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OVERVIEW

Recent literature seems to indicate strong evidence that quan-
titative features extracted from multimodality imaging data
serve as specific biomarkers or surrogates of specific tumor
molecular and genetic profiles that can predict response to
treatment. As a consequence of the progress in quantitative
imaging and the resurgence of systems biology and geno-
mics, a new promising research domain, referred to as radio-
genomics, has recently emerged. The approach looks
promising and preliminary results reported seem to suggest
relevance in clinical oncology. While some think that radio-
genomics is the way to go and that progress in the field likely
will have an impact on the future of treatment response
assessment in clinical oncology, others remain cautious argu-
ing that despite the promising results reported in the litera-
ture, the technique is in its infancy and that its clinical
relevance still remains to be demonstrated. This is the topic
of this month’s Point/Counterpoint debate.

Arguing for the Proposition is Issam El Naqa, PhD. Dr. El
Naqa received his B.Sc. (1992) and M.Sc. (1995) in Electrical
and Communication Engineering from the University of Jor-
dan, Jordan. He worked as a software engineer at the Com-
puter Engineering Bureau, Jordan, 1995–1996. He was a
visiting scholar at the RWTH Aachen, 1996–1998. He com-
pleted his Ph.D. (2002) in Electrical and Computer Engineer-
ing from Illinois Institute of Technology, Chicago, IL, USA.
He completed an M.A. (2007) in Biology Science from
Washington University in St. Louis, St. Louis, MO, USA,
where he was pursuing a postdoctoral fellowship in medical
physics and was subsequently hired as Instructor (2005–
2007) and then an Assistant Professor (2007–2010) at the
departments of radiation oncology and the division of
biomedical and biological sciences. He became an Associate
Professor at McGill University Health Centre/Medical Phy-
sics Unit (2010–2015) and associate member of at the depart-
ments of Physics, Biomedical Engineering, and experimental
medicine. He is currently an Associate Professor of Radiation
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Oncology at the University of Michigan at Ann Arbor. He is
a certified Medical Physicist by the American Board of Radi-
ology. He is a recognized expert in the fields of image pro-
cessing, bioinformatics, computational radiobiology, and
treatment outcomes modeling and has published extensively
in these areas with more than 120 peer-reviewed journal pub-
lications. His recent edited textbook “A Guide to Outcome
Modeling in Radiotherapy and Oncology: Listening to the
Data,” is closely related to this Point/Counterpoint debate.

Arguing against the proposition is Sandy Napel, PhD. Dr.
Napel obtained his BS in Engineering from the State Univer-
sity of New York at Stony Brook and his MS and PhD in Elec-
trical Engineering from Stanford University. Originally
appointed as an Assistant Professor at UCSF, he became Vice
President of Engineering at Imatron Inc., manufacturer of the
first commercial cardiac CT scanner. He was a Visiting Assis-
tant Professor and Scientist at the Robarts Research Institute in
London Ontario before joining Stanford’s Radiology Depart-
ment in 1991, where he is currently the Professor of Radiology
and Electrical Engineering and Medicine (Biomedical Infor-
matics). He cofounded the Radiology Department 3D and
Quantitative Imaging Laboratory in 1996, which developed
many fundamental approaches to volumetric visualization and
now processes over 2200 Stanford Medicine patient cases per
month, creating alternative visualizations and tracking quanti-
tative measurements from cross-sectional imaging examina-
tions for many medical conditions. He also coleads Stanford
Radiology’s Division of Integrative Biomedical Imaging Infor-
matics at Stanford. His laboratory is focused on the develop-
ment of quantitative imaging methods in cancer.

FOR THE PROPOSITION: ISSAM EL NAQA, PH.D.

Opening statement

The success of a cancer treatment depends on the ability
to choose the right treatment regimen (precision) for the right
patient (personalized). Current standards of care in oncology
rely on population-based clinical factors (stage, age, gender,
etc.) that are primarily patient aspecific with suboptimal out-
comes. Thanks to advances in multimodality imaging and
biotechnology, there has been tremendous growth in patient-
specific cancer information from anatomical and functional
imaging to whole molecular profiles (genomics, transcrip-
tomics, proteomics, metabolomics, etc.). Radiogenomics pro-
mise to leverage this available wealth of information on each
individual patient to guide the personalization of her/his treat-
ment prescription and adaptation of such treatment to
changes occurring during the course of therapy.1 Therefore,
the utilization of radiogenomics is not only inevitable but also
indispensable in this era of precision medicine; being recom-
mended by practitioners and expected by patients and their
advocates. However, the application of radiogenomics has
been met with mixed reviews and skepticism and rightfully
so, with irreproducible experimentation, conflicting results,
increased costs, and complexity without improved outcomes
in clinical trials.2 Therefore, the question ought here to be

asked is not whether radiogenomics is the future of treatment
assessment but how we can successfully apply it to fulfill its
promise in optimizing treatment and improve its efficacy.
Bradley laid out a multidimensional framework for incorpo-
rating biomarkers into clinical trial designs of generic drugs
(“right target”, “right exposure”, “right safety profile”, “right
patients”, and the “right environment”).3 These 5-Rs entail
going beyond the traditional (mis)-use of simple correlative
biomarkers of radiogenomics (molecular or imaging) into
more robust systems-based approaches that can better capture
the heterogeneous nature of tumors, properly rank the differ-
ent treatment options, and piece together the complex dis-
ease–treatment interactions, while at the same time
accounting for the observed diversity in clinical phenotypes.
This is currently being made permissible through advances in
computational modeling and data analytics that can depict
tumor diversity, intercellular networks and assist clinicians in
assessing and predicting treatment response.4,5

AGAINST THE PROPOSITION: SANDY NAPEL,
PH.D.

Opening statement

According to Wikipedia (the source of all knowledge), the
term “radiogenomics” has two meanings: “the study of
genetic variation associated with response to radiation (Radi-
ation Genomics)” and “the correlation between cancer imag-
ing features and gene expression (Imaging Genomics)”.6 As
the proposition does not limit “treatment response” to radia-
tion treatments, my response assumes that the term “radio-
genomics” has the second of the two meanings. Given this
context, radiogenomics for therapeutic response assessment
consists of three steps: (a) radiomics,7 that is, extracting
quantitative features from tumors as displayed in medical
images, (b) integrating these radiomic features with genomic
data obtained from analysis of tissue and perhaps other clini-
cal data,8 and (c) from these integrated data, building a pre-
dictive model for the outcome variable,9 which here is
therapeutic response. While all three of these steps contain
challenges, I will focus on the first (radiomics), upon which
all other steps depend, to argue against the proposition.

First, the conventional oncologic radiomics workflow
requires that a region or volume of interest be defined that
includes the tumor and, perhaps, nearby surrounding tissue,
within which to extract radiomics features. Accurate and pre-
cise segmentation, for example, for tumor volume determina-
tion, has been elusive for decades. While there have been
some successes in narrowly defined and carefully controlled
situations, segmentation remains an unsolved problem.10 It
usually requires careful image editing, which can be quite
time-consuming and variable amongst editors. This, in turn,
may result in inaccurate and imprecise radiomics features.
Other sources of variation include differences in formulas
used by different radiomics software packages, variations in
image acquisition (e.g., kV, mA, kernel in CT, pulse sequence
in MR) and reconstruction methods (e.g., filtered back
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projection vs. iterative methods in CT) and parameters (e.g.,
slice thickness, field of view, and other vendor-specific
implementations for all modalities), and variations due to
stochastic noise.11–17 One possible mitigation would be to
have access to extremely large collections of images and seg-
mentations (or radiomics features) with accompanying clini-
cal data including known therapeutic response, from which to
construct subsets with acquisition/reconstruction parameters
close to what was used for the imaging of the patient under
study. However, privacy and other concerns have limited and
are likely to continue to limit the amount of available shared
data. Even if these data were available, scanner hardware and
software upgrades often result in different imaging character-
istics that could make radiomics features extracted from
recent patients not comparable to those that have been com-
puted using images from older scanners.

Thus, the challenges radiogenomics faces in just the first
step of the workflow, that is, radiomics feature extraction, are
formidable. Without major progress on segmentation meth-
ods, acquisition and reconstruction protocol standardization,
and the availability of very large integrated databases contain-
ing images and segmentations (or standardized radiomics fea-
tures), together with outcomes (required for the third step:
predictive model construction), radiogenomics is unlikely to
emerge as a viable method of response assessment in clinical
oncology in the future.

Rebuttal: Issam El Naqa, Ph.D.

I concur with my colleague that there are inherent chal-
lenges associated with any data-driven approach such as
radiogenomics/radiomics. These include the uncertainties
embedded in the data and the ability to train and evaluate
the developed multivariate models on appropriately curated
large datasets. However, it is recognized that traditional
approaches, such as clinical judgment or general risk cate-
gorization, are also inadequate, with limited predictive/
prognostic abilities.18 Ironically, they suffer from similar
uncertainty issues if not worse. Therefore, the question
here should be reformulated into whether there is an
added value of any new information to current clinical
decision-making beyond any perceived level of noise?
Common sense dictates that this is not only feasible but
also realizable. Surely, this requires the ability to quantify
and mitigate sources of uncertainties across different
heterogeneous datasets, integration of molecular profiles/
imaging biomarkers with electronic health records, and
yes, the continuous evaluation and updating of these mod-
els and monitoring their impact on clinical outcomes.
However, isn’t this what we Medical Physicists are all
about? Solving such problems! Innovative ideas such as
improved data sharing19,20 and distributed learning tech-
niques21 are appearing with increasing frequency. Never-
theless, we remain cognitively cautious that there are
serious challenges to the realization of the full potentials
of radiogenomics/radiomics in clinical practice. However,
this should not prevent us from reaping now their benefits

given the current status of traditional approaches, particu-
larly if these models have passed the necessary rigorous
validation tests for predicting relevant clinical endpoints
and guiding treatment response assessment. Radio-
genomics/radiomics models are not going away. Continued
research endeavors in this area and overcoming current
challenges will just make them even better for the promis-
ing future of clinical oncology.

Rebuttal: Sandy Napel, Ph.D.

I could not agree more with my colleague’s statement
regarding what constitutes the success of a cancer treatment,
and that current “population-based” clinical standards are
“primarily patient aspecific with suboptimal outcomes.” And
I also agree that by adding patient-specific imaging and
omics information, radiogenomics has the potential to power
a more personalized treatment approach; however, to achieve
this, we must acquire more data about each patient and add
these data to the population-based clinical factors upon which
we currently rely. That is, for each patient, to stage, age gen-
der, etc., we must add radiomics features computed from her
images and molecular profiles of samples of her tumors. In
this way, we add more specificity to the available data for
each patient so that we can match a given individual to a
smaller group of patients and thereby be able to choose the
most appropriate treatment and to assess therapeutic
response, for the individual. However, while this is clearly a
desirable future, achievement on a large scale is by no means
assured. As I enumerated in my argument against the proposi-
tion, difficult challenges imposed by imaging data (including
the sensitivity of many radiomics features to heterogeneous
acquisition and reconstruction protocols, inaccurate and impre-
cise tumor segmentation methods, and stochastic noise), geno-
mic data obtained from samples of heterogeneous tumors,22

and restrictions on sharing patient-specific data, diminish my
expectations for this future to come to pass.
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