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Abbreviation Full term/phrase 

CRC Colorectal cancer 

NS Noonan syndrome 

FAP Familial adenomatous polyposis 

HNPCC Hereditary non-polyposis colorectal cancer 

NF1 Neurofibromatosis 1 

MUTYH Mut Y DNA glycosylase gene 

KRAS KRAS proto-oncogene, GTPase 

BRAF B-RAF proto-oncogene serine/threonine 
kinase 

NRAS NRAS proto-oncogene 

MLH1 DNA mismatch repair protein Mlh1 

MSH2 DNA mismatch repair protein Msh2 

MSH6 DNA mismatch repair protein Msh6 

PMS2 Mismatch repair endonuclease PMS2 

WES Whole exome sequencing 

NCOR1 Nuclear receptor corepressor 1 gene 

TP53 Tumor protein p53 gene 

SOS1 Ras/Rac guanine nucleotide exchange factor 
1 gene 

APC adenomatosis polyposis coli, WNT signaling 
pathway regulator gene 
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Abstract 

Noonan syndrome (NS) is a developmental syndrome caused by germline mutations in the 

Ras signaling pathway. No association has been shown between NS and pediatric colorectal 

cancer (CRC). We report the case of CRC in a pediatric patient with NS. The patient 

underwent whole genome sequencing. A germline SOS1 mutation c.1310T>C (p. Ile437Thr) 

confirmed NS diagnosis. No known hereditary cancer syndromes were identified. Tumor 

analysis revealed two mutations: a TP53 missense mutation c.481G>A (p. Ala161Tyr) and 

NCOR1 nonsense mutation c.6052C>T (p. Arg2018*). This report highlights the complexity 

of Ras signaling and the interplay between developmental syndromes and cancer. 

 

 

Introduction 

Noonan syndrome (NS) is a developmental syndrome with an estimated prevalence of 1 

in 1000-2500 and characterized by craniofacial abnormalities, cardiac defects, and cognitive 

delay.1 NS is caused by germline mutations affecting the Ras signaling pathway, as are 

neurofibromatosis 1 (NF1) and several other syndromes that are collectively referred to as 

Rasopathies.2  

The Ras signaling pathway is a ubiquitous intracellular signaling pathway that has been 

shown to play a central role in the pathogenesis of adult colorectal cancer (CRC). 

Interestingly, Rasopathies carry an inconsistent cancer predisposition ranging from an 

elevated risk of neurologic-type tumors in children with NF1 to a mild, almost exclusive risk 

for hematologic malignancies in Noonan syndrome patients of all ages. 3-5 Germline 

mutations affecting Ras signaling pathway proteins have not been reported to carry a 

predisposition to colorectal cancer. Only 3 cases of Noonan syndrome patients with 

colorectal cancer have ever been reported and none in the pediatric population. 3 
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Many of the same somatically mutated genes identified to cause adult CRC have been 

shown to be mutated in the germline of several cancer-predisposition syndromes. However, 

these syndromes account for the minority of pediatric CRC cases. 6,7 Here we report the first 

report of pediatric colorectal cancer in a Noonan syndrome patient and the first whole-

genome analysis of pediatric colorectal cancer. 

 

Clinical Course and Methods  

A 14 year old female with Noonan syndrome presented with a four week history of 

nausea, vomiting, abdominal pain, and persistent constipation. CT of the abdomen and 

pelvis, and barium enema demonstrated complete large bowel obstruction with transition 

point at the sigmoid colon (Supplemental Figure S1). The patient was admitted, 

sigmoidoscopy revealed the site of the obstruction to be 35 cm from the anus, and then 

taken to the operating room. Exploratory laparotomy revealed an obstructing colonic mass in 

the sigmoid colon that was resected. Lymph nodes and observed omental and pelvic 

peritoneal lesions were biopsied. A diverting end-colostomy was made.  

Pathology of the surgical specimens showed colon adenocarcinoma, stage T4aN2aM1 

with low grade differentiation. Lymphovascular and perineural invasion was seen. Several 

lymph nodes (4 of 29) were positive for disease, three with extracapsular 

extension.  Metastatic adenocarcinoma was observed in the omentum and in a pelvic 

peritoneal lesions.  

Initial genetic testing for the three major known types of inherited colorectal cancer 

found no mutations associated with mismatch repair, APC, or MUTYH genes. BRAF V600 

mutation and NRAS extended analyses were also negative. A KRAS gene mutation 

(c.38G>A) was present in the colonic mass, a contraindication to EGFR inhibitor therapy. 

The patient was then enrolled in PEDS-MI-ONCOSEQ, a prospective integrative clinical 

sequencing that has been approved by our institutional review board. 8 The patient’s parents 

provided informed consent and received mandatory pre-enrollment genetic counseling.  
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Specifics of the PEDS-MI-ONCOSEQ sequencing procedure and bioinformatics 

analyses have been described previously (Supplemental Material S1).8 Nucleic acid 

preparation and high-throughput sequencing were performed using standard the Clinical 

Laboratory Improvement Amendments (CLIA) protocols. Pathogenicity of germline variants 

was determined through a review of the published literature and databases. 

The patient received induction chemotherapy with 6 cycles of folinic acid (400 mg/m2), 5-

fluorouracil (400 mg/m2, then 2400 mg/m2 over 46 hours), and oxaliplatin (85 mg/m2) 

combination chemotherapy with bevacizumab (5 mg/kg).  Chemotherapy was administered 

every 2 weeks. Oxaliplatin was discontinued after 6 cycles.  CT scans of the neck, chest, 

abdomen, and pelvis showed no evidence of metastasis. 

The patient continued a maintenance chemotherapy regimen of folinic acid, 5-

fluorouracil, and bevacizumab every two weeks and did not receive radiation therapy. The 

patient relapsed at cycle 37, presenting with a small bowel obstruction, renal insufficiency 

and bilateral hydronephrosis.  CT and PET imaging suggested progression of disease 

corresponding to these site of the pelvic lesion and suspected disease in Hartmann’s pouch, 

uterine wall and bladder wall.  The small bowel obstruction resolved and the hydronephrosis 

improved with the placement of bilateral ureteral stents.  The family declined biopsy. The 

patient was treated with irinotecan 180 mg/m2 every 2 weeks and palliative measures to 

maximize quality of life. The patient received 3 doses of irinotecan, but despite a lack of 

irinotecan induced diarrhea the patient began experiencing worsening symptoms of ileus. At 

time of manuscript submission, the patient was managed in hospice care. 

 

Results and Discussion 

Integrative clinical sequencing revealed 3 mutations with clinical significance, one in the 

germline and two somatic mutations in the tumor sample  (Table 1). Four somatic point 

mutations were also identified in the tumor sample (Supplemental Table S1). No CNV focal 
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amplification or deletions detected, somatic insertion/deletion mutations, driving gene 

fusions, outlier expressions, or pathogens were detected. 

SOS1 is an important Ras pathway regulator as a guanine nucleotide exchange factor 

(GEF). A SOS1 missense mutation c.1310T>C (p. Ile437Thr) was identified in the germline, 

inducing an amino acid substitution (I437Y) near the plekstrin homology domain (aa 444-

548) (Supplemental Figure S2).  This mutation has been previously reported as pathogenic 

for Noonan syndrome.9 Of note, SOS1 loss of heterozygosity was also demonstrated in the 

tumor. Despite playing an important role in Ras signaling, SOS1 has been shown to be 

insignificant in the development of cancer. 10 

p53, the protein product of TP53, has a well described importance in tumor 

suppression, with more than half of all sporadic human cancers demonstrating p53 

mutations. 11 A TP53 missense mutation c.481G>A (p. Ala161Tyr) was identified in the 

tumor. This induces an amino acid substitution (A161Y) within the DNA-binding domain (aa 

102-292) (Supplemental Figure S2). More than 80% of TP53 mutations in human tumors 

localize to the DNA-binding domain. 12 Of note, germline TP53 mutations cause Li-Fraumeni 

syndrome (LFS) which carries a very high susceptibility to cancer. However, LFS is present 

in only 1.3% of early onset CRC cases. 12,13 

 NCOR1 is the cornerstone of an epigenetic complex that affects cell differentiation in 

several cell types via modulation of chromatin histone deacetylation.14 A NCOR1 somatic 

nonsense mutation c.6052C>T (p. Arg2018*) was identified, causing significant protein 

truncation (Supplemental Figure S2). The C-terminal end of NCOR1 contains two separate 

nuclear receptor-interacting domains, ID1 (aa 2032-2115) and ID2 (aa 2212-2273). Motifs 

within these regions have been shown to be necessary for binding to nuclear hormone 

receptors. NCOR1 also plays an important role in acute promyelocytic leukemia therapy. 

Retinoic acid competes with NCOR1 for transcription factor RAR alpha binding. 15 Recently 

large scale genomic studies have identified NCOR1 driver mutations in breast cancer and 

hepatocarcinoma. 16,17 
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Of note, no mutations affecting the Wnt signaling pathway were identified in the 

germline or the tumor. The Wnt pathway plays an important pathogenic role in CRC, with 

93% of all CRC tumors contain mutations affecting this pathway. 6,11 Germline mutations in 

this pathway cause hereditary colorectal cancer syndromes including familial adenomatous 

polyposis (FAP) and juvenile polyposis.  

 The genetics of developmental syndromes have offered important insight into cancer, 

and the overlapping manifestations been described as a continuous spectrum (Figure 1). 

6,7,18,19 Variations in genotype likely disrupt development by affecting the interplay between 

different signal transduction and epigenetic pathways. Subsequent compensation may 

explain survival as well as non-intuitive cancer risks. 2,18-20  With the advancement of genetic 

testing and tissue pipelines, future whole-genome studies could identify the pathway 

changes of therapeutic value. 
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Table 1. Clinically significant mutations identified from genome-wide analysis 

Three point mutations with clinical significance were identified, one germline mutation and 

two somatic mutations in the tumor sample. The germline mutation in SOS1 and somatic 

mutation in TP53 encoded missense mutations causing a single amino acid change in the 

protein product. The somatic mutation in NCOR1 encoded a nonsense mutation causing a 

truncation of the protein product. 

Gene Variant type Genome 
locus 

Exon Nucleotide 
change 

Amino 
acid 
change  

Normal 
protein 
function 
 

Clinical 
significance 

SOS1 Germline 2p22.1 10 T1310C Ile437Thr Guanine 
exchange 
factor, Ras 
signaling 
 

Diagnostic 
mutation for 
Noonan 
syndrome 24 

TP53 Somatic 17p13.1 4 G481A Ala161Tyr Tumor 
suppressor 

> 80% of 
TP53 
mutations in 
human 
tumors 
localize to the 
DNA binding 
domain. 22 

NCOR1 Somatic 17p11.2 39 C6052T Arg2018* Transcriptio
nal 
coregulator
y protein  
 

ID1 domain 
dictates 
retinoic acid 
sensitivity in 
APL 31  
NCOR 1 
mutations 
may predict 
tamoxifen 
resistance in 
breast cancer 
45 
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Figure 1. Overlap of developmental disease and cancer. A continuous clinical spectrum has been 
hypothesized to link genetic developmental syndromes and cancer predisposition, with 
developmental phenotypes possibly reflecting compensatory signaling changes. With permission 
from Bellacosa 2013, AJMG.  
 
 

 


