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ABSTRACT

Jointly developing a comprehensive tree of life from livingand fossil taxa has long been a
fundamental goal in evolutionary biology. One major challenge has stemmed from difficulties in
merging evidence from extant and extinct organisms. While these efforts have resulted in varying
stages of synthesis, they have been hindered by their dependence on qualitative descriptions of
morphology. Though rarely applied to phylogenetic inference, traditional and geometric
morphometric data can improve these issues by generating more rigorous ways to quantify
variation in morphological structures. They may also facilitate the rapid and objective aggregation
of large morphological datasets. I describe a new Bayesian method that leverages quantitative
trait data to reconstruct the positions of fossil taxa on fixed reference trees composed of extant
taxa. Unlike most formulations of phylogenetic Brownian motion models, this method expresses
branch lengths in units of morphological disparity, suggesting a new framework through which to
construct Bayesian node calibration priors for molecular dating and explore comparative patterns
in morphological disparity. I am hopeful that the approach described here will help to facilitate a
deeper integration of neo- and paleontological data to movemorphological phylogenetics further
into the genomic era.
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Introduction: The role of fossil data in reconstructing phylogeny among living organisms has
long been a central, yet contentious, topic in evolutionarybiology. This has manifested over the
past decade in the rapid proliferation of ’total-evidence’methods that seek to simultaneously
reconstruct the relationships and divergence times between living and fossil taxa using cladistic
morphological matrices. These approaches, based upon probabilistic models of molecular and
morphological character evolution, have increased understanding of evolutionary tempo across
large clades, and provide compelling evidence in favor of incorporating fossils in phylogenetic
analyses (Pyron 2011; Ronquistet al.2012). This can benefit both paleo- and neontological
studies by improving the accuracy and treatment of uncertainty in estimation of divergence times
and comparative dynamics (Slateret al.2012; Guindon 2018).

A constant source of difficulty when jointly estimating phylogeny between living and extinct
organisms is the unavailability of molecular data in nearlyall fossil taxa. As a result, there has
been a need to explore the compatibility of molecular with morphological data to better
understand the capability of fossil and extant species to reciprocally inform reconstruction of
phylogeny and divergence times. Previous work has sought todetermine whether the inclusion of
molecular data representing extant species can improve thereconstruction of relationships among
fossils represented by morphology alone (Wiens 2009; Wienset al.2010). The results of these
studies suggest that the inclusion of morphological characters comprising living and fossil species
does not have a tendency to decrease the accuracy of phylogenetic reconstructions, and can
improve estimation of fossil placements in well-behaved datasets. Expanding upon these
observations, Berger and Stamatakis (2010) have shown that methods placing fossils on fixed
molecular phylogenies can yield accurate results. Their study also shows that a scaffolding
approach can further improve fossil reconstructions by offering a straightforward means of
filtering through noise in morphological datasets by leveraging information from the molecular
reference topology.

Morphological data present other unique challenges important to phylogenetic analysis. For
example, morphological data are frequently susceptible todisplaying biased or misleading signal.
Although discordance in morphological datasets may sometimes reflect biological processes such
as convergent evolution and hemiplasy, there is also frequently substantial noise stemming from
systematic error and poor preservation of fossil taxa. Systematic sources of discordance often
stem from the general practice of assigning discrete character states to taxa through qualitative
assessment. The subjective nature of this process can causemajor irreconcilable disagreement
between results achieved from different researchers (Hauser and Presch 1991; Pleijel 1995;
Wilkinson 1995; Hawkinset al.1997; Scotland and Pennington 2000; Scotlandet al.2003;
Brazeau 2011; Simõeset al.2017). As an added source of potential bias, these matrices are also
frequently filtered to exclude characters that researcherssuspect to be homoplasious. However,
since these judgments are typically made subjectively, it may be of benefit to introduce a
quantitative framework to evaluate the reliability of morphological traits.

As another challenge, the discrete character matrices mostcommonly employed in
phylogenentics can often be difficult to adequately model. At present, researchers employing
probabilistic methods generally use the so-called ‘Mk’ model (Lewis 2001). This is a
generalization of the Jukes-Cantor model of nucleotide substitution that accommodatesk possible
character states. Although previous work based upon simulated data has suggested that Mk-based
approaches outperform parsimony (Wright and Hillis 2014), the extent and conditions under
which this is the case in empirical datasets is unclear (Goloboff et al. 2017). Empirical datasets
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are also likely to depart significantly from the assumptionsof the Mk model. This poor match
between model assumptions and data can lead to erratic results and high uncertainty in posterior
estimates of divergence times (Ronquistet al.2016). Although recent studies have proposed more
sophisticated models (Wrightet al.2016), the standard symmetric Mk model remains in frequent
use, and the sensitivity of topological reconstruction to this frequent mismatch is fairly unclear at
present.

For all of these reasons, continuous traits have been suggested as a potential alternative
(Felsenstein 1973, 1988; MacLeod 2002). Nevertheless, their use has remained relatively
unexplored. In a previous study (Parins-Fukuchi 2017), I explored through simulations the
relative performance of continuous and discrete traits in phylogenetic inference. I found that
continuous characters perform similarly to discrete characters when phylogenetic half-life is set to
be equal, while exploring the possibility that continuous traits may extend phylogenetic
informativeness over some discretized character codings.

Traditional linear morphometric measurements have long been employed in morphological
phylogenetics, but are typically discretized to more easily analyze them alongside
present-absence data. Several approaches have been proposed for the discretization of
quantitative morphological data (Thiele 1993; Wiens 2001). However, these can yield
inconsistent or misleading results (Rae 1998; Goloboffet al.2006), and may in principle reduce
the amount of information in continuous datasets by binningfine-scaled variation into shared
discrete categories. As a result, it may often be preferableto analyze continuous traits directly.

Tools that quantify morphological size and shape have the capacity to alleviate many of the
concerns relating to bias and subjectivity that occur with discrete characters. Approaches such as
geometric morphometrics offer the potential to holistically incorporate all dimensions of shape to
inform phylogeny. The continuous state space of morphometric data might also increase the
amount of information that can be extracted from morphological datasets, which may be
beneficial when analyzing poorly-sampled fossil data. Continuous traits in general may engender
benefits on two levels when available by 1) reducing subjective bias often encountered when
constructing discrete character matrices, and 2) potentially preserving hard-won phylogenetic
information over discretized character codings by representing the full range of observed
interspecific variation. Although I explored point 2 previously (Parins-Fukuchi 2017), future
studies will be needed to quantify the extent to which this isthe case in diverse empirical datasets.

As another source of continuous traits, geometric morphometric data have shown utility in
several previous phylogenetic studies using parsimony-based methods (González-Joséet al.2008;
Catalanoet al.2010; Smith and Hendricks 2013), but have not gained substantial traction. This
may be in part due to the lack of available tools to analyze continuous trait data in a probabilistic
framework. In addition, previous authors have raised concerns about the use of morphometric
data in phylogenetic analysis, based primarily upon potential error stemming from covariance
across characters and difficulties in parsing out homologous interspecific variation from variation
resulting from rotations in morphospace (Felsenstein 2002). However, these concerns have been
partially alleviated by the success of other workers in reconstructing phylogeny from landmark
coordinates that are derived from truly homologous regionsthat have been properly aligned using
Procrustes transposition (MacLeod 2001, 2002; Catalanoet al.2010; Goloboff and Catalano
2016).

The earliest studies investigating probabilistic methodsof phylogenetic inference were
developed using continuous characters modeled under Brownian motion (BM) (Cavalli-Sforza
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and Edwards 1967; Felsenstein 1973). Due in part to the abundant discrete character data that
became available with the emergence of DNA sequencing, these approaches were quickly
overshadowed in popularity by discrete trait approaches based upon Markov nucleotide
substitution models. Continuous trait models have since gained significant popularity in
phylogenetic comparative methods, but still are rarely used for phylogenetic inference. As a
result, few implementations exist, with only ContML in the PHYLIP package and RevBayes
providing such functionality (Höhnaet al.2016). However, the PHYLIP implementation uses a
very simple tree searching procedure. RevBayes is very flexible, however, it is perhaps best suited
to total-evidence analyses, where extant and fossil taxa are estimated simultaneously. An
alternative procedure involves fixing extant relationships using the results of a molecular analysis,
and estimating the positions of fossil taxa along this scaffolding. Previously, Revellet al. (2015)
described a method that places individual taxa on phylogenies using quantitative data.The authors
found that the approach performed well, but the implementation developed for the study was
restricted to the placement of only extant and recently extinct taxa. In addition, the authors
explored only the placement of a single taxon at a time.

Although, like the Mk model, BM is fairly simplistic, it may offer a degree of flexibility that
improves its’ fit to empirical data in comparison to Mk. For instance, the Mk model assumes that
stationary frequencies of character states are equal, whereas BM assumes that traits at the tip of a
phylogeny are distributed according to a multivariate Gaussian distribution, with a set of
covariances defined by the topology and branch lengths. Whilethe Mk equilibrium assumption is
violated in most empirical datasets, the BM assumption of normality can often be justified by the
central limit theorem. This suggests that, even in cases where character state changes may better
conform to a non-Gaussian distribution over short timescales, these collapse into a Gaussian-like
distribution over longer timespans with many repeated draws. The standard phylogenetic BM
model may still be violated by patterns such as directional change, but the effect is not well
understood. Quantitative trait evolution might also proceed according to stasis and sudden jumps
(Landiset al.2013), but the identifiablility between BM and more complicated models across a
tree when branch lengths are expressed in unit variance are not clear.

In this paper, I describe a new approach that places multiplefossils on molecular trees using
quantitative characters modeled under BM. Departing from Revell et al. (2015), the phylogenetic
BM model used here treats branch lengths in terms of morphological divergence rather than time.
This simplifies the estimation procedure, and allows morphological disparity across taxa to be
easily visualized across the resulting tree, similarly to molecular phylograms. The approach here
seeks to tackle some of the most pressing obstacles associated with the use of traditional and
geometric morphometric data in phylogenetic inference. Using simulated data, I validate and
explore the behavior of the implementation. I also analyze empirical datasets representing the
Vitaceae family of flowering plants (Chen 2009) and carnivoran mammals (Joneset al.2015)
comprised of traditional and geometric morphometric measurements, respectively. The method
uses Markov chain Monte Carlo (MCMC) to infer the evolutionary placements of fossils and
branch lengths.
Methods and Materials:
Software:

All fossil placement analyses were performed using the new software packagecophymaru
written in the Go language. The source code is publicly available as free software at
https://github.com/carolinetomo/cophymaru. This package estimates the positions of fossil taxa
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on a user-specified reference tree of extant species using continuous traits contained within a
PHYLIP-formatted data file where each trait is separated by tabs. Examples can be gleaned from
the simulated and empirical data generated from this study,available online.
Brownian motion model

The approaches that I describe in this paper all rely upon thefamiliar BM model of evolution
(Butler and King 2004; O’Mearaet al.2006) . Under BM, traits are assumed to be multivariate
distributed, with variances between taxa defined by the product of their evolutionary distance
measured in absolute time and the instantaneous rate parameter (σ):

dX(t) = σdB(t) (1)

wheredX(t) is the time derivative of the change in traitX anddB(t)corresponding to normally
distributed random variables with mean 0 and variancedt. This leads to the expectation that over
time t,

E(Xt) = X0 (2)

with

V ar(Xt) = σ2t (3)

whereX0 gives the trait value att0.
The methods that I describe use a slightly different parameterization and likelihood

calculation than most conventional implementations used in modern phylogenetic comparative
methods (PCMs). These generally construct a variance-covariance (VCV) matrix from a dated,
ultrametric phylogeny to calculate the likelihood of the data, assuming a multivariate normal
distribution (Butler and King 2004; O’Mearaet al.2006). Since these methods treat the topology
and branching times as known, the goal is typically to obtainthe maximum likelihood estimate
(MLE) of the rate parameter (σ ) to examine evolutionary rate across clades.

In typical usage, researchers employ phylogenetic BM modelswhere branch lengths are
scaled to absolute time, and a rate parameter is estimated. Although it is possible to
simultaneously estimate divergence times and topology while analyzing continuous traits, this
requires the specification of a tree prior that can accommodate non-ultrametric trees that include
fossils. In addition, this approach would effectively perform morphological dating using
continuous traits. The behavior and feasibility of such a procedure is not understood, and falls
outside the scope of this article. Perhaps more importantly, this would also create circularity when
using the method to place fossils used as calibrations in molecular dating. To overcome the need
for simultaneously estimating divergence times and fossilplacements, the method estimates the
productσ2t together. As a result, rate and absolute time are confoundedin the trait and tree
models. Branch lengths, which reflect the morphological disparity between taxa, are thus
measured in units of morphological standard deviations persite. This interpretation could be
thought roughly of as a continuous analogue to the branch lengths obtained from discrete
substitution models. Similarly to the discrete case, long branch lengths could reflect either a rapid
rate of evolution or a long period of divergence (in absolutetime) along that lineage.
Computation of the likelihood:

Rather than use the computationally expensive VCV likelihoodcalculation, I use the reduced
maximum likelihood (REML) calculation described by Felsenstein (1973). Full derivations of the
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likelihood and algorithm are also given by Felsenstein (1981b) and Freckleton (2012), and
summarized briefly below. The tree likelihood is computed from the phylogenetic independent
contrasts (PICs) using a ‘pruning’ algorithm. In this procedure, each internal node is visited in a
postorder traversal, and the log- likelihood,Lnode is calculated as multivariate normal, with a
mean equal to the contrast between the character states,x1 andx2 at each subtending edge and
variance calculated as the sum of each child edge,v1 andv2:

Lnode =
1

2
∗ log (2π) + log (v1 + v2) + (x1 − x2)

2

v1 + v2
(4)

The PIC,xinternal, is calculated at each internal node and used as the character state representing
the internal node during the likelihood computation at the parent node. The edge length of the
internal node,vinternal is also extended by averaging the lengths of the child nodes to allow the
variance from the tips to propagate from the tips to the root:

xinternal =
(x1 ∗ v2) + (x2 ∗ v1)

v1 + v2
(5)

vinternal = vinternal +
(v1 ∗ v2)
(v1 + v2)

(6)

The total log-likelihood of the tree,Ltree is calculated by summing the log-likelihoods calculated
at each of then internal nodes.

Ltree =
n∑

node=1

Lnode (7)

Priors:
Since the estimation of branch lengths from continuous traits is relatively uncharted territory

in phylogenetics, I implemented and tested three differentbranch length priors derived from the
molecular canon: 1) flat (uniform), 2) exponential, and 3) a compound Dirichlet prior after
(Rannalaet al.2011). The compound Dirichlet prior also offers the option to set the scale of the
expected tree length using the initial rough estimate of branch lengths.
Markov-chain Monte Carlo

This method uses a Metropolis-Hastings (MH) algorithm (Hastings 1970) to simulate the
posterior distribution of fossil insertion points and branch lengths. Rearrangements of the
topological positions of fossil taxa are performed by randomly pruning and reinserting a fossil
taxon to generate a proposal. This is a specific case of the standard subtree pruning and regrafting
(SPR) move for unrooted tees (Fig. 1). In this procedure, the two edge lengths that link the fossil
to the rest of the tree are merged when the fossil tip is pruned, while the edge upon which the tip
is inserted is split into two. The move is described in detail, along with a full derivation of the
appropriate MH proposal ratio in Yang (2014, p. 287). Branch lengths are updated both
individually and by randomly applying a multiplier to subclades of the tree. MH proposal ratios
for branch length updates follow the derivations given for the the ’multiplier’ or ’proportional
scaling’ move described by Yang (2014, p. 225).
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Figure 1. Random fossil prune and regraft procedure.
Generating a rough ML starting tree:

I re-implemented the approach used in the ContML program to generate an approximate ML
starting tree. These initial placements are achieved usingstepwise addition. Unlike ContML, this
step successively adds fossils to the molecular guide tree,and so only the fossil positions are
estimated. Each fossil is individually inserted along all existing branches of the tree, with the
insertion point that yields the highest likelihood retained. At each step, MLEs of the branch
lengths are computed using the iterative procedure introduced by (Felsenstein 1981a). In this
procedure, the tree is rerooted along each node. PICs are calculated to each of the three edges
subtending the new root, and are treated as ’traits’ at the tips of a three-taxon tree. The MLE of
each edge length of the pruned three-taxon tree (vi) is computed analytically using the
expressions::

v̂1j =

n∑
j=1

(x1j − x2j)(x1j − x3j)

n
(8)

v̂2j =

n∑
j=1

(x2j − x1j)(x2j − x3j)

n
(9)

v̂3j =

n∑
j=1

(x3j − x1j)(x3j − x2j)

n
(10)

This process is iterated by successively rerooting on each node of the tree and calculating the
branch lengths until their values and the likelihoods converge. Felsenstein (1981) gives a more
detailed explanation of the algorithm, along with a complete derivation of the MLE branch length
calculations.

Once an initial placement has been assigned for all of the fossils, the branch lengths are
optimized on the complete tree. These starting lengths can be used to inform branch length priors
used during MCMC simulation. One problem with interpreting the results of the ML approach on
their own is that it has a strong propensity to becoming trapped in local optima. As a result, it
should be interpreted cautiously, and not used without further MCMC searching. In the
applications here, the topologies achieved from this procedure are used only to construct starting
trees, while the branch lengths inform the specification of branch length priors. This procedure
allows straightforward construction of non-random starting trees for the MCMC and priors that
reflect the the dataset under analysis.

Filtering for concordant sites:
One major hurdle involved in the use of morphological data istheir frequent tendency to

display noisy and discordant signal. This problem might be expected to manifest even more
intrusively in morphometric datasets than in discrete datasets, since traits are much less likely to
be excludeda priori on the basis of perceived unreliability. As a result, there is a need to filter
through noisy signal to favor more reliable sites. I developed a procedure adapted from Berger and
Stamatakis (2010) for this purpose. This computes a set of weights based upon the concordance
of each site with the reference tree. In this procedure, the likelihood (Lref ) of each site is
calculated on the reference tree (excluding fossil taxa). Next, the likelihood (Ln) of each site is
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calculated along eachn of 100 phylogenies generated randomly by successively grafting nodes in
a stepwise manner until a full tree is formed. Branch lengths are then assigned using uniform
random draws. If the likelihood of the site is higher along the reference tree than the current
random tree, the weight of the site is incremented by one. Thus, sitej receives the integer weight:

−→
W

int

j =
100∑

n=1

δnj (11)

whereδnj = 1 if:

Lref > Ln (12)

andδnj = 0 if:

Lref < Ln (13)

This yields a weight vector that is the same length as the character matrix, with each site
possessing a weight between 0 and 100. The sites are then weighted using one of three schemes:
1) whole integer values, where the weight equals the value obtained from equation 11, 2) a
floating point value between 0 and 1, where the value generated from the random comparison is
divided by 100, and 3) a binary value where the weight is equalto 1 if the site displayed a higher
likelihood in the reference tree than 95 or more of the randomtrees, and 0 if less than 95:

−→
W

binary

j = 1 (14)

if

−→
W

int

j > 95 (15)

and

−→
W

binary

j = 0 (16)

if

−→
W

int

j < 95 (17)

After the weights are computed using the input guide tree, they are stored, and used in all
subsequent likelihood computations during MCMC simulations.

In application, I found that integer weighting caused poor MCMC mixing, and so the floating
and binary schemes are probably most practical in most cases. The poor mixing achieved by the
integer scheme is likely due to the large increase in the scale of the log-likelihoods. This causes
nearly all proposals to be rejected, substantially reducing the efficiency of the algorithm. In effect,
the MCMC algorithm becomes a very inefficient hill-climbing ML search, since only proposals
that increase the likelihood are accepted. Since it filters out discordant sites completely, the binary
scheme enforces a harsher penalty than the floating and integer schemes, and so might be of
greatest use in particularly noisy datasets. As an additional note, although these procedures share
similar terminology to the site weights calculated during parsimony analysis of multi-state
characters, they differ in their purpose. Parsimony site weights are intended to normalize the
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contribution of characters with differing state spaces to the overall tree length. In contrast, the site
weighting approach deployed here is designed to decrease the contribution of sites that disagree
with the reference topology to the overall tree likelihood,instead highlighting signal taken to be
more reliable. As a result, the guide tree is used to identifysites that are most likely to reliably
inform fossil placements.

Although this procedure was originally implemented in an MLcontext, the application here
functions as a prior. By assuming that the molecular guide tree provides an accurate view of
extant species relationships, characters that appear to show significant error, homoplasy, or reflect
other processes yielding discordant signal, are filtered out or de-emphasized. This procedure has
the effect of increasing posterior support in datasets possessing many discordant characters.The
Bayesian framework offers a straightforward means to interpret the resulting support values as
standard posterior credibility estimates. Nevertheless,the filtering approach, as any prior, should
be applied thoughtfully, and compared to results when the prior is not used.
Simulations:

To explore the behavior of these approaches under differentsettings and validate the
implementation, I performed a set of simulations. From a single simulated tree, I pruned five
"fossil" taxa and estimated their positions along the tree using 100 datasets of 50 characters
simulated under BM. The tree was simulated under a birth-death model, with a birth parameter of
1.0 and a death parameter of 0.5. The resulting tree conained41 taxa, leaving a 36-taxon
reference tree when the five fossils were pruned. To explore the effect of conflicting and noisy
signal, I also generated alignments consisting of 50 “clean” traits simulated along the true tree,
and combined with sets “dirty” traits in intervals of 10, 25,and 50 traits generated along random
trees. All trait (clean and dirty) simulations were performed using the "fastBM" function in the
phytools package (Revell 2012). All traits were simulated using a rate parameter of 1.0. Random
trees were generated by collapsing the true tree into a star topology using the "di2multi" function,
which was randomly resolved using the "multi2di" function. Branch lengths were then assigned
randomly by drawing from an exponential distribution with mean set to 1. The simulated data
sets, Newick trees, and all scripts used to generate them areavailable at
https://github.com/carolinetomo/fossil_placement_tests.

I restricted the simulations to a fairly small number of traits because this reflected a similar
size as the two empirical datasets. This level of sampling isfairly common among existing
continuous datasets, which are often compiled from only oneor two anatomical regions (eg.,
"cranium", "pelvis", "leaf"). In the future, methods such as that described here may encourage the
assembly of more comprehensive quantitative morphometricdatasets, but at present, it seemed
most sensible to examine the level of sampling expected fromexisting datasets. Each simulated
trait was evolved independently (ie. displaying no covariance with other sites). This is because 1)
I showed in a previous study (Parins-Fukuchi 2017) that sitewise covariance does not in and of
itself significantly handicap reconstructions from continuous traits, and 2) because in this study I
was primarily interested in examining the effect of inducing random noise without the potentially
confounding effect of covariance. Although covariance hasbeen expressed as a major concern in
morphometric phylogenetics (Felsenstein 1988, 2002), there is no reason to expect greater
covariance between continuous traits than discrete traits, which, ideally, should describe similar
aspects of morphology. Nevertheless, a fairly common source of error in molecular phylogenetic
studies can occur when many sites exhibit shared misleadingsignal due to some legitimate
biological process. A similar effect may in principle occurin studies using continuous
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morphological characters. And so, although continuous trait matrices may not necessarily carry
greater inherent risk toward being mislead by covariance across sites than studies based on
molecular and discrete morphological characters, carefulanalysis is important to properly dissect
the distribution of signal across character matrices to properly identify biological and systematic
sources of conflict and error.

These simulated datasets were then used to reconstruct the placements of the five fossils. To
explore the relative performance of weighting schemes, I performed reconstructions using both
the binary and floating approaches. These were supplementedby analyses of the noisy datasets
without applying site weights. MCMC simulations were run for1,000,000 generations and
checked to ensure that the effective sample sizes (ESS) exceeded 200. The exponential branch
length prior was employed for the simulated data with a mean of 1.0. To evaluate the accuracy of
the placement method, I then calculated the distances between the true and reconstructed fossil
placements. This was calculated by counting the number of nodes separating the true insertion
branch from the reconstructed insertion branch. These distances were divided by the largest
possible distance between two tips in the simulated tree to yield a measure of placement error
falling between 0 and 1. Placement accuracy was evaluated using themaximum a posteriori
(MAP) summaries of tree distributions. MAP trees representthe single most sampled tree during
the MCMC run. Tree summary and placement distances were calculated using custom Python
scripts.
Empirical analyses:

To assess the utility of the new approach in analyzing continuous morphological data, I
performed analyses on empirical datasets comprised of 1) linear measurements and proportions,
and 2) geometric morphometric data composed of 3-dimensional landmark coordinates. These
are two common sources of continuous trait data, and so were chosen to test the method across
different possible data types. In thecophymaruimplementation of the method, these characters
are input as character matrices similar to those used to store discrete traits, with homologous
measurements arranged in columns, corresponding to rows oftaxa. In the case of the geometric
morphometric data, each landmark coordinate represents a column, similarly to previous
phylogenetic approaches that explicitly use geometric morphometric data (Catalanoet al.2010).
Empirical character matrices, trace files, and reference trees are all available online at
https://github.com/carolinetomo/fossil_placement_tests.

I estimated the phylogenetic positions of fossils using a morphological matrix comprised of
51 continuous measurements gathered from pollen and seed specimens sampled across 147 extant
and 8 fossil Vitaceae taxa. These data were acquired from Chen(2009). I constructed a guide tree
for the extant taxa from 8 nuclear and chloroplast genes gathered from Genbank using the
PHLAWD system (Soltiset al.2011). The sequence alignment used to construct the guide tree is
available in the online data supplement. Using this scaffolding, I analyzed the morphological data
to estimate the positions of the fossil taxa. Individual runs were performed under all three branch
length priors to assess stability across models. All analyses were run for 30,000,000 generations
and visually checked for convergence. Analyses were performed with binary weights applied to
the sites and compared to an unweighted analysis. To ensure that MCMC runs were not trapped in
local optima, several redundant runs were performed under each combination of settings. For
each, the analysis with the highest mean likelihood was retained.

To explicitly test the informativeness of geometric morphometric data in fossil placement, I
also performed analyses on a dataset of 33 3D landmark coordinates representing 46 extant and 5
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extinct fossil carnivoran crania (Joneset al.2015). A reference tree composed of the 46 extant
taxa was obtained from the data supplement of the original study. These coordinates were
subjected to Procrustes transposition using MorphoJ (Klingenberg 2011). This yielded a matrix
where each character represented the aligned X, Y, or Z position of one landmark. These
characters are ’aligned’ such that each column contains thecoordinates in one dimension of a
single landmark occupied by each taxon. Although the details surround the analytical approaches
differ, this use of morphometric data is similar to that usedin the method described by Catalano
et al. (2010). The resulting traits displayed phylogenetic signal, but the transposed coordinates
showed very low dispersion (variance) on an absolute scale.Low variance can result in narrower
peaks in the MCMC surface, which causes difficulties in achieving MCMC convergence. To
remedy this, I scaled all of the traits to increase the absolute variance evenly across taxa evenly at
each site while maintaining the original pattern of relative variances across taxa using the scale()
function in R (R Core Team 2016). This procedure preserved thesignal present in the original
dataset, since the relative distances between taxa remained the same. Final analyses were
performed on this transformed set of measurements. As with the Vitaceae dataset, I analyzed the
canid data under all three branch length priors, and performed several runs, retaining the one with
the highest mean likelihood. MCMC simulations were run for 20,000,000 generations, and
visually examined using Tracer v1.6 to assess convergence.Both empirical datasets achieved
large ESS values (>1000) under all settings.

For both datasets, I used starting trees and branch lengths generated from the rough ML
method described above. Sites were weighted using the binary for the final analyses. Intermediate
analyses using unweighted and float-weighted sites were also performed, and are presented in the
data supplement. Dirichlet priors were assigned alpha parameters of 1.0 and beta parameters
specified as the total tree length of the ML starting tree. Exponential branch length priors were
assigned mean values of 1.0.

Since the empirical datasets were more complex than the simulated data, I summarized the
tree distributions as maximum clade credibility (MCC) summaries. These summaries maximize
the support of each clade. These were compared to the MAP estimates, however, and yielded
generally concordant placements (supplementary material). MCC summaries were obtained using
the SumTrees script that is bundled with the DendroPy package (Sukumaran and Holder 2010).
Branch lengths were summarized as the mean across all sampledtrees.
Results and Discussion
Simulations

Reconstructions of fossil placements from the simulated datasets showed that the method is
generally accurate in placing fossil taxa (Tables 1 and 2). In the absence of noisy traits,
reconstruction is nearly always correct, displaying 0.3% error on average. In the presence of
random noise, the reconstructions are fairly accurate, except when noise becomes severe.
Nevertheless, even in the extreme case where half of the characters display completely random
signal, the estimated fossil positions tend to fall within the correct region of the tree, exhibiting
between 7.8% (with binary weighting under the compound Dirichlet prior) and 17.6%
(unweighted, under the exponential prior) placement erroron average under the exponential prior
when alignments contain an equal number of clean and dirty sites. And although the procedure
reconstructs fossil positions that are quite distant in theworst case (18% error under the
exponential prior with no weighting scheme), application of the weighting procedures reduces
placement error by half, even though the signal-to-noise ratio is quite high.
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Table 1: Mean error when placing simulated fossils under theexponential branch length prior.
Error is measured as the average number of nodes separating reconstructed placements from their
true positions across all 100 replicates of each dataset divided by the maximum possible path length
between nodes.
dataset binary_weights float_weights unweighted
50 clean 0.009 0.012 0.009
50 clean + 10 dirty 0.024 0.195 0.396
50 clean + 25 dirty 0.153 0.420 0.489
50 clean + 50 dirty 0.291 0.485 0.528

In thecophymaruimplementation, the compound Dirichlet prior outperformsthe exponential
branch length prior on the simulated datasets (Table 2). Placement error lower under the
compound Dirichlet in all but one of the comparisons. The improvement exhibited under the
compound Dirichlet is greatest when using the binary weighting scheme, resulting in a 2%
reduction in error compared to exponential prior on the noisiest datasets. The improvement also
increases with the noisiness of the simulated dataset, withthe 50 clean+50 dirty dataset
displaying the largest increase in placement accuracy. This result suggests that the compound
Dirichlet branch prior combined with binary weighting scheme may be the ideal mode through
which to analyze particularly noisy datasets.

Across both branch length priors, binary weighting shows improved accuracy over float and
unweighted analyses. However, despite the apparent advantage of binary weighting, it is possible
that the float weighting scheme could remain beneficial in cases where the distribution of noise
varies between different regions of trees. This is because the float weighting scheme limits the
contribution of noisy sites to the likelihood rather than entirely excluding them. This possibility
was not examined in this set of simulations, since the dirty traits were generated to reflect
completely random noise. However, in reality, noise may be structured to display discordance in
only certain taxa. In these cases, continuous traits may display misleading signal among some
subset of taxa, but correctly informative signal among other subsets. Further work will be needed
to determine the extent to which weights calculated under the float weighting scheme vary when
conflict is localized to particular regions of the referencetree.

Overall, the simulations demonstrate the efficacy of the method for the phylogenetic
placement of fossils and provide a validation of the computational implementation. The analysis
of clean datasets shows that the method performs well, estimating fossil placements with very low
error when signal is clear. The adaptation of Berger and Stamatakis’ (2010) site weight
calibration approach also appears to effectively filter through noisy datasets to improve
estimation. The binary weight calibrations appear particularly effective at dealing with rampant
misleading random noise, with improving accuracy by 2 to 20 times depending on the relative
proportion of signal and noise compared to unweighted analyses. These results show promise
toward the prospect of applying the method developed in thiswork to the analysis of large-scale
morphometric datasets, where significant noise might be expected. Although introducing noise to
unweighted analyses decreases reconstruction accuracy, the method performs predictably, and
still manages to place fossils on average within the correctneighborhood. However, when
weighting schemes are applied, the performance improves drastically, highlighting the promise of
this method for the analysis of empirical datasets.
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Table 2: Mean error when placing simulated fossils under thecompound Dirichlet branch length
prior. Error is measured as the average number of nodes separating reconstructed placements from
their true positions across all 100 replicates of each dataset divided by the maximum possible path
length between nodes.
dataset binary_weights float_weights unweighted
50 clean 0.009 0.009 0.012
50 clean + 10 dirty 0.021 0.189 0.390
50 clean + 25 dirty 0.120 0.402 0.501
50 clean + 50 dirty 0.234 0.468 0.522

Vitaceae dataset:
Application of the fossil placement method to the Vitaceae dataset showed generally positive

results (Fig. 2, Fig. S1). The weight calibration procedurerevealed substantial noise in the
dataset, with 10-12 of 51 sites failing to favor the molecular reference tree over the random trees
at least 95% of the time across all runs. Despite this noise, the binary weighting scheme appeared
to adequately filter through this noise to generate biologically reasonable results.Vitis tiffneyi,
Parthenocissus_clarnensis, andAmpelopsis rooseaeall share clades with the extant members of
their respective genera.Palaeovitis_paradoxa, andCissocarpus jackesiae, which represent genera
with no extant species, both group with separate, non-monophyletic groups of crownCissus.
Ampelocissus wildeiplaced within crownCissus, separated by only a node fromPalaeovitis
paradoxa. All six of these taxa are stable in their placements, grouping within the same clades
across runs, and when both the exponential and empirical compound Dirichlet priors are applied.
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Figure 2. Vitaceae fossil placements inferred under the compound Dirichlet branch length
prior. Fossil taxa and branches are highlighted in red. Values following fossil tip labels indicate
posterior support for placement. Topology is summarized from the posterior using the set of
maximally credible clades (MCC). Figure displays only the clade containing all 6 fossils. The full
Newick tree is available in the data supplement.

The remaining two fossils are unstable in their placements across branch length priors.
Ampelocissus parviseminaalternately occupies clades shared by crownVitis or Nekemiasin the
exponential and Dirichlet prior runs, respectively. This taxon shows poor support under the
exponential prior, and achieves higher posterior support under the compound Dirichlet prior.
Under the exponential prior, theAmpelocissus parviseminaplacement shows a 0.2 posterior
probability (Fig. S1), and increases to 0.62 under the Dirichlet prior (Fig. 2). Similarly,Vitis
magnispermaalternately resolves into clades shared by crownCissusandAmpelocissusunder the
exponential and Dirichlet priors, with posterior support values of 0.23 and 0.54, respectively.

The simulations show that the compound Dirichlet prior achieves higher accuracy than the
exponential prior, especially when combined with the binary scheme and applied to noisy
datasets. If this observation can be extended to the empirical results, it is reasonable to prefer the
placements inferred for these two taxa under the compound Dirichlet prior. This interpretation is
supported by the greater stability and higher posterior support observed under the compound
Dirichlet branch length prior.
Carnivoran dataset:

Analysis of the carnivoran dataset also yielded generally reasonable results (Fig. 3). The
placements ofPiscophoca pacifica, Acrophoca longirostris, Enaliarctos emlongii, andAllodesmus
agree with previous results (Amson and de Muizon 2014; Joneset al.2015). The placement of
Piscophoca pacificaandAcrophoca longirostrisdiffers slightly from the topology generated by
Jones et al., placing the two taxa in a more nested position. However, this placement is consistent
with the results of Amson and Muison.Enaliarctos emlongiiandAllodesmusresolve in positions
identical to the topology used by Jones and colleagues (2015). Pontolis magnusis more erratic in
its placement, alternating between placement at the centerof the unrooted topology, or grouping
with VulpesandOtocyon. The latter placement is unlikely to be correct, because it placesPontolis
magnuswithin the Canidae family, while is canonically known as the only extant member of
family Odobenidae. Nevertheless, like the problem taxa in the Vitaceae example above, the
placement ofPontolisdisplays reassuringly weak support, both in terms of its posterior density
and in its tendency to group at the center of the tree. Interestingly, although the placements of
Enaliarctos emlongiiandAllodesmusremain stable across runs, both display weak support.
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Figure 3. Fossil placements inferred from the carnivoran dataset using the compound
Dirichlet prior. Placements are displayed as the maximum clade credibility summary of the
posterior distribution of trees. Branch lengths represent morphological disparity. Values trailing
fossil tip names display posterior support.

In both datasets, placement under the exponential branch length prior yields conservative
estimates of uncertainty in the fossil placements, displaying generally low posterior support,
except when placements are exceptionally stable such as with Ampelocissus wildei. This is
especially important in ‘rogue’ taxa such asVitis magnisperma. Branch support under the
compound Dirichlet prior is higher across several fossils in the Vitaceae dataset. The positions of
the six taxa with stable behavior (listed above) do not change significantly under the compound
Dirichlet compared to the exponential prior. Closer examination is needed to better determine the
significance of this apparent sensitivity of posterior support measures to prior choice observed in
Vitaceae. The carnivoran dataset does not exhibit the same behavior, with both branch support
and fossil placements similar across priors.
Continuous vs discrete morphological characters:

Previous work investigating the degradation of phylogenetic signal over time has implied that
continuous traits can benefit over discrete traits under certain circumstances (Revellet al.2008).
In principle, methods that analyze continuous traits directly are preferable over those that bin
continuous variation into discrete categories (Goloboffet al.2006), due to their avoidance of error
stemming from discretization schemes (Rae 1998), and potential to better preserve information
that can be gleaned from morphological datasets (Parins-Fukuchi 2017). Nevertheless, depending
on the type of continuous data that are used, the incorporation of features that can be uniquely
described qualitatively, such as the loss and gain of structures, may be helpful. It would be
straightforward to combine such discrete information intothe morphometric framework described
here. As progress in this area develops, it will be importantto better understand the behavior of
different sources of morphological data at different timescales, and the most appropriate ways to
combine, model, and gather such datasets.
Caveats to the approach:

Although the performance of this new approach on simulated and empirical data appears
generally promising, there are several caveats to considerin its use. When applying this method
to geometric morphometric data, authors should be cautiousto properly align landmark
coordinates using Procrustes transformation to remove theeffects of rotation in 3D space as a
source of variation. In addition, as is shown by the simulations, when the signal-to-noise ratio
becomes high, the weighting procedure performs significantly less accurately than when the
amount of noisy/misleading signal is lower. Further work will be needed to assess the source of
this discrepancy, and the possibility of additional steps that fortifies the approach when noise
becomes high. The weighting procedure also may become more complicated in cases where a
reliable scaffolding tree cannot be estimated due to genealogical discordance, or where signal
displayed by the quantitative traits is shaped by such discordance (Mendeset al.2018). This
could in principle be accommodated in future extensions to the method by relaxing the number of
topologies accepted as scaffolding trees, or by extending the model to accommodate such
discordance.

Despite the potential utility in phylogenetics, there may be cases where useful
phylogenetically-informative characters cannot be extracted from geometric morphometric data.
This may be the case when any of the concerns stated by Felsenstein (2002) cannot be overcome,
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or when geometrically-defined characters exhibit inconsistent or weak signal, such as was found
by Smith and Hendricks (2013) when using a semi-landmark geometric method to capture
morphological variation inConussnails. In these cases, it may be necessary to resort to using
traditional linear measurements and proportions, or qualitative characters. Finally, there are cases
where fossils may simply present weak information due to shortcomings in geologic and
taxonomic sampling. When this is occurs, it is unlikely that any greater certainty in their
placement can be achieved except by adding data.
Comparison to other approaches:

The method that I describe here differs substantially from existing approaches to the
phylogenetic placement of fossil taxa. Although it is most similar to the fossil placement method
developed by Revellet al. (2015), it extends their approach in several important ways. For
instance, my approach does not require that branch lengths be scaled to time, simplifying the
estimation procedure. In addition, the implementation here allows for the estimation of long
extinct fossil taxa. Finally, the adaptation of Berger and Stamatakis’ approach to filtering
character matrices can improve upon the accuracy achieved from existing methods. The method
described here also differs from recent ’total-evidence’ methods that seek to simultaneously
estimate both extinct and extant relationships. Although total-evidence methods are useful tools
in the phylogenetic canon, splitting the estimation process into stages may be beneficial in certain
datasets, and better suited to certain questions. For instance, the approach here may be used to
generate priors for the placement of fossil calibrations innode dating. A new method has been
developed that accommodates uncertainty in the phylogenetic placement of node calibrations in
Bayesian molecular dating (Guindon 2018), which could, in principle, be combined with my
fossil placement approach, by using posterior support of fossil calibrations as the prior
probabilities in the dating analysis.

It is also worth noting that the method that I describe here would be straightforward to
implement in existing phylogenetics packages, such as RevBayes, and adapted to a total-evidence
framework. Although RevBayes does not feature a native implementation of the model that I
describe, including the data-filtering approach, adaptingthe present procedure to this framework
may be useful in addressing certain biological questions. This may include an exploration of the
feasibility of incorporating continuous data into total-evidence morphological clock analyses
(Zhanget al.2015) .

Moving forward, it will be important to explore the behaviorof this method when applied to
morphometric data collected under a variety of approaches and sampling schemes. The success of
the weight calibrations on the simulated and empirical datasets suggests the possibility of
applying the method to very large morphometric datasets by providing a means to filter through
the noise that may occur when sampling densely across taxa and organs. Such a framework would
facilitate the development of a more data-centric approachto morphological phylogenetics that
reduces common sources of bias in morphological datasets byfiltering data matrices statistically
rather than through subjective judgement. This would encourage an exploration of conflict and
concordance in signal through quantitative data analysis rather than by attempting to filter
subjectively at the stage of data collection. One major gap in the approach presented here
concerns the assumption that all continuous traits under analysis evolve under a shared rate. In the
empirical analyses performed above, I rescaled the traits at each site so that the variance is set to
be equal. However, it will be important to explore model extensions that accommodate rate
heterogeneity across characters. This has been done in continuous characters to positive effect by
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Schraiberet al. (2013) using a Gamma site-rate model, and adapting this or alternative
approaches to modeling rate heterogeneity (Huelsenbeck and Suchard 2007) will be a key priority
in future extensions the method.
Conclusions:

The method described here provides a new means for biologists to reliably and confidently
place fossils in the tree of life. Although the simulated andempirical analyses show several
imperfections and a need for further refinement of these methods, the overall accuracy and
conservative assessment of uncertainty displayed in the examples appear encouraging. As
molecular phylogenetics advances in its use of genomic datato answer fundamental questions
across the tree of life, it will be important for morphological phylogenetics and paleontology to
keep pace. Analysis of morphometric data using the approachshown here will help to improve
issues surrounding subjectivity in character collection,and will help morphological datasets to
scale better in the genomic era. New advances in the collection of morphometric data, combined
with refinements to the approach developed here will better equip morphology to speak to major
outstanding questions across the tree of life.
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