

Journal of Geophysical Research: Planets

Supporting Information for

The Effect of Mars-relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Near-Surface of Mars

K.M. Primm^{1,2}, R.V. Gough^{1,2}, J. Wong², E. G. Rivera-Valentin³, G. M. Martinez⁴, J. V. Hogancamp⁵, P. D. Archer⁵, D. W. Ming⁵, and M.A. Tolbert^{1,2*}. ¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA; ²Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, USA; ³Lunar and Planetary Institute, Universities Space Research Association, Houston, TX; ⁴Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA; ⁵Jacobs at NASA Johnson Space Center, Houston, TX 77058

Contents of this file

Figures S1 and S2 Tables S1

Introduction

The following 2 Figures and 1 Table are supplementary information that has been mentioned in the main manuscript text.

Figure S1. Raman spectra of the perchlorate region (934 cm⁻¹) of magnesium perchlorate and montmorillonite mixtures. The range is from 1:1 to 1:50 magnesium perchlorate: montmorillonite. The spectra show that the perchlorate peak is the strongest in the 1:1 mixture and completely disappears at 1:10, thus the reason for choosing a 1:1 mixture of salt to mineral.

Figure S2. Optical images of pure Mg(ClO₄)₂•6H₂O undergoing phase transitions (left) compared to images of the same phase transitions for the mixture of 1:1 Mg(ClO₄)₂•6H₂O: MMS (right). Although Raman spectra was unable to be obtained due to laser absorption of MMS, the following images show the visual changes while the mixture particle took up and released water. These images were taken where $25^{\circ}C \ge T \ge -53^{\circ}C$.

1:1			
Mg(CIO4)2:Mont.	$\mathbf{T}(\mathbf{K})$	% RH of Ice formation	S
	$\frac{1(\mathbf{R})}{255.6 \pm 0.1}$	101.4 ± 0.5	$\frac{1}{1}$ 20 + 0.01
	235.0 ± 0.1 246.5 ± 1.7	101.4 ± 0.3 00.9 + 1.1	1.20 ± 0.01 1.30 ± 0.01
	240.3 ± 1.7 233 4 ± 1 7	99.9 ± 1.1 80.7 ± 4.5	1.30 ± 0.01 1.32 ± 0.05
	233.4 ± 1.7 224.9 ± 0.6	87.7 ± 4.3 81.2 ± 2.9	1.32 ± 0.03 1.28 ± 0.03
	224.9 ± 0.0 214.1 ± 1.5	81.2 ± 2.9 89.3 ± 1.2	1.28 ± 0.03 1.53 ± 0.01
	$\frac{214.1 \pm 1.5}{T(K)}$	DRH	1.55 ± 0.01
	265.0 ± 0.5	467+05	
	252.3 ± 0.6	49.4 ± 0.6	
	252.0 ± 0.0 245.0 ± 0.4	49.9 ± 0.9	
	232.1 ± 0.3	55.8 ± 1.1	
	222.4 ± 1.0	61.5 ± 5.1	
	T(K)	ERH	
	273.7 ± 0.8	24.4 ± 0.7	
	262.5 ± 0.6	21.0 ± 1.0	
	254.3 ± 1.5	22.9 ± 1.8	
	243.2 ± 1.0	21.0 ± 0.6	
1:1 Mg(ClO4)2:MMS			
8	T(K)	% RH of Ice formation	S _{ice}
	256.6 ± 1.4	96.1 ± 3.3	1.13 ± 0.03
	241.2 ± 1.6	95.3 ± 1.6	1.30 ± 0.02
	223.8 ± 2.2	82.4 ± 1.9	1.31 ± 0.02
	T(K)	DRH	
	266.8 ± 0.7	42.0 ± 0.4	
	249.1 ± 2.0	46.2 ± 0.8	
	227.0 ± 2.8	54.4 ± 2.5	
	T(K)	ERH	
	277.0 ± 0.2	20.0 ± 1.1	
	258.8 ± 2.5	21.4 ± 1.6	
	237.2 ± 2.2	22.2 ± 0.7	

Table S1. Complete data set of DRH, ERH, and ice formation RH of pure Mg(ClO₄)₂•6H₂O, 1:1 Mg(ClO₄)₂•6H₂O: montmorillonite, and 1:1 Mg(ClO₄)₂•6H₂O:MMS.