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Abstract 

 The local field potential (LFP) is an aggregate measure of group neuronal 

activity and is often correlated with the action potentials of single neurons. In 

recent years investigators have found that action potential firing rates increase 

during elevations in power high-frequency band oscillations (50-200 Hz 

range). However action potentials also contribute to the LFP signal itself, making 

the spike–LFP relationship complex. Here we examine the relationship between 
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spike rates and LFPs in varying frequency bands in rat neocortical recordings.  

We find that 50-180Hz oscillations correlate most consistently with high firing 

rates, but that other LFPs bands also carry information relating to spiking, 

including in some cases anti-correlations.  Relatedly, we find that spiking itself 

and electromyographic activity contribute to LFP power in these bands.  The 

relationship between spike rates and LFP power varies between brain states and 

between individual cells.  Finally, we create an improved oscillation-based 

predictor of action potential activity by specifically utilizing information from 

across the entire recorded frequency spectrum of LFP. The findings illustrate 

both caveats and improvements to be taken into account in attempts to infer 

spiking activity from LFP. 

 

Introduction 

Understanding how the local field potential (LFP) relates to spiking activity 

can yield data of interest both for clinical and scientific purposes (Jacobs & 

Kahana, 2009; Ray & Maunsell, 2011; Weiss et al., 2013).  The LFP reflects the 

coordinated transmembrane currents summed across nearby neurons, including 

spikes (Buzsáki et al., 2012; Einevoll et al., 2013) and also has been shown in 

many brain regions to coordinate the timing of action potential generation 

(Buzsáki, 2010).  Volume-conducted potentials, such as electromyographic 

signals

In the cortex in particular large-scale rhythms are less prominent during 

waking behavior than in other regions such as the hippocampus, with power in 

the “gamma” band of frequencies (30-200Hz) some of the most prominent during 

the waking state (Bragin et al., 1995; Watson et al., 2016).  As a result, much 

attention has been paid in recent years to the role of gamma-band (30-100 Hz) 

activity (Buzsáki & Wang, 2012; Lisman & Jensen, 2013), with several groups 

extending their analyses to 'high gamma' (or ‘epsilon’ band (Buzsáki & Wang, 

2012)) signals of varying definitions, ranging from 60-500 Hz (Canolty et al., 2006; 

Crone et al., 2006; Colgin et al., 2009; Gaona et al., 2011). In the hippocampus, 

wavelet analysis identified three distinct gamma bands with each sub-band 

 (EMG), can also part of the compound LFP.   
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associated with varying degrees of spike modulation of both pyramidal cells and 

interneurons (Tort et al., 2010; Belluscio et al., 2012; Schomburg et al., 2014; 

Fernandez-Ruiz et al., 2017; Lasztóczi & Klausberger, 2017). The precise 

boundaries between distinct gamma sub-bands and indeed other LFP frequency 

bands remain less well defined in the neocortex and would benefit from 

increased exploration.

Indeed, the multitude of forms and diverse characteristic frequencies seen 

across brain region, species, network state and even cycle-to-cycle variance in 

excitatory-inhibitory balance (Atallah & Scanziani, 2009; Buzsáki & Wang, 2012) 

renders the term ‘gamma band activity’ difficult to precisely define.  Gamma-band 

LFP can reflect both local processes and projected patterns from distant regions 

(Schomburg et al., 2014; Bastos et al., 2015; Fernandez-Ruiz et al., 2017). 

Sometimes, increased gamma band power is used synonymously with 

‘desynchronization’ of the LFP, implying an uncoordinated discharge of pyramidal 

cells (Renart et al., 2010; Vyazovskiy & Harris, 2013). Nevertheless, elevated 

asynchronous multi-unit activity (MUA)

  

 activity can also increase spectral power, 

causing a ‘broadband’ shift in the frequency spectrum (Manning et al., 2009; Ray 

& Maunsell, 2010, 2011; Belluscio et al., 2012; Lachaux et al., 2012; Scheffer-

Teixeira et al., 2013; Miller et al., 2014, 2016; Johnson & Knight, 2015). Other 

times, gamma band activity is assumed to reflect a true oscillation, supporting 

temporal coordination and synchronization of principal cells within and across 

networks (Buzsáki et al., 1983; Gray & Singer, 1989; Bragin et al., 1995; Buzsáki 

& Chrobak, 1995; Engel et al., 2001; Varela et al., 2001; Fries, 2005). In general, 

the periodicity of gamma oscillations is thought to reflect a relatively 

balanced coordination

 Over the past decade, many papers have been published taking the 

pragmatic approach of using localized high gamma as a compound measure for 

local brain activity, especially in intracranial recordings in patients (Lachaux et al., 

 between excitation and inhibition in local cortical circuits 

(Buzsáki & Wang, 2012).  Yet the details of excitation-inhibition coupling are not 

completely explored and have not been measured at the scale of large 

populations of neurons.   A
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2012; Voytek & Knight, 2015).  This work is based on well-documented 

correlates between cortical unit activity and broadband high gamma power in 

ranges spanning from 40-130Hz (Nir et al., 2007, 2008) to full broad band 

spectral activity (Miller et al., 2014).   Gamma activity is modulated by task and 

other cognitive aspects (Nir et al., 2007, 2008) and also correlates with BOLD 

signal (Logothetis et al., 2001), though it remains to be identified whether the 

energy costs underlying the BOLD is due to inhibitory/excitatory

 Despite progress, the relationship between spiking of neocortical neurons 

and cortical oscillations remains incompletely defined.  It is tempting to use the 

hippocampal theta oscillation as an instructive example to inform our thinking on 

any and all oscillations: the theta oscillation in hippocampus is largely externally 

driven and imposed on local hippocampal neurons, is high amplitude, regular, 

narrow-band, and is known to coordinate not only spike timing relative to the 

oscillation but also to each other (Buzsáki, 2010; Colgin, 2016).  Yet in the case 

of cortical gamma band LFP, oscillations are often much lower amplitude (even 

when corrected for 1/frequency-related power losses observed across the LFP 

spectrum) less regular, transient, often wider band and it is not clear they have 

the elaborate effects upon population spiking that hippocampal theta does 

(Buzsáki & Moser, 2013).  Indeed, not all oscillations are equal and in the case of 

cortical gamma LFP, power may result from occasional genuine narrow band 

oscillations or may actually be due to simultaneous mixed oscillatory states, EMG 

or spiking activity itself (Jarvis & Mitra, 2001; Crone et al., 2006; Whittingstall & 

Logothetis, 2009; Ray & Maunsell, 2011; Belluscio et al., 2012). This is especially 

important for higher frequencies because the extracellular units reflect not only 

the short spikes but also the spike-afterdepolarization and -hyperpolarization 

components of both pyramidal neurons and interneurons (King et al., 1999) can 

also contribute to various sub-gamma bands (Penttonen et al., 1998).  

Additionally, both periodic and wide-band components of gamma oscillations can 

be phase-power modulated by slower rhythms (Buzsáki et al., 1983; Soltesz & 

Deschênes, 1993; Bragin et al., 1995; Canolty et al., 2006). Although spike 

 balance driving 

the oscillations or the spike themselves  (Mukamel, 2005; Magri et al., 2012).  
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contamination of oscillatory power can be a theoretical nuisance, studying the 

temporal features of such high-frequency events may provide clues about 

oscillatory events that modulate them, even in situations when invasive unit 

recordings are not an option. Furthermore, detailed study of spike-LFP coupling 

with high neuron counts are difficult in patients and may be complimented by 

animal models wherein larger numbers of neurons can be measured with high-

density probes to allow for more detailed quantification of relationships between 

neurons and the surrounding local field potential.  

 In the present experiments, we use data recorded from the cortex of rats 

to examine more precisely the frequency bands, temporal precision and single-

cell correlates of spike-LFP coupling across wake, REM (Rapid Eye Movement) 

sleep and nonREM sleep.  We use a data-driven approach to broadly examine 

the correlates between various frequency bands and diverse neuronal types 

across many states.  We also examine the effects of EMG and spikes 

themselves on cortical high frequency LFP bands.  While we confirm that the 

power of 50-180Hz oscillations couple positively with population-wide spike rates 

during waking states we find that this effect is modulated across neurons, states, 

muscular movement state and even the ratio of excitatory to inhibitory neuron 

activity.  We also find that population spiking activity within the wake state is best 

predicted using an approach integrating information from across the power 

spectrum rather than from a single band. 

 

METHODS 

 All data and procedures were reported previously (Watson et al., 

2016). 

Briefly, subjects were male Long-Evans rats aged 3-7 months and were 

recorded during free wake and sleep behavior in their home cages at least 7 

days after chronic surgical implantation of silicon probes.  Data was acquired at 

20 kHz and was separately low pass filtered to 1250Hz for local field potential 

(LFP) signal and high pass filtered 

All protocols were approved by the Institutional Animal Care and Use 

Committee of New York University and Weill Cornell Medical College. 

at 800 Hz and thresholded at 3.5 standard 
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deviations below the mean

The dataset includes 11 animals and 27 recording sessions, 995 putative 

excitatory (pE) units and 126 putative inhibitory (pI) units based on classification 

using spike waveforms shape (Stark et al., 2013; Watson et al., 2016).  

 to find spiking events using the NDManager Suite 

(Hazan et al., 2006).  Threshold crossings which were then grouped into clusters 

using KlustaKwik (Rossant et al., 2016) and manually screened using klusters 

(Hazan et al., 2006).   

In brief, 

pE units had wider waveforms and pI units had narrower waveforms as 

measured by a combination of trough-to-peak times and inverse of maximal 

wavelet frequency.  This separation method was generated based on 

optogenetically-tagged parvalbumin positive pI units and CamKII-positive pE 

units (Stark et al, 2013).  Further justification comes from work showing that pE 

units tended to be followed by increases in spiking by surrounding units, at 1-5ms 

time lag while pI units are followed by decreases in spiking by surrounding units 

at the same time lag (Watson et al, 2016; Supplemental Figure 2A).

EMG-related signal was extracted from the LFP signal using correlations 

between distant channels after filtering at 300-625Hz (Watson et al., 2016).  

Each second was 

   

initially

 All analyses were carried out using a combination of custom code in 

MATLAB (Natick MA), the TStoolbox 

(https://github.com/PeyracheLab/TStoolbox), the FMA Toolbox 

(http://fmatoolbox.sourceforge.net/), and a Buzsaki laboratory code library: 

“buzcode” (

 automatically categorized into WAKE, nonREM, REM 

and Microarousal (MA) states using a classifier based on a combination of 

spectrographic power and LFP-derived EMG tone.  These sleep states were 

manually checked and corrected after initial automated scoring.   

https://github.com/buzsakilab/buzcode).    

Power spectral analysis was done via Gabor wavelet convolution using 

MATLAB (awt_freqlist.m in buzcode collection).  Wavelet bands were 50 

logarithmically spaced bands between 1Hz and 625Hz (the Nyquist frequency for 

our signal based on our sampling rate of 1250Hz), but were rounded to unique 

integer values to prevent overlap in heuristically nearby frequencies.  Wavelet 
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data was sampled at 1250Hz, ie a 1:1 ratio with our LFP file, despite the fact that 

bins tended to be much larger than that interval. 

Binwise analyses were done via creation of specific bins using TStoolbox 

that were then analyzed for either spike rate or spectral components or both.  

Phase-modulation analysis was carried out using circular statistics tools inside 

buzcode.  For shuffled controls, spike times within a 3 cycle timespan (for 

whatever frequency is in question) were randomly shuffled with a flat probability 

density function.  Correlation analyses were all carried out using Pearson 

correlations.  For exploration of log value correlations for the final analyses 

presented, data were normalized to have a maximum of 1 and minimum of the 

minimum specifiable data above 0, in order to prevent taking log of negative 

values.   

 

RESULTS 

Total population firing activity correlates with gamma LFP power 

We recorded a combination of LFP and action potential activity from 11 

Long Evans rats over 27 sessions as they freely behaved in their home 

environments for at least 2 hours per recording.  After spike detection and sorting 

using klustakwik,

Our initial analysis was aimed at correlating combined population neuronal 

activity with broadband gamma power as has been seen in human data 

(Mukamel, 2005; Nir et al., 2007, 2008; Ray et al., 2008; Manning et al., 2009; 

Miller et al., 2014). The wideband (1 Hz - 20 kHz) data was low-pass filtered (< 

1250Hz) and we performed wavelet decomposition at approximately 

logarithmically-spaced frequency intervals between 1 Hz and 625 Hz (see 

Methods).  Based on previous work (Mukamel, 2005; Nir et al., 2007, 2008; Ray 

et al., 2008; Manning et al., 2009; Miller et al., 2014) as well as our own findings 

to be presented below, we defined a band of “broadband gamma” between 50-

 we separated units into putative excitatory (pE) or putative 

inhibitory (pI) types based on their waveforms (Stark et al., 2013) and we 

classified each second of the recordings into WAKE, nonREM, REM or 

intermediate states  (Watson et al., 2016). 
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180 Hz and correlated that against firing rates.  Figure 1A shows z-scored firing 

rates of all pE units (n = 24) in 1-second bins from a single recording (green), all 

pI units (n = 5) from that same recording (red), integrated 50-180 Hz power in the 

same bins (blue) and EMG tone derived from the high-pass filtered LFP (black) in 

the same recording session during waking (WAKE), nonREM and REM sleep. 

Visual inspection of these curves suggests that firing rates correlate with gamma 

band LFP power. Both firing rates of individual neurons and broadband gamma 

(50-180 Hz) LFP power in one-second epochs varied extensively and showed an 

approximately Gaussian distribution on a logarithmic axis. We found positive 

correlations between summated population firing rates and broadband gamma 

power during Wake, nREM and REM for pE units and pI units; Figure 1C; 

Supplementary Figure 1). 

  

Single unit firing rate correlations with single frequency band powers in various 

brain states 

Next, we quantified the Pearson correlation coefficients between the firing 

rate of each individual neuron and the powers of every frequency band analyzed 

in the local LFP at 1-second bin size in order to examine the full family of 

correlations between neurons and frequency bands in the cortex (Figure 2).  We 

found that in the WAKE state both pE and pI neurons tended, on average, to be 

positively correlated with theta (4-8Hz) and gamma power (30-180Hz), but they 

tended to fire less when delta (1-4Hz) and spindle-beta band (10-30Hz) power 

were increased (Figure 2A).  A similar profile was seen in REM sleep.  On the 

other hand, in nonREM sleep all bands above 5Hz were positively correlated and 

bands below 5 Hz were negatively correlated.  In all states, the highest frequency 

bands (above 300 Hz) showed decreased ability to predict spike rates relative to 

the 50-180Hz band.  We compared these power-spike rate curves, or “correlation 

spectra” with the LFP power spectrum in each state (Figure 2B) and observed 

that LFP spectral power qualitatively differed in profile from correlation spectra 

(LFP power presented corrected for 1/frequency decrement of power by 

multiplication of each value by the frequency of the band – for easier visual 
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comparison against Figure 2A). This observation indicates that the overall curve 

of correlation spectra are not simple reflections of LFP power, indicating that they 

represent some specific process separate from LFP power alone. 

In examining the distribution rather than the mean of individual neuronal 

correlations with the 50-180 Hz broadband gamma (Figure 2C) we found that 

that while the spike rates of many pE neurons are positively correlated with 

power in this band, many also exhibit prominent negative correlations.

To test for 

significance, we shuffled the spike rate bin values versus the frequency band 

powers for each cell 200 times.  The 95% confidence intervals are indicated as 

partially transparent shaded regions in figure 2A, we find that nearly all spike-

power correlations are greater than expected by chance.   

  This 

variance between neurons seems to account in part for the lower correlation 

values seen here compared to population-wise analyses (Mukamel et al, 2005 

and Supplemental Figure 1).  An additional component of the somewhat lower 

correlation values seen in many of these analyses may result from the 

particularly high correlations seen during delta-rich states, especially at time bins 

shorter than delta frequency (Supplemental Figure 1 and 

Additionally, many neurons flipped the direction of their modulation by 50-

180 Hz band power across brain states as can be seen in the examples 

highlighted at right in Figure 2C.  Supplementary Figure 2 shows an analysis of 

consistency across states for this broadband gamma-spike rate correlation for 

each cell in the dataset. We found that switching of firing rate correlation with 

broadband gamma as a function of brain state is common across many pE and 

pI units.   

(Nir et al., 2007; Mochol 

et al., 2015).  

  

Contribution of spike waveforms and EMG to high frequency LFP power 

While wavelet power spectra during WAKE in many sessions showed a 

recognizable peak at approximately 400 Hz (Figure 2B), no such peaks were 

observed in the spike–LFP power correlograms. We assumed that the highest 

frequency band is particularly impacted by contamination by both muscular 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

activity and spiking events themselves. EMG was measured using the Pearson 

correlation across physically distant brain electrodes in the 300-650 Hz range, as 

this has been found to correlate well with muscularly-measured EMG activity 

(Schomburg et al., 2014).  We examined the impact of EMG activity on the 

spectrum, which can be seen even by eye on the spectrogram (Figure 3A) by 

subdividing our WAKE episodes into 1-second-long bins and ranked those into 

groups depending on the relative amount of EMG activity.  The periods of 

increased EMG power correlated with increased power above bands from 

approximately 50 Hz up to 650 Hz (Figure 3B). Strikingly, REM sleep epochs 

showed the lowest power in these high frequency bands.  This seems to relate 

with the known drop in muscular tone during REM and adds further support to 

the contribution of EMG activity to spectral LFP power during WAKE.  

Spike waveforms have also been shown to impact LFP in high frequency 

bands in the hippocampus, especially during strongly synchronous neuronal 

firing events (Ray & Maunsell, 2011; Belluscio et al., 2012; Schomburg et al., 

2012). We quantified this effect on the cortical LFP using spike-sampled 

averages and we then dissected that analysis based on spike amplitude and 

distance from electrode (using the known geometry of the implanted 

probes).  For every recording session, we calculated the average raw spike 

waveform for each identified unit and then ranked those spikes from lowest to 

highest amplitude (Figure 3C).  We then calculated the LFP impact of these raw 

waveforms and sorted them by the size of the initial raw waveform.  Based on the 

increased intensity (yellow) at the highest frequencies of the largest spikes in this 

plot, it is visually evident that the highest frequency bands are increasingly 

impacted by the largest amplitude spikes.  We quantified this effect by 

demonstrating increasing slopes and correlation coefficients of spike size-

spectral power with increasing spectral bands (Figure 3D) and found statistically 

significant Pearson correlations between raw waveform size and LFP wavelet 

spectral power for all frequency bands increasing from from p = 10-6 for the 1Hz 

band to p = 10-92 for 625Hz band.  The significant correlations in the high 

frequency bands disappeared when we compared the impact of a spike on the 
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LFP of a channel 200µm away (since the shanks of our silicon probes are 

spaced 200µm apart), although positive correlations remained in the range of p = 

10-10 for bands between 1 and 36Hz. Previous research has shown that spike 

amplitude decreases rapidly with distance and at lateral distances > 150 µm, the 

amplitude is near the biological noise (Henze et al., 2000). Yet, since many 

neurons are included in this annulus, even their very small amplitude 

contributions can add significantly to LFP power (Schomburg et al., 2012), we 

also compared LFP power > 200 µm (two or more shanks away

  

) from the 

recorded spike and found even less contribution at those distances 

(Supplementary Figure 3). 

Timescale of correlation of spike rate to LFP power 

The above analysis used 1 second bins and was not able to determine the 

time precision of the correlation between LFP power and spike rate. To address 

this issue, we varied bin sizes in our LFP band-spike rate correlations.  Figure 4 

shows averages of correlation values from all pE and pI neurons in the dataset 

across all frequency bands at multiple time bin sizes (Figure 4A).  In general, we 

found that across most bin sizes and sleep/WAKE states, larger bin sizes lead to 

greater correlations between spike rate and LFP power - up to a peak of around 

100 second bins.  Bin sizes greater than 200 seconds could not be consistently 

assessed given brain state switches, especially for REM.  The 50-180 Hz band 

continued to stand out with the highest positive correlation to spike rate, followed 

by the theta band during WAKE.  

 It is possible that this increase in correlation values with increasing bin 

durations could relate to improved sampling of a noisy process by longer bins.   

Under this assumption and in order to extract frequency band preference within 

each bin width, we z-scored the values across frequency bands within each bin 

size (Figure 4B).  Across all bin sizes, the 50-180 Hz band continued to be most 

positively correlated with firing rates.  Interestingly, smaller bin sizes correlate 

with a slight increase in the preferred frequency band for spiking rates, though 

these increases were not proportional to the frequency associated with the 
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reciprocal bin size itself.  Within this z-scored series of plots, is a peak in the 

range of 0.1 to 2 second wide bins for the 50-180Hz band, meaning that these 

may all be reasonably equivalent bin sizes for experimenters to choose as 

surrogates for spike rates.    

We wondered what single combinations of bins and bands individual 

neurons most showed preference for.  To do this, we then used this z-scored 

data to search for peaks for each neuron across bin sizes and frequency bands 

(Supplementary Figure 4).  These two dimensional histograms indicate that 

individual unit spike rates showed most preferred bands and bin sizes with 

distributions similar to the amplitude of the mean r value plots shown in Figure 4B 

– with peaks at approximately 90 Hz LFP and 1-second bins with small variance 

across brain states.  Despite this relationship, overall preferences for gamma 

band power as a predictor of spike rates, considerable diversity exists with many 

units firing rates being best predicted by low frequency bands.  

 

LFP phase modulation of spikes 

While spike rate correlations to LFP power represents one relationship 

between spikes and LFP, we wondered if the very different metric of spike timing 

locked to certain phases of an oscillation might show us similar spectral profiles 

to our rate-power metric. To quantify the spike-LFP phase relationship in depth, 

we measured phase-modulation of spike timing to specific phases of the LFP at 

all frequency bands across all units using the mean resultant length (MRL) of the 

vector to measure the phase of firing of spikes for each unit.  We found that both 

cortical pE units and pI showed phase modulation at many frequency bands 

(Figure 5A-B), and that this modulation was greater than expected by chance, as 

compared to spike timing-shuffled LFP.  Excitatory neurons lead the inhibitory 

neurons by approximately 25 degrees in phase space (Supplementary Figure 

5D,E), which corresponds to a 0.4-1.5 ms delay depending on the oscillation 

frequency, and this delay is consistent with models that gamma oscillations are 

mainly brought about by a E-I recurrent mechanisms (Csicsvari et al., 2003; 

Moca et al., 2011; Buzsáki & Wang, 2012).  
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We then used this MRL metric (‘preferred phase’; (Csicsvari et al., 1999)), 

averaged over all pE neurons and pI units across and all frequency bands in 

different brain states, and we again found spikes were best modulated by the 50-

180 Hz broadband gamma range during WAKE and REM, while during nonREM 

lower frequency bands also showed more positive phase modulation than 200 

shuffled datasets (Figure 5C). These phase modulation depths profiles were 

similar to the rate-power profiles shown in earlier figures.  Significant increases in 

MRL relative to shuffled datasets were assessed by a right-tailed Wilcoxon rank 

sum test with alpha set at p = 0.01 after Bonferroni correction.  All frequencies 

showed modulation above chance for their respective cell type

To further assess the relationship between spiking and LFP, we compared 

the relative influence of high LFP power versus low LFP power epochs of each 

oscillation frequency (Supplementary Figure 5).  With this analysis we found that 

high-power epochs of high-gamma band again tended to show a preferential 

prediction of neuronal spike phase, especially during REM sleep and WAKE, 

although other frequency bands also showed a power-dependent phase 

modulation of spiking.  During nonREM sleep, delta-band oscillations in the 1-5 

Hz range exerted a particularly power-dependent correlation with spike phase. In 

the low LFP power group, significant phase-modulation of spikes occurred only in 

the >100 Hz

. 

 range

  

, suggesting that in the very high frequency range, the spike-

LFP correlations may reflect spike coupling to spike afterpotentials themselves 

(Penttonen et al., 1998; Belluscio et al., 2012; Buzsáki et al., 2012; Zanos et al., 

2012) rather than to genuine network oscillations.   

Peri-spiking field potentials and population spiking 

 Putative excitatory and inhibitory units were similar in most respects as 

observed in our analyses thus far using LFP as the independent variable. In the 

following analyses, we regarded spikes as the independent variable and 

constructed spike triggered averages of wavelet power (Figure 6). Wavelet 

spectra were calculated from the LFP recording from the neighboring shank (200 

µm away) from the recorded spike to minimize spike contamination (Figure 3). 
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Wavelet spectra triggered by pE spikes showed an increased gain of 70-150Hz 

band power after the spike, with the low frequencies lasting up to 200 ms after 

the pE spike. In contrast, after pI spikes the gamma activity increase was more 

transient (< 100 ms) and no increase of > 200 Hz power was present around the 

pI spike (Figure 6; Supplementary Figure 3). Theta band power was typically 

increased prior to both pE and pI spikes.  

 In addition to spike triggered wavelets we also gathered spike-triggered 

firing rates of concomitantly recorded pE and pI units (excluding from the same 

shank as the trigger unit due to difficulties detecting spikes within short latencies 

on the same shank).  We found that pE units were roughly synchronous with 

each other with a cross-correlation width of around 10ms, whereas pI units 

tended to follow pE units by approximately 3ms on average (Figure 6A and 6C), 

complementing the pE-before-pI findings of the preferred phase of spikes to the 

gamma cycle (see Supplementary Fig. 6 for similar analysis in nonREM and 

REM states).  

 

Excitatory-inhibitory network balance and LFP   

To determine how excitatory-inhibitory balance may relate to LFP 

oscillations, we calculated the pE unit to pI unit population activity ratio for each 

second (E/I ratio), and generated LFP spectra for each second based which of 

ten E/I ratio bins it fell into.  To calculate E/I ratio we counted the total pE unit 

spikes (across all units in a given session) in a given time bin as a proportion of 

all pE+pI spikes and then z-scored this value for each recording in order to 

compare across recordings.  We categorized each second of each recording into 

one of ten E/I ratio bins and accumulated average LFP wavelet power spectra 

from the seconds that match each of those bins (Figure 7).   We found that the 

magnitude of E/I ratio correlated with LFP band power, although in a complex 

manner.  Similar to the firing rate versus 50-180Hz band correlations (Figure 2), 

we found that the E/I ratio also correlated with the power in the 50-180Hz band 

with lower E/I ratios linked to higher LFP power in the broadband gamma band. 

This was the case not only in the z-scored data (Figure 7, dotted bands) but also 
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in the raw spectra (Supplementary Figure 7).  In addition, we broke the WAKE 

state down into epochs of high movement for at least 5 seconds (WAKE-Move5s) 

or low mobility for at least 5 seconds (WAKE-Nonmove5s). The two wake-related 

states without movement: REM and WAKE-Nonmove5s showed similar patterns 

of modulation of the power spectrum by E/I ratio wherein high frequency power 

decreased as E/I ratio increased and low frequency (5-30Hz) power was 

oppositely modulated co-modulated with high frequency bands in REM. This may 

relate to the tendency for synchronous delta-power dependent states to occur 

during quiet wakefulness – wherein nonREM-like comodulation of 1-30Hz power 

is frequently seen (Watson et al., 2016).  During nonREM, power in all 

frequencies was negatively modulated by E/I ratio. Many of these variances in 

frequency band modulation can be understood from large differences in low 

frequency power in the nonREM and REM states in the raw spectra 

(Supplementary Figure 7).  Regardless, the modulation of the 50-180Hz band 

downward with increasing E/I ratio is common across all states and all analyses. 

 

Wide band correlation-based prediction of spike rates 

A final analysis was to find best LFP-based predictors of population firing.  

Based on our analyses, we saw that while the 50-180Hz band did indeed 

strongly correlate with population firing, we wondered if we could use information 

available from other frequencies to improve our LFP-spike rate predictability.  In 

order to more broadly search for predictors of spiking, we correlated various LFP 

metrics against summated population spike rates in each bin, all within the 

WAKE state.  Our goal was to explore the predictors beyond band-wise power as 

had been used in prior studies but, as a comparison we did perform band-wise 

powers with spikes in various bands, including delta, theta, sigma, beta, low 

gamma, broadband gamma, epsilon 200-600Hz power and 1-200Hz power.   

Next, we used dot product-based projections of within-bin spectra against 

various frequency spectra against including WAKE, WAKE-Move5s, WAKE-

Nonmove5s, nonREM, REM, microarousals, and WAKE minus nonREM. To 

avoid bias for low frequency predictors based on the known 1/frequency-based 
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decrement of oscillatory power, both predictor and test spectra were whitened via 

multiplication of the power value by the frequency.   

Finally we defined “correlation spectra” based on band-wise correlations 

with firing rates as shown in Figure 2A and we projected those against the 

spectra in each temporal bin.  Separate correlation spectra were created for both 

pE and pI unit types from various brain states, again as shown in Figure 2A.  

Since within-recording correlation spectra would not be measurable in 

circumstances without unit isolation, as is the case for many experimenters

Figure 8 shows histograms of correlation r values per recording for a 

subset of the predictors we used (n = 27 recordings over 11 animals).  The 

projection against the correlation spectrum had more consistently positive 

correlation against pE population spiking, with higher mean, median and 

minimum correlations, than other methods used here.  The complete set of 

analyses with all predictors included are shown in Supplementary Figure 8, again 

with the projection against the WAKE-based correlation spectrum showing more 

reliably high correlation values than other predictors. The profile of predictor 

correlations for pI cells was generally similar to that of pE cells while log-

transformed predictors tended to worsen correlation values and log-

transformation of spike rate histogram values did not qualitatively change 

correlation values (not shown).   

, the 

correlation spectra used for our analyses were the dataset-wide mean correlation 

spectra with the idea that these can be used as predictors for any recording 

going into the future.   

 

 

DISCUSSION 

Using high-density recordings with high unit yields in rats, we have shown 

here that LFP power in the 50-180Hz band correlates positively with increased 

unit population firing rates, supporting previous observations (Mukamel, 2005; Nir 

et al., 2007, 2008; Ray et al., 2008; Manning et al., 2009; Miller et al., 2014). We 

report that other frequency bands also carry both positive and negative predictive 
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information about firing rates (Kayser et al., 2007). Additionally, we show that 

correlation is variable across sleep-wake states, with large variability across 

individual neurons and that the timescale of spike-LFP correlation is highest in 

the range of 100 – 2000 milliseconds.  We validated these measurements using 

LFP phase-modulation of spiking of cortical neurons.  We also show that power 

in the gamma to high-gamma range during waking states correlates with lower 

excitatory-inhibitory ratio. Finally, we provide a new metric, dot product projection 

of the correlation spectrum

 

, for quantifying the relationship between spiking and 

LFP, and show that it provides stronger correlations values than previous 

methods.   

Spike-LFP coupling can arise from various mechanisms 

Spikes can relate to LFP in multiple ways and a full understanding of 

spike-LFP coupling should take them all into consideration. First, in the simplest 

case, measured oscillations can result directly from transmission of upstream 

oscillations – either regular or irregular.  More specifically, synchronous afferent 

drive can bring about synchronous depolarization of the target dendritic region, 

often coupled with feed-forward excitation of local inhibitory interneurons. 

Whether the target neurons are phase-locked to the projected afferent LFP 

pattern depends on multiple factors, most importantly on the frequency of the 

input. Frequencies up to approximately 80 Hz can be transferred, whereas above 

this frequency spike coupling with afferent drive is rare (Vaidya & Johnston, 2013; 

Buzsáki & Schomburg, 2015). Yet, spatially resolved gamma power in identified 

dendritic regions can provide important information about the magnitude of 

upstream drive (Colgin et al., 2009; Lindén et al., 2011; Berényi et al., 2014; 

Schomburg et al., 2014; Butler et al., 2017; Fernandez-Ruiz et al., 2017). A 

second mechanism for induction of oscillations is that irregular patterns can be 

induced by local circuit interactions. In this case, local neurons themselves bring 

about EPSPs and IPSPs in their local partners and, in turn induce 

transmembrane currents that can be recorded extracellularly in the form of LFP 

(Buzsáki et al., 2012).  Naturally, there is a correlation between spikes of the 
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participating neurons and the PSPs they bring about. Thirdly, calcium spikes and 

other types of plateau potentials also produce transmembrane currents, thus 

contribute to LFP. Fourth, Na+

 In addition to the multiple sources of LFP itself, the concept of spike-LFP 

coupling has at least two definitions. In the case of oscillatory LFP, a widely used 

measure is spike-phase coupling (‘spike-LFP phase’ coupling). Spike-phase 

coupling can be characterized by either establishing preferred phase (mean 

phase) of spikes to a particularly rhythm or the magnitude of phase-modulation 

(mean resultant length or MRL)(Csicsvari et al., 1999). Another way of measuring 

spike-LFP coupling is to correlate spike density and LFP power in predetermined 

time windows (‘spike rate-LFP power’ coupling). These different measures can 

be affected by various factors, such as brain state, and may or may not correlate 

with each other.  Here we used both metrics in search of convergent findings of 

co-modulation of spikes and LFP. 

 spikes of neurons working coherently or in an 

asynchronous regime have afterpotentials lasting 2-20 ms  (Nadasdy et al., 1998; 

Fernandez et al., 2005), and such afterpotentials contribute power to the gamma 

frequency band. Finally, there are artefactual (ie not based on local 

transmembrane) sources of LFP, of which EMG contributes most power to the 

gamma band. Separation of these distinct mechanisms and quantifying their 

contribution to the compound LFP requires prior knowledge of anatomical 

connectivity combined with high spatial resolution methods and simultaneous 

recording of spikes from individual neurons (Buzsáki & Schomburg, 2015). 

 

LFP-spike coupling – comparison with previous works 

Important differences in our experiments compared to those in humans 

should be noted and taken into account.  Our data were obtained from the deep 

layers of the neocortex, whereas ECoG recordings largely reflect activity of 

transmembrane currents from the apical dendrites of layer II-V neurons. The 

rodent hippocampus generates large amplitude and highly regular theta 

oscillations (Vanderwolf, 1969), whereas theta activity in humans is more 

intermittent and of lower amplitude  (Kahana et al., 2001). While theta power in 
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the LFP could reflect volume conducted fields, our finding of theta power-related 

unit firing in the neocortex and theta-phase modulation of neocortical units (Sirota 

et al., 2008) indicates long-range communication between hippocampus and 

neocortex, which may be less expressed in primates. Despite differences in such 

details, we believe that our main findings in rodents generalize to the human 

brain as well.  

 

Spike contribution to the LFP 

LFP data can serve as an extremely useful mesoscopic measurement of 

neuronal cooperation, with gamma band activity providing signatures of local 

processing within neural circuits. Human cortical surface recordings 

(electrocorticogram, ECoG), often performed in patients with epilepsy, do not 

give direct access to spiking information and so they rely upon LFP-related 

signals. Yet, it has been repeatedly suggested that higher frequency power 

largely reflects summed spikes of numerous neurons (Ray et al., 2008; 

Schomburg et al., 2012). In support of these suggestions, we found that LFP 

activity in the range 50-180 Hz was positively correlated with population firing 

rates and even firing rates of most individual neurons.  This frequency range, 

showed the greatest power correlation (positive or negative) with spiking of any 

band. Furthermore, we also show that activity in higher frequency bands can 

often carry contamination from the spikes themselves (Figure 3).  Spikes and 

their afterpotentials contributed to power in bands as low as 50 Hz (see also in 

(Belluscio et al., 2012)), down to the band where true relatively narrowband 

network oscillations dominate (McAfee et al., 2017; Saleem et al., 2017).   

 It remains unclear why or how cortical neurons seem to fire more 

coincidently with increased power in the high gamma range.  Does high gamma 

reflect a bona fide oscillation or simply spikes and spike afterpotentials  

(Belluscio et al., 2012; Schomburg et al., 2012)?  Additional methods, such as 

simultaneous recording from several input structures, high-density recordings 

across multiple layers, current source density techniques, independent 

component analysis, de-spiking, cross-frequency coupling analyses and spike-
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LFP phase-locking, are needed to effectively separate LFP components that 

arise from synaptic currents and spike afterpotentials, respectively (Csicsvari et 

al., 2003; Canolty et al., 2006; Sirota et al., 2008; Zanos et al., 2011; Belluscio et 

al., 2012; Fernandez-Ruiz et al., 2012; Schomburg et al., 2014; Buzsáki & 

Schomburg, 2015). Furthermore, appropriate methods are needed to determine 

whether gamma power reflects an oscillation or results from summation of non-

rhythmic events with time constants similar to the gamma waves (Mureşan et al., 

2008; Buzsáki & Schomburg, 2015).  

 

Variable LFP-spike coupling across different bands, states and cells 

To establish a disciplined way of quantifying spike-LFP power coupling, 

we performed band-by-band correlational analysis at 50 log-spaced intervals 

between 1 Hz and 625 Hz and used the r values of the correlations of each of 

these bands (Figure 2A) to create a prediction vector for the optimal LFP-spiking 

correlation.  By projecting the LFP from each of the time bins of interest against 

this vector, we were able to predict spike rates more reliably than with broadband 

high-gamma alone (Nir et al., 2007), broadband LFP (1-200Hz, (Miller et al., 

2014)) or other specified frequency bands (Figure 8). Our unbiased method could 

find the most reliable preferred LFP band for the spikes of individual neurons. 

These findings revealed that while the majority of pyramidal cells had a positive 

correlation with gamma band power, a significant minority of neurons had 

negative correlations with gamma power. 

 Putative excitatory and inhibitory units had largely similar -spike rate 

correspondences although pE units showed more variance.  This increased 

variance may largely relate to the slow oscillation of nonREM sleep because the 

difference between pE and pI neurons disappeared with bin sizes larger than 1s 

(corresponding to slow oscillations). 

 Within the pE units, the higher firing rate units appeared to have stronger 

correlation with broadband gamma power.  It is not clear whether this 

observation is due simply to spike-LFP contamination, statistical features or 

whether it is a true physiologic difference between cell types, although it has 
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been observed by other researchers (Nir et al., 2007).  High versus low firing rate 

neurons have been found to show other physiologic differences in recent years  

(Mizuseki et al., 2009; Buzsáki & Mizuseki, 2014; Grosmark & Buzsaki, 2016; 

Watson et al., 2016) and so further information may be extracted using this 

spike-power correlation difference. 

 As brain state varies, the spike-LFP correlation also changes.  In particular 

nonREM sleep has the strongest cortical LFP oscillations, in the form of delta 

waves (or “slow waves”) and in that state the mid-frequencies spanning from 5-

50Hz are all positively correlated with spike rates, unlike during WAKE or REM.  

Delta power remains negatively correlated with spike rates in all states and with 

all bin sizes, while 50-180Hz power remains positively correlated in all states. 

While the full population correlation remains positive in this band, we showed that 

single neurons could switch their preference for spiking with the 50-180Hz band 

across brain states.  Spiking activity of putative pyramidal cells typically co-varied 

with gamma power, but a minority showed an inverse relationship. In most cases, 

the negative correlation was observed during nonREM sleep. In future studies, it 

will be interesting to determine functional differences between neurons that do or 

do not switch preference for gamma band.  

In contrast to the gamma band, delta, sigma and beta band power were 

anti-correlated with spike rates during the wake state. Theta frequency was the 

only low frequency band which displayed a positive correlation with spike rates. 

Theta LFP may or may not be generated in the neocortex and the positive 

coupling likely corresponds to entrainment of neocortical neurons by the 

hippocampal-entorhinal projections (Sirota et al., 2008).  

 We used two additional complementary methods to assess the 

relationship between spiking and LFP: LFP phase modulation and spike-

triggered wavelet spectra.  In wake and REM sleep, the high gamma band in the 

50-180Hz range showed preferential modulation of spike timing, while in 

nonREM sleep, positive spike-LFP coupling expanded down to the delta 

frequency band.  Furthermore, epochs of higher power had stronger phase 

modulatory effects than lower power epochs for most frequency bands.  The 
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spike triggered wavelet-averaging approach showed similar power distributions 

to bin-based methods and peaks were also shared with phase modulation 

metrics, lending each credence by dint of their convergence.  

 

Excitatory inhibitory coordination 

The spike triggered LFP average analysis also showed a consistent effect 

of excitatory-inhibitory cell firing patterns where E cells tend to precede I cells by 

1-3 milliseconds.  This is a novel finding but which is consistent with both recent 

intracellular findings on post synaptic potential relative timing (Haider et al., 2016) 

and with models of gamma oscillations (Börgers et al., 2008; Isaacson & 

Scanziani, 2011),  

 This regularly timed excitatory-inhibitory timing may also relate to our 

consistent finding of increased pI to pE activity ratios with higher broadband 

gamma powers.  Much evidence indicates the role of parvalbumin-positive 

interneurons in gamma oscillations (Cardin et al., 2009; Buzsáki & Wang, 

2012) and 

 

optogenetic studies suggest that the pI neurons we record are largely 

parvalbumin positive (Stark et al., 2013).  The change in excitatory-inhibitory 

balance with higher gamma band power observed here may be due to 

employment of an inhibition-related mechanism to generate these oscillations, 

and that mechanism maybe PING-like (Börgers & Kopell, 2003) (Stark et al., 

2013), (Moca et al., 2011; Buzsáki & Wang, 2012).  Thus, the 50-180Hz band 

may represent not just increased spiking overall, but actually may signify 

increased engagement of inhibitory interneurons and therefore a fundamentally 

different local network state. 

EMG contamination of LFP  

An often neglected by important but artefactual source of high gamma 

power is electromyographic (EMG) artifacts, volume-conducted from head and 

neck muscles (Whitham et al., 2007). EMG artifacts are ubiquitous in all animals, 

including humans, yet spectral or wavelet measures alone cannot distinguish 

them from neuron-induced transmembrane currents. We found a positive 
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correlation between EMG magnitude and LFP power down to 50 Hz frequency. 

Since running speed and the power of gamma oscillations may co-vary (Bragin et 

al., 1995; Ahmed & Mehta, 2012), it is not clear to what extent the increased 

power reflects true LFP oscillations versus EMG contamination. The large 

difference in power at >200 Hz between REM sleep, with it’s generalized muscle 

atonia (and occasional EMG twitches) and waking suggest that a large part of the 

high frequency power is due to EMG. Importantly, the large waking LFP power 

above 200 Hz was not reflected in the

 

 spike-LFP coupling measure, in support of 

non-neuronal nature of this band. We recognized and quantified EMG from the 

zero-time high coherence across all recording electrodes (Watson et al., 2016). It 

is important to note that zero-phase lag synchronized high frequency gamma 

activity (Vicente et al., 2008) recorded across structures has been suggested to 

reflect various cognitive events, such as memory recall and decision-making 

(Stujenske et al., 2014; Yamamoto et al., 2014). In future studies, multiple 

electrodes should be used to separate possible physiological coupling of gamma 

oscillations from EMG-meditated contamination.  

Maximizing interpretability of LFP 

Given the spike waveform and EMG contaminants of LFP signals, moving 

into the future further work should be done to make maximally-interpretable LFP 

signals.  A combination of technical and analytical approaches can help in 

rodents or other systems with greater control in order to assist the field in ways 

that allow improved interpretation of both rodent and human data.  First, 

simultaneous recording of LFP and spiking of isolated pyramidal cells and 

interneurons confers a greater ability to assess both the involvement of different 

cell populations in the coordinated activity reflected in the LFP and the 

directionality of communication. Second prior knowledge of anatomical 

connectivity may assist in placing the recording electrodes in appropriate layers 

for testing hypotheses about how excitation propagates through the network. 

Next, prevention or removal, or at least consideration, of spike and EMG 

contamination of high-frequency LFP power and phase is an absolute necessity.  
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Effective removal of these contaminants by appropriate offline analysis can be of 

great benefit.  

Assuming that the above conditions are met, sophisticated multivariate 

methods are available for teasing out cause-effect relationships, including 

directed coherence, Granger causality and dynamic causal modeling (Pereda et 

al., 2005; Friston et al., 2013), and independent component analysis (Fernandez-

Ruiz et al., 2012) might be harnessed to extract important functional 

physiological interactions between different parts of neural circuits. Many of these 

techniques are deployed with the intention of overcoming limitations in the 

measurements, but it is important to bear in mind that these computational 

methods are only as good as the physiological recordings. No amount of 

mathematical intervention can rescue insufficient input data.  On the other hand, 

these promising methods may be further refined and placed on firmer footing if 

they can be tested on data sets with less physiological ambiguity. 

 

Conclusions 

We have illustrated here variance in the spike-LFP coupling across cell types, 

states and frequency bands. We find support for a possible excitatory-inhibitory 

joint mechanism for gamma band oscillations.  We also suggest metrics to better 

predict spiking activity from LFP signatures.  Yet, much clearly remains to be 

understood.  We believe that the best route forward may therefore be to advance 

our general knowledge of LFP relationships with spiking by deploying more 

advanced recording techniques improved analytical methods and experimental 

perturbation of specific circuit elements to disentangle the activities of distinct 

neural populations, their emergent interactions in the gamma frequency band, 

and the relationships between their dynamics with behavior.  
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LFP – Local field potential 

EMG – Electromyographic signal 

MUA - Multi-unit activity 

REM - Rapid Eye Movement sleep 

pE – Putative excitatory unit 

 

pI – Putative inhibitory unit 

 

Figure Legends 

 

Figure 1.  Correlation of population spike rate with broadband high gamma 

power.  A. Broadband high gamma power (blue, 50-180Hz integrated power), 

summated spike rates of putative excitatory (pE) units (green), and summated 

spike rates of putative inhibitory (pI) populations (red) and LFP-derived 

electromyogram (EMG) (black) (see methods for extraction) plotted over time in 

various brain states and z-scored for comparison.  Plots are all from one single 

recording binned at 1 second intervals for both LFP band power and spike rate 

and are separated by sleep/wake state: WAKE, NREM sleep and REM sleep. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Same-state periods within a given recording were concatenated and here and 

two hundred seconds from each state are shown.  B. Log-scale histograms of 

number of 1 second bins with each amount of Fourier power in the high gamma 

broad band range (blue), pE spike rate (green) and pI spike rate (red).   Note that 

all of these statistics occupy their values in roughly log-normal distributions over 

time.   Segregated by state.  C. Bin-wise (1 second bins) scatter plots of 

correlations between broadband high gamma power (ordinate) and population 

spike rates (abscissa) in pE and pI cell populations across various states.  Linear 

fits shown as dashed lines.  Note Pearson’s r value of approximately 0.5 for 

population firing rate versus the broadband gamma across cell types and states 

(WAKE, NREM, REM). 

 

 

Figure 2. Variance in band power – spike rate correlation of two neuronal types 

with varying frequency bands.  A. Means of Pearson correlation (r) values for 

individually-analyzed pE and pI unit firing rates at various LFP frequency bands.  

Units were analyzed and correlated individually and then averaged.  Data was 

wavelet decomposed and both wavelet power within bands and spike rates were 

binned at 1 second intervals for comparison.  WAKE, NREM and REM are shown 

in different colors on each plot and pE units are in the top plot, pI units in the 

bottom plot.  Partially transparent lines with widths spanning the zero correlation 

line indicate the 95% confidence interval of 200 shuffles for each cell class and 

state.  On average neurons show positive firing rate correlations with 50-180Hz 

oscillations across states, but NREM shows a wider band correlation spanning all 

frequencies except delta band (1-4Hz).  Theta band power also tends to be 

positively correlated with spike rates in WAKE and REM.  Note while in REM the 

highest frequency bands do not have positive correlations with spike rates, they 

do in WAKE.  B. Spectral power in WAKE, NREM and REM states, corrected for 

1/f trend by multiplication by f, to facilitate comparison against panel A.  Band 

power-spike rate correlation values in each frequency band are not directly 

proportional to power in those frequency bands.  C. Histogram of single-unit 
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correlations with the 50-180Hz band with 1 second bins.  pE units, top, show a 

mean positive correlation but with a greater proportion showing negative 

correlations than pI units (bottom).  Band-correlation plots similar to panel A for 

example single units are shown at right, top two are pE units and bottom is a pI 

unit.  The topmost shows positive correlations with 50-180Hz band in all states 

(WAKE, NREM, REM) as shown by lines with same color code as in panel A, 

while the second unit from the top shows negative correlation with 50-180Hz 

power in WAKE but not in NREM or REM.  Bottom plot is from a pI unit with 

positive correlations of spike rate vs 50-180Hz power in all states.   D. Higher 

firing rate pE units show greater correlation with 50-180Hz power. 

 

Figure 3. Electromyographic and spiking contributions to LFP signal.  A. Example 

wavelet spectrogram and EMG recording from a single session.  Power in 

various (but not all) frequency bands are shown in line plots below spectrogram.  

Note general tendency for spectral power in the 300-600Hz range to increase 

during period of high EMG tone.  B. EMG state impacts LFP: WAKE epochs 

(rainbow color lines) with higher EMG tone (purple) have higher power in the high 

frequency range than low-EMG seconds (red).   REM is shown in gray and 

shows relatively decreased power in the highest frequency bands. C. Spikes 

correlate with instantaneous power in the highest frequency band and larger 

spikes have more such impact.  Panel shows data from a single example session 

wherein spike waveforms are presented sorted from smallest to largest at top 

and below is shown the impact of each spike above on the power spectrum of 

the local channel.  More distant channels (bottom most) residing at 200um away 

from the channel with the spike show diminished high frequency power during 

spiking.  D. Dataset-wide quantification of the effects of spiking on temporally 

locked spectral power.   Top panel shows the correlation of spike size to the 

spectral impact over various frequency bands examined on the channel with the 

spike itself.  The red dots and fit line for those dots relate to the highest 

frequencies and bluer tones relate to lower frequencies.  Note that power in 

higher frequencies is strongly dependent on spike size, while this effect is 
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diminished in lower frequencies.  Bottom panel shows the same analysis but in a 

case wherein the LFP originated from neighbor shanks 200um away from the 

unit spike.  Note the reduced impact on this LFP by distant spikes.   

 

Figure 4. Time bin versus frequency band dependence of spike-rate to band-

power correlation.  A.  Displays of Pearson correlation value in color (see color 

bars) averaged over all cells in the dataset for each frequency band (ordinate) for 

various bin sizes (abscissa, identical bins used for both spike rates and 

frequency band power quantifications) for pE and pI units.   Units were analyzed 

and correlated individually and then averaged.  Pearson r values across WAKE, 

NREM and REM states are shown.  Across states, maximum correlation 

averages are seen around 50-180Hz in bins of 50-200 second sizes.  B. Pearson 

r values z-scored within each bin size in order to show relative preference within 

each bin size for the various frequency bands.  Maximal population-wide average 

is now seen around the 50-180Hz frequency band at around 0.1-2 second bin 

size.  Smaller bin sizes correlate best with slightly up-shifted broadband gamma 

frequencies, though not in proportion to the reciprocal of the oscillation frequency 

and not to the point where the highest frequency band shows peak power.  

 

Figure 5. Coupling of spikes to LFP phase - by frequency band and by state.  A.  

Phase modulation of an example pE unit (top panel) and a pI unit (bottom panel) 

by 76Hz frequency phase during high-power periods.  Unit spikes are shown in 

green (pE) and red (pI), and modulation values found in 200 shuffled datasets 

shown in blue (top) and purple (bottom).  Shaded regions surrounding central 

tendency lines indicate the standard deviation over neurons for both real and 

shuffled data.  Shuffling was done by randomizing the timing of each spike over a 

local interval representing three times the cycle duration for the frequency being 

analyzed.  B. Rose plot and mean resultant vector for same examples used in 

panel A.  Mean resultant vector shown as vector arrow and mean resultant length 

(MRL) of this vector will be used as a generalized quantification of modulation of 

spike generation by LFP phase.  C. Log of mean resultant vector lengths 
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averaged across all pE units and pI units in the dataset, across all frequencies, 

stratified by state.  Significant increases in MRL relative to shuffled datasets are 

shown in red and green x’s above each bin size, as assessed by a 1-sided t-test 

with Bonferroni correction and alpha set to p = 0.01. All frequencies showed 

modulation above chance for their respective cell type. 

 

Figure 6.  Spike triggered spectrograms for pE and pI units.  A and B show spike 

triggered spectrograms for pE units at ±30ms (A) and ±300ms (B).  LFP channel 

for wavelet spectra is from shanks neighboring the unit shank (200um away).  C 

and D show spike triggered spectrograms for pI units at ±30ms (C) and ±300ms 

(D), from neighboring shanks.  50-180Hz power is increased around the time of 

spiking of both pE and pI units, with the up-modulation of power somewhat 

shorter around pI spikes.  After pE unit spiking, 12-45Hz power is decreased and 

300-625Hz power is rhythmically modulated at approximately 4Hz.  Green and 

red lines above each plot show spike-triggered firing of the surrounding pE and pI 

populations recorded simultaneously with (but not on the same shank as) the 

trigger unit.  Note pE units on average fire 3ms before pI units.   

 

Figure 7. Modulation of LFP by second-wise excitatory-inhibitory state of the 

network.  Recordings were binned at 1 second and in each bin the total E and I 

unit spikes were calculated and used to rank the bins by relative excitatory-

inhibitory ratio (pE spikes / (pE spikes + pI spikes)).  Bins were ranked into 10 

groups and average wavelet spectra were calculated for each group and 

averaged across all recordings in the dataset.  Shown are averaged binned 

spectra as vertical stripes, data was smoothed between bands over a 3 band 

width and then z-scored within each frequency band in each brain state.  The 50-

180Hz band is highlighted in each plot using dotted horizontal lines and is 

consistently down-modulated as EI ratio increases while lower frequencies show 

more varied modulation by EI ratio depending on the state. 
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Figure 8.  The correlation spectrum predicts overall spiking better than frequency 

band powers.  Shown are recording-wise Pearson correlation values between 

summated population spike rates of pE units and with LFP predictors in the same 

bins.  Violin plots represent distributions of correlation values over recordings for 

each metric.  Mean values for each metric shown with red crosses, medians 

shown as green squares.  The first 8 columns show spike-LFP correlates based 

on power in various power spectral bands as indicated, including the 50-180Hz 

broadband gamma power used elsewhere.  All spectra are corrected for the 

general 1/frequency falloff in power via multiplication of power values by the 

frequency itself, in order to not bias for low frequency predictors.  The last 

column is a dot-product projection of the bin-wise power spectrum against the 

correlation spectrum (orange curve shown in upper panel of Figure 2A).  This 

yields correlations with higher mean and median powers and a higher minimum 

value than other methods examined. 

 

Supplementary Figure Legends 

 

Supplementary Figure 1.  Variance by state and time bin in the correlation of 

population spike rate versus broadband gamma.  A. Putative excitatory unit 

cumulative population spiking rate (sum of spikes across all simultaneously 

recorded units) versus 50-180Hz broadband gamma power on a per-bin basis.  

Bin sizes are 0.01s, 1s and 100s in left, center and right panels respectively.  

Within each panel, each column shows the distribution of session-wise Pearson 

r’s for WAKE, nonREM and REM.  At 0.01s and 1s bins, the correlation of spike 

rate to 50-180Hz power is significantly greater for nonREM than it is for WAKE 

and REM (difference with p<0.05, indicated by asterisk).  With 1 second bins the 

nonREM rate-broadband gamma correlation is higher than WAKE and with 100 

second bins there are no significant differences in correlations between states.  

B. Same as A but for putative inhibitory units.  State-wise significant difference 

profiles by bin size are not different between pE and pI units. 
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Supplementary Figure 2. Variance of spike rate-broadband gamma coupling 

within each unit depending on state.  Single neurons (green or red dots) are 

shown in plots illustrating Pearson correlations of that neuron’s spike train versus 

broadband high gamma power for pairs of states (ordinate and abscissa).  Large 

green and red dots show population averages for pE and pI units respectively.  

Note that while the population averages show a positive correlation for R values 

in one state versus R values in other states, there is a large variance around this 

trend with units frequently switching their modulation by broadband high gamma 

according to state. 

 

Supplementary Figure 3. Spike-triggered wavelet spectra and pE and pI unit 

spiking broken down by cell type (pE versus pI) and proximity of LFP channel to 

unit channel.  A. pE (top) and pI (bottom) unit-triggered spectra on the channel 

local to the unit spike itself.  Note that for both pE and pI units there is a 

substantial increase in spectral power above 300Hz.  B. pE and pI unit-triggered 

spectra for LFP from the neighbor shank 200um away from the shank on which 

the unit is recorded: for pE units some degree of 300Hz power increase remains, 

while it does not for pI neurons.  Note that the high gamma broadband range is 

also increased in power around spiking.  C. When wavelet spectra from yet more 

distant channels are included (non-shank mean of LFP of 1 site per non-neighbor 

shank (nsmean)), the 300+Hz power disappears and only gamma-band power 

remains elevated.  In each plot the spike rates of pE and pI units outside of the 

trigger unit are also shown in green and red line-plots.  Note that pE units tend to 

fire approximately 3ms prior to pI units across all states and across pE or pI 

triggering states. 

 

Supplementary Figure 4. A. Two-dimensional histograms broken down by brain 

state of maximal Pearson r values across the bin sizes and frequency bands for 

each pE unit in the dataset.  The 50-180Hz band again dominates with most cells 

preferring bins in this band, but many neurons also correlate with lower 

frequency power ranges as well.  Overall maximal density of unit preference is 
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for the combination of 0.5 second bins and 90Hz LFP.  B. Same analysis as 

panel A but for pI units 

 

Supplementary Figure 5.  Phase modulation increased with higher amplitude 

oscillations than with lower frequency band oscillations, and pE and pI units show 

differential phase preference to broadband gamma.  A. Log of mean resultant 

vector lengths averaged across all pE units and pI units in the dataset, across all 

frequencies, stratified by state, only for low power times in each oscillation, 

defined as less than zscore -0.5 for at least 3 cycles of oscillation time.  pE units 

shown in green, pE shuffles in blue, pI in red and shuffled pI in purple.  Green 

and red dots above specific bands indicate bands of significant difference based 

on Wilcoxon signed rank test - green dots for pE units, red dots for pI units.  B. 

Same as A, but for high power times only, defined as continuous epochs of 

power greater than z-score 0.5 for at least 3 cycles of oscillation time.  Note 

greater significant phase modulation as indicated by dots above plots  C. 

Difference between high and low power modulation curves for each frequency 

band. Note that, higher power periods preferentially phase modulate spiking 

more than low power periods, consistent with a causal relationship between 

spike timing and LFP phase, especially for broadband gamma but also for delta 

band in nonREM sleep.   D. Mean phase differences for pE (green) versus pI 

units (red) in the broadband gamma range.  Shown are circular histograms of 

average per-unit mean phase.  E. Same as D but for narrower frequency bands, 

indicating a consistent 20-25 degree lag of I units behind E units – or about 0.4-

1.5ms over the various frequencies. 

 

Supplementary Figure 6. Spike-triggered wavelet spectra from neighboring 

shanks for pE and pI units in the non-WAKE states of nonREM and REM sleep.  

Green and red lines above each plot show spike-triggered firing of the 

surrounding pE and pI populations near each trigger unit (excluding units 

recorded on the same shank).   
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Supplementary Figure 7.   LFP correlates of EI Ratio: LFP spectral powers per 

second-long bin after those bins were ranked into high to low deciles of pE to pI 

unit relative activity.  A. Raw powers of spectra averaged over the entire 

population, on a common power-color lookup table across all states in order to 

allow for relative modulation of LFP by EI Ratio by state.  B. Individualized 

power-color look-up tables for each state in order to reveal within-state relative 

modulation of LFP spectra by EI ratio, prior to z-scoring as in Figure 7.  Note 

muting of modulation when including All states, rather within-state modulation 

appears to be a clear feature which can be obscured with intervening state 

transitions.  

 

Supplementary Figure 8. Correlates of pE and pI unit population spiking.  A. 31 

tested predictors of spike rates, all but the first, EIRatio, are LFP-based.  All 

correlation measured carried out during the WAKE state to predict spiking in that 

state. EI ratio is on the far left.  The next 9 measures are spectral band powers.  

The metrics labeled “RawSpectralProjection_...” represent dot product 

projections of averaged state-wise spectra (as in Figure 2B) onto the measured 

spectrum of each time bin.  There is next a special interest case of the wake 

state spectrum minus the nonREM state spectrum.  Finally, are the correlation 

spectral projections, gathered from correlations of pE or pI unit types in various 

states, as labeled.  The correlation spectrum for pE units in WAKE or WAKE-

related states predicted firing rates most strongly and with the least negative 

correlation compared to other predictors.   
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