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ABSTRACT

Jointly developing a comprehensive tree of life from liviengd fossil taxa has long been a
fundamental goal in evolutionary biology. One major chadje has stemmed from difficulties in
merging evidence from extant and extinct organisms. Whasdtefforts have resulted in varying
stages of synthesis, they have been hindered by their depeadn qualitative descriptions of
morphology. Though rarely applied to phylogenetic infeesrtraditional and geometric
morphometric data can improve these issues by generating mgorous ways to quantify
variation in morphological structures. They may also ftati¢ the rapid and objective aggregation
of large morphological datasets. | describe a new Bayesidhadehat leverages quantitative
trait data to reconstruct the positions of fossil taxa ondfiseference trees composed of extant
taxa. Unlike most formulations of phylogenetic Brownian mntmodels, this method expresses
branch lengths in units of morphological disparity, sudigesa new framework through which to
construct Bayesian node calibration priors for moleculaindesand explore comparative patterns
in morphological disparity. | am hopeful that the approaelatibed here will help to facilitate a
deeper integration of neo- and paleontological data to mowghological phylogenetics further
into the genomic era.

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting,
typesetting, pagination and proofreading process, which may lead to differences between this version and the |Version of Record. Please
cite this article as doi: 10.1111/ev0.13516

This article is protected by copyright. All rights reserved.


https://doi.org/10.1111/evo.13516
https://doi.org/10.1111/evo.13516

Introduction: The role of fossil data in reconstructing phylogeny amowigg organisms has
long been a central, yet contentious, topic in evolutiormojogy. This has manifested over the
past decade in the rapid proliferation of 'total-evidentethods that seek to simultaneously
reconstruct the relationships and divergence times betVidag and fossil taxa using cladistic
morphological matrices. These approaches, based upoahplisbhc models of molecular and
morphological character evolution, have increased utaiedsng of evolutionary tempo across
large clades, and provide compelling evidence in favor cbiporating fossils in phylogenetic
analyses (Pyron 2011; Ronquettal. 2012). This can benefit both paleo- and neontological
studies by improving the accuracy and treatment of unceytan estimation of divergence times
and comparative dynamics (Slatgdral. 2012; Guindon 2018).

A constant source of difficulty when jointly estimating pbgeny between living and extinct
organisms is the unavailability of molecular data in neatlyossil taxa. As a result, there has
been a need to explore the compatibility of molecular withrphological data to better
understand the capability of fossil and extant speciesdiprecally inform reconstruction of
phylogeny and divergence times. Previous work has souglgtermine whether the inclusion of
molecular data representing extant species can improwedtoastruction of relationships among
fossils represented by morphology alone (Wiens 2009; Waeias 2010). The results of these
studies suggest that the inclusion of morphological characomprising living and fossil species
does not have a tendency to decrease the accuracy of phglagerconstructions, and can
improve estimation of fossil placements in well-behavet@siets. Expanding upon these
observations, Berger and Stamatakis (2010) have shown #tabns placing fossils on fixed
molecular phylogenies can yield accurate results. Thedysalso shows that a scaffolding
approach can further improve fossil reconstructions bgroffy a straightforward means of
filtering through noise in morphological datasets by legerg information from the molecular
reference topology.

Morphological data present other unique challenges inapdtb phylogenetic analysis. For
example, morphological data are frequently susceptibtkgolaying biased or misleading signal.
Although discordance in morphological datasets may sonestireflect biological processes such
as convergent evolution and hemiplasy, there is also frapugubstantial noise stemming from
systematic error and poor preservation of fossil taxa.e3yatic sources of discordance often
stem from the general practice of assigning discrete ctaratates to taxa through qualitative
assessment. The subjective nature of this process canmajseirreconcilable disagreement
between results achieved from different researchers @tausl Presch 1991, Pleijel 1995;
Wilkinson 1995; Hawkingt al. 1997; Scotland and Pennington 2000; Scotlandl. 2003,
Brazeau 2011; Simdex al. 2017). As an added source of potential bias, these matnieesso
frequently filtered to exclude characters that researagwesgect to be homoplasious. However,
since these judgments are typically made subjectivelyai be of benefit to introduce a
quantitative framework to evaluate the reliability of mbgtogical traits.

As another challenge, the discrete character matricesconasinonly employed in
phylogenentics can often be difficult to adequately modéprasent, researchers employing
probabilistic methods generally use the so-called ‘Mk’ miqdlewis 2001). This is a
generalization of the Jukes-Cantor model of nucleotidetgubsen that accommodatéspossible
character states. Although previous work based upon stetutiata has suggested that Mk-based
approaches outperform parsimony (Wright and Hillis 2014@,éxtent and conditions under
which this is the case in empirical datasets is unclear (Gffeet al. 2017). Empirical datasets
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are also likely to depart significantly from the assumptiofithe Mk model. This poor match
between model assumptions and data can lead to erratitsrasal high uncertainty in posterior
estimates of divergence times (Ronqusal. 2016). Although recent studies have proposed more
sophisticated models (Wriglet al. 2016), the standard symmetric Mk model remains in frequent
use, and the sensitivity of topological reconstructiorhis frequent mismatch is fairly unclear at
present.

For all of these reasons, continuous traits have been siagiyes a potential alternative
(Felsenstein 1973, 1988; MacLeod 2002). Nevertheless,ube has remained relatively
unexplored. In a previous study (Parins-Fukuchi 2017) pleed through simulations the
relative performance of continuous and discrete traitdylggenetic inference. | found that
continuous characters perform similarly to discrete cttera when phylogenetic half-life is set to
be equal, while exploring the possibility that continuotsts may extend phylogenetic
informativeness over some discretized character codings.

Traditional linear morphometric measurements have lomg lgenployed in morphological
phylogenetics, but are typically discretized to more gamilalyze them alongside
present-absence data. Several approaches have beenegarémabie discretization of
guantitative morphological data (Thiele 1993; Wiens 206lgwever, these can yield
inconsistent or misleading results (Rae 1998; Golobb#l. 2006), and may in principle reduce
the amount of information in continuous datasets by binfimgrscaled variation into shared
discrete categories. As a result, it may often be prefertad@alyze continuous traits directly.

Tools that quantify morphological size and shape have thaaity to alleviate many of the
concerns relating to bias and subjectivity that occur wisltibte characters. Approaches such as
geometric morphometrics offer the potential to holisticaicorporate all dimensions of shape to
inform phylogeny. The continuous state space of morphaomé#ita might also increase the
amount of information that can be extracted from morphaalylatasets, which may be
beneficial when analyzing poorly-sampled fossil data. Cmuatiis traits in general may engender
benefits on two levels when available by 1) reducing suhjediias often encountered when
constructing discrete character matrices, and 2) potsnpigeserving hard-won phylogenetic
information over discretized character codings by reprtaseg the full range of observed
interspecific variation. Although | explored point 2 prewsby (Parins-Fukuchi 2017), future
studies will be needed to quantify the extent to which thibiéscase in diverse empirical datasets.

As another source of continuous traits, geometric morphiocndata have shown utility in
several previous phylogenetic studies using parsimosgdaethods (Gonzalez-Jatéal. 2008;
Catalancet al. 2010; Smith and Hendricks 2013), but have not gained sutisténaction. This
may be in part due to the lack of available tools to analyzdicoaus trait data in a probabilistic
framework. In addition, previous authors have raised corgabout the use of morphometric
data in phylogenetic analysis, based primarily upon paketror stemming from covariance
across characters and difficulties in parsing out homolsguterspecific variation from variation
resulting from rotations in morphospace (Felsenstein 2a88wever, these concerns have been
partially alleviated by the success of other workers in nstaucting phylogeny from landmark
coordinates that are derived from truly homologous regtbhashave been properly aligned using
Procrustes transposition (MacLeod 2001, 2002; Catadhab 2010; Goloboff and Catalano
2016).

The earliest studies investigating probabilistic methaidshylogenetic inference were
developed using continuous characters modeled under Baownotion (BM) (Cavalli-Sforza
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and Edwards 1967; Felsenstein 1973). Due in part to the @miigliscrete character data that
became available with the emergence of DNA sequencinge thigisroaches were quickly
overshadowed in popularity by discrete trait approachssdapon Markov nucleotide
substitution models. Continuous trait models have sincesgisignificant popularity in
phylogenetic comparative methods, but still are rareldudse phylogenetic inference. As a
result, few implementations exist, with only ContML in the PHP package and RevBayes
providing such functionality (Héhnet al. 2016). However, the PHYLIP implementation uses a
very simple tree searching procedure. RevBayes is very fexiowever, it is perhaps best suited
to total-evidence analyses, where extant and fossil texastrmated simultaneously. An
alternative procedure involves fixing extant relationshiging the results of a molecular analysis,
and estimating the positions of fossil taxa along this sddiifig. Previously, Revekt al. (2015)
described a method that places individual taxa on phyl@agamsing quantitative data.The authors
found that the approach performed well, but the implementateveloped for the study was
restricted to the placement of only extant and recentlynektiaxa. In addition, the authors
explored only the placement of a single taxon at a time.

Although, like the Mk model, BM is fairly simplistic, it may tdr a degree of flexibility that
improves its’ fit to empirical data in comparison to Mk. Fostance, the Mk model assumes that
stationary frequencies of character states are equalpab®M assumes that traits at the tip of a
phylogeny are distributed according to a multivariate Gaursdistribution, with a set of
covariances defined by the topology and branch lengths. Whel&lk equilibrium assumption is
violated in most empirical datasets, the BM assumption ofiradity can often be justified by the
central limit theorem. This suggests that, even in caseserieracter state changes may better
conform to a non-Gaussian distribution over short timesgzahese collapse into a Gaussian-like
distribution over longer timespans with many repeated draivte standard phylogenetic BM
model may still be violated by patterns such as directiohahge, but the effect is not well
understood. Quantitative trait evolution might also pextaccording to stasis and sudden jumps
(Landiset al. 2013), but the identifiablility between BM and more complezhimodels across a
tree when branch lengths are expressed in unit varianceoastear.

In this paper, | describe a new approach that places muftygkgls on molecular trees using
guantitative characters modeled under BM. Departing froneRev al. (2015), the phylogenetic
BM model used here treats branch lengths in terms of morpheabdivergence rather than time.
This simplifies the estimation procedure, and allows molgdioal disparity across taxa to be
easily visualized across the resulting tree, similarly enular phylograms. The approach here
seeks to tackle some of the most pressing obstacles agsbwitih the use of traditional and
geometric morphometric data in phylogenetic inferencengysimulated data, | validate and
explore the behavior of the implementation. | also analympigcal datasets representing the
Vitaceae family of flowering plants (Chen 2009) and carnimareammals (Jonest al. 2015)
comprised of traditional and geometric morphometric meawents, respectively. The method
uses Markov chain Monte Carlo (MCMC) to infer the evolutionalgcements of fossils and
branch lengths.

Methodsand Materials:
Software:

All fossil placement analyses were performed using the redtware packageophymaru
written in the Go language. The source code is publicly atég as free software at
https://github.com/carolinetomo/cophymaru. This p@ekastimates the positions of fossil taxa
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on a user-specified reference tree of extant species usmipgous traits contained within a
PHYLIP-formatted data file where each trait is separatedbg.t Examples can be gleaned from
the simulated and empirical data generated from this stw@jlable online.
Brownian motion model

The approaches that | describe in this paper all rely upofetimdiar BM model of evolution
(Butler and King 2004; O’'Mearat al.2006) . Under BM, traits are assumed to be multivariate
distributed, with variances between taxa defined by theymoalf their evolutionary distance
measured in absolute time and the instantaneous rate parapje

dX (t) = odB(t) 1)

wheredX(t) is the time derivative of the change in trianddB(t) corresponding to normally
distributed random variables with mean 0 and variatc&his leads to the expectation that over
timet,

E(X,) = X, (2)
with

Var(X,) = o*t (3)

where X, gives the trait value at,.

The methods that | describe use a slightly different parareztion and likelihood
calculation than most conventional implementations usedadern phylogenetic comparative
methods (PCMs). These generally construct a variance-eoea (VCV) matrix from a dated,
ultrametric phylogeny to calculate the likelihood of theajassuming a multivariate normal
distribution (Butler and King 2004; O’Measet al. 2006). Since these methods treat the topology
and branching times as known, the goal is typically to obtlaghmaximum likelihood estimate
(MLE) of the rate parameter() to examine evolutionary rate across clades.

In typical usage, researchers employ phylogenetic BM maoaleése branch lengths are
scaled to absolute time, and a rate parameter is estimalhugh it is possible to
simultaneously estimate divergence times and topologyevamalyzing continuous traits, this
requires the specification of a tree prior that can accombeaatan-ultrametric trees that include
fossils. In addition, this approach would effectively menh morphological dating using
continuous traits. The behavior and feasibility of such@pdure is not understood, and falls
outside the scope of this article. Perhaps more importahilywould also create circularity when
using the method to place fossils used as calibrations ieontdr dating. To overcome the need
for simultaneously estimating divergence times and fgdadements, the method estimates the
producto?t together. As a result, rate and absolute time are confouimdée trait and tree
models. Branch lengths, which reflect the morphologicalahispbetween taxa, are thus
measured in units of morphological standard deviationsger This interpretation could be
thought roughly of as a continuous analogue to the brandtherobtained from discrete
substitution models. Similarly to the discrete case, loranpbh lengths could reflect either a rapid
rate of evolution or a long period of divergence (in absotute) along that lineage.
Computation of the likelihood:

Rather than use the computationally expensive VCV likelihcaldulation, | use the reduced
maximum likelihood (REML) calculation described by Felgens(1973). Full derivations of the
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likelihood and algorithm are also given by Felsenstein (19&nd Freckleton (2012), and
summarized briefly below. The tree likelihood is computexirfithe phylogenetic independent
contrasts (PICs) using a ‘pruning’ algorithm. In this proges] each internal node is visited in a
postorder traversal, and the log- likelihodd,,,. is calculated as multivariate normal, with a
mean equal to the contrast between the character statasdzx, at each subtending edge and
variance calculated as the sum of each child edganduvs:

Lnode _ 1 N log (27T> -+ log (Ul + UQ) + (l’l — .1'2)2 (4)
2 V1 + Vg
The PIC,x;,:ernal, IS Calculated at each internal node and used as the chestaterepresenting
the internal node during the likelihood computation at theept node. The edge length of the
internal nodey;,.:.,na 1S also extended by averaging the lengths of the child nadaBdw the

variance from the tips to propagate from the tips to the root:

(x1 % vy) + (o * v1)

T = 5

internal v n Vs ( )
V1 * V2

Vinternal = Vinternal ((Ul‘i‘UQ)) (6)

The total log-likelihood of the tred,;,.. is calculated by summing the log-likelihoods calculated
at each of the: internal nodes.

Liree = Z Lnode (7)
node=1
Priors:

Since the estimation of branch lengths from continuousstrairelatively uncharted territory
in phylogenetics, | implemented and tested three diffelbeanch length priors derived from the
molecular canon: 1) flat (uniform), 2) exponential, and 3papound Dirichlet prior after
(Rannaleaet al.2011). The compound Dirichlet prior also offers the optioisét the scale of the
expected tree length using the initial rough estimate ofi¢indengths.

Markov-chain Monte Carlo

This method uses a Metropolis-Hastings (MH) algorithm (ithas 1970) to simulate the
posterior distribution of fossil insertion points and bchrlengths. Rearrangements of the
topological positions of fossil taxa are performed by rantjopruning and reinserting a fossil
taxon to generate a proposal. This is a specific case of thdath subtree pruning and regrafting
(SPR) move for unrooted tees (Fig. 1). In this procedure Mloeetdge lengths that link the fossil
to the rest of the tree are merged when the fossil tip is prunbde the edge upon which the tip
Is inserted is split into two. The move is described in deadng with a full derivation of the
appropriate MH proposal ratio in Yang (2014, p. 287). Brarmeigths are updated both
individually and by randomly applying a multiplier to subdes of the tree. MH proposal ratios
for branch length updates follow the derivations given fa the 'multiplier’ or 'proportional
scaling’ move described by Yang (2014, p. 225).
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Figure 1. Random fossil prune and regraft procedure.
Generating a rough ML starting tree:

| re-implemented the approach used in the ContML program neigee an approximate ML
starting tree. These initial placements are achieved isgmvise addition. Unlike ContML, this
step successively adds fossils to the molecular guidedrekso only the fossil positions are
estimated. Each fossil is individually inserted along a&iséng branches of the tree, with the
insertion point that yields the highest likelihood retainét each step, MLEs of the branch
lengths are computed using the iterative procedure intedby (Felsenstein 1981a). In this
procedure, the tree is rerooted along each node. PICs ardatalt to each of the three edges
subtending the new root, and are treated as 'traits’ at ffsedti a three-taxon tree. The MLE of
each edge length of the pruned three-taxon trgeg computed analytically using the
expressions::

vy = 1= ®)

Uij == (9)

> (w3 — ) (@) — ay)

U3j = : n (10)

This process is iterated by successively rerooting on eadb of the tree and calculating the
branch lengths until their values and the likelihoods cogeeFelsenstein (1981) gives a more
detailed explanation of the algorithm, along with a complgrivation of the MLE branch length
calculations.

Once an initial placement has been assigned for all of threlépshe branch lengths are
optimized on the complete tree. These starting lengths earsed to inform branch length priors
used during MCMC simulation. One problem with interpretihg tesults of the ML approach on
their own is that it has a strong propensity to becoming teadp local optima. As a result, it
should be interpreted cautiously, and not used withouh&rrMCMC searching. In the
applications here, the topologies achieved from this mtoeare used only to construct starting
trees, while the branch lengths inform the specificationrahbh length priors. This procedure
allows straightforward construction of non-random staytirees for the MCMC and priors that
reflect the the dataset under analysis.

Filtering for concordant sites:

One major hurdle involved in the use of morphological dathésr frequent tendency to
display noisy and discordant signal. This problem mightygeeted to manifest even more
intrusively in morphometric datasets than in discrete slttg since traits are much less likely to
be excluded priori on the basis of perceived unreliability. As a result, thera need to filter
through noisy signal to favor more reliable sites. | develbp procedure adapted from Berger and
Stamatakis (2010) for this purpose. This computes a set ighigebased upon the concordance
of each site with the reference tree. In this procedure,ikieéiiood (Z,.) of each site is
calculated on the reference tree (excluding fossil taxaktNhe likelihood ILn) of each site is
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calculated along eaatnof 100 phylogenies generated randomly by successivelyiggaiodes in
a stepwise manner until a full tree is formed. Branch lengtaglzen assigned using uniform
random draws. If the likelihood of the site is higher along thference tree than the current
random tree, the weight of the site is incremented by ones;T$itej receives the integer weight:

. 100
W= 6, (11)
n=1

wherednj = 1if:

Lyey > Ly, (12)
andénj =0 if:

Lref < Ln (13)

This yields a weight vector that is the same length as theacker matrix, with each site
possessing a weight between 0 and 100. The sites are thehteatigsing one of three schemes:
1) whole integer values, where the weight equals the valtermdd from equation 11, 2) a
floating point value between 0 and 1, where the value gertefede the random comparison is
divided by 100, and 3) a binary value where the weight is etpualif the site displayed a higher
likelihood in the reference tree than 95 or more of the ranttess, and O if less than 95:

—binary

W =1 (14)
if

int

w95 (15)
and

—binary

W, =0 (16)
if

—int

W <95 (17)

After the weights are computed using the input guide tresy #re stored, and used in all
subsequent likelihood computations during MCMC simulation

In application, | found that integer weighting caused po@MC mixing, and so the floating
and binary schemes are probably most practical in most cdkegpoor mixing achieved by the
integer scheme is likely due to the large increase in theesafahe log-likelihoods. This causes
nearly all proposals to be rejected, substantially redythe efficiency of the algorithm. In effect,
the MCMC algorithm becomes a very inefficient hill-climbing_Mearch, since only proposals
that increase the likelihood are accepted. Since it filtatslscordant sites completely, the binary
scheme enforces a harsher penalty than the floating ancéirgelgemes, and so might be of
greatest use in particularly noisy datasets. As an additioote, although these procedures share
similar terminology to the site weights calculated durirggamony analysis of multi-state
characters, they differ in their purpose. Parsimony sitigkte are intended to normalize the
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contribution of characters with differing state spacesdverall tree length. In contrast, the site
weighting approach deployed here is designed to decreasmttiribution of sites that disagree
with the reference topology to the overall tree likelihomdtead highlighting signal taken to be
more reliable. As a result, the guide tree is used to idesttfs that are most likely to reliably
inform fossil placements.

Although this procedure was originally implemented in an btintext, the application here
functions as a prior. By assuming that the molecular guidegrevides an accurate view of
extant species relationships, characters that appeaotosgnificant error, homoplasy, or reflect
other processes yielding discordant signal, are filteré@diode-emphasized. This procedure has
the effect of increasing posterior support in datasetsqesi#sg many discordant characters.The
Bayesian framework offers a straightforward means to im&fe resulting support values as
standard posterior credibility estimates. Neverthelgssfiltering approach, as any prior, should
be applied thoughtfully, and compared to results when the @ not used.

Simulations:

To explore the behavior of these approaches under diffeedtings and validate the
implementation, | performed a set of simulations. From glsisimulated tree, | pruned five
"fossil" taxa and estimated their positions along the treegu$00 datasets of 50 characters
simulated under BM. The tree was simulated under a birthhd®atdel, with a birth parameter of
1.0 and a death parameter of 0.5. The resulting tree condihéaka, leaving a 36-taxon
reference tree when the five fossils were pruned. To exphareffect of conflicting and noisy
signal, | also generated alignments consisting of 50 “Cléaits simulated along the true tree,
and combined with sets “dirty” traits in intervals of 10, 2Bd 50 traits generated along random
trees. All trait (clean and dirty) simulations were perfedrusing the "fastBM" function in the
phytools package (Revell 2012). All traits were simulateidgis rate parameter of 1.0. Random
trees were generated by collapsing the true tree into aggialdgy using the "di2multi” function,
which was randomly resolved using the "multi2di" functionaBch lengths were then assigned
randomly by drawing from an exponential distribution witleam set to 1. The simulated data
sets, Newick trees, and all scripts used to generate theavailable at
https://github.com/carolinetomo/fossil_placemergtde

| restricted the simulations to a fairly small number oftsdiecause this reflected a similar
size as the two empirical datasets. This level of samplifigiily common among existing
continuous datasets, which are often compiled from onlyasrte/o anatomical regions (eg.,
"cranium”, "pelvis", "leaf"). In the future, methods such as tregatibed here may encourage the
assembly of more comprehensive quantitative morphomedtigsets, but at present, it seemed
most sensible to examine the level of sampling expected &xisting datasets. Each simulated
trait was evolved independently (ie. displaying no covazeawith other sites). This is because 1)
| showed in a previous study (Parins-Fukuchi 2017) thatvssie covariance does not in and of
itself significantly handicap reconstructions from conbus traits, and 2) because in this study |
was primarily interested in examining the effect of indgcrandom noise without the potentially
confounding effect of covariance. Although covariance besn expressed as a major concern in
morphometric phylogenetics (Felsenstein 1988, 2002)etiseno reason to expect greater
covariance between continuous traits than discrete traliteh, ideally, should describe similar
aspects of morphology. Nevertheless, a fairly common sooferror in molecular phylogenetic
studies can occur when many sites exhibit shared misleaityngl due to some legitimate
biological process. A similar effect may in principle ocauistudies using continuous
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morphological characters. And so, although continuousriratrices may not necessarily carry
greater inherent risk toward being mislead by covariancesacsites than studies based on
molecular and discrete morphological characters, caesfalysis is important to properly dissect
the distribution of signal across character matrices tp@ry identify biological and systematic
sources of conflict and error.

These simulated datasets were then used to reconstrudateents of the five fossils. To
explore the relative performance of weighting schemestfbpmed reconstructions using both
the binary and floating approaches. These were supplemeyi@oalyses of the noisy datasets
without applying site weights. MCMC simulations were run 1gp00,000 generations and
checked to ensure that the effective sample sizes (ESS¢@sde200. The exponential branch
length prior was employed for the simulated data with a mé&dn® To evaluate the accuracy of
the placement method, | then calculated the distances batthe true and reconstructed fossil
placements. This was calculated by counting the numberaéseeparating the true insertion
branch from the reconstructed insertion branch. Thesardiss were divided by the largest
possible distance between two tips in the simulated treéstd @ measure of placement error
falling between 0 and 1. Placement accuracy was evaluated e maximum a posteriori
(MAP) summaries of tree distributions. MAP trees represeatsingle most sampled tree during
the MCMC run. Tree summary and placement distances werelatddwsing custom Python
scripts.

Empirical analyses:

To assess the utility of the new approach in analyzing caotis morphological data, |
performed analyses on empirical datasets comprised afidadimeasurements and proportions,
and 2) geometric morphometric data composed of 3-dimeaklandmark coordinates. These
are two common sources of continuous trait data, and so vweseo to test the method across
different possible data types. In thbephymarumplementation of the method, these characters
are input as character matrices similar to those used te discrete traits, with homologous
measurements arranged in columns, corresponding to rotasaf In the case of the geometric
morphometric data, each landmark coordinate represemtsiann, similarly to previous
phylogenetic approaches that explicitly use geometricpmametric data (Catalaret al. 2010).
Empirical character matrices, trace files, and refererazsstare all available online at
https://github.com/carolinetomo/fossil_placemendtde

| estimated the phylogenetic positions of fossils using aghological matrix comprised of
51 continuous measurements gathered from pollen and seenirgms sampled across 147 extant
and 8 fossil Vitaceae taxa. These data were acquired from 089). | constructed a guide tree
for the extant taxa from 8 nuclear and chloroplast genesgathfrom Genbank using the
PHLAWD system (Solti®t al. 2011). The sequence alignment used to construct the gaeeastr
available in the online data supplement. Using this scdiffigi, | analyzed the morphological data
to estimate the positions of the fossil taxa. Individualswere performed under all three branch
length priors to assess stability across models. All aealygere run for 30,000,000 generations
and visually checked for convergence. Analyses were paddrwith binary weights applied to
the sites and compared to an unweighted analysis. To ermgatrMICMC runs were not trapped in
local optima, several redundant runs were performed uratdr eombination of settings. For
each, the analysis with the highest mean likelihood wasneda

To explicitly test the informativeness of geometric morptatric data in fossil placement, |
also performed analyses on a dataset of 33 3D landmark catedi representing 46 extant and 5

11

This article is protected by copyright. All rights reserved.



extinct fossil carnivoran crania (Jonesal. 2015). A reference tree composed of the 46 extant
taxa was obtained from the data supplement of the origindlsiThese coordinates were
subjected to Procrustes transposition using MorphoJ @élberg 2011). This yielded a matrix
where each character represented the aligned X, Y, or Ziposit one landmark. These
characters are 'aligned’ such that each column containedbedinates in one dimension of a
single landmark occupied by each taxon. Although the desaiiround the analytical approaches
differ, this use of morphometric data is similar to that usethe method described by Catalano
et al. (2010). The resulting traits displayed phylogenetic sigmat the transposed coordinates
showed very low dispersion (variance) on an absolute stal&.variance can result in narrower
peaks in the MCMC surface, which causes difficulties in achgeMCMC convergence. To
remedy this, | scaled all of the traits to increase the alisalariance evenly across taxa evenly at
each site while maintaining the original pattern of relatariances across taxa using the scale()
function in R (R Core Team 2016). This procedure preservedigmal present in the original
dataset, since the relative distances between taxa rethhiesame. Final analyses were
performed on this transformed set of measurements. As hetVitaceae dataset, | analyzed the
canid data under all three branch length priors, and peddrseveral runs, retaining the one with
the highest mean likelihood. MCMC simulations were run fo)020,000 generations, and
visually examined using Tracer v1.6 to assess converg&uth.empirical datasets achieved
large ESS values (>1000) under all settings.

For both datasets, | used starting trees and branch lengiiesaged from the rough ML
method described above. Sites were weighted using theydioiathe final analyses. Intermediate
analyses using unweighted and float-weighted sites wenegalsormed, and are presented in the
data supplement. Dirichlet priors were assigned alphanpaters of 1.0 and beta parameters
specified as the total tree length of the ML starting tree.dexgmtial branch length priors were
assigned mean values of 1.0.

Since the empirical datasets were more complex than thdati@dudata, | summarized the
tree distributions as maximum clade credibility (MCC) sumiesrThese summaries maximize
the support of each clade. These were compared to the MARats8, however, and yielded
generally concordant placements (supplementary mateki&C summaries were obtained using
the SumTrees script that is bundled with the DendroPy pack&gkumaran and Holder 2010).
Branch lengths were summarized as the mean across all satrg@ed
Results and Discussion
Simulations

Reconstructions of fossil placements from the simulateds#ds showed that the method is
generally accurate in placing fossil taxa (Tables 1 andr2)hé absence of noisy traits,
reconstruction is nearly always correct, displaying 0.3%6reon average. In the presence of
random noise, the reconstructions are fairly accuratesx@hen noise becomes severe.
Nevertheless, even in the extreme case where half of thadieas display completely random
signal, the estimated fossil positions tend to fall withie torrect region of the tree, exhibiting
between 7.8% (with binary weighting under the compounddBlgt prior) and 17.6%
(unweighted, under the exponential prior) placement emnoaverage under the exponential prior
when alignments contain an equal number of clean and digg.sAnd although the procedure
reconstructs fossil positions that are quite distant inibest case (18% error under the
exponential prior with no weighting scheme), applicatiéthe weighting procedures reduces
placement error by half, even though the signal-to-noigse s quite high.
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Table 1: Mean error when placing simulated fossils underettonential branch length prior.
Error is measured as the average number of nodes sepamtimgstructed placements from their
true positions across all 100 replicates of each datasetedivby the maximum possible path length
between nodes.

dataset binary_weights float weights unweighted
50 clean 0.009 0.012 0.009
50 clean + 10 dirty 0.024 0.195 0.396
50 clean + 25 dirty 0.153 0.420 0.489
50 clean + 50 dirty 0.291 0.485 0.528

In thecophymarumplementation, the compound Dirichlet prior outperfortims exponential
branch length prior on the simulated datasets (Table 2¢erlant error lower under the
compound Dirichlet in all but one of the comparisons. Theroepment exhibited under the
compound Dirichlet is greatest when using the binary weangfgcheme, resulting in a 2%
reduction in error compared to exponential prior on theipstdatasets. The improvement also
increases with the noisiness of the simulated dataset tatb0 clean+50 dirty dataset
displaying the largest increase in placement accurac rEsult suggests that the compound
Dirichlet branch prior combined with binary weighting saie may be the ideal mode through
which to analyze particularly noisy datasets.

Across both branch length priors, binary weighting showgromed accuracy over float and
unweighted analyses. However, despite the apparent ady@nt binary weighting, it is possible
that the float weighting scheme could remain beneficial iesaghere the distribution of noise
varies between different regions of trees. This is beceahesédat weighting scheme limits the
contribution of noisy sites to the likelihood rather thaniraty excluding them. This possibility
was not examined in this set of simulations, since the digigs were generated to reflect
completely random noise. However, in reality, noise maythectured to display discordance in
only certain taxa. In these cases, continuous traits mgyajisnisleading signal among some
subset of taxa, but correctly informative signal among oghubsets. Further work will be needed
to determine the extent to which weights calculated undefldat weighting scheme vary when
conflict is localized to particular regions of the referetee.

Overall, the simulations demonstrate the efficacy of thehoekfor the phylogenetic
placement of fossils and provide a validation of the comipatal implementation. The analysis
of clean datasets shows that the method performs well, astigifossil placements with very low
error when signal is clear. The adaptation of Berger and Stdasa(2010) site weight
calibration approach also appears to effectively filteotigh noisy datasets to improve
estimation. The binary weight calibrations appear paldity effective at dealing with rampant
misleading random noise, with improving accuracy by 2 toi@@s depending on the relative
proportion of signal and noise compared to unweighted aealyThese results show promise
toward the prospect of applying the method developed invibik to the analysis of large-scale
morphometric datasets, where significant noise might beaep. Although introducing noise to
unweighted analyses decreases reconstruction accunaapdthod performs predictably, and
still manages to place fossils on average within the comreigghborhood. However, when
weighting schemes are applied, the performance improwastidally, highlighting the promise of
this method for the analysis of empirical datasets.
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Table 2: Mean error when placing simulated fossils underctmapound Dirichlet branch length
prior. Error is measured as the average number of nodesatigygareconstructed placements from
their true positions across all 100 replicates of each dathigided by the maximum possible path
length between nodes.

dataset binary _weights float weights unweighted
50 clean 0.009 0.009 0.012
50 clean + 10 dirty 0.021 0.189 0.390
50 clean + 25 dirty 0.120 0.402 0.501
50 clean + 50 dirty 0.234 0.468 0.522

Vitaceae dataset:

Application of the fossil placement method to the Vitaceawdet showed generally positive
results (Fig. 2, Fig. S1). The weight calibration procedesealed substantial noise in the
dataset, with 10-12 of 51 sites failing to favor the molecuéderence tree over the random trees
at least 95% of the time across all runs. Despite this ndigebinary weighting scheme appeared
to adequately filter through this noise to generate biokllyiceasonable result¥iitis tiffneyi
Parthenocissus_clarnensisndAmpelopsis rooseaal share clades with the extant members of
their respective gener®alaeovitis_paradoxaandCissocarpus jackesiaghich represent genera
with no extant species, both group with separate, non-muwoylefic groups of crowrCissus
Ampelocissus wildgalaced within crowrCissus separated by only a node frapalaeovitis
paradoxa All six of these taxa are stable in their placements, gnogiwvithin the same clades
across runs, and when both the exponential and empiricgbcond Dirichlet priors are applied.
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Figure 2. Vitaceae fossil placements inferred under the compounidtidat branch length
prior. Fossil taxa and branches are highlighted in red. &afollowing fossil tip labels indicate
posterior support for placement. Topology is summarizethfthe posterior using the set of
maximally credible clades (MCC). Figure displays only thedelaontaining all 6 fossils. The full
Newick tree is available in the data supplement.

The remaining two fossils are unstable in their placemetrissa branch length priors.
Ampelocissus parvisemirdternately occupies clades shared by cr&fitis or Nekemiasn the
exponential and Dirichlet prior runs, respectively. Thagdn shows poor support under the
exponential prior, and achieves higher posterior supputeuthe compound Dirichlet prior.
Under the exponential prior, tilmpelocissus parvisemimgacement shows a 0.2 posterior
probability (Fig. S1), and increases to 0.62 under the Dlieicprior (Fig. 2). SimilarlyVitis
magnispermalternately resolves into clades shared by cr@issusandAmpelocissusinder the
exponential and Dirichlet priors, with posterior suppatues of 0.23 and 0.54, respectively.

The simulations show that the compound Dirichlet prior eebs higher accuracy than the
exponential prior, especially when combined with the byreetheme and applied to noisy
datasets. If this observation can be extended to the erapigsults, it is reasonable to prefer the
placements inferred for these two taxa under the compoundhbat prior. This interpretation is
supported by the greater stability and higher posteriopsttmbserved under the compound
Dirichlet branch length prior.

Carnivoran dataset:

Analysis of the carnivoran dataset also yielded generalgonable results (Fig. 3). The
placements oPiscophoca pacificaAcrophoca longirostrisEnaliarctos emlongjiandAllodesmus
agree with previous results (Amson and de Muizon 2014; Jehaks2015). The placement of
Piscophoca pacificandAcrophoca longirostrigiffers slightly from the topology generated by
Jones et al., placing the two taxa in a more nested positioweMer, this placement is consistent
with the results of Amson and MuisoEnaliarctos emlongiandAllodesmusesolve in positions
identical to the topology used by Jones and colleagues §2@b&tolis magnuss more erratic in
its placement, alternating between placement at the cehtiee unrooted topology, or grouping
with VulpesandOtocyon The latter placement is unlikely to be correct, becauskdgsPontolis
magnuswithin the Canidae family, while is canonically known as thyoextant member of
family Odobenidae. Nevertheless, like the problem taxaén\itaceae example above, the
placement oPontolisdisplays reassuringly weak support, both in terms of itdgras density
and in its tendency to group at the center of the tree. Iniiegdg, although the placements of
Enaliarctos emlongiandAllodesmusemain stable across runs, both display weak support.
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Figure 3. Fossil placements inferred from the carnivoran datasegusie compound
Dirichlet prior. Placements are displayed as the maximwadeskredibility summary of the
posterior distribution of trees. Branch lengths represesrpimological disparity. Values trailing
fossil tip names display posterior support.

In both datasets, placement under the exponential brangkhig@rior yields conservative
estimates of uncertainty in the fossil placements, disptagenerally low posterior support,
except when placements are exceptionally stable such g\wipelocissus wildeiThis is
especially important in ‘rogue’ taxa such¥isis magnispermaBranch support under the
compound Dirichlet prior is higher across several fossilhe Vitaceae dataset. The positions of
the six taxa with stable behavior (listed above) do not ckasignificantly under the compound
Dirichlet compared to the exponential prior. Closer exartiimais needed to better determine the
significance of this apparent sensitivity of posterior supmeasures to prior choice observed in
Vitaceae. The carnivoran dataset does not exhibit the safmevior, with both branch support
and fossil placements similar across priors.

Continuous vs discrete morphological characters:

Previous work investigating the degradation of phylogersgnal over time has implied that
continuous traits can benefit over discrete traits undeaitecircumstances (Revaedt al. 2008).

In principle, methods that analyze continuous traits diyeare preferable over those that bin
continuous variation into discrete categories (Gololeo#til. 2006), due to their avoidance of error
stemming from discretization schemes (Rae 1998), and patémbetter preserve information
that can be gleaned from morphological datasets (Parikadhii2017). Nevertheless, depending
on the type of continuous data that are used, the incorporafifeatures that can be uniquely
described qualitatively, such as the loss and gain of strast may be helpful. It would be
straightforward to combine such discrete information thg morphometric framework described
here. As progress in this area develops, it will be importaetter understand the behavior of
different sources of morphological data at different ticedss, and the most appropriate ways to
combine, model, and gather such datasets.

Caveats to the approach:

Although the performance of this new approach on simulatedesnpirical data appears
generally promising, there are several caveats to considiruse. When applying this method
to geometric morphometric data, authors should be cauteopsoperly align landmark
coordinates using Procrustes transformation to removefthets of rotation in 3D space as a
source of variation. In addition, as is shown by the simala&j when the signal-to-noise ratio
becomes high, the weighting procedure performs signifigéegs accurately than when the
amount of noisy/misleading signal is lower. Further work W needed to assess the source of
this discrepancy, and the possibility of additional stéya fortifies the approach when noise
becomes high. The weighting procedure also may become marplicated in cases where a
reliable scaffolding tree cannot be estimated due to gege=ll discordance, or where signal
displayed by the quantitative traits is shaped by such disswe (Mendest al.2018). This
could in principle be accommodated in future extensionséamethod by relaxing the number of
topologies accepted as scaffolding trees, or by extentiegiodel to accommodate such
discordance.

Despite the potential utility in phylogenetics, there maycases where useful
phylogenetically-informative characters cannot be etéd from geometric morphometric data.
This may be the case when any of the concerns stated by Felse{®)02) cannot be overcome,
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or when geometrically-defined characters exhibit incaasisor weak signal, such as was found
by Smith and Hendricks (2013) when using a semi-landmarkngéac method to capture
morphological variation irf€onussnails. In these cases, it may be necessary to resort to using
traditional linear measurements and proportions, or tptade characters. Finally, there are cases
where fossils may simply present weak information due tatsbamings in geologic and
taxonomic sampling. When this is occurs, it is unlikely thay greater certainty in their
placement can be achieved except by adding data.

Comparison to other approaches:

The method that | describe here differs substantially framsteg approaches to the
phylogenetic placement of fossil taxa. Although it is mastikr to the fossil placement method
developed by Reve#t al. (2015), it extends their approach in several important wigs
instance, my approach does not require that branch lengtesdded to time, simplifying the
estimation procedure. In addition, the implementatioreladiows for the estimation of long
extinct fossil taxa. Finally, the adaptation of Berger arah$itakis’ approach to filtering
character matrices can improve upon the accuracy achieveddxisting methods. The method
described here also differs from recent 'total-evidencethods that seek to simultaneously
estimate both extinct and extant relationships. Althougaltevidence methods are useful tools
in the phylogenetic canon, splitting the estimation predat stages may be beneficial in certain
datasets, and better suited to certain questions. Fontestéhe approach here may be used to
generate priors for the placement of fossil calibrationsade dating. A new method has been
developed that accommodates uncertainty in the phyloggplacement of node calibrations in
Bayesian molecular dating (Guindon 2018), which could, ingiple, be combined with my
fossil placement approach, by using posterior supportsdifealibrations as the prior
probabilities in the dating analysis.

It is also worth noting that the method that | describe herald/be straightforward to
implement in existing phylogenetics packages, such as Red3ayd adapted to a total-evidence
framework. Although RevBayes does not feature a native imgigation of the model that |
describe, including the data-filtering approach, adaptiegoresent procedure to this framework
may be useful in addressing certain biological questiohss may include an exploration of the
feasibility of incorporating continuous data into totaigence morphological clock analyses
(Zhanget al. 2015) .

Moving forward, it will be important to explore the behavairthis method when applied to
morphometric data collected under a variety of approachdsampling schemes. The success of
the weight calibrations on the simulated and empirical sttasuggests the possibility of
applying the method to very large morphometric datasetstwiging a means to filter through
the noise that may occur when sampling densely across takargans. Such a framework would
facilitate the development of a more data-centric appréachorphological phylogenetics that
reduces common sources of bias in morphological datasdikdring data matrices statistically
rather than through subjective judgement. This would erageian exploration of conflict and
concordance in signal through quantitative data analgsiger than by attempting to filter
subjectively at the stage of data collection. One major gape approach presented here
concerns the assumption that all continuous traits undaysis evolve under a shared rate. In the
empirical analyses performed above, | rescaled the tre@ach site so that the variance is set to
be equal. However, it will be important to explore model esiens that accommodate rate
heterogeneity across characters. This has been done inwaud characters to positive effect by
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Schraiberet al. (2013) using a Gamma site-rate model, and adapting thigemnalive
approaches to modeling rate heterogeneity (Huelsenbetkachard 2007) will be a key priority
in future extensions the method.

Conclusions:

The method described here provides a new means for bicgddgiseliably and confidently
place fossils in the tree of life. Although the simulated antpirical analyses show several
imperfections and a need for further refinement of these odsthithe overall accuracy and
conservative assessment of uncertainty displayed in thmpbes appear encouraging. As
molecular phylogenetics advances in its use of genomictdataswer fundamental questions
across the tree of life, it will be important for morphologiphylogenetics and paleontology to
keep pace. Analysis of morphometric data using the apprsiagivn here will help to improve
issues surrounding subjectivity in character collectaomg will help morphological datasets to
scale better in the genomic era. New advances in the caeofimorphometric data, combined
with refinements to the approach developed here will betfeipemorphology to speak to major
outstanding questions across the tree of life.
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