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ABSTRACT 

 

Background: Ultrasound measures are valuable for epidemiologic studies of risk factors for 

growth restriction. Longitudinal measurements enable investigation of rates of change and 

identification of windows where growth is impacted more acutely. However, missing data can 

be problematic in these studies, limiting sample size, ability to characterize windows of 

vulnerability, and in some instances creating bias. We sought to compare a parametric linear 

mixed model (LMM) approach to multiple imputation in this setting with multiple imputation by 

chained equation (MICE) methodology.   

 

Methods: Ultrasound scans performed for clinical purposes were abstracted from women in 

the LIFECODES birth cohort (N=1003) if they were close in time to three study visits (median 18, 

26, and 35 weeks’ gestation). We created imputed datasets using LMM and MICE and 

calculated associations between demographic factors and ultrasound parameters cross-

sectionally and longitudinally. Results were compared with a complete-case analysis.  

 

Results: Most participants had ultrasounds at 18 weeks’ gestation, and ~50% had 

measurements at 26 and 35 weeks. 100% had birthweight. Associations between demographic 

factors and ultrasound measures were similar in magnitude, but more precise, when either 

imputed datasets were used, compared with a complete-case analysis, in both the cross-

sectional or longitudinal analyses. 
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Conclusions: MICE, though ignoring the nonlinear features of the trajectory and within subject 

correlation, is able to provide reasonable imputation of fetal growth data when compared to 

LMM. Because it simultaneously imputes missing covariate data and does not require 

specification of variance structure as in LMM, MICE may be preferable for imputation in this 

setting. 
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Introduction 

Ultrasound measurements collected in pregnancy are the best available tool for diagnosing 

growth restriction prior to delivery and have proven useful for research studies investigating 

mechanisms of fetal growth restriction and risk factors. Longitudinal measurements allow for 

investigation of rates of change in growth, identification of tangential points when growth 

becomes perturbed, and the examination of multiple parameterisations of growth (e.g., head 

size in addition to weight). These facets add significant understanding beyond what was 

capable with the examination of birth weight alone.  

 

Numerous pregnancy cohorts incorporate longitudinal ultrasound information in order to 

assess research questions pertaining to fetal growth.
1-4

 

 A common problem in these studies is 

missingness in ultrasound measurements at one or more time points. Complete case analyses 

will have reduced precision and may incur bias if the missing data mechanism depends on the 

missing growth features themselves. Thus, imputation is particularly valuable under this 

context.  

One approach to model this data is to create linear mixed effects models (LMM) with 

polynomial or spline terms for gestational age that capture non-linearity in the growth 
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trajectory and to then extract predicted values for individuals from these models, either at all 

time points or at missing time points. This is common for parametric analysis of the growth 

curve, although less commonly used as a tool for imputation. While appropriate for use in this 

setting, LMM can be computationally intensive and require careful specification of the mean 

and variance structure. Additionally, LMM cannot simultaneously handle imputation of missing 

covariate data. 

 

An alternative approach may exist in the Multiple Imputation by Chained Equation (MICE) 

methodology. MICE imputes missing values in a dataset under conditionally specified models 

using a Bayesian sampling framework, and can be implemented easily using the R package 

mice.
5,6

 

  MICE has the advantage of imputing both covariate and fetal growth data during the 

imputation process, with a sequential conditional imputation strategy cycling iteratively 

through univariate imputation models. MICE is applied to impute a variety of types of missing 

data but, to our knowledge, has not been examined in the context of missing fetal growth 

measurements. Presumably, this is due to the perception that the methods developed for 

creating fetal growth curves more accurately predict missing growth measurements as a 

trajectory over time compared to algorithms implemented in MICE, which does not utilise 

temporal information in an explicit way. However, the comparative performance of these two 

different methods has not been examined quantitatively.  

Methods 

LIFECODES is a prospective birth cohort conducted at Brigham and Women’s Hospital (BWH) in 

Boston, Massachusetts, USA. Women are eligible if they are at least 18 years of age, are 

recruited prior to 15 weeks’ gestation, and plan to deliver at BWH.
7

 

 The present analysis 

includes data on pregnancies from singleton live births delivered 2006-2008 (n=1003). 

 

Gestational age at delivery is calculated by combining self-reported date of last menstrual 

period with early first trimester ultrasound dating.
7
 All pregnancies at BWH receive a second 
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trimester (~18 weeks) ultrasound scan for assessment of anthropometry, including abdominal 

and head circumference, femur length, and estimated fetal weight (EFW; calculated from the 

formula of Hadlock).
8

 

 Additionally, many pregnancies have additional ultrasounds performed 

outside of the standard window. For the present analysis, ultrasound scans were abstracted if 

they were close in time to three study visits (Visits 2-4; median 18, 26, and 35 weeks’ gestation). 

Birth weight was recorded at delivery for all pregnancies. All fetal growth measurements were 

imputed and modeled in their raw form (i.e., not z-scored). 

First, we fitted LMM for each anthropometric parameter using the lme function in the nlme 

package
9

 

 in R with model selection based on the Akaike Information Criterion (AIC; additional 

details in Supplemental File 1). We created 50 datasets with imputations for missing 

measurements based on the fitted model parameters. Gestational age for the missing 

measurement was randomly drawn from a normal distribution.  

Second, we created another set of 50 imputed datasets using the mice package in R 

(Supplemental File 2).
5,6

 

 Fetal growth variables used in the imputation procedure for our 

dataset along with their missing percentages are listed in Table 1. Additionally, missing 

covariates were imputed including: health insurance provider (n=30); body mass index (BMI, 

n=14); alcohol use in pregnancy (n=20); and infant sex (n=1). Other covariates without 

missingness were included as well, consistent with those used in LMM.  

We compared the imputation methods by examining empirical associations between growth 

measurements and factors known to be associated with fetal growth,
7
 including: maternal age, 

BMI, infant sex, smoking, and preeclampsia. For the cross-sectional analysis, we examined all 

factors in one model in relation to each fetal growth measurement (e.g., EFW) separately using 

linear regression. For the longitudinal analysis, we utilised the same growth curve models that 

were fitted for the LMM imputation approach as our analysis model. Finally, we examined rate 

of change in growth by day of gestation by including an interaction term between gestational 

age and each co-factor in LMM. We performed these analyses using the original data (un-
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imputed, complete-case analysis), LMM-imputed data, and MICE-imputed data for comparison. 

Methods for pooling estimates from imputed datasets are described in Supplemental File 3 and 

were the same for LMM and MICE. 

 

Results 

Characteristics of the study population have been presented previously.
7

 

 Only ~10% of 

participants were missing measurements from Visit 2 and ~56% and 40% from Visits 3 and 4, 

respectively (Table 1). All participants had birth weight recorded at delivery.  

Following imputation, mean and standard deviation of growth measurements by either 

approach were similar to those observed in the original data (Table 1, Figures S1 and S2 in 

Supplemental File 4), except for EFW, where imputed LMM data were generally greater in 

magnitude than observed measurements from Visit 3 and were more varied (Figure 1). 

Differences in imputed measurements were generally normally distributed and similar across 

the duration of pregnancy (Figure S3 in Supplemental File 4).  

 

Table 2 shows a condensed set of associations between maternal and pregnancy factors and 

EFW by imputation method for: 1) Cross-sectional analyses (Visit 3 only); 2) Repeated measures 

analysis; and 3) Rate of change analysis. Expanded results with additional visits (cross-sectional) 

and other ultrasound parameters (all methods) are presented in Tables S1-S4 in Supplemental 

File 4. We expected to see similar effect estimates with more precision in both imputed models, 

and this was largely the case. For Visit 3, confidence intervals for almost all associations were 

narrowed in LMM- or MICE-imputed models compared to those observed in the original data, 

with tighter intervals observed in LMM-imputed models. In longitudinal models, precision was 

generally, but not always, improved in LMM- and MICE-imputed models. In models of weight, 

precision was best in MICE-imputed models. Finally, in rate of change analyses, we observed 

very similar interaction terms and precision in the original data as compared to LMM- and 

MICE-imputed data (Table 2). 
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Comment 

Ultrasound measures of fetal growth during gestation have the potential to shed light on the 

mechanisms and causes of growth restriction and overgrowth. These data are more precise, 

can capture individual anthropometric measurements (e.g., head circumference), and allow for 

calculation of rates of change in pregnancy or specific windows of vulnerability.
10-13

 While some 

studies have utilised imputation for ultrasound data, most perform complete-case analyses or 

methods that handle drop-outs when they are missing at random.
3,14,15

 

 This often limits our 

power to characterize windows of susceptibility. Acknowledging that MICE is a suitable 

approach in this setting could extend its use and the knowledge to be gained from analyses 

using ultrasound data.  

The choice to impute over using complete case-analyses or missing outcome data also depends 

on the amount of missingness in the dataset and whether missingness is dependent on the 

observed variables (missing at random) or unobserved outcome (not missing at random). Our 

improved precision rarely identified associations that would have gone unnoticed in complete-

case results, which may be a result of low proportions of missing data. We cannot comment on 

the bias incurred under each approach without a gold-standard. However, both imputation 

methods can handle data that are missing at random. We posit that using an imputed dataset 

may be less biased in this particular setting (i.e., when ultrasounds are collected for clinical 

rather than research purposes) because some measurements may be collected specifically 

because the clinician anticipates undergrowth of the fetus. Finally, it should be clear that while 

imputation is appropriate for epidemiologic research for exploring associations, it is not 

designed to be used for individual-level prediction. 

 

Conclusion 

In a comparison of two approaches for imputing missing ultrasound measurements of fetal 

growth, we found the MICE method performed as well as the LMM approach, with results from 

both imputed datasets showing improved precision compared to complete-case analyses. 

Because of the relative ease of implementing MICE since it does not require specification of 
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non-linear terms to capture the growth trajectory or specification of the variance-covariance 

structure, and because it can simultaneously handle imputation of missing covariate data, MICE 

can be applied in future work utilizing ultrasound data of fetal growth with missing 

measurements. Future longitudinal studies of fetal growth may consider MICE as an imputation 

approach, although caution should be taken with extension to other populations.  
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Figure legends 

 

Figure 1 Observed versus imputed measurements for (a) LMM compared to (b) MICE 

imputed measurements of estimated fetal weight 
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Table 1. Gestational age and fetal growth measurements by visit in the original (N=1003), LMM imputed (N=897), AND MICE 

imputed (N=1003) study populations. 

 N missing (%) Original mean (SD) LMM mean (SD) MICE mean (SD) 

Visit 1     

Gestational age (weeks) 86 (8.6) 10.6 (2.1)  10.6 (2.1) 

Crown-rump length (mm) 86 (8.6) 41.2 (21.0)  41.1 (21.0) 

Visit 2     

Gestational age (weeks) 111 (11.1) 18.1 (1.1) 18.1 (1.1) 18.1 (1.1) 

Abdominal circumference (mm) 112 (11.2) 126.7 (14.7) 126.5 (14.4) 126.4 (14.5) 

Head circumference (mm) 111 (11.1) 148.5 (14.7) 148.3 (14.3) 148.3 (14.5) 

Femur length (mm) 111 (11.1) 26.5 (3.7) 26.5 (3.6) 26.5 (3.7) 

Estimated fetal weight (grams) 112 (11.2) 254.5 (60.2) 253.6 (58.9) 253.2 (59.0) 

Visit 3     

Gestational age (weeks) 560 (55.8) 26.4 (1.9) 26.4 (1.9) 26.3 (1.9) 

Abdominal circumference (mm) 560 (55.8) 221.6 (23.7) 222.1 (23.5) 220.6 (22.7) 

Head circumference (mm) 560 (55.8) 246.9 (22.8) 247.2 (21.7) 246.5 (21.6) 

Femur length (mm) 560 (55.8) 49.4 (5.4) 49.5 (5.2) 49.2 (5.3) 

Estimated fetal weight (grams) 601 (59.9) 1049.8 (266.0) 1056.6 (293.0) 995.0 (273.9) 

Visit 4     

Gestational age (weeks) 417 (41.6) 35.2 (1.7) 35.2 (1.7) 35.1 (1.8) 

Abdominal circumference (mm) 417 (41.6) 317.5 (25.2) 317.5 (23.7) 318.0 (24.8) 

Head circumference (mm) 428 (42.7) 316.5 (13.8) 316.5 (13.0) 316.5 (13.8) 
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Femur length (mm) 417 (41.6) 67.8 (4.2) 67.7 (4.0) 67.5 (4.6) 

Estimated fetal weight (grams) 417 (41.6) 2684.5 (524.8) 2619.3 (508.8) 2684.3 (517.8) 

Delivery     

Final gestational age (weeks) 1 (0.1) 38.5 (2.3) 38.6 (2.3) 38.5 (2.3) 

Birthweight (grams) 0 (0) 3233.6 (631.6) 3241.9 (623.1) 3233.6 (631.6) 

The sample size reduces because for LMM method we only used patients who have complete covariates and at least one gestational age observed whereas MICE 

imputes the growth parameters and covariates sequentially.  
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Table 2. Adjusteda associations between pregnancy factors and estimated fetal weight capturing cross-sectional associations at visit 3 

(median 26 weeks’ gestation), longitudinal associations across pregnancy, and rate of change in growth by pregnancy factors per day 

 
Original data 

β (95% confidence interval) 

LMM Imputed 

β (95% confidence interval) 

MICE Imputed 

β (95% confidence interval) 

Cross-sectional    

Maternal age (years) 1.9 (-0.7, 4.5) 1.8 (-0.3, 3.8) 1.2 (-0.6, 3.1) 

Maternal BMI (kg/m2) 4.7 (2.5, 6.8) 6.1 (4.3, 7.9) 4.0 (2.4, 5.6) 

Infant sex -2.5 (-27.3, 22.2) -41.1 (-60.3, -21.9) -9.2 (-27.4, 8.9) 

Maternal smoking -9.8 (-61.5, 41.9) -45.0 (-88.8, -1.2) 5.9 (-35.1, 46.8) 

Preeclampsia 3.1 (-38.3, 44.6) -22.3 (-59.6, 15.0) -6.0 (-37.7, 25.8) 

    

Longitudinal    

Maternal age (years) 0.6 (-2.1, 3.3) 0.5 (-2.1, 3.0) 1.2 (-1.1, 3.4) 

Maternal BMI (kg/m2) 5.4 (3.1, 7.7) 4.1 (1.8, 6.4) 5.1 (3.1, 7.1) 

Infant sex -42.7 (-67.8, -17.5) -40.9 (-65.1, -16.7) -40.7 (-62.0, -19.4) 

Maternal smoking -43.7 (-100, 12.9) -34.5 (-89.7, 20.7) -26.2 (-74.2, 21.8) 

Preeclampsia -9.9 (-57.7, 38.0) -8.2 (-55.2, 38.8) -13.1 (-54.5, 28.2) 

    

Rate of change by dayb    

Maternal Age GA 0.4 (0.23, 0.58) 0.4 (0.2, 0.5) 0.3 (0.2, 0.5) 

Maternal BMI GA 0.6 (0.39, 0.75) 0.5 (0.4, 0.7) 0.5 (0.3, 0.7) 
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Infant gender GA -5.5 (-7.4, -3.5) -5.3 (-7.0, -3.6) -4.9 (-6.8, -3.0) 

Maternal smoking GA -6.8 (-11.2, -2.4) -6.9 (-10.9, -3.0) -4.9 (-9.3, -0.6) 

Preeclampsia GA -1.1 (-5.1, 3.0) -0.5 (-4.0, 3.0) -0.4 (-4.2, 3.4) 
aAll models additionally adjusted for maternal race, health insurance provider. bA separate model with covariate by time interaction was fitted for each covariate 

of interest. In particular, the model for the growth parameter     is specified as                                                     , where     
denotes gestational age of  -th subject at  -th visit,    denotes the covariate of interest (e.g. maternal age),    denotes the rest of the covariates of  -th subject. 
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