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Abstract 

With the era of big data, the utilization of machine learning algorithms in radiation oncology is 

rapidly growing with applications including: treatment response modeling, treatment planning, 

contouring, organ segmentation, image-guidance, motion tracking, quality assurance and more. 

Despite this interest, practical clinical implementation of machine learning as part of the day-to-35 

day clinical operations is still lagging. The aim of this white paper is to further promote progress 

in this new field of machine learning in radiation oncology by highlighting its untapped 

advantages and potentials for clinical advancement, while also presenting current challenges 

and open questions for future research. The targeted audience of this paper includes 

newcomers as well as practitioners in the field of medical physics/radiation oncology. The 40 

paper also provides general recommendations to avoid common pitfalls when applying these 

powerful data analytic tools to medical physics and radiation oncology problems and suggests 

some guidelines for transparent and informative reporting of machine learning results. 

 

Keywords: Machine learning, radiation oncology, big data.  45 

 

Introduction 

Machine Learning (ML) embraces an evolving branch of computational algorithms that were 

originally designed to emulate living beings’ intelligence by learning from the surrounding 

environment. The term was coined by Arthur Samuel in his seminal work in the 1950s where he 50 

described machine learning as “a field of study that gives computers the ability to learn without 

being explicitly programmed.”
1
 Machine learning as a branch of the artificial intelligence field 

draws upon ideas from diverse disciplines such as probability and statistics, information theory, 

psychology, control theory, and philosophy.
2-4

 It has been successfully applied to many different 

fields including pattern recognition,
4
 computer vision,

5
 spacecraft engineering,

6
 finance,

7
 55 

computational biology,
8,9

 and medical applications.
10,11

 Developed ML algorithms are currently 
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considered one of the main workhorses in the new era of Big Data to potentially overcome 

challenges related to the excessive burden of manual curation, data veracity, and the analysis 

of complex patterns. In this sense, ML algorithms can both add to and complement traditional 

statistical modeling methods.    60 

 

Machine learning could be further subdivided per the nature of the data labeling into: 

supervised, unsupervised, and semi-supervised.
3,6,12

 Supervised learning is used to estimate an 

unknown (input, output) mapping from known (input, output) samples, where the output is 

“labeled” (e.g., classification or regression). This is the most commonly used approach in 65 

radiotherapy applications such as planning evaluation or outcomes prediction using known 

labels provided by experts or clinical endpoints. In unsupervised learning, only input samples 

are given to the learning system and inferences are drawn without labeled responses (e.g., 

clustering and estimation of probability density function [PDF]) such as visualization of higher 

dimensional data, some respiratory motion management studies, and contouring, which has 70 

typically been based on clustering methods and is currently trending towards supervised deep 

learning.
13

 Semi-supervised learning is a combination of both supervised and unsupervised 

learning methods. The part of the data, which is labeled, could be used to infer the unlabeled 

portion (e.g., text/image retrieval systems) through transductive learning, or to induce the 

general mapping from input to output by inductive learning. Additionally, in semi-supervised 75 

learning unlabeled data could be used to infer high order representations of data to aid the 

supervised component of the learning task
14

 with application examples such as interactive 

prostate segmentation
15

 and xerostomia (dry mouth) prediction in head and neck cancer.
16

 

  

Although there are several ongoing efforts to provide guidelines for developing and reporting 80 

ML results,
17,18

 with the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) statement receiving wide range endorsements for 

predictive modeling,
17

 there are yet no universal consensus recommendations for ML in general 

or in the setting of medical physics and radiation oncology specifically. This white paper aims to 

(1) further promote progress in the new ML field in radiation oncology by highlighting its 85 
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untapped advantages and potential for clinical advancement to newcomers; (2) present current 

challenges and open questions for further research by newcomers and practitioners; and (3) 

provide general recommendations to active researchers to avoid common pitfalls and suggest 

guidelines for transparent and informative reporting of ML results for medical physics and 

radiation oncology applications. 90 

Use case examples in radiation oncology  

In recent years, ML has witnessed increased use in radiation oncology with focused sessions at 

the annual meetings of the American Association of Physicists in Medicine (AAPM). However, 

initial applications of ML in radiotherapy have started in the mid 1990s by training  artificial 

neural networks (ANNs) for automating treatment planning evaluation,
19

 beam orientation 95 

customization,
20

 and standardization (knowledge-based planning),
21

 for instance. Later 

applications in the mid 2000s focused on predicting normal tissue toxicity in different sites.
22-24

 

Currently, these methods are applied to many aspects of radiation oncology including: tumor 

response modeling,
25-31

 radiation physics quality assurance (QA),
32

 auto-segmentation for 

normal tissue and target delineation,
33-36

 treatment planning,
37-39

 image-guided radiotherapy 100 

(RT),
40,41

 and respiratory motion management.
42,43

 Details about these and other applications 

are reviewed in the literature.
44

 

 Further and future applications of ML may also expand into: 

• Identifying potential hardware and software safety and quality related risks prior to 

treating a patient. 105 

• Using ML-aided decision support systems to improve the efficiency and the consistency 

of current diagnosis and treatment tools, and subsequently raising average physician 

performance during residency training or clinical practice. 

• Identifying and analyzing underlying pan-omics (images, genetics, dosimetric indices and 

clinical information) data for patient-specific treatment regime stratification (drug-RT 110 

and combined therapy) and predicting radiotherapy outcomes. 

• Relating images/genetics to outcomes, and identifying latent pheno-/geno-/image 

prognostic features. 
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• Complementing existing response models with better learning of data-derived 

information, for outlier analysis, hypothesis modification, and model refinement.  115 

• Conducting clinical trials using ML algorithms as a guidance for optimal treatment 

strategies.
45

 

 

Recommendations for general ML application in radiation oncology 

For successful application of ML approaches in general and in medical physics and radiation 120 

oncology in particular, there are five main issues that need to be cautiously considered.  

 

Firstly, characterize the problem properly: One needs to properly represent the problem at 

hand in terms of the input/output data, the desired results, assumptions made, and the 

interpretation of their associated outputs in relation to specific clinical goals. Care needs to be 125 

taken to minimize the risk of false positive findings or overfitting the data, via multiple testing 

adjustments, false discovery analysis, or other methods to avoid data dredging or p-hacking 

problems.
46

 Similar considerations should inform which metrics are used to evaluate 

performance, as they will be used to judge suitability of the model. For example, standard 

maximization of the area under a receiver operating characteristic curve (AUC) is a convenient 130 

and easy-to-comprehend metric. However, it assumes that specificity and sensitivity are of 

equal importance to the decision-maker, which may not always be the case for physicians or 

physicists working in the clinic.
47-50

 Furthermore, ascribing unwarranted clinical significance 

sometimes to results based on marginal AUC values (e.g., <0.7), does occur often and should be 

cautiously addressed in scientific publications and presentations.
51,52

 

 ML provides a model 135 

approximation of reality (correlations), to make clinically relevant predictions with associated 

error characteristics. This should be reported and is appropriate for the decision space and 

ensures that results are more likely to be used robustly.  

Second, include sufficient data volume and quality in training: It cannot be overemphasized 140 

that ML algorithms are data driven-approaches and their performances are intrinsically 

dependent on the data provenance, volume and quality assurance of training data and outlier 
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identification.
53

  Assembly of large patient datasets containing both treatment parameters and 

outcomes to investigate linkages using ML can be a significant challenge. ML applications 

generally perform better with more training data, particularly as more input/output variables 145 

are added and the model complexity is increased. The goal of an ML study is to learn and 

understand the training data inter-dependencies and potentially generalize based on them. 

However, inference on causation is not directly attainable with the most popular algorithm. For 

instance, in the classical application of ML for modeling radiation-induced toxicities, it is 

understood that radiation is the main causative agent. However, the exact role of other 150 

variables (co-variates), both clinical and biological, beyond dose-effect modification or 

complementarity may require further experimentation or gathering new variables that were 

not included in the original analysis. This is, in a sense, quite similar to inference in traditional 

statistics. However, ML methods are well suited in such predictive modeling scenarios because 

of the following: (1) the flexibility and inherent ability of many ML algorithms to navigate 155 

complex high dimensional data space and identify nonlinear/non-monotonic patterns (e.g., via 

kernel mapping or nonlinear activation functions); and (2) many ML algorithms can also 

measure oversensitivity to data or identify possible ‘gaps’ in the modeling process, i.e., areas 

where the model actually failed to fit the data. An example is shown in modeling outcomes of 

radiotherapy with support vector machines (SVM), where many of the training data points 160 

(dose-volume metrics) were located in the ‘margin’ region between the classifier boundaries 

indicating missing discriminant information from the used data based on this particular 

model.
54

 

     

Third, model parsimony and generalizability: To be useful, the model needs to generalize 165 

beyond the training observation into out-of-sample data. To achieve this goal, the model 

generally needs to be kept as simple as possible but not simpler. This property, known as 

parsimony, follows from Occam's razor that states “among competing hypotheses, the 

hypothesis with the fewest assumptions should be selected.”
55

 However, deep learning 

algorithms with their large number of layers for learning data representation and performing 170 

model prediction in the same architecture, may present a future challenge to this classical 
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notion,
56

 but the overall objective remains the same, i.e., to achieve generalizability to out-of-

sample data. This could be evaluated using resampling methods (cross-validation or 

bootstrapping), bias-variance trade-offs (Cramer-Rao) or analytically by using complexity 

measures such as Vapnik–Chervonenkis (VC) dimension, for instance.
57

 External validation of 175 

models in cohorts, which were acquired independently from the discovery cohort (e.g., from 

another Radiation Oncology  department) is still considered the gold standard for true 

estimates of performance and generalizability of prediction models. For example, models for 

optimal organ sparing in treatment planning can be evaluated using cross-institutional data, 

which can ensure that the training data represents the general practice and also provides 180 

generalizability of the model.
58

 

 Finally, data guarantees that ensure equivalence of the training 

and testing datasets are essential for robust model evaluation and application. Given new 

published models being considered for clinical use in critical decisions, the medical physics 

community should take a leading role to treat these models as medical devices including formal 

acceptance and commissioning to ensure that the right algorithm or model are applied to the 185 

right application and that the model results make sense in a given clinical situation.  

Fourthly, quality assurance of ML algorithm selection: The set of machine learning algorithms 

and associated public-domain implementations are expanding at a rapid pace with several 

open-source platforms. Application of different algorithms to the same dataset may yield 190 

variable results for predictors found to be significantly associated with the outcome of 

interest.
18,20

 However, this may also suggest a potential limitation of self-critical assessment of 

published ML models or realistic confidence levels with implications for their practical clinical 

value. Typically, the best model is the simplest model with the fewest assumptions, following 

the parsimony principle mentioned above,
55

 however, the selected model should also include 195 

estimates of  its uncertainties (confidence levels) that can be performed analytically or using 

statistical resampling methods (e.g., bootstrapping).
59-61

 Also, there are issues related to 

interpreting or combining results of different ML algorithms or for defining criteria for 

objectively selecting the approach best suited to particular clinical investigation in radiation 

oncology. More generally, post model selection inference is an important topic with relevance 200 
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to ML methods, which should be considered.
62

  Standard data analysis often ignores the model 

selection step and as a result overstates the significance of the findings by ignoring the 

uncertainty associated with such model selection, which should be reported.
63

 

   

Fifthly and finally, make models and /results intuitive: A major limitation in the acceptance of 205 

ML by the larger medical community has been hailed as the “black box” stigma, where the ML 

algorithm maps a given input data to output predictions without providing any additional 

insight into the system mapping. That is, providing an intuitive interpretation of the learned 

process could be missing, which impedes clinical practitioners from better understanding their 

data and entrusting the ML model predictions.
44

 Interpretability is also important in generating 210 

new knowledge, hypotheses, and in identifying biomarkers that could guide treatment 

prescription or technology design by a ML response model, for example. Another example is in 

the case of organs-at-risk (OAR) dose-volume histogram (DVH) prediction models for treatment 

planning, where further interpretation of the ML results indicated that the main factors 

affecting the mean value and slope of the DVH curve were related to the mean distance and the 215 

slope of the distance to the target. Such analysis corroborated prior intuitions and studies that 

attempted to link patient geometry to planning results, and helped with the understanding of 

the ML results.
64

  Although there are inherently interpretable ML algorithms, for instance 

decision trees, Bayesian networks, or generalized linear models (e.g., logistic regression), they 

are usually outperformed in terms of accuracy by ensemble methods or deep neural nets (for 220 

large datasets).
12

 The aversion to black box models in medicine goes beyond the instinctive fear 

of being the first adopter of new technologies. For instance, a ‘black box’ neural net that was 

developed to infer whether patients with pneumonia could be discharged from a hospital was 

found to inadvertently label asthmatic patients as low risk.
65-67

 Due to the nature of the training 

data used, this mistake could have not been fixed without using an interpretable model or 225 

deeper understanding of the modeling results.
65-67

 The development of accurate and 

interpretable models is an active area of research and recent progress has been made using 

different ML archetictures.
67-71

 This area of research requires special attention from the ML 

community working in biomedicine generally and radiation oncology specifically for the sake of 
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machine learning algorithms to gain the broader acceptance they deserve.
72

  In addition, while 230 

ML results (predictors) for disease and toxicity outcomes have the potential to improve 

physician decision making, information overload is an emerging issue as practitioners have 

increasing amounts of information available.
73,74

  Incorporating results into a decision support 

tool, which intelligently can synthesize many types and many sources of information is likely to 

facilitate increased adoption of new ML results.
75,76

 

 235 

Open issues and suggestions for ongoing ML research in radiation oncology 

There are many ongoing issues related to applying ML as part of the clinical workflow or 

prospective clinical trial designs that need further consideration by the research community. 

These include but are not limited to: 240 

• Access to and standardization of the radiation oncology pan-omics data (clinical, 

dosimetric, imaging, etc.) and allowing interactive learning/labeling strategies to further 

enrich such data sets. This is currently being aided by task group efforts such as TG-

263.
77

• Maintaining high data quality requirements and the ability to train the ML under 245 

realistic clinical scenarios with noisy conditions, especially when dealing with Big data, 

for instance.  This is aided by efforts in the community to publish reusable datasets such 

as the Medical Physics Dataset Article (MPDA) efforts.  

 

• Development of robust methods to quantify the impact of incomplete, adverse, and 

uncertain labeling on model predictions and associated performance guarantees.  250 

• Address inconsistency issues related to hierarchal fitting of heterogeneous versus 

homogenous data sets. 

• Development of accurate and interpretable algorithms. However, as noted by Breiman, 

“Framing the question as the choice between accuracy and interpretability is an 

incorrect interpretation of what the goal of a statistical analysis is. The goal is not 255 

interpretability, but accurate information.”
78

 A balance between these two issues may 

be, nevertheless, needed for broader clinical acceptance or to correct spurious 

correlations when important cofounders are missing from the training data. 
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• Standardizing the validation process (Internally only, Internally and externally) by 

adopting recommendations from the TRIPOD guidelines,
17

 ML practitioners,
18

• Evaluating and applying ML not only as related to research topics but also within clinical 

practice such as daily quality assurance checks.  

 or 260 

developing own medical physics/radiation oncology specific guidelines.   

• Extending the application of rapid sharing and distributed learning paradigms
79

• Development of robust methods to incorporate results into existing clinical decision-

making practices.

 as more 

data become available from everyday clinical practice. 265 

75

• Developing methods for sample size estimation for using ML (e.g., learning curves),

 

80
 

which is currently underutilized for most applications and would be useful when 

incorporating ML into clinical trial designs,
45

• Determine what evidence is available to substantiate inferential claims when p-values 

are not available for testing significance of the variables inside the model (e.g., for 

random forests or penalized regression methods such as Elastic Net).  This is an active 

area of research and progress has been made in some instances but more work remains 275 

(e.g., Elastic Net Cox models).

 where scarce resource of patients willing to 270 

enroll and ethical issues limit the studied population size. 

62,81

 

  

Recommendations for publications related to ML 

This is an important time period in the early emerging history of application of ML and AI into 

health care data. Authors of papers have the opportunity in each instance, not only to present 280 

the results of their particular model, but also to shape expectations in the community for how 

results should be evaluated, communicated and applied. A few recommendations are:  

• Identify why and what criteria were used to choose the ML algorithm. Over time, certain 

methodologies may be preferred for specific applications. 

• Define and apply proper criteria for evaluating ML results as presented, for instance, by 285 

Kang et al
72

 or discussed by Japkowicz et al.
82

 Generally, ML performance is evaluated 
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empirically using learning curves, information theoretic techniques, and statistical 

resampling methods.
12

• Authors of ML studies should discuss conformance to criteria such as those above and 

adopt the TRIPOD checklist for more informative and transparent reporting.

  

17

• Construct publically available benchmark datasets with known interactions and include 

checks of algorithms’ sensitivity and specificity in identifying these interactions. Such 

datasets can currently undergo a peer-review authentication and formally published 295 

receiving a unique Digital Object Identifier (DOI) as offered by MPDA and others that 

would provide a necessary description of the dataset and its potential usage.  With the 

availability of these open access benchmark datasets, publications on applications of ML 

approaches to clinical data could also include application of the algorithms to the 

benchmark dataset to define a context for assessment of uncertainties. This may enable 300 

demonstration that the algorithm can find the “known” answer, before asserting its 

ability to find the unknown answers.  

 The 290 

limitations of the authors’ methodology and implications of those limitations should be 

openly and collegially discussed. 

• Publications on ML models should generally meet known statistical standards in the 

literature for the number of patients, fraction of events used, presentation of scientific 

evidence, and balancing statistical and clinical significance.
45,83

• When using a resampling technique (cross-validation or bootstrapping) to estimate the 

predictive performance of a model, it is critical that all aspects of the analysis (including 

selection of tuning parameters, variable selection and model specification) have 310 

undergone proper bias-variance correction processes to mitigate bias from training data 

(overfitting) while still achieving similar performance on unseen data (low variance) 

between train and test distributions).

 Any substantial 305 

deviations should be rigorously addressed as an issue to avoid p-hacking or false 

discovery pitfalls in the proposed approach.   

84,85
 However, it is noted that this process may vary 

from one ML algorithm to another. For example, a radiomics analysis with large number 

of variables and small sample size applied information gain for feature selection and 315 
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estimated performance based on the .632+ estimator, which has lower bias-variance 

compromise between training and testing errors compared to generic cross-validation 

or bootstrapping.
86

• When reporting on new biomarkers (e.g., gene expression or radiomics feature), it is 

desirable to contrast the predictive performance of a model based only on standard 320 

clinical factors as a benchmark to allow the reader to understand how much the new 

biomarkers would improve prediction performance over current models. 

  

 

 

Conclusions 325 

Application of ML algorithms in radiotherapy is witnessing tremendous resurgence with the 

rapid increase of patient-specific information and the data generated from all aspects of the 

radiotherapy processes. This paper highlighted the many potential opportunities for ML in the 

medical physics and radiation oncology future and some of the current challenges. It also 

provided general recommendations to get the most out of these powerful tools and avoid 330 

common pitfalls as well as some guidelines were suggested for useful publication of ML results. 
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