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Article Type: Point Counterpoint 2 

POINT/COUNTERPOINT 3 

Suggestions for topics suitable for these Point/Counterpoint debates should be addressed to 4 

Habib Zaidi, Geneva University Hospital, Geneva, Switzerland: habib.zaidi@hcuge.ch, and/or 5 

Jing Cai, The Hong Kong Polytechnic University, Hong Kong: jing.cai@polyu.edu.hk. Persons 6 

participating in Point/Counterpoint discussions are selected for their knowledge and 7 

communicative skill. Their positions for or against a proposition may or may not reflect their 8 

personal opinions or the positions of their employers. 9 
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Radiogenomics is the future of treatment response assessment in 11 
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Recent literature seems to indicate strong evidence that quantitative features extracted from 28 

multimodality imaging data serve as specific biomarkers or surrogates of specific tumor 29 

molecular and genetic profiles that can predict response to treatment. As a consequence of the 30 

progress in quantitative imaging and the resurgence of systems biology and genomics, a new 31 

promising research domain, referred to as radiogenomics, has recently emerged. The approach 32 

looks promising and preliminary results reported seem to suggest relevance in clinical oncology. 33 

While some think that radiogenomics is the way to go and that progress in the field likely will 34 

have an impact on the future of treatment response assessment in clinical oncology, others 35 

remain cautious arguing that despite the promising results reported in the literature, the technique 36 

is in its infancy and that its clinical relevance still remains to be demonstrated. This is the topic 37 

of this month's Point/Counterpoint debate. 38 

Arguing for the Proposition is Issam El Naqa, PhD,. Dr. El Naqa received his B.Sc. (1992) 39 

and M.Sc. (1995) in Electrical and Communication Engineering from the University of Jordan, 40 

Jordan. He worked as a software engineer at the Computer Engineering Bureau), Jordan, 1995-41 

1996. He was a visiting scholar at the RWTH Aachen, 1996-1998. He completed his Ph.D. 42 

(2002) in Electrical and Computer Engineering from Illinois Institute of Technology, Chicago, 43 

IL, USA. He completed an M.A. (2007) in Biology Science from Washington University in St. 44 

Louis, St. Louis, MO, USA, where he was pursuing a post-doctoral fellowship in medical 45 

physics and was subsequently hired as Instructor (2005-2007) and then an Assistant Professor 46 

(2007-2010) at the departments of radiation oncology and the division of biomedical and 47 

biological sciences. He became an Associate Professor at McGill University Health 48 

Centre/Medical Physics Unit (2010-2015) and associate member of at the departments of 49 

Physics, Biomedical Engineering, and experimental medicine. He is currently an Associate 50 

Professor of Radiation Oncology at the University of Michigan at Ann Arbor. He is a certified 51 

Medical Physicist by the American Board of Radiology. He is a recognized expert in the fields of 52 

image processing, bioinformatics, computational radiobiology, and treatment outcomes modeling 53 

and has published extensively in these areas with more than 120 peer-reviewed journal 54 

publications. His recent edited textbook “A Guide to Outcome Modeling in Radiotherapy and 55 

Oncology: Listening to the Data,” is closely related to this Point/Counterpoint debate. 56 

Arguing against the proposition is Sandy Napel, PhD. Dr. Napel obtained his BS in 57 

Engineering from the State University of New York at Stony Brook and his MS and PhD in 58 
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Electrical Engineering from Stanford University. Originally appointed as an Assistant Professor 59 

at UCSF, he became Vice President of Engineering at Imatron Inc., manufacturer of the first 60 

commercial cardiac CT scanner. He was a Visiting Assistant Professor and Scientist at the 61 

Robarts Research Institute in London Ontario before joining Stanford’s Radiology Department in 62 

1991, where he is currently Professor of Radiology and Electrical Engineering and Medicine 63 

(Biomedical Informatics). He co-founded the Radiology Department 3D and Quantitative 64 

Imaging Lab in 1996, which developed many fundamental approaches to volumetric 65 

visualization and now processes over 2200 Stanford Medicine patient cases per month, creating 66 

alternative visualizations and tracking quantitative measurements from cross-sectional imaging 67 

exams for many medical conditions. He also co-leads Stanford Radiology’s Division of 68 

Integrative Biomedical Imaging Informatics at Stanford. His lab is focused on the development 69 

of quantitative imaging methods in cancer. 70 

 71 

FOR THE PROPOSITION: Issam El Naqa, Ph.D. 72 

Opening Statement 73 

The success of a cancer treatment depends on the ability to choose the right treatment regimen 74 

(precision) for the right patient (personalized). Current standards of care in oncology rely on 75 

population-based clinical factors (stage, age, gender, etc.) that are primarily patient-aspecific 76 

with suboptimal outcomes. Thanks to advances in multimodality imaging and biotechnology, 77 

there has been tremendous growth in patient-specific cancer information from anatomical and 78 

functional imaging to whole molecular profiles (genomics, transcriptomics, proteomics, 79 

metabolomics, etc). Radiogenomics promise to leverage this available wealth of information on 80 

each individual patient to guide the personalization of her/his treatment prescription and 81 

adaptation of such treatment to changes occurring during the course of therapy 1. Therefore, the 82 

utilization of radiogenomics is not only inevitable but also indispensable in this era of precision 83 

medicine; being recommended by practitioners and expected by patients and their advocates. 84 

However, the application of radiogenomics has been met with mixed reviews and skepticism and 85 

rightfully so; with irreproducible experimentation, conflicting results, increased costs, and 86 

complexity without improved outcomes in clinical trials 2. Therefore, the question ought here to 87 

be asked is not whether radiogenomics is the future of treatment assessment but how we can 88 

successfully apply it to fulfill its promise in optimizing treatment and improve its efficacy. 89 
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Bradley laid out a multi-dimensional framework for incorporating biomarkers into clinical trial 90 

designs of generic drugs (‘right target’, ‘right exposure’, ‘right safety profile’, ‘right patients’, 91 

and the ‘right environment’) 3. These 5-Rs entail going beyond the traditional (mis)-use of 92 

simple correlative biomarkers of radiogenomics (molecular or imaging) into more robust 93 

systems-based approaches that can better capture the heterogeneous nature of tumors, properly 94 

rank the different treatment options, and piece together the complex disease-treatment 95 

interactions, while at the same time accounting for the observed diversity in clinical phenotypes. 96 

This is currently being made permissible through advances in computational modeling and data 97 

analytics that can depict tumor diversity, inter-cellular networks and assist clinicians in assessing 98 

and predicting treatment response 4,5

 100 

. 99 

AGAINST THE PROPOSITION: Sandy Napel, Ph.D. 101 

Opening Statement 102 

According to Wikipedia (the source of all knowledge), the term “radiogenomics” has two 103 

meanings: “the study of genetic variation associated with response to radiation (Radiation 104 

Genomics)” and “the correlation between cancer imaging features and gene expression (Imaging 105 

Genomics)” 6. Because the proposition does not limit “treatment response” to radiation 106 

treatments, my response assumes the term “radiogenomics” has the second of the two meanings. 107 

Given this context, radiogenomics for therapeutic response assessment consists of three steps: (1) 108 

radiomics 7, i.e., extracting quantitative features from tumors as displayed in medical images, (2) 109 

integrating these radiomic features with genomic data obtained from analysis of tissue and 110 

perhaps other clinical data 8, and (3) from these integrated data, building a predictive model for 111 

the outcome variable 9

First, the conventional oncologic radiomics workflow requires that a region or volume of 115 

interest be defined that includes the tumor and, perhaps, nearby surrounding tissue, within which 116 

to extract radiomics features. Accurate and precise segmentation, e.g., for tumor volume 117 

determination, has been elusive for decades. While there have been some successes in narrowly 118 

defined and carefully controlled situations, segmentation remains an unsolved problem 

, which here is therapeutic response. While all three of these steps contain 112 

challenges, I will focus on the first (radiomics), upon which all other steps depend, to argue 113 

against the proposition. 114 

10. It 119 

usually requires careful image editing, which can be quite time-consuming and variable amongst 120 
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editors. This, in turn, may result in inaccurate and imprecise radiomics features. Other sources of 121 

variation include differences in formulas used by different radiomics software packages, 122 

variations in image acquisition (e.g., kV, mA, kernel in CT, pulse sequence in MR) and 123 

reconstruction methods (e.g., filtered backprojection vs. iterative methods in CT) and parameters 124 

(e.g., slice thickness, field of view, and other vendor-specific implementations for all modalities), 125 

and variations due to stochastic noise 11-17

Thus, the challenges radiogenomics faces in just the first step of the workflow, i.e., radiomics 135 

feature extraction, are formidable. Without major progress on segmentation methods, acquisition 136 

and reconstruction protocol standardization, and the availability of very large integrated 137 

databases containing images and segmentations (or standardized radiomics features), together 138 

with outcomes (required for the third step: predictive model construction), radiogenomics is 139 

unlikely to emerge as a viable method of response assessment in clinical oncology in the future. 140 

. One possible mitigation would be to have access to 126 

extremely large collections of images and segmentations (or radiomics features) with 127 

accompanying clinical data including known therapeutic response, from which to construct 128 

subsets with acquisition/reconstruction parameters close to what was used for the imaging of the 129 

patient under study. However, privacy and other concerns have limited, and are likely to 130 

continue to limit, the amount of available shared data. Even if these data were available, scanner 131 

hardware and software upgrades often result in different imaging characteristics that could make 132 

radiomics features extracted from recent patients not comparable to those that have been 133 

computed using images from older scanners. 134 

 141 

Rebuttal: Issam El Naqa, Ph.D. 142 

I concur with my colleague that there are inherent challenges associated with any data-driven 143 

approach such as radiogenomics/radiomics. These include the uncertainties embedded in the data 144 

and the ability to train and evaluate the developed multivariate models on appropriately curated 145 

large datasets. However, it is recognized that traditional approaches, such as clinical judgment or 146 

general risk categorization, are also inadequate, with limited predictive/prognostic abilities 18. 147 

Ironically, they suffer from similar uncertainty issues, if not worse. Therefore, the question here 148 

should be reformulated into whether there is an added value of any new information to current 149 

clinical decision making beyond any perceived level of noise? Common sense dictates that this is 150 
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not only feasible but realizable. Surely, this requires the ability to quantify and mitigate sources 151 

of uncertainties across different heterogeneous datasets, integration of molecular 152 

profiles/imaging biomarkers with electronic health records, and yes, the continuous evaluation 153 

and updating of these models and monitoring their impact on clinical outcomes. But isn’t this 154 

what we Medical Physicists are all about? Solving such problems! Innovative ideas such as 155 

improved data sharing 19,20 and distributed learning techniques 21

 165 

 are appearing with increasing 156 

frequency. Nevertheless, we remain cognitively cautious that there are serious challenges to the 157 

realization of the full potentials of radiogenomics/radiomics in clinical practice. However, this 158 

should not prevent us from reaping now their benefits given the current status of traditional 159 

approaches, particularly if these models have passed the necessary rigorous validation tests for 160 

predicting relevant clinical endpoints and guiding treatment response assessment. 161 

Radiogenomics/radiomics models are not going away. Continued research endeavors in this area 162 

and overcoming current challenges will just make them even better for the promising future of 163 

clinical oncology. 164 

Rebuttal: Sandy Napel, Ph.D. 166 

I could not agree more with my colleague’s statement regarding what constitutes the success of a 167 

cancer treatment, and that current “population-based” clinical standards are “primarily patient 168 

aspecific with suboptimal outcomes.” And I also agree that by adding patient-specific imaging 169 

and -omics information, radiogenomics has the potential to power a more personalized treatment 170 

approach; however, to achieve this we must acquire more data about each patient and add these 171 

data to the population-based clinical factors upon which we currently rely. That is, for each 172 

patient, to stage, age gender, etc., we must add radiomics features computed from her images, 173 

and molecular profiles of samples of her tumors. In this way we add more specificity to the 174 

available data for each patient so that we can match a given individual to a smaller group of 175 

patients and, thereby, be able to choose the most appropriate treatment, and to assess therapeutic 176 

response, for the individual. However, while this is clearly a desirable future, achievement on a 177 

large scale is by no means assured. As I enumerated in my argument against the proposition, 178 

difficult challenges imposed by imaging data (including the sensitivity of many radiomics 179 

features to heterogeneous acquisition and reconstruction protocols, inaccurate and imprecise 180 

tumor segmentation methods, and stochastic noise), genomic data obtained from samples of 181 
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heterogeneous tumors 22

 184 

, and restrictions on sharing patient-specific data, diminish my 182 

expectations for this future to come to pass. 183 

 185 
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