bwh.harvard.edu/pph2/; Adzhubei et al., 2010),

Mutation Taster (https://www.mutationtaster.org/; Schwarz, Cooper,

Schuelke, & Seelow, 2014), Mutation Assessor (https://mutation

assessor.org/r3/; Reva, Antipin, & Sander, 2011), and Provean

(https://provean.jcvi.org; Choi & Chan, 2015). Prediction outcomes are

given in Supporting Information, Table S2. The variant designation is

based on the NCBI reference sequence for PDE6C (NC_000010.11,

NM_006204.3; GRCh38) comprising 22 coding exons. We were able

to identify potentially pathogenic biallelic variants in 15 index cases,

thereby achieving a detection rate of 8.5%. All putative disease-

associated variants in the PDE6C gene were validated and tested for

segregation with the phenotype in available family members by con-

ventional Sanger sequencing. The variants were seen in true homozy-

gous state in two patients and in apparent homozygous state in seven

patients, respectively (Supporting Information, Table S3). Compound

heterozygosity was observed for two patients based on the analysis

of paternal alleles. In one patient, trans configuration of variants was

established by allelic cloning. Compound heterozygosity could not be

demonstrated for three patients because DNA of family members was

not available and the respective variants were located too far apart for

allelic cloning. The mutation spectrum comprises 18 different alleles,

15 of which are novel (Table 1). All novel variants were deposited to

the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/; Landrum

et al., 2014) with accession codes provided in Table 1. The location of

the variants identified in this study with respect to the PDE6C protein

is depicted in Figure 1a.

All index patients harbored unique PDE6C genotypes with the

exception of the missense variant p.I714N, which was found in

homozygous state in three independent patients. In gnomAD, this

variant is present in heterozygous state in only one single subject

(1/245,508 alleles). The fact that we saw it in three independent

patients was therefore indicative of a founder effect. Genotyping of

microsatellite and single-nucleotide polymorphism markers indeed

revealed a common haplotype for the three patients (see Supporting

Information, Figure S1).

Potential pathogenicity of variants was determined on the basis

of: (1) representing ultrarare alleles observed only in single cases or

being absent in 277,264 general population alleles in gnomAD; (2) in

the case of missense variants being predicted to be damaging by at

least four out of five effect prediction programs listed above; (3) repre-

senting likely null alleles (nonsense, canonical splice site and frameshift

variants); (4) having already been described to be pathogenic; and (5)

analyzed functionally (p.R29W; Grau et al., 2011). All variants were

classified according to their pathogenicity based on the American Col-

lege of Medical Genetics and Genomics (ACMG) guidelines (Richards

et al., 2015; see Table 1). Because nonsense, canonical splice site and

frame-shifting variants have a strong weight in the ACMG scoring sys-

tem, this class of variants are consequently classified either as likely

pathogenic or pathogenic. An exception is the known noncanonical

splice site variant c.939+5G>A (Abouelhodaet al., 2016),which is clas-

sified as a variant of unknown significance (VUS) because the +5 posi-
tion is not invariable.

All missense variants we identified have an extremely low MAF or

are even absent in gnomAD. In addition, their evolutionary conserva-

tion and localization as well as the type of the respective amino acid

substitution are strong indicators of pathogenicity. However, following

the ACMG guidelines, seven of the eight missense variants we iden-

tified are classified as VUS. This classification would only change to

https://sift.jcvi.org/
https://genetics.bwh.harvard.edu/pph2/
https://www.mutationtaster.org/
https://mutationassessor.org/r3/
https://mutationassessor.org/r3/
https://provean.jcvi.org
https://www.ncbi.nlm.nih.gov/clinvar/
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F IGURE 1 Localization and prevalence of PDE6C variants. (a) Localization of protein truncating (nonsense, frame-shifting) (in red/gray) and
missense variants (in black) identified in this study. The relative position of the three splice site variants is indicated with black stars. A
comparative sequence analysis is given below themissense variants, showing conservation of the respective cone photoreceptor specific PDE6C
amino acid residue according to HomoloGene (https://www.ncbi.nlm.nih.gov/homologene/). In addition, the respective amino acid residues in
human rod photoreceptor PDE6A and PDE6B are shown. NCBI reference sequences are as follows:Danio rerio (NP_957165.1), Bos taurus
(NP_776844.1),Musmusculus (NP_291092.1), Canis lupus (XP_543934.3),Homo sapiens (NP_006195.3),Homo sapiens PDE6A (NP_000431.2), and
Homo sapiens PDE6B (NP_000274.2). (b) Prevalence of mutations in genes causing achromatopsia (ACHM) relating to our cohort of 1,074
independent families. Mutations in approximately 25% of ACHM cases remain to be identified, or clinical diagnosis recapitulated

pathogenic if functional data (e.g., of an enzymatic activity assay) were

supportive of a damaging effect as is the case for the p.R29W variant

(Grau et al., 2011).

A summary of clinical findings is shown in Supporting Information,

Table S3 including all index patients and two affected siblings (patients

1–1 and 1–2). All patients were diagnosed in early childhood (rang-

ing from birth to 5 years) and displayed characteristics of ACHM like

photophobia, nystagmus, and impaired color vision. Electroretinogra-

phy (ERG) results were not available from every patient but gener-

ally revealed normal rod responses and either extinguished or severely

reduced cone responses with the exception of patient 6 in whom

ERG recordings also showed reduced b-waves in the scotopic ERG

and an electronegative standard flash. We therefore reclassified his

diagnosis from ACHM to cone-rod dystrophy. Optical coherence

tomography images were only available from six patients and revealed

the typical disappearance of P2 (photoreceptor reflectivity) in patients

with ACHM (Barthelmes et al., 2006).

The Human Gene Mutation Database currently lists 38 variants in

PDE6C that explain the disease phenotype in the respective patients.

Our study significantly contributes to the mutation spectrum of

PDE6C and allows for a realistic estimate of the prevalence of PDE6C

mutations in ACHM in the European population because our entire

cohort comprises 1,074 independent families mainly originating from

Europe or being of European descent (USA, Canada, Australia, and

New Zealand). Considering an estimated prevalence of 1:30,000 to

1:50,000 for ACHM in Europe, this number is certainly high enough to

give a comprehensive view on the spectrum and prevalence not only

of the more common CNGB3 and CNGA3 mutations, but also on the

four minor, non-CNG channel encoding ACHM genes. Taking together

the results of the present study and a previous screening approach

(Grau et al., 2011), we calculate a prevalence of 2.4% for PDE6Cmuta-

tions in our cohort, which is most probably representative for ACHM

in the Western population (Figure 1b). As ACHM is in the focus of

retinal gene therapy with four clinical trials ongoing, our study pro-

vides a valuable resource for putative gene therapy trials targeting

PDE6C.
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